Index: projects/release-pkg/UPDATING =================================================================== --- projects/release-pkg/UPDATING (revision 293802) +++ projects/release-pkg/UPDATING (revision 293803) @@ -1,1476 +1,1481 @@ Updating Information for FreeBSD current users. This file is maintained and copyrighted by M. Warner Losh . See end of file for further details. For commonly done items, please see the COMMON ITEMS: section later in the file. These instructions assume that you basically know what you are doing. If not, then please consult the FreeBSD handbook: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html Items affecting the ports and packages system can be found in /usr/ports/UPDATING. Please read that file before running portupgrade. NOTE: FreeBSD has switched from gcc to clang. If you have trouble bootstrapping from older versions of FreeBSD, try WITHOUT_CLANG and WITH_GCC to bootstrap to the tip of head, and then rebuild without this option. The bootstrap process from older version of current across the gcc/clang cutover is a bit fragile. NOTE TO PEOPLE WHO THINK THAT FreeBSD 11.x IS SLOW: FreeBSD 11.x has many debugging features turned on, in both the kernel and userland. These features attempt to detect incorrect use of system primitives, and encourage loud failure through extra sanity checking and fail stop semantics. They also substantially impact system performance. If you want to do performance measurement, benchmarking, and optimization, you'll want to turn them off. This includes various WITNESS- related kernel options, INVARIANTS, malloc debugging flags in userland, and various verbose features in the kernel. Many developers choose to disable these features on build machines to maximize performance. (To completely disable malloc debugging, define MALLOC_PRODUCTION in /etc/make.conf, or to merely disable the most expensive debugging functionality run "ln -s 'abort:false,junk:false' /etc/malloc.conf".) +20160113: + With the addition of ypldap(8), a new _ypldap user is now required + during installworld. "mergemaster -p" can be used to add the user + prior to installworld, as documented in the handbook. + 20151216: The tftp loader (pxeboot) now uses the option root-path directive. As a consequence it no longer looks for a pxeboot.4th file on the tftp server. Instead it uses the regular /boot infrastructure as with the other loaders. 20151211: The code to start recording plug and play data into the modules has been committed. While the old tools will properly build a new kernel, a number of warnings about "unknown metadata record 4" will be produced for an older kldxref. To avoid such warnings, make sure to rebuild the kernel toolchain (or world). Make sure that you have r292078 or later when trying to build 292077 or later before rebuilding. 20151207: Debug data files are now built by default with 'make buildworld' and installed with 'make installworld'. This facilitates debugging but requires more disk space both during the build and for the installed world. Debug files may be disabled by setting WITHOUT_DEBUG_FILES=yes in src.conf(5). 20151130: r291527 changed the internal interface between the nfsd.ko and nfscommon.ko modules. As such, they must both be upgraded to-gether. __FreeBSD_version has been bumped because of this. 20151108: Add support for unicode collation strings leads to a change of order of files listed by ls(1) for example. To get back to the old behaviour, set LC_COLLATE environment variable to "C". Databases administrators will need to reindex their databases given collation results will be different. Due to a bug in install(1) it is recommended to remove the ancient locales before running make installworld. rm -rf /usr/share/locale/* 20151030: The OpenSSL has been upgraded to 1.0.2d. Any binaries requiring libcrypto.so.7 or libssl.so.7 must be recompiled. 20151020: Qlogic 24xx/25xx firmware images were updated from 5.5.0 to 7.3.0. Kernel modules isp_2400_multi and isp_2500_multi were removed and should be replaced with isp_2400 and isp_2500 modules respectively. 20151017: The build previously allowed using 'make -n' to not recurse into sub-directories while showing what commands would be executed, and 'make -n -n' to recursively show commands. Now 'make -n' will recurse and 'make -N' will not. 20151012: If you specify SENDMAIL_MC or SENDMAIL_CF in make.conf, mergemaster and etcupdate will now use this file. A custom sendmail.cf is now updated via this mechanism rather than via installworld. If you had excluded sendmail.cf in mergemaster.rc or etcupdate.conf, you may want to remove the exclusion or change it to "always install". /etc/mail/sendmail.cf is now managed the same way regardless of whether SENDMAIL_MC/SENDMAIL_CF is used. If you are not using SENDMAIL_MC/SENDMAIL_CF there should be no change in behavior. 20151011: Compatibility shims for legacy ATA device names have been removed. It includes ATA_STATIC_ID kernel option, kern.cam.ada.legacy_aliases and kern.geom.raid.legacy_aliases loader tunables, kern.devalias.* environment variables, /dev/ad* and /dev/ar* symbolic links. 20151006: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 3.7.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20150924: Kernel debug files have been moved to /usr/lib/debug/boot/kernel/, and renamed from .symbols to .debug. This reduces the size requirements on the boot partition or file system and provides consistency with userland debug files. When using the supported kernel installation method the /usr/lib/debug/boot/kernel directory will be renamed (to kernel.old) as is done with /boot/kernel. Developers wishing to maintain the historical behavior of installing debug files in /boot/kernel/ can set KERN_DEBUGDIR="" in src.conf(5). 20150827: The wireless drivers had undergone changes that remove the 'parent interface' from the ifconfig -l output. The rc.d network scripts used to check presence of a parent interface in the list, so old scripts would fail to start wireless networking. Thus, etcupdate(3) or mergemaster(8) run is required after kernel update, to update your rc.d scripts in /etc. 20150827: pf no longer supports 'scrub fragment crop' or 'scrub fragment drop-ovl' These configurations are now automatically interpreted as 'scrub fragment reassemble'. 20150817: Kernel-loadable modules for the random(4) device are back. To use them, the kernel must have device random options RANDOM_LOADABLE kldload(8) can then be used to load random_fortuna.ko or random_yarrow.ko. Please note that due to the indirect function calls that the loadable modules need to provide, the build-in variants will be slightly more efficient. The random(4) kernel option RANDOM_DUMMY has been retired due to unpopularity. It was not all that useful anyway. 20150813: The WITHOUT_ELFTOOLCHAIN_TOOLS src.conf(5) knob has been retired. Control over building the ELF Tool Chain tools is now provided by the WITHOUT_TOOLCHAIN knob. 20150810: The polarity of Pulse Per Second (PPS) capture events with the uart(4) driver has been corrected. Prior to this change the PPS "assert" event corresponded to the trailing edge of a positive PPS pulse and the "clear" event was the leading edge of the next pulse. As the width of a PPS pulse in a typical GPS receiver is on the order of 1 millisecond, most users will not notice any significant difference with this change. Anyone who has compensated for the historical polarity reversal by configuring a negative offset equal to the pulse width will need to remove that workaround. 20150809: The default group assigned to /dev/dri entries has been changed from 'wheel' to 'video' with the id of '44'. If you want to have access to the dri devices please add yourself to the video group with: # pw groupmod video -m $USER 20150806: The menu.rc and loader.rc files will now be replaced during upgrades. Please migrate local changes to menu.rc.local and loader.rc.local instead. 20150805: GNU Binutils versions of addr2line, c++filt, nm, readelf, size, strings and strip have been removed. The src.conf(5) knob WITHOUT_ELFTOOLCHAIN_TOOLS no longer provides the binutils tools. 20150728: As ZFS requires more kernel stack pages than is the default on some architectures e.g. i386, it now warns if KSTACK_PAGES is less than ZFS_MIN_KSTACK_PAGES (which is 4 at the time of writing). Please consider using 'options KSTACK_PAGES=X' where X is greater than or equal to ZFS_MIN_KSTACK_PAGES i.e. 4 in such configurations. 20150706: sendmail has been updated to 8.15.2. Starting with FreeBSD 11.0 and sendmail 8.15, sendmail uses uncompressed IPv6 addresses by default, i.e., they will not contain "::". For example, instead of ::1, it will be 0:0:0:0:0:0:0:1. This permits a zero subnet to have a more specific match, such as different map entries for IPv6:0:0 vs IPv6:0. This change requires that configuration data (including maps, files, classes, custom ruleset, etc.) must use the same format, so make certain such configuration data is upgrading. As a very simple check search for patterns like 'IPv6:[0-9a-fA-F:]*::' and 'IPv6::'. To return to the old behavior, set the m4 option confUSE_COMPRESSED_IPV6_ADDRESSES or the cf option UseCompressedIPv6Addresses. 20150630: The default kernel entropy-processing algorithm is now Fortuna, replacing Yarrow. Assuming you have 'device random' in your kernel config file, the configurations allow a kernel option to override this default. You may choose *ONE* of: options RANDOM_YARROW # Legacy /dev/random algorithm. options RANDOM_DUMMY # Blocking-only driver. If you have neither, you get Fortuna. For most people, read no further, Fortuna will give a /dev/random that works like it always used to, and the difference will be irrelevant. If you remove 'device random', you get *NO* kernel-processed entropy at all. This may be acceptable to folks building embedded systems, but has complications. Carry on reading, and it is assumed you know what you need. *PLEASE* read random(4) and random(9) if you are in the habit of tweaking kernel configs, and/or if you are a member of the embedded community, wanting specific and not-usual behaviour from your security subsystems. NOTE!! If you use RANDOM_DUMMY and/or have no 'device random', you will NOT have a functioning /dev/random, and many cryptographic features will not work, including SSH. You may also find strange behaviour from the random(3) set of library functions, in particular sranddev(3), srandomdev(3) and arc4random(3). The reason for this is that the KERN_ARND sysctl only returns entropy if it thinks it has some to share, and with RANDOM_DUMMY or no 'device random' this will never happen. 20150623: An additional fix for the issue described in the 20150614 sendmail entry below has been been committed in revision 284717. 20150616: FreeBSD's old make (fmake) has been removed from the system. It is available as the devel/fmake port or via pkg install fmake. 20150615: The fix for the issue described in the 20150614 sendmail entry below has been been committed in revision 284436. The work around described in that entry is no longer needed unless the default setting is overridden by a confDH_PARAMETERS configuration setting of '5' or pointing to a 512 bit DH parameter file. 20150614: ALLOW_DEPRECATED_ATF_TOOLS/ATFFILE support has been removed from atf.test.mk (included from bsd.test.mk). Please upgrade devel/atf and devel/kyua to version 0.20+ and adjust any calling code to work with Kyuafile and kyua. 20150614: The import of openssl to address the FreeBSD-SA-15:10.openssl security advisory includes a change which rejects handshakes with DH parameters below 768 bits. sendmail releases prior to 8.15.2 (not yet released), defaulted to a 512 bit DH parameter setting for client connections. To work around this interoperability, sendmail can be configured to use a 2048 bit DH parameter by: 1. Edit /etc/mail/`hostname`.mc 2. If a setting for confDH_PARAMETERS does not exist or exists and is set to a string beginning with '5', replace it with '2'. 3. If a setting for confDH_PARAMETERS exists and is set to a file path, create a new file with: openssl dhparam -out /path/to/file 2048 4. Rebuild the .cf file: cd /etc/mail/; make; make install 5. Restart sendmail: cd /etc/mail/; make restart A sendmail patch is coming, at which time this file will be updated. 20150604: Generation of legacy formatted entries have been disabled by default in pwd_mkdb(8), as all base system consumers of the legacy formatted entries were converted to use the new format by default when the new, machine independent format have been added and supported since FreeBSD 5.x. Please see the pwd_mkdb(8) manual page for further details. 20150525: Clang and llvm have been upgraded to 3.6.1 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150521: TI platform code switched to using vendor DTS files and this update may break existing systems running on Beaglebone, Beaglebone Black, and Pandaboard: - dtb files should be regenerated/reinstalled. Filenames are the same but content is different now - GPIO addressing was changed, now each GPIO bank (32 pins per bank) has its own /dev/gpiocX device, e.g. pin 121 on /dev/gpioc0 in old addressing scheme is now pin 25 on /dev/gpioc3. - Pandaboard: /etc/ttys should be updated, serial console device is now /dev/ttyu2, not /dev/ttyu0 20150501: soelim(1) from gnu/usr.bin/groff has been replaced by usr.bin/soelim. If you need the GNU extension from groff soelim(1), install groff from package: pkg install groff, or via ports: textproc/groff. 20150423: chmod, chflags, chown and chgrp now affect symlinks in -R mode as defined in symlink(7); previously symlinks were silently ignored. 20150415: The const qualifier has been removed from iconv(3) to comply with POSIX. The ports tree is aware of this from r384038 onwards. 20150416: Libraries specified by LIBADD in Makefiles must have a corresponding DPADD_ variable to ensure correct dependencies. This is now enforced in src.libnames.mk. 20150324: From legacy ata(4) driver was removed support for SATA controllers supported by more functional drivers ahci(4), siis(4) and mvs(4). Kernel modules ataahci and ataadaptec were removed completely, replaced by ahci and mvs modules respectively. 20150315: Clang, llvm and lldb have been upgraded to 3.6.0 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150307: The 32-bit PowerPC kernel has been changed to a position-independent executable. This can only be booted with a version of loader(8) newer than January 31, 2015, so make sure to update both world and kernel before rebooting. 20150217: If you are running a -CURRENT kernel since r273872 (Oct 30th, 2014), but before r278950, the RNG was not seeded properly. Immediately upgrade the kernel to r278950 or later and regenerate any keys (e.g. ssh keys or openssl keys) that were generated w/ a kernel from that range. This does not affect programs that directly used /dev/random or /dev/urandom. All userland uses of arc4random(3) are affected. 20150210: The autofs(4) ABI was changed in order to restore binary compatibility with 10.1-RELEASE. The automountd(8) daemon needs to be rebuilt to work with the new kernel. 20150131: The powerpc64 kernel has been changed to a position-independent executable. This can only be booted with a new version of loader(8), so make sure to update both world and kernel before rebooting. 20150118: Clang and llvm have been upgraded to 3.5.1 release. This is a bugfix only release, no new features have been added. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0. 20150107: ELF tools addr2line, elfcopy (strip), nm, size, and strings are now taken from the ELF Tool Chain project rather than GNU binutils. They should be drop-in replacements, with the addition of arm64 support. The WITHOUT_ELFTOOLCHAIN_TOOLS= knob may be used to obtain the binutils tools, if necessary. See 20150805 for updated information. 20150105: The default Unbound configuration now enables remote control using a local socket. Users who have already enabled the local_unbound service should regenerate their configuration by running "service local_unbound setup" as root. 20150102: The GNU texinfo and GNU info pages have been removed. To be able to view GNU info pages please install texinfo from ports. 20141231: Clang, llvm and lldb have been upgraded to 3.5.0 release. As of this release, a prerequisite for building clang, llvm and lldb is a C++11 capable compiler and C++11 standard library. This means that to be able to successfully build the cross-tools stage of buildworld, with clang as the bootstrap compiler, your system compiler or cross compiler should either be clang 3.3 or later, or gcc 4.8 or later, and your system C++ library should be libc++, or libdstdc++ from gcc 4.8 or later. On any standard FreeBSD 10.x or 11.x installation, where clang and libc++ are on by default (that is, on x86 or arm), this should work out of the box. On 9.x installations where clang is enabled by default, e.g. on x86 and powerpc, libc++ will not be enabled by default, so libc++ should be built (with clang) and installed first. If both clang and libc++ are missing, build clang first, then use it to build libc++. On 8.x and earlier installations, upgrade to 9.x first, and then follow the instructions for 9.x above. Sparc64 and mips users are unaffected, as they still use gcc 4.2.1 by default, and do not build clang. Many embedded systems are resource constrained, and will not be able to build clang in a reasonable time, or in some cases at all. In those cases, cross building bootable systems on amd64 is a workaround. This new version of clang introduces a number of new warnings, of which the following are most likely to appear: -Wabsolute-value This warns in two cases, for both C and C++: * When the code is trying to take the absolute value of an unsigned quantity, which is effectively a no-op, and almost never what was intended. The code should be fixed, if at all possible. If you are sure that the unsigned quantity can be safely cast to signed, without loss of information or undefined behavior, you can add an explicit cast, or disable the warning. * When the code is trying to take an absolute value, but the called abs() variant is for the wrong type, which can lead to truncation. If you want to disable the warning instead of fixing the code, please make sure that truncation will not occur, or it might lead to unwanted side-effects. -Wtautological-undefined-compare and -Wundefined-bool-conversion These warn when C++ code is trying to compare 'this' against NULL, while 'this' should never be NULL in well-defined C++ code. However, there is some legacy (pre C++11) code out there, which actively abuses this feature, which was less strictly defined in previous C++ versions. Squid and openjdk do this, for example. The warning can be turned off for C++98 and earlier, but compiling the code in C++11 mode might result in unexpected behavior; for example, the parts of the program that are unreachable could be optimized away. 20141222: The old NFS client and server (kernel options NFSCLIENT, NFSSERVER) kernel sources have been removed. The .h files remain, since some utilities include them. This will need to be fixed later. If "mount -t oldnfs ..." is attempted, it will fail. If the "-o" option on mountd(8), nfsd(8) or nfsstat(1) is used, the utilities will report errors. 20141121: The handling of LOCAL_LIB_DIRS has been altered to skip addition of directories to top level SUBDIR variable when their parent directory is included in LOCAL_DIRS. Users with build systems with such hierarchies and without SUBDIR entries in the parent directory Makefiles should add them or add the directories to LOCAL_DIRS. 20141109: faith(4) and faithd(8) have been removed from the base system. Faith has been obsolete for a very long time. 20141104: vt(4), the new console driver, is enabled by default. It brings support for Unicode and double-width characters, as well as support for UEFI and integration with the KMS kernel video drivers. You may need to update your console settings in /etc/rc.conf, most probably the keymap. During boot, /etc/rc.d/syscons will indicate what you need to do. vt(4) still has issues and lacks some features compared to syscons(4). See the wiki for up-to-date information: https://wiki.freebsd.org/Newcons If you want to keep using syscons(4), you can do so by adding the following line to /boot/loader.conf: kern.vty=sc 20141102: pjdfstest has been integrated into kyua as an opt-in test suite. Please see share/doc/pjdfstest/README for more details on how to execute it. 20141009: gperf has been removed from the base system for architectures that use clang. Ports that require gperf will obtain it from the devel/gperf port. 20140923: pjdfstest has been moved from tools/regression/pjdfstest to contrib/pjdfstest . 20140922: At svn r271982, The default linux compat kernel ABI has been adjusted to 2.6.18 in support of the linux-c6 compat ports infrastructure update. If you wish to continue using the linux-f10 compat ports, add compat.linux.osrelease=2.6.16 to your local sysctl.conf. Users are encouraged to update their linux-compat packages to linux-c6 during their next update cycle. 20140729: The ofwfb driver, used to provide a graphics console on PowerPC when using vt(4), no longer allows mmap() of all physical memory. This will prevent Xorg on PowerPC with some ATI graphics cards from initializing properly unless x11-servers/xorg-server is updated to 1.12.4_8 or newer. 20140723: The xdev targets have been converted to using TARGET and TARGET_ARCH instead of XDEV and XDEV_ARCH. 20140719: The default unbound configuration has been modified to address issues with reverse lookups on networks that use private address ranges. If you use the local_unbound service, run "service local_unbound setup" as root to regenerate your configuration, then "service local_unbound reload" to load the new configuration. 20140709: The GNU texinfo and GNU info pages are not built and installed anymore, WITH_INFO knob has been added to allow to built and install them again. UPDATE: see 20150102 entry on texinfo's removal 20140708: The GNU readline library is now an INTERNALLIB - that is, it is statically linked into consumers (GDB and variants) in the base system, and the shared library is no longer installed. The devel/readline port is available for third party software that requires readline. 20140702: The Itanium architecture (ia64) has been removed from the list of known architectures. This is the first step in the removal of the architecture. 20140701: Commit r268115 has added NFSv4.1 server support, merged from projects/nfsv4.1-server. Since this includes changes to the internal interfaces between the NFS related modules, a full build of the kernel and modules will be necessary. __FreeBSD_version has been bumped. 20140629: The WITHOUT_VT_SUPPORT kernel config knob has been renamed WITHOUT_VT. (The other _SUPPORT knobs have a consistent meaning which differs from the behaviour controlled by this knob.) 20140619: Maximal length of the serial number in CTL was increased from 16 to 64 chars, that breaks ABI. All CTL-related tools, such as ctladm and ctld, need to be rebuilt to work with a new kernel. 20140606: The libatf-c and libatf-c++ major versions were downgraded to 0 and 1 respectively to match the upstream numbers. They were out of sync because, when they were originally added to FreeBSD, the upstream versions were not respected. These libraries are private and not yet built by default, so renumbering them should be a non-issue. However, unclean source trees will yield broken test programs once the operator executes "make delete-old-libs" after a "make installworld". Additionally, the atf-sh binary was made private by moving it into /usr/libexec/. Already-built shell test programs will keep the path to the old binary so they will break after "make delete-old" is run. If you are using WITH_TESTS=yes (not the default), wipe the object tree and rebuild from scratch to prevent spurious test failures. This is only needed once: the misnumbered libraries and misplaced binaries have been added to OptionalObsoleteFiles.inc so they will be removed during a clean upgrade. 20140512: Clang and llvm have been upgraded to 3.4.1 release. 20140508: We bogusly installed src.opts.mk in /usr/share/mk. This file should be removed to avoid issues in the future (and has been added to ObsoleteFiles.inc). 20140505: /etc/src.conf now affects only builds of the FreeBSD src tree. In the past, it affected all builds that used the bsd.*.mk files. The old behavior was a bug, but people may have relied upon it. To get this behavior back, you can .include /etc/src.conf from /etc/make.conf (which is still global and isn't changed). This also changes the behavior of incremental builds inside the tree of individual directories. Set MAKESYSPATH to ".../share/mk" to do that. Although this has survived make universe and some upgrade scenarios, other upgrade scenarios may have broken. At least one form of temporary breakage was fixed with MAKESYSPATH settings for buildworld as well... In cases where MAKESYSPATH isn't working with this setting, you'll need to set it to the full path to your tree. One side effect of all this cleaning up is that bsd.compiler.mk is no longer implicitly included by bsd.own.mk. If you wish to use COMPILER_TYPE, you must now explicitly include bsd.compiler.mk as well. 20140430: The lindev device has been removed since /dev/full has been made a standard device. __FreeBSD_version has been bumped. 20140424: The knob WITHOUT_VI was added to the base system, which controls building ex(1), vi(1), etc. Older releases of FreeBSD required ex(1) in order to reorder files share/termcap and didn't build ex(1) as a build tool, so building/installing with WITH_VI is highly advised for build hosts for older releases. This issue has been fixed in stable/9 and stable/10 in r277022 and r276991, respectively. 20140418: The YES_HESIOD knob has been removed. It has been obsolete for a decade. Please move to using WITH_HESIOD instead or your builds will silently lack HESIOD. 20140405: The uart(4) driver has been changed with respect to its handling of the low-level console. Previously the uart(4) driver prevented any process from changing the baudrate or the CLOCAL and HUPCL control flags. By removing the restrictions, operators can make changes to the serial console port without having to reboot. However, when getty(8) is started on the serial device that is associated with the low-level console, a misconfigured terminal line in /etc/ttys will now have a real impact. Before upgrading the kernel, make sure that /etc/ttys has the serial console device configured as 3wire without baudrate to preserve the previous behaviour. E.g: ttyu0 "/usr/libexec/getty 3wire" vt100 on secure 20140306: Support for libwrap (TCP wrappers) in rpcbind was disabled by default to improve performance. To re-enable it, if needed, run rpcbind with command line option -W. 20140226: Switched back to the GPL dtc compiler due to updates in the upstream dts files not being supported by the BSDL dtc compiler. You will need to rebuild your kernel toolchain to pick up the new compiler. Core dumps may result while building dtb files during a kernel build if you fail to do so. Set WITHOUT_GPL_DTC if you require the BSDL compiler. 20140216: Clang and llvm have been upgraded to 3.4 release. 20140216: The nve(4) driver has been removed. Please use the nfe(4) driver for NVIDIA nForce MCP Ethernet adapters instead. 20140212: An ABI incompatibility crept into the libc++ 3.4 import in r261283. This could cause certain C++ applications using shared libraries built against the previous version of libc++ to crash. The incompatibility has now been fixed, but any C++ applications or shared libraries built between r261283 and r261801 should be recompiled. 20140204: OpenSSH will now ignore errors caused by kernel lacking of Capsicum capability mode support. Please note that enabling the feature in kernel is still highly recommended. 20140131: OpenSSH is now built with sandbox support, and will use sandbox as the default privilege separation method. This requires Capsicum capability mode support in kernel. 20140128: The libelf and libdwarf libraries have been updated to newer versions from upstream. Shared library version numbers for these two libraries were bumped. Any ports or binaries requiring these two libraries should be recompiled. __FreeBSD_version is bumped to 1100006. 20140110: If a Makefile in a tests/ directory was auto-generating a Kyuafile instead of providing an explicit one, this would prevent such Makefile from providing its own Kyuafile in the future during NO_CLEAN builds. This has been fixed in the Makefiles but manual intervention is needed to clean an objdir if you use NO_CLEAN: # find /usr/obj -name Kyuafile | xargs rm -f 20131213: The behavior of gss_pseudo_random() for the krb5 mechanism has changed, for applications requesting a longer random string than produced by the underlying enctype's pseudo-random() function. In particular, the random string produced from a session key of enctype aes256-cts-hmac-sha1-96 or aes256-cts-hmac-sha1-96 will be different at the 17th octet and later, after this change. The counter used in the PRF+ construction is now encoded as a big-endian integer in accordance with RFC 4402. __FreeBSD_version is bumped to 1100004. 20131108: The WITHOUT_ATF build knob has been removed and its functionality has been subsumed into the more generic WITHOUT_TESTS. If you were using the former to disable the build of the ATF libraries, you should change your settings to use the latter. 20131025: The default version of mtree is nmtree which is obtained from NetBSD. The output is generally the same, but may vary slightly. If you found you need identical output adding "-F freebsd9" to the command line should do the trick. For the time being, the old mtree is available as fmtree. 20131014: libbsdyml has been renamed to libyaml and moved to /usr/lib/private. This will break ports-mgmt/pkg. Rebuild the port, or upgrade to pkg 1.1.4_8 and verify bsdyml not linked in, before running "make delete-old-libs": # make -C /usr/ports/ports-mgmt/pkg build deinstall install clean or # pkg install pkg; ldd /usr/local/sbin/pkg | grep bsdyml 20131010: The stable/10 branch has been created in subversion from head revision r256279. 20131010: The rc.d/jail script has been updated to support jail(8) configuration file. The "jail__*" rc.conf(5) variables for per-jail configuration are automatically converted to /var/run/jail..conf before the jail(8) utility is invoked. This is transparently backward compatible. See below about some incompatibilities and rc.conf(5) manual page for more details. These variables are now deprecated in favor of jail(8) configuration file. One can use "rc.d/jail config " command to generate a jail(8) configuration file in /var/run/jail..conf without running the jail(8) utility. The default pathname of the configuration file is /etc/jail.conf and can be specified by using $jail_conf or $jail__conf variables. Please note that jail_devfs_ruleset accepts an integer at this moment. Please consider to rewrite the ruleset name with an integer. 20130930: BIND has been removed from the base system. If all you need is a local resolver, simply enable and start the local_unbound service instead. Otherwise, several versions of BIND are available in the ports tree. The dns/bind99 port is one example. With this change, nslookup(1) and dig(1) are no longer in the base system. Users should instead use host(1) and drill(1) which are in the base system. Alternatively, nslookup and dig can be obtained by installing the dns/bind-tools port. 20130916: With the addition of unbound(8), a new unbound user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20130911: OpenSSH is now built with DNSSEC support, and will by default silently trust signed SSHFP records. This can be controlled with the VerifyHostKeyDNS client configuration setting. DNSSEC support can be disabled entirely with the WITHOUT_LDNS option in src.conf. 20130906: The GNU Compiler Collection and C++ standard library (libstdc++) are no longer built by default on platforms where clang is the system compiler. You can enable them with the WITH_GCC and WITH_GNUCXX options in src.conf. 20130905: The PROCDESC kernel option is now part of the GENERIC kernel configuration and is required for the rwhod(8) to work. If you are using custom kernel configuration, you should include 'options PROCDESC'. 20130905: The API and ABI related to the Capsicum framework was modified in backward incompatible way. The userland libraries and programs have to be recompiled to work with the new kernel. This includes the following libraries and programs, but the whole buildworld is advised: libc, libprocstat, dhclient, tcpdump, hastd, hastctl, kdump, procstat, rwho, rwhod, uniq. 20130903: AES-NI intrinsic support has been added to gcc. The AES-NI module has been updated to use this support. A new gcc is required to build the aesni module on both i386 and amd64. 20130821: The PADLOCK_RNG and RDRAND_RNG kernel options are now devices. Thus "device padlock_rng" and "device rdrand_rng" should be used instead of "options PADLOCK_RNG" & "options RDRAND_RNG". 20130813: WITH_ICONV has been split into two feature sets. WITH_ICONV now enables just the iconv* functionality and is now on by default. WITH_LIBICONV_COMPAT enables the libiconv api and link time compatability. Set WITHOUT_ICONV to build the old way. If you have been using WITH_ICONV before, you will very likely need to turn on WITH_LIBICONV_COMPAT. 20130806: INVARIANTS option now enables DEBUG for code with OpenSolaris and Illumos origin, including ZFS. If you have INVARIANTS in your kernel configuration, then there is no need to set DEBUG or ZFS_DEBUG explicitly. DEBUG used to enable witness(9) tracking of OpenSolaris (mostly ZFS) locks if WITNESS option was set. Because that generated a lot of witness(9) reports and all of them were believed to be false positives, this is no longer done. New option OPENSOLARIS_WITNESS can be used to achieve the previous behavior. 20130806: Timer values in IPv6 data structures now use time_uptime instead of time_second. Although this is not a user-visible functional change, userland utilities which directly use them---ndp(8), rtadvd(8), and rtsold(8) in the base system---need to be updated to r253970 or later. 20130802: find -delete can now delete the pathnames given as arguments, instead of only files found below them or if the pathname did not contain any slashes. Formerly, the following error message would result: find: -delete: : relative path potentially not safe Deleting the pathnames given as arguments can be prevented without error messages using -mindepth 1 or by changing directory and passing "." as argument to find. This works in the old as well as the new version of find. 20130726: Behavior of devfs rules path matching has been changed. Pattern is now always matched against fully qualified devfs path and slash characters must be explicitly matched by slashes in pattern (FNM_PATHNAME). Rulesets involving devfs subdirectories must be reviewed. 20130716: The default ARM ABI has changed to the ARM EABI. The old ABI is incompatible with the ARM EABI and all programs and modules will need to be rebuilt to work with a new kernel. To keep using the old ABI ensure the WITHOUT_ARM_EABI knob is set. NOTE: Support for the old ABI will be removed in the future and users are advised to upgrade. 20130709: pkg_install has been disconnected from the build if you really need it you should add WITH_PKGTOOLS in your src.conf(5). 20130709: Most of network statistics structures were changed to be able keep 64-bits counters. Thus all tools, that work with networking statistics, must be rebuilt (netstat(1), bsnmpd(1), etc.) 20130618: Fix a bug that allowed a tracing process (e.g. gdb) to write to a memory-mapped file in the traced process's address space even if neither the traced process nor the tracing process had write access to that file. 20130615: CVS has been removed from the base system. An exact copy of the code is available from the devel/cvs port. 20130613: Some people report the following error after the switch to bmake: make: illegal option -- J usage: make [-BPSXeiknpqrstv] [-C directory] [-D variable] ... *** [buildworld] Error code 2 this likely due to an old instance of make in ${MAKEPATH} (${MAKEOBJDIRPREFIX}${.CURDIR}/make.${MACHINE}) which src/Makefile will use that blindly, if it exists, so if you see the above error: rm -rf `make -V MAKEPATH` should resolve it. 20130516: Use bmake by default. Whereas before one could choose to build with bmake via -DWITH_BMAKE one must now use -DWITHOUT_BMAKE to use the old make. The goal is to remove these knobs for 10-RELEASE. It is worth noting that bmake (like gmake) treats the command line as the unit of failure, rather than statements within the command line. Thus '(cd some/where && dosomething)' is safer than 'cd some/where; dosomething'. The '()' allows consistent behavior in parallel build. 20130429: Fix a bug that allows NFS clients to issue READDIR on files. 20130426: The WITHOUT_IDEA option has been removed because the IDEA patent expired. 20130426: The sysctl which controls TRIM support under ZFS has been renamed from vfs.zfs.trim_disable -> vfs.zfs.trim.enabled and has been enabled by default. 20130425: The mergemaster command now uses the default MAKEOBJDIRPREFIX rather than creating it's own in the temporary directory in order allow access to bootstrapped versions of tools such as install and mtree. When upgrading from version of FreeBSD where the install command does not support -l, you will need to install a new mergemaster command if mergemaster -p is required. This can be accomplished with the command (cd src/usr.sbin/mergemaster && make install). 20130404: Legacy ATA stack, disabled and replaced by new CAM-based one since FreeBSD 9.0, completely removed from the sources. Kernel modules atadisk and atapi*, user-level tools atacontrol and burncd are removed. Kernel option `options ATA_CAM` is now permanently enabled and removed. 20130319: SOCK_CLOEXEC and SOCK_NONBLOCK flags have been added to socket(2) and socketpair(2). Software, in particular Kerberos, may automatically detect and use these during building. The resulting binaries will not work on older kernels. 20130308: CTL_DISABLE has also been added to the sparc64 GENERIC (for further information, see the respective 20130304 entry). 20130304: Recent commits to callout(9) changed the size of struct callout, so the KBI is probably heavily disturbed. Also, some functions in callout(9)/sleep(9)/sleepqueue(9)/condvar(9) KPIs were replaced by macros. Every kernel module using it won't load, so rebuild is requested. The ctl device has been re-enabled in GENERIC for i386 and amd64, but does not initialize by default (because of the new CTL_DISABLE option) to save memory. To re-enable it, remove the CTL_DISABLE option from the kernel config file or set kern.cam.ctl.disable=0 in /boot/loader.conf. 20130301: The ctl device has been disabled in GENERIC for i386 and amd64. This was done due to the extra memory being allocated at system initialisation time by the ctl driver which was only used if a CAM target device was created. This makes a FreeBSD system unusable on 128MB or less of RAM. 20130208: A new compression method (lz4) has been merged to -HEAD. Please refer to zpool-features(7) for more information. Please refer to the "ZFS notes" section of this file for information on upgrading boot ZFS pools. 20130129: A BSD-licensed patch(1) variant has been added and is installed as bsdpatch, being the GNU version the default patch. To inverse the logic and use the BSD-licensed one as default, while having the GNU version installed as gnupatch, rebuild and install world with the WITH_BSD_PATCH knob set. 20130121: Due to the use of the new -l option to install(1) during build and install, you must take care not to directly set the INSTALL make variable in your /etc/make.conf, /etc/src.conf, or on the command line. If you wish to use the -C flag for all installs you may be able to add INSTALL+=-C to /etc/make.conf or /etc/src.conf. 20130118: The install(1) option -M has changed meaning and now takes an argument that is a file or path to append logs to. In the unlikely event that -M was the last option on the command line and the command line contained at least two files and a target directory the first file will have logs appended to it. The -M option served little practical purpose in the last decade so its use is expected to be extremely rare. 20121223: After switching to Clang as the default compiler some users of ZFS on i386 systems started to experience stack overflow kernel panics. Please consider using 'options KSTACK_PAGES=4' in such configurations. 20121222: GEOM_LABEL now mangles label names read from file system metadata. Mangling affect labels containing spaces, non-printable characters, '%' or '"'. Device names in /etc/fstab and other places may need to be updated. 20121217: By default, only the 10 most recent kernel dumps will be saved. To restore the previous behaviour (no limit on the number of kernel dumps stored in the dump directory) add the following line to /etc/rc.conf: savecore_flags="" 20121201: With the addition of auditdistd(8), a new auditdistd user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20121117: The sin6_scope_id member variable in struct sockaddr_in6 is now filled by the kernel before passing the structure to the userland via sysctl or routing socket. This means the KAME-specific embedded scope id in sin6_addr.s6_addr[2] is always cleared in userland application. This behavior can be controlled by net.inet6.ip6.deembed_scopeid. __FreeBSD_version is bumped to 1000025. 20121105: On i386 and amd64 systems WITH_CLANG_IS_CC is now the default. This means that the world and kernel will be compiled with clang and that clang will be installed as /usr/bin/cc, /usr/bin/c++, and /usr/bin/cpp. To disable this behavior and revert to building with gcc, compile with WITHOUT_CLANG_IS_CC. Really old versions of current may need to bootstrap WITHOUT_CLANG first if the clang build fails (its compatibility window doesn't extend to the 9 stable branch point). 20121102: The IPFIREWALL_FORWARD kernel option has been removed. Its functionality now turned on by default. 20121023: The ZERO_COPY_SOCKET kernel option has been removed and split into SOCKET_SEND_COW and SOCKET_RECV_PFLIP. NB: SOCKET_SEND_COW uses the VM page based copy-on-write mechanism which is not safe and may result in kernel crashes. NB: The SOCKET_RECV_PFLIP mechanism is useless as no current driver supports disposeable external page sized mbuf storage. Proper replacements for both zero-copy mechanisms are under consideration and will eventually lead to complete removal of the two kernel options. 20121023: The IPv4 network stack has been converted to network byte order. The following modules need to be recompiled together with kernel: carp(4), divert(4), gif(4), siftr(4), gre(4), pf(4), ipfw(4), ng_ipfw(4), stf(4). 20121022: Support for non-MPSAFE filesystems was removed from VFS. The VFS_VERSION was bumped, all filesystem modules shall be recompiled. 20121018: All the non-MPSAFE filesystems have been disconnected from the build. The full list includes: codafs, hpfs, ntfs, nwfs, portalfs, smbfs, xfs. 20121016: The interface cloning API and ABI has changed. The following modules need to be recompiled together with kernel: ipfw(4), pfsync(4), pflog(4), usb(4), wlan(4), stf(4), vlan(4), disc(4), edsc(4), if_bridge(4), gif(4), tap(4), faith(4), epair(4), enc(4), tun(4), if_lagg(4), gre(4). 20121015: The sdhci driver was split in two parts: sdhci (generic SD Host Controller logic) and sdhci_pci (actual hardware driver). No kernel config modifications are required, but if you load sdhc as a module you must switch to sdhci_pci instead. 20121014: Import the FUSE kernel and userland support into base system. 20121013: The GNU sort(1) program has been removed since the BSD-licensed sort(1) has been the default for quite some time and no serious problems have been reported. The corresponding WITH_GNU_SORT knob has also gone. 20121006: The pfil(9) API/ABI for AF_INET family has been changed. Packet filtering modules: pf(4), ipfw(4), ipfilter(4) need to be recompiled with new kernel. 20121001: The net80211(4) ABI has been changed to allow for improved driver PS-POLL and power-save support. All wireless drivers need to be recompiled to work with the new kernel. 20120913: The random(4) support for the VIA hardware random number generator (`PADLOCK') is no longer enabled unconditionally. Add the padlock_rng device in the custom kernel config if needed. The GENERIC kernels on i386 and amd64 do include the device, so the change only affects the custom kernel configurations. 20120908: The pf(4) packet filter ABI has been changed. pfctl(8) and snmp_pf module need to be recompiled to work with new kernel. 20120828: A new ZFS feature flag "com.delphix:empty_bpobj" has been merged to -HEAD. Pools that have empty_bpobj in active state can not be imported read-write with ZFS implementations that do not support this feature. For more information read the zpool-features(5) manual page. 20120727: The sparc64 ZFS loader has been changed to no longer try to auto- detect ZFS providers based on diskN aliases but now requires these to be explicitly listed in the OFW boot-device environment variable. 20120712: The OpenSSL has been upgraded to 1.0.1c. Any binaries requiring libcrypto.so.6 or libssl.so.6 must be recompiled. Also, there are configuration changes. Make sure to merge /etc/ssl/openssl.cnf. 20120712: The following sysctls and tunables have been renamed for consistency with other variables: kern.cam.da.da_send_ordered -> kern.cam.da.send_ordered kern.cam.ada.ada_send_ordered -> kern.cam.ada.send_ordered 20120628: The sort utility has been replaced with BSD sort. For now, GNU sort is also available as "gnusort" or the default can be set back to GNU sort by setting WITH_GNU_SORT. In this case, BSD sort will be installed as "bsdsort". 20120611: A new version of ZFS (pool version 5000) has been merged to -HEAD. Starting with this version the old system of ZFS pool versioning is superseded by "feature flags". This concept enables forward compatibility against certain future changes in functionality of ZFS pools. The first read-only compatible "feature flag" for ZFS pools is named "com.delphix:async_destroy". For more information read the new zpool-features(5) manual page. Please refer to the "ZFS notes" section of this file for information on upgrading boot ZFS pools. 20120417: The malloc(3) implementation embedded in libc now uses sources imported as contrib/jemalloc. The most disruptive API change is to /etc/malloc.conf. If your system has an old-style /etc/malloc.conf, delete it prior to installworld, and optionally re-create it using the new format after rebooting. See malloc.conf(5) for details (specifically the TUNING section and the "opt.*" entries in the MALLCTL NAMESPACE section). 20120328: Big-endian MIPS TARGET_ARCH values no longer end in "eb". mips64eb is now spelled mips64. mipsn32eb is now spelled mipsn32. mipseb is now spelled mips. This is to aid compatibility with third-party software that expects this naming scheme in uname(3). Little-endian settings are unchanged. If you are updating a big-endian mips64 machine from before this change, you may need to set MACHINE_ARCH=mips64 in your environment before the new build system will recognize your machine. 20120306: Disable by default the option VFS_ALLOW_NONMPSAFE for all supported platforms. 20120229: Now unix domain sockets behave "as expected" on nullfs(5). Previously nullfs(5) did not pass through all behaviours to the underlying layer, as a result if we bound to a socket on the lower layer we could connect only to the lower path; if we bound to the upper layer we could connect only to the upper path. The new behavior is one can connect to both the lower and the upper paths regardless what layer path one binds to. 20120211: The getifaddrs upgrade path broken with 20111215 has been restored. If you have upgraded in between 20111215 and 20120209 you need to recompile libc again with your kernel. You still need to recompile world to be able to configure CARP but this restriction already comes from 20111215. 20120114: The set_rcvar() function has been removed from /etc/rc.subr. All base and ports rc.d scripts have been updated, so if you have a port installed with a script in /usr/local/etc/rc.d you can either hand-edit the rcvar= line, or reinstall the port. An easy way to handle the mass-update of /etc/rc.d: rm /etc/rc.d/* && mergemaster -i 20120109: panic(9) now stops other CPUs in the SMP systems, disables interrupts on the current CPU and prevents other threads from running. This behavior can be reverted using the kern.stop_scheduler_on_panic tunable/sysctl. The new behavior can be incompatible with kern.sync_on_panic. 20111215: The carp(4) facility has been changed significantly. Configuration of the CARP protocol via ifconfig(8) has changed, as well as format of CARP events submitted to devd(8) has changed. See manual pages for more information. The arpbalance feature of carp(4) is currently not supported anymore. Size of struct in_aliasreq, struct in6_aliasreq has changed. User utilities using SIOCAIFADDR, SIOCAIFADDR_IN6, e.g. ifconfig(8), need to be recompiled. 20111122: The acpi_wmi(4) status device /dev/wmistat has been renamed to /dev/wmistat0. 20111108: The option VFS_ALLOW_NONMPSAFE option has been added in order to explicitely support non-MPSAFE filesystems. It is on by default for all supported platform at this present time. 20111101: The broken amd(4) driver has been replaced with esp(4) in the amd64, i386 and pc98 GENERIC kernel configuration files. 20110930: sysinstall has been removed 20110923: The stable/9 branch created in subversion. This corresponds to the RELENG_9 branch in CVS. COMMON ITEMS: General Notes ------------- Avoid using make -j when upgrading. While generally safe, there are sometimes problems using -j to upgrade. If your upgrade fails with -j, please try again without -j. From time to time in the past there have been problems using -j with buildworld and/or installworld. This is especially true when upgrading between "distant" versions (eg one that cross a major release boundary or several minor releases, or when several months have passed on the -current branch). Sometimes, obscure build problems are the result of environment poisoning. This can happen because the make utility reads its environment when searching for values for global variables. To run your build attempts in an "environmental clean room", prefix all make commands with 'env -i '. See the env(1) manual page for more details. When upgrading from one major version to another it is generally best to upgrade to the latest code in the currently installed branch first, then do an upgrade to the new branch. This is the best-tested upgrade path, and has the highest probability of being successful. Please try this approach before reporting problems with a major version upgrade. When upgrading a live system, having a root shell around before installing anything can help undo problems. Not having a root shell around can lead to problems if pam has changed too much from your starting point to allow continued authentication after the upgrade. This file should be read as a log of events. When a later event changes information of a prior event, the prior event should not be deleted. Instead, a pointer to the entry with the new information should be placed in the old entry. Readers of this file should also sanity check older entries before relying on them blindly. Authors of new entries should write them with this in mind. ZFS notes --------- When upgrading the boot ZFS pool to a new version, always follow these two steps: 1.) recompile and reinstall the ZFS boot loader and boot block (this is part of "make buildworld" and "make installworld") 2.) update the ZFS boot block on your boot drive The following example updates the ZFS boot block on the first partition (freebsd-boot) of a GPT partitioned drive ada0: "gpart bootcode -p /boot/gptzfsboot -i 1 ada0" Non-boot pools do not need these updates. To build a kernel ----------------- If you are updating from a prior version of FreeBSD (even one just a few days old), you should follow this procedure. It is the most failsafe as it uses a /usr/obj tree with a fresh mini-buildworld, make kernel-toolchain make -DALWAYS_CHECK_MAKE buildkernel KERNCONF=YOUR_KERNEL_HERE make -DALWAYS_CHECK_MAKE installkernel KERNCONF=YOUR_KERNEL_HERE To test a kernel once --------------------- If you just want to boot a kernel once (because you are not sure if it works, or if you want to boot a known bad kernel to provide debugging information) run make installkernel KERNCONF=YOUR_KERNEL_HERE KODIR=/boot/testkernel nextboot -k testkernel To just build a kernel when you know that it won't mess you up -------------------------------------------------------------- This assumes you are already running a CURRENT system. Replace ${arch} with the architecture of your machine (e.g. "i386", "arm", "amd64", "ia64", "pc98", "sparc64", "powerpc", "mips", etc). cd src/sys/${arch}/conf config KERNEL_NAME_HERE cd ../compile/KERNEL_NAME_HERE make depend make make install If this fails, go to the "To build a kernel" section. To rebuild everything and install it on the current system. ----------------------------------------------------------- # Note: sometimes if you are running current you gotta do more than # is listed here if you are upgrading from a really old current. make buildworld make kernel KERNCONF=YOUR_KERNEL_HERE [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] To cross-install current onto a separate partition -------------------------------------------------- # In this approach we use a separate partition to hold # current's root, 'usr', and 'var' directories. A partition # holding "/", "/usr" and "/var" should be about 2GB in # size. make buildworld make buildkernel KERNCONF=YOUR_KERNEL_HERE make installworld DESTDIR=${CURRENT_ROOT} -DDB_FROM_SRC make distribution DESTDIR=${CURRENT_ROOT} # if newfs'd make installkernel KERNCONF=YOUR_KERNEL_HERE DESTDIR=${CURRENT_ROOT} cp /etc/fstab ${CURRENT_ROOT}/etc/fstab # if newfs'd To upgrade in-place from stable to current ---------------------------------------------- make buildworld [9] make kernel KERNCONF=YOUR_KERNEL_HERE [8] [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] Make sure that you've read the UPDATING file to understand the tweaks to various things you need. At this point in the life cycle of current, things change often and you are on your own to cope. The defaults can also change, so please read ALL of the UPDATING entries. Also, if you are tracking -current, you must be subscribed to freebsd-current@freebsd.org. Make sure that before you update your sources that you have read and understood all the recent messages there. If in doubt, please track -stable which has much fewer pitfalls. [1] If you have third party modules, such as vmware, you should disable them at this point so they don't crash your system on reboot. [3] From the bootblocks, boot -s, and then do fsck -p mount -u / mount -a cd src adjkerntz -i # if CMOS is wall time Also, when doing a major release upgrade, it is required that you boot into single user mode to do the installworld. [4] Note: This step is non-optional. Failure to do this step can result in a significant reduction in the functionality of the system. Attempting to do it by hand is not recommended and those that pursue this avenue should read this file carefully, as well as the archives of freebsd-current and freebsd-hackers mailing lists for potential gotchas. The -U option is also useful to consider. See mergemaster(8) for more information. [5] Usually this step is a noop. However, from time to time you may need to do this if you get unknown user in the following step. It never hurts to do it all the time. You may need to install a new mergemaster (cd src/usr.sbin/mergemaster && make install) after the buildworld before this step if you last updated from current before 20130425 or from -stable before 20130430. [6] This only deletes old files and directories. Old libraries can be deleted by "make delete-old-libs", but you have to make sure that no program is using those libraries anymore. [8] In order to have a kernel that can run the 4.x binaries needed to do an installworld, you must include the COMPAT_FREEBSD4 option in your kernel. Failure to do so may leave you with a system that is hard to boot to recover. A similar kernel option COMPAT_FREEBSD5 is required to run the 5.x binaries on more recent kernels. And so on for COMPAT_FREEBSD6 and COMPAT_FREEBSD7. Make sure that you merge any new devices from GENERIC since the last time you updated your kernel config file. [9] When checking out sources, you must include the -P flag to have cvs prune empty directories. If CPUTYPE is defined in your /etc/make.conf, make sure to use the "?=" instead of the "=" assignment operator, so that buildworld can override the CPUTYPE if it needs to. MAKEOBJDIRPREFIX must be defined in an environment variable, and not on the command line, or in /etc/make.conf. buildworld will warn if it is improperly defined. FORMAT: This file contains a list, in reverse chronological order, of major breakages in tracking -current. It is not guaranteed to be a complete list of such breakages, and only contains entries since September 23, 2011. If you need to see UPDATING entries from before that date, you will need to fetch an UPDATING file from an older FreeBSD release. Copyright information: Copyright 1998-2009 M. Warner Losh. All Rights Reserved. Redistribution, publication, translation and use, with or without modification, in full or in part, in any form or format of this document are permitted without further permission from the author. THIS DOCUMENT IS PROVIDED BY WARNER LOSH ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WARNER LOSH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Contact Warner Losh if you have any questions about your use of this document. $FreeBSD$ Index: projects/release-pkg/etc/master.passwd =================================================================== --- projects/release-pkg/etc/master.passwd (revision 293802) +++ projects/release-pkg/etc/master.passwd (revision 293803) @@ -1,26 +1,27 @@ # $FreeBSD$ # root::0:0::0:0:Charlie &:/root:/bin/csh toor:*:0:0::0:0:Bourne-again Superuser:/root: daemon:*:1:1::0:0:Owner of many system processes:/root:/usr/sbin/nologin operator:*:2:5::0:0:System &:/:/usr/sbin/nologin bin:*:3:7::0:0:Binaries Commands and Source:/:/usr/sbin/nologin tty:*:4:65533::0:0:Tty Sandbox:/:/usr/sbin/nologin kmem:*:5:65533::0:0:KMem Sandbox:/:/usr/sbin/nologin games:*:7:13::0:0:Games pseudo-user:/:/usr/sbin/nologin news:*:8:8::0:0:News Subsystem:/:/usr/sbin/nologin man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/usr/sbin/nologin sshd:*:22:22::0:0:Secure Shell Daemon:/var/empty:/usr/sbin/nologin smmsp:*:25:25::0:0:Sendmail Submission User:/var/spool/clientmqueue:/usr/sbin/nologin mailnull:*:26:26::0:0:Sendmail Default User:/var/spool/mqueue:/usr/sbin/nologin bind:*:53:53::0:0:Bind Sandbox:/:/usr/sbin/nologin unbound:*:59:59::0:0:Unbound DNS Resolver:/var/unbound:/usr/sbin/nologin proxy:*:62:62::0:0:Packet Filter pseudo-user:/nonexistent:/usr/sbin/nologin _pflogd:*:64:64::0:0:pflogd privsep user:/var/empty:/usr/sbin/nologin _dhcp:*:65:65::0:0:dhcp programs:/var/empty:/usr/sbin/nologin uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/local/libexec/uucp/uucico pop:*:68:6::0:0:Post Office Owner:/nonexistent:/usr/sbin/nologin auditdistd:*:78:77::0:0:Auditdistd unprivileged user:/var/empty:/usr/sbin/nologin www:*:80:80::0:0:World Wide Web Owner:/nonexistent:/usr/sbin/nologin +_ypldap:*:93:93::0:0:YP Ldap unprivileged user:/var/empty:/usr/sbin/nologin hast:*:845:845::0:0:HAST unprivileged user:/var/empty:/usr/sbin/nologin nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/usr/sbin/nologin Index: projects/release-pkg/lib/libc/sys/futimens.c =================================================================== --- projects/release-pkg/lib/libc/sys/futimens.c (revision 293802) +++ projects/release-pkg/lib/libc/sys/futimens.c (revision 293803) @@ -1,97 +1,100 @@ /*- * Copyright (c) 2015 Jilles Tjoelker * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "namespace.h" #include #include #include #include #include "un-namespace.h" #include "libc_private.h" int futimens(int fd, const struct timespec times[2]) { struct timeval now, tv[2], *tvp; struct stat sb; + int osreldate; - if (__getosreldate() >= 1100056) + osreldate = __getosreldate(); + if (osreldate >= 1100056 || + (osreldate >= 1002506 && osreldate < 1100000)) return (__sys_futimens(fd, times)); if (times == NULL || (times[0].tv_nsec == UTIME_NOW && times[1].tv_nsec == UTIME_NOW)) tvp = NULL; else if (times[0].tv_nsec == UTIME_OMIT && times[1].tv_nsec == UTIME_OMIT) return (0); else { if ((times[0].tv_nsec < 0 || times[0].tv_nsec > 999999999) && times[0].tv_nsec != UTIME_NOW && times[0].tv_nsec != UTIME_OMIT) { errno = EINVAL; return (-1); } if ((times[1].tv_nsec < 0 || times[1].tv_nsec > 999999999) && times[1].tv_nsec != UTIME_NOW && times[1].tv_nsec != UTIME_OMIT) { errno = EINVAL; return (-1); } tv[0].tv_sec = times[0].tv_sec; tv[0].tv_usec = times[0].tv_nsec / 1000; tv[1].tv_sec = times[1].tv_sec; tv[1].tv_usec = times[1].tv_nsec / 1000; tvp = tv; if (times[0].tv_nsec == UTIME_OMIT || times[1].tv_nsec == UTIME_OMIT) { if (_fstat(fd, &sb) == -1) return (-1); if (times[0].tv_nsec == UTIME_OMIT) { tv[0].tv_sec = sb.st_atim.tv_sec; tv[0].tv_usec = sb.st_atim.tv_nsec / 1000; } if (times[1].tv_nsec == UTIME_OMIT) { tv[1].tv_sec = sb.st_mtim.tv_sec; tv[1].tv_usec = sb.st_mtim.tv_nsec / 1000; } } if (times[0].tv_nsec == UTIME_NOW || times[1].tv_nsec == UTIME_NOW) { if (gettimeofday(&now, NULL) == -1) return (-1); if (times[0].tv_nsec == UTIME_NOW) tv[0] = now; if (times[1].tv_nsec == UTIME_NOW) tv[1] = now; } } return (futimes(fd, tvp)); } Index: projects/release-pkg/lib/libc/sys/utimensat.2 =================================================================== --- projects/release-pkg/lib/libc/sys/utimensat.2 (revision 293802) +++ projects/release-pkg/lib/libc/sys/utimensat.2 (revision 293803) @@ -1,292 +1,292 @@ .\" $NetBSD: utimes.2,v 1.13 1999/03/22 19:45:11 garbled Exp $ .\" .\" Copyright (c) 1990, 1993 .\" The Regents of the University of California. All rights reserved. .\" Copyright (c) 2012, Jilles Tjoelker .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)utimes.2 8.1 (Berkeley) 6/4/93 .\" $FreeBSD$ .\" -.Dd January 23, 2015 +.Dd January 12, 2016 .Dt UTIMENSAT 2 .Os .Sh NAME .Nm futimens , .Nm utimensat .Nd set file access and modification times .Sh LIBRARY .Lb libc .Sh SYNOPSIS .In sys/stat.h .Ft int .Fn futimens "int fd" "const struct timespec times[2]" .Ft int .Fo utimensat .Fa "int fd" .Fa "const char *path" .Fa "const struct timespec times[2]" .Fa "int flag" .Fc .Sh DESCRIPTION The access and modification times of the file named by .Fa path or referenced by .Fa fd are changed as specified by the argument .Fa times . The inode-change-time of the file is set to the current time. .Pp If .Fa path specifies a relative path, it is relative to the current working directory if .Fa fd is .Dv AT_FDCWD and otherwise relative to the directory associated with the file descriptor .Fa fd . .Pp The .Va tv_nsec field of a .Vt timespec structure can be set to the special value .Dv UTIME_NOW to set the current time, or to .Dv UTIME_OMIT to leave the time unchanged. In either case, the .Va tv_sec field is ignored. .Pp If .Fa times is .No non- Ns Dv NULL , it is assumed to point to an array of two timespec structures. The access time is set to the value of the first element, and the modification time is set to the value of the second element. For file systems that support file birth (creation) times (such as .Dv UFS2 ) , the birth time will be set to the value of the second element if the second element is older than the currently set birth time. To set both a birth time and a modification time, two calls are required; the first to set the birth time and the second to set the (presumably newer) modification time. Ideally a new system call will be added that allows the setting of all three times at once. If .Fa times is .Dv NULL , this is equivalent to passing a pointer to an array of two timespec structures with both .Va tv_nsec fields set to .Dv UTIME_NOW . .Pp If both .Va tv_nsec fields are .Dv UTIME_OMIT , the timestamps remain unchanged and no permissions are needed for the file itself, although search permissions may be required for the path prefix. The call may or may not succeed if the named file does not exist. .Pp If both .Va tv_nsec fields are .Dv UTIME_NOW , the caller must be the owner of the file, have permission to write the file, or be the super-user. .Pp For all other values of the timestamps, the caller must be the owner of the file or be the super-user. .Pp The values for the .Fa flag argument of the .Fn utimensat system call are constructed by a bitwise-inclusive OR of flags from the following list, defined in .In fcntl.h : .Bl -tag -width indent .It Dv AT_SYMLINK_NOFOLLOW If .Fa path names a symbolic link, the symbolic link's times are changed. By default, .Fn utimensat changes the times of the file referenced by the symbolic link. .El .Sh RETURN VALUES .Rv -std .Sh COMPATIBILITY If the running kernel does not support this system call, a wrapper emulates it using .Xr fstatat 2 , .Xr futimesat 2 and .Xr lutimes 2 . As a result, timestamps will be rounded down to the nearest microsecond, .Dv UTIME_OMIT is not atomic and .Dv AT_SYMLINK_NOFOLLOW is not available with a path relative to a file descriptor. .Sh ERRORS These system calls will fail if: .Bl -tag -width Er .It Bq Er EACCES The .Fa times argument is .Dv NULL , or both .Va tv_nsec values are .Dv UTIME_NOW , and the effective user ID of the process does not match the owner of the file, and is not the super-user, and write access is denied. .It Bq Er EFAULT The .Fa times argument points outside the process's allocated address space. .It Bq Er EINVAL The .Va tv_usec component of at least one of the values specified by the .Fa times argument has a value less than 0 or greater than 999999. .It Bq Er EIO An I/O error occurred while reading or writing the affected inode. .It Bq Er EPERM The .Fa times argument is not .Dv NULL nor are both .Va tv_nsec values .Dv UTIME_NOW , nor are both .Va tv_nsec values .Dv UTIME_OMIT and the calling process's effective user ID does not match the owner of the file and is not the super-user. .It Bq Er EPERM The named file has its immutable or append-only flag set, see the .Xr chflags 2 manual page for more information. .It Bq Er EROFS The file system containing the file is mounted read-only. .El .Pp The .Fn futimens system call will fail if: .Bl -tag -width Er .It Bq Er EBADF The .Fa fd argument does not refer to a valid descriptor. .El .Pp The .Fn utimensat system call will fail if: .Bl -tag -width Er .It Bq Er EACCES Search permission is denied for a component of the path prefix. .It Bq Er EBADF The .Fa path argument does not specify an absolute path and the .Fa fd argument is neither .Dv AT_FDCWD nor a valid file descriptor. .It Bq Er EFAULT The .Fa path argument points outside the process's allocated address space. .It Bq Er ELOOP Too many symbolic links were encountered in translating the pathname. .It Bq Er ENAMETOOLONG A component of a pathname exceeded .Dv NAME_MAX characters, or an entire path name exceeded .Dv PATH_MAX characters. .It Bq Er ENOENT The named file does not exist. .It Bq Er ENOTDIR A component of the path prefix is not a directory. .It Bq Er ENOTDIR The .Fa path argument is not an absolute path and .Fa fd is neither .Dv AT_FDCWD nor a file descriptor associated with a directory. .It Bq Er ENOTSUP The running kernel does not support this system call and .Dv AT_SYMLINK_NOFOLLOW is used with a path relative to a file descriptor. .El .Sh SEE ALSO .Xr chflags 2 , .Xr stat 2 , .Xr symlink 2 , .Xr utimes 2 , .Xr utime 3 , .Xr symlink 7 .Sh STANDARDS The .Fn futimens and .Fn utimensat system calls are expected to conform to .St -p1003.1-2008 . .Sh HISTORY The .Fn futimens and .Fn utimensat system calls appeared in -.Fx 11.0 . +.Fx 10.3 . Index: projects/release-pkg/lib/libc/sys/utimensat.c =================================================================== --- projects/release-pkg/lib/libc/sys/utimensat.c (revision 293802) +++ projects/release-pkg/lib/libc/sys/utimensat.c (revision 293803) @@ -1,109 +1,112 @@ /*- * Copyright (c) 2015 Jilles Tjoelker * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "namespace.h" #include #include #include #include #include "un-namespace.h" #include "libc_private.h" int utimensat(int fd, const char *path, const struct timespec times[2], int flag) { struct timeval now, tv[2], *tvp; struct stat sb; + int osreldate; - if (__getosreldate() >= 1100056) + osreldate = __getosreldate(); + if (osreldate >= 1100056 || + (osreldate >= 1002506 && osreldate < 1100000)) return (__sys_utimensat(fd, path, times, flag)); if ((flag & ~AT_SYMLINK_NOFOLLOW) != 0) { errno = EINVAL; return (-1); } if (times == NULL || (times[0].tv_nsec == UTIME_NOW && times[1].tv_nsec == UTIME_NOW)) tvp = NULL; else if (times[0].tv_nsec == UTIME_OMIT && times[1].tv_nsec == UTIME_OMIT) return (0); else { if ((times[0].tv_nsec < 0 || times[0].tv_nsec > 999999999) && times[0].tv_nsec != UTIME_NOW && times[0].tv_nsec != UTIME_OMIT) { errno = EINVAL; return (-1); } if ((times[1].tv_nsec < 0 || times[1].tv_nsec > 999999999) && times[1].tv_nsec != UTIME_NOW && times[1].tv_nsec != UTIME_OMIT) { errno = EINVAL; return (-1); } tv[0].tv_sec = times[0].tv_sec; tv[0].tv_usec = times[0].tv_nsec / 1000; tv[1].tv_sec = times[1].tv_sec; tv[1].tv_usec = times[1].tv_nsec / 1000; tvp = tv; if (times[0].tv_nsec == UTIME_OMIT || times[1].tv_nsec == UTIME_OMIT) { if (fstatat(fd, path, &sb, flag) == -1) return (-1); if (times[0].tv_nsec == UTIME_OMIT) { tv[0].tv_sec = sb.st_atim.tv_sec; tv[0].tv_usec = sb.st_atim.tv_nsec / 1000; } if (times[1].tv_nsec == UTIME_OMIT) { tv[1].tv_sec = sb.st_mtim.tv_sec; tv[1].tv_usec = sb.st_mtim.tv_nsec / 1000; } } if (times[0].tv_nsec == UTIME_NOW || times[1].tv_nsec == UTIME_NOW) { if (gettimeofday(&now, NULL) == -1) return (-1); if (times[0].tv_nsec == UTIME_NOW) tv[0] = now; if (times[1].tv_nsec == UTIME_NOW) tv[1] = now; } } if ((flag & AT_SYMLINK_NOFOLLOW) == 0) return (futimesat(fd, path, tvp)); else if ((flag & AT_SYMLINK_NOFOLLOW) != 0 && (fd == AT_FDCWD || path[0] == '/')) return (lutimes(path, tvp)); else { errno = ENOTSUP; return (-1); } } Index: projects/release-pkg/lib/libc =================================================================== --- projects/release-pkg/lib/libc (revision 293802) +++ projects/release-pkg/lib/libc (revision 293803) Property changes on: projects/release-pkg/lib/libc ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/lib/libc:r293718-293802 Index: projects/release-pkg/share/examples/ypldap/ypldap.conf =================================================================== --- projects/release-pkg/share/examples/ypldap/ypldap.conf (nonexistent) +++ projects/release-pkg/share/examples/ypldap/ypldap.conf (revision 293803) @@ -0,0 +1,40 @@ +$FreeBSD$ +domain "freebsd.org" +interval 60 +provide map "passwd.byname" +provide map "passwd.byuid" +provide map "group.byname" +provide map "group.bygid" +provide map "netid.byname" + +directory "127.0.0.1" { + # directory options + binddn "cn=ldap,dc=freebsd,dc=org" + bindcred "secret" + basedn "dc=freebsd.,dc=org" + # starting point for groups directory search, default to basedn + groupdn "ou=Groups,dc=freebsd,dc=org" + + # passwd maps configuration (RFC 2307 posixAccount object class) + passwd filter "(objectClass=posixAccount)" + + attribute name maps to "uid" + fixed attribute passwd "*" + attribute uid maps to "uidNumber" + attribute gid maps to "gidNumber" + attribute gecos maps to "cn" + attribute home maps to "homeDirectory" + attribute shell maps to "loginShell" + fixed attribute change "0" + fixed attribute expire "0" + fixed attribute class "" + + # group maps configuration (RFC 2307 posixGroup object class) + group filter "(objectClass=posixGroup)" + + attribute groupname maps to "cn" + fixed attribute grouppasswd "*" + attribute groupgid maps to "gidNumber" + # memberUid returns multiple group members + list groupmembers maps to "memberUid" +} Property changes on: projects/release-pkg/share/examples/ypldap/ypldap.conf ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: projects/release-pkg/share/man/man4/uart.4 =================================================================== --- projects/release-pkg/share/man/man4/uart.4 (revision 293802) +++ projects/release-pkg/share/man/man4/uart.4 (revision 293803) @@ -1,214 +1,255 @@ .\" .\" Copyright (c) 2003 Marcel Moolenaar .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES .\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. .\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, .\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT .\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, .\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd August 10, 2015 +.Dd December 9, 2015 .Dt UART 4 .Os .Sh NAME .Nm uart .Nd driver for Universal Asynchronous Receiver/Transmitter (UART) devices .Sh SYNOPSIS .Cd "device uart" .Pp .Cd "device puc" .Cd "device uart" .Pp .Cd "device scc" .Cd "device uart" .Pp In .Pa /boot/device.hints : .Cd hint.uart.0.disabled="1" .Cd hint.uart.0.baud="38400" .Cd hint.uart.0.port="0x3f8" .Cd hint.uart.0.flags="0x10" .Pp With .Ar flags encoded as: .Bl -tag -compact -width 0x000000 .It 0x00010 device is potential system console .It 0x00080 use this port for remote kernel debugging .It 0x00100 set RX FIFO trigger level to ``low'' (NS8250 only) .It 0x00200 set RX FIFO trigger level to ``medium low'' (NS8250 only) .It 0x00400 set RX FIFO trigger level to ``medium high'' (default, NS8250 only) .It 0x00800 set RX FIFO trigger level to ``high'' (NS8250 only) .El .\" .Sh DESCRIPTION The .Nm device driver provides support for various classes of UARTs implementing the EIA RS-232C (CCITT V.24) serial communications interface. Each such interface is controlled by a separate and independent instance of the .Nm driver. The primary support for devices that contain multiple serial interfaces or that contain other functionality besides one or more serial interfaces is provided by the .Xr puc 4 , or .Xr scc 4 device drivers. However, the serial interfaces of those devices that are managed by the .Xr puc 4 , or .Xr scc 4 driver are each independently controlled by the .Nm driver. As such, the .Xr puc 4 , or .Xr scc 4 driver provides umbrella functionality for the .Nm driver and hides the complexities that are inherent when elementary components are packaged together. .Pp The .Nm driver has a modular design to allow it to be used on differing hardware and for various purposes. In the following sections the components are discussed in detail. Options are described in the section that covers the component to which each option applies. .\" .Ss CORE COMPONENT At the heart of the .Nm driver is the core component. It contains the bus attachments and the low-level interrupt handler. .\" .Ss HARDWARE DRIVERS The core component and the kernel interfaces talk to the hardware through the hardware interface. This interface serves as an abstraction of the hardware and allows varying UARTs to be used for serial communications. .\" .Ss SYSTEM DEVICES System devices are UARTs that have a special purpose by way of hardware design or software setup. For example, Sun UltraSparc machines use UARTs as their keyboard interface. Such an UART cannot be used for general purpose communications. Likewise, when the kernel is configured for a serial console, the corresponding UART will in turn be a system device so that the kernel can output boot messages early on in the boot process. .\" .Ss KERNEL INTERFACES The last but not least of the components is the kernel interface. This component ultimately determines how the UART is made visible to the kernel in particular and to users in general. The default kernel interface is the TTY interface. This allows the UART to be used for terminals, modems and serial line IP applications. System devices, with the notable exception of serial consoles, generally have specialized kernel interfaces. .\" .Sh HARDWARE The .Nm driver supports the following classes of UARTs: .Pp .Bl -bullet -compact .It NS8250: standard hardware based on the 8250, 16450, 16550, 16650, 16750 or the 16950 UARTs. .It SCC: serial communications controllers supported by the .Xr scc 4 device driver. .El .\" .Sh Pulse Per Second (PPS) Timing Interface The .Nm driver can capture PPS timing information as defined in RFC 2783. The API, accessed via .Xr ioctl 8 , is available on the tty device. To use the PPS capture feature with .Xr ntpd 8 , -symlink the tty device to +symlink the tty callout device +.Va /dev/cuau? +to .Va /dev/pps0. .Pp The .Va hw.uart.pps_mode tunable configures the PPS capture mode for all uart devices; it can be set in .Xr loader.conf 5 . The .Va dev.uart.0.pps_mode sysctl configures the PPS capture mode for a specific uart device; it can be set in .Xr loader.conf 5 or .Xr sysctl.conf 5 . +.Pp The following capture modes are available: .Bl -tag -compact -offset "mmmm" -width "mmmm" -.It 0 +.It 0x00 Capture disabled. -.It 1 +.It 0x01 Capture pulses on the CTS line. -.It 2 -Capture pulses on the DCD line (default). +.It 0x02 +Capture pulses on the DCD line. .El +.Pp +The following values may be ORed with the capture mode to configure +capture processing options: +.Bl -tag -compact -offset "mmmm" -width "mmmm" +.It 0x10 +Invert the pulse (RS-232 logic low = ASSERT, high = CLEAR). +.It 0x20 +Attempt to capture narrow pulses. +.El +.Pp +Add the narrow pulse option when the incoming PPS pulse width is small +enough to prevent reliable capture in normal mode. +In narrow mode the driver uses the hardware's ability to latch a line +state change; not all hardware has this capability. +The hardware latch provides a reliable indication that a pulse occurred, +but prevents distinguishing between the CLEAR and ASSERT edges of the pulse. +For each detected pulse, the driver synthesizes both an ASSERT and a CLEAR +event, using the same timestamp for each. +To prevent spurious events when the hardware is intermittently able to +see both edges of a pulse, the driver will not generate a new pair of +events within a half second of the prior pair. +Both normal and narrow pulse modes work with +.Xr ntpd 8 . +.Pp +Add the invert option when the connection to the uart device uses TTL +level signals, or when the PPS source emits inverted pulses. +RFC 2783 defines an ASSERT event as a higher-voltage line level, and a CLEAR +event as a lower-voltage line level, in the context of the RS-232 protocol. +The modem control signals on a TTL-level connection are typically +inverted from the RS-232 levels. +For example, carrier presence is indicated by a high signal on an RS-232 +DCD line, and by a low signal on a TTL DCD line. +This is due to the use of inverting line driver buffers to convert between +TTL and RS-232 line levels in most hardware designs. +Generally speaking, a connection to a DB-9 style connector is an RS-232 +level signal at up to 12 volts. +A connection to header pins or an edge-connector on an embedded board +is typically a TTL signal at 3.3 or 5 volts. .Sh FILES .Bl -tag -width ".Pa /dev/ttyu?.init" -compact .It Pa /dev/ttyu? for callin ports .It Pa /dev/ttyu?.init .It Pa /dev/ttyu?.lock corresponding callin initial-state and lock-state devices .Pp .It Pa /dev/cuau? for callout ports .It Pa /dev/cuau?.init .It Pa /dev/cuau?.lock corresponding callout initial-state and lock-state devices .El .Sh SEE ALSO .Xr puc 4 , .Xr scc 4 .\" .Sh HISTORY The .Nm device driver first appeared in .Fx 5.2 . .Sh AUTHORS The .Nm device driver and this manual page were written by .An Marcel Moolenaar Aq Mt marcel@xcllnt.net . Index: projects/release-pkg/share/man/man4 =================================================================== --- projects/release-pkg/share/man/man4 (revision 293802) +++ projects/release-pkg/share/man/man4 (revision 293803) Property changes on: projects/release-pkg/share/man/man4 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/share/man/man4:r293718-293802 Index: projects/release-pkg/share =================================================================== --- projects/release-pkg/share (revision 293802) +++ projects/release-pkg/share (revision 293803) Property changes on: projects/release-pkg/share ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/share:r293718-293802 Index: projects/release-pkg/sys/arm/arm/pmap-v6-new.c =================================================================== --- projects/release-pkg/sys/arm/arm/pmap-v6-new.c (revision 293802) +++ projects/release-pkg/sys/arm/arm/pmap-v6-new.c (revision 293803) @@ -1,6599 +1,6599 @@ /*- * Copyright (c) 1991 Regents of the University of California. * Copyright (c) 1994 John S. Dyson * Copyright (c) 1994 David Greenman * Copyright (c) 2005-2010 Alan L. Cox * Copyright (c) 2014 Svatopluk Kraus * Copyright (c) 2014 Michal Meloun * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 */ /*- * Copyright (c) 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jake Burkholder, * Safeport Network Services, and Network Associates Laboratories, the * Security Research Division of Network Associates, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA * CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_vm.h" #include "opt_pmap.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #else #include #endif #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #ifndef DIAGNOSTIC #define PMAP_INLINE __inline #else #define PMAP_INLINE #endif #ifdef PMAP_DEBUG static void pmap_zero_page_check(vm_page_t m); void pmap_debug(int level); int pmap_pid_dump(int pid); #define PDEBUG(_lev_,_stat_) \ if (pmap_debug_level >= (_lev_)) \ ((_stat_)) #define dprintf printf int pmap_debug_level = 1; #else /* PMAP_DEBUG */ #define PDEBUG(_lev_,_stat_) /* Nothing */ #define dprintf(x, arg...) #endif /* PMAP_DEBUG */ /* * Level 2 page tables map definion ('max' is excluded). */ #define PT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP) #define PT2V_MAX_ADDRESS ((vm_offset_t)PT2MAP + PT2MAP_SIZE) #define UPT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP) #define UPT2V_MAX_ADDRESS \ ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT))) /* * Promotion to a 1MB (PTE1) page mapping requires that the corresponding * 4KB (PTE2) page mappings have identical settings for the following fields: */ #define PTE2_PROMOTE (PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG | \ PTE2_NX | PTE2_RO | PTE2_U | PTE2_W | \ PTE2_ATTR_MASK) #define PTE1_PROMOTE (PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG | \ PTE1_NX | PTE1_RO | PTE1_U | PTE1_W | \ PTE1_ATTR_MASK) #define ATTR_TO_L1(l2_attr) ((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \ (((l2_attr) & L2_C) ? L1_S_C : 0) | \ (((l2_attr) & L2_B) ? L1_S_B : 0) | \ (((l2_attr) & PTE2_A) ? PTE1_A : 0) | \ (((l2_attr) & PTE2_NM) ? PTE1_NM : 0) | \ (((l2_attr) & PTE2_S) ? PTE1_S : 0) | \ (((l2_attr) & PTE2_NG) ? PTE1_NG : 0) | \ (((l2_attr) & PTE2_NX) ? PTE1_NX : 0) | \ (((l2_attr) & PTE2_RO) ? PTE1_RO : 0) | \ (((l2_attr) & PTE2_U) ? PTE1_U : 0) | \ (((l2_attr) & PTE2_W) ? PTE1_W : 0)) #define ATTR_TO_L2(l1_attr) ((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \ (((l1_attr) & L1_S_C) ? L2_C : 0) | \ (((l1_attr) & L1_S_B) ? L2_B : 0) | \ (((l1_attr) & PTE1_A) ? PTE2_A : 0) | \ (((l1_attr) & PTE1_NM) ? PTE2_NM : 0) | \ (((l1_attr) & PTE1_S) ? PTE2_S : 0) | \ (((l1_attr) & PTE1_NG) ? PTE2_NG : 0) | \ (((l1_attr) & PTE1_NX) ? PTE2_NX : 0) | \ (((l1_attr) & PTE1_RO) ? PTE2_RO : 0) | \ (((l1_attr) & PTE1_U) ? PTE2_U : 0) | \ (((l1_attr) & PTE1_W) ? PTE2_W : 0)) /* * PTE2 descriptors creation macros. */ #define PTE2_KPT(pa) PTE2_KERN(pa, PTE2_AP_KRW, pt_memattr) #define PTE2_KPT_NG(pa) PTE2_KERN_NG(pa, PTE2_AP_KRW, pt_memattr) #define PTE2_KRW(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_NORMAL) #define PTE2_KRO(pa) PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_NORMAL) #define PV_STATS #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif /* * The boot_pt1 is used temporary in very early boot stage as L1 page table. * We can init many things with no memory allocation thanks to its static * allocation and this brings two main advantages: * (1) other cores can be started very simply, * (2) various boot loaders can be supported as its arguments can be processed * in virtual address space and can be moved to safe location before * first allocation happened. * Only disadvantage is that boot_pt1 is used only in very early boot stage. * However, the table is uninitialized and so lays in bss. Therefore kernel * image size is not influenced. * * QQQ: In the future, maybe, boot_pt1 can be used for soft reset and * CPU suspend/resume game. */ extern pt1_entry_t boot_pt1[]; vm_paddr_t base_pt1; pt1_entry_t *kern_pt1; pt2_entry_t *kern_pt2tab; pt2_entry_t *PT2MAP; static uint32_t ttb_flags; static vm_memattr_t pt_memattr; ttb_entry_t pmap_kern_ttb; /* XXX use converion function*/ #define PTE2_ATTR_NORMAL VM_MEMATTR_DEFAULT #define PTE1_ATTR_NORMAL ATTR_TO_L1(PTE2_ATTR_NORMAL) struct pmap kernel_pmap_store; LIST_HEAD(pmaplist, pmap); static struct pmaplist allpmaps; static struct mtx allpmaps_lock; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ static vm_offset_t kernel_vm_end_new; vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE; vm_offset_t vm_max_kernel_address; vm_paddr_t kernel_l1pa; static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock; /* * Data for the pv entry allocation mechanism */ static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks); static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */ static int shpgperproc = PMAP_SHPGPERPROC; struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */ int pv_maxchunks; /* How many chunks we have KVA for */ vm_offset_t pv_vafree; /* freelist stored in the PTE */ vm_paddr_t first_managed_pa; #define pa_to_pvh(pa) (&pv_table[pte1_index(pa - first_managed_pa)]) /* * All those kernel PT submaps that BSD is so fond of */ struct sysmaps { struct mtx lock; pt2_entry_t *CMAP1; pt2_entry_t *CMAP2; pt2_entry_t *CMAP3; caddr_t CADDR1; caddr_t CADDR2; caddr_t CADDR3; }; static struct sysmaps sysmaps_pcpu[MAXCPU]; static pt2_entry_t *CMAP3; static caddr_t CADDR3; caddr_t _tmppt = 0; struct msgbuf *msgbufp = 0; /* XXX move it to machdep.c */ /* * Crashdump maps. */ static caddr_t crashdumpmap; static pt2_entry_t *PMAP1 = 0, *PMAP2; static pt2_entry_t *PADDR1 = 0, *PADDR2; #ifdef DDB static pt2_entry_t *PMAP3; static pt2_entry_t *PADDR3; static int PMAP3cpu __unused; /* for SMP only */ #endif #ifdef SMP static int PMAP1cpu; static int PMAP1changedcpu; SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, &PMAP1changedcpu, 0, "Number of times pmap_pte2_quick changed CPU with same PMAP1"); #endif static int PMAP1changed; SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, &PMAP1changed, 0, "Number of times pmap_pte2_quick changed PMAP1"); static int PMAP1unchanged; SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, &PMAP1unchanged, 0, "Number of times pmap_pte2_quick didn't change PMAP1"); static struct mtx PMAP2mutex; static __inline void pt2_wirecount_init(vm_page_t m); static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va); void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size); /* * Function to set the debug level of the pmap code. */ #ifdef PMAP_DEBUG void pmap_debug(int level) { pmap_debug_level = level; dprintf("pmap_debug: level=%d\n", pmap_debug_level); } #endif /* PMAP_DEBUG */ /* * This table must corespond with memory attribute configuration in vm.h. * First entry is used for normal system mapping. * * Device memory is always marked as shared. * Normal memory is shared only in SMP . * Not outer shareable bits are not used yet. * Class 6 cannot be used on ARM11. */ #define TEXDEF_TYPE_SHIFT 0 #define TEXDEF_TYPE_MASK 0x3 #define TEXDEF_INNER_SHIFT 2 #define TEXDEF_INNER_MASK 0x3 #define TEXDEF_OUTER_SHIFT 4 #define TEXDEF_OUTER_MASK 0x3 #define TEXDEF_NOS_SHIFT 6 #define TEXDEF_NOS_MASK 0x1 #define TEX(t, i, o, s) \ ((t) << TEXDEF_TYPE_SHIFT) | \ ((i) << TEXDEF_INNER_SHIFT) | \ ((o) << TEXDEF_OUTER_SHIFT | \ ((s) << TEXDEF_NOS_SHIFT)) static uint32_t tex_class[8] = { /* type inner cache outer cache */ TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0), /* 0 - ATTR_WB_WA */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 1 - ATTR_NOCACHE */ TEX(PRRR_DEV, NMRR_NC, NMRR_NC, 0), /* 2 - ATTR_DEVICE */ TEX(PRRR_SO, NMRR_NC, NMRR_NC, 0), /* 3 - ATTR_SO */ TEX(PRRR_MEM, NMRR_WT, NMRR_WT, 0), /* 4 - ATTR_WT */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 5 - NOT USED YET */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 6 - NOT USED YET */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 7 - NOT USED YET */ }; #undef TEX /* * Convert TEX definition entry to TTB flags. */ static uint32_t encode_ttb_flags(int idx) { uint32_t inner, outer, nos, reg; inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) & TEXDEF_INNER_MASK; outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) & TEXDEF_OUTER_MASK; nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) & TEXDEF_NOS_MASK; reg = nos << 5; reg |= outer << 3; if (cpuinfo.coherent_walk) reg |= (inner & 0x1) << 6; reg |= (inner & 0x2) >> 1; #ifdef SMP reg |= 1 << 1; #endif return reg; } /* * Set TEX remapping registers in current CPU. */ void pmap_set_tex(void) { uint32_t prrr, nmrr; uint32_t type, inner, outer, nos; int i; #ifdef PMAP_PTE_NOCACHE /* XXX fixme */ if (cpuinfo.coherent_walk) { pt_memattr = VM_MEMATTR_WB_WA; ttb_flags = encode_ttb_flags(0); } else { pt_memattr = VM_MEMATTR_NOCACHE; ttb_flags = encode_ttb_flags(1); } #else pt_memattr = VM_MEMATTR_WB_WA; ttb_flags = encode_ttb_flags(0); #endif prrr = 0; nmrr = 0; /* Build remapping register from TEX classes. */ for (i = 0; i < 8; i++) { type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) & TEXDEF_TYPE_MASK; inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) & TEXDEF_INNER_MASK; outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) & TEXDEF_OUTER_MASK; nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) & TEXDEF_NOS_MASK; prrr |= type << (i * 2); prrr |= nos << (i + 24); nmrr |= inner << (i * 2); nmrr |= outer << (i * 2 + 16); } /* Add shareable bits for device memory. */ prrr |= PRRR_DS0 | PRRR_DS1; /* Add shareable bits for normal memory in SMP case. */ #ifdef SMP prrr |= PRRR_NS1; #endif cp15_prrr_set(prrr); cp15_nmrr_set(nmrr); /* Caches are disabled, so full TLB flush should be enough. */ tlb_flush_all_local(); } /* * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words, * KERNBASE is mapped by first L2 page table in L2 page table page. It * meets same constrain due to PT2MAP being placed just under KERNBASE. */ CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0); CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE); /* * In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general. * For now, anyhow, the following check must be fulfilled. */ CTASSERT(PAGE_SIZE == PTE2_SIZE); /* * We don't want to mess up MI code with all MMU and PMAP definitions, * so some things, which depend on other ones, are defined independently. * Now, it is time to check that we don't screw up something. */ CTASSERT(PDRSHIFT == PTE1_SHIFT); /* * Check L1 and L2 page table entries definitions consistency. */ CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1)); CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2)); /* * Check L2 page tables page consistency. */ CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2)); CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG); /* * Check PT2TAB consistency. * PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG. * This should be done without remainder. */ CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG)); /* * A PT2MAP magic. * * All level 2 page tables (PT2s) are mapped continuously and accordingly * into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can * be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page * must be used together, but not necessary at once. The first PT2 in a page * must map things on correctly aligned address and the others must follow * in right order. */ #define NB_IN_PT2TAB (PT2TAB_ENTRIES * sizeof(pt2_entry_t)) #define NPT2_IN_PT2TAB (NB_IN_PT2TAB / NB_IN_PT2) #define NPG_IN_PT2TAB (NB_IN_PT2TAB / PAGE_SIZE) /* * Check PT2TAB consistency. * NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2. * NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE. * The both should be done without remainder. */ CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2)); CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE)); /* * The implementation was made general, however, with the assumption * bellow in mind. In case of another value of NPG_IN_PT2TAB, * the code should be once more rechecked. */ CTASSERT(NPG_IN_PT2TAB == 1); /* * Get offset of PT2 in a page * associated with given PT1 index. */ static __inline u_int page_pt2off(u_int pt1_idx) { return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2); } /* * Get physical address of PT2 * associated with given PT2s page and PT1 index. */ static __inline vm_paddr_t page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx) { return (pgpa + page_pt2off(pt1_idx)); } /* * Get first entry of PT2 * associated with given PT2s page and PT1 index. */ static __inline pt2_entry_t * page_pt2(vm_offset_t pgva, u_int pt1_idx) { return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx))); } /* * Get virtual address of PT2s page (mapped in PT2MAP) * which holds PT2 which holds entry which maps given virtual address. */ static __inline vm_offset_t pt2map_pt2pg(vm_offset_t va) { va &= ~(NPT2_IN_PG * PTE1_SIZE - 1); return ((vm_offset_t)pt2map_entry(va)); } /***************************************************************************** * * THREE pmap initialization milestones exist: * * locore.S * -> fundamental init (including MMU) in ASM * * initarm() * -> fundamental init continues in C * -> first available physical address is known * * pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins) * -> basic (safe) interface for physical address allocation is made * -> basic (safe) interface for virtual mapping is made * -> limited not SMP coherent work is possible * * -> more fundamental init continues in C * -> locks and some more things are available * -> all fundamental allocations and mappings are done * * pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins) * -> phys_avail[] and virtual_avail is set * -> control is passed to vm subsystem * -> physical and virtual address allocation are off limit * -> low level mapping functions, some SMP coherent, * are available, which cannot be used before vm subsystem * is being inited * * mi_startup() * -> vm subsystem is being inited * * pmap_init() -> THIRD PMAP MILESTONE (third epoch begins) * -> pmap is fully inited * *****************************************************************************/ /***************************************************************************** * * PMAP first stage initialization and utility functions * for pre-bootstrap epoch. * * After pmap_bootstrap_prepare() is called, the following functions * can be used: * * (1) strictly only for this stage functions for physical page allocations, * virtual space allocations, and mappings: * * vm_paddr_t pmap_preboot_get_pages(u_int num); * void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num); * vm_offset_t pmap_preboot_reserve_pages(u_int num); * vm_offset_t pmap_preboot_get_vpages(u_int num); * void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size, * int prot, int attr); * * (2) for all stages: * * vm_paddr_t pmap_kextract(vm_offset_t va); * * NOTE: This is not SMP coherent stage. * *****************************************************************************/ #define KERNEL_P2V(pa) \ ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR)) #define KERNEL_V2P(va) \ ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr)) static vm_paddr_t last_paddr; /* * Pre-bootstrap epoch page allocator. */ vm_paddr_t pmap_preboot_get_pages(u_int num) { vm_paddr_t ret; ret = last_paddr; last_paddr += num * PAGE_SIZE; return (ret); } /* * The fundamental initalization of PMAP stuff. * * Some things already happened in locore.S and some things could happen * before pmap_bootstrap_prepare() is called, so let's recall what is done: * 1. Caches are disabled. * 2. We are running on virtual addresses already with 'boot_pt1' * as L1 page table. * 3. So far, all virtual addresses can be converted to physical ones and * vice versa by the following macros: * KERNEL_P2V(pa) .... physical to virtual ones, * KERNEL_V2P(va) .... virtual to physical ones. * * What is done herein: * 1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'. * 2. PT2MAP magic is brought to live. * 3. Basic preboot functions for page allocations and mappings can be used. * 4. Everything is prepared for L1 cache enabling. * * Variations: * 1. To use second TTB register, so kernel and users page tables will be * separated. This way process forking - pmap_pinit() - could be faster, * it saves physical pages and KVA per a process, and it's simple change. * However, it will lead, due to hardware matter, to the following: * (a) 2G space for kernel and 2G space for users. * (b) 1G space for kernel in low addresses and 3G for users above it. * A question is: Is the case (b) really an option? Note that case (b) * does save neither physical memory and KVA. */ void pmap_bootstrap_prepare(vm_paddr_t last) { vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size; vm_offset_t pt2pg_va; pt1_entry_t *pte1p; pt2_entry_t *pte2p; u_int i; uint32_t actlr_mask, actlr_set; /* * Now, we are going to make real kernel mapping. Note that we are * already running on some mapping made in locore.S and we expect * that it's large enough to ensure nofault access to physical memory * allocated herein before switch. * * As kernel image and everything needed before are and will be mapped * by section mappings, we align last physical address to PTE1_SIZE. */ last_paddr = pte1_roundup(last); /* * Allocate and zero page(s) for kernel L1 page table. * * Note that it's first allocation on space which was PTE1_SIZE * aligned and as such base_pt1 is aligned to NB_IN_PT1 too. */ base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1); kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1); bzero((void*)kern_pt1, NB_IN_PT1); pte1_sync_range(kern_pt1, NB_IN_PT1); /* Allocate and zero page(s) for kernel PT2TAB. */ pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB); kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa); bzero(kern_pt2tab, NB_IN_PT2TAB); pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB); /* Allocate and zero page(s) for kernel L2 page tables. */ pt2pg_pa = pmap_preboot_get_pages(NKPT2PG); pt2pg_va = KERNEL_P2V(pt2pg_pa); size = NKPT2PG * PAGE_SIZE; bzero((void*)pt2pg_va, size); pte2_sync_range((pt2_entry_t *)pt2pg_va, size); /* * Add a physical memory segment (vm_phys_seg) corresponding to the * preallocated pages for kernel L2 page tables so that vm_page * structures representing these pages will be created. The vm_page * structures are required for promotion of the corresponding kernel * virtual addresses to section mappings. */ vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0)); /* * Insert allocated L2 page table pages to PT2TAB and make * link to all PT2s in L1 page table. See how kernel_vm_end * is initialized. * * We play simple and safe. So every KVA will have underlaying * L2 page table, even kernel image mapped by sections. */ pte2p = kern_pt2tab_entry(KERNBASE); for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE) pt2tab_store(pte2p++, PTE2_KPT(pa)); pte1p = kern_pte1(KERNBASE); for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2) pte1_store(pte1p++, PTE1_LINK(pa)); /* Make section mappings for kernel. */ pte1p = kern_pte1(KERNBASE); for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE) pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, ATTR_TO_L1(PTE2_ATTR_WB_WA))); /* * Get free and aligned space for PT2MAP and make L1 page table links * to L2 page tables held in PT2TAB. * * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus * each entry in PT2TAB maps all PT2s in a page. This implies that * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE. */ PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE); pte1p = kern_pte1((vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) { pte1_store(pte1p++, PTE1_LINK(pa)); } /* * Store PT2TAB in PT2TAB itself, i.e. self reference mapping. * Each pmap will hold own PT2TAB, so the mapping should be not global. */ pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) { pt2tab_store(pte2p++, PTE2_KPT_NG(pa)); } /* * Choose correct L2 page table and make mappings for allocations * made herein which replaces temporary locore.S mappings after a while. * Note that PT2MAP cannot be used until we switch to kern_pt1. * * Note, that these allocations started aligned on 1M section and * kernel PT1 was allocated first. Making of mappings must follow * order of physical allocations as we've used KERNEL_P2V() macro * for virtual addresses resolution. */ pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1); pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p))); pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1)); /* Make mapping for kernel L1 page table. */ for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE) pte2_store(pte2p++, PTE2_KPT(pa)); /* Make mapping for kernel PT2TAB. */ for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) pte2_store(pte2p++, PTE2_KPT(pa)); /* Finally, switch from 'boot_pt1' to 'kern_pt1'. */ pmap_kern_ttb = base_pt1 | ttb_flags; cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set); reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set); /* * Initialize the first available KVA. As kernel image is mapped by * sections, we are leaving some gap behind. */ virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE; } /* * Setup L2 page table page for given KVA. * Used in pre-bootstrap epoch. * * Note that we have allocated NKPT2PG pages for L2 page tables in advance * and used them for mapping KVA starting from KERNBASE. However, this is not * enough. Vectors and devices need L2 page tables too. Note that they are * even above VM_MAX_KERNEL_ADDRESS. */ static __inline vm_paddr_t pmap_preboot_pt2pg_setup(vm_offset_t va) { pt2_entry_t *pte2p, pte2; vm_paddr_t pt2pg_pa; /* Get associated entry in PT2TAB. */ pte2p = kern_pt2tab_entry(va); /* Just return, if PT2s page exists already. */ pte2 = pt2tab_load(pte2p); if (pte2_is_valid(pte2)) return (pte2_pa(pte2)); KASSERT(va >= VM_MAX_KERNEL_ADDRESS, ("%s: NKPT2PG too small", __func__)); /* * Allocate page for PT2s and insert it to PT2TAB. * In other words, map it into PT2MAP space. */ pt2pg_pa = pmap_preboot_get_pages(1); pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa)); /* Zero all PT2s in allocated page. */ bzero((void*)pt2map_pt2pg(va), PAGE_SIZE); pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE); return (pt2pg_pa); } /* * Setup L2 page table for given KVA. * Used in pre-bootstrap epoch. */ static void pmap_preboot_pt2_setup(vm_offset_t va) { pt1_entry_t *pte1p; vm_paddr_t pt2pg_pa, pt2_pa; /* Setup PT2's page. */ pt2pg_pa = pmap_preboot_pt2pg_setup(va); pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va)); /* Insert PT2 to PT1. */ pte1p = kern_pte1(va); pte1_store(pte1p, PTE1_LINK(pt2_pa)); } /* * Get L2 page entry associated with given KVA. * Used in pre-bootstrap epoch. */ static __inline pt2_entry_t* pmap_preboot_vtopte2(vm_offset_t va) { pt1_entry_t *pte1p; /* Setup PT2 if needed. */ pte1p = kern_pte1(va); if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */ pmap_preboot_pt2_setup(va); return (pt2map_entry(va)); } /* * Pre-bootstrap epoch page(s) mapping(s). */ void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num) { u_int i; pt2_entry_t *pte2p; /* Map all the pages. */ for (i = 0; i < num; i++) { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, PTE2_KRW(pa)); va += PAGE_SIZE; pa += PAGE_SIZE; } } /* * Pre-bootstrap epoch virtual space alocator. */ vm_offset_t pmap_preboot_reserve_pages(u_int num) { u_int i; vm_offset_t start, va; pt2_entry_t *pte2p; /* Allocate virtual space. */ start = va = virtual_avail; virtual_avail += num * PAGE_SIZE; /* Zero the mapping. */ for (i = 0; i < num; i++) { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, 0); va += PAGE_SIZE; } return (start); } /* * Pre-bootstrap epoch page(s) allocation and mapping(s). */ vm_offset_t pmap_preboot_get_vpages(u_int num) { vm_paddr_t pa; vm_offset_t va; /* Allocate physical page(s). */ pa = pmap_preboot_get_pages(num); /* Allocate virtual space. */ va = virtual_avail; virtual_avail += num * PAGE_SIZE; /* Map and zero all. */ pmap_preboot_map_pages(pa, va, num); bzero((void *)va, num * PAGE_SIZE); return (va); } /* * Pre-bootstrap epoch page mapping(s) with attributes. */ void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size, int prot, int attr) { u_int num; u_int l1_attr, l1_prot; pt1_entry_t *pte1p; pt2_entry_t *pte2p; l1_prot = ATTR_TO_L1(prot); l1_attr = ATTR_TO_L1(attr); /* Map all the pages. */ num = round_page(size); while (num > 0) { if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) { pte1p = kern_pte1(va); pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr)); va += PTE1_SIZE; pa += PTE1_SIZE; num -= PTE1_SIZE; } else { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, PTE2_KERN(pa, prot, attr)); va += PAGE_SIZE; pa += PAGE_SIZE; num -= PAGE_SIZE; } } } /* * Extract from the kernel page table the physical address * that is mapped by the given virtual address "va". */ vm_paddr_t pmap_kextract(vm_offset_t va) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t pte2; pte1 = pte1_load(kern_pte1(va)); if (pte1_is_section(pte1)) { pa = pte1_pa(pte1) | (va & PTE1_OFFSET); } else if (pte1_is_link(pte1)) { /* * We should beware of concurrent promotion that changes * pte1 at this point. However, it's not a problem as PT2 * page is preserved by promotion in PT2TAB. So even if * it happens, using of PT2MAP is still safe. * * QQQ: However, concurrent removing is a problem which * ends in abort on PT2MAP space. Locking must be used * to deal with this. */ pte2 = pte2_load(pt2map_entry(va)); pa = pte2_pa(pte2) | (va & PTE2_OFFSET); } else { panic("%s: va %#x pte1 %#x", __func__, va, pte1); } return (pa); } /***************************************************************************** * * PMAP second stage initialization and utility functions * for bootstrap epoch. * * After pmap_bootstrap() is called, the following functions for * mappings can be used: * * void pmap_kenter(vm_offset_t va, vm_paddr_t pa); * void pmap_kremove(vm_offset_t va); * vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, * int prot); * * NOTE: This is not SMP coherent stage. And physical page allocation is not * allowed during this stage. * *****************************************************************************/ /* * Initialize kernel PMAP locks and lists, kernel_pmap itself, and * reserve various virtual spaces for temporary mappings. */ void pmap_bootstrap(vm_offset_t firstaddr) { pt2_entry_t *unused __unused; struct sysmaps *sysmaps; u_int i; /* * Initialize the kernel pmap (which is statically allocated). */ PMAP_LOCK_INIT(kernel_pmap); kernel_l1pa = (vm_paddr_t)kern_pt1; /* for libkvm */ kernel_pmap->pm_pt1 = kern_pt1; kernel_pmap->pm_pt2tab = kern_pt2tab; CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */ TAILQ_INIT(&kernel_pmap->pm_pvchunk); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); LIST_INIT(&allpmaps); /* * Request a spin mutex so that changes to allpmaps cannot be * preempted by smp_rendezvous_cpus(). */ mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN); mtx_lock_spin(&allpmaps_lock); LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); /* * Reserve some special page table entries/VA space for temporary * mapping of pages. */ #define SYSMAP(c, p, v, n) do { \ - v = (c)pmap_preboot_reserve_pages(1); \ + v = (c)pmap_preboot_reserve_pages(n); \ p = pt2map_entry((vm_offset_t)v); \ } while (0) /* * Local CMAP1/CMAP2 are used for zeroing and copying pages. * Local CMAP3 is used for data cache cleaning. * Global CMAP3 is used for the idle process page zeroing. */ for (i = 0; i < MAXCPU; i++) { sysmaps = &sysmaps_pcpu[i]; mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF); SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1); SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1); SYSMAP(caddr_t, sysmaps->CMAP3, sysmaps->CADDR3, 1); } SYSMAP(caddr_t, CMAP3, CADDR3, 1); /* * Crashdump maps. */ SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS); /* * _tmppt is used for reading arbitrary physical pages via /dev/mem. */ SYSMAP(caddr_t, unused, _tmppt, 1); /* * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(), * respectively. PADDR3 is used by pmap_pte2_ddb(). */ SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1); SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1); #ifdef DDB SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1); #endif mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF); /* * Note that in very short time in initarm(), we are going to * initialize phys_avail[] array and no futher page allocation * can happen after that until vm subsystem will be initialized. */ kernel_vm_end_new = kernel_vm_end; virtual_end = vm_max_kernel_address; } static void pmap_init_qpages(void) { struct pcpu *pc; int i; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("%s: unable to allocate KVA", __func__); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_qpages, NULL); /* * The function can already be use in second initialization stage. * As such, the function DOES NOT call pmap_growkernel() where PT2 * allocation can happen. So if used, be sure that PT2 for given * virtual address is allocated already! * * Add a wired page to the kva. * Note: not SMP coherent. */ static __inline void pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot, uint32_t attr) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; pte1p = kern_pte1(va); if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */ /* * This is a very low level function, so PT2 and particularly * PT2PG associated with given virtual address must be already * allocated. It's a pain mainly during pmap initialization * stage. However, called after pmap initialization with * virtual address not under kernel_vm_end will lead to * the same misery. */ if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va)))) panic("%s: kernel PT2 not allocated!", __func__); } pte2p = pt2map_entry(va); pte2_store(pte2p, PTE2_KERN(pa, prot, attr)); } static __inline void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr) { pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, attr); } PMAP_INLINE void pmap_kenter(vm_offset_t va, vm_paddr_t pa) { pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_NORMAL); } /* * Remove a page from the kernel pagetables. * Note: not SMP coherent. */ PMAP_INLINE void pmap_kremove(vm_offset_t va) { pt2_entry_t *pte2p; pte2p = pt2map_entry(va); pte2_clear(pte2p); } /* * Share new kernel PT2PG with all pmaps. * The caller is responsible for maintaining TLB consistency. */ static void pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2) { pmap_t pmap; pt2_entry_t *pte2p; mtx_lock_spin(&allpmaps_lock); LIST_FOREACH(pmap, &allpmaps, pm_list) { pte2p = pmap_pt2tab_entry(pmap, va); pt2tab_store(pte2p, npte2); } mtx_unlock_spin(&allpmaps_lock); } /* * Share new kernel PTE1 with all pmaps. * The caller is responsible for maintaining TLB consistency. */ static void pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1) { pmap_t pmap; pt1_entry_t *pte1p; mtx_lock_spin(&allpmaps_lock); LIST_FOREACH(pmap, &allpmaps, pm_list) { pte1p = pmap_pte1(pmap, va); pte1_store(pte1p, npte1); } mtx_unlock_spin(&allpmaps_lock); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. * * NOTE: Read the comments above pmap_kenter_prot_attr() as * the function is used herein! */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { vm_offset_t va, sva; vm_paddr_t pte1_offset; pt1_entry_t npte1; u_int l1prot,l2prot; PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x)," " prot = %d\n", __func__, *virt, start, end, end - start, prot)); l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE1_AP_KR; l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX; l1prot = ATTR_TO_L1(l2prot); va = *virt; /* * Does the physical address range's size and alignment permit at * least one section mapping to be created? */ pte1_offset = start & PTE1_OFFSET; if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >= PTE1_SIZE) { /* * Increase the starting virtual address so that its alignment * does not preclude the use of section mappings. */ if ((va & PTE1_OFFSET) < pte1_offset) va = pte1_trunc(va) + pte1_offset; else if ((va & PTE1_OFFSET) > pte1_offset) va = pte1_roundup(va) + pte1_offset; } sva = va; while (start < end) { if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) { KASSERT((va & PTE1_OFFSET) == 0, ("%s: misaligned va %#x", __func__, va)); npte1 = PTE1_KERN(start, l1prot, PTE1_ATTR_NORMAL); pmap_kenter_pte1(va, npte1); va += PTE1_SIZE; start += PTE1_SIZE; } else { pmap_kenter_prot_attr(va, start, l2prot, PTE2_ATTR_NORMAL); va += PAGE_SIZE; start += PAGE_SIZE; } } tlb_flush_range(sva, va - sva); *virt = va; return (sva); } /* * Make a temporary mapping for a physical address. * This is only intended to be used for panic dumps. */ void * pmap_kenter_temporary(vm_paddr_t pa, int i) { vm_offset_t va; /* QQQ: 'i' should be less or equal to MAXDUMPPGS. */ va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE); pmap_kenter(va, pa); tlb_flush_local(va); return ((void *)crashdumpmap); } /************************************* * * TLB & cache maintenance routines. * *************************************/ /* * We inline these within pmap.c for speed. */ PMAP_INLINE void pmap_tlb_flush(pmap_t pmap, vm_offset_t va) { if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active)) tlb_flush(va); } PMAP_INLINE void pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size) { if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active)) tlb_flush_range(sva, size); } /* * Abuse the pte2 nodes for unmapped kva to thread a kva freelist through. * Requirements: * - Must deal with pages in order to ensure that none of the PTE2_* bits * are ever set, PTE2_V in particular. * - Assumes we can write to pte2s without pte2_store() atomic ops. * - Assumes nothing will ever test these addresses for 0 to indicate * no mapping instead of correctly checking PTE2_V. * - Assumes a vm_offset_t will fit in a pte2 (true for arm). * Because PTE2_V is never set, there can be no mappings to invalidate. */ static vm_offset_t pmap_pte2list_alloc(vm_offset_t *head) { pt2_entry_t *pte2p; vm_offset_t va; va = *head; if (va == 0) panic("pmap_ptelist_alloc: exhausted ptelist KVA"); pte2p = pt2map_entry(va); *head = *pte2p; if (*head & PTE2_V) panic("%s: va with PTE2_V set!", __func__); *pte2p = 0; return (va); } static void pmap_pte2list_free(vm_offset_t *head, vm_offset_t va) { pt2_entry_t *pte2p; if (va & PTE2_V) panic("%s: freeing va with PTE2_V set!", __func__); pte2p = pt2map_entry(va); *pte2p = *head; /* virtual! PTE2_V is 0 though */ *head = va; } static void pmap_pte2list_init(vm_offset_t *head, void *base, int npages) { int i; vm_offset_t va; *head = 0; for (i = npages - 1; i >= 0; i--) { va = (vm_offset_t)base + i * PAGE_SIZE; pmap_pte2list_free(head, va); } } /***************************************************************************** * * PMAP third and final stage initialization. * * After pmap_init() is called, PMAP subsystem is fully initialized. * *****************************************************************************/ SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0, "Max number of PV entries"); SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0, "Page share factor per proc"); static u_long nkpt2pg = NKPT2PG; SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD, &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s"); static int sp_enabled = 1; SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &sp_enabled, 0, "Are large page mappings enabled?"); static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0, "1MB page mapping counters"); static u_long pmap_pte1_demotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD, &pmap_pte1_demotions, 0, "1MB page demotions"); static u_long pmap_pte1_mappings; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD, &pmap_pte1_mappings, 0, "1MB page mappings"); static u_long pmap_pte1_p_failures; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD, &pmap_pte1_p_failures, 0, "1MB page promotion failures"); static u_long pmap_pte1_promotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD, &pmap_pte1_promotions, 0, "1MB page promotions"); static __inline ttb_entry_t pmap_ttb_get(pmap_t pmap) { return (vtophys(pmap->pm_pt1) | ttb_flags); } /* * Initialize a vm_page's machine-dependent fields. * * Variations: * 1. Pages for L2 page tables are always not managed. So, pv_list and * pt2_wirecount can share same physical space. However, proper * initialization on a page alloc for page tables and reinitialization * on the page free must be ensured. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); pt2_wirecount_init(m); m->md.pat_mode = PTE2_ATTR_NORMAL; } /* * Virtualization for faster way how to zero whole page. */ static __inline void pagezero(void *page) { bzero(page, PAGE_SIZE); } /* * Zero L2 page table page. * Use same KVA as in pmap_zero_page(). */ static __inline vm_paddr_t pmap_pt2pg_zero(vm_page_t m) { vm_paddr_t pa; struct sysmaps *sysmaps; pa = VM_PAGE_TO_PHYS(m); /* * XXX: For now, we map whole page even if it's already zero, * to sync it even if the sync is only DSB. */ sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (pte2_load(sysmaps->CMAP2) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(pa, PTE2_AP_KRW, m->md.pat_mode)); /* Even VM_ALLOC_ZERO request is only advisory. */ if ((m->flags & PG_ZERO) == 0) pagezero(sysmaps->CADDR2); pte2_sync_range((pt2_entry_t *)sysmaps->CADDR2, PAGE_SIZE); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); return (pa); } /* * Init just allocated page as L2 page table(s) holder * and return its physical address. */ static __inline vm_paddr_t pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m) { vm_paddr_t pa; pt2_entry_t *pte2p; /* Check page attributes. */ if (pmap_page_get_memattr(m) != pt_memattr) pmap_page_set_memattr(m, pt_memattr); /* Zero page and init wire counts. */ pa = pmap_pt2pg_zero(m); pt2_wirecount_init(m); /* * Map page to PT2MAP address space for given pmap. * Note that PT2MAP space is shared with all pmaps. */ if (pmap == kernel_pmap) pmap_kenter_pt2tab(va, PTE2_KPT(pa)); else { pte2p = pmap_pt2tab_entry(pmap, va); pt2tab_store(pte2p, PTE2_KPT_NG(pa)); } return (pa); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { vm_size_t s; pt2_entry_t *pte2p, pte2; u_int i, pte1_idx, pv_npg; PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR)); /* * Initialize the vm page array entries for kernel pmap's * L2 page table pages allocated in advance. */ pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE); pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE); for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) { vm_paddr_t pa; vm_page_t m; pte2 = pte2_load(pte2p); KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__)); pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size], ("%s: L2 page table page is out of range", __func__)); m->pindex = pte1_idx; m->phys_addr = pa; pte1_idx += NPT2_IN_PG; } /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_max = roundup(pv_entry_max, _NPCPV); pv_entry_high_water = 9 * (pv_entry_max / 10); /* * Are large page mappings enabled? */ TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled); if (sp_enabled) { KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, ("%s: can't assign to pagesizes[1]", __func__)); pagesizes[1] = PTE1_SIZE; } /* * Calculate the size of the pv head table for sections. * Handle the possibility that "vm_phys_segs[...].end" is zero. * Note that the table is only for sections which could be promoted. */ first_managed_pa = pte1_trunc(vm_phys_segs[0].start); pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE) - first_managed_pa) / PTE1_SIZE + 1; /* * Allocate memory for the pv head table for sections. */ s = (vm_size_t)(pv_npg * sizeof(struct md_page)); s = round_page(s); pv_table = (struct md_page *)kmem_malloc(kernel_arena, s, M_WAITOK | M_ZERO); for (i = 0; i < pv_npg; i++) TAILQ_INIT(&pv_table[i].pv_list); pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc); pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks); if (pv_chunkbase == NULL) panic("%s: not enough kvm for pv chunks", __func__); pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) { u_int anychanged; pt2_entry_t *epte2p, *pte2p, pte2; vm_page_t m; vm_paddr_t pa; anychanged = 0; pte2p = pt2map_entry(sva); epte2p = pte2p + count; while (pte2p < epte2p) { m = *ma++; pa = VM_PAGE_TO_PHYS(m); pte2 = pte2_load(pte2p); if ((pte2_pa(pte2) != pa) || (pte2_attr(pte2) != m->md.pat_mode)) { anychanged++; pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW, m->md.pat_mode)); } pte2p++; } if (__predict_false(anychanged)) tlb_flush_range(sva, count * PAGE_SIZE); } /* * This routine tears out page mappings from the * kernel -- it is meant only for temporary mappings. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qremove(vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { pmap_kremove(va); va += PAGE_SIZE; } tlb_flush_range(sva, va - sva); } /* * Are we current address space or kernel? */ static __inline int pmap_is_current(pmap_t pmap) { return (pmap == kernel_pmap || (pmap == vmspace_pmap(curthread->td_proc->p_vmspace))); } /* * If the given pmap is not the current or kernel pmap, the returned * pte2 must be released by passing it to pmap_pte2_release(). */ static pt2_entry_t * pmap_pte2(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) panic("%s: attempt to map PTE1", __func__); if (pte1_is_link(pte1)) { /* Are we current address space or kernel? */ if (pmap_is_current(pmap)) return (pt2map_entry(va)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); mtx_lock(&PMAP2mutex); if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) { pte2_store(PMAP2, PTE2_KPT(pt2pg_pa)); tlb_flush((vm_offset_t)PADDR2); } return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } return (NULL); } /* * Releases a pte2 that was obtained from pmap_pte2(). * Be prepared for the pte2p being NULL. */ static __inline void pmap_pte2_release(pt2_entry_t *pte2p) { if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) { mtx_unlock(&PMAP2mutex); } } /* * Super fast pmap_pte2 routine best used when scanning * the pv lists. This eliminates many coarse-grained * invltlb calls. Note that many of the pv list * scans are across different pmaps. It is very wasteful * to do an entire tlb flush for checking a single mapping. * * If the given pmap is not the current pmap, pvh_global_lock * must be held and curthread pinned to a CPU. */ static pt2_entry_t * pmap_pte2_quick(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) panic("%s: attempt to map PTE1", __func__); if (pte1_is_link(pte1)) { /* Are we current address space or kernel? */ if (pmap_is_current(pmap)) return (pt2map_entry(va)); rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT(curthread->td_pinned > 0, ("%s: curthread not pinned", __func__)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) { pte2_store(PMAP1, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP1cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR1); PMAP1changed++; } else #ifdef SMP if (PMAP1cpu != PCPU_GET(cpuid)) { PMAP1cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR1); PMAP1changedcpu++; } else #endif PMAP1unchanged++; return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } return (NULL); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t *pte2p; PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) pa = pte1_pa(pte1) | (va & PTE1_OFFSET); else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, va); pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET); pmap_pte2_release(pte2p); } else pa = 0; PMAP_UNLOCK(pmap); return (pa); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { vm_paddr_t pa, lockpa; pt1_entry_t pte1; pt2_entry_t pte2, *pte2p; vm_page_t m; lockpa = 0; m = NULL; PMAP_LOCK(pmap); retry: pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) { if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) { pa = pte1_pa(pte1) | (va & PTE1_OFFSET); if (vm_page_pa_tryrelock(pmap, pa, &lockpa)) goto retry; m = PHYS_TO_VM_PAGE(pa); vm_page_hold(m); } } else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, va); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); if (pte2_is_valid(pte2) && (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) { pa = pte2_pa(pte2); if (vm_page_pa_tryrelock(pmap, pa, &lockpa)) goto retry; m = PHYS_TO_VM_PAGE(pa); vm_page_hold(m); } } PA_UNLOCK_COND(lockpa); PMAP_UNLOCK(pmap); return (m); } /* * Grow the number of kernel L2 page table entries, if needed. */ void pmap_growkernel(vm_offset_t addr) { vm_page_t m; vm_paddr_t pt2pg_pa, pt2_pa; pt1_entry_t pte1; pt2_entry_t pte2; PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr)); /* * All the time kernel_vm_end is first KVA for which underlying * L2 page table is either not allocated or linked from L1 page table * (not considering sections). Except for two possible cases: * * (1) in the very beginning as long as pmap_growkernel() was * not called, it could be first unused KVA (which is not * rounded up to PTE1_SIZE), * * (2) when all KVA space is mapped and kernel_map->max_offset * address is not rounded up to PTE1_SIZE. (For example, * it could be 0xFFFFFFFF.) */ kernel_vm_end = pte1_roundup(kernel_vm_end); mtx_assert(&kernel_map->system_mtx, MA_OWNED); addr = roundup2(addr, PTE1_SIZE); if (addr - 1 >= kernel_map->max_offset) addr = kernel_map->max_offset; while (kernel_vm_end < addr) { pte1 = pte1_load(kern_pte1(kernel_vm_end)); if (pte1_is_valid(pte1)) { kernel_vm_end += PTE1_SIZE; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } continue; } /* * kernel_vm_end_new is used in pmap_pinit() when kernel * mappings are entered to new pmap all at once to avoid race * between pmap_kenter_pte1() and kernel_vm_end increase. * The same aplies to pmap_kenter_pt2tab(). */ kernel_vm_end_new = kernel_vm_end + PTE1_SIZE; pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end)); if (!pte2_is_valid(pte2)) { /* * Install new PT2s page into kernel PT2TAB. */ m = vm_page_alloc(NULL, pte1_index(kernel_vm_end) & ~PT2PG_MASK, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (m == NULL) panic("%s: no memory to grow kernel", __func__); /* * QQQ: To link all new L2 page tables from L1 page * table now and so pmap_kenter_pte1() them * at once together with pmap_kenter_pt2tab() * could be nice speed up. However, * pmap_growkernel() does not happen so often... * QQQ: The other TTBR is another option. */ pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end, m); } else pt2pg_pa = pte2_pa(pte2); pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end)); pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa)); kernel_vm_end = kernel_vm_end_new; if (kernel_vm_end - 1 >= kernel_map->max_offset) { kernel_vm_end = kernel_map->max_offset; break; } } } static int kvm_size(SYSCTL_HANDLER_ARGS) { unsigned long ksize = vm_max_kernel_address - KERNBASE; return (sysctl_handle_long(oidp, &ksize, 0, req)); } SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_size, "IU", "Size of KVM"); static int kvm_free(SYSCTL_HANDLER_ARGS) { unsigned long kfree = vm_max_kernel_address - kernel_vm_end; return (sysctl_handle_long(oidp, &kfree, 0, req)); } SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 0, 0, kvm_free, "IU", "Amount of KVM free"); /*********************************************** * * Pmap allocation/deallocation routines. * ***********************************************/ /* * Initialize the pmap for the swapper process. */ void pmap_pinit0(pmap_t pmap) { PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap)); PMAP_LOCK_INIT(pmap); /* * Kernel page table directory and pmap stuff around is already * initialized, we are using it right now and here. So, finish * only PMAP structures initialization for process0 ... * * Since the L1 page table and PT2TAB is shared with the kernel pmap, * which is already included in the list "allpmaps", this pmap does * not need to be inserted into that list. */ pmap->pm_pt1 = kern_pt1; pmap->pm_pt2tab = kern_pt2tab; CPU_ZERO(&pmap->pm_active); PCPU_SET(curpmap, pmap); TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); CPU_SET(0, &pmap->pm_active); } static __inline void pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva, vm_offset_t eva) { u_int idx, count; idx = pte1_index(sva); count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t); bcopy(spte1p + idx, dpte1p + idx, count); } static __inline void pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva, vm_offset_t eva) { u_int idx, count; idx = pt2tab_index(sva); count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t); bcopy(spte2p + idx, dpte2p + idx, count); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(pmap_t pmap) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; vm_paddr_t pa, pt2tab_pa; u_int i; PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap, pmap->pm_pt1)); /* * No need to allocate L2 page table space yet but we do need * a valid L1 page table and PT2TAB table. * * Install shared kernel mappings to these tables. It's a little * tricky as some parts of KVA are reserved for vectors, devices, * and whatever else. These parts are supposed to be above * vm_max_kernel_address. Thus two regions should be installed: * * (1) . * * QQQ: The second region should be stable enough to be installed * only once in time when the tables are allocated. * QQQ: Maybe copy of both regions at once could be faster ... * QQQ: Maybe the other TTBR is an option. * * Finally, install own PT2TAB table to these tables. */ if (pmap->pm_pt1 == NULL) { pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena, NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr); if (pmap->pm_pt1 == NULL) return (0); } if (pmap->pm_pt2tab == NULL) { /* * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page * only, what should be the only size for 32 bit systems, * then we could allocate it with vm_page_alloc() and all * the stuff needed as other L2 page table pages. * (2) Note that a process PT2TAB is special L2 page table * page. Its mapping in kernel_arena is permanent and can * be used no matter which process is current. Its mapping * in PT2MAP can be used only for current process. */ pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena, NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr); if (pmap->pm_pt2tab == NULL) { /* * QQQ: As struct pmap is allocated from UMA with * UMA_ZONE_NOFREE flag, it's important to leave * no allocation in pmap if initialization failed. */ kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1, NB_IN_PT1); pmap->pm_pt1 = NULL; return (0); } /* * QQQ: Each L2 page table page vm_page_t has pindex set to * pte1 index of virtual address mapped by this page. * It's not valid for non kernel PT2TABs themselves. * The pindex of these pages can not be altered because * of the way how they are allocated now. However, it * should not be a problem. */ } mtx_lock_spin(&allpmaps_lock); /* * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(), * kernel_vm_end_new is used here instead of kernel_vm_end. */ pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE, kernel_vm_end_new - 1); pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address, 0xFFFFFFFF); pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE, kernel_vm_end_new - 1); pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address, 0xFFFFFFFF); LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); /* * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself. * I.e. self reference mapping. The PT2TAB is private, however mapped * into shared PT2MAP space, so the mapping should be not global. */ pt2tab_pa = vtophys(pmap->pm_pt2tab); pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) { pt2tab_store(pte2p++, PTE2_KPT_NG(pa)); } /* Insert PT2MAP PT2s into pmap PT1. */ pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) { pte1_store(pte1p++, PTE1_LINK(pa)); } /* * Now synchronize new mapping which was made above. */ pte1_sync_range(pmap->pm_pt1, NB_IN_PT1); pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB); CPU_ZERO(&pmap->pm_active); TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); return (1); } #ifdef INVARIANTS static boolean_t pt2tab_user_is_empty(pt2_entry_t *tab) { u_int i, end; end = pt2tab_index(VM_MAXUSER_ADDRESS); for (i = 0; i < end; i++) if (tab[i] != 0) return (FALSE); return (TRUE); } #endif /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { #ifdef INVARIANTS vm_offset_t start, end; #endif KASSERT(pmap->pm_stats.resident_count == 0, ("%s: pmap resident count %ld != 0", __func__, pmap->pm_stats.resident_count)); KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab), ("%s: has allocated user PT2(s)", __func__)); KASSERT(CPU_EMPTY(&pmap->pm_active), ("%s: pmap %p is active on some CPU(s)", __func__, pmap)); mtx_lock_spin(&allpmaps_lock); LIST_REMOVE(pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); #ifdef INVARIANTS start = pte1_index(KERNBASE) * sizeof(pt1_entry_t); end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t); bzero((char *)pmap->pm_pt1 + start, end - start); start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t); end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t); bzero((char *)pmap->pm_pt2tab + start, end - start); #endif /* * We are leaving PT1 and PT2TAB allocated on released pmap, * so hopefully UMA vmspace_zone will always be inited with * UMA_ZONE_NOFREE flag. */ } /********************************************************* * * L2 table pages and their pages management routines. * *********************************************************/ /* * Virtual interface for L2 page table wire counting. * * Each L2 page table in a page has own counter which counts a number of * valid mappings in a table. Global page counter counts mappings in all * tables in a page plus a single itself mapping in PT2TAB. * * During a promotion we leave the associated L2 page table counter * untouched, so the table (strictly speaking a page which holds it) * is never freed if promoted. * * If a page m->wire_count == 1 then no valid mappings exist in any L2 page * table in the page and the page itself is only mapped in PT2TAB. */ static __inline void pt2_wirecount_init(vm_page_t m) { u_int i; /* * Note: A page m is allocated with VM_ALLOC_WIRED flag and * m->wire_count should be already set correctly. * So, there is no need to set it again herein. */ for (i = 0; i < NPT2_IN_PG; i++) m->md.pt2_wirecount[i] = 0; } static __inline void pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx) { /* * Note: A just modificated pte2 (i.e. already allocated) * is acquiring one extra reference which must be * explicitly cleared. It influences the KASSERTs herein. * All L2 page tables in a page always belong to the same * pmap, so we allow only one extra reference for the page. */ KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1), ("%s: PT2 is overflowing ...", __func__)); KASSERT(m->wire_count <= (NPTE2_IN_PG + 1), ("%s: PT2PG is overflowing ...", __func__)); m->wire_count++; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++; } static __inline void pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx) { KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0, ("%s: PT2 is underflowing ...", __func__)); KASSERT(m->wire_count > 1, ("%s: PT2PG is underflowing ...", __func__)); m->wire_count--; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--; } static __inline void pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count) { KASSERT(count <= NPTE2_IN_PT2, ("%s: invalid count %u", __func__, count)); KASSERT(m->wire_count > m->md.pt2_wirecount[pte1_idx & PT2PG_MASK], ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count, m->md.pt2_wirecount[pte1_idx & PT2PG_MASK])); m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]; m->wire_count += count; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count; KASSERT(m->wire_count <= (NPTE2_IN_PG + 1), ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count)); } static __inline uint32_t pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx) { return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]); } static __inline boolean_t pt2_is_empty(vm_page_t m, vm_offset_t va) { return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0); } static __inline boolean_t pt2_is_full(vm_page_t m, vm_offset_t va) { return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == NPTE2_IN_PT2); } static __inline boolean_t pt2pg_is_empty(vm_page_t m) { return (m->wire_count == 1); } /* * This routine is called if the L2 page table * is not mapped correctly. */ static vm_page_t _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags) { uint32_t pte1_idx; pt1_entry_t *pte1p; pt2_entry_t pte2; vm_page_t m; vm_paddr_t pt2pg_pa, pt2_pa; pte1_idx = pte1_index(va); pte1p = pmap->pm_pt1 + pte1_idx; KASSERT(pte1_load(pte1p) == 0, ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx, pte1_load(pte1p))); pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va)); if (!pte2_is_valid(pte2)) { /* * Install new PT2s page into pmap PT2TAB. */ m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (m == NULL) { if ((flags & PMAP_ENTER_NOSLEEP) == 0) { PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); VM_WAIT; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, * the L2 page table page may have been allocated. */ return (NULL); } pmap->pm_stats.resident_count++; pt2pg_pa = pmap_pt2pg_init(pmap, va, m); } else { pt2pg_pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pt2pg_pa); } pt2_wirecount_inc(m, pte1_idx); pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx); pte1_store(pte1p, PTE1_LINK(pt2_pa)); return (m); } static vm_page_t pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags) { u_int pte1_idx; pt1_entry_t *pte1p, pte1; vm_page_t m; pte1_idx = pte1_index(va); retry: pte1p = pmap->pm_pt1 + pte1_idx; pte1 = pte1_load(pte1p); /* * This supports switching from a 1MB page to a * normal 4K page. */ if (pte1_is_section(pte1)) { (void)pmap_demote_pte1(pmap, pte1p, va); /* * Reload pte1 after demotion. * * Note: Demotion can even fail as either PT2 is not find for * the virtual address or PT2PG can not be allocated. */ pte1 = pte1_load(pte1p); } /* * If the L2 page table page is mapped, we just increment the * hold count, and activate it. */ if (pte1_is_link(pte1)) { m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); pt2_wirecount_inc(m, pte1_idx); } else { /* * Here if the PT2 isn't mapped, or if it has * been deallocated. */ m = _pmap_allocpte2(pmap, va, flags); if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0) goto retry; } return (m); } static __inline void pmap_free_zero_pages(struct spglist *free) { vm_page_t m; while ((m = SLIST_FIRST(free)) != NULL) { SLIST_REMOVE_HEAD(free, plinks.s.ss); /* Preserve the page's PG_ZERO setting. */ vm_page_free_toq(m); } } /* * Schedule the specified unused L2 page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free) { /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ #ifdef PMAP_DEBUG pmap_zero_page_check(m); #endif m->flags |= PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /* * Unwire L2 page tables page. */ static void pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m) { pt1_entry_t *pte1p, opte1 __unused; pt2_entry_t *pte2p; uint32_t i; KASSERT(pt2pg_is_empty(m), ("%s: pmap %p PT2PG %p wired", __func__, pmap, m)); /* * Unmap all L2 page tables in the page from L1 page table. * * QQQ: Individual L2 page tables (except the last one) can be unmapped * earlier. However, we are doing that this way. */ KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK), ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m)); pte1p = pmap->pm_pt1 + m->pindex; for (i = 0; i < NPT2_IN_PG; i++, pte1p++) { KASSERT(m->md.pt2_wirecount[i] == 0, ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m)); opte1 = pte1_load(pte1p); if (pte1_is_link(opte1)) { pte1_clear(pte1p); /* * Flush intermediate TLB cache. */ pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT); } #ifdef INVARIANTS else KASSERT((opte1 == 0) || pte1_is_section(opte1), ("%s: pmap %p va %#x bad pte1 %x at %u", __func__, pmap, va, opte1, i)); #endif } /* * Unmap the page from PT2TAB. */ pte2p = pmap_pt2tab_entry(pmap, va); (void)pt2tab_load_clear(pte2p); pmap_tlb_flush(pmap, pt2map_pt2pg(va)); m->wire_count = 0; pmap->pm_stats.resident_count--; /* * This is a release store so that the ordinary store unmapping * the L2 page table page is globally performed before TLB shoot- * down is begun. */ atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1); } /* * Decrements a L2 page table page's wire count, which is used to record the * number of valid page table entries within the page. If the wire count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static __inline boolean_t pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { pt2_wirecount_dec(m, pte1_index(va)); if (pt2pg_is_empty(m)) { /* * QQQ: Wire count is zero, so whole page should be zero and * we can set PG_ZERO flag to it. * Note that when promotion is enabled, it takes some * more efforts. See pmap_unwire_pt2_all() below. */ pmap_unwire_pt2pg(pmap, va, m); pmap_add_delayed_free_list(m, free); return (TRUE); } else return (FALSE); } /* * Drop a L2 page table page's wire count at once, which is used to record * the number of valid L2 page table entries within the page. If the wire * count drops to zero, then the L2 page table page is unmapped. */ static __inline void pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { u_int pte1_idx = pte1_index(va); KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK), ("%s: PT2 page's pindex is wrong", __func__)); KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx), ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count, pt2_wirecount_get(m, pte1_idx))); /* * It's possible that the L2 page table was never used. * It happened in case that a section was created without promotion. */ if (pt2_is_full(m, va)) { pt2_wirecount_set(m, pte1_idx, 0); /* * QQQ: We clear L2 page table now, so when L2 page table page * is going to be freed, we can set it PG_ZERO flag ... * This function is called only on section mappings, so * hopefully it's not to big overload. * * XXX: If pmap is current, existing PT2MAP mapping could be * used for zeroing. */ pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2); } #ifdef INVARIANTS else KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)", __func__, pt2_wirecount_get(m, pte1_idx))); #endif if (pt2pg_is_empty(m)) { pmap_unwire_pt2pg(pmap, va, m); pmap_add_delayed_free_list(m, free); } } /* * After removing a L2 page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static boolean_t pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free) { pt1_entry_t pte1; vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return (FALSE); pte1 = pte1_load(pmap_pte1(pmap, va)); mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); return (pmap_unwire_pt2(pmap, va, mpte, free)); } /************************************* * * Page management routines. * *************************************/ CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); CTASSERT(_NPCM == 11); CTASSERT(_NPCPV == 336); static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK)); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */ #define PC_FREE10 0x0000fffful /* Free values for index 10 */ static const uint32_t pc_freemask[_NPCM] = { PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE10 }; SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0, "Current number of pv entries"); #ifdef PV_STATS static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail; SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0, "Current number of pv entry chunks"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0, "Current number of pv entry chunks allocated"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0, "Current number of pv entry chunks frees"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0, "Number of times tried to get a chunk page but failed."); static long pv_entry_frees, pv_entry_allocs; static int pv_entry_spare; SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0, "Current number of pv entry frees"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0, "Current number of pv entry allocs"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0, "Current number of spare pv entries"); #endif /* * Is given page managed? */ static __inline boolean_t is_managed(vm_paddr_t pa) { vm_offset_t pgnum; vm_page_t m; pgnum = atop(pa); if (pgnum >= first_page) { m = PHYS_TO_VM_PAGE(pa); if (m == NULL) return (FALSE); if ((m->oflags & VPO_UNMANAGED) == 0) return (TRUE); } return (FALSE); } static __inline boolean_t pte1_is_managed(pt1_entry_t pte1) { return (is_managed(pte1_pa(pte1))); } static __inline boolean_t pte2_is_managed(pt2_entry_t pte2) { return (is_managed(pte2_pa(pte2))); } /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. */ static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap) { struct pch newtail; struct pv_chunk *pc; struct md_page *pvh; pt1_entry_t *pte1p; pmap_t pmap; pt2_entry_t *pte2p, tpte2; pv_entry_t pv; vm_offset_t va; vm_page_t m, m_pc; struct spglist free; uint32_t inuse; int bit, field, freed; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); pmap = NULL; m_pc = NULL; SLIST_INIT(&free); TAILQ_INIT(&newtail); while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 || SLIST_EMPTY(&free))) { TAILQ_REMOVE(&pv_chunks, pc, pc_lru); if (pmap != pc->pc_pmap) { if (pmap != NULL) { if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } pmap = pc->pc_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) PMAP_LOCK(pmap); else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) { pmap = NULL; TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); continue; } } /* * Destroy every non-wired, 4 KB page mapping in the chunk. */ freed = 0; for (field = 0; field < _NPCM; field++) { for (inuse = ~pc->pc_map[field] & pc_freemask[field]; inuse != 0; inuse &= ~(1UL << bit)) { bit = ffs(inuse) - 1; pv = &pc->pc_pventry[field * 32 + bit]; va = pv->pv_va; pte1p = pmap_pte1(pmap, va); if (pte1_is_section(pte1_load(pte1p))) continue; pte2p = pmap_pte2(pmap, va); tpte2 = pte2_load(pte2p); if ((tpte2 & PTE2_W) == 0) tpte2 = pte2_load_clear(pte2p); pmap_pte2_release(pte2p); if ((tpte2 & PTE2_W) != 0) continue; KASSERT(tpte2 != 0, ("pmap_pv_reclaim: pmap %p va %#x zero pte", pmap, va)); pmap_tlb_flush(pmap, va); m = PHYS_TO_VM_PAGE(pte2_pa(tpte2)); if (pte2_is_dirty(tpte2)) vm_page_dirty(m); if ((tpte2 & PTE2_A) != 0) vm_page_aflag_set(m, PGA_REFERENCED); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); } } pc->pc_map[field] |= 1UL << bit; pmap_unuse_pt2(pmap, va, &free); freed++; } } if (freed == 0) { TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); continue; } /* Every freed mapping is for a 4 KB page. */ pmap->pm_stats.resident_count -= freed; PV_STAT(pv_entry_frees += freed); PV_STAT(pv_entry_spare += freed); pv_entry_count -= freed; TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); for (field = 0; field < _NPCM; field++) if (pc->pc_map[field] != pc_freemask[field]) { TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); /* * One freed pv entry in locked_pmap is * sufficient. */ if (pmap == locked_pmap) goto out; break; } if (field == _NPCM) { PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); /* Entire chunk is free; return it. */ m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc); break; } } out: TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru); if (pmap != NULL) { if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) { m_pc = SLIST_FIRST(&free); SLIST_REMOVE_HEAD(&free, plinks.s.ss); /* Recycle a freed page table page. */ m_pc->wire_count = 1; atomic_add_int(&vm_cnt.v_wire_count, 1); } pmap_free_zero_pages(&free); return (m_pc); } static void free_pv_chunk(struct pv_chunk *pc) { vm_page_t m; TAILQ_REMOVE(&pv_chunks, pc, pc_lru); PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); /* entire chunk is free, return it */ m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); vm_page_unwire(m, PQ_NONE); vm_page_free(m); pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc); } /* * Free the pv_entry back to the free list. */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { struct pv_chunk *pc; int idx, field, bit; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 32; bit = idx % 32; pc->pc_map[field] |= 1ul << bit; for (idx = 0; idx < _NPCM; idx++) if (pc->pc_map[idx] != pc_freemask[idx]) { /* * 98% of the time, pc is already at the head of the * list. If it isn't already, move it to the head. */ if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) != pc)) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); } return; } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } /* * Get a new pv_entry, allocating a block from the system * when needed. */ static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try) { static const struct timeval printinterval = { 60, 0 }; static struct timeval lastprint; int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(pv_entry_allocs++); pv_entry_count++; if (pv_entry_count > pv_entry_high_water) if (ratecheck(&lastprint, &printinterval)) printf("Approaching the limit on PV entries, consider " "increasing either the vm.pmap.shpgperproc or the " "vm.pmap.pv_entry_max tunable.\n"); retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = ffs(pc->pc_map[field]) - 1; break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 32 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ for (field = 0; field < _NPCM; field++) if (pc->pc_map[field] != 0) { PV_STAT(pv_entry_spare--); return (pv); /* not full, return */ } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare--); return (pv); } } /* * Access to the pte2list "pv_vafree" is synchronized by the pvh * global lock. If "pv_vafree" is currently non-empty, it will * remain non-empty until pmap_pte2list_alloc() completes. */ if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { if (try) { pv_entry_count--; PV_STAT(pc_chunk_tryfail++); return (NULL); } m = pmap_pv_reclaim(pmap); if (m == NULL) goto retry; } PV_STAT(pc_chunk_count++); PV_STAT(pc_chunk_allocs++); pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree); pmap_qenter((vm_offset_t)pc, &m, 1); pc->pc_pmap = pmap; pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */ for (field = 1; field < _NPCM; field++) pc->pc_map[field] = pc_freemask[field]; TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare += _NPCPV - 1); return (pv); } /* * Create a pv entry for page at pa for * (pmap, va). */ static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); pv = get_pv_entry(pmap, FALSE); pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } static __inline pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (pmap == PV_PMAP(pv) && va == pv->pv_va) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); break; } } return (pv); } static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found")); free_pv_entry(pmap, pv); } static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va) { struct md_page *pvh; rw_assert(&pvh_global_lock, RA_WLOCKED); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } static void pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT((pa & PTE1_OFFSET) == 0, ("pmap_pv_demote_pte1: pa is not 1mpage aligned")); /* * Transfer the 1mpage's pv entry for this mapping to the first * page's pv list. */ pvh = pa_to_pvh(pa); va = pte1_trunc(va); pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found")); m = PHYS_TO_VM_PAGE(pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); /* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */ va_last = va + PTE1_SIZE - PAGE_SIZE; do { m++; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_pv_demote_pte1: page %p is not managed", m)); va += PAGE_SIZE; pmap_insert_entry(pmap, va, m); } while (va < va_last); } static void pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT((pa & PTE1_OFFSET) == 0, ("pmap_pv_promote_pte1: pa is not 1mpage aligned")); /* * Transfer the first page's pv entry for this mapping to the * 1mpage's pv list. Aside from avoiding the cost of a call * to get_pv_entry(), a transfer avoids the possibility that * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim() * removes one of the mappings that is being promoted. */ m = PHYS_TO_VM_PAGE(pa); va = pte1_trunc(va); pv = pmap_pvh_remove(&m->md, pmap, va); KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found")); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); /* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */ va_last = va + PTE1_SIZE - PAGE_SIZE; do { m++; va += PAGE_SIZE; pmap_pvh_free(&m->md, pmap, va); } while (va < va_last); } /* * Conditionally create a pv entry. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if (pv_entry_count < pv_entry_high_water && (pv = get_pv_entry(pmap, TRUE)) != NULL) { pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); return (TRUE); } else return (FALSE); } /* * Create the pv entries for each of the pages within a section. */ static boolean_t pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa) { struct md_page *pvh; pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); if (pv_entry_count < pv_entry_high_water && (pv = get_pv_entry(pmap, TRUE)) != NULL) { pv->pv_va = va; pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); return (TRUE); } else return (FALSE); } /* * Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are * within a single page table page (PT2) to a single 1MB page mapping. * For promotion to occur, two conditions must be met: (1) the 4KB page * mappings must map aligned, contiguous physical memory and (2) the 4KB page * mappings must have identical characteristics. * * Managed (PG_MANAGED) mappings within the kernel address space are not * promoted. The reason is that kernel PTE1s are replicated in each pmap but * pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only * read the PTE1 from the kernel pmap. */ static void pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { pt1_entry_t npte1; pt2_entry_t *fpte2p, fpte2, fpte2_fav; pt2_entry_t *pte2p, pte2; vm_offset_t pteva __unused; vm_page_t m __unused; PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__, pmap, va, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is * either invalid, unused, or does not map the first 4KB physical page * within a 1MB page. */ fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va)); setpte1: fpte2 = pte2_load(fpte2p); if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) != (PTE2_A | PTE2_V)) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p", __func__, va, pmap); return; } if (pte2_is_managed(fpte2) && pmap == kernel_pmap) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p", __func__, va, pmap); return; } if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) { /* * When page is not modified, PTE2_RO can be set without * a TLB invalidation. * * Note: When modified bit is being set, then in hardware case, * the TLB entry is re-read (updated) from PT2, and in * software case (abort), the PTE2 is read from PT2 and * TLB flushed if changed. The following cmpset() solves * any race with setting this bit in both cases. */ if (!pte2_cmpset(fpte2p, fpte2, fpte2 | PTE2_RO)) goto setpte1; fpte2 |= PTE2_RO; } /* * Examine each of the other PTE2s in the specified PT2. Abort if this * PTE2 maps an unexpected 4KB physical page or does not have identical * characteristics to the first PTE2. */ fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V)); fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */ for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) { setpte2: pte2 = pte2_load(pte2p); if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p", __func__, va, pmap); return; } if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) { /* * When page is not modified, PTE2_RO can be set * without a TLB invalidation. See note above. */ if (!pte2_cmpset(pte2p, pte2, pte2 | PTE2_RO)) goto setpte2; pte2 |= PTE2_RO; pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET & PTE2_FRAME); CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p", __func__, pteva, pmap); } if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p", __func__, va, pmap); return; } fpte2_fav -= PTE2_SIZE; } /* * The page table page in its current state will stay in PT2TAB * until the PTE1 mapping the section is demoted by pmap_demote_pte1() * or destroyed by pmap_remove_pte1(). * * Note that L2 page table size is not equal to PAGE_SIZE. */ m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p)))); KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size], ("%s: PT2 page is out of range", __func__)); KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK), ("%s: PT2 page's pindex is wrong", __func__)); /* * Get pte1 from pte2 format. */ npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V; /* * Promote the pv entries. */ if (pte2_is_managed(fpte2)) pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1)); /* * Map the section. */ if (pmap == kernel_pmap) pmap_kenter_pte1(va, npte1); else pte1_store(pte1p, npte1); /* * Flush old small mappings. We call single pmap_tlb_flush() in * pmap_demote_pte1() and pmap_remove_pte1(), so we must be sure that * no small mappings survive. We assume that given pmap is current and * don't play game with PTE2_NG. */ pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE); pmap_pte1_promotions++; CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p", __func__, va, pmap); PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n", __func__, pmap, va, npte1, pte1_load(pte1p), pte1p)); } /* * Zero L2 page table page. */ static __inline void pmap_clear_pt2(pt2_entry_t *fpte2p) { pt2_entry_t *pte2p; for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) pte2_clear(pte2p); } /* * Removes a 1MB page mapping from the kernel pmap. */ static void pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { vm_page_t m; uint32_t pte1_idx; pt2_entry_t *fpte2p; vm_paddr_t pt2_pa; PMAP_LOCK_ASSERT(pmap, MA_OWNED); m = pmap_pt2_page(pmap, va); if (m == NULL) /* * QQQ: Is this function called only on promoted pte1? * We certainly do section mappings directly * (without promotion) in kernel !!! */ panic("%s: missing pt2 page", __func__); pte1_idx = pte1_index(va); /* * Initialize the L2 page table. */ fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx); pmap_clear_pt2(fpte2p); /* * Remove the mapping. */ pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx); pmap_kenter_pte1(va, PTE1_LINK(pt2_pa)); /* * QQQ: We do not need to invalidate PT2MAP mapping * as we did not change it. I.e. the L2 page table page * was and still is mapped the same way. */ } /* * Do the things to unmap a section in a process */ static void pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva, struct spglist *free) { pt1_entry_t opte1; struct md_page *pvh; vm_offset_t eva, va; vm_page_t m; PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & PTE1_OFFSET) == 0, ("%s: sva is not 1mpage aligned", __func__)); /* * Clear and invalidate the mapping. It should occupy one and only TLB * entry. So, pmap_tlb_flush() called with aligned address should be * sufficient. */ opte1 = pte1_load_clear(pte1p); pmap_tlb_flush(pmap, sva); if (pte1_is_wired(opte1)) pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE; pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE; if (pte1_is_managed(opte1)) { pvh = pa_to_pvh(pte1_pa(opte1)); pmap_pvh_free(pvh, pmap, sva); eva = sva + PTE1_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1)); va < eva; va += PAGE_SIZE, m++) { if (pte1_is_dirty(opte1)) vm_page_dirty(m); if (opte1 & PTE1_A) vm_page_aflag_set(m, PGA_REFERENCED); if (TAILQ_EMPTY(&m->md.pv_list) && TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } if (pmap == kernel_pmap) { /* * L2 page table(s) can't be removed from kernel map as * kernel counts on it (stuff around pmap_growkernel()). */ pmap_remove_kernel_pte1(pmap, pte1p, sva); } else { /* * Get associated L2 page table page. * It's possible that the page was never allocated. */ m = pmap_pt2_page(pmap, sva); if (m != NULL) pmap_unwire_pt2_all(pmap, sva, m, free); } } /* * Fills L2 page table page with mappings to consecutive physical pages. */ static __inline void pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2) { pt2_entry_t *pte2p; for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) { pte2_store(pte2p, npte2); npte2 += PTE2_SIZE; } } /* * Tries to demote a 1MB page mapping. If demotion fails, the * 1MB page mapping is invalidated. */ static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { pt1_entry_t opte1, npte1; pt2_entry_t *fpte2p, npte2; vm_paddr_t pt2pg_pa, pt2_pa; vm_page_t m; struct spglist free; uint32_t pte1_idx, isnew = 0; PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__, pmap, va, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); opte1 = pte1_load(pte1p); KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__)); if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) { KASSERT(!pte1_is_wired(opte1), ("%s: PT2 page for a wired mapping is missing", __func__)); /* * Invalidate the 1MB page mapping and return * "failure" if the mapping was never accessed or the * allocation of the new page table page fails. */ if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL, pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) { SLIST_INIT(&free); pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free); pmap_free_zero_pages(&free); CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p", __func__, va, pmap); return (FALSE); } if (va < VM_MAXUSER_ADDRESS) pmap->pm_stats.resident_count++; isnew = 1; /* * We init all L2 page tables in the page even if * we are going to change everything for one L2 page * table in a while. */ pt2pg_pa = pmap_pt2pg_init(pmap, va, m); } else { if (va < VM_MAXUSER_ADDRESS) { if (pt2_is_empty(m, va)) isnew = 1; /* Demoting section w/o promotion. */ #ifdef INVARIANTS else KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire" " count %u", __func__, pt2_wirecount_get(m, pte1_index(va)))); #endif } } pt2pg_pa = VM_PAGE_TO_PHYS(m); pte1_idx = pte1_index(va); /* * If the pmap is current, then the PT2MAP can provide access to * the page table page (promoted L2 page tables are not unmapped). * Otherwise, temporarily map the L2 page table page (m) into * the kernel's address space at either PADDR1 or PADDR2. * * Note that L2 page table size is not equal to PAGE_SIZE. */ if (pmap_is_current(pmap)) fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx); else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) { if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) { pte2_store(PMAP1, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP1cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR1); PMAP1changed++; } else #ifdef SMP if (PMAP1cpu != PCPU_GET(cpuid)) { PMAP1cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR1); PMAP1changedcpu++; } else #endif PMAP1unchanged++; fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx); } else { mtx_lock(&PMAP2mutex); if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) { pte2_store(PMAP2, PTE2_KPT(pt2pg_pa)); tlb_flush((vm_offset_t)PADDR2); } fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx); } pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx); npte1 = PTE1_LINK(pt2_pa); KASSERT((opte1 & PTE1_A) != 0, ("%s: opte1 is missing PTE1_A", __func__)); KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM, ("%s: opte1 has PTE1_NM", __func__)); /* * Get pte2 from pte1 format. */ npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V; /* * If the L2 page table page is new, initialize it. If the mapping * has changed attributes, update the page table entries. */ if (isnew != 0) { pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2); pmap_fill_pt2(fpte2p, npte2); } else if ((pte2_load(fpte2p) & PTE2_PROMOTE) != (npte2 & PTE2_PROMOTE)) pmap_fill_pt2(fpte2p, npte2); KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2), ("%s: fpte2p and npte2 map different physical addresses", __func__)); if (fpte2p == PADDR2) mtx_unlock(&PMAP2mutex); /* * Demote the mapping. This pmap is locked. The old PTE1 has * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also * has not PTE1_NM set. Thus, there is no danger of a race with * another processor changing the setting of PTE1_A and/or PTE1_NM * between the read above and the store below. */ if (pmap == kernel_pmap) pmap_kenter_pte1(va, npte1); else pte1_store(pte1p, npte1); /* * Flush old big mapping. The mapping should occupy one and only * TLB entry. So, pmap_tlb_flush() called with aligned address * should be sufficient. */ pmap_tlb_flush(pmap, pte1_trunc(va)); /* * Demote the pv entry. This depends on the earlier demotion * of the mapping. Specifically, the (re)creation of a per- * page pv entry might trigger the execution of pmap_pv_reclaim(), * which might reclaim a newly (re)created per-page pv entry * and destroy the associated mapping. In order to destroy * the mapping, the PTE1 must have already changed from mapping * the 1mpage to referencing the page table page. */ if (pte1_is_managed(opte1)) pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1)); pmap_pte1_demotions++; CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p", __func__, va, pmap); PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n", __func__, pmap, va, npte1, pte1_load(pte1p), pte1p)); return (TRUE); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ int pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; pt2_entry_t npte2, opte2; pv_entry_t pv; vm_paddr_t opa, pa; vm_page_t mpte2, om; boolean_t wired; va = trunc_page(va); mpte2 = NULL; wired = (flags & PMAP_ENTER_WIRED) != 0; KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__)); KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS, ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__, va)); if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); sched_pin(); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { mpte2 = pmap_allocpte2(pmap, va, flags); if (mpte2 == NULL) { KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0, ("pmap_allocpte2 failed with sleep allowed")); sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); return (KERN_RESOURCE_SHORTAGE); } } pte1p = pmap_pte1(pmap, va); if (pte1_is_section(pte1_load(pte1p))) panic("%s: attempted on 1MB page", __func__); pte2p = pmap_pte2_quick(pmap, va); if (pte2p == NULL) panic("%s: invalid L1 page table entry va=%#x", __func__, va); om = NULL; pa = VM_PAGE_TO_PHYS(m); opte2 = pte2_load(pte2p); opa = pte2_pa(opte2); /* * Mapping has not changed, must be protection or wiring change. */ if (pte2_is_valid(opte2) && (opa == pa)) { /* * Wiring change, just update stats. We don't worry about * wiring PT2 pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT2 page will be also. */ if (wired && !pte2_is_wired(opte2)) pmap->pm_stats.wired_count++; else if (!wired && pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; /* * Remove extra pte2 reference */ if (mpte2) pt2_wirecount_dec(mpte2, pte1_index(va)); if (pte2_is_managed(opte2)) om = m; goto validate; } /* * QQQ: We think that changing physical address on writeable mapping * is not safe. Well, maybe on kernel address space with correct * locking, it can make a sense. However, we have no idea why * anyone should do that on user address space. Are we wrong? */ KASSERT((opa == 0) || (opa == pa) || !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0), ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!", __func__, pmap, va, opte2, opa, pa, flags, prot)); pv = NULL; /* * Mapping has changed, invalidate old range and fall through to * handle validating new mapping. */ if (opa) { if (pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; if (pte2_is_managed(opte2)) { om = PHYS_TO_VM_PAGE(opa); pv = pmap_pvh_remove(&om->md, pmap, va); } /* * Remove extra pte2 reference */ if (mpte2 != NULL) pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT); } else pmap->pm_stats.resident_count++; /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, ("%s: managed mapping within the clean submap", __func__)); if (pv == NULL) pv = get_pv_entry(pmap, FALSE); pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } else if (pv != NULL) free_pv_entry(pmap, pv); /* * Increment counters */ if (wired) pmap->pm_stats.wired_count++; validate: /* * Now validate mapping with desired protection/wiring. */ npte2 = PTE2(pa, PTE2_NM, m->md.pat_mode); if (prot & VM_PROT_WRITE) { if (pte2_is_managed(npte2)) vm_page_aflag_set(m, PGA_WRITEABLE); } else npte2 |= PTE2_RO; if ((prot & VM_PROT_EXECUTE) == 0) npte2 |= PTE2_NX; if (wired) npte2 |= PTE2_W; if (va < VM_MAXUSER_ADDRESS) npte2 |= PTE2_U; if (pmap != kernel_pmap) npte2 |= PTE2_NG; /* * If the mapping or permission bits are different, we need * to update the pte2. * * QQQ: Think again and again what to do * if the mapping is going to be changed! */ if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) { /* * Sync icache if exec permission and attribute PTE2_ATTR_WB_WA * is set. Do it now, before the mapping is stored and made * valid for hardware table walk. If done later, there is a race * for other threads of current process in lazy loading case. * * QQQ: (1) Does it exist any better way where * or how to sync icache? * (2) Now, we do it on a page basis. */ if ((prot & VM_PROT_EXECUTE) && (m->md.pat_mode == PTE2_ATTR_WB_WA) && ((opa != pa) || (opte2 & PTE2_NX))) cache_icache_sync_fresh(va, pa, PAGE_SIZE); npte2 |= PTE2_A; if (flags & VM_PROT_WRITE) npte2 &= ~PTE2_NM; if (opte2 & PTE2_V) { /* Change mapping with break-before-make approach. */ opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, va); pte2_store(pte2p, npte2); if (opte2 & PTE2_A) { if (pte2_is_managed(opte2)) vm_page_aflag_set(om, PGA_REFERENCED); } if (pte2_is_dirty(opte2)) { if (pte2_is_managed(opte2)) vm_page_dirty(om); } if (pte2_is_managed(opte2) && TAILQ_EMPTY(&om->md.pv_list) && ((om->flags & PG_FICTITIOUS) != 0 || TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))) vm_page_aflag_clear(om, PGA_WRITEABLE); } else pte2_store(pte2p, npte2); } #if 0 else { /* * QQQ: In time when both access and not mofified bits are * emulated by software, this should not happen. Some * analysis is need, if this really happen. Missing * tlb flush somewhere could be the reason. */ panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap, va, opte2, npte2); } #endif /* * If both the L2 page table page and the reservation are fully * populated, then attempt promotion. */ if ((mpte2 == NULL || pt2_is_full(mpte2, va)) && sp_enabled && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0) pmap_promote_pte1(pmap, pte1p, va); sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } /* * Do the things to unmap a page in a process. */ static int pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va, struct spglist *free) { pt2_entry_t opte2; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Clear and invalidate the mapping. */ opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, va); KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x", __func__, pmap, va, opte2)); if (opte2 & PTE2_W) pmap->pm_stats.wired_count -= 1; pmap->pm_stats.resident_count -= 1; if (pte2_is_managed(opte2)) { m = PHYS_TO_VM_PAGE(pte2_pa(opte2)); if (pte2_is_dirty(opte2)) vm_page_dirty(m); if (opte2 & PTE2_A) vm_page_aflag_set(m, PGA_REFERENCED); pmap_remove_entry(pmap, m, va); } return (pmap_unuse_pt2(pmap, va, free)); } /* * Remove a single page from a process address space. */ static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free) { pt2_entry_t *pte2p; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT(curthread->td_pinned > 0, ("%s: curthread not pinned", __func__)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL || !pte2_is_valid(pte2_load(pte2p))) return; pmap_remove_pte2(pmap, pte2p, va, free); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; struct spglist free; /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; SLIST_INIT(&free); rw_wlock(&pvh_global_lock); sched_pin(); PMAP_LOCK(pmap); /* * Special handling of removing one page. A very common * operation and easy to short circuit some code. */ if (sva + PAGE_SIZE == eva) { pte1 = pte1_load(pmap_pte1(pmap, sva)); if (pte1_is_link(pte1)) { pmap_remove_page(pmap, sva, &free); goto out; } } for (; sva < eva; sva = nextva) { /* * Calculate address for next L2 page table. */ nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; if (pmap->pm_stats.resident_count == 0) break; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that the L1 page * table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { /* * Are we removing the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pmap_remove_pte1(pmap, pte1p, sva, &free); continue; } else if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* The large page mapping was destroyed. */ continue; } #ifdef INVARIANTS else { /* Update pte1 after demotion. */ pte1 = pte1_load(pte1p); } #endif } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being removed. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) continue; if (pmap_remove_pte2(pmap, pte2p, sva, &free)) break; } } out: sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); pmap_free_zero_pages(&free); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { struct md_page *pvh; pv_entry_t pv; pmap_t pmap; pt2_entry_t *pte2p, opte2; pt1_entry_t *pte1p; vm_offset_t va; struct spglist free; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); SLIST_INIT(&free); rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); (void)pmap_demote_pte1(pmap, pte1p, va); PMAP_UNLOCK(pmap); } small_mappings: while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pmap->pm_stats.resident_count--; pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found " "a 1mpage in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, pv->pv_va); KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2", __func__, pmap, pv->pv_va)); if (pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; if (opte2 & PTE2_A) vm_page_aflag_set(m, PGA_REFERENCED); /* * Update the vm_page_t clean and reference bits. */ if (pte2_is_dirty(opte2)) vm_page_dirty(m); pmap_unuse_pt2(pmap, pv->pv_va, &free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); sched_unpin(); rw_wunlock(&pvh_global_lock); pmap_free_zero_pages(&free); } /* * Just subroutine for pmap_remove_pages() to reasonably satisfy * good coding style, a.k.a. 80 character line width limit hell. */ static __inline void pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv, struct spglist *free) { vm_paddr_t pa; vm_page_t m, mt, mpt2pg; struct md_page *pvh; pa = pte1_pa(pte1); m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x", __func__, m, m->phys_addr, pa)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("%s: bad pte1 %#x", __func__, pte1)); if (pte1_is_dirty(pte1)) { for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(mt); } pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE; pvh = pa_to_pvh(pa); TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); if (TAILQ_EMPTY(&pvh->pv_list)) { for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++) if (TAILQ_EMPTY(&mt->md.pv_list)) vm_page_aflag_clear(mt, PGA_WRITEABLE); } mpt2pg = pmap_pt2_page(pmap, pv->pv_va); if (mpt2pg != NULL) pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free); } /* * Just subroutine for pmap_remove_pages() to reasonably satisfy * good coding style, a.k.a. 80 character line width limit hell. */ static __inline void pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv, struct spglist *free) { vm_paddr_t pa; vm_page_t m; struct md_page *pvh; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x", __func__, m, m->phys_addr, pa)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("%s: bad pte2 %#x", __func__, pte2)); if (pte2_is_dirty(pte2)) vm_page_dirty(m); pmap->pm_stats.resident_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(pa); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } pmap_unuse_pt2(pmap, pv->pv_va, free); } /* * Remove all pages from specified address space this aids process * exit speeds. Also, this code is special cased for current process * only, but can have the more generic (and slightly slower) mode enabled. * This is much faster than pmap_remove in the case of running down * an entire address space. */ void pmap_remove_pages(pmap_t pmap) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; pv_entry_t pv; struct pv_chunk *pc, *npc; struct spglist free; int field, idx; int32_t bit; uint32_t inuse, bitmask; boolean_t allfree; /* * Assert that the given pmap is only active on the current * CPU. Unfortunately, we cannot block another CPU from * activating the pmap while this function is executing. */ KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace), ("%s: non-current pmap %p", __func__, pmap)); #if defined(SMP) && defined(INVARIANTS) { cpuset_t other_cpus; sched_pin(); other_cpus = pmap->pm_active; CPU_CLR(PCPU_GET(cpuid), &other_cpus); sched_unpin(); KASSERT(CPU_EMPTY(&other_cpus), ("%s: pmap %p active on other cpus", __func__, pmap)); } #endif SLIST_INIT(&free); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); sched_pin(); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p", __func__, pmap, pc->pc_pmap)); allfree = TRUE; for (field = 0; field < _NPCM; field++) { inuse = (~(pc->pc_map[field])) & pc_freemask[field]; while (inuse != 0) { bit = ffs(inuse) - 1; bitmask = 1UL << bit; idx = field * 32 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; /* * Note that we cannot remove wired pages * from a process' mapping at this time */ pte1p = pmap_pte1(pmap, pv->pv_va); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { if (pte1_is_wired(pte1)) { allfree = FALSE; continue; } pte1_clear(pte1p); pmap_remove_pte1_quick(pmap, pte1, pv, &free); } else if (pte1_is_link(pte1)) { pte2p = pt2map_entry(pv->pv_va); pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) { printf("%s: pmap %p va %#x " "pte2 %#x\n", __func__, pmap, pv->pv_va, pte2); panic("bad pte2"); } if (pte2_is_wired(pte2)) { allfree = FALSE; continue; } pte2_clear(pte2p); pmap_remove_pte2_quick(pmap, pte2, pv, &free); } else { printf("%s: pmap %p va %#x pte1 %#x\n", __func__, pmap, pv->pv_va, pte1); panic("bad pte1"); } /* Mark free */ PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc->pc_map[field] |= bitmask; } } if (allfree) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } } tlb_flush_all_ng_local(); sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); pmap_free_zero_pages(&free); } /* * This code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No L2 page table pages. * but is *MUCH* faster than pmap_enter... */ static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpt2pg) { pt2_entry_t *pte2p, pte2; vm_paddr_t pa; struct spglist free; uint32_t l2prot; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("%s: managed mapping within the clean submap", __func__)); rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * In the case that a L2 page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { u_int pte1_idx; pt1_entry_t pte1, *pte1p; vm_paddr_t pt2_pa; /* * Get L1 page table things. */ pte1_idx = pte1_index(va); pte1p = pmap_pte1(pmap, va); pte1 = pte1_load(pte1p); if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) { /* * Each of NPT2_IN_PG L2 page tables on the page can * come here. Make sure that associated L1 page table * link is established. * * QQQ: It comes that we don't establish all links to * L2 page tables for newly allocated L2 page * tables page. */ KASSERT(!pte1_is_section(pte1), ("%s: pte1 %#x is section", __func__, pte1)); if (!pte1_is_link(pte1)) { pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg), pte1_idx); pte1_store(pte1p, PTE1_LINK(pt2_pa)); } pt2_wirecount_inc(mpt2pg, pte1_idx); } else { /* * If the L2 page table page is mapped, we just * increment the hold count, and activate it. */ if (pte1_is_section(pte1)) { return (NULL); } else if (pte1_is_link(pte1)) { mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); pt2_wirecount_inc(mpt2pg, pte1_idx); } else { mpt2pg = _pmap_allocpte2(pmap, va, PMAP_ENTER_NOSLEEP); if (mpt2pg == NULL) return (NULL); } } } else { mpt2pg = NULL; } /* * This call to pt2map_entry() makes the assumption that we are * entering the page into the current pmap. In order to support * quick entry into any pmap, one would likely use pmap_pte2_quick(). * But that isn't as quick as pt2map_entry(). */ pte2p = pt2map_entry(va); pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2)) { if (mpt2pg != NULL) { /* * Remove extra pte2 reference */ pt2_wirecount_dec(mpt2pg, pte1_index(va)); mpt2pg = NULL; } return (NULL); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, va, m)) { if (mpt2pg != NULL) { SLIST_INIT(&free); if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) { pmap_tlb_flush(pmap, va); pmap_free_zero_pages(&free); } mpt2pg = NULL; } return (NULL); } /* * Increment counters */ pmap->pm_stats.resident_count++; /* * Now validate mapping with RO protection */ pa = VM_PAGE_TO_PHYS(m); l2prot = PTE2_RO | PTE2_NM; if (va < VM_MAXUSER_ADDRESS) l2prot |= PTE2_U | PTE2_NG; if ((prot & VM_PROT_EXECUTE) == 0) l2prot |= PTE2_NX; else if (m->md.pat_mode == PTE2_ATTR_WB_WA) { /* * Sync icache if exec permission and attribute PTE2_ATTR_WB_WA * is set. QQQ: For more info, see comments in pmap_enter(). */ cache_icache_sync_fresh(va, pa, PAGE_SIZE); } pte2_store(pte2p, PTE2(pa, l2prot, m->md.pat_mode)); return (mpt2pg); } void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * Tries to create 1MB page mapping. Returns TRUE if successful and * FALSE otherwise. Fails if (1) a page table page cannot be allocated without * blocking, (2) a mapping already exists at the specified virtual address, or * (3) a pv entry cannot be allocated without reclaiming another pv entry. */ static boolean_t pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { pt1_entry_t *pte1p; vm_paddr_t pa; uint32_t l1prot; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); pte1p = pmap_pte1(pmap, va); if (pte1_is_valid(pte1_load(pte1p))) { CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__, va, pmap); return (FALSE); } if ((m->oflags & VPO_UNMANAGED) == 0) { /* * Abort this mapping if its PV entry could not be created. */ if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) { CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__, va, pmap); return (FALSE); } } /* * Increment counters. */ pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; /* * Map the section. * * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is * made readonly? */ pa = VM_PAGE_TO_PHYS(m); l1prot = PTE1_RO | PTE1_NM; if (va < VM_MAXUSER_ADDRESS) l1prot |= PTE1_U | PTE1_NG; if ((prot & VM_PROT_EXECUTE) == 0) l1prot |= PTE1_NX; else if (m->md.pat_mode == PTE2_ATTR_WB_WA) { /* * Sync icache if exec permission and attribute PTE2_ATTR_WB_WA * is set. QQQ: For more info, see comments in pmap_enter(). */ cache_icache_sync_fresh(va, pa, PTE1_SIZE); } pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(m->md.pat_mode))); pmap_pte1_mappings++; CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va, pmap); return (TRUE); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_offset_t va; vm_page_t m, mpt2pg; vm_pindex_t diff, psize; PDEBUG(6, printf("%s: pmap %p start %#x end %#x m %p prot %#x\n", __func__, pmap, start, end, m_start, prot)); VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); mpt2pg = NULL; m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end && m->psind == 1 && sp_enabled && pmap_enter_pte1(pmap, va, m, prot)) m = &m[PTE1_SIZE / PAGE_SIZE - 1]; else mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot, mpt2pg); m = TAILQ_NEXT(m, listq); } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * This code maps large physical mmap regions into the * processor address space. Note that some shortcuts * are taken, but the code works. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { pt1_entry_t *pte1p; vm_paddr_t pa, pte2_pa; vm_page_t p; int pat_mode; u_int l1attr, l1prot; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("%s: non-device object", __func__)); if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) { if (!vm_object_populate(object, pindex, pindex + atop(size))) return; p = vm_page_lookup(object, pindex); KASSERT(p->valid == VM_PAGE_BITS_ALL, ("%s: invalid page %p", __func__, p)); pat_mode = p->md.pat_mode; /* * Abort the mapping if the first page is not physically * aligned to a 1MB page boundary. */ pte2_pa = VM_PAGE_TO_PHYS(p); if (pte2_pa & PTE1_OFFSET) return; /* * Skip the first page. Abort the mapping if the rest of * the pages are not physically contiguous or have differing * memory attributes. */ p = TAILQ_NEXT(p, listq); for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size; pa += PAGE_SIZE) { KASSERT(p->valid == VM_PAGE_BITS_ALL, ("%s: invalid page %p", __func__, p)); if (pa != VM_PAGE_TO_PHYS(p) || pat_mode != p->md.pat_mode) return; p = TAILQ_NEXT(p, listq); } /* * Map using 1MB pages. * * QQQ: Well, we are mapping a section, so same condition must * be hold like during promotion. It looks that only RW mapping * is done here, so readonly mapping must be done elsewhere. */ l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A; l1attr = ATTR_TO_L1(pat_mode); PMAP_LOCK(pmap); for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) { pte1p = pmap_pte1(pmap, addr); if (!pte1_is_valid(pte1_load(pte1p))) { pte1_store(pte1p, PTE1(pa, l1prot, l1attr)); pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; pmap_pte1_mappings++; } /* Else continue on if the PTE1 is already valid. */ addr += PTE1_SIZE; } PMAP_UNLOCK(pmap); } } /* * Do the things to protect a 1mpage in a process. */ static void pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva, vm_prot_t prot) { pt1_entry_t npte1, opte1; vm_offset_t eva, va; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & PTE1_OFFSET) == 0, ("%s: sva is not 1mpage aligned", __func__)); retry: opte1 = npte1 = pte1_load(pte1p); if (pte1_is_managed(opte1)) { eva = sva + PTE1_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1)); va < eva; va += PAGE_SIZE, m++) if (pte1_is_dirty(opte1)) vm_page_dirty(m); } if ((prot & VM_PROT_WRITE) == 0) npte1 |= PTE1_RO | PTE1_NM; if ((prot & VM_PROT_EXECUTE) == 0) npte1 |= PTE1_NX; /* * QQQ: Herein, execute permission is never set. * It only can be cleared. So, no icache * syncing is needed. */ if (npte1 != opte1) { if (!pte1_cmpset(pte1p, opte1, npte1)) goto retry; pmap_tlb_flush(pmap, sva); } } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { boolean_t pv_lists_locked; vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, opte2, npte2; KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot)); if (prot == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) return; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = nextva) { /* * Calculate address for next L2 page table. */ nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that L1 page * page table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { /* * Are we protecting the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pmap_protect_pte1(pmap, pte1p, sva, prot); continue; } else { if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* * The large page mapping * was destroyed. */ continue; } #ifdef INVARIANTS else { /* Update pte1 after demotion */ pte1 = pte1_load(pte1p); } #endif } } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being protected. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { vm_page_t m; retry: opte2 = npte2 = pte2_load(pte2p); if (!pte2_is_valid(opte2)) continue; if ((prot & VM_PROT_WRITE) == 0) { if (pte2_is_managed(opte2) && pte2_is_dirty(opte2)) { m = PHYS_TO_VM_PAGE(pte2_pa(opte2)); vm_page_dirty(m); } npte2 |= PTE2_RO | PTE2_NM; } if ((prot & VM_PROT_EXECUTE) == 0) npte2 |= PTE2_NX; /* * QQQ: Herein, execute permission is never set. * It only can be cleared. So, no icache * syncing is needed. */ if (npte2 != opte2) { if (!pte2_cmpset(pte2p, opte2, npte2)) goto retry; pmap_tlb_flush(pmap, sva); } } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * pmap_pvh_wired_mappings: * * Return the updated number "count" of managed mappings that are wired. */ static int pmap_pvh_wired_mappings(struct md_page *pvh, int count) { pmap_t pmap; pt1_entry_t pte1; pt2_entry_t pte2; pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { if (pte1_is_wired(pte1)) count++; } else { KASSERT(pte1_is_link(pte1), ("%s: pte1 %#x is not link", __func__, pte1)); pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); if (pte2_is_wired(pte2)) count++; } PMAP_UNLOCK(pmap); } sched_unpin(); return (count); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); count = pmap_pvh_wired_mappings(&m->md, count); if ((m->flags & PG_FICTITIOUS) == 0) { count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count); } rw_wunlock(&pvh_global_lock); return (count); } /* * Returns TRUE if any of the given mappings were used to modify * physical memory. Otherwise, returns FALSE. Both page and 1mpage * mappings are supported. */ static boolean_t pmap_is_modified_pvh(struct md_page *pvh) { pv_entry_t pv; pt1_entry_t pte1; pt2_entry_t pte2; pmap_t pmap; boolean_t rv; rw_assert(&pvh_global_lock, RA_WLOCKED); rv = FALSE; sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { rv = pte1_is_dirty(pte1); } else { KASSERT(pte1_is_link(pte1), ("%s: pte1 %#x is not link", __func__, pte1)); pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); rv = pte2_is_dirty(pte2); } PMAP_UNLOCK(pmap); if (rv) break; } sched_unpin(); return (rv); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTE2s can have PG_M set. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return (FALSE); rw_wlock(&pvh_global_lock); rv = pmap_is_modified_pvh(&m->md) || ((m->flags & PG_FICTITIOUS) == 0 && pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)))); rw_wunlock(&pvh_global_lock); return (rv); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is eligible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pt1_entry_t pte1; pt2_entry_t pte2; boolean_t rv; rv = FALSE; PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, addr)); if (pte1_is_link(pte1)) { pte2 = pte2_load(pt2map_entry(addr)); rv = !pte2_is_valid(pte2) ; } PMAP_UNLOCK(pmap); return (rv); } /* * Returns TRUE if any of the given mappings were referenced and FALSE * otherwise. Both page and 1mpage mappings are supported. */ static boolean_t pmap_is_referenced_pvh(struct md_page *pvh) { pv_entry_t pv; pt1_entry_t pte1; pt2_entry_t pte2; pmap_t pmap; boolean_t rv; rw_assert(&pvh_global_lock, RA_WLOCKED); rv = FALSE; sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V); } else { pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V); } PMAP_UNLOCK(pmap); if (rv) break; } sched_unpin(); return (rv); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); rw_wlock(&pvh_global_lock); rv = pmap_is_referenced_pvh(&m->md) || ((m->flags & PG_FICTITIOUS) == 0 && pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)))); rw_wunlock(&pvh_global_lock); return (rv); } #define PMAP_TS_REFERENCED_MAX 5 /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int pmap_ts_referenced(vm_page_t m) { struct md_page *pvh; pv_entry_t pv, pvf; pmap_t pmap; pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p; vm_paddr_t pa; int rtval = 0; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); pa = VM_PAGE_TO_PHYS(m); pvh = pa_to_pvh(pa); rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0 || (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL) goto small_mappings; pv = pvf; do { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); opte1 = pte1_load(pte1p); if ((opte1 & PTE1_A) != 0) { /* * Since this reference bit is shared by 256 4KB pages, * it should not be cleared every time it is tested. * Apply a simple "hash" function on the physical page * number, the virtual section number, and the pmap * address to select one 4KB page out of the 256 * on which testing the reference bit will result * in clearing that bit. This function is designed * to avoid the selection of the same 4KB page * for every 1MB page mapping. * * On demotion, a mapping that hasn't been referenced * is simply destroyed. To avoid the possibility of a * subsequent page fault on a demoted wired mapping, * always leave its reference bit set. Moreover, * since the section is wired, the current state of * its reference bit won't affect page replacement. */ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^ (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 && !pte1_is_wired(opte1)) { pte1_clear_bit(pte1p, PTE1_A); pmap_tlb_flush(pmap, pv->pv_va); } rtval++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); } if (rtval >= PMAP_TS_REFERENCED_MAX) goto out; } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf); small_mappings: if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL) goto out; pv = pvf; do { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(pte1_is_link(pte1_load(pte1p)), ("%s: not found a link in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); if ((pte2_load(pte2p) & PTE2_A) != 0) { pte2_clear_bit(pte2p, PTE2_A); pmap_tlb_flush(pmap, pv->pv_va); rtval++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval < PMAP_TS_REFERENCED_MAX); out: sched_unpin(); rw_wunlock(&pvh_global_lock); return (rtval); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range * must have the wired attribute set. In contrast, invalid mappings * cannot have the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, * so there is no need to invalidate any TLB entries. */ void pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; boolean_t pv_lists_locked; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = nextva) { nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that L1 page * page table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { if (!pte1_is_wired(pte1)) panic("%s: pte1 %#x not wired", __func__, pte1); /* * Are we unwiring the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pte1_clear_bit(pte1p, PTE1_W); pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE; continue; } else { if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); /* Repeat sva. */ goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) panic("%s: demotion failed", __func__); #ifdef INVARIANTS else { /* Update pte1 after demotion */ pte1 = pte1_load(pte1p); } #endif } } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being protected. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) continue; if (!pte2_is_wired(pte2)) panic("%s: pte2 %#x is missing PTE2_W", __func__, pte2); /* * PTE2_W must be cleared atomically. Although the pmap * lock synchronizes access to PTE2_W, another processor * could be changing PTE2_NM and/or PTE2_A concurrently. */ pte2_clear_bit(pte2p, PTE2_W); pmap->pm_stats.wired_count--; } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { struct md_page *pvh; pv_entry_t next_pv, pv; pmap_t pmap; pt1_entry_t *pte1p; pt2_entry_t *pte2p, opte2; vm_offset_t va; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * set by another thread while the object is locked. Thus, * if PGA_WRITEABLE is clear, no page table entries need updating. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); if (!(pte1_load(pte1p) & PTE1_RO)) (void)pmap_demote_pte1(pmap, pte1p, va); PMAP_UNLOCK(pmap); } small_mappings: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found" " a section in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); retry: opte2 = pte2_load(pte2p); if (!(opte2 & PTE2_RO)) { if (!pte2_cmpset(pte2p, opte2, opte2 | (PTE2_RO | PTE2_NM))) goto retry; if (pte2_is_dirty(opte2)) vm_page_dirty(m); pmap_tlb_flush(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); sched_unpin(); rw_wunlock(&pvh_global_lock); } /* * Apply the given advice to the specified range of addresses within the * given pmap. Depending on the advice, clear the referenced and/or * modified flags in each mapping and set the mapped page's dirty field. */ void pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice) { pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p, pte2; vm_offset_t pdnxt; vm_page_t m; boolean_t pv_lists_locked; if (advice != MADV_DONTNEED && advice != MADV_FREE) return; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = pdnxt) { pdnxt = pte1_trunc(sva + PTE1_SIZE); if (pdnxt < sva) pdnxt = eva; pte1p = pmap_pte1(pmap, sva); opte1 = pte1_load(pte1p); if (!pte1_is_valid(opte1)) /* XXX */ continue; else if (pte1_is_section(opte1)) { if (!pte1_is_managed(opte1)) continue; if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* * The large page mapping was destroyed. */ continue; } /* * Unless the page mappings are wired, remove the * mapping to a single page so that a subsequent * access may repromote. Since the underlying L2 page * table is fully populated, this removal never * frees a L2 page table page. */ if (!pte1_is_wired(opte1)) { pte2p = pmap_pte2_quick(pmap, sva); KASSERT(pte2_is_valid(pte2_load(pte2p)), ("%s: invalid PTE2", __func__)); pmap_remove_pte2(pmap, pte2p, sva, NULL); } } if (pdnxt > eva) pdnxt = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2)) continue; else if (pte2_is_dirty(pte2)) { if (advice == MADV_DONTNEED) { /* * Future calls to pmap_is_modified() * can be avoided by making the page * dirty now. */ m = PHYS_TO_VM_PAGE(pte2_pa(pte2)); vm_page_dirty(m); } pte2_set_bit(pte2p, PTE2_NM); pte2_clear_bit(pte2p, PTE2_A); } else if ((pte2 & PTE2_A) != 0) pte2_clear_bit(pte2p, PTE2_A); else continue; pmap_tlb_flush(pmap, sva); } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { struct md_page *pvh; pv_entry_t next_pv, pv; pmap_t pmap; pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p, opte2; vm_offset_t va; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT(!vm_page_xbusied(m), ("%s: page %p is exclusive busy", __func__, m)); /* * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM * cleared. If the object containing the page is locked and the page * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently * set. */ if ((m->flags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); opte1 = pte1_load(pte1p); if (!(opte1 & PTE1_RO)) { if (pmap_demote_pte1(pmap, pte1p, va) && !pte1_is_wired(opte1)) { /* * Write protect the mapping to a * single page so that a subsequent * write access may repromote. */ va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1); pte2p = pmap_pte2_quick(pmap, va); opte2 = pte2_load(pte2p); if ((opte2 & PTE2_V)) { pte2_set_bit(pte2p, PTE2_NM | PTE2_RO); vm_page_dirty(m); pmap_tlb_flush(pmap, va); } } } PMAP_UNLOCK(pmap); } small_mappings: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found" " a section in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); if (pte2_is_dirty(pte2_load(pte2p))) { pte2_set_bit(pte2p, PTE2_NM); pmap_tlb_flush(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } sched_unpin(); rw_wunlock(&pvh_global_lock); } /* * Sets the memory attribute for the specified page. */ void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma) { struct sysmaps *sysmaps; vm_memattr_t oma; vm_paddr_t pa; oma = m->md.pat_mode; m->md.pat_mode = ma; CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m, VM_PAGE_TO_PHYS(m), oma, ma); if ((m->flags & PG_FICTITIOUS) != 0) return; #if 0 /* * If "m" is a normal page, flush it from the cache. * * First, try to find an existing mapping of the page by sf * buffer. sf_buf_invalidate_cache() modifies mapping and * flushes the cache. */ if (sf_buf_invalidate_cache(m, oma)) return; #endif /* * If page is not mapped by sf buffer, map the page * transient and do invalidation. */ if (ma != oma) { pa = VM_PAGE_TO_PHYS(m); sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP2) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(pa, PTE2_AP_KRW, ma)); dcache_wbinv_poc((vm_offset_t)sysmaps->CADDR2, pa, PAGE_SIZE); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } } /* * Miscellaneous support routines follow */ /* * Returns TRUE if the given page is mapped individually or as part of * a 1mpage. Otherwise, returns FALSE. */ boolean_t pmap_page_is_mapped(vm_page_t m) { boolean_t rv; if ((m->oflags & VPO_UNMANAGED) != 0) return (FALSE); rw_wlock(&pvh_global_lock); rv = !TAILQ_EMPTY(&m->md.pv_list) || ((m->flags & PG_FICTITIOUS) == 0 && !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list)); rw_wunlock(&pvh_global_lock); return (rv); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { struct md_page *pvh; pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } } rw_wunlock(&pvh_global_lock); return (rv); } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { struct sysmaps *sysmaps; sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (pte2_load(sysmaps->CMAP2) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, m->md.pat_mode)); pagezero(sysmaps->CADDR2); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { struct sysmaps *sysmaps; sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (pte2_load(sysmaps->CMAP2) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, m->md.pat_mode)); if (off == 0 && size == PAGE_SIZE) pagezero(sysmaps->CADDR2); else bzero(sysmaps->CADDR2 + off, size); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * pmap_zero_page_idle zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. This * is intended to be called from the vm_pagezero process only and * outside of Giant. */ void pmap_zero_page_idle(vm_page_t m) { if (pte2_load(CMAP3) != 0) panic("%s: CMAP3 busy", __func__); sched_pin(); pte2_store(CMAP3, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, m->md.pat_mode)); pagezero(CADDR3); pte2_clear(CMAP3); tlb_flush((vm_offset_t)CADDR3); sched_unpin(); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t src, vm_page_t dst) { struct sysmaps *sysmaps; sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (pte2_load(sysmaps->CMAP1) != 0) panic("%s: CMAP1 busy", __func__); if (pte2_load(sysmaps->CMAP2) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP1, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src), PTE2_AP_KR | PTE2_NM, src->md.pat_mode)); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst), PTE2_AP_KRW, dst->md.pat_mode)); bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE); pte2_clear(sysmaps->CMAP1); tlb_flush((vm_offset_t)sysmaps->CADDR1); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } int unmapped_buf_allowed = 1; void pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[], vm_offset_t b_offset, int xfersize) { struct sysmaps *sysmaps; vm_page_t a_pg, b_pg; char *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP1 != 0) panic("pmap_copy_pages: CMAP1 busy"); if (*sysmaps->CMAP2 != 0) panic("pmap_copy_pages: CMAP2 busy"); while (xfersize > 0) { a_pg = ma[a_offset >> PAGE_SHIFT]; a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); b_pg = mb[b_offset >> PAGE_SHIFT]; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); pte2_store(sysmaps->CMAP1, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg), PTE2_AP_KR | PTE2_NM, a_pg->md.pat_mode)); tlb_flush_local((vm_offset_t)sysmaps->CADDR1); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg), PTE2_AP_KRW, b_pg->md.pat_mode)); tlb_flush_local((vm_offset_t)sysmaps->CADDR2); a_cp = sysmaps->CADDR1 + a_pg_offset; b_cp = sysmaps->CADDR2 + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } pte2_clear(sysmaps->CMAP1); tlb_flush((vm_offset_t)sysmaps->CADDR1); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } vm_offset_t pmap_quick_enter_page(vm_page_t m) { pt2_entry_t *pte2p; vm_offset_t qmap_addr; critical_enter(); qmap_addr = PCPU_GET(qmap_addr); pte2p = pt2map_entry(qmap_addr); KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__)); pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, pmap_page_get_memattr(m))); return (qmap_addr); } void pmap_quick_remove_page(vm_offset_t addr) { pt2_entry_t *pte2p; vm_offset_t qmap_addr; qmap_addr = PCPU_GET(qmap_addr); pte2p = pt2map_entry(qmap_addr); KASSERT(addr == qmap_addr, ("%s: invalid address", __func__)); KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__)); pte2_clear(pte2p); tlb_flush(qmap_addr); critical_exit(); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { struct spglist free; vm_offset_t addr; vm_offset_t end_addr = src_addr + len; vm_offset_t nextva; if (dst_addr != src_addr) return; if (!pmap_is_current(src_pmap)) return; rw_wlock(&pvh_global_lock); if (dst_pmap < src_pmap) { PMAP_LOCK(dst_pmap); PMAP_LOCK(src_pmap); } else { PMAP_LOCK(src_pmap); PMAP_LOCK(dst_pmap); } sched_pin(); for (addr = src_addr; addr < end_addr; addr = nextva) { pt2_entry_t *src_pte2p, *dst_pte2p; vm_page_t dst_mpt2pg, src_mpt2pg; pt1_entry_t src_pte1; u_int pte1_idx; KASSERT(addr < VM_MAXUSER_ADDRESS, ("%s: invalid to pmap_copy page tables", __func__)); nextva = pte1_trunc(addr + PTE1_SIZE); if (nextva < addr) nextva = end_addr; pte1_idx = pte1_index(addr); src_pte1 = src_pmap->pm_pt1[pte1_idx]; if (pte1_is_section(src_pte1)) { if ((addr & PTE1_OFFSET) != 0 || (addr + PTE1_SIZE) > end_addr) continue; if (dst_pmap->pm_pt1[pte1_idx] == 0 && (!pte1_is_managed(src_pte1) || pmap_pv_insert_pte1(dst_pmap, addr, pte1_pa(src_pte1)))) { dst_pmap->pm_pt1[pte1_idx] = src_pte1 & ~PTE1_W; dst_pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; pmap_pte1_mappings++; } continue; } else if (!pte1_is_link(src_pte1)) continue; src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1)); /* * We leave PT2s to be linked from PT1 even if they are not * referenced until all PT2s in a page are without reference. * * QQQ: It could be changed ... */ #if 0 /* single_pt2_link_is_cleared */ KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0, ("%s: source page table page is unused", __func__)); #else if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0) continue; #endif if (nextva > end_addr) nextva = end_addr; src_pte2p = pt2map_entry(addr); while (addr < nextva) { pt2_entry_t temp_pte2; temp_pte2 = pte2_load(src_pte2p); /* * we only virtual copy managed pages */ if (pte2_is_managed(temp_pte2)) { dst_mpt2pg = pmap_allocpte2(dst_pmap, addr, PMAP_ENTER_NOSLEEP); if (dst_mpt2pg == NULL) goto out; dst_pte2p = pmap_pte2_quick(dst_pmap, addr); if (!pte2_is_valid(pte2_load(dst_pte2p)) && pmap_try_insert_pv_entry(dst_pmap, addr, PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) { /* * Clear the wired, modified, and * accessed (referenced) bits * during the copy. */ temp_pte2 &= ~(PTE2_W | PTE2_A); temp_pte2 |= PTE2_NM; pte2_store(dst_pte2p, temp_pte2); dst_pmap->pm_stats.resident_count++; } else { SLIST_INIT(&free); if (pmap_unwire_pt2(dst_pmap, addr, dst_mpt2pg, &free)) { pmap_tlb_flush(dst_pmap, addr); pmap_free_zero_pages(&free); } goto out; } if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >= pt2_wirecount_get(src_mpt2pg, pte1_idx)) break; } addr += PAGE_SIZE; src_pte2p++; } } out: sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(src_pmap); PMAP_UNLOCK(dst_pmap); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more section mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t pte1_offset; if (size < PTE1_SIZE) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); pte1_offset = offset & PTE1_OFFSET; if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE || (*addr & PTE1_OFFSET) == pte1_offset) return; if ((*addr & PTE1_OFFSET) < pte1_offset) *addr = pte1_trunc(*addr) + pte1_offset; else *addr = pte1_roundup(*addr) + pte1_offset; } void pmap_activate(struct thread *td) { pmap_t pmap, oldpmap; u_int cpuid, ttb; PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td)); critical_enter(); pmap = vmspace_pmap(td->td_proc->p_vmspace); oldpmap = PCPU_GET(curpmap); cpuid = PCPU_GET(cpuid); #if defined(SMP) CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); #else CPU_CLR(cpuid, &oldpmap->pm_active); CPU_SET(cpuid, &pmap->pm_active); #endif ttb = pmap_ttb_get(pmap); /* * pmap_activate is for the current thread on the current cpu */ td->td_pcb->pcb_pagedir = ttb; cp15_ttbr_set(ttb); PCPU_SET(curpmap, pmap); critical_exit(); } /* * Perform the pmap work for mincore. */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; vm_paddr_t pa; boolean_t managed; int val; PMAP_LOCK(pmap); retry: pte1p = pmap_pte1(pmap, addr); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET)); managed = pte1_is_managed(pte1); val = MINCORE_SUPER | MINCORE_INCORE; if (pte1_is_dirty(pte1)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (pte1 & PTE1_A) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, addr); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); pa = pte2_pa(pte2); managed = pte2_is_managed(pte2); val = MINCORE_INCORE; if (pte2_is_dirty(pte2)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (pte2 & PTE2_A) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } else { managed = FALSE; val = 0; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { /* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */ if (vm_page_pa_tryrelock(pmap, pa, locked_pa)) goto retry; } else PA_UNLOCK_COND(*locked_pa); PMAP_UNLOCK(pmap); return (val); } void pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa) { vm_offset_t sva; KASSERT((size & PAGE_MASK) == 0, ("%s: device mapping not page-sized", __func__)); sva = va; while (size != 0) { pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEVICE); va += PAGE_SIZE; pa += PAGE_SIZE; size -= PAGE_SIZE; } tlb_flush_range(sva, va - sva); } void pmap_kremove_device(vm_offset_t va, vm_size_t size) { vm_offset_t sva; KASSERT((size & PAGE_MASK) == 0, ("%s: device mapping not page-sized", __func__)); sva = va; while (size != 0) { pmap_kremove(va); va += PAGE_SIZE; size -= PAGE_SIZE; } tlb_flush_range(sva, va - sva); } void pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb) { pcb->pcb_pagedir = pmap_ttb_get(pmap); } /* * Clean L1 data cache range by physical address. * The range must be within a single page. */ static void pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { struct sysmaps *sysmaps; KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE, ("%s: not on single page", __func__)); sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (*sysmaps->CMAP3) panic("%s: CMAP3 busy", __func__); pte2_store(sysmaps->CMAP3, PTE2_KERN_NG(pa, PTE2_AP_KRW, ma)); dcache_wb_pou((vm_offset_t)sysmaps->CADDR3 + (pa & PAGE_MASK), size); pte2_clear(sysmaps->CMAP3); tlb_flush((vm_offset_t)sysmaps->CADDR3); sched_unpin(); mtx_unlock(&sysmaps->lock); } /* * Sync instruction cache range which is not mapped yet. */ void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size) { uint32_t len, offset; vm_page_t m; /* Write back d-cache on given address range. */ offset = pa & PAGE_MASK; for ( ; size != 0; size -= len, pa += len, offset = 0) { len = min(PAGE_SIZE - offset, size); m = PHYS_TO_VM_PAGE(pa); KASSERT(m != NULL, ("%s: vm_page_t is null for %#x", __func__, pa)); pmap_dcache_wb_pou(pa, len, m->md.pat_mode); } /* * I-cache is VIPT. Only way how to flush all virtual mappings * on given physical address is to invalidate all i-cache. */ icache_inv_all(); } void pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size) { /* Write back d-cache on given address range. */ if (va >= VM_MIN_KERNEL_ADDRESS) { dcache_wb_pou(va, size); } else { uint32_t len, offset; vm_paddr_t pa; vm_page_t m; offset = va & PAGE_MASK; for ( ; size != 0; size -= len, va += len, offset = 0) { pa = pmap_extract(pmap, va); /* offset is preserved */ len = min(PAGE_SIZE - offset, size); m = PHYS_TO_VM_PAGE(pa); KASSERT(m != NULL, ("%s: vm_page_t is null for %#x", __func__, pa)); pmap_dcache_wb_pou(pa, len, m->md.pat_mode); } } /* * I-cache is VIPT. Only way how to flush all virtual mappings * on given physical address is to invalidate all i-cache. */ icache_inv_all(); } /* * The implementation of pmap_fault() uses IN_RANGE2() macro which * depends on the fact that given range size is a power of 2. */ CTASSERT(powerof2(NB_IN_PT1)); CTASSERT(powerof2(PT2MAP_SIZE)); #define IN_RANGE2(addr, start, size) \ ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1))) /* * Handle access and R/W emulation faults. */ int pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; if (pmap == NULL) pmap = kernel_pmap; /* * In kernel, we should never get abort with FAR which is in range of * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here * and print out a useful abort message and even get to the debugger * otherwise it likely ends with never ending loop of aborts. */ if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) { /* * All L1 tables should always be mapped and present. * However, we check only current one herein. For user mode, * only permission abort from malicious user is not fatal. * And alignment abort as it may have higher priority. */ if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) { CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x", __func__, pmap, pmap->pm_pt1, far); panic("%s: pm_pt1 abort", __func__); } return (EFAULT); } if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) { /* * PT2MAP should be always mapped and present in current * L1 table. However, only existing L2 tables are mapped * in PT2MAP. For user mode, only L2 translation abort and * permission abort from malicious user is not fatal. * And alignment abort as it may have higher priority. */ if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) { CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x", __func__, pmap, PT2MAP, far); panic("%s: PT2MAP abort", __func__); } return (EFAULT); } /* * Accesss bits for page and section. Note that the entry * is not in TLB yet, so TLB flush is not necessary. * * QQQ: This is hardware emulation, we do not call userret() * for aborts from user mode. * We do not lock PMAP, so cmpset() is a need. Hopefully, * no one removes the mapping when we are here. */ if (idx == FAULT_ACCESS_L2) { pte2p = pt2map_entry(far); pte2_seta: pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2)) { if (!pte2_cmpset(pte2p, pte2, pte2 | PTE2_A)) { goto pte2_seta; } return (0); } } if (idx == FAULT_ACCESS_L1) { pte1p = pmap_pte1(pmap, far); pte1_seta: pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { if (!pte1_cmpset(pte1p, pte1, pte1 | PTE1_A)) { goto pte1_seta; } return (0); } } /* * Handle modify bits for page and section. Note that the modify * bit is emulated by software. So PTEx_RO is software read only * bit and PTEx_NM flag is real hardware read only bit. * * QQQ: This is hardware emulation, we do not call userret() * for aborts from user mode. * We do not lock PMAP, so cmpset() is a need. Hopefully, * no one removes the mapping when we are here. */ if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) { pte2p = pt2map_entry(far); pte2_setrw: pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) && (pte2 & PTE2_NM)) { if (!pte2_cmpset(pte2p, pte2, pte2 & ~PTE2_NM)) { goto pte2_setrw; } tlb_flush(trunc_page(far)); return (0); } } if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) { pte1p = pmap_pte1(pmap, far); pte1_setrw: pte1 = pte1_load(pte1p); if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) { if (!pte1_cmpset(pte1p, pte1, pte1 & ~PTE1_NM)) { goto pte1_setrw; } tlb_flush(pte1_trunc(far)); return (0); } } /* * QQQ: The previous code, mainly fast handling of access and * modify bits aborts, could be moved to ASM. Now we are * starting to deal with not fast aborts. */ #ifdef INVARIANTS /* * Read an entry in PT2TAB associated with both pmap and far. * It's safe because PT2TAB is always mapped. * * QQQ: We do not lock PMAP, so false positives could happen if * the mapping is removed concurrently. */ pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far)); if (pte2_is_valid(pte2)) { /* * Now, when we know that L2 page table is allocated, * we can use PT2MAP to get L2 page table entry. */ pte2 = pte2_load(pt2map_entry(far)); if (pte2_is_valid(pte2)) { /* * If L2 page table entry is valid, make sure that * L1 page table entry is valid too. Note that we * leave L2 page entries untouched when promoted. */ pte1 = pte1_load(pmap_pte1(pmap, far)); if (!pte1_is_valid(pte1)) { panic("%s: missing L1 page entry (%p, %#x)", __func__, pmap, far); } } } #endif return (EAGAIN); } /* !!!! REMOVE !!!! */ void pmap_pte_init_mmu_v6(void) { } void vector_page_setprot(int p) { } #if defined(PMAP_DEBUG) /* * Reusing of KVA used in pmap_zero_page function !!! */ static void pmap_zero_page_check(vm_page_t m) { uint32_t *p, *end; struct sysmaps *sysmaps; sched_pin(); sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)]; mtx_lock(&sysmaps->lock); if (pte2_load(sysmaps->CMAP2) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(sysmaps->CMAP2, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, m->md.pat_mode)); end = (uint32_t*)(sysmaps->CADDR2 + PAGE_SIZE); for (p = (uint32_t*)sysmaps->CADDR2; p < end; p++) if (*p != 0) panic("%s: page %p not zero, va: %p", __func__, m, sysmaps->CADDR2); pte2_clear(sysmaps->CMAP2); tlb_flush((vm_offset_t)sysmaps->CADDR2); sched_unpin(); mtx_unlock(&sysmaps->lock); } int pmap_pid_dump(int pid) { pmap_t pmap; struct proc *p; int npte2 = 0; int i, j, index; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_pid != pid || p->p_vmspace == NULL) continue; index = 0; pmap = vmspace_pmap(p->p_vmspace); for (i = 0; i < NPTE1_IN_PT1; i++) { pt1_entry_t pte1; pt2_entry_t *pte2p, pte2; vm_offset_t base, va; vm_paddr_t pa; vm_page_t m; base = i << PTE1_SHIFT; pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1_is_section(pte1)) { /* * QQQ: Do something here! */ } else if (pte1_is_link(pte1)) { for (j = 0; j < NPTE2_IN_PT2; j++) { va = base + (j << PAGE_SHIFT); if (va >= VM_MIN_KERNEL_ADDRESS) { if (index) { index = 0; printf("\n"); } sx_sunlock(&allproc_lock); return (npte2); } pte2p = pmap_pte2(pmap, va); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); if (!pte2_is_valid(pte2)) continue; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); printf("va: 0x%x, pa: 0x%x, h: %d, w:" " %d, f: 0x%x", va, pa, m->hold_count, m->wire_count, m->flags); npte2++; index++; if (index >= 2) { index = 0; printf("\n"); } else { printf(" "); } } } } } sx_sunlock(&allproc_lock); return (npte2); } #endif #ifdef DDB static pt2_entry_t * pmap_pte2_ddb(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (!pte1_is_link(pte1)) return (NULL); if (pmap_is_current(pmap)) return (pt2map_entry(va)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) { pte2_store(PMAP3, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP3cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR3); } #ifdef SMP else if (PMAP3cpu != PCPU_GET(cpuid)) { PMAP3cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR3); } #endif return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } static void dump_pmap(pmap_t pmap) { printf("pmap %p\n", pmap); printf(" pm_pt1: %p\n", pmap->pm_pt1); printf(" pm_pt2tab: %p\n", pmap->pm_pt2tab); printf(" pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]); } DB_SHOW_COMMAND(pmaps, pmap_list_pmaps) { pmap_t pmap; LIST_FOREACH(pmap, &allpmaps, pm_list) { dump_pmap(pmap); } } static int pte2_class(pt2_entry_t pte2) { int cls; cls = (pte2 >> 2) & 0x03; cls |= (pte2 >> 4) & 0x04; return (cls); } static void dump_section(pmap_t pmap, uint32_t pte1_idx) { } static void dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok) { uint32_t i; vm_offset_t va; pt2_entry_t *pte2p, pte2; vm_page_t m; va = pte1_idx << PTE1_SHIFT; pte2p = pmap_pte2_ddb(pmap, va); for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (pte2 == 0) continue; if (!pte2_is_valid(pte2)) { printf(" 0x%08X: 0x%08X", va, pte2); if (!invalid_ok) printf(" - not valid !!!"); printf("\n"); continue; } m = PHYS_TO_VM_PAGE(pte2_pa(pte2)); printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2, pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m); if (m != NULL) { printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid, m->hold_count, m->wire_count, m->flags); } else { printf("\n"); } } } static __inline boolean_t is_pv_chunk_space(vm_offset_t va) { if ((((vm_offset_t)pv_chunkbase) <= va) && (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks))) return (TRUE); return (FALSE); } DB_SHOW_COMMAND(pmap, pmap_pmap_print) { /* XXX convert args. */ pmap_t pmap = (pmap_t)addr; pt1_entry_t pte1; pt2_entry_t pte2; vm_offset_t va, eva; vm_page_t m; uint32_t i; boolean_t invalid_ok, dump_link_ok, dump_pv_chunk; if (have_addr) { pmap_t pm; LIST_FOREACH(pm, &allpmaps, pm_list) if (pm == pmap) break; if (pm == NULL) { printf("given pmap %p is not in allpmaps list\n", pmap); return; } } else pmap = PCPU_GET(curpmap); eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF; dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */ printf("pmap: 0x%08X\n", (uint32_t)pmap); printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP); printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab); for(i = 0; i < NPTE1_IN_PT1; i++) { pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1 == 0) continue; va = i << PTE1_SHIFT; if (va >= eva) break; if (pte1_is_section(pte1)) { printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1, !!(pte1 & PTE1_S), !(pte1 & PTE1_NG)); dump_section(pmap, i); } else if (pte1_is_link(pte1)) { dump_link_ok = TRUE; invalid_ok = FALSE; pte2 = pte2_load(pmap_pt2tab_entry(pmap, va)); m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p", va, pte1, pte2, m); if (is_pv_chunk_space(va)) { printf(" - pv_chunk space"); if (dump_pv_chunk) invalid_ok = TRUE; else dump_link_ok = FALSE; } else if (m != NULL) printf(" w:%d w2:%u", m->wire_count, pt2_wirecount_get(m, pte1_index(va))); if (pte2 == 0) printf(" !!! pt2tab entry is ZERO"); else if (pte2_pa(pte1) != pte2_pa(pte2)) printf(" !!! pt2tab entry is DIFFERENT - m: %p", PHYS_TO_VM_PAGE(pte2_pa(pte2))); printf("\n"); if (dump_link_ok) dump_link(pmap, i, invalid_ok); } else printf("0x%08X: Invalid entry 0x%08X\n", va, pte1); } } static void dump_pt2tab(pmap_t pmap) { uint32_t i; pt2_entry_t pte2; vm_offset_t va; vm_paddr_t pa; vm_page_t m; printf("PT2TAB:\n"); for (i = 0; i < PT2TAB_ENTRIES; i++) { pte2 = pte2_load(&pmap->pm_pt2tab[i]); if (!pte2_is_valid(pte2)) continue; va = i << PT2TAB_SHIFT; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2, pte2_class(pte2), !!(pte2 & PTE2_S), m); if (m != NULL) printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld", m->hold_count, m->wire_count, m->flags, m->pindex); printf("\n"); } } DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print) { /* XXX convert args. */ pmap_t pmap = (pmap_t)addr; pt1_entry_t pte1; pt2_entry_t pte2; vm_offset_t va; uint32_t i, start; if (have_addr) { printf("supported only on current pmap\n"); return; } pmap = PCPU_GET(curpmap); printf("curpmap: 0x%08X\n", (uint32_t)pmap); printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP); printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab); start = pte1_index((vm_offset_t)PT2MAP); for (i = start; i < (start + NPT2_IN_PT2TAB); i++) { pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1 == 0) continue; va = i << PTE1_SHIFT; if (pte1_is_section(pte1)) { printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1, !!(pte1 & PTE1_S)); dump_section(pmap, i); } else if (pte1_is_link(pte1)) { pte2 = pte2_load(pmap_pt2tab_entry(pmap, va)); printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va, pte1, pte2); if (pte2 == 0) printf(" !!! pt2tab entry is ZERO\n"); } else printf("0x%08X: Invalid entry 0x%08X\n", va, pte1); } dump_pt2tab(pmap); } #endif Index: projects/release-pkg/sys/boot/efi/libefi/libefi.c =================================================================== --- projects/release-pkg/sys/boot/efi/libefi/libefi.c (revision 293802) +++ projects/release-pkg/sys/boot/efi/libefi/libefi.c (revision 293803) @@ -1,198 +1,198 @@ /*- * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include EFI_HANDLE IH; EFI_SYSTEM_TABLE *ST; EFI_BOOT_SERVICES *BS; EFI_RUNTIME_SERVICES *RS; static EFI_PHYSICAL_ADDRESS heap; static UINTN heapsize; static CHAR16 * arg_skipsep(CHAR16 *argp) { while (*argp == ' ' || *argp == '\t') argp++; return (argp); } static CHAR16 * arg_skipword(CHAR16 *argp) { while (*argp && *argp != ' ' && *argp != '\t') argp++; return (argp); } void * efi_get_table(EFI_GUID *tbl) { EFI_GUID *id; int i; for (i = 0; i < ST->NumberOfTableEntries; i++) { id = &ST->ConfigurationTable[i].VendorGuid; if (!memcmp(id, tbl, sizeof(EFI_GUID))) return (ST->ConfigurationTable[i].VendorTable); } return (NULL); } void exit(EFI_STATUS exit_code) { BS->FreePages(heap, EFI_SIZE_TO_PAGES(heapsize)); BS->Exit(IH, exit_code, 0, NULL); } void efi_main(EFI_HANDLE image_handle, EFI_SYSTEM_TABLE *system_table) { static EFI_GUID image_protocol = LOADED_IMAGE_PROTOCOL; static EFI_GUID console_control_protocol = EFI_CONSOLE_CONTROL_PROTOCOL_GUID; EFI_CONSOLE_CONTROL_PROTOCOL *console_control = NULL; EFI_LOADED_IMAGE *img; CHAR16 *argp, *args, **argv; EFI_STATUS status; int argc, addprog; IH = image_handle; ST = system_table; BS = ST->BootServices; RS = ST->RuntimeServices; status = BS->LocateProtocol(&console_control_protocol, NULL, (VOID **)&console_control); if (status == EFI_SUCCESS) (void)console_control->SetMode(console_control, EfiConsoleControlScreenText); heapsize = 3 * 1024 * 1024; status = BS->AllocatePages(AllocateAnyPages, EfiLoaderData, EFI_SIZE_TO_PAGES(heapsize), &heap); if (status != EFI_SUCCESS) BS->Exit(IH, status, 0, NULL); setheap((void *)(uintptr_t)heap, (void *)(uintptr_t)(heap + heapsize)); /* Use exit() from here on... */ status = BS->HandleProtocol(IH, &image_protocol, (VOID**)&img); if (status != EFI_SUCCESS) exit(status); /* * Pre-process the (optional) load options. If the option string * is given as an ASCII string, we use a poor man's ASCII to * Unicode-16 translation. The size of the option string as given * to us includes the terminating null character. We assume the * string is an ASCII string if strlen() plus the terminating * '\0' is less than LoadOptionsSize. Even if all Unicode-16 * characters have the upper 8 bits non-zero, the terminating * null character will cause a one-off. * If the string is already in Unicode-16, we make a copy so that * we know we can always modify the string. */ if (img->LoadOptionsSize > 0 && img->LoadOptions != NULL) { if (img->LoadOptionsSize == strlen(img->LoadOptions) + 1) { args = malloc(img->LoadOptionsSize << 1); for (argc = 0; argc < img->LoadOptionsSize; argc++) args[argc] = ((char*)img->LoadOptions)[argc]; } else { args = malloc(img->LoadOptionsSize); memcpy(args, img->LoadOptions, img->LoadOptionsSize); } } else args = NULL; /* * Use a quick and dirty algorithm to build the argv vector. We * first count the number of words. Then, after allocating the * vector, we split the string up. We don't deal with quotes or * other more advanced shell features. * The EFI shell will pass the name of the image as the first * word in the argument list. This does not happen if we're * loaded by the boot manager. This is not so easy to figure * out though. The ParentHandle is not always NULL, because * there can be a function (=image) that will perform the task * for the boot manager. */ /* Part 1: Figure out if we need to add our program name. */ addprog = (args == NULL || img->ParentHandle == NULL || img->FilePath == NULL) ? 1 : 0; if (!addprog) { addprog = (DevicePathType(img->FilePath) != MEDIA_DEVICE_PATH || DevicePathSubType(img->FilePath) != MEDIA_FILEPATH_DP || DevicePathNodeLength(img->FilePath) <= sizeof(FILEPATH_DEVICE_PATH)) ? 1 : 0; if (!addprog) { /* XXX todo. */ } } /* Part 2: count words. */ argc = (addprog) ? 1 : 0; argp = args; while (argp != NULL && *argp != 0) { argp = arg_skipsep(argp); if (*argp == 0) break; argc++; argp = arg_skipword(argp); } /* Part 3: build vector. */ argv = malloc((argc + 1) * sizeof(CHAR16*)); argc = 0; if (addprog) - argv[argc++] = (CHAR16 *)"loader.efi"; + argv[argc++] = (CHAR16 *)L"loader.efi"; argp = args; while (argp != NULL && *argp != 0) { argp = arg_skipsep(argp); if (*argp == 0) break; argv[argc++] = argp; argp = arg_skipword(argp); /* Terminate the words. */ if (*argp != 0) *argp++ = 0; } argv[argc] = NULL; status = main(argc, argv); exit(status); } Index: projects/release-pkg/sys/boot/uboot/lib/copy.c =================================================================== --- projects/release-pkg/sys/boot/uboot/lib/copy.c (revision 293802) +++ projects/release-pkg/sys/boot/uboot/lib/copy.c (revision 293803) @@ -1,166 +1,166 @@ /*- * Copyright (c) 1998 Michael Smith * Copyright (c) 2007 Semihalf, Rafal Jaworowski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include "api_public.h" #include "glue.h" #include "libuboot.h" /* * MD primitives supporting placement of module data */ #ifdef __arm__ #define KERN_ALIGN (2 * 1024 * 1024) #else #define KERN_ALIGN PAGE_SIZE #endif /* * Avoid low memory, u-boot puts things like args and dtb blobs there. */ #define KERN_MINADDR max(KERN_ALIGN, (1024 * 1024)) extern void _start(void); /* ubldr entry point address. */ /* * This is called for every object loaded (kernel, module, dtb file, etc). The * expected return value is the next address at or after the given addr which is * appropriate for loading the given object described by type and data. On each * call the addr is the next address following the previously loaded object. * * The first call is for loading the kernel, and the addr argument will be zero, * and we search for a big block of ram to load the kernel and modules. * * On subsequent calls the addr will be non-zero, and we just round it up so * that each object begins on a page boundary. */ uint64_t uboot_loadaddr(u_int type, void *data, uint64_t addr) { struct sys_info *si; uint64_t sblock, eblock, subldr, eubldr; uint64_t biggest_block, this_block; uint64_t biggest_size, this_size; int i; char *envstr; if (addr == 0) { /* * If the loader_kernaddr environment variable is set, blindly * honor it. It had better be right. We force interpretation * of the value in base-16 regardless of any leading 0x prefix, * because that's the U-Boot convention. */ envstr = ub_env_get("loader_kernaddr"); if (envstr != NULL) return (strtoul(envstr, NULL, 16)); /* * Find addr/size of largest DRAM block. Carve our own address * range out of the block, because loading the kernel over the * top ourself is a poor memory-conservation strategy. Avoid * memory at beginning of the first block of physical ram, * since u-boot likes to pass args and data there. Assume that * u-boot has moved itself to the very top of ram and * optimistically assume that we won't run into it up there. */ if ((si = ub_get_sys_info()) == NULL) panic("could not retrieve system info"); biggest_block = 0; biggest_size = 0; - subldr = rounddown2((uint64_t)(uintptr_t)_start, KERN_ALIGN); + subldr = rounddown2((uintptr_t)_start, KERN_ALIGN); eubldr = roundup2((uint64_t)uboot_heap_end, KERN_ALIGN); for (i = 0; i < si->mr_no; i++) { if (si->mr[i].flags != MR_ATTR_DRAM) continue; sblock = roundup2((uint64_t)si->mr[i].start, KERN_ALIGN); eblock = rounddown2((uint64_t)si->mr[i].start + si->mr[i].size, KERN_ALIGN); if (biggest_size == 0) sblock += KERN_MINADDR; if (subldr >= sblock && subldr < eblock) { if (subldr - sblock > eblock - eubldr) { this_block = sblock; this_size = subldr - sblock; } else { this_block = eubldr; this_size = eblock - eubldr; } } else if (subldr < sblock && eubldr < eblock) { /* Loader is below or engulfs the sblock */ this_block = (eubldr < sblock) ? sblock : eubldr; this_size = eblock - this_block; } else { this_block = 0; this_size = 0; } if (biggest_size < this_size) { biggest_block = this_block; biggest_size = this_size; } } if (biggest_size == 0) panic("Not enough DRAM to load kernel\n"); #if 0 printf("Loading kernel into region 0x%08jx-0x%08jx (%ju MiB)\n", (uintmax_t)biggest_block, (uintmax_t)biggest_block + biggest_size - 1, (uintmax_t)biggest_size / 1024 / 1024); #endif return (biggest_block); } return roundup2(addr, PAGE_SIZE); } ssize_t uboot_copyin(const void *src, vm_offset_t dest, const size_t len) { bcopy(src, (void *)dest, len); return (len); } ssize_t uboot_copyout(const vm_offset_t src, void *dest, const size_t len) { bcopy((void *)src, dest, len); return (len); } ssize_t uboot_readin(const int fd, vm_offset_t dest, const size_t len) { return (read(fd, (void *)dest, len)); } Index: projects/release-pkg/sys/boot =================================================================== --- projects/release-pkg/sys/boot (revision 293802) +++ projects/release-pkg/sys/boot (revision 293803) Property changes on: projects/release-pkg/sys/boot ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/sys/boot:r293760-293802 Index: projects/release-pkg/sys/dev/sfxge/common/efx.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx.h (revision 293803) @@ -1,2317 +1,2308 @@ /*- * Copyright (c) 2006-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_H #define _SYS_EFX_H #include "efsys.h" #include "efx_phy_ids.h" #ifdef __cplusplus extern "C" { #endif #define EFX_STATIC_ASSERT(_cond) \ ((void)sizeof(char[(_cond) ? 1 : -1])) #define EFX_ARRAY_SIZE(_array) \ (sizeof(_array) / sizeof((_array)[0])) #define EFX_FIELD_OFFSET(_type, _field) \ ((size_t) &(((_type *)0)->_field)) /* Return codes */ typedef __success(return == 0) int efx_rc_t; /* Chip families */ typedef enum efx_family_e { EFX_FAMILY_INVALID, EFX_FAMILY_FALCON, EFX_FAMILY_SIENA, EFX_FAMILY_HUNTINGTON, EFX_FAMILY_MEDFORD, EFX_FAMILY_NTYPES } efx_family_t; extern __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp); extern __checkReturn efx_rc_t efx_infer_family( __in efsys_bar_t *esbp, __out efx_family_t *efp); #define EFX_PCI_VENID_SFC 0x1924 #define EFX_PCI_DEVID_FALCON 0x0710 /* SFC4000 */ #define EFX_PCI_DEVID_BETHPAGE 0x0803 /* SFC9020 */ #define EFX_PCI_DEVID_SIENA 0x0813 /* SFL9021 */ #define EFX_PCI_DEVID_SIENA_F1_UNINIT 0x0810 #define EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT 0x0901 #define EFX_PCI_DEVID_FARMINGDALE 0x0903 /* SFC9120 PF */ #define EFX_PCI_DEVID_GREENPORT 0x0923 /* SFC9140 PF */ #define EFX_PCI_DEVID_FARMINGDALE_VF 0x1903 /* SFC9120 VF */ #define EFX_PCI_DEVID_GREENPORT_VF 0x1923 /* SFC9140 VF */ #define EFX_PCI_DEVID_MEDFORD_PF_UNINIT 0x0913 #define EFX_PCI_DEVID_MEDFORD 0x0A03 /* SFC9240 PF */ #define EFX_PCI_DEVID_MEDFORD_VF 0x1A03 /* SFC9240 VF */ #define EFX_MEM_BAR 2 /* Error codes */ enum { EFX_ERR_INVALID, EFX_ERR_SRAM_OOB, EFX_ERR_BUFID_DC_OOB, EFX_ERR_MEM_PERR, EFX_ERR_RBUF_OWN, EFX_ERR_TBUF_OWN, EFX_ERR_RDESQ_OWN, EFX_ERR_TDESQ_OWN, EFX_ERR_EVQ_OWN, EFX_ERR_EVFF_OFLO, EFX_ERR_ILL_ADDR, EFX_ERR_SRAM_PERR, EFX_ERR_NCODES }; /* Calculate the IEEE 802.3 CRC32 of a MAC addr */ extern __checkReturn uint32_t efx_crc32_calculate( __in uint32_t crc_init, __in_ecount(length) uint8_t const *input, __in int length); /* Type prototypes */ typedef struct efx_rxq_s efx_rxq_t; /* NIC */ typedef struct efx_nic_s efx_nic_t; #define EFX_NIC_FUNC_PRIMARY 0x00000001 #define EFX_NIC_FUNC_LINKCTRL 0x00000002 #define EFX_NIC_FUNC_TRUSTED 0x00000004 extern __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp); extern __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp); #if EFSYS_OPT_PCIE_TUNE extern __checkReturn efx_rc_t efx_nic_pcie_tune( __in efx_nic_t *enp, unsigned int nlanes); extern __checkReturn efx_rc_t efx_nic_pcie_extended_sync( __in efx_nic_t *enp); #endif /* EFSYS_OPT_PCIE_TUNE */ extern __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void efx_nic_fini( __in efx_nic_t *enp); extern void efx_nic_unprobe( __in efx_nic_t *enp); extern void efx_nic_destroy( __in efx_nic_t *enp); #if EFSYS_OPT_MCDI #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD /* Huntington and Medford require MCDIv2 commands */ #define WITH_MCDI_V2 1 #endif typedef struct efx_mcdi_req_s efx_mcdi_req_t; typedef enum efx_mcdi_exception_e { EFX_MCDI_EXCEPTION_MC_REBOOT, EFX_MCDI_EXCEPTION_MC_BADASSERT, } efx_mcdi_exception_t; #if EFSYS_OPT_MCDI_LOGGING typedef enum efx_log_msg_e { EFX_LOG_INVALID, EFX_LOG_MCDI_REQUEST, EFX_LOG_MCDI_RESPONSE, } efx_log_msg_t; #endif /* EFSYS_OPT_MCDI_LOGGING */ typedef struct efx_mcdi_transport_s { void *emt_context; efsys_mem_t *emt_dma_mem; void (*emt_execute)(void *, efx_mcdi_req_t *); void (*emt_ev_cpl)(void *); void (*emt_exception)(void *, efx_mcdi_exception_t); #if EFSYS_OPT_MCDI_LOGGING void (*emt_logger)(void *, efx_log_msg_t, void *, size_t, void *, size_t); #endif /* EFSYS_OPT_MCDI_LOGGING */ #if EFSYS_OPT_MCDI_PROXY_AUTH void (*emt_ev_proxy_response)(void *, uint32_t, efx_rc_t); #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ } efx_mcdi_transport_t; extern __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp); void efx_mcdi_new_epoch( __in efx_nic_t *enp); extern void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl); extern __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp); extern void efx_mcdi_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_MCDI */ /* INTR */ #define EFX_NINTR_FALCON 64 #define EFX_NINTR_SIENA 1024 typedef enum efx_intr_type_e { EFX_INTR_INVALID = 0, EFX_INTR_LINE, EFX_INTR_MESSAGE, EFX_INTR_NTYPES } efx_intr_type_t; #define EFX_INTR_SIZE (sizeof (efx_oword_t)) extern __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); extern void efx_intr_enable( __in efx_nic_t *enp); extern void efx_intr_disable( __in efx_nic_t *enp); extern void efx_intr_disable_unlocked( __in efx_nic_t *enp); #define EFX_INTR_NEVQS 32 extern __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); extern void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *maskp); extern void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); extern void efx_intr_fatal( __in efx_nic_t *enp); extern void efx_intr_fini( __in efx_nic_t *enp); /* MAC */ #if EFSYS_OPT_MAC_STATS /* START MKCONFIG GENERATED EfxHeaderMacBlock e323546097fd7c65 */ typedef enum efx_mac_stat_e { EFX_MAC_RX_OCTETS, EFX_MAC_RX_PKTS, EFX_MAC_RX_UNICST_PKTS, EFX_MAC_RX_MULTICST_PKTS, EFX_MAC_RX_BRDCST_PKTS, EFX_MAC_RX_PAUSE_PKTS, EFX_MAC_RX_LE_64_PKTS, EFX_MAC_RX_65_TO_127_PKTS, EFX_MAC_RX_128_TO_255_PKTS, EFX_MAC_RX_256_TO_511_PKTS, EFX_MAC_RX_512_TO_1023_PKTS, EFX_MAC_RX_1024_TO_15XX_PKTS, EFX_MAC_RX_GE_15XX_PKTS, EFX_MAC_RX_ERRORS, EFX_MAC_RX_FCS_ERRORS, EFX_MAC_RX_DROP_EVENTS, EFX_MAC_RX_FALSE_CARRIER_ERRORS, EFX_MAC_RX_SYMBOL_ERRORS, EFX_MAC_RX_ALIGN_ERRORS, EFX_MAC_RX_INTERNAL_ERRORS, EFX_MAC_RX_JABBER_PKTS, EFX_MAC_RX_LANE0_CHAR_ERR, EFX_MAC_RX_LANE1_CHAR_ERR, EFX_MAC_RX_LANE2_CHAR_ERR, EFX_MAC_RX_LANE3_CHAR_ERR, EFX_MAC_RX_LANE0_DISP_ERR, EFX_MAC_RX_LANE1_DISP_ERR, EFX_MAC_RX_LANE2_DISP_ERR, EFX_MAC_RX_LANE3_DISP_ERR, EFX_MAC_RX_MATCH_FAULT, EFX_MAC_RX_NODESC_DROP_CNT, EFX_MAC_TX_OCTETS, EFX_MAC_TX_PKTS, EFX_MAC_TX_UNICST_PKTS, EFX_MAC_TX_MULTICST_PKTS, EFX_MAC_TX_BRDCST_PKTS, EFX_MAC_TX_PAUSE_PKTS, EFX_MAC_TX_LE_64_PKTS, EFX_MAC_TX_65_TO_127_PKTS, EFX_MAC_TX_128_TO_255_PKTS, EFX_MAC_TX_256_TO_511_PKTS, EFX_MAC_TX_512_TO_1023_PKTS, EFX_MAC_TX_1024_TO_15XX_PKTS, EFX_MAC_TX_GE_15XX_PKTS, EFX_MAC_TX_ERRORS, EFX_MAC_TX_SGL_COL_PKTS, EFX_MAC_TX_MULT_COL_PKTS, EFX_MAC_TX_EX_COL_PKTS, EFX_MAC_TX_LATE_COL_PKTS, EFX_MAC_TX_DEF_PKTS, EFX_MAC_TX_EX_DEF_PKTS, EFX_MAC_PM_TRUNC_BB_OVERFLOW, EFX_MAC_PM_DISCARD_BB_OVERFLOW, EFX_MAC_PM_TRUNC_VFIFO_FULL, EFX_MAC_PM_DISCARD_VFIFO_FULL, EFX_MAC_PM_TRUNC_QBB, EFX_MAC_PM_DISCARD_QBB, EFX_MAC_PM_DISCARD_MAPPING, EFX_MAC_RXDP_Q_DISABLED_PKTS, EFX_MAC_RXDP_DI_DROPPED_PKTS, EFX_MAC_RXDP_STREAMING_PKTS, EFX_MAC_RXDP_HLB_FETCH, EFX_MAC_RXDP_HLB_WAIT, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS, EFX_MAC_VADAPTER_RX_UNICAST_BYTES, EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_RX_MULTICAST_BYTES, EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_RX_BROADCAST_BYTES, EFX_MAC_VADAPTER_RX_BAD_PACKETS, EFX_MAC_VADAPTER_RX_BAD_BYTES, EFX_MAC_VADAPTER_RX_OVERFLOW, EFX_MAC_VADAPTER_TX_UNICAST_PACKETS, EFX_MAC_VADAPTER_TX_UNICAST_BYTES, EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_TX_MULTICAST_BYTES, EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_TX_BROADCAST_BYTES, EFX_MAC_VADAPTER_TX_BAD_PACKETS, EFX_MAC_VADAPTER_TX_BAD_BYTES, EFX_MAC_VADAPTER_TX_OVERFLOW, EFX_MAC_NSTATS } efx_mac_stat_t; /* END MKCONFIG GENERATED EfxHeaderMacBlock */ #endif /* EFSYS_OPT_MAC_STATS */ typedef enum efx_link_mode_e { EFX_LINK_UNKNOWN = 0, EFX_LINK_DOWN, EFX_LINK_10HDX, EFX_LINK_10FDX, EFX_LINK_100HDX, EFX_LINK_100FDX, EFX_LINK_1000HDX, EFX_LINK_1000FDX, EFX_LINK_10000FDX, EFX_LINK_40000FDX, EFX_LINK_NMODES } efx_link_mode_t; #define EFX_MAC_ADDR_LEN 6 #define EFX_MAC_ADDR_IS_MULTICAST(_address) (((uint8_t*)_address)[0] & 0x01) #define EFX_MAC_MULTICAST_LIST_MAX 256 #define EFX_MAC_SDU_MAX 9202 #define EFX_MAC_PDU(_sdu) \ P2ROUNDUP(((_sdu) \ + /* EtherII */ 14 \ + /* VLAN */ 4 \ + /* CRC */ 4 \ + /* bug16011 */ 16), \ (1 << 3)) #define EFX_MAC_PDU_MIN 60 #define EFX_MAC_PDU_MAX EFX_MAC_PDU(EFX_MAC_SDU_MAX) extern __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu); extern __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr); extern __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled); extern __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); #define EFX_FCNTL_RESPOND 0x00000001 #define EFX_FCNTL_GENERATE 0x00000002 extern __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg); extern void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp); -#define EFX_MAC_HASH_BITS (1 << 8) -extern __checkReturn efx_rc_t -efx_mac_hash_set( - __in efx_nic_t *enp, - __in_ecount(EFX_MAC_HASH_BITS) unsigned int const *bucket); - - #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_MAC_STATS_SIZE 0x400 /* * Upload mac statistics supported by the hardware into the given buffer. * * The reference buffer must be at least %EFX_MAC_STATS_SIZE bytes, * and page aligned. * * The hardware will only DMA statistics that it understands (of course). * Drivers should not make any assumptions about which statistics are * supported, especially when the statistics are generated by firmware. * * Thus, drivers should zero this buffer before use, so that not-understood * statistics read back as zero. */ extern __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); extern __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MON */ typedef enum efx_mon_type_e { EFX_MON_INVALID = 0, EFX_MON_NULL, EFX_MON_LM87, EFX_MON_MAX6647, EFX_MON_SFC90X0, EFX_MON_SFC91X0, EFX_MON_SFC92X0, EFX_MON_NTYPES } efx_mon_type_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_name( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_init( __in efx_nic_t *enp); #if EFSYS_OPT_MON_STATS #define EFX_MON_STATS_PAGE_SIZE 0x100 #define EFX_MON_MASK_ELEMENT_SIZE 32 /* START MKCONFIG GENERATED MonitorHeaderStatsBlock c09b13f732431f23 */ typedef enum efx_mon_stat_e { EFX_MON_STAT_2_5V, EFX_MON_STAT_VCCP1, EFX_MON_STAT_VCC, EFX_MON_STAT_5V, EFX_MON_STAT_12V, EFX_MON_STAT_VCCP2, EFX_MON_STAT_EXT_TEMP, EFX_MON_STAT_INT_TEMP, EFX_MON_STAT_AIN1, EFX_MON_STAT_AIN2, EFX_MON_STAT_INT_COOLING, EFX_MON_STAT_EXT_COOLING, EFX_MON_STAT_1V, EFX_MON_STAT_1_2V, EFX_MON_STAT_1_8V, EFX_MON_STAT_3_3V, EFX_MON_STAT_1_2VA, EFX_MON_STAT_VREF, EFX_MON_STAT_VAOE, EFX_MON_STAT_AOE_TEMP, EFX_MON_STAT_PSU_AOE_TEMP, EFX_MON_STAT_PSU_TEMP, EFX_MON_STAT_FAN0, EFX_MON_STAT_FAN1, EFX_MON_STAT_FAN2, EFX_MON_STAT_FAN3, EFX_MON_STAT_FAN4, EFX_MON_STAT_VAOE_IN, EFX_MON_STAT_IAOE, EFX_MON_STAT_IAOE_IN, EFX_MON_STAT_NIC_POWER, EFX_MON_STAT_0_9V, EFX_MON_STAT_I0_9V, EFX_MON_STAT_I1_2V, EFX_MON_STAT_0_9V_ADC, EFX_MON_STAT_INT_TEMP2, EFX_MON_STAT_VREG_TEMP, EFX_MON_STAT_VREG_0_9V_TEMP, EFX_MON_STAT_VREG_1_2V_TEMP, EFX_MON_STAT_INT_VPTAT, EFX_MON_STAT_INT_ADC_TEMP, EFX_MON_STAT_EXT_VPTAT, EFX_MON_STAT_EXT_ADC_TEMP, EFX_MON_STAT_AMBIENT_TEMP, EFX_MON_STAT_AIRFLOW, EFX_MON_STAT_VDD08D_VSS08D_CSR, EFX_MON_STAT_VDD08D_VSS08D_CSR_EXTADC, EFX_MON_STAT_HOTPOINT_TEMP, EFX_MON_STAT_PHY_POWER_SWITCH_PORT0, EFX_MON_STAT_PHY_POWER_SWITCH_PORT1, EFX_MON_STAT_MUM_VCC, EFX_MON_STAT_0V9_A, EFX_MON_STAT_I0V9_A, EFX_MON_STAT_0V9_A_TEMP, EFX_MON_STAT_0V9_B, EFX_MON_STAT_I0V9_B, EFX_MON_STAT_0V9_B_TEMP, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY_EXT_ADC, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_SODIMM_VOUT, EFX_MON_STAT_SODIMM_0_TEMP, EFX_MON_STAT_SODIMM_1_TEMP, EFX_MON_STAT_PHY0_VCC, EFX_MON_STAT_PHY1_VCC, EFX_MON_STAT_CONTROLLER_TDIODE_TEMP, EFX_MON_NSTATS } efx_mon_stat_t; /* END MKCONFIG GENERATED MonitorHeaderStatsBlock */ typedef enum efx_mon_stat_state_e { EFX_MON_STAT_STATE_OK = 0, EFX_MON_STAT_STATE_WARNING = 1, EFX_MON_STAT_STATE_FATAL = 2, EFX_MON_STAT_STATE_BROKEN = 3, EFX_MON_STAT_STATE_NO_READING = 4, } efx_mon_stat_state_t; typedef struct efx_mon_stat_value_s { uint16_t emsv_value; uint16_t emsv_state; } efx_mon_stat_value_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_stat_name( __in efx_nic_t *enp, __in efx_mon_stat_t id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values); #endif /* EFSYS_OPT_MON_STATS */ extern void efx_mon_fini( __in efx_nic_t *enp); /* PHY */ #define PMA_PMD_MMD 1 #define PCS_MMD 3 #define PHY_XS_MMD 4 #define DTE_XS_MMD 5 #define AN_MMD 7 #define CL22EXT_MMD 29 #define MAXMMD ((1 << 5) - 1) extern __checkReturn efx_rc_t efx_phy_verify( __in efx_nic_t *enp); #if EFSYS_OPT_PHY_LED_CONTROL typedef enum efx_phy_led_mode_e { EFX_PHY_LED_DEFAULT = 0, EFX_PHY_LED_OFF, EFX_PHY_LED_ON, EFX_PHY_LED_FLASH, EFX_PHY_LED_NMODES } efx_phy_led_mode_t; extern __checkReturn efx_rc_t efx_phy_led_set( __in efx_nic_t *enp, __in efx_phy_led_mode_t mode); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ extern __checkReturn efx_rc_t efx_port_init( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK typedef enum efx_loopback_type_e { EFX_LOOPBACK_OFF = 0, EFX_LOOPBACK_DATA = 1, EFX_LOOPBACK_GMAC = 2, EFX_LOOPBACK_XGMII = 3, EFX_LOOPBACK_XGXS = 4, EFX_LOOPBACK_XAUI = 5, EFX_LOOPBACK_GMII = 6, EFX_LOOPBACK_SGMII = 7, EFX_LOOPBACK_XGBR = 8, EFX_LOOPBACK_XFI = 9, EFX_LOOPBACK_XAUI_FAR = 10, EFX_LOOPBACK_GMII_FAR = 11, EFX_LOOPBACK_SGMII_FAR = 12, EFX_LOOPBACK_XFI_FAR = 13, EFX_LOOPBACK_GPHY = 14, EFX_LOOPBACK_PHY_XS = 15, EFX_LOOPBACK_PCS = 16, EFX_LOOPBACK_PMA_PMD = 17, EFX_LOOPBACK_XPORT = 18, EFX_LOOPBACK_XGMII_WS = 19, EFX_LOOPBACK_XAUI_WS = 20, EFX_LOOPBACK_XAUI_WS_FAR = 21, EFX_LOOPBACK_XAUI_WS_NEAR = 22, EFX_LOOPBACK_GMII_WS = 23, EFX_LOOPBACK_XFI_WS = 24, EFX_LOOPBACK_XFI_WS_FAR = 25, EFX_LOOPBACK_PHYXS_WS = 26, EFX_LOOPBACK_PMA_INT = 27, EFX_LOOPBACK_SD_NEAR = 28, EFX_LOOPBACK_SD_FAR = 29, EFX_LOOPBACK_PMA_INT_WS = 30, EFX_LOOPBACK_SD_FEP2_WS = 31, EFX_LOOPBACK_SD_FEP1_5_WS = 32, EFX_LOOPBACK_SD_FEP_WS = 33, EFX_LOOPBACK_SD_FES_WS = 34, EFX_LOOPBACK_NTYPES } efx_loopback_type_t; typedef enum efx_loopback_kind_e { EFX_LOOPBACK_KIND_OFF = 0, EFX_LOOPBACK_KIND_ALL, EFX_LOOPBACK_KIND_MAC, EFX_LOOPBACK_KIND_PHY, EFX_LOOPBACK_NKINDS } efx_loopback_kind_t; extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp); extern __checkReturn efx_rc_t efx_port_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t type); #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_loopback_type_name( __in efx_nic_t *enp, __in efx_loopback_type_t type); #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_port_poll( __in efx_nic_t *enp, __out_opt efx_link_mode_t *link_modep); extern void efx_port_fini( __in efx_nic_t *enp); typedef enum efx_phy_cap_type_e { EFX_PHY_CAP_INVALID = 0, EFX_PHY_CAP_10HDX, EFX_PHY_CAP_10FDX, EFX_PHY_CAP_100HDX, EFX_PHY_CAP_100FDX, EFX_PHY_CAP_1000HDX, EFX_PHY_CAP_1000FDX, EFX_PHY_CAP_10000FDX, EFX_PHY_CAP_PAUSE, EFX_PHY_CAP_ASYM, EFX_PHY_CAP_AN, EFX_PHY_CAP_40000FDX, EFX_PHY_CAP_NTYPES } efx_phy_cap_type_t; #define EFX_PHY_CAP_CURRENT 0x00000000 #define EFX_PHY_CAP_DEFAULT 0x00000001 #define EFX_PHY_CAP_PERM 0x00000002 extern void efx_phy_adv_cap_get( __in efx_nic_t *enp, __in uint32_t flag, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_adv_cap_set( __in efx_nic_t *enp, __in uint32_t mask); extern void efx_phy_lp_cap_get( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); typedef enum efx_phy_media_type_e { EFX_PHY_MEDIA_INVALID = 0, EFX_PHY_MEDIA_XAUI, EFX_PHY_MEDIA_CX4, EFX_PHY_MEDIA_KX4, EFX_PHY_MEDIA_XFP, EFX_PHY_MEDIA_SFP_PLUS, EFX_PHY_MEDIA_BASE_T, EFX_PHY_MEDIA_QSFP_PLUS, EFX_PHY_MEDIA_NTYPES } efx_phy_media_type_t; /* Get the type of medium currently used. If the board has ports for * modules, a module is present, and we recognise the media type of * the module, then this will be the media type of the module. * Otherwise it will be the media type of the port. */ extern void efx_phy_media_type_get( __in efx_nic_t *enp, __out efx_phy_media_type_t *typep); #if EFSYS_OPT_PHY_STATS /* START MKCONFIG GENERATED PhyHeaderStatsBlock 30ed56ad501f8e36 */ typedef enum efx_phy_stat_e { EFX_PHY_STAT_OUI, EFX_PHY_STAT_PMA_PMD_LINK_UP, EFX_PHY_STAT_PMA_PMD_RX_FAULT, EFX_PHY_STAT_PMA_PMD_TX_FAULT, EFX_PHY_STAT_PMA_PMD_REV_A, EFX_PHY_STAT_PMA_PMD_REV_B, EFX_PHY_STAT_PMA_PMD_REV_C, EFX_PHY_STAT_PMA_PMD_REV_D, EFX_PHY_STAT_PCS_LINK_UP, EFX_PHY_STAT_PCS_RX_FAULT, EFX_PHY_STAT_PCS_TX_FAULT, EFX_PHY_STAT_PCS_BER, EFX_PHY_STAT_PCS_BLOCK_ERRORS, EFX_PHY_STAT_PHY_XS_LINK_UP, EFX_PHY_STAT_PHY_XS_RX_FAULT, EFX_PHY_STAT_PHY_XS_TX_FAULT, EFX_PHY_STAT_PHY_XS_ALIGN, EFX_PHY_STAT_PHY_XS_SYNC_A, EFX_PHY_STAT_PHY_XS_SYNC_B, EFX_PHY_STAT_PHY_XS_SYNC_C, EFX_PHY_STAT_PHY_XS_SYNC_D, EFX_PHY_STAT_AN_LINK_UP, EFX_PHY_STAT_AN_MASTER, EFX_PHY_STAT_AN_LOCAL_RX_OK, EFX_PHY_STAT_AN_REMOTE_RX_OK, EFX_PHY_STAT_CL22EXT_LINK_UP, EFX_PHY_STAT_SNR_A, EFX_PHY_STAT_SNR_B, EFX_PHY_STAT_SNR_C, EFX_PHY_STAT_SNR_D, EFX_PHY_STAT_PMA_PMD_SIGNAL_A, EFX_PHY_STAT_PMA_PMD_SIGNAL_B, EFX_PHY_STAT_PMA_PMD_SIGNAL_C, EFX_PHY_STAT_PMA_PMD_SIGNAL_D, EFX_PHY_STAT_AN_COMPLETE, EFX_PHY_STAT_PMA_PMD_REV_MAJOR, EFX_PHY_STAT_PMA_PMD_REV_MINOR, EFX_PHY_STAT_PMA_PMD_REV_MICRO, EFX_PHY_STAT_PCS_FW_VERSION_0, EFX_PHY_STAT_PCS_FW_VERSION_1, EFX_PHY_STAT_PCS_FW_VERSION_2, EFX_PHY_STAT_PCS_FW_VERSION_3, EFX_PHY_STAT_PCS_FW_BUILD_YY, EFX_PHY_STAT_PCS_FW_BUILD_MM, EFX_PHY_STAT_PCS_FW_BUILD_DD, EFX_PHY_STAT_PCS_OP_MODE, EFX_PHY_NSTATS } efx_phy_stat_t; /* END MKCONFIG GENERATED PhyHeaderStatsBlock */ #if EFSYS_OPT_NAMES extern const char * efx_phy_stat_name( __in efx_nic_t *enp, __in efx_phy_stat_t stat); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_STATS_SIZE 0x100 extern __checkReturn efx_rc_t efx_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS #if EFSYS_OPT_NAMES extern const char * efx_phy_prop_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_PROP_DEFAULT 0x00000001 extern __checkReturn efx_rc_t efx_phy_prop_get( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t flags, __out uint32_t *valp); extern __checkReturn efx_rc_t efx_phy_prop_set( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t val); #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_BIST typedef enum efx_bist_type_e { EFX_BIST_TYPE_UNKNOWN, EFX_BIST_TYPE_PHY_NORMAL, EFX_BIST_TYPE_PHY_CABLE_SHORT, EFX_BIST_TYPE_PHY_CABLE_LONG, EFX_BIST_TYPE_MC_MEM, /* Test the MC DMEM and IMEM */ EFX_BIST_TYPE_SAT_MEM, /* Test the DMEM and IMEM of satellite cpus*/ EFX_BIST_TYPE_REG, /* Test the register memories */ EFX_BIST_TYPE_NTYPES, } efx_bist_type_t; typedef enum efx_bist_result_e { EFX_BIST_RESULT_UNKNOWN, EFX_BIST_RESULT_RUNNING, EFX_BIST_RESULT_PASSED, EFX_BIST_RESULT_FAILED, } efx_bist_result_t; typedef enum efx_phy_cable_status_e { EFX_PHY_CABLE_STATUS_OK, EFX_PHY_CABLE_STATUS_INVALID, EFX_PHY_CABLE_STATUS_OPEN, EFX_PHY_CABLE_STATUS_INTRAPAIRSHORT, EFX_PHY_CABLE_STATUS_INTERPAIRSHORT, EFX_PHY_CABLE_STATUS_BUSY, } efx_phy_cable_status_t; typedef enum efx_bist_value_e { EFX_BIST_PHY_CABLE_LENGTH_A, EFX_BIST_PHY_CABLE_LENGTH_B, EFX_BIST_PHY_CABLE_LENGTH_C, EFX_BIST_PHY_CABLE_LENGTH_D, EFX_BIST_PHY_CABLE_STATUS_A, EFX_BIST_PHY_CABLE_STATUS_B, EFX_BIST_PHY_CABLE_STATUS_C, EFX_BIST_PHY_CABLE_STATUS_D, EFX_BIST_FAULT_CODE, /* Memory BIST specific values. These match to the MC_CMD_BIST_POLL * response. */ EFX_BIST_MEM_TEST, EFX_BIST_MEM_ADDR, EFX_BIST_MEM_BUS, EFX_BIST_MEM_EXPECT, EFX_BIST_MEM_ACTUAL, EFX_BIST_MEM_ECC, EFX_BIST_MEM_ECC_PARITY, EFX_BIST_MEM_ECC_FATAL, EFX_BIST_NVALUES, } efx_bist_value_t; extern __checkReturn efx_rc_t efx_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t efx_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt uint32_t *value_maskp, __out_ecount_opt(count) unsigned long *valuesp, __in size_t count); extern void efx_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ #define EFX_FEATURE_IPV6 0x00000001 #define EFX_FEATURE_LFSR_HASH_INSERT 0x00000002 #define EFX_FEATURE_LINK_EVENTS 0x00000004 #define EFX_FEATURE_PERIODIC_MAC_STATS 0x00000008 #define EFX_FEATURE_WOL 0x00000010 #define EFX_FEATURE_MCDI 0x00000020 #define EFX_FEATURE_LOOKAHEAD_SPLIT 0x00000040 #define EFX_FEATURE_MAC_HEADER_FILTERS 0x00000080 #define EFX_FEATURE_TURBO 0x00000100 #define EFX_FEATURE_MCDI_DMA 0x00000200 #define EFX_FEATURE_TX_SRC_FILTERS 0x00000400 #define EFX_FEATURE_PIO_BUFFERS 0x00000800 #define EFX_FEATURE_FW_ASSISTED_TSO 0x00001000 typedef struct efx_nic_cfg_s { uint32_t enc_board_type; uint32_t enc_phy_type; #if EFSYS_OPT_NAMES char enc_phy_name[21]; #endif char enc_phy_revision[21]; efx_mon_type_t enc_mon_type; #if EFSYS_OPT_MON_STATS uint32_t enc_mon_stat_dma_buf_size; uint32_t enc_mon_stat_mask[(EFX_MON_NSTATS + 31) / 32]; #endif unsigned int enc_features; uint8_t enc_mac_addr[6]; uint8_t enc_port; /* PHY port number */ uint32_t enc_func_flags; uint32_t enc_intr_vec_base; uint32_t enc_intr_limit; uint32_t enc_evq_limit; uint32_t enc_txq_limit; uint32_t enc_rxq_limit; uint32_t enc_buftbl_limit; uint32_t enc_piobuf_limit; uint32_t enc_piobuf_size; uint32_t enc_piobuf_min_alloc_size; uint32_t enc_evq_timer_quantum_ns; uint32_t enc_evq_timer_max_us; uint32_t enc_clk_mult; uint32_t enc_rx_prefix_size; uint32_t enc_rx_buf_align_start; uint32_t enc_rx_buf_align_end; #if EFSYS_OPT_LOOPBACK efx_qword_t enc_loopback_types[EFX_LINK_NMODES]; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t enc_phy_flags_mask; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL uint32_t enc_led_mask; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_STATS uint64_t enc_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS unsigned int enc_phy_nprops; #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_SIENA uint8_t enc_mcdi_mdio_channel; #if EFSYS_OPT_PHY_STATS uint32_t enc_mcdi_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #endif /* EFSYS_OPT_SIENA */ #if (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) #if EFSYS_OPT_MON_STATS uint32_t *enc_mcdi_sensor_maskp; uint32_t enc_mcdi_sensor_mask_size; #endif /* EFSYS_OPT_MON_STATS */ #endif /* (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ #if EFSYS_OPT_BIST uint32_t enc_bist_mask; #endif /* EFSYS_OPT_BIST */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD uint32_t enc_pf; uint32_t enc_vf; uint32_t enc_privilege_mask; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ boolean_t enc_bug26807_workaround; boolean_t enc_bug35388_workaround; boolean_t enc_bug41750_workaround; boolean_t enc_rx_batching_enabled; /* Maximum number of descriptors completed in an rx event. */ uint32_t enc_rx_batch_max; /* Number of rx descriptors the hardware requires for a push. */ uint32_t enc_rx_push_align; /* * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint32_t enc_tx_tso_tcp_header_offset_limit; boolean_t enc_fw_assisted_tso_enabled; boolean_t enc_hw_tx_insert_vlan_enabled; /* Datapath firmware vadapter/vport/vswitch support */ boolean_t enc_datapath_cap_evb; boolean_t enc_rx_disable_scatter_supported; boolean_t enc_allow_set_mac_with_installed_filters; /* External port identifier */ uint8_t enc_external_port; uint32_t enc_mcdi_max_payload_length; } efx_nic_cfg_t; #define EFX_PCI_FUNCTION_IS_PF(_encp) ((_encp)->enc_vf == 0xffff) #define EFX_PCI_FUNCTION_IS_VF(_encp) ((_encp)->enc_vf != 0xffff) #define EFX_PCI_FUNCTION(_encp) \ (EFX_PCI_FUNCTION_IS_PF(_encp) ? (_encp)->enc_pf : (_encp)->enc_vf) #define EFX_PCI_VF_PARENT(_encp) ((_encp)->enc_pf) extern const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp); /* Driver resource limits (minimum required/maximum usable). */ typedef struct efx_drv_limits_s { uint32_t edl_min_evq_count; uint32_t edl_max_evq_count; uint32_t edl_min_rxq_count; uint32_t edl_max_rxq_count; uint32_t edl_min_txq_count; uint32_t edl_max_txq_count; /* PIO blocks (sub-allocated from piobuf) */ uint32_t edl_min_pio_alloc_size; uint32_t edl_max_pio_alloc_count; } efx_drv_limits_t; extern __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); typedef enum efx_nic_region_e { EFX_REGION_VI, /* Memory BAR UC mapping */ EFX_REGION_PIO_WRITE_VI, /* Memory BAR WC mapping */ } efx_nic_region_t; extern __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp); #if EFSYS_OPT_VPD typedef enum efx_vpd_tag_e { EFX_VPD_ID = 0x02, EFX_VPD_END = 0x0f, EFX_VPD_RO = 0x10, EFX_VPD_RW = 0x11, } efx_vpd_tag_t; typedef uint16_t efx_vpd_keyword_t; typedef struct efx_vpd_value_s { efx_vpd_tag_t evv_tag; efx_vpd_keyword_t evv_keyword; uint8_t evv_length; uint8_t evv_value[0x100]; } efx_vpd_value_t; #define EFX_VPD_KEYWORD(x, y) ((x) | ((y) << 8)) extern __checkReturn efx_rc_t efx_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_set( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_next( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* NVRAM */ #if EFSYS_OPT_NVRAM typedef enum efx_nvram_type_e { EFX_NVRAM_INVALID = 0, EFX_NVRAM_BOOTROM, EFX_NVRAM_BOOTROM_CFG, EFX_NVRAM_MC_FIRMWARE, EFX_NVRAM_MC_GOLDEN, EFX_NVRAM_PHY, EFX_NVRAM_NULLPHY, EFX_NVRAM_FPGA, EFX_NVRAM_FCFW, EFX_NVRAM_CPLD, EFX_NVRAM_FPGA_BACKUP, EFX_NVRAM_DYNAMIC_CFG, EFX_NVRAM_NTYPES, } efx_nvram_type_t; extern __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *pref_chunkp); extern void efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); /* Validate contents of TLV formatted partition */ extern __checkReturn efx_rc_t efx_nvram_tlv_validate( __in efx_nic_t *enp, __in uint32_t partn, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size); extern __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_nvram_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_BOOTCFG extern efx_rc_t efx_bootcfg_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern efx_rc_t efx_bootcfg_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); #endif /* EFSYS_OPT_BOOTCFG */ #if EFSYS_OPT_WOL typedef enum efx_wol_type_e { EFX_WOL_TYPE_INVALID, EFX_WOL_TYPE_MAGIC, EFX_WOL_TYPE_BITMAP, EFX_WOL_TYPE_LINK, EFX_WOL_NTYPES, } efx_wol_type_t; typedef enum efx_lightsout_offload_type_e { EFX_LIGHTSOUT_OFFLOAD_TYPE_INVALID, EFX_LIGHTSOUT_OFFLOAD_TYPE_ARP, EFX_LIGHTSOUT_OFFLOAD_TYPE_NS, } efx_lightsout_offload_type_t; #define EFX_WOL_BITMAP_MASK_SIZE (48) #define EFX_WOL_BITMAP_VALUE_SIZE (128) typedef union efx_wol_param_u { struct { uint8_t mac_addr[6]; } ewp_magic; struct { uint8_t mask[EFX_WOL_BITMAP_MASK_SIZE]; /* 1 bit per byte */ uint8_t value[EFX_WOL_BITMAP_VALUE_SIZE]; /* value to match */ uint8_t value_len; } ewp_bitmap; } efx_wol_param_t; typedef union efx_lightsout_offload_param_u { struct { uint8_t mac_addr[6]; uint32_t ip; } elop_arp; struct { uint8_t mac_addr[6]; uint32_t solicited_node[4]; uint32_t ip[4]; } elop_ns; } efx_lightsout_offload_param_t; extern __checkReturn efx_rc_t efx_wol_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_add( __in efx_nic_t *enp, __in efx_wol_type_t type, __in efx_wol_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_wol_filter_remove( __in efx_nic_t *enp, __in uint32_t filter_id); extern __checkReturn efx_rc_t efx_lightsout_offload_add( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in efx_lightsout_offload_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_lightsout_offload_remove( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in uint32_t filter_id); extern void efx_wol_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_WOL */ #if EFSYS_OPT_DIAG typedef enum efx_pattern_type_t { EFX_PATTERN_BYTE_INCREMENT = 0, EFX_PATTERN_ALL_THE_SAME, EFX_PATTERN_BIT_ALTERNATE, EFX_PATTERN_BYTE_ALTERNATE, EFX_PATTERN_BYTE_CHANGING, EFX_PATTERN_BIT_SWEEP, EFX_PATTERN_NTYPES } efx_pattern_type_t; typedef void (*efx_sram_pattern_fn_t)( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp); extern __checkReturn efx_rc_t efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n); extern void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n); #define EFX_BUF_TBL_SIZE 0x20000 #define EFX_BUF_SIZE 4096 /* EV */ typedef struct efx_evq_s efx_evq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderEventQueueBlock 6f3843f5fe7cc843 */ typedef enum efx_ev_qstat_e { EV_ALL, EV_RX, EV_RX_OK, EV_RX_FRM_TRUNC, EV_RX_TOBE_DISC, EV_RX_PAUSE_FRM_ERR, EV_RX_BUF_OWNER_ID_ERR, EV_RX_IPV4_HDR_CHKSUM_ERR, EV_RX_TCP_UDP_CHKSUM_ERR, EV_RX_ETH_CRC_ERR, EV_RX_IP_FRAG_ERR, EV_RX_MCAST_PKT, EV_RX_MCAST_HASH_MATCH, EV_RX_TCP_IPV4, EV_RX_TCP_IPV6, EV_RX_UDP_IPV4, EV_RX_UDP_IPV6, EV_RX_OTHER_IPV4, EV_RX_OTHER_IPV6, EV_RX_NON_IP, EV_RX_BATCH, EV_TX, EV_TX_WQ_FF_FULL, EV_TX_PKT_ERR, EV_TX_PKT_TOO_BIG, EV_TX_UNEXPECTED, EV_GLOBAL, EV_GLOBAL_MNT, EV_DRIVER, EV_DRIVER_SRM_UPD_DONE, EV_DRIVER_TX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_FAILED, EV_DRIVER_RX_DSC_ERROR, EV_DRIVER_TX_DSC_ERROR, EV_DRV_GEN, EV_MCDI_RESPONSE, EV_NQSTATS } efx_ev_qstat_t; /* END MKCONFIG GENERATED EfxHeaderEventQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp); extern void efx_ev_fini( __in efx_nic_t *enp); #define EFX_EVQ_MAXNEVS 32768 #define EFX_EVQ_MINNEVS 512 #define EFX_EVQ_SIZE(_nevs) ((_nevs) * sizeof (efx_qword_t)) #define EFX_EVQ_NBUFS(_nevs) (EFX_EVQ_SIZE(_nevs) / EFX_BUF_SIZE) extern __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __deref_out efx_evq_t **eepp); extern void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); typedef __checkReturn boolean_t (*efx_initialized_ev_t)( __in_opt void *arg); #define EFX_PKT_UNICAST 0x0004 #define EFX_PKT_START 0x0008 #define EFX_PKT_VLAN_TAGGED 0x0010 #define EFX_CKSUM_TCPUDP 0x0020 #define EFX_CKSUM_IPV4 0x0040 #define EFX_PKT_CONT 0x0080 #define EFX_CHECK_VLAN 0x0100 #define EFX_PKT_TCP 0x0200 #define EFX_PKT_UDP 0x0400 #define EFX_PKT_IPV4 0x0800 #define EFX_PKT_IPV6 0x1000 #define EFX_PKT_PREFIX_LEN 0x2000 #define EFX_ADDR_MISMATCH 0x4000 #define EFX_DISCARD 0x8000 #define EFX_EV_RX_NLABELS 32 #define EFX_EV_TX_NLABELS 32 typedef __checkReturn boolean_t (*efx_rx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t size, __in uint16_t flags); typedef __checkReturn boolean_t (*efx_tx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id); #define EFX_EXCEPTION_RX_RECOVERY 0x00000001 #define EFX_EXCEPTION_RX_DSC_ERROR 0x00000002 #define EFX_EXCEPTION_TX_DSC_ERROR 0x00000003 #define EFX_EXCEPTION_UNKNOWN_SENSOREVT 0x00000004 #define EFX_EXCEPTION_FWALERT_SRAM 0x00000005 #define EFX_EXCEPTION_UNKNOWN_FWALERT 0x00000006 #define EFX_EXCEPTION_RX_ERROR 0x00000007 #define EFX_EXCEPTION_TX_ERROR 0x00000008 #define EFX_EXCEPTION_EV_ERROR 0x00000009 typedef __checkReturn boolean_t (*efx_exception_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t data); typedef __checkReturn boolean_t (*efx_rxq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_rxq_flush_failed_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_txq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t txq_index); typedef __checkReturn boolean_t (*efx_software_ev_t)( __in_opt void *arg, __in uint16_t magic); typedef __checkReturn boolean_t (*efx_sram_ev_t)( __in_opt void *arg, __in uint32_t code); #define EFX_SRAM_CLEAR 0 #define EFX_SRAM_UPDATE 1 #define EFX_SRAM_ILLEGAL_CLEAR 2 typedef __checkReturn boolean_t (*efx_wake_up_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_timer_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_link_change_ev_t)( __in_opt void *arg, __in efx_link_mode_t link_mode); #if EFSYS_OPT_MON_STATS typedef __checkReturn boolean_t (*efx_monitor_ev_t)( __in_opt void *arg, __in efx_mon_stat_t id, __in efx_mon_stat_value_t value); #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS typedef __checkReturn boolean_t (*efx_mac_stats_ev_t)( __in_opt void *arg, __in uint32_t generation ); #endif /* EFSYS_OPT_MAC_STATS */ typedef struct efx_ev_callbacks_s { efx_initialized_ev_t eec_initialized; efx_rx_ev_t eec_rx; efx_tx_ev_t eec_tx; efx_exception_ev_t eec_exception; efx_rxq_flush_done_ev_t eec_rxq_flush_done; efx_rxq_flush_failed_ev_t eec_rxq_flush_failed; efx_txq_flush_done_ev_t eec_txq_flush_done; efx_software_ev_t eec_software; efx_sram_ev_t eec_sram; efx_wake_up_ev_t eec_wake_up; efx_timer_ev_t eec_timer; efx_link_change_ev_t eec_link_change; #if EFSYS_OPT_MON_STATS efx_monitor_ev_t eec_monitor; #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS efx_mac_stats_ev_t eec_mac_stats; #endif /* EFSYS_OPT_MAC_STATS */ } efx_ev_callbacks_t; extern __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_EV_PREFETCH extern void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count); #endif /* EFSYS_OPT_EV_PREFETCH */ extern void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); extern __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); extern __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_ev_qdestroy( __in efx_evq_t *eep); /* RX */ extern __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp); extern void efx_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_HDR_SPLIT __checkReturn efx_rc_t efx_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size); #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE typedef enum efx_rx_hash_alg_e { EFX_RX_HASHALG_LFSR = 0, EFX_RX_HASHALG_TOEPLITZ } efx_rx_hash_alg_t; typedef enum efx_rx_hash_type_e { EFX_RX_HASH_IPV4 = 0, EFX_RX_HASH_TCPIPV4, EFX_RX_HASH_IPV6, EFX_RX_HASH_TCPIPV6, } efx_rx_hash_type_t; typedef enum efx_rx_hash_support_e { EFX_RX_HASH_UNAVAILABLE = 0, /* Hardware hash not inserted */ EFX_RX_HASH_AVAILABLE /* Insert hash with/without RSS */ } efx_rx_hash_support_t; #define EFX_RSS_TBL_SIZE 128 /* Rows in RX indirection table */ #define EFX_MAXRSS 64 /* RX indirection entry range */ #define EFX_MAXRSS_LEGACY 16 /* See bug16611 and bug17213 */ typedef enum efx_rx_scale_support_e { EFX_RX_SCALE_UNAVAILABLE = 0, /* Not supported */ EFX_RX_SCALE_EXCLUSIVE, /* Writable key/indirection table */ EFX_RX_SCALE_SHARED /* Read-only key/indirection table */ } efx_rx_scale_support_t; extern __checkReturn efx_rc_t efx_rx_hash_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_support_get( __in efx_nic_t *enp, __out efx_rx_scale_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); extern uint32_t efx_psuedo_hdr_hash_get( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t efx_psuedo_hdr_pkt_length_get( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp); #define EFX_RXQ_MAXNDESCS 4096 #define EFX_RXQ_MINNDESCS 512 #define EFX_RXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_RXQ_NBUFS(_ndescs) (EFX_RXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_RXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_RXQ_DC_NDESCS(_dcsize) (8 << _dcsize) typedef enum efx_rxq_type_e { EFX_RXQ_TYPE_DEFAULT, - EFX_RXQ_TYPE_SPLIT_HEADER, - EFX_RXQ_TYPE_SPLIT_PAYLOAD, EFX_RXQ_TYPE_SCATTER, EFX_RXQ_NTYPES } efx_rxq_type_t; extern __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); typedef struct efx_buffer_s { efsys_dma_addr_t eb_addr; size_t eb_size; boolean_t eb_eop; } efx_buffer_t; typedef struct efx_desc_s { efx_qword_t ed_eq; } efx_desc_t; extern void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); extern void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); extern __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp); extern void efx_rx_qenable( __in efx_rxq_t *erp); extern void efx_rx_qdestroy( __in efx_rxq_t *erp); /* TX */ typedef struct efx_txq_s efx_txq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderTransmitQueueBlock 12dff8778598b2db */ typedef enum efx_tx_qstat_e { TX_POST, TX_POST_PIO, TX_NQSTATS } efx_tx_qstat_t; /* END MKCONFIG GENERATED EfxHeaderTransmitQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_tx_init( __in efx_nic_t *enp); extern void efx_tx_fini( __in efx_nic_t *enp); #define EFX_BUG35388_WORKAROUND(_encp) \ (((_encp) == NULL) ? 1 : ((_encp)->enc_bug35388_workaround != 0)) #define EFX_TXQ_MAXNDESCS(_encp) \ ((EFX_BUG35388_WORKAROUND(_encp)) ? 2048 : 4096) #define EFX_TXQ_MINNDESCS 512 #define EFX_TXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_TXQ_NBUFS(_ndescs) (EFX_TXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_TXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_TXQ_DC_NDESCS(_dcsize) (8 << _dcsize) #define EFX_TXQ_MAX_BUFS 8 /* Maximum independent of EFX_BUG35388_WORKAROUND. */ #define EFX_TXQ_CKSUM_IPV4 0x0001 #define EFX_TXQ_CKSUM_TCPUDP 0x0002 extern __checkReturn efx_rc_t efx_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __deref_out efx_txq_t **etpp, __out unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern void efx_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t efx_tx_qflush( __in efx_txq_t *etp); extern void efx_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_enable( __in efx_txq_t *etp); extern void efx_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t efx_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void efx_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void efx_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); extern void efx_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_tx_qstat_name( __in efx_nic_t *etp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_tx_qdestroy( __in efx_txq_t *etp); /* FILTER */ #if EFSYS_OPT_FILTER #define EFX_ETHER_TYPE_IPV4 0x0800 #define EFX_ETHER_TYPE_IPV6 0x86DD #define EFX_IPPROTO_TCP 6 #define EFX_IPPROTO_UDP 17 typedef enum efx_filter_flag_e { EFX_FILTER_FLAG_RX_RSS = 0x01, /* use RSS to spread across * multiple queues */ EFX_FILTER_FLAG_RX_SCATTER = 0x02, /* enable RX scatter */ EFX_FILTER_FLAG_RX_OVER_AUTO = 0x04, /* Override an automatic filter * (priority EFX_FILTER_PRI_AUTO). * May only be set by the filter * implementation for each type. * A removal request will * restore the automatic filter * in its place. */ EFX_FILTER_FLAG_RX = 0x08, /* Filter is for RX */ EFX_FILTER_FLAG_TX = 0x10, /* Filter is for TX */ } efx_filter_flag_t; typedef enum efx_filter_match_flags_e { EFX_FILTER_MATCH_REM_HOST = 0x0001, /* Match by remote IP host * address */ EFX_FILTER_MATCH_LOC_HOST = 0x0002, /* Match by local IP host * address */ EFX_FILTER_MATCH_REM_MAC = 0x0004, /* Match by remote MAC address */ EFX_FILTER_MATCH_REM_PORT = 0x0008, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_MAC = 0x0010, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_PORT = 0x0020, /* Match by local TCP/UDP port */ EFX_FILTER_MATCH_ETHER_TYPE = 0x0040, /* Match by Ether-type */ EFX_FILTER_MATCH_INNER_VID = 0x0080, /* Match by inner VLAN ID */ EFX_FILTER_MATCH_OUTER_VID = 0x0100, /* Match by outer VLAN ID */ EFX_FILTER_MATCH_IP_PROTO = 0x0200, /* Match by IP transport * protocol */ EFX_FILTER_MATCH_LOC_MAC_IG = 0x0400, /* Match by local MAC address * I/G bit. Used for RX default * unicast and multicast/ * broadcast filters. */ } efx_filter_match_flags_t; typedef enum efx_filter_priority_s { EFX_FILTER_PRI_HINT = 0, /* Performance hint */ EFX_FILTER_PRI_AUTO, /* Automatic filter based on device * address list or hardware * requirements. This may only be used * by the filter implementation for * each NIC type. */ EFX_FILTER_PRI_MANUAL, /* Manually configured filter */ EFX_FILTER_PRI_REQUIRED, /* Required for correct behaviour of the * client (e.g. SR-IOV, HyperV VMQ etc.) */ } efx_filter_priority_t; /* * FIXME: All these fields are assumed to be in little-endian byte order. * It may be better for some to be big-endian. See bug42804. */ typedef struct efx_filter_spec_s { uint32_t efs_match_flags:12; uint32_t efs_priority:2; uint32_t efs_flags:6; uint32_t efs_dmaq_id:12; uint32_t efs_rss_context; uint16_t efs_outer_vid; uint16_t efs_inner_vid; uint8_t efs_loc_mac[EFX_MAC_ADDR_LEN]; uint8_t efs_rem_mac[EFX_MAC_ADDR_LEN]; uint16_t efs_ether_type; uint8_t efs_ip_proto; uint16_t efs_loc_port; uint16_t efs_rem_port; efx_oword_t efs_rem_host; efx_oword_t efs_loc_host; } efx_filter_spec_t; /* Default values for use in filter specifications */ #define EFX_FILTER_SPEC_RSS_CONTEXT_DEFAULT 0xffffffff #define EFX_FILTER_SPEC_RX_DMAQ_ID_DROP 0xfff #define EFX_FILTER_SPEC_VID_UNSPEC 0xffff extern __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp); extern void efx_filter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); extern void efx_filter_spec_init_rx( __inout efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flag_t flags, __in efx_rxq_t *erp); extern void efx_filter_spec_init_tx( __inout efx_filter_spec_t *spec, __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport); extern __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr); extern __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec); #endif /* EFSYS_OPT_FILTER */ /* HASH */ extern __checkReturn uint32_t efx_hash_dwords( __in_ecount(count) uint32_t const *input, __in size_t count, __in uint32_t init); extern __checkReturn uint32_t efx_hash_bytes( __in_ecount(length) uint8_t const *input, __in size_t length, __in uint32_t init); #ifdef __cplusplus } #endif #endif /* _SYS_EFX_H */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_check.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_check.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_check.h (revision 293803) @@ -1,413 +1,407 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_CHECK_H #define _SYS_EFX_CHECK_H #include "efsys.h" /* * Check that the efsys.h header in client code has a valid combination of * EFSYS_OPT_xxx options. * * NOTE: Keep checks for obsolete options here to ensure that they are removed * from client code (and do not reappear in merges from other branches). */ /* Support NVRAM based boot config */ #if EFSYS_OPT_BOOTCFG # if !EFSYS_OPT_NVRAM # error "BOOTCFG requires NVRAM" # endif #endif /* EFSYS_OPT_BOOTCFG */ /* Verify chip implements accessed registers */ #if EFSYS_OPT_CHECK_REG # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "CHECK_REG requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_CHECK_REG */ /* Decode fatal errors */ #if EFSYS_OPT_DECODE_INTR_FATAL # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) -# if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) -# error "INTR_FATAL not supported on HUNTINGTON or MEDFORD" -# endif # error "INTR_FATAL requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_DECODE_INTR_FATAL */ /* Support diagnostic hardware tests */ #if EFSYS_OPT_DIAG # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "DIAG requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_DIAG */ /* Support optimized EVQ data access */ #if EFSYS_OPT_EV_PREFETCH # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "EV_PREFETCH requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_EV_PREFETCH */ /* Support overriding the NVRAM and VPD configuration */ #if EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE # if !EFSYS_OPT_FALCON # error "FALCON_NIC_CFG_OVERRIDE requires FALCON" # endif #endif /* EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE */ /* Support hardware packet filters */ #if EFSYS_OPT_FILTER # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "FILTER requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_FILTER */ #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # if !EFSYS_OPT_FILTER # error "HUNTINGTON or MEDFORD requires FILTER" # endif #endif /* EFSYS_OPT_HUNTINGTON */ /* Support hardware loopback modes */ #if EFSYS_OPT_LOOPBACK # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "LOOPBACK requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_LOOPBACK */ /* Support Falcon GMAC */ #if EFSYS_OPT_MAC_FALCON_GMAC # if !EFSYS_OPT_FALCON # error "MAC_FALCON_GMAC requires FALCON" # endif #endif /* EFSYS_OPT_MAC_FALCON_GMAC */ /* Support Falcon XMAC */ #if EFSYS_OPT_MAC_FALCON_XMAC # if !EFSYS_OPT_FALCON # error "MAC_FALCON_XMAC requires FALCON" # endif #endif /* EFSYS_OPT_MAC_FALCON_XMAC */ /* Support MAC statistics */ #if EFSYS_OPT_MAC_STATS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MAC_STATS requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MAC_STATS */ /* Support management controller messages */ #if EFSYS_OPT_MCDI # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) -# if EFSYS_OPT_FALCON -# error "MCDI not supported on FALCON" -# endif # error "MCDI requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MCDI */ #if (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # if !EFSYS_OPT_MCDI # error "SIENA or HUNTINGTON or MEDFORD requires MCDI" # endif #endif /* Support MCDI logging */ #if EFSYS_OPT_MCDI_LOGGING # if !EFSYS_OPT_MCDI # error "MCDI_LOGGING requires MCDI" # endif #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Support MCDI proxy authorization */ #if EFSYS_OPT_MCDI_PROXY_AUTH # if !EFSYS_OPT_MCDI # error "MCDI_PROXY_AUTH requires MCDI" # endif #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ /* Support LM87 monitor */ #if EFSYS_OPT_MON_LM87 # if !EFSYS_OPT_FALCON # error "MON_LM87 requires FALCON" # endif #endif /* EFSYS_OPT_MON_LM87 */ /* Support MAX6647 monitor */ #if EFSYS_OPT_MON_MAX6647 # if !EFSYS_OPT_FALCON # error "MON_MAX6647 requires FALCON" # endif #endif /* EFSYS_OPT_MON_MAX6647 */ /* Support null monitor */ #if EFSYS_OPT_MON_NULL # if !EFSYS_OPT_FALCON # error "MON_NULL requires FALCON" # endif #endif /* EFSYS_OPT_MON_NULL */ -/* Support Siena monitor */ +/* Obsolete option */ #ifdef EFSYS_OPT_MON_SIENA -# error "MON_SIENA is obsolete use MON_MCDI" +# error "MON_SIENA is obsolete (replaced by MON_MCDI)." #endif /* EFSYS_OPT_MON_SIENA*/ -/* Support Huntington monitor */ +/* Obsolete option */ #ifdef EFSYS_OPT_MON_HUNTINGTON -# error "MON_HUNTINGTON is obsolete use MON_MCDI" +# error "MON_HUNTINGTON is obsolete (replaced by MON_MCDI)." #endif /* EFSYS_OPT_MON_HUNTINGTON*/ /* Support monitor statistics (voltage/temperature) */ #if EFSYS_OPT_MON_STATS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MON_STATS requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MON_STATS */ /* Support Monitor via mcdi */ #if EFSYS_OPT_MON_MCDI # if !(EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "MON_MCDI requires SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_MON_MCDI*/ /* Support printable names for statistics */ #if EFSYS_OPT_NAMES # if !(EFSYS_OPT_LOOPBACK || EFSYS_OPT_MAC_STATS || EFSYS_OPT_MCDI || \ EFSYS_MON_STATS || EFSYS_OPT_PHY_PROPS || EFSYS_OPT_PHY_STATS || \ EFSYS_OPT_QSTATS) # error "NAMES requires LOOPBACK or xxxSTATS or MCDI or PHY_PROPS" # endif #endif /* EFSYS_OPT_NAMES */ /* Support non volatile configuration */ #if EFSYS_OPT_NVRAM # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "NVRAM requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_NVRAM */ /* Support Falcon bootrom */ #if EFSYS_OPT_NVRAM_FALCON_BOOTROM # if !EFSYS_OPT_NVRAM # error "NVRAM_FALCON_BOOTROM requires NVRAM" # endif # if !EFSYS_OPT_FALCON # error "NVRAM_FALCON_BOOTROM requires FALCON" # endif #endif /* EFSYS_OPT_NVRAM_FALCON_BOOTROM */ /* Support NVRAM config for SFT9001 */ #if EFSYS_OPT_NVRAM_SFT9001 # if !EFSYS_OPT_NVRAM # error "NVRAM_SFT9001 requires NVRAM" # endif # if !EFSYS_OPT_FALCON # error "NVRAM_SFT9001 requires FALCON" # endif #endif /* EFSYS_OPT_NVRAM_SFT9001 */ /* Support NVRAM config for SFX7101 */ #if EFSYS_OPT_NVRAM_SFX7101 # if !EFSYS_OPT_NVRAM # error "NVRAM_SFX7101 requires NVRAM" # endif # if !EFSYS_OPT_FALCON # error "NVRAM_SFX7101 requires FALCON" # endif #endif /* EFSYS_OPT_NVRAM_SFX7101 */ /* Support PCIe interface tuning */ #if EFSYS_OPT_PCIE_TUNE # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) # error "PCIE_TUNE requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_PCIE_TUNE */ -/* Support PHY BIST diagnostics */ +/* Obsolete option */ #if EFSYS_OPT_PHY_BIST -# error "PHY_BIST is obsolete. It has been replaced by the BIST option." +# error "PHY_BIST is obsolete (replaced by BIST)." #endif /* EFSYS_OPT_PHY_BIST */ /* Support PHY flags */ #if EFSYS_OPT_PHY_FLAGS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) # error "PHY_FLAGS requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_PHY_FLAGS */ /* Support for PHY LED control */ #if EFSYS_OPT_PHY_LED_CONTROL # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) # error "PHY_LED_CONTROL requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_PHY_LED_CONTROL */ /* Support NULL PHY */ #if EFSYS_OPT_PHY_NULL # if !EFSYS_OPT_FALCON # error "PHY_NULL requires FALCON" # endif #endif /* EFSYS_OPT_PHY_NULL */ /* Obsolete option */ #ifdef EFSYS_OPT_PHY_PM8358 # error "EFSYS_OPT_PHY_PM8358 is obsolete and is not supported." #endif /* Support PHY properties */ #if EFSYS_OPT_PHY_PROPS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) # error "PHY_PROPS requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_PHY_PROPS */ /* Support QT2022C2 PHY */ #if EFSYS_OPT_PHY_QT2022C2 # if !EFSYS_OPT_FALCON # error "PHY_QT2022C2 requires FALCON" # endif #endif /* EFSYS_OPT_PHY_QT2022C2 */ /* Support QT2025C PHY (Wakefield NIC) */ #if EFSYS_OPT_PHY_QT2025C # if !EFSYS_OPT_FALCON # error "PHY_QT2025C requires FALCON" # endif #endif /* EFSYS_OPT_PHY_QT2025C */ /* Support SFT9001 PHY (Starbolt NIC) */ #if EFSYS_OPT_PHY_SFT9001 # if !EFSYS_OPT_FALCON # error "PHY_SFT9001 requires FALCON" # endif #endif /* EFSYS_OPT_PHY_SFT9001 */ /* Support SFX7101 PHY (SFE4001 NIC) */ #if EFSYS_OPT_PHY_SFX7101 # if !EFSYS_OPT_FALCON # error "PHY_SFX7101 requires FALCON" # endif #endif /* EFSYS_OPT_PHY_SFX7101 */ /* Support PHY statistics */ #if EFSYS_OPT_PHY_STATS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA) # error "PHY_STATS requires FALCON or SIENA" # endif #endif /* EFSYS_OPT_PHY_STATS */ /* Support TXC43128 PHY (SFE4003 NIC) */ #if EFSYS_OPT_PHY_TXC43128 # if !EFSYS_OPT_FALCON # error "PHY_TXC43128 requires FALCON" # endif #endif /* EFSYS_OPT_PHY_TXC43128 */ /* Support EVQ/RXQ/TXQ statistics */ #if EFSYS_OPT_QSTATS # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "QSTATS requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_QSTATS */ /* Support receive header split */ #if EFSYS_OPT_RX_HDR_SPLIT # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "RX_HDR_SPLIT requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_RX_HDR_SPLIT */ /* Support receive scaling (RSS) */ #if EFSYS_OPT_RX_SCALE # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "RX_SCALE requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_RX_SCALE */ /* Support receive scatter DMA */ #if EFSYS_OPT_RX_SCATTER # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "RX_SCATTER requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_RX_SCATTER */ /* Obsolete option */ #ifdef EFSYS_OPT_STAT_NAME -# error "EFSYS_OPT_STAT_NAME is obsolete (replaced by EFSYS_OPT_NAMES)." +# error "STAT_NAME is obsolete (replaced by NAMES)." #endif /* Support PCI Vital Product Data (VPD) */ #if EFSYS_OPT_VPD # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "VPD requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_VPD */ /* Support Wake on LAN */ #if EFSYS_OPT_WOL # if !EFSYS_OPT_SIENA # error "WOL requires SIENA" # endif #endif /* EFSYS_OPT_WOL */ /* Obsolete option */ #ifdef EFSYS_OPT_MCAST_FILTER_LIST -# error "MCAST_FILTER_LIST is obsolete and not supported" +# error "MCAST_FILTER_LIST is obsolete and is not supported" #endif /* EFSYS_OPT_MCAST_FILTER_LIST */ /* Support BIST */ #if EFSYS_OPT_BIST # if !(EFSYS_OPT_FALCON || EFSYS_OPT_SIENA || \ EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) # error "BIST requires FALCON or SIENA or HUNTINGTON or MEDFORD" # endif #endif /* EFSYS_OPT_BIST */ #endif /* _SYS_EFX_CHECK_H */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_filter.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_filter.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_filter.c (revision 293803) @@ -1,1436 +1,1442 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_FILTER #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_filter_init( __in efx_nic_t *enp); static void falconsiena_filter_fini( __in efx_nic_t *enp); static __checkReturn efx_rc_t falconsiena_filter_restore( __in efx_nic_t *enp); static __checkReturn efx_rc_t falconsiena_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace); static __checkReturn efx_rc_t falconsiena_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); static __checkReturn efx_rc_t falconsiena_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ #if EFSYS_OPT_FALCON static efx_filter_ops_t __efx_filter_falcon_ops = { falconsiena_filter_init, /* efo_init */ falconsiena_filter_fini, /* efo_fini */ falconsiena_filter_restore, /* efo_restore */ falconsiena_filter_add, /* efo_add */ falconsiena_filter_delete, /* efo_delete */ falconsiena_filter_supported_filters, /* efo_supported_filters */ NULL, /* efo_reconfigure */ }; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA static efx_filter_ops_t __efx_filter_siena_ops = { falconsiena_filter_init, /* efo_init */ falconsiena_filter_fini, /* efo_fini */ falconsiena_filter_restore, /* efo_restore */ falconsiena_filter_add, /* efo_add */ falconsiena_filter_delete, /* efo_delete */ falconsiena_filter_supported_filters, /* efo_supported_filters */ NULL, /* efo_reconfigure */ }; #endif /* EFSYS_OPT_SIENA */ -#if EFSYS_OPT_HUNTINGTON -static efx_filter_ops_t __efx_filter_hunt_ops = { - hunt_filter_init, /* efo_init */ - hunt_filter_fini, /* efo_fini */ - hunt_filter_restore, /* efo_restore */ - hunt_filter_add, /* efo_add */ - hunt_filter_delete, /* efo_delete */ - hunt_filter_supported_filters, /* efo_supported_filters */ - hunt_filter_reconfigure, /* efo_reconfigure */ +#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD +static efx_filter_ops_t __efx_filter_ef10_ops = { + ef10_filter_init, /* efo_init */ + ef10_filter_fini, /* efo_fini */ + ef10_filter_restore, /* efo_restore */ + ef10_filter_add, /* efo_add */ + ef10_filter_delete, /* efo_delete */ + ef10_filter_supported_filters, /* efo_supported_filters */ + ef10_filter_reconfigure, /* efo_reconfigure */ }; -#endif /* EFSYS_OPT_HUNTINGTON */ +#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec) { efx_filter_ops_t *efop = enp->en_efop; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); EFSYS_ASSERT3P(spec, !=, NULL); EFSYS_ASSERT3U(spec->efs_flags, &, EFX_FILTER_FLAG_RX); return (efop->efo_add(enp, spec, B_FALSE)); } __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec) { efx_filter_ops_t *efop = enp->en_efop; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); EFSYS_ASSERT3P(spec, !=, NULL); EFSYS_ASSERT3U(spec->efs_flags, &, EFX_FILTER_FLAG_RX); #if EFSYS_OPT_RX_SCALE spec->efs_rss_context = enp->en_rss_context; #endif return (efop->efo_delete(enp, spec)); } __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); if ((rc = enp->en_efop->efo_restore(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp) { efx_filter_ops_t *efop; efx_rc_t rc; /* Check that efx_filter_spec_t is 64 bytes. */ EFX_STATIC_ASSERT(sizeof (efx_filter_spec_t) == 64); EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_FILTER)); switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: efop = (efx_filter_ops_t *)&__efx_filter_falcon_ops; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: efop = (efx_filter_ops_t *)&__efx_filter_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: - efop = (efx_filter_ops_t *)&__efx_filter_hunt_ops; + efop = (efx_filter_ops_t *)&__efx_filter_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ + +#if EFSYS_OPT_MEDFORD + case EFX_FAMILY_MEDFORD: + efop = (efx_filter_ops_t *)&__efx_filter_ef10_ops; + break; +#endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } if ((rc = efop->efo_init(enp)) != 0) goto fail2; enp->en_efop = efop; enp->en_mod_flags |= EFX_MOD_FILTER; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_efop = NULL; enp->en_mod_flags &= ~EFX_MOD_FILTER; return (rc); } void efx_filter_fini( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); enp->en_efop->efo_fini(enp); enp->en_efop = NULL; enp->en_mod_flags &= ~EFX_MOD_FILTER; } __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); EFSYS_ASSERT(enp->en_efop->efo_supported_filters != NULL); if ((rc = enp->en_efop->efo_supported_filters(enp, list, length)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in int count) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_FILTER); if (enp->en_efop->efo_reconfigure != NULL) { if ((rc = enp->en_efop->efo_reconfigure(enp, mac_addr, all_unicst, mulcst, all_mulcst, brdcst, addrs, count)) != 0) goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_filter_spec_init_rx( __inout efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flag_t flags, __in efx_rxq_t *erp) { EFSYS_ASSERT3P(spec, !=, NULL); EFSYS_ASSERT3P(erp, !=, NULL); EFSYS_ASSERT((flags & ~(EFX_FILTER_FLAG_RX_RSS | EFX_FILTER_FLAG_RX_SCATTER)) == 0); memset(spec, 0, sizeof (*spec)); spec->efs_priority = priority; spec->efs_flags = EFX_FILTER_FLAG_RX | flags; spec->efs_rss_context = EFX_FILTER_SPEC_RSS_CONTEXT_DEFAULT; spec->efs_dmaq_id = (uint16_t)erp->er_index; } void efx_filter_spec_init_tx( __inout efx_filter_spec_t *spec, __in efx_txq_t *etp) { EFSYS_ASSERT3P(spec, !=, NULL); EFSYS_ASSERT3P(etp, !=, NULL); memset(spec, 0, sizeof (*spec)); spec->efs_priority = EFX_FILTER_PRI_REQUIRED; spec->efs_flags = EFX_FILTER_FLAG_TX; spec->efs_dmaq_id = (uint16_t)etp->et_index; } /* * Specify IPv4 host, transport protocol and port in a filter specification */ __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port) { EFSYS_ASSERT3P(spec, !=, NULL); spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; spec->efs_ether_type = EFX_ETHER_TYPE_IPV4; spec->efs_ip_proto = proto; spec->efs_loc_host.eo_u32[0] = host; spec->efs_loc_port = port; return (0); } /* * Specify IPv4 hosts, transport protocol and ports in a filter specification */ __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport) { EFSYS_ASSERT3P(spec, !=, NULL); spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; spec->efs_ether_type = EFX_ETHER_TYPE_IPV4; spec->efs_ip_proto = proto; spec->efs_loc_host.eo_u32[0] = lhost; spec->efs_loc_port = lport; spec->efs_rem_host.eo_u32[0] = rhost; spec->efs_rem_port = rport; return (0); } /* * Specify local Ethernet address and/or VID in filter specification */ __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr) { EFSYS_ASSERT3P(spec, !=, NULL); EFSYS_ASSERT3P(addr, !=, NULL); if (vid == EFX_FILTER_SPEC_VID_UNSPEC && addr == NULL) return (EINVAL); if (vid != EFX_FILTER_SPEC_VID_UNSPEC) { spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; spec->efs_outer_vid = vid; } if (addr != NULL) { spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_MAC; memcpy(spec->efs_loc_mac, addr, EFX_MAC_ADDR_LEN); } return (0); } /* * Specify matching otherwise-unmatched unicast in a filter specification */ __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec) { EFSYS_ASSERT3P(spec, !=, NULL); spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_MAC_IG; return (0); } /* * Specify matching otherwise-unmatched multicast in a filter specification */ __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec) { EFSYS_ASSERT3P(spec, !=, NULL); spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_MAC_IG; spec->efs_loc_mac[0] = 1; return (0); } #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA /* * "Fudge factors" - difference between programmed value and actual depth. * Due to pipelined implementation we need to program H/W with a value that * is larger than the hop limit we want. */ #define FILTER_CTL_SRCH_FUDGE_WILD 3 #define FILTER_CTL_SRCH_FUDGE_FULL 1 /* * Hard maximum hop limit. Hardware will time-out beyond 200-something. * We also need to avoid infinite loops in efx_filter_search() when the * table is full. */ #define FILTER_CTL_SRCH_MAX 200 static __checkReturn efx_rc_t falconsiena_filter_spec_from_gen_spec( __out falconsiena_filter_spec_t *fs_spec, __in efx_filter_spec_t *gen_spec) { efx_rc_t rc; boolean_t is_full = B_FALSE; if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) EFSYS_ASSERT3U(gen_spec->efs_flags, ==, EFX_FILTER_FLAG_TX); else EFSYS_ASSERT3U(gen_spec->efs_flags, &, EFX_FILTER_FLAG_RX); /* Falconsiena only has one RSS context */ if ((gen_spec->efs_flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->efs_rss_context != 0) { rc = EINVAL; goto fail1; } fs_spec->fsfs_flags = gen_spec->efs_flags; fs_spec->fsfs_dmaq_id = gen_spec->efs_dmaq_id; switch (gen_spec->efs_match_flags) { case EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT: is_full = B_TRUE; /* Fall through */ case EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT: { uint32_t rhost, host1, host2; uint16_t rport, port1, port2; if (gen_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4) { rc = ENOTSUP; goto fail2; } if (gen_spec->efs_loc_port == 0 || (is_full && gen_spec->efs_rem_port == 0)) { rc = EINVAL; goto fail3; } switch (gen_spec->efs_ip_proto) { case EFX_IPPROTO_TCP: if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_TX_TCP_FULL : EFX_FS_FILTER_TX_TCP_WILD); } else { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_RX_TCP_FULL : EFX_FS_FILTER_RX_TCP_WILD); } break; case EFX_IPPROTO_UDP: if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_TX_UDP_FULL : EFX_FS_FILTER_TX_UDP_WILD); } else { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_RX_UDP_FULL : EFX_FS_FILTER_RX_UDP_WILD); } break; default: rc = ENOTSUP; goto fail4; } /* * The filter is constructed in terms of source and destination, * with the odd wrinkle that the ports are swapped in a UDP * wildcard filter. We need to convert from local and remote * addresses (zero for a wildcard). */ rhost = is_full ? gen_spec->efs_rem_host.eo_u32[0] : 0; rport = is_full ? gen_spec->efs_rem_port : 0; if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) { host1 = gen_spec->efs_loc_host.eo_u32[0]; host2 = rhost; } else { host1 = rhost; host2 = gen_spec->efs_loc_host.eo_u32[0]; } if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) { if (fs_spec->fsfs_type == EFX_FS_FILTER_TX_UDP_WILD) { port1 = rport; port2 = gen_spec->efs_loc_port; } else { port1 = gen_spec->efs_loc_port; port2 = rport; } } else { if (fs_spec->fsfs_type == EFX_FS_FILTER_RX_UDP_WILD) { port1 = gen_spec->efs_loc_port; port2 = rport; } else { port1 = rport; port2 = gen_spec->efs_loc_port; } } fs_spec->fsfs_dword[0] = (host1 << 16) | port1; fs_spec->fsfs_dword[1] = (port2 << 16) | (host1 >> 16); fs_spec->fsfs_dword[2] = host2; break; } case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID: is_full = B_TRUE; /* Fall through */ case EFX_FILTER_MATCH_LOC_MAC: if (gen_spec->efs_flags & EFX_FILTER_FLAG_TX) { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_TX_MAC_FULL : EFX_FS_FILTER_TX_MAC_WILD); } else { fs_spec->fsfs_type = (is_full ? EFX_FS_FILTER_RX_MAC_FULL : EFX_FS_FILTER_RX_MAC_WILD); } fs_spec->fsfs_dword[0] = is_full ? gen_spec->efs_outer_vid : 0; fs_spec->fsfs_dword[1] = gen_spec->efs_loc_mac[2] << 24 | gen_spec->efs_loc_mac[3] << 16 | gen_spec->efs_loc_mac[4] << 8 | gen_spec->efs_loc_mac[5]; fs_spec->fsfs_dword[2] = gen_spec->efs_loc_mac[0] << 8 | gen_spec->efs_loc_mac[1]; break; default: EFSYS_ASSERT(B_FALSE); rc = ENOTSUP; goto fail5; } return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit * key derived from the n-tuple. */ static uint16_t falconsiena_filter_tbl_hash( __in uint32_t key) { uint16_t tmp; /* First 16 rounds */ tmp = 0x1fff ^ (uint16_t)(key >> 16); tmp = tmp ^ tmp >> 3 ^ tmp >> 6; tmp = tmp ^ tmp >> 9; /* Last 16 rounds */ tmp = tmp ^ tmp << 13 ^ (uint16_t)(key & 0xffff); tmp = tmp ^ tmp >> 3 ^ tmp >> 6; tmp = tmp ^ tmp >> 9; return (tmp); } /* * To allow for hash collisions, filter search continues at these * increments from the first possible entry selected by the hash. */ static uint16_t falconsiena_filter_tbl_increment( __in uint32_t key) { return ((uint16_t)(key * 2 - 1)); } static __checkReturn boolean_t falconsiena_filter_test_used( __in falconsiena_filter_tbl_t *fsftp, __in unsigned int index) { EFSYS_ASSERT3P(fsftp->fsft_bitmap, !=, NULL); return ((fsftp->fsft_bitmap[index / 32] & (1 << (index % 32))) != 0); } static void falconsiena_filter_set_used( __in falconsiena_filter_tbl_t *fsftp, __in unsigned int index) { EFSYS_ASSERT3P(fsftp->fsft_bitmap, !=, NULL); fsftp->fsft_bitmap[index / 32] |= (1 << (index % 32)); ++fsftp->fsft_used; } static void falconsiena_filter_clear_used( __in falconsiena_filter_tbl_t *fsftp, __in unsigned int index) { EFSYS_ASSERT3P(fsftp->fsft_bitmap, !=, NULL); fsftp->fsft_bitmap[index / 32] &= ~(1 << (index % 32)); --fsftp->fsft_used; EFSYS_ASSERT3U(fsftp->fsft_used, >=, 0); } static falconsiena_filter_tbl_id_t falconsiena_filter_tbl_id( __in falconsiena_filter_type_t type) { falconsiena_filter_tbl_id_t tbl_id; switch (type) { case EFX_FS_FILTER_RX_TCP_FULL: case EFX_FS_FILTER_RX_TCP_WILD: case EFX_FS_FILTER_RX_UDP_FULL: case EFX_FS_FILTER_RX_UDP_WILD: tbl_id = EFX_FS_FILTER_TBL_RX_IP; break; #if EFSYS_OPT_SIENA case EFX_FS_FILTER_RX_MAC_FULL: case EFX_FS_FILTER_RX_MAC_WILD: tbl_id = EFX_FS_FILTER_TBL_RX_MAC; break; case EFX_FS_FILTER_TX_TCP_FULL: case EFX_FS_FILTER_TX_TCP_WILD: case EFX_FS_FILTER_TX_UDP_FULL: case EFX_FS_FILTER_TX_UDP_WILD: tbl_id = EFX_FS_FILTER_TBL_TX_IP; break; case EFX_FS_FILTER_TX_MAC_FULL: case EFX_FS_FILTER_TX_MAC_WILD: tbl_id = EFX_FS_FILTER_TBL_TX_MAC; break; #endif /* EFSYS_OPT_SIENA */ default: EFSYS_ASSERT(B_FALSE); tbl_id = EFX_FS_FILTER_NTBLS; break; } return (tbl_id); } static void falconsiena_filter_reset_search_depth( __inout falconsiena_filter_t *fsfp, __in falconsiena_filter_tbl_id_t tbl_id) { switch (tbl_id) { case EFX_FS_FILTER_TBL_RX_IP: fsfp->fsf_depth[EFX_FS_FILTER_RX_TCP_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_RX_TCP_WILD] = 0; fsfp->fsf_depth[EFX_FS_FILTER_RX_UDP_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_RX_UDP_WILD] = 0; break; #if EFSYS_OPT_SIENA case EFX_FS_FILTER_TBL_RX_MAC: fsfp->fsf_depth[EFX_FS_FILTER_RX_MAC_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_RX_MAC_WILD] = 0; break; case EFX_FS_FILTER_TBL_TX_IP: fsfp->fsf_depth[EFX_FS_FILTER_TX_TCP_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_TX_TCP_WILD] = 0; fsfp->fsf_depth[EFX_FS_FILTER_TX_UDP_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_TX_UDP_WILD] = 0; break; case EFX_FS_FILTER_TBL_TX_MAC: fsfp->fsf_depth[EFX_FS_FILTER_TX_MAC_FULL] = 0; fsfp->fsf_depth[EFX_FS_FILTER_TX_MAC_WILD] = 0; break; #endif /* EFSYS_OPT_SIENA */ default: EFSYS_ASSERT(B_FALSE); break; } } static void falconsiena_filter_push_rx_limits( __in efx_nic_t *enp) { falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; efx_oword_t oword; EFX_BAR_READO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_TCP_FULL_SRCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_TCP_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD(oword, FRF_AZ_TCP_WILD_SRCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_TCP_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); EFX_SET_OWORD_FIELD(oword, FRF_AZ_UDP_FULL_SRCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_UDP_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD(oword, FRF_AZ_UDP_WILD_SRCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_UDP_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); #if EFSYS_OPT_SIENA if (fsfp->fsf_tbl[EFX_FS_FILTER_TBL_RX_MAC].fsft_size) { EFX_SET_OWORD_FIELD(oword, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_MAC_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD(oword, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, fsfp->fsf_depth[EFX_FS_FILTER_RX_MAC_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); } #endif /* EFSYS_OPT_SIENA */ EFX_BAR_WRITEO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); } static void falconsiena_filter_push_tx_limits( __in efx_nic_t *enp) { falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; efx_oword_t oword; EFX_BAR_READO(enp, FR_AZ_TX_CFG_REG, &oword); if (fsfp->fsf_tbl[EFX_FS_FILTER_TBL_TX_IP].fsft_size != 0) { EFX_SET_OWORD_FIELD(oword, FRF_CZ_TX_TCPIP_FILTER_FULL_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_TCP_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD(oword, FRF_CZ_TX_TCPIP_FILTER_WILD_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_TCP_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); EFX_SET_OWORD_FIELD(oword, FRF_CZ_TX_UDPIP_FILTER_FULL_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_UDP_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD(oword, FRF_CZ_TX_UDPIP_FILTER_WILD_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_UDP_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); } if (fsfp->fsf_tbl[EFX_FS_FILTER_TBL_TX_MAC].fsft_size != 0) { EFX_SET_OWORD_FIELD( oword, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_MAC_FULL] + FILTER_CTL_SRCH_FUDGE_FULL); EFX_SET_OWORD_FIELD( oword, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, fsfp->fsf_depth[EFX_FS_FILTER_TX_MAC_WILD] + FILTER_CTL_SRCH_FUDGE_WILD); } EFX_BAR_WRITEO(enp, FR_AZ_TX_CFG_REG, &oword); } /* Build a filter entry and return its n-tuple key. */ static __checkReturn uint32_t falconsiena_filter_build( __out efx_oword_t *filter, __in falconsiena_filter_spec_t *spec) { uint32_t dword3; uint32_t key; uint8_t type = spec->fsfs_type; uint32_t flags = spec->fsfs_flags; switch (falconsiena_filter_tbl_id(type)) { case EFX_FS_FILTER_TBL_RX_IP: { boolean_t is_udp = (type == EFX_FS_FILTER_RX_UDP_FULL || type == EFX_FS_FILTER_RX_UDP_WILD); EFX_POPULATE_OWORD_7(*filter, FRF_BZ_RSS_EN, (flags & EFX_FILTER_FLAG_RX_RSS) ? 1 : 0, FRF_BZ_SCATTER_EN, (flags & EFX_FILTER_FLAG_RX_SCATTER) ? 1 : 0, FRF_AZ_TCP_UDP, is_udp, FRF_AZ_RXQ_ID, spec->fsfs_dmaq_id, EFX_DWORD_2, spec->fsfs_dword[2], EFX_DWORD_1, spec->fsfs_dword[1], EFX_DWORD_0, spec->fsfs_dword[0]); dword3 = is_udp; break; } #if EFSYS_OPT_SIENA case EFX_FS_FILTER_TBL_RX_MAC: { boolean_t is_wild = (type == EFX_FS_FILTER_RX_MAC_WILD); EFX_POPULATE_OWORD_7(*filter, FRF_CZ_RMFT_RSS_EN, (flags & EFX_FILTER_FLAG_RX_RSS) ? 1 : 0, FRF_CZ_RMFT_SCATTER_EN, (flags & EFX_FILTER_FLAG_RX_SCATTER) ? 1 : 0, FRF_CZ_RMFT_RXQ_ID, spec->fsfs_dmaq_id, FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, FRF_CZ_RMFT_DEST_MAC_DW1, spec->fsfs_dword[2], FRF_CZ_RMFT_DEST_MAC_DW0, spec->fsfs_dword[1], FRF_CZ_RMFT_VLAN_ID, spec->fsfs_dword[0]); dword3 = is_wild; break; } #endif /* EFSYS_OPT_SIENA */ case EFX_FS_FILTER_TBL_TX_IP: { boolean_t is_udp = (type == EFX_FS_FILTER_TX_UDP_FULL || type == EFX_FS_FILTER_TX_UDP_WILD); EFX_POPULATE_OWORD_5(*filter, FRF_CZ_TIFT_TCP_UDP, is_udp, FRF_CZ_TIFT_TXQ_ID, spec->fsfs_dmaq_id, EFX_DWORD_2, spec->fsfs_dword[2], EFX_DWORD_1, spec->fsfs_dword[1], EFX_DWORD_0, spec->fsfs_dword[0]); dword3 = is_udp | spec->fsfs_dmaq_id << 1; break; } #if EFSYS_OPT_SIENA case EFX_FS_FILTER_TBL_TX_MAC: { boolean_t is_wild = (type == EFX_FS_FILTER_TX_MAC_WILD); EFX_POPULATE_OWORD_5(*filter, FRF_CZ_TMFT_TXQ_ID, spec->fsfs_dmaq_id, FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, FRF_CZ_TMFT_SRC_MAC_DW1, spec->fsfs_dword[2], FRF_CZ_TMFT_SRC_MAC_DW0, spec->fsfs_dword[1], FRF_CZ_TMFT_VLAN_ID, spec->fsfs_dword[0]); dword3 = is_wild | spec->fsfs_dmaq_id << 1; break; } #endif /* EFSYS_OPT_SIENA */ default: EFSYS_ASSERT(B_FALSE); return (0); } key = spec->fsfs_dword[0] ^ spec->fsfs_dword[1] ^ spec->fsfs_dword[2] ^ dword3; return (key); } static __checkReturn efx_rc_t falconsiena_filter_push_entry( __inout efx_nic_t *enp, __in falconsiena_filter_type_t type, __in int index, __in efx_oword_t *eop) { efx_rc_t rc; switch (type) { case EFX_FS_FILTER_RX_TCP_FULL: case EFX_FS_FILTER_RX_TCP_WILD: case EFX_FS_FILTER_RX_UDP_FULL: case EFX_FS_FILTER_RX_UDP_WILD: EFX_BAR_TBL_WRITEO(enp, FR_AZ_RX_FILTER_TBL0, index, eop, B_TRUE); break; #if EFSYS_OPT_SIENA case EFX_FS_FILTER_RX_MAC_FULL: case EFX_FS_FILTER_RX_MAC_WILD: EFX_BAR_TBL_WRITEO(enp, FR_CZ_RX_MAC_FILTER_TBL0, index, eop, B_TRUE); break; case EFX_FS_FILTER_TX_TCP_FULL: case EFX_FS_FILTER_TX_TCP_WILD: case EFX_FS_FILTER_TX_UDP_FULL: case EFX_FS_FILTER_TX_UDP_WILD: EFX_BAR_TBL_WRITEO(enp, FR_CZ_TX_FILTER_TBL0, index, eop, B_TRUE); break; case EFX_FS_FILTER_TX_MAC_FULL: case EFX_FS_FILTER_TX_MAC_WILD: EFX_BAR_TBL_WRITEO(enp, FR_CZ_TX_MAC_FILTER_TBL0, index, eop, B_TRUE); break; #endif /* EFSYS_OPT_SIENA */ default: EFSYS_ASSERT(B_FALSE); rc = ENOTSUP; goto fail1; } return (0); fail1: return (rc); } static __checkReturn boolean_t falconsiena_filter_equal( __in const falconsiena_filter_spec_t *left, __in const falconsiena_filter_spec_t *right) { falconsiena_filter_tbl_id_t tbl_id; tbl_id = falconsiena_filter_tbl_id(left->fsfs_type); if (left->fsfs_type != right->fsfs_type) return (B_FALSE); if (memcmp(left->fsfs_dword, right->fsfs_dword, sizeof (left->fsfs_dword))) return (B_FALSE); if ((tbl_id == EFX_FS_FILTER_TBL_TX_IP || tbl_id == EFX_FS_FILTER_TBL_TX_MAC) && left->fsfs_dmaq_id != right->fsfs_dmaq_id) return (B_FALSE); return (B_TRUE); } static __checkReturn efx_rc_t falconsiena_filter_search( __in falconsiena_filter_tbl_t *fsftp, __in falconsiena_filter_spec_t *spec, __in uint32_t key, __in boolean_t for_insert, __out int *filter_index, __out unsigned int *depth_required) { unsigned hash, incr, filter_idx, depth; hash = falconsiena_filter_tbl_hash(key); incr = falconsiena_filter_tbl_increment(key); filter_idx = hash & (fsftp->fsft_size - 1); depth = 1; for (;;) { /* * Return success if entry is used and matches this spec * or entry is unused and we are trying to insert. */ if (falconsiena_filter_test_used(fsftp, filter_idx) ? falconsiena_filter_equal(spec, &fsftp->fsft_spec[filter_idx]) : for_insert) { *filter_index = filter_idx; *depth_required = depth; return (0); } /* Return failure if we reached the maximum search depth */ if (depth == FILTER_CTL_SRCH_MAX) return (for_insert ? EBUSY : ENOENT); filter_idx = (filter_idx + incr) & (fsftp->fsft_size - 1); ++depth; } } static void falconsiena_filter_clear_entry( __in efx_nic_t *enp, __in falconsiena_filter_tbl_t *fsftp, __in int index) { efx_oword_t filter; if (falconsiena_filter_test_used(fsftp, index)) { falconsiena_filter_clear_used(fsftp, index); EFX_ZERO_OWORD(filter); falconsiena_filter_push_entry(enp, fsftp->fsft_spec[index].fsfs_type, index, &filter); memset(&fsftp->fsft_spec[index], 0, sizeof (fsftp->fsft_spec[0])); } } void falconsiena_filter_tbl_clear( __in efx_nic_t *enp, __in falconsiena_filter_tbl_id_t tbl_id) { falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; falconsiena_filter_tbl_t *fsftp = &fsfp->fsf_tbl[tbl_id]; int index; int state; EFSYS_LOCK(enp->en_eslp, state); for (index = 0; index < fsftp->fsft_size; ++index) { falconsiena_filter_clear_entry(enp, fsftp, index); } if (fsftp->fsft_used == 0) falconsiena_filter_reset_search_depth(fsfp, tbl_id); EFSYS_UNLOCK(enp->en_eslp, state); } static __checkReturn efx_rc_t falconsiena_filter_init( __in efx_nic_t *enp) { falconsiena_filter_t *fsfp; falconsiena_filter_tbl_t *fsftp; int tbl_id; efx_rc_t rc; EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (falconsiena_filter_t), fsfp); if (!fsfp) { rc = ENOMEM; goto fail1; } enp->en_filter.ef_falconsiena_filter = fsfp; switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: fsftp = &fsfp->fsf_tbl[EFX_FS_FILTER_TBL_RX_IP]; fsftp->fsft_size = FR_AZ_RX_FILTER_TBL0_ROWS; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: fsftp = &fsfp->fsf_tbl[EFX_FS_FILTER_TBL_RX_IP]; fsftp->fsft_size = FR_AZ_RX_FILTER_TBL0_ROWS; fsftp = &fsfp->fsf_tbl[EFX_FS_FILTER_TBL_RX_MAC]; fsftp->fsft_size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; fsftp = &fsfp->fsf_tbl[EFX_FS_FILTER_TBL_TX_IP]; fsftp->fsft_size = FR_CZ_TX_FILTER_TBL0_ROWS; fsftp = &fsfp->fsf_tbl[EFX_FS_FILTER_TBL_TX_MAC]; fsftp->fsft_size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS; break; #endif /* EFSYS_OPT_SIENA */ default: rc = ENOTSUP; goto fail2; } for (tbl_id = 0; tbl_id < EFX_FS_FILTER_NTBLS; tbl_id++) { unsigned int bitmap_size; fsftp = &fsfp->fsf_tbl[tbl_id]; if (fsftp->fsft_size == 0) continue; EFX_STATIC_ASSERT(sizeof (fsftp->fsft_bitmap[0]) == sizeof (uint32_t)); bitmap_size = (fsftp->fsft_size + (sizeof (uint32_t) * 8) - 1) / 8; EFSYS_KMEM_ALLOC(enp->en_esip, bitmap_size, fsftp->fsft_bitmap); if (!fsftp->fsft_bitmap) { rc = ENOMEM; goto fail3; } EFSYS_KMEM_ALLOC(enp->en_esip, fsftp->fsft_size * sizeof (*fsftp->fsft_spec), fsftp->fsft_spec); if (!fsftp->fsft_spec) { rc = ENOMEM; goto fail4; } memset(fsftp->fsft_spec, 0, fsftp->fsft_size * sizeof (*fsftp->fsft_spec)); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); falconsiena_filter_fini(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void falconsiena_filter_fini( __in efx_nic_t *enp) { falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; falconsiena_filter_tbl_id_t tbl_id; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE); if (fsfp == NULL) return; for (tbl_id = 0; tbl_id < EFX_FS_FILTER_NTBLS; tbl_id++) { falconsiena_filter_tbl_t *fsftp = &fsfp->fsf_tbl[tbl_id]; unsigned int bitmap_size; EFX_STATIC_ASSERT(sizeof (fsftp->fsft_bitmap[0]) == sizeof (uint32_t)); bitmap_size = (fsftp->fsft_size + (sizeof (uint32_t) * 8) - 1) / 8; if (fsftp->fsft_bitmap != NULL) { EFSYS_KMEM_FREE(enp->en_esip, bitmap_size, fsftp->fsft_bitmap); fsftp->fsft_bitmap = NULL; } if (fsftp->fsft_spec != NULL) { EFSYS_KMEM_FREE(enp->en_esip, fsftp->fsft_size * sizeof (*fsftp->fsft_spec), fsftp->fsft_spec); fsftp->fsft_spec = NULL; } } EFSYS_KMEM_FREE(enp->en_esip, sizeof (falconsiena_filter_t), enp->en_filter.ef_falconsiena_filter); } /* Restore filter state after a reset */ static __checkReturn efx_rc_t falconsiena_filter_restore( __in efx_nic_t *enp) { falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; falconsiena_filter_tbl_id_t tbl_id; falconsiena_filter_tbl_t *fsftp; falconsiena_filter_spec_t *spec; efx_oword_t filter; int filter_idx; int state; efx_rc_t rc; EFSYS_LOCK(enp->en_eslp, state); for (tbl_id = 0; tbl_id < EFX_FS_FILTER_NTBLS; tbl_id++) { fsftp = &fsfp->fsf_tbl[tbl_id]; for (filter_idx = 0; filter_idx < fsftp->fsft_size; filter_idx++) { if (!falconsiena_filter_test_used(fsftp, filter_idx)) continue; spec = &fsftp->fsft_spec[filter_idx]; if ((rc = falconsiena_filter_build(&filter, spec)) != 0) goto fail1; if ((rc = falconsiena_filter_push_entry(enp, spec->fsfs_type, filter_idx, &filter)) != 0) goto fail2; } } falconsiena_filter_push_rx_limits(enp); falconsiena_filter_push_tx_limits(enp); EFSYS_UNLOCK(enp->en_eslp, state); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); EFSYS_UNLOCK(enp->en_eslp, state); return (rc); } static __checkReturn efx_rc_t falconsiena_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace) { efx_rc_t rc; falconsiena_filter_spec_t fs_spec; falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; falconsiena_filter_tbl_id_t tbl_id; falconsiena_filter_tbl_t *fsftp; falconsiena_filter_spec_t *saved_fs_spec; efx_oword_t filter; int filter_idx; unsigned int depth; int state; uint32_t key; EFSYS_ASSERT3P(spec, !=, NULL); if ((rc = falconsiena_filter_spec_from_gen_spec(&fs_spec, spec)) != 0) goto fail1; tbl_id = falconsiena_filter_tbl_id(fs_spec.fsfs_type); fsftp = &fsfp->fsf_tbl[tbl_id]; if (fsftp->fsft_size == 0) { rc = EINVAL; goto fail2; } key = falconsiena_filter_build(&filter, &fs_spec); EFSYS_LOCK(enp->en_eslp, state); rc = falconsiena_filter_search(fsftp, &fs_spec, key, B_TRUE, &filter_idx, &depth); if (rc != 0) goto fail3; EFSYS_ASSERT3U(filter_idx, <, fsftp->fsft_size); saved_fs_spec = &fsftp->fsft_spec[filter_idx]; if (falconsiena_filter_test_used(fsftp, filter_idx)) { if (may_replace == B_FALSE) { rc = EEXIST; goto fail4; } } falconsiena_filter_set_used(fsftp, filter_idx); *saved_fs_spec = fs_spec; if (fsfp->fsf_depth[fs_spec.fsfs_type] < depth) { fsfp->fsf_depth[fs_spec.fsfs_type] = depth; if (tbl_id == EFX_FS_FILTER_TBL_TX_IP || tbl_id == EFX_FS_FILTER_TBL_TX_MAC) falconsiena_filter_push_tx_limits(enp); else falconsiena_filter_push_rx_limits(enp); } falconsiena_filter_push_entry(enp, fs_spec.fsfs_type, filter_idx, &filter); EFSYS_UNLOCK(enp->en_eslp, state); return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t falconsiena_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec) { efx_rc_t rc; falconsiena_filter_spec_t fs_spec; falconsiena_filter_t *fsfp = enp->en_filter.ef_falconsiena_filter; falconsiena_filter_tbl_id_t tbl_id; falconsiena_filter_tbl_t *fsftp; efx_oword_t filter; int filter_idx; unsigned int depth; int state; uint32_t key; EFSYS_ASSERT3P(spec, !=, NULL); if ((rc = falconsiena_filter_spec_from_gen_spec(&fs_spec, spec)) != 0) goto fail1; tbl_id = falconsiena_filter_tbl_id(fs_spec.fsfs_type); fsftp = &fsfp->fsf_tbl[tbl_id]; key = falconsiena_filter_build(&filter, &fs_spec); EFSYS_LOCK(enp->en_eslp, state); rc = falconsiena_filter_search(fsftp, &fs_spec, key, B_FALSE, &filter_idx, &depth); if (rc != 0) goto fail2; falconsiena_filter_clear_entry(enp, fsftp, filter_idx); if (fsftp->fsft_used == 0) falconsiena_filter_reset_search_depth(fsfp, tbl_id); EFSYS_UNLOCK(enp->en_eslp, state); return (0); fail2: EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #define MAX_SUPPORTED 4 static __checkReturn efx_rc_t falconsiena_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { int index = 0; uint32_t rx_matches[MAX_SUPPORTED]; efx_rc_t rc; if (list == NULL) { rc = EINVAL; goto fail1; } rx_matches[index++] = EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; rx_matches[index++] = EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; if (enp->en_features & EFX_FEATURE_MAC_HEADER_FILTERS) { rx_matches[index++] = EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC; rx_matches[index++] = EFX_FILTER_MATCH_LOC_MAC; } EFSYS_ASSERT3U(index, <=, MAX_SUPPORTED); *length = index; memcpy(list, rx_matches, *length); return (0); fail1: return (rc); } #undef MAX_SUPPORTED #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ #endif /* EFSYS_OPT_FILTER */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_impl.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_impl.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_impl.h (revision 293803) @@ -1,1175 +1,1179 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_IMPL_H #define _SYS_EFX_IMPL_H #include "efsys.h" #include "efx.h" #include "efx_regs.h" #include "efx_regs_ef10.h" /* FIXME: Add definition for driver generated software events */ #ifndef ESE_DZ_EV_CODE_DRV_GEN_EV #define ESE_DZ_EV_CODE_DRV_GEN_EV FSE_AZ_EV_CODE_DRV_GEN_EV #endif #include "efx_check.h" #if EFSYS_OPT_FALCON #include "falcon_impl.h" #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA #include "siena_impl.h" #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON #include "hunt_impl.h" #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD #include "medford_impl.h" #endif /* EFSYS_OPT_MEDFORD */ #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) #include "ef10_impl.h" #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ #ifdef __cplusplus extern "C" { #endif #define EFX_MOD_MCDI 0x00000001 #define EFX_MOD_PROBE 0x00000002 #define EFX_MOD_NVRAM 0x00000004 #define EFX_MOD_VPD 0x00000008 #define EFX_MOD_NIC 0x00000010 #define EFX_MOD_INTR 0x00000020 #define EFX_MOD_EV 0x00000040 #define EFX_MOD_RX 0x00000080 #define EFX_MOD_TX 0x00000100 #define EFX_MOD_PORT 0x00000200 #define EFX_MOD_MON 0x00000400 #define EFX_MOD_WOL 0x00000800 #define EFX_MOD_FILTER 0x00001000 #define EFX_MOD_PKTFILTER 0x00002000 #define EFX_RESET_MAC 0x00000001 #define EFX_RESET_PHY 0x00000002 #define EFX_RESET_RXQ_ERR 0x00000004 #define EFX_RESET_TXQ_ERR 0x00000008 typedef enum efx_mac_type_e { EFX_MAC_INVALID = 0, EFX_MAC_FALCON_GMAC, EFX_MAC_FALCON_XMAC, EFX_MAC_SIENA, EFX_MAC_HUNTINGTON, EFX_MAC_NTYPES } efx_mac_type_t; typedef struct efx_ev_ops_s { efx_rc_t (*eevo_init)(efx_nic_t *); void (*eevo_fini)(efx_nic_t *); efx_rc_t (*eevo_qcreate)(efx_nic_t *, unsigned int, efsys_mem_t *, size_t, uint32_t, efx_evq_t *); void (*eevo_qdestroy)(efx_evq_t *); efx_rc_t (*eevo_qprime)(efx_evq_t *, unsigned int); void (*eevo_qpost)(efx_evq_t *, uint16_t); efx_rc_t (*eevo_qmoderate)(efx_evq_t *, unsigned int); #if EFSYS_OPT_QSTATS void (*eevo_qstats_update)(efx_evq_t *, efsys_stat_t *); #endif } efx_ev_ops_t; typedef struct efx_tx_ops_s { efx_rc_t (*etxo_init)(efx_nic_t *); void (*etxo_fini)(efx_nic_t *); efx_rc_t (*etxo_qcreate)(efx_nic_t *, unsigned int, unsigned int, efsys_mem_t *, size_t, uint32_t, uint16_t, efx_evq_t *, efx_txq_t *, unsigned int *); void (*etxo_qdestroy)(efx_txq_t *); efx_rc_t (*etxo_qpost)(efx_txq_t *, efx_buffer_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qpush)(efx_txq_t *, unsigned int, unsigned int); efx_rc_t (*etxo_qpace)(efx_txq_t *, unsigned int); efx_rc_t (*etxo_qflush)(efx_txq_t *); void (*etxo_qenable)(efx_txq_t *); efx_rc_t (*etxo_qpio_enable)(efx_txq_t *); void (*etxo_qpio_disable)(efx_txq_t *); efx_rc_t (*etxo_qpio_write)(efx_txq_t *,uint8_t *, size_t, size_t); efx_rc_t (*etxo_qpio_post)(efx_txq_t *, size_t, unsigned int, unsigned int *); efx_rc_t (*etxo_qdesc_post)(efx_txq_t *, efx_desc_t *, unsigned int, unsigned int, unsigned int *); void (*etxo_qdesc_dma_create)(efx_txq_t *, efsys_dma_addr_t, size_t, boolean_t, efx_desc_t *); void (*etxo_qdesc_tso_create)(efx_txq_t *, uint16_t, uint32_t, uint8_t, efx_desc_t *); void (*etxo_qdesc_vlantci_create)(efx_txq_t *, uint16_t, efx_desc_t *); #if EFSYS_OPT_QSTATS void (*etxo_qstats_update)(efx_txq_t *, efsys_stat_t *); #endif } efx_tx_ops_t; typedef struct efx_rx_ops_s { efx_rc_t (*erxo_init)(efx_nic_t *); void (*erxo_fini)(efx_nic_t *); #if EFSYS_OPT_RX_HDR_SPLIT efx_rc_t (*erxo_hdr_split_enable)(efx_nic_t *, unsigned int, unsigned int); #endif #if EFSYS_OPT_RX_SCATTER efx_rc_t (*erxo_scatter_enable)(efx_nic_t *, unsigned int); #endif #if EFSYS_OPT_RX_SCALE efx_rc_t (*erxo_scale_mode_set)(efx_nic_t *, efx_rx_hash_alg_t, efx_rx_hash_type_t, boolean_t); efx_rc_t (*erxo_scale_key_set)(efx_nic_t *, uint8_t *, size_t); efx_rc_t (*erxo_scale_tbl_set)(efx_nic_t *, unsigned int *, size_t); #endif void (*erxo_qpost)(efx_rxq_t *, efsys_dma_addr_t *, size_t, unsigned int, unsigned int, unsigned int); void (*erxo_qpush)(efx_rxq_t *, unsigned int, unsigned int *); efx_rc_t (*erxo_qflush)(efx_rxq_t *); void (*erxo_qenable)(efx_rxq_t *); efx_rc_t (*erxo_qcreate)(efx_nic_t *enp, unsigned int, unsigned int, efx_rxq_type_t, efsys_mem_t *, size_t, uint32_t, efx_evq_t *, efx_rxq_t *); void (*erxo_qdestroy)(efx_rxq_t *); } efx_rx_ops_t; typedef struct efx_mac_ops_s { efx_rc_t (*emo_reset)(efx_nic_t *); /* optional */ efx_rc_t (*emo_poll)(efx_nic_t *, efx_link_mode_t *); efx_rc_t (*emo_up)(efx_nic_t *, boolean_t *); efx_rc_t (*emo_addr_set)(efx_nic_t *); efx_rc_t (*emo_reconfigure)(efx_nic_t *); efx_rc_t (*emo_multicast_list_set)(efx_nic_t *); efx_rc_t (*emo_filter_default_rxq_set)(efx_nic_t *, efx_rxq_t *, boolean_t); void (*emo_filter_default_rxq_clear)(efx_nic_t *); #if EFSYS_OPT_LOOPBACK efx_rc_t (*emo_loopback_set)(efx_nic_t *, efx_link_mode_t, efx_loopback_type_t); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS efx_rc_t (*emo_stats_upload)(efx_nic_t *, efsys_mem_t *); efx_rc_t (*emo_stats_periodic)(efx_nic_t *, efsys_mem_t *, uint16_t, boolean_t); efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efsys_stat_t *, uint32_t *); #endif /* EFSYS_OPT_MAC_STATS */ } efx_mac_ops_t; typedef struct efx_phy_ops_s { efx_rc_t (*epo_power)(efx_nic_t *, boolean_t); /* optional */ efx_rc_t (*epo_reset)(efx_nic_t *); efx_rc_t (*epo_reconfigure)(efx_nic_t *); efx_rc_t (*epo_verify)(efx_nic_t *); efx_rc_t (*epo_uplink_check)(efx_nic_t *, boolean_t *); /* optional */ efx_rc_t (*epo_downlink_check)(efx_nic_t *, efx_link_mode_t *, unsigned int *, uint32_t *); efx_rc_t (*epo_oui_get)(efx_nic_t *, uint32_t *); #if EFSYS_OPT_PHY_STATS efx_rc_t (*epo_stats_update)(efx_nic_t *, efsys_mem_t *, uint32_t *); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS #if EFSYS_OPT_NAMES const char *(*epo_prop_name)(efx_nic_t *, unsigned int); #endif /* EFSYS_OPT_PHY_PROPS */ efx_rc_t (*epo_prop_get)(efx_nic_t *, unsigned int, uint32_t, uint32_t *); efx_rc_t (*epo_prop_set)(efx_nic_t *, unsigned int, uint32_t); #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_BIST efx_rc_t (*epo_bist_enable_offline)(efx_nic_t *); efx_rc_t (*epo_bist_start)(efx_nic_t *, efx_bist_type_t); efx_rc_t (*epo_bist_poll)(efx_nic_t *, efx_bist_type_t, efx_bist_result_t *, uint32_t *, unsigned long *, size_t); void (*epo_bist_stop)(efx_nic_t *, efx_bist_type_t); #endif /* EFSYS_OPT_BIST */ } efx_phy_ops_t; #if EFSYS_OPT_FILTER typedef struct efx_filter_ops_s { efx_rc_t (*efo_init)(efx_nic_t *); void (*efo_fini)(efx_nic_t *); efx_rc_t (*efo_restore)(efx_nic_t *); efx_rc_t (*efo_add)(efx_nic_t *, efx_filter_spec_t *, boolean_t may_replace); efx_rc_t (*efo_delete)(efx_nic_t *, efx_filter_spec_t *); efx_rc_t (*efo_supported_filters)(efx_nic_t *, uint32_t *, size_t *); efx_rc_t (*efo_reconfigure)(efx_nic_t *, uint8_t const *, boolean_t, boolean_t, boolean_t, boolean_t, uint8_t const *, int); } efx_filter_ops_t; extern __checkReturn efx_rc_t efx_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in int count); #endif /* EFSYS_OPT_FILTER */ typedef struct efx_port_s { efx_mac_type_t ep_mac_type; uint32_t ep_phy_type; uint8_t ep_port; uint32_t ep_mac_pdu; uint8_t ep_mac_addr[6]; efx_link_mode_t ep_link_mode; boolean_t ep_all_unicst; boolean_t ep_mulcst; boolean_t ep_all_mulcst; boolean_t ep_brdcst; unsigned int ep_fcntl; boolean_t ep_fcntl_autoneg; efx_oword_t ep_multicst_hash[2]; uint8_t ep_mulcst_addr_list[EFX_MAC_ADDR_LEN * EFX_MAC_MULTICAST_LIST_MAX]; uint32_t ep_mulcst_addr_count; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t ep_loopback_type; efx_link_mode_t ep_loopback_link_mode; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t ep_phy_flags; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL efx_phy_led_mode_t ep_phy_led_mode; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ efx_phy_media_type_t ep_fixed_port_type; efx_phy_media_type_t ep_module_type; uint32_t ep_adv_cap_mask; uint32_t ep_lp_cap_mask; uint32_t ep_default_adv_cap_mask; uint32_t ep_phy_cap_mask; #if EFSYS_OPT_PHY_TXC43128 || EFSYS_OPT_PHY_QT2025C union { struct { unsigned int bug10934_count; } ep_txc43128; struct { unsigned int bug17190_count; } ep_qt2025c; }; #endif boolean_t ep_mac_poll_needed; /* falcon only */ boolean_t ep_mac_up; /* falcon only */ uint32_t ep_fwver; /* falcon only */ boolean_t ep_mac_drain; boolean_t ep_mac_stats_pending; #if EFSYS_OPT_BIST efx_bist_type_t ep_current_bist; #endif efx_mac_ops_t *ep_emop; efx_phy_ops_t *ep_epop; } efx_port_t; typedef struct efx_mon_ops_s { efx_rc_t (*emo_reset)(efx_nic_t *); efx_rc_t (*emo_reconfigure)(efx_nic_t *); #if EFSYS_OPT_MON_STATS efx_rc_t (*emo_stats_update)(efx_nic_t *, efsys_mem_t *, efx_mon_stat_value_t *); #endif /* EFSYS_OPT_MON_STATS */ } efx_mon_ops_t; typedef struct efx_mon_s { efx_mon_type_t em_type; efx_mon_ops_t *em_emop; } efx_mon_t; typedef struct efx_intr_ops_s { efx_rc_t (*eio_init)(efx_nic_t *, efx_intr_type_t, efsys_mem_t *); void (*eio_enable)(efx_nic_t *); void (*eio_disable)(efx_nic_t *); void (*eio_disable_unlocked)(efx_nic_t *); efx_rc_t (*eio_trigger)(efx_nic_t *, unsigned int); + void (*eio_status_line)(efx_nic_t *, boolean_t *, uint32_t *); + void (*eio_status_message)(efx_nic_t *, unsigned int, + boolean_t *); + void (*eio_fatal)(efx_nic_t *); void (*eio_fini)(efx_nic_t *); } efx_intr_ops_t; typedef struct efx_intr_s { efx_intr_ops_t *ei_eiop; efsys_mem_t *ei_esmp; efx_intr_type_t ei_type; unsigned int ei_level; } efx_intr_t; typedef struct efx_nic_ops_s { efx_rc_t (*eno_probe)(efx_nic_t *); efx_rc_t (*eno_set_drv_limits)(efx_nic_t *, efx_drv_limits_t*); efx_rc_t (*eno_reset)(efx_nic_t *); efx_rc_t (*eno_init)(efx_nic_t *); efx_rc_t (*eno_get_vi_pool)(efx_nic_t *, uint32_t *); efx_rc_t (*eno_get_bar_region)(efx_nic_t *, efx_nic_region_t, uint32_t *, size_t *); #if EFSYS_OPT_DIAG efx_rc_t (*eno_sram_test)(efx_nic_t *, efx_sram_pattern_fn_t); efx_rc_t (*eno_register_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ void (*eno_fini)(efx_nic_t *); void (*eno_unprobe)(efx_nic_t *); } efx_nic_ops_t; #ifndef EFX_TXQ_LIMIT_TARGET #define EFX_TXQ_LIMIT_TARGET 259 #endif #ifndef EFX_RXQ_LIMIT_TARGET #define EFX_RXQ_LIMIT_TARGET 512 #endif #ifndef EFX_TXQ_DC_SIZE #define EFX_TXQ_DC_SIZE 1 /* 16 descriptors */ #endif #ifndef EFX_RXQ_DC_SIZE #define EFX_RXQ_DC_SIZE 3 /* 64 descriptors */ #endif #if EFSYS_OPT_FILTER typedef struct falconsiena_filter_spec_s { uint8_t fsfs_type; uint32_t fsfs_flags; uint32_t fsfs_dmaq_id; uint32_t fsfs_dword[3]; } falconsiena_filter_spec_t; typedef enum falconsiena_filter_type_e { EFX_FS_FILTER_RX_TCP_FULL, /* TCP/IPv4 4-tuple {dIP,dTCP,sIP,sTCP} */ EFX_FS_FILTER_RX_TCP_WILD, /* TCP/IPv4 dest {dIP,dTCP, -, -} */ EFX_FS_FILTER_RX_UDP_FULL, /* UDP/IPv4 4-tuple {dIP,dUDP,sIP,sUDP} */ EFX_FS_FILTER_RX_UDP_WILD, /* UDP/IPv4 dest {dIP,dUDP, -, -} */ #if EFSYS_OPT_SIENA EFX_FS_FILTER_RX_MAC_FULL, /* Ethernet {dMAC,VLAN} */ EFX_FS_FILTER_RX_MAC_WILD, /* Ethernet {dMAC, -} */ EFX_FS_FILTER_TX_TCP_FULL, /* TCP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_FS_FILTER_TX_TCP_WILD, /* TCP/IPv4 { -, -,sIP,sTCP} */ EFX_FS_FILTER_TX_UDP_FULL, /* UDP/IPv4 {dIP,dTCP,sIP,sTCP} */ EFX_FS_FILTER_TX_UDP_WILD, /* UDP/IPv4 source (host, port) */ EFX_FS_FILTER_TX_MAC_FULL, /* Ethernet source (MAC address, VLAN ID) */ EFX_FS_FILTER_TX_MAC_WILD, /* Ethernet source (MAC address) */ #endif /* EFSYS_OPT_SIENA */ EFX_FS_FILTER_NTYPES } falconsiena_filter_type_t; typedef enum falconsiena_filter_tbl_id_e { EFX_FS_FILTER_TBL_RX_IP = 0, EFX_FS_FILTER_TBL_RX_MAC, EFX_FS_FILTER_TBL_TX_IP, EFX_FS_FILTER_TBL_TX_MAC, EFX_FS_FILTER_NTBLS } falconsiena_filter_tbl_id_t; typedef struct falconsiena_filter_tbl_s { int fsft_size; /* number of entries */ int fsft_used; /* active count */ uint32_t *fsft_bitmap; /* active bitmap */ falconsiena_filter_spec_t *fsft_spec; /* array of saved specs */ } falconsiena_filter_tbl_t; typedef struct falconsiena_filter_s { falconsiena_filter_tbl_t fsf_tbl[EFX_FS_FILTER_NTBLS]; unsigned int fsf_depth[EFX_FS_FILTER_NTYPES]; } falconsiena_filter_t; typedef struct efx_filter_s { #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA falconsiena_filter_t *ef_falconsiena_filter; #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ -#if EFSYS_OPT_HUNTINGTON - hunt_filter_table_t *ef_hunt_filter_table; -#endif /* EFSYS_OPT_HUNTINGTON */ +#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD + ef10_filter_table_t *ef_ef10_filter_table; +#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ } efx_filter_t; extern void falconsiena_filter_tbl_clear( __in efx_nic_t *enp, __in falconsiena_filter_tbl_id_t tbl); #endif /* EFSYS_OPT_FILTER */ #if EFSYS_OPT_MCDI typedef struct efx_mcdi_ops_s { efx_rc_t (*emco_init)(efx_nic_t *, const efx_mcdi_transport_t *); void (*emco_request_copyin)(efx_nic_t *, efx_mcdi_req_t *, unsigned int, boolean_t, boolean_t); void (*emco_request_copyout)(efx_nic_t *, efx_mcdi_req_t *); efx_rc_t (*emco_poll_reboot)(efx_nic_t *); boolean_t (*emco_poll_response)(efx_nic_t *); void (*emco_read_response)(efx_nic_t *, void *, size_t, size_t); void (*emco_fini)(efx_nic_t *); efx_rc_t (*emco_feature_supported)(efx_nic_t *, efx_mcdi_feature_id_t, boolean_t *); } efx_mcdi_ops_t; typedef struct efx_mcdi_s { efx_mcdi_ops_t *em_emcop; const efx_mcdi_transport_t *em_emtp; efx_mcdi_iface_t em_emip; } efx_mcdi_t; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM typedef struct efx_nvram_ops_s { #if EFSYS_OPT_DIAG efx_rc_t (*envo_test)(efx_nic_t *); #endif /* EFSYS_OPT_DIAG */ efx_rc_t (*envo_size)(efx_nic_t *, efx_nvram_type_t, size_t *); efx_rc_t (*envo_get_version)(efx_nic_t *, efx_nvram_type_t, uint32_t *, uint16_t *); efx_rc_t (*envo_rw_start)(efx_nic_t *, efx_nvram_type_t, size_t *); efx_rc_t (*envo_read_chunk)(efx_nic_t *, efx_nvram_type_t, unsigned int, caddr_t, size_t); efx_rc_t (*envo_erase)(efx_nic_t *, efx_nvram_type_t); efx_rc_t (*envo_write_chunk)(efx_nic_t *, efx_nvram_type_t, unsigned int, caddr_t, size_t); void (*envo_rw_finish)(efx_nic_t *, efx_nvram_type_t); efx_rc_t (*envo_set_version)(efx_nic_t *, efx_nvram_type_t, uint16_t *); } efx_nvram_ops_t; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD typedef struct efx_vpd_ops_s { efx_rc_t (*evpdo_init)(efx_nic_t *); efx_rc_t (*evpdo_size)(efx_nic_t *, size_t *); efx_rc_t (*evpdo_read)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_verify)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_reinit)(efx_nic_t *, caddr_t, size_t); efx_rc_t (*evpdo_get)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_set)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *); efx_rc_t (*evpdo_next)(efx_nic_t *, caddr_t, size_t, efx_vpd_value_t *, unsigned int *); efx_rc_t (*evpdo_write)(efx_nic_t *, caddr_t, size_t); void (*evpdo_fini)(efx_nic_t *); } efx_vpd_ops_t; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM __checkReturn efx_rc_t efx_mcdi_nvram_partitions( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size, __out unsigned int *npartnp); __checkReturn efx_rc_t efx_mcdi_nvram_metadata( __in efx_nic_t *enp, __in uint32_t partn, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4], __out_bcount_opt(size) char *descp, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_info( __in efx_nic_t *enp, __in uint32_t partn, __out_opt size_t *sizep, __out_opt uint32_t *addressp, __out_opt uint32_t *erase_sizep, __out_opt uint32_t *write_sizep); __checkReturn efx_rc_t efx_mcdi_nvram_update_start( __in efx_nic_t *enp, __in uint32_t partn); __checkReturn efx_rc_t efx_mcdi_nvram_read( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_erase( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_write( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t offset, __out_bcount(size) caddr_t data, __in size_t size); __checkReturn efx_rc_t efx_mcdi_nvram_update_finish( __in efx_nic_t *enp, __in uint32_t partn, __in boolean_t reboot); #if EFSYS_OPT_DIAG __checkReturn efx_rc_t efx_mcdi_nvram_test( __in efx_nic_t *enp, __in uint32_t partn); #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ typedef struct efx_drv_cfg_s { uint32_t edc_min_vi_count; uint32_t edc_max_vi_count; uint32_t edc_max_piobuf_count; uint32_t edc_pio_alloc_size; } efx_drv_cfg_t; struct efx_nic_s { uint32_t en_magic; efx_family_t en_family; uint32_t en_features; efsys_identifier_t *en_esip; efsys_lock_t *en_eslp; efsys_bar_t *en_esbp; unsigned int en_mod_flags; unsigned int en_reset_flags; efx_nic_cfg_t en_nic_cfg; efx_drv_cfg_t en_drv_cfg; efx_port_t en_port; efx_mon_t en_mon; efx_intr_t en_intr; uint32_t en_ev_qcount; uint32_t en_rx_qcount; uint32_t en_tx_qcount; efx_nic_ops_t *en_enop; efx_ev_ops_t *en_eevop; efx_tx_ops_t *en_etxop; efx_rx_ops_t *en_erxop; #if EFSYS_OPT_FILTER efx_filter_t en_filter; efx_filter_ops_t *en_efop; #endif /* EFSYS_OPT_FILTER */ #if EFSYS_OPT_MCDI efx_mcdi_t en_mcdi; #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM efx_nvram_type_t en_nvram_locked; efx_nvram_ops_t *en_envop; #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD efx_vpd_ops_t *en_evpdop; #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_RX_SCALE efx_rx_hash_support_t en_hash_support; efx_rx_scale_support_t en_rss_support; uint32_t en_rss_context; #endif /* EFSYS_OPT_RX_SCALE */ uint32_t en_vport_id; union { #if EFSYS_OPT_FALCON struct { falcon_spi_dev_t enu_fsd[FALCON_SPI_NTYPES]; falcon_i2c_t enu_fip; boolean_t enu_i2c_locked; #if EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE const uint8_t *enu_forced_cfg; #endif /* EFSYS_OPT_FALCON_NIC_CFG_OVERRIDE */ uint8_t enu_mon_devid; #if EFSYS_OPT_PCIE_TUNE unsigned int enu_nlanes; #endif /* EFSYS_OPT_PCIE_TUNE */ uint16_t enu_board_rev; boolean_t enu_internal_sram; uint8_t enu_sram_num_bank; uint8_t enu_sram_bank_size; } falcon; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA struct { #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD unsigned int enu_partn_mask; #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */ #if EFSYS_OPT_VPD caddr_t enu_svpd; size_t enu_svpd_length; #endif /* EFSYS_OPT_VPD */ int enu_unused; } siena; #endif /* EFSYS_OPT_SIENA */ int enu_unused; } en_u; #if (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) union en_arch { struct { int ena_vi_base; int ena_vi_count; #if EFSYS_OPT_VPD caddr_t ena_svpd; size_t ena_svpd_length; #endif /* EFSYS_OPT_VPD */ efx_piobuf_handle_t ena_piobuf_handle[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_piobuf_count; uint32_t ena_pio_alloc_map[EF10_MAX_PIOBUF_NBUFS]; uint32_t ena_pio_write_vi_base; /* Memory BAR mapping regions */ uint32_t ena_uc_mem_map_offset; size_t ena_uc_mem_map_size; uint32_t ena_wc_mem_map_offset; size_t ena_wc_mem_map_size; } ef10; } en_arch; #endif /* (EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD) */ }; #define EFX_NIC_MAGIC 0x02121996 typedef boolean_t (*efx_ev_handler_t)(efx_evq_t *, efx_qword_t *, const efx_ev_callbacks_t *, void *); typedef struct efx_evq_rxq_state_s { unsigned int eers_rx_read_ptr; unsigned int eers_rx_mask; } efx_evq_rxq_state_t; struct efx_evq_s { uint32_t ee_magic; efx_nic_t *ee_enp; unsigned int ee_index; unsigned int ee_mask; efsys_mem_t *ee_esmp; #if EFSYS_OPT_QSTATS uint32_t ee_stat[EV_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ efx_ev_handler_t ee_rx; efx_ev_handler_t ee_tx; efx_ev_handler_t ee_driver; efx_ev_handler_t ee_global; efx_ev_handler_t ee_drv_gen; #if EFSYS_OPT_MCDI efx_ev_handler_t ee_mcdi; #endif /* EFSYS_OPT_MCDI */ efx_evq_rxq_state_t ee_rxq_state[EFX_EV_RX_NLABELS]; }; #define EFX_EVQ_MAGIC 0x08081997 #define EFX_EVQ_FALCON_TIMER_QUANTUM_NS 4968 /* 621 cycles */ #define EFX_EVQ_SIENA_TIMER_QUANTUM_NS 6144 /* 768 cycles */ struct efx_rxq_s { uint32_t er_magic; efx_nic_t *er_enp; efx_evq_t *er_eep; unsigned int er_index; unsigned int er_label; unsigned int er_mask; efsys_mem_t *er_esmp; }; #define EFX_RXQ_MAGIC 0x15022005 struct efx_txq_s { uint32_t et_magic; efx_nic_t *et_enp; unsigned int et_index; unsigned int et_mask; efsys_mem_t *et_esmp; #if EFSYS_OPT_HUNTINGTON uint32_t et_pio_bufnum; uint32_t et_pio_blknum; uint32_t et_pio_write_offset; uint32_t et_pio_offset; size_t et_pio_size; #endif #if EFSYS_OPT_QSTATS uint32_t et_stat[TX_NQSTATS]; #endif /* EFSYS_OPT_QSTATS */ }; #define EFX_TXQ_MAGIC 0x05092005 #define EFX_MAC_ADDR_COPY(_dst, _src) \ do { \ (_dst)[0] = (_src)[0]; \ (_dst)[1] = (_src)[1]; \ (_dst)[2] = (_src)[2]; \ (_dst)[3] = (_src)[3]; \ (_dst)[4] = (_src)[4]; \ (_dst)[5] = (_src)[5]; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_MAC_BROADCAST_ADDR_SET(_dst) \ do { \ uint16_t *_d = (uint16_t *)(_dst); \ _d[0] = 0xffff; \ _d[1] = 0xffff; \ _d[2] = 0xffff; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if EFSYS_OPT_CHECK_REG #define EFX_CHECK_REG(_enp, _reg) \ do { \ const char *name = #_reg; \ char min = name[4]; \ char max = name[5]; \ char rev; \ \ switch ((_enp)->en_family) { \ case EFX_FAMILY_FALCON: \ rev = 'B'; \ break; \ \ case EFX_FAMILY_SIENA: \ rev = 'C'; \ break; \ \ case EFX_FAMILY_HUNTINGTON: \ rev = 'D'; \ break; \ \ case EFX_FAMILY_MEDFORD: \ rev = 'E'; \ break; \ \ default: \ rev = '?'; \ break; \ } \ \ EFSYS_ASSERT3S(rev, >=, min); \ EFSYS_ASSERT3S(rev, <=, max); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_CHECK_REG(_enp, _reg) do { \ _NOTE(CONSTANTCONDITION) \ } while(B_FALSE) #endif #define EFX_BAR_READD(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ EFSYS_PROBE3(efx_bar_readd, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITED(_enp, _reg, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE3(efx_bar_writed, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, _reg ## _OFST, \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ EFSYS_PROBE4(efx_bar_readq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEQ(_enp, _reg, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_writeq, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, _reg ## _OFST, \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_READO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ EFSYS_PROBE6(efx_bar_reado, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_WRITEO(_enp, _reg, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE6(efx_bar_writeo, const char *, #_reg, \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, _reg ## _OFST, \ (_eop), B_TRUE); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READD(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READD((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ EFSYS_PROBE4(efx_bar_tbl_readd, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED2(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (2 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITED3(_enp, _reg, _index, _edp, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE4(efx_bar_tbl_writed, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_edp)->ed_u32[0]); \ EFSYS_BAR_WRITED((_enp)->en_esbp, \ (_reg ## _OFST + \ (3 * sizeof (efx_dword_t)) + \ ((_index) * _reg ## _STEP)), \ (_edp), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ EFSYS_PROBE5(efx_bar_tbl_readq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEQ(_enp, _reg, _index, _eqp) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE5(efx_bar_tbl_writeq, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eqp)->eq_u32[1], \ uint32_t, (_eqp)->eq_u32[0]); \ EFSYS_BAR_WRITEQ((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eqp)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_READO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_BAR_READO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ EFSYS_PROBE7(efx_bar_tbl_reado, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_BAR_TBL_WRITEO(_enp, _reg, _index, _eop, _lock) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_writeo, const char *, #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop), (_lock)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) /* * Allow drivers to perform optimised 128-bit doorbell writes. * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are * special-cased in the BIU on the Falcon/Siena and EF10 architectures to avoid * the need for locking in the host, and are the only ones known to be safe to * use 128-bites write with. */ #define EFX_BAR_TBL_DOORBELL_WRITEO(_enp, _reg, _index, _eop) \ do { \ EFX_CHECK_REG((_enp), (_reg)); \ EFSYS_PROBE7(efx_bar_tbl_doorbell_writeo, \ const char *, \ #_reg, \ uint32_t, (_index), \ uint32_t, _reg ## _OFST, \ uint32_t, (_eop)->eo_u32[3], \ uint32_t, (_eop)->eo_u32[2], \ uint32_t, (_eop)->eo_u32[1], \ uint32_t, (_eop)->eo_u32[0]); \ EFSYS_BAR_DOORBELL_WRITEO((_enp)->en_esbp, \ (_reg ## _OFST + ((_index) * _reg ## _STEP)), \ (_eop)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_DMA_SYNC_QUEUE_FOR_DEVICE(_esmp, _entries, _wptr, _owptr) \ do { \ unsigned int _new = (_wptr); \ unsigned int _old = (_owptr); \ \ if ((_new) >= (_old)) \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ (_old) * sizeof (efx_desc_t), \ ((_new) - (_old)) * sizeof (efx_desc_t)); \ else \ /* \ * It is cheaper to sync entire map than sync \ * two parts especially when offset/size are \ * ignored and entire map is synced in any case.\ */ \ EFSYS_DMA_SYNC_FOR_DEVICE((_esmp), \ 0, \ (_entries) * sizeof (efx_desc_t)); \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) extern __checkReturn efx_rc_t efx_nic_biu_test( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_select( __in efx_nic_t *enp); extern void efx_mac_multicast_hash_compute( __in_ecount(6*count) uint8_t const *addrs, __in int count, __out efx_oword_t *hash_low, __out efx_oword_t *hash_high); extern __checkReturn efx_rc_t efx_phy_probe( __in efx_nic_t *enp); extern void efx_phy_unprobe( __in efx_nic_t *enp); #if EFSYS_OPT_VPD /* VPD utility functions */ extern __checkReturn efx_rc_t efx_vpd_hunk_length( __in_bcount(size) caddr_t data, __in size_t size, __out size_t *lengthp); extern __checkReturn efx_rc_t efx_vpd_hunk_verify( __in_bcount(size) caddr_t data, __in size_t size, __out_opt boolean_t *cksummedp); extern __checkReturn efx_rc_t efx_vpd_hunk_reinit( __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t wantpid); extern __checkReturn efx_rc_t efx_vpd_hunk_get( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_tag_t tag, __in efx_vpd_keyword_t keyword, __out unsigned int *payloadp, __out uint8_t *paylenp); extern __checkReturn efx_rc_t efx_vpd_hunk_next( __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_tag_t *tagp, __out efx_vpd_keyword_t *keyword, __out_bcount_opt(*paylenp) unsigned int *payloadp, __out_opt uint8_t *paylenp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_hunk_set( __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); #endif /* EFSYS_OPT_VPD */ #if EFSYS_OPT_DIAG extern efx_sram_pattern_fn_t __efx_sram_pattern_fns[]; typedef struct efx_register_set_s { unsigned int address; unsigned int step; unsigned int rows; efx_oword_t mask; } efx_register_set_t; extern __checkReturn efx_rc_t efx_nic_test_registers( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in size_t count); extern __checkReturn efx_rc_t efx_nic_test_tables( __in efx_nic_t *enp, __in efx_register_set_t *rsp, __in efx_pattern_type_t pattern, __in size_t count); #endif /* EFSYS_OPT_DIAG */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp); extern __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp); #endif /* EFSYS_OPT_MCDI */ #ifdef __cplusplus } #endif #endif /* _SYS_EFX_IMPL_H */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_intr.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_intr.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_intr.c (revision 293803) @@ -1,584 +1,613 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); static void falconsiena_intr_enable( __in efx_nic_t *enp); static void falconsiena_intr_disable( __in efx_nic_t *enp); static void falconsiena_intr_disable_unlocked( __in efx_nic_t *enp); static __checkReturn efx_rc_t falconsiena_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); static void falconsiena_intr_fini( __in efx_nic_t *enp); +static void +falconsiena_intr_status_line( + __in efx_nic_t *enp, + __out boolean_t *fatalp, + __out uint32_t *qmaskp); -static __checkReturn boolean_t -falconsiena_intr_check_fatal( - __in efx_nic_t *enp); +static void +falconsiena_intr_status_message( + __in efx_nic_t *enp, + __in unsigned int message, + __out boolean_t *fatalp); static void falconsiena_intr_fatal( __in efx_nic_t *enp); +static __checkReturn boolean_t +falconsiena_intr_check_fatal( + __in efx_nic_t *enp); + + #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ #if EFSYS_OPT_FALCON static efx_intr_ops_t __efx_intr_falcon_ops = { falconsiena_intr_init, /* eio_init */ falconsiena_intr_enable, /* eio_enable */ falconsiena_intr_disable, /* eio_disable */ falconsiena_intr_disable_unlocked, /* eio_disable_unlocked */ falconsiena_intr_trigger, /* eio_trigger */ + falconsiena_intr_status_line, /* eio_status_line */ + falconsiena_intr_status_message, /* eio_status_message */ + falconsiena_intr_fatal, /* eio_fatal */ falconsiena_intr_fini, /* eio_fini */ }; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA static efx_intr_ops_t __efx_intr_siena_ops = { falconsiena_intr_init, /* eio_init */ falconsiena_intr_enable, /* eio_enable */ falconsiena_intr_disable, /* eio_disable */ falconsiena_intr_disable_unlocked, /* eio_disable_unlocked */ falconsiena_intr_trigger, /* eio_trigger */ + falconsiena_intr_status_line, /* eio_status_line */ + falconsiena_intr_status_message, /* eio_status_message */ + falconsiena_intr_fatal, /* eio_fatal */ falconsiena_intr_fini, /* eio_fini */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static efx_intr_ops_t __efx_intr_ef10_ops = { ef10_intr_init, /* eio_init */ ef10_intr_enable, /* eio_enable */ ef10_intr_disable, /* eio_disable */ ef10_intr_disable_unlocked, /* eio_disable_unlocked */ ef10_intr_trigger, /* eio_trigger */ + ef10_intr_status_line, /* eio_status_line */ + ef10_intr_status_message, /* eio_status_message */ + ef10_intr_fatal, /* eio_fatal */ ef10_intr_fini, /* eio_fini */ }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); if (enp->en_mod_flags & EFX_MOD_INTR) { rc = EINVAL; goto fail1; } eip->ei_esmp = esmp; eip->ei_type = type; eip->ei_level = 0; enp->en_mod_flags |= EFX_MOD_INTR; switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: eiop = (efx_intr_ops_t *)&__efx_intr_falcon_ops; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: eiop = (efx_intr_ops_t *)&__efx_intr_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: eiop = (efx_intr_ops_t *)&__efx_intr_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: eiop = (efx_intr_ops_t *)&__efx_intr_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(B_FALSE); rc = ENOTSUP; goto fail2; } if ((rc = eiop->eio_init(enp, type, esmp)) != 0) goto fail3; eip->ei_eiop = eiop; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_intr_fini( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); eiop->eio_fini(enp); enp->en_mod_flags &= ~EFX_MOD_INTR; } void efx_intr_enable( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); eiop->eio_enable(enp); } void efx_intr_disable( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); eiop->eio_disable(enp); } void efx_intr_disable_unlocked( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); eiop->eio_disable_unlocked(enp); } __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level) { efx_intr_t *eip = &(enp->en_intr); efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); return (eiop->eio_trigger(enp, level)); } void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *qmaskp) { efx_intr_t *eip = &(enp->en_intr); - efx_dword_t dword; + efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); - /* Ensure Huntington and Falcon/Siena ISR at same location */ - EFX_STATIC_ASSERT(FR_BZ_INT_ISR0_REG_OFST == - ER_DZ_BIU_INT_ISR_REG_OFST); - - /* - * Read the queue mask and implicitly acknowledge the - * interrupt. - */ - EFX_BAR_READD(enp, FR_BZ_INT_ISR0_REG, &dword, B_FALSE); - *qmaskp = EFX_DWORD_FIELD(dword, EFX_DWORD_0); - - EFSYS_PROBE1(qmask, uint32_t, *qmaskp); - -#if EFSYS_OPT_HUNTINGTON - if (enp->en_family == EFX_FAMILY_HUNTINGTON) { - /* Huntington reports fatal errors via events */ - *fatalp = B_FALSE; - return; - } -#endif - if (*qmaskp & (1U << eip->ei_level)) - *fatalp = falconsiena_intr_check_fatal(enp); - else - *fatalp = B_FALSE; + eiop->eio_status_line(enp, fatalp, qmaskp); } void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp) { efx_intr_t *eip = &(enp->en_intr); + efx_intr_ops_t *eiop = eip->ei_eiop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); -#if EFSYS_OPT_HUNTINGTON - if (enp->en_family == EFX_FAMILY_HUNTINGTON) { - /* Huntington reports fatal errors via events */ - *fatalp = B_FALSE; - return; - } -#endif - if (message == eip->ei_level) - *fatalp = falconsiena_intr_check_fatal(enp); - else - *fatalp = B_FALSE; + eiop->eio_status_message(enp, message, fatalp); } void efx_intr_fatal( __in efx_nic_t *enp) { + efx_intr_t *eip = &(enp->en_intr); + efx_intr_ops_t *eiop = eip->ei_eiop; + EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); -#if EFSYS_OPT_HUNTINGTON - if (enp->en_family == EFX_FAMILY_HUNTINGTON) { - /* Huntington reports fatal errors via events */ - return; - } -#endif -#if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA - falconsiena_intr_fatal(enp); -#endif + eiop->eio_fatal(enp); } /* ************************************************************************* */ /* ************************************************************************* */ /* ************************************************************************* */ #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp) { efx_intr_t *eip = &(enp->en_intr); efx_oword_t oword; /* * bug17213 workaround. * * Under legacy interrupts, don't share a level between fatal * interrupts and event queue interrupts. Under MSI-X, they * must share, or we won't get an interrupt. */ if (enp->en_family == EFX_FAMILY_SIENA && eip->ei_type == EFX_INTR_LINE) eip->ei_level = 0x1f; else eip->ei_level = 0; /* Enable all the genuinely fatal interrupts */ EFX_SET_OWORD(oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_ILL_ADR_INT_KER_EN, 0); EFX_SET_OWORD_FIELD(oword, FRF_AZ_RBUF_OWN_INT_KER_EN, 0); EFX_SET_OWORD_FIELD(oword, FRF_AZ_TBUF_OWN_INT_KER_EN, 0); if (enp->en_family >= EFX_FAMILY_SIENA) EFX_SET_OWORD_FIELD(oword, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 0); EFX_BAR_WRITEO(enp, FR_AZ_FATAL_INTR_REG_KER, &oword); /* Set up the interrupt address register */ EFX_POPULATE_OWORD_3(oword, FRF_AZ_NORM_INT_VEC_DIS_KER, (type == EFX_INTR_MESSAGE) ? 1 : 0, FRF_AZ_INT_ADR_KER_DW0, EFSYS_MEM_ADDR(esmp) & 0xffffffff, FRF_AZ_INT_ADR_KER_DW1, EFSYS_MEM_ADDR(esmp) >> 32); EFX_BAR_WRITEO(enp, FR_AZ_INT_ADR_REG_KER, &oword); return (0); } static void falconsiena_intr_enable( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efx_oword_t oword; EFX_BAR_READO(enp, FR_AZ_INT_EN_REG_KER, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_KER_INT_LEVE_SEL, eip->ei_level); EFX_SET_OWORD_FIELD(oword, FRF_AZ_DRV_INT_EN_KER, 1); EFX_BAR_WRITEO(enp, FR_AZ_INT_EN_REG_KER, &oword); } static void falconsiena_intr_disable( __in efx_nic_t *enp) { efx_oword_t oword; EFX_BAR_READO(enp, FR_AZ_INT_EN_REG_KER, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_DRV_INT_EN_KER, 0); EFX_BAR_WRITEO(enp, FR_AZ_INT_EN_REG_KER, &oword); EFSYS_SPIN(10); } static void falconsiena_intr_disable_unlocked( __in efx_nic_t *enp) { efx_oword_t oword; EFSYS_BAR_READO(enp->en_esbp, FR_AZ_INT_EN_REG_KER_OFST, &oword, B_FALSE); EFX_SET_OWORD_FIELD(oword, FRF_AZ_DRV_INT_EN_KER, 0); EFSYS_BAR_WRITEO(enp->en_esbp, FR_AZ_INT_EN_REG_KER_OFST, &oword, B_FALSE); } static __checkReturn efx_rc_t falconsiena_intr_trigger( __in efx_nic_t *enp, __in unsigned int level) { efx_intr_t *eip = &(enp->en_intr); efx_oword_t oword; unsigned int count; uint32_t sel; efx_rc_t rc; /* bug16757: No event queues can be initialized */ EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV)); switch (enp->en_family) { case EFX_FAMILY_FALCON: if (level >= EFX_NINTR_FALCON) { rc = EINVAL; goto fail1; } break; case EFX_FAMILY_SIENA: if (level >= EFX_NINTR_SIENA) { rc = EINVAL; goto fail1; } break; default: EFSYS_ASSERT(B_FALSE); break; } if (level > EFX_MASK32(FRF_AZ_KER_INT_LEVE_SEL)) return (ENOTSUP); /* avoid EFSYS_PROBE() */ sel = level; /* Trigger a test interrupt */ EFX_BAR_READO(enp, FR_AZ_INT_EN_REG_KER, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_KER_INT_LEVE_SEL, sel); EFX_SET_OWORD_FIELD(oword, FRF_AZ_KER_INT_KER, 1); EFX_BAR_WRITEO(enp, FR_AZ_INT_EN_REG_KER, &oword); /* * Wait up to 100ms for the interrupt to be raised before restoring * KER_INT_LEVE_SEL. Ignore a failure to raise (the caller will * observe this soon enough anyway), but always reset KER_INT_LEVE_SEL */ count = 0; do { EFSYS_SPIN(100); /* 100us */ EFX_BAR_READO(enp, FR_AZ_INT_EN_REG_KER, &oword); } while (EFX_OWORD_FIELD(oword, FRF_AZ_KER_INT_KER) && ++count < 1000); EFX_SET_OWORD_FIELD(oword, FRF_AZ_KER_INT_LEVE_SEL, eip->ei_level); EFX_BAR_WRITEO(enp, FR_AZ_INT_EN_REG_KER, &oword); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn boolean_t falconsiena_intr_check_fatal( __in efx_nic_t *enp) { efx_intr_t *eip = &(enp->en_intr); efsys_mem_t *esmp = eip->ei_esmp; efx_oword_t oword; /* Read the syndrome */ EFSYS_MEM_READO(esmp, 0, &oword); if (EFX_OWORD_FIELD(oword, FSF_AZ_NET_IVEC_FATAL_INT) != 0) { EFSYS_PROBE(fatal); /* Clear the fatal interrupt condition */ EFX_SET_OWORD_FIELD(oword, FSF_AZ_NET_IVEC_FATAL_INT, 0); EFSYS_MEM_WRITEO(esmp, 0, &oword); return (B_TRUE); } return (B_FALSE); } + +static void +falconsiena_intr_status_line( + __in efx_nic_t *enp, + __out boolean_t *fatalp, + __out uint32_t *qmaskp) +{ + efx_intr_t *eip = &(enp->en_intr); + efx_dword_t dword; + + EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); + + /* + * Read the queue mask and implicitly acknowledge the + * interrupt. + */ + EFX_BAR_READD(enp, FR_BZ_INT_ISR0_REG, &dword, B_FALSE); + *qmaskp = EFX_DWORD_FIELD(dword, EFX_DWORD_0); + + EFSYS_PROBE1(qmask, uint32_t, *qmaskp); + + if (*qmaskp & (1U << eip->ei_level)) + *fatalp = falconsiena_intr_check_fatal(enp); + else + *fatalp = B_FALSE; +} + +static void +falconsiena_intr_status_message( + __in efx_nic_t *enp, + __in unsigned int message, + __out boolean_t *fatalp) +{ + efx_intr_t *eip = &(enp->en_intr); + + EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); + EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); + + if (message == eip->ei_level) + *fatalp = falconsiena_intr_check_fatal(enp); + else + *fatalp = B_FALSE; +} + static void falconsiena_intr_fatal( __in efx_nic_t *enp) { #if EFSYS_OPT_DECODE_INTR_FATAL efx_oword_t fatal; efx_oword_t mem_per; EFX_BAR_READO(enp, FR_AZ_FATAL_INTR_REG_KER, &fatal); EFX_ZERO_OWORD(mem_per); if (EFX_OWORD_FIELD(fatal, FRF_AZ_SRM_PERR_INT_KER) != 0 || EFX_OWORD_FIELD(fatal, FRF_AZ_MEM_PERR_INT_KER) != 0) EFX_BAR_READO(enp, FR_AZ_MEM_STAT_REG, &mem_per); if (EFX_OWORD_FIELD(fatal, FRF_AZ_SRAM_OOB_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_SRAM_OOB, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_BUFID_DC_OOB_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_BUFID_DC_OOB, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_MEM_PERR_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_MEM_PERR, EFX_OWORD_FIELD(mem_per, EFX_DWORD_0), EFX_OWORD_FIELD(mem_per, EFX_DWORD_1)); if (EFX_OWORD_FIELD(fatal, FRF_AZ_RBUF_OWN_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_RBUF_OWN, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_TBUF_OWN_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_TBUF_OWN, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_RDESCQ_OWN_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_RDESQ_OWN, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_TDESCQ_OWN_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_TDESQ_OWN, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_EVQ_OWN_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_EVQ_OWN, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_EVF_OFLO_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_EVFF_OFLO, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_ILL_ADR_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_ILL_ADDR, 0, 0); if (EFX_OWORD_FIELD(fatal, FRF_AZ_SRM_PERR_INT_KER) != 0) EFSYS_ERR(enp->en_esip, EFX_ERR_SRAM_PERR, EFX_OWORD_FIELD(mem_per, EFX_DWORD_0), EFX_OWORD_FIELD(mem_per, EFX_DWORD_1)); #else EFSYS_ASSERT(0); #endif } static void falconsiena_intr_fini( __in efx_nic_t *enp) { efx_oword_t oword; /* Clear the interrupt address register */ EFX_ZERO_OWORD(oword); EFX_BAR_WRITEO(enp, FR_AZ_INT_ADR_REG_KER, &oword); } #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_mac.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_mac.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_mac.c (revision 293803) @@ -1,978 +1,931 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_impl.h" #if EFSYS_OPT_MAC_FALCON_GMAC #include "falcon_gmac.h" #endif #if EFSYS_OPT_MAC_FALCON_XMAC #include "falcon_xmac.h" #endif #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_mac_multicast_list_set( __in efx_nic_t *enp); #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ #if EFSYS_OPT_MAC_FALCON_GMAC static efx_mac_ops_t __efx_falcon_gmac_ops = { falcon_gmac_reset, /* emo_reset */ falcon_mac_poll, /* emo_poll */ falcon_mac_up, /* emo_up */ falcon_gmac_reconfigure, /* emo_addr_set */ falcon_gmac_reconfigure, /* emo_reconfigure */ falconsiena_mac_multicast_list_set, /* emo_multicast_list_set */ NULL, /* emo_filter_set_default_rxq */ NULL, /* emo_filter_default_rxq_clear */ #if EFSYS_OPT_LOOPBACK falcon_mac_loopback_set, /* emo_loopback_set */ #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS falcon_mac_stats_upload, /* emo_stats_upload */ NULL, /* emo_stats_periodic */ falcon_gmac_stats_update /* emo_stats_update */ #endif /* EFSYS_OPT_MAC_STATS */ }; #endif /* EFSYS_OPT_MAC_FALCON_GMAC */ #if EFSYS_OPT_MAC_FALCON_XMAC static efx_mac_ops_t __efx_falcon_xmac_ops = { falcon_xmac_reset, /* emo_reset */ falcon_mac_poll, /* emo_poll */ falcon_mac_up, /* emo_up */ falcon_xmac_reconfigure, /* emo_addr_set */ falcon_xmac_reconfigure, /* emo_reconfigure */ falconsiena_mac_multicast_list_set, /* emo_multicast_list_set */ NULL, /* emo_filter_set_default_rxq */ NULL, /* emo_filter_default_rxq_clear */ #if EFSYS_OPT_LOOPBACK falcon_mac_loopback_set, /* emo_loopback_set */ #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS falcon_mac_stats_upload, /* emo_stats_upload */ NULL, /* emo_stats_periodic */ falcon_xmac_stats_update /* emo_stats_update */ #endif /* EFSYS_OPT_MAC_STATS */ }; #endif /* EFSYS_OPT_MAC_FALCON_XMAC */ #if EFSYS_OPT_SIENA static efx_mac_ops_t __efx_siena_mac_ops = { NULL, /* emo_reset */ siena_mac_poll, /* emo_poll */ siena_mac_up, /* emo_up */ siena_mac_reconfigure, /* emo_addr_set */ siena_mac_reconfigure, /* emo_reconfigure */ falconsiena_mac_multicast_list_set, /* emo_multicast_list_set */ NULL, /* emo_filter_set_default_rxq */ NULL, /* emo_filter_default_rxq_clear */ #if EFSYS_OPT_LOOPBACK siena_mac_loopback_set, /* emo_loopback_set */ #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS efx_mcdi_mac_stats_upload, /* emo_stats_upload */ efx_mcdi_mac_stats_periodic, /* emo_stats_periodic */ siena_mac_stats_update /* emo_stats_update */ #endif /* EFSYS_OPT_MAC_STATS */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON static efx_mac_ops_t __efx_hunt_mac_ops = { NULL, /* emo_reset */ hunt_mac_poll, /* emo_poll */ hunt_mac_up, /* emo_up */ hunt_mac_addr_set, /* emo_addr_set */ hunt_mac_reconfigure, /* emo_reconfigure */ hunt_mac_multicast_list_set, /* emo_multicast_list_set */ hunt_mac_filter_default_rxq_set, /* emo_filter_default_rxq_set */ hunt_mac_filter_default_rxq_clear, /* emo_filter_default_rxq_clear */ #if EFSYS_OPT_LOOPBACK hunt_mac_loopback_set, /* emo_loopback_set */ #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS efx_mcdi_mac_stats_upload, /* emo_stats_upload */ efx_mcdi_mac_stats_periodic, /* emo_stats_periodic */ hunt_mac_stats_update /* emo_stats_update */ #endif /* EFSYS_OPT_MAC_STATS */ }; #endif /* EFSYS_OPT_HUNTINGTON */ static efx_mac_ops_t *__efx_mac_ops[] = { /* [EFX_MAC_INVALID] */ NULL, /* [EFX_MAC_FALCON_GMAC] */ #if EFSYS_OPT_MAC_FALCON_GMAC &__efx_falcon_gmac_ops, #else NULL, #endif /* [EFX_MAC_FALCON_XMAC] */ #if EFSYS_OPT_MAC_FALCON_XMAC &__efx_falcon_xmac_ops, #else NULL, #endif /* [EFX_MAC_SIENA] */ #if EFSYS_OPT_SIENA &__efx_siena_mac_ops, #else NULL, #endif /* [EFX_MAC_HUNTINGTON] */ #if EFSYS_OPT_HUNTINGTON &__efx_hunt_mac_ops, #else NULL, #endif }; __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; uint32_t old_pdu; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); EFSYS_ASSERT(emop != NULL); if (pdu < EFX_MAC_PDU_MIN) { rc = EINVAL; goto fail1; } if (pdu > EFX_MAC_PDU_MAX) { rc = EINVAL; goto fail2; } old_pdu = epp->ep_mac_pdu; epp->ep_mac_pdu = (uint32_t)pdu; if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); epp->ep_mac_pdu = old_pdu; fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; uint8_t old_addr[6]; uint32_t oui; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if (EFX_MAC_ADDR_IS_MULTICAST(addr)) { rc = EINVAL; goto fail1; } oui = addr[0] << 16 | addr[1] << 8 | addr[2]; if (oui == 0x000000) { rc = EINVAL; goto fail2; } EFX_MAC_ADDR_COPY(old_addr, epp->ep_mac_addr); EFX_MAC_ADDR_COPY(epp->ep_mac_addr, addr); if ((rc = emop->emo_addr_set(enp)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); EFX_MAC_ADDR_COPY(epp->ep_mac_addr, old_addr); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; boolean_t old_all_unicst; boolean_t old_mulcst; boolean_t old_all_mulcst; boolean_t old_brdcst; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); old_all_unicst = epp->ep_all_unicst; old_mulcst = epp->ep_mulcst; old_all_mulcst = epp->ep_all_mulcst; old_brdcst = epp->ep_brdcst; epp->ep_all_unicst = all_unicst; epp->ep_mulcst = mulcst; epp->ep_all_mulcst = all_mulcst; epp->ep_brdcst = brdcst; if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); epp->ep_all_unicst = old_all_unicst; epp->ep_mulcst = old_mulcst; epp->ep_all_mulcst = old_all_mulcst; epp->ep_brdcst = old_brdcst; return (rc); } __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); EFSYS_ASSERT(emop != NULL); if (epp->ep_mac_drain == enabled) return (0); epp->ep_mac_drain = enabled; if (enabled && emop->emo_reset != NULL) { if ((rc = emop->emo_reset(enp)) != 0) goto fail1; EFSYS_ASSERT(enp->en_reset_flags & EFX_RESET_MAC); enp->en_reset_flags &= ~EFX_RESET_PHY; } if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if ((rc = emop->emo_up(enp, mac_upp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_phy_ops_t *epop = epp->ep_epop; unsigned int old_fcntl; boolean_t old_autoneg; unsigned int old_adv_cap; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if ((fcntl & ~(EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE)) != 0) { rc = EINVAL; goto fail1; } /* * Ignore a request to set flow control auto-negotiation * if the PHY doesn't support it. */ if (~epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_AN)) autoneg = B_FALSE; old_fcntl = epp->ep_fcntl; old_autoneg = epp->ep_fcntl_autoneg; old_adv_cap = epp->ep_adv_cap_mask; epp->ep_fcntl = fcntl; epp->ep_fcntl_autoneg = autoneg; /* * Always encode the flow control settings in the advertised * capabilities even if we are not trying to auto-negotiate * them and reconfigure both the PHY and the MAC. */ if (fcntl & EFX_FCNTL_RESPOND) epp->ep_adv_cap_mask |= (1 << EFX_PHY_CAP_PAUSE | 1 << EFX_PHY_CAP_ASYM); else epp->ep_adv_cap_mask &= ~(1 << EFX_PHY_CAP_PAUSE | 1 << EFX_PHY_CAP_ASYM); if (fcntl & EFX_FCNTL_GENERATE) epp->ep_adv_cap_mask ^= (1 << EFX_PHY_CAP_ASYM); if ((rc = epop->epo_reconfigure(enp)) != 0) goto fail2; if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); epp->ep_fcntl = old_fcntl; epp->ep_fcntl_autoneg = old_autoneg; epp->ep_adv_cap_mask = old_adv_cap; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp) { efx_port_t *epp = &(enp->en_port); unsigned int wanted = 0; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); /* * Decode the requested flow control settings from the PHY * advertised capabilities. */ if (epp->ep_adv_cap_mask & (1 << EFX_PHY_CAP_PAUSE)) wanted = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; if (epp->ep_adv_cap_mask & (1 << EFX_PHY_CAP_ASYM)) wanted ^= EFX_FCNTL_GENERATE; *fcntl_linkp = epp->ep_fcntl; *fcntl_wantedp = wanted; } -/* - * FIXME: efx_mac_hash_set() should be deleted once all its callers have been - * updated to use efx_mac_multicast_list_set(). - * Then efx_port_t.ep_multicst_hash could be made Falcon/Siena specific as - * well. - */ - __checkReturn efx_rc_t -efx_mac_hash_set( - __in efx_nic_t *enp, - __in_ecount(EFX_MAC_HASH_BITS) unsigned int const *bucket) -{ - efx_port_t *epp = &(enp->en_port); - efx_mac_ops_t *emop = epp->ep_emop; - efx_oword_t old_hash[2]; - unsigned int index; - efx_rc_t rc; - - EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); - EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); - - memcpy(old_hash, epp->ep_multicst_hash, sizeof (old_hash)); - - /* Set the lower 128 bits of the hash */ - EFX_ZERO_OWORD(epp->ep_multicst_hash[0]); - for (index = 0; index < 128; index++) { - if (bucket[index] != 0) - EFX_SET_OWORD_BIT(epp->ep_multicst_hash[0], index); - } - - /* Set the upper 128 bits of the hash */ - EFX_ZERO_OWORD(epp->ep_multicst_hash[1]); - for (index = 0; index < 128; index++) { - if (bucket[index + 128] != 0) - EFX_SET_OWORD_BIT(epp->ep_multicst_hash[1], index); - } - - if ((rc = emop->emo_reconfigure(enp)) != 0) - goto fail1; - - return (0); - -fail1: - EFSYS_PROBE1(fail1, efx_rc_t, rc); - - memcpy(epp->ep_multicst_hash, old_hash, sizeof (old_hash)); - - return (rc); -} - __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; uint8_t *old_mulcst_addr_list = NULL; uint32_t old_mulcst_addr_count; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if (count > EFX_MAC_MULTICAST_LIST_MAX) { rc = EINVAL; goto fail1; } old_mulcst_addr_count = epp->ep_mulcst_addr_count; if (old_mulcst_addr_count > 0) { /* Allocate memory to store old list (instead of using stack) */ EFSYS_KMEM_ALLOC(enp->en_esip, old_mulcst_addr_count * EFX_MAC_ADDR_LEN, old_mulcst_addr_list); if (old_mulcst_addr_list == NULL) { rc = ENOMEM; goto fail2; } /* Save the old list in case we need to rollback */ memcpy(old_mulcst_addr_list, epp->ep_mulcst_addr_list, old_mulcst_addr_count * EFX_MAC_ADDR_LEN); } /* Store the new list */ memcpy(epp->ep_mulcst_addr_list, addrs, count * EFX_MAC_ADDR_LEN); epp->ep_mulcst_addr_count = count; if ((rc = emop->emo_multicast_list_set(enp)) != 0) goto fail3; if (old_mulcst_addr_count > 0) { EFSYS_KMEM_FREE(enp->en_esip, old_mulcst_addr_count * EFX_MAC_ADDR_LEN, old_mulcst_addr_list); } return (0); fail3: EFSYS_PROBE(fail3); /* Restore original list on failure */ epp->ep_mulcst_addr_count = old_mulcst_addr_count; if (old_mulcst_addr_count > 0) { memcpy(epp->ep_mulcst_addr_list, old_mulcst_addr_list, old_mulcst_addr_count * EFX_MAC_ADDR_LEN); EFSYS_KMEM_FREE(enp->en_esip, old_mulcst_addr_count * EFX_MAC_ADDR_LEN, old_mulcst_addr_list); } fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if (emop->emo_filter_default_rxq_set != NULL) { rc = emop->emo_filter_default_rxq_set(enp, erp, using_rss); if (rc != 0) goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); if (emop->emo_filter_default_rxq_clear != NULL) emop->emo_filter_default_rxq_clear(enp); } #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES /* START MKCONFIG GENERATED EfxMacStatNamesBlock 054d43a31d2d7a45 */ static const char *__efx_mac_stat_name[] = { "rx_octets", "rx_pkts", "rx_unicst_pkts", "rx_multicst_pkts", "rx_brdcst_pkts", "rx_pause_pkts", "rx_le_64_pkts", "rx_65_to_127_pkts", "rx_128_to_255_pkts", "rx_256_to_511_pkts", "rx_512_to_1023_pkts", "rx_1024_to_15xx_pkts", "rx_ge_15xx_pkts", "rx_errors", "rx_fcs_errors", "rx_drop_events", "rx_false_carrier_errors", "rx_symbol_errors", "rx_align_errors", "rx_internal_errors", "rx_jabber_pkts", "rx_lane0_char_err", "rx_lane1_char_err", "rx_lane2_char_err", "rx_lane3_char_err", "rx_lane0_disp_err", "rx_lane1_disp_err", "rx_lane2_disp_err", "rx_lane3_disp_err", "rx_match_fault", "rx_nodesc_drop_cnt", "tx_octets", "tx_pkts", "tx_unicst_pkts", "tx_multicst_pkts", "tx_brdcst_pkts", "tx_pause_pkts", "tx_le_64_pkts", "tx_65_to_127_pkts", "tx_128_to_255_pkts", "tx_256_to_511_pkts", "tx_512_to_1023_pkts", "tx_1024_to_15xx_pkts", "tx_ge_15xx_pkts", "tx_errors", "tx_sgl_col_pkts", "tx_mult_col_pkts", "tx_ex_col_pkts", "tx_late_col_pkts", "tx_def_pkts", "tx_ex_def_pkts", "pm_trunc_bb_overflow", "pm_discard_bb_overflow", "pm_trunc_vfifo_full", "pm_discard_vfifo_full", "pm_trunc_qbb", "pm_discard_qbb", "pm_discard_mapping", "rxdp_q_disabled_pkts", "rxdp_di_dropped_pkts", "rxdp_streaming_pkts", "rxdp_hlb_fetch", "rxdp_hlb_wait", "vadapter_rx_unicast_packets", "vadapter_rx_unicast_bytes", "vadapter_rx_multicast_packets", "vadapter_rx_multicast_bytes", "vadapter_rx_broadcast_packets", "vadapter_rx_broadcast_bytes", "vadapter_rx_bad_packets", "vadapter_rx_bad_bytes", "vadapter_rx_overflow", "vadapter_tx_unicast_packets", "vadapter_tx_unicast_bytes", "vadapter_tx_multicast_packets", "vadapter_tx_multicast_bytes", "vadapter_tx_broadcast_packets", "vadapter_tx_broadcast_bytes", "vadapter_tx_bad_packets", "vadapter_tx_bad_bytes", "vadapter_tx_overflow", }; /* END MKCONFIG GENERATED EfxMacStatNamesBlock */ __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id) { _NOTE(ARGUNUSED(enp)) EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(id, <, EFX_MAC_NSTATS); return (__efx_mac_stat_name[id]); } #endif /* EFSYS_OPT_NAMES */ __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); EFSYS_ASSERT(emop != NULL); /* * Don't assert !ep_mac_stats_pending, because the client might * have failed to finalise statistics when previously stopping * the port. */ if ((rc = emop->emo_stats_upload(enp, esmp)) != 0) goto fail1; epp->ep_mac_stats_pending = B_TRUE; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); EFSYS_ASSERT(emop != NULL); if (emop->emo_stats_periodic == NULL) { rc = EINVAL; goto fail1; } if ((rc = emop->emo_stats_periodic(enp, esmp, period_ms, events)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *essp, __inout_opt uint32_t *generationp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); EFSYS_ASSERT(emop != NULL); rc = emop->emo_stats_update(enp, esmp, essp, generationp); if (rc == 0) epp->ep_mac_stats_pending = B_FALSE; return (rc); } #endif /* EFSYS_OPT_MAC_STATS */ __checkReturn efx_rc_t efx_mac_select( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mac_type_t type = EFX_MAC_INVALID; efx_mac_ops_t *emop; int rc = EINVAL; #if EFSYS_OPT_HUNTINGTON if (enp->en_family == EFX_FAMILY_HUNTINGTON) { type = EFX_MAC_HUNTINGTON; goto chosen; } #endif #if EFSYS_OPT_SIENA if (enp->en_family == EFX_FAMILY_SIENA) { type = EFX_MAC_SIENA; goto chosen; } #endif #if EFSYS_OPT_FALCON switch (epp->ep_link_mode) { #if EFSYS_OPT_MAC_FALCON_GMAC case EFX_LINK_100HDX: case EFX_LINK_100FDX: case EFX_LINK_1000HDX: case EFX_LINK_1000FDX: type = EFX_MAC_FALCON_GMAC; goto chosen; #endif /* EFSYS_OPT_FALCON_GMAC */ #if EFSYS_OPT_MAC_FALCON_XMAC case EFX_LINK_10000FDX: type = EFX_MAC_FALCON_XMAC; goto chosen; #endif /* EFSYS_OPT_FALCON_XMAC */ default: #if EFSYS_OPT_MAC_FALCON_GMAC && EFSYS_OPT_MAC_FALCON_XMAC /* Only initialise a MAC supported by the PHY */ if (epp->ep_phy_cap_mask & ((1 << EFX_PHY_CAP_1000FDX) | (1 << EFX_PHY_CAP_1000HDX) | (1 << EFX_PHY_CAP_100FDX) | (1 << EFX_PHY_CAP_100HDX) | (1 << EFX_PHY_CAP_10FDX) | (1 << EFX_PHY_CAP_10FDX))) type = EFX_MAC_FALCON_GMAC; else type = EFX_MAC_FALCON_XMAC; #elif EFSYS_OPT_MAC_FALCON_GMAC type = EFX_MAC_FALCON_GMAC; #else type = EFX_MAC_FALCON_XMAC; #endif goto chosen; } #endif /* EFSYS_OPT_FALCON */ chosen: EFSYS_ASSERT(type != EFX_MAC_INVALID); EFSYS_ASSERT3U(type, <, EFX_MAC_NTYPES); emop = epp->ep_emop = (efx_mac_ops_t *)__efx_mac_ops[type]; EFSYS_ASSERT(emop != NULL); epp->ep_mac_type = type; if (emop->emo_reset != NULL) { if ((rc = emop->emo_reset(enp)) != 0) goto fail1; EFSYS_ASSERT(enp->en_reset_flags & EFX_RESET_MAC); enp->en_reset_flags &= ~EFX_RESET_MAC; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA + +#define EFX_MAC_HASH_BITS (1 << 8) /* Compute the multicast hash as used on Falcon and Siena. */ static void falconsiena_mac_multicast_hash_compute( __in_ecount(6*count) uint8_t const *addrs, __in int count, __out efx_oword_t *hash_low, __out efx_oword_t *hash_high) { uint32_t crc, index; int i; EFSYS_ASSERT(hash_low != NULL); EFSYS_ASSERT(hash_high != NULL); EFX_ZERO_OWORD(*hash_low); EFX_ZERO_OWORD(*hash_high); for (i = 0; i < count; i++) { /* Calculate hash bucket (IEEE 802.3 CRC32 of the MAC addr) */ crc = efx_crc32_calculate(0xffffffff, addrs, EFX_MAC_ADDR_LEN); index = crc % EFX_MAC_HASH_BITS; if (index < 128) { EFX_SET_OWORD_BIT(*hash_low, index); } else { EFX_SET_OWORD_BIT(*hash_high, index - 128); } addrs += EFX_MAC_ADDR_LEN; } } static __checkReturn efx_rc_t falconsiena_mac_multicast_list_set( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_oword_t old_hash[2]; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PORT); memcpy(old_hash, epp->ep_multicst_hash, sizeof (old_hash)); falconsiena_mac_multicast_hash_compute(epp->ep_mulcst_addr_list, epp->ep_mulcst_addr_count, &epp->ep_multicst_hash[0], &epp->ep_multicst_hash[1]); if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); memcpy(epp->ep_multicst_hash, old_hash, sizeof (old_hash)); return (rc); } #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.c (revision 293803) @@ -1,1985 +1,1984 @@ /*- * Copyright (c) 2008-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_regs_mcdi.h" #include "efx_impl.h" #if EFSYS_OPT_MCDI #if EFSYS_OPT_SIENA static efx_mcdi_ops_t __efx_mcdi_siena_ops = { siena_mcdi_init, /* emco_init */ siena_mcdi_request_copyin, /* emco_request_copyin */ siena_mcdi_request_copyout, /* emco_request_copyout */ siena_mcdi_poll_reboot, /* emco_poll_reboot */ siena_mcdi_poll_response, /* emco_poll_response */ siena_mcdi_read_response, /* emco_read_response */ siena_mcdi_fini, /* emco_fini */ siena_mcdi_feature_supported, /* emco_feature_supported */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static efx_mcdi_ops_t __efx_mcdi_ef10_ops = { ef10_mcdi_init, /* emco_init */ ef10_mcdi_request_copyin, /* emco_request_copyin */ ef10_mcdi_request_copyout, /* emco_request_copyout */ ef10_mcdi_poll_reboot, /* emco_poll_reboot */ ef10_mcdi_poll_response, /* emco_poll_response */ ef10_mcdi_read_response, /* emco_read_response */ ef10_mcdi_fini, /* emco_fini */ ef10_mcdi_feature_supported, /* emco_feature_supported */ }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { efx_mcdi_ops_t *emcop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: emcop = NULL; emtp = NULL; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: emcop = (efx_mcdi_ops_t *)&__efx_mcdi_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: emcop = (efx_mcdi_ops_t *)&__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: emcop = (efx_mcdi_ops_t *)&__efx_mcdi_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } if (enp->en_features & EFX_FEATURE_MCDI_DMA) { /* MCDI requires a DMA buffer in host memory */ if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) { rc = EINVAL; goto fail2; } } enp->en_mcdi.em_emtp = emtp; if (emcop != NULL && emcop->emco_init != NULL) { if ((rc = emcop->emco_init(enp, emtp)) != 0) goto fail3; } enp->en_mcdi.em_emcop = emcop; enp->en_mod_flags |= EFX_MOD_MCDI; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_mcdi.em_emcop = NULL; enp->en_mcdi.em_emtp = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; return (rc); } void efx_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI); if (emcop != NULL && emcop->emco_fini != NULL) emcop->emco_fini(enp); emip->emi_port = 0; emip->emi_aborted = 0; enp->en_mcdi.em_emcop = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; } void efx_mcdi_new_epoch( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); int state; /* Start a new epoch (allow fresh MCDI requests to succeed) */ EFSYS_LOCK(enp->en_eslp, state); emip->emi_new_epoch = B_TRUE; EFSYS_UNLOCK(enp->en_eslp, state); } static void efx_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_request_copyin(enp, emrp, seq, ev_cpl, new_epoch); } static void efx_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_request_copyout(enp, emrp); } static efx_rc_t efx_mcdi_poll_reboot( __in efx_nic_t *enp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; rc = emcop->emco_poll_reboot(enp); return (rc); } static boolean_t efx_mcdi_poll_response( __in efx_nic_t *enp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; boolean_t available; available = emcop->emco_poll_response(enp); return (available); } static void efx_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; emcop->emco_read_response(enp, bufferp, offset, length); } void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); unsigned int seq; boolean_t new_epoch; int state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_request_start() is naturally serialised against both * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(), * by virtue of there only being one outstanding MCDI request. * Unfortunately, upper layers may also call efx_mcdi_request_abort() * at any time, to timeout a pending mcdi request, That request may * then subsequently complete, meaning efx_mcdi_ev_cpl() or * efx_mcdi_ev_death() may end up running in parallel with * efx_mcdi_request_start(). This race is handled by ensuring that * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the * en_eslp lock. */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req == NULL); emip->emi_pending_req = emrp; emip->emi_ev_cpl = ev_cpl; emip->emi_poll_cnt = 0; seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ); new_epoch = emip->emi_new_epoch; EFSYS_UNLOCK(enp->en_eslp, state); efx_mcdi_request_copyin(enp, emrp, seq, ev_cpl, new_epoch); } void efx_mcdi_read_response_header( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr[2]; unsigned int hdr_len; unsigned int data_len; unsigned int seq; unsigned int cmd; unsigned int error; efx_rc_t rc; EFSYS_ASSERT(emrp != NULL); efx_mcdi_read_response(enp, &hdr[0], 0, sizeof (hdr[0])); hdr_len = sizeof (hdr[0]); cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE); seq = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ); error = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR); if (cmd != MC_CMD_V2_EXTN) { data_len = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN); } else { efx_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD); data_len = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } if (error && (data_len == 0)) { /* The MC has rebooted since the request was sent. */ EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); efx_mcdi_poll_reboot(enp); rc = EIO; goto fail1; } if ((cmd != emrp->emr_cmd) || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { /* Response is for a different request */ rc = EIO; goto fail2; } if (error) { efx_dword_t err[2]; unsigned int err_len = MIN(data_len, sizeof (err)); int err_code = MC_CMD_ERR_EPROTO; int err_arg = 0; /* Read error code (and arg num for MCDI v2 commands) */ efx_mcdi_read_response(enp, &err, hdr_len, err_len); if (err_len >= (MC_CMD_ERR_CODE_OFST + sizeof (efx_dword_t))) err_code = EFX_DWORD_FIELD(err[0], EFX_DWORD_0); #ifdef WITH_MCDI_V2 if (err_len >= (MC_CMD_ERR_ARG_OFST + sizeof (efx_dword_t))) err_arg = EFX_DWORD_FIELD(err[1], EFX_DWORD_0); #endif emrp->emr_err_code = err_code; emrp->emr_err_arg = err_arg; #if EFSYS_OPT_MCDI_PROXY_AUTH if ((err_code == MC_CMD_ERR_PROXY_PENDING) && (err_len == sizeof (err))) { /* * The MCDI request would normally fail with EPERM, but * firmware has forwarded it to an authorization agent * attached to a privileged PF. * * Save the authorization request handle. The client * must wait for a PROXY_RESPONSE event, or timeout. */ emrp->emr_proxy_handle = err_arg; } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, hdr_len, &err, err_len); } #endif /* EFSYS_OPT_MCDI_LOGGING */ if (!emrp->emr_quiet) { EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd, int, err_code, int, err_arg); } rc = efx_mcdi_request_errcode(err_code); goto fail3; } emrp->emr_rc = 0; emrp->emr_out_length_used = data_len; #if EFSYS_OPT_MCDI_PROXY_AUTH emrp->emr_proxy_handle = 0; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ return; fail3: if (!emrp->emr_quiet) EFSYS_PROBE(fail3); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); emrp->emr_rc = rc; emrp->emr_out_length_used = 0; } __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; int state; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* Serialise against post-watchdog efx_mcdi_ev* */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req != NULL); EFSYS_ASSERT(!emip->emi_ev_cpl); emrp = emip->emi_pending_req; /* Check for reboot atomically w.r.t efx_mcdi_request_start */ if (emip->emi_poll_cnt++ == 0) { if ((rc = efx_mcdi_poll_reboot(enp)) != 0) { emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); goto fail1; } } /* Check if a response is available */ if (efx_mcdi_poll_response(enp) == B_FALSE) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } /* Read the response header */ efx_mcdi_read_response_header(enp, emrp); /* Request complete */ emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); if ((rc = emrp->emr_rc) != 0) goto fail2; efx_mcdi_request_copyout(enp, emrp); return (B_TRUE); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Reboot/Assertion */ if (rc == EIO || rc == EINTR) efx_mcdi_raise_exception(enp, emrp, rc); return (B_TRUE); } __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; boolean_t aborted; int state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_ev_* may have already completed this event, and be * spinning/blocked on the upper layer lock. So it *is* legitimate * to for emi_pending_req to be NULL. If there is a pending event * completed request, then provide a "credit" to allow * efx_mcdi_ev_cpl() to accept a single spurious completion. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; aborted = (emrp != NULL); if (aborted) { emip->emi_pending_req = NULL; /* Error the request */ emrp->emr_out_length_used = 0; emrp->emr_rc = ETIMEDOUT; /* Provide a credit for seqno/emr_pending_req mismatches */ if (emip->emi_ev_cpl) ++emip->emi_aborted; /* * The upper layer has called us, so we don't * need to complete the request. */ } EFSYS_UNLOCK(enp->en_eslp, state); return (aborted); } __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err) { switch (err) { /* MCDI v1 */ case MC_CMD_ERR_EPERM: return (EACCES); case MC_CMD_ERR_ENOENT: return (ENOENT); case MC_CMD_ERR_EINTR: return (EINTR); case MC_CMD_ERR_EACCES: return (EACCES); case MC_CMD_ERR_EBUSY: return (EBUSY); case MC_CMD_ERR_EINVAL: return (EINVAL); case MC_CMD_ERR_EDEADLK: return (EDEADLK); case MC_CMD_ERR_ENOSYS: return (ENOTSUP); case MC_CMD_ERR_ETIME: return (ETIMEDOUT); case MC_CMD_ERR_ENOTSUP: return (ENOTSUP); case MC_CMD_ERR_EALREADY: return (EALREADY); /* MCDI v2 */ #ifdef MC_CMD_ERR_EAGAIN case MC_CMD_ERR_EAGAIN: return (EAGAIN); #endif #ifdef MC_CMD_ERR_ENOSPC case MC_CMD_ERR_ENOSPC: return (ENOSPC); #endif case MC_CMD_ERR_ALLOC_FAIL: return (ENOMEM); case MC_CMD_ERR_NO_VADAPTOR: return (ENOENT); case MC_CMD_ERR_NO_EVB_PORT: return (ENOENT); case MC_CMD_ERR_NO_VSWITCH: return (ENODEV); case MC_CMD_ERR_VLAN_LIMIT: return (EINVAL); case MC_CMD_ERR_BAD_PCI_FUNC: return (ENODEV); case MC_CMD_ERR_BAD_VLAN_MODE: return (EINVAL); case MC_CMD_ERR_BAD_VSWITCH_TYPE: return (EINVAL); case MC_CMD_ERR_BAD_VPORT_TYPE: return (EINVAL); case MC_CMD_ERR_MAC_EXIST: return (EEXIST); case MC_CMD_ERR_PROXY_PENDING: return (EAGAIN); default: EFSYS_PROBE1(mc_pcol_error, int, err); return (EIO); } } void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_exception_t exception; /* Reboot or Assertion failure only */ EFSYS_ASSERT(rc == EIO || rc == EINTR); /* * If MC_CMD_REBOOT causes a reboot (dependent on parameters), * then the EIO is not worthy of an exception. */ if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO) return; exception = (rc == EIO) ? EFX_MCDI_EXCEPTION_MC_REBOOT : EFX_MCDI_EXCEPTION_MC_BADASSERT; emtp->emt_exception(emtp->emt_context, exception); } void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_FALSE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_TRUE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; - efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_mcdi_req_t *emrp; int state; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start() * when we're completing an aborted request. */ EFSYS_LOCK(enp->en_eslp, state); if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { EFSYS_ASSERT(emip->emi_aborted > 0); if (emip->emi_aborted > 0) --emip->emi_aborted; EFSYS_UNLOCK(enp->en_eslp, state); return; } emrp = emip->emi_pending_req; emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); - if (encp->enc_mcdi_max_payload_length > MCDI_CTL_SDU_LEN_MAX_V1) { + if (emip->emi_max_version >= 2) { /* MCDIv2 response details do not fit into an event. */ efx_mcdi_read_response_header(enp, emrp); } else { if (errcode != 0) { if (!emrp->emr_quiet) { EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd, int, errcode); } emrp->emr_out_length_used = 0; emrp->emr_rc = efx_mcdi_request_errcode(errcode); } else { emrp->emr_out_length_used = outlen; emrp->emr_rc = 0; } } if (errcode == 0) { emcop->emco_request_copyout(enp, emrp); } emtp->emt_ev_cpl(emtp->emt_context); } #if EFSYS_OPT_MCDI_PROXY_AUTH __checkReturn efx_rc_t efx_mcdi_get_proxy_handle( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *handlep) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_rc_t rc; /* * Return proxy handle from MCDI request that returned with error * MC_MCD_ERR_PROXY_PENDING. This handle is used to wait for a matching * PROXY_RESPONSE event. */ if ((emrp == NULL) || (handlep == NULL)) { rc = EINVAL; goto fail1; } if ((emrp->emr_rc != 0) && (emrp->emr_err_code == MC_CMD_ERR_PROXY_PENDING)) { *handlep = emrp->emr_proxy_handle; rc = 0; } else { *handlep = 0; rc = ENOENT; } return (rc); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_mcdi_ev_proxy_response( __in efx_nic_t *enp, __in unsigned int handle, __in unsigned int status) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_rc_t rc; /* * Handle results of an authorization request for a privileged MCDI * command. If authorization was granted then we must re-issue the * original MCDI request. If authorization failed or timed out, * then the original MCDI request should be completed with the * result code from this event. */ rc = (status == 0) ? 0 : efx_mcdi_request_errcode(status); emtp->emt_ev_proxy_response(emtp->emt_context, handle, rc); } #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp = NULL; boolean_t ev_cpl; int state; /* * The MCDI request (if there is one) has been terminated, either * by a BADASSERT or REBOOT event. * * If there is an outstanding event-completed MCDI operation, then we * will never receive the completion event (because both MCDI * completions and BADASSERT events are sent to the same evq). So * complete this MCDI op. * * This function might run in parallel with efx_mcdi_request_poll() * for poll completed mcdi requests, and also with * efx_mcdi_request_start() for post-watchdog completions. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; ev_cpl = emip->emi_ev_cpl; if (emrp != NULL && emip->emi_ev_cpl) { emip->emi_pending_req = NULL; emrp->emr_out_length_used = 0; emrp->emr_rc = rc; ++emip->emi_aborted; } /* * Since we're running in parallel with a request, consume the * status word before dropping the lock. */ if (rc == EIO || rc == EINTR) { EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); (void) efx_mcdi_poll_reboot(enp); emip->emi_new_epoch = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); efx_mcdi_raise_exception(enp, emrp, rc); if (emrp != NULL && ev_cpl) emtp->emt_ev_cpl(emtp->emt_context); } __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp) { efx_mcdi_req_t req; uint8_t payload[MAX(MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_VERSION_OUT_LEN), MAX(MC_CMD_GET_BOOT_STATUS_IN_LEN, MC_CMD_GET_BOOT_STATUS_OUT_LEN))]; efx_word_t *ver_words; uint16_t version[4]; uint32_t build; efx_mcdi_boot_t status; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_VERSION; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* bootrom support */ if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) { version[0] = version[1] = version[2] = version[3] = 0; build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); goto version; } if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) { rc = EMSGSIZE; goto fail2; } ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION); version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0); version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0); version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0); version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0); build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); version: /* The bootrom doesn't understand BOOT_STATUS */ if (MC_FW_VERSION_IS_BOOTLOADER(build)) { status = EFX_MCDI_BOOT_ROM; goto out; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOOT_STATUS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot access BOOT_STATUS */ status = EFX_MCDI_BOOT_PRIMARY; version[0] = version[1] = version[2] = version[3] = 0; build = 0; goto out; } if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) { rc = EMSGSIZE; goto fail4; } if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS, GET_BOOT_STATUS_OUT_FLAGS_PRIMARY)) status = EFX_MCDI_BOOT_PRIMARY; else status = EFX_MCDI_BOOT_SECONDARY; out: if (versionp != NULL) memcpy(versionp, version, sizeof (version)); if (buildp != NULL) *buildp = build; if (statusp != NULL) *statusp = status; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_do_reboot( __in efx_nic_t *enp, __in boolean_t after_assertion) { uint8_t payload[MAX(MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN)]; efx_mcdi_req_t req; efx_rc_t rc; /* * We could require the caller to have caused en_mod_flags=0 to * call this function. This doesn't help the other port though, * who's about to get the MC ripped out from underneath them. * Since they have to cope with the subsequent fallout of MCDI * failures, we should as well. */ EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_REBOOT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_REBOOT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_REBOOT_OUT_LEN; MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS, (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0)); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot reboot the MC. */ goto out; } /* A successful reboot request returns EIO. */ if (req.emr_rc != 0 && req.emr_rc != EIO) { rc = req.emr_rc; goto fail1; } out: return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_FALSE)); } __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_TRUE)); } __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_ASSERTS_IN_LEN, MC_CMD_GET_ASSERTS_OUT_LEN)]; const char *reason; unsigned int flags; unsigned int index; unsigned int ofst; int retry; efx_rc_t rc; /* * Before we attempt to chat to the MC, we should verify that the MC * isn't in it's assertion handler, either due to a previous reboot, * or because we're reinitializing due to an eec_exception(). * * Use GET_ASSERTS to read any assertion state that may be present. * Retry this command twice. Once because a boot-time assertion failure * might cause the 1st MCDI request to fail. And once again because * we might race with efx_mcdi_exit_assertion_handler() running on * partner port(s) on the same NIC. */ retry = 2; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_ASSERTS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1); efx_mcdi_execute_quiet(enp, &req); } while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0); if (req.emr_rc != 0) { if (req.emr_rc == EACCES) { /* Unprivileged functions cannot clear assertions. */ goto out; } rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* Print out any assertion state recorded */ flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return (0); reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP) ? "illegal address trap" : "unknown assertion"; EFSYS_PROBE3(mcpu_assertion, const char *, reason, unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS), unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers (r1 ... r31) */ ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; for (index = 1; index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; index++) { EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int, EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst), EFX_DWORD_0)); ofst += sizeof (efx_dword_t); } EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN); out: return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Internal routines for for specific MCDI requests. */ __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRV_ATTACH_IN_LEN, MC_CMD_DRV_ATTACH_EXT_OUT_LEN)]; uint32_t flags; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_DRV_ATTACH; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN; /* * Use DONT_CARE for the datapath firmware type to ensure that the * driver can attach to an unprivileged function. The datapath firmware * type to use is controlled by the 'sfboot' utility. */ MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_NEW_STATE, attach ? 1 : 0); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_DONT_CARE); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (attach == B_FALSE) { flags = 0; } else if (enp->en_family == EFX_FAMILY_SIENA) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); /* Create synthetic privileges for Siena functions */ flags = EFX_NIC_FUNC_LINKCTRL | EFX_NIC_FUNC_TRUSTED; if (emip->emi_port == 1) flags |= EFX_NIC_FUNC_PRIMARY; } else { EFX_STATIC_ASSERT(EFX_NIC_FUNC_PRIMARY == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)); EFX_STATIC_ASSERT(EFX_NIC_FUNC_LINKCTRL == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)); EFX_STATIC_ASSERT(EFX_NIC_FUNC_TRUSTED == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)); /* Save function privilege flags (EF10 and later) */ if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { rc = EMSGSIZE; goto fail3; } flags = MCDI_OUT_DWORD(req, DRV_ATTACH_EXT_OUT_FUNC_FLAGS); } encp->enc_func_flags = flags; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_BOARD_CFG_IN_LEN, MC_CMD_GET_BOARD_CFG_OUT_LENMIN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOARD_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (mac_addrp != NULL) { uint8_t *addrp; if (emip->emi_port == 1) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0); } else if (emip->emi_port == 2) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1); } else { rc = EINVAL; goto fail3; } EFX_MAC_ADDR_COPY(mac_addrp, addrp); } if (capabilitiesp != NULL) { if (emip->emi_port == 1) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); } else if (emip->emi_port == 2) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); } else { rc = EINVAL; goto fail4; } } if (board_typep != NULL) { *board_typep = MCDI_OUT_DWORD(req, GET_BOARD_CFG_OUT_BOARD_TYPE); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_RESOURCE_LIMITS_IN_LEN, MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (nevqp != NULL) *nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ); if (nrxqp != NULL) *nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ); if (ntxqp != NULL) *ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PHY_CFG_IN_LEN, MC_CMD_GET_PHY_CFG_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PHY_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE); #if EFSYS_OPT_NAMES (void) strncpy(encp->enc_phy_name, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME), MIN(sizeof (encp->enc_phy_name) - 1, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN)); #endif /* EFSYS_OPT_NAMES */ (void) memset(encp->enc_phy_revision, 0, sizeof (encp->enc_phy_revision)); memcpy(encp->enc_phy_revision, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION), MIN(sizeof (encp->enc_phy_revision) - 1, MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN)); #if EFSYS_OPT_PHY_LED_CONTROL encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) | (1 << EFX_PHY_LED_OFF) | (1 << EFX_PHY_LED_ON)); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_PROPS encp->enc_phy_nprops = 0; #endif /* EFSYS_OPT_PHY_PROPS */ /* Get the media type of the fixed port, if recognised. */ EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI); EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP); EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS); EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T); EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS); epp->ep_fixed_port_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE); if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES) epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID; epp->ep_phy_cap_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP); #if EFSYS_OPT_PHY_FLAGS encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS); #endif /* EFSYS_OPT_PHY_FLAGS */ encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT); /* Populate internal state */ encp->enc_mcdi_mdio_channel = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL); #if EFSYS_OPT_PHY_STATS encp->enc_mcdi_phy_stat_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST encp->enc_bist_mask = 0; if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_SHORT)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_LONG)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL); #endif /* EFSYS_OPT_BIST */ return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_FW_UPDATE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported updates */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MACADDR_CHANGE, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC changes */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_LINK_CONTROL, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported link control */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_spoofing_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL) { if ((rc = emcop->emco_feature_supported(enp, EFX_MCDI_FEATURE_MAC_SPOOFING, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC spoofing */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_BIST #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD /* * Enter bist offline mode. This is a fw mode which puts the NIC into a state * where memory BIST tests can be run and not much else can interfere or happen. * A reboot is required to exit this mode. */ __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0); req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_START_BIST_IN_LEN, MC_CMD_START_BIST_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_START_BIST; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_START_BIST_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_START_BIST_OUT_LEN; switch (type) { case EFX_BIST_TYPE_PHY_NORMAL: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST); break; case EFX_BIST_TYPE_PHY_CABLE_SHORT: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_SHORT); break; case EFX_BIST_TYPE_PHY_CABLE_LONG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_LONG); break; case EFX_BIST_TYPE_MC_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_MC_MEM_BIST); break; case EFX_BIST_TYPE_SAT_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PORT_MEM_BIST); break; case EFX_BIST_TYPE_REG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_REG_BIST); break; default: EFSYS_ASSERT(0); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_BIST */ /* Enable logging of some events (e.g. link state changes) */ __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_LOG_CTRL_IN_LEN, MC_CMD_LOG_CTRL_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_LOG_CTRL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN; MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST, MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ); MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_MAC_STATS typedef enum efx_stats_action_e { EFX_STATS_CLEAR, EFX_STATS_UPLOAD, EFX_STATS_ENABLE_NOEVENTS, EFX_STATS_ENABLE_EVENTS, EFX_STATS_DISABLE, } efx_stats_action_t; static __checkReturn efx_rc_t efx_mcdi_mac_stats( __in efx_nic_t *enp, __in_opt efsys_mem_t *esmp, __in efx_stats_action_t action) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_MAC_STATS_IN_LEN, MC_CMD_MAC_STATS_OUT_DMA_LEN)]; int clear = (action == EFX_STATS_CLEAR); int upload = (action == EFX_STATS_UPLOAD); int enable = (action == EFX_STATS_ENABLE_NOEVENTS); int events = (action == EFX_STATS_ENABLE_EVENTS); int disable = (action == EFX_STATS_DISABLE); efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_MAC_STATS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_MAC_STATS_OUT_DMA_LEN; MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, upload, MAC_STATS_IN_CLEAR, clear, MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable, MAC_STATS_IN_PERIODIC_ENABLE, enable | events, MAC_STATS_IN_PERIODIC_NOEVENT, !events, MAC_STATS_IN_PERIOD_MS, (enable | events) ? 1000: 0); if (esmp != NULL) { int bytes = MC_CMD_MAC_NSTATS * sizeof (uint64_t); EFX_STATIC_ASSERT(MC_CMD_MAC_NSTATS * sizeof (uint64_t) <= EFX_MAC_STATS_SIZE); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO, EFSYS_MEM_ADDR(esmp) & 0xffffffff); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI, EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes); } else { EFSYS_ASSERT(!upload && !enable && !events); } /* * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats, * as this may fail (and leave periodic DMA enabled) if the * vadapter has already been deleted. */ MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID, (disable ? EVB_PORT_ID_NULL : enp->en_vport_id)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { /* EF10: Expect ENOENT if no DMA queues are initialised */ if ((req.emr_rc != ENOENT) || (enp->en_rx_qcount + enp->en_tx_qcount != 0)) { rc = req.emr_rc; goto fail1; } } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. */ if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period, __in boolean_t events) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. * Huntington uses a fixed 1sec period, so use that on Siena too. */ if (period == 0) rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE); else if (events) rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS); else rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MAC_STATS */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD /* * This function returns the pf and vf number of a function. If it is a pf the * vf number is 0xffff. The vf number is the index of the vf on that * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0), * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff). */ __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_FUNCTION_INFO_IN_LEN, MC_CMD_GET_FUNCTION_INFO_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_FUNCTION_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF); if (vfp != NULL) *vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_PRIVILEGE_MASK_IN_LEN, MC_CMD_PRIVILEGE_MASK_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_PRIVILEGE_MASK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN; MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION, PRIVILEGE_MASK_IN_FUNCTION_PF, pf, PRIVILEGE_MASK_IN_FUNCTION_VF, vf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_WORKAROUND_IN_LEN, MC_CMD_WORKAROUND_EXT_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_WORKAROUND; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN; MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type); MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (flagsp != NULL) { if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN) *flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS); else *flagsp = 0; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp) { efx_mcdi_req_t req; uint8_t payload[MC_CMD_GET_WORKAROUNDS_OUT_LEN]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_WORKAROUNDS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (implementedp != NULL) { *implementedp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED); } if (enabledp != NULL) { *enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MCDI */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_mcdi.h (revision 293803) @@ -1,405 +1,406 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_MCDI_H #define _SYS_EFX_MCDI_H #include "efx.h" #include "efx_regs.h" #include "efx_regs_mcdi.h" #ifdef __cplusplus extern "C" { #endif /* * A reboot/assertion causes the MCDI status word to be set after the * command word is set or a REBOOT event is sent. If we notice a reboot * via these mechanisms then wait 10ms for the status word to be set. */ #define EFX_MCDI_STATUS_SLEEP_US 10000 struct efx_mcdi_req_s { boolean_t emr_quiet; /* Inputs: Command #, input buffer and length */ unsigned int emr_cmd; uint8_t *emr_in_buf; size_t emr_in_length; /* Outputs: retcode, buffer, length, and length used*/ int emr_rc; uint8_t *emr_out_buf; size_t emr_out_length; size_t emr_out_length_used; /* Internals: low level transport details */ unsigned int emr_err_code; unsigned int emr_err_arg; #if EFSYS_OPT_MCDI_PROXY_AUTH uint32_t emr_proxy_handle; #endif }; typedef struct efx_mcdi_iface_s { unsigned int emi_port; + unsigned int emi_max_version; unsigned int emi_seq; efx_mcdi_req_t *emi_pending_req; boolean_t emi_ev_cpl; boolean_t emi_new_epoch; int emi_aborted; uint32_t emi_poll_cnt; uint32_t emi_mc_reboot_status; } efx_mcdi_iface_t; extern void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp); extern void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp); extern void efx_mcdi_read_response_header( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp); extern void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode); #if EFSYS_OPT_MCDI_PROXY_AUTH extern __checkReturn efx_rc_t efx_mcdi_get_proxy_handle( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __out uint32_t *handlep); extern void efx_mcdi_ev_proxy_response( __in efx_nic_t *enp, __in unsigned int handle, __in unsigned int status); #endif extern void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc); extern __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err); extern void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc); typedef enum efx_mcdi_boot_e { EFX_MCDI_BOOT_PRIMARY, EFX_MCDI_BOOT_SECONDARY, EFX_MCDI_BOOT_ROM, } efx_mcdi_boot_t; extern __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp); extern __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach); extern __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]); extern __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); extern __checkReturn efx_rc_t efx_mcdi_mac_spoofing_supported( __in efx_nic_t *enp, __out boolean_t *supportedp); #if EFSYS_OPT_BIST #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD extern __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp); #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ extern __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ extern __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp); extern __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period, __in boolean_t events); #if EFSYS_OPT_LOOPBACK extern __checkReturn efx_rc_t efx_mcdi_get_loopback_modes( __in efx_nic_t *enp); #endif /* EFSYS_OPT_LOOPBACK */ #define MCDI_IN(_emr, _type, _ofst) \ ((_type *)((_emr).emr_in_buf + (_ofst))) #define MCDI_IN2(_emr, _type, _ofst) \ MCDI_IN(_emr, _type, MC_CMD_ ## _ofst ## _OFST) #define MCDI_IN_SET_BYTE(_emr, _ofst, _value) \ EFX_POPULATE_BYTE_1(*MCDI_IN2(_emr, efx_byte_t, _ofst), \ EFX_BYTE_0, _value) #define MCDI_IN_SET_WORD(_emr, _ofst, _value) \ EFX_POPULATE_WORD_1(*MCDI_IN2(_emr, efx_word_t, _ofst), \ EFX_WORD_0, _value) #define MCDI_IN_SET_DWORD(_emr, _ofst, _value) \ EFX_POPULATE_DWORD_1(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ EFX_DWORD_0, _value) #define MCDI_IN_SET_DWORD_FIELD(_emr, _ofst, _field, _value) \ EFX_SET_DWORD_FIELD(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field, _value) #define MCDI_IN_POPULATE_DWORD_1(_emr, _ofst, _field1, _value1) \ EFX_POPULATE_DWORD_1(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1) #define MCDI_IN_POPULATE_DWORD_2(_emr, _ofst, _field1, _value1, \ _field2, _value2) \ EFX_POPULATE_DWORD_2(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2) #define MCDI_IN_POPULATE_DWORD_3(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3) \ EFX_POPULATE_DWORD_3(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3) #define MCDI_IN_POPULATE_DWORD_4(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4) \ EFX_POPULATE_DWORD_4(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4) #define MCDI_IN_POPULATE_DWORD_5(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5) \ EFX_POPULATE_DWORD_5(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5) #define MCDI_IN_POPULATE_DWORD_6(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6) \ EFX_POPULATE_DWORD_6(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6) #define MCDI_IN_POPULATE_DWORD_7(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7) \ EFX_POPULATE_DWORD_7(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7) #define MCDI_IN_POPULATE_DWORD_8(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8) \ EFX_POPULATE_DWORD_8(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8) #define MCDI_IN_POPULATE_DWORD_9(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8, _field9, _value9) \ EFX_POPULATE_DWORD_9(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8, \ MC_CMD_ ## _field9, _value9) #define MCDI_IN_POPULATE_DWORD_10(_emr, _ofst, _field1, _value1, \ _field2, _value2, _field3, _value3, _field4, _value4, \ _field5, _value5, _field6, _value6, _field7, _value7, \ _field8, _value8, _field9, _value9, _field10, _value10) \ EFX_POPULATE_DWORD_10(*MCDI_IN2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field1, _value1, \ MC_CMD_ ## _field2, _value2, \ MC_CMD_ ## _field3, _value3, \ MC_CMD_ ## _field4, _value4, \ MC_CMD_ ## _field5, _value5, \ MC_CMD_ ## _field6, _value6, \ MC_CMD_ ## _field7, _value7, \ MC_CMD_ ## _field8, _value8, \ MC_CMD_ ## _field9, _value9, \ MC_CMD_ ## _field10, _value10) #define MCDI_OUT(_emr, _type, _ofst) \ ((_type *)((_emr).emr_out_buf + (_ofst))) #define MCDI_OUT2(_emr, _type, _ofst) \ MCDI_OUT(_emr, _type, MC_CMD_ ## _ofst ## _OFST) #define MCDI_OUT_BYTE(_emr, _ofst) \ EFX_BYTE_FIELD(*MCDI_OUT2(_emr, efx_byte_t, _ofst), \ EFX_BYTE_0) #define MCDI_OUT_WORD(_emr, _ofst) \ EFX_WORD_FIELD(*MCDI_OUT2(_emr, efx_word_t, _ofst), \ EFX_WORD_0) #define MCDI_OUT_DWORD(_emr, _ofst) \ EFX_DWORD_FIELD(*MCDI_OUT2(_emr, efx_dword_t, _ofst), \ EFX_DWORD_0) #define MCDI_OUT_DWORD_FIELD(_emr, _ofst, _field) \ EFX_DWORD_FIELD(*MCDI_OUT2(_emr, efx_dword_t, _ofst), \ MC_CMD_ ## _field) #define MCDI_EV_FIELD(_eqp, _field) \ EFX_QWORD_FIELD(*_eqp, MCDI_EVENT_ ## _field) #define MCDI_CMD_DWORD_FIELD(_edp, _field) \ EFX_DWORD_FIELD(*_edp, MC_CMD_ ## _field) #define EFX_MCDI_HAVE_PRIVILEGE(mask, priv) \ (((mask) & (MC_CMD_PRIVILEGE_MASK_IN_GRP_ ## priv)) == \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ ## priv)) typedef enum efx_mcdi_feature_id_e { EFX_MCDI_FEATURE_FW_UPDATE = 0, EFX_MCDI_FEATURE_LINK_CONTROL, EFX_MCDI_FEATURE_MACADDR_CHANGE, EFX_MCDI_FEATURE_MAC_SPOOFING, EFX_MCDI_FEATURE_NIDS } efx_mcdi_feature_id_t; #ifdef __cplusplus } #endif #endif /* _SYS_EFX_MCDI_H */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_regs_mcdi.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_regs_mcdi.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_regs_mcdi.h (revision 293803) @@ -1,12947 +1,13765 @@ /*- * Copyright 2008-2013 Solarflare Communications Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SIENA_MC_DRIVER_PCOL_H #define _SIENA_MC_DRIVER_PCOL_H /* Values to be written into FMCR_CZ_RESET_STATE_REG to control boot. */ /* Power-on reset state */ #define MC_FW_STATE_POR (1) /* If this is set in MC_RESET_STATE_REG then it should be * possible to jump into IMEM without loading code from flash. */ #define MC_FW_WARM_BOOT_OK (2) /* The MC main image has started to boot. */ #define MC_FW_STATE_BOOTING (4) /* The Scheduler has started. */ #define MC_FW_STATE_SCHED (8) /* If this is set in MC_RESET_STATE_REG then it should be * possible to jump into IMEM without loading code from flash. * Unlike a warm boot, assume DMEM has been reloaded, so that * the MC persistent data must be reinitialised. */ #define MC_FW_TEPID_BOOT_OK (16) /* We have entered the main firmware via recovery mode. This * means that MC persistent data must be reinitialised, but that * we shouldn't touch PCIe config. */ #define MC_FW_RECOVERY_MODE_PCIE_INIT_OK (32) /* BIST state has been initialized */ #define MC_FW_BIST_INIT_OK (128) /* Siena MC shared memmory offsets */ /* The 'doorbell' addresses are hard-wired to alert the MC when written */ #define MC_SMEM_P0_DOORBELL_OFST 0x000 #define MC_SMEM_P1_DOORBELL_OFST 0x004 /* The rest of these are firmware-defined */ #define MC_SMEM_P0_PDU_OFST 0x008 #define MC_SMEM_P1_PDU_OFST 0x108 #define MC_SMEM_PDU_LEN 0x100 #define MC_SMEM_P0_PTP_TIME_OFST 0x7f0 #define MC_SMEM_P0_STATUS_OFST 0x7f8 #define MC_SMEM_P1_STATUS_OFST 0x7fc /* Values to be written to the per-port status dword in shared * memory on reboot and assert */ #define MC_STATUS_DWORD_REBOOT (0xb007b007) #define MC_STATUS_DWORD_ASSERT (0xdeaddead) /* Check whether an mcfw version (in host order) belongs to a bootloader */ #define MC_FW_VERSION_IS_BOOTLOADER(_v) (((_v) >> 16) == 0xb007) /* The current version of the MCDI protocol. * * Note that the ROM burnt into the card only talks V0, so at the very * least every driver must support version 0 and MCDI_PCOL_VERSION */ #ifdef WITH_MCDI_V2 #define MCDI_PCOL_VERSION 2 #else #define MCDI_PCOL_VERSION 1 #endif /* Unused commands: 0x23, 0x27, 0x30, 0x31 */ /* MCDI version 1 * * Each MCDI request starts with an MCDI_HEADER, which is a 32bit * structure, filled in by the client. * * 0 7 8 16 20 22 23 24 31 * | CODE | R | LEN | SEQ | Rsvd | E | R | XFLAGS | * | | | * | | \--- Response * | \------- Error * \------------------------------ Resync (always set) * * The client writes it's request into MC shared memory, and rings the * doorbell. Each request is completed by either by the MC writting * back into shared memory, or by writting out an event. * * All MCDI commands support completion by shared memory response. Each * request may also contain additional data (accounted for by HEADER.LEN), * and some response's may also contain additional data (again, accounted * for by HEADER.LEN). * * Some MCDI commands support completion by event, in which any associated * response data is included in the event. * * The protocol requires one response to be delivered for every request, a * request should not be sent unless the response for the previous request * has been received (either by polling shared memory, or by receiving * an event). */ /** Request/Response structure */ #define MCDI_HEADER_OFST 0 #define MCDI_HEADER_CODE_LBN 0 #define MCDI_HEADER_CODE_WIDTH 7 #define MCDI_HEADER_RESYNC_LBN 7 #define MCDI_HEADER_RESYNC_WIDTH 1 #define MCDI_HEADER_DATALEN_LBN 8 #define MCDI_HEADER_DATALEN_WIDTH 8 #define MCDI_HEADER_SEQ_LBN 16 #define MCDI_HEADER_SEQ_WIDTH 4 #define MCDI_HEADER_RSVD_LBN 20 #define MCDI_HEADER_RSVD_WIDTH 1 #define MCDI_HEADER_NOT_EPOCH_LBN 21 #define MCDI_HEADER_NOT_EPOCH_WIDTH 1 #define MCDI_HEADER_ERROR_LBN 22 #define MCDI_HEADER_ERROR_WIDTH 1 #define MCDI_HEADER_RESPONSE_LBN 23 #define MCDI_HEADER_RESPONSE_WIDTH 1 #define MCDI_HEADER_XFLAGS_LBN 24 #define MCDI_HEADER_XFLAGS_WIDTH 8 /* Request response using event */ #define MCDI_HEADER_XFLAGS_EVREQ 0x01 /* Maximum number of payload bytes */ #define MCDI_CTL_SDU_LEN_MAX_V1 0xfc #define MCDI_CTL_SDU_LEN_MAX_V2 0x400 #ifdef WITH_MCDI_V2 #define MCDI_CTL_SDU_LEN_MAX MCDI_CTL_SDU_LEN_MAX_V2 #else #define MCDI_CTL_SDU_LEN_MAX MCDI_CTL_SDU_LEN_MAX_V1 #endif /* The MC can generate events for two reasons: * - To complete a shared memory request if XFLAGS_EVREQ was set * - As a notification (link state, i2c event), controlled * via MC_CMD_LOG_CTRL * * Both events share a common structure: * * 0 32 33 36 44 52 60 * | Data | Cont | Level | Src | Code | Rsvd | * | * \ There is another event pending in this notification * * If Code==CMDDONE, then the fields are further interpreted as: * * - LEVEL==INFO Command succeeded * - LEVEL==ERR Command failed * * 0 8 16 24 32 * | Seq | Datalen | Errno | Rsvd | * * These fields are taken directly out of the standard MCDI header, i.e., * LEVEL==ERR, Datalen == 0 => Reboot * * Events can be squirted out of the UART (using LOG_CTRL) without a * MCDI header. An event can be distinguished from a MCDI response by * examining the first byte which is 0xc0. This corresponds to the * non-existent MCDI command MC_CMD_DEBUG_LOG. * * 0 7 8 * | command | Resync | = 0xc0 * * Since the event is written in big-endian byte order, this works * providing bits 56-63 of the event are 0xc0. * * 56 60 63 * | Rsvd | Code | = 0xc0 * * Which means for convenience the event code is 0xc for all MC * generated events. */ #define FSE_AZ_EV_CODE_MCDI_EVRESPONSE 0xc /* Operation not permitted. */ #define MC_CMD_ERR_EPERM 1 /* Non-existent command target */ #define MC_CMD_ERR_ENOENT 2 /* assert() has killed the MC */ #define MC_CMD_ERR_EINTR 4 /* I/O failure */ #define MC_CMD_ERR_EIO 5 /* Already exists */ #define MC_CMD_ERR_EEXIST 6 /* Try again */ #define MC_CMD_ERR_EAGAIN 11 /* Out of memory */ #define MC_CMD_ERR_ENOMEM 12 /* Caller does not hold required locks */ #define MC_CMD_ERR_EACCES 13 /* Resource is currently unavailable (e.g. lock contention) */ #define MC_CMD_ERR_EBUSY 16 /* No such device */ #define MC_CMD_ERR_ENODEV 19 /* Invalid argument to target */ #define MC_CMD_ERR_EINVAL 22 /* Broken pipe */ #define MC_CMD_ERR_EPIPE 32 /* Read-only */ #define MC_CMD_ERR_EROFS 30 /* Out of range */ #define MC_CMD_ERR_ERANGE 34 /* Non-recursive resource is already acquired */ #define MC_CMD_ERR_EDEADLK 35 /* Operation not implemented */ #define MC_CMD_ERR_ENOSYS 38 /* Operation timed out */ #define MC_CMD_ERR_ETIME 62 /* Link has been severed */ #define MC_CMD_ERR_ENOLINK 67 /* Protocol error */ #define MC_CMD_ERR_EPROTO 71 /* Operation not supported */ #define MC_CMD_ERR_ENOTSUP 95 /* Address not available */ #define MC_CMD_ERR_EADDRNOTAVAIL 99 /* Not connected */ #define MC_CMD_ERR_ENOTCONN 107 /* Operation already in progress */ #define MC_CMD_ERR_EALREADY 114 /* Resource allocation failed. */ #define MC_CMD_ERR_ALLOC_FAIL 0x1000 /* V-adaptor not found. */ #define MC_CMD_ERR_NO_VADAPTOR 0x1001 /* EVB port not found. */ #define MC_CMD_ERR_NO_EVB_PORT 0x1002 /* V-switch not found. */ #define MC_CMD_ERR_NO_VSWITCH 0x1003 /* Too many VLAN tags. */ #define MC_CMD_ERR_VLAN_LIMIT 0x1004 /* Bad PCI function number. */ #define MC_CMD_ERR_BAD_PCI_FUNC 0x1005 /* Invalid VLAN mode. */ #define MC_CMD_ERR_BAD_VLAN_MODE 0x1006 /* Invalid v-switch type. */ #define MC_CMD_ERR_BAD_VSWITCH_TYPE 0x1007 /* Invalid v-port type. */ #define MC_CMD_ERR_BAD_VPORT_TYPE 0x1008 /* MAC address exists. */ #define MC_CMD_ERR_MAC_EXIST 0x1009 /* Slave core not present */ #define MC_CMD_ERR_SLAVE_NOT_PRESENT 0x100a /* The datapath is disabled. */ #define MC_CMD_ERR_DATAPATH_DISABLED 0x100b /* The requesting client is not a function */ #define MC_CMD_ERR_CLIENT_NOT_FN 0x100c /* The requested operation might require the command to be passed between MCs, and the transport doesn't support that. Should only ever been seen over the UART. */ #define MC_CMD_ERR_TRANSPORT_NOPROXY 0x100d /* VLAN tag(s) exists */ #define MC_CMD_ERR_VLAN_EXIST 0x100e /* No MAC address assigned to an EVB port */ #define MC_CMD_ERR_NO_MAC_ADDR 0x100f /* Notifies the driver that the request has been relayed * to an admin function for authorization. The driver should * wait for a PROXY_RESPONSE event and then resend its request. * This error code is followed by a 32-bit handle that * helps matching it with the respective PROXY_RESPONSE event. */ #define MC_CMD_ERR_PROXY_PENDING 0x1010 #define MC_CMD_ERR_PROXY_PENDING_HANDLE_OFST 4 /* The request cannot be passed for authorization because * another request from the same function is currently being * authorized. The drvier should try again later. */ #define MC_CMD_ERR_PROXY_INPROGRESS 0x1011 /* Returned by MC_CMD_PROXY_COMPLETE if the caller is not the function * that has enabled proxying or BLOCK_INDEX points to a function that * doesn't await an authorization. */ #define MC_CMD_ERR_PROXY_UNEXPECTED 0x1012 /* This code is currently only used internally in FW. Its meaning is that * an operation failed due to lack of SR-IOV privilege. * Normally it is translated to EPERM by send_cmd_err(), * but it may also be used to trigger some special mechanism * for handling such case, e.g. to relay the failed request * to a designated admin function for authorization. */ #define MC_CMD_ERR_NO_PRIVILEGE 0x1013 /* Workaround 26807 could not be turned on/off because some functions * have already installed filters. See the comment at * MC_CMD_WORKAROUND_BUG26807. */ #define MC_CMD_ERR_FILTERS_PRESENT 0x1014 +/* The clock whose frequency you've attempted to set set + * doesn't exist on this NIC */ +#define MC_CMD_ERR_NO_CLOCK 0x1015 #define MC_CMD_ERR_CODE_OFST 0 /* We define 8 "escape" commands to allow for command number space extension */ #define MC_CMD_CMD_SPACE_ESCAPE_0 0x78 #define MC_CMD_CMD_SPACE_ESCAPE_1 0x79 #define MC_CMD_CMD_SPACE_ESCAPE_2 0x7A #define MC_CMD_CMD_SPACE_ESCAPE_3 0x7B #define MC_CMD_CMD_SPACE_ESCAPE_4 0x7C #define MC_CMD_CMD_SPACE_ESCAPE_5 0x7D #define MC_CMD_CMD_SPACE_ESCAPE_6 0x7E #define MC_CMD_CMD_SPACE_ESCAPE_7 0x7F /* Vectors in the boot ROM */ /* Point to the copycode entry point. */ #define SIENA_MC_BOOTROM_COPYCODE_VEC (0x800 - 3 * 0x4) #define HUNT_MC_BOOTROM_COPYCODE_VEC (0x8000 - 3 * 0x4) +#define MEDFORD_MC_BOOTROM_COPYCODE_VEC (0x10000 - 3 * 0x4) /* Points to the recovery mode entry point. */ #define SIENA_MC_BOOTROM_NOFLASH_VEC (0x800 - 2 * 0x4) #define HUNT_MC_BOOTROM_NOFLASH_VEC (0x8000 - 2 * 0x4) +#define MEDFORD_MC_BOOTROM_NOFLASH_VEC (0x10000 - 2 * 0x4) /* The command set exported by the boot ROM (MCDI v0) */ #define MC_CMD_GET_VERSION_V0_SUPPORTED_FUNCS { \ (1 << MC_CMD_READ32) | \ (1 << MC_CMD_WRITE32) | \ (1 << MC_CMD_COPYCODE) | \ (1 << MC_CMD_GET_VERSION), \ 0, 0, 0 } #define MC_CMD_SENSOR_INFO_OUT_OFFSET_OFST(_x) \ (MC_CMD_SENSOR_ENTRY_OFST + (_x)) #define MC_CMD_DBI_WRITE_IN_ADDRESS_OFST(n) \ (MC_CMD_DBI_WRITE_IN_DBIWROP_OFST + \ MC_CMD_DBIWROP_TYPEDEF_ADDRESS_OFST + \ (n) * MC_CMD_DBIWROP_TYPEDEF_LEN) #define MC_CMD_DBI_WRITE_IN_BYTE_MASK_OFST(n) \ (MC_CMD_DBI_WRITE_IN_DBIWROP_OFST + \ MC_CMD_DBIWROP_TYPEDEF_BYTE_MASK_OFST + \ (n) * MC_CMD_DBIWROP_TYPEDEF_LEN) #define MC_CMD_DBI_WRITE_IN_VALUE_OFST(n) \ (MC_CMD_DBI_WRITE_IN_DBIWROP_OFST + \ MC_CMD_DBIWROP_TYPEDEF_VALUE_OFST + \ (n) * MC_CMD_DBIWROP_TYPEDEF_LEN) /* This may be ORed with an EVB_PORT_ID_xxx constant to pass a non-default * stack ID (which must be in the range 1-255) along with an EVB port ID. */ #define EVB_STACK_ID(n) (((n) & 0xff) << 16) #ifdef WITH_MCDI_V2 /* Version 2 adds an optional argument to error returns: the errno value * may be followed by the (0-based) number of the first argument that * could not be processed. */ #define MC_CMD_ERR_ARG_OFST 4 /* No space */ #define MC_CMD_ERR_ENOSPC 28 #endif /* MCDI_EVENT structuredef */ #define MCDI_EVENT_LEN 8 #define MCDI_EVENT_CONT_LBN 32 #define MCDI_EVENT_CONT_WIDTH 1 #define MCDI_EVENT_LEVEL_LBN 33 #define MCDI_EVENT_LEVEL_WIDTH 3 /* enum: Info. */ #define MCDI_EVENT_LEVEL_INFO 0x0 /* enum: Warning. */ #define MCDI_EVENT_LEVEL_WARN 0x1 /* enum: Error. */ #define MCDI_EVENT_LEVEL_ERR 0x2 /* enum: Fatal. */ #define MCDI_EVENT_LEVEL_FATAL 0x3 #define MCDI_EVENT_DATA_OFST 0 #define MCDI_EVENT_CMDDONE_SEQ_LBN 0 #define MCDI_EVENT_CMDDONE_SEQ_WIDTH 8 #define MCDI_EVENT_CMDDONE_DATALEN_LBN 8 #define MCDI_EVENT_CMDDONE_DATALEN_WIDTH 8 #define MCDI_EVENT_CMDDONE_ERRNO_LBN 16 #define MCDI_EVENT_CMDDONE_ERRNO_WIDTH 8 #define MCDI_EVENT_LINKCHANGE_LP_CAP_LBN 0 #define MCDI_EVENT_LINKCHANGE_LP_CAP_WIDTH 16 #define MCDI_EVENT_LINKCHANGE_SPEED_LBN 16 #define MCDI_EVENT_LINKCHANGE_SPEED_WIDTH 4 /* enum: 100Mbs */ #define MCDI_EVENT_LINKCHANGE_SPEED_100M 0x1 /* enum: 1Gbs */ #define MCDI_EVENT_LINKCHANGE_SPEED_1G 0x2 /* enum: 10Gbs */ #define MCDI_EVENT_LINKCHANGE_SPEED_10G 0x3 /* enum: 40Gbs */ #define MCDI_EVENT_LINKCHANGE_SPEED_40G 0x4 #define MCDI_EVENT_LINKCHANGE_FCNTL_LBN 20 #define MCDI_EVENT_LINKCHANGE_FCNTL_WIDTH 4 #define MCDI_EVENT_LINKCHANGE_LINK_FLAGS_LBN 24 #define MCDI_EVENT_LINKCHANGE_LINK_FLAGS_WIDTH 8 #define MCDI_EVENT_SENSOREVT_MONITOR_LBN 0 #define MCDI_EVENT_SENSOREVT_MONITOR_WIDTH 8 #define MCDI_EVENT_SENSOREVT_STATE_LBN 8 #define MCDI_EVENT_SENSOREVT_STATE_WIDTH 8 #define MCDI_EVENT_SENSOREVT_VALUE_LBN 16 #define MCDI_EVENT_SENSOREVT_VALUE_WIDTH 16 #define MCDI_EVENT_FWALERT_DATA_LBN 8 #define MCDI_EVENT_FWALERT_DATA_WIDTH 24 #define MCDI_EVENT_FWALERT_REASON_LBN 0 #define MCDI_EVENT_FWALERT_REASON_WIDTH 8 /* enum: SRAM Access. */ #define MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS 0x1 #define MCDI_EVENT_FLR_VF_LBN 0 #define MCDI_EVENT_FLR_VF_WIDTH 8 #define MCDI_EVENT_TX_ERR_TXQ_LBN 0 #define MCDI_EVENT_TX_ERR_TXQ_WIDTH 12 #define MCDI_EVENT_TX_ERR_TYPE_LBN 12 #define MCDI_EVENT_TX_ERR_TYPE_WIDTH 4 /* enum: Descriptor loader reported failure */ #define MCDI_EVENT_TX_ERR_DL_FAIL 0x1 /* enum: Descriptor ring empty and no EOP seen for packet */ #define MCDI_EVENT_TX_ERR_NO_EOP 0x2 /* enum: Overlength packet */ #define MCDI_EVENT_TX_ERR_2BIG 0x3 /* enum: Malformed option descriptor */ #define MCDI_EVENT_TX_BAD_OPTDESC 0x5 /* enum: Option descriptor part way through a packet */ #define MCDI_EVENT_TX_OPT_IN_PKT 0x8 /* enum: DMA or PIO data access error */ #define MCDI_EVENT_TX_ERR_BAD_DMA_OR_PIO 0x9 #define MCDI_EVENT_TX_ERR_INFO_LBN 16 #define MCDI_EVENT_TX_ERR_INFO_WIDTH 16 #define MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN 12 #define MCDI_EVENT_TX_FLUSH_TO_DRIVER_WIDTH 1 #define MCDI_EVENT_TX_FLUSH_TXQ_LBN 0 #define MCDI_EVENT_TX_FLUSH_TXQ_WIDTH 12 #define MCDI_EVENT_PTP_ERR_TYPE_LBN 0 #define MCDI_EVENT_PTP_ERR_TYPE_WIDTH 8 /* enum: PLL lost lock */ #define MCDI_EVENT_PTP_ERR_PLL_LOST 0x1 /* enum: Filter overflow (PDMA) */ #define MCDI_EVENT_PTP_ERR_FILTER 0x2 /* enum: FIFO overflow (FPGA) */ #define MCDI_EVENT_PTP_ERR_FIFO 0x3 /* enum: Merge queue overflow */ #define MCDI_EVENT_PTP_ERR_QUEUE 0x4 #define MCDI_EVENT_AOE_ERR_TYPE_LBN 0 #define MCDI_EVENT_AOE_ERR_TYPE_WIDTH 8 /* enum: AOE failed to load - no valid image? */ #define MCDI_EVENT_AOE_NO_LOAD 0x1 /* enum: AOE FC reported an exception */ #define MCDI_EVENT_AOE_FC_ASSERT 0x2 /* enum: AOE FC watchdogged */ #define MCDI_EVENT_AOE_FC_WATCHDOG 0x3 /* enum: AOE FC failed to start */ #define MCDI_EVENT_AOE_FC_NO_START 0x4 /* enum: Generic AOE fault - likely to have been reported via other means too * but intended for use by aoex driver. */ #define MCDI_EVENT_AOE_FAULT 0x5 /* enum: Results of reprogramming the CPLD (status in AOE_ERR_DATA) */ #define MCDI_EVENT_AOE_CPLD_REPROGRAMMED 0x6 /* enum: AOE loaded successfully */ #define MCDI_EVENT_AOE_LOAD 0x7 /* enum: AOE DMA operation completed (LSB of HOST_HANDLE in AOE_ERR_DATA) */ #define MCDI_EVENT_AOE_DMA 0x8 /* enum: AOE byteblaster connected/disconnected (Connection status in * AOE_ERR_DATA) */ #define MCDI_EVENT_AOE_BYTEBLASTER 0x9 /* enum: DDR ECC status update */ #define MCDI_EVENT_AOE_DDR_ECC_STATUS 0xa /* enum: PTP status update */ #define MCDI_EVENT_AOE_PTP_STATUS 0xb #define MCDI_EVENT_AOE_ERR_DATA_LBN 8 #define MCDI_EVENT_AOE_ERR_DATA_WIDTH 8 #define MCDI_EVENT_RX_ERR_RXQ_LBN 0 #define MCDI_EVENT_RX_ERR_RXQ_WIDTH 12 #define MCDI_EVENT_RX_ERR_TYPE_LBN 12 #define MCDI_EVENT_RX_ERR_TYPE_WIDTH 4 #define MCDI_EVENT_RX_ERR_INFO_LBN 16 #define MCDI_EVENT_RX_ERR_INFO_WIDTH 16 #define MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN 12 #define MCDI_EVENT_RX_FLUSH_TO_DRIVER_WIDTH 1 #define MCDI_EVENT_RX_FLUSH_RXQ_LBN 0 #define MCDI_EVENT_RX_FLUSH_RXQ_WIDTH 12 #define MCDI_EVENT_MC_REBOOT_COUNT_LBN 0 #define MCDI_EVENT_MC_REBOOT_COUNT_WIDTH 16 #define MCDI_EVENT_MUM_ERR_TYPE_LBN 0 #define MCDI_EVENT_MUM_ERR_TYPE_WIDTH 8 /* enum: MUM failed to load - no valid image? */ #define MCDI_EVENT_MUM_NO_LOAD 0x1 /* enum: MUM f/w reported an exception */ #define MCDI_EVENT_MUM_ASSERT 0x2 /* enum: MUM not kicking watchdog */ #define MCDI_EVENT_MUM_WATCHDOG 0x3 #define MCDI_EVENT_MUM_ERR_DATA_LBN 8 #define MCDI_EVENT_MUM_ERR_DATA_WIDTH 8 #define MCDI_EVENT_DATA_LBN 0 #define MCDI_EVENT_DATA_WIDTH 32 #define MCDI_EVENT_SRC_LBN 36 #define MCDI_EVENT_SRC_WIDTH 8 #define MCDI_EVENT_EV_CODE_LBN 60 #define MCDI_EVENT_EV_CODE_WIDTH 4 #define MCDI_EVENT_CODE_LBN 44 #define MCDI_EVENT_CODE_WIDTH 8 /* enum: Event generated by host software */ #define MCDI_EVENT_SW_EVENT 0x0 /* enum: Bad assert. */ #define MCDI_EVENT_CODE_BADSSERT 0x1 /* enum: PM Notice. */ #define MCDI_EVENT_CODE_PMNOTICE 0x2 /* enum: Command done. */ #define MCDI_EVENT_CODE_CMDDONE 0x3 /* enum: Link change. */ #define MCDI_EVENT_CODE_LINKCHANGE 0x4 /* enum: Sensor Event. */ #define MCDI_EVENT_CODE_SENSOREVT 0x5 /* enum: Schedule error. */ #define MCDI_EVENT_CODE_SCHEDERR 0x6 /* enum: Reboot. */ #define MCDI_EVENT_CODE_REBOOT 0x7 /* enum: Mac stats DMA. */ #define MCDI_EVENT_CODE_MAC_STATS_DMA 0x8 /* enum: Firmware alert. */ #define MCDI_EVENT_CODE_FWALERT 0x9 /* enum: Function level reset. */ #define MCDI_EVENT_CODE_FLR 0xa /* enum: Transmit error */ #define MCDI_EVENT_CODE_TX_ERR 0xb /* enum: Tx flush has completed */ #define MCDI_EVENT_CODE_TX_FLUSH 0xc /* enum: PTP packet received timestamp */ #define MCDI_EVENT_CODE_PTP_RX 0xd /* enum: PTP NIC failure */ #define MCDI_EVENT_CODE_PTP_FAULT 0xe /* enum: PTP PPS event */ #define MCDI_EVENT_CODE_PTP_PPS 0xf /* enum: Rx flush has completed */ #define MCDI_EVENT_CODE_RX_FLUSH 0x10 /* enum: Receive error */ #define MCDI_EVENT_CODE_RX_ERR 0x11 /* enum: AOE fault */ #define MCDI_EVENT_CODE_AOE 0x12 /* enum: Network port calibration failed (VCAL). */ #define MCDI_EVENT_CODE_VCAL_FAIL 0x13 /* enum: HW PPS event */ #define MCDI_EVENT_CODE_HW_PPS 0x14 /* enum: The MC has rebooted (huntington and later, siena uses CODE_REBOOT and * a different format) */ #define MCDI_EVENT_CODE_MC_REBOOT 0x15 /* enum: the MC has detected a parity error */ #define MCDI_EVENT_CODE_PAR_ERR 0x16 /* enum: the MC has detected a correctable error */ #define MCDI_EVENT_CODE_ECC_CORR_ERR 0x17 /* enum: the MC has detected an uncorrectable error */ #define MCDI_EVENT_CODE_ECC_FATAL_ERR 0x18 /* enum: The MC has entered offline BIST mode */ #define MCDI_EVENT_CODE_MC_BIST 0x19 /* enum: PTP tick event providing current NIC time */ #define MCDI_EVENT_CODE_PTP_TIME 0x1a /* enum: MUM fault */ #define MCDI_EVENT_CODE_MUM 0x1b /* enum: notify the designated PF of a new authorization request */ #define MCDI_EVENT_CODE_PROXY_REQUEST 0x1c /* enum: notify a function that awaits an authorization that its request has * been processed and it may now resend the command */ #define MCDI_EVENT_CODE_PROXY_RESPONSE 0x1d /* enum: Artificial event generated by host and posted via MC for test * purposes. */ #define MCDI_EVENT_CODE_TESTGEN 0xfa #define MCDI_EVENT_CMDDONE_DATA_OFST 0 #define MCDI_EVENT_CMDDONE_DATA_LBN 0 #define MCDI_EVENT_CMDDONE_DATA_WIDTH 32 #define MCDI_EVENT_LINKCHANGE_DATA_OFST 0 #define MCDI_EVENT_LINKCHANGE_DATA_LBN 0 #define MCDI_EVENT_LINKCHANGE_DATA_WIDTH 32 #define MCDI_EVENT_SENSOREVT_DATA_OFST 0 #define MCDI_EVENT_SENSOREVT_DATA_LBN 0 #define MCDI_EVENT_SENSOREVT_DATA_WIDTH 32 #define MCDI_EVENT_MAC_STATS_DMA_GENERATION_OFST 0 #define MCDI_EVENT_MAC_STATS_DMA_GENERATION_LBN 0 #define MCDI_EVENT_MAC_STATS_DMA_GENERATION_WIDTH 32 #define MCDI_EVENT_TX_ERR_DATA_OFST 0 #define MCDI_EVENT_TX_ERR_DATA_LBN 0 #define MCDI_EVENT_TX_ERR_DATA_WIDTH 32 /* For CODE_PTP_RX, CODE_PTP_PPS and CODE_HW_PPS events the seconds field of * timestamp */ #define MCDI_EVENT_PTP_SECONDS_OFST 0 #define MCDI_EVENT_PTP_SECONDS_LBN 0 #define MCDI_EVENT_PTP_SECONDS_WIDTH 32 /* For CODE_PTP_RX, CODE_PTP_PPS and CODE_HW_PPS events the major field of * timestamp */ #define MCDI_EVENT_PTP_MAJOR_OFST 0 #define MCDI_EVENT_PTP_MAJOR_LBN 0 #define MCDI_EVENT_PTP_MAJOR_WIDTH 32 /* For CODE_PTP_RX, CODE_PTP_PPS and CODE_HW_PPS events the nanoseconds field * of timestamp */ #define MCDI_EVENT_PTP_NANOSECONDS_OFST 0 #define MCDI_EVENT_PTP_NANOSECONDS_LBN 0 #define MCDI_EVENT_PTP_NANOSECONDS_WIDTH 32 /* For CODE_PTP_RX, CODE_PTP_PPS and CODE_HW_PPS events the minor field of * timestamp */ #define MCDI_EVENT_PTP_MINOR_OFST 0 #define MCDI_EVENT_PTP_MINOR_LBN 0 #define MCDI_EVENT_PTP_MINOR_WIDTH 32 /* For CODE_PTP_RX events, the lowest four bytes of sourceUUID from PTP packet */ #define MCDI_EVENT_PTP_UUID_OFST 0 #define MCDI_EVENT_PTP_UUID_LBN 0 #define MCDI_EVENT_PTP_UUID_WIDTH 32 #define MCDI_EVENT_RX_ERR_DATA_OFST 0 #define MCDI_EVENT_RX_ERR_DATA_LBN 0 #define MCDI_EVENT_RX_ERR_DATA_WIDTH 32 #define MCDI_EVENT_PAR_ERR_DATA_OFST 0 #define MCDI_EVENT_PAR_ERR_DATA_LBN 0 #define MCDI_EVENT_PAR_ERR_DATA_WIDTH 32 #define MCDI_EVENT_ECC_CORR_ERR_DATA_OFST 0 #define MCDI_EVENT_ECC_CORR_ERR_DATA_LBN 0 #define MCDI_EVENT_ECC_CORR_ERR_DATA_WIDTH 32 #define MCDI_EVENT_ECC_FATAL_ERR_DATA_OFST 0 #define MCDI_EVENT_ECC_FATAL_ERR_DATA_LBN 0 #define MCDI_EVENT_ECC_FATAL_ERR_DATA_WIDTH 32 /* For CODE_PTP_TIME events, the major value of the PTP clock */ #define MCDI_EVENT_PTP_TIME_MAJOR_OFST 0 #define MCDI_EVENT_PTP_TIME_MAJOR_LBN 0 #define MCDI_EVENT_PTP_TIME_MAJOR_WIDTH 32 /* For CODE_PTP_TIME events, bits 19-26 of the minor value of the PTP clock */ #define MCDI_EVENT_PTP_TIME_MINOR_26_19_LBN 36 #define MCDI_EVENT_PTP_TIME_MINOR_26_19_WIDTH 8 /* For CODE_PTP_TIME events where report sync status is enabled, indicates * whether the NIC clock has ever been set */ #define MCDI_EVENT_PTP_TIME_NIC_CLOCK_VALID_LBN 36 #define MCDI_EVENT_PTP_TIME_NIC_CLOCK_VALID_WIDTH 1 /* For CODE_PTP_TIME events where report sync status is enabled, indicates * whether the NIC and System clocks are in sync */ #define MCDI_EVENT_PTP_TIME_HOST_NIC_IN_SYNC_LBN 37 #define MCDI_EVENT_PTP_TIME_HOST_NIC_IN_SYNC_WIDTH 1 /* For CODE_PTP_TIME events where report sync status is enabled, bits 21-26 of * the minor value of the PTP clock */ #define MCDI_EVENT_PTP_TIME_MINOR_26_21_LBN 38 #define MCDI_EVENT_PTP_TIME_MINOR_26_21_WIDTH 6 #define MCDI_EVENT_PROXY_REQUEST_BUFF_INDEX_OFST 0 #define MCDI_EVENT_PROXY_REQUEST_BUFF_INDEX_LBN 0 #define MCDI_EVENT_PROXY_REQUEST_BUFF_INDEX_WIDTH 32 #define MCDI_EVENT_PROXY_RESPONSE_HANDLE_OFST 0 #define MCDI_EVENT_PROXY_RESPONSE_HANDLE_LBN 0 #define MCDI_EVENT_PROXY_RESPONSE_HANDLE_WIDTH 32 /* Zero means that the request has been completed or authorized, and the driver * should resend it. A non-zero value means that the authorization has been * denied, and gives the reason. Typically it will be EPERM. */ #define MCDI_EVENT_PROXY_RESPONSE_RC_LBN 36 #define MCDI_EVENT_PROXY_RESPONSE_RC_WIDTH 8 /* FCDI_EVENT structuredef */ #define FCDI_EVENT_LEN 8 #define FCDI_EVENT_CONT_LBN 32 #define FCDI_EVENT_CONT_WIDTH 1 #define FCDI_EVENT_LEVEL_LBN 33 #define FCDI_EVENT_LEVEL_WIDTH 3 /* enum: Info. */ #define FCDI_EVENT_LEVEL_INFO 0x0 /* enum: Warning. */ #define FCDI_EVENT_LEVEL_WARN 0x1 /* enum: Error. */ #define FCDI_EVENT_LEVEL_ERR 0x2 /* enum: Fatal. */ #define FCDI_EVENT_LEVEL_FATAL 0x3 #define FCDI_EVENT_DATA_OFST 0 #define FCDI_EVENT_LINK_STATE_STATUS_LBN 0 #define FCDI_EVENT_LINK_STATE_STATUS_WIDTH 1 #define FCDI_EVENT_LINK_DOWN 0x0 /* enum */ #define FCDI_EVENT_LINK_UP 0x1 /* enum */ #define FCDI_EVENT_DATA_LBN 0 #define FCDI_EVENT_DATA_WIDTH 32 #define FCDI_EVENT_SRC_LBN 36 #define FCDI_EVENT_SRC_WIDTH 8 #define FCDI_EVENT_EV_CODE_LBN 60 #define FCDI_EVENT_EV_CODE_WIDTH 4 #define FCDI_EVENT_CODE_LBN 44 #define FCDI_EVENT_CODE_WIDTH 8 /* enum: The FC was rebooted. */ #define FCDI_EVENT_CODE_REBOOT 0x1 /* enum: Bad assert. */ #define FCDI_EVENT_CODE_ASSERT 0x2 /* enum: DDR3 test result. */ #define FCDI_EVENT_CODE_DDR_TEST_RESULT 0x3 /* enum: Link status. */ #define FCDI_EVENT_CODE_LINK_STATE 0x4 /* enum: A timed read is ready to be serviced. */ #define FCDI_EVENT_CODE_TIMED_READ 0x5 /* enum: One or more PPS IN events */ #define FCDI_EVENT_CODE_PPS_IN 0x6 /* enum: Tick event from PTP clock */ #define FCDI_EVENT_CODE_PTP_TICK 0x7 /* enum: ECC error counters */ #define FCDI_EVENT_CODE_DDR_ECC_STATUS 0x8 /* enum: Current status of PTP */ #define FCDI_EVENT_CODE_PTP_STATUS 0x9 /* enum: Port id config to map MC-FC port idx */ #define FCDI_EVENT_CODE_PORT_CONFIG 0xa #define FCDI_EVENT_ASSERT_INSTR_ADDRESS_OFST 0 #define FCDI_EVENT_ASSERT_INSTR_ADDRESS_LBN 0 #define FCDI_EVENT_ASSERT_INSTR_ADDRESS_WIDTH 32 #define FCDI_EVENT_ASSERT_TYPE_LBN 36 #define FCDI_EVENT_ASSERT_TYPE_WIDTH 8 #define FCDI_EVENT_DDR_TEST_RESULT_STATUS_CODE_LBN 36 #define FCDI_EVENT_DDR_TEST_RESULT_STATUS_CODE_WIDTH 8 #define FCDI_EVENT_DDR_TEST_RESULT_RESULT_OFST 0 #define FCDI_EVENT_DDR_TEST_RESULT_RESULT_LBN 0 #define FCDI_EVENT_DDR_TEST_RESULT_RESULT_WIDTH 32 #define FCDI_EVENT_LINK_STATE_DATA_OFST 0 #define FCDI_EVENT_LINK_STATE_DATA_LBN 0 #define FCDI_EVENT_LINK_STATE_DATA_WIDTH 32 #define FCDI_EVENT_PTP_STATE_OFST 0 #define FCDI_EVENT_PTP_UNDEFINED 0x0 /* enum */ #define FCDI_EVENT_PTP_SETUP_FAILED 0x1 /* enum */ #define FCDI_EVENT_PTP_OPERATIONAL 0x2 /* enum */ #define FCDI_EVENT_PTP_STATE_LBN 0 #define FCDI_EVENT_PTP_STATE_WIDTH 32 #define FCDI_EVENT_DDR_ECC_STATUS_BANK_ID_LBN 36 #define FCDI_EVENT_DDR_ECC_STATUS_BANK_ID_WIDTH 8 #define FCDI_EVENT_DDR_ECC_STATUS_STATUS_OFST 0 #define FCDI_EVENT_DDR_ECC_STATUS_STATUS_LBN 0 #define FCDI_EVENT_DDR_ECC_STATUS_STATUS_WIDTH 32 /* Index of MC port being referred to */ #define FCDI_EVENT_PORT_CONFIG_SRC_LBN 36 #define FCDI_EVENT_PORT_CONFIG_SRC_WIDTH 8 /* FC Port index that matches the MC port index in SRC */ #define FCDI_EVENT_PORT_CONFIG_DATA_OFST 0 #define FCDI_EVENT_PORT_CONFIG_DATA_LBN 0 #define FCDI_EVENT_PORT_CONFIG_DATA_WIDTH 32 /* FCDI_EXTENDED_EVENT_PPS structuredef: Extended FCDI event to send PPS events * to the MC. Note that this structure | is overlayed over a normal FCDI event * such that bits 32-63 containing | event code, level, source etc remain the * same. In this case the data | field of the header is defined to be the * number of timestamps */ #define FCDI_EXTENDED_EVENT_PPS_LENMIN 16 #define FCDI_EXTENDED_EVENT_PPS_LENMAX 248 #define FCDI_EXTENDED_EVENT_PPS_LEN(num) (8+8*(num)) /* Number of timestamps following */ #define FCDI_EXTENDED_EVENT_PPS_COUNT_OFST 0 #define FCDI_EXTENDED_EVENT_PPS_COUNT_LBN 0 #define FCDI_EXTENDED_EVENT_PPS_COUNT_WIDTH 32 /* Seconds field of a timestamp record */ #define FCDI_EXTENDED_EVENT_PPS_SECONDS_OFST 8 #define FCDI_EXTENDED_EVENT_PPS_SECONDS_LBN 64 #define FCDI_EXTENDED_EVENT_PPS_SECONDS_WIDTH 32 /* Nanoseconds field of a timestamp record */ #define FCDI_EXTENDED_EVENT_PPS_NANOSECONDS_OFST 12 #define FCDI_EXTENDED_EVENT_PPS_NANOSECONDS_LBN 96 #define FCDI_EXTENDED_EVENT_PPS_NANOSECONDS_WIDTH 32 /* Timestamp records comprising the event */ #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_OFST 8 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_LEN 8 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_LO_OFST 8 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_HI_OFST 12 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_MINNUM 1 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_MAXNUM 30 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_LBN 64 #define FCDI_EXTENDED_EVENT_PPS_TIMESTAMPS_WIDTH 64 /* MUM_EVENT structuredef */ #define MUM_EVENT_LEN 8 #define MUM_EVENT_CONT_LBN 32 #define MUM_EVENT_CONT_WIDTH 1 #define MUM_EVENT_LEVEL_LBN 33 #define MUM_EVENT_LEVEL_WIDTH 3 /* enum: Info. */ #define MUM_EVENT_LEVEL_INFO 0x0 /* enum: Warning. */ #define MUM_EVENT_LEVEL_WARN 0x1 /* enum: Error. */ #define MUM_EVENT_LEVEL_ERR 0x2 /* enum: Fatal. */ #define MUM_EVENT_LEVEL_FATAL 0x3 #define MUM_EVENT_DATA_OFST 0 #define MUM_EVENT_SENSOR_ID_LBN 0 #define MUM_EVENT_SENSOR_ID_WIDTH 8 /* Enum values, see field(s): */ /* MC_CMD_SENSOR_INFO/MC_CMD_SENSOR_INFO_OUT/MASK */ #define MUM_EVENT_SENSOR_STATE_LBN 8 #define MUM_EVENT_SENSOR_STATE_WIDTH 8 #define MUM_EVENT_PORT_PHY_READY_LBN 0 #define MUM_EVENT_PORT_PHY_READY_WIDTH 1 #define MUM_EVENT_PORT_PHY_LINK_UP_LBN 1 #define MUM_EVENT_PORT_PHY_LINK_UP_WIDTH 1 #define MUM_EVENT_PORT_PHY_TX_LOL_LBN 2 #define MUM_EVENT_PORT_PHY_TX_LOL_WIDTH 1 #define MUM_EVENT_PORT_PHY_RX_LOL_LBN 3 #define MUM_EVENT_PORT_PHY_RX_LOL_WIDTH 1 #define MUM_EVENT_PORT_PHY_TX_LOS_LBN 4 #define MUM_EVENT_PORT_PHY_TX_LOS_WIDTH 1 #define MUM_EVENT_PORT_PHY_RX_LOS_LBN 5 #define MUM_EVENT_PORT_PHY_RX_LOS_WIDTH 1 #define MUM_EVENT_PORT_PHY_TX_FAULT_LBN 6 #define MUM_EVENT_PORT_PHY_TX_FAULT_WIDTH 1 #define MUM_EVENT_DATA_LBN 0 #define MUM_EVENT_DATA_WIDTH 32 #define MUM_EVENT_SRC_LBN 36 #define MUM_EVENT_SRC_WIDTH 8 #define MUM_EVENT_EV_CODE_LBN 60 #define MUM_EVENT_EV_CODE_WIDTH 4 #define MUM_EVENT_CODE_LBN 44 #define MUM_EVENT_CODE_WIDTH 8 /* enum: The MUM was rebooted. */ #define MUM_EVENT_CODE_REBOOT 0x1 /* enum: Bad assert. */ #define MUM_EVENT_CODE_ASSERT 0x2 /* enum: Sensor failure. */ #define MUM_EVENT_CODE_SENSOR 0x3 /* enum: Link fault has been asserted, or has cleared. */ #define MUM_EVENT_CODE_QSFP_LASI_INTERRUPT 0x4 #define MUM_EVENT_SENSOR_DATA_OFST 0 #define MUM_EVENT_SENSOR_DATA_LBN 0 #define MUM_EVENT_SENSOR_DATA_WIDTH 32 #define MUM_EVENT_PORT_PHY_FLAGS_OFST 0 #define MUM_EVENT_PORT_PHY_FLAGS_LBN 0 #define MUM_EVENT_PORT_PHY_FLAGS_WIDTH 32 #define MUM_EVENT_PORT_PHY_COPPER_LEN_OFST 0 #define MUM_EVENT_PORT_PHY_COPPER_LEN_LBN 0 #define MUM_EVENT_PORT_PHY_COPPER_LEN_WIDTH 32 #define MUM_EVENT_PORT_PHY_CAPS_OFST 0 #define MUM_EVENT_PORT_PHY_CAPS_LBN 0 #define MUM_EVENT_PORT_PHY_CAPS_WIDTH 32 #define MUM_EVENT_PORT_PHY_TECH_OFST 0 #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_UNKNOWN 0x0 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_OPTICAL 0x1 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_COPPER_PASSIVE 0x2 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_COPPER_PASSIVE_EQUALIZED 0x3 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_COPPER_ACTIVE_LIMITING 0x4 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_COPPER_ACTIVE_LINEAR 0x5 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_BASE_T 0x6 /* enum */ #define MUM_EVENT_PORT_PHY_STATE_QSFP_MODULE_TECH_LOOPBACK_PASSIVE 0x7 /* enum */ #define MUM_EVENT_PORT_PHY_TECH_LBN 0 #define MUM_EVENT_PORT_PHY_TECH_WIDTH 32 #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_LBN 36 #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_WIDTH 4 #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_FLAGS 0x0 /* enum */ #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_COPPER_LEN 0x1 /* enum */ #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_CAPS 0x2 /* enum */ #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_TECH 0x3 /* enum */ #define MUM_EVENT_PORT_PHY_SRC_DATA_ID_MAX 0x4 /* enum */ #define MUM_EVENT_PORT_PHY_SRC_PORT_NO_LBN 40 #define MUM_EVENT_PORT_PHY_SRC_PORT_NO_WIDTH 4 /***********************************/ /* MC_CMD_READ32 * Read multiple 32byte words from MC memory. */ #define MC_CMD_READ32 0x1 #undef MC_CMD_0x1_PRIVILEGE_CTG #define MC_CMD_0x1_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_READ32_IN msgrequest */ #define MC_CMD_READ32_IN_LEN 8 #define MC_CMD_READ32_IN_ADDR_OFST 0 #define MC_CMD_READ32_IN_NUMWORDS_OFST 4 /* MC_CMD_READ32_OUT msgresponse */ #define MC_CMD_READ32_OUT_LENMIN 4 #define MC_CMD_READ32_OUT_LENMAX 252 #define MC_CMD_READ32_OUT_LEN(num) (0+4*(num)) #define MC_CMD_READ32_OUT_BUFFER_OFST 0 #define MC_CMD_READ32_OUT_BUFFER_LEN 4 #define MC_CMD_READ32_OUT_BUFFER_MINNUM 1 #define MC_CMD_READ32_OUT_BUFFER_MAXNUM 63 /***********************************/ /* MC_CMD_WRITE32 * Write multiple 32byte words to MC memory. */ #define MC_CMD_WRITE32 0x2 #undef MC_CMD_0x2_PRIVILEGE_CTG #define MC_CMD_0x2_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_WRITE32_IN msgrequest */ #define MC_CMD_WRITE32_IN_LENMIN 8 #define MC_CMD_WRITE32_IN_LENMAX 252 #define MC_CMD_WRITE32_IN_LEN(num) (4+4*(num)) #define MC_CMD_WRITE32_IN_ADDR_OFST 0 #define MC_CMD_WRITE32_IN_BUFFER_OFST 4 #define MC_CMD_WRITE32_IN_BUFFER_LEN 4 #define MC_CMD_WRITE32_IN_BUFFER_MINNUM 1 #define MC_CMD_WRITE32_IN_BUFFER_MAXNUM 62 /* MC_CMD_WRITE32_OUT msgresponse */ #define MC_CMD_WRITE32_OUT_LEN 0 /***********************************/ /* MC_CMD_COPYCODE * Copy MC code between two locations and jump. */ #define MC_CMD_COPYCODE 0x3 #undef MC_CMD_0x3_PRIVILEGE_CTG #define MC_CMD_0x3_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_COPYCODE_IN msgrequest */ #define MC_CMD_COPYCODE_IN_LEN 16 /* Source address * * The main image should be entered via a copy of a single word from and to a * magic address, which controls various aspects of the boot. The magic address * is a bitfield, with each bit as documented below. */ #define MC_CMD_COPYCODE_IN_SRC_ADDR_OFST 0 /* enum: Deprecated; equivalent to setting BOOT_MAGIC_PRESENT (see below) */ #define MC_CMD_COPYCODE_HUNT_NO_MAGIC_ADDR 0x10000 /* enum: Deprecated; equivalent to setting BOOT_MAGIC_PRESENT and * BOOT_MAGIC_SATELLITE_CPUS_NOT_LOADED (see below) */ #define MC_CMD_COPYCODE_HUNT_NO_DATAPATH_MAGIC_ADDR 0x1d0d0 /* enum: Deprecated; equivalent to setting BOOT_MAGIC_PRESENT, * BOOT_MAGIC_SATELLITE_CPUS_NOT_LOADED and BOOT_MAGIC_IGNORE_CONFIG (see * below) */ #define MC_CMD_COPYCODE_HUNT_IGNORE_CONFIG_MAGIC_ADDR 0x1badc #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_PRESENT_LBN 17 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_PRESENT_WIDTH 1 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_SATELLITE_CPUS_NOT_LOADED_LBN 2 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_SATELLITE_CPUS_NOT_LOADED_WIDTH 1 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_IGNORE_CONFIG_LBN 3 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_IGNORE_CONFIG_WIDTH 1 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_SKIP_BOOT_ICORE_SYNC_LBN 4 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_SKIP_BOOT_ICORE_SYNC_WIDTH 1 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_FORCE_STANDALONE_LBN 5 #define MC_CMD_COPYCODE_IN_BOOT_MAGIC_FORCE_STANDALONE_WIDTH 1 /* Destination address */ #define MC_CMD_COPYCODE_IN_DEST_ADDR_OFST 4 #define MC_CMD_COPYCODE_IN_NUMWORDS_OFST 8 /* Address of where to jump after copy. */ #define MC_CMD_COPYCODE_IN_JUMP_OFST 12 /* enum: Control should return to the caller rather than jumping */ #define MC_CMD_COPYCODE_JUMP_NONE 0x1 /* MC_CMD_COPYCODE_OUT msgresponse */ #define MC_CMD_COPYCODE_OUT_LEN 0 /***********************************/ /* MC_CMD_SET_FUNC * Select function for function-specific commands. */ #define MC_CMD_SET_FUNC 0x4 #undef MC_CMD_0x4_PRIVILEGE_CTG #define MC_CMD_0x4_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_FUNC_IN msgrequest */ #define MC_CMD_SET_FUNC_IN_LEN 4 /* Set function */ #define MC_CMD_SET_FUNC_IN_FUNC_OFST 0 /* MC_CMD_SET_FUNC_OUT msgresponse */ #define MC_CMD_SET_FUNC_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_BOOT_STATUS * Get the instruction address from which the MC booted. */ #define MC_CMD_GET_BOOT_STATUS 0x5 #undef MC_CMD_0x5_PRIVILEGE_CTG #define MC_CMD_0x5_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_BOOT_STATUS_IN msgrequest */ #define MC_CMD_GET_BOOT_STATUS_IN_LEN 0 /* MC_CMD_GET_BOOT_STATUS_OUT msgresponse */ #define MC_CMD_GET_BOOT_STATUS_OUT_LEN 8 /* ?? */ #define MC_CMD_GET_BOOT_STATUS_OUT_BOOT_OFFSET_OFST 0 /* enum: indicates that the MC wasn't flash booted */ #define MC_CMD_GET_BOOT_STATUS_OUT_BOOT_OFFSET_NULL 0xdeadbeef #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_OFST 4 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_WATCHDOG_LBN 0 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_WATCHDOG_WIDTH 1 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_PRIMARY_LBN 1 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_PRIMARY_WIDTH 1 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_BACKUP_LBN 2 #define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_BACKUP_WIDTH 1 /***********************************/ /* MC_CMD_GET_ASSERTS * Get (and optionally clear) the current assertion status. Only * OUT.GLOBAL_FLAGS is guaranteed to exist in the completion payload. The other * fields will only be present if OUT.GLOBAL_FLAGS != NO_FAILS */ #define MC_CMD_GET_ASSERTS 0x6 #undef MC_CMD_0x6_PRIVILEGE_CTG #define MC_CMD_0x6_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_ASSERTS_IN msgrequest */ #define MC_CMD_GET_ASSERTS_IN_LEN 4 /* Set to clear assertion */ #define MC_CMD_GET_ASSERTS_IN_CLEAR_OFST 0 /* MC_CMD_GET_ASSERTS_OUT msgresponse */ #define MC_CMD_GET_ASSERTS_OUT_LEN 140 /* Assertion status flag. */ #define MC_CMD_GET_ASSERTS_OUT_GLOBAL_FLAGS_OFST 0 /* enum: No assertions have failed. */ #define MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS 0x1 /* enum: A system-level assertion has failed. */ #define MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL 0x2 /* enum: A thread-level assertion has failed. */ #define MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL 0x3 /* enum: The system was reset by the watchdog. */ #define MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED 0x4 /* enum: An illegal address trap stopped the system (huntington and later) */ #define MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP 0x5 /* Failing PC value */ #define MC_CMD_GET_ASSERTS_OUT_SAVED_PC_OFFS_OFST 4 /* Saved GP regs */ #define MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST 8 #define MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_LEN 4 #define MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM 31 /* enum: A magic value hinting that the value in this register at the time of * the failure has likely been lost. */ #define MC_CMD_GET_ASSERTS_REG_NO_DATA 0xda7a1057 /* Failing thread address */ #define MC_CMD_GET_ASSERTS_OUT_THREAD_OFFS_OFST 132 #define MC_CMD_GET_ASSERTS_OUT_RESERVED_OFST 136 /***********************************/ /* MC_CMD_LOG_CTRL * Configure the output stream for log events such as link state changes, * sensor notifications and MCDI completions */ #define MC_CMD_LOG_CTRL 0x7 #undef MC_CMD_0x7_PRIVILEGE_CTG #define MC_CMD_0x7_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_LOG_CTRL_IN msgrequest */ #define MC_CMD_LOG_CTRL_IN_LEN 8 /* Log destination */ #define MC_CMD_LOG_CTRL_IN_LOG_DEST_OFST 0 /* enum: UART. */ #define MC_CMD_LOG_CTRL_IN_LOG_DEST_UART 0x1 /* enum: Event queue. */ #define MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ 0x2 /* Legacy argument. Must be zero. */ #define MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ_OFST 4 /* MC_CMD_LOG_CTRL_OUT msgresponse */ #define MC_CMD_LOG_CTRL_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_VERSION * Get version information about the MC firmware. */ #define MC_CMD_GET_VERSION 0x8 #undef MC_CMD_0x8_PRIVILEGE_CTG #define MC_CMD_0x8_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_VERSION_IN msgrequest */ #define MC_CMD_GET_VERSION_IN_LEN 0 /* MC_CMD_GET_VERSION_EXT_IN msgrequest: Asks for the extended version */ #define MC_CMD_GET_VERSION_EXT_IN_LEN 4 /* placeholder, set to 0 */ #define MC_CMD_GET_VERSION_EXT_IN_EXT_FLAGS_OFST 0 /* MC_CMD_GET_VERSION_V0_OUT msgresponse: deprecated version format */ #define MC_CMD_GET_VERSION_V0_OUT_LEN 4 #define MC_CMD_GET_VERSION_OUT_FIRMWARE_OFST 0 /* enum: Reserved version number to indicate "any" version. */ #define MC_CMD_GET_VERSION_OUT_FIRMWARE_ANY 0xffffffff /* enum: Bootrom version value for Siena. */ #define MC_CMD_GET_VERSION_OUT_FIRMWARE_SIENA_BOOTROM 0xb0070000 /* enum: Bootrom version value for Huntington. */ #define MC_CMD_GET_VERSION_OUT_FIRMWARE_HUNT_BOOTROM 0xb0070001 /* MC_CMD_GET_VERSION_OUT msgresponse */ #define MC_CMD_GET_VERSION_OUT_LEN 32 /* MC_CMD_GET_VERSION_OUT_FIRMWARE_OFST 0 */ /* Enum values, see field(s): */ /* MC_CMD_GET_VERSION_V0_OUT/MC_CMD_GET_VERSION_OUT_FIRMWARE */ #define MC_CMD_GET_VERSION_OUT_PCOL_OFST 4 /* 128bit mask of functions supported by the current firmware */ #define MC_CMD_GET_VERSION_OUT_SUPPORTED_FUNCS_OFST 8 #define MC_CMD_GET_VERSION_OUT_SUPPORTED_FUNCS_LEN 16 #define MC_CMD_GET_VERSION_OUT_VERSION_OFST 24 #define MC_CMD_GET_VERSION_OUT_VERSION_LEN 8 #define MC_CMD_GET_VERSION_OUT_VERSION_LO_OFST 24 #define MC_CMD_GET_VERSION_OUT_VERSION_HI_OFST 28 /* MC_CMD_GET_VERSION_EXT_OUT msgresponse */ #define MC_CMD_GET_VERSION_EXT_OUT_LEN 48 /* MC_CMD_GET_VERSION_OUT_FIRMWARE_OFST 0 */ /* Enum values, see field(s): */ /* MC_CMD_GET_VERSION_V0_OUT/MC_CMD_GET_VERSION_OUT_FIRMWARE */ #define MC_CMD_GET_VERSION_EXT_OUT_PCOL_OFST 4 /* 128bit mask of functions supported by the current firmware */ #define MC_CMD_GET_VERSION_EXT_OUT_SUPPORTED_FUNCS_OFST 8 #define MC_CMD_GET_VERSION_EXT_OUT_SUPPORTED_FUNCS_LEN 16 #define MC_CMD_GET_VERSION_EXT_OUT_VERSION_OFST 24 #define MC_CMD_GET_VERSION_EXT_OUT_VERSION_LEN 8 #define MC_CMD_GET_VERSION_EXT_OUT_VERSION_LO_OFST 24 #define MC_CMD_GET_VERSION_EXT_OUT_VERSION_HI_OFST 28 /* extra info */ #define MC_CMD_GET_VERSION_EXT_OUT_EXTRA_OFST 32 #define MC_CMD_GET_VERSION_EXT_OUT_EXTRA_LEN 16 /***********************************/ /* MC_CMD_FC * Perform an FC operation */ #define MC_CMD_FC 0x9 /* MC_CMD_FC_IN msgrequest */ #define MC_CMD_FC_IN_LEN 4 #define MC_CMD_FC_IN_OP_HDR_OFST 0 #define MC_CMD_FC_IN_OP_LBN 0 #define MC_CMD_FC_IN_OP_WIDTH 8 /* enum: NULL MCDI command to FC. */ #define MC_CMD_FC_OP_NULL 0x1 /* enum: Unused opcode */ #define MC_CMD_FC_OP_UNUSED 0x2 /* enum: MAC driver commands */ #define MC_CMD_FC_OP_MAC 0x3 /* enum: Read FC memory */ #define MC_CMD_FC_OP_READ32 0x4 /* enum: Write to FC memory */ #define MC_CMD_FC_OP_WRITE32 0x5 /* enum: Read FC memory */ #define MC_CMD_FC_OP_TRC_READ 0x6 /* enum: Write to FC memory */ #define MC_CMD_FC_OP_TRC_WRITE 0x7 /* enum: FC firmware Version */ #define MC_CMD_FC_OP_GET_VERSION 0x8 /* enum: Read FC memory */ #define MC_CMD_FC_OP_TRC_RX_READ 0x9 /* enum: Write to FC memory */ #define MC_CMD_FC_OP_TRC_RX_WRITE 0xa /* enum: SFP parameters */ #define MC_CMD_FC_OP_SFP 0xb /* enum: DDR3 test */ #define MC_CMD_FC_OP_DDR_TEST 0xc /* enum: Get Crash context from FC */ #define MC_CMD_FC_OP_GET_ASSERT 0xd /* enum: Get FPGA Build registers */ #define MC_CMD_FC_OP_FPGA_BUILD 0xe /* enum: Read map support commands */ #define MC_CMD_FC_OP_READ_MAP 0xf /* enum: FC Capabilities */ #define MC_CMD_FC_OP_CAPABILITIES 0x10 /* enum: FC Global flags */ #define MC_CMD_FC_OP_GLOBAL_FLAGS 0x11 /* enum: FC IO using relative addressing modes */ #define MC_CMD_FC_OP_IO_REL 0x12 /* enum: FPGA link information */ #define MC_CMD_FC_OP_UHLINK 0x13 /* enum: Configure loopbacks and link on FPGA ports */ #define MC_CMD_FC_OP_SET_LINK 0x14 /* enum: Licensing operations relating to AOE */ #define MC_CMD_FC_OP_LICENSE 0x15 /* enum: Startup information to the FC */ #define MC_CMD_FC_OP_STARTUP 0x16 /* enum: Configure a DMA read */ #define MC_CMD_FC_OP_DMA 0x17 /* enum: Configure a timed read */ #define MC_CMD_FC_OP_TIMED_READ 0x18 /* enum: Control UART logging */ #define MC_CMD_FC_OP_LOG 0x19 /* enum: Get the value of a given clock_id */ #define MC_CMD_FC_OP_CLOCK 0x1a /* enum: DDR3/QDR3 parameters */ #define MC_CMD_FC_OP_DDR 0x1b /* enum: PTP and timestamp control */ #define MC_CMD_FC_OP_TIMESTAMP 0x1c /* enum: Commands for SPI Flash interface */ #define MC_CMD_FC_OP_SPI 0x1d /* enum: Commands for diagnostic components */ #define MC_CMD_FC_OP_DIAG 0x1e /* enum: External AOE port. */ #define MC_CMD_FC_IN_PORT_EXT_OFST 0x0 /* enum: Internal AOE port. */ #define MC_CMD_FC_IN_PORT_INT_OFST 0x40 /* MC_CMD_FC_IN_NULL msgrequest */ #define MC_CMD_FC_IN_NULL_LEN 4 #define MC_CMD_FC_IN_CMD_OFST 0 /* MC_CMD_FC_IN_PHY msgrequest */ #define MC_CMD_FC_IN_PHY_LEN 5 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* FC PHY driver operation code */ #define MC_CMD_FC_IN_PHY_OP_OFST 4 #define MC_CMD_FC_IN_PHY_OP_LEN 1 /* enum: PHY init handler */ #define MC_CMD_FC_OP_PHY_OP_INIT 0x1 /* enum: PHY reconfigure handler */ #define MC_CMD_FC_OP_PHY_OP_RECONFIGURE 0x2 /* enum: PHY reboot handler */ #define MC_CMD_FC_OP_PHY_OP_REBOOT 0x3 /* enum: PHY get_supported_cap handler */ #define MC_CMD_FC_OP_PHY_OP_GET_SUPPORTED_CAP 0x4 /* enum: PHY get_config handler */ #define MC_CMD_FC_OP_PHY_OP_GET_CONFIG 0x5 /* enum: PHY get_media_info handler */ #define MC_CMD_FC_OP_PHY_OP_GET_MEDIA_INFO 0x6 /* enum: PHY set_led handler */ #define MC_CMD_FC_OP_PHY_OP_SET_LED 0x7 /* enum: PHY lasi_interrupt handler */ #define MC_CMD_FC_OP_PHY_OP_LASI_INTERRUPT 0x8 /* enum: PHY check_link handler */ #define MC_CMD_FC_OP_PHY_OP_CHECK_LINK 0x9 /* enum: PHY fill_stats handler */ #define MC_CMD_FC_OP_PHY_OP_FILL_STATS 0xa /* enum: PHY bpx_link_state_changed handler */ #define MC_CMD_FC_OP_PHY_OP_BPX_LINK_STATE_CHANGED 0xb /* enum: PHY get_state handler */ #define MC_CMD_FC_OP_PHY_OP_GET_STATE 0xc /* enum: PHY start_bist handler */ #define MC_CMD_FC_OP_PHY_OP_START_BIST 0xd /* enum: PHY poll_bist handler */ #define MC_CMD_FC_OP_PHY_OP_POLL_BIST 0xe /* enum: PHY nvram_test handler */ #define MC_CMD_FC_OP_PHY_OP_NVRAM_TEST 0xf /* enum: PHY relinquish handler */ #define MC_CMD_FC_OP_PHY_OP_RELINQUISH_SPI 0x10 /* enum: PHY read connection from FC - may be not required */ #define MC_CMD_FC_OP_PHY_OP_GET_CONNECTION 0x11 /* enum: PHY read flags from FC - may be not required */ #define MC_CMD_FC_OP_PHY_OP_GET_FLAGS 0x12 /* MC_CMD_FC_IN_PHY_INIT msgrequest */ #define MC_CMD_FC_IN_PHY_INIT_LEN 4 #define MC_CMD_FC_IN_PHY_CMD_OFST 0 /* MC_CMD_FC_IN_MAC msgrequest */ #define MC_CMD_FC_IN_MAC_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_MAC_HEADER_OFST 4 #define MC_CMD_FC_IN_MAC_OP_LBN 0 #define MC_CMD_FC_IN_MAC_OP_WIDTH 8 /* enum: MAC reconfigure handler */ #define MC_CMD_FC_OP_MAC_OP_RECONFIGURE 0x1 /* enum: MAC Set command - same as MC_CMD_SET_MAC */ #define MC_CMD_FC_OP_MAC_OP_SET_LINK 0x2 /* enum: MAC statistics */ #define MC_CMD_FC_OP_MAC_OP_GET_STATS 0x3 /* enum: MAC RX statistics */ #define MC_CMD_FC_OP_MAC_OP_GET_RX_STATS 0x6 /* enum: MAC TX statistics */ #define MC_CMD_FC_OP_MAC_OP_GET_TX_STATS 0x7 /* enum: MAC Read status */ #define MC_CMD_FC_OP_MAC_OP_READ_STATUS 0x8 #define MC_CMD_FC_IN_MAC_PORT_TYPE_LBN 8 #define MC_CMD_FC_IN_MAC_PORT_TYPE_WIDTH 8 /* enum: External FPGA port. */ #define MC_CMD_FC_PORT_EXT 0x0 /* enum: Internal Siena-facing FPGA ports. */ #define MC_CMD_FC_PORT_INT 0x1 #define MC_CMD_FC_IN_MAC_PORT_IDX_LBN 16 #define MC_CMD_FC_IN_MAC_PORT_IDX_WIDTH 8 #define MC_CMD_FC_IN_MAC_CMD_FORMAT_LBN 24 #define MC_CMD_FC_IN_MAC_CMD_FORMAT_WIDTH 8 /* enum: Default FC command format; the fields PORT_TYPE and PORT_IDX are * irrelevant. Port number is derived from pci_fn; passed in FC header. */ #define MC_CMD_FC_OP_MAC_CMD_FORMAT_DEFAULT 0x0 /* enum: Override default port number. Port number determined by fields * PORT_TYPE and PORT_IDX. */ #define MC_CMD_FC_OP_MAC_CMD_FORMAT_PORT_OVERRIDE 0x1 /* MC_CMD_FC_IN_MAC_RECONFIGURE msgrequest */ #define MC_CMD_FC_IN_MAC_RECONFIGURE_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MC_CMD_FC_IN_MAC_SET_LINK msgrequest */ #define MC_CMD_FC_IN_MAC_SET_LINK_LEN 32 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MTU size */ #define MC_CMD_FC_IN_MAC_SET_LINK_MTU_OFST 8 /* Drain Tx FIFO */ #define MC_CMD_FC_IN_MAC_SET_LINK_DRAIN_OFST 12 #define MC_CMD_FC_IN_MAC_SET_LINK_ADDR_OFST 16 #define MC_CMD_FC_IN_MAC_SET_LINK_ADDR_LEN 8 #define MC_CMD_FC_IN_MAC_SET_LINK_ADDR_LO_OFST 16 #define MC_CMD_FC_IN_MAC_SET_LINK_ADDR_HI_OFST 20 #define MC_CMD_FC_IN_MAC_SET_LINK_REJECT_OFST 24 #define MC_CMD_FC_IN_MAC_SET_LINK_REJECT_UNICAST_LBN 0 #define MC_CMD_FC_IN_MAC_SET_LINK_REJECT_UNICAST_WIDTH 1 #define MC_CMD_FC_IN_MAC_SET_LINK_REJECT_BRDCAST_LBN 1 #define MC_CMD_FC_IN_MAC_SET_LINK_REJECT_BRDCAST_WIDTH 1 #define MC_CMD_FC_IN_MAC_SET_LINK_FCNTL_OFST 28 /* MC_CMD_FC_IN_MAC_READ_STATUS msgrequest */ #define MC_CMD_FC_IN_MAC_READ_STATUS_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MC_CMD_FC_IN_MAC_GET_RX_STATS msgrequest */ #define MC_CMD_FC_IN_MAC_GET_RX_STATS_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MC_CMD_FC_IN_MAC_GET_TX_STATS msgrequest */ #define MC_CMD_FC_IN_MAC_GET_TX_STATS_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MC_CMD_FC_IN_MAC_GET_STATS msgrequest */ #define MC_CMD_FC_IN_MAC_GET_STATS_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_MAC_HEADER_OFST 4 */ /* MC Statistics index */ #define MC_CMD_FC_IN_MAC_GET_STATS_STATS_INDEX_OFST 8 #define MC_CMD_FC_IN_MAC_GET_STATS_FLAGS_OFST 12 #define MC_CMD_FC_IN_MAC_GET_STATS_CLEAR_ALL_LBN 0 #define MC_CMD_FC_IN_MAC_GET_STATS_CLEAR_ALL_WIDTH 1 #define MC_CMD_FC_IN_MAC_GET_STATS_CLEAR_LBN 1 #define MC_CMD_FC_IN_MAC_GET_STATS_CLEAR_WIDTH 1 #define MC_CMD_FC_IN_MAC_GET_STATS_UPDATE_LBN 2 #define MC_CMD_FC_IN_MAC_GET_STATS_UPDATE_WIDTH 1 /* Number of statistics to read */ #define MC_CMD_FC_IN_MAC_GET_STATS_NUM_OFST 16 #define MC_CMD_FC_MAC_NSTATS_PER_BLOCK 0x1e /* enum */ #define MC_CMD_FC_MAC_NBYTES_PER_STAT 0x8 /* enum */ /* MC_CMD_FC_IN_READ32 msgrequest */ #define MC_CMD_FC_IN_READ32_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_READ32_ADDR_HI_OFST 4 #define MC_CMD_FC_IN_READ32_ADDR_LO_OFST 8 #define MC_CMD_FC_IN_READ32_NUMWORDS_OFST 12 /* MC_CMD_FC_IN_WRITE32 msgrequest */ #define MC_CMD_FC_IN_WRITE32_LENMIN 16 #define MC_CMD_FC_IN_WRITE32_LENMAX 252 #define MC_CMD_FC_IN_WRITE32_LEN(num) (12+4*(num)) /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_WRITE32_ADDR_HI_OFST 4 #define MC_CMD_FC_IN_WRITE32_ADDR_LO_OFST 8 #define MC_CMD_FC_IN_WRITE32_BUFFER_OFST 12 #define MC_CMD_FC_IN_WRITE32_BUFFER_LEN 4 #define MC_CMD_FC_IN_WRITE32_BUFFER_MINNUM 1 #define MC_CMD_FC_IN_WRITE32_BUFFER_MAXNUM 60 /* MC_CMD_FC_IN_TRC_READ msgrequest */ #define MC_CMD_FC_IN_TRC_READ_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TRC_READ_TRC_OFST 4 #define MC_CMD_FC_IN_TRC_READ_CHANNEL_OFST 8 /* MC_CMD_FC_IN_TRC_WRITE msgrequest */ #define MC_CMD_FC_IN_TRC_WRITE_LEN 28 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TRC_WRITE_TRC_OFST 4 #define MC_CMD_FC_IN_TRC_WRITE_CHANNEL_OFST 8 #define MC_CMD_FC_IN_TRC_WRITE_DATA_OFST 12 #define MC_CMD_FC_IN_TRC_WRITE_DATA_LEN 4 #define MC_CMD_FC_IN_TRC_WRITE_DATA_NUM 4 /* MC_CMD_FC_IN_GET_VERSION msgrequest */ #define MC_CMD_FC_IN_GET_VERSION_LEN 4 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_TRC_RX_READ msgrequest */ #define MC_CMD_FC_IN_TRC_RX_READ_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TRC_RX_READ_TRC_OFST 4 #define MC_CMD_FC_IN_TRC_RX_READ_CHANNEL_OFST 8 /* MC_CMD_FC_IN_TRC_RX_WRITE msgrequest */ #define MC_CMD_FC_IN_TRC_RX_WRITE_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TRC_RX_WRITE_TRC_OFST 4 #define MC_CMD_FC_IN_TRC_RX_WRITE_CHANNEL_OFST 8 #define MC_CMD_FC_IN_TRC_RX_WRITE_DATA_OFST 12 #define MC_CMD_FC_IN_TRC_RX_WRITE_DATA_LEN 4 #define MC_CMD_FC_IN_TRC_RX_WRITE_DATA_NUM 2 /* MC_CMD_FC_IN_SFP msgrequest */ #define MC_CMD_FC_IN_SFP_LEN 28 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* Link speed is 100, 1000, 10000, 40000 */ #define MC_CMD_FC_IN_SFP_SPEED_OFST 4 /* Length of copper cable - zero when not relevant (e.g. if cable is fibre) */ #define MC_CMD_FC_IN_SFP_COPPER_LEN_OFST 8 /* Not relevant for cards with QSFP modules. For older cards, true if module is * a dual speed SFP+ module. */ #define MC_CMD_FC_IN_SFP_DUAL_SPEED_OFST 12 /* True if an SFP Module is present (other fields valid when true) */ #define MC_CMD_FC_IN_SFP_PRESENT_OFST 16 /* The type of the SFP+ Module. For later cards with QSFP modules, this field * is unused and the type is communicated by other means. */ #define MC_CMD_FC_IN_SFP_TYPE_OFST 20 /* Capabilities corresponding to 1 bits. */ #define MC_CMD_FC_IN_SFP_CAPS_OFST 24 /* MC_CMD_FC_IN_DDR_TEST msgrequest */ #define MC_CMD_FC_IN_DDR_TEST_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DDR_TEST_HEADER_OFST 4 #define MC_CMD_FC_IN_DDR_TEST_OP_LBN 0 #define MC_CMD_FC_IN_DDR_TEST_OP_WIDTH 8 /* enum: DRAM Test Start */ #define MC_CMD_FC_OP_DDR_TEST_START 0x1 /* enum: DRAM Test Poll */ #define MC_CMD_FC_OP_DDR_TEST_POLL 0x2 /* MC_CMD_FC_IN_DDR_TEST_START msgrequest */ #define MC_CMD_FC_IN_DDR_TEST_START_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_DDR_TEST_HEADER_OFST 4 */ #define MC_CMD_FC_IN_DDR_TEST_START_MASK_OFST 8 #define MC_CMD_FC_IN_DDR_TEST_START_T0_LBN 0 #define MC_CMD_FC_IN_DDR_TEST_START_T0_WIDTH 1 #define MC_CMD_FC_IN_DDR_TEST_START_T1_LBN 1 #define MC_CMD_FC_IN_DDR_TEST_START_T1_WIDTH 1 #define MC_CMD_FC_IN_DDR_TEST_START_B0_LBN 2 #define MC_CMD_FC_IN_DDR_TEST_START_B0_WIDTH 1 #define MC_CMD_FC_IN_DDR_TEST_START_B1_LBN 3 #define MC_CMD_FC_IN_DDR_TEST_START_B1_WIDTH 1 /* MC_CMD_FC_IN_DDR_TEST_POLL msgrequest */ -#define MC_CMD_FC_IN_DDR_TEST_POLL_LEN 8 +#define MC_CMD_FC_IN_DDR_TEST_POLL_LEN 12 #define MC_CMD_FC_IN_DDR_TEST_CMD_OFST 0 /* MC_CMD_FC_IN_DDR_TEST_HEADER_OFST 4 */ +/* Clear previous test result and prepare for restarting DDR test */ +#define MC_CMD_FC_IN_DDR_TEST_POLL_CLEAR_RESULT_FOR_DDR_TEST_OFST 8 /* MC_CMD_FC_IN_GET_ASSERT msgrequest */ #define MC_CMD_FC_IN_GET_ASSERT_LEN 4 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_FPGA_BUILD msgrequest */ #define MC_CMD_FC_IN_FPGA_BUILD_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* FPGA build info operation code */ #define MC_CMD_FC_IN_FPGA_BUILD_OP_OFST 4 /* enum: Get the build registers */ #define MC_CMD_FC_IN_FPGA_BUILD_BUILD 0x1 /* enum: Get the services registers */ #define MC_CMD_FC_IN_FPGA_BUILD_SERVICES 0x2 /* enum: Get the BSP version */ #define MC_CMD_FC_IN_FPGA_BUILD_BSP_VERSION 0x3 +/* enum: Get build register for V2 (SFA974X) */ +#define MC_CMD_FC_IN_FPGA_BUILD_BUILD_V2 0x4 +/* enum: GEt the services register for V2 (SFA974X) */ +#define MC_CMD_FC_IN_FPGA_BUILD_SERVICES_V2 0x5 /* MC_CMD_FC_IN_READ_MAP msgrequest */ #define MC_CMD_FC_IN_READ_MAP_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_READ_MAP_HEADER_OFST 4 #define MC_CMD_FC_IN_READ_MAP_OP_LBN 0 #define MC_CMD_FC_IN_READ_MAP_OP_WIDTH 8 /* enum: Get the number of map regions */ #define MC_CMD_FC_OP_READ_MAP_COUNT 0x1 /* enum: Get the specified map */ #define MC_CMD_FC_OP_READ_MAP_INDEX 0x2 /* MC_CMD_FC_IN_READ_MAP_COUNT msgrequest */ #define MC_CMD_FC_IN_READ_MAP_COUNT_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_READ_MAP_HEADER_OFST 4 */ /* MC_CMD_FC_IN_READ_MAP_INDEX msgrequest */ #define MC_CMD_FC_IN_READ_MAP_INDEX_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_READ_MAP_HEADER_OFST 4 */ #define MC_CMD_FC_IN_MAP_INDEX_OFST 8 /* MC_CMD_FC_IN_CAPABILITIES msgrequest */ #define MC_CMD_FC_IN_CAPABILITIES_LEN 4 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_GLOBAL_FLAGS msgrequest */ #define MC_CMD_FC_IN_GLOBAL_FLAGS_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_GLOBAL_FLAGS_FLAGS_OFST 4 #define MC_CMD_FC_IN_GLOBAL_FLAGS_RX_TUNING_CABLE_PLUGGED_IN_LBN 0 #define MC_CMD_FC_IN_GLOBAL_FLAGS_RX_TUNING_CABLE_PLUGGED_IN_WIDTH 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_RX_TUNING_LINK_MONITORING_LBN 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_RX_TUNING_LINK_MONITORING_WIDTH 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_DFE_ENABLE_LBN 2 #define MC_CMD_FC_IN_GLOBAL_FLAGS_DFE_ENABLE_WIDTH 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_1D_EYE_ENABLE_LBN 3 #define MC_CMD_FC_IN_GLOBAL_FLAGS_1D_EYE_ENABLE_WIDTH 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_1D_TUNING_ENABLE_LBN 4 #define MC_CMD_FC_IN_GLOBAL_FLAGS_1D_TUNING_ENABLE_WIDTH 1 #define MC_CMD_FC_IN_GLOBAL_FLAGS_OFFCAL_ENABLE_LBN 5 #define MC_CMD_FC_IN_GLOBAL_FLAGS_OFFCAL_ENABLE_WIDTH 1 /* MC_CMD_FC_IN_IO_REL msgrequest */ #define MC_CMD_FC_IN_IO_REL_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_IO_REL_HEADER_OFST 4 #define MC_CMD_FC_IN_IO_REL_OP_LBN 0 #define MC_CMD_FC_IN_IO_REL_OP_WIDTH 8 /* enum: Get the base address that the FC applies to relative commands */ #define MC_CMD_FC_IN_IO_REL_GET_ADDR 0x1 /* enum: Read data */ #define MC_CMD_FC_IN_IO_REL_READ32 0x2 /* enum: Write data */ #define MC_CMD_FC_IN_IO_REL_WRITE32 0x3 #define MC_CMD_FC_IN_IO_REL_COMP_TYPE_LBN 8 #define MC_CMD_FC_IN_IO_REL_COMP_TYPE_WIDTH 8 /* enum: Application address space */ #define MC_CMD_FC_COMP_TYPE_APP_ADDR_SPACE 0x1 /* enum: Flash address space */ #define MC_CMD_FC_COMP_TYPE_FLASH 0x2 /* MC_CMD_FC_IN_IO_REL_GET_ADDR msgrequest */ #define MC_CMD_FC_IN_IO_REL_GET_ADDR_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_IO_REL_HEADER_OFST 4 */ /* MC_CMD_FC_IN_IO_REL_READ32 msgrequest */ #define MC_CMD_FC_IN_IO_REL_READ32_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_IO_REL_HEADER_OFST 4 */ #define MC_CMD_FC_IN_IO_REL_READ32_ADDR_HI_OFST 8 #define MC_CMD_FC_IN_IO_REL_READ32_ADDR_LO_OFST 12 #define MC_CMD_FC_IN_IO_REL_READ32_NUMWORDS_OFST 16 /* MC_CMD_FC_IN_IO_REL_WRITE32 msgrequest */ #define MC_CMD_FC_IN_IO_REL_WRITE32_LENMIN 20 #define MC_CMD_FC_IN_IO_REL_WRITE32_LENMAX 252 #define MC_CMD_FC_IN_IO_REL_WRITE32_LEN(num) (16+4*(num)) /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_IO_REL_HEADER_OFST 4 */ #define MC_CMD_FC_IN_IO_REL_WRITE32_ADDR_HI_OFST 8 #define MC_CMD_FC_IN_IO_REL_WRITE32_ADDR_LO_OFST 12 #define MC_CMD_FC_IN_IO_REL_WRITE32_BUFFER_OFST 16 #define MC_CMD_FC_IN_IO_REL_WRITE32_BUFFER_LEN 4 #define MC_CMD_FC_IN_IO_REL_WRITE32_BUFFER_MINNUM 1 #define MC_CMD_FC_IN_IO_REL_WRITE32_BUFFER_MAXNUM 59 /* MC_CMD_FC_IN_UHLINK msgrequest */ #define MC_CMD_FC_IN_UHLINK_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 #define MC_CMD_FC_IN_UHLINK_OP_LBN 0 #define MC_CMD_FC_IN_UHLINK_OP_WIDTH 8 /* enum: Get PHY configuration info */ #define MC_CMD_FC_OP_UHLINK_PHY 0x1 /* enum: Get MAC configuration info */ #define MC_CMD_FC_OP_UHLINK_MAC 0x2 /* enum: Get Rx eye table */ #define MC_CMD_FC_OP_UHLINK_RX_EYE 0x3 /* enum: Get Rx eye plot */ #define MC_CMD_FC_OP_UHLINK_DUMP_RX_EYE_PLOT 0x4 /* enum: Get Rx eye plot */ #define MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT 0x5 /* enum: Retune Rx settings */ #define MC_CMD_FC_OP_UHLINK_RX_TUNE 0x6 /* enum: Set loopback mode on fpga port */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_SET 0x7 /* enum: Get loopback mode config state on fpga port */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_GET 0x8 #define MC_CMD_FC_IN_UHLINK_PORT_TYPE_LBN 8 #define MC_CMD_FC_IN_UHLINK_PORT_TYPE_WIDTH 8 #define MC_CMD_FC_IN_UHLINK_PORT_IDX_LBN 16 #define MC_CMD_FC_IN_UHLINK_PORT_IDX_WIDTH 8 #define MC_CMD_FC_IN_UHLINK_CMD_FORMAT_LBN 24 #define MC_CMD_FC_IN_UHLINK_CMD_FORMAT_WIDTH 8 /* enum: Default FC command format; the fields PORT_TYPE and PORT_IDX are * irrelevant. Port number is derived from pci_fn; passed in FC header. */ #define MC_CMD_FC_OP_UHLINK_CMD_FORMAT_DEFAULT 0x0 /* enum: Override default port number. Port number determined by fields * PORT_TYPE and PORT_IDX. */ #define MC_CMD_FC_OP_UHLINK_CMD_FORMAT_PORT_OVERRIDE 0x1 /* MC_CMD_FC_OP_UHLINK_PHY msgrequest */ #define MC_CMD_FC_OP_UHLINK_PHY_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ /* MC_CMD_FC_OP_UHLINK_MAC msgrequest */ #define MC_CMD_FC_OP_UHLINK_MAC_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ /* MC_CMD_FC_OP_UHLINK_RX_EYE msgrequest */ #define MC_CMD_FC_OP_UHLINK_RX_EYE_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ #define MC_CMD_FC_OP_UHLINK_RX_EYE_INDEX_OFST 8 #define MC_CMD_FC_UHLINK_RX_EYE_PER_BLOCK 0x30 /* enum */ /* MC_CMD_FC_OP_UHLINK_DUMP_RX_EYE_PLOT msgrequest */ #define MC_CMD_FC_OP_UHLINK_DUMP_RX_EYE_PLOT_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ /* MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT msgrequest */ #define MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ #define MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT_DC_GAIN_OFST 8 #define MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT_EQ_CONTROL_OFST 12 #define MC_CMD_FC_OP_UHLINK_READ_RX_EYE_PLOT_INDEX_OFST 16 #define MC_CMD_FC_UHLINK_RX_EYE_PLOT_ROWS_PER_BLOCK 0x1e /* enum */ /* MC_CMD_FC_OP_UHLINK_RX_TUNE msgrequest */ #define MC_CMD_FC_OP_UHLINK_RX_TUNE_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ /* MC_CMD_FC_OP_UHLINK_LOOPBACK_SET msgrequest */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_SET_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_SET_TYPE_OFST 8 #define MC_CMD_FC_UHLINK_LOOPBACK_TYPE_PCS_SERIAL 0x0 /* enum */ #define MC_CMD_FC_UHLINK_LOOPBACK_TYPE_PMA_PRE_CDR 0x1 /* enum */ #define MC_CMD_FC_UHLINK_LOOPBACK_TYPE_PMA_POST_CDR 0x2 /* enum */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_SET_STATE_OFST 12 #define MC_CMD_FC_UHLINK_LOOPBACK_STATE_OFF 0x0 /* enum */ #define MC_CMD_FC_UHLINK_LOOPBACK_STATE_ON 0x1 /* enum */ /* MC_CMD_FC_OP_UHLINK_LOOPBACK_GET msgrequest */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_GET_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_UHLINK_HEADER_OFST 4 */ #define MC_CMD_FC_OP_UHLINK_LOOPBACK_GET_TYPE_OFST 8 /* MC_CMD_FC_IN_SET_LINK msgrequest */ #define MC_CMD_FC_IN_SET_LINK_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* See MC_CMD_GET_LOOPBACK_MODES/MC_CMD_GET_LOOPBACK_MODES_OUT/100M */ #define MC_CMD_FC_IN_SET_LINK_MODE_OFST 4 #define MC_CMD_FC_IN_SET_LINK_SPEED_OFST 8 #define MC_CMD_FC_IN_SET_LINK_FLAGS_OFST 12 #define MC_CMD_FC_IN_SET_LINK_LOWPOWER_LBN 0 #define MC_CMD_FC_IN_SET_LINK_LOWPOWER_WIDTH 1 #define MC_CMD_FC_IN_SET_LINK_POWEROFF_LBN 1 #define MC_CMD_FC_IN_SET_LINK_POWEROFF_WIDTH 1 #define MC_CMD_FC_IN_SET_LINK_TXDIS_LBN 2 #define MC_CMD_FC_IN_SET_LINK_TXDIS_WIDTH 1 /* MC_CMD_FC_IN_LICENSE msgrequest */ #define MC_CMD_FC_IN_LICENSE_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_LICENSE_OP_OFST 4 #define MC_CMD_FC_IN_LICENSE_UPDATE_LICENSE 0x0 /* enum */ #define MC_CMD_FC_IN_LICENSE_GET_KEY_STATS 0x1 /* enum */ /* MC_CMD_FC_IN_STARTUP msgrequest */ #define MC_CMD_FC_IN_STARTUP_LEN 40 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_STARTUP_BASE_OFST 4 #define MC_CMD_FC_IN_STARTUP_LENGTH_OFST 8 /* Length of identifier */ #define MC_CMD_FC_IN_STARTUP_IDLENGTH_OFST 12 /* Identifier for AOE FPGA */ #define MC_CMD_FC_IN_STARTUP_ID_OFST 16 #define MC_CMD_FC_IN_STARTUP_ID_LEN 1 #define MC_CMD_FC_IN_STARTUP_ID_NUM 24 /* MC_CMD_FC_IN_DMA msgrequest */ #define MC_CMD_FC_IN_DMA_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DMA_OP_OFST 4 #define MC_CMD_FC_IN_DMA_STOP 0x0 /* enum */ #define MC_CMD_FC_IN_DMA_READ 0x1 /* enum */ /* MC_CMD_FC_IN_DMA_STOP msgrequest */ #define MC_CMD_FC_IN_DMA_STOP_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_DMA_OP_OFST 4 */ /* FC supplied handle */ #define MC_CMD_FC_IN_DMA_STOP_FC_HANDLE_OFST 8 /* MC_CMD_FC_IN_DMA_READ msgrequest */ #define MC_CMD_FC_IN_DMA_READ_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_DMA_OP_OFST 4 */ #define MC_CMD_FC_IN_DMA_READ_OFFSET_OFST 8 #define MC_CMD_FC_IN_DMA_READ_LENGTH_OFST 12 /* MC_CMD_FC_IN_TIMED_READ msgrequest */ #define MC_CMD_FC_IN_TIMED_READ_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TIMED_READ_OP_OFST 4 #define MC_CMD_FC_IN_TIMED_READ_SET 0x0 /* enum */ #define MC_CMD_FC_IN_TIMED_READ_GET 0x1 /* enum */ #define MC_CMD_FC_IN_TIMED_READ_CLEAR 0x2 /* enum */ /* MC_CMD_FC_IN_TIMED_READ_SET msgrequest */ #define MC_CMD_FC_IN_TIMED_READ_SET_LEN 52 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_TIMED_READ_OP_OFST 4 */ /* Host supplied handle (unique) */ #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_HANDLE_OFST 8 /* Address into which to transfer data in host */ #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_DMA_ADDRESS_OFST 12 #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_DMA_ADDRESS_LEN 8 #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_DMA_ADDRESS_LO_OFST 12 #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_DMA_ADDRESS_HI_OFST 16 /* AOE address from which to transfer data */ #define MC_CMD_FC_IN_TIMED_READ_SET_AOE_ADDRESS_OFST 20 #define MC_CMD_FC_IN_TIMED_READ_SET_AOE_ADDRESS_LEN 8 #define MC_CMD_FC_IN_TIMED_READ_SET_AOE_ADDRESS_LO_OFST 20 #define MC_CMD_FC_IN_TIMED_READ_SET_AOE_ADDRESS_HI_OFST 24 /* Length of AOE transfer (total) */ #define MC_CMD_FC_IN_TIMED_READ_SET_AOE_LENGTH_OFST 28 /* Length of host transfer (total) */ #define MC_CMD_FC_IN_TIMED_READ_SET_HOST_LENGTH_OFST 32 /* Offset back from aoe_address to apply operation to */ #define MC_CMD_FC_IN_TIMED_READ_SET_OFFSET_OFST 36 /* Data to apply at offset */ #define MC_CMD_FC_IN_TIMED_READ_SET_DATA_OFST 40 #define MC_CMD_FC_IN_TIMED_READ_SET_FLAGS_OFST 44 #define MC_CMD_FC_IN_TIMED_READ_SET_INDIRECT_LBN 0 #define MC_CMD_FC_IN_TIMED_READ_SET_INDIRECT_WIDTH 1 #define MC_CMD_FC_IN_TIMED_READ_SET_DOUBLE_LBN 1 #define MC_CMD_FC_IN_TIMED_READ_SET_DOUBLE_WIDTH 1 #define MC_CMD_FC_IN_TIMED_READ_SET_EVENT_LBN 2 #define MC_CMD_FC_IN_TIMED_READ_SET_EVENT_WIDTH 1 #define MC_CMD_FC_IN_TIMED_READ_SET_PREREAD_LBN 3 #define MC_CMD_FC_IN_TIMED_READ_SET_PREREAD_WIDTH 2 #define MC_CMD_FC_IN_TIMED_READ_SET_NONE 0x0 /* enum */ #define MC_CMD_FC_IN_TIMED_READ_SET_READ 0x1 /* enum */ #define MC_CMD_FC_IN_TIMED_READ_SET_WRITE 0x2 /* enum */ #define MC_CMD_FC_IN_TIMED_READ_SET_READWRITE 0x3 /* enum */ /* Period at which reads are performed (100ms units) */ #define MC_CMD_FC_IN_TIMED_READ_SET_PERIOD_OFST 48 /* MC_CMD_FC_IN_TIMED_READ_GET msgrequest */ #define MC_CMD_FC_IN_TIMED_READ_GET_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_TIMED_READ_OP_OFST 4 */ /* FC supplied handle */ #define MC_CMD_FC_IN_TIMED_READ_GET_FC_HANDLE_OFST 8 /* MC_CMD_FC_IN_TIMED_READ_CLEAR msgrequest */ #define MC_CMD_FC_IN_TIMED_READ_CLEAR_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_TIMED_READ_OP_OFST 4 */ /* FC supplied handle */ #define MC_CMD_FC_IN_TIMED_READ_CLEAR_FC_HANDLE_OFST 8 /* MC_CMD_FC_IN_LOG msgrequest */ #define MC_CMD_FC_IN_LOG_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_LOG_OP_OFST 4 #define MC_CMD_FC_IN_LOG_ADDR_RANGE 0x0 /* enum */ #define MC_CMD_FC_IN_LOG_JTAG_UART 0x1 /* enum */ /* MC_CMD_FC_IN_LOG_ADDR_RANGE msgrequest */ #define MC_CMD_FC_IN_LOG_ADDR_RANGE_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_LOG_OP_OFST 4 */ /* Partition offset into flash */ #define MC_CMD_FC_IN_LOG_ADDR_RANGE_OFFSET_OFST 8 /* Partition length */ #define MC_CMD_FC_IN_LOG_ADDR_RANGE_LENGTH_OFST 12 /* Partition erase size */ #define MC_CMD_FC_IN_LOG_ADDR_RANGE_ERASE_SIZE_OFST 16 /* MC_CMD_FC_IN_LOG_JTAG_UART msgrequest */ #define MC_CMD_FC_IN_LOG_JTAG_UART_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_LOG_OP_OFST 4 */ /* Enable/disable printing to JTAG UART */ #define MC_CMD_FC_IN_LOG_JTAG_UART_ENABLE_OFST 8 /* MC_CMD_FC_IN_CLOCK msgrequest */ #define MC_CMD_FC_IN_CLOCK_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_CLOCK_OP_OFST 4 #define MC_CMD_FC_IN_CLOCK_GET_TIME 0x0 /* enum */ #define MC_CMD_FC_IN_CLOCK_SET_TIME 0x1 /* enum */ /* Perform a clock operation */ #define MC_CMD_FC_IN_CLOCK_ID_OFST 8 #define MC_CMD_FC_IN_CLOCK_STATS 0x0 /* enum */ #define MC_CMD_FC_IN_CLOCK_MAC 0x1 /* enum */ /* MC_CMD_FC_IN_CLOCK_GET_TIME msgrequest */ #define MC_CMD_FC_IN_CLOCK_GET_TIME_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_CLOCK_OP_OFST 4 */ /* Retrieve the clock value of the specified clock */ /* MC_CMD_FC_IN_CLOCK_ID_OFST 8 */ /* MC_CMD_FC_IN_CLOCK_SET_TIME msgrequest */ #define MC_CMD_FC_IN_CLOCK_SET_TIME_LEN 24 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_CLOCK_OP_OFST 4 */ /* MC_CMD_FC_IN_CLOCK_ID_OFST 8 */ #define MC_CMD_FC_IN_CLOCK_SET_TIME_SECONDS_OFST 12 #define MC_CMD_FC_IN_CLOCK_SET_TIME_SECONDS_LEN 8 #define MC_CMD_FC_IN_CLOCK_SET_TIME_SECONDS_LO_OFST 12 #define MC_CMD_FC_IN_CLOCK_SET_TIME_SECONDS_HI_OFST 16 /* Set the clock value of the specified clock */ #define MC_CMD_FC_IN_CLOCK_SET_TIME_NANOSECONDS_OFST 20 /* MC_CMD_FC_IN_DDR msgrequest */ #define MC_CMD_FC_IN_DDR_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DDR_OP_OFST 4 #define MC_CMD_FC_IN_DDR_SET_SPD 0x0 /* enum */ #define MC_CMD_FC_IN_DDR_GET_STATUS 0x1 /* enum */ +#define MC_CMD_FC_IN_DDR_SET_INFO 0x2 /* enum */ #define MC_CMD_FC_IN_DDR_BANK_OFST 8 #define MC_CMD_FC_IN_DDR_BANK_B0 0x0 /* enum */ #define MC_CMD_FC_IN_DDR_BANK_B1 0x1 /* enum */ #define MC_CMD_FC_IN_DDR_BANK_T0 0x2 /* enum */ #define MC_CMD_FC_IN_DDR_BANK_T1 0x3 /* enum */ #define MC_CMD_FC_IN_DDR_NUM_BANKS 0x4 /* enum */ /* MC_CMD_FC_IN_DDR_SET_SPD msgrequest */ #define MC_CMD_FC_IN_DDR_SET_SPD_LEN 148 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_DDR_OP_OFST 4 */ /* Affected bank */ /* MC_CMD_FC_IN_DDR_BANK_OFST 8 */ /* Flags */ #define MC_CMD_FC_IN_DDR_FLAGS_OFST 12 #define MC_CMD_FC_IN_DDR_SET_SPD_ACTIVE 0x1 /* enum */ /* 128-byte page of serial presence detect data read from module's EEPROM */ #define MC_CMD_FC_IN_DDR_SPD_OFST 16 #define MC_CMD_FC_IN_DDR_SPD_LEN 1 #define MC_CMD_FC_IN_DDR_SPD_NUM 128 /* Page index of the spd data copied into MC_CMD_FC_IN_DDR_SPD */ #define MC_CMD_FC_IN_DDR_SPD_PAGE_ID_OFST 144 +/* MC_CMD_FC_IN_DDR_SET_INFO msgrequest */ +#define MC_CMD_FC_IN_DDR_SET_INFO_LEN 16 +/* MC_CMD_FC_IN_CMD_OFST 0 */ +/* MC_CMD_FC_IN_DDR_OP_OFST 4 */ +/* Affected bank */ +/* MC_CMD_FC_IN_DDR_BANK_OFST 8 */ +/* Size of DDR */ +#define MC_CMD_FC_IN_DDR_SIZE_OFST 12 + /* MC_CMD_FC_IN_DDR_GET_STATUS msgrequest */ #define MC_CMD_FC_IN_DDR_GET_STATUS_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* MC_CMD_FC_IN_DDR_OP_OFST 4 */ /* Affected bank */ /* MC_CMD_FC_IN_DDR_BANK_OFST 8 */ /* MC_CMD_FC_IN_TIMESTAMP msgrequest */ #define MC_CMD_FC_IN_TIMESTAMP_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* FC timestamp operation code */ #define MC_CMD_FC_IN_TIMESTAMP_OP_OFST 4 /* enum: Read transmit timestamp(s) */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT 0x0 /* enum: Read snapshot timestamps */ #define MC_CMD_FC_IN_TIMESTAMP_READ_SNAPSHOT 0x1 /* enum: Clear all transmit timestamps */ #define MC_CMD_FC_IN_TIMESTAMP_CLEAR_TRANSMIT 0x2 /* MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT msgrequest */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_LEN 28 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_OP_OFST 4 /* Control filtering of the returned timestamp and sequence number specified * here */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_FILTER_OFST 8 /* enum: Return most recent timestamp. No filtering */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_LATEST 0x0 /* enum: Match timestamp against the PTP clock ID, port number and sequence * number specified */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_MATCH 0x1 /* Clock identity of PTP packet for which timestamp required */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_CLOCK_ID_OFST 12 #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_CLOCK_ID_LEN 8 #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_CLOCK_ID_LO_OFST 12 #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_CLOCK_ID_HI_OFST 16 /* Port number of PTP packet for which timestamp required */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_PORT_NUM_OFST 20 /* Sequence number of PTP packet for which timestamp required */ #define MC_CMD_FC_IN_TIMESTAMP_READ_TRANSMIT_SEQ_NUM_OFST 24 /* MC_CMD_FC_IN_TIMESTAMP_READ_SNAPSHOT msgrequest */ #define MC_CMD_FC_IN_TIMESTAMP_READ_SNAPSHOT_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TIMESTAMP_READ_SNAPSHOT_OP_OFST 4 /* MC_CMD_FC_IN_TIMESTAMP_CLEAR_TRANSMIT msgrequest */ #define MC_CMD_FC_IN_TIMESTAMP_CLEAR_TRANSMIT_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_TIMESTAMP_CLEAR_TRANSMIT_OP_OFST 4 /* MC_CMD_FC_IN_SPI msgrequest */ #define MC_CMD_FC_IN_SPI_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* Basic commands for SPI Flash. */ #define MC_CMD_FC_IN_SPI_OP_OFST 4 /* enum: SPI Flash read */ #define MC_CMD_FC_IN_SPI_READ 0x0 /* enum: SPI Flash write */ #define MC_CMD_FC_IN_SPI_WRITE 0x1 /* enum: SPI Flash erase */ #define MC_CMD_FC_IN_SPI_ERASE 0x2 /* MC_CMD_FC_IN_SPI_READ msgrequest */ #define MC_CMD_FC_IN_SPI_READ_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_SPI_READ_OP_OFST 4 #define MC_CMD_FC_IN_SPI_READ_ADDR_OFST 8 #define MC_CMD_FC_IN_SPI_READ_NUMBYTES_OFST 12 /* MC_CMD_FC_IN_SPI_WRITE msgrequest */ #define MC_CMD_FC_IN_SPI_WRITE_LENMIN 16 #define MC_CMD_FC_IN_SPI_WRITE_LENMAX 252 #define MC_CMD_FC_IN_SPI_WRITE_LEN(num) (12+4*(num)) /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_SPI_WRITE_OP_OFST 4 #define MC_CMD_FC_IN_SPI_WRITE_ADDR_OFST 8 #define MC_CMD_FC_IN_SPI_WRITE_BUFFER_OFST 12 #define MC_CMD_FC_IN_SPI_WRITE_BUFFER_LEN 4 #define MC_CMD_FC_IN_SPI_WRITE_BUFFER_MINNUM 1 #define MC_CMD_FC_IN_SPI_WRITE_BUFFER_MAXNUM 60 /* MC_CMD_FC_IN_SPI_ERASE msgrequest */ #define MC_CMD_FC_IN_SPI_ERASE_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_SPI_ERASE_OP_OFST 4 #define MC_CMD_FC_IN_SPI_ERASE_ADDR_OFST 8 #define MC_CMD_FC_IN_SPI_ERASE_NUMBYTES_OFST 12 /* MC_CMD_FC_IN_DIAG msgrequest */ #define MC_CMD_FC_IN_DIAG_LEN 8 /* MC_CMD_FC_IN_CMD_OFST 0 */ /* Operation code indicating component type */ #define MC_CMD_FC_IN_DIAG_OP_OFST 4 /* enum: Power noise generator. */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE 0x0 /* enum: DDR soak test component. */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK 0x1 /* enum: Diagnostics datapath control component. */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL 0x2 /* MC_CMD_FC_IN_DIAG_POWER_NOISE msgrequest */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_OP_OFST 4 /* Sub-opcode describing the operation to be carried out */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_SUB_OP_OFST 8 /* enum: Read the configuration (the 32-bit values in each of the clock enable * count and toggle count registers) */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_READ_CONFIG 0x0 /* enum: Write a new configuration to the clock enable count and toggle count * registers */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG 0x1 /* MC_CMD_FC_IN_DIAG_POWER_NOISE_READ_CONFIG msgrequest */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_READ_CONFIG_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_READ_CONFIG_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_POWER_NOISE_READ_CONFIG_SUB_OP_OFST 8 /* MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG msgrequest */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG_SUB_OP_OFST 8 /* The 32-bit value to be written to the toggle count register */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG_TOGGLE_COUNT_OFST 12 /* The 32-bit value to be written to the clock enable count register */ #define MC_CMD_FC_IN_DIAG_POWER_NOISE_WRITE_CONFIG_CLKEN_COUNT_OFST 16 /* MC_CMD_FC_IN_DIAG_DDR_SOAK msgrequest */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_OP_OFST 4 /* Sub-opcode describing the operation to be carried out */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_SUB_OP_OFST 8 /* enum: Starts DDR soak test on selected banks */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START 0x0 /* enum: Read status of DDR soak test */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT 0x1 /* enum: Stop test */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP 0x2 /* enum: Set or clear bit that triggers fake errors. These cause subsequent * tests to fail until the bit is cleared. */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR 0x3 /* MC_CMD_FC_IN_DIAG_DDR_SOAK_START msgrequest */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_LEN 24 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_SUB_OP_OFST 8 /* Mask of DDR banks to be tested */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_BANK_MASK_OFST 12 /* Pattern to use in the soak test */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_TEST_PATTERN_OFST 16 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_ZEROS 0x0 /* enum */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_ONES 0x1 /* enum */ /* Either multiple automatic tests until a STOP command is issued, or one * single test */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_TEST_TYPE_OFST 20 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_ONGOING_TEST 0x0 /* enum */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_START_SINGLE_TEST 0x1 /* enum */ /* MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT msgrequest */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT_SUB_OP_OFST 8 /* DDR bank to read status from */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_RESULT_BANK_ID_OFST 12 #define MC_CMD_FC_DDR_BANK0 0x0 /* enum */ #define MC_CMD_FC_DDR_BANK1 0x1 /* enum */ #define MC_CMD_FC_DDR_BANK2 0x2 /* enum */ #define MC_CMD_FC_DDR_BANK3 0x3 /* enum */ #define MC_CMD_FC_DDR_AOEMEM_MAX_BANKS 0x4 /* enum */ /* MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP msgrequest */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP_SUB_OP_OFST 8 /* Mask of DDR banks to be tested */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_STOP_BANK_MASK_OFST 12 /* MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR msgrequest */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_LEN 20 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_SUB_OP_OFST 8 /* Mask of DDR banks to set/clear error flag on */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_BANK_MASK_OFST 12 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_FLAG_ACTION_OFST 16 #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_CLEAR 0x0 /* enum */ #define MC_CMD_FC_IN_DIAG_DDR_SOAK_ERROR_SET 0x1 /* enum */ /* MC_CMD_FC_IN_DIAG_DATAPATH_CTRL msgrequest */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_LEN 12 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_OP_OFST 4 /* Sub-opcode describing the operation to be carried out */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SUB_OP_OFST 8 /* enum: Set a known datapath configuration */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE 0x0 /* enum: Apply raw config to datapath control registers */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG 0x1 /* MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE msgrequest */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_LEN 16 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_SUB_OP_OFST 8 /* Datapath configuration identifier */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_MODE_OFST 12 #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_PASSTHROUGH 0x0 /* enum */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_SET_MODE_SNAKE 0x1 /* enum */ /* MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG msgrequest */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_LEN 24 /* MC_CMD_FC_IN_CMD_OFST 0 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_OP_OFST 4 #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_SUB_OP_OFST 8 /* Value to write into control register 1 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_CONTROL1_OFST 12 /* Value to write into control register 2 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_CONTROL2_OFST 16 /* Value to write into control register 3 */ #define MC_CMD_FC_IN_DIAG_DATAPATH_CTRL_RAW_CONFIG_CONTROL3_OFST 20 /* MC_CMD_FC_OUT msgresponse */ #define MC_CMD_FC_OUT_LEN 0 /* MC_CMD_FC_OUT_NULL msgresponse */ #define MC_CMD_FC_OUT_NULL_LEN 0 /* MC_CMD_FC_OUT_READ32 msgresponse */ #define MC_CMD_FC_OUT_READ32_LENMIN 4 #define MC_CMD_FC_OUT_READ32_LENMAX 252 #define MC_CMD_FC_OUT_READ32_LEN(num) (0+4*(num)) #define MC_CMD_FC_OUT_READ32_BUFFER_OFST 0 #define MC_CMD_FC_OUT_READ32_BUFFER_LEN 4 #define MC_CMD_FC_OUT_READ32_BUFFER_MINNUM 1 #define MC_CMD_FC_OUT_READ32_BUFFER_MAXNUM 63 /* MC_CMD_FC_OUT_WRITE32 msgresponse */ #define MC_CMD_FC_OUT_WRITE32_LEN 0 /* MC_CMD_FC_OUT_TRC_READ msgresponse */ #define MC_CMD_FC_OUT_TRC_READ_LEN 16 #define MC_CMD_FC_OUT_TRC_READ_DATA_OFST 0 #define MC_CMD_FC_OUT_TRC_READ_DATA_LEN 4 #define MC_CMD_FC_OUT_TRC_READ_DATA_NUM 4 /* MC_CMD_FC_OUT_TRC_WRITE msgresponse */ #define MC_CMD_FC_OUT_TRC_WRITE_LEN 0 /* MC_CMD_FC_OUT_GET_VERSION msgresponse */ #define MC_CMD_FC_OUT_GET_VERSION_LEN 12 #define MC_CMD_FC_OUT_GET_VERSION_FIRMWARE_OFST 0 #define MC_CMD_FC_OUT_GET_VERSION_VERSION_OFST 4 #define MC_CMD_FC_OUT_GET_VERSION_VERSION_LEN 8 #define MC_CMD_FC_OUT_GET_VERSION_VERSION_LO_OFST 4 #define MC_CMD_FC_OUT_GET_VERSION_VERSION_HI_OFST 8 /* MC_CMD_FC_OUT_TRC_RX_READ msgresponse */ #define MC_CMD_FC_OUT_TRC_RX_READ_LEN 8 #define MC_CMD_FC_OUT_TRC_RX_READ_DATA_OFST 0 #define MC_CMD_FC_OUT_TRC_RX_READ_DATA_LEN 4 #define MC_CMD_FC_OUT_TRC_RX_READ_DATA_NUM 2 /* MC_CMD_FC_OUT_TRC_RX_WRITE msgresponse */ #define MC_CMD_FC_OUT_TRC_RX_WRITE_LEN 0 /* MC_CMD_FC_OUT_MAC_RECONFIGURE msgresponse */ #define MC_CMD_FC_OUT_MAC_RECONFIGURE_LEN 0 /* MC_CMD_FC_OUT_MAC_SET_LINK msgresponse */ #define MC_CMD_FC_OUT_MAC_SET_LINK_LEN 0 /* MC_CMD_FC_OUT_MAC_READ_STATUS msgresponse */ #define MC_CMD_FC_OUT_MAC_READ_STATUS_LEN 4 #define MC_CMD_FC_OUT_MAC_READ_STATUS_STATUS_OFST 0 /* MC_CMD_FC_OUT_MAC_GET_RX_STATS msgresponse */ #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_LEN ((((0-1+(64*MC_CMD_FC_MAC_RX_NSTATS))+1))>>3) #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_STATISTICS_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_STATISTICS_LEN 8 #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_STATISTICS_LO_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_STATISTICS_HI_OFST 4 #define MC_CMD_FC_OUT_MAC_GET_RX_STATS_STATISTICS_NUM MC_CMD_FC_MAC_RX_NSTATS #define MC_CMD_FC_MAC_RX_STATS_OCTETS 0x0 /* enum */ #define MC_CMD_FC_MAC_RX_OCTETS_OK 0x1 /* enum */ #define MC_CMD_FC_MAC_RX_ALIGNMENT_ERRORS 0x2 /* enum */ #define MC_CMD_FC_MAC_RX_PAUSE_MAC_CTRL_FRAMES 0x3 /* enum */ #define MC_CMD_FC_MAC_RX_FRAMES_OK 0x4 /* enum */ #define MC_CMD_FC_MAC_RX_CRC_ERRORS 0x5 /* enum */ #define MC_CMD_FC_MAC_RX_VLAN_OK 0x6 /* enum */ #define MC_CMD_FC_MAC_RX_ERRORS 0x7 /* enum */ #define MC_CMD_FC_MAC_RX_UCAST_PKTS 0x8 /* enum */ #define MC_CMD_FC_MAC_RX_MULTICAST_PKTS 0x9 /* enum */ #define MC_CMD_FC_MAC_RX_BROADCAST_PKTS 0xa /* enum */ #define MC_CMD_FC_MAC_RX_STATS_DROP_EVENTS 0xb /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS 0xc /* enum */ #define MC_CMD_FC_MAC_RX_STATS_UNDERSIZE_PKTS 0xd /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_64 0xe /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_65_127 0xf /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_128_255 0x10 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_256_511 0x11 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_512_1023 0x12 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_1024_1518 0x13 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_PKTS_1519_MAX 0x14 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_OVERSIZE_PKTS 0x15 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_JABBERS 0x16 /* enum */ #define MC_CMD_FC_MAC_RX_STATS_FRAGMENTS 0x17 /* enum */ #define MC_CMD_FC_MAC_RX_MAC_CONTROL_FRAMES 0x18 /* enum */ /* enum: (Last entry) */ #define MC_CMD_FC_MAC_RX_NSTATS 0x19 /* MC_CMD_FC_OUT_MAC_GET_TX_STATS msgresponse */ #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_LEN ((((0-1+(64*MC_CMD_FC_MAC_TX_NSTATS))+1))>>3) #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_STATISTICS_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_STATISTICS_LEN 8 #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_STATISTICS_LO_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_STATISTICS_HI_OFST 4 #define MC_CMD_FC_OUT_MAC_GET_TX_STATS_STATISTICS_NUM MC_CMD_FC_MAC_TX_NSTATS #define MC_CMD_FC_MAC_TX_STATS_OCTETS 0x0 /* enum */ #define MC_CMD_FC_MAC_TX_OCTETS_OK 0x1 /* enum */ #define MC_CMD_FC_MAC_TX_ALIGNMENT_ERRORS 0x2 /* enum */ #define MC_CMD_FC_MAC_TX_PAUSE_MAC_CTRL_FRAMES 0x3 /* enum */ #define MC_CMD_FC_MAC_TX_FRAMES_OK 0x4 /* enum */ #define MC_CMD_FC_MAC_TX_CRC_ERRORS 0x5 /* enum */ #define MC_CMD_FC_MAC_TX_VLAN_OK 0x6 /* enum */ #define MC_CMD_FC_MAC_TX_ERRORS 0x7 /* enum */ #define MC_CMD_FC_MAC_TX_UCAST_PKTS 0x8 /* enum */ #define MC_CMD_FC_MAC_TX_MULTICAST_PKTS 0x9 /* enum */ #define MC_CMD_FC_MAC_TX_BROADCAST_PKTS 0xa /* enum */ #define MC_CMD_FC_MAC_TX_STATS_DROP_EVENTS 0xb /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS 0xc /* enum */ #define MC_CMD_FC_MAC_TX_STATS_UNDERSIZE_PKTS 0xd /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_64 0xe /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_65_127 0xf /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_128_255 0x10 /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_256_511 0x11 /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_512_1023 0x12 /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_1024_1518 0x13 /* enum */ #define MC_CMD_FC_MAC_TX_STATS_PKTS_1519_TX_MTU 0x14 /* enum */ #define MC_CMD_FC_MAC_TX_MAC_CONTROL_FRAMES 0x15 /* enum */ /* enum: (Last entry) */ #define MC_CMD_FC_MAC_TX_NSTATS 0x16 /* MC_CMD_FC_OUT_MAC_GET_STATS msgresponse */ #define MC_CMD_FC_OUT_MAC_GET_STATS_LEN ((((0-1+(64*MC_CMD_FC_MAC_NSTATS_PER_BLOCK))+1))>>3) /* MAC Statistics */ #define MC_CMD_FC_OUT_MAC_GET_STATS_STATISTICS_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_STATS_STATISTICS_LEN 8 #define MC_CMD_FC_OUT_MAC_GET_STATS_STATISTICS_LO_OFST 0 #define MC_CMD_FC_OUT_MAC_GET_STATS_STATISTICS_HI_OFST 4 #define MC_CMD_FC_OUT_MAC_GET_STATS_STATISTICS_NUM MC_CMD_FC_MAC_NSTATS_PER_BLOCK /* MC_CMD_FC_OUT_MAC msgresponse */ #define MC_CMD_FC_OUT_MAC_LEN 0 /* MC_CMD_FC_OUT_SFP msgresponse */ #define MC_CMD_FC_OUT_SFP_LEN 0 /* MC_CMD_FC_OUT_DDR_TEST_START msgresponse */ #define MC_CMD_FC_OUT_DDR_TEST_START_LEN 0 /* MC_CMD_FC_OUT_DDR_TEST_POLL msgresponse */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_LEN 8 #define MC_CMD_FC_OUT_DDR_TEST_POLL_STATUS_OFST 0 #define MC_CMD_FC_OUT_DDR_TEST_POLL_CODE_LBN 0 #define MC_CMD_FC_OUT_DDR_TEST_POLL_CODE_WIDTH 8 /* enum: Test not yet initiated */ #define MC_CMD_FC_OP_DDR_TEST_NONE 0x0 /* enum: Test is in progress */ #define MC_CMD_FC_OP_DDR_TEST_INPROGRESS 0x1 /* enum: Timed completed */ #define MC_CMD_FC_OP_DDR_TEST_SUCCESS 0x2 /* enum: Test did not complete in specified time */ #define MC_CMD_FC_OP_DDR_TEST_TIMER_EXPIRED 0x3 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_T0_LBN 11 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_T0_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_T1_LBN 10 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_T1_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_B0_LBN 9 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_B0_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_B1_LBN 8 #define MC_CMD_FC_OUT_DDR_TEST_POLL_PRESENT_B1_WIDTH 1 /* Test result from FPGA */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_RESULT_OFST 4 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_T0_LBN 31 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_T0_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_T1_LBN 30 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_T1_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_B0_LBN 29 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_B0_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_B1_LBN 28 #define MC_CMD_FC_OUT_DDR_TEST_POLL_FPGA_SUPPORTS_B1_WIDTH 1 #define MC_CMD_FC_OUT_DDR_TEST_POLL_T0_LBN 15 #define MC_CMD_FC_OUT_DDR_TEST_POLL_T0_WIDTH 5 #define MC_CMD_FC_OUT_DDR_TEST_POLL_T1_LBN 10 #define MC_CMD_FC_OUT_DDR_TEST_POLL_T1_WIDTH 5 #define MC_CMD_FC_OUT_DDR_TEST_POLL_B0_LBN 5 #define MC_CMD_FC_OUT_DDR_TEST_POLL_B0_WIDTH 5 #define MC_CMD_FC_OUT_DDR_TEST_POLL_B1_LBN 0 #define MC_CMD_FC_OUT_DDR_TEST_POLL_B1_WIDTH 5 #define MC_CMD_FC_OUT_DDR_TEST_POLL_TEST_COMPLETE 0x0 /* enum */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_TEST_FAIL 0x1 /* enum */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_TEST_PASS 0x2 /* enum */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_CAL_FAIL 0x3 /* enum */ #define MC_CMD_FC_OUT_DDR_TEST_POLL_CAL_SUCCESS 0x4 /* enum */ /* MC_CMD_FC_OUT_DDR_TEST msgresponse */ #define MC_CMD_FC_OUT_DDR_TEST_LEN 0 /* MC_CMD_FC_OUT_GET_ASSERT msgresponse */ #define MC_CMD_FC_OUT_GET_ASSERT_LEN 144 /* Assertion status flag. */ #define MC_CMD_FC_OUT_GET_ASSERT_GLOBAL_FLAGS_OFST 0 #define MC_CMD_FC_OUT_GET_ASSERT_STATE_LBN 8 #define MC_CMD_FC_OUT_GET_ASSERT_STATE_WIDTH 8 /* enum: No crash data available */ #define MC_CMD_FC_GET_ASSERT_FLAGS_STATE_CLEAR 0x0 /* enum: New crash data available */ #define MC_CMD_FC_GET_ASSERT_FLAGS_STATE_NEW 0x1 /* enum: Crash data has been sent */ #define MC_CMD_FC_GET_ASSERT_FLAGS_STATE_NOTIFIED 0x2 #define MC_CMD_FC_OUT_GET_ASSERT_TYPE_LBN 0 #define MC_CMD_FC_OUT_GET_ASSERT_TYPE_WIDTH 8 /* enum: No crash has been recorded. */ #define MC_CMD_FC_GET_ASSERT_FLAGS_TYPE_NONE 0x0 /* enum: Crash due to exception. */ #define MC_CMD_FC_GET_ASSERT_FLAGS_TYPE_EXCEPTION 0x1 /* enum: Crash due to assertion. */ #define MC_CMD_FC_GET_ASSERT_FLAGS_TYPE_ASSERTION 0x2 /* Failing PC value */ #define MC_CMD_FC_OUT_GET_ASSERT_SAVED_PC_OFFS_OFST 4 /* Saved GP regs */ #define MC_CMD_FC_OUT_GET_ASSERT_GP_REGS_OFFS_OFST 8 #define MC_CMD_FC_OUT_GET_ASSERT_GP_REGS_OFFS_LEN 4 #define MC_CMD_FC_OUT_GET_ASSERT_GP_REGS_OFFS_NUM 31 /* Exception Type */ #define MC_CMD_FC_OUT_GET_ASSERT_EXCEPTION_TYPE_OFFS_OFST 132 /* Instruction at which exception occurred */ #define MC_CMD_FC_OUT_GET_ASSERT_EXCEPTION_PC_ADDR_OFFS_OFST 136 /* BAD Address that triggered address-based exception */ #define MC_CMD_FC_OUT_GET_ASSERT_EXCEPTION_BAD_ADDR_OFFS_OFST 140 /* MC_CMD_FC_OUT_FPGA_BUILD msgresponse */ #define MC_CMD_FC_OUT_FPGA_BUILD_LEN 32 #define MC_CMD_FC_OUT_FPGA_BUILD_COMPONENT_INFO_OFST 0 #define MC_CMD_FC_OUT_FPGA_BUILD_IS_APPLICATION_LBN 31 #define MC_CMD_FC_OUT_FPGA_BUILD_IS_APPLICATION_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_IS_LICENSED_LBN 30 #define MC_CMD_FC_OUT_FPGA_BUILD_IS_LICENSED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_COMPONENT_ID_LBN 16 #define MC_CMD_FC_OUT_FPGA_BUILD_COMPONENT_ID_WIDTH 14 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_MAJOR_LBN 12 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_MAJOR_WIDTH 4 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_MINOR_LBN 4 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_MINOR_WIDTH 8 #define MC_CMD_FC_OUT_FPGA_BUILD_BUILD_NUM_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_BUILD_NUM_WIDTH 4 /* Build timestamp (seconds since epoch) */ #define MC_CMD_FC_OUT_FPGA_BUILD_TIMESTAMP_OFST 4 #define MC_CMD_FC_OUT_FPGA_BUILD_PARAMETERS_OFST 8 #define MC_CMD_FC_OUT_FPGA_BUILD_FPGA_TYPE_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_FPGA_TYPE_WIDTH 8 #define MC_CMD_FC_FPGA_TYPE_A7 0xa7 /* enum */ #define MC_CMD_FC_FPGA_TYPE_A5 0xa5 /* enum */ #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED1_LBN 8 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED1_WIDTH 10 #define MC_CMD_FC_OUT_FPGA_BUILD_PTP_ENABLED_LBN 18 #define MC_CMD_FC_OUT_FPGA_BUILD_PTP_ENABLED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM1_RLDRAM_DEF_LBN 19 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM1_RLDRAM_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM2_RLDRAM_DEF_LBN 20 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM2_RLDRAM_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM3_RLDRAM_DEF_LBN 21 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM3_RLDRAM_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM4_RLDRAM_DEF_LBN 22 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM4_RLDRAM_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T0_DDR3_DEF_LBN 23 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T0_DDR3_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T1_DDR3_DEF_LBN 24 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T1_DDR3_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_B0_DDR3_DEF_LBN 25 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_B0_DDR3_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_B1_DDR3_DEF_LBN 26 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_B1_DDR3_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_DDR3_ECC_ENABLED_LBN 27 #define MC_CMD_FC_OUT_FPGA_BUILD_DDR3_ECC_ENABLED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T1_QDR_DEF_LBN 28 #define MC_CMD_FC_OUT_FPGA_BUILD_SODIMM_T1_QDR_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED2_LBN 29 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED2_WIDTH 2 #define MC_CMD_FC_OUT_FPGA_BUILD_CRC_APPEND_LBN 31 #define MC_CMD_FC_OUT_FPGA_BUILD_CRC_APPEND_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_BUILD_IDENTIFIER_OFST 12 #define MC_CMD_FC_OUT_FPGA_BUILD_CHANGESET_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_CHANGESET_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_BUILD_BUILD_FLAG_LBN 16 #define MC_CMD_FC_OUT_FPGA_BUILD_BUILD_FLAG_WIDTH 1 #define MC_CMD_FC_FPGA_BUILD_FLAG_INTERNAL 0x0 /* enum */ #define MC_CMD_FC_FPGA_BUILD_FLAG_RELEASE 0x1 /* enum */ #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED3_LBN 17 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED3_WIDTH 15 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_HI_OFST 16 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MINOR_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MINOR_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MAJOR_LBN 16 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MAJOR_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_BUILD_VERSION_LO_OFST 20 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_BUILD_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_BUILD_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MICRO_LBN 16 #define MC_CMD_FC_OUT_FPGA_BUILD_DEPLOYMENT_VERSION_MICRO_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED4_OFST 16 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED4_LEN 8 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED4_LO_OFST 16 #define MC_CMD_FC_OUT_FPGA_BUILD_RESERVED4_HI_OFST 20 #define MC_CMD_FC_OUT_FPGA_BUILD_REVISION_LO_OFST 24 #define MC_CMD_FC_OUT_FPGA_BUILD_REVISION_HI_OFST 28 #define MC_CMD_FC_OUT_FPGA_BUILD_REVISION_HIGH_LBN 0 #define MC_CMD_FC_OUT_FPGA_BUILD_REVISION_HIGH_WIDTH 16 +/* MC_CMD_FC_OUT_FPGA_BUILD_V2 msgresponse */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_LEN 32 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_COMPONENT_INFO_OFST 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_IS_APPLICATION_LBN 31 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_IS_APPLICATION_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_IS_LICENSED_LBN 30 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_IS_LICENSED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_COMPONENT_ID_LBN 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_COMPONENT_ID_WIDTH 14 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_MAJOR_LBN 12 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_MAJOR_WIDTH 4 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_MINOR_LBN 4 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_MINOR_WIDTH 8 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_BUILD_NUM_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_BUILD_NUM_WIDTH 4 +/* Build timestamp (seconds since epoch) */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_TIMESTAMP_OFST 4 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_PARAMETERS_OFST 8 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_PMA_PASSTHROUGH_LBN 31 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_PMA_PASSTHROUGH_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_QDR_DEF_LBN 29 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_QDR_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_QDR_DEF_LBN 28 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_QDR_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DDR3_ECC_ENABLED_LBN 27 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DDR3_ECC_ENABLED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE2_DDR3_DEF_LBN 26 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE2_DDR3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE1_DDR3_DEF_LBN 25 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE1_DDR3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_TO_DDR3_DEF_LBN 24 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_TO_DDR3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_T0_DDR3_DEF_LBN 23 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_T0_DDR3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE2_RLDRAM_DEF_LBN 22 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE2_RLDRAM_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE1_RLDRAM_DEF_LBN 21 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DISCRETE1_RLDRAM_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_RLDRAM_DEF_LBN 20 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM2_RLDRAM_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_RLDRAM_DEF_LBN 19 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SODIMM1_RLDRAM_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_3_SPEED_LBN 18 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_3_SPEED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_3_SPEED_10G 0x0 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_3_SPEED_40G 0x1 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_7_SPEED_LBN 17 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_7_SPEED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_7_SPEED_10G 0x0 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_7_SPEED_40G 0x1 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_3_SPEED_LBN 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_3_SPEED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_3_SPEED_10G 0x0 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_3_SPEED_40G 0x1 /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP7_DEF_LBN 15 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP7_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP6_DEF_LBN 14 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP6_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP5_DEF_LBN 13 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP5_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_DEF_LBN 12 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP4_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP3_DEF_LBN 11 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP2_DEF_LBN 10 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP2_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP1_DEF_LBN 9 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP1_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_DEF_LBN 8 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_SFP0_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC3_DEF_LBN 7 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC3_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC2_DEF_LBN 6 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC2_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC1_DEF_LBN 5 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC1_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_DEF_LBN 4 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_NIC0_DEF_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_FPGA_TYPE_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_FPGA_TYPE_WIDTH 4 +#define MC_CMD_FC_FPGA_V2_TYPE_A3 0x0 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_A4 0x1 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_A5 0x2 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_A7 0x3 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_D3 0x8 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_D4 0x9 /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_D5 0xa /* enum */ +#define MC_CMD_FC_FPGA_V2_TYPE_D7 0xb /* enum */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_IDENTIFIER_OFST 12 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_CHANGESET_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_CHANGESET_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_BUILD_FLAG_LBN 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_BUILD_FLAG_WIDTH 1 +/* MC_CMD_FC_FPGA_BUILD_FLAG_INTERNAL 0x0 */ +/* MC_CMD_FC_FPGA_BUILD_FLAG_RELEASE 0x1 */ +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_HI_OFST 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MINOR_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MINOR_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MAJOR_LBN 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MAJOR_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_VERSION_LO_OFST 20 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_BUILD_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_BUILD_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MICRO_LBN 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_DEPLOYMENT_VERSION_MICRO_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_REVISION_LO_OFST 24 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_REVISION_HI_OFST 28 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_REVISION_HIGH_LBN 0 +#define MC_CMD_FC_OUT_FPGA_BUILD_V2_REVISION_HIGH_WIDTH 16 + /* MC_CMD_FC_OUT_FPGA_SERVICES msgresponse */ #define MC_CMD_FC_OUT_FPGA_SERVICES_LEN 32 #define MC_CMD_FC_OUT_FPGA_SERVICES_COMPONENT_INFO_OFST 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_IS_APPLICATION_LBN 31 #define MC_CMD_FC_OUT_FPGA_SERVICES_IS_APPLICATION_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_IS_LICENSED_LBN 30 #define MC_CMD_FC_OUT_FPGA_SERVICES_IS_LICENSED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_COMPONENT_ID_LBN 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_COMPONENT_ID_WIDTH 14 #define MC_CMD_FC_OUT_FPGA_SERVICES_VERSION_MAJOR_LBN 12 #define MC_CMD_FC_OUT_FPGA_SERVICES_VERSION_MAJOR_WIDTH 4 #define MC_CMD_FC_OUT_FPGA_SERVICES_VERSION_MINOR_LBN 4 #define MC_CMD_FC_OUT_FPGA_SERVICES_VERSION_MINOR_WIDTH 8 #define MC_CMD_FC_OUT_FPGA_SERVICES_BUILD_NUM_LBN 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_BUILD_NUM_WIDTH 4 /* Build timestamp (seconds since epoch) */ #define MC_CMD_FC_OUT_FPGA_SERVICES_TIMESTAMP_OFST 4 #define MC_CMD_FC_OUT_FPGA_SERVICES_PARAMETERS_OFST 8 #define MC_CMD_FC_OUT_FPGA_SERVICES_FC_FLASH_BOOTED_LBN 8 #define MC_CMD_FC_OUT_FPGA_SERVICES_FC_FLASH_BOOTED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_NIC0_DEF_LBN 27 #define MC_CMD_FC_OUT_FPGA_SERVICES_NIC0_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_NIC1_DEF_LBN 28 #define MC_CMD_FC_OUT_FPGA_SERVICES_NIC1_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_SFP0_DEF_LBN 29 #define MC_CMD_FC_OUT_FPGA_SERVICES_SFP0_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_SFP1_DEF_LBN 30 #define MC_CMD_FC_OUT_FPGA_SERVICES_SFP1_DEF_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_RESERVED_LBN 31 #define MC_CMD_FC_OUT_FPGA_SERVICES_RESERVED_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_IDENTIFIER_OFST 12 #define MC_CMD_FC_OUT_FPGA_SERVICES_CHANGESET_LBN 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_CHANGESET_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_BUILD_FLAG_LBN 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_BUILD_FLAG_WIDTH 1 #define MC_CMD_FC_OUT_FPGA_SERVICES_MEMORY_SIZE_OFST 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_MEMORY_SIZE_WIDTH_LBN 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_MEMORY_SIZE_WIDTH_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_MEMORY_SIZE_COUNT_LBN 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_MEMORY_SIZE_COUNT_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_INSTANCE_SIZE_OFST 20 #define MC_CMD_FC_OUT_FPGA_SERVICES_INSTANCE_SIZE_WIDTH_LBN 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_INSTANCE_SIZE_WIDTH_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_INSTANCE_SIZE_COUNT_LBN 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_INSTANCE_SIZE_COUNT_WIDTH 16 #define MC_CMD_FC_OUT_FPGA_SERVICES_REVISION_LO_OFST 24 #define MC_CMD_FC_OUT_FPGA_SERVICES_REVISION_HI_OFST 28 #define MC_CMD_FC_OUT_FPGA_SERVICES_REVISION_HIGH_LBN 0 #define MC_CMD_FC_OUT_FPGA_SERVICES_REVISION_HIGH_WIDTH 16 +/* MC_CMD_FC_OUT_FPGA_SERVICES_V2 msgresponse */ +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_LEN 32 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_COMPONENT_INFO_OFST 0 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_IS_APPLICATION_LBN 31 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_IS_APPLICATION_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_IS_LICENSED_LBN 30 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_IS_LICENSED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_COMPONENT_ID_LBN 16 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_COMPONENT_ID_WIDTH 14 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_VERSION_MAJOR_LBN 12 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_VERSION_MAJOR_WIDTH 4 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_VERSION_MINOR_LBN 4 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_VERSION_MINOR_WIDTH 8 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_BUILD_NUM_LBN 0 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_BUILD_NUM_WIDTH 4 +/* Build timestamp (seconds since epoch) */ +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_TIMESTAMP_OFST 4 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_PARAMETERS_OFST 8 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_PTP_ENABLED_LBN 0 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_PTP_ENABLED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_FC_FLASH_BOOTED_LBN 8 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_FC_FLASH_BOOTED_WIDTH 1 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_IDENTIFIER_OFST 12 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_CHANGESET_LBN 0 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_CHANGESET_WIDTH 16 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_BUILD_FLAG_LBN 16 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_BUILD_FLAG_WIDTH 1 +/* MC_CMD_FC_FPGA_BUILD_FLAG_INTERNAL 0x0 */ +/* MC_CMD_FC_FPGA_BUILD_FLAG_RELEASE 0x1 */ +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_REVISION_LO_OFST 24 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_REVISION_HI_OFST 28 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_REVISION_HIGH_LBN 0 +#define MC_CMD_FC_OUT_FPGA_SERVICES_V2_REVISION_HIGH_WIDTH 16 + /* MC_CMD_FC_OUT_BSP_VERSION msgresponse */ #define MC_CMD_FC_OUT_BSP_VERSION_LEN 4 /* Qsys system ID */ #define MC_CMD_FC_OUT_BSP_VERSION_SYSID_OFST 0 #define MC_CMD_FC_OUT_BSP_VERSION_VERSION_MAJOR_LBN 12 #define MC_CMD_FC_OUT_BSP_VERSION_VERSION_MAJOR_WIDTH 4 #define MC_CMD_FC_OUT_BSP_VERSION_VERSION_MINOR_LBN 4 #define MC_CMD_FC_OUT_BSP_VERSION_VERSION_MINOR_WIDTH 8 #define MC_CMD_FC_OUT_BSP_VERSION_BUILD_NUM_LBN 0 #define MC_CMD_FC_OUT_BSP_VERSION_BUILD_NUM_WIDTH 4 /* MC_CMD_FC_OUT_READ_MAP_COUNT msgresponse */ #define MC_CMD_FC_OUT_READ_MAP_COUNT_LEN 4 /* Number of maps */ #define MC_CMD_FC_OUT_READ_MAP_COUNT_NUM_MAPS_OFST 0 /* MC_CMD_FC_OUT_READ_MAP_INDEX msgresponse */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_LEN 164 /* Index of the map */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_INDEX_OFST 0 /* Options for the map */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_OPTIONS_OFST 4 #define MC_CMD_FC_OUT_READ_MAP_INDEX_ALIGN_8 0x0 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_ALIGN_16 0x1 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_ALIGN_32 0x2 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_ALIGN_64 0x3 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_ALIGN_MASK 0x3 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_PATH_FC 0x4 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_PATH_MEM 0x8 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_PERM_READ 0x10 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_PERM_WRITE 0x20 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_FREE 0x0 /* enum */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_LICENSED 0x40 /* enum */ /* Address of start of map */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_ADDRESS_OFST 8 #define MC_CMD_FC_OUT_READ_MAP_INDEX_ADDRESS_LEN 8 #define MC_CMD_FC_OUT_READ_MAP_INDEX_ADDRESS_LO_OFST 8 #define MC_CMD_FC_OUT_READ_MAP_INDEX_ADDRESS_HI_OFST 12 /* Length of address map */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_LEN_OFST 16 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LEN_LEN 8 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LEN_LO_OFST 16 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LEN_HI_OFST 20 /* Component information field */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_COMP_INFO_OFST 24 /* License expiry data for map */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_DATE_OFST 28 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_DATE_LEN 8 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_DATE_LO_OFST 28 #define MC_CMD_FC_OUT_READ_MAP_INDEX_LICENSE_DATE_HI_OFST 32 /* Name of the component */ #define MC_CMD_FC_OUT_READ_MAP_INDEX_NAME_OFST 36 #define MC_CMD_FC_OUT_READ_MAP_INDEX_NAME_LEN 1 #define MC_CMD_FC_OUT_READ_MAP_INDEX_NAME_NUM 128 /* MC_CMD_FC_OUT_READ_MAP msgresponse */ #define MC_CMD_FC_OUT_READ_MAP_LEN 0 /* MC_CMD_FC_OUT_CAPABILITIES msgresponse */ #define MC_CMD_FC_OUT_CAPABILITIES_LEN 8 /* Number of internal ports */ #define MC_CMD_FC_OUT_CAPABILITIES_INTERNAL_OFST 0 /* Number of external ports */ #define MC_CMD_FC_OUT_CAPABILITIES_EXTERNAL_OFST 4 /* MC_CMD_FC_OUT_GLOBAL_FLAGS msgresponse */ #define MC_CMD_FC_OUT_GLOBAL_FLAGS_LEN 4 #define MC_CMD_FC_OUT_GLOBAL_FLAGS_FLAGS_OFST 0 /* MC_CMD_FC_OUT_IO_REL msgresponse */ #define MC_CMD_FC_OUT_IO_REL_LEN 0 /* MC_CMD_FC_OUT_IO_REL_GET_ADDR msgresponse */ #define MC_CMD_FC_OUT_IO_REL_GET_ADDR_LEN 8 #define MC_CMD_FC_OUT_IO_REL_GET_ADDR_ADDR_HI_OFST 0 #define MC_CMD_FC_OUT_IO_REL_GET_ADDR_ADDR_LO_OFST 4 /* MC_CMD_FC_OUT_IO_REL_READ32 msgresponse */ #define MC_CMD_FC_OUT_IO_REL_READ32_LENMIN 4 #define MC_CMD_FC_OUT_IO_REL_READ32_LENMAX 252 #define MC_CMD_FC_OUT_IO_REL_READ32_LEN(num) (0+4*(num)) #define MC_CMD_FC_OUT_IO_REL_READ32_BUFFER_OFST 0 #define MC_CMD_FC_OUT_IO_REL_READ32_BUFFER_LEN 4 #define MC_CMD_FC_OUT_IO_REL_READ32_BUFFER_MINNUM 1 #define MC_CMD_FC_OUT_IO_REL_READ32_BUFFER_MAXNUM 63 /* MC_CMD_FC_OUT_IO_REL_WRITE32 msgresponse */ #define MC_CMD_FC_OUT_IO_REL_WRITE32_LEN 0 /* MC_CMD_FC_OUT_UHLINK_PHY msgresponse */ #define MC_CMD_FC_OUT_UHLINK_PHY_LEN 48 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_SETTINGS_0_OFST 0 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_VOD_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_VOD_WIDTH 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_1STPOSTTAP_LBN 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_1STPOSTTAP_WIDTH 16 /* Transceiver Transmit settings */ #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_SETTINGS_1_OFST 4 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_PRETAP_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_PRETAP_WIDTH 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_2NDPOSTTAP_LBN 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_TX_PREEMP_2NDPOSTTAP_WIDTH 16 /* Transceiver Receive settings */ #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_RX_SETTINGS_OFST 8 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_RX_DC_GAIN_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_RX_DC_GAIN_WIDTH 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_RX_EQ_CONTROL_LBN 16 #define MC_CMD_FC_OUT_UHLINK_PHY_TRC_RX_EQ_CONTROL_WIDTH 16 /* Rx eye opening */ #define MC_CMD_FC_OUT_UHLINK_PHY_RX_EYE_OFST 12 #define MC_CMD_FC_OUT_UHLINK_PHY_RX_EYE_WIDTH_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_RX_EYE_WIDTH_WIDTH 16 #define MC_CMD_FC_OUT_UHLINK_PHY_RX_EYE_HEIGHT_LBN 16 #define MC_CMD_FC_OUT_UHLINK_PHY_RX_EYE_HEIGHT_WIDTH 16 /* PCS status word */ #define MC_CMD_FC_OUT_UHLINK_PHY_PCS_STATUS_OFST 16 /* Link status word */ #define MC_CMD_FC_OUT_UHLINK_PHY_LINK_STATE_WORD_OFST 20 #define MC_CMD_FC_OUT_UHLINK_PHY_LINK_STATE_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_LINK_STATE_WIDTH 1 #define MC_CMD_FC_OUT_UHLINK_PHY_LINK_CONFIGURED_LBN 1 #define MC_CMD_FC_OUT_UHLINK_PHY_LINK_CONFIGURED_WIDTH 1 /* Current SFp parameters applied */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_PARAMS_OFST 24 #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_PARAMS_LEN 20 /* Link speed is 100, 1000, 10000 */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_SPEED_OFST 24 /* Length of copper cable - zero when not relevant */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_COPPER_LEN_OFST 28 /* True if a dual speed SFP+ module */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_DUAL_SPEED_OFST 32 /* True if an SFP Module is present (other fields valid when true) */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_PRESENT_OFST 36 /* The type of the SFP+ Module */ #define MC_CMD_FC_OUT_UHLINK_PHY_SFP_TYPE_OFST 40 /* PHY config flags */ #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_OFST 44 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_DFE_LBN 0 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_DFE_WIDTH 1 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_AEQ_LBN 1 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_AEQ_WIDTH 1 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_RX_TUNING_LBN 2 #define MC_CMD_FC_OUT_UHLINK_PHY_PHY_CFG_RX_TUNING_WIDTH 1 /* MC_CMD_FC_OUT_UHLINK_MAC msgresponse */ #define MC_CMD_FC_OUT_UHLINK_MAC_LEN 20 /* MAC configuration applied */ #define MC_CMD_FC_OUT_UHLINK_MAC_CONFIG_OFST 0 /* MTU size */ #define MC_CMD_FC_OUT_UHLINK_MAC_MTU_OFST 4 /* IF Mode status */ #define MC_CMD_FC_OUT_UHLINK_MAC_IF_STATUS_OFST 8 /* MAC address configured */ #define MC_CMD_FC_OUT_UHLINK_MAC_ADDR_OFST 12 #define MC_CMD_FC_OUT_UHLINK_MAC_ADDR_LEN 8 #define MC_CMD_FC_OUT_UHLINK_MAC_ADDR_LO_OFST 12 #define MC_CMD_FC_OUT_UHLINK_MAC_ADDR_HI_OFST 16 /* MC_CMD_FC_OUT_UHLINK_RX_EYE msgresponse */ #define MC_CMD_FC_OUT_UHLINK_RX_EYE_LEN ((((0-1+(32*MC_CMD_FC_UHLINK_RX_EYE_PER_BLOCK))+1))>>3) /* Rx Eye measurements */ #define MC_CMD_FC_OUT_UHLINK_RX_EYE_RX_EYE_OFST 0 #define MC_CMD_FC_OUT_UHLINK_RX_EYE_RX_EYE_LEN 4 #define MC_CMD_FC_OUT_UHLINK_RX_EYE_RX_EYE_NUM MC_CMD_FC_UHLINK_RX_EYE_PER_BLOCK /* MC_CMD_FC_OUT_UHLINK_DUMP_RX_EYE_PLOT msgresponse */ #define MC_CMD_FC_OUT_UHLINK_DUMP_RX_EYE_PLOT_LEN 0 /* MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT msgresponse */ #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_LEN ((((32-1+(64*MC_CMD_FC_UHLINK_RX_EYE_PLOT_ROWS_PER_BLOCK))+1))>>3) /* Has the eye plot dump completed and data returned is valid? */ #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_VALID_OFST 0 /* Rx Eye binary plot */ #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_ROWS_OFST 4 #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_ROWS_LEN 8 #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_ROWS_LO_OFST 4 #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_ROWS_HI_OFST 8 #define MC_CMD_FC_OUT_UHLINK_READ_RX_EYE_PLOT_ROWS_NUM MC_CMD_FC_UHLINK_RX_EYE_PLOT_ROWS_PER_BLOCK /* MC_CMD_FC_OUT_UHLINK_RX_TUNE msgresponse */ #define MC_CMD_FC_OUT_UHLINK_RX_TUNE_LEN 0 /* MC_CMD_FC_OUT_UHLINK_LOOPBACK_SET msgresponse */ #define MC_CMD_FC_OUT_UHLINK_LOOPBACK_SET_LEN 0 /* MC_CMD_FC_OUT_UHLINK_LOOPBACK_GET msgresponse */ #define MC_CMD_FC_OUT_UHLINK_LOOPBACK_GET_LEN 4 #define MC_CMD_FC_OUT_UHLINK_LOOPBACK_GET_STATE_OFST 0 /* MC_CMD_FC_OUT_UHLINK msgresponse */ #define MC_CMD_FC_OUT_UHLINK_LEN 0 /* MC_CMD_FC_OUT_SET_LINK msgresponse */ #define MC_CMD_FC_OUT_SET_LINK_LEN 0 /* MC_CMD_FC_OUT_LICENSE msgresponse */ #define MC_CMD_FC_OUT_LICENSE_LEN 12 /* Count of valid keys */ #define MC_CMD_FC_OUT_LICENSE_VALID_KEYS_OFST 0 /* Count of invalid keys */ #define MC_CMD_FC_OUT_LICENSE_INVALID_KEYS_OFST 4 /* Count of blacklisted keys */ #define MC_CMD_FC_OUT_LICENSE_BLACKLISTED_KEYS_OFST 8 /* MC_CMD_FC_OUT_STARTUP msgresponse */ #define MC_CMD_FC_OUT_STARTUP_LEN 4 /* Capabilities of the FPGA/FC */ #define MC_CMD_FC_OUT_STARTUP_CAPABILITIES_OFST 0 #define MC_CMD_FC_OUT_STARTUP_CAN_ACCESS_FLASH_LBN 0 #define MC_CMD_FC_OUT_STARTUP_CAN_ACCESS_FLASH_WIDTH 1 /* MC_CMD_FC_OUT_DMA_READ msgresponse */ #define MC_CMD_FC_OUT_DMA_READ_LENMIN 1 #define MC_CMD_FC_OUT_DMA_READ_LENMAX 252 #define MC_CMD_FC_OUT_DMA_READ_LEN(num) (0+1*(num)) /* The data read */ #define MC_CMD_FC_OUT_DMA_READ_DATA_OFST 0 #define MC_CMD_FC_OUT_DMA_READ_DATA_LEN 1 #define MC_CMD_FC_OUT_DMA_READ_DATA_MINNUM 1 #define MC_CMD_FC_OUT_DMA_READ_DATA_MAXNUM 252 /* MC_CMD_FC_OUT_TIMED_READ_SET msgresponse */ #define MC_CMD_FC_OUT_TIMED_READ_SET_LEN 4 /* Timer handle */ #define MC_CMD_FC_OUT_TIMED_READ_SET_FC_HANDLE_OFST 0 /* MC_CMD_FC_OUT_TIMED_READ_GET msgresponse */ #define MC_CMD_FC_OUT_TIMED_READ_GET_LEN 52 /* Host supplied handle (unique) */ #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_HANDLE_OFST 0 /* Address into which to transfer data in host */ #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_DMA_ADDRESS_OFST 4 #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_DMA_ADDRESS_LEN 8 #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_DMA_ADDRESS_LO_OFST 4 #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_DMA_ADDRESS_HI_OFST 8 /* AOE address from which to transfer data */ #define MC_CMD_FC_OUT_TIMED_READ_GET_AOE_ADDRESS_OFST 12 #define MC_CMD_FC_OUT_TIMED_READ_GET_AOE_ADDRESS_LEN 8 #define MC_CMD_FC_OUT_TIMED_READ_GET_AOE_ADDRESS_LO_OFST 12 #define MC_CMD_FC_OUT_TIMED_READ_GET_AOE_ADDRESS_HI_OFST 16 /* Length of AOE transfer (total) */ #define MC_CMD_FC_OUT_TIMED_READ_GET_AOE_LENGTH_OFST 20 /* Length of host transfer (total) */ #define MC_CMD_FC_OUT_TIMED_READ_GET_HOST_LENGTH_OFST 24 /* See FLAGS entry for MC_CMD_FC_IN_TIMED_READ_SET */ #define MC_CMD_FC_OUT_TIMED_READ_GET_FLAGS_OFST 28 #define MC_CMD_FC_OUT_TIMED_READ_GET_PERIOD_OFST 32 /* When active, start read time */ #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_START_OFST 36 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_START_LEN 8 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_START_LO_OFST 36 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_START_HI_OFST 40 /* When active, end read time */ #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_END_OFST 44 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_END_LEN 8 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_END_LO_OFST 44 #define MC_CMD_FC_OUT_TIMED_READ_GET_CLOCK_END_HI_OFST 48 /* MC_CMD_FC_OUT_LOG_ADDR_RANGE msgresponse */ #define MC_CMD_FC_OUT_LOG_ADDR_RANGE_LEN 0 /* MC_CMD_FC_OUT_LOG msgresponse */ #define MC_CMD_FC_OUT_LOG_LEN 0 /* MC_CMD_FC_OUT_CLOCK_GET_TIME msgresponse */ #define MC_CMD_FC_OUT_CLOCK_GET_TIME_LEN 24 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_CLOCK_ID_OFST 0 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_SECONDS_OFST 4 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_SECONDS_LEN 8 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_SECONDS_LO_OFST 4 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_SECONDS_HI_OFST 8 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_NANOSECONDS_OFST 12 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_RANGE_OFST 16 #define MC_CMD_FC_OUT_CLOCK_GET_TIME_PRECISION_OFST 20 /* MC_CMD_FC_OUT_CLOCK_SET_TIME msgresponse */ #define MC_CMD_FC_OUT_CLOCK_SET_TIME_LEN 0 /* MC_CMD_FC_OUT_DDR_SET_SPD msgresponse */ #define MC_CMD_FC_OUT_DDR_SET_SPD_LEN 0 +/* MC_CMD_FC_OUT_DDR_SET_INFO msgresponse */ +#define MC_CMD_FC_OUT_DDR_SET_INFO_LEN 0 + /* MC_CMD_FC_OUT_DDR_GET_STATUS msgresponse */ #define MC_CMD_FC_OUT_DDR_GET_STATUS_LEN 4 #define MC_CMD_FC_OUT_DDR_GET_STATUS_FLAGS_OFST 0 #define MC_CMD_FC_OUT_DDR_GET_STATUS_READY_LBN 0 #define MC_CMD_FC_OUT_DDR_GET_STATUS_READY_WIDTH 1 #define MC_CMD_FC_OUT_DDR_GET_STATUS_CALIBRATED_LBN 1 #define MC_CMD_FC_OUT_DDR_GET_STATUS_CALIBRATED_WIDTH 1 /* MC_CMD_FC_OUT_TIMESTAMP_READ_TRANSMIT msgresponse */ #define MC_CMD_FC_OUT_TIMESTAMP_READ_TRANSMIT_LEN 8 #define MC_CMD_FC_OUT_TIMESTAMP_READ_TRANSMIT_SECONDS_OFST 0 #define MC_CMD_FC_OUT_TIMESTAMP_READ_TRANSMIT_NANOSECONDS_OFST 4 /* MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT msgresponse */ #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_LENMIN 8 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_LENMAX 248 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_LEN(num) (0+8*(num)) #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_SECONDS_OFST 0 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_NANOSECONDS_OFST 4 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_OFST 0 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_LEN 8 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_LO_OFST 0 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_HI_OFST 4 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_MINNUM 0 #define MC_CMD_FC_OUT_TIMESTAMP_READ_SNAPSHOT_TIMESTAMP_MAXNUM 31 /* MC_CMD_FC_OUT_SPI_READ msgresponse */ #define MC_CMD_FC_OUT_SPI_READ_LENMIN 4 #define MC_CMD_FC_OUT_SPI_READ_LENMAX 252 #define MC_CMD_FC_OUT_SPI_READ_LEN(num) (0+4*(num)) #define MC_CMD_FC_OUT_SPI_READ_BUFFER_OFST 0 #define MC_CMD_FC_OUT_SPI_READ_BUFFER_LEN 4 #define MC_CMD_FC_OUT_SPI_READ_BUFFER_MINNUM 1 #define MC_CMD_FC_OUT_SPI_READ_BUFFER_MAXNUM 63 /* MC_CMD_FC_OUT_SPI_WRITE msgresponse */ #define MC_CMD_FC_OUT_SPI_WRITE_LEN 0 /* MC_CMD_FC_OUT_SPI_ERASE msgresponse */ #define MC_CMD_FC_OUT_SPI_ERASE_LEN 0 /* MC_CMD_FC_OUT_DIAG_POWER_NOISE_READ_CONFIG msgresponse */ #define MC_CMD_FC_OUT_DIAG_POWER_NOISE_READ_CONFIG_LEN 8 /* The 32-bit value read from the toggle count register */ #define MC_CMD_FC_OUT_DIAG_POWER_NOISE_READ_CONFIG_TOGGLE_COUNT_OFST 0 /* The 32-bit value read from the clock enable count register */ #define MC_CMD_FC_OUT_DIAG_POWER_NOISE_READ_CONFIG_CLKEN_COUNT_OFST 4 /* MC_CMD_FC_OUT_DIAG_POWER_NOISE_WRITE_CONFIG msgresponse */ #define MC_CMD_FC_OUT_DIAG_POWER_NOISE_WRITE_CONFIG_LEN 0 /* MC_CMD_FC_OUT_DIAG_DDR_SOAK_START msgresponse */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_START_LEN 0 /* MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT msgresponse */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_LEN 8 /* DDR soak test status word; bits [4:0] are relevant. */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_STATUS_OFST 0 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_PASSED_LBN 0 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_PASSED_WIDTH 1 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_FAILED_LBN 1 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_FAILED_WIDTH 1 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_COMPLETED_LBN 2 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_COMPLETED_WIDTH 1 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_TIMEOUT_LBN 3 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_TIMEOUT_WIDTH 1 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_PNF_LBN 4 #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_PNF_WIDTH 1 /* DDR soak test error count */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_RESULT_ERR_COUNT_OFST 4 /* MC_CMD_FC_OUT_DIAG_DDR_SOAK_STOP msgresponse */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_STOP_LEN 0 /* MC_CMD_FC_OUT_DIAG_DDR_SOAK_ERROR msgresponse */ #define MC_CMD_FC_OUT_DIAG_DDR_SOAK_ERROR_LEN 0 /* MC_CMD_FC_OUT_DIAG_DATAPATH_CTRL_SET_MODE msgresponse */ #define MC_CMD_FC_OUT_DIAG_DATAPATH_CTRL_SET_MODE_LEN 0 /* MC_CMD_FC_OUT_DIAG_DATAPATH_CTRL_RAW_CONFIG msgresponse */ #define MC_CMD_FC_OUT_DIAG_DATAPATH_CTRL_RAW_CONFIG_LEN 0 /***********************************/ /* MC_CMD_AOE * AOE operations on MC */ #define MC_CMD_AOE 0xa /* MC_CMD_AOE_IN msgrequest */ #define MC_CMD_AOE_IN_LEN 4 #define MC_CMD_AOE_IN_OP_HDR_OFST 0 #define MC_CMD_AOE_IN_OP_LBN 0 #define MC_CMD_AOE_IN_OP_WIDTH 8 /* enum: FPGA and CPLD information */ #define MC_CMD_AOE_OP_INFO 0x1 /* enum: Currents and voltages read from MCP3424s; DEBUG */ #define MC_CMD_AOE_OP_CURRENTS 0x2 /* enum: Temperatures at locations around the PCB; DEBUG */ #define MC_CMD_AOE_OP_TEMPERATURES 0x3 /* enum: Set CPLD to idle */ #define MC_CMD_AOE_OP_CPLD_IDLE 0x4 /* enum: Read from CPLD register */ #define MC_CMD_AOE_OP_CPLD_READ 0x5 /* enum: Write to CPLD register */ #define MC_CMD_AOE_OP_CPLD_WRITE 0x6 /* enum: Execute CPLD instruction */ #define MC_CMD_AOE_OP_CPLD_INSTRUCTION 0x7 /* enum: Reprogram the CPLD on the AOE device */ #define MC_CMD_AOE_OP_CPLD_REPROGRAM 0x8 /* enum: AOE power control */ #define MC_CMD_AOE_OP_POWER 0x9 /* enum: AOE image loading */ #define MC_CMD_AOE_OP_LOAD 0xa /* enum: Fan monitoring */ #define MC_CMD_AOE_OP_FAN_CONTROL 0xb /* enum: Fan failures since last reset */ #define MC_CMD_AOE_OP_FAN_FAILURES 0xc /* enum: Get generic AOE MAC statistics */ #define MC_CMD_AOE_OP_MAC_STATS 0xd /* enum: Retrieve PHY specific information */ #define MC_CMD_AOE_OP_GET_PHY_MEDIA_INFO 0xe /* enum: Write a number of JTAG primitive commands, return will give data */ #define MC_CMD_AOE_OP_JTAG_WRITE 0xf /* enum: Control access to the FPGA via the Siena JTAG Chain */ #define MC_CMD_AOE_OP_FPGA_ACCESS 0x10 /* enum: Set the MTU offset between Siena and AOE MACs */ #define MC_CMD_AOE_OP_SET_MTU_OFFSET 0x11 /* enum: How link state is handled */ #define MC_CMD_AOE_OP_LINK_STATE 0x12 /* enum: How Siena MAC statistics are reported (deprecated - use * MC_CMD_AOE_OP_ASIC_STATS) */ #define MC_CMD_AOE_OP_SIENA_STATS 0x13 /* enum: How native ASIC MAC statistics are reported - replaces the deprecated * command MC_CMD_AOE_OP_SIENA_STATS */ #define MC_CMD_AOE_OP_ASIC_STATS 0x13 /* enum: DDR memory information */ #define MC_CMD_AOE_OP_DDR 0x14 /* enum: FC control */ #define MC_CMD_AOE_OP_FC 0x15 /* enum: DDR ECC status reads */ #define MC_CMD_AOE_OP_DDR_ECC_STATUS 0x16 /* enum: Commands for MC-SPI Master emulation */ #define MC_CMD_AOE_OP_MC_SPI_MASTER 0x17 /* enum: Commands for FC boot control */ #define MC_CMD_AOE_OP_FC_BOOT 0x18 /* MC_CMD_AOE_OUT msgresponse */ #define MC_CMD_AOE_OUT_LEN 0 /* MC_CMD_AOE_IN_INFO msgrequest */ #define MC_CMD_AOE_IN_INFO_LEN 4 #define MC_CMD_AOE_IN_CMD_OFST 0 /* MC_CMD_AOE_IN_CURRENTS msgrequest */ #define MC_CMD_AOE_IN_CURRENTS_LEN 4 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* MC_CMD_AOE_IN_TEMPERATURES msgrequest */ #define MC_CMD_AOE_IN_TEMPERATURES_LEN 4 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* MC_CMD_AOE_IN_CPLD_IDLE msgrequest */ #define MC_CMD_AOE_IN_CPLD_IDLE_LEN 4 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* MC_CMD_AOE_IN_CPLD_READ msgrequest */ #define MC_CMD_AOE_IN_CPLD_READ_LEN 12 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_CPLD_READ_REGISTER_OFST 4 #define MC_CMD_AOE_IN_CPLD_READ_WIDTH_OFST 8 /* MC_CMD_AOE_IN_CPLD_WRITE msgrequest */ #define MC_CMD_AOE_IN_CPLD_WRITE_LEN 16 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_CPLD_WRITE_REGISTER_OFST 4 #define MC_CMD_AOE_IN_CPLD_WRITE_WIDTH_OFST 8 #define MC_CMD_AOE_IN_CPLD_WRITE_VALUE_OFST 12 /* MC_CMD_AOE_IN_CPLD_INSTRUCTION msgrequest */ #define MC_CMD_AOE_IN_CPLD_INSTRUCTION_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_CPLD_INSTRUCTION_INSTRUCTION_OFST 4 /* MC_CMD_AOE_IN_CPLD_REPROGRAM msgrequest */ #define MC_CMD_AOE_IN_CPLD_REPROGRAM_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_CPLD_REPROGRAM_OP_OFST 4 /* enum: Reprogram CPLD, poll for completion */ #define MC_CMD_AOE_IN_CPLD_REPROGRAM_REPROGRAM 0x1 /* enum: Reprogram CPLD, send event on completion */ #define MC_CMD_AOE_IN_CPLD_REPROGRAM_REPROGRAM_EVENT 0x3 /* enum: Get status of reprogramming operation */ #define MC_CMD_AOE_IN_CPLD_REPROGRAM_STATUS 0x4 /* MC_CMD_AOE_IN_POWER msgrequest */ #define MC_CMD_AOE_IN_POWER_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* Turn on or off AOE power */ #define MC_CMD_AOE_IN_POWER_OP_OFST 4 /* enum: Turn off FPGA power */ #define MC_CMD_AOE_IN_POWER_OFF 0x0 /* enum: Turn on FPGA power */ #define MC_CMD_AOE_IN_POWER_ON 0x1 /* enum: Clear peak power measurement */ #define MC_CMD_AOE_IN_POWER_CLEAR 0x2 /* enum: Show current power in sensors output */ #define MC_CMD_AOE_IN_POWER_SHOW_CURRENT 0x3 /* enum: Show peak power in sensors output */ #define MC_CMD_AOE_IN_POWER_SHOW_PEAK 0x4 /* enum: Show current DDR current */ #define MC_CMD_AOE_IN_POWER_DDR_LAST 0x5 /* enum: Show peak DDR current */ #define MC_CMD_AOE_IN_POWER_DDR_PEAK 0x6 /* enum: Clear peak DDR current */ #define MC_CMD_AOE_IN_POWER_DDR_CLEAR 0x7 /* MC_CMD_AOE_IN_LOAD msgrequest */ #define MC_CMD_AOE_IN_LOAD_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* Image to be loaded (0 - main or 1 - diagnostic) to load in normal sequence */ #define MC_CMD_AOE_IN_LOAD_IMAGE_OFST 4 /* MC_CMD_AOE_IN_FAN_CONTROL msgrequest */ #define MC_CMD_AOE_IN_FAN_CONTROL_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* If non zero report measured fan RPM rather than nominal */ #define MC_CMD_AOE_IN_FAN_CONTROL_REAL_RPM_OFST 4 /* MC_CMD_AOE_IN_FAN_FAILURES msgrequest */ #define MC_CMD_AOE_IN_FAN_FAILURES_LEN 4 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* MC_CMD_AOE_IN_MAC_STATS msgrequest */ #define MC_CMD_AOE_IN_MAC_STATS_LEN 24 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* AOE port */ #define MC_CMD_AOE_IN_MAC_STATS_PORT_OFST 4 /* Host memory address for statistics */ #define MC_CMD_AOE_IN_MAC_STATS_DMA_ADDR_OFST 8 #define MC_CMD_AOE_IN_MAC_STATS_DMA_ADDR_LEN 8 #define MC_CMD_AOE_IN_MAC_STATS_DMA_ADDR_LO_OFST 8 #define MC_CMD_AOE_IN_MAC_STATS_DMA_ADDR_HI_OFST 12 #define MC_CMD_AOE_IN_MAC_STATS_CMD_OFST 16 #define MC_CMD_AOE_IN_MAC_STATS_DMA_LBN 0 #define MC_CMD_AOE_IN_MAC_STATS_DMA_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_CLEAR_LBN 1 #define MC_CMD_AOE_IN_MAC_STATS_CLEAR_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_CHANGE_LBN 2 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_CHANGE_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_ENABLE_LBN 3 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_ENABLE_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_CLEAR_LBN 4 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_CLEAR_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_NOEVENT_LBN 5 #define MC_CMD_AOE_IN_MAC_STATS_PERIODIC_NOEVENT_WIDTH 1 #define MC_CMD_AOE_IN_MAC_STATS_PERIOD_MS_LBN 16 #define MC_CMD_AOE_IN_MAC_STATS_PERIOD_MS_WIDTH 16 /* Length of DMA data (optional) */ #define MC_CMD_AOE_IN_MAC_STATS_DMA_LEN_OFST 20 /* MC_CMD_AOE_IN_GET_PHY_MEDIA_INFO msgrequest */ #define MC_CMD_AOE_IN_GET_PHY_MEDIA_INFO_LEN 12 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* AOE port */ #define MC_CMD_AOE_IN_GET_PHY_MEDIA_INFO_PORT_OFST 4 #define MC_CMD_AOE_IN_GET_PHY_MEDIA_INFO_PAGE_OFST 8 /* MC_CMD_AOE_IN_JTAG_WRITE msgrequest */ #define MC_CMD_AOE_IN_JTAG_WRITE_LENMIN 12 #define MC_CMD_AOE_IN_JTAG_WRITE_LENMAX 252 #define MC_CMD_AOE_IN_JTAG_WRITE_LEN(num) (8+4*(num)) /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_JTAG_WRITE_DATALEN_OFST 4 #define MC_CMD_AOE_IN_JTAG_WRITE_DATA_OFST 8 #define MC_CMD_AOE_IN_JTAG_WRITE_DATA_LEN 4 #define MC_CMD_AOE_IN_JTAG_WRITE_DATA_MINNUM 1 #define MC_CMD_AOE_IN_JTAG_WRITE_DATA_MAXNUM 61 /* MC_CMD_AOE_IN_FPGA_ACCESS msgrequest */ #define MC_CMD_AOE_IN_FPGA_ACCESS_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* Enable or disable access */ #define MC_CMD_AOE_IN_FPGA_ACCESS_OP_OFST 4 /* enum: Enable access */ #define MC_CMD_AOE_IN_FPGA_ACCESS_ENABLE 0x1 /* enum: Disable access */ #define MC_CMD_AOE_IN_FPGA_ACCESS_DISABLE 0x2 /* MC_CMD_AOE_IN_SET_MTU_OFFSET msgrequest */ #define MC_CMD_AOE_IN_SET_MTU_OFFSET_LEN 12 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* AOE port - when not ALL_EXTERNAL or ALL_INTERNAL specifies port number */ #define MC_CMD_AOE_IN_SET_MTU_OFFSET_PORT_OFST 4 /* enum: Apply to all external ports */ #define MC_CMD_AOE_IN_SET_MTU_OFFSET_ALL_EXTERNAL 0x8000 /* enum: Apply to all internal ports */ #define MC_CMD_AOE_IN_SET_MTU_OFFSET_ALL_INTERNAL 0x4000 /* The MTU offset to be applied to the external ports */ #define MC_CMD_AOE_IN_SET_MTU_OFFSET_OFFSET_OFST 8 /* MC_CMD_AOE_IN_LINK_STATE msgrequest */ #define MC_CMD_AOE_IN_LINK_STATE_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_LINK_STATE_MODE_OFST 4 #define MC_CMD_AOE_IN_LINK_STATE_CONFIG_MODE_LBN 0 #define MC_CMD_AOE_IN_LINK_STATE_CONFIG_MODE_WIDTH 8 /* enum: AOE and associated external port */ #define MC_CMD_AOE_IN_LINK_STATE_SIMPLE_SEPARATE 0x0 /* enum: AOE and OR of all external ports */ #define MC_CMD_AOE_IN_LINK_STATE_SIMPLE_COMBINED 0x1 /* enum: Individual ports */ #define MC_CMD_AOE_IN_LINK_STATE_DIAGNOSTIC 0x2 /* enum: Configure link state mode on given AOE port */ #define MC_CMD_AOE_IN_LINK_STATE_CUSTOM 0x3 #define MC_CMD_AOE_IN_LINK_STATE_OPERATION_LBN 8 #define MC_CMD_AOE_IN_LINK_STATE_OPERATION_WIDTH 8 /* enum: No-op */ #define MC_CMD_AOE_IN_LINK_STATE_OP_NONE 0x0 /* enum: logical OR of all SFP ports link status */ #define MC_CMD_AOE_IN_LINK_STATE_OP_OR 0x1 /* enum: logical AND of all SFP ports link status */ #define MC_CMD_AOE_IN_LINK_STATE_OP_AND 0x2 #define MC_CMD_AOE_IN_LINK_STATE_SFP_MASK_LBN 16 #define MC_CMD_AOE_IN_LINK_STATE_SFP_MASK_WIDTH 16 /* MC_CMD_AOE_IN_SIENA_STATS msgrequest */ #define MC_CMD_AOE_IN_SIENA_STATS_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* How MAC statistics are reported */ #define MC_CMD_AOE_IN_SIENA_STATS_MODE_OFST 4 /* enum: Statistics from Siena (default) */ #define MC_CMD_AOE_IN_SIENA_STATS_STATS_SIENA 0x0 /* enum: Statistics from AOE external ports */ #define MC_CMD_AOE_IN_SIENA_STATS_STATS_AOE 0x1 /* MC_CMD_AOE_IN_ASIC_STATS msgrequest */ #define MC_CMD_AOE_IN_ASIC_STATS_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* How MAC statistics are reported */ #define MC_CMD_AOE_IN_ASIC_STATS_MODE_OFST 4 /* enum: Statistics from the ASIC (default) */ #define MC_CMD_AOE_IN_ASIC_STATS_STATS_ASIC 0x0 /* enum: Statistics from AOE external ports */ #define MC_CMD_AOE_IN_ASIC_STATS_STATS_AOE 0x1 /* MC_CMD_AOE_IN_DDR msgrequest */ #define MC_CMD_AOE_IN_DDR_LEN 12 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_DDR_BANK_OFST 4 /* Enum values, see field(s): */ /* MC_CMD_FC/MC_CMD_FC_IN_DDR/MC_CMD_FC_IN_DDR_BANK */ /* Page index of SPD data */ #define MC_CMD_AOE_IN_DDR_SPD_PAGE_ID_OFST 8 /* MC_CMD_AOE_IN_FC msgrequest */ #define MC_CMD_AOE_IN_FC_LEN 4 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* MC_CMD_AOE_IN_DDR_ECC_STATUS msgrequest */ #define MC_CMD_AOE_IN_DDR_ECC_STATUS_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_DDR_ECC_STATUS_BANK_OFST 4 /* Enum values, see field(s): */ /* MC_CMD_FC/MC_CMD_FC_IN_DDR/MC_CMD_FC_IN_DDR_BANK */ /* MC_CMD_AOE_IN_MC_SPI_MASTER msgrequest */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* Basic commands for MC SPI Master emulation. */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_OP_OFST 4 /* enum: MC SPI read */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_READ 0x0 /* enum: MC SPI write */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE 0x1 /* MC_CMD_AOE_IN_MC_SPI_MASTER_READ msgrequest */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_READ_LEN 12 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_READ_OP_OFST 4 #define MC_CMD_AOE_IN_MC_SPI_MASTER_READ_OFFSET_OFST 8 /* MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE msgrequest */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE_LEN 16 /* MC_CMD_AOE_IN_CMD_OFST 0 */ #define MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE_OP_OFST 4 #define MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE_OFFSET_OFST 8 #define MC_CMD_AOE_IN_MC_SPI_MASTER_WRITE_DATA_OFST 12 /* MC_CMD_AOE_IN_FC_BOOT msgrequest */ #define MC_CMD_AOE_IN_FC_BOOT_LEN 8 /* MC_CMD_AOE_IN_CMD_OFST 0 */ /* FC boot control flags */ #define MC_CMD_AOE_IN_FC_BOOT_CONTROL_OFST 4 #define MC_CMD_AOE_IN_FC_BOOT_CONTROL_BOOT_ENABLE_LBN 0 #define MC_CMD_AOE_IN_FC_BOOT_CONTROL_BOOT_ENABLE_WIDTH 1 /* MC_CMD_AOE_OUT_INFO msgresponse */ #define MC_CMD_AOE_OUT_INFO_LEN 44 /* JTAG IDCODE of CPLD */ #define MC_CMD_AOE_OUT_INFO_CPLD_IDCODE_OFST 0 /* Version of CPLD */ #define MC_CMD_AOE_OUT_INFO_CPLD_VERSION_OFST 4 /* JTAG IDCODE of FPGA */ #define MC_CMD_AOE_OUT_INFO_FPGA_IDCODE_OFST 8 /* JTAG USERCODE of FPGA */ #define MC_CMD_AOE_OUT_INFO_FPGA_VERSION_OFST 12 /* FPGA type - read from CPLD straps */ #define MC_CMD_AOE_OUT_INFO_FPGA_TYPE_OFST 16 +#define MC_CMD_AOE_OUT_INFO_FPGA_TYPE_A5_C2 0x1 /* enum */ +#define MC_CMD_AOE_OUT_INFO_FPGA_TYPE_A7_C2 0x2 /* enum */ /* FPGA state (debug) */ #define MC_CMD_AOE_OUT_INFO_FPGA_STATE_OFST 20 /* FPGA image - partition from which loaded */ #define MC_CMD_AOE_OUT_INFO_FPGA_IMAGE_OFST 24 /* FC state */ #define MC_CMD_AOE_OUT_INFO_FC_STATE_OFST 28 /* enum: Set if watchdog working */ #define MC_CMD_AOE_OUT_INFO_WATCHDOG 0x1 /* enum: Set if MC-FC communications working */ #define MC_CMD_AOE_OUT_INFO_COMMS 0x2 /* Random pieces of information */ #define MC_CMD_AOE_OUT_INFO_FLAGS_OFST 32 /* enum: Power to FPGA supplied by PEG connector, not PCIe bus */ -#define MC_CMD_AOE_OUT_INFO_PEG_POWER 0x1 +#define MC_CMD_AOE_OUT_INFO_PEG_POWER 0x1 /* enum: CPLD apparently good */ -#define MC_CMD_AOE_OUT_INFO_CPLD_GOOD 0x2 +#define MC_CMD_AOE_OUT_INFO_CPLD_GOOD 0x2 /* enum: FPGA working normally */ -#define MC_CMD_AOE_OUT_INFO_FPGA_GOOD 0x4 +#define MC_CMD_AOE_OUT_INFO_FPGA_GOOD 0x4 /* enum: FPGA is powered */ -#define MC_CMD_AOE_OUT_INFO_FPGA_POWER 0x8 +#define MC_CMD_AOE_OUT_INFO_FPGA_POWER 0x8 /* enum: Board has incompatible SODIMMs fitted */ -#define MC_CMD_AOE_OUT_INFO_BAD_SODIMM 0x10 +#define MC_CMD_AOE_OUT_INFO_BAD_SODIMM 0x10 /* enum: Board has ByteBlaster connected */ -#define MC_CMD_AOE_OUT_INFO_HAS_BYTEBLASTER 0x20 -/* Revision of Modena board */ +#define MC_CMD_AOE_OUT_INFO_HAS_BYTEBLASTER 0x20 +/* enum: FPGA Boot flash has an invalid header. */ +#define MC_CMD_AOE_OUT_INFO_FPGA_BAD_BOOT_HDR 0x40 +/* enum: FPGA Application flash is accessible. */ +#define MC_CMD_AOE_OUT_INFO_FPGA_APP_FLASH_GOOD 0x80 +/* Revision of Modena and Sorrento boards. Sorrento can be R1_2 or R1_3. */ #define MC_CMD_AOE_OUT_INFO_BOARD_REVISION_OFST 36 #define MC_CMD_AOE_OUT_INFO_UNKNOWN 0x0 /* enum */ #define MC_CMD_AOE_OUT_INFO_R1_0 0x10 /* enum */ #define MC_CMD_AOE_OUT_INFO_R1_1 0x11 /* enum */ #define MC_CMD_AOE_OUT_INFO_R1_2 0x12 /* enum */ +#define MC_CMD_AOE_OUT_INFO_R1_3 0x13 /* enum */ /* Result of FC booting - not valid while a ByteBlaster is connected. */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_RESULT_OFST 40 /* enum: No error */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_NO_ERROR 0x0 /* enum: Bad address set in CPLD */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_BAD_ADDRESS 0x1 /* enum: Bad header */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_BAD_MAGIC 0x2 /* enum: Bad text section details */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_BAD_TEXT 0x3 /* enum: Bad checksum */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_BAD_CHECKSUM 0x4 /* enum: Bad BSP */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_FAIL_BAD_BSP 0x5 /* enum: FC application loaded and execution attempted */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_APP_EXECUTE 0x80 /* enum: FC application Started */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_APP_STARTED 0x81 /* enum: No bootrom in FPGA */ #define MC_CMD_AOE_OUT_INFO_FC_BOOT_NO_BOOTROM 0xff /* MC_CMD_AOE_OUT_CURRENTS msgresponse */ #define MC_CMD_AOE_OUT_CURRENTS_LEN 68 /* Set of currents and voltages (mA or mV as appropriate) */ #define MC_CMD_AOE_OUT_CURRENTS_VALUES_OFST 0 #define MC_CMD_AOE_OUT_CURRENTS_VALUES_LEN 4 #define MC_CMD_AOE_OUT_CURRENTS_VALUES_NUM 17 #define MC_CMD_AOE_OUT_CURRENTS_I_2V5 0x0 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_1V8 0x1 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_GXB 0x2 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_PGM 0x3 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_XCVR 0x4 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_1V5 0x5 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_3V3 0x6 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_1V5 0x7 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_IN 0x8 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_OUT 0x9 /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_IN 0xa /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_OUT_DDR1 0xb /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_OUT_DDR1 0xc /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_OUT_DDR2 0xd /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_OUT_DDR2 0xe /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_I_OUT_DDR3 0xf /* enum */ #define MC_CMD_AOE_OUT_CURRENTS_V_OUT_DDR3 0x10 /* enum */ /* MC_CMD_AOE_OUT_TEMPERATURES msgresponse */ #define MC_CMD_AOE_OUT_TEMPERATURES_LEN 40 /* Set of temperatures */ #define MC_CMD_AOE_OUT_TEMPERATURES_VALUES_OFST 0 #define MC_CMD_AOE_OUT_TEMPERATURES_VALUES_LEN 4 #define MC_CMD_AOE_OUT_TEMPERATURES_VALUES_NUM 10 /* enum: The first set of enum values are for Modena code. */ #define MC_CMD_AOE_OUT_TEMPERATURES_MAIN_0 0x0 #define MC_CMD_AOE_OUT_TEMPERATURES_MAIN_1 0x1 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_IND_0 0x2 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_IND_1 0x3 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_VCCIO1 0x4 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_VCCIO2 0x5 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_VCCIO3 0x6 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_PSU 0x7 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_FPGA 0x8 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SIENA 0x9 /* enum */ /* enum: The second set of enum values are for Sorrento code. */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_MAIN_0 0x0 #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_MAIN_1 0x1 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_IND_0 0x2 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_IND_1 0x3 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_SODIMM_0 0x4 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_SODIMM_1 0x5 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_FPGA 0x6 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_PHY0 0x7 /* enum */ #define MC_CMD_AOE_OUT_TEMPERATURES_SORRENTO_PHY1 0x8 /* enum */ /* MC_CMD_AOE_OUT_CPLD_READ msgresponse */ #define MC_CMD_AOE_OUT_CPLD_READ_LEN 4 /* The value read from the CPLD */ #define MC_CMD_AOE_OUT_CPLD_READ_VALUE_OFST 0 /* MC_CMD_AOE_OUT_FAN_FAILURES msgresponse */ #define MC_CMD_AOE_OUT_FAN_FAILURES_LENMIN 4 #define MC_CMD_AOE_OUT_FAN_FAILURES_LENMAX 252 #define MC_CMD_AOE_OUT_FAN_FAILURES_LEN(num) (0+4*(num)) /* Failure counts for each fan */ #define MC_CMD_AOE_OUT_FAN_FAILURES_COUNT_OFST 0 #define MC_CMD_AOE_OUT_FAN_FAILURES_COUNT_LEN 4 #define MC_CMD_AOE_OUT_FAN_FAILURES_COUNT_MINNUM 1 #define MC_CMD_AOE_OUT_FAN_FAILURES_COUNT_MAXNUM 63 /* MC_CMD_AOE_OUT_CPLD_REPROGRAM msgresponse */ #define MC_CMD_AOE_OUT_CPLD_REPROGRAM_LEN 4 /* Results of status command (only) */ #define MC_CMD_AOE_OUT_CPLD_REPROGRAM_STATUS_OFST 0 /* MC_CMD_AOE_OUT_POWER_OFF msgresponse */ #define MC_CMD_AOE_OUT_POWER_OFF_LEN 0 /* MC_CMD_AOE_OUT_POWER_ON msgresponse */ #define MC_CMD_AOE_OUT_POWER_ON_LEN 0 /* MC_CMD_AOE_OUT_LOAD msgresponse */ #define MC_CMD_AOE_OUT_LOAD_LEN 0 /* MC_CMD_AOE_OUT_MAC_STATS_DMA msgresponse */ #define MC_CMD_AOE_OUT_MAC_STATS_DMA_LEN 0 /* MC_CMD_AOE_OUT_MAC_STATS_NO_DMA msgresponse: See MC_CMD_MAC_STATS_OUT_NO_DMA * for details */ #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_LEN (((MC_CMD_MAC_NSTATS*64))>>3) #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_STATISTICS_OFST 0 #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_STATISTICS_LEN 8 #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_STATISTICS_LO_OFST 0 #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_STATISTICS_HI_OFST 4 #define MC_CMD_AOE_OUT_MAC_STATS_NO_DMA_STATISTICS_NUM MC_CMD_MAC_NSTATS /* MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO msgresponse */ #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_LENMIN 5 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_LENMAX 252 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_LEN(num) (4+1*(num)) /* in bytes */ #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_DATALEN_OFST 0 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_DATA_OFST 4 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_DATA_LEN 1 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_DATA_MINNUM 1 #define MC_CMD_AOE_OUT_GET_PHY_MEDIA_INFO_DATA_MAXNUM 248 /* MC_CMD_AOE_OUT_JTAG_WRITE msgresponse */ #define MC_CMD_AOE_OUT_JTAG_WRITE_LENMIN 12 #define MC_CMD_AOE_OUT_JTAG_WRITE_LENMAX 252 #define MC_CMD_AOE_OUT_JTAG_WRITE_LEN(num) (8+4*(num)) /* Used to align the in and out data blocks so the MC can re-use the cmd */ #define MC_CMD_AOE_OUT_JTAG_WRITE_DATALEN_OFST 0 /* out bytes */ #define MC_CMD_AOE_OUT_JTAG_WRITE_PAD_OFST 4 #define MC_CMD_AOE_OUT_JTAG_WRITE_DATA_OFST 8 #define MC_CMD_AOE_OUT_JTAG_WRITE_DATA_LEN 4 #define MC_CMD_AOE_OUT_JTAG_WRITE_DATA_MINNUM 1 #define MC_CMD_AOE_OUT_JTAG_WRITE_DATA_MAXNUM 61 /* MC_CMD_AOE_OUT_FPGA_ACCESS msgresponse */ #define MC_CMD_AOE_OUT_FPGA_ACCESS_LEN 0 /* MC_CMD_AOE_OUT_DDR msgresponse */ #define MC_CMD_AOE_OUT_DDR_LENMIN 17 #define MC_CMD_AOE_OUT_DDR_LENMAX 252 #define MC_CMD_AOE_OUT_DDR_LEN(num) (16+1*(num)) /* Information on the module. */ #define MC_CMD_AOE_OUT_DDR_FLAGS_OFST 0 #define MC_CMD_AOE_OUT_DDR_PRESENT_LBN 0 #define MC_CMD_AOE_OUT_DDR_PRESENT_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_POWERED_LBN 1 #define MC_CMD_AOE_OUT_DDR_POWERED_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_OPERATIONAL_LBN 2 #define MC_CMD_AOE_OUT_DDR_OPERATIONAL_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_NOT_REACHABLE_LBN 3 #define MC_CMD_AOE_OUT_DDR_NOT_REACHABLE_WIDTH 1 /* Memory size, in MB. */ #define MC_CMD_AOE_OUT_DDR_CAPACITY_OFST 4 /* The memory type, as reported from SPD information */ #define MC_CMD_AOE_OUT_DDR_TYPE_OFST 8 /* Nominal voltage of the module (as applied) */ #define MC_CMD_AOE_OUT_DDR_VOLTAGE_OFST 12 /* SPD data read from the module */ #define MC_CMD_AOE_OUT_DDR_SPD_OFST 16 #define MC_CMD_AOE_OUT_DDR_SPD_LEN 1 #define MC_CMD_AOE_OUT_DDR_SPD_MINNUM 1 #define MC_CMD_AOE_OUT_DDR_SPD_MAXNUM 236 /* MC_CMD_AOE_OUT_SET_MTU_OFFSET msgresponse */ #define MC_CMD_AOE_OUT_SET_MTU_OFFSET_LEN 0 /* MC_CMD_AOE_OUT_LINK_STATE msgresponse */ #define MC_CMD_AOE_OUT_LINK_STATE_LEN 0 /* MC_CMD_AOE_OUT_SIENA_STATS msgresponse */ #define MC_CMD_AOE_OUT_SIENA_STATS_LEN 0 /* MC_CMD_AOE_OUT_ASIC_STATS msgresponse */ #define MC_CMD_AOE_OUT_ASIC_STATS_LEN 0 /* MC_CMD_AOE_OUT_FC msgresponse */ #define MC_CMD_AOE_OUT_FC_LEN 0 /* MC_CMD_AOE_OUT_DDR_ECC_STATUS msgresponse */ #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_LEN 8 /* Flags describing status info on the module. */ #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_FLAGS_OFST 0 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_VALID_LBN 0 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_VALID_WIDTH 1 /* DDR ECC status on the module. */ #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_STATUS_OFST 4 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_SBE_LBN 0 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_SBE_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_DBE_LBN 1 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_DBE_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_CORDROP_LBN 2 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_CORDROP_WIDTH 1 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_SBE_COUNT_LBN 8 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_SBE_COUNT_WIDTH 8 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_DBE_COUNT_LBN 16 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_DBE_COUNT_WIDTH 8 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_CORDROP_COUNT_LBN 24 #define MC_CMD_AOE_OUT_DDR_ECC_STATUS_CORDROP_COUNT_WIDTH 8 /* MC_CMD_AOE_OUT_MC_SPI_MASTER_READ msgresponse */ #define MC_CMD_AOE_OUT_MC_SPI_MASTER_READ_LEN 4 #define MC_CMD_AOE_OUT_MC_SPI_MASTER_READ_DATA_OFST 0 /* MC_CMD_AOE_OUT_MC_SPI_MASTER_WRITE msgresponse */ #define MC_CMD_AOE_OUT_MC_SPI_MASTER_WRITE_LEN 0 /* MC_CMD_AOE_OUT_MC_SPI_MASTER msgresponse */ #define MC_CMD_AOE_OUT_MC_SPI_MASTER_LEN 0 /* MC_CMD_AOE_OUT_FC_BOOT msgresponse */ #define MC_CMD_AOE_OUT_FC_BOOT_LEN 0 /***********************************/ /* MC_CMD_PTP * Perform PTP operation */ #define MC_CMD_PTP 0xb #undef MC_CMD_0xb_PRIVILEGE_CTG #define MC_CMD_0xb_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_PTP_IN msgrequest */ #define MC_CMD_PTP_IN_LEN 1 /* PTP operation code */ #define MC_CMD_PTP_IN_OP_OFST 0 #define MC_CMD_PTP_IN_OP_LEN 1 /* enum: Enable PTP packet timestamping operation. */ #define MC_CMD_PTP_OP_ENABLE 0x1 /* enum: Disable PTP packet timestamping operation. */ #define MC_CMD_PTP_OP_DISABLE 0x2 /* enum: Send a PTP packet. */ #define MC_CMD_PTP_OP_TRANSMIT 0x3 /* enum: Read the current NIC time. */ #define MC_CMD_PTP_OP_READ_NIC_TIME 0x4 /* enum: Get the current PTP status. */ #define MC_CMD_PTP_OP_STATUS 0x5 /* enum: Adjust the PTP NIC's time. */ #define MC_CMD_PTP_OP_ADJUST 0x6 /* enum: Synchronize host and NIC time. */ #define MC_CMD_PTP_OP_SYNCHRONIZE 0x7 /* enum: Basic manufacturing tests. */ #define MC_CMD_PTP_OP_MANFTEST_BASIC 0x8 /* enum: Packet based manufacturing tests. */ #define MC_CMD_PTP_OP_MANFTEST_PACKET 0x9 /* enum: Reset some of the PTP related statistics */ #define MC_CMD_PTP_OP_RESET_STATS 0xa /* enum: Debug operations to MC. */ #define MC_CMD_PTP_OP_DEBUG 0xb /* enum: Read an FPGA register */ #define MC_CMD_PTP_OP_FPGAREAD 0xc /* enum: Write an FPGA register */ #define MC_CMD_PTP_OP_FPGAWRITE 0xd /* enum: Apply an offset to the NIC clock */ #define MC_CMD_PTP_OP_CLOCK_OFFSET_ADJUST 0xe /* enum: Change Apply an offset to the NIC clock */ #define MC_CMD_PTP_OP_CLOCK_FREQ_ADJUST 0xf /* enum: Set the MC packet filter VLAN tags for received PTP packets */ #define MC_CMD_PTP_OP_RX_SET_VLAN_FILTER 0x10 /* enum: Set the MC packet filter UUID for received PTP packets */ #define MC_CMD_PTP_OP_RX_SET_UUID_FILTER 0x11 /* enum: Set the MC packet filter Domain for received PTP packets */ #define MC_CMD_PTP_OP_RX_SET_DOMAIN_FILTER 0x12 /* enum: Set the clock source */ #define MC_CMD_PTP_OP_SET_CLK_SRC 0x13 /* enum: Reset value of Timer Reg. */ #define MC_CMD_PTP_OP_RST_CLK 0x14 /* enum: Enable the forwarding of PPS events to the host */ #define MC_CMD_PTP_OP_PPS_ENABLE 0x15 /* enum: Get the time format used by this NIC for PTP operations */ #define MC_CMD_PTP_OP_GET_TIME_FORMAT 0x16 /* enum: Get the clock attributes. NOTE- extended version of * MC_CMD_PTP_OP_GET_TIME_FORMAT */ #define MC_CMD_PTP_OP_GET_ATTRIBUTES 0x16 /* enum: Get corrections that should be applied to the various different * timestamps */ #define MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS 0x17 /* enum: Subscribe to receive periodic time events indicating the current NIC * time */ #define MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE 0x18 /* enum: Unsubscribe to stop receiving time events */ #define MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE 0x19 /* enum: PPS based manfacturing tests. Requires PPS output to be looped to PPS * input on the same NIC. */ #define MC_CMD_PTP_OP_MANFTEST_PPS 0x1a /* enum: Set the PTP sync status. Status is used by firmware to report to event * subscribers. */ #define MC_CMD_PTP_OP_SET_SYNC_STATUS 0x1b /* enum: Above this for future use. */ #define MC_CMD_PTP_OP_MAX 0x1c /* MC_CMD_PTP_IN_ENABLE msgrequest */ #define MC_CMD_PTP_IN_ENABLE_LEN 16 #define MC_CMD_PTP_IN_CMD_OFST 0 #define MC_CMD_PTP_IN_PERIPH_ID_OFST 4 /* Event queue for PTP events */ #define MC_CMD_PTP_IN_ENABLE_QUEUE_OFST 8 /* PTP timestamping mode */ #define MC_CMD_PTP_IN_ENABLE_MODE_OFST 12 /* enum: PTP, version 1 */ #define MC_CMD_PTP_MODE_V1 0x0 /* enum: PTP, version 1, with VLAN headers - deprecated */ #define MC_CMD_PTP_MODE_V1_VLAN 0x1 /* enum: PTP, version 2 */ #define MC_CMD_PTP_MODE_V2 0x2 /* enum: PTP, version 2, with VLAN headers - deprecated */ #define MC_CMD_PTP_MODE_V2_VLAN 0x3 /* enum: PTP, version 2, with improved UUID filtering */ #define MC_CMD_PTP_MODE_V2_ENHANCED 0x4 /* enum: FCoE (seconds and microseconds) */ #define MC_CMD_PTP_MODE_FCOE 0x5 /* MC_CMD_PTP_IN_DISABLE msgrequest */ #define MC_CMD_PTP_IN_DISABLE_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_TRANSMIT msgrequest */ #define MC_CMD_PTP_IN_TRANSMIT_LENMIN 13 #define MC_CMD_PTP_IN_TRANSMIT_LENMAX 252 #define MC_CMD_PTP_IN_TRANSMIT_LEN(num) (12+1*(num)) /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Transmit packet length */ #define MC_CMD_PTP_IN_TRANSMIT_LENGTH_OFST 8 /* Transmit packet data */ #define MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST 12 #define MC_CMD_PTP_IN_TRANSMIT_PACKET_LEN 1 #define MC_CMD_PTP_IN_TRANSMIT_PACKET_MINNUM 1 #define MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM 240 /* MC_CMD_PTP_IN_READ_NIC_TIME msgrequest */ #define MC_CMD_PTP_IN_READ_NIC_TIME_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_STATUS msgrequest */ #define MC_CMD_PTP_IN_STATUS_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_ADJUST msgrequest */ #define MC_CMD_PTP_IN_ADJUST_LEN 24 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Frequency adjustment 40 bit fixed point ns */ #define MC_CMD_PTP_IN_ADJUST_FREQ_OFST 8 #define MC_CMD_PTP_IN_ADJUST_FREQ_LEN 8 #define MC_CMD_PTP_IN_ADJUST_FREQ_LO_OFST 8 #define MC_CMD_PTP_IN_ADJUST_FREQ_HI_OFST 12 /* enum: Number of fractional bits in frequency adjustment */ #define MC_CMD_PTP_IN_ADJUST_BITS 0x28 /* Time adjustment in seconds */ #define MC_CMD_PTP_IN_ADJUST_SECONDS_OFST 16 /* Time adjustment major value */ #define MC_CMD_PTP_IN_ADJUST_MAJOR_OFST 16 /* Time adjustment in nanoseconds */ #define MC_CMD_PTP_IN_ADJUST_NANOSECONDS_OFST 20 /* Time adjustment minor value */ #define MC_CMD_PTP_IN_ADJUST_MINOR_OFST 20 /* MC_CMD_PTP_IN_SYNCHRONIZE msgrequest */ #define MC_CMD_PTP_IN_SYNCHRONIZE_LEN 20 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Number of time readings to capture */ #define MC_CMD_PTP_IN_SYNCHRONIZE_NUMTIMESETS_OFST 8 /* Host address in which to write "synchronization started" indication (64 * bits) */ #define MC_CMD_PTP_IN_SYNCHRONIZE_START_ADDR_OFST 12 #define MC_CMD_PTP_IN_SYNCHRONIZE_START_ADDR_LEN 8 #define MC_CMD_PTP_IN_SYNCHRONIZE_START_ADDR_LO_OFST 12 #define MC_CMD_PTP_IN_SYNCHRONIZE_START_ADDR_HI_OFST 16 /* MC_CMD_PTP_IN_MANFTEST_BASIC msgrequest */ #define MC_CMD_PTP_IN_MANFTEST_BASIC_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_MANFTEST_PACKET msgrequest */ #define MC_CMD_PTP_IN_MANFTEST_PACKET_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Enable or disable packet testing */ #define MC_CMD_PTP_IN_MANFTEST_PACKET_TEST_ENABLE_OFST 8 /* MC_CMD_PTP_IN_RESET_STATS msgrequest */ #define MC_CMD_PTP_IN_RESET_STATS_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* Reset PTP statistics */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_DEBUG msgrequest */ #define MC_CMD_PTP_IN_DEBUG_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Debug operations */ #define MC_CMD_PTP_IN_DEBUG_DEBUG_PARAM_OFST 8 /* MC_CMD_PTP_IN_FPGAREAD msgrequest */ #define MC_CMD_PTP_IN_FPGAREAD_LEN 16 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ #define MC_CMD_PTP_IN_FPGAREAD_ADDR_OFST 8 #define MC_CMD_PTP_IN_FPGAREAD_NUMBYTES_OFST 12 /* MC_CMD_PTP_IN_FPGAWRITE msgrequest */ #define MC_CMD_PTP_IN_FPGAWRITE_LENMIN 13 #define MC_CMD_PTP_IN_FPGAWRITE_LENMAX 252 #define MC_CMD_PTP_IN_FPGAWRITE_LEN(num) (12+1*(num)) /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ #define MC_CMD_PTP_IN_FPGAWRITE_ADDR_OFST 8 #define MC_CMD_PTP_IN_FPGAWRITE_BUFFER_OFST 12 #define MC_CMD_PTP_IN_FPGAWRITE_BUFFER_LEN 1 #define MC_CMD_PTP_IN_FPGAWRITE_BUFFER_MINNUM 1 #define MC_CMD_PTP_IN_FPGAWRITE_BUFFER_MAXNUM 240 /* MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST msgrequest */ #define MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST_LEN 16 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Time adjustment in seconds */ #define MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST_SECONDS_OFST 8 /* Time adjustment major value */ #define MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST_MAJOR_OFST 8 /* Time adjustment in nanoseconds */ #define MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST_NANOSECONDS_OFST 12 /* Time adjustment minor value */ #define MC_CMD_PTP_IN_CLOCK_OFFSET_ADJUST_MINOR_OFST 12 /* MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST msgrequest */ #define MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST_LEN 16 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Frequency adjustment 40 bit fixed point ns */ #define MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST_FREQ_OFST 8 #define MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST_FREQ_LEN 8 #define MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST_FREQ_LO_OFST 8 #define MC_CMD_PTP_IN_CLOCK_FREQ_ADJUST_FREQ_HI_OFST 12 /* enum: Number of fractional bits in frequency adjustment */ /* MC_CMD_PTP_IN_ADJUST_BITS 0x28 */ /* MC_CMD_PTP_IN_RX_SET_VLAN_FILTER msgrequest */ #define MC_CMD_PTP_IN_RX_SET_VLAN_FILTER_LEN 24 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Number of VLAN tags, 0 if not VLAN */ #define MC_CMD_PTP_IN_RX_SET_VLAN_FILTER_NUM_VLAN_TAGS_OFST 8 /* Set of VLAN tags to filter against */ #define MC_CMD_PTP_IN_RX_SET_VLAN_FILTER_VLAN_TAG_OFST 12 #define MC_CMD_PTP_IN_RX_SET_VLAN_FILTER_VLAN_TAG_LEN 4 #define MC_CMD_PTP_IN_RX_SET_VLAN_FILTER_VLAN_TAG_NUM 3 /* MC_CMD_PTP_IN_RX_SET_UUID_FILTER msgrequest */ #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_LEN 20 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* 1 to enable UUID filtering, 0 to disable */ #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_ENABLE_OFST 8 /* UUID to filter against */ #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_UUID_OFST 12 #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_UUID_LEN 8 #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_UUID_LO_OFST 12 #define MC_CMD_PTP_IN_RX_SET_UUID_FILTER_UUID_HI_OFST 16 /* MC_CMD_PTP_IN_RX_SET_DOMAIN_FILTER msgrequest */ #define MC_CMD_PTP_IN_RX_SET_DOMAIN_FILTER_LEN 16 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* 1 to enable Domain filtering, 0 to disable */ #define MC_CMD_PTP_IN_RX_SET_DOMAIN_FILTER_ENABLE_OFST 8 /* Domain number to filter against */ #define MC_CMD_PTP_IN_RX_SET_DOMAIN_FILTER_DOMAIN_OFST 12 /* MC_CMD_PTP_IN_SET_CLK_SRC msgrequest */ #define MC_CMD_PTP_IN_SET_CLK_SRC_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Set the clock source. */ #define MC_CMD_PTP_IN_SET_CLK_SRC_CLK_OFST 8 /* enum: Internal. */ #define MC_CMD_PTP_CLK_SRC_INTERNAL 0x0 /* enum: External. */ #define MC_CMD_PTP_CLK_SRC_EXTERNAL 0x1 /* MC_CMD_PTP_IN_RST_CLK msgrequest */ #define MC_CMD_PTP_IN_RST_CLK_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* Reset value of Timer Reg. */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_PPS_ENABLE msgrequest */ #define MC_CMD_PTP_IN_PPS_ENABLE_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* Enable or disable */ #define MC_CMD_PTP_IN_PPS_ENABLE_OP_OFST 4 /* enum: Enable */ #define MC_CMD_PTP_ENABLE_PPS 0x0 /* enum: Disable */ #define MC_CMD_PTP_DISABLE_PPS 0x1 /* Queue id to send events back */ #define MC_CMD_PTP_IN_PPS_ENABLE_QUEUE_ID_OFST 8 /* MC_CMD_PTP_IN_GET_TIME_FORMAT msgrequest */ #define MC_CMD_PTP_IN_GET_TIME_FORMAT_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_GET_ATTRIBUTES msgrequest */ #define MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS msgrequest */ #define MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN 8 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE msgrequest */ #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Original field containing queue ID. Now extended to include flags. */ #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE_OFST 8 #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE_ID_LBN 0 #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE_ID_WIDTH 16 #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_REPORT_SYNC_STATUS_LBN 31 #define MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_REPORT_SYNC_STATUS_WIDTH 1 /* MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE msgrequest */ #define MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN 16 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* Unsubscribe options */ #define MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL_OFST 8 /* enum: Unsubscribe a single queue */ #define MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE 0x0 /* enum: Unsubscribe all queues */ #define MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_ALL 0x1 /* Event queue ID */ #define MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE_OFST 12 /* MC_CMD_PTP_IN_MANFTEST_PPS msgrequest */ #define MC_CMD_PTP_IN_MANFTEST_PPS_LEN 12 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* 1 to enable PPS test mode, 0 to disable and return result. */ #define MC_CMD_PTP_IN_MANFTEST_PPS_TEST_ENABLE_OFST 8 /* MC_CMD_PTP_IN_SET_SYNC_STATUS msgrequest */ #define MC_CMD_PTP_IN_SET_SYNC_STATUS_LEN 24 /* MC_CMD_PTP_IN_CMD_OFST 0 */ /* MC_CMD_PTP_IN_PERIPH_ID_OFST 4 */ /* NIC - Host System Clock Synchronization status */ #define MC_CMD_PTP_IN_SET_SYNC_STATUS_STATUS_OFST 8 /* enum: Host System clock and NIC clock are not in sync */ #define MC_CMD_PTP_IN_SET_SYNC_STATUS_NOT_IN_SYNC 0x0 /* enum: Host System clock and NIC clock are synchronized */ #define MC_CMD_PTP_IN_SET_SYNC_STATUS_IN_SYNC 0x1 /* If synchronized, number of seconds until clocks should be considered to be * no longer in sync. */ #define MC_CMD_PTP_IN_SET_SYNC_STATUS_TIMEOUT_OFST 12 #define MC_CMD_PTP_IN_SET_SYNC_STATUS_RESERVED0_OFST 16 #define MC_CMD_PTP_IN_SET_SYNC_STATUS_RESERVED1_OFST 20 /* MC_CMD_PTP_OUT msgresponse */ #define MC_CMD_PTP_OUT_LEN 0 /* MC_CMD_PTP_OUT_TRANSMIT msgresponse */ #define MC_CMD_PTP_OUT_TRANSMIT_LEN 8 /* Value of seconds timestamp */ #define MC_CMD_PTP_OUT_TRANSMIT_SECONDS_OFST 0 /* Timestamp major value */ #define MC_CMD_PTP_OUT_TRANSMIT_MAJOR_OFST 0 /* Value of nanoseconds timestamp */ #define MC_CMD_PTP_OUT_TRANSMIT_NANOSECONDS_OFST 4 /* Timestamp minor value */ #define MC_CMD_PTP_OUT_TRANSMIT_MINOR_OFST 4 /* MC_CMD_PTP_OUT_TIME_EVENT_SUBSCRIBE msgresponse */ #define MC_CMD_PTP_OUT_TIME_EVENT_SUBSCRIBE_LEN 0 /* MC_CMD_PTP_OUT_TIME_EVENT_UNSUBSCRIBE msgresponse */ #define MC_CMD_PTP_OUT_TIME_EVENT_UNSUBSCRIBE_LEN 0 /* MC_CMD_PTP_OUT_READ_NIC_TIME msgresponse */ #define MC_CMD_PTP_OUT_READ_NIC_TIME_LEN 8 /* Value of seconds timestamp */ #define MC_CMD_PTP_OUT_READ_NIC_TIME_SECONDS_OFST 0 /* Timestamp major value */ #define MC_CMD_PTP_OUT_READ_NIC_TIME_MAJOR_OFST 0 /* Value of nanoseconds timestamp */ #define MC_CMD_PTP_OUT_READ_NIC_TIME_NANOSECONDS_OFST 4 /* Timestamp minor value */ #define MC_CMD_PTP_OUT_READ_NIC_TIME_MINOR_OFST 4 /* MC_CMD_PTP_OUT_STATUS msgresponse */ #define MC_CMD_PTP_OUT_STATUS_LEN 64 /* Frequency of NIC's hardware clock */ #define MC_CMD_PTP_OUT_STATUS_CLOCK_FREQ_OFST 0 /* Number of packets transmitted and timestamped */ #define MC_CMD_PTP_OUT_STATUS_STATS_TX_OFST 4 /* Number of packets received and timestamped */ #define MC_CMD_PTP_OUT_STATUS_STATS_RX_OFST 8 /* Number of packets timestamped by the FPGA */ #define MC_CMD_PTP_OUT_STATUS_STATS_TS_OFST 12 /* Number of packets filter matched */ #define MC_CMD_PTP_OUT_STATUS_STATS_FM_OFST 16 /* Number of packets not filter matched */ #define MC_CMD_PTP_OUT_STATUS_STATS_NFM_OFST 20 /* Number of PPS overflows (noise on input?) */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_OFLOW_OFST 24 /* Number of PPS bad periods */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_BAD_OFST 28 /* Minimum period of PPS pulse in nanoseconds */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_PER_MIN_OFST 32 /* Maximum period of PPS pulse in nanoseconds */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_PER_MAX_OFST 36 /* Last period of PPS pulse in nanoseconds */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_PER_LAST_OFST 40 /* Mean period of PPS pulse in nanoseconds */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_PER_MEAN_OFST 44 /* Minimum offset of PPS pulse in nanoseconds (signed) */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_OFF_MIN_OFST 48 /* Maximum offset of PPS pulse in nanoseconds (signed) */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_OFF_MAX_OFST 52 /* Last offset of PPS pulse in nanoseconds (signed) */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_OFF_LAST_OFST 56 /* Mean offset of PPS pulse in nanoseconds (signed) */ #define MC_CMD_PTP_OUT_STATUS_STATS_PPS_OFF_MEAN_OFST 60 /* MC_CMD_PTP_OUT_SYNCHRONIZE msgresponse */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_LENMIN 20 #define MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX 240 #define MC_CMD_PTP_OUT_SYNCHRONIZE_LEN(num) (0+20*(num)) /* A set of host and NIC times */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_OFST 0 #define MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN 20 #define MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MINNUM 1 #define MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM 12 /* Host time immediately before NIC's hardware clock read */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_HOSTSTART_OFST 0 /* Value of seconds timestamp */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_SECONDS_OFST 4 /* Timestamp major value */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_MAJOR_OFST 4 /* Value of nanoseconds timestamp */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_NANOSECONDS_OFST 8 /* Timestamp minor value */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_MINOR_OFST 8 /* Host time immediately after NIC's hardware clock read */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_HOSTEND_OFST 12 /* Number of nanoseconds waited after reading NIC's hardware clock */ #define MC_CMD_PTP_OUT_SYNCHRONIZE_WAITNS_OFST 16 /* MC_CMD_PTP_OUT_MANFTEST_BASIC msgresponse */ #define MC_CMD_PTP_OUT_MANFTEST_BASIC_LEN 8 /* Results of testing */ #define MC_CMD_PTP_OUT_MANFTEST_BASIC_TEST_RESULT_OFST 0 /* enum: Successful test */ #define MC_CMD_PTP_MANF_SUCCESS 0x0 /* enum: FPGA load failed */ #define MC_CMD_PTP_MANF_FPGA_LOAD 0x1 /* enum: FPGA version invalid */ #define MC_CMD_PTP_MANF_FPGA_VERSION 0x2 /* enum: FPGA registers incorrect */ #define MC_CMD_PTP_MANF_FPGA_REGISTERS 0x3 /* enum: Oscillator possibly not working? */ #define MC_CMD_PTP_MANF_OSCILLATOR 0x4 /* enum: Timestamps not increasing */ #define MC_CMD_PTP_MANF_TIMESTAMPS 0x5 /* enum: Mismatched packet count */ #define MC_CMD_PTP_MANF_PACKET_COUNT 0x6 /* enum: Mismatched packet count (Siena filter and FPGA) */ #define MC_CMD_PTP_MANF_FILTER_COUNT 0x7 /* enum: Not enough packets to perform timestamp check */ #define MC_CMD_PTP_MANF_PACKET_ENOUGH 0x8 /* enum: Timestamp trigger GPIO not working */ #define MC_CMD_PTP_MANF_GPIO_TRIGGER 0x9 /* enum: Insufficient PPS events to perform checks */ #define MC_CMD_PTP_MANF_PPS_ENOUGH 0xa /* enum: PPS time event period not sufficiently close to 1s. */ #define MC_CMD_PTP_MANF_PPS_PERIOD 0xb /* enum: PPS time event nS reading not sufficiently close to zero. */ #define MC_CMD_PTP_MANF_PPS_NS 0xc /* enum: PTP peripheral registers incorrect */ #define MC_CMD_PTP_MANF_REGISTERS 0xd /* enum: Failed to read time from PTP peripheral */ #define MC_CMD_PTP_MANF_CLOCK_READ 0xe /* Presence of external oscillator */ #define MC_CMD_PTP_OUT_MANFTEST_BASIC_TEST_EXTOSC_OFST 4 /* MC_CMD_PTP_OUT_MANFTEST_PACKET msgresponse */ #define MC_CMD_PTP_OUT_MANFTEST_PACKET_LEN 12 /* Results of testing */ #define MC_CMD_PTP_OUT_MANFTEST_PACKET_TEST_RESULT_OFST 0 /* Number of packets received by FPGA */ #define MC_CMD_PTP_OUT_MANFTEST_PACKET_TEST_FPGACOUNT_OFST 4 /* Number of packets received by Siena filters */ #define MC_CMD_PTP_OUT_MANFTEST_PACKET_TEST_FILTERCOUNT_OFST 8 /* MC_CMD_PTP_OUT_FPGAREAD msgresponse */ #define MC_CMD_PTP_OUT_FPGAREAD_LENMIN 1 #define MC_CMD_PTP_OUT_FPGAREAD_LENMAX 252 #define MC_CMD_PTP_OUT_FPGAREAD_LEN(num) (0+1*(num)) #define MC_CMD_PTP_OUT_FPGAREAD_BUFFER_OFST 0 #define MC_CMD_PTP_OUT_FPGAREAD_BUFFER_LEN 1 #define MC_CMD_PTP_OUT_FPGAREAD_BUFFER_MINNUM 1 #define MC_CMD_PTP_OUT_FPGAREAD_BUFFER_MAXNUM 252 /* MC_CMD_PTP_OUT_GET_TIME_FORMAT msgresponse */ #define MC_CMD_PTP_OUT_GET_TIME_FORMAT_LEN 4 /* Time format required/used by for this NIC. Applies to all PTP MCDI * operations that pass times between the host and firmware. If this operation * is not supported (older firmware) a format of seconds and nanoseconds should * be assumed. */ #define MC_CMD_PTP_OUT_GET_TIME_FORMAT_FORMAT_OFST 0 /* enum: Times are in seconds and nanoseconds */ #define MC_CMD_PTP_OUT_GET_TIME_FORMAT_SECONDS_NANOSECONDS 0x0 /* enum: Major register has units of 16 second per tick, minor 8 ns per tick */ #define MC_CMD_PTP_OUT_GET_TIME_FORMAT_16SECONDS_8NANOSECONDS 0x1 /* enum: Major register has units of seconds, minor 2^-27s per tick */ #define MC_CMD_PTP_OUT_GET_TIME_FORMAT_SECONDS_27FRACTION 0x2 /* MC_CMD_PTP_OUT_GET_ATTRIBUTES msgresponse */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN 24 /* Time format required/used by for this NIC. Applies to all PTP MCDI * operations that pass times between the host and firmware. If this operation * is not supported (older firmware) a format of seconds and nanoseconds should * be assumed. */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT_OFST 0 /* enum: Times are in seconds and nanoseconds */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS 0x0 /* enum: Major register has units of 16 second per tick, minor 8 ns per tick */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_16SECONDS_8NANOSECONDS 0x1 /* enum: Major register has units of seconds, minor 2^-27s per tick */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION 0x2 /* Minimum acceptable value for a corrected synchronization timeset. When * comparing host and NIC clock times, the MC returns a set of samples that * contain the host start and end time, the MC time when the host start was * detected and the time the MC waited between reading the time and detecting * the host end. The corrected sync window is the difference between the host * end and start times minus the time that the MC waited for host end. */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN_OFST 4 /* Various PTP capabilities */ #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST 8 #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_REPORT_SYNC_STATUS_LBN 0 #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_REPORT_SYNC_STATUS_WIDTH 1 #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_RESERVED0_OFST 12 #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_RESERVED1_OFST 16 #define MC_CMD_PTP_OUT_GET_ATTRIBUTES_RESERVED2_OFST 20 /* MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS msgresponse */ #define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN 16 -/* Uncorrected error on transmit timestamps in NIC clock format */ +/* Uncorrected error on PTP transmit timestamps in NIC clock format */ #define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT_OFST 0 -/* Uncorrected error on receive timestamps in NIC clock format */ +/* Uncorrected error on PTP receive timestamps in NIC clock format */ #define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE_OFST 4 /* Uncorrected error on PPS output in NIC clock format */ #define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT_OFST 8 /* Uncorrected error on PPS input in NIC clock format */ #define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN_OFST 12 +/* MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2 msgresponse */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN 24 +/* Uncorrected error on PTP transmit timestamps in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_PTP_TX_OFST 0 +/* Uncorrected error on PTP receive timestamps in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_PTP_RX_OFST 4 +/* Uncorrected error on PPS output in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_PPS_OUT_OFST 8 +/* Uncorrected error on PPS input in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_PPS_IN_OFST 12 +/* Uncorrected error on non-PTP transmit timestamps in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX_OFST 16 +/* Uncorrected error on non-PTP receive timestamps in NIC clock format */ +#define MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX_OFST 20 + /* MC_CMD_PTP_OUT_MANFTEST_PPS msgresponse */ #define MC_CMD_PTP_OUT_MANFTEST_PPS_LEN 4 /* Results of testing */ #define MC_CMD_PTP_OUT_MANFTEST_PPS_TEST_RESULT_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_PTP_OUT_MANFTEST_BASIC/TEST_RESULT */ /* MC_CMD_PTP_OUT_SET_SYNC_STATUS msgresponse */ #define MC_CMD_PTP_OUT_SET_SYNC_STATUS_LEN 0 /***********************************/ /* MC_CMD_CSR_READ32 * Read 32bit words from the indirect memory map. */ #define MC_CMD_CSR_READ32 0xc #undef MC_CMD_0xc_PRIVILEGE_CTG #define MC_CMD_0xc_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_CSR_READ32_IN msgrequest */ #define MC_CMD_CSR_READ32_IN_LEN 12 /* Address */ #define MC_CMD_CSR_READ32_IN_ADDR_OFST 0 #define MC_CMD_CSR_READ32_IN_STEP_OFST 4 #define MC_CMD_CSR_READ32_IN_NUMWORDS_OFST 8 /* MC_CMD_CSR_READ32_OUT msgresponse */ #define MC_CMD_CSR_READ32_OUT_LENMIN 4 #define MC_CMD_CSR_READ32_OUT_LENMAX 252 #define MC_CMD_CSR_READ32_OUT_LEN(num) (0+4*(num)) /* The last dword is the status, not a value read */ #define MC_CMD_CSR_READ32_OUT_BUFFER_OFST 0 #define MC_CMD_CSR_READ32_OUT_BUFFER_LEN 4 #define MC_CMD_CSR_READ32_OUT_BUFFER_MINNUM 1 #define MC_CMD_CSR_READ32_OUT_BUFFER_MAXNUM 63 /***********************************/ /* MC_CMD_CSR_WRITE32 * Write 32bit dwords to the indirect memory map. */ #define MC_CMD_CSR_WRITE32 0xd #undef MC_CMD_0xd_PRIVILEGE_CTG #define MC_CMD_0xd_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_CSR_WRITE32_IN msgrequest */ #define MC_CMD_CSR_WRITE32_IN_LENMIN 12 #define MC_CMD_CSR_WRITE32_IN_LENMAX 252 #define MC_CMD_CSR_WRITE32_IN_LEN(num) (8+4*(num)) /* Address */ #define MC_CMD_CSR_WRITE32_IN_ADDR_OFST 0 #define MC_CMD_CSR_WRITE32_IN_STEP_OFST 4 #define MC_CMD_CSR_WRITE32_IN_BUFFER_OFST 8 #define MC_CMD_CSR_WRITE32_IN_BUFFER_LEN 4 #define MC_CMD_CSR_WRITE32_IN_BUFFER_MINNUM 1 #define MC_CMD_CSR_WRITE32_IN_BUFFER_MAXNUM 61 /* MC_CMD_CSR_WRITE32_OUT msgresponse */ #define MC_CMD_CSR_WRITE32_OUT_LEN 4 #define MC_CMD_CSR_WRITE32_OUT_STATUS_OFST 0 /***********************************/ /* MC_CMD_HP * These commands are used for HP related features. They are grouped under one * MCDI command to avoid creating too many MCDI commands. */ #define MC_CMD_HP 0x54 #undef MC_CMD_0x54_PRIVILEGE_CTG #define MC_CMD_0x54_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_HP_IN msgrequest */ #define MC_CMD_HP_IN_LEN 16 /* HP OCSD sub-command. When address is not NULL, request activation of OCSD at * the specified address with the specified interval.When address is NULL, * INTERVAL is interpreted as a command: 0: stop OCSD / 1: Report OCSD current * state / 2: (debug) Show temperature reported by one of the supported * sensors. */ #define MC_CMD_HP_IN_SUBCMD_OFST 0 /* enum: OCSD (Option Card Sensor Data) sub-command. */ #define MC_CMD_HP_IN_OCSD_SUBCMD 0x0 /* enum: Last known valid HP sub-command. */ #define MC_CMD_HP_IN_LAST_SUBCMD 0x0 /* The address to the array of sensor fields. (Or NULL to use a sub-command.) */ #define MC_CMD_HP_IN_OCSD_ADDR_OFST 4 #define MC_CMD_HP_IN_OCSD_ADDR_LEN 8 #define MC_CMD_HP_IN_OCSD_ADDR_LO_OFST 4 #define MC_CMD_HP_IN_OCSD_ADDR_HI_OFST 8 /* The requested update interval, in seconds. (Or the sub-command if ADDR is * NULL.) */ #define MC_CMD_HP_IN_OCSD_INTERVAL_OFST 12 /* MC_CMD_HP_OUT msgresponse */ #define MC_CMD_HP_OUT_LEN 4 #define MC_CMD_HP_OUT_OCSD_STATUS_OFST 0 /* enum: OCSD stopped for this card. */ #define MC_CMD_HP_OUT_OCSD_STOPPED 0x1 /* enum: OCSD was successfully started with the address provided. */ #define MC_CMD_HP_OUT_OCSD_STARTED 0x2 /* enum: OCSD was already started for this card. */ #define MC_CMD_HP_OUT_OCSD_ALREADY_STARTED 0x3 /***********************************/ /* MC_CMD_STACKINFO * Get stack information. */ #define MC_CMD_STACKINFO 0xf #undef MC_CMD_0xf_PRIVILEGE_CTG #define MC_CMD_0xf_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_STACKINFO_IN msgrequest */ #define MC_CMD_STACKINFO_IN_LEN 0 /* MC_CMD_STACKINFO_OUT msgresponse */ #define MC_CMD_STACKINFO_OUT_LENMIN 12 #define MC_CMD_STACKINFO_OUT_LENMAX 252 #define MC_CMD_STACKINFO_OUT_LEN(num) (0+12*(num)) /* (thread ptr, stack size, free space) for each thread in system */ #define MC_CMD_STACKINFO_OUT_THREAD_INFO_OFST 0 #define MC_CMD_STACKINFO_OUT_THREAD_INFO_LEN 12 #define MC_CMD_STACKINFO_OUT_THREAD_INFO_MINNUM 1 #define MC_CMD_STACKINFO_OUT_THREAD_INFO_MAXNUM 21 /***********************************/ /* MC_CMD_MDIO_READ * MDIO register read. */ #define MC_CMD_MDIO_READ 0x10 #undef MC_CMD_0x10_PRIVILEGE_CTG #define MC_CMD_0x10_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_MDIO_READ_IN msgrequest */ #define MC_CMD_MDIO_READ_IN_LEN 16 /* Bus number; there are two MDIO buses: one for the internal PHY, and one for * external devices. */ #define MC_CMD_MDIO_READ_IN_BUS_OFST 0 /* enum: Internal. */ #define MC_CMD_MDIO_BUS_INTERNAL 0x0 /* enum: External. */ #define MC_CMD_MDIO_BUS_EXTERNAL 0x1 /* Port address */ #define MC_CMD_MDIO_READ_IN_PRTAD_OFST 4 /* Device Address or clause 22. */ #define MC_CMD_MDIO_READ_IN_DEVAD_OFST 8 /* enum: By default all the MCDI MDIO operations perform clause45 mode. If you * want to use clause22 then set DEVAD = MC_CMD_MDIO_CLAUSE22. */ #define MC_CMD_MDIO_CLAUSE22 0x20 /* Address */ #define MC_CMD_MDIO_READ_IN_ADDR_OFST 12 /* MC_CMD_MDIO_READ_OUT msgresponse */ #define MC_CMD_MDIO_READ_OUT_LEN 8 /* Value */ #define MC_CMD_MDIO_READ_OUT_VALUE_OFST 0 /* Status the MDIO commands return the raw status bits from the MDIO block. A * "good" transaction should have the DONE bit set and all other bits clear. */ #define MC_CMD_MDIO_READ_OUT_STATUS_OFST 4 /* enum: Good. */ #define MC_CMD_MDIO_STATUS_GOOD 0x8 /***********************************/ /* MC_CMD_MDIO_WRITE * MDIO register write. */ #define MC_CMD_MDIO_WRITE 0x11 #undef MC_CMD_0x11_PRIVILEGE_CTG #define MC_CMD_0x11_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_MDIO_WRITE_IN msgrequest */ #define MC_CMD_MDIO_WRITE_IN_LEN 20 /* Bus number; there are two MDIO buses: one for the internal PHY, and one for * external devices. */ #define MC_CMD_MDIO_WRITE_IN_BUS_OFST 0 /* enum: Internal. */ /* MC_CMD_MDIO_BUS_INTERNAL 0x0 */ /* enum: External. */ /* MC_CMD_MDIO_BUS_EXTERNAL 0x1 */ /* Port address */ #define MC_CMD_MDIO_WRITE_IN_PRTAD_OFST 4 /* Device Address or clause 22. */ #define MC_CMD_MDIO_WRITE_IN_DEVAD_OFST 8 /* enum: By default all the MCDI MDIO operations perform clause45 mode. If you * want to use clause22 then set DEVAD = MC_CMD_MDIO_CLAUSE22. */ /* MC_CMD_MDIO_CLAUSE22 0x20 */ /* Address */ #define MC_CMD_MDIO_WRITE_IN_ADDR_OFST 12 /* Value */ #define MC_CMD_MDIO_WRITE_IN_VALUE_OFST 16 /* MC_CMD_MDIO_WRITE_OUT msgresponse */ #define MC_CMD_MDIO_WRITE_OUT_LEN 4 /* Status; the MDIO commands return the raw status bits from the MDIO block. A * "good" transaction should have the DONE bit set and all other bits clear. */ #define MC_CMD_MDIO_WRITE_OUT_STATUS_OFST 0 /* enum: Good. */ /* MC_CMD_MDIO_STATUS_GOOD 0x8 */ /***********************************/ /* MC_CMD_DBI_WRITE * Write DBI register(s). */ #define MC_CMD_DBI_WRITE 0x12 #undef MC_CMD_0x12_PRIVILEGE_CTG #define MC_CMD_0x12_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DBI_WRITE_IN msgrequest */ #define MC_CMD_DBI_WRITE_IN_LENMIN 12 #define MC_CMD_DBI_WRITE_IN_LENMAX 252 #define MC_CMD_DBI_WRITE_IN_LEN(num) (0+12*(num)) /* Each write op consists of an address (offset 0), byte enable/VF/CS2 (offset * 32) and value (offset 64). See MC_CMD_DBIWROP_TYPEDEF. */ #define MC_CMD_DBI_WRITE_IN_DBIWROP_OFST 0 #define MC_CMD_DBI_WRITE_IN_DBIWROP_LEN 12 #define MC_CMD_DBI_WRITE_IN_DBIWROP_MINNUM 1 #define MC_CMD_DBI_WRITE_IN_DBIWROP_MAXNUM 21 /* MC_CMD_DBI_WRITE_OUT msgresponse */ #define MC_CMD_DBI_WRITE_OUT_LEN 0 /* MC_CMD_DBIWROP_TYPEDEF structuredef */ #define MC_CMD_DBIWROP_TYPEDEF_LEN 12 #define MC_CMD_DBIWROP_TYPEDEF_ADDRESS_OFST 0 #define MC_CMD_DBIWROP_TYPEDEF_ADDRESS_LBN 0 #define MC_CMD_DBIWROP_TYPEDEF_ADDRESS_WIDTH 32 #define MC_CMD_DBIWROP_TYPEDEF_PARMS_OFST 4 #define MC_CMD_DBIWROP_TYPEDEF_VF_NUM_LBN 16 #define MC_CMD_DBIWROP_TYPEDEF_VF_NUM_WIDTH 16 #define MC_CMD_DBIWROP_TYPEDEF_VF_ACTIVE_LBN 15 #define MC_CMD_DBIWROP_TYPEDEF_VF_ACTIVE_WIDTH 1 #define MC_CMD_DBIWROP_TYPEDEF_CS2_LBN 14 #define MC_CMD_DBIWROP_TYPEDEF_CS2_WIDTH 1 #define MC_CMD_DBIWROP_TYPEDEF_PARMS_LBN 32 #define MC_CMD_DBIWROP_TYPEDEF_PARMS_WIDTH 32 #define MC_CMD_DBIWROP_TYPEDEF_VALUE_OFST 8 #define MC_CMD_DBIWROP_TYPEDEF_VALUE_LBN 64 #define MC_CMD_DBIWROP_TYPEDEF_VALUE_WIDTH 32 /***********************************/ /* MC_CMD_PORT_READ32 * Read a 32-bit register from the indirect port register map. The port to * access is implied by the Shared memory channel used. */ #define MC_CMD_PORT_READ32 0x14 /* MC_CMD_PORT_READ32_IN msgrequest */ #define MC_CMD_PORT_READ32_IN_LEN 4 /* Address */ #define MC_CMD_PORT_READ32_IN_ADDR_OFST 0 /* MC_CMD_PORT_READ32_OUT msgresponse */ #define MC_CMD_PORT_READ32_OUT_LEN 8 /* Value */ #define MC_CMD_PORT_READ32_OUT_VALUE_OFST 0 /* Status */ #define MC_CMD_PORT_READ32_OUT_STATUS_OFST 4 /***********************************/ /* MC_CMD_PORT_WRITE32 * Write a 32-bit register to the indirect port register map. The port to * access is implied by the Shared memory channel used. */ #define MC_CMD_PORT_WRITE32 0x15 /* MC_CMD_PORT_WRITE32_IN msgrequest */ #define MC_CMD_PORT_WRITE32_IN_LEN 8 /* Address */ #define MC_CMD_PORT_WRITE32_IN_ADDR_OFST 0 /* Value */ #define MC_CMD_PORT_WRITE32_IN_VALUE_OFST 4 /* MC_CMD_PORT_WRITE32_OUT msgresponse */ #define MC_CMD_PORT_WRITE32_OUT_LEN 4 /* Status */ #define MC_CMD_PORT_WRITE32_OUT_STATUS_OFST 0 /***********************************/ /* MC_CMD_PORT_READ128 * Read a 128-bit register from the indirect port register map. The port to * access is implied by the Shared memory channel used. */ #define MC_CMD_PORT_READ128 0x16 /* MC_CMD_PORT_READ128_IN msgrequest */ #define MC_CMD_PORT_READ128_IN_LEN 4 /* Address */ #define MC_CMD_PORT_READ128_IN_ADDR_OFST 0 /* MC_CMD_PORT_READ128_OUT msgresponse */ #define MC_CMD_PORT_READ128_OUT_LEN 20 /* Value */ #define MC_CMD_PORT_READ128_OUT_VALUE_OFST 0 #define MC_CMD_PORT_READ128_OUT_VALUE_LEN 16 /* Status */ #define MC_CMD_PORT_READ128_OUT_STATUS_OFST 16 /***********************************/ /* MC_CMD_PORT_WRITE128 * Write a 128-bit register to the indirect port register map. The port to * access is implied by the Shared memory channel used. */ #define MC_CMD_PORT_WRITE128 0x17 /* MC_CMD_PORT_WRITE128_IN msgrequest */ #define MC_CMD_PORT_WRITE128_IN_LEN 20 /* Address */ #define MC_CMD_PORT_WRITE128_IN_ADDR_OFST 0 /* Value */ #define MC_CMD_PORT_WRITE128_IN_VALUE_OFST 4 #define MC_CMD_PORT_WRITE128_IN_VALUE_LEN 16 /* MC_CMD_PORT_WRITE128_OUT msgresponse */ #define MC_CMD_PORT_WRITE128_OUT_LEN 4 /* Status */ #define MC_CMD_PORT_WRITE128_OUT_STATUS_OFST 0 /* MC_CMD_CAPABILITIES structuredef */ #define MC_CMD_CAPABILITIES_LEN 4 /* Small buf table. */ #define MC_CMD_CAPABILITIES_SMALL_BUF_TBL_LBN 0 #define MC_CMD_CAPABILITIES_SMALL_BUF_TBL_WIDTH 1 /* Turbo mode (for Maranello). */ #define MC_CMD_CAPABILITIES_TURBO_LBN 1 #define MC_CMD_CAPABILITIES_TURBO_WIDTH 1 /* Turbo mode active (for Maranello). */ #define MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN 2 #define MC_CMD_CAPABILITIES_TURBO_ACTIVE_WIDTH 1 /* PTP offload. */ #define MC_CMD_CAPABILITIES_PTP_LBN 3 #define MC_CMD_CAPABILITIES_PTP_WIDTH 1 /* AOE mode. */ #define MC_CMD_CAPABILITIES_AOE_LBN 4 #define MC_CMD_CAPABILITIES_AOE_WIDTH 1 /* AOE mode active. */ #define MC_CMD_CAPABILITIES_AOE_ACTIVE_LBN 5 #define MC_CMD_CAPABILITIES_AOE_ACTIVE_WIDTH 1 /* AOE mode active. */ #define MC_CMD_CAPABILITIES_FC_ACTIVE_LBN 6 #define MC_CMD_CAPABILITIES_FC_ACTIVE_WIDTH 1 #define MC_CMD_CAPABILITIES_RESERVED_LBN 7 #define MC_CMD_CAPABILITIES_RESERVED_WIDTH 25 /***********************************/ /* MC_CMD_GET_BOARD_CFG * Returns the MC firmware configuration structure. */ #define MC_CMD_GET_BOARD_CFG 0x18 #undef MC_CMD_0x18_PRIVILEGE_CTG #define MC_CMD_0x18_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_BOARD_CFG_IN msgrequest */ #define MC_CMD_GET_BOARD_CFG_IN_LEN 0 /* MC_CMD_GET_BOARD_CFG_OUT msgresponse */ #define MC_CMD_GET_BOARD_CFG_OUT_LENMIN 96 #define MC_CMD_GET_BOARD_CFG_OUT_LENMAX 136 #define MC_CMD_GET_BOARD_CFG_OUT_LEN(num) (72+2*(num)) #define MC_CMD_GET_BOARD_CFG_OUT_BOARD_TYPE_OFST 0 #define MC_CMD_GET_BOARD_CFG_OUT_BOARD_NAME_OFST 4 #define MC_CMD_GET_BOARD_CFG_OUT_BOARD_NAME_LEN 32 /* See MC_CMD_CAPABILITIES */ #define MC_CMD_GET_BOARD_CFG_OUT_CAPABILITIES_PORT0_OFST 36 /* See MC_CMD_CAPABILITIES */ #define MC_CMD_GET_BOARD_CFG_OUT_CAPABILITIES_PORT1_OFST 40 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST 44 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_LEN 6 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST 50 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_LEN 6 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_COUNT_PORT0_OFST 56 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_COUNT_PORT1_OFST 60 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_STRIDE_PORT0_OFST 64 #define MC_CMD_GET_BOARD_CFG_OUT_MAC_STRIDE_PORT1_OFST 68 /* This field contains a 16-bit value for each of the types of NVRAM area. The * values are defined in the firmware/mc/platform/.c file for a specific board * type, but otherwise have no meaning to the MC; they are used by the driver * to manage selection of appropriate firmware updates. */ #define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST 72 #define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN 2 #define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MINNUM 12 #define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM 32 /***********************************/ /* MC_CMD_DBI_READX * Read DBI register(s) -- extended functionality */ #define MC_CMD_DBI_READX 0x19 #undef MC_CMD_0x19_PRIVILEGE_CTG #define MC_CMD_0x19_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DBI_READX_IN msgrequest */ #define MC_CMD_DBI_READX_IN_LENMIN 8 #define MC_CMD_DBI_READX_IN_LENMAX 248 #define MC_CMD_DBI_READX_IN_LEN(num) (0+8*(num)) /* Each Read op consists of an address (offset 0), VF/CS2) */ #define MC_CMD_DBI_READX_IN_DBIRDOP_OFST 0 #define MC_CMD_DBI_READX_IN_DBIRDOP_LEN 8 #define MC_CMD_DBI_READX_IN_DBIRDOP_LO_OFST 0 #define MC_CMD_DBI_READX_IN_DBIRDOP_HI_OFST 4 #define MC_CMD_DBI_READX_IN_DBIRDOP_MINNUM 1 #define MC_CMD_DBI_READX_IN_DBIRDOP_MAXNUM 31 /* MC_CMD_DBI_READX_OUT msgresponse */ #define MC_CMD_DBI_READX_OUT_LENMIN 4 #define MC_CMD_DBI_READX_OUT_LENMAX 252 #define MC_CMD_DBI_READX_OUT_LEN(num) (0+4*(num)) /* Value */ #define MC_CMD_DBI_READX_OUT_VALUE_OFST 0 #define MC_CMD_DBI_READX_OUT_VALUE_LEN 4 #define MC_CMD_DBI_READX_OUT_VALUE_MINNUM 1 #define MC_CMD_DBI_READX_OUT_VALUE_MAXNUM 63 /* MC_CMD_DBIRDOP_TYPEDEF structuredef */ #define MC_CMD_DBIRDOP_TYPEDEF_LEN 8 #define MC_CMD_DBIRDOP_TYPEDEF_ADDRESS_OFST 0 #define MC_CMD_DBIRDOP_TYPEDEF_ADDRESS_LBN 0 #define MC_CMD_DBIRDOP_TYPEDEF_ADDRESS_WIDTH 32 #define MC_CMD_DBIRDOP_TYPEDEF_PARMS_OFST 4 #define MC_CMD_DBIRDOP_TYPEDEF_VF_NUM_LBN 16 #define MC_CMD_DBIRDOP_TYPEDEF_VF_NUM_WIDTH 16 #define MC_CMD_DBIRDOP_TYPEDEF_VF_ACTIVE_LBN 15 #define MC_CMD_DBIRDOP_TYPEDEF_VF_ACTIVE_WIDTH 1 #define MC_CMD_DBIRDOP_TYPEDEF_CS2_LBN 14 #define MC_CMD_DBIRDOP_TYPEDEF_CS2_WIDTH 1 #define MC_CMD_DBIRDOP_TYPEDEF_PARMS_LBN 32 #define MC_CMD_DBIRDOP_TYPEDEF_PARMS_WIDTH 32 /***********************************/ /* MC_CMD_SET_RAND_SEED * Set the 16byte seed for the MC pseudo-random generator. */ #define MC_CMD_SET_RAND_SEED 0x1a #undef MC_CMD_0x1a_PRIVILEGE_CTG #define MC_CMD_0x1a_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_RAND_SEED_IN msgrequest */ #define MC_CMD_SET_RAND_SEED_IN_LEN 16 /* Seed value. */ #define MC_CMD_SET_RAND_SEED_IN_SEED_OFST 0 #define MC_CMD_SET_RAND_SEED_IN_SEED_LEN 16 /* MC_CMD_SET_RAND_SEED_OUT msgresponse */ #define MC_CMD_SET_RAND_SEED_OUT_LEN 0 /***********************************/ /* MC_CMD_LTSSM_HIST * Retrieve the history of the LTSSM, if the build supports it. */ #define MC_CMD_LTSSM_HIST 0x1b /* MC_CMD_LTSSM_HIST_IN msgrequest */ #define MC_CMD_LTSSM_HIST_IN_LEN 0 /* MC_CMD_LTSSM_HIST_OUT msgresponse */ #define MC_CMD_LTSSM_HIST_OUT_LENMIN 0 #define MC_CMD_LTSSM_HIST_OUT_LENMAX 252 #define MC_CMD_LTSSM_HIST_OUT_LEN(num) (0+4*(num)) /* variable number of LTSSM values, as bytes. The history is read-to-clear. */ #define MC_CMD_LTSSM_HIST_OUT_DATA_OFST 0 #define MC_CMD_LTSSM_HIST_OUT_DATA_LEN 4 #define MC_CMD_LTSSM_HIST_OUT_DATA_MINNUM 0 #define MC_CMD_LTSSM_HIST_OUT_DATA_MAXNUM 63 /***********************************/ /* MC_CMD_DRV_ATTACH * Inform MCPU that this port is managed on the host (i.e. driver active). For * Huntington, also request the preferred datapath firmware to use if possible * (it may not be possible for this request to be fulfilled; the driver must * issue a subsequent MC_CMD_GET_CAPABILITIES command to determine which * features are actually available). The FIRMWARE_ID field is ignored by older * platforms. */ #define MC_CMD_DRV_ATTACH 0x1c #undef MC_CMD_0x1c_PRIVILEGE_CTG #define MC_CMD_0x1c_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_DRV_ATTACH_IN msgrequest */ #define MC_CMD_DRV_ATTACH_IN_LEN 12 /* new state to set if UPDATE=1 */ #define MC_CMD_DRV_ATTACH_IN_NEW_STATE_OFST 0 #define MC_CMD_DRV_ATTACH_LBN 0 #define MC_CMD_DRV_ATTACH_WIDTH 1 #define MC_CMD_DRV_PREBOOT_LBN 1 #define MC_CMD_DRV_PREBOOT_WIDTH 1 /* 1 to set new state, or 0 to just report the existing state */ #define MC_CMD_DRV_ATTACH_IN_UPDATE_OFST 4 /* preferred datapath firmware (for Huntington; ignored for Siena) */ #define MC_CMD_DRV_ATTACH_IN_FIRMWARE_ID_OFST 8 /* enum: Prefer to use full featured firmware */ #define MC_CMD_FW_FULL_FEATURED 0x0 /* enum: Prefer to use firmware with fewer features but lower latency */ #define MC_CMD_FW_LOW_LATENCY 0x1 /* enum: Prefer to use firmware for SolarCapture packed stream mode */ #define MC_CMD_FW_PACKED_STREAM 0x2 /* enum: Prefer to use firmware with fewer features and simpler TX event * batching but higher TX packet rate */ #define MC_CMD_FW_HIGH_TX_RATE 0x3 /* enum: Reserved value */ #define MC_CMD_FW_PACKED_STREAM_HASH_MODE_1 0x4 /* enum: Only this option is allowed for non-admin functions */ #define MC_CMD_FW_DONT_CARE 0xffffffff /* MC_CMD_DRV_ATTACH_OUT msgresponse */ #define MC_CMD_DRV_ATTACH_OUT_LEN 4 /* previous or existing state, see the bitmask at NEW_STATE */ #define MC_CMD_DRV_ATTACH_OUT_OLD_STATE_OFST 0 /* MC_CMD_DRV_ATTACH_EXT_OUT msgresponse */ #define MC_CMD_DRV_ATTACH_EXT_OUT_LEN 8 /* previous or existing state, see the bitmask at NEW_STATE */ #define MC_CMD_DRV_ATTACH_EXT_OUT_OLD_STATE_OFST 0 /* Flags associated with this function */ #define MC_CMD_DRV_ATTACH_EXT_OUT_FUNC_FLAGS_OFST 4 /* enum: Labels the lowest-numbered function visible to the OS */ #define MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY 0x0 /* enum: The function can control the link state of the physical port it is * bound to. */ #define MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL 0x1 /* enum: The function can perform privileged operations */ #define MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED 0x2 /* enum: The function does not have an active port associated with it. The port * refers to the Sorrento external FPGA port. */ #define MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT 0x3 /***********************************/ /* MC_CMD_SHMUART * Route UART output to circular buffer in shared memory instead. */ #define MC_CMD_SHMUART 0x1f /* MC_CMD_SHMUART_IN msgrequest */ #define MC_CMD_SHMUART_IN_LEN 4 /* ??? */ #define MC_CMD_SHMUART_IN_FLAG_OFST 0 /* MC_CMD_SHMUART_OUT msgresponse */ #define MC_CMD_SHMUART_OUT_LEN 0 /***********************************/ /* MC_CMD_PORT_RESET * Generic per-port reset. There is no equivalent for per-board reset. Locks * required: None; Return code: 0, ETIME. NOTE: This command is deprecated - * use MC_CMD_ENTITY_RESET instead. */ #define MC_CMD_PORT_RESET 0x20 #undef MC_CMD_0x20_PRIVILEGE_CTG #define MC_CMD_0x20_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_PORT_RESET_IN msgrequest */ #define MC_CMD_PORT_RESET_IN_LEN 0 /* MC_CMD_PORT_RESET_OUT msgresponse */ #define MC_CMD_PORT_RESET_OUT_LEN 0 /***********************************/ /* MC_CMD_ENTITY_RESET * Generic per-resource reset. There is no equivalent for per-board reset. * Locks required: None; Return code: 0, ETIME. NOTE: This command is an * extended version of the deprecated MC_CMD_PORT_RESET with added fields. */ #define MC_CMD_ENTITY_RESET 0x20 /* MC_CMD_0x20_PRIVILEGE_CTG SRIOV_CTG_GENERAL */ /* MC_CMD_ENTITY_RESET_IN msgrequest */ #define MC_CMD_ENTITY_RESET_IN_LEN 4 /* Optional flags field. Omitting this will perform a "legacy" reset action * (TBD). */ #define MC_CMD_ENTITY_RESET_IN_FLAG_OFST 0 #define MC_CMD_ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET_LBN 0 #define MC_CMD_ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET_WIDTH 1 /* MC_CMD_ENTITY_RESET_OUT msgresponse */ #define MC_CMD_ENTITY_RESET_OUT_LEN 0 /***********************************/ /* MC_CMD_PCIE_CREDITS * Read instantaneous and minimum flow control thresholds. */ #define MC_CMD_PCIE_CREDITS 0x21 /* MC_CMD_PCIE_CREDITS_IN msgrequest */ #define MC_CMD_PCIE_CREDITS_IN_LEN 8 /* poll period. 0 is disabled */ #define MC_CMD_PCIE_CREDITS_IN_POLL_PERIOD_OFST 0 /* wipe statistics */ #define MC_CMD_PCIE_CREDITS_IN_WIPE_OFST 4 /* MC_CMD_PCIE_CREDITS_OUT msgresponse */ #define MC_CMD_PCIE_CREDITS_OUT_LEN 16 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_P_HDR_OFST 0 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_P_HDR_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_P_DATA_OFST 2 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_P_DATA_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_NP_HDR_OFST 4 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_NP_HDR_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_NP_DATA_OFST 6 #define MC_CMD_PCIE_CREDITS_OUT_CURRENT_NP_DATA_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_P_HDR_OFST 8 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_P_HDR_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_P_DATA_OFST 10 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_P_DATA_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_NP_HDR_OFST 12 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_NP_HDR_LEN 2 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_NP_DATA_OFST 14 #define MC_CMD_PCIE_CREDITS_OUT_MINIMUM_NP_DATA_LEN 2 /***********************************/ /* MC_CMD_RXD_MONITOR * Get histogram of RX queue fill level. */ #define MC_CMD_RXD_MONITOR 0x22 /* MC_CMD_RXD_MONITOR_IN msgrequest */ #define MC_CMD_RXD_MONITOR_IN_LEN 12 #define MC_CMD_RXD_MONITOR_IN_QID_OFST 0 #define MC_CMD_RXD_MONITOR_IN_POLL_PERIOD_OFST 4 #define MC_CMD_RXD_MONITOR_IN_WIPE_OFST 8 /* MC_CMD_RXD_MONITOR_OUT msgresponse */ #define MC_CMD_RXD_MONITOR_OUT_LEN 80 #define MC_CMD_RXD_MONITOR_OUT_QID_OFST 0 #define MC_CMD_RXD_MONITOR_OUT_RING_FILL_OFST 4 #define MC_CMD_RXD_MONITOR_OUT_CACHE_FILL_OFST 8 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_1_OFST 12 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_2_OFST 16 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_4_OFST 20 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_8_OFST 24 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_16_OFST 28 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_32_OFST 32 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_64_OFST 36 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_128_OFST 40 #define MC_CMD_RXD_MONITOR_OUT_RING_LT_256_OFST 44 #define MC_CMD_RXD_MONITOR_OUT_RING_GE_256_OFST 48 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_1_OFST 52 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_2_OFST 56 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_4_OFST 60 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_8_OFST 64 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_16_OFST 68 #define MC_CMD_RXD_MONITOR_OUT_CACHE_LT_32_OFST 72 #define MC_CMD_RXD_MONITOR_OUT_CACHE_GE_32_OFST 76 /***********************************/ /* MC_CMD_PUTS * Copy the given ASCII string out onto UART and/or out of the network port. */ #define MC_CMD_PUTS 0x23 #undef MC_CMD_0x23_PRIVILEGE_CTG #define MC_CMD_0x23_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PUTS_IN msgrequest */ #define MC_CMD_PUTS_IN_LENMIN 13 #define MC_CMD_PUTS_IN_LENMAX 252 #define MC_CMD_PUTS_IN_LEN(num) (12+1*(num)) #define MC_CMD_PUTS_IN_DEST_OFST 0 #define MC_CMD_PUTS_IN_UART_LBN 0 #define MC_CMD_PUTS_IN_UART_WIDTH 1 #define MC_CMD_PUTS_IN_PORT_LBN 1 #define MC_CMD_PUTS_IN_PORT_WIDTH 1 #define MC_CMD_PUTS_IN_DHOST_OFST 4 #define MC_CMD_PUTS_IN_DHOST_LEN 6 #define MC_CMD_PUTS_IN_STRING_OFST 12 #define MC_CMD_PUTS_IN_STRING_LEN 1 #define MC_CMD_PUTS_IN_STRING_MINNUM 1 #define MC_CMD_PUTS_IN_STRING_MAXNUM 240 /* MC_CMD_PUTS_OUT msgresponse */ #define MC_CMD_PUTS_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_PHY_CFG * Report PHY configuration. This guarantees to succeed even if the PHY is in a * 'zombie' state. Locks required: None */ #define MC_CMD_GET_PHY_CFG 0x24 #undef MC_CMD_0x24_PRIVILEGE_CTG #define MC_CMD_0x24_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PHY_CFG_IN msgrequest */ #define MC_CMD_GET_PHY_CFG_IN_LEN 0 /* MC_CMD_GET_PHY_CFG_OUT msgresponse */ #define MC_CMD_GET_PHY_CFG_OUT_LEN 72 /* flags */ #define MC_CMD_GET_PHY_CFG_OUT_FLAGS_OFST 0 #define MC_CMD_GET_PHY_CFG_OUT_PRESENT_LBN 0 #define MC_CMD_GET_PHY_CFG_OUT_PRESENT_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_SHORT_LBN 1 #define MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_SHORT_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_LONG_LBN 2 #define MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_LONG_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_LOWPOWER_LBN 3 #define MC_CMD_GET_PHY_CFG_OUT_LOWPOWER_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_POWEROFF_LBN 4 #define MC_CMD_GET_PHY_CFG_OUT_POWEROFF_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_TXDIS_LBN 5 #define MC_CMD_GET_PHY_CFG_OUT_TXDIS_WIDTH 1 #define MC_CMD_GET_PHY_CFG_OUT_BIST_LBN 6 #define MC_CMD_GET_PHY_CFG_OUT_BIST_WIDTH 1 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_TYPE_OFST 4 /* Bitmask of supported capabilities */ #define MC_CMD_GET_PHY_CFG_OUT_SUPPORTED_CAP_OFST 8 #define MC_CMD_PHY_CAP_10HDX_LBN 1 #define MC_CMD_PHY_CAP_10HDX_WIDTH 1 #define MC_CMD_PHY_CAP_10FDX_LBN 2 #define MC_CMD_PHY_CAP_10FDX_WIDTH 1 #define MC_CMD_PHY_CAP_100HDX_LBN 3 #define MC_CMD_PHY_CAP_100HDX_WIDTH 1 #define MC_CMD_PHY_CAP_100FDX_LBN 4 #define MC_CMD_PHY_CAP_100FDX_WIDTH 1 #define MC_CMD_PHY_CAP_1000HDX_LBN 5 #define MC_CMD_PHY_CAP_1000HDX_WIDTH 1 #define MC_CMD_PHY_CAP_1000FDX_LBN 6 #define MC_CMD_PHY_CAP_1000FDX_WIDTH 1 #define MC_CMD_PHY_CAP_10000FDX_LBN 7 #define MC_CMD_PHY_CAP_10000FDX_WIDTH 1 #define MC_CMD_PHY_CAP_PAUSE_LBN 8 #define MC_CMD_PHY_CAP_PAUSE_WIDTH 1 #define MC_CMD_PHY_CAP_ASYM_LBN 9 #define MC_CMD_PHY_CAP_ASYM_WIDTH 1 #define MC_CMD_PHY_CAP_AN_LBN 10 #define MC_CMD_PHY_CAP_AN_WIDTH 1 #define MC_CMD_PHY_CAP_40000FDX_LBN 11 #define MC_CMD_PHY_CAP_40000FDX_WIDTH 1 #define MC_CMD_PHY_CAP_DDM_LBN 12 #define MC_CMD_PHY_CAP_DDM_WIDTH 1 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_CHANNEL_OFST 12 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_PRT_OFST 16 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_STATS_MASK_OFST 20 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_NAME_OFST 24 #define MC_CMD_GET_PHY_CFG_OUT_NAME_LEN 20 /* ?? */ #define MC_CMD_GET_PHY_CFG_OUT_MEDIA_TYPE_OFST 44 /* enum: Xaui. */ #define MC_CMD_MEDIA_XAUI 0x1 /* enum: CX4. */ #define MC_CMD_MEDIA_CX4 0x2 /* enum: KX4. */ #define MC_CMD_MEDIA_KX4 0x3 /* enum: XFP Far. */ #define MC_CMD_MEDIA_XFP 0x4 /* enum: SFP+. */ #define MC_CMD_MEDIA_SFP_PLUS 0x5 /* enum: 10GBaseT. */ #define MC_CMD_MEDIA_BASE_T 0x6 /* enum: QSFP+. */ #define MC_CMD_MEDIA_QSFP_PLUS 0x7 #define MC_CMD_GET_PHY_CFG_OUT_MMD_MASK_OFST 48 /* enum: Native clause 22 */ #define MC_CMD_MMD_CLAUSE22 0x0 #define MC_CMD_MMD_CLAUSE45_PMAPMD 0x1 /* enum */ #define MC_CMD_MMD_CLAUSE45_WIS 0x2 /* enum */ #define MC_CMD_MMD_CLAUSE45_PCS 0x3 /* enum */ #define MC_CMD_MMD_CLAUSE45_PHYXS 0x4 /* enum */ #define MC_CMD_MMD_CLAUSE45_DTEXS 0x5 /* enum */ #define MC_CMD_MMD_CLAUSE45_TC 0x6 /* enum */ #define MC_CMD_MMD_CLAUSE45_AN 0x7 /* enum */ /* enum: Clause22 proxied over clause45 by PHY. */ #define MC_CMD_MMD_CLAUSE45_C22EXT 0x1d #define MC_CMD_MMD_CLAUSE45_VEND1 0x1e /* enum */ #define MC_CMD_MMD_CLAUSE45_VEND2 0x1f /* enum */ #define MC_CMD_GET_PHY_CFG_OUT_REVISION_OFST 52 #define MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN 20 /***********************************/ /* MC_CMD_START_BIST * Start a BIST test on the PHY. Locks required: PHY_LOCK if doing a PHY BIST * Return code: 0, EINVAL, EACCES (if PHY_LOCK is not held) */ #define MC_CMD_START_BIST 0x25 #undef MC_CMD_0x25_PRIVILEGE_CTG #define MC_CMD_0x25_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_START_BIST_IN msgrequest */ #define MC_CMD_START_BIST_IN_LEN 4 /* Type of test. */ #define MC_CMD_START_BIST_IN_TYPE_OFST 0 /* enum: Run the PHY's short cable BIST. */ #define MC_CMD_PHY_BIST_CABLE_SHORT 0x1 /* enum: Run the PHY's long cable BIST. */ #define MC_CMD_PHY_BIST_CABLE_LONG 0x2 /* enum: Run BIST on the currently selected BPX Serdes (XAUI or XFI) . */ #define MC_CMD_BPX_SERDES_BIST 0x3 /* enum: Run the MC loopback tests. */ #define MC_CMD_MC_LOOPBACK_BIST 0x4 /* enum: Run the PHY's standard BIST. */ #define MC_CMD_PHY_BIST 0x5 /* enum: Run MC RAM test. */ #define MC_CMD_MC_MEM_BIST 0x6 /* enum: Run Port RAM test. */ #define MC_CMD_PORT_MEM_BIST 0x7 /* enum: Run register test. */ #define MC_CMD_REG_BIST 0x8 /* MC_CMD_START_BIST_OUT msgresponse */ #define MC_CMD_START_BIST_OUT_LEN 0 /***********************************/ /* MC_CMD_POLL_BIST * Poll for BIST completion. Returns a single status code, and optionally some * PHY specific bist output. The driver should only consume the BIST output * after validating OUTLEN and MC_CMD_GET_PHY_CFG.TYPE. If a driver can't * successfully parse the BIST output, it should still respect the pass/Fail in * OUT.RESULT. Locks required: PHY_LOCK if doing a PHY BIST. Return code: 0, * EACCES (if PHY_LOCK is not held). */ #define MC_CMD_POLL_BIST 0x26 #undef MC_CMD_0x26_PRIVILEGE_CTG #define MC_CMD_0x26_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_POLL_BIST_IN msgrequest */ #define MC_CMD_POLL_BIST_IN_LEN 0 /* MC_CMD_POLL_BIST_OUT msgresponse */ #define MC_CMD_POLL_BIST_OUT_LEN 8 /* result */ #define MC_CMD_POLL_BIST_OUT_RESULT_OFST 0 /* enum: Running. */ #define MC_CMD_POLL_BIST_RUNNING 0x1 /* enum: Passed. */ #define MC_CMD_POLL_BIST_PASSED 0x2 /* enum: Failed. */ #define MC_CMD_POLL_BIST_FAILED 0x3 /* enum: Timed-out. */ #define MC_CMD_POLL_BIST_TIMEOUT 0x4 #define MC_CMD_POLL_BIST_OUT_PRIVATE_OFST 4 /* MC_CMD_POLL_BIST_OUT_SFT9001 msgresponse */ #define MC_CMD_POLL_BIST_OUT_SFT9001_LEN 36 /* result */ /* MC_CMD_POLL_BIST_OUT_RESULT_OFST 0 */ /* Enum values, see field(s): */ /* MC_CMD_POLL_BIST_OUT/MC_CMD_POLL_BIST_OUT_RESULT */ #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_A_OFST 4 #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_B_OFST 8 #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_C_OFST 12 #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_D_OFST 16 /* Status of each channel A */ #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_A_OFST 20 /* enum: Ok. */ #define MC_CMD_POLL_BIST_SFT9001_PAIR_OK 0x1 /* enum: Open. */ #define MC_CMD_POLL_BIST_SFT9001_PAIR_OPEN 0x2 /* enum: Intra-pair short. */ #define MC_CMD_POLL_BIST_SFT9001_INTRA_PAIR_SHORT 0x3 /* enum: Inter-pair short. */ #define MC_CMD_POLL_BIST_SFT9001_INTER_PAIR_SHORT 0x4 /* enum: Busy. */ #define MC_CMD_POLL_BIST_SFT9001_PAIR_BUSY 0x9 /* Status of each channel B */ #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_B_OFST 24 /* Enum values, see field(s): */ /* CABLE_STATUS_A */ /* Status of each channel C */ #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_C_OFST 28 /* Enum values, see field(s): */ /* CABLE_STATUS_A */ /* Status of each channel D */ #define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_D_OFST 32 /* Enum values, see field(s): */ /* CABLE_STATUS_A */ /* MC_CMD_POLL_BIST_OUT_MRSFP msgresponse */ #define MC_CMD_POLL_BIST_OUT_MRSFP_LEN 8 /* result */ /* MC_CMD_POLL_BIST_OUT_RESULT_OFST 0 */ /* Enum values, see field(s): */ /* MC_CMD_POLL_BIST_OUT/MC_CMD_POLL_BIST_OUT_RESULT */ #define MC_CMD_POLL_BIST_OUT_MRSFP_TEST_OFST 4 /* enum: Complete. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_COMPLETE 0x0 /* enum: Bus switch off I2C write. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_WRITE 0x1 /* enum: Bus switch off I2C no access IO exp. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_NO_ACCESS_IO_EXP 0x2 /* enum: Bus switch off I2C no access module. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_NO_ACCESS_MODULE 0x3 /* enum: IO exp I2C configure. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_IO_EXP_I2C_CONFIGURE 0x4 /* enum: Bus switch I2C no cross talk. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_I2C_NO_CROSSTALK 0x5 /* enum: Module presence. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_PRESENCE 0x6 /* enum: Module ID I2C access. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_ID_I2C_ACCESS 0x7 /* enum: Module ID sane value. */ #define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_ID_SANE_VALUE 0x8 /* MC_CMD_POLL_BIST_OUT_MEM msgresponse */ #define MC_CMD_POLL_BIST_OUT_MEM_LEN 36 /* result */ /* MC_CMD_POLL_BIST_OUT_RESULT_OFST 0 */ /* Enum values, see field(s): */ /* MC_CMD_POLL_BIST_OUT/MC_CMD_POLL_BIST_OUT_RESULT */ #define MC_CMD_POLL_BIST_OUT_MEM_TEST_OFST 4 /* enum: Test has completed. */ #define MC_CMD_POLL_BIST_MEM_COMPLETE 0x0 /* enum: RAM test - walk ones. */ #define MC_CMD_POLL_BIST_MEM_MEM_WALK_ONES 0x1 /* enum: RAM test - walk zeros. */ #define MC_CMD_POLL_BIST_MEM_MEM_WALK_ZEROS 0x2 /* enum: RAM test - walking inversions zeros/ones. */ #define MC_CMD_POLL_BIST_MEM_MEM_INV_ZERO_ONE 0x3 /* enum: RAM test - walking inversions checkerboard. */ #define MC_CMD_POLL_BIST_MEM_MEM_INV_CHKBOARD 0x4 /* enum: Register test - set / clear individual bits. */ #define MC_CMD_POLL_BIST_MEM_REG 0x5 /* enum: ECC error detected. */ #define MC_CMD_POLL_BIST_MEM_ECC 0x6 /* Failure address, only valid if result is POLL_BIST_FAILED */ #define MC_CMD_POLL_BIST_OUT_MEM_ADDR_OFST 8 /* Bus or address space to which the failure address corresponds */ #define MC_CMD_POLL_BIST_OUT_MEM_BUS_OFST 12 /* enum: MC MIPS bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_MC 0x0 /* enum: CSR IREG bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_CSR 0x1 /* enum: RX DPCPU bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_DPCPU_RX 0x2 /* enum: TX0 DPCPU bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_DPCPU_TX0 0x3 /* enum: TX1 DPCPU bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_DPCPU_TX1 0x4 /* enum: RX DICPU bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_DICPU_RX 0x5 /* enum: TX DICPU bus. */ #define MC_CMD_POLL_BIST_MEM_BUS_DICPU_TX 0x6 /* Pattern written to RAM / register */ #define MC_CMD_POLL_BIST_OUT_MEM_EXPECT_OFST 16 /* Actual value read from RAM / register */ #define MC_CMD_POLL_BIST_OUT_MEM_ACTUAL_OFST 20 /* ECC error mask */ #define MC_CMD_POLL_BIST_OUT_MEM_ECC_OFST 24 /* ECC parity error mask */ #define MC_CMD_POLL_BIST_OUT_MEM_ECC_PARITY_OFST 28 /* ECC fatal error mask */ #define MC_CMD_POLL_BIST_OUT_MEM_ECC_FATAL_OFST 32 /***********************************/ /* MC_CMD_FLUSH_RX_QUEUES * Flush receive queue(s). If SRIOV is enabled (via MC_CMD_SRIOV), then RXQ * flushes should be initiated via this MCDI operation, rather than via * directly writing FLUSH_CMD. * * The flush is completed (either done/fail) asynchronously (after this command * returns). The driver must still wait for flush done/failure events as usual. */ #define MC_CMD_FLUSH_RX_QUEUES 0x27 /* MC_CMD_FLUSH_RX_QUEUES_IN msgrequest */ #define MC_CMD_FLUSH_RX_QUEUES_IN_LENMIN 4 #define MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX 252 #define MC_CMD_FLUSH_RX_QUEUES_IN_LEN(num) (0+4*(num)) #define MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_OFST 0 #define MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_LEN 4 #define MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MINNUM 1 #define MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM 63 /* MC_CMD_FLUSH_RX_QUEUES_OUT msgresponse */ #define MC_CMD_FLUSH_RX_QUEUES_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_LOOPBACK_MODES * Returns a bitmask of loopback modes available at each speed. */ #define MC_CMD_GET_LOOPBACK_MODES 0x28 #undef MC_CMD_0x28_PRIVILEGE_CTG #define MC_CMD_0x28_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_LOOPBACK_MODES_IN msgrequest */ #define MC_CMD_GET_LOOPBACK_MODES_IN_LEN 0 /* MC_CMD_GET_LOOPBACK_MODES_OUT msgresponse */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_LEN 40 /* Supported loopbacks. */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_100M_OFST 0 #define MC_CMD_GET_LOOPBACK_MODES_OUT_100M_LEN 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_100M_LO_OFST 0 #define MC_CMD_GET_LOOPBACK_MODES_OUT_100M_HI_OFST 4 /* enum: None. */ #define MC_CMD_LOOPBACK_NONE 0x0 /* enum: Data. */ #define MC_CMD_LOOPBACK_DATA 0x1 /* enum: GMAC. */ #define MC_CMD_LOOPBACK_GMAC 0x2 /* enum: XGMII. */ #define MC_CMD_LOOPBACK_XGMII 0x3 /* enum: XGXS. */ #define MC_CMD_LOOPBACK_XGXS 0x4 /* enum: XAUI. */ #define MC_CMD_LOOPBACK_XAUI 0x5 /* enum: GMII. */ #define MC_CMD_LOOPBACK_GMII 0x6 /* enum: SGMII. */ #define MC_CMD_LOOPBACK_SGMII 0x7 /* enum: XGBR. */ #define MC_CMD_LOOPBACK_XGBR 0x8 /* enum: XFI. */ #define MC_CMD_LOOPBACK_XFI 0x9 /* enum: XAUI Far. */ #define MC_CMD_LOOPBACK_XAUI_FAR 0xa /* enum: GMII Far. */ #define MC_CMD_LOOPBACK_GMII_FAR 0xb /* enum: SGMII Far. */ #define MC_CMD_LOOPBACK_SGMII_FAR 0xc /* enum: XFI Far. */ #define MC_CMD_LOOPBACK_XFI_FAR 0xd /* enum: GPhy. */ #define MC_CMD_LOOPBACK_GPHY 0xe /* enum: PhyXS. */ #define MC_CMD_LOOPBACK_PHYXS 0xf /* enum: PCS. */ #define MC_CMD_LOOPBACK_PCS 0x10 /* enum: PMA-PMD. */ #define MC_CMD_LOOPBACK_PMAPMD 0x11 /* enum: Cross-Port. */ #define MC_CMD_LOOPBACK_XPORT 0x12 /* enum: XGMII-Wireside. */ #define MC_CMD_LOOPBACK_XGMII_WS 0x13 /* enum: XAUI Wireside. */ #define MC_CMD_LOOPBACK_XAUI_WS 0x14 /* enum: XAUI Wireside Far. */ #define MC_CMD_LOOPBACK_XAUI_WS_FAR 0x15 /* enum: XAUI Wireside near. */ #define MC_CMD_LOOPBACK_XAUI_WS_NEAR 0x16 /* enum: GMII Wireside. */ #define MC_CMD_LOOPBACK_GMII_WS 0x17 /* enum: XFI Wireside. */ #define MC_CMD_LOOPBACK_XFI_WS 0x18 /* enum: XFI Wireside Far. */ #define MC_CMD_LOOPBACK_XFI_WS_FAR 0x19 /* enum: PhyXS Wireside. */ #define MC_CMD_LOOPBACK_PHYXS_WS 0x1a /* enum: PMA lanes MAC-Serdes. */ #define MC_CMD_LOOPBACK_PMA_INT 0x1b /* enum: KR Serdes Parallel (Encoder). */ #define MC_CMD_LOOPBACK_SD_NEAR 0x1c /* enum: KR Serdes Serial. */ #define MC_CMD_LOOPBACK_SD_FAR 0x1d /* enum: PMA lanes MAC-Serdes Wireside. */ #define MC_CMD_LOOPBACK_PMA_INT_WS 0x1e /* enum: KR Serdes Parallel Wireside (Full PCS). */ #define MC_CMD_LOOPBACK_SD_FEP2_WS 0x1f /* enum: KR Serdes Parallel Wireside (Sym Aligner to TX). */ #define MC_CMD_LOOPBACK_SD_FEP1_5_WS 0x20 /* enum: KR Serdes Parallel Wireside (Deserializer to Serializer). */ #define MC_CMD_LOOPBACK_SD_FEP_WS 0x21 /* enum: KR Serdes Serial Wireside. */ #define MC_CMD_LOOPBACK_SD_FES_WS 0x22 /* enum: Near side of AOE Siena side port */ #define MC_CMD_LOOPBACK_AOE_INT_NEAR 0x23 /* enum: Medford Wireside datapath loopback */ #define MC_CMD_LOOPBACK_DATA_WS 0x24 /* enum: Force link up without setting up any physical loopback (snapper use * only) */ #define MC_CMD_LOOPBACK_FORCE_EXT_LINK 0x25 /* Supported loopbacks. */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_1G_OFST 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_1G_LEN 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_1G_LO_OFST 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_1G_HI_OFST 12 /* Enum values, see field(s): */ /* 100M */ /* Supported loopbacks. */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_10G_OFST 16 #define MC_CMD_GET_LOOPBACK_MODES_OUT_10G_LEN 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_10G_LO_OFST 16 #define MC_CMD_GET_LOOPBACK_MODES_OUT_10G_HI_OFST 20 /* Enum values, see field(s): */ /* 100M */ /* Supported loopbacks. */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST 24 #define MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LO_OFST 24 #define MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_HI_OFST 28 /* Enum values, see field(s): */ /* 100M */ /* Supported loopbacks. */ #define MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST 32 #define MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN 8 #define MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LO_OFST 32 #define MC_CMD_GET_LOOPBACK_MODES_OUT_40G_HI_OFST 36 /* Enum values, see field(s): */ /* 100M */ /***********************************/ /* MC_CMD_GET_LINK * Read the unified MAC/PHY link state. Locks required: None Return code: 0, * ETIME. */ #define MC_CMD_GET_LINK 0x29 #undef MC_CMD_0x29_PRIVILEGE_CTG #define MC_CMD_0x29_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_LINK_IN msgrequest */ #define MC_CMD_GET_LINK_IN_LEN 0 /* MC_CMD_GET_LINK_OUT msgresponse */ #define MC_CMD_GET_LINK_OUT_LEN 28 /* near-side advertised capabilities */ #define MC_CMD_GET_LINK_OUT_CAP_OFST 0 /* link-partner advertised capabilities */ #define MC_CMD_GET_LINK_OUT_LP_CAP_OFST 4 /* Autonegotiated speed in mbit/s. The link may still be down even if this * reads non-zero. */ #define MC_CMD_GET_LINK_OUT_LINK_SPEED_OFST 8 /* Current loopback setting. */ #define MC_CMD_GET_LINK_OUT_LOOPBACK_MODE_OFST 12 /* Enum values, see field(s): */ /* MC_CMD_GET_LOOPBACK_MODES/MC_CMD_GET_LOOPBACK_MODES_OUT/100M */ #define MC_CMD_GET_LINK_OUT_FLAGS_OFST 16 #define MC_CMD_GET_LINK_OUT_LINK_UP_LBN 0 #define MC_CMD_GET_LINK_OUT_LINK_UP_WIDTH 1 #define MC_CMD_GET_LINK_OUT_FULL_DUPLEX_LBN 1 #define MC_CMD_GET_LINK_OUT_FULL_DUPLEX_WIDTH 1 #define MC_CMD_GET_LINK_OUT_BPX_LINK_LBN 2 #define MC_CMD_GET_LINK_OUT_BPX_LINK_WIDTH 1 #define MC_CMD_GET_LINK_OUT_PHY_LINK_LBN 3 #define MC_CMD_GET_LINK_OUT_PHY_LINK_WIDTH 1 #define MC_CMD_GET_LINK_OUT_LINK_FAULT_RX_LBN 6 #define MC_CMD_GET_LINK_OUT_LINK_FAULT_RX_WIDTH 1 #define MC_CMD_GET_LINK_OUT_LINK_FAULT_TX_LBN 7 #define MC_CMD_GET_LINK_OUT_LINK_FAULT_TX_WIDTH 1 /* This returns the negotiated flow control value. */ #define MC_CMD_GET_LINK_OUT_FCNTL_OFST 20 /* Enum values, see field(s): */ /* MC_CMD_SET_MAC/MC_CMD_SET_MAC_IN/FCNTL */ #define MC_CMD_GET_LINK_OUT_MAC_FAULT_OFST 24 #define MC_CMD_MAC_FAULT_XGMII_LOCAL_LBN 0 #define MC_CMD_MAC_FAULT_XGMII_LOCAL_WIDTH 1 #define MC_CMD_MAC_FAULT_XGMII_REMOTE_LBN 1 #define MC_CMD_MAC_FAULT_XGMII_REMOTE_WIDTH 1 #define MC_CMD_MAC_FAULT_SGMII_REMOTE_LBN 2 #define MC_CMD_MAC_FAULT_SGMII_REMOTE_WIDTH 1 #define MC_CMD_MAC_FAULT_PENDING_RECONFIG_LBN 3 #define MC_CMD_MAC_FAULT_PENDING_RECONFIG_WIDTH 1 /***********************************/ /* MC_CMD_SET_LINK * Write the unified MAC/PHY link configuration. Locks required: None. Return * code: 0, EINVAL, ETIME */ #define MC_CMD_SET_LINK 0x2a #undef MC_CMD_0x2a_PRIVILEGE_CTG #define MC_CMD_0x2a_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_SET_LINK_IN msgrequest */ #define MC_CMD_SET_LINK_IN_LEN 16 /* ??? */ #define MC_CMD_SET_LINK_IN_CAP_OFST 0 /* Flags */ #define MC_CMD_SET_LINK_IN_FLAGS_OFST 4 #define MC_CMD_SET_LINK_IN_LOWPOWER_LBN 0 #define MC_CMD_SET_LINK_IN_LOWPOWER_WIDTH 1 #define MC_CMD_SET_LINK_IN_POWEROFF_LBN 1 #define MC_CMD_SET_LINK_IN_POWEROFF_WIDTH 1 #define MC_CMD_SET_LINK_IN_TXDIS_LBN 2 #define MC_CMD_SET_LINK_IN_TXDIS_WIDTH 1 /* Loopback mode. */ #define MC_CMD_SET_LINK_IN_LOOPBACK_MODE_OFST 8 /* Enum values, see field(s): */ /* MC_CMD_GET_LOOPBACK_MODES/MC_CMD_GET_LOOPBACK_MODES_OUT/100M */ /* A loopback speed of "0" is supported, and means (choose any available * speed). */ #define MC_CMD_SET_LINK_IN_LOOPBACK_SPEED_OFST 12 /* MC_CMD_SET_LINK_OUT msgresponse */ #define MC_CMD_SET_LINK_OUT_LEN 0 /***********************************/ /* MC_CMD_SET_ID_LED * Set identification LED state. Locks required: None. Return code: 0, EINVAL */ #define MC_CMD_SET_ID_LED 0x2b #undef MC_CMD_0x2b_PRIVILEGE_CTG #define MC_CMD_0x2b_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_SET_ID_LED_IN msgrequest */ #define MC_CMD_SET_ID_LED_IN_LEN 4 /* Set LED state. */ #define MC_CMD_SET_ID_LED_IN_STATE_OFST 0 #define MC_CMD_LED_OFF 0x0 /* enum */ #define MC_CMD_LED_ON 0x1 /* enum */ #define MC_CMD_LED_DEFAULT 0x2 /* enum */ /* MC_CMD_SET_ID_LED_OUT msgresponse */ #define MC_CMD_SET_ID_LED_OUT_LEN 0 /***********************************/ /* MC_CMD_SET_MAC * Set MAC configuration. Locks required: None. Return code: 0, EINVAL */ #define MC_CMD_SET_MAC 0x2c #undef MC_CMD_0x2c_PRIVILEGE_CTG -#define MC_CMD_0x2c_PRIVILEGE_CTG SRIOV_CTG_LINK +#define MC_CMD_0x2c_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_SET_MAC_IN msgrequest */ #define MC_CMD_SET_MAC_IN_LEN 28 /* The MTU is the MTU programmed directly into the XMAC/GMAC (inclusive of * EtherII, VLAN, bug16011 padding). */ #define MC_CMD_SET_MAC_IN_MTU_OFST 0 #define MC_CMD_SET_MAC_IN_DRAIN_OFST 4 #define MC_CMD_SET_MAC_IN_ADDR_OFST 8 #define MC_CMD_SET_MAC_IN_ADDR_LEN 8 #define MC_CMD_SET_MAC_IN_ADDR_LO_OFST 8 #define MC_CMD_SET_MAC_IN_ADDR_HI_OFST 12 #define MC_CMD_SET_MAC_IN_REJECT_OFST 16 #define MC_CMD_SET_MAC_IN_REJECT_UNCST_LBN 0 #define MC_CMD_SET_MAC_IN_REJECT_UNCST_WIDTH 1 #define MC_CMD_SET_MAC_IN_REJECT_BRDCST_LBN 1 #define MC_CMD_SET_MAC_IN_REJECT_BRDCST_WIDTH 1 #define MC_CMD_SET_MAC_IN_FCNTL_OFST 20 /* enum: Flow control is off. */ #define MC_CMD_FCNTL_OFF 0x0 /* enum: Respond to flow control. */ #define MC_CMD_FCNTL_RESPOND 0x1 /* enum: Respond to and Issue flow control. */ #define MC_CMD_FCNTL_BIDIR 0x2 /* enum: Auto neg flow control. */ #define MC_CMD_FCNTL_AUTO 0x3 /* enum: Priority flow control (eftest builds only). */ #define MC_CMD_FCNTL_QBB 0x4 /* enum: Issue flow control. */ #define MC_CMD_FCNTL_GENERATE 0x5 #define MC_CMD_SET_MAC_IN_FLAGS_OFST 24 #define MC_CMD_SET_MAC_IN_FLAG_INCLUDE_FCS_LBN 0 #define MC_CMD_SET_MAC_IN_FLAG_INCLUDE_FCS_WIDTH 1 /* MC_CMD_SET_MAC_EXT_IN msgrequest */ #define MC_CMD_SET_MAC_EXT_IN_LEN 32 /* The MTU is the MTU programmed directly into the XMAC/GMAC (inclusive of * EtherII, VLAN, bug16011 padding). */ #define MC_CMD_SET_MAC_EXT_IN_MTU_OFST 0 #define MC_CMD_SET_MAC_EXT_IN_DRAIN_OFST 4 #define MC_CMD_SET_MAC_EXT_IN_ADDR_OFST 8 #define MC_CMD_SET_MAC_EXT_IN_ADDR_LEN 8 #define MC_CMD_SET_MAC_EXT_IN_ADDR_LO_OFST 8 #define MC_CMD_SET_MAC_EXT_IN_ADDR_HI_OFST 12 #define MC_CMD_SET_MAC_EXT_IN_REJECT_OFST 16 #define MC_CMD_SET_MAC_EXT_IN_REJECT_UNCST_LBN 0 #define MC_CMD_SET_MAC_EXT_IN_REJECT_UNCST_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_REJECT_BRDCST_LBN 1 #define MC_CMD_SET_MAC_EXT_IN_REJECT_BRDCST_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_FCNTL_OFST 20 /* enum: Flow control is off. */ /* MC_CMD_FCNTL_OFF 0x0 */ /* enum: Respond to flow control. */ /* MC_CMD_FCNTL_RESPOND 0x1 */ /* enum: Respond to and Issue flow control. */ /* MC_CMD_FCNTL_BIDIR 0x2 */ /* enum: Auto neg flow control. */ /* MC_CMD_FCNTL_AUTO 0x3 */ /* enum: Priority flow control (eftest builds only). */ /* MC_CMD_FCNTL_QBB 0x4 */ /* enum: Issue flow control. */ /* MC_CMD_FCNTL_GENERATE 0x5 */ #define MC_CMD_SET_MAC_EXT_IN_FLAGS_OFST 24 #define MC_CMD_SET_MAC_EXT_IN_FLAG_INCLUDE_FCS_LBN 0 #define MC_CMD_SET_MAC_EXT_IN_FLAG_INCLUDE_FCS_WIDTH 1 /* Select which parameters to configure. A parameter will only be modified if * the corresponding control flag is set. If SET_MAC_ENHANCED is not set in * capabilities then this field is ignored (and all flags are assumed to be * set). */ #define MC_CMD_SET_MAC_EXT_IN_CONTROL_OFST 28 #define MC_CMD_SET_MAC_EXT_IN_CFG_MTU_LBN 0 #define MC_CMD_SET_MAC_EXT_IN_CFG_MTU_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_CFG_DRAIN_LBN 1 #define MC_CMD_SET_MAC_EXT_IN_CFG_DRAIN_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_CFG_REJECT_LBN 2 #define MC_CMD_SET_MAC_EXT_IN_CFG_REJECT_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_CFG_FCNTL_LBN 3 #define MC_CMD_SET_MAC_EXT_IN_CFG_FCNTL_WIDTH 1 #define MC_CMD_SET_MAC_EXT_IN_CFG_FCS_LBN 4 #define MC_CMD_SET_MAC_EXT_IN_CFG_FCS_WIDTH 1 /* MC_CMD_SET_MAC_OUT msgresponse */ #define MC_CMD_SET_MAC_OUT_LEN 0 /***********************************/ /* MC_CMD_PHY_STATS * Get generic PHY statistics. This call returns the statistics for a generic * PHY in a sparse array (indexed by the enumerate). Each value is represented * by a 32bit number. If the DMA_ADDR is 0, then no DMA is performed, and the * statistics may be read from the message response. If DMA_ADDR != 0, then the * statistics are dmad to that (page-aligned location). Locks required: None. * Returns: 0, ETIME */ #define MC_CMD_PHY_STATS 0x2d #undef MC_CMD_0x2d_PRIVILEGE_CTG #define MC_CMD_0x2d_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_PHY_STATS_IN msgrequest */ #define MC_CMD_PHY_STATS_IN_LEN 8 /* ??? */ #define MC_CMD_PHY_STATS_IN_DMA_ADDR_OFST 0 #define MC_CMD_PHY_STATS_IN_DMA_ADDR_LEN 8 #define MC_CMD_PHY_STATS_IN_DMA_ADDR_LO_OFST 0 #define MC_CMD_PHY_STATS_IN_DMA_ADDR_HI_OFST 4 /* MC_CMD_PHY_STATS_OUT_DMA msgresponse */ #define MC_CMD_PHY_STATS_OUT_DMA_LEN 0 /* MC_CMD_PHY_STATS_OUT_NO_DMA msgresponse */ #define MC_CMD_PHY_STATS_OUT_NO_DMA_LEN (((MC_CMD_PHY_NSTATS*32))>>3) #define MC_CMD_PHY_STATS_OUT_NO_DMA_STATISTICS_OFST 0 #define MC_CMD_PHY_STATS_OUT_NO_DMA_STATISTICS_LEN 4 #define MC_CMD_PHY_STATS_OUT_NO_DMA_STATISTICS_NUM MC_CMD_PHY_NSTATS /* enum: OUI. */ #define MC_CMD_OUI 0x0 /* enum: PMA-PMD Link Up. */ #define MC_CMD_PMA_PMD_LINK_UP 0x1 /* enum: PMA-PMD RX Fault. */ #define MC_CMD_PMA_PMD_RX_FAULT 0x2 /* enum: PMA-PMD TX Fault. */ #define MC_CMD_PMA_PMD_TX_FAULT 0x3 /* enum: PMA-PMD Signal */ #define MC_CMD_PMA_PMD_SIGNAL 0x4 /* enum: PMA-PMD SNR A. */ #define MC_CMD_PMA_PMD_SNR_A 0x5 /* enum: PMA-PMD SNR B. */ #define MC_CMD_PMA_PMD_SNR_B 0x6 /* enum: PMA-PMD SNR C. */ #define MC_CMD_PMA_PMD_SNR_C 0x7 /* enum: PMA-PMD SNR D. */ #define MC_CMD_PMA_PMD_SNR_D 0x8 /* enum: PCS Link Up. */ #define MC_CMD_PCS_LINK_UP 0x9 /* enum: PCS RX Fault. */ #define MC_CMD_PCS_RX_FAULT 0xa /* enum: PCS TX Fault. */ #define MC_CMD_PCS_TX_FAULT 0xb /* enum: PCS BER. */ #define MC_CMD_PCS_BER 0xc /* enum: PCS Block Errors. */ #define MC_CMD_PCS_BLOCK_ERRORS 0xd /* enum: PhyXS Link Up. */ #define MC_CMD_PHYXS_LINK_UP 0xe /* enum: PhyXS RX Fault. */ #define MC_CMD_PHYXS_RX_FAULT 0xf /* enum: PhyXS TX Fault. */ #define MC_CMD_PHYXS_TX_FAULT 0x10 /* enum: PhyXS Align. */ #define MC_CMD_PHYXS_ALIGN 0x11 /* enum: PhyXS Sync. */ #define MC_CMD_PHYXS_SYNC 0x12 /* enum: AN link-up. */ #define MC_CMD_AN_LINK_UP 0x13 /* enum: AN Complete. */ #define MC_CMD_AN_COMPLETE 0x14 /* enum: AN 10GBaseT Status. */ #define MC_CMD_AN_10GBT_STATUS 0x15 /* enum: Clause 22 Link-Up. */ #define MC_CMD_CL22_LINK_UP 0x16 /* enum: (Last entry) */ #define MC_CMD_PHY_NSTATS 0x17 /***********************************/ /* MC_CMD_MAC_STATS * Get generic MAC statistics. This call returns unified statistics maintained * by the MC as it switches between the GMAC and XMAC. The MC will write out * all supported stats. The driver should zero initialise the buffer to * guarantee consistent results. If the DMA_ADDR is 0, then no DMA is * performed, and the statistics may be read from the message response. If * DMA_ADDR != 0, then the statistics are dmad to that (page-aligned location). * Locks required: None. The PERIODIC_CLEAR option is not used and now has no * effect. Returns: 0, ETIME */ #define MC_CMD_MAC_STATS 0x2e #undef MC_CMD_0x2e_PRIVILEGE_CTG #define MC_CMD_0x2e_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_MAC_STATS_IN msgrequest */ #define MC_CMD_MAC_STATS_IN_LEN 20 /* ??? */ #define MC_CMD_MAC_STATS_IN_DMA_ADDR_OFST 0 #define MC_CMD_MAC_STATS_IN_DMA_ADDR_LEN 8 #define MC_CMD_MAC_STATS_IN_DMA_ADDR_LO_OFST 0 #define MC_CMD_MAC_STATS_IN_DMA_ADDR_HI_OFST 4 #define MC_CMD_MAC_STATS_IN_CMD_OFST 8 #define MC_CMD_MAC_STATS_IN_DMA_LBN 0 #define MC_CMD_MAC_STATS_IN_DMA_WIDTH 1 #define MC_CMD_MAC_STATS_IN_CLEAR_LBN 1 #define MC_CMD_MAC_STATS_IN_CLEAR_WIDTH 1 #define MC_CMD_MAC_STATS_IN_PERIODIC_CHANGE_LBN 2 #define MC_CMD_MAC_STATS_IN_PERIODIC_CHANGE_WIDTH 1 #define MC_CMD_MAC_STATS_IN_PERIODIC_ENABLE_LBN 3 #define MC_CMD_MAC_STATS_IN_PERIODIC_ENABLE_WIDTH 1 #define MC_CMD_MAC_STATS_IN_PERIODIC_CLEAR_LBN 4 #define MC_CMD_MAC_STATS_IN_PERIODIC_CLEAR_WIDTH 1 #define MC_CMD_MAC_STATS_IN_PERIODIC_NOEVENT_LBN 5 #define MC_CMD_MAC_STATS_IN_PERIODIC_NOEVENT_WIDTH 1 #define MC_CMD_MAC_STATS_IN_PERIOD_MS_LBN 16 #define MC_CMD_MAC_STATS_IN_PERIOD_MS_WIDTH 16 #define MC_CMD_MAC_STATS_IN_DMA_LEN_OFST 12 /* port id so vadapter stats can be provided */ #define MC_CMD_MAC_STATS_IN_PORT_ID_OFST 16 /* MC_CMD_MAC_STATS_OUT_DMA msgresponse */ #define MC_CMD_MAC_STATS_OUT_DMA_LEN 0 /* MC_CMD_MAC_STATS_OUT_NO_DMA msgresponse */ #define MC_CMD_MAC_STATS_OUT_NO_DMA_LEN (((MC_CMD_MAC_NSTATS*64))>>3) #define MC_CMD_MAC_STATS_OUT_NO_DMA_STATISTICS_OFST 0 #define MC_CMD_MAC_STATS_OUT_NO_DMA_STATISTICS_LEN 8 #define MC_CMD_MAC_STATS_OUT_NO_DMA_STATISTICS_LO_OFST 0 #define MC_CMD_MAC_STATS_OUT_NO_DMA_STATISTICS_HI_OFST 4 #define MC_CMD_MAC_STATS_OUT_NO_DMA_STATISTICS_NUM MC_CMD_MAC_NSTATS #define MC_CMD_MAC_GENERATION_START 0x0 /* enum */ #define MC_CMD_MAC_DMABUF_START 0x1 /* enum */ #define MC_CMD_MAC_TX_PKTS 0x1 /* enum */ #define MC_CMD_MAC_TX_PAUSE_PKTS 0x2 /* enum */ #define MC_CMD_MAC_TX_CONTROL_PKTS 0x3 /* enum */ #define MC_CMD_MAC_TX_UNICAST_PKTS 0x4 /* enum */ #define MC_CMD_MAC_TX_MULTICAST_PKTS 0x5 /* enum */ #define MC_CMD_MAC_TX_BROADCAST_PKTS 0x6 /* enum */ #define MC_CMD_MAC_TX_BYTES 0x7 /* enum */ #define MC_CMD_MAC_TX_BAD_BYTES 0x8 /* enum */ #define MC_CMD_MAC_TX_LT64_PKTS 0x9 /* enum */ #define MC_CMD_MAC_TX_64_PKTS 0xa /* enum */ #define MC_CMD_MAC_TX_65_TO_127_PKTS 0xb /* enum */ #define MC_CMD_MAC_TX_128_TO_255_PKTS 0xc /* enum */ #define MC_CMD_MAC_TX_256_TO_511_PKTS 0xd /* enum */ #define MC_CMD_MAC_TX_512_TO_1023_PKTS 0xe /* enum */ #define MC_CMD_MAC_TX_1024_TO_15XX_PKTS 0xf /* enum */ #define MC_CMD_MAC_TX_15XX_TO_JUMBO_PKTS 0x10 /* enum */ #define MC_CMD_MAC_TX_GTJUMBO_PKTS 0x11 /* enum */ #define MC_CMD_MAC_TX_BAD_FCS_PKTS 0x12 /* enum */ #define MC_CMD_MAC_TX_SINGLE_COLLISION_PKTS 0x13 /* enum */ #define MC_CMD_MAC_TX_MULTIPLE_COLLISION_PKTS 0x14 /* enum */ #define MC_CMD_MAC_TX_EXCESSIVE_COLLISION_PKTS 0x15 /* enum */ #define MC_CMD_MAC_TX_LATE_COLLISION_PKTS 0x16 /* enum */ #define MC_CMD_MAC_TX_DEFERRED_PKTS 0x17 /* enum */ #define MC_CMD_MAC_TX_EXCESSIVE_DEFERRED_PKTS 0x18 /* enum */ #define MC_CMD_MAC_TX_NON_TCPUDP_PKTS 0x19 /* enum */ #define MC_CMD_MAC_TX_MAC_SRC_ERR_PKTS 0x1a /* enum */ #define MC_CMD_MAC_TX_IP_SRC_ERR_PKTS 0x1b /* enum */ #define MC_CMD_MAC_RX_PKTS 0x1c /* enum */ #define MC_CMD_MAC_RX_PAUSE_PKTS 0x1d /* enum */ #define MC_CMD_MAC_RX_GOOD_PKTS 0x1e /* enum */ #define MC_CMD_MAC_RX_CONTROL_PKTS 0x1f /* enum */ #define MC_CMD_MAC_RX_UNICAST_PKTS 0x20 /* enum */ #define MC_CMD_MAC_RX_MULTICAST_PKTS 0x21 /* enum */ #define MC_CMD_MAC_RX_BROADCAST_PKTS 0x22 /* enum */ #define MC_CMD_MAC_RX_BYTES 0x23 /* enum */ #define MC_CMD_MAC_RX_BAD_BYTES 0x24 /* enum */ #define MC_CMD_MAC_RX_64_PKTS 0x25 /* enum */ #define MC_CMD_MAC_RX_65_TO_127_PKTS 0x26 /* enum */ #define MC_CMD_MAC_RX_128_TO_255_PKTS 0x27 /* enum */ #define MC_CMD_MAC_RX_256_TO_511_PKTS 0x28 /* enum */ #define MC_CMD_MAC_RX_512_TO_1023_PKTS 0x29 /* enum */ #define MC_CMD_MAC_RX_1024_TO_15XX_PKTS 0x2a /* enum */ #define MC_CMD_MAC_RX_15XX_TO_JUMBO_PKTS 0x2b /* enum */ #define MC_CMD_MAC_RX_GTJUMBO_PKTS 0x2c /* enum */ #define MC_CMD_MAC_RX_UNDERSIZE_PKTS 0x2d /* enum */ #define MC_CMD_MAC_RX_BAD_FCS_PKTS 0x2e /* enum */ #define MC_CMD_MAC_RX_OVERFLOW_PKTS 0x2f /* enum */ #define MC_CMD_MAC_RX_FALSE_CARRIER_PKTS 0x30 /* enum */ #define MC_CMD_MAC_RX_SYMBOL_ERROR_PKTS 0x31 /* enum */ #define MC_CMD_MAC_RX_ALIGN_ERROR_PKTS 0x32 /* enum */ #define MC_CMD_MAC_RX_LENGTH_ERROR_PKTS 0x33 /* enum */ #define MC_CMD_MAC_RX_INTERNAL_ERROR_PKTS 0x34 /* enum */ #define MC_CMD_MAC_RX_JABBER_PKTS 0x35 /* enum */ #define MC_CMD_MAC_RX_NODESC_DROPS 0x36 /* enum */ #define MC_CMD_MAC_RX_LANES01_CHAR_ERR 0x37 /* enum */ #define MC_CMD_MAC_RX_LANES23_CHAR_ERR 0x38 /* enum */ #define MC_CMD_MAC_RX_LANES01_DISP_ERR 0x39 /* enum */ #define MC_CMD_MAC_RX_LANES23_DISP_ERR 0x3a /* enum */ #define MC_CMD_MAC_RX_MATCH_FAULT 0x3b /* enum */ /* enum: PM trunc_bb_overflow counter. Valid for EF10 with PM_AND_RXDP_COUNTERS * capability only. */ #define MC_CMD_MAC_PM_TRUNC_BB_OVERFLOW 0x3c /* enum: PM discard_bb_overflow counter. Valid for EF10 with * PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_PM_DISCARD_BB_OVERFLOW 0x3d /* enum: PM trunc_vfifo_full counter. Valid for EF10 with PM_AND_RXDP_COUNTERS * capability only. */ #define MC_CMD_MAC_PM_TRUNC_VFIFO_FULL 0x3e /* enum: PM discard_vfifo_full counter. Valid for EF10 with * PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_PM_DISCARD_VFIFO_FULL 0x3f /* enum: PM trunc_qbb counter. Valid for EF10 with PM_AND_RXDP_COUNTERS * capability only. */ #define MC_CMD_MAC_PM_TRUNC_QBB 0x40 /* enum: PM discard_qbb counter. Valid for EF10 with PM_AND_RXDP_COUNTERS * capability only. */ #define MC_CMD_MAC_PM_DISCARD_QBB 0x41 /* enum: PM discard_mapping counter. Valid for EF10 with PM_AND_RXDP_COUNTERS * capability only. */ #define MC_CMD_MAC_PM_DISCARD_MAPPING 0x42 /* enum: RXDP counter: Number of packets dropped due to the queue being * disabled. Valid for EF10 with PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_RXDP_Q_DISABLED_PKTS 0x43 /* enum: RXDP counter: Number of packets dropped by the DICPU. Valid for EF10 * with PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_RXDP_DI_DROPPED_PKTS 0x45 /* enum: RXDP counter: Number of non-host packets. Valid for EF10 with * PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_RXDP_STREAMING_PKTS 0x46 /* enum: RXDP counter: Number of times an hlb descriptor fetch was performed. * Valid for EF10 with PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_RXDP_HLB_FETCH_CONDITIONS 0x47 /* enum: RXDP counter: Number of times the DPCPU waited for an existing * descriptor fetch. Valid for EF10 with PM_AND_RXDP_COUNTERS capability only. */ #define MC_CMD_MAC_RXDP_HLB_WAIT_CONDITIONS 0x48 #define MC_CMD_MAC_VADAPTER_RX_DMABUF_START 0x4c /* enum */ #define MC_CMD_MAC_VADAPTER_RX_UNICAST_PACKETS 0x4c /* enum */ #define MC_CMD_MAC_VADAPTER_RX_UNICAST_BYTES 0x4d /* enum */ #define MC_CMD_MAC_VADAPTER_RX_MULTICAST_PACKETS 0x4e /* enum */ #define MC_CMD_MAC_VADAPTER_RX_MULTICAST_BYTES 0x4f /* enum */ #define MC_CMD_MAC_VADAPTER_RX_BROADCAST_PACKETS 0x50 /* enum */ #define MC_CMD_MAC_VADAPTER_RX_BROADCAST_BYTES 0x51 /* enum */ #define MC_CMD_MAC_VADAPTER_RX_BAD_PACKETS 0x52 /* enum */ #define MC_CMD_MAC_VADAPTER_RX_BAD_BYTES 0x53 /* enum */ #define MC_CMD_MAC_VADAPTER_RX_OVERFLOW 0x54 /* enum */ #define MC_CMD_MAC_VADAPTER_TX_DMABUF_START 0x57 /* enum */ #define MC_CMD_MAC_VADAPTER_TX_UNICAST_PACKETS 0x57 /* enum */ #define MC_CMD_MAC_VADAPTER_TX_UNICAST_BYTES 0x58 /* enum */ #define MC_CMD_MAC_VADAPTER_TX_MULTICAST_PACKETS 0x59 /* enum */ #define MC_CMD_MAC_VADAPTER_TX_MULTICAST_BYTES 0x5a /* enum */ #define MC_CMD_MAC_VADAPTER_TX_BROADCAST_PACKETS 0x5b /* enum */ #define MC_CMD_MAC_VADAPTER_TX_BROADCAST_BYTES 0x5c /* enum */ #define MC_CMD_MAC_VADAPTER_TX_BAD_PACKETS 0x5d /* enum */ #define MC_CMD_MAC_VADAPTER_TX_BAD_BYTES 0x5e /* enum */ #define MC_CMD_MAC_VADAPTER_TX_OVERFLOW 0x5f /* enum */ /* enum: Start of GMAC stats buffer space, for Siena only. */ #define MC_CMD_GMAC_DMABUF_START 0x40 /* enum: End of GMAC stats buffer space, for Siena only. */ #define MC_CMD_GMAC_DMABUF_END 0x5f #define MC_CMD_MAC_GENERATION_END 0x60 /* enum */ #define MC_CMD_MAC_NSTATS 0x61 /* enum */ /***********************************/ /* MC_CMD_SRIOV * to be documented */ #define MC_CMD_SRIOV 0x30 /* MC_CMD_SRIOV_IN msgrequest */ #define MC_CMD_SRIOV_IN_LEN 12 #define MC_CMD_SRIOV_IN_ENABLE_OFST 0 #define MC_CMD_SRIOV_IN_VI_BASE_OFST 4 #define MC_CMD_SRIOV_IN_VF_COUNT_OFST 8 /* MC_CMD_SRIOV_OUT msgresponse */ #define MC_CMD_SRIOV_OUT_LEN 8 #define MC_CMD_SRIOV_OUT_VI_SCALE_OFST 0 #define MC_CMD_SRIOV_OUT_VF_TOTAL_OFST 4 /* MC_CMD_MEMCPY_RECORD_TYPEDEF structuredef */ #define MC_CMD_MEMCPY_RECORD_TYPEDEF_LEN 32 /* this is only used for the first record */ #define MC_CMD_MEMCPY_RECORD_TYPEDEF_NUM_RECORDS_OFST 0 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_NUM_RECORDS_LBN 0 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_NUM_RECORDS_WIDTH 32 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_RID_OFST 4 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_RID_LBN 32 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_RID_WIDTH 32 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_OFST 8 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_LEN 8 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO_OFST 8 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI_OFST 12 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_LBN 64 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_TO_ADDR_WIDTH 64 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_RID_OFST 16 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE 0x100 /* enum */ #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_RID_LBN 128 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_RID_WIDTH 32 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_OFST 20 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LEN 8 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO_OFST 20 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI_OFST 24 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LBN 160 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_FROM_ADDR_WIDTH 64 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_LENGTH_OFST 28 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_LENGTH_LBN 224 #define MC_CMD_MEMCPY_RECORD_TYPEDEF_LENGTH_WIDTH 32 /***********************************/ /* MC_CMD_MEMCPY * DMA write data into (Rid,Addr), either by dma reading (Rid,Addr), or by data * embedded directly in the command. * * A common pattern is for a client to use generation counts to signal a dma * update of a datastructure. To facilitate this, this MCDI operation can * contain multiple requests which are executed in strict order. Requests take * the form of duplicating the entire MCDI request continuously (including the * requests record, which is ignored in all but the first structure) * * The source data can either come from a DMA from the host, or it can be * embedded within the request directly, thereby eliminating a DMA read. To * indicate this, the client sets FROM_RID=%RID_INLINE, ADDR_HI=0, and * ADDR_LO=offset, and inserts the data at %offset from the start of the * payload. It's the callers responsibility to ensure that the embedded data * doesn't overlap the records. * * Returns: 0, EINVAL (invalid RID) */ #define MC_CMD_MEMCPY 0x31 /* MC_CMD_MEMCPY_IN msgrequest */ #define MC_CMD_MEMCPY_IN_LENMIN 32 #define MC_CMD_MEMCPY_IN_LENMAX 224 #define MC_CMD_MEMCPY_IN_LEN(num) (0+32*(num)) /* see MC_CMD_MEMCPY_RECORD_TYPEDEF */ #define MC_CMD_MEMCPY_IN_RECORD_OFST 0 #define MC_CMD_MEMCPY_IN_RECORD_LEN 32 #define MC_CMD_MEMCPY_IN_RECORD_MINNUM 1 #define MC_CMD_MEMCPY_IN_RECORD_MAXNUM 7 /* MC_CMD_MEMCPY_OUT msgresponse */ #define MC_CMD_MEMCPY_OUT_LEN 0 /***********************************/ /* MC_CMD_WOL_FILTER_SET * Set a WoL filter. */ #define MC_CMD_WOL_FILTER_SET 0x32 #undef MC_CMD_0x32_PRIVILEGE_CTG #define MC_CMD_0x32_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_WOL_FILTER_SET_IN msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_LEN 192 #define MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 #define MC_CMD_FILTER_MODE_SIMPLE 0x0 /* enum */ #define MC_CMD_FILTER_MODE_STRUCTURED 0xffffffff /* enum */ /* A type value of 1 is unused. */ #define MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 /* enum: Magic */ #define MC_CMD_WOL_TYPE_MAGIC 0x0 /* enum: MS Windows Magic */ #define MC_CMD_WOL_TYPE_WIN_MAGIC 0x2 /* enum: IPv4 Syn */ #define MC_CMD_WOL_TYPE_IPV4_SYN 0x3 /* enum: IPv6 Syn */ #define MC_CMD_WOL_TYPE_IPV6_SYN 0x4 /* enum: Bitmap */ #define MC_CMD_WOL_TYPE_BITMAP 0x5 /* enum: Link */ #define MC_CMD_WOL_TYPE_LINK 0x6 /* enum: (Above this for future use) */ #define MC_CMD_WOL_TYPE_MAX 0x7 #define MC_CMD_WOL_FILTER_SET_IN_DATA_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_DATA_LEN 4 #define MC_CMD_WOL_FILTER_SET_IN_DATA_NUM 46 /* MC_CMD_WOL_FILTER_SET_IN_MAGIC msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_MAGIC_LEN 16 /* MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 */ /* MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 */ #define MC_CMD_WOL_FILTER_SET_IN_MAGIC_MAC_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_MAGIC_MAC_LEN 8 #define MC_CMD_WOL_FILTER_SET_IN_MAGIC_MAC_LO_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_MAGIC_MAC_HI_OFST 12 /* MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_LEN 20 /* MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 */ /* MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 */ #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_SRC_IP_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_DST_IP_OFST 12 #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_SRC_PORT_OFST 16 #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_SRC_PORT_LEN 2 #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_DST_PORT_OFST 18 #define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_DST_PORT_LEN 2 /* MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_LEN 44 /* MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 */ /* MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 */ #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_IP_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_IP_LEN 16 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_IP_OFST 24 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_IP_LEN 16 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_PORT_OFST 40 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_PORT_LEN 2 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_PORT_OFST 42 #define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_PORT_LEN 2 /* MC_CMD_WOL_FILTER_SET_IN_BITMAP msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LEN 187 /* MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 */ /* MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 */ #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_MASK_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_MASK_LEN 48 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_BITMAP_OFST 56 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_BITMAP_LEN 128 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LEN_OFST 184 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LEN_LEN 1 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER3_OFST 185 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER3_LEN 1 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER4_OFST 186 #define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER4_LEN 1 /* MC_CMD_WOL_FILTER_SET_IN_LINK msgrequest */ #define MC_CMD_WOL_FILTER_SET_IN_LINK_LEN 12 /* MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 */ /* MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 */ #define MC_CMD_WOL_FILTER_SET_IN_LINK_MASK_OFST 8 #define MC_CMD_WOL_FILTER_SET_IN_LINK_UP_LBN 0 #define MC_CMD_WOL_FILTER_SET_IN_LINK_UP_WIDTH 1 #define MC_CMD_WOL_FILTER_SET_IN_LINK_DOWN_LBN 1 #define MC_CMD_WOL_FILTER_SET_IN_LINK_DOWN_WIDTH 1 /* MC_CMD_WOL_FILTER_SET_OUT msgresponse */ #define MC_CMD_WOL_FILTER_SET_OUT_LEN 4 #define MC_CMD_WOL_FILTER_SET_OUT_FILTER_ID_OFST 0 /***********************************/ /* MC_CMD_WOL_FILTER_REMOVE * Remove a WoL filter. Locks required: None. Returns: 0, EINVAL, ENOSYS */ #define MC_CMD_WOL_FILTER_REMOVE 0x33 #undef MC_CMD_0x33_PRIVILEGE_CTG #define MC_CMD_0x33_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_WOL_FILTER_REMOVE_IN msgrequest */ #define MC_CMD_WOL_FILTER_REMOVE_IN_LEN 4 #define MC_CMD_WOL_FILTER_REMOVE_IN_FILTER_ID_OFST 0 /* MC_CMD_WOL_FILTER_REMOVE_OUT msgresponse */ #define MC_CMD_WOL_FILTER_REMOVE_OUT_LEN 0 /***********************************/ /* MC_CMD_WOL_FILTER_RESET * Reset (i.e. remove all) WoL filters. Locks required: None. Returns: 0, * ENOSYS */ #define MC_CMD_WOL_FILTER_RESET 0x34 #undef MC_CMD_0x34_PRIVILEGE_CTG #define MC_CMD_0x34_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_WOL_FILTER_RESET_IN msgrequest */ #define MC_CMD_WOL_FILTER_RESET_IN_LEN 4 #define MC_CMD_WOL_FILTER_RESET_IN_MASK_OFST 0 #define MC_CMD_WOL_FILTER_RESET_IN_WAKE_FILTERS 0x1 /* enum */ #define MC_CMD_WOL_FILTER_RESET_IN_LIGHTSOUT_OFFLOADS 0x2 /* enum */ /* MC_CMD_WOL_FILTER_RESET_OUT msgresponse */ #define MC_CMD_WOL_FILTER_RESET_OUT_LEN 0 /***********************************/ /* MC_CMD_SET_MCAST_HASH * Set the MCAST hash value without otherwise reconfiguring the MAC */ #define MC_CMD_SET_MCAST_HASH 0x35 /* MC_CMD_SET_MCAST_HASH_IN msgrequest */ #define MC_CMD_SET_MCAST_HASH_IN_LEN 32 #define MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST 0 #define MC_CMD_SET_MCAST_HASH_IN_HASH0_LEN 16 #define MC_CMD_SET_MCAST_HASH_IN_HASH1_OFST 16 #define MC_CMD_SET_MCAST_HASH_IN_HASH1_LEN 16 /* MC_CMD_SET_MCAST_HASH_OUT msgresponse */ #define MC_CMD_SET_MCAST_HASH_OUT_LEN 0 /***********************************/ /* MC_CMD_NVRAM_TYPES * Return bitfield indicating available types of virtual NVRAM partitions. * Locks required: none. Returns: 0 */ #define MC_CMD_NVRAM_TYPES 0x36 #undef MC_CMD_0x36_PRIVILEGE_CTG #define MC_CMD_0x36_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_TYPES_IN msgrequest */ #define MC_CMD_NVRAM_TYPES_IN_LEN 0 /* MC_CMD_NVRAM_TYPES_OUT msgresponse */ #define MC_CMD_NVRAM_TYPES_OUT_LEN 4 /* Bit mask of supported types. */ #define MC_CMD_NVRAM_TYPES_OUT_TYPES_OFST 0 /* enum: Disabled callisto. */ #define MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO 0x0 /* enum: MC firmware. */ #define MC_CMD_NVRAM_TYPE_MC_FW 0x1 /* enum: MC backup firmware. */ #define MC_CMD_NVRAM_TYPE_MC_FW_BACKUP 0x2 /* enum: Static configuration Port0. */ #define MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0 0x3 /* enum: Static configuration Port1. */ #define MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1 0x4 /* enum: Dynamic configuration Port0. */ #define MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 0x5 /* enum: Dynamic configuration Port1. */ #define MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1 0x6 /* enum: Expansion Rom. */ #define MC_CMD_NVRAM_TYPE_EXP_ROM 0x7 /* enum: Expansion Rom Configuration Port0. */ #define MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0 0x8 /* enum: Expansion Rom Configuration Port1. */ #define MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1 0x9 /* enum: Phy Configuration Port0. */ #define MC_CMD_NVRAM_TYPE_PHY_PORT0 0xa /* enum: Phy Configuration Port1. */ #define MC_CMD_NVRAM_TYPE_PHY_PORT1 0xb /* enum: Log. */ #define MC_CMD_NVRAM_TYPE_LOG 0xc /* enum: FPGA image. */ #define MC_CMD_NVRAM_TYPE_FPGA 0xd /* enum: FPGA backup image */ #define MC_CMD_NVRAM_TYPE_FPGA_BACKUP 0xe /* enum: FC firmware. */ #define MC_CMD_NVRAM_TYPE_FC_FW 0xf /* enum: FC backup firmware. */ #define MC_CMD_NVRAM_TYPE_FC_FW_BACKUP 0x10 /* enum: CPLD image. */ #define MC_CMD_NVRAM_TYPE_CPLD 0x11 /* enum: Licensing information. */ #define MC_CMD_NVRAM_TYPE_LICENSE 0x12 /* enum: FC Log. */ #define MC_CMD_NVRAM_TYPE_FC_LOG 0x13 /* enum: Additional flash on FPGA. */ #define MC_CMD_NVRAM_TYPE_FC_EXTRA 0x14 /***********************************/ /* MC_CMD_NVRAM_INFO * Read info about a virtual NVRAM partition. Locks required: none. Returns: 0, * EINVAL (bad type). */ #define MC_CMD_NVRAM_INFO 0x37 #undef MC_CMD_0x37_PRIVILEGE_CTG #define MC_CMD_0x37_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_INFO_IN msgrequest */ #define MC_CMD_NVRAM_INFO_IN_LEN 4 #define MC_CMD_NVRAM_INFO_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ /* MC_CMD_NVRAM_INFO_OUT msgresponse */ #define MC_CMD_NVRAM_INFO_OUT_LEN 24 #define MC_CMD_NVRAM_INFO_OUT_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_INFO_OUT_SIZE_OFST 4 #define MC_CMD_NVRAM_INFO_OUT_ERASESIZE_OFST 8 #define MC_CMD_NVRAM_INFO_OUT_FLAGS_OFST 12 #define MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN 0 #define MC_CMD_NVRAM_INFO_OUT_PROTECTED_WIDTH 1 #define MC_CMD_NVRAM_INFO_OUT_TLV_LBN 1 #define MC_CMD_NVRAM_INFO_OUT_TLV_WIDTH 1 #define MC_CMD_NVRAM_INFO_OUT_A_B_LBN 7 #define MC_CMD_NVRAM_INFO_OUT_A_B_WIDTH 1 #define MC_CMD_NVRAM_INFO_OUT_PHYSDEV_OFST 16 #define MC_CMD_NVRAM_INFO_OUT_PHYSADDR_OFST 20 /* MC_CMD_NVRAM_INFO_V2_OUT msgresponse */ #define MC_CMD_NVRAM_INFO_V2_OUT_LEN 28 #define MC_CMD_NVRAM_INFO_V2_OUT_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_INFO_V2_OUT_SIZE_OFST 4 #define MC_CMD_NVRAM_INFO_V2_OUT_ERASESIZE_OFST 8 #define MC_CMD_NVRAM_INFO_V2_OUT_FLAGS_OFST 12 #define MC_CMD_NVRAM_INFO_V2_OUT_PROTECTED_LBN 0 #define MC_CMD_NVRAM_INFO_V2_OUT_PROTECTED_WIDTH 1 #define MC_CMD_NVRAM_INFO_V2_OUT_TLV_LBN 1 #define MC_CMD_NVRAM_INFO_V2_OUT_TLV_WIDTH 1 #define MC_CMD_NVRAM_INFO_V2_OUT_A_B_LBN 7 #define MC_CMD_NVRAM_INFO_V2_OUT_A_B_WIDTH 1 #define MC_CMD_NVRAM_INFO_V2_OUT_PHYSDEV_OFST 16 #define MC_CMD_NVRAM_INFO_V2_OUT_PHYSADDR_OFST 20 /* Writes must be multiples of this size. Added to support the MUM on Sorrento. */ #define MC_CMD_NVRAM_INFO_V2_OUT_WRITESIZE_OFST 24 /***********************************/ /* MC_CMD_NVRAM_UPDATE_START * Start a group of update operations on a virtual NVRAM partition. Locks * required: PHY_LOCK if type==*PHY*. Returns: 0, EINVAL (bad type), EACCES (if * PHY_LOCK required and not held). */ #define MC_CMD_NVRAM_UPDATE_START 0x38 #undef MC_CMD_0x38_PRIVILEGE_CTG #define MC_CMD_0x38_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_UPDATE_START_IN msgrequest */ #define MC_CMD_NVRAM_UPDATE_START_IN_LEN 4 #define MC_CMD_NVRAM_UPDATE_START_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ /* MC_CMD_NVRAM_UPDATE_START_OUT msgresponse */ #define MC_CMD_NVRAM_UPDATE_START_OUT_LEN 0 /***********************************/ /* MC_CMD_NVRAM_READ * Read data from a virtual NVRAM partition. Locks required: PHY_LOCK if * type==*PHY*. Returns: 0, EINVAL (bad type/offset/length), EACCES (if * PHY_LOCK required and not held) */ #define MC_CMD_NVRAM_READ 0x39 #undef MC_CMD_0x39_PRIVILEGE_CTG #define MC_CMD_0x39_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_READ_IN msgrequest */ #define MC_CMD_NVRAM_READ_IN_LEN 12 #define MC_CMD_NVRAM_READ_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_READ_IN_OFFSET_OFST 4 /* amount to read in bytes */ #define MC_CMD_NVRAM_READ_IN_LENGTH_OFST 8 +/* MC_CMD_NVRAM_READ_IN_V2 msgrequest */ +#define MC_CMD_NVRAM_READ_IN_V2_LEN 16 +#define MC_CMD_NVRAM_READ_IN_V2_TYPE_OFST 0 +/* Enum values, see field(s): */ +/* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ +#define MC_CMD_NVRAM_READ_IN_V2_OFFSET_OFST 4 +/* amount to read in bytes */ +#define MC_CMD_NVRAM_READ_IN_V2_LENGTH_OFST 8 +/* Optional control info. If a partition is stored with an A/B versioning + * scheme (i.e. in more than one physical partition in NVRAM) the host can set + * this to control which underlying physical partition is used to read data + * from. This allows it to perform a read-modify-write-verify with the write + * lock continuously held by calling NVRAM_UPDATE_START, reading the old + * contents using MODE=TARGET_CURRENT, overwriting the old partition and then + * verifying by reading with MODE=TARGET_BACKUP. + */ +#define MC_CMD_NVRAM_READ_IN_V2_MODE_OFST 12 +/* enum: Same as omitting MODE: caller sees data in current partition unless it + * holds the write lock in which case it sees data in the partition it is + * updating. + */ +#define MC_CMD_NVRAM_READ_IN_V2_DEFAULT 0x0 +/* enum: Read from the current partition of an A/B pair, even if holding the + * write lock. + */ +#define MC_CMD_NVRAM_READ_IN_V2_TARGET_CURRENT 0x1 +/* enum: Read from the non-current (i.e. to be updated) partition of an A/B + * pair + */ +#define MC_CMD_NVRAM_READ_IN_V2_TARGET_BACKUP 0x2 + /* MC_CMD_NVRAM_READ_OUT msgresponse */ #define MC_CMD_NVRAM_READ_OUT_LENMIN 1 #define MC_CMD_NVRAM_READ_OUT_LENMAX 252 #define MC_CMD_NVRAM_READ_OUT_LEN(num) (0+1*(num)) #define MC_CMD_NVRAM_READ_OUT_READ_BUFFER_OFST 0 #define MC_CMD_NVRAM_READ_OUT_READ_BUFFER_LEN 1 #define MC_CMD_NVRAM_READ_OUT_READ_BUFFER_MINNUM 1 #define MC_CMD_NVRAM_READ_OUT_READ_BUFFER_MAXNUM 252 /***********************************/ /* MC_CMD_NVRAM_WRITE * Write data to a virtual NVRAM partition. Locks required: PHY_LOCK if * type==*PHY*. Returns: 0, EINVAL (bad type/offset/length), EACCES (if * PHY_LOCK required and not held) */ #define MC_CMD_NVRAM_WRITE 0x3a #undef MC_CMD_0x3a_PRIVILEGE_CTG #define MC_CMD_0x3a_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_WRITE_IN msgrequest */ #define MC_CMD_NVRAM_WRITE_IN_LENMIN 13 #define MC_CMD_NVRAM_WRITE_IN_LENMAX 252 #define MC_CMD_NVRAM_WRITE_IN_LEN(num) (12+1*(num)) #define MC_CMD_NVRAM_WRITE_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_WRITE_IN_OFFSET_OFST 4 #define MC_CMD_NVRAM_WRITE_IN_LENGTH_OFST 8 #define MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_OFST 12 #define MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_LEN 1 #define MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_MINNUM 1 #define MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_MAXNUM 240 /* MC_CMD_NVRAM_WRITE_OUT msgresponse */ #define MC_CMD_NVRAM_WRITE_OUT_LEN 0 /***********************************/ /* MC_CMD_NVRAM_ERASE * Erase sector(s) from a virtual NVRAM partition. Locks required: PHY_LOCK if * type==*PHY*. Returns: 0, EINVAL (bad type/offset/length), EACCES (if * PHY_LOCK required and not held) */ #define MC_CMD_NVRAM_ERASE 0x3b #undef MC_CMD_0x3b_PRIVILEGE_CTG #define MC_CMD_0x3b_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_ERASE_IN msgrequest */ #define MC_CMD_NVRAM_ERASE_IN_LEN 12 #define MC_CMD_NVRAM_ERASE_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_ERASE_IN_OFFSET_OFST 4 #define MC_CMD_NVRAM_ERASE_IN_LENGTH_OFST 8 /* MC_CMD_NVRAM_ERASE_OUT msgresponse */ #define MC_CMD_NVRAM_ERASE_OUT_LEN 0 /***********************************/ /* MC_CMD_NVRAM_UPDATE_FINISH * Finish a group of update operations on a virtual NVRAM partition. Locks * required: PHY_LOCK if type==*PHY*. Returns: 0, EINVAL (bad * type/offset/length), EACCES (if PHY_LOCK required and not held) */ #define MC_CMD_NVRAM_UPDATE_FINISH 0x3c #undef MC_CMD_0x3c_PRIVILEGE_CTG #define MC_CMD_0x3c_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_UPDATE_FINISH_IN msgrequest */ #define MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN 8 #define MC_CMD_NVRAM_UPDATE_FINISH_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ #define MC_CMD_NVRAM_UPDATE_FINISH_IN_REBOOT_OFST 4 /* MC_CMD_NVRAM_UPDATE_FINISH_OUT msgresponse */ #define MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN 0 /***********************************/ /* MC_CMD_REBOOT * Reboot the MC. * * The AFTER_ASSERTION flag is intended to be used when the driver notices an * assertion failure (at which point it is expected to perform a complete tear * down and reinitialise), to allow both ports to reset the MC once in an * atomic fashion. * * Production mc firmwares are generally compiled with REBOOT_ON_ASSERT=1, * which means that they will automatically reboot out of the assertion * handler, so this is in practise an optional operation. It is still * recommended that drivers execute this to support custom firmwares with * REBOOT_ON_ASSERT=0. * * Locks required: NONE Returns: Nothing. You get back a response with ERR=1, * DATALEN=0 */ #define MC_CMD_REBOOT 0x3d #undef MC_CMD_0x3d_PRIVILEGE_CTG #define MC_CMD_0x3d_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_REBOOT_IN msgrequest */ #define MC_CMD_REBOOT_IN_LEN 4 #define MC_CMD_REBOOT_IN_FLAGS_OFST 0 #define MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION 0x1 /* enum */ /* MC_CMD_REBOOT_OUT msgresponse */ #define MC_CMD_REBOOT_OUT_LEN 0 /***********************************/ /* MC_CMD_SCHEDINFO * Request scheduler info. Locks required: NONE. Returns: An array of * (timeslice,maximum overrun), one for each thread, in ascending order of * thread address. */ #define MC_CMD_SCHEDINFO 0x3e #undef MC_CMD_0x3e_PRIVILEGE_CTG #define MC_CMD_0x3e_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SCHEDINFO_IN msgrequest */ #define MC_CMD_SCHEDINFO_IN_LEN 0 /* MC_CMD_SCHEDINFO_OUT msgresponse */ #define MC_CMD_SCHEDINFO_OUT_LENMIN 4 #define MC_CMD_SCHEDINFO_OUT_LENMAX 252 #define MC_CMD_SCHEDINFO_OUT_LEN(num) (0+4*(num)) #define MC_CMD_SCHEDINFO_OUT_DATA_OFST 0 #define MC_CMD_SCHEDINFO_OUT_DATA_LEN 4 #define MC_CMD_SCHEDINFO_OUT_DATA_MINNUM 1 #define MC_CMD_SCHEDINFO_OUT_DATA_MAXNUM 63 /***********************************/ /* MC_CMD_REBOOT_MODE * Set the mode for the next MC reboot. Locks required: NONE. Sets the reboot * mode to the specified value. Returns the old mode. */ #define MC_CMD_REBOOT_MODE 0x3f #undef MC_CMD_0x3f_PRIVILEGE_CTG #define MC_CMD_0x3f_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_REBOOT_MODE_IN msgrequest */ #define MC_CMD_REBOOT_MODE_IN_LEN 4 #define MC_CMD_REBOOT_MODE_IN_VALUE_OFST 0 /* enum: Normal. */ #define MC_CMD_REBOOT_MODE_NORMAL 0x0 /* enum: Power-on Reset. */ #define MC_CMD_REBOOT_MODE_POR 0x2 /* enum: Snapper. */ #define MC_CMD_REBOOT_MODE_SNAPPER 0x3 /* enum: snapper fake POR */ #define MC_CMD_REBOOT_MODE_SNAPPER_POR 0x4 #define MC_CMD_REBOOT_MODE_IN_FAKE_LBN 7 #define MC_CMD_REBOOT_MODE_IN_FAKE_WIDTH 1 /* MC_CMD_REBOOT_MODE_OUT msgresponse */ #define MC_CMD_REBOOT_MODE_OUT_LEN 4 #define MC_CMD_REBOOT_MODE_OUT_VALUE_OFST 0 /***********************************/ /* MC_CMD_SENSOR_INFO * Returns information about every available sensor. * * Each sensor has a single (16bit) value, and a corresponding state. The * mapping between value and state is nominally determined by the MC, but may * be implemented using up to 2 ranges per sensor. * * This call returns a mask (32bit) of the sensors that are supported by this * platform, then an array of sensor information structures, in order of sensor * type (but without gaps for unimplemented sensors). Each structure defines * the ranges for the corresponding sensor. An unused range is indicated by * equal limit values. If one range is used, a value outside that range results * in STATE_FATAL. If two ranges are used, a value outside the second range * results in STATE_FATAL while a value outside the first and inside the second * range results in STATE_WARNING. * * Sensor masks and sensor information arrays are organised into pages. For * backward compatibility, older host software can only use sensors in page 0. * Bit 32 in the sensor mask was previously unused, and is no reserved for use * as the next page flag. * * If the request does not contain a PAGE value then firmware will only return * page 0 of sensor information, with bit 31 in the sensor mask cleared. * * If the request contains a PAGE value then firmware responds with the sensor * mask and sensor information array for that page of sensors. In this case bit * 31 in the mask is set if another page exists. * * Locks required: None Returns: 0 */ #define MC_CMD_SENSOR_INFO 0x41 #undef MC_CMD_0x41_PRIVILEGE_CTG #define MC_CMD_0x41_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SENSOR_INFO_IN msgrequest */ #define MC_CMD_SENSOR_INFO_IN_LEN 0 /* MC_CMD_SENSOR_INFO_EXT_IN msgrequest */ #define MC_CMD_SENSOR_INFO_EXT_IN_LEN 4 /* Which page of sensors to report. * * Page 0 contains sensors 0 to 30 (sensor 31 is the next page bit). * * Page 1 contains sensors 32 to 62 (sensor 63 is the next page bit). etc. */ #define MC_CMD_SENSOR_INFO_EXT_IN_PAGE_OFST 0 /* MC_CMD_SENSOR_INFO_OUT msgresponse */ #define MC_CMD_SENSOR_INFO_OUT_LENMIN 4 #define MC_CMD_SENSOR_INFO_OUT_LENMAX 252 #define MC_CMD_SENSOR_INFO_OUT_LEN(num) (4+8*(num)) #define MC_CMD_SENSOR_INFO_OUT_MASK_OFST 0 /* enum: Controller temperature: degC */ #define MC_CMD_SENSOR_CONTROLLER_TEMP 0x0 /* enum: Phy common temperature: degC */ #define MC_CMD_SENSOR_PHY_COMMON_TEMP 0x1 /* enum: Controller cooling: bool */ #define MC_CMD_SENSOR_CONTROLLER_COOLING 0x2 /* enum: Phy 0 temperature: degC */ #define MC_CMD_SENSOR_PHY0_TEMP 0x3 /* enum: Phy 0 cooling: bool */ #define MC_CMD_SENSOR_PHY0_COOLING 0x4 /* enum: Phy 1 temperature: degC */ #define MC_CMD_SENSOR_PHY1_TEMP 0x5 /* enum: Phy 1 cooling: bool */ #define MC_CMD_SENSOR_PHY1_COOLING 0x6 /* enum: 1.0v power: mV */ #define MC_CMD_SENSOR_IN_1V0 0x7 /* enum: 1.2v power: mV */ #define MC_CMD_SENSOR_IN_1V2 0x8 /* enum: 1.8v power: mV */ #define MC_CMD_SENSOR_IN_1V8 0x9 /* enum: 2.5v power: mV */ #define MC_CMD_SENSOR_IN_2V5 0xa /* enum: 3.3v power: mV */ #define MC_CMD_SENSOR_IN_3V3 0xb /* enum: 12v power: mV */ #define MC_CMD_SENSOR_IN_12V0 0xc /* enum: 1.2v analogue power: mV */ #define MC_CMD_SENSOR_IN_1V2A 0xd /* enum: reference voltage: mV */ #define MC_CMD_SENSOR_IN_VREF 0xe /* enum: AOE FPGA power: mV */ #define MC_CMD_SENSOR_OUT_VAOE 0xf /* enum: AOE FPGA temperature: degC */ #define MC_CMD_SENSOR_AOE_TEMP 0x10 /* enum: AOE FPGA PSU temperature: degC */ #define MC_CMD_SENSOR_PSU_AOE_TEMP 0x11 /* enum: AOE PSU temperature: degC */ #define MC_CMD_SENSOR_PSU_TEMP 0x12 /* enum: Fan 0 speed: RPM */ #define MC_CMD_SENSOR_FAN_0 0x13 /* enum: Fan 1 speed: RPM */ #define MC_CMD_SENSOR_FAN_1 0x14 /* enum: Fan 2 speed: RPM */ #define MC_CMD_SENSOR_FAN_2 0x15 /* enum: Fan 3 speed: RPM */ #define MC_CMD_SENSOR_FAN_3 0x16 /* enum: Fan 4 speed: RPM */ #define MC_CMD_SENSOR_FAN_4 0x17 /* enum: AOE FPGA input power: mV */ #define MC_CMD_SENSOR_IN_VAOE 0x18 /* enum: AOE FPGA current: mA */ #define MC_CMD_SENSOR_OUT_IAOE 0x19 /* enum: AOE FPGA input current: mA */ #define MC_CMD_SENSOR_IN_IAOE 0x1a /* enum: NIC power consumption: W */ #define MC_CMD_SENSOR_NIC_POWER 0x1b /* enum: 0.9v power voltage: mV */ #define MC_CMD_SENSOR_IN_0V9 0x1c /* enum: 0.9v power current: mA */ #define MC_CMD_SENSOR_IN_I0V9 0x1d /* enum: 1.2v power current: mA */ #define MC_CMD_SENSOR_IN_I1V2 0x1e /* enum: Not a sensor: reserved for the next page flag */ #define MC_CMD_SENSOR_PAGE0_NEXT 0x1f /* enum: 0.9v power voltage (at ADC): mV */ #define MC_CMD_SENSOR_IN_0V9_ADC 0x20 /* enum: Controller temperature 2: degC */ #define MC_CMD_SENSOR_CONTROLLER_2_TEMP 0x21 /* enum: Voltage regulator internal temperature: degC */ #define MC_CMD_SENSOR_VREG_INTERNAL_TEMP 0x22 /* enum: 0.9V voltage regulator temperature: degC */ #define MC_CMD_SENSOR_VREG_0V9_TEMP 0x23 /* enum: 1.2V voltage regulator temperature: degC */ #define MC_CMD_SENSOR_VREG_1V2_TEMP 0x24 /* enum: controller internal temperature sensor voltage (internal ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_VPTAT 0x25 /* enum: controller internal temperature (internal ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_INTERNAL_TEMP 0x26 /* enum: controller internal temperature sensor voltage (external ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_VPTAT_EXTADC 0x27 /* enum: controller internal temperature (external ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_INTERNAL_TEMP_EXTADC 0x28 /* enum: ambient temperature: degC */ #define MC_CMD_SENSOR_AMBIENT_TEMP 0x29 /* enum: air flow: bool */ #define MC_CMD_SENSOR_AIRFLOW 0x2a /* enum: voltage between VSS08D and VSS08D at CSR: mV */ #define MC_CMD_SENSOR_VDD08D_VSS08D_CSR 0x2b /* enum: voltage between VSS08D and VSS08D at CSR (external ADC): mV */ #define MC_CMD_SENSOR_VDD08D_VSS08D_CSR_EXTADC 0x2c /* enum: Hotpoint temperature: degC */ #define MC_CMD_SENSOR_HOTPOINT_TEMP 0x2d /* enum: Port 0 PHY power switch over-current: bool */ #define MC_CMD_SENSOR_PHY_POWER_PORT0 0x2e /* enum: Port 1 PHY power switch over-current: bool */ #define MC_CMD_SENSOR_PHY_POWER_PORT1 0x2f /* enum: Mop-up microcontroller reference voltage (millivolts) */ #define MC_CMD_SENSOR_MUM_VCC 0x30 /* enum: 0.9v power phase A voltage: mV */ #define MC_CMD_SENSOR_IN_0V9_A 0x31 /* enum: 0.9v power phase A current: mA */ #define MC_CMD_SENSOR_IN_I0V9_A 0x32 /* enum: 0.9V voltage regulator phase A temperature: degC */ #define MC_CMD_SENSOR_VREG_0V9_A_TEMP 0x33 /* enum: 0.9v power phase B voltage: mV */ #define MC_CMD_SENSOR_IN_0V9_B 0x34 /* enum: 0.9v power phase B current: mA */ #define MC_CMD_SENSOR_IN_I0V9_B 0x35 /* enum: 0.9V voltage regulator phase B temperature: degC */ #define MC_CMD_SENSOR_VREG_0V9_B_TEMP 0x36 /* enum: CCOM AVREG 1v2 supply (interval ADC): mV */ #define MC_CMD_SENSOR_CCOM_AVREG_1V2_SUPPLY 0x37 /* enum: CCOM AVREG 1v2 supply (external ADC): mV */ #define MC_CMD_SENSOR_CCOM_AVREG_1V2_SUPPLY_EXTADC 0x38 /* enum: CCOM AVREG 1v8 supply (interval ADC): mV */ #define MC_CMD_SENSOR_CCOM_AVREG_1V8_SUPPLY 0x39 /* enum: CCOM AVREG 1v8 supply (external ADC): mV */ #define MC_CMD_SENSOR_CCOM_AVREG_1V8_SUPPLY_EXTADC 0x3a /* enum: CCOM RTS temperature: degC */ #define MC_CMD_SENSOR_CONTROLLER_RTS 0x3b /* enum: Not a sensor: reserved for the next page flag */ #define MC_CMD_SENSOR_PAGE1_NEXT 0x3f /* enum: controller internal temperature sensor voltage on master core * (internal ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_MASTER_VPTAT 0x40 /* enum: controller internal temperature on master core (internal ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_MASTER_INTERNAL_TEMP 0x41 /* enum: controller internal temperature sensor voltage on master core * (external ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_MASTER_VPTAT_EXTADC 0x42 /* enum: controller internal temperature on master core (external ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_MASTER_INTERNAL_TEMP_EXTADC 0x43 /* enum: controller internal temperature on slave core sensor voltage (internal * ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_SLAVE_VPTAT 0x44 /* enum: controller internal temperature on slave core (internal ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_SLAVE_INTERNAL_TEMP 0x45 /* enum: controller internal temperature on slave core sensor voltage (external * ADC): mV */ #define MC_CMD_SENSOR_CONTROLLER_SLAVE_VPTAT_EXTADC 0x46 /* enum: controller internal temperature on slave core (external ADC): degC */ #define MC_CMD_SENSOR_CONTROLLER_SLAVE_INTERNAL_TEMP_EXTADC 0x47 /* enum: Voltage supplied to the SODIMMs from their power supply: mV */ #define MC_CMD_SENSOR_SODIMM_VOUT 0x49 /* enum: Temperature of SODIMM 0 (if installed): degC */ #define MC_CMD_SENSOR_SODIMM_0_TEMP 0x4a /* enum: Temperature of SODIMM 1 (if installed): degC */ #define MC_CMD_SENSOR_SODIMM_1_TEMP 0x4b /* enum: Voltage supplied to the QSFP #0 from their power supply: mV */ #define MC_CMD_SENSOR_PHY0_VCC 0x4c /* enum: Voltage supplied to the QSFP #1 from their power supply: mV */ #define MC_CMD_SENSOR_PHY1_VCC 0x4d +/* enum: Controller die temperature (TDIODE): degC */ +#define MC_CMD_SENSOR_CONTROLLER_TDIODE_TEMP 0x4e /* MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF */ #define MC_CMD_SENSOR_ENTRY_OFST 4 #define MC_CMD_SENSOR_ENTRY_LEN 8 #define MC_CMD_SENSOR_ENTRY_LO_OFST 4 #define MC_CMD_SENSOR_ENTRY_HI_OFST 8 #define MC_CMD_SENSOR_ENTRY_MINNUM 0 #define MC_CMD_SENSOR_ENTRY_MAXNUM 31 /* MC_CMD_SENSOR_INFO_EXT_OUT msgresponse */ #define MC_CMD_SENSOR_INFO_EXT_OUT_LENMIN 4 #define MC_CMD_SENSOR_INFO_EXT_OUT_LENMAX 252 #define MC_CMD_SENSOR_INFO_EXT_OUT_LEN(num) (4+8*(num)) #define MC_CMD_SENSOR_INFO_EXT_OUT_MASK_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_SENSOR_INFO_OUT */ #define MC_CMD_SENSOR_INFO_EXT_OUT_NEXT_PAGE_LBN 31 #define MC_CMD_SENSOR_INFO_EXT_OUT_NEXT_PAGE_WIDTH 1 /* MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF */ /* MC_CMD_SENSOR_ENTRY_OFST 4 */ /* MC_CMD_SENSOR_ENTRY_LEN 8 */ /* MC_CMD_SENSOR_ENTRY_LO_OFST 4 */ /* MC_CMD_SENSOR_ENTRY_HI_OFST 8 */ /* MC_CMD_SENSOR_ENTRY_MINNUM 0 */ /* MC_CMD_SENSOR_ENTRY_MAXNUM 31 */ /* MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF structuredef */ #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_LEN 8 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1_OFST 0 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1_LEN 2 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1_LBN 0 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN1_WIDTH 16 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1_OFST 2 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1_LEN 2 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1_LBN 16 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX1_WIDTH 16 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2_OFST 4 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2_LEN 2 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2_LBN 32 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MIN2_WIDTH 16 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2_OFST 6 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2_LEN 2 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2_LBN 48 #define MC_CMD_SENSOR_INFO_ENTRY_TYPEDEF_MAX2_WIDTH 16 /***********************************/ /* MC_CMD_READ_SENSORS * Returns the current reading from each sensor. DMAs an array of sensor * readings, in order of sensor type (but without gaps for unimplemented * sensors), into host memory. Each array element is a * MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF dword. * * If the request does not contain the LENGTH field then only sensors 0 to 30 * are reported, to avoid DMA buffer overflow in older host software. If the * sensor reading require more space than the LENGTH allows, then return * EINVAL. * * The MC will send a SENSOREVT event every time any sensor changes state. The * driver is responsible for ensuring that it doesn't miss any events. The * board will function normally if all sensors are in STATE_OK or * STATE_WARNING. Otherwise the board should not be expected to function. */ #define MC_CMD_READ_SENSORS 0x42 #undef MC_CMD_0x42_PRIVILEGE_CTG #define MC_CMD_0x42_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_READ_SENSORS_IN msgrequest */ #define MC_CMD_READ_SENSORS_IN_LEN 8 /* DMA address of host buffer for sensor readings (must be 4Kbyte aligned). */ #define MC_CMD_READ_SENSORS_IN_DMA_ADDR_OFST 0 #define MC_CMD_READ_SENSORS_IN_DMA_ADDR_LEN 8 #define MC_CMD_READ_SENSORS_IN_DMA_ADDR_LO_OFST 0 #define MC_CMD_READ_SENSORS_IN_DMA_ADDR_HI_OFST 4 /* MC_CMD_READ_SENSORS_EXT_IN msgrequest */ #define MC_CMD_READ_SENSORS_EXT_IN_LEN 12 -/* DMA address of host buffer for sensor readings */ +/* DMA address of host buffer for sensor readings (must be 4Kbyte aligned). */ #define MC_CMD_READ_SENSORS_EXT_IN_DMA_ADDR_OFST 0 #define MC_CMD_READ_SENSORS_EXT_IN_DMA_ADDR_LEN 8 #define MC_CMD_READ_SENSORS_EXT_IN_DMA_ADDR_LO_OFST 0 #define MC_CMD_READ_SENSORS_EXT_IN_DMA_ADDR_HI_OFST 4 /* Size in bytes of host buffer. */ #define MC_CMD_READ_SENSORS_EXT_IN_LENGTH_OFST 8 /* MC_CMD_READ_SENSORS_OUT msgresponse */ #define MC_CMD_READ_SENSORS_OUT_LEN 0 /* MC_CMD_READ_SENSORS_EXT_OUT msgresponse */ #define MC_CMD_READ_SENSORS_EXT_OUT_LEN 0 /* MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF structuredef */ #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_LEN 4 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE_OFST 0 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE_LEN 2 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE_LBN 0 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE_WIDTH 16 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE_OFST 2 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE_LEN 1 /* enum: Ok. */ #define MC_CMD_SENSOR_STATE_OK 0x0 /* enum: Breached warning threshold. */ #define MC_CMD_SENSOR_STATE_WARNING 0x1 /* enum: Breached fatal threshold. */ #define MC_CMD_SENSOR_STATE_FATAL 0x2 /* enum: Fault with sensor. */ #define MC_CMD_SENSOR_STATE_BROKEN 0x3 /* enum: Sensor is working but does not currently have a reading. */ #define MC_CMD_SENSOR_STATE_NO_READING 0x4 /* enum: Sensor initialisation failed. */ #define MC_CMD_SENSOR_STATE_INIT_FAILED 0x5 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE_LBN 16 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE_WIDTH 8 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_TYPE_OFST 3 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_TYPE_LEN 1 /* Enum values, see field(s): */ /* MC_CMD_SENSOR_INFO/MC_CMD_SENSOR_INFO_OUT/MASK */ #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_TYPE_LBN 24 #define MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_TYPE_WIDTH 8 /***********************************/ /* MC_CMD_GET_PHY_STATE * Report current state of PHY. A 'zombie' PHY is a PHY that has failed to boot * (e.g. due to missing or corrupted firmware). Locks required: None. Return * code: 0 */ #define MC_CMD_GET_PHY_STATE 0x43 #undef MC_CMD_0x43_PRIVILEGE_CTG #define MC_CMD_0x43_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PHY_STATE_IN msgrequest */ #define MC_CMD_GET_PHY_STATE_IN_LEN 0 /* MC_CMD_GET_PHY_STATE_OUT msgresponse */ #define MC_CMD_GET_PHY_STATE_OUT_LEN 4 #define MC_CMD_GET_PHY_STATE_OUT_STATE_OFST 0 /* enum: Ok. */ #define MC_CMD_PHY_STATE_OK 0x1 /* enum: Faulty. */ #define MC_CMD_PHY_STATE_ZOMBIE 0x2 /***********************************/ /* MC_CMD_SETUP_8021QBB * 802.1Qbb control. 8 Tx queues that map to priorities 0 - 7. Use all 1s to * disable 802.Qbb for a given priority. */ #define MC_CMD_SETUP_8021QBB 0x44 /* MC_CMD_SETUP_8021QBB_IN msgrequest */ #define MC_CMD_SETUP_8021QBB_IN_LEN 32 #define MC_CMD_SETUP_8021QBB_IN_TXQS_OFST 0 #define MC_CMD_SETUP_8021QBB_IN_TXQS_LEN 32 /* MC_CMD_SETUP_8021QBB_OUT msgresponse */ #define MC_CMD_SETUP_8021QBB_OUT_LEN 0 /***********************************/ /* MC_CMD_WOL_FILTER_GET * Retrieve ID of any WoL filters. Locks required: None. Returns: 0, ENOSYS */ #define MC_CMD_WOL_FILTER_GET 0x45 #undef MC_CMD_0x45_PRIVILEGE_CTG #define MC_CMD_0x45_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_WOL_FILTER_GET_IN msgrequest */ #define MC_CMD_WOL_FILTER_GET_IN_LEN 0 /* MC_CMD_WOL_FILTER_GET_OUT msgresponse */ #define MC_CMD_WOL_FILTER_GET_OUT_LEN 4 #define MC_CMD_WOL_FILTER_GET_OUT_FILTER_ID_OFST 0 /***********************************/ /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD * Add a protocol offload to NIC for lights-out state. Locks required: None. * Returns: 0, ENOSYS */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD 0x46 #undef MC_CMD_0x46_PRIVILEGE_CTG #define MC_CMD_0x46_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN msgrequest */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_LENMIN 8 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_LENMAX 252 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_LEN(num) (4+4*(num)) #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 #define MC_CMD_LIGHTSOUT_OFFLOAD_PROTOCOL_ARP 0x1 /* enum */ #define MC_CMD_LIGHTSOUT_OFFLOAD_PROTOCOL_NS 0x2 /* enum */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_DATA_OFST 4 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_DATA_LEN 4 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_DATA_MINNUM 1 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_DATA_MAXNUM 62 /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARP msgrequest */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARP_LEN 14 /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARP_MAC_OFST 4 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARP_MAC_LEN 6 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARP_IP_OFST 10 /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS msgrequest */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_LEN 42 /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_MAC_OFST 4 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_MAC_LEN 6 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_SNIPV6_OFST 10 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_SNIPV6_LEN 16 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_IPV6_OFST 26 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NS_IPV6_LEN 16 /* MC_CMD_ADD_LIGHTSOUT_OFFLOAD_OUT msgresponse */ #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_OUT_LEN 4 #define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_OUT_FILTER_ID_OFST 0 /***********************************/ /* MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD * Remove a protocol offload from NIC for lights-out state. Locks required: * None. Returns: 0, ENOSYS */ #define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD 0x47 #undef MC_CMD_0x47_PRIVILEGE_CTG #define MC_CMD_0x47_PRIVILEGE_CTG SRIOV_CTG_LINK /* MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN msgrequest */ #define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_LEN 8 #define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 #define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_FILTER_ID_OFST 4 /* MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_OUT msgresponse */ #define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_OUT_LEN 0 /***********************************/ /* MC_CMD_MAC_RESET_RESTORE * Restore MAC after block reset. Locks required: None. Returns: 0. */ #define MC_CMD_MAC_RESET_RESTORE 0x48 /* MC_CMD_MAC_RESET_RESTORE_IN msgrequest */ #define MC_CMD_MAC_RESET_RESTORE_IN_LEN 0 /* MC_CMD_MAC_RESET_RESTORE_OUT msgresponse */ #define MC_CMD_MAC_RESET_RESTORE_OUT_LEN 0 /***********************************/ /* MC_CMD_TESTASSERT * Deliberately trigger an assert-detonation in the firmware for testing * purposes (i.e. to allow tests that the driver copes gracefully). Locks * required: None Returns: 0 */ #define MC_CMD_TESTASSERT 0x49 #undef MC_CMD_0x49_PRIVILEGE_CTG #define MC_CMD_0x49_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_TESTASSERT_IN msgrequest */ #define MC_CMD_TESTASSERT_IN_LEN 0 /* MC_CMD_TESTASSERT_OUT msgresponse */ #define MC_CMD_TESTASSERT_OUT_LEN 0 /***********************************/ /* MC_CMD_WORKAROUND * Enable/Disable a given workaround. The mcfw will return EINVAL if it doesn't * understand the given workaround number - which should not be treated as a * hard error by client code. This op does not imply any semantics about each * workaround, that's between the driver and the mcfw on a per-workaround * basis. Locks required: None. Returns: 0, EINVAL . */ #define MC_CMD_WORKAROUND 0x4a #undef MC_CMD_0x4a_PRIVILEGE_CTG #define MC_CMD_0x4a_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_WORKAROUND_IN msgrequest */ #define MC_CMD_WORKAROUND_IN_LEN 8 /* The enums here must correspond with those in MC_CMD_GET_WORKAROUND. */ #define MC_CMD_WORKAROUND_IN_TYPE_OFST 0 /* enum: Bug 17230 work around. */ #define MC_CMD_WORKAROUND_BUG17230 0x1 /* enum: Bug 35388 work around (unsafe EVQ writes). */ #define MC_CMD_WORKAROUND_BUG35388 0x2 /* enum: Bug35017 workaround (A64 tables must be identity map) */ #define MC_CMD_WORKAROUND_BUG35017 0x3 /* enum: Bug 41750 present (MC_CMD_TRIGGER_INTERRUPT won't work) */ #define MC_CMD_WORKAROUND_BUG41750 0x4 /* enum: Bug 42008 present (Interrupts can overtake associated events). Caution * - before adding code that queries this workaround, remember that there's * released Monza firmware that doesn't understand MC_CMD_WORKAROUND_BUG42008, * and will hence (incorrectly) report that the bug doesn't exist. */ #define MC_CMD_WORKAROUND_BUG42008 0x5 /* enum: Bug 26807 features present in firmware (multicast filter chaining) * This feature cannot be turned on/off while there are any filters already * present. The behaviour in such case depends on the acting client's privilege * level. If the client has the admin privilege, then all functions that have * filters installed will be FLRed and the FLR_DONE flag will be set. Otherwise * the command will fail with MC_CMD_ERR_FILTERS_PRESENT. */ #define MC_CMD_WORKAROUND_BUG26807 0x6 /* 0 = disable the workaround indicated by TYPE; any non-zero value = enable * the workaround */ #define MC_CMD_WORKAROUND_IN_ENABLED_OFST 4 /* MC_CMD_WORKAROUND_OUT msgresponse */ #define MC_CMD_WORKAROUND_OUT_LEN 0 /* MC_CMD_WORKAROUND_EXT_OUT msgresponse: This response format will be used * when (TYPE == MC_CMD_WORKAROUND_BUG26807) */ #define MC_CMD_WORKAROUND_EXT_OUT_LEN 4 #define MC_CMD_WORKAROUND_EXT_OUT_FLAGS_OFST 0 #define MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN 0 #define MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_WIDTH 1 /***********************************/ /* MC_CMD_GET_PHY_MEDIA_INFO * Read media-specific data from PHY (e.g. SFP/SFP+ module ID information for * SFP+ PHYs). The 'media type' can be found via GET_PHY_CFG * (GET_PHY_CFG_OUT_MEDIA_TYPE); the valid 'page number' input values, and the * output data, are interpreted on a per-type basis. For SFP+: PAGE=0 or 1 * returns a 128-byte block read from module I2C address 0xA0 offset 0 or 0x80. * Anything else: currently undefined. Locks required: None. Return code: 0. */ #define MC_CMD_GET_PHY_MEDIA_INFO 0x4b #undef MC_CMD_0x4b_PRIVILEGE_CTG #define MC_CMD_0x4b_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_PHY_MEDIA_INFO_IN msgrequest */ #define MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN 4 #define MC_CMD_GET_PHY_MEDIA_INFO_IN_PAGE_OFST 0 /* MC_CMD_GET_PHY_MEDIA_INFO_OUT msgresponse */ #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_LENMIN 5 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_LENMAX 252 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(num) (4+1*(num)) /* in bytes */ #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATALEN_OFST 0 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATA_OFST 4 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATA_LEN 1 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATA_MINNUM 1 #define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATA_MAXNUM 248 /***********************************/ /* MC_CMD_NVRAM_TEST * Test a particular NVRAM partition for valid contents (where "valid" depends * on the type of partition). */ #define MC_CMD_NVRAM_TEST 0x4c #undef MC_CMD_0x4c_PRIVILEGE_CTG #define MC_CMD_0x4c_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_TEST_IN msgrequest */ #define MC_CMD_NVRAM_TEST_IN_LEN 4 #define MC_CMD_NVRAM_TEST_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_NVRAM_TYPES/MC_CMD_NVRAM_TYPES_OUT/TYPES */ /* MC_CMD_NVRAM_TEST_OUT msgresponse */ #define MC_CMD_NVRAM_TEST_OUT_LEN 4 #define MC_CMD_NVRAM_TEST_OUT_RESULT_OFST 0 /* enum: Passed. */ #define MC_CMD_NVRAM_TEST_PASS 0x0 /* enum: Failed. */ #define MC_CMD_NVRAM_TEST_FAIL 0x1 /* enum: Not supported. */ #define MC_CMD_NVRAM_TEST_NOTSUPP 0x2 /***********************************/ /* MC_CMD_MRSFP_TWEAK * Read status and/or set parameters for the 'mrsfp' driver in mr_rusty builds. * I2C I/O expander bits are always read; if equaliser parameters are supplied, * they are configured first. Locks required: None. Return code: 0, EINVAL. */ #define MC_CMD_MRSFP_TWEAK 0x4d /* MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG msgrequest */ #define MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG_LEN 16 /* 0-6 low->high de-emph. */ #define MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG_TXEQ_LEVEL_OFST 0 /* 0-8 low->high ref.V */ #define MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG_TXEQ_DT_CFG_OFST 4 /* 0-8 0-8 low->high boost */ #define MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG_RXEQ_BOOST_OFST 8 /* 0-8 low->high ref.V */ #define MC_CMD_MRSFP_TWEAK_IN_EQ_CONFIG_RXEQ_DT_CFG_OFST 12 /* MC_CMD_MRSFP_TWEAK_IN_READ_ONLY msgrequest */ #define MC_CMD_MRSFP_TWEAK_IN_READ_ONLY_LEN 0 /* MC_CMD_MRSFP_TWEAK_OUT msgresponse */ #define MC_CMD_MRSFP_TWEAK_OUT_LEN 12 /* input bits */ #define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_INPUTS_OFST 0 /* output bits */ #define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_OUTPUTS_OFST 4 /* direction */ #define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_DIRECTION_OFST 8 /* enum: Out. */ #define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_DIRECTION_OUT 0x0 /* enum: In. */ #define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_DIRECTION_IN 0x1 /***********************************/ /* MC_CMD_SENSOR_SET_LIMS * Adjusts the sensor limits. This is a warranty-voiding operation. Returns: * ENOENT if the sensor specified does not exist, EINVAL if the limits are out * of range. */ #define MC_CMD_SENSOR_SET_LIMS 0x4e #undef MC_CMD_0x4e_PRIVILEGE_CTG #define MC_CMD_0x4e_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SENSOR_SET_LIMS_IN msgrequest */ #define MC_CMD_SENSOR_SET_LIMS_IN_LEN 20 #define MC_CMD_SENSOR_SET_LIMS_IN_SENSOR_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_SENSOR_INFO/MC_CMD_SENSOR_INFO_OUT/MASK */ /* interpretation is is sensor-specific. */ #define MC_CMD_SENSOR_SET_LIMS_IN_LOW0_OFST 4 /* interpretation is is sensor-specific. */ #define MC_CMD_SENSOR_SET_LIMS_IN_HI0_OFST 8 /* interpretation is is sensor-specific. */ #define MC_CMD_SENSOR_SET_LIMS_IN_LOW1_OFST 12 /* interpretation is is sensor-specific. */ #define MC_CMD_SENSOR_SET_LIMS_IN_HI1_OFST 16 /* MC_CMD_SENSOR_SET_LIMS_OUT msgresponse */ #define MC_CMD_SENSOR_SET_LIMS_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_RESOURCE_LIMITS */ #define MC_CMD_GET_RESOURCE_LIMITS 0x4f /* MC_CMD_GET_RESOURCE_LIMITS_IN msgrequest */ #define MC_CMD_GET_RESOURCE_LIMITS_IN_LEN 0 /* MC_CMD_GET_RESOURCE_LIMITS_OUT msgresponse */ #define MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN 16 #define MC_CMD_GET_RESOURCE_LIMITS_OUT_BUFTBL_OFST 0 #define MC_CMD_GET_RESOURCE_LIMITS_OUT_EVQ_OFST 4 #define MC_CMD_GET_RESOURCE_LIMITS_OUT_RXQ_OFST 8 #define MC_CMD_GET_RESOURCE_LIMITS_OUT_TXQ_OFST 12 /***********************************/ /* MC_CMD_NVRAM_PARTITIONS * Reads the list of available virtual NVRAM partition types. Locks required: * none. Returns: 0, EINVAL (bad type). */ #define MC_CMD_NVRAM_PARTITIONS 0x51 #undef MC_CMD_0x51_PRIVILEGE_CTG #define MC_CMD_0x51_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_PARTITIONS_IN msgrequest */ #define MC_CMD_NVRAM_PARTITIONS_IN_LEN 0 /* MC_CMD_NVRAM_PARTITIONS_OUT msgresponse */ #define MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN 4 #define MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX 252 #define MC_CMD_NVRAM_PARTITIONS_OUT_LEN(num) (4+4*(num)) /* total number of partitions */ #define MC_CMD_NVRAM_PARTITIONS_OUT_NUM_PARTITIONS_OFST 0 /* type ID code for each of NUM_PARTITIONS partitions */ #define MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_OFST 4 #define MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_LEN 4 #define MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_MINNUM 0 #define MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_MAXNUM 62 /***********************************/ /* MC_CMD_NVRAM_METADATA * Reads soft metadata for a virtual NVRAM partition type. Locks required: * none. Returns: 0, EINVAL (bad type). */ #define MC_CMD_NVRAM_METADATA 0x52 #undef MC_CMD_0x52_PRIVILEGE_CTG #define MC_CMD_0x52_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_NVRAM_METADATA_IN msgrequest */ #define MC_CMD_NVRAM_METADATA_IN_LEN 4 /* Partition type ID code */ #define MC_CMD_NVRAM_METADATA_IN_TYPE_OFST 0 /* MC_CMD_NVRAM_METADATA_OUT msgresponse */ #define MC_CMD_NVRAM_METADATA_OUT_LENMIN 20 #define MC_CMD_NVRAM_METADATA_OUT_LENMAX 252 #define MC_CMD_NVRAM_METADATA_OUT_LEN(num) (20+1*(num)) /* Partition type ID code */ #define MC_CMD_NVRAM_METADATA_OUT_TYPE_OFST 0 #define MC_CMD_NVRAM_METADATA_OUT_FLAGS_OFST 4 #define MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN 0 #define MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_WIDTH 1 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN 1 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_WIDTH 1 #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN 2 #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_WIDTH 1 /* Subtype ID code for content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_OFST 8 /* 1st component of W.X.Y.Z version number for content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_VERSION_W_OFST 12 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_W_LEN 2 /* 2nd component of W.X.Y.Z version number for content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_VERSION_X_OFST 14 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_X_LEN 2 /* 3rd component of W.X.Y.Z version number for content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_VERSION_Y_OFST 16 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_Y_LEN 2 /* 4th component of W.X.Y.Z version number for content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_VERSION_Z_OFST 18 #define MC_CMD_NVRAM_METADATA_OUT_VERSION_Z_LEN 2 /* Zero-terminated string describing the content of this partition */ #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_OFST 20 #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_LEN 1 #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_MINNUM 0 #define MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_MAXNUM 232 /***********************************/ /* MC_CMD_GET_MAC_ADDRESSES * Returns the base MAC, count and stride for the requesting function */ #define MC_CMD_GET_MAC_ADDRESSES 0x55 #undef MC_CMD_0x55_PRIVILEGE_CTG #define MC_CMD_0x55_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_MAC_ADDRESSES_IN msgrequest */ #define MC_CMD_GET_MAC_ADDRESSES_IN_LEN 0 /* MC_CMD_GET_MAC_ADDRESSES_OUT msgresponse */ #define MC_CMD_GET_MAC_ADDRESSES_OUT_LEN 16 /* Base MAC address */ #define MC_CMD_GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE_OFST 0 #define MC_CMD_GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE_LEN 6 /* Padding */ #define MC_CMD_GET_MAC_ADDRESSES_OUT_RESERVED_OFST 6 #define MC_CMD_GET_MAC_ADDRESSES_OUT_RESERVED_LEN 2 /* Number of allocated MAC addresses */ #define MC_CMD_GET_MAC_ADDRESSES_OUT_MAC_COUNT_OFST 8 /* Spacing of allocated MAC addresses */ #define MC_CMD_GET_MAC_ADDRESSES_OUT_MAC_STRIDE_OFST 12 /***********************************/ /* MC_CMD_CLP * Perform a CLP related operation */ #define MC_CMD_CLP 0x56 #undef MC_CMD_0x56_PRIVILEGE_CTG #define MC_CMD_0x56_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_CLP_IN msgrequest */ #define MC_CMD_CLP_IN_LEN 4 /* Sub operation */ #define MC_CMD_CLP_IN_OP_OFST 0 /* enum: Return to factory default settings */ #define MC_CMD_CLP_OP_DEFAULT 0x1 /* enum: Set MAC address */ #define MC_CMD_CLP_OP_SET_MAC 0x2 /* enum: Get MAC address */ #define MC_CMD_CLP_OP_GET_MAC 0x3 /* enum: Set UEFI/GPXE boot mode */ #define MC_CMD_CLP_OP_SET_BOOT 0x4 /* enum: Get UEFI/GPXE boot mode */ #define MC_CMD_CLP_OP_GET_BOOT 0x5 /* MC_CMD_CLP_OUT msgresponse */ #define MC_CMD_CLP_OUT_LEN 0 /* MC_CMD_CLP_IN_DEFAULT msgrequest */ #define MC_CMD_CLP_IN_DEFAULT_LEN 4 /* MC_CMD_CLP_IN_OP_OFST 0 */ /* MC_CMD_CLP_OUT_DEFAULT msgresponse */ #define MC_CMD_CLP_OUT_DEFAULT_LEN 0 /* MC_CMD_CLP_IN_SET_MAC msgrequest */ #define MC_CMD_CLP_IN_SET_MAC_LEN 12 /* MC_CMD_CLP_IN_OP_OFST 0 */ /* MAC address assigned to port */ #define MC_CMD_CLP_IN_SET_MAC_ADDR_OFST 4 #define MC_CMD_CLP_IN_SET_MAC_ADDR_LEN 6 /* Padding */ #define MC_CMD_CLP_IN_SET_MAC_RESERVED_OFST 10 #define MC_CMD_CLP_IN_SET_MAC_RESERVED_LEN 2 /* MC_CMD_CLP_OUT_SET_MAC msgresponse */ #define MC_CMD_CLP_OUT_SET_MAC_LEN 0 /* MC_CMD_CLP_IN_GET_MAC msgrequest */ #define MC_CMD_CLP_IN_GET_MAC_LEN 4 /* MC_CMD_CLP_IN_OP_OFST 0 */ /* MC_CMD_CLP_OUT_GET_MAC msgresponse */ #define MC_CMD_CLP_OUT_GET_MAC_LEN 8 /* MAC address assigned to port */ #define MC_CMD_CLP_OUT_GET_MAC_ADDR_OFST 0 #define MC_CMD_CLP_OUT_GET_MAC_ADDR_LEN 6 /* Padding */ #define MC_CMD_CLP_OUT_GET_MAC_RESERVED_OFST 6 #define MC_CMD_CLP_OUT_GET_MAC_RESERVED_LEN 2 /* MC_CMD_CLP_IN_SET_BOOT msgrequest */ #define MC_CMD_CLP_IN_SET_BOOT_LEN 5 /* MC_CMD_CLP_IN_OP_OFST 0 */ /* Boot flag */ #define MC_CMD_CLP_IN_SET_BOOT_FLAG_OFST 4 #define MC_CMD_CLP_IN_SET_BOOT_FLAG_LEN 1 /* MC_CMD_CLP_OUT_SET_BOOT msgresponse */ #define MC_CMD_CLP_OUT_SET_BOOT_LEN 0 /* MC_CMD_CLP_IN_GET_BOOT msgrequest */ #define MC_CMD_CLP_IN_GET_BOOT_LEN 4 /* MC_CMD_CLP_IN_OP_OFST 0 */ /* MC_CMD_CLP_OUT_GET_BOOT msgresponse */ #define MC_CMD_CLP_OUT_GET_BOOT_LEN 4 /* Boot flag */ #define MC_CMD_CLP_OUT_GET_BOOT_FLAG_OFST 0 #define MC_CMD_CLP_OUT_GET_BOOT_FLAG_LEN 1 /* Padding */ #define MC_CMD_CLP_OUT_GET_BOOT_RESERVED_OFST 1 #define MC_CMD_CLP_OUT_GET_BOOT_RESERVED_LEN 3 /***********************************/ /* MC_CMD_MUM * Perform a MUM operation */ #define MC_CMD_MUM 0x57 #undef MC_CMD_0x57_PRIVILEGE_CTG #define MC_CMD_0x57_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_MUM_IN msgrequest */ #define MC_CMD_MUM_IN_LEN 4 #define MC_CMD_MUM_IN_OP_HDR_OFST 0 #define MC_CMD_MUM_IN_OP_LBN 0 #define MC_CMD_MUM_IN_OP_WIDTH 8 /* enum: NULL MCDI command to MUM */ #define MC_CMD_MUM_OP_NULL 0x1 /* enum: Get MUM version */ #define MC_CMD_MUM_OP_GET_VERSION 0x2 /* enum: Issue raw I2C command to MUM */ #define MC_CMD_MUM_OP_RAW_CMD 0x3 /* enum: Read from registers on devices connected to MUM. */ #define MC_CMD_MUM_OP_READ 0x4 /* enum: Write to registers on devices connected to MUM. */ #define MC_CMD_MUM_OP_WRITE 0x5 /* enum: Control UART logging. */ #define MC_CMD_MUM_OP_LOG 0x6 /* enum: Operations on MUM GPIO lines */ #define MC_CMD_MUM_OP_GPIO 0x7 /* enum: Get sensor readings from MUM */ #define MC_CMD_MUM_OP_READ_SENSORS 0x8 /* enum: Initiate clock programming on the MUM */ #define MC_CMD_MUM_OP_PROGRAM_CLOCKS 0x9 /* enum: Initiate FPGA load from flash on the MUM */ #define MC_CMD_MUM_OP_FPGA_LOAD 0xa /* enum: Request sensor reading from MUM ADC resulting from earlier request via * MUM ATB */ #define MC_CMD_MUM_OP_READ_ATB_SENSOR 0xb /* enum: Send commands relating to the QSFP ports via the MUM for PHY * operations */ #define MC_CMD_MUM_OP_QSFP 0xc /* enum: Request discrete and SODIMM DDR info (type, size, speed grade, voltage * level) from MUM */ #define MC_CMD_MUM_OP_READ_DDR_INFO 0xd /* MC_CMD_MUM_IN_NULL msgrequest */ #define MC_CMD_MUM_IN_NULL_LEN 4 /* MUM cmd header */ #define MC_CMD_MUM_IN_CMD_OFST 0 /* MC_CMD_MUM_IN_GET_VERSION msgrequest */ #define MC_CMD_MUM_IN_GET_VERSION_LEN 4 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* MC_CMD_MUM_IN_READ msgrequest */ #define MC_CMD_MUM_IN_READ_LEN 16 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* ID of (device connected to MUM) to read from registers of */ #define MC_CMD_MUM_IN_READ_DEVICE_OFST 4 /* enum: Hittite HMC1035 clock generator on Sorrento board */ #define MC_CMD_MUM_DEV_HITTITE 0x1 /* enum: Hittite HMC1035 clock generator for NIC-side on Sorrento board */ #define MC_CMD_MUM_DEV_HITTITE_NIC 0x2 /* 32-bit address to read from */ #define MC_CMD_MUM_IN_READ_ADDR_OFST 8 /* Number of words to read. */ #define MC_CMD_MUM_IN_READ_NUMWORDS_OFST 12 /* MC_CMD_MUM_IN_WRITE msgrequest */ #define MC_CMD_MUM_IN_WRITE_LENMIN 16 #define MC_CMD_MUM_IN_WRITE_LENMAX 252 #define MC_CMD_MUM_IN_WRITE_LEN(num) (12+4*(num)) /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* ID of (device connected to MUM) to write to registers of */ #define MC_CMD_MUM_IN_WRITE_DEVICE_OFST 4 /* enum: Hittite HMC1035 clock generator on Sorrento board */ /* MC_CMD_MUM_DEV_HITTITE 0x1 */ /* 32-bit address to write to */ #define MC_CMD_MUM_IN_WRITE_ADDR_OFST 8 /* Words to write */ #define MC_CMD_MUM_IN_WRITE_BUFFER_OFST 12 #define MC_CMD_MUM_IN_WRITE_BUFFER_LEN 4 #define MC_CMD_MUM_IN_WRITE_BUFFER_MINNUM 1 #define MC_CMD_MUM_IN_WRITE_BUFFER_MAXNUM 60 /* MC_CMD_MUM_IN_RAW_CMD msgrequest */ #define MC_CMD_MUM_IN_RAW_CMD_LENMIN 17 #define MC_CMD_MUM_IN_RAW_CMD_LENMAX 252 #define MC_CMD_MUM_IN_RAW_CMD_LEN(num) (16+1*(num)) /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* MUM I2C cmd code */ #define MC_CMD_MUM_IN_RAW_CMD_CMD_CODE_OFST 4 /* Number of bytes to write */ #define MC_CMD_MUM_IN_RAW_CMD_NUM_WRITE_OFST 8 /* Number of bytes to read */ #define MC_CMD_MUM_IN_RAW_CMD_NUM_READ_OFST 12 /* Bytes to write */ #define MC_CMD_MUM_IN_RAW_CMD_WRITE_DATA_OFST 16 #define MC_CMD_MUM_IN_RAW_CMD_WRITE_DATA_LEN 1 #define MC_CMD_MUM_IN_RAW_CMD_WRITE_DATA_MINNUM 1 #define MC_CMD_MUM_IN_RAW_CMD_WRITE_DATA_MAXNUM 236 /* MC_CMD_MUM_IN_LOG msgrequest */ #define MC_CMD_MUM_IN_LOG_LEN 8 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_LOG_OP_OFST 4 #define MC_CMD_MUM_IN_LOG_OP_UART 0x1 /* enum */ /* MC_CMD_MUM_IN_LOG_OP_UART msgrequest */ #define MC_CMD_MUM_IN_LOG_OP_UART_LEN 12 /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* MC_CMD_MUM_IN_LOG_OP_OFST 4 */ /* Enable/disable debug output to UART */ #define MC_CMD_MUM_IN_LOG_OP_UART_ENABLE_OFST 8 /* MC_CMD_MUM_IN_GPIO msgrequest */ #define MC_CMD_MUM_IN_GPIO_LEN 8 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_HDR_OFST 4 #define MC_CMD_MUM_IN_GPIO_OPCODE_LBN 0 #define MC_CMD_MUM_IN_GPIO_OPCODE_WIDTH 8 #define MC_CMD_MUM_IN_GPIO_IN_READ 0x0 /* enum */ #define MC_CMD_MUM_IN_GPIO_OUT_WRITE 0x1 /* enum */ #define MC_CMD_MUM_IN_GPIO_OUT_READ 0x2 /* enum */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE 0x3 /* enum */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_READ 0x4 /* enum */ #define MC_CMD_MUM_IN_GPIO_OP 0x5 /* enum */ /* MC_CMD_MUM_IN_GPIO_IN_READ msgrequest */ #define MC_CMD_MUM_IN_GPIO_IN_READ_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_IN_READ_HDR_OFST 4 /* MC_CMD_MUM_IN_GPIO_OUT_WRITE msgrequest */ #define MC_CMD_MUM_IN_GPIO_OUT_WRITE_LEN 16 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OUT_WRITE_HDR_OFST 4 /* The first 32-bit word to be written to the GPIO OUT register. */ #define MC_CMD_MUM_IN_GPIO_OUT_WRITE_GPIOMASK1_OFST 8 /* The second 32-bit word to be written to the GPIO OUT register. */ #define MC_CMD_MUM_IN_GPIO_OUT_WRITE_GPIOMASK2_OFST 12 /* MC_CMD_MUM_IN_GPIO_OUT_READ msgrequest */ #define MC_CMD_MUM_IN_GPIO_OUT_READ_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OUT_READ_HDR_OFST 4 /* MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE msgrequest */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE_LEN 16 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE_HDR_OFST 4 /* The first 32-bit word to be written to the GPIO OUT ENABLE register. */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE_GPIOMASK1_OFST 8 /* The second 32-bit word to be written to the GPIO OUT ENABLE register. */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_WRITE_GPIOMASK2_OFST 12 /* MC_CMD_MUM_IN_GPIO_OUT_ENABLE_READ msgrequest */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_READ_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OUT_ENABLE_READ_HDR_OFST 4 /* MC_CMD_MUM_IN_GPIO_OP msgrequest */ #define MC_CMD_MUM_IN_GPIO_OP_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OP_HDR_OFST 4 #define MC_CMD_MUM_IN_GPIO_OP_BITWISE_OP_LBN 8 #define MC_CMD_MUM_IN_GPIO_OP_BITWISE_OP_WIDTH 8 #define MC_CMD_MUM_IN_GPIO_OP_OUT_READ 0x0 /* enum */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE 0x1 /* enum */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG 0x2 /* enum */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE 0x3 /* enum */ #define MC_CMD_MUM_IN_GPIO_OP_GPIO_NUMBER_LBN 16 #define MC_CMD_MUM_IN_GPIO_OP_GPIO_NUMBER_WIDTH 8 /* MC_CMD_MUM_IN_GPIO_OP_OUT_READ msgrequest */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_READ_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_READ_HDR_OFST 4 /* MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE msgrequest */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE_HDR_OFST 4 #define MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE_WRITEBIT_LBN 24 #define MC_CMD_MUM_IN_GPIO_OP_OUT_WRITE_WRITEBIT_WIDTH 8 /* MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG msgrequest */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG_HDR_OFST 4 #define MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG_CFG_LBN 24 #define MC_CMD_MUM_IN_GPIO_OP_OUT_CONFIG_CFG_WIDTH 8 /* MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE msgrequest */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE_LEN 8 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE_HDR_OFST 4 #define MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE_ENABLEBIT_LBN 24 #define MC_CMD_MUM_IN_GPIO_OP_OUT_ENABLE_ENABLEBIT_WIDTH 8 /* MC_CMD_MUM_IN_READ_SENSORS msgrequest */ #define MC_CMD_MUM_IN_READ_SENSORS_LEN 8 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_READ_SENSORS_PARAMS_OFST 4 #define MC_CMD_MUM_IN_READ_SENSORS_SENSOR_ID_LBN 0 #define MC_CMD_MUM_IN_READ_SENSORS_SENSOR_ID_WIDTH 8 #define MC_CMD_MUM_IN_READ_SENSORS_NUM_SENSORS_LBN 8 #define MC_CMD_MUM_IN_READ_SENSORS_NUM_SENSORS_WIDTH 8 /* MC_CMD_MUM_IN_PROGRAM_CLOCKS msgrequest */ #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_LEN 12 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* Bit-mask of clocks to be programmed */ #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_MASK_OFST 4 #define MC_CMD_MUM_CLOCK_ID_FPGA 0x0 /* enum */ #define MC_CMD_MUM_CLOCK_ID_DDR 0x1 /* enum */ #define MC_CMD_MUM_CLOCK_ID_NIC 0x2 /* enum */ /* Control flags for clock programming */ #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_FLAGS_OFST 8 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_OVERCLOCK_110_LBN 0 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_OVERCLOCK_110_WIDTH 1 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_CLOCK_NIC_FROM_FPGA_LBN 1 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_CLOCK_NIC_FROM_FPGA_WIDTH 1 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_CLOCK_REF_FROM_XO_LBN 2 #define MC_CMD_MUM_IN_PROGRAM_CLOCKS_CLOCK_REF_FROM_XO_WIDTH 1 /* MC_CMD_MUM_IN_FPGA_LOAD msgrequest */ #define MC_CMD_MUM_IN_FPGA_LOAD_LEN 8 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* Enable/Disable FPGA config from flash */ #define MC_CMD_MUM_IN_FPGA_LOAD_ENABLE_OFST 4 /* MC_CMD_MUM_IN_READ_ATB_SENSOR msgrequest */ #define MC_CMD_MUM_IN_READ_ATB_SENSOR_LEN 4 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* MC_CMD_MUM_IN_QSFP msgrequest */ #define MC_CMD_MUM_IN_QSFP_LEN 12 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_OPCODE_LBN 0 #define MC_CMD_MUM_IN_QSFP_OPCODE_WIDTH 4 #define MC_CMD_MUM_IN_QSFP_INIT 0x0 /* enum */ #define MC_CMD_MUM_IN_QSFP_RECONFIGURE 0x1 /* enum */ #define MC_CMD_MUM_IN_QSFP_GET_SUPPORTED_CAP 0x2 /* enum */ #define MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO 0x3 /* enum */ #define MC_CMD_MUM_IN_QSFP_FILL_STATS 0x4 /* enum */ #define MC_CMD_MUM_IN_QSFP_POLL_BIST 0x5 /* enum */ #define MC_CMD_MUM_IN_QSFP_IDX_OFST 8 /* MC_CMD_MUM_IN_QSFP_INIT msgrequest */ #define MC_CMD_MUM_IN_QSFP_INIT_LEN 16 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_INIT_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_INIT_IDX_OFST 8 #define MC_CMD_MUM_IN_QSFP_INIT_CAGE_OFST 12 /* MC_CMD_MUM_IN_QSFP_RECONFIGURE msgrequest */ #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_LEN 24 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_IDX_OFST 8 #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_TX_DISABLE_OFST 12 #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_PORT_LANES_OFST 16 #define MC_CMD_MUM_IN_QSFP_RECONFIGURE_PORT_LINK_SPEED_OFST 20 /* MC_CMD_MUM_IN_QSFP_GET_SUPPORTED_CAP msgrequest */ #define MC_CMD_MUM_IN_QSFP_GET_SUPPORTED_CAP_LEN 12 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_GET_SUPPORTED_CAP_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_GET_SUPPORTED_CAP_IDX_OFST 8 /* MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO msgrequest */ #define MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO_LEN 16 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO_IDX_OFST 8 #define MC_CMD_MUM_IN_QSFP_GET_MEDIA_INFO_PAGE_OFST 12 /* MC_CMD_MUM_IN_QSFP_FILL_STATS msgrequest */ #define MC_CMD_MUM_IN_QSFP_FILL_STATS_LEN 12 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_FILL_STATS_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_FILL_STATS_IDX_OFST 8 /* MC_CMD_MUM_IN_QSFP_POLL_BIST msgrequest */ #define MC_CMD_MUM_IN_QSFP_POLL_BIST_LEN 12 /* MC_CMD_MUM_IN_CMD_OFST 0 */ #define MC_CMD_MUM_IN_QSFP_POLL_BIST_HDR_OFST 4 #define MC_CMD_MUM_IN_QSFP_POLL_BIST_IDX_OFST 8 /* MC_CMD_MUM_IN_READ_DDR_INFO msgrequest */ #define MC_CMD_MUM_IN_READ_DDR_INFO_LEN 4 /* MUM cmd header */ /* MC_CMD_MUM_IN_CMD_OFST 0 */ /* MC_CMD_MUM_OUT msgresponse */ #define MC_CMD_MUM_OUT_LEN 0 /* MC_CMD_MUM_OUT_NULL msgresponse */ #define MC_CMD_MUM_OUT_NULL_LEN 0 /* MC_CMD_MUM_OUT_GET_VERSION msgresponse */ #define MC_CMD_MUM_OUT_GET_VERSION_LEN 12 #define MC_CMD_MUM_OUT_GET_VERSION_FIRMWARE_OFST 0 #define MC_CMD_MUM_OUT_GET_VERSION_VERSION_OFST 4 #define MC_CMD_MUM_OUT_GET_VERSION_VERSION_LEN 8 #define MC_CMD_MUM_OUT_GET_VERSION_VERSION_LO_OFST 4 #define MC_CMD_MUM_OUT_GET_VERSION_VERSION_HI_OFST 8 /* MC_CMD_MUM_OUT_RAW_CMD msgresponse */ #define MC_CMD_MUM_OUT_RAW_CMD_LENMIN 1 #define MC_CMD_MUM_OUT_RAW_CMD_LENMAX 252 #define MC_CMD_MUM_OUT_RAW_CMD_LEN(num) (0+1*(num)) /* returned data */ #define MC_CMD_MUM_OUT_RAW_CMD_DATA_OFST 0 #define MC_CMD_MUM_OUT_RAW_CMD_DATA_LEN 1 #define MC_CMD_MUM_OUT_RAW_CMD_DATA_MINNUM 1 #define MC_CMD_MUM_OUT_RAW_CMD_DATA_MAXNUM 252 /* MC_CMD_MUM_OUT_READ msgresponse */ #define MC_CMD_MUM_OUT_READ_LENMIN 4 #define MC_CMD_MUM_OUT_READ_LENMAX 252 #define MC_CMD_MUM_OUT_READ_LEN(num) (0+4*(num)) #define MC_CMD_MUM_OUT_READ_BUFFER_OFST 0 #define MC_CMD_MUM_OUT_READ_BUFFER_LEN 4 #define MC_CMD_MUM_OUT_READ_BUFFER_MINNUM 1 #define MC_CMD_MUM_OUT_READ_BUFFER_MAXNUM 63 /* MC_CMD_MUM_OUT_WRITE msgresponse */ #define MC_CMD_MUM_OUT_WRITE_LEN 0 /* MC_CMD_MUM_OUT_LOG msgresponse */ #define MC_CMD_MUM_OUT_LOG_LEN 0 /* MC_CMD_MUM_OUT_LOG_OP_UART msgresponse */ #define MC_CMD_MUM_OUT_LOG_OP_UART_LEN 0 /* MC_CMD_MUM_OUT_GPIO_IN_READ msgresponse */ #define MC_CMD_MUM_OUT_GPIO_IN_READ_LEN 8 /* The first 32-bit word read from the GPIO IN register. */ #define MC_CMD_MUM_OUT_GPIO_IN_READ_GPIOMASK1_OFST 0 /* The second 32-bit word read from the GPIO IN register. */ #define MC_CMD_MUM_OUT_GPIO_IN_READ_GPIOMASK2_OFST 4 /* MC_CMD_MUM_OUT_GPIO_OUT_WRITE msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OUT_WRITE_LEN 0 /* MC_CMD_MUM_OUT_GPIO_OUT_READ msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OUT_READ_LEN 8 /* The first 32-bit word read from the GPIO OUT register. */ #define MC_CMD_MUM_OUT_GPIO_OUT_READ_GPIOMASK1_OFST 0 /* The second 32-bit word read from the GPIO OUT register. */ #define MC_CMD_MUM_OUT_GPIO_OUT_READ_GPIOMASK2_OFST 4 /* MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_WRITE msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_WRITE_LEN 0 /* MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_READ msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_READ_LEN 8 #define MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_READ_GPIOMASK1_OFST 0 #define MC_CMD_MUM_OUT_GPIO_OUT_ENABLE_READ_GPIOMASK2_OFST 4 /* MC_CMD_MUM_OUT_GPIO_OP_OUT_READ msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OP_OUT_READ_LEN 4 #define MC_CMD_MUM_OUT_GPIO_OP_OUT_READ_BIT_READ_OFST 0 /* MC_CMD_MUM_OUT_GPIO_OP_OUT_WRITE msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OP_OUT_WRITE_LEN 0 /* MC_CMD_MUM_OUT_GPIO_OP_OUT_CONFIG msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OP_OUT_CONFIG_LEN 0 /* MC_CMD_MUM_OUT_GPIO_OP_OUT_ENABLE msgresponse */ #define MC_CMD_MUM_OUT_GPIO_OP_OUT_ENABLE_LEN 0 /* MC_CMD_MUM_OUT_READ_SENSORS msgresponse */ #define MC_CMD_MUM_OUT_READ_SENSORS_LENMIN 4 #define MC_CMD_MUM_OUT_READ_SENSORS_LENMAX 252 #define MC_CMD_MUM_OUT_READ_SENSORS_LEN(num) (0+4*(num)) #define MC_CMD_MUM_OUT_READ_SENSORS_DATA_OFST 0 #define MC_CMD_MUM_OUT_READ_SENSORS_DATA_LEN 4 #define MC_CMD_MUM_OUT_READ_SENSORS_DATA_MINNUM 1 #define MC_CMD_MUM_OUT_READ_SENSORS_DATA_MAXNUM 63 #define MC_CMD_MUM_OUT_READ_SENSORS_READING_LBN 0 #define MC_CMD_MUM_OUT_READ_SENSORS_READING_WIDTH 16 #define MC_CMD_MUM_OUT_READ_SENSORS_STATE_LBN 16 #define MC_CMD_MUM_OUT_READ_SENSORS_STATE_WIDTH 8 #define MC_CMD_MUM_OUT_READ_SENSORS_TYPE_LBN 24 #define MC_CMD_MUM_OUT_READ_SENSORS_TYPE_WIDTH 8 /* MC_CMD_MUM_OUT_PROGRAM_CLOCKS msgresponse */ #define MC_CMD_MUM_OUT_PROGRAM_CLOCKS_LEN 4 #define MC_CMD_MUM_OUT_PROGRAM_CLOCKS_OK_MASK_OFST 0 /* MC_CMD_MUM_OUT_FPGA_LOAD msgresponse */ #define MC_CMD_MUM_OUT_FPGA_LOAD_LEN 0 /* MC_CMD_MUM_OUT_READ_ATB_SENSOR msgresponse */ #define MC_CMD_MUM_OUT_READ_ATB_SENSOR_LEN 4 #define MC_CMD_MUM_OUT_READ_ATB_SENSOR_RESULT_OFST 0 /* MC_CMD_MUM_OUT_QSFP_INIT msgresponse */ #define MC_CMD_MUM_OUT_QSFP_INIT_LEN 0 /* MC_CMD_MUM_OUT_QSFP_RECONFIGURE msgresponse */ #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_LEN 8 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_LP_CAP_OFST 0 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_FLAGS_OFST 4 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_READY_LBN 0 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_READY_WIDTH 1 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_LINK_UP_LBN 1 #define MC_CMD_MUM_OUT_QSFP_RECONFIGURE_PORT_PHY_LINK_UP_WIDTH 1 /* MC_CMD_MUM_OUT_QSFP_GET_SUPPORTED_CAP msgresponse */ #define MC_CMD_MUM_OUT_QSFP_GET_SUPPORTED_CAP_LEN 4 #define MC_CMD_MUM_OUT_QSFP_GET_SUPPORTED_CAP_PORT_PHY_LP_CAP_OFST 0 /* MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO msgresponse */ #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_LENMIN 5 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_LENMAX 252 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_LEN(num) (4+1*(num)) /* in bytes */ #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_DATALEN_OFST 0 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_DATA_OFST 4 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_DATA_LEN 1 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_DATA_MINNUM 1 #define MC_CMD_MUM_OUT_QSFP_GET_MEDIA_INFO_DATA_MAXNUM 248 /* MC_CMD_MUM_OUT_QSFP_FILL_STATS msgresponse */ #define MC_CMD_MUM_OUT_QSFP_FILL_STATS_LEN 8 #define MC_CMD_MUM_OUT_QSFP_FILL_STATS_PORT_PHY_STATS_PMA_PMD_LINK_UP_OFST 0 #define MC_CMD_MUM_OUT_QSFP_FILL_STATS_PORT_PHY_STATS_PCS_LINK_UP_OFST 4 /* MC_CMD_MUM_OUT_QSFP_POLL_BIST msgresponse */ #define MC_CMD_MUM_OUT_QSFP_POLL_BIST_LEN 4 #define MC_CMD_MUM_OUT_QSFP_POLL_BIST_TEST_OFST 0 /* MC_CMD_MUM_OUT_READ_DDR_INFO msgresponse */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_LENMIN 24 #define MC_CMD_MUM_OUT_READ_DDR_INFO_LENMAX 248 #define MC_CMD_MUM_OUT_READ_DDR_INFO_LEN(num) (8+8*(num)) /* Discrete (soldered) DDR resistor strap info */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_DISCRETE_DDR_INFO_OFST 0 #define MC_CMD_MUM_OUT_READ_DDR_INFO_VRATIO_LBN 0 #define MC_CMD_MUM_OUT_READ_DDR_INFO_VRATIO_WIDTH 16 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RESERVED1_LBN 16 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RESERVED1_WIDTH 16 /* Number of SODIMM info records */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_NUM_RECORDS_OFST 4 /* Array of SODIMM info records */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_OFST 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_LEN 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_LO_OFST 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_HI_OFST 12 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_MINNUM 2 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SODIMM_INFO_RECORD_MAXNUM 30 #define MC_CMD_MUM_OUT_READ_DDR_INFO_BANK_ID_LBN 0 #define MC_CMD_MUM_OUT_READ_DDR_INFO_BANK_ID_WIDTH 8 /* enum: SODIMM bank 1 (Top SODIMM for Sorrento) */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_BANK1 0x0 /* enum: SODIMM bank 2 (Bottom SODDIMM for Sorrento) */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_BANK2 0x1 /* enum: Total number of SODIMM banks */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_NUM_BANKS 0x2 #define MC_CMD_MUM_OUT_READ_DDR_INFO_TYPE_LBN 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_TYPE_WIDTH 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RANK_LBN 16 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RANK_WIDTH 4 #define MC_CMD_MUM_OUT_READ_DDR_INFO_VOLTAGE_LBN 20 #define MC_CMD_MUM_OUT_READ_DDR_INFO_VOLTAGE_WIDTH 4 #define MC_CMD_MUM_OUT_READ_DDR_INFO_NOT_POWERED 0x0 /* enum */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_1V25 0x1 /* enum */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_1V35 0x2 /* enum */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_1V5 0x3 /* enum */ /* enum: Values 5-15 are reserved for future usage */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_1V8 0x4 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SIZE_LBN 24 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SIZE_WIDTH 8 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SPEED_LBN 32 #define MC_CMD_MUM_OUT_READ_DDR_INFO_SPEED_WIDTH 16 #define MC_CMD_MUM_OUT_READ_DDR_INFO_STATE_LBN 48 #define MC_CMD_MUM_OUT_READ_DDR_INFO_STATE_WIDTH 4 /* enum: No module present */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_ABSENT 0x0 /* enum: Module present supported and powered on */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_PRESENT_POWERED 0x1 /* enum: Module present but bad type */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_PRESENT_BAD_TYPE 0x2 /* enum: Module present but incompatible voltage */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_PRESENT_BAD_VOLTAGE 0x3 /* enum: Module present but unknown SPD */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_PRESENT_BAD_SPD 0x4 /* enum: Module present but slot cannot support it */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_PRESENT_BAD_SLOT 0x5 /* enum: Modules may or may not be present, but cannot establish contact by I2C */ #define MC_CMD_MUM_OUT_READ_DDR_INFO_NOT_REACHABLE 0x6 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RESERVED2_LBN 52 #define MC_CMD_MUM_OUT_READ_DDR_INFO_RESERVED2_WIDTH 12 /* MC_CMD_RESOURCE_SPECIFIER enum */ /* enum: Any */ #define MC_CMD_RESOURCE_INSTANCE_ANY 0xffffffff /* enum: None */ #define MC_CMD_RESOURCE_INSTANCE_NONE 0xfffffffe /* EVB_PORT_ID structuredef */ #define EVB_PORT_ID_LEN 4 #define EVB_PORT_ID_PORT_ID_OFST 0 /* enum: An invalid port handle. */ #define EVB_PORT_ID_NULL 0x0 /* enum: The port assigned to this function.. */ #define EVB_PORT_ID_ASSIGNED 0x1000000 /* enum: External network port 0 */ #define EVB_PORT_ID_MAC0 0x2000000 /* enum: External network port 1 */ #define EVB_PORT_ID_MAC1 0x2000001 /* enum: External network port 2 */ #define EVB_PORT_ID_MAC2 0x2000002 /* enum: External network port 3 */ #define EVB_PORT_ID_MAC3 0x2000003 #define EVB_PORT_ID_PORT_ID_LBN 0 #define EVB_PORT_ID_PORT_ID_WIDTH 32 /* EVB_VLAN_TAG structuredef */ #define EVB_VLAN_TAG_LEN 2 /* The VLAN tag value */ #define EVB_VLAN_TAG_VLAN_ID_LBN 0 #define EVB_VLAN_TAG_VLAN_ID_WIDTH 12 #define EVB_VLAN_TAG_MODE_LBN 12 #define EVB_VLAN_TAG_MODE_WIDTH 4 /* enum: Insert the VLAN. */ #define EVB_VLAN_TAG_INSERT 0x0 /* enum: Replace the VLAN if already present. */ #define EVB_VLAN_TAG_REPLACE 0x1 /* BUFTBL_ENTRY structuredef */ #define BUFTBL_ENTRY_LEN 12 /* the owner ID */ #define BUFTBL_ENTRY_OID_OFST 0 #define BUFTBL_ENTRY_OID_LEN 2 #define BUFTBL_ENTRY_OID_LBN 0 #define BUFTBL_ENTRY_OID_WIDTH 16 /* the page parameter as one of ESE_DZ_SMC_PAGE_SIZE_ */ #define BUFTBL_ENTRY_PGSZ_OFST 2 #define BUFTBL_ENTRY_PGSZ_LEN 2 #define BUFTBL_ENTRY_PGSZ_LBN 16 #define BUFTBL_ENTRY_PGSZ_WIDTH 16 /* the raw 64-bit address field from the SMC, not adjusted for page size */ #define BUFTBL_ENTRY_RAWADDR_OFST 4 #define BUFTBL_ENTRY_RAWADDR_LEN 8 #define BUFTBL_ENTRY_RAWADDR_LO_OFST 4 #define BUFTBL_ENTRY_RAWADDR_HI_OFST 8 #define BUFTBL_ENTRY_RAWADDR_LBN 32 #define BUFTBL_ENTRY_RAWADDR_WIDTH 64 /* NVRAM_PARTITION_TYPE structuredef */ #define NVRAM_PARTITION_TYPE_LEN 2 #define NVRAM_PARTITION_TYPE_ID_OFST 0 #define NVRAM_PARTITION_TYPE_ID_LEN 2 /* enum: Primary MC firmware partition */ #define NVRAM_PARTITION_TYPE_MC_FIRMWARE 0x100 /* enum: Secondary MC firmware partition */ #define NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP 0x200 /* enum: Expansion ROM partition */ #define NVRAM_PARTITION_TYPE_EXPANSION_ROM 0x300 /* enum: Static configuration TLV partition */ #define NVRAM_PARTITION_TYPE_STATIC_CONFIG 0x400 /* enum: Dynamic configuration TLV partition */ #define NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG 0x500 /* enum: Expansion ROM configuration data for port 0 */ #define NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0 0x600 /* enum: Synonym for EXPROM_CONFIG_PORT0 as used in pmap files */ #define NVRAM_PARTITION_TYPE_EXPROM_CONFIG 0x600 /* enum: Expansion ROM configuration data for port 1 */ #define NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1 0x601 /* enum: Expansion ROM configuration data for port 2 */ #define NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2 0x602 /* enum: Expansion ROM configuration data for port 3 */ #define NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3 0x603 /* enum: Non-volatile log output partition */ #define NVRAM_PARTITION_TYPE_LOG 0x700 /* enum: Non-volatile log output of second core on dual-core device */ #define NVRAM_PARTITION_TYPE_LOG_SLAVE 0x701 /* enum: Device state dump output partition */ #define NVRAM_PARTITION_TYPE_DUMP 0x800 /* enum: Application license key storage partition */ #define NVRAM_PARTITION_TYPE_LICENSE 0x900 /* enum: Start of range used for PHY partitions (low 8 bits are the PHY ID) */ #define NVRAM_PARTITION_TYPE_PHY_MIN 0xa00 /* enum: End of range used for PHY partitions (low 8 bits are the PHY ID) */ #define NVRAM_PARTITION_TYPE_PHY_MAX 0xaff /* enum: Primary FPGA partition */ #define NVRAM_PARTITION_TYPE_FPGA 0xb00 /* enum: Secondary FPGA partition */ #define NVRAM_PARTITION_TYPE_FPGA_BACKUP 0xb01 /* enum: FC firmware partition */ #define NVRAM_PARTITION_TYPE_FC_FIRMWARE 0xb02 /* enum: FC License partition */ #define NVRAM_PARTITION_TYPE_FC_LICENSE 0xb03 /* enum: Non-volatile log output partition for FC */ #define NVRAM_PARTITION_TYPE_FC_LOG 0xb04 /* enum: MUM firmware partition */ #define NVRAM_PARTITION_TYPE_MUM_FIRMWARE 0xc00 /* enum: MUM Non-volatile log output partition. */ #define NVRAM_PARTITION_TYPE_MUM_LOG 0xc01 /* enum: MUM Application table partition. */ #define NVRAM_PARTITION_TYPE_MUM_APPTABLE 0xc02 /* enum: MUM boot rom partition. */ #define NVRAM_PARTITION_TYPE_MUM_BOOT_ROM 0xc03 /* enum: MUM production signatures & calibration rom partition. */ #define NVRAM_PARTITION_TYPE_MUM_PROD_ROM 0xc04 /* enum: MUM user signatures & calibration rom partition. */ #define NVRAM_PARTITION_TYPE_MUM_USER_ROM 0xc05 /* enum: MUM fuses and lockbits partition. */ #define NVRAM_PARTITION_TYPE_MUM_FUSELOCK 0xc06 /* enum: UEFI expansion ROM if separate from PXE */ #define NVRAM_PARTITION_TYPE_EXPANSION_UEFI 0xd00 /* enum: Spare partition 0 */ #define NVRAM_PARTITION_TYPE_SPARE_0 0x1000 /* enum: Spare partition 1 */ #define NVRAM_PARTITION_TYPE_SPARE_1 0x1100 /* enum: Spare partition 2 */ #define NVRAM_PARTITION_TYPE_SPARE_2 0x1200 /* enum: Spare partition 3 */ #define NVRAM_PARTITION_TYPE_SPARE_3 0x1300 /* enum: Spare partition 4 */ #define NVRAM_PARTITION_TYPE_SPARE_4 0x1400 /* enum: Spare partition 5 */ #define NVRAM_PARTITION_TYPE_SPARE_5 0x1500 /* enum: Start of reserved value range (firmware may use for any purpose) */ #define NVRAM_PARTITION_TYPE_RESERVED_VALUES_MIN 0xff00 /* enum: End of reserved value range (firmware may use for any purpose) */ #define NVRAM_PARTITION_TYPE_RESERVED_VALUES_MAX 0xfffd /* enum: Recovery partition map (provided if real map is missing or corrupt) */ #define NVRAM_PARTITION_TYPE_RECOVERY_MAP 0xfffe /* enum: Partition map (real map as stored in flash) */ #define NVRAM_PARTITION_TYPE_PARTITION_MAP 0xffff #define NVRAM_PARTITION_TYPE_ID_LBN 0 #define NVRAM_PARTITION_TYPE_ID_WIDTH 16 /* LICENSED_APP_ID structuredef */ #define LICENSED_APP_ID_LEN 4 #define LICENSED_APP_ID_ID_OFST 0 /* enum: OpenOnload */ #define LICENSED_APP_ID_ONLOAD 0x1 /* enum: PTP timestamping */ #define LICENSED_APP_ID_PTP 0x2 /* enum: SolarCapture Pro */ #define LICENSED_APP_ID_SOLARCAPTURE_PRO 0x4 /* enum: SolarSecure filter engine */ #define LICENSED_APP_ID_SOLARSECURE 0x8 /* enum: Performance monitor */ #define LICENSED_APP_ID_PERF_MONITOR 0x10 /* enum: SolarCapture Live */ #define LICENSED_APP_ID_SOLARCAPTURE_LIVE 0x20 /* enum: Capture SolarSystem */ #define LICENSED_APP_ID_CAPTURE_SOLARSYSTEM 0x40 /* enum: Network Access Control */ #define LICENSED_APP_ID_NETWORK_ACCESS_CONTROL 0x80 #define LICENSED_APP_ID_ID_LBN 0 #define LICENSED_APP_ID_ID_WIDTH 32 +/* LICENSED_FEATURES structuredef */ +#define LICENSED_FEATURES_LEN 8 +/* Bitmask of licensed firmware features */ +#define LICENSED_FEATURES_MASK_OFST 0 +#define LICENSED_FEATURES_MASK_LEN 8 +#define LICENSED_FEATURES_MASK_LO_OFST 0 +#define LICENSED_FEATURES_MASK_HI_OFST 4 +#define LICENSED_FEATURES_RX_CUT_THROUGH_LBN 0 +#define LICENSED_FEATURES_RX_CUT_THROUGH_WIDTH 1 +#define LICENSED_FEATURES_PIO_LBN 1 +#define LICENSED_FEATURES_PIO_WIDTH 1 +#define LICENSED_FEATURES_EVQ_TIMER_LBN 2 +#define LICENSED_FEATURES_EVQ_TIMER_WIDTH 1 +#define LICENSED_FEATURES_CLOCK_LBN 3 +#define LICENSED_FEATURES_CLOCK_WIDTH 1 +#define LICENSED_FEATURES_RX_TIMESTAMPS_LBN 4 +#define LICENSED_FEATURES_RX_TIMESTAMPS_WIDTH 1 +#define LICENSED_FEATURES_TX_TIMESTAMPS_LBN 5 +#define LICENSED_FEATURES_TX_TIMESTAMPS_WIDTH 1 +#define LICENSED_FEATURES_RX_SNIFF_LBN 6 +#define LICENSED_FEATURES_RX_SNIFF_WIDTH 1 +#define LICENSED_FEATURES_TX_SNIFF_LBN 7 +#define LICENSED_FEATURES_TX_SNIFF_WIDTH 1 +#define LICENSED_FEATURES_PROXY_FILTER_OPS_LBN 8 +#define LICENSED_FEATURES_PROXY_FILTER_OPS_WIDTH 1 +#define LICENSED_FEATURES_MASK_LBN 0 +#define LICENSED_FEATURES_MASK_WIDTH 64 + +/* LICENSED_V3_APPS structuredef */ +#define LICENSED_V3_APPS_LEN 8 +/* Bitmask of licensed applications */ +#define LICENSED_V3_APPS_MASK_OFST 0 +#define LICENSED_V3_APPS_MASK_LEN 8 +#define LICENSED_V3_APPS_MASK_LO_OFST 0 +#define LICENSED_V3_APPS_MASK_HI_OFST 4 +#define LICENSED_V3_APPS_ONLOAD_LBN 0 +#define LICENSED_V3_APPS_ONLOAD_WIDTH 1 +#define LICENSED_V3_APPS_PTP_LBN 1 +#define LICENSED_V3_APPS_PTP_WIDTH 1 +#define LICENSED_V3_APPS_SOLARCAPTURE_PRO_LBN 2 +#define LICENSED_V3_APPS_SOLARCAPTURE_PRO_WIDTH 1 +#define LICENSED_V3_APPS_SOLARSECURE_LBN 3 +#define LICENSED_V3_APPS_SOLARSECURE_WIDTH 1 +#define LICENSED_V3_APPS_PERF_MONITOR_LBN 4 +#define LICENSED_V3_APPS_PERF_MONITOR_WIDTH 1 +#define LICENSED_V3_APPS_SOLARCAPTURE_LIVE_LBN 5 +#define LICENSED_V3_APPS_SOLARCAPTURE_LIVE_WIDTH 1 +#define LICENSED_V3_APPS_CAPTURE_SOLARSYSTEM_LBN 6 +#define LICENSED_V3_APPS_CAPTURE_SOLARSYSTEM_WIDTH 1 +#define LICENSED_V3_APPS_NETWORK_ACCESS_CONTROL_LBN 7 +#define LICENSED_V3_APPS_NETWORK_ACCESS_CONTROL_WIDTH 1 +#define LICENSED_V3_APPS_MASK_LBN 0 +#define LICENSED_V3_APPS_MASK_WIDTH 64 + +/* LICENSED_V3_FEATURES structuredef */ +#define LICENSED_V3_FEATURES_LEN 8 +/* Bitmask of licensed firmware features */ +#define LICENSED_V3_FEATURES_MASK_OFST 0 +#define LICENSED_V3_FEATURES_MASK_LEN 8 +#define LICENSED_V3_FEATURES_MASK_LO_OFST 0 +#define LICENSED_V3_FEATURES_MASK_HI_OFST 4 +#define LICENSED_V3_FEATURES_RX_CUT_THROUGH_LBN 0 +#define LICENSED_V3_FEATURES_RX_CUT_THROUGH_WIDTH 1 +#define LICENSED_V3_FEATURES_PIO_LBN 1 +#define LICENSED_V3_FEATURES_PIO_WIDTH 1 +#define LICENSED_V3_FEATURES_EVQ_TIMER_LBN 2 +#define LICENSED_V3_FEATURES_EVQ_TIMER_WIDTH 1 +#define LICENSED_V3_FEATURES_CLOCK_LBN 3 +#define LICENSED_V3_FEATURES_CLOCK_WIDTH 1 +#define LICENSED_V3_FEATURES_RX_TIMESTAMPS_LBN 4 +#define LICENSED_V3_FEATURES_RX_TIMESTAMPS_WIDTH 1 +#define LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN 5 +#define LICENSED_V3_FEATURES_TX_TIMESTAMPS_WIDTH 1 +#define LICENSED_V3_FEATURES_RX_SNIFF_LBN 6 +#define LICENSED_V3_FEATURES_RX_SNIFF_WIDTH 1 +#define LICENSED_V3_FEATURES_TX_SNIFF_LBN 7 +#define LICENSED_V3_FEATURES_TX_SNIFF_WIDTH 1 +#define LICENSED_V3_FEATURES_PROXY_FILTER_OPS_LBN 8 +#define LICENSED_V3_FEATURES_PROXY_FILTER_OPS_WIDTH 1 +#define LICENSED_V3_FEATURES_MASK_LBN 0 +#define LICENSED_V3_FEATURES_MASK_WIDTH 64 + /* TX_TIMESTAMP_EVENT structuredef */ #define TX_TIMESTAMP_EVENT_LEN 6 /* lower 16 bits of timestamp data */ #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO_OFST 0 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO_LEN 2 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO_LBN 0 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO_WIDTH 16 /* Type of TX event, ordinary TX completion, low or high part of TX timestamp */ #define TX_TIMESTAMP_EVENT_TX_EV_TYPE_OFST 3 #define TX_TIMESTAMP_EVENT_TX_EV_TYPE_LEN 1 /* enum: This is a TX completion event, not a timestamp */ #define TX_TIMESTAMP_EVENT_TX_EV_COMPLETION 0x0 /* enum: This is the low part of a TX timestamp event */ #define TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO 0x51 /* enum: This is the high part of a TX timestamp event */ #define TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI 0x52 #define TX_TIMESTAMP_EVENT_TX_EV_TYPE_LBN 24 #define TX_TIMESTAMP_EVENT_TX_EV_TYPE_WIDTH 8 /* upper 16 bits of timestamp data */ #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI_OFST 4 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI_LEN 2 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI_LBN 32 #define TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI_WIDTH 16 /* RSS_MODE structuredef */ #define RSS_MODE_LEN 1 /* The RSS mode for a particular packet type is a value from 0 - 15 which can * be considered as 4 bits selecting which fields are included in the hash. (A * value 0 effectively disables RSS spreading for the packet type.) The YAML * generation tools require this structure to be a whole number of bytes wide, * but only 4 bits are relevant. */ #define RSS_MODE_HASH_SELECTOR_OFST 0 #define RSS_MODE_HASH_SELECTOR_LEN 1 #define RSS_MODE_HASH_SRC_ADDR_LBN 0 #define RSS_MODE_HASH_SRC_ADDR_WIDTH 1 #define RSS_MODE_HASH_DST_ADDR_LBN 1 #define RSS_MODE_HASH_DST_ADDR_WIDTH 1 #define RSS_MODE_HASH_SRC_PORT_LBN 2 #define RSS_MODE_HASH_SRC_PORT_WIDTH 1 #define RSS_MODE_HASH_DST_PORT_LBN 3 #define RSS_MODE_HASH_DST_PORT_WIDTH 1 #define RSS_MODE_HASH_SELECTOR_LBN 0 #define RSS_MODE_HASH_SELECTOR_WIDTH 8 /***********************************/ /* MC_CMD_READ_REGS * Get a dump of the MCPU registers */ #define MC_CMD_READ_REGS 0x50 #undef MC_CMD_0x50_PRIVILEGE_CTG #define MC_CMD_0x50_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_READ_REGS_IN msgrequest */ #define MC_CMD_READ_REGS_IN_LEN 0 /* MC_CMD_READ_REGS_OUT msgresponse */ #define MC_CMD_READ_REGS_OUT_LEN 308 /* Whether the corresponding register entry contains a valid value */ #define MC_CMD_READ_REGS_OUT_MASK_OFST 0 #define MC_CMD_READ_REGS_OUT_MASK_LEN 16 /* Same order as MIPS GDB (r0-r31, sr, lo, hi, bad, cause, 32 x float, fsr, * fir, fp) */ #define MC_CMD_READ_REGS_OUT_REGS_OFST 16 #define MC_CMD_READ_REGS_OUT_REGS_LEN 4 #define MC_CMD_READ_REGS_OUT_REGS_NUM 73 /***********************************/ /* MC_CMD_INIT_EVQ * Set up an event queue according to the supplied parameters. The IN arguments * end with an address for each 4k of host memory required to back the EVQ. */ #define MC_CMD_INIT_EVQ 0x80 #undef MC_CMD_0x80_PRIVILEGE_CTG #define MC_CMD_0x80_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_INIT_EVQ_IN msgrequest */ #define MC_CMD_INIT_EVQ_IN_LENMIN 44 #define MC_CMD_INIT_EVQ_IN_LENMAX 548 #define MC_CMD_INIT_EVQ_IN_LEN(num) (36+8*(num)) /* Size, in entries */ #define MC_CMD_INIT_EVQ_IN_SIZE_OFST 0 /* Desired instance. Must be set to a specific instance, which is a function * local queue index. */ #define MC_CMD_INIT_EVQ_IN_INSTANCE_OFST 4 /* The initial timer value. The load value is ignored if the timer mode is DIS. */ #define MC_CMD_INIT_EVQ_IN_TMR_LOAD_OFST 8 /* The reload value is ignored in one-shot modes */ #define MC_CMD_INIT_EVQ_IN_TMR_RELOAD_OFST 12 /* tbd */ #define MC_CMD_INIT_EVQ_IN_FLAGS_OFST 16 #define MC_CMD_INIT_EVQ_IN_FLAG_INTERRUPTING_LBN 0 #define MC_CMD_INIT_EVQ_IN_FLAG_INTERRUPTING_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_FLAG_RPTR_DOS_LBN 1 #define MC_CMD_INIT_EVQ_IN_FLAG_RPTR_DOS_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_FLAG_INT_ARMD_LBN 2 #define MC_CMD_INIT_EVQ_IN_FLAG_INT_ARMD_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_FLAG_CUT_THRU_LBN 3 #define MC_CMD_INIT_EVQ_IN_FLAG_CUT_THRU_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_FLAG_RX_MERGE_LBN 4 #define MC_CMD_INIT_EVQ_IN_FLAG_RX_MERGE_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_FLAG_TX_MERGE_LBN 5 #define MC_CMD_INIT_EVQ_IN_FLAG_TX_MERGE_WIDTH 1 #define MC_CMD_INIT_EVQ_IN_TMR_MODE_OFST 20 /* enum: Disabled */ #define MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS 0x0 /* enum: Immediate */ #define MC_CMD_INIT_EVQ_IN_TMR_IMMED_START 0x1 /* enum: Triggered */ #define MC_CMD_INIT_EVQ_IN_TMR_TRIG_START 0x2 /* enum: Hold-off */ #define MC_CMD_INIT_EVQ_IN_TMR_INT_HLDOFF 0x3 /* Target EVQ for wakeups if in wakeup mode. */ #define MC_CMD_INIT_EVQ_IN_TARGET_EVQ_OFST 24 /* Target interrupt if in interrupting mode (note union with target EVQ). Use * MC_CMD_RESOURCE_INSTANCE_ANY unless a specific one required for test * purposes. */ #define MC_CMD_INIT_EVQ_IN_IRQ_NUM_OFST 24 /* Event Counter Mode. */ #define MC_CMD_INIT_EVQ_IN_COUNT_MODE_OFST 28 /* enum: Disabled */ #define MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS 0x0 /* enum: Disabled */ #define MC_CMD_INIT_EVQ_IN_COUNT_MODE_RX 0x1 /* enum: Disabled */ #define MC_CMD_INIT_EVQ_IN_COUNT_MODE_TX 0x2 /* enum: Disabled */ #define MC_CMD_INIT_EVQ_IN_COUNT_MODE_RXTX 0x3 /* Event queue packet count threshold. */ #define MC_CMD_INIT_EVQ_IN_COUNT_THRSHLD_OFST 32 /* 64-bit address of 4k of 4k-aligned host memory buffer */ #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_OFST 36 #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_LEN 8 #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_LO_OFST 36 #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_HI_OFST 40 #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_MINNUM 1 #define MC_CMD_INIT_EVQ_IN_DMA_ADDR_MAXNUM 64 /* MC_CMD_INIT_EVQ_OUT msgresponse */ #define MC_CMD_INIT_EVQ_OUT_LEN 4 /* Only valid if INTRFLAG was true */ #define MC_CMD_INIT_EVQ_OUT_IRQ_OFST 0 /* QUEUE_CRC_MODE structuredef */ #define QUEUE_CRC_MODE_LEN 1 #define QUEUE_CRC_MODE_MODE_LBN 0 #define QUEUE_CRC_MODE_MODE_WIDTH 4 /* enum: No CRC. */ #define QUEUE_CRC_MODE_NONE 0x0 /* enum: CRC Fiber channel over ethernet. */ #define QUEUE_CRC_MODE_FCOE 0x1 /* enum: CRC (digest) iSCSI header only. */ #define QUEUE_CRC_MODE_ISCSI_HDR 0x2 /* enum: CRC (digest) iSCSI header and payload. */ #define QUEUE_CRC_MODE_ISCSI 0x3 /* enum: CRC Fiber channel over IP over ethernet. */ #define QUEUE_CRC_MODE_FCOIPOE 0x4 /* enum: CRC MPA. */ #define QUEUE_CRC_MODE_MPA 0x5 #define QUEUE_CRC_MODE_SPARE_LBN 4 #define QUEUE_CRC_MODE_SPARE_WIDTH 4 /***********************************/ /* MC_CMD_INIT_RXQ * set up a receive queue according to the supplied parameters. The IN * arguments end with an address for each 4k of host memory required to back * the RXQ. */ #define MC_CMD_INIT_RXQ 0x81 #undef MC_CMD_0x81_PRIVILEGE_CTG #define MC_CMD_0x81_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_INIT_RXQ_IN msgrequest: Legacy RXQ_INIT request. Use extended version * in new code. */ #define MC_CMD_INIT_RXQ_IN_LENMIN 36 #define MC_CMD_INIT_RXQ_IN_LENMAX 252 #define MC_CMD_INIT_RXQ_IN_LEN(num) (28+8*(num)) /* Size, in entries */ #define MC_CMD_INIT_RXQ_IN_SIZE_OFST 0 /* The EVQ to send events to. This is an index originally specified to INIT_EVQ */ #define MC_CMD_INIT_RXQ_IN_TARGET_EVQ_OFST 4 /* The value to put in the event data. Check hardware spec. for valid range. */ #define MC_CMD_INIT_RXQ_IN_LABEL_OFST 8 /* Desired instance. Must be set to a specific instance, which is a function * local queue index. */ #define MC_CMD_INIT_RXQ_IN_INSTANCE_OFST 12 /* There will be more flags here. */ #define MC_CMD_INIT_RXQ_IN_FLAGS_OFST 16 #define MC_CMD_INIT_RXQ_IN_FLAG_BUFF_MODE_LBN 0 #define MC_CMD_INIT_RXQ_IN_FLAG_BUFF_MODE_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_FLAG_HDR_SPLIT_LBN 1 #define MC_CMD_INIT_RXQ_IN_FLAG_HDR_SPLIT_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_FLAG_TIMESTAMP_LBN 2 #define MC_CMD_INIT_RXQ_IN_FLAG_TIMESTAMP_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_CRC_MODE_LBN 3 #define MC_CMD_INIT_RXQ_IN_CRC_MODE_WIDTH 4 #define MC_CMD_INIT_RXQ_IN_FLAG_CHAIN_LBN 7 #define MC_CMD_INIT_RXQ_IN_FLAG_CHAIN_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_FLAG_PREFIX_LBN 8 #define MC_CMD_INIT_RXQ_IN_FLAG_PREFIX_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_FLAG_DISABLE_SCATTER_LBN 9 #define MC_CMD_INIT_RXQ_IN_FLAG_DISABLE_SCATTER_WIDTH 1 #define MC_CMD_INIT_RXQ_IN_FLAG_FORCE_EV_MERGING_LBN 10 #define MC_CMD_INIT_RXQ_IN_FLAG_FORCE_EV_MERGING_WIDTH 1 /* Owner ID to use if in buffer mode (zero if physical) */ #define MC_CMD_INIT_RXQ_IN_OWNER_ID_OFST 20 /* The port ID associated with the v-adaptor which should contain this DMAQ. */ #define MC_CMD_INIT_RXQ_IN_PORT_ID_OFST 24 /* 64-bit address of 4k of 4k-aligned host memory buffer */ #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_OFST 28 #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_LEN 8 #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_LO_OFST 28 #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_HI_OFST 32 #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_MINNUM 1 #define MC_CMD_INIT_RXQ_IN_DMA_ADDR_MAXNUM 28 /* MC_CMD_INIT_RXQ_EXT_IN msgrequest: Extended RXQ_INIT with additional mode * flags */ #define MC_CMD_INIT_RXQ_EXT_IN_LEN 544 /* Size, in entries */ #define MC_CMD_INIT_RXQ_EXT_IN_SIZE_OFST 0 /* The EVQ to send events to. This is an index originally specified to INIT_EVQ */ #define MC_CMD_INIT_RXQ_EXT_IN_TARGET_EVQ_OFST 4 /* The value to put in the event data. Check hardware spec. for valid range. */ #define MC_CMD_INIT_RXQ_EXT_IN_LABEL_OFST 8 /* Desired instance. Must be set to a specific instance, which is a function * local queue index. */ #define MC_CMD_INIT_RXQ_EXT_IN_INSTANCE_OFST 12 /* There will be more flags here. */ #define MC_CMD_INIT_RXQ_EXT_IN_FLAGS_OFST 16 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_BUFF_MODE_LBN 0 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_BUFF_MODE_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT_LBN 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_HDR_SPLIT_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_TIMESTAMP_LBN 2 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_TIMESTAMP_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_CRC_MODE_LBN 3 #define MC_CMD_INIT_RXQ_EXT_IN_CRC_MODE_WIDTH 4 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_CHAIN_LBN 7 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_CHAIN_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_PREFIX_LBN 8 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_PREFIX_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER_LBN 9 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_DISABLE_SCATTER_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_MODE_LBN 10 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_MODE_WIDTH 4 /* enum: One packet per descriptor (for normal networking) */ #define MC_CMD_INIT_RXQ_EXT_IN_SINGLE_PACKET 0x0 /* enum: Pack multiple packets into large descriptors (for SolarCapture) */ #define MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM 0x1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_SNAPSHOT_MODE_LBN 14 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_SNAPSHOT_MODE_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE_LBN 15 #define MC_CMD_INIT_RXQ_EXT_IN_PACKED_STREAM_BUFF_SIZE_WIDTH 3 #define MC_CMD_INIT_RXQ_EXT_IN_PS_BUFF_1M 0x0 /* enum */ #define MC_CMD_INIT_RXQ_EXT_IN_PS_BUFF_512K 0x1 /* enum */ #define MC_CMD_INIT_RXQ_EXT_IN_PS_BUFF_256K 0x2 /* enum */ #define MC_CMD_INIT_RXQ_EXT_IN_PS_BUFF_128K 0x3 /* enum */ #define MC_CMD_INIT_RXQ_EXT_IN_PS_BUFF_64K 0x4 /* enum */ #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES_LBN 18 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_WANT_OUTER_CLASSES_WIDTH 1 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_FORCE_EV_MERGING_LBN 19 #define MC_CMD_INIT_RXQ_EXT_IN_FLAG_FORCE_EV_MERGING_WIDTH 1 /* Owner ID to use if in buffer mode (zero if physical) */ #define MC_CMD_INIT_RXQ_EXT_IN_OWNER_ID_OFST 20 /* The port ID associated with the v-adaptor which should contain this DMAQ. */ #define MC_CMD_INIT_RXQ_EXT_IN_PORT_ID_OFST 24 /* 64-bit address of 4k of 4k-aligned host memory buffer */ #define MC_CMD_INIT_RXQ_EXT_IN_DMA_ADDR_OFST 28 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_ADDR_LEN 8 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_ADDR_LO_OFST 28 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_ADDR_HI_OFST 32 #define MC_CMD_INIT_RXQ_EXT_IN_DMA_ADDR_NUM 64 /* Maximum length of packet to receive, if SNAPSHOT_MODE flag is set */ #define MC_CMD_INIT_RXQ_EXT_IN_SNAPSHOT_LENGTH_OFST 540 /* MC_CMD_INIT_RXQ_OUT msgresponse */ #define MC_CMD_INIT_RXQ_OUT_LEN 0 /* MC_CMD_INIT_RXQ_EXT_OUT msgresponse */ #define MC_CMD_INIT_RXQ_EXT_OUT_LEN 0 /***********************************/ /* MC_CMD_INIT_TXQ */ #define MC_CMD_INIT_TXQ 0x82 #undef MC_CMD_0x82_PRIVILEGE_CTG #define MC_CMD_0x82_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_INIT_TXQ_IN msgrequest: Legacy INIT_TXQ request. Use extended version * in new code. */ #define MC_CMD_INIT_TXQ_IN_LENMIN 36 #define MC_CMD_INIT_TXQ_IN_LENMAX 252 #define MC_CMD_INIT_TXQ_IN_LEN(num) (28+8*(num)) /* Size, in entries */ #define MC_CMD_INIT_TXQ_IN_SIZE_OFST 0 /* The EVQ to send events to. This is an index originally specified to * INIT_EVQ. */ #define MC_CMD_INIT_TXQ_IN_TARGET_EVQ_OFST 4 /* The value to put in the event data. Check hardware spec. for valid range. */ #define MC_CMD_INIT_TXQ_IN_LABEL_OFST 8 /* Desired instance. Must be set to a specific instance, which is a function * local queue index. */ #define MC_CMD_INIT_TXQ_IN_INSTANCE_OFST 12 /* There will be more flags here. */ #define MC_CMD_INIT_TXQ_IN_FLAGS_OFST 16 #define MC_CMD_INIT_TXQ_IN_FLAG_BUFF_MODE_LBN 0 #define MC_CMD_INIT_TXQ_IN_FLAG_BUFF_MODE_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_IP_CSUM_DIS_LBN 1 #define MC_CMD_INIT_TXQ_IN_FLAG_IP_CSUM_DIS_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_TCP_CSUM_DIS_LBN 2 #define MC_CMD_INIT_TXQ_IN_FLAG_TCP_CSUM_DIS_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_TCP_UDP_ONLY_LBN 3 #define MC_CMD_INIT_TXQ_IN_FLAG_TCP_UDP_ONLY_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_CRC_MODE_LBN 4 #define MC_CMD_INIT_TXQ_IN_CRC_MODE_WIDTH 4 #define MC_CMD_INIT_TXQ_IN_FLAG_TIMESTAMP_LBN 8 #define MC_CMD_INIT_TXQ_IN_FLAG_TIMESTAMP_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_PACER_BYPASS_LBN 9 #define MC_CMD_INIT_TXQ_IN_FLAG_PACER_BYPASS_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_INNER_IP_CSUM_EN_LBN 10 #define MC_CMD_INIT_TXQ_IN_FLAG_INNER_IP_CSUM_EN_WIDTH 1 #define MC_CMD_INIT_TXQ_IN_FLAG_INNER_TCP_CSUM_EN_LBN 11 #define MC_CMD_INIT_TXQ_IN_FLAG_INNER_TCP_CSUM_EN_WIDTH 1 /* Owner ID to use if in buffer mode (zero if physical) */ #define MC_CMD_INIT_TXQ_IN_OWNER_ID_OFST 20 /* The port ID associated with the v-adaptor which should contain this DMAQ. */ #define MC_CMD_INIT_TXQ_IN_PORT_ID_OFST 24 /* 64-bit address of 4k of 4k-aligned host memory buffer */ #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_OFST 28 #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_LEN 8 #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_LO_OFST 28 #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_HI_OFST 32 #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_MINNUM 1 #define MC_CMD_INIT_TXQ_IN_DMA_ADDR_MAXNUM 28 /* MC_CMD_INIT_TXQ_EXT_IN msgrequest: Extended INIT_TXQ with additional mode * flags */ #define MC_CMD_INIT_TXQ_EXT_IN_LEN 544 /* Size, in entries */ #define MC_CMD_INIT_TXQ_EXT_IN_SIZE_OFST 0 /* The EVQ to send events to. This is an index originally specified to * INIT_EVQ. */ #define MC_CMD_INIT_TXQ_EXT_IN_TARGET_EVQ_OFST 4 /* The value to put in the event data. Check hardware spec. for valid range. */ #define MC_CMD_INIT_TXQ_EXT_IN_LABEL_OFST 8 /* Desired instance. Must be set to a specific instance, which is a function * local queue index. */ #define MC_CMD_INIT_TXQ_EXT_IN_INSTANCE_OFST 12 /* There will be more flags here. */ #define MC_CMD_INIT_TXQ_EXT_IN_FLAGS_OFST 16 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_BUFF_MODE_LBN 0 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_BUFF_MODE_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_IP_CSUM_DIS_LBN 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_IP_CSUM_DIS_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TCP_CSUM_DIS_LBN 2 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TCP_CSUM_DIS_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TCP_UDP_ONLY_LBN 3 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TCP_UDP_ONLY_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_CRC_MODE_LBN 4 #define MC_CMD_INIT_TXQ_EXT_IN_CRC_MODE_WIDTH 4 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TIMESTAMP_LBN 8 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TIMESTAMP_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_PACER_BYPASS_LBN 9 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_PACER_BYPASS_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN_LBN 10 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN_LBN 11 #define MC_CMD_INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN_WIDTH 1 +#define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TSOV2_EN_LBN 12 +#define MC_CMD_INIT_TXQ_EXT_IN_FLAG_TSOV2_EN_WIDTH 1 /* Owner ID to use if in buffer mode (zero if physical) */ #define MC_CMD_INIT_TXQ_EXT_IN_OWNER_ID_OFST 20 /* The port ID associated with the v-adaptor which should contain this DMAQ. */ #define MC_CMD_INIT_TXQ_EXT_IN_PORT_ID_OFST 24 /* 64-bit address of 4k of 4k-aligned host memory buffer */ #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_OFST 28 #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_LEN 8 #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_LO_OFST 28 #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_HI_OFST 32 #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MINNUM 1 #define MC_CMD_INIT_TXQ_EXT_IN_DMA_ADDR_MAXNUM 64 /* Flags related to Qbb flow control mode. */ #define MC_CMD_INIT_TXQ_EXT_IN_QBB_FLAGS_OFST 540 #define MC_CMD_INIT_TXQ_EXT_IN_QBB_ENABLE_LBN 0 #define MC_CMD_INIT_TXQ_EXT_IN_QBB_ENABLE_WIDTH 1 #define MC_CMD_INIT_TXQ_EXT_IN_QBB_PRIORITY_LBN 1 #define MC_CMD_INIT_TXQ_EXT_IN_QBB_PRIORITY_WIDTH 3 /* MC_CMD_INIT_TXQ_OUT msgresponse */ #define MC_CMD_INIT_TXQ_OUT_LEN 0 /***********************************/ /* MC_CMD_FINI_EVQ * Teardown an EVQ. * * All DMAQs or EVQs that point to the EVQ to tear down must be torn down first * or the operation will fail with EBUSY */ #define MC_CMD_FINI_EVQ 0x83 #undef MC_CMD_0x83_PRIVILEGE_CTG #define MC_CMD_0x83_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_FINI_EVQ_IN msgrequest */ #define MC_CMD_FINI_EVQ_IN_LEN 4 /* Instance of EVQ to destroy. Should be the same instance as that previously * passed to INIT_EVQ */ #define MC_CMD_FINI_EVQ_IN_INSTANCE_OFST 0 /* MC_CMD_FINI_EVQ_OUT msgresponse */ #define MC_CMD_FINI_EVQ_OUT_LEN 0 /***********************************/ /* MC_CMD_FINI_RXQ * Teardown a RXQ. */ #define MC_CMD_FINI_RXQ 0x84 #undef MC_CMD_0x84_PRIVILEGE_CTG #define MC_CMD_0x84_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_FINI_RXQ_IN msgrequest */ #define MC_CMD_FINI_RXQ_IN_LEN 4 /* Instance of RXQ to destroy */ #define MC_CMD_FINI_RXQ_IN_INSTANCE_OFST 0 /* MC_CMD_FINI_RXQ_OUT msgresponse */ #define MC_CMD_FINI_RXQ_OUT_LEN 0 /***********************************/ /* MC_CMD_FINI_TXQ * Teardown a TXQ. */ #define MC_CMD_FINI_TXQ 0x85 #undef MC_CMD_0x85_PRIVILEGE_CTG #define MC_CMD_0x85_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_FINI_TXQ_IN msgrequest */ #define MC_CMD_FINI_TXQ_IN_LEN 4 /* Instance of TXQ to destroy */ #define MC_CMD_FINI_TXQ_IN_INSTANCE_OFST 0 /* MC_CMD_FINI_TXQ_OUT msgresponse */ #define MC_CMD_FINI_TXQ_OUT_LEN 0 /***********************************/ /* MC_CMD_DRIVER_EVENT * Generate an event on an EVQ belonging to the function issuing the command. */ #define MC_CMD_DRIVER_EVENT 0x86 #undef MC_CMD_0x86_PRIVILEGE_CTG #define MC_CMD_0x86_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_DRIVER_EVENT_IN msgrequest */ #define MC_CMD_DRIVER_EVENT_IN_LEN 12 /* Handle of target EVQ */ #define MC_CMD_DRIVER_EVENT_IN_EVQ_OFST 0 /* Bits 0 - 63 of event */ #define MC_CMD_DRIVER_EVENT_IN_DATA_OFST 4 #define MC_CMD_DRIVER_EVENT_IN_DATA_LEN 8 #define MC_CMD_DRIVER_EVENT_IN_DATA_LO_OFST 4 #define MC_CMD_DRIVER_EVENT_IN_DATA_HI_OFST 8 /* MC_CMD_DRIVER_EVENT_OUT msgresponse */ #define MC_CMD_DRIVER_EVENT_OUT_LEN 0 /***********************************/ /* MC_CMD_PROXY_CMD * Execute an arbitrary MCDI command on behalf of a different function, subject * to security restrictions. The command to be proxied follows immediately * afterward in the host buffer (or on the UART). This command supercedes * MC_CMD_SET_FUNC, which remains available for Siena but now deprecated. */ #define MC_CMD_PROXY_CMD 0x5b #undef MC_CMD_0x5b_PRIVILEGE_CTG #define MC_CMD_0x5b_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PROXY_CMD_IN msgrequest */ #define MC_CMD_PROXY_CMD_IN_LEN 4 /* The handle of the target function. */ #define MC_CMD_PROXY_CMD_IN_TARGET_OFST 0 #define MC_CMD_PROXY_CMD_IN_TARGET_PF_LBN 0 #define MC_CMD_PROXY_CMD_IN_TARGET_PF_WIDTH 16 #define MC_CMD_PROXY_CMD_IN_TARGET_VF_LBN 16 #define MC_CMD_PROXY_CMD_IN_TARGET_VF_WIDTH 16 #define MC_CMD_PROXY_CMD_IN_VF_NULL 0xffff /* enum */ /* MC_CMD_PROXY_CMD_OUT msgresponse */ #define MC_CMD_PROXY_CMD_OUT_LEN 0 /* MC_PROXY_STATUS_BUFFER structuredef: Host memory status buffer used to * manage proxied requests */ #define MC_PROXY_STATUS_BUFFER_LEN 16 /* Handle allocated by the firmware for this proxy transaction */ #define MC_PROXY_STATUS_BUFFER_HANDLE_OFST 0 /* enum: An invalid handle. */ #define MC_PROXY_STATUS_BUFFER_HANDLE_INVALID 0x0 #define MC_PROXY_STATUS_BUFFER_HANDLE_LBN 0 #define MC_PROXY_STATUS_BUFFER_HANDLE_WIDTH 32 /* The requesting physical function number */ #define MC_PROXY_STATUS_BUFFER_PF_OFST 4 #define MC_PROXY_STATUS_BUFFER_PF_LEN 2 #define MC_PROXY_STATUS_BUFFER_PF_LBN 32 #define MC_PROXY_STATUS_BUFFER_PF_WIDTH 16 /* The requesting virtual function number. Set to VF_NULL if the target is a * PF. */ #define MC_PROXY_STATUS_BUFFER_VF_OFST 6 #define MC_PROXY_STATUS_BUFFER_VF_LEN 2 #define MC_PROXY_STATUS_BUFFER_VF_LBN 48 #define MC_PROXY_STATUS_BUFFER_VF_WIDTH 16 /* The target function RID. */ #define MC_PROXY_STATUS_BUFFER_RID_OFST 8 #define MC_PROXY_STATUS_BUFFER_RID_LEN 2 #define MC_PROXY_STATUS_BUFFER_RID_LBN 64 #define MC_PROXY_STATUS_BUFFER_RID_WIDTH 16 /* The status of the proxy as described in MC_CMD_PROXY_COMPLETE. */ #define MC_PROXY_STATUS_BUFFER_STATUS_OFST 10 #define MC_PROXY_STATUS_BUFFER_STATUS_LEN 2 #define MC_PROXY_STATUS_BUFFER_STATUS_LBN 80 #define MC_PROXY_STATUS_BUFFER_STATUS_WIDTH 16 /* If a request is authorized rather than carried out by the host, this is the * elevated privilege mask granted to the requesting function. */ #define MC_PROXY_STATUS_BUFFER_GRANTED_PRIVILEGES_OFST 12 #define MC_PROXY_STATUS_BUFFER_GRANTED_PRIVILEGES_LBN 96 #define MC_PROXY_STATUS_BUFFER_GRANTED_PRIVILEGES_WIDTH 32 /***********************************/ /* MC_CMD_PROXY_CONFIGURE * Enable/disable authorization of MCDI requests from unprivileged functions by * a designated admin function */ #define MC_CMD_PROXY_CONFIGURE 0x58 #undef MC_CMD_0x58_PRIVILEGE_CTG #define MC_CMD_0x58_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PROXY_CONFIGURE_IN msgrequest */ #define MC_CMD_PROXY_CONFIGURE_IN_LEN 108 #define MC_CMD_PROXY_CONFIGURE_IN_FLAGS_OFST 0 #define MC_CMD_PROXY_CONFIGURE_IN_ENABLE_LBN 0 #define MC_CMD_PROXY_CONFIGURE_IN_ENABLE_WIDTH 1 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size REQUEST_BLOCK_SIZE. */ #define MC_CMD_PROXY_CONFIGURE_IN_STATUS_BUFF_ADDR_OFST 4 #define MC_CMD_PROXY_CONFIGURE_IN_STATUS_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_IN_STATUS_BUFF_ADDR_LO_OFST 4 #define MC_CMD_PROXY_CONFIGURE_IN_STATUS_BUFF_ADDR_HI_OFST 8 /* Must be a power of 2 */ #define MC_CMD_PROXY_CONFIGURE_IN_STATUS_BLOCK_SIZE_OFST 12 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size REPLY_BLOCK_SIZE. */ #define MC_CMD_PROXY_CONFIGURE_IN_REQUEST_BUFF_ADDR_OFST 16 #define MC_CMD_PROXY_CONFIGURE_IN_REQUEST_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_IN_REQUEST_BUFF_ADDR_LO_OFST 16 #define MC_CMD_PROXY_CONFIGURE_IN_REQUEST_BUFF_ADDR_HI_OFST 20 /* Must be a power of 2 */ #define MC_CMD_PROXY_CONFIGURE_IN_REQUEST_BLOCK_SIZE_OFST 24 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size STATUS_BLOCK_SIZE. This buffer is only needed if * host intends to complete proxied operations by using MC_CMD_PROXY_CMD. */ #define MC_CMD_PROXY_CONFIGURE_IN_REPLY_BUFF_ADDR_OFST 28 #define MC_CMD_PROXY_CONFIGURE_IN_REPLY_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_IN_REPLY_BUFF_ADDR_LO_OFST 28 #define MC_CMD_PROXY_CONFIGURE_IN_REPLY_BUFF_ADDR_HI_OFST 32 /* Must be a power of 2, or zero if this buffer is not provided */ #define MC_CMD_PROXY_CONFIGURE_IN_REPLY_BLOCK_SIZE_OFST 36 /* Applies to all three buffers */ #define MC_CMD_PROXY_CONFIGURE_IN_NUM_BLOCKS_OFST 40 /* A bit mask defining which MCDI operations may be proxied */ #define MC_CMD_PROXY_CONFIGURE_IN_ALLOWED_MCDI_MASK_OFST 44 #define MC_CMD_PROXY_CONFIGURE_IN_ALLOWED_MCDI_MASK_LEN 64 /* MC_CMD_PROXY_CONFIGURE_EXT_IN msgrequest */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_LEN 112 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_FLAGS_OFST 0 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_ENABLE_LBN 0 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_ENABLE_WIDTH 1 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size REQUEST_BLOCK_SIZE. */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_STATUS_BUFF_ADDR_OFST 4 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_STATUS_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_STATUS_BUFF_ADDR_LO_OFST 4 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_STATUS_BUFF_ADDR_HI_OFST 8 /* Must be a power of 2 */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_STATUS_BLOCK_SIZE_OFST 12 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size REPLY_BLOCK_SIZE. */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REQUEST_BUFF_ADDR_OFST 16 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REQUEST_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REQUEST_BUFF_ADDR_LO_OFST 16 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REQUEST_BUFF_ADDR_HI_OFST 20 /* Must be a power of 2 */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REQUEST_BLOCK_SIZE_OFST 24 /* Host provides a contiguous memory buffer that contains at least NUM_BLOCKS * of blocks, each of the size STATUS_BLOCK_SIZE. This buffer is only needed if * host intends to complete proxied operations by using MC_CMD_PROXY_CMD. */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REPLY_BUFF_ADDR_OFST 28 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REPLY_BUFF_ADDR_LEN 8 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REPLY_BUFF_ADDR_LO_OFST 28 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REPLY_BUFF_ADDR_HI_OFST 32 /* Must be a power of 2, or zero if this buffer is not provided */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_REPLY_BLOCK_SIZE_OFST 36 /* Applies to all three buffers */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_NUM_BLOCKS_OFST 40 /* A bit mask defining which MCDI operations may be proxied */ #define MC_CMD_PROXY_CONFIGURE_EXT_IN_ALLOWED_MCDI_MASK_OFST 44 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_ALLOWED_MCDI_MASK_LEN 64 #define MC_CMD_PROXY_CONFIGURE_EXT_IN_RESERVED_OFST 108 /* MC_CMD_PROXY_CONFIGURE_OUT msgresponse */ #define MC_CMD_PROXY_CONFIGURE_OUT_LEN 0 /***********************************/ /* MC_CMD_PROXY_COMPLETE * Tells FW that a requested proxy operation has either been completed (by * using MC_CMD_PROXY_CMD) or authorized/declined. May only be sent by the * function that enabled proxying/authorization (by using * MC_CMD_PROXY_CONFIGURE). */ #define MC_CMD_PROXY_COMPLETE 0x5f #undef MC_CMD_0x5f_PRIVILEGE_CTG #define MC_CMD_0x5f_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PROXY_COMPLETE_IN msgrequest */ #define MC_CMD_PROXY_COMPLETE_IN_LEN 12 #define MC_CMD_PROXY_COMPLETE_IN_BLOCK_INDEX_OFST 0 #define MC_CMD_PROXY_COMPLETE_IN_STATUS_OFST 4 /* enum: The operation has been completed by using MC_CMD_PROXY_CMD, the reply * is stored in the REPLY_BUFF. */ #define MC_CMD_PROXY_COMPLETE_IN_COMPLETE 0x0 /* enum: The operation has been authorized. The originating function may now * try again. */ #define MC_CMD_PROXY_COMPLETE_IN_AUTHORIZED 0x1 /* enum: The operation has been declined. */ #define MC_CMD_PROXY_COMPLETE_IN_DECLINED 0x2 /* enum: The authorization failed because the relevant application did not * respond in time. */ #define MC_CMD_PROXY_COMPLETE_IN_TIMEDOUT 0x3 #define MC_CMD_PROXY_COMPLETE_IN_HANDLE_OFST 8 /* MC_CMD_PROXY_COMPLETE_OUT msgresponse */ #define MC_CMD_PROXY_COMPLETE_OUT_LEN 0 /***********************************/ /* MC_CMD_ALLOC_BUFTBL_CHUNK * Allocate a set of buffer table entries using the specified owner ID. This * operation allocates the required buffer table entries (and fails if it * cannot do so). The buffer table entries will initially be zeroed. */ #define MC_CMD_ALLOC_BUFTBL_CHUNK 0x87 #undef MC_CMD_0x87_PRIVILEGE_CTG #define MC_CMD_0x87_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_ALLOC_BUFTBL_CHUNK_IN msgrequest */ #define MC_CMD_ALLOC_BUFTBL_CHUNK_IN_LEN 8 /* Owner ID to use */ #define MC_CMD_ALLOC_BUFTBL_CHUNK_IN_OWNER_OFST 0 /* Size of buffer table pages to use, in bytes (note that only a few values are * legal on any specific hardware). */ #define MC_CMD_ALLOC_BUFTBL_CHUNK_IN_PAGE_SIZE_OFST 4 /* MC_CMD_ALLOC_BUFTBL_CHUNK_OUT msgresponse */ #define MC_CMD_ALLOC_BUFTBL_CHUNK_OUT_LEN 12 #define MC_CMD_ALLOC_BUFTBL_CHUNK_OUT_HANDLE_OFST 0 #define MC_CMD_ALLOC_BUFTBL_CHUNK_OUT_NUMENTRIES_OFST 4 /* Buffer table IDs for use in DMA descriptors. */ #define MC_CMD_ALLOC_BUFTBL_CHUNK_OUT_ID_OFST 8 /***********************************/ /* MC_CMD_PROGRAM_BUFTBL_ENTRIES * Reprogram a set of buffer table entries in the specified chunk. */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES 0x88 #undef MC_CMD_0x88_PRIVILEGE_CTG #define MC_CMD_0x88_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN msgrequest */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_LENMIN 20 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_LENMAX 268 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_LEN(num) (12+8*(num)) #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_HANDLE_OFST 0 /* ID */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_FIRSTID_OFST 4 /* Num entries */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_NUMENTRIES_OFST 8 /* Buffer table entry address */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_OFST 12 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_LEN 8 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_LO_OFST 12 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_HI_OFST 16 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_MINNUM 1 #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_IN_ENTRY_MAXNUM 32 /* MC_CMD_PROGRAM_BUFTBL_ENTRIES_OUT msgresponse */ #define MC_CMD_PROGRAM_BUFTBL_ENTRIES_OUT_LEN 0 /***********************************/ /* MC_CMD_FREE_BUFTBL_CHUNK */ #define MC_CMD_FREE_BUFTBL_CHUNK 0x89 #undef MC_CMD_0x89_PRIVILEGE_CTG #define MC_CMD_0x89_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_FREE_BUFTBL_CHUNK_IN msgrequest */ #define MC_CMD_FREE_BUFTBL_CHUNK_IN_LEN 4 #define MC_CMD_FREE_BUFTBL_CHUNK_IN_HANDLE_OFST 0 /* MC_CMD_FREE_BUFTBL_CHUNK_OUT msgresponse */ #define MC_CMD_FREE_BUFTBL_CHUNK_OUT_LEN 0 /* PORT_CONFIG_ENTRY structuredef */ #define PORT_CONFIG_ENTRY_LEN 16 /* External port number (label) */ #define PORT_CONFIG_ENTRY_EXT_NUMBER_OFST 0 #define PORT_CONFIG_ENTRY_EXT_NUMBER_LEN 1 #define PORT_CONFIG_ENTRY_EXT_NUMBER_LBN 0 #define PORT_CONFIG_ENTRY_EXT_NUMBER_WIDTH 8 /* Port core location */ #define PORT_CONFIG_ENTRY_CORE_OFST 1 #define PORT_CONFIG_ENTRY_CORE_LEN 1 #define PORT_CONFIG_ENTRY_STANDALONE 0x0 /* enum */ #define PORT_CONFIG_ENTRY_MASTER 0x1 /* enum */ #define PORT_CONFIG_ENTRY_SLAVE 0x2 /* enum */ #define PORT_CONFIG_ENTRY_CORE_LBN 8 #define PORT_CONFIG_ENTRY_CORE_WIDTH 8 /* Internal number (HW resource) relative to the core */ #define PORT_CONFIG_ENTRY_INT_NUMBER_OFST 2 #define PORT_CONFIG_ENTRY_INT_NUMBER_LEN 1 #define PORT_CONFIG_ENTRY_INT_NUMBER_LBN 16 #define PORT_CONFIG_ENTRY_INT_NUMBER_WIDTH 8 /* Reserved */ #define PORT_CONFIG_ENTRY_RSVD_OFST 3 #define PORT_CONFIG_ENTRY_RSVD_LEN 1 #define PORT_CONFIG_ENTRY_RSVD_LBN 24 #define PORT_CONFIG_ENTRY_RSVD_WIDTH 8 /* Bitmask of KR lanes used by the port */ #define PORT_CONFIG_ENTRY_LANES_OFST 4 #define PORT_CONFIG_ENTRY_LANES_LBN 32 #define PORT_CONFIG_ENTRY_LANES_WIDTH 32 /* Port capabilities (MC_CMD_PHY_CAP_*) */ #define PORT_CONFIG_ENTRY_SUPPORTED_CAPS_OFST 8 #define PORT_CONFIG_ENTRY_SUPPORTED_CAPS_LBN 64 #define PORT_CONFIG_ENTRY_SUPPORTED_CAPS_WIDTH 32 /* Reserved (align to 16 bytes) */ #define PORT_CONFIG_ENTRY_RSVD2_OFST 12 #define PORT_CONFIG_ENTRY_RSVD2_LBN 96 #define PORT_CONFIG_ENTRY_RSVD2_WIDTH 32 /***********************************/ /* MC_CMD_FILTER_OP * Multiplexed MCDI call for filter operations */ #define MC_CMD_FILTER_OP 0x8a #undef MC_CMD_0x8a_PRIVILEGE_CTG #define MC_CMD_0x8a_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_FILTER_OP_IN msgrequest */ #define MC_CMD_FILTER_OP_IN_LEN 108 /* identifies the type of operation requested */ #define MC_CMD_FILTER_OP_IN_OP_OFST 0 /* enum: single-recipient filter insert */ #define MC_CMD_FILTER_OP_IN_OP_INSERT 0x0 /* enum: single-recipient filter remove */ #define MC_CMD_FILTER_OP_IN_OP_REMOVE 0x1 /* enum: multi-recipient filter subscribe */ #define MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE 0x2 /* enum: multi-recipient filter unsubscribe */ #define MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE 0x3 /* enum: replace one recipient with another (warning - the filter handle may * change) */ #define MC_CMD_FILTER_OP_IN_OP_REPLACE 0x4 /* filter handle (for remove / unsubscribe operations) */ #define MC_CMD_FILTER_OP_IN_HANDLE_OFST 4 #define MC_CMD_FILTER_OP_IN_HANDLE_LEN 8 #define MC_CMD_FILTER_OP_IN_HANDLE_LO_OFST 4 #define MC_CMD_FILTER_OP_IN_HANDLE_HI_OFST 8 /* The port ID associated with the v-adaptor which should contain this filter. */ #define MC_CMD_FILTER_OP_IN_PORT_ID_OFST 12 /* fields to include in match criteria */ #define MC_CMD_FILTER_OP_IN_MATCH_FIELDS_OFST 16 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_IP_LBN 0 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_IP_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_DST_IP_LBN 1 #define MC_CMD_FILTER_OP_IN_MATCH_DST_IP_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_MAC_LBN 2 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_PORT_LBN 3 #define MC_CMD_FILTER_OP_IN_MATCH_SRC_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_DST_MAC_LBN 4 #define MC_CMD_FILTER_OP_IN_MATCH_DST_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_DST_PORT_LBN 5 #define MC_CMD_FILTER_OP_IN_MATCH_DST_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_ETHER_TYPE_LBN 6 #define MC_CMD_FILTER_OP_IN_MATCH_ETHER_TYPE_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_INNER_VLAN_LBN 7 #define MC_CMD_FILTER_OP_IN_MATCH_INNER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_OUTER_VLAN_LBN 8 #define MC_CMD_FILTER_OP_IN_MATCH_OUTER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_IP_PROTO_LBN 9 #define MC_CMD_FILTER_OP_IN_MATCH_IP_PROTO_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_FWDEF0_LBN 10 #define MC_CMD_FILTER_OP_IN_MATCH_FWDEF0_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_FWDEF1_LBN 11 #define MC_CMD_FILTER_OP_IN_MATCH_FWDEF1_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN 30 #define MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_WIDTH 1 #define MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN 31 #define MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_WIDTH 1 /* receive destination */ #define MC_CMD_FILTER_OP_IN_RX_DEST_OFST 20 /* enum: drop packets */ #define MC_CMD_FILTER_OP_IN_RX_DEST_DROP 0x0 /* enum: receive to host */ #define MC_CMD_FILTER_OP_IN_RX_DEST_HOST 0x1 /* enum: receive to MC */ #define MC_CMD_FILTER_OP_IN_RX_DEST_MC 0x2 /* enum: loop back to TXDP 0 */ #define MC_CMD_FILTER_OP_IN_RX_DEST_TX0 0x3 /* enum: loop back to TXDP 1 */ #define MC_CMD_FILTER_OP_IN_RX_DEST_TX1 0x4 /* receive queue handle (for multiple queue modes, this is the base queue) */ #define MC_CMD_FILTER_OP_IN_RX_QUEUE_OFST 24 /* receive mode */ #define MC_CMD_FILTER_OP_IN_RX_MODE_OFST 28 /* enum: receive to just the specified queue */ #define MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE 0x0 /* enum: receive to multiple queues using RSS context */ #define MC_CMD_FILTER_OP_IN_RX_MODE_RSS 0x1 /* enum: receive to multiple queues using .1p mapping */ #define MC_CMD_FILTER_OP_IN_RX_MODE_DOT1P_MAPPING 0x2 /* enum: install a filter entry that will never match; for test purposes only */ #define MC_CMD_FILTER_OP_IN_RX_MODE_TEST_NEVER_MATCH 0x80000000 /* RSS context (for RX_MODE_RSS) or .1p mapping handle (for * RX_MODE_DOT1P_MAPPING), as returned by MC_CMD_RSS_CONTEXT_ALLOC or * MC_CMD_DOT1P_MAPPING_ALLOC. */ #define MC_CMD_FILTER_OP_IN_RX_CONTEXT_OFST 32 /* transmit domain (reserved; set to 0) */ #define MC_CMD_FILTER_OP_IN_TX_DOMAIN_OFST 36 /* transmit destination (either set the MAC and/or PM bits for explicit * control, or set this field to TX_DEST_DEFAULT for sensible default * behaviour) */ #define MC_CMD_FILTER_OP_IN_TX_DEST_OFST 40 /* enum: request default behaviour (based on filter type) */ #define MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT 0xffffffff #define MC_CMD_FILTER_OP_IN_TX_DEST_MAC_LBN 0 #define MC_CMD_FILTER_OP_IN_TX_DEST_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_IN_TX_DEST_PM_LBN 1 #define MC_CMD_FILTER_OP_IN_TX_DEST_PM_WIDTH 1 /* source MAC address to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_SRC_MAC_OFST 44 #define MC_CMD_FILTER_OP_IN_SRC_MAC_LEN 6 /* source port to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_SRC_PORT_OFST 50 #define MC_CMD_FILTER_OP_IN_SRC_PORT_LEN 2 /* destination MAC address to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_DST_MAC_OFST 52 #define MC_CMD_FILTER_OP_IN_DST_MAC_LEN 6 /* destination port to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_DST_PORT_OFST 58 #define MC_CMD_FILTER_OP_IN_DST_PORT_LEN 2 /* Ethernet type to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_ETHER_TYPE_OFST 60 #define MC_CMD_FILTER_OP_IN_ETHER_TYPE_LEN 2 /* Inner VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_INNER_VLAN_OFST 62 #define MC_CMD_FILTER_OP_IN_INNER_VLAN_LEN 2 /* Outer VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_IN_OUTER_VLAN_OFST 64 #define MC_CMD_FILTER_OP_IN_OUTER_VLAN_LEN 2 /* IP protocol to match (in low byte; set high byte to 0) */ #define MC_CMD_FILTER_OP_IN_IP_PROTO_OFST 66 #define MC_CMD_FILTER_OP_IN_IP_PROTO_LEN 2 /* Firmware defined register 0 to match (reserved; set to 0) */ #define MC_CMD_FILTER_OP_IN_FWDEF0_OFST 68 /* Firmware defined register 1 to match (reserved; set to 0) */ #define MC_CMD_FILTER_OP_IN_FWDEF1_OFST 72 /* source IP address to match (as bytes in network order; set last 12 bytes to * 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_IN_SRC_IP_OFST 76 #define MC_CMD_FILTER_OP_IN_SRC_IP_LEN 16 /* destination IP address to match (as bytes in network order; set last 12 * bytes to 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_IN_DST_IP_OFST 92 #define MC_CMD_FILTER_OP_IN_DST_IP_LEN 16 /* MC_CMD_FILTER_OP_EXT_IN msgrequest: Extension to MC_CMD_FILTER_OP_IN to * include handling of VXLAN/NVGRE encapsulated frame filtering (which is * supported on Medford only). */ #define MC_CMD_FILTER_OP_EXT_IN_LEN 172 /* identifies the type of operation requested */ #define MC_CMD_FILTER_OP_EXT_IN_OP_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_FILTER_OP_IN/OP */ /* filter handle (for remove / unsubscribe operations) */ #define MC_CMD_FILTER_OP_EXT_IN_HANDLE_OFST 4 #define MC_CMD_FILTER_OP_EXT_IN_HANDLE_LEN 8 #define MC_CMD_FILTER_OP_EXT_IN_HANDLE_LO_OFST 4 #define MC_CMD_FILTER_OP_EXT_IN_HANDLE_HI_OFST 8 /* The port ID associated with the v-adaptor which should contain this filter. */ #define MC_CMD_FILTER_OP_EXT_IN_PORT_ID_OFST 12 /* fields to include in match criteria */ #define MC_CMD_FILTER_OP_EXT_IN_MATCH_FIELDS_OFST 16 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_IP_LBN 0 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_IP_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_IP_LBN 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_IP_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_MAC_LBN 2 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_PORT_LBN 3 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_SRC_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_MAC_LBN 4 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_PORT_LBN 5 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_DST_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN 6 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_INNER_VLAN_LBN 7 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_INNER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_OUTER_VLAN_LBN 8 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_OUTER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN 9 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_FWDEF0_LBN 10 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_FWDEF0_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_VNI_OR_VSID_LBN 11 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_VNI_OR_VSID_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_IP_LBN 12 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_IP_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_IP_LBN 13 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_IP_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_MAC_LBN 14 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_PORT_LBN 15 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_SRC_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_MAC_LBN 16 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_PORT_LBN 17 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_DST_PORT_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ETHER_TYPE_LBN 18 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ETHER_TYPE_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_INNER_VLAN_LBN 19 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_INNER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_OUTER_VLAN_LBN 20 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_OUTER_VLAN_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_IP_PROTO_LBN 21 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_IP_PROTO_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_FWDEF0_LBN 22 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_FWDEF0_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_FWDEF1_LBN 23 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_FWDEF1_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN 24 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN 25 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN 30 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN 31 #define MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_WIDTH 1 /* receive destination */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_OFST 20 /* enum: drop packets */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_DROP 0x0 /* enum: receive to host */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_HOST 0x1 /* enum: receive to MC */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_MC 0x2 /* enum: loop back to TXDP 0 */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_TX0 0x3 /* enum: loop back to TXDP 1 */ #define MC_CMD_FILTER_OP_EXT_IN_RX_DEST_TX1 0x4 /* receive queue handle (for multiple queue modes, this is the base queue) */ #define MC_CMD_FILTER_OP_EXT_IN_RX_QUEUE_OFST 24 /* receive mode */ #define MC_CMD_FILTER_OP_EXT_IN_RX_MODE_OFST 28 /* enum: receive to just the specified queue */ #define MC_CMD_FILTER_OP_EXT_IN_RX_MODE_SIMPLE 0x0 /* enum: receive to multiple queues using RSS context */ #define MC_CMD_FILTER_OP_EXT_IN_RX_MODE_RSS 0x1 /* enum: receive to multiple queues using .1p mapping */ #define MC_CMD_FILTER_OP_EXT_IN_RX_MODE_DOT1P_MAPPING 0x2 /* enum: install a filter entry that will never match; for test purposes only */ #define MC_CMD_FILTER_OP_EXT_IN_RX_MODE_TEST_NEVER_MATCH 0x80000000 /* RSS context (for RX_MODE_RSS) or .1p mapping handle (for * RX_MODE_DOT1P_MAPPING), as returned by MC_CMD_RSS_CONTEXT_ALLOC or * MC_CMD_DOT1P_MAPPING_ALLOC. */ #define MC_CMD_FILTER_OP_EXT_IN_RX_CONTEXT_OFST 32 /* transmit domain (reserved; set to 0) */ #define MC_CMD_FILTER_OP_EXT_IN_TX_DOMAIN_OFST 36 /* transmit destination (either set the MAC and/or PM bits for explicit * control, or set this field to TX_DEST_DEFAULT for sensible default * behaviour) */ #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_OFST 40 /* enum: request default behaviour (based on filter type) */ #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_DEFAULT 0xffffffff #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_MAC_LBN 0 #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_MAC_WIDTH 1 #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_PM_LBN 1 #define MC_CMD_FILTER_OP_EXT_IN_TX_DEST_PM_WIDTH 1 /* source MAC address to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_SRC_MAC_OFST 44 #define MC_CMD_FILTER_OP_EXT_IN_SRC_MAC_LEN 6 /* source port to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_SRC_PORT_OFST 50 #define MC_CMD_FILTER_OP_EXT_IN_SRC_PORT_LEN 2 /* destination MAC address to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_DST_MAC_OFST 52 #define MC_CMD_FILTER_OP_EXT_IN_DST_MAC_LEN 6 /* destination port to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_DST_PORT_OFST 58 #define MC_CMD_FILTER_OP_EXT_IN_DST_PORT_LEN 2 /* Ethernet type to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_ETHER_TYPE_OFST 60 #define MC_CMD_FILTER_OP_EXT_IN_ETHER_TYPE_LEN 2 /* Inner VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_INNER_VLAN_OFST 62 #define MC_CMD_FILTER_OP_EXT_IN_INNER_VLAN_LEN 2 /* Outer VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_OUTER_VLAN_OFST 64 #define MC_CMD_FILTER_OP_EXT_IN_OUTER_VLAN_LEN 2 /* IP protocol to match (in low byte; set high byte to 0) */ #define MC_CMD_FILTER_OP_EXT_IN_IP_PROTO_OFST 66 #define MC_CMD_FILTER_OP_EXT_IN_IP_PROTO_LEN 2 /* Firmware defined register 0 to match (reserved; set to 0) */ #define MC_CMD_FILTER_OP_EXT_IN_FWDEF0_OFST 68 /* VNI (for VXLAN/Geneve, when IP protocol is UDP) or VSID (for NVGRE, when IP * protocol is GRE) to match (as bytes in network order; set last byte to 0 for * VXLAN/NVGRE, or 1 for Geneve) */ #define MC_CMD_FILTER_OP_EXT_IN_VNI_OR_VSID_OFST 72 #define MC_CMD_FILTER_OP_EXT_IN_VNI_VALUE_LBN 0 #define MC_CMD_FILTER_OP_EXT_IN_VNI_VALUE_WIDTH 24 #define MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_LBN 24 #define MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_WIDTH 8 /* enum: Match VXLAN traffic with this VNI */ #define MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN 0x0 /* enum: Match Geneve traffic with this VNI */ #define MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE 0x1 /* enum: Reserved for experimental development use */ #define MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_EXPERIMENTAL 0xfe #define MC_CMD_FILTER_OP_EXT_IN_VSID_VALUE_LBN 0 #define MC_CMD_FILTER_OP_EXT_IN_VSID_VALUE_WIDTH 24 #define MC_CMD_FILTER_OP_EXT_IN_VSID_TYPE_LBN 24 #define MC_CMD_FILTER_OP_EXT_IN_VSID_TYPE_WIDTH 8 /* enum: Match NVGRE traffic with this VSID */ #define MC_CMD_FILTER_OP_EXT_IN_VSID_TYPE_NVGRE 0x0 /* source IP address to match (as bytes in network order; set last 12 bytes to * 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_EXT_IN_SRC_IP_OFST 76 #define MC_CMD_FILTER_OP_EXT_IN_SRC_IP_LEN 16 /* destination IP address to match (as bytes in network order; set last 12 * bytes to 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_EXT_IN_DST_IP_OFST 92 #define MC_CMD_FILTER_OP_EXT_IN_DST_IP_LEN 16 /* VXLAN/NVGRE inner frame source MAC address to match (as bytes in network * order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_MAC_OFST 108 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_MAC_LEN 6 /* VXLAN/NVGRE inner frame source port to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_PORT_OFST 114 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_PORT_LEN 2 /* VXLAN/NVGRE inner frame destination MAC address to match (as bytes in * network order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_MAC_OFST 116 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_MAC_LEN 6 /* VXLAN/NVGRE inner frame destination port to match (as bytes in network * order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_PORT_OFST 122 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_PORT_LEN 2 /* VXLAN/NVGRE inner frame Ethernet type to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_ETHER_TYPE_OFST 124 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_ETHER_TYPE_LEN 2 /* VXLAN/NVGRE inner frame Inner VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_INNER_VLAN_OFST 126 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_INNER_VLAN_LEN 2 /* VXLAN/NVGRE inner frame Outer VLAN tag to match (as bytes in network order) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_OUTER_VLAN_OFST 128 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_OUTER_VLAN_LEN 2 /* VXLAN/NVGRE inner frame IP protocol to match (in low byte; set high byte to * 0) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_IP_PROTO_OFST 130 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_IP_PROTO_LEN 2 /* VXLAN/NVGRE inner frame Firmware defined register 0 to match (reserved; set * to 0) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_FWDEF0_OFST 132 /* VXLAN/NVGRE inner frame Firmware defined register 1 to match (reserved; set * to 0) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_FWDEF1_OFST 136 /* VXLAN/NVGRE inner frame source IP address to match (as bytes in network * order; set last 12 bytes to 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_IP_OFST 140 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_SRC_IP_LEN 16 /* VXLAN/NVGRE inner frame destination IP address to match (as bytes in network * order; set last 12 bytes to 0 for IPv4 address) */ #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_IP_OFST 156 #define MC_CMD_FILTER_OP_EXT_IN_IFRM_DST_IP_LEN 16 /* MC_CMD_FILTER_OP_OUT msgresponse */ #define MC_CMD_FILTER_OP_OUT_LEN 12 /* identifies the type of operation requested */ #define MC_CMD_FILTER_OP_OUT_OP_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_FILTER_OP_IN/OP */ /* Returned filter handle (for insert / subscribe operations). Note that these * handles should be considered opaque to the host, although a value of * 0xFFFFFFFF_FFFFFFFF is guaranteed never to be a valid handle. */ #define MC_CMD_FILTER_OP_OUT_HANDLE_OFST 4 #define MC_CMD_FILTER_OP_OUT_HANDLE_LEN 8 #define MC_CMD_FILTER_OP_OUT_HANDLE_LO_OFST 4 #define MC_CMD_FILTER_OP_OUT_HANDLE_HI_OFST 8 /* enum: guaranteed invalid filter handle (low 32 bits) */ #define MC_CMD_FILTER_OP_OUT_HANDLE_LO_INVALID 0xffffffff /* enum: guaranteed invalid filter handle (high 32 bits) */ #define MC_CMD_FILTER_OP_OUT_HANDLE_HI_INVALID 0xffffffff /* MC_CMD_FILTER_OP_EXT_OUT msgresponse */ #define MC_CMD_FILTER_OP_EXT_OUT_LEN 12 /* identifies the type of operation requested */ #define MC_CMD_FILTER_OP_EXT_OUT_OP_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_FILTER_OP_EXT_IN/OP */ /* Returned filter handle (for insert / subscribe operations). Note that these * handles should be considered opaque to the host, although a value of * 0xFFFFFFFF_FFFFFFFF is guaranteed never to be a valid handle. */ #define MC_CMD_FILTER_OP_EXT_OUT_HANDLE_OFST 4 #define MC_CMD_FILTER_OP_EXT_OUT_HANDLE_LEN 8 #define MC_CMD_FILTER_OP_EXT_OUT_HANDLE_LO_OFST 4 #define MC_CMD_FILTER_OP_EXT_OUT_HANDLE_HI_OFST 8 /* Enum values, see field(s): */ /* MC_CMD_FILTER_OP_OUT/HANDLE */ /***********************************/ /* MC_CMD_GET_PARSER_DISP_INFO * Get information related to the parser-dispatcher subsystem */ #define MC_CMD_GET_PARSER_DISP_INFO 0xe4 #undef MC_CMD_0xe4_PRIVILEGE_CTG #define MC_CMD_0xe4_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PARSER_DISP_INFO_IN msgrequest */ #define MC_CMD_GET_PARSER_DISP_INFO_IN_LEN 4 /* identifies the type of operation requested */ #define MC_CMD_GET_PARSER_DISP_INFO_IN_OP_OFST 0 /* enum: read the list of supported RX filter matches */ #define MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES 0x1 /* enum: read flags indicating restrictions on filter insertion for the calling * client */ #define MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_RESTRICTIONS 0x2 /* MC_CMD_GET_PARSER_DISP_INFO_OUT msgresponse */ #define MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMIN 8 #define MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX 252 #define MC_CMD_GET_PARSER_DISP_INFO_OUT_LEN(num) (8+4*(num)) /* identifies the type of operation requested */ #define MC_CMD_GET_PARSER_DISP_INFO_OUT_OP_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_GET_PARSER_DISP_INFO_IN/OP */ /* number of supported match types */ #define MC_CMD_GET_PARSER_DISP_INFO_OUT_NUM_SUPPORTED_MATCHES_OFST 4 /* array of supported match types (valid MATCH_FIELDS values for * MC_CMD_FILTER_OP) sorted in decreasing priority order */ #define MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_OFST 8 #define MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_LEN 4 #define MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MINNUM 0 #define MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM 61 /* MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT msgresponse */ #define MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT_LEN 8 /* identifies the type of operation requested */ #define MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT_OP_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_GET_PARSER_DISP_INFO_IN/OP */ /* bitfield of filter insertion restrictions */ #define MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT_RESTRICTION_FLAGS_OFST 4 #define MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT_DST_IP_MCAST_ONLY_LBN 0 #define MC_CMD_GET_PARSER_DISP_RESTRICTIONS_OUT_DST_IP_MCAST_ONLY_WIDTH 1 /***********************************/ /* MC_CMD_PARSER_DISP_RW - * Direct read/write of parser-dispatcher state (DICPUs and LUE) for debugging + * Direct read/write of parser-dispatcher state (DICPUs and LUE) for debugging. + * Please note that this interface is only of use to debug tools which have + * knowledge of firmware and hardware data structures; nothing here is intended + * for use by normal driver code. */ #define MC_CMD_PARSER_DISP_RW 0xe5 #undef MC_CMD_0xe5_PRIVILEGE_CTG #define MC_CMD_0xe5_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PARSER_DISP_RW_IN msgrequest */ #define MC_CMD_PARSER_DISP_RW_IN_LEN 32 /* identifies the target of the operation */ #define MC_CMD_PARSER_DISP_RW_IN_TARGET_OFST 0 /* enum: RX dispatcher CPU */ #define MC_CMD_PARSER_DISP_RW_IN_RX_DICPU 0x0 /* enum: TX dispatcher CPU */ #define MC_CMD_PARSER_DISP_RW_IN_TX_DICPU 0x1 /* enum: Lookup engine (with original metadata format) */ #define MC_CMD_PARSER_DISP_RW_IN_LUE 0x2 /* enum: Lookup engine (with requested metadata format) */ #define MC_CMD_PARSER_DISP_RW_IN_LUE_VERSIONED_METADATA 0x3 +/* enum: RX0 dispatcher CPU (alias for RX_DICPU; Medford has 2 RX DICPUs) */ +#define MC_CMD_PARSER_DISP_RW_IN_RX0_DICPU 0x0 +/* enum: RX1 dispatcher CPU (only valid for Medford) */ +#define MC_CMD_PARSER_DISP_RW_IN_RX1_DICPU 0x4 +/* enum: Miscellaneous other state (only valid for Medford) */ +#define MC_CMD_PARSER_DISP_RW_IN_MISC_STATE 0x5 /* identifies the type of operation requested */ #define MC_CMD_PARSER_DISP_RW_IN_OP_OFST 4 /* enum: read a word of DICPU DMEM or a LUE entry */ #define MC_CMD_PARSER_DISP_RW_IN_READ 0x0 /* enum: write a word of DICPU DMEM or a LUE entry */ #define MC_CMD_PARSER_DISP_RW_IN_WRITE 0x1 /* enum: read-modify-write a word of DICPU DMEM (not valid for LUE) */ #define MC_CMD_PARSER_DISP_RW_IN_RMW 0x2 -/* data memory address or LUE index */ +/* data memory address (DICPU targets) or LUE index (LUE targets) */ #define MC_CMD_PARSER_DISP_RW_IN_ADDRESS_OFST 8 +/* selector (for MISC_STATE target) */ +#define MC_CMD_PARSER_DISP_RW_IN_SELECTOR_OFST 8 +/* enum: Port to datapath mapping */ +#define MC_CMD_PARSER_DISP_RW_IN_PORT_DP_MAPPING 0x1 /* value to write (for DMEM writes) */ #define MC_CMD_PARSER_DISP_RW_IN_DMEM_WRITE_VALUE_OFST 12 /* XOR value (for DMEM read-modify-writes: new = (old & mask) ^ value) */ #define MC_CMD_PARSER_DISP_RW_IN_DMEM_RMW_XOR_VALUE_OFST 12 /* AND mask (for DMEM read-modify-writes: new = (old & mask) ^ value) */ #define MC_CMD_PARSER_DISP_RW_IN_DMEM_RMW_AND_MASK_OFST 16 /* metadata format (for LUE reads using LUE_VERSIONED_METADATA) */ #define MC_CMD_PARSER_DISP_RW_IN_LUE_READ_METADATA_VERSION_OFST 12 /* value to write (for LUE writes) */ #define MC_CMD_PARSER_DISP_RW_IN_LUE_WRITE_VALUE_OFST 12 #define MC_CMD_PARSER_DISP_RW_IN_LUE_WRITE_VALUE_LEN 20 /* MC_CMD_PARSER_DISP_RW_OUT msgresponse */ #define MC_CMD_PARSER_DISP_RW_OUT_LEN 52 /* value read (for DMEM reads) */ #define MC_CMD_PARSER_DISP_RW_OUT_DMEM_READ_VALUE_OFST 0 /* value read (for LUE reads) */ #define MC_CMD_PARSER_DISP_RW_OUT_LUE_READ_VALUE_OFST 0 #define MC_CMD_PARSER_DISP_RW_OUT_LUE_READ_VALUE_LEN 20 /* up to 8 32-bit words of additional soft state from the LUE manager (the * exact content is firmware-dependent and intended only for debug use) */ #define MC_CMD_PARSER_DISP_RW_OUT_LUE_MGR_STATE_OFST 20 #define MC_CMD_PARSER_DISP_RW_OUT_LUE_MGR_STATE_LEN 32 +/* datapath(s) used for each port (for MISC_STATE PORT_DP_MAPPING selector) */ +#define MC_CMD_PARSER_DISP_RW_OUT_PORT_DP_MAPPING_OFST 0 +#define MC_CMD_PARSER_DISP_RW_OUT_PORT_DP_MAPPING_LEN 4 +#define MC_CMD_PARSER_DISP_RW_OUT_PORT_DP_MAPPING_NUM 4 +#define MC_CMD_PARSER_DISP_RW_OUT_DP0 0x1 /* enum */ +#define MC_CMD_PARSER_DISP_RW_OUT_DP1 0x2 /* enum */ /***********************************/ /* MC_CMD_GET_PF_COUNT * Get number of PFs on the device. */ #define MC_CMD_GET_PF_COUNT 0xb6 #undef MC_CMD_0xb6_PRIVILEGE_CTG #define MC_CMD_0xb6_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PF_COUNT_IN msgrequest */ #define MC_CMD_GET_PF_COUNT_IN_LEN 0 /* MC_CMD_GET_PF_COUNT_OUT msgresponse */ #define MC_CMD_GET_PF_COUNT_OUT_LEN 1 /* Identifies the number of PFs on the device. */ #define MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST 0 #define MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_LEN 1 /***********************************/ /* MC_CMD_SET_PF_COUNT * Set number of PFs on the device. */ #define MC_CMD_SET_PF_COUNT 0xb7 /* MC_CMD_SET_PF_COUNT_IN msgrequest */ #define MC_CMD_SET_PF_COUNT_IN_LEN 4 /* New number of PFs on the device. */ #define MC_CMD_SET_PF_COUNT_IN_PF_COUNT_OFST 0 /* MC_CMD_SET_PF_COUNT_OUT msgresponse */ #define MC_CMD_SET_PF_COUNT_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_PORT_ASSIGNMENT * Get port assignment for current PCI function. */ #define MC_CMD_GET_PORT_ASSIGNMENT 0xb8 #undef MC_CMD_0xb8_PRIVILEGE_CTG #define MC_CMD_0xb8_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PORT_ASSIGNMENT_IN msgrequest */ #define MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN 0 /* MC_CMD_GET_PORT_ASSIGNMENT_OUT msgresponse */ #define MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN 4 /* Identifies the port assignment for this function. */ #define MC_CMD_GET_PORT_ASSIGNMENT_OUT_PORT_OFST 0 /***********************************/ /* MC_CMD_SET_PORT_ASSIGNMENT * Set port assignment for current PCI function. */ #define MC_CMD_SET_PORT_ASSIGNMENT 0xb9 #undef MC_CMD_0xb9_PRIVILEGE_CTG #define MC_CMD_0xb9_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_PORT_ASSIGNMENT_IN msgrequest */ #define MC_CMD_SET_PORT_ASSIGNMENT_IN_LEN 4 /* Identifies the port assignment for this function. */ #define MC_CMD_SET_PORT_ASSIGNMENT_IN_PORT_OFST 0 /* MC_CMD_SET_PORT_ASSIGNMENT_OUT msgresponse */ #define MC_CMD_SET_PORT_ASSIGNMENT_OUT_LEN 0 /***********************************/ /* MC_CMD_ALLOC_VIS * Allocate VIs for current PCI function. */ #define MC_CMD_ALLOC_VIS 0x8b #undef MC_CMD_0x8b_PRIVILEGE_CTG #define MC_CMD_0x8b_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_ALLOC_VIS_IN msgrequest */ #define MC_CMD_ALLOC_VIS_IN_LEN 8 /* The minimum number of VIs that is acceptable */ #define MC_CMD_ALLOC_VIS_IN_MIN_VI_COUNT_OFST 0 /* The maximum number of VIs that would be useful */ #define MC_CMD_ALLOC_VIS_IN_MAX_VI_COUNT_OFST 4 /* MC_CMD_ALLOC_VIS_OUT msgresponse: Huntington-compatible VI_ALLOC request. * Use extended version in new code. */ #define MC_CMD_ALLOC_VIS_OUT_LEN 8 /* The number of VIs allocated on this function */ #define MC_CMD_ALLOC_VIS_OUT_VI_COUNT_OFST 0 /* The base absolute VI number allocated to this function. Required to * correctly interpret wakeup events. */ #define MC_CMD_ALLOC_VIS_OUT_VI_BASE_OFST 4 /* MC_CMD_ALLOC_VIS_EXT_OUT msgresponse */ #define MC_CMD_ALLOC_VIS_EXT_OUT_LEN 12 /* The number of VIs allocated on this function */ #define MC_CMD_ALLOC_VIS_EXT_OUT_VI_COUNT_OFST 0 /* The base absolute VI number allocated to this function. Required to * correctly interpret wakeup events. */ #define MC_CMD_ALLOC_VIS_EXT_OUT_VI_BASE_OFST 4 /* Function's port vi_shift value (always 0 on Huntington) */ #define MC_CMD_ALLOC_VIS_EXT_OUT_VI_SHIFT_OFST 8 /***********************************/ /* MC_CMD_FREE_VIS * Free VIs for current PCI function. Any linked PIO buffers will be unlinked, * but not freed. */ #define MC_CMD_FREE_VIS 0x8c #undef MC_CMD_0x8c_PRIVILEGE_CTG #define MC_CMD_0x8c_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_FREE_VIS_IN msgrequest */ #define MC_CMD_FREE_VIS_IN_LEN 0 /* MC_CMD_FREE_VIS_OUT msgresponse */ #define MC_CMD_FREE_VIS_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_SRIOV_CFG * Get SRIOV config for this PF. */ #define MC_CMD_GET_SRIOV_CFG 0xba #undef MC_CMD_0xba_PRIVILEGE_CTG #define MC_CMD_0xba_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_SRIOV_CFG_IN msgrequest */ #define MC_CMD_GET_SRIOV_CFG_IN_LEN 0 /* MC_CMD_GET_SRIOV_CFG_OUT msgresponse */ #define MC_CMD_GET_SRIOV_CFG_OUT_LEN 20 /* Number of VFs currently enabled. */ #define MC_CMD_GET_SRIOV_CFG_OUT_VF_CURRENT_OFST 0 /* Max number of VFs before sriov stride and offset may need to be changed. */ #define MC_CMD_GET_SRIOV_CFG_OUT_VF_MAX_OFST 4 #define MC_CMD_GET_SRIOV_CFG_OUT_FLAGS_OFST 8 #define MC_CMD_GET_SRIOV_CFG_OUT_VF_ENABLED_LBN 0 #define MC_CMD_GET_SRIOV_CFG_OUT_VF_ENABLED_WIDTH 1 /* RID offset of first VF from PF. */ #define MC_CMD_GET_SRIOV_CFG_OUT_VF_OFFSET_OFST 12 /* RID offset of each subsequent VF from the previous. */ #define MC_CMD_GET_SRIOV_CFG_OUT_VF_STRIDE_OFST 16 /***********************************/ /* MC_CMD_SET_SRIOV_CFG * Set SRIOV config for this PF. */ #define MC_CMD_SET_SRIOV_CFG 0xbb #undef MC_CMD_0xbb_PRIVILEGE_CTG #define MC_CMD_0xbb_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_SRIOV_CFG_IN msgrequest */ #define MC_CMD_SET_SRIOV_CFG_IN_LEN 20 /* Number of VFs currently enabled. */ #define MC_CMD_SET_SRIOV_CFG_IN_VF_CURRENT_OFST 0 /* Max number of VFs before sriov stride and offset may need to be changed. */ #define MC_CMD_SET_SRIOV_CFG_IN_VF_MAX_OFST 4 #define MC_CMD_SET_SRIOV_CFG_IN_FLAGS_OFST 8 #define MC_CMD_SET_SRIOV_CFG_IN_VF_ENABLED_LBN 0 #define MC_CMD_SET_SRIOV_CFG_IN_VF_ENABLED_WIDTH 1 /* RID offset of first VF from PF, or 0 for no change, or * MC_CMD_RESOURCE_INSTANCE_ANY to allow the system to allocate an offset. */ #define MC_CMD_SET_SRIOV_CFG_IN_VF_OFFSET_OFST 12 /* RID offset of each subsequent VF from the previous, 0 for no change, or * MC_CMD_RESOURCE_INSTANCE_ANY to allow the system to allocate a stride. */ #define MC_CMD_SET_SRIOV_CFG_IN_VF_STRIDE_OFST 16 /* MC_CMD_SET_SRIOV_CFG_OUT msgresponse */ #define MC_CMD_SET_SRIOV_CFG_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_VI_ALLOC_INFO * Get information about number of VI's and base VI number allocated to this * function. */ #define MC_CMD_GET_VI_ALLOC_INFO 0x8d #undef MC_CMD_0x8d_PRIVILEGE_CTG #define MC_CMD_0x8d_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_VI_ALLOC_INFO_IN msgrequest */ #define MC_CMD_GET_VI_ALLOC_INFO_IN_LEN 0 /* MC_CMD_GET_VI_ALLOC_INFO_OUT msgresponse */ #define MC_CMD_GET_VI_ALLOC_INFO_OUT_LEN 12 /* The number of VIs allocated on this function */ #define MC_CMD_GET_VI_ALLOC_INFO_OUT_VI_COUNT_OFST 0 /* The base absolute VI number allocated to this function. Required to * correctly interpret wakeup events. */ #define MC_CMD_GET_VI_ALLOC_INFO_OUT_VI_BASE_OFST 4 /* Function's port vi_shift value (always 0 on Huntington) */ #define MC_CMD_GET_VI_ALLOC_INFO_OUT_VI_SHIFT_OFST 8 /***********************************/ /* MC_CMD_DUMP_VI_STATE * For CmdClient use. Dump pertinent information on a specific absolute VI. */ #define MC_CMD_DUMP_VI_STATE 0x8e #undef MC_CMD_0x8e_PRIVILEGE_CTG #define MC_CMD_0x8e_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_DUMP_VI_STATE_IN msgrequest */ #define MC_CMD_DUMP_VI_STATE_IN_LEN 4 /* The VI number to query. */ #define MC_CMD_DUMP_VI_STATE_IN_VI_NUMBER_OFST 0 /* MC_CMD_DUMP_VI_STATE_OUT msgresponse */ #define MC_CMD_DUMP_VI_STATE_OUT_LEN 96 /* The PF part of the function owning this VI. */ #define MC_CMD_DUMP_VI_STATE_OUT_OWNER_PF_OFST 0 #define MC_CMD_DUMP_VI_STATE_OUT_OWNER_PF_LEN 2 /* The VF part of the function owning this VI. */ #define MC_CMD_DUMP_VI_STATE_OUT_OWNER_VF_OFST 2 #define MC_CMD_DUMP_VI_STATE_OUT_OWNER_VF_LEN 2 /* Base of VIs allocated to this function. */ #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VI_BASE_OFST 4 #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VI_BASE_LEN 2 /* Count of VIs allocated to the owner function. */ #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VI_COUNT_OFST 6 #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VI_COUNT_LEN 2 /* Base interrupt vector allocated to this function. */ #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VECTOR_BASE_OFST 8 #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VECTOR_BASE_LEN 2 /* Number of interrupt vectors allocated to this function. */ #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VECTOR_COUNT_OFST 10 #define MC_CMD_DUMP_VI_STATE_OUT_FUNC_VECTOR_COUNT_LEN 2 /* Raw evq ptr table data. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_EVQ_PTR_RAW_OFST 12 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EVQ_PTR_RAW_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EVQ_PTR_RAW_LO_OFST 12 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EVQ_PTR_RAW_HI_OFST 16 /* Raw evq timer table data. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_TIMER_RAW_OFST 20 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_TIMER_RAW_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_TIMER_RAW_LO_OFST 20 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_TIMER_RAW_HI_OFST 24 /* Combined metadata field. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_OFST 28 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_BUFS_BASE_LBN 0 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_BUFS_BASE_WIDTH 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_BUFS_NPAGES_LBN 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_BUFS_NPAGES_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_WKUP_REF_LBN 24 #define MC_CMD_DUMP_VI_STATE_OUT_VI_EV_META_WKUP_REF_WIDTH 8 /* TXDPCPU raw table data for queue. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_0_OFST 32 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_0_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_0_LO_OFST 32 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_0_HI_OFST 36 /* TXDPCPU raw table data for queue. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_1_OFST 40 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_1_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_1_LO_OFST 40 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_1_HI_OFST 44 /* TXDPCPU raw table data for queue. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_2_OFST 48 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_2_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_2_LO_OFST 48 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_RAW_TBL_2_HI_OFST 52 /* Combined metadata field. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_OFST 56 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_LO_OFST 56 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_HI_OFST 60 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_BUFS_BASE_LBN 0 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_BUFS_BASE_WIDTH 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_BUFS_NPAGES_LBN 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_BUFS_NPAGES_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_QSTATE_LBN 24 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_QSTATE_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_WAITCOUNT_LBN 32 #define MC_CMD_DUMP_VI_STATE_OUT_VI_TX_META_WAITCOUNT_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_PADDING_LBN 40 #define MC_CMD_DUMP_VI_STATE_OUT_VI_PADDING_WIDTH 24 /* RXDPCPU raw table data for queue. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_0_OFST 64 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_0_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_0_LO_OFST 64 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_0_HI_OFST 68 /* RXDPCPU raw table data for queue. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_1_OFST 72 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_1_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_1_LO_OFST 72 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_1_HI_OFST 76 /* Reserved, currently 0. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_2_OFST 80 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_2_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_2_LO_OFST 80 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_RAW_TBL_2_HI_OFST 84 /* Combined metadata field. */ #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_OFST 88 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_LEN 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_LO_OFST 88 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_HI_OFST 92 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_BUFS_BASE_LBN 0 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_BUFS_BASE_WIDTH 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_BUFS_NPAGES_LBN 16 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_BUFS_NPAGES_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_QSTATE_LBN 24 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_QSTATE_WIDTH 8 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_WAITCOUNT_LBN 32 #define MC_CMD_DUMP_VI_STATE_OUT_VI_RX_META_WAITCOUNT_WIDTH 8 /***********************************/ /* MC_CMD_ALLOC_PIOBUF * Allocate a push I/O buffer for later use with a tx queue. */ #define MC_CMD_ALLOC_PIOBUF 0x8f #undef MC_CMD_0x8f_PRIVILEGE_CTG #define MC_CMD_0x8f_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_ALLOC_PIOBUF_IN msgrequest */ #define MC_CMD_ALLOC_PIOBUF_IN_LEN 0 /* MC_CMD_ALLOC_PIOBUF_OUT msgresponse */ #define MC_CMD_ALLOC_PIOBUF_OUT_LEN 4 /* Handle for allocated push I/O buffer. */ #define MC_CMD_ALLOC_PIOBUF_OUT_PIOBUF_HANDLE_OFST 0 /***********************************/ /* MC_CMD_FREE_PIOBUF * Free a push I/O buffer. */ #define MC_CMD_FREE_PIOBUF 0x90 #undef MC_CMD_0x90_PRIVILEGE_CTG #define MC_CMD_0x90_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_FREE_PIOBUF_IN msgrequest */ #define MC_CMD_FREE_PIOBUF_IN_LEN 4 /* Handle for allocated push I/O buffer. */ #define MC_CMD_FREE_PIOBUF_IN_PIOBUF_HANDLE_OFST 0 /* MC_CMD_FREE_PIOBUF_OUT msgresponse */ #define MC_CMD_FREE_PIOBUF_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_VI_TLP_PROCESSING * Get TLP steering and ordering information for a VI. */ #define MC_CMD_GET_VI_TLP_PROCESSING 0xb0 #undef MC_CMD_0xb0_PRIVILEGE_CTG #define MC_CMD_0xb0_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_VI_TLP_PROCESSING_IN msgrequest */ #define MC_CMD_GET_VI_TLP_PROCESSING_IN_LEN 4 /* VI number to get information for. */ #define MC_CMD_GET_VI_TLP_PROCESSING_IN_INSTANCE_OFST 0 /* MC_CMD_GET_VI_TLP_PROCESSING_OUT msgresponse */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_LEN 4 /* Transaction processing steering hint 1 for use with the Rx Queue. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_TAG1_RX_OFST 0 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_TAG1_RX_LEN 1 /* Transaction processing steering hint 2 for use with the Ev Queue. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_TAG2_EV_OFST 1 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_TAG2_EV_LEN 1 /* Use Relaxed ordering model for TLPs on this VI. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_RELAXED_ORDERING_LBN 16 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_RELAXED_ORDERING_WIDTH 1 /* Use ID based ordering for TLPs on this VI. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_ID_BASED_ORDERING_LBN 17 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_ID_BASED_ORDERING_WIDTH 1 /* Set no snoop bit for TLPs on this VI. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_NO_SNOOP_LBN 18 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_NO_SNOOP_WIDTH 1 /* Enable TPH for TLPs on this VI. */ #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_ON_LBN 19 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_TPH_ON_WIDTH 1 #define MC_CMD_GET_VI_TLP_PROCESSING_OUT_DATA_OFST 0 /***********************************/ /* MC_CMD_SET_VI_TLP_PROCESSING * Set TLP steering and ordering information for a VI. */ #define MC_CMD_SET_VI_TLP_PROCESSING 0xb1 #undef MC_CMD_0xb1_PRIVILEGE_CTG #define MC_CMD_0xb1_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_SET_VI_TLP_PROCESSING_IN msgrequest */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_LEN 8 /* VI number to set information for. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_INSTANCE_OFST 0 /* Transaction processing steering hint 1 for use with the Rx Queue. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_TAG1_RX_OFST 4 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_TAG1_RX_LEN 1 /* Transaction processing steering hint 2 for use with the Ev Queue. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_TAG2_EV_OFST 5 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_TAG2_EV_LEN 1 /* Use Relaxed ordering model for TLPs on this VI. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_RELAXED_ORDERING_LBN 48 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_RELAXED_ORDERING_WIDTH 1 /* Use ID based ordering for TLPs on this VI. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_ID_BASED_ORDERING_LBN 49 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_ID_BASED_ORDERING_WIDTH 1 /* Set the no snoop bit for TLPs on this VI. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_NO_SNOOP_LBN 50 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_NO_SNOOP_WIDTH 1 /* Enable TPH for TLPs on this VI. */ #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_ON_LBN 51 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_TPH_ON_WIDTH 1 #define MC_CMD_SET_VI_TLP_PROCESSING_IN_DATA_OFST 4 /* MC_CMD_SET_VI_TLP_PROCESSING_OUT msgresponse */ #define MC_CMD_SET_VI_TLP_PROCESSING_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_TLP_PROCESSING_GLOBALS * Get global PCIe steering and transaction processing configuration. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS 0xbc #undef MC_CMD_0xbc_PRIVILEGE_CTG #define MC_CMD_0xbc_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN msgrequest */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_LEN 4 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_OFST 0 /* enum: MISC. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_MISC 0x0 /* enum: IDO. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_IDO 0x1 /* enum: RO. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_RO 0x2 /* enum: TPH Type. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_TPH_TYPE 0x3 /* MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT msgresponse */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_LEN 8 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_GLOBAL_CATEGORY_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN/TLP_GLOBAL_CATEGORY */ /* Amalgamated TLP info word. */ #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_WORD_OFST 4 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_MISC_WTAG_EN_LBN 0 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_MISC_WTAG_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_MISC_SPARE_LBN 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_MISC_SPARE_WIDTH 31 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_DL_EN_LBN 0 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_DL_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_TX_EN_LBN 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_TX_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_EV_EN_LBN 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_EV_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_RX_EN_LBN 3 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_RX_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_SPARE_LBN 4 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_IDO_SPARE_WIDTH 28 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_RXDMA_EN_LBN 0 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_RXDMA_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_TXDMA_EN_LBN 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_TXDMA_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_DL_EN_LBN 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_DL_EN_WIDTH 1 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_SPARE_LBN 3 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_RO_SPARE_WIDTH 29 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_MSIX_LBN 0 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_MSIX_WIDTH 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_DL_LBN 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_DL_WIDTH 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_TX_LBN 4 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_TX_WIDTH 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_EV_LBN 6 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_EV_WIDTH 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_RX_LBN 8 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TPH_TYPE_RX_WIDTH 2 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TLP_TYPE_SPARE_LBN 9 #define MC_CMD_GET_TLP_PROCESSING_GLOBALS_OUT_TLP_INFO_TLP_TYPE_SPARE_WIDTH 23 /***********************************/ /* MC_CMD_SET_TLP_PROCESSING_GLOBALS * Set global PCIe steering and transaction processing configuration. */ #define MC_CMD_SET_TLP_PROCESSING_GLOBALS 0xbd #undef MC_CMD_0xbd_PRIVILEGE_CTG #define MC_CMD_0xbd_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN msgrequest */ #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_LEN 8 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_GLOBAL_CATEGORY_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_GET_TLP_PROCESSING_GLOBALS/MC_CMD_GET_TLP_PROCESSING_GLOBALS_IN/TLP_GLOBAL_CATEGORY */ /* Amalgamated TLP info word. */ #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_WORD_OFST 4 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_MISC_WTAG_EN_LBN 0 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_MISC_WTAG_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_DL_EN_LBN 0 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_DL_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_TX_EN_LBN 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_TX_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_EV_EN_LBN 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_EV_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_RX_EN_LBN 3 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_IDO_RX_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_RXDMA_EN_LBN 0 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_RXDMA_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_TXDMA_EN_LBN 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_TXDMA_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_DL_EN_LBN 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_RO_DL_EN_WIDTH 1 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_MSIX_LBN 0 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_MSIX_WIDTH 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_DL_LBN 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_DL_WIDTH 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_TX_LBN 4 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_TX_WIDTH 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_EV_LBN 6 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_EV_WIDTH 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_RX_LBN 8 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_TPH_TYPE_RX_WIDTH 2 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_SPARE_LBN 10 #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_IN_TLP_INFO_SPARE_WIDTH 22 /* MC_CMD_SET_TLP_PROCESSING_GLOBALS_OUT msgresponse */ #define MC_CMD_SET_TLP_PROCESSING_GLOBALS_OUT_LEN 0 /***********************************/ /* MC_CMD_SATELLITE_DOWNLOAD * Download a new set of images to the satellite CPUs from the host. */ #define MC_CMD_SATELLITE_DOWNLOAD 0x91 #undef MC_CMD_0x91_PRIVILEGE_CTG #define MC_CMD_0x91_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SATELLITE_DOWNLOAD_IN msgrequest: The reset requirements for the CPUs * are subtle, and so downloads must proceed in a number of phases. * * 1) PHASE_RESET with a target of TARGET_ALL and chunk ID/length of 0. * * 2) PHASE_IMEMS for each of the IMEM targets (target IDs 0-11). Each download * may consist of multiple chunks. The final chunk (with CHUNK_ID_LAST) should * be a checksum (a simple 32-bit sum) of the transferred data. An individual * download may be aborted using CHUNK_ID_ABORT. * * 3) PHASE_VECTORS for each of the vector table targets (target IDs 12-15), * similar to PHASE_IMEMS. * * 4) PHASE_READY with a target of TARGET_ALL and chunk ID/length of 0. * * After any error (a requested abort is not considered to be an error) the * sequence must be restarted from PHASE_RESET. */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_LENMIN 20 #define MC_CMD_SATELLITE_DOWNLOAD_IN_LENMAX 252 #define MC_CMD_SATELLITE_DOWNLOAD_IN_LEN(num) (16+4*(num)) /* Download phase. (Note: the IDLE phase is used internally and is never valid * in a command from the host.) */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_OFST 0 #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_IDLE 0x0 /* enum */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_RESET 0x1 /* enum */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_IMEMS 0x2 /* enum */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_VECTORS 0x3 /* enum */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_PHASE_READY 0x4 /* enum */ /* Target for download. (These match the blob numbers defined in * mc_flash_layout.h.) */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_OFST 4 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXDI_TEXT 0x0 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXDI_TEXT 0x1 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXDP_TEXT 0x2 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXDP_TEXT 0x3 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXHRSL_HR_LUT 0x4 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXHRSL_HR_LUT_CFG 0x5 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXHRSL_HR_LUT 0x6 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXHRSL_HR_LUT_CFG 0x7 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXHRSL_HR_PGM 0x8 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXHRSL_SL_PGM 0x9 /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXHRSL_HR_PGM 0xa /* enum: Valid in phase 2 (PHASE_IMEMS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXHRSL_SL_PGM 0xb /* enum: Valid in phase 3 (PHASE_VECTORS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXDI_VTBL0 0xc /* enum: Valid in phase 3 (PHASE_VECTORS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXDI_VTBL0 0xd /* enum: Valid in phase 3 (PHASE_VECTORS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_RXDI_VTBL1 0xe /* enum: Valid in phase 3 (PHASE_VECTORS) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_TXDI_VTBL1 0xf /* enum: Valid in phases 1 (PHASE_RESET) and 4 (PHASE_READY) only */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_TARGET_ALL 0xffffffff /* Chunk ID, or CHUNK_ID_LAST or CHUNK_ID_ABORT */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_ID_OFST 8 /* enum: Last chunk, containing checksum rather than data */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_ID_LAST 0xffffffff /* enum: Abort download of this item */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_ID_ABORT 0xfffffffe /* Length of this chunk in bytes */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_LEN_OFST 12 /* Data for this chunk */ #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_DATA_OFST 16 #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_DATA_LEN 4 #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_DATA_MINNUM 1 #define MC_CMD_SATELLITE_DOWNLOAD_IN_CHUNK_DATA_MAXNUM 59 /* MC_CMD_SATELLITE_DOWNLOAD_OUT msgresponse */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_LEN 8 /* Same as MC_CMD_ERR field, but included as 0 in success cases */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_RESULT_OFST 0 /* Extra status information */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_INFO_OFST 4 /* enum: Code download OK, completed. */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_OK_COMPLETE 0x0 /* enum: Code download aborted as requested. */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_OK_ABORTED 0x1 /* enum: Code download OK so far, send next chunk. */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_OK_NEXT_CHUNK 0x2 /* enum: Download phases out of sequence */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_ERR_BAD_PHASE 0x100 /* enum: Bad target for this phase */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_ERR_BAD_TARGET 0x101 /* enum: Chunk ID out of sequence */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_ERR_BAD_CHUNK_ID 0x200 /* enum: Chunk length zero or too large */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_ERR_BAD_CHUNK_LEN 0x201 /* enum: Checksum was incorrect */ #define MC_CMD_SATELLITE_DOWNLOAD_OUT_ERR_BAD_CHECKSUM 0x300 /***********************************/ /* MC_CMD_GET_CAPABILITIES * Get device capabilities. * * This is supplementary to the MC_CMD_GET_BOARD_CFG command, and intended to * reference inherent device capabilities as opposed to current NVRAM config. */ #define MC_CMD_GET_CAPABILITIES 0xbe #undef MC_CMD_0xbe_PRIVILEGE_CTG #define MC_CMD_0xbe_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_CAPABILITIES_IN msgrequest */ #define MC_CMD_GET_CAPABILITIES_IN_LEN 0 /* MC_CMD_GET_CAPABILITIES_OUT msgresponse */ #define MC_CMD_GET_CAPABILITIES_OUT_LEN 20 /* First word of flags. */ #define MC_CMD_GET_CAPABILITIES_OUT_FLAGS1_OFST 0 +#define MC_CMD_GET_CAPABILITIES_OUT_VPORT_RECONFIGURE_LBN 3 +#define MC_CMD_GET_CAPABILITIES_OUT_VPORT_RECONFIGURE_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_OUT_TX_STRIPING_LBN 4 +#define MC_CMD_GET_CAPABILITIES_OUT_TX_STRIPING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN 5 +#define MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_OUT_EVB_PORT_VLAN_RESTRICT_LBN 6 +#define MC_CMD_GET_CAPABILITIES_OUT_EVB_PORT_VLAN_RESTRICT_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_DRV_ATTACH_PREBOOT_LBN 7 #define MC_CMD_GET_CAPABILITIES_OUT_DRV_ATTACH_PREBOOT_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_FORCE_EVENT_MERGING_LBN 8 #define MC_CMD_GET_CAPABILITIES_OUT_RX_FORCE_EVENT_MERGING_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_SET_MAC_ENHANCED_LBN 9 #define MC_CMD_GET_CAPABILITIES_OUT_SET_MAC_ENHANCED_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_UNKNOWN_UCAST_DST_FILTER_ALWAYS_MULTI_RECIPIENT_LBN 10 #define MC_CMD_GET_CAPABILITIES_OUT_UNKNOWN_UCAST_DST_FILTER_ALWAYS_MULTI_RECIPIENT_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_LBN 11 #define MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_TX_MAC_SECURITY_FILTERING_LBN 12 #define MC_CMD_GET_CAPABILITIES_OUT_TX_MAC_SECURITY_FILTERING_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN 13 #define MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_QBB_LBN 14 #define MC_CMD_GET_CAPABILITIES_OUT_QBB_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PACKED_STREAM_VAR_BUFFERS_LBN 15 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PACKED_STREAM_VAR_BUFFERS_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN 16 #define MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PACKED_STREAM_LBN 17 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PACKED_STREAM_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN 18 #define MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_TX_VLAN_INSERTION_LBN 19 #define MC_CMD_GET_CAPABILITIES_OUT_TX_VLAN_INSERTION_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_VLAN_STRIPPING_LBN 20 #define MC_CMD_GET_CAPABILITIES_OUT_RX_VLAN_STRIPPING_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN 21 #define MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_0_LBN 22 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_0_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN 23 #define MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_TIMESTAMP_LBN 24 #define MC_CMD_GET_CAPABILITIES_OUT_RX_TIMESTAMP_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN 25 #define MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_MCAST_FILTER_CHAINING_LBN 26 #define MC_CMD_GET_CAPABILITIES_OUT_MCAST_FILTER_CHAINING_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN 27 #define MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_RX_DISABLE_SCATTER_LBN 28 #define MC_CMD_GET_CAPABILITIES_OUT_RX_DISABLE_SCATTER_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_TX_MCAST_UDP_LOOPBACK_LBN 29 #define MC_CMD_GET_CAPABILITIES_OUT_TX_MCAST_UDP_LOOPBACK_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN 30 #define MC_CMD_GET_CAPABILITIES_OUT_EVB_WIDTH 1 #define MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN 31 #define MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_WIDTH 1 /* RxDPCPU firmware id. */ #define MC_CMD_GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID_OFST 4 #define MC_CMD_GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID_LEN 2 /* enum: Standard RXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP 0x0 /* enum: Low latency RXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_LOW_LATENCY 0x1 /* enum: Packed stream RXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_PACKED_STREAM 0x2 /* enum: BIST RXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_BIST 0x10a /* enum: RXDP Test firmware image 1 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_TO_MC_CUT_THROUGH 0x101 /* enum: RXDP Test firmware image 2 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_TO_MC_STORE_FORWARD 0x102 /* enum: RXDP Test firmware image 3 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_TO_MC_STORE_FORWARD_FIRST 0x103 /* enum: RXDP Test firmware image 4 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_EVERY_EVENT_BATCHABLE 0x104 /* enum: RXDP Test firmware image 5 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_BACKPRESSURE 0x105 /* enum: RXDP Test firmware image 6 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_PACKET_EDITS 0x106 /* enum: RXDP Test firmware image 7 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_RX_HDR_SPLIT 0x107 /* enum: RXDP Test firmware image 8 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_DISABLE_DL 0x108 /* enum: RXDP Test firmware image 9 */ #define MC_CMD_GET_CAPABILITIES_OUT_RXDP_TEST_FW_DOORBELL_DELAY 0x10b /* TxDPCPU firmware id. */ #define MC_CMD_GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID_OFST 6 #define MC_CMD_GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID_LEN 2 /* enum: Standard TXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP 0x0 /* enum: Low latency TXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP_LOW_LATENCY 0x1 /* enum: High packet rate TXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP_HIGH_PACKET_RATE 0x3 /* enum: BIST TXDP firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP_BIST 0x12d /* enum: TXDP Test firmware image 1 */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP_TEST_FW_TSO_EDIT 0x101 /* enum: TXDP Test firmware image 2 */ #define MC_CMD_GET_CAPABILITIES_OUT_TXDP_TEST_FW_PACKET_EDITS 0x102 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_OFST 8 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_LEN 2 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_REV_LBN 0 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_REV_WIDTH 12 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_TYPE_LBN 12 #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_VERSION_TYPE_WIDTH 4 /* enum: reserved value - do not use (may indicate alternative interpretation * of REV field in future) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_RESERVED 0x0 /* enum: Trivial RX PD firmware for early Huntington development (Huntington * development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_FIRST_PKT 0x1 /* enum: RX PD firmware with approximately Siena-compatible behaviour * (Huntington development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_SIENA_COMPAT 0x2 /* enum: Virtual switching (full feature) RX PD production firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_VSWITCH 0x3 /* enum: siena_compat variant RX PD firmware using PM rather than MAC * (Huntington development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_SIENA_COMPAT_PM 0x4 /* enum: Low latency RX PD production firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_LOW_LATENCY 0x5 /* enum: Packed stream RX PD production firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_PACKED_STREAM 0x6 /* enum: RX PD firmware handling layer 2 only for high packet rate performance * tests (Medford development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_LAYER2_PERF 0x7 /* enum: RX PD firmware for GUE parsing prototype (Medford development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_TESTFW_GUE_PROTOTYPE 0xe /* enum: RX PD firmware parsing but not filtering network overlay tunnel * encapsulations (Medford development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_RXPD_FW_TYPE_TESTFW_ENCAP_PARSING_ONLY 0xf #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_OFST 10 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_LEN 2 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_REV_LBN 0 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_REV_WIDTH 12 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_TYPE_LBN 12 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_VERSION_TYPE_WIDTH 4 /* enum: reserved value - do not use (may indicate alternative interpretation * of REV field in future) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_RESERVED 0x0 /* enum: Trivial TX PD firmware for early Huntington development (Huntington * development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_FIRST_PKT 0x1 /* enum: TX PD firmware with approximately Siena-compatible behaviour * (Huntington development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_SIENA_COMPAT 0x2 /* enum: Virtual switching (full feature) TX PD production firmware */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_VSWITCH 0x3 /* enum: siena_compat variant TX PD firmware using PM rather than MAC * (Huntington development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_SIENA_COMPAT_PM 0x4 #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_LOW_LATENCY 0x5 /* enum */ /* enum: TX PD firmware handling layer 2 only for high packet rate performance * tests (Medford development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_LAYER2_PERF 0x7 /* enum: RX PD firmware for GUE parsing prototype (Medford development only) */ #define MC_CMD_GET_CAPABILITIES_OUT_TXPD_FW_TYPE_TESTFW_GUE_PROTOTYPE 0xe /* Hardware capabilities of NIC */ #define MC_CMD_GET_CAPABILITIES_OUT_HW_CAPABILITIES_OFST 12 /* Licensed capabilities */ #define MC_CMD_GET_CAPABILITIES_OUT_LICENSE_CAPABILITIES_OFST 16 +/* MC_CMD_GET_CAPABILITIES_V2_IN msgrequest */ +#define MC_CMD_GET_CAPABILITIES_V2_IN_LEN 0 +/* MC_CMD_GET_CAPABILITIES_V2_OUT msgresponse */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_LEN 26 +/* First word of flags. */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_FLAGS1_OFST 0 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VPORT_RECONFIGURE_LBN 3 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VPORT_RECONFIGURE_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_STRIPING_LBN 4 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_STRIPING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VADAPTOR_QUERY_LBN 5 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VADAPTOR_QUERY_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_EVB_PORT_VLAN_RESTRICT_LBN 6 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_EVB_PORT_VLAN_RESTRICT_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_DRV_ATTACH_PREBOOT_LBN 7 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_DRV_ATTACH_PREBOOT_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_FORCE_EVENT_MERGING_LBN 8 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_FORCE_EVENT_MERGING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_SET_MAC_ENHANCED_LBN 9 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_SET_MAC_ENHANCED_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_UNKNOWN_UCAST_DST_FILTER_ALWAYS_MULTI_RECIPIENT_LBN 10 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_UNKNOWN_UCAST_DST_FILTER_ALWAYS_MULTI_RECIPIENT_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_LBN 11 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_SECURITY_FILTERING_LBN 12 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_SECURITY_FILTERING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_ADDITIONAL_RSS_MODES_LBN 13 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_ADDITIONAL_RSS_MODES_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_QBB_LBN 14 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_QBB_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PACKED_STREAM_VAR_BUFFERS_LBN 15 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PACKED_STREAM_VAR_BUFFERS_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_RSS_LIMITED_LBN 16 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_RSS_LIMITED_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PACKED_STREAM_LBN 17 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PACKED_STREAM_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_INCLUDE_FCS_LBN 18 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_INCLUDE_FCS_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_VLAN_INSERTION_LBN 19 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_VLAN_INSERTION_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_VLAN_STRIPPING_LBN 20 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_VLAN_STRIPPING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_LBN 21 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PREFIX_LEN_0_LBN 22 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PREFIX_LEN_0_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PREFIX_LEN_14_LBN 23 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_PREFIX_LEN_14_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_TIMESTAMP_LBN 24 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_TIMESTAMP_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_BATCHING_LBN 25 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_BATCHING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_MCAST_FILTER_CHAINING_LBN 26 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_MCAST_FILTER_CHAINING_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_PM_AND_RXDP_COUNTERS_LBN 27 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_PM_AND_RXDP_COUNTERS_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_DISABLE_SCATTER_LBN 28 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_DISABLE_SCATTER_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MCAST_UDP_LOOPBACK_LBN 29 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MCAST_UDP_LOOPBACK_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_EVB_LBN 30 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_EVB_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VXLAN_NVGRE_LBN 31 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_VXLAN_NVGRE_WIDTH 1 +/* RxDPCPU firmware id. */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_DPCPU_FW_ID_OFST 4 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RX_DPCPU_FW_ID_LEN 2 +/* enum: Standard RXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP 0x0 +/* enum: Low latency RXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_LOW_LATENCY 0x1 +/* enum: Packed stream RXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_PACKED_STREAM 0x2 +/* enum: BIST RXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_BIST 0x10a +/* enum: RXDP Test firmware image 1 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_TO_MC_CUT_THROUGH 0x101 +/* enum: RXDP Test firmware image 2 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_TO_MC_STORE_FORWARD 0x102 +/* enum: RXDP Test firmware image 3 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_TO_MC_STORE_FORWARD_FIRST 0x103 +/* enum: RXDP Test firmware image 4 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_EVERY_EVENT_BATCHABLE 0x104 +/* enum: RXDP Test firmware image 5 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_BACKPRESSURE 0x105 +/* enum: RXDP Test firmware image 6 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_PACKET_EDITS 0x106 +/* enum: RXDP Test firmware image 7 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_RX_HDR_SPLIT 0x107 +/* enum: RXDP Test firmware image 8 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_DISABLE_DL 0x108 +/* enum: RXDP Test firmware image 9 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXDP_TEST_FW_DOORBELL_DELAY 0x10b +/* TxDPCPU firmware id. */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_DPCPU_FW_ID_OFST 6 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_DPCPU_FW_ID_LEN 2 +/* enum: Standard TXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP 0x0 +/* enum: Low latency TXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP_LOW_LATENCY 0x1 +/* enum: High packet rate TXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP_HIGH_PACKET_RATE 0x3 +/* enum: BIST TXDP firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP_BIST 0x12d +/* enum: TXDP Test firmware image 1 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP_TEST_FW_TSO_EDIT 0x101 +/* enum: TXDP Test firmware image 2 */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXDP_TEST_FW_PACKET_EDITS 0x102 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_OFST 8 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_LEN 2 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_REV_LBN 0 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_REV_WIDTH 12 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_TYPE_LBN 12 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_VERSION_TYPE_WIDTH 4 +/* enum: reserved value - do not use (may indicate alternative interpretation + * of REV field in future) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_RESERVED 0x0 +/* enum: Trivial RX PD firmware for early Huntington development (Huntington + * development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_FIRST_PKT 0x1 +/* enum: RX PD firmware with approximately Siena-compatible behaviour + * (Huntington development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_SIENA_COMPAT 0x2 +/* enum: Virtual switching (full feature) RX PD production firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_VSWITCH 0x3 +/* enum: siena_compat variant RX PD firmware using PM rather than MAC + * (Huntington development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_SIENA_COMPAT_PM 0x4 +/* enum: Low latency RX PD production firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_LOW_LATENCY 0x5 +/* enum: Packed stream RX PD production firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_PACKED_STREAM 0x6 +/* enum: RX PD firmware handling layer 2 only for high packet rate performance + * tests (Medford development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_LAYER2_PERF 0x7 +/* enum: RX PD firmware for GUE parsing prototype (Medford development only) */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_TESTFW_GUE_PROTOTYPE 0xe +/* enum: RX PD firmware parsing but not filtering network overlay tunnel + * encapsulations (Medford development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_RXPD_FW_TYPE_TESTFW_ENCAP_PARSING_ONLY 0xf +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_OFST 10 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_LEN 2 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_REV_LBN 0 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_REV_WIDTH 12 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_TYPE_LBN 12 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_VERSION_TYPE_WIDTH 4 +/* enum: reserved value - do not use (may indicate alternative interpretation + * of REV field in future) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_RESERVED 0x0 +/* enum: Trivial TX PD firmware for early Huntington development (Huntington + * development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_FIRST_PKT 0x1 +/* enum: TX PD firmware with approximately Siena-compatible behaviour + * (Huntington development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_SIENA_COMPAT 0x2 +/* enum: Virtual switching (full feature) TX PD production firmware */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_VSWITCH 0x3 +/* enum: siena_compat variant TX PD firmware using PM rather than MAC + * (Huntington development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_SIENA_COMPAT_PM 0x4 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_LOW_LATENCY 0x5 /* enum */ +/* enum: TX PD firmware handling layer 2 only for high packet rate performance + * tests (Medford development only) + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_LAYER2_PERF 0x7 +/* enum: RX PD firmware for GUE parsing prototype (Medford development only) */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TXPD_FW_TYPE_TESTFW_GUE_PROTOTYPE 0xe +/* Hardware capabilities of NIC */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_HW_CAPABILITIES_OFST 12 +/* Licensed capabilities */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_LICENSE_CAPABILITIES_OFST 16 +/* Second word of flags. Not present on older firmware (check the length). */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_FLAGS2_OFST 20 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN 0 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_WIDTH 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_ENCAP_LBN 1 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_ENCAP_WIDTH 1 +/* Number of FATSOv2 contexts per datapath supported by this NIC. Not present + * on older firmware (check the length). + */ +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS_OFST 24 +#define MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS_LEN 2 + + /***********************************/ /* MC_CMD_V2_EXTN * Encapsulation for a v2 extended command */ #define MC_CMD_V2_EXTN 0x7f /* MC_CMD_V2_EXTN_IN msgrequest */ #define MC_CMD_V2_EXTN_IN_LEN 4 /* the extended command number */ #define MC_CMD_V2_EXTN_IN_EXTENDED_CMD_LBN 0 #define MC_CMD_V2_EXTN_IN_EXTENDED_CMD_WIDTH 15 #define MC_CMD_V2_EXTN_IN_UNUSED_LBN 15 #define MC_CMD_V2_EXTN_IN_UNUSED_WIDTH 1 /* the actual length of the encapsulated command (which is not in the v1 * header) */ #define MC_CMD_V2_EXTN_IN_ACTUAL_LEN_LBN 16 #define MC_CMD_V2_EXTN_IN_ACTUAL_LEN_WIDTH 10 #define MC_CMD_V2_EXTN_IN_UNUSED2_LBN 26 #define MC_CMD_V2_EXTN_IN_UNUSED2_WIDTH 6 /***********************************/ /* MC_CMD_TCM_BUCKET_ALLOC * Allocate a pacer bucket (for qau rp or a snapper test) */ #define MC_CMD_TCM_BUCKET_ALLOC 0xb2 #undef MC_CMD_0xb2_PRIVILEGE_CTG #define MC_CMD_0xb2_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_TCM_BUCKET_ALLOC_IN msgrequest */ #define MC_CMD_TCM_BUCKET_ALLOC_IN_LEN 0 /* MC_CMD_TCM_BUCKET_ALLOC_OUT msgresponse */ #define MC_CMD_TCM_BUCKET_ALLOC_OUT_LEN 4 /* the bucket id */ #define MC_CMD_TCM_BUCKET_ALLOC_OUT_BUCKET_OFST 0 /***********************************/ /* MC_CMD_TCM_BUCKET_FREE * Free a pacer bucket */ #define MC_CMD_TCM_BUCKET_FREE 0xb3 #undef MC_CMD_0xb3_PRIVILEGE_CTG #define MC_CMD_0xb3_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_TCM_BUCKET_FREE_IN msgrequest */ #define MC_CMD_TCM_BUCKET_FREE_IN_LEN 4 /* the bucket id */ #define MC_CMD_TCM_BUCKET_FREE_IN_BUCKET_OFST 0 /* MC_CMD_TCM_BUCKET_FREE_OUT msgresponse */ #define MC_CMD_TCM_BUCKET_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_TCM_BUCKET_INIT * Initialise pacer bucket with a given rate */ #define MC_CMD_TCM_BUCKET_INIT 0xb4 #undef MC_CMD_0xb4_PRIVILEGE_CTG #define MC_CMD_0xb4_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_TCM_BUCKET_INIT_IN msgrequest */ #define MC_CMD_TCM_BUCKET_INIT_IN_LEN 8 /* the bucket id */ #define MC_CMD_TCM_BUCKET_INIT_IN_BUCKET_OFST 0 /* the rate in mbps */ #define MC_CMD_TCM_BUCKET_INIT_IN_RATE_OFST 4 /* MC_CMD_TCM_BUCKET_INIT_EXT_IN msgrequest */ #define MC_CMD_TCM_BUCKET_INIT_EXT_IN_LEN 12 /* the bucket id */ #define MC_CMD_TCM_BUCKET_INIT_EXT_IN_BUCKET_OFST 0 /* the rate in mbps */ #define MC_CMD_TCM_BUCKET_INIT_EXT_IN_RATE_OFST 4 /* the desired maximum fill level */ #define MC_CMD_TCM_BUCKET_INIT_EXT_IN_MAX_FILL_OFST 8 /* MC_CMD_TCM_BUCKET_INIT_OUT msgresponse */ #define MC_CMD_TCM_BUCKET_INIT_OUT_LEN 0 /***********************************/ /* MC_CMD_TCM_TXQ_INIT * Initialise txq in pacer with given options or set options */ #define MC_CMD_TCM_TXQ_INIT 0xb5 #undef MC_CMD_0xb5_PRIVILEGE_CTG #define MC_CMD_0xb5_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_TCM_TXQ_INIT_IN msgrequest */ #define MC_CMD_TCM_TXQ_INIT_IN_LEN 28 /* the txq id */ #define MC_CMD_TCM_TXQ_INIT_IN_QID_OFST 0 /* the static priority associated with the txq */ #define MC_CMD_TCM_TXQ_INIT_IN_LABEL_OFST 4 /* bitmask of the priority queues this txq is inserted into when inserted. */ #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAGS_OFST 8 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_GUARANTEED_LBN 0 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_GUARANTEED_WIDTH 1 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_NORMAL_LBN 1 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_NORMAL_WIDTH 1 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_LOW_LBN 2 #define MC_CMD_TCM_TXQ_INIT_IN_PQ_FLAG_LOW_WIDTH 1 /* the reaction point (RP) bucket */ #define MC_CMD_TCM_TXQ_INIT_IN_RP_BKT_OFST 12 /* an already reserved bucket (typically set to bucket associated with outer * vswitch) */ #define MC_CMD_TCM_TXQ_INIT_IN_MAX_BKT1_OFST 16 /* an already reserved bucket (typically set to bucket associated with inner * vswitch) */ #define MC_CMD_TCM_TXQ_INIT_IN_MAX_BKT2_OFST 20 /* the min bucket (typically for ETS/minimum bandwidth) */ #define MC_CMD_TCM_TXQ_INIT_IN_MIN_BKT_OFST 24 /* MC_CMD_TCM_TXQ_INIT_EXT_IN msgrequest */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_LEN 32 /* the txq id */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_QID_OFST 0 /* the static priority associated with the txq */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_LABEL_NORMAL_OFST 4 /* bitmask of the priority queues this txq is inserted into when inserted. */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAGS_OFST 8 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_GUARANTEED_LBN 0 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_GUARANTEED_WIDTH 1 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_NORMAL_LBN 1 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_NORMAL_WIDTH 1 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_LOW_LBN 2 #define MC_CMD_TCM_TXQ_INIT_EXT_IN_PQ_FLAG_LOW_WIDTH 1 /* the reaction point (RP) bucket */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_RP_BKT_OFST 12 /* an already reserved bucket (typically set to bucket associated with outer * vswitch) */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_MAX_BKT1_OFST 16 /* an already reserved bucket (typically set to bucket associated with inner * vswitch) */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_MAX_BKT2_OFST 20 /* the min bucket (typically for ETS/minimum bandwidth) */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_MIN_BKT_OFST 24 /* the static priority associated with the txq */ #define MC_CMD_TCM_TXQ_INIT_EXT_IN_LABEL_GUARANTEED_OFST 28 /* MC_CMD_TCM_TXQ_INIT_OUT msgresponse */ #define MC_CMD_TCM_TXQ_INIT_OUT_LEN 0 /***********************************/ /* MC_CMD_LINK_PIOBUF * Link a push I/O buffer to a TxQ */ #define MC_CMD_LINK_PIOBUF 0x92 #undef MC_CMD_0x92_PRIVILEGE_CTG #define MC_CMD_0x92_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_LINK_PIOBUF_IN msgrequest */ #define MC_CMD_LINK_PIOBUF_IN_LEN 8 /* Handle for allocated push I/O buffer. */ #define MC_CMD_LINK_PIOBUF_IN_PIOBUF_HANDLE_OFST 0 /* Function Local Instance (VI) number. */ #define MC_CMD_LINK_PIOBUF_IN_TXQ_INSTANCE_OFST 4 /* MC_CMD_LINK_PIOBUF_OUT msgresponse */ #define MC_CMD_LINK_PIOBUF_OUT_LEN 0 /***********************************/ /* MC_CMD_UNLINK_PIOBUF * Unlink a push I/O buffer from a TxQ */ #define MC_CMD_UNLINK_PIOBUF 0x93 #undef MC_CMD_0x93_PRIVILEGE_CTG #define MC_CMD_0x93_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_UNLINK_PIOBUF_IN msgrequest */ #define MC_CMD_UNLINK_PIOBUF_IN_LEN 4 /* Function Local Instance (VI) number. */ #define MC_CMD_UNLINK_PIOBUF_IN_TXQ_INSTANCE_OFST 0 /* MC_CMD_UNLINK_PIOBUF_OUT msgresponse */ #define MC_CMD_UNLINK_PIOBUF_OUT_LEN 0 /***********************************/ /* MC_CMD_VSWITCH_ALLOC * allocate and initialise a v-switch. */ #define MC_CMD_VSWITCH_ALLOC 0x94 #undef MC_CMD_0x94_PRIVILEGE_CTG #define MC_CMD_0x94_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VSWITCH_ALLOC_IN msgrequest */ #define MC_CMD_VSWITCH_ALLOC_IN_LEN 16 /* The port to connect to the v-switch's upstream port. */ #define MC_CMD_VSWITCH_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* The type of v-switch to create. */ #define MC_CMD_VSWITCH_ALLOC_IN_TYPE_OFST 4 /* enum: VLAN */ #define MC_CMD_VSWITCH_ALLOC_IN_VSWITCH_TYPE_VLAN 0x1 /* enum: VEB */ #define MC_CMD_VSWITCH_ALLOC_IN_VSWITCH_TYPE_VEB 0x2 /* enum: VEPA (obsolete) */ #define MC_CMD_VSWITCH_ALLOC_IN_VSWITCH_TYPE_VEPA 0x3 /* enum: MUX */ #define MC_CMD_VSWITCH_ALLOC_IN_VSWITCH_TYPE_MUX 0x4 /* enum: Snapper specific; semantics TBD */ #define MC_CMD_VSWITCH_ALLOC_IN_VSWITCH_TYPE_TEST 0x5 /* Flags controlling v-port creation */ #define MC_CMD_VSWITCH_ALLOC_IN_FLAGS_OFST 8 #define MC_CMD_VSWITCH_ALLOC_IN_FLAG_AUTO_PORT_LBN 0 #define MC_CMD_VSWITCH_ALLOC_IN_FLAG_AUTO_PORT_WIDTH 1 /* The number of VLAN tags to allow for attached v-ports. For VLAN aggregators, * this must be one or greated, and the attached v-ports must have exactly this * number of tags. For other v-switch types, this must be zero of greater, and * is an upper limit on the number of VLAN tags for attached v-ports. An error * will be returned if existing configuration means we can't support attached * v-ports with this number of tags. */ #define MC_CMD_VSWITCH_ALLOC_IN_NUM_VLAN_TAGS_OFST 12 /* MC_CMD_VSWITCH_ALLOC_OUT msgresponse */ #define MC_CMD_VSWITCH_ALLOC_OUT_LEN 0 /***********************************/ /* MC_CMD_VSWITCH_FREE * de-allocate a v-switch. */ #define MC_CMD_VSWITCH_FREE 0x95 #undef MC_CMD_0x95_PRIVILEGE_CTG #define MC_CMD_0x95_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VSWITCH_FREE_IN msgrequest */ #define MC_CMD_VSWITCH_FREE_IN_LEN 4 /* The port to which the v-switch is connected. */ #define MC_CMD_VSWITCH_FREE_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_VSWITCH_FREE_OUT msgresponse */ #define MC_CMD_VSWITCH_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_VSWITCH_QUERY * read some config of v-switch. For now this command is an empty placeholder. * It may be used to check if a v-switch is connected to a given EVB port (if * not, then the command returns ENOENT). */ #define MC_CMD_VSWITCH_QUERY 0x63 #undef MC_CMD_0x63_PRIVILEGE_CTG #define MC_CMD_0x63_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VSWITCH_QUERY_IN msgrequest */ #define MC_CMD_VSWITCH_QUERY_IN_LEN 4 /* The port to which the v-switch is connected. */ #define MC_CMD_VSWITCH_QUERY_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_VSWITCH_QUERY_OUT msgresponse */ #define MC_CMD_VSWITCH_QUERY_OUT_LEN 0 /***********************************/ /* MC_CMD_VPORT_ALLOC * allocate a v-port. */ #define MC_CMD_VPORT_ALLOC 0x96 #undef MC_CMD_0x96_PRIVILEGE_CTG #define MC_CMD_0x96_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_ALLOC_IN msgrequest */ #define MC_CMD_VPORT_ALLOC_IN_LEN 20 /* The port to which the v-switch is connected. */ #define MC_CMD_VPORT_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* The type of the new v-port. */ #define MC_CMD_VPORT_ALLOC_IN_TYPE_OFST 4 /* enum: VLAN (obsolete) */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_VLAN 0x1 /* enum: VEB (obsolete) */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_VEB 0x2 /* enum: VEPA (obsolete) */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_VEPA 0x3 /* enum: A normal v-port receives packets which match a specified MAC and/or * VLAN. */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_NORMAL 0x4 /* enum: An expansion v-port packets traffic which don't match any other * v-port. */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_EXPANSION 0x5 /* enum: An test v-port receives packets which match any filters installed by * its downstream components. */ #define MC_CMD_VPORT_ALLOC_IN_VPORT_TYPE_TEST 0x6 /* Flags controlling v-port creation */ #define MC_CMD_VPORT_ALLOC_IN_FLAGS_OFST 8 #define MC_CMD_VPORT_ALLOC_IN_FLAG_AUTO_PORT_LBN 0 #define MC_CMD_VPORT_ALLOC_IN_FLAG_AUTO_PORT_WIDTH 1 #define MC_CMD_VPORT_ALLOC_IN_FLAG_VLAN_RESTRICT_LBN 1 #define MC_CMD_VPORT_ALLOC_IN_FLAG_VLAN_RESTRICT_WIDTH 1 /* The number of VLAN tags to insert/remove. An error will be returned if * incompatible with the number of VLAN tags specified for the upstream * v-switch. */ #define MC_CMD_VPORT_ALLOC_IN_NUM_VLAN_TAGS_OFST 12 /* The actual VLAN tags to insert/remove */ #define MC_CMD_VPORT_ALLOC_IN_VLAN_TAGS_OFST 16 #define MC_CMD_VPORT_ALLOC_IN_VLAN_TAG_0_LBN 0 #define MC_CMD_VPORT_ALLOC_IN_VLAN_TAG_0_WIDTH 16 #define MC_CMD_VPORT_ALLOC_IN_VLAN_TAG_1_LBN 16 #define MC_CMD_VPORT_ALLOC_IN_VLAN_TAG_1_WIDTH 16 /* MC_CMD_VPORT_ALLOC_OUT msgresponse */ #define MC_CMD_VPORT_ALLOC_OUT_LEN 4 /* The handle of the new v-port */ #define MC_CMD_VPORT_ALLOC_OUT_VPORT_ID_OFST 0 /***********************************/ /* MC_CMD_VPORT_FREE * de-allocate a v-port. */ #define MC_CMD_VPORT_FREE 0x97 #undef MC_CMD_0x97_PRIVILEGE_CTG #define MC_CMD_0x97_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_FREE_IN msgrequest */ #define MC_CMD_VPORT_FREE_IN_LEN 4 /* The handle of the v-port */ #define MC_CMD_VPORT_FREE_IN_VPORT_ID_OFST 0 /* MC_CMD_VPORT_FREE_OUT msgresponse */ #define MC_CMD_VPORT_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_VADAPTOR_ALLOC * allocate a v-adaptor. */ #define MC_CMD_VADAPTOR_ALLOC 0x98 #undef MC_CMD_0x98_PRIVILEGE_CTG #define MC_CMD_0x98_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VADAPTOR_ALLOC_IN msgrequest */ #define MC_CMD_VADAPTOR_ALLOC_IN_LEN 30 /* The port to connect to the v-adaptor's port. */ #define MC_CMD_VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* Flags controlling v-adaptor creation */ #define MC_CMD_VADAPTOR_ALLOC_IN_FLAGS_OFST 8 #define MC_CMD_VADAPTOR_ALLOC_IN_FLAG_AUTO_VADAPTOR_LBN 0 #define MC_CMD_VADAPTOR_ALLOC_IN_FLAG_AUTO_VADAPTOR_WIDTH 1 #define MC_CMD_VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_LBN 1 #define MC_CMD_VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED_WIDTH 1 /* The number of VLAN tags to strip on receive */ #define MC_CMD_VADAPTOR_ALLOC_IN_NUM_VLANS_OFST 12 /* The number of VLAN tags to transparently insert/remove. */ #define MC_CMD_VADAPTOR_ALLOC_IN_NUM_VLAN_TAGS_OFST 16 /* The actual VLAN tags to insert/remove */ #define MC_CMD_VADAPTOR_ALLOC_IN_VLAN_TAGS_OFST 20 #define MC_CMD_VADAPTOR_ALLOC_IN_VLAN_TAG_0_LBN 0 #define MC_CMD_VADAPTOR_ALLOC_IN_VLAN_TAG_0_WIDTH 16 #define MC_CMD_VADAPTOR_ALLOC_IN_VLAN_TAG_1_LBN 16 #define MC_CMD_VADAPTOR_ALLOC_IN_VLAN_TAG_1_WIDTH 16 /* The MAC address to assign to this v-adaptor */ #define MC_CMD_VADAPTOR_ALLOC_IN_MACADDR_OFST 24 #define MC_CMD_VADAPTOR_ALLOC_IN_MACADDR_LEN 6 /* enum: Derive the MAC address from the upstream port */ #define MC_CMD_VADAPTOR_ALLOC_IN_AUTO_MAC 0x0 /* MC_CMD_VADAPTOR_ALLOC_OUT msgresponse */ #define MC_CMD_VADAPTOR_ALLOC_OUT_LEN 0 /***********************************/ /* MC_CMD_VADAPTOR_FREE * de-allocate a v-adaptor. */ #define MC_CMD_VADAPTOR_FREE 0x99 #undef MC_CMD_0x99_PRIVILEGE_CTG #define MC_CMD_0x99_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VADAPTOR_FREE_IN msgrequest */ #define MC_CMD_VADAPTOR_FREE_IN_LEN 4 /* The port to which the v-adaptor is connected. */ #define MC_CMD_VADAPTOR_FREE_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_VADAPTOR_FREE_OUT msgresponse */ #define MC_CMD_VADAPTOR_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_VADAPTOR_SET_MAC * assign a new MAC address to a v-adaptor. */ #define MC_CMD_VADAPTOR_SET_MAC 0x5d #undef MC_CMD_0x5d_PRIVILEGE_CTG #define MC_CMD_0x5d_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VADAPTOR_SET_MAC_IN msgrequest */ #define MC_CMD_VADAPTOR_SET_MAC_IN_LEN 10 /* The port to which the v-adaptor is connected. */ #define MC_CMD_VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID_OFST 0 /* The new MAC address to assign to this v-adaptor */ #define MC_CMD_VADAPTOR_SET_MAC_IN_MACADDR_OFST 4 #define MC_CMD_VADAPTOR_SET_MAC_IN_MACADDR_LEN 6 /* MC_CMD_VADAPTOR_SET_MAC_OUT msgresponse */ #define MC_CMD_VADAPTOR_SET_MAC_OUT_LEN 0 /***********************************/ /* MC_CMD_VADAPTOR_GET_MAC * read the MAC address assigned to a v-adaptor. */ #define MC_CMD_VADAPTOR_GET_MAC 0x5e #undef MC_CMD_0x5e_PRIVILEGE_CTG #define MC_CMD_0x5e_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VADAPTOR_GET_MAC_IN msgrequest */ #define MC_CMD_VADAPTOR_GET_MAC_IN_LEN 4 /* The port to which the v-adaptor is connected. */ #define MC_CMD_VADAPTOR_GET_MAC_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_VADAPTOR_GET_MAC_OUT msgresponse */ #define MC_CMD_VADAPTOR_GET_MAC_OUT_LEN 6 /* The MAC address assigned to this v-adaptor */ #define MC_CMD_VADAPTOR_GET_MAC_OUT_MACADDR_OFST 0 #define MC_CMD_VADAPTOR_GET_MAC_OUT_MACADDR_LEN 6 /***********************************/ /* MC_CMD_VADAPTOR_QUERY * read some config of v-adaptor. */ #define MC_CMD_VADAPTOR_QUERY 0x61 #undef MC_CMD_0x61_PRIVILEGE_CTG #define MC_CMD_0x61_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VADAPTOR_QUERY_IN msgrequest */ #define MC_CMD_VADAPTOR_QUERY_IN_LEN 4 /* The port to which the v-adaptor is connected. */ #define MC_CMD_VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_VADAPTOR_QUERY_OUT msgresponse */ #define MC_CMD_VADAPTOR_QUERY_OUT_LEN 12 /* The EVB port flags as defined at MC_CMD_VPORT_ALLOC. */ #define MC_CMD_VADAPTOR_QUERY_OUT_PORT_FLAGS_OFST 0 /* The v-adaptor flags as defined at MC_CMD_VADAPTOR_ALLOC. */ #define MC_CMD_VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS_OFST 4 /* The number of VLAN tags that may still be added */ #define MC_CMD_VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS_OFST 8 /***********************************/ /* MC_CMD_EVB_PORT_ASSIGN * assign a port to a PCI function. */ #define MC_CMD_EVB_PORT_ASSIGN 0x9a #undef MC_CMD_0x9a_PRIVILEGE_CTG #define MC_CMD_0x9a_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_EVB_PORT_ASSIGN_IN msgrequest */ #define MC_CMD_EVB_PORT_ASSIGN_IN_LEN 8 /* The port to assign. */ #define MC_CMD_EVB_PORT_ASSIGN_IN_PORT_ID_OFST 0 /* The target function to modify. */ #define MC_CMD_EVB_PORT_ASSIGN_IN_FUNCTION_OFST 4 #define MC_CMD_EVB_PORT_ASSIGN_IN_PF_LBN 0 #define MC_CMD_EVB_PORT_ASSIGN_IN_PF_WIDTH 16 #define MC_CMD_EVB_PORT_ASSIGN_IN_VF_LBN 16 #define MC_CMD_EVB_PORT_ASSIGN_IN_VF_WIDTH 16 /* MC_CMD_EVB_PORT_ASSIGN_OUT msgresponse */ #define MC_CMD_EVB_PORT_ASSIGN_OUT_LEN 0 /***********************************/ /* MC_CMD_RDWR_A64_REGIONS * Assign the 64 bit region addresses. */ #define MC_CMD_RDWR_A64_REGIONS 0x9b #undef MC_CMD_0x9b_PRIVILEGE_CTG #define MC_CMD_0x9b_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_RDWR_A64_REGIONS_IN msgrequest */ #define MC_CMD_RDWR_A64_REGIONS_IN_LEN 17 #define MC_CMD_RDWR_A64_REGIONS_IN_REGION0_OFST 0 #define MC_CMD_RDWR_A64_REGIONS_IN_REGION1_OFST 4 #define MC_CMD_RDWR_A64_REGIONS_IN_REGION2_OFST 8 #define MC_CMD_RDWR_A64_REGIONS_IN_REGION3_OFST 12 /* Write enable bits 0-3, set to write, clear to read. */ #define MC_CMD_RDWR_A64_REGIONS_IN_WRITE_MASK_LBN 128 #define MC_CMD_RDWR_A64_REGIONS_IN_WRITE_MASK_WIDTH 4 #define MC_CMD_RDWR_A64_REGIONS_IN_WRITE_MASK_BYTE_OFST 16 #define MC_CMD_RDWR_A64_REGIONS_IN_WRITE_MASK_BYTE_LEN 1 /* MC_CMD_RDWR_A64_REGIONS_OUT msgresponse: This data always included * regardless of state of write bits in the request. */ #define MC_CMD_RDWR_A64_REGIONS_OUT_LEN 16 #define MC_CMD_RDWR_A64_REGIONS_OUT_REGION0_OFST 0 #define MC_CMD_RDWR_A64_REGIONS_OUT_REGION1_OFST 4 #define MC_CMD_RDWR_A64_REGIONS_OUT_REGION2_OFST 8 #define MC_CMD_RDWR_A64_REGIONS_OUT_REGION3_OFST 12 /***********************************/ /* MC_CMD_ONLOAD_STACK_ALLOC * Allocate an Onload stack ID. */ #define MC_CMD_ONLOAD_STACK_ALLOC 0x9c #undef MC_CMD_0x9c_PRIVILEGE_CTG #define MC_CMD_0x9c_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_ONLOAD_STACK_ALLOC_IN msgrequest */ #define MC_CMD_ONLOAD_STACK_ALLOC_IN_LEN 4 /* The handle of the owning upstream port */ #define MC_CMD_ONLOAD_STACK_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* MC_CMD_ONLOAD_STACK_ALLOC_OUT msgresponse */ #define MC_CMD_ONLOAD_STACK_ALLOC_OUT_LEN 4 /* The handle of the new Onload stack */ #define MC_CMD_ONLOAD_STACK_ALLOC_OUT_ONLOAD_STACK_ID_OFST 0 /***********************************/ /* MC_CMD_ONLOAD_STACK_FREE * Free an Onload stack ID. */ #define MC_CMD_ONLOAD_STACK_FREE 0x9d #undef MC_CMD_0x9d_PRIVILEGE_CTG #define MC_CMD_0x9d_PRIVILEGE_CTG SRIOV_CTG_ONLOAD /* MC_CMD_ONLOAD_STACK_FREE_IN msgrequest */ #define MC_CMD_ONLOAD_STACK_FREE_IN_LEN 4 /* The handle of the Onload stack */ #define MC_CMD_ONLOAD_STACK_FREE_IN_ONLOAD_STACK_ID_OFST 0 /* MC_CMD_ONLOAD_STACK_FREE_OUT msgresponse */ #define MC_CMD_ONLOAD_STACK_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_RSS_CONTEXT_ALLOC * Allocate an RSS context. */ #define MC_CMD_RSS_CONTEXT_ALLOC 0x9e #undef MC_CMD_0x9e_PRIVILEGE_CTG #define MC_CMD_0x9e_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_ALLOC_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN 12 /* The handle of the owning upstream port */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* The type of context to allocate */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_OFST 4 /* enum: Allocate a context for exclusive use. The key and indirection table * must be explicitly configured. */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE 0x0 /* enum: Allocate a context for shared use; this will spread across a range of * queues, but the key and indirection table are pre-configured and may not be * changed. For this mode, NUM_QUEUES must 2, 4, 8, 16, 32 or 64. */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED 0x1 /* Number of queues spanned by this context, in the range 1-64; valid offsets * in the indirection table will be in the range 0 to NUM_QUEUES-1. */ #define MC_CMD_RSS_CONTEXT_ALLOC_IN_NUM_QUEUES_OFST 8 /* MC_CMD_RSS_CONTEXT_ALLOC_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN 4 /* The handle of the new RSS context. This should be considered opaque to the * host, although a value of 0xFFFFFFFF is guaranteed never to be a valid * handle. */ #define MC_CMD_RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID_OFST 0 /* enum: guaranteed invalid RSS context handle value */ #define MC_CMD_RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID_INVALID 0xffffffff /***********************************/ /* MC_CMD_RSS_CONTEXT_FREE * Free an RSS context. */ #define MC_CMD_RSS_CONTEXT_FREE 0x9f #undef MC_CMD_0x9f_PRIVILEGE_CTG #define MC_CMD_0x9f_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_FREE_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_FREE_IN_LEN 4 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID_OFST 0 /* MC_CMD_RSS_CONTEXT_FREE_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_RSS_CONTEXT_SET_KEY * Set the Toeplitz hash key for an RSS context. */ #define MC_CMD_RSS_CONTEXT_SET_KEY 0xa0 #undef MC_CMD_0xa0_PRIVILEGE_CTG #define MC_CMD_0xa0_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_SET_KEY_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN 44 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID_OFST 0 /* The 40-byte Toeplitz hash key (TBD endianness issues?) */ #define MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_OFST 4 #define MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN 40 /* MC_CMD_RSS_CONTEXT_SET_KEY_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_SET_KEY_OUT_LEN 0 /***********************************/ /* MC_CMD_RSS_CONTEXT_GET_KEY * Get the Toeplitz hash key for an RSS context. */ #define MC_CMD_RSS_CONTEXT_GET_KEY 0xa1 #undef MC_CMD_0xa1_PRIVILEGE_CTG #define MC_CMD_0xa1_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_GET_KEY_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN 4 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID_OFST 0 /* MC_CMD_RSS_CONTEXT_GET_KEY_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN 44 /* The 40-byte Toeplitz hash key (TBD endianness issues?) */ #define MC_CMD_RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY_OFST 4 #define MC_CMD_RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY_LEN 40 /***********************************/ /* MC_CMD_RSS_CONTEXT_SET_TABLE * Set the indirection table for an RSS context. */ #define MC_CMD_RSS_CONTEXT_SET_TABLE 0xa2 #undef MC_CMD_0xa2_PRIVILEGE_CTG #define MC_CMD_0xa2_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_SET_TABLE_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN 132 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID_OFST 0 /* The 128-byte indirection table (1 byte per entry) */ #define MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_OFST 4 #define MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN 128 /* MC_CMD_RSS_CONTEXT_SET_TABLE_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_SET_TABLE_OUT_LEN 0 /***********************************/ /* MC_CMD_RSS_CONTEXT_GET_TABLE * Get the indirection table for an RSS context. */ #define MC_CMD_RSS_CONTEXT_GET_TABLE 0xa3 #undef MC_CMD_0xa3_PRIVILEGE_CTG #define MC_CMD_0xa3_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_GET_TABLE_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN 4 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID_OFST 0 /* MC_CMD_RSS_CONTEXT_GET_TABLE_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN 132 /* The 128-byte indirection table (1 byte per entry) */ #define MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_OFST 4 #define MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN 128 /***********************************/ /* MC_CMD_RSS_CONTEXT_SET_FLAGS * Set various control flags for an RSS context. */ #define MC_CMD_RSS_CONTEXT_SET_FLAGS 0xe1 #undef MC_CMD_0xe1_PRIVILEGE_CTG #define MC_CMD_0xe1_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_SET_FLAGS_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN 8 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID_OFST 0 -/* Hash control flags. The _EN bits are always supported. The _MODE bits only - * work when the firmware reports ADDITIONAL_RSS_MODES in - * MC_CMD_GET_CAPABILITIES and override the _EN bits if any of them are not 0. - * See the RSS_MODE structure for the meaning of the mode bits. +/* Hash control flags. The _EN bits are always supported, but new modes are + * available when ADDITIONAL_RSS_MODES is reported by MC_CMD_GET_CAPABILITIES: + * in this case, the MODE fields may be set to non-zero values, and will take + * effect regardless of the settings of the _EN flags. See the RSS_MODE + * structure for the meaning of the mode bits. Drivers must check the + * capability before trying to set any _MODE fields, as older firmware will + * reject any attempt to set the FLAGS field to a value > 0xff with EINVAL. In + * the case where all the _MODE flags are zero, the _EN flags take effect, + * providing backward compatibility for existing drivers. (Setting all _MODE + * *and* all _EN flags to zero is valid, to disable RSS spreading for that + * particular packet type.) */ #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_FLAGS_OFST 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV4_EN_LBN 0 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV4_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV4_EN_LBN 1 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV4_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV6_EN_LBN 2 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV6_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV6_EN_LBN 3 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV6_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_RESERVED_LBN 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_RESERVED_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TCP_IPV4_RSS_MODE_LBN 8 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TCP_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_UDP_IPV4_RSS_MODE_LBN 12 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_UDP_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_OTHER_IPV4_RSS_MODE_LBN 16 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_OTHER_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TCP_IPV6_RSS_MODE_LBN 20 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_TCP_IPV6_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_UDP_IPV6_RSS_MODE_LBN 24 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_UDP_IPV6_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_OTHER_IPV6_RSS_MODE_LBN 28 #define MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_OTHER_IPV6_RSS_MODE_WIDTH 4 /* MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN 0 /***********************************/ /* MC_CMD_RSS_CONTEXT_GET_FLAGS * Get various control flags for an RSS context. */ #define MC_CMD_RSS_CONTEXT_GET_FLAGS 0xe2 #undef MC_CMD_0xe2_PRIVILEGE_CTG #define MC_CMD_0xe2_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RSS_CONTEXT_GET_FLAGS_IN msgrequest */ #define MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN 4 /* The handle of the RSS context */ #define MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID_OFST 0 /* MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT msgresponse */ #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN 8 -/* Hash control flags. If any _MODE bits are non-zero (which will only be true - * when the firmware reports ADDITIONAL_RSS_MODES) then the _EN bits should be - * disregarded (but are guaranteed to be consistent with the _MODE bits if - * RSS_CONTEXT_SET_FLAGS has never been called for this context since it was - * allocated). +/* Hash control flags. If all _MODE bits are zero (which will always be true + * for older firmware which does not report the ADDITIONAL_RSS_MODES + * capability), the _EN bits report the state. If any _MODE bits are non-zero + * (which will only be true when the firmware reports ADDITIONAL_RSS_MODES) + * then the _EN bits should be disregarded, although the _MODE flags are + * guaranteed to be consistent with the _EN flags for a freshly-allocated RSS + * context and in the case where the _EN flags were used in the SET. This + * provides backward compatibility: old drivers will not be attempting to + * derive any meaning from the _MODE bits (and can never set them to any value + * not representable by the _EN bits); new drivers can always determine the + * mode by looking only at the _MODE bits; the value returned by a GET can + * always be used for a SET regardless of old/new driver vs. old/new firmware. */ #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN 0 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN 1 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN 2 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN 3 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_WIDTH 1 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_RESERVED_LBN 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_RESERVED_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN 8 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN 12 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN 16 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN 20 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN 24 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_WIDTH 4 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN 28 #define MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_WIDTH 4 /***********************************/ /* MC_CMD_DOT1P_MAPPING_ALLOC * Allocate a .1p mapping. */ #define MC_CMD_DOT1P_MAPPING_ALLOC 0xa4 #undef MC_CMD_0xa4_PRIVILEGE_CTG #define MC_CMD_0xa4_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DOT1P_MAPPING_ALLOC_IN msgrequest */ #define MC_CMD_DOT1P_MAPPING_ALLOC_IN_LEN 8 /* The handle of the owning upstream port */ #define MC_CMD_DOT1P_MAPPING_ALLOC_IN_UPSTREAM_PORT_ID_OFST 0 /* Number of queues spanned by this mapping, in the range 1-64; valid fixed * offsets in the mapping table will be in the range 0 to NUM_QUEUES-1, and * referenced RSS contexts must span no more than this number. */ #define MC_CMD_DOT1P_MAPPING_ALLOC_IN_NUM_QUEUES_OFST 4 /* MC_CMD_DOT1P_MAPPING_ALLOC_OUT msgresponse */ #define MC_CMD_DOT1P_MAPPING_ALLOC_OUT_LEN 4 /* The handle of the new .1p mapping. This should be considered opaque to the * host, although a value of 0xFFFFFFFF is guaranteed never to be a valid * handle. */ #define MC_CMD_DOT1P_MAPPING_ALLOC_OUT_DOT1P_MAPPING_ID_OFST 0 /* enum: guaranteed invalid .1p mapping handle value */ #define MC_CMD_DOT1P_MAPPING_ALLOC_OUT_DOT1P_MAPPING_ID_INVALID 0xffffffff /***********************************/ /* MC_CMD_DOT1P_MAPPING_FREE * Free a .1p mapping. */ #define MC_CMD_DOT1P_MAPPING_FREE 0xa5 #undef MC_CMD_0xa5_PRIVILEGE_CTG #define MC_CMD_0xa5_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DOT1P_MAPPING_FREE_IN msgrequest */ #define MC_CMD_DOT1P_MAPPING_FREE_IN_LEN 4 /* The handle of the .1p mapping */ #define MC_CMD_DOT1P_MAPPING_FREE_IN_DOT1P_MAPPING_ID_OFST 0 /* MC_CMD_DOT1P_MAPPING_FREE_OUT msgresponse */ #define MC_CMD_DOT1P_MAPPING_FREE_OUT_LEN 0 /***********************************/ /* MC_CMD_DOT1P_MAPPING_SET_TABLE * Set the mapping table for a .1p mapping. */ #define MC_CMD_DOT1P_MAPPING_SET_TABLE 0xa6 #undef MC_CMD_0xa6_PRIVILEGE_CTG #define MC_CMD_0xa6_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DOT1P_MAPPING_SET_TABLE_IN msgrequest */ #define MC_CMD_DOT1P_MAPPING_SET_TABLE_IN_LEN 36 /* The handle of the .1p mapping */ #define MC_CMD_DOT1P_MAPPING_SET_TABLE_IN_DOT1P_MAPPING_ID_OFST 0 /* Per-priority mappings (1 32-bit word per entry - an offset or RSS context * handle) */ #define MC_CMD_DOT1P_MAPPING_SET_TABLE_IN_MAPPING_TABLE_OFST 4 #define MC_CMD_DOT1P_MAPPING_SET_TABLE_IN_MAPPING_TABLE_LEN 32 /* MC_CMD_DOT1P_MAPPING_SET_TABLE_OUT msgresponse */ #define MC_CMD_DOT1P_MAPPING_SET_TABLE_OUT_LEN 0 /***********************************/ /* MC_CMD_DOT1P_MAPPING_GET_TABLE * Get the mapping table for a .1p mapping. */ #define MC_CMD_DOT1P_MAPPING_GET_TABLE 0xa7 #undef MC_CMD_0xa7_PRIVILEGE_CTG #define MC_CMD_0xa7_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DOT1P_MAPPING_GET_TABLE_IN msgrequest */ #define MC_CMD_DOT1P_MAPPING_GET_TABLE_IN_LEN 4 /* The handle of the .1p mapping */ #define MC_CMD_DOT1P_MAPPING_GET_TABLE_IN_DOT1P_MAPPING_ID_OFST 0 /* MC_CMD_DOT1P_MAPPING_GET_TABLE_OUT msgresponse */ #define MC_CMD_DOT1P_MAPPING_GET_TABLE_OUT_LEN 36 /* Per-priority mappings (1 32-bit word per entry - an offset or RSS context * handle) */ #define MC_CMD_DOT1P_MAPPING_GET_TABLE_OUT_MAPPING_TABLE_OFST 4 #define MC_CMD_DOT1P_MAPPING_GET_TABLE_OUT_MAPPING_TABLE_LEN 32 /***********************************/ /* MC_CMD_GET_VECTOR_CFG * Get Interrupt Vector config for this PF. */ #define MC_CMD_GET_VECTOR_CFG 0xbf #undef MC_CMD_0xbf_PRIVILEGE_CTG #define MC_CMD_0xbf_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_VECTOR_CFG_IN msgrequest */ #define MC_CMD_GET_VECTOR_CFG_IN_LEN 0 /* MC_CMD_GET_VECTOR_CFG_OUT msgresponse */ #define MC_CMD_GET_VECTOR_CFG_OUT_LEN 12 /* Base absolute interrupt vector number. */ #define MC_CMD_GET_VECTOR_CFG_OUT_VEC_BASE_OFST 0 /* Number of interrupt vectors allocate to this PF. */ #define MC_CMD_GET_VECTOR_CFG_OUT_VECS_PER_PF_OFST 4 /* Number of interrupt vectors to allocate per VF. */ #define MC_CMD_GET_VECTOR_CFG_OUT_VECS_PER_VF_OFST 8 /***********************************/ /* MC_CMD_SET_VECTOR_CFG * Set Interrupt Vector config for this PF. */ #define MC_CMD_SET_VECTOR_CFG 0xc0 #undef MC_CMD_0xc0_PRIVILEGE_CTG #define MC_CMD_0xc0_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_SET_VECTOR_CFG_IN msgrequest */ #define MC_CMD_SET_VECTOR_CFG_IN_LEN 12 /* Base absolute interrupt vector number, or MC_CMD_RESOURCE_INSTANCE_ANY to * let the system find a suitable base. */ #define MC_CMD_SET_VECTOR_CFG_IN_VEC_BASE_OFST 0 /* Number of interrupt vectors allocate to this PF. */ #define MC_CMD_SET_VECTOR_CFG_IN_VECS_PER_PF_OFST 4 /* Number of interrupt vectors to allocate per VF. */ #define MC_CMD_SET_VECTOR_CFG_IN_VECS_PER_VF_OFST 8 /* MC_CMD_SET_VECTOR_CFG_OUT msgresponse */ #define MC_CMD_SET_VECTOR_CFG_OUT_LEN 0 /***********************************/ /* MC_CMD_VPORT_ADD_MAC_ADDRESS * Add a MAC address to a v-port */ #define MC_CMD_VPORT_ADD_MAC_ADDRESS 0xa8 #undef MC_CMD_0xa8_PRIVILEGE_CTG #define MC_CMD_0xa8_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_ADD_MAC_ADDRESS_IN msgrequest */ #define MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN 10 /* The handle of the v-port */ #define MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID_OFST 0 /* MAC address to add */ #define MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_MACADDR_OFST 4 #define MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_MACADDR_LEN 6 /* MC_CMD_VPORT_ADD_MAC_ADDRESS_OUT msgresponse */ #define MC_CMD_VPORT_ADD_MAC_ADDRESS_OUT_LEN 0 /***********************************/ /* MC_CMD_VPORT_DEL_MAC_ADDRESS * Delete a MAC address from a v-port */ #define MC_CMD_VPORT_DEL_MAC_ADDRESS 0xa9 #undef MC_CMD_0xa9_PRIVILEGE_CTG #define MC_CMD_0xa9_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_DEL_MAC_ADDRESS_IN msgrequest */ #define MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN 10 /* The handle of the v-port */ #define MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID_OFST 0 /* MAC address to add */ #define MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_MACADDR_OFST 4 #define MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_MACADDR_LEN 6 /* MC_CMD_VPORT_DEL_MAC_ADDRESS_OUT msgresponse */ #define MC_CMD_VPORT_DEL_MAC_ADDRESS_OUT_LEN 0 /***********************************/ /* MC_CMD_VPORT_GET_MAC_ADDRESSES * Delete a MAC address from a v-port */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES 0xaa #undef MC_CMD_0xaa_PRIVILEGE_CTG #define MC_CMD_0xaa_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_GET_MAC_ADDRESSES_IN msgrequest */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN 4 /* The handle of the v-port */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID_OFST 0 /* MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT msgresponse */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN 4 #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX 250 #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LEN(num) (4+6*(num)) /* The number of MAC addresses returned */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT_OFST 0 /* Array of MAC addresses */ #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_OFST 4 #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_LEN 6 #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_MINNUM 0 #define MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_MAXNUM 41 /***********************************/ /* MC_CMD_VPORT_RECONFIGURE * Replace VLAN tags and/or MAC addresses of an existing v-port. If the v-port * has already been passed to another function (v-port's user), then that * function will be reset before applying the changes. */ #define MC_CMD_VPORT_RECONFIGURE 0xeb #undef MC_CMD_0xeb_PRIVILEGE_CTG #define MC_CMD_0xeb_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_VPORT_RECONFIGURE_IN msgrequest */ #define MC_CMD_VPORT_RECONFIGURE_IN_LEN 44 /* The handle of the v-port */ #define MC_CMD_VPORT_RECONFIGURE_IN_VPORT_ID_OFST 0 /* Flags requesting what should be changed. */ #define MC_CMD_VPORT_RECONFIGURE_IN_FLAGS_OFST 4 #define MC_CMD_VPORT_RECONFIGURE_IN_REPLACE_VLAN_TAGS_LBN 0 #define MC_CMD_VPORT_RECONFIGURE_IN_REPLACE_VLAN_TAGS_WIDTH 1 #define MC_CMD_VPORT_RECONFIGURE_IN_REPLACE_MACADDRS_LBN 1 #define MC_CMD_VPORT_RECONFIGURE_IN_REPLACE_MACADDRS_WIDTH 1 /* The number of VLAN tags to insert/remove. An error will be returned if * incompatible with the number of VLAN tags specified for the upstream * v-switch. */ #define MC_CMD_VPORT_RECONFIGURE_IN_NUM_VLAN_TAGS_OFST 8 /* The actual VLAN tags to insert/remove */ #define MC_CMD_VPORT_RECONFIGURE_IN_VLAN_TAGS_OFST 12 #define MC_CMD_VPORT_RECONFIGURE_IN_VLAN_TAG_0_LBN 0 #define MC_CMD_VPORT_RECONFIGURE_IN_VLAN_TAG_0_WIDTH 16 #define MC_CMD_VPORT_RECONFIGURE_IN_VLAN_TAG_1_LBN 16 #define MC_CMD_VPORT_RECONFIGURE_IN_VLAN_TAG_1_WIDTH 16 /* The number of MAC addresses to add */ #define MC_CMD_VPORT_RECONFIGURE_IN_NUM_MACADDRS_OFST 16 /* MAC addresses to add */ #define MC_CMD_VPORT_RECONFIGURE_IN_MACADDRS_OFST 20 #define MC_CMD_VPORT_RECONFIGURE_IN_MACADDRS_LEN 6 #define MC_CMD_VPORT_RECONFIGURE_IN_MACADDRS_NUM 4 /* MC_CMD_VPORT_RECONFIGURE_OUT msgresponse */ #define MC_CMD_VPORT_RECONFIGURE_OUT_LEN 4 #define MC_CMD_VPORT_RECONFIGURE_OUT_FLAGS_OFST 0 #define MC_CMD_VPORT_RECONFIGURE_OUT_RESET_DONE_LBN 0 #define MC_CMD_VPORT_RECONFIGURE_OUT_RESET_DONE_WIDTH 1 /***********************************/ /* MC_CMD_EVB_PORT_QUERY * read some config of v-port. */ #define MC_CMD_EVB_PORT_QUERY 0x62 #undef MC_CMD_0x62_PRIVILEGE_CTG #define MC_CMD_0x62_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_EVB_PORT_QUERY_IN msgrequest */ #define MC_CMD_EVB_PORT_QUERY_IN_LEN 4 /* The handle of the v-port */ #define MC_CMD_EVB_PORT_QUERY_IN_PORT_ID_OFST 0 /* MC_CMD_EVB_PORT_QUERY_OUT msgresponse */ #define MC_CMD_EVB_PORT_QUERY_OUT_LEN 8 /* The EVB port flags as defined at MC_CMD_VPORT_ALLOC. */ #define MC_CMD_EVB_PORT_QUERY_OUT_PORT_FLAGS_OFST 0 /* The number of VLAN tags that may be used on a v-adaptor connected to this * EVB port. */ #define MC_CMD_EVB_PORT_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS_OFST 4 /***********************************/ /* MC_CMD_DUMP_BUFTBL_ENTRIES * Dump buffer table entries, mainly for command client debug use. Dumps * absolute entries, and does not use chunk handles. All entries must be in * range, and used for q page mapping, Although the latter restriction may be * lifted in future. */ #define MC_CMD_DUMP_BUFTBL_ENTRIES 0xab #undef MC_CMD_0xab_PRIVILEGE_CTG #define MC_CMD_0xab_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DUMP_BUFTBL_ENTRIES_IN msgrequest */ #define MC_CMD_DUMP_BUFTBL_ENTRIES_IN_LEN 8 /* Index of the first buffer table entry. */ #define MC_CMD_DUMP_BUFTBL_ENTRIES_IN_FIRSTID_OFST 0 /* Number of buffer table entries to dump. */ #define MC_CMD_DUMP_BUFTBL_ENTRIES_IN_NUMENTRIES_OFST 4 /* MC_CMD_DUMP_BUFTBL_ENTRIES_OUT msgresponse */ #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_LENMIN 12 #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_LENMAX 252 #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_LEN(num) (0+12*(num)) /* Raw buffer table entries, layed out as BUFTBL_ENTRY. */ #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_ENTRY_OFST 0 #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_ENTRY_LEN 12 #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_ENTRY_MINNUM 1 #define MC_CMD_DUMP_BUFTBL_ENTRIES_OUT_ENTRY_MAXNUM 21 /***********************************/ /* MC_CMD_SET_RXDP_CONFIG * Set global RXDP configuration settings */ #define MC_CMD_SET_RXDP_CONFIG 0xc1 #undef MC_CMD_0xc1_PRIVILEGE_CTG #define MC_CMD_0xc1_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_RXDP_CONFIG_IN msgrequest */ #define MC_CMD_SET_RXDP_CONFIG_IN_LEN 4 #define MC_CMD_SET_RXDP_CONFIG_IN_DATA_OFST 0 #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_DMA_LBN 0 #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_DMA_WIDTH 1 #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_LEN_LBN 1 #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_LEN_WIDTH 2 /* enum: pad to 64 bytes */ #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64 0x0 /* enum: pad to 128 bytes (Medford only) */ #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128 0x1 /* enum: pad to 256 bytes (Medford only) */ #define MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256 0x2 /* MC_CMD_SET_RXDP_CONFIG_OUT msgresponse */ #define MC_CMD_SET_RXDP_CONFIG_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_RXDP_CONFIG * Get global RXDP configuration settings */ #define MC_CMD_GET_RXDP_CONFIG 0xc2 #undef MC_CMD_0xc2_PRIVILEGE_CTG #define MC_CMD_0xc2_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_RXDP_CONFIG_IN msgrequest */ #define MC_CMD_GET_RXDP_CONFIG_IN_LEN 0 /* MC_CMD_GET_RXDP_CONFIG_OUT msgresponse */ #define MC_CMD_GET_RXDP_CONFIG_OUT_LEN 4 #define MC_CMD_GET_RXDP_CONFIG_OUT_DATA_OFST 0 #define MC_CMD_GET_RXDP_CONFIG_OUT_PAD_HOST_DMA_LBN 0 #define MC_CMD_GET_RXDP_CONFIG_OUT_PAD_HOST_DMA_WIDTH 1 #define MC_CMD_GET_RXDP_CONFIG_OUT_PAD_HOST_LEN_LBN 1 #define MC_CMD_GET_RXDP_CONFIG_OUT_PAD_HOST_LEN_WIDTH 2 /* Enum values, see field(s): */ /* MC_CMD_SET_RXDP_CONFIG/MC_CMD_SET_RXDP_CONFIG_IN/PAD_HOST_LEN */ /***********************************/ /* MC_CMD_GET_CLOCK * Return the system and PDCPU clock frequencies. */ #define MC_CMD_GET_CLOCK 0xac #undef MC_CMD_0xac_PRIVILEGE_CTG #define MC_CMD_0xac_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_CLOCK_IN msgrequest */ #define MC_CMD_GET_CLOCK_IN_LEN 0 /* MC_CMD_GET_CLOCK_OUT msgresponse */ #define MC_CMD_GET_CLOCK_OUT_LEN 8 /* System frequency, MHz */ #define MC_CMD_GET_CLOCK_OUT_SYS_FREQ_OFST 0 /* DPCPU frequency, MHz */ #define MC_CMD_GET_CLOCK_OUT_DPCPU_FREQ_OFST 4 /***********************************/ /* MC_CMD_SET_CLOCK * Control the system and DPCPU clock frequencies. Changes are lost reboot. */ #define MC_CMD_SET_CLOCK 0xad #undef MC_CMD_0xad_PRIVILEGE_CTG #define MC_CMD_0xad_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_CLOCK_IN msgrequest */ #define MC_CMD_SET_CLOCK_IN_LEN 28 /* Requested frequency in MHz for system clock domain */ #define MC_CMD_SET_CLOCK_IN_SYS_FREQ_OFST 0 /* enum: Leave the system clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_SYS_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for inter-core clock domain */ #define MC_CMD_SET_CLOCK_IN_ICORE_FREQ_OFST 4 /* enum: Leave the inter-core clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_ICORE_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for DPCPU clock domain */ #define MC_CMD_SET_CLOCK_IN_DPCPU_FREQ_OFST 8 /* enum: Leave the DPCPU clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_DPCPU_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for PCS clock domain */ #define MC_CMD_SET_CLOCK_IN_PCS_FREQ_OFST 12 /* enum: Leave the PCS clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_PCS_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for MC clock domain */ #define MC_CMD_SET_CLOCK_IN_MC_FREQ_OFST 16 /* enum: Leave the MC clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_MC_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for rmon clock domain */ #define MC_CMD_SET_CLOCK_IN_RMON_FREQ_OFST 20 /* enum: Leave the rmon clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_RMON_DOMAIN_DONT_CHANGE 0x0 /* Requested frequency in MHz for vswitch clock domain */ #define MC_CMD_SET_CLOCK_IN_VSWITCH_FREQ_OFST 24 /* enum: Leave the vswitch clock domain frequency unchanged */ #define MC_CMD_SET_CLOCK_IN_VSWITCH_DOMAIN_DONT_CHANGE 0x0 /* MC_CMD_SET_CLOCK_OUT msgresponse */ #define MC_CMD_SET_CLOCK_OUT_LEN 28 /* Resulting system frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_SYS_FREQ_OFST 0 /* enum: The system clock domain doesn't exist */ #define MC_CMD_SET_CLOCK_OUT_SYS_DOMAIN_UNSUPPORTED 0x0 /* Resulting inter-core frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_ICORE_FREQ_OFST 4 /* enum: The inter-core clock domain doesn't exist / isn't used */ #define MC_CMD_SET_CLOCK_OUT_ICORE_DOMAIN_UNSUPPORTED 0x0 /* Resulting DPCPU frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_DPCPU_FREQ_OFST 8 /* enum: The dpcpu clock domain doesn't exist */ #define MC_CMD_SET_CLOCK_OUT_DPCPU_DOMAIN_UNSUPPORTED 0x0 /* Resulting PCS frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_PCS_FREQ_OFST 12 /* enum: The PCS clock domain doesn't exist / isn't controlled */ #define MC_CMD_SET_CLOCK_OUT_PCS_DOMAIN_UNSUPPORTED 0x0 /* Resulting MC frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_MC_FREQ_OFST 16 /* enum: The MC clock domain doesn't exist / isn't controlled */ #define MC_CMD_SET_CLOCK_OUT_MC_DOMAIN_UNSUPPORTED 0x0 /* Resulting rmon frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_RMON_FREQ_OFST 20 /* enum: The rmon clock domain doesn't exist / isn't controlled */ #define MC_CMD_SET_CLOCK_OUT_RMON_DOMAIN_UNSUPPORTED 0x0 /* Resulting vswitch frequency in MHz */ #define MC_CMD_SET_CLOCK_OUT_VSWITCH_FREQ_OFST 24 /* enum: The vswitch clock domain doesn't exist / isn't controlled */ #define MC_CMD_SET_CLOCK_OUT_VSWITCH_DOMAIN_UNSUPPORTED 0x0 /***********************************/ /* MC_CMD_DPCPU_RPC * Send an arbitrary DPCPU message. */ #define MC_CMD_DPCPU_RPC 0xae #undef MC_CMD_0xae_PRIVILEGE_CTG #define MC_CMD_0xae_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DPCPU_RPC_IN msgrequest */ #define MC_CMD_DPCPU_RPC_IN_LEN 36 #define MC_CMD_DPCPU_RPC_IN_CPU_OFST 0 /* enum: RxDPCPU0 */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_RX0 0x0 /* enum: TxDPCPU0 */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_TX0 0x1 /* enum: TxDPCPU1 */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_TX1 0x2 /* enum: RxDPCPU1 (Medford only) */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_RX1 0x3 /* enum: RxDPCPU (will be for the calling function; for now, just an alias of * DPCPU_RX0) */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_RX 0x80 /* enum: TxDPCPU (will be for the calling function; for now, just an alias of * DPCPU_TX0) */ #define MC_CMD_DPCPU_RPC_IN_DPCPU_TX 0x81 /* First 8 bits [39:32] of DATA are consumed by MC-DPCPU protocol and must be * initialised to zero */ #define MC_CMD_DPCPU_RPC_IN_DATA_OFST 4 #define MC_CMD_DPCPU_RPC_IN_DATA_LEN 32 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_CMDNUM_LBN 8 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_CMDNUM_WIDTH 8 #define MC_CMD_DPCPU_RPC_IN_CMDNUM_TXDPCPU_READ 0x6 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_TXDPCPU_WRITE 0x7 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_TXDPCPU_SELF_TEST 0xc /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_TXDPCPU_CSR_ACCESS 0xe /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_RXDPCPU_READ 0x46 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_RXDPCPU_WRITE 0x47 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_RXDPCPU_SELF_TEST 0x4a /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_RXDPCPU_CSR_ACCESS 0x4c /* enum */ #define MC_CMD_DPCPU_RPC_IN_CMDNUM_RXDPCPU_SET_MC_REPLAY_CNTXT 0x4d /* enum */ #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_OBJID_LBN 16 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_OBJID_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_ADDR_LBN 16 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_ADDR_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_COUNT_LBN 48 #define MC_CMD_DPCPU_RPC_IN_HDR_CMD_REQ_COUNT_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_INFO_LBN 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_INFO_WIDTH 240 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_LBN 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_STOP_RETURN_RESULT 0x0 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_START_READ 0x1 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_START_WRITE 0x2 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_START_WRITE_READ 0x3 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_CMD_START_PIPELINED_READ 0x4 /* enum */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_START_DELAY_LBN 48 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_START_DELAY_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_RPT_COUNT_LBN 64 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_RPT_COUNT_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_GAP_DELAY_LBN 80 #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_GAP_DELAY_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_MODE_LBN 16 #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_MODE_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_MODE_CUT_THROUGH 0x1 /* enum */ #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_MODE_STORE_FORWARD 0x2 /* enum */ #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_MODE_STORE_FORWARD_FIRST 0x3 /* enum */ #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_CNTXT_LBN 64 #define MC_CMD_DPCPU_RPC_IN_MC_REPLAY_CNTXT_WIDTH 16 #define MC_CMD_DPCPU_RPC_IN_WDATA_OFST 12 #define MC_CMD_DPCPU_RPC_IN_WDATA_LEN 24 /* Register data to write. Only valid in write/write-read. */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_DATA_OFST 16 /* Register address. */ #define MC_CMD_DPCPU_RPC_IN_CSR_ACCESS_ADDRESS_OFST 20 /* MC_CMD_DPCPU_RPC_OUT msgresponse */ #define MC_CMD_DPCPU_RPC_OUT_LEN 36 #define MC_CMD_DPCPU_RPC_OUT_RC_OFST 0 /* DATA */ #define MC_CMD_DPCPU_RPC_OUT_DATA_OFST 4 #define MC_CMD_DPCPU_RPC_OUT_DATA_LEN 32 #define MC_CMD_DPCPU_RPC_OUT_HDR_CMD_RESP_ERRCODE_LBN 32 #define MC_CMD_DPCPU_RPC_OUT_HDR_CMD_RESP_ERRCODE_WIDTH 16 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_COUNT_LBN 48 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_COUNT_WIDTH 16 #define MC_CMD_DPCPU_RPC_OUT_RDATA_OFST 12 #define MC_CMD_DPCPU_RPC_OUT_RDATA_LEN 24 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_VAL_1_OFST 12 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_VAL_2_OFST 16 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_VAL_3_OFST 20 #define MC_CMD_DPCPU_RPC_OUT_CSR_ACCESS_READ_VAL_4_OFST 24 /***********************************/ /* MC_CMD_TRIGGER_INTERRUPT * Trigger an interrupt by prodding the BIU. */ #define MC_CMD_TRIGGER_INTERRUPT 0xe3 #undef MC_CMD_0xe3_PRIVILEGE_CTG #define MC_CMD_0xe3_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_TRIGGER_INTERRUPT_IN msgrequest */ #define MC_CMD_TRIGGER_INTERRUPT_IN_LEN 4 /* Interrupt level relative to base for function. */ #define MC_CMD_TRIGGER_INTERRUPT_IN_INTR_LEVEL_OFST 0 /* MC_CMD_TRIGGER_INTERRUPT_OUT msgresponse */ #define MC_CMD_TRIGGER_INTERRUPT_OUT_LEN 0 /***********************************/ /* MC_CMD_SHMBOOT_OP * Special operations to support (for now) shmboot. */ #define MC_CMD_SHMBOOT_OP 0xe6 #undef MC_CMD_0xe6_PRIVILEGE_CTG #define MC_CMD_0xe6_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SHMBOOT_OP_IN msgrequest */ #define MC_CMD_SHMBOOT_OP_IN_LEN 4 /* Identifies the operation to perform */ #define MC_CMD_SHMBOOT_OP_IN_SHMBOOT_OP_OFST 0 /* enum: Copy slave_data section to the slave core. (Greenport only) */ #define MC_CMD_SHMBOOT_OP_IN_PUSH_SLAVE_DATA 0x0 /* MC_CMD_SHMBOOT_OP_OUT msgresponse */ #define MC_CMD_SHMBOOT_OP_OUT_LEN 0 /***********************************/ /* MC_CMD_CAP_BLK_READ * Read multiple 64bit words from capture block memory */ #define MC_CMD_CAP_BLK_READ 0xe7 #undef MC_CMD_0xe7_PRIVILEGE_CTG #define MC_CMD_0xe7_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_CAP_BLK_READ_IN msgrequest */ #define MC_CMD_CAP_BLK_READ_IN_LEN 12 #define MC_CMD_CAP_BLK_READ_IN_CAP_REG_OFST 0 #define MC_CMD_CAP_BLK_READ_IN_ADDR_OFST 4 #define MC_CMD_CAP_BLK_READ_IN_COUNT_OFST 8 /* MC_CMD_CAP_BLK_READ_OUT msgresponse */ #define MC_CMD_CAP_BLK_READ_OUT_LENMIN 8 #define MC_CMD_CAP_BLK_READ_OUT_LENMAX 248 #define MC_CMD_CAP_BLK_READ_OUT_LEN(num) (0+8*(num)) #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_OFST 0 #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_LEN 8 #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_LO_OFST 0 #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_HI_OFST 4 #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_MINNUM 1 #define MC_CMD_CAP_BLK_READ_OUT_BUFFER_MAXNUM 31 /***********************************/ /* MC_CMD_DUMP_DO * Take a dump of the DUT state */ #define MC_CMD_DUMP_DO 0xe8 #undef MC_CMD_0xe8_PRIVILEGE_CTG #define MC_CMD_0xe8_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DUMP_DO_IN msgrequest */ #define MC_CMD_DUMP_DO_IN_LEN 52 #define MC_CMD_DUMP_DO_IN_PADDING_OFST 0 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_OFST 4 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM 0x0 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_DEFAULT 0x1 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_TYPE_OFST 8 #define MC_CMD_DUMP_DO_IN_DUMP_LOCATION_NVRAM 0x1 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMP_LOCATION_HOST_MEMORY 0x2 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMP_LOCATION_HOST_MEMORY_MLI 0x3 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMP_LOCATION_UART 0x4 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_NVRAM_PARTITION_TYPE_ID_OFST 12 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_NVRAM_OFFSET_OFST 16 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_ADDR_LO_OFST 12 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_ADDR_HI_OFST 16 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_LO_OFST 12 #define MC_CMD_DUMP_DO_IN_HOST_MEMORY_MLI_PAGE_SIZE 0x1000 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_HI_OFST 16 #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_DEPTH_OFST 20 #define MC_CMD_DUMP_DO_IN_HOST_MEMORY_MLI_MAX_DEPTH 0x2 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_UART_PORT_OFST 12 /* enum: The uart port this command was received over (if using a uart * transport) */ #define MC_CMD_DUMP_DO_IN_UART_PORT_SRC 0xff #define MC_CMD_DUMP_DO_IN_DUMPSPEC_SRC_CUSTOM_SIZE_OFST 24 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_OFST 28 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM 0x0 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_NVRAM_DUMP_PARTITION 0x1 /* enum */ #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_TYPE_OFST 32 /* Enum values, see field(s): */ /* MC_CMD_DUMP_DO_IN/DUMPSPEC_SRC_CUSTOM_TYPE */ #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_NVRAM_PARTITION_TYPE_ID_OFST 36 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_NVRAM_OFFSET_OFST 40 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_ADDR_LO_OFST 36 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_ADDR_HI_OFST 40 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_LO_OFST 36 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_HI_OFST 40 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_DEPTH_OFST 44 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_UART_PORT_OFST 36 #define MC_CMD_DUMP_DO_IN_DUMPFILE_DST_CUSTOM_SIZE_OFST 48 /* MC_CMD_DUMP_DO_OUT msgresponse */ #define MC_CMD_DUMP_DO_OUT_LEN 4 #define MC_CMD_DUMP_DO_OUT_DUMPFILE_SIZE_OFST 0 /***********************************/ /* MC_CMD_DUMP_CONFIGURE_UNSOLICITED * Configure unsolicited dumps */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED 0xe9 #undef MC_CMD_0xe9_PRIVILEGE_CTG #define MC_CMD_0xe9_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN msgrequest */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_LEN 52 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_ENABLE_OFST 0 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_OFST 4 /* Enum values, see field(s): */ /* MC_CMD_DUMP_DO/MC_CMD_DUMP_DO_IN/DUMPSPEC_SRC */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_TYPE_OFST 8 /* Enum values, see field(s): */ /* MC_CMD_DUMP_DO/MC_CMD_DUMP_DO_IN/DUMPSPEC_SRC_CUSTOM_TYPE */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_NVRAM_PARTITION_TYPE_ID_OFST 12 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_NVRAM_OFFSET_OFST 16 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_ADDR_LO_OFST 12 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_ADDR_HI_OFST 16 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_LO_OFST 12 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_HI_OFST 16 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_HOST_MEMORY_MLI_DEPTH_OFST 20 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_UART_PORT_OFST 12 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPSPEC_SRC_CUSTOM_SIZE_OFST 24 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_OFST 28 /* Enum values, see field(s): */ /* MC_CMD_DUMP_DO/MC_CMD_DUMP_DO_IN/DUMPFILE_DST */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_TYPE_OFST 32 /* Enum values, see field(s): */ /* MC_CMD_DUMP_DO/MC_CMD_DUMP_DO_IN/DUMPSPEC_SRC_CUSTOM_TYPE */ #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_NVRAM_PARTITION_TYPE_ID_OFST 36 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_NVRAM_OFFSET_OFST 40 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_ADDR_LO_OFST 36 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_ADDR_HI_OFST 40 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_LO_OFST 36 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_ROOT_ADDR_HI_OFST 40 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_HOST_MEMORY_MLI_DEPTH_OFST 44 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_UART_PORT_OFST 36 #define MC_CMD_DUMP_CONFIGURE_UNSOLICITED_IN_DUMPFILE_DST_CUSTOM_SIZE_OFST 48 /***********************************/ /* MC_CMD_SET_PSU * Adjusts power supply parameters. This is a warranty-voiding operation. * Returns: ENOENT if the parameter or rail specified does not exist, EINVAL if * the parameter is out of range. */ #define MC_CMD_SET_PSU 0xea #undef MC_CMD_0xea_PRIVILEGE_CTG #define MC_CMD_0xea_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_PSU_IN msgrequest */ #define MC_CMD_SET_PSU_IN_LEN 12 #define MC_CMD_SET_PSU_IN_PARAM_OFST 0 #define MC_CMD_SET_PSU_IN_PARAM_SUPPLY_VOLTAGE 0x0 /* enum */ #define MC_CMD_SET_PSU_IN_RAIL_OFST 4 #define MC_CMD_SET_PSU_IN_RAIL_0V9 0x0 /* enum */ #define MC_CMD_SET_PSU_IN_RAIL_1V2 0x1 /* enum */ /* desired value, eg voltage in mV */ #define MC_CMD_SET_PSU_IN_VALUE_OFST 8 /* MC_CMD_SET_PSU_OUT msgresponse */ #define MC_CMD_SET_PSU_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_FUNCTION_INFO * Get function information. PF and VF number. */ #define MC_CMD_GET_FUNCTION_INFO 0xec #undef MC_CMD_0xec_PRIVILEGE_CTG #define MC_CMD_0xec_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_FUNCTION_INFO_IN msgrequest */ #define MC_CMD_GET_FUNCTION_INFO_IN_LEN 0 /* MC_CMD_GET_FUNCTION_INFO_OUT msgresponse */ #define MC_CMD_GET_FUNCTION_INFO_OUT_LEN 8 #define MC_CMD_GET_FUNCTION_INFO_OUT_PF_OFST 0 #define MC_CMD_GET_FUNCTION_INFO_OUT_VF_OFST 4 /***********************************/ /* MC_CMD_ENABLE_OFFLINE_BIST * Enters offline BIST mode. All queues are torn down, chip enters quiescent * mode, calling function gets exclusive MCDI ownership. The only way out is * reboot. */ #define MC_CMD_ENABLE_OFFLINE_BIST 0xed #undef MC_CMD_0xed_PRIVILEGE_CTG #define MC_CMD_0xed_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_ENABLE_OFFLINE_BIST_IN msgrequest */ #define MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN 0 /* MC_CMD_ENABLE_OFFLINE_BIST_OUT msgresponse */ #define MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN 0 /***********************************/ /* MC_CMD_UART_SEND_DATA * Send checksummed[sic] block of data over the uart. Response is a placeholder * should we wish to make this reliable; currently requests are fire-and- * forget. */ #define MC_CMD_UART_SEND_DATA 0xee #undef MC_CMD_0xee_PRIVILEGE_CTG #define MC_CMD_0xee_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_UART_SEND_DATA_OUT msgrequest */ #define MC_CMD_UART_SEND_DATA_OUT_LENMIN 16 #define MC_CMD_UART_SEND_DATA_OUT_LENMAX 252 #define MC_CMD_UART_SEND_DATA_OUT_LEN(num) (16+1*(num)) /* CRC32 over OFFSET, LENGTH, RESERVED, DATA */ #define MC_CMD_UART_SEND_DATA_OUT_CHECKSUM_OFST 0 /* Offset at which to write the data */ #define MC_CMD_UART_SEND_DATA_OUT_OFFSET_OFST 4 /* Length of data */ #define MC_CMD_UART_SEND_DATA_OUT_LENGTH_OFST 8 /* Reserved for future use */ #define MC_CMD_UART_SEND_DATA_OUT_RESERVED_OFST 12 #define MC_CMD_UART_SEND_DATA_OUT_DATA_OFST 16 #define MC_CMD_UART_SEND_DATA_OUT_DATA_LEN 1 #define MC_CMD_UART_SEND_DATA_OUT_DATA_MINNUM 0 #define MC_CMD_UART_SEND_DATA_OUT_DATA_MAXNUM 236 /* MC_CMD_UART_SEND_DATA_IN msgresponse */ #define MC_CMD_UART_SEND_DATA_IN_LEN 0 /***********************************/ /* MC_CMD_UART_RECV_DATA * Request checksummed[sic] block of data over the uart. Only a placeholder, * subject to change and not currently implemented. */ #define MC_CMD_UART_RECV_DATA 0xef #undef MC_CMD_0xef_PRIVILEGE_CTG #define MC_CMD_0xef_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_UART_RECV_DATA_OUT msgrequest */ #define MC_CMD_UART_RECV_DATA_OUT_LEN 16 /* CRC32 over OFFSET, LENGTH, RESERVED */ #define MC_CMD_UART_RECV_DATA_OUT_CHECKSUM_OFST 0 /* Offset from which to read the data */ #define MC_CMD_UART_RECV_DATA_OUT_OFFSET_OFST 4 /* Length of data */ #define MC_CMD_UART_RECV_DATA_OUT_LENGTH_OFST 8 /* Reserved for future use */ #define MC_CMD_UART_RECV_DATA_OUT_RESERVED_OFST 12 /* MC_CMD_UART_RECV_DATA_IN msgresponse */ #define MC_CMD_UART_RECV_DATA_IN_LENMIN 16 #define MC_CMD_UART_RECV_DATA_IN_LENMAX 252 #define MC_CMD_UART_RECV_DATA_IN_LEN(num) (16+1*(num)) /* CRC32 over RESERVED1, RESERVED2, RESERVED3, DATA */ #define MC_CMD_UART_RECV_DATA_IN_CHECKSUM_OFST 0 /* Offset at which to write the data */ #define MC_CMD_UART_RECV_DATA_IN_RESERVED1_OFST 4 /* Length of data */ #define MC_CMD_UART_RECV_DATA_IN_RESERVED2_OFST 8 /* Reserved for future use */ #define MC_CMD_UART_RECV_DATA_IN_RESERVED3_OFST 12 #define MC_CMD_UART_RECV_DATA_IN_DATA_OFST 16 #define MC_CMD_UART_RECV_DATA_IN_DATA_LEN 1 #define MC_CMD_UART_RECV_DATA_IN_DATA_MINNUM 0 #define MC_CMD_UART_RECV_DATA_IN_DATA_MAXNUM 236 /***********************************/ /* MC_CMD_READ_FUSES * Read data programmed into the device One-Time-Programmable (OTP) Fuses */ #define MC_CMD_READ_FUSES 0xf0 #undef MC_CMD_0xf0_PRIVILEGE_CTG #define MC_CMD_0xf0_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_READ_FUSES_IN msgrequest */ #define MC_CMD_READ_FUSES_IN_LEN 8 /* Offset in OTP to read */ #define MC_CMD_READ_FUSES_IN_OFFSET_OFST 0 /* Length of data to read in bytes */ #define MC_CMD_READ_FUSES_IN_LENGTH_OFST 4 /* MC_CMD_READ_FUSES_OUT msgresponse */ #define MC_CMD_READ_FUSES_OUT_LENMIN 4 #define MC_CMD_READ_FUSES_OUT_LENMAX 252 #define MC_CMD_READ_FUSES_OUT_LEN(num) (4+1*(num)) /* Length of returned OTP data in bytes */ #define MC_CMD_READ_FUSES_OUT_LENGTH_OFST 0 /* Returned data */ #define MC_CMD_READ_FUSES_OUT_DATA_OFST 4 #define MC_CMD_READ_FUSES_OUT_DATA_LEN 1 #define MC_CMD_READ_FUSES_OUT_DATA_MINNUM 0 #define MC_CMD_READ_FUSES_OUT_DATA_MAXNUM 248 /***********************************/ /* MC_CMD_KR_TUNE * Get or set KR Serdes RXEQ and TX Driver settings */ #define MC_CMD_KR_TUNE 0xf1 #undef MC_CMD_0xf1_PRIVILEGE_CTG #define MC_CMD_0xf1_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_KR_TUNE_IN msgrequest */ #define MC_CMD_KR_TUNE_IN_LENMIN 4 #define MC_CMD_KR_TUNE_IN_LENMAX 252 #define MC_CMD_KR_TUNE_IN_LEN(num) (4+4*(num)) /* Requested operation */ #define MC_CMD_KR_TUNE_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_IN_KR_TUNE_OP_LEN 1 /* enum: Get current RXEQ settings */ #define MC_CMD_KR_TUNE_IN_RXEQ_GET 0x0 /* enum: Override RXEQ settings */ #define MC_CMD_KR_TUNE_IN_RXEQ_SET 0x1 /* enum: Get current TX Driver settings */ #define MC_CMD_KR_TUNE_IN_TXEQ_GET 0x2 /* enum: Override TX Driver settings */ #define MC_CMD_KR_TUNE_IN_TXEQ_SET 0x3 /* enum: Force KR Serdes reset / recalibration */ #define MC_CMD_KR_TUNE_IN_RECAL 0x4 /* enum: Start KR Serdes Eye diagram plot on a given lane. Lane must have valid * signal. */ #define MC_CMD_KR_TUNE_IN_START_EYE_PLOT 0x5 /* enum: Poll KR Serdes Eye diagram plot. Returns one row of BER data. The * caller should call this command repeatedly after starting eye plot, until no * more data is returned. */ #define MC_CMD_KR_TUNE_IN_POLL_EYE_PLOT 0x6 /* enum: Read Figure Of Merit (eye quality, higher is better). */ #define MC_CMD_KR_TUNE_IN_READ_FOM 0x7 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_IN_KR_TUNE_RSVD_LEN 3 /* Arguments specific to the operation */ #define MC_CMD_KR_TUNE_IN_KR_TUNE_ARGS_OFST 4 #define MC_CMD_KR_TUNE_IN_KR_TUNE_ARGS_LEN 4 #define MC_CMD_KR_TUNE_IN_KR_TUNE_ARGS_MINNUM 0 #define MC_CMD_KR_TUNE_IN_KR_TUNE_ARGS_MAXNUM 62 /* MC_CMD_KR_TUNE_OUT msgresponse */ #define MC_CMD_KR_TUNE_OUT_LEN 0 /* MC_CMD_KR_TUNE_RXEQ_GET_IN msgrequest */ #define MC_CMD_KR_TUNE_RXEQ_GET_IN_LEN 4 /* Requested operation */ #define MC_CMD_KR_TUNE_RXEQ_GET_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_RXEQ_GET_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_RXEQ_GET_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_RXEQ_GET_IN_KR_TUNE_RSVD_LEN 3 /* MC_CMD_KR_TUNE_RXEQ_GET_OUT msgresponse */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LENMIN 4 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LENMAX 252 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LEN(num) (0+4*(num)) /* RXEQ Parameter */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_OFST 0 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_LEN 4 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_MINNUM 1 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_MAXNUM 63 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_ID_LBN 0 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_ID_WIDTH 8 -/* enum: Attenuation (0-15, TBD for Medford) */ +/* enum: Attenuation (0-15, Huntington) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_ATT 0x0 -/* enum: CTLE Boost (0-15, TBD for Medford) */ +/* enum: CTLE Boost (0-15, Huntington) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_BOOST 0x1 -/* enum: Edge DFE Tap1 (0 - max negative, 64 - zero, 127 - max positive, TBD - * for Medford) +/* enum: Edge DFE Tap1 (Huntington - 0 - max negative, 64 - zero, 127 - max + * positive, Medford - 0-31) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_TAP1 0x2 -/* enum: Edge DFE Tap2 (0 - max negative, 32 - zero, 63 - max positive, TBD for - * Medford) +/* enum: Edge DFE Tap2 (Huntington - 0 - max negative, 32 - zero, 63 - max + * positive, Medford - 0-31) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_TAP2 0x3 -/* enum: Edge DFE Tap3 (0 - max negative, 32 - zero, 63 - max positive, TBD for - * Medford) +/* enum: Edge DFE Tap3 (Huntington - 0 - max negative, 32 - zero, 63 - max + * positive, Medford - 0-16) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_TAP3 0x4 -/* enum: Edge DFE Tap4 (0 - max negative, 32 - zero, 63 - max positive, TBD for - * Medford) +/* enum: Edge DFE Tap4 (Huntington - 0 - max negative, 32 - zero, 63 - max + * positive, Medford - 0-16) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_TAP4 0x5 -/* enum: Edge DFE Tap5 (0 - max negative, 32 - zero, 63 - max positive, TBD for - * Medford) +/* enum: Edge DFE Tap5 (Huntington - 0 - max negative, 32 - zero, 63 - max + * positive, Medford - 0-16) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_TAP5 0x6 -/* enum: Edge DFE DLEV (TBD for Medford) */ +/* enum: Edge DFE DLEV (0-128 for Medford) */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_EDFE_DLEV 0x7 +/* enum: Variable Gain Amplifier (0-15, Medford) */ +#define MC_CMD_KR_TUNE_RXEQ_GET_OUT_VGA 0x8 +/* enum: CTLE EQ Capacitor (0-15, Medford) */ +#define MC_CMD_KR_TUNE_RXEQ_GET_OUT_CTLE_EQC 0x9 +/* enum: CTLE EQ Resistor (0-7, Medford) */ +#define MC_CMD_KR_TUNE_RXEQ_GET_OUT_CTLE_EQRES 0xa #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_LANE_LBN 8 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_LANE_WIDTH 3 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LANE_0 0x0 /* enum */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LANE_1 0x1 /* enum */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LANE_2 0x2 /* enum */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LANE_3 0x3 /* enum */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_LANE_ALL 0x4 /* enum */ #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_AUTOCAL_LBN 11 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_AUTOCAL_WIDTH 1 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_RESERVED_LBN 12 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_RESERVED_WIDTH 4 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_INITIAL_LBN 16 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_INITIAL_WIDTH 8 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_CURRENT_LBN 24 #define MC_CMD_KR_TUNE_RXEQ_GET_OUT_PARAM_CURRENT_WIDTH 8 /* MC_CMD_KR_TUNE_RXEQ_SET_IN msgrequest */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_LENMIN 8 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_LENMAX 252 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_LEN(num) (4+4*(num)) /* Requested operation */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_KR_TUNE_RSVD_LEN 3 /* RXEQ Parameter */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_OFST 4 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_LEN 4 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_MINNUM 1 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_MAXNUM 62 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_ID_LBN 0 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_ID_WIDTH 8 /* Enum values, see field(s): */ /* MC_CMD_KR_TUNE_RXEQ_GET_OUT/PARAM_ID */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_LANE_LBN 8 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_LANE_WIDTH 3 /* Enum values, see field(s): */ /* MC_CMD_KR_TUNE_RXEQ_GET_OUT/PARAM_LANE */ #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_AUTOCAL_LBN 11 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_AUTOCAL_WIDTH 1 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_RESERVED_LBN 12 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_RESERVED_WIDTH 4 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_INITIAL_LBN 16 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_PARAM_INITIAL_WIDTH 8 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_RESERVED2_LBN 24 #define MC_CMD_KR_TUNE_RXEQ_SET_IN_RESERVED2_WIDTH 8 /* MC_CMD_KR_TUNE_RXEQ_SET_OUT msgresponse */ #define MC_CMD_KR_TUNE_RXEQ_SET_OUT_LEN 0 /* MC_CMD_KR_TUNE_TXEQ_GET_IN msgrequest */ #define MC_CMD_KR_TUNE_TXEQ_GET_IN_LEN 4 /* Requested operation */ #define MC_CMD_KR_TUNE_TXEQ_GET_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_TXEQ_GET_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_TXEQ_GET_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_TXEQ_GET_IN_KR_TUNE_RSVD_LEN 3 /* MC_CMD_KR_TUNE_TXEQ_GET_OUT msgresponse */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LENMIN 4 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LENMAX 252 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LEN(num) (0+4*(num)) /* TXEQ Parameter */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_OFST 0 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_LEN 4 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_MINNUM 1 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_MAXNUM 63 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_ID_LBN 0 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_ID_WIDTH 8 -/* enum: TX Amplitude */ +/* enum: TX Amplitude (Huntington, Medford) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_LEV 0x0 -/* enum: De-Emphasis Tap1 Magnitude (0-7) */ +/* enum: De-Emphasis Tap1 Magnitude (0-7) (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_MODE 0x1 /* enum: De-Emphasis Tap1 Fine */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_DTLEV 0x2 -/* enum: De-Emphasis Tap2 Magnitude (0-6) */ +/* enum: De-Emphasis Tap2 Magnitude (0-6) (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_D2 0x3 -/* enum: De-Emphasis Tap2 Fine */ +/* enum: De-Emphasis Tap2 Fine (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_D2TLEV 0x4 -/* enum: Pre-Emphasis Magnitude */ +/* enum: Pre-Emphasis Magnitude (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_E 0x5 -/* enum: Pre-Emphasis Fine */ +/* enum: Pre-Emphasis Fine (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_ETLEV 0x6 -/* enum: TX Slew Rate Coarse control */ +/* enum: TX Slew Rate Coarse control (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_PREDRV_DLY 0x7 -/* enum: TX Slew Rate Fine control */ +/* enum: TX Slew Rate Fine control (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_SR_SET 0x8 -/* enum: TX Termination Impedance control */ +/* enum: TX Termination Impedance control (Huntington) */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_RT_SET 0x9 +/* enum: TX Amplitude Fine control (Medford) */ +#define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TX_LEV_FINE 0xa +/* enum: Pre-shoot Tap (Medford) */ +#define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TAP_ADV 0xb +/* enum: De-emphasis Tap (Medford) */ +#define MC_CMD_KR_TUNE_TXEQ_GET_OUT_TAP_DLY 0xc #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_LANE_LBN 8 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_LANE_WIDTH 3 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LANE_0 0x0 /* enum */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LANE_1 0x1 /* enum */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LANE_2 0x2 /* enum */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LANE_3 0x3 /* enum */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_LANE_ALL 0x4 /* enum */ #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_RESERVED_LBN 11 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_RESERVED_WIDTH 5 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_INITIAL_LBN 16 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_PARAM_INITIAL_WIDTH 8 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_RESERVED2_LBN 24 #define MC_CMD_KR_TUNE_TXEQ_GET_OUT_RESERVED2_WIDTH 8 /* MC_CMD_KR_TUNE_TXEQ_SET_IN msgrequest */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_LENMIN 8 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_LENMAX 252 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_LEN(num) (4+4*(num)) /* Requested operation */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_KR_TUNE_RSVD_LEN 3 /* TXEQ Parameter */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_OFST 4 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_LEN 4 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_MINNUM 1 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_MAXNUM 62 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_ID_LBN 0 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_ID_WIDTH 8 /* Enum values, see field(s): */ /* MC_CMD_KR_TUNE_TXEQ_GET_OUT/PARAM_ID */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_LANE_LBN 8 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_LANE_WIDTH 3 /* Enum values, see field(s): */ /* MC_CMD_KR_TUNE_TXEQ_GET_OUT/PARAM_LANE */ #define MC_CMD_KR_TUNE_TXEQ_SET_IN_RESERVED_LBN 11 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_RESERVED_WIDTH 5 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_INITIAL_LBN 16 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_PARAM_INITIAL_WIDTH 8 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_RESERVED2_LBN 24 #define MC_CMD_KR_TUNE_TXEQ_SET_IN_RESERVED2_WIDTH 8 /* MC_CMD_KR_TUNE_TXEQ_SET_OUT msgresponse */ #define MC_CMD_KR_TUNE_TXEQ_SET_OUT_LEN 0 /* MC_CMD_KR_TUNE_RECAL_IN msgrequest */ #define MC_CMD_KR_TUNE_RECAL_IN_LEN 4 /* Requested operation */ #define MC_CMD_KR_TUNE_RECAL_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_RECAL_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_RECAL_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_RECAL_IN_KR_TUNE_RSVD_LEN 3 /* MC_CMD_KR_TUNE_RECAL_OUT msgresponse */ #define MC_CMD_KR_TUNE_RECAL_OUT_LEN 0 /* MC_CMD_KR_TUNE_START_EYE_PLOT_IN msgrequest */ #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_LEN 8 /* Requested operation */ #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_KR_TUNE_RSVD_LEN 3 #define MC_CMD_KR_TUNE_START_EYE_PLOT_IN_LANE_OFST 4 /* MC_CMD_KR_TUNE_START_EYE_PLOT_OUT msgresponse */ #define MC_CMD_KR_TUNE_START_EYE_PLOT_OUT_LEN 0 /* MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN msgrequest */ #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN_LEN 4 /* Requested operation */ #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_IN_KR_TUNE_RSVD_LEN 3 /* MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT msgresponse */ #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_LENMIN 0 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_LENMAX 252 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_LEN(num) (0+2*(num)) #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_OFST 0 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_LEN 2 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_MINNUM 0 #define MC_CMD_KR_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_MAXNUM 126 /* MC_CMD_KR_TUNE_READ_FOM_IN msgrequest */ #define MC_CMD_KR_TUNE_READ_FOM_IN_LEN 8 /* Requested operation */ #define MC_CMD_KR_TUNE_READ_FOM_IN_KR_TUNE_OP_OFST 0 #define MC_CMD_KR_TUNE_READ_FOM_IN_KR_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_KR_TUNE_READ_FOM_IN_KR_TUNE_RSVD_OFST 1 #define MC_CMD_KR_TUNE_READ_FOM_IN_KR_TUNE_RSVD_LEN 3 #define MC_CMD_KR_TUNE_READ_FOM_IN_LANE_OFST 4 /* MC_CMD_KR_TUNE_READ_FOM_OUT msgresponse */ #define MC_CMD_KR_TUNE_READ_FOM_OUT_LEN 4 #define MC_CMD_KR_TUNE_READ_FOM_OUT_FOM_OFST 0 /***********************************/ /* MC_CMD_PCIE_TUNE * Get or set PCIE Serdes RXEQ and TX Driver settings */ #define MC_CMD_PCIE_TUNE 0xf2 #undef MC_CMD_0xf2_PRIVILEGE_CTG #define MC_CMD_0xf2_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PCIE_TUNE_IN msgrequest */ #define MC_CMD_PCIE_TUNE_IN_LENMIN 4 #define MC_CMD_PCIE_TUNE_IN_LENMAX 252 #define MC_CMD_PCIE_TUNE_IN_LEN(num) (4+4*(num)) /* Requested operation */ #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_OP_OFST 0 #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_OP_LEN 1 /* enum: Get current RXEQ settings */ #define MC_CMD_PCIE_TUNE_IN_RXEQ_GET 0x0 /* enum: Override RXEQ settings */ #define MC_CMD_PCIE_TUNE_IN_RXEQ_SET 0x1 /* enum: Get current TX Driver settings */ #define MC_CMD_PCIE_TUNE_IN_TXEQ_GET 0x2 /* enum: Override TX Driver settings */ #define MC_CMD_PCIE_TUNE_IN_TXEQ_SET 0x3 /* enum: Start PCIe Serdes Eye diagram plot on a given lane. */ #define MC_CMD_PCIE_TUNE_IN_START_EYE_PLOT 0x5 /* enum: Poll PCIe Serdes Eye diagram plot. Returns one row of BER data. The * caller should call this command repeatedly after starting eye plot, until no * more data is returned. */ #define MC_CMD_PCIE_TUNE_IN_POLL_EYE_PLOT 0x6 /* Align the arguments to 32 bits */ #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_RSVD_OFST 1 #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_RSVD_LEN 3 /* Arguments specific to the operation */ #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_ARGS_OFST 4 #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_ARGS_LEN 4 #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_ARGS_MINNUM 0 #define MC_CMD_PCIE_TUNE_IN_PCIE_TUNE_ARGS_MAXNUM 62 /* MC_CMD_PCIE_TUNE_OUT msgresponse */ #define MC_CMD_PCIE_TUNE_OUT_LEN 0 /* MC_CMD_PCIE_TUNE_RXEQ_GET_IN msgrequest */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_IN_LEN 4 /* Requested operation */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_IN_PCIE_TUNE_OP_OFST 0 #define MC_CMD_PCIE_TUNE_RXEQ_GET_IN_PCIE_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_IN_PCIE_TUNE_RSVD_OFST 1 #define MC_CMD_PCIE_TUNE_RXEQ_GET_IN_PCIE_TUNE_RSVD_LEN 3 /* MC_CMD_PCIE_TUNE_RXEQ_GET_OUT msgresponse */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LENMIN 4 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LENMAX 252 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LEN(num) (0+4*(num)) /* RXEQ Parameter */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_OFST 0 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_LEN 4 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_MINNUM 1 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_MAXNUM 63 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_ID_LBN 0 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_ID_WIDTH 8 /* enum: Attenuation (0-15) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_ATT 0x0 /* enum: CTLE Boost (0-15) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_BOOST 0x1 /* enum: DFE Tap1 (0 - max negative, 64 - zero, 127 - max positive) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_TAP1 0x2 /* enum: DFE Tap2 (0 - max negative, 32 - zero, 63 - max positive) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_TAP2 0x3 /* enum: DFE Tap3 (0 - max negative, 32 - zero, 63 - max positive) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_TAP3 0x4 /* enum: DFE Tap4 (0 - max negative, 32 - zero, 63 - max positive) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_TAP4 0x5 /* enum: DFE Tap5 (0 - max negative, 32 - zero, 63 - max positive) */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_TAP5 0x6 /* enum: DFE DLev */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_DFE_DLEV 0x7 /* enum: Figure of Merit */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_FOM 0x8 +/* enum: CTLE EQ Capacitor (HF Gain) */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_CTLE_EQC 0x9 +/* enum: CTLE EQ Resistor (DC Gain) */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_CTLE_EQRES 0xa #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_LANE_LBN 8 -#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_LANE_WIDTH 4 +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_LANE_WIDTH 5 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_0 0x0 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_1 0x1 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_2 0x2 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_3 0x3 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_4 0x4 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_5 0x5 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_6 0x6 /* enum */ #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_7 0x7 /* enum */ -#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_ALL 0x8 /* enum */ -#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_RESERVED_LBN 12 -#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_RESERVED_WIDTH 12 +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_8 0x8 /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_9 0x9 /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_10 0xa /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_11 0xb /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_12 0xc /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_13 0xd /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_14 0xe /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_15 0xf /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_LANE_ALL 0x10 /* enum */ +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_AUTOCAL_LBN 13 +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_AUTOCAL_WIDTH 1 +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_RESERVED_LBN 14 +#define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_RESERVED_WIDTH 10 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_CURRENT_LBN 24 #define MC_CMD_PCIE_TUNE_RXEQ_GET_OUT_PARAM_CURRENT_WIDTH 8 +/* MC_CMD_PCIE_TUNE_RXEQ_SET_IN msgrequest */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_LENMIN 8 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_LENMAX 252 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_LEN(num) (4+4*(num)) +/* Requested operation */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PCIE_TUNE_OP_OFST 0 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PCIE_TUNE_OP_LEN 1 +/* Align the arguments to 32 bits */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PCIE_TUNE_RSVD_OFST 1 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PCIE_TUNE_RSVD_LEN 3 +/* RXEQ Parameter */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_OFST 4 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_LEN 4 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_MINNUM 1 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_MAXNUM 62 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_ID_LBN 0 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_ID_WIDTH 8 +/* Enum values, see field(s): */ +/* MC_CMD_PCIE_TUNE_RXEQ_GET_OUT/PARAM_ID */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_LANE_LBN 8 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_LANE_WIDTH 5 +/* Enum values, see field(s): */ +/* MC_CMD_PCIE_TUNE_RXEQ_GET_OUT/PARAM_LANE */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_AUTOCAL_LBN 13 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_AUTOCAL_WIDTH 1 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_RESERVED_LBN 14 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_RESERVED_WIDTH 2 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_INITIAL_LBN 16 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_PARAM_INITIAL_WIDTH 8 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_RESERVED2_LBN 24 +#define MC_CMD_PCIE_TUNE_RXEQ_SET_IN_RESERVED2_WIDTH 8 + +/* MC_CMD_PCIE_TUNE_RXEQ_SET_OUT msgresponse */ +#define MC_CMD_PCIE_TUNE_RXEQ_SET_OUT_LEN 0 + /* MC_CMD_PCIE_TUNE_TXEQ_GET_IN msgrequest */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_IN_LEN 4 /* Requested operation */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_IN_PCIE_TUNE_OP_OFST 0 #define MC_CMD_PCIE_TUNE_TXEQ_GET_IN_PCIE_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_IN_PCIE_TUNE_RSVD_OFST 1 #define MC_CMD_PCIE_TUNE_TXEQ_GET_IN_PCIE_TUNE_RSVD_LEN 3 /* MC_CMD_PCIE_TUNE_TXEQ_GET_OUT msgresponse */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_LENMIN 4 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_LENMAX 252 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_LEN(num) (0+4*(num)) /* RXEQ Parameter */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_OFST 0 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_LEN 4 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_MINNUM 1 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_MAXNUM 63 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_ID_LBN 0 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_ID_WIDTH 8 /* enum: TxMargin (PIPE) */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_TXMARGIN 0x0 /* enum: TxSwing (PIPE) */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_TXSWING 0x1 /* enum: De-emphasis coefficient C(-1) (PIPE) */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_CM1 0x2 /* enum: De-emphasis coefficient C(0) (PIPE) */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_C0 0x3 /* enum: De-emphasis coefficient C(+1) (PIPE) */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_CP1 0x4 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_LANE_LBN 8 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_LANE_WIDTH 4 /* Enum values, see field(s): */ /* MC_CMD_PCIE_TUNE_RXEQ_GET_OUT/PARAM_LANE */ #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_RESERVED_LBN 12 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_RESERVED_WIDTH 12 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_CURRENT_LBN 24 #define MC_CMD_PCIE_TUNE_TXEQ_GET_OUT_PARAM_CURRENT_WIDTH 8 /* MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN msgrequest */ #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_LEN 8 /* Requested operation */ #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_PCIE_TUNE_OP_OFST 0 #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_PCIE_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_PCIE_TUNE_RSVD_OFST 1 #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_PCIE_TUNE_RSVD_LEN 3 #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_IN_LANE_OFST 4 /* MC_CMD_PCIE_TUNE_START_EYE_PLOT_OUT msgresponse */ #define MC_CMD_PCIE_TUNE_START_EYE_PLOT_OUT_LEN 0 /* MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN msgrequest */ #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN_LEN 4 /* Requested operation */ #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN_PCIE_TUNE_OP_OFST 0 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN_PCIE_TUNE_OP_LEN 1 /* Align the arguments to 32 bits */ #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN_PCIE_TUNE_RSVD_OFST 1 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_IN_PCIE_TUNE_RSVD_LEN 3 /* MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT msgresponse */ #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_LENMIN 0 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_LENMAX 252 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_LEN(num) (0+2*(num)) #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_OFST 0 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_LEN 2 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_MINNUM 0 #define MC_CMD_PCIE_TUNE_POLL_EYE_PLOT_OUT_SAMPLES_MAXNUM 126 /***********************************/ /* MC_CMD_LICENSING * Operations on the NVRAM_PARTITION_TYPE_LICENSE application license partition + * - not used for V3 licensing */ #define MC_CMD_LICENSING 0xf3 #undef MC_CMD_0xf3_PRIVILEGE_CTG #define MC_CMD_0xf3_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_LICENSING_IN msgrequest */ #define MC_CMD_LICENSING_IN_LEN 4 /* identifies the type of operation requested */ #define MC_CMD_LICENSING_IN_OP_OFST 0 /* enum: re-read and apply licenses after a license key partition update; note * that this operation returns a zero-length response */ #define MC_CMD_LICENSING_IN_OP_UPDATE_LICENSE 0x0 /* enum: report counts of installed licenses */ #define MC_CMD_LICENSING_IN_OP_GET_KEY_STATS 0x1 /* MC_CMD_LICENSING_OUT msgresponse */ #define MC_CMD_LICENSING_OUT_LEN 28 /* count of application keys which are valid */ #define MC_CMD_LICENSING_OUT_VALID_APP_KEYS_OFST 0 /* sum of UNVERIFIABLE_APP_KEYS + WRONG_NODE_APP_KEYS (for compatibility with * MC_CMD_FC_OP_LICENSE) */ #define MC_CMD_LICENSING_OUT_INVALID_APP_KEYS_OFST 4 /* count of application keys which are invalid due to being blacklisted */ #define MC_CMD_LICENSING_OUT_BLACKLISTED_APP_KEYS_OFST 8 /* count of application keys which are invalid due to being unverifiable */ #define MC_CMD_LICENSING_OUT_UNVERIFIABLE_APP_KEYS_OFST 12 /* count of application keys which are invalid due to being for the wrong node */ #define MC_CMD_LICENSING_OUT_WRONG_NODE_APP_KEYS_OFST 16 /* licensing state (for diagnostics; the exact meaning of the bits in this * field are private to the firmware) */ #define MC_CMD_LICENSING_OUT_LICENSING_STATE_OFST 20 /* licensing subsystem self-test report (for manftest) */ #define MC_CMD_LICENSING_OUT_LICENSING_SELF_TEST_OFST 24 /* enum: licensing subsystem self-test failed */ #define MC_CMD_LICENSING_OUT_SELF_TEST_FAIL 0x0 /* enum: licensing subsystem self-test passed */ #define MC_CMD_LICENSING_OUT_SELF_TEST_PASS 0x1 /***********************************/ +/* MC_CMD_LICENSING_V3 + * Operations on the NVRAM_PARTITION_TYPE_LICENSE application license partition + * - V3 licensing (Medford) + */ +#define MC_CMD_LICENSING_V3 0xd0 +#undef MC_CMD_0xd0_PRIVILEGE_CTG + +#define MC_CMD_0xd0_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_LICENSING_V3_IN msgrequest */ +#define MC_CMD_LICENSING_V3_IN_LEN 4 +/* identifies the type of operation requested */ +#define MC_CMD_LICENSING_V3_IN_OP_OFST 0 +/* enum: re-read and apply licenses after a license key partition update; note + * that this operation returns a zero-length response + */ +#define MC_CMD_LICENSING_V3_IN_OP_UPDATE_LICENSE 0x0 +/* enum: report counts of installed licenses */ +#define MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE 0x1 + +/* MC_CMD_LICENSING_V3_OUT msgresponse */ +#define MC_CMD_LICENSING_V3_OUT_LEN 88 +/* count of keys which are valid */ +#define MC_CMD_LICENSING_V3_OUT_VALID_KEYS_OFST 0 +/* sum of UNVERIFIABLE_KEYS + WRONG_NODE_KEYS (for compatibility with + * MC_CMD_FC_OP_LICENSE) + */ +#define MC_CMD_LICENSING_V3_OUT_INVALID_KEYS_OFST 4 +/* count of keys which are invalid due to being unverifiable */ +#define MC_CMD_LICENSING_V3_OUT_UNVERIFIABLE_KEYS_OFST 8 +/* count of keys which are invalid due to being for the wrong node */ +#define MC_CMD_LICENSING_V3_OUT_WRONG_NODE_KEYS_OFST 12 +/* licensing state (for diagnostics; the exact meaning of the bits in this + * field are private to the firmware) + */ +#define MC_CMD_LICENSING_V3_OUT_LICENSING_STATE_OFST 16 +/* licensing subsystem self-test report (for manftest) */ +#define MC_CMD_LICENSING_V3_OUT_LICENSING_SELF_TEST_OFST 20 +/* enum: licensing subsystem self-test failed */ +#define MC_CMD_LICENSING_V3_OUT_SELF_TEST_FAIL 0x0 +/* enum: licensing subsystem self-test passed */ +#define MC_CMD_LICENSING_V3_OUT_SELF_TEST_PASS 0x1 +/* bitmask of licensed applications */ +#define MC_CMD_LICENSING_V3_OUT_LICENSED_APPS_OFST 24 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_APPS_LEN 8 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_APPS_LO_OFST 24 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_APPS_HI_OFST 28 +/* reserved for future use */ +#define MC_CMD_LICENSING_V3_OUT_RESERVED_0_OFST 32 +#define MC_CMD_LICENSING_V3_OUT_RESERVED_0_LEN 24 +/* bitmask of licensed features */ +#define MC_CMD_LICENSING_V3_OUT_LICENSED_FEATURES_OFST 56 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_FEATURES_LEN 8 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_FEATURES_LO_OFST 56 +#define MC_CMD_LICENSING_V3_OUT_LICENSED_FEATURES_HI_OFST 60 +/* reserved for future use */ +#define MC_CMD_LICENSING_V3_OUT_RESERVED_1_OFST 64 +#define MC_CMD_LICENSING_V3_OUT_RESERVED_1_LEN 24 + + +/***********************************/ +/* MC_CMD_LICENSING_GET_ID_V3 + * Get ID and type from the NVRAM_PARTITION_TYPE_LICENSE application license + * partition - V3 licensing (Medford) + */ +#define MC_CMD_LICENSING_GET_ID_V3 0xd1 +#undef MC_CMD_0xd1_PRIVILEGE_CTG + +#define MC_CMD_0xd1_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_LICENSING_GET_ID_V3_IN msgrequest */ +#define MC_CMD_LICENSING_GET_ID_V3_IN_LEN 0 + +/* MC_CMD_LICENSING_GET_ID_V3_OUT msgresponse */ +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LENMIN 8 +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LENMAX 252 +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LEN(num) (8+1*(num)) +/* type of license (eg 3) */ +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_TYPE_OFST 0 +/* length of the license ID (in bytes) */ +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_ID_LENGTH_OFST 4 +/* the unique license ID of the adapter */ +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_ID_OFST 8 +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_ID_LEN 1 +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_ID_MINNUM 0 +#define MC_CMD_LICENSING_GET_ID_V3_OUT_LICENSE_ID_MAXNUM 244 + + +/***********************************/ /* MC_CMD_MC2MC_PROXY * Execute an arbitrary MCDI command on the slave MC of a dual-core device. * This will fail on a single-core system. */ #define MC_CMD_MC2MC_PROXY 0xf4 #undef MC_CMD_0xf4_PRIVILEGE_CTG #define MC_CMD_0xf4_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_MC2MC_PROXY_IN msgrequest */ #define MC_CMD_MC2MC_PROXY_IN_LEN 0 /* MC_CMD_MC2MC_PROXY_OUT msgresponse */ #define MC_CMD_MC2MC_PROXY_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_LICENSED_APP_STATE * Query the state of an individual licensed application. (Note that the actual * state may be invalidated by the MC_CMD_LICENSING OP_UPDATE_LICENSE operation - * or a reboot of the MC.) + * or a reboot of the MC.) Not used for V3 licensing */ #define MC_CMD_GET_LICENSED_APP_STATE 0xf5 #undef MC_CMD_0xf5_PRIVILEGE_CTG #define MC_CMD_0xf5_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_LICENSED_APP_STATE_IN msgrequest */ #define MC_CMD_GET_LICENSED_APP_STATE_IN_LEN 4 /* application ID to query (LICENSED_APP_ID_xxx) */ #define MC_CMD_GET_LICENSED_APP_STATE_IN_APP_ID_OFST 0 /* MC_CMD_GET_LICENSED_APP_STATE_OUT msgresponse */ #define MC_CMD_GET_LICENSED_APP_STATE_OUT_LEN 4 /* state of this application */ #define MC_CMD_GET_LICENSED_APP_STATE_OUT_STATE_OFST 0 /* enum: no (or invalid) license is present for the application */ #define MC_CMD_GET_LICENSED_APP_STATE_OUT_NOT_LICENSED 0x0 /* enum: a valid license is present for the application */ #define MC_CMD_GET_LICENSED_APP_STATE_OUT_LICENSED 0x1 /***********************************/ +/* MC_CMD_GET_LICENSED_V3_APP_STATE + * Query the state of an individual licensed application. (Note that the actual + * state may be invalidated by the MC_CMD_LICENSING_V3 OP_UPDATE_LICENSE + * operation or a reboot of the MC.) Used for V3 licensing (Medford) + */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE 0xd2 +#undef MC_CMD_0xd2_PRIVILEGE_CTG + +#define MC_CMD_0xd2_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_GET_LICENSED_V3_APP_STATE_IN msgrequest */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_IN_LEN 8 +/* application ID to query (LICENSED_V3_APPS_xxx) expressed as a single bit + * mask + */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_IN_APP_ID_OFST 0 +#define MC_CMD_GET_LICENSED_V3_APP_STATE_IN_APP_ID_LEN 8 +#define MC_CMD_GET_LICENSED_V3_APP_STATE_IN_APP_ID_LO_OFST 0 +#define MC_CMD_GET_LICENSED_V3_APP_STATE_IN_APP_ID_HI_OFST 4 + +/* MC_CMD_GET_LICENSED_V3_APP_STATE_OUT msgresponse */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_OUT_LEN 4 +/* state of this application */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_OUT_STATE_OFST 0 +/* enum: no (or invalid) license is present for the application */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_OUT_NOT_LICENSED 0x0 +/* enum: a valid license is present for the application */ +#define MC_CMD_GET_LICENSED_V3_APP_STATE_OUT_LICENSED 0x1 + + +/***********************************/ +/* MC_CMD_GET_LICENSED_V3_FEATURE_STATES + * Query the state of an one or more licensed features. (Note that the actual + * state may be invalidated by the MC_CMD_LICENSING_V3 OP_UPDATE_LICENSE + * operation or a reboot of the MC.) Used for V3 licensing (Medford) + */ +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES 0xd3 +#undef MC_CMD_0xd3_PRIVILEGE_CTG + +#define MC_CMD_0xd3_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN msgrequest */ +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN_LEN 8 +/* features to query (LICENSED_V3_FEATURES_xxx) expressed as a mask with one or + * more bits set + */ +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN_FEATURES_OFST 0 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN_FEATURES_LEN 8 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN_FEATURES_LO_OFST 0 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_IN_FEATURES_HI_OFST 4 + +/* MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT msgresponse */ +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT_LEN 8 +/* states of these features - bit set for licensed, clear for not licensed */ +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT_STATES_OFST 0 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT_STATES_LEN 8 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT_STATES_LO_OFST 0 +#define MC_CMD_GET_LICENSED_V3_FEATURE_STATES_OUT_STATES_HI_OFST 4 + + +/***********************************/ /* MC_CMD_LICENSED_APP_OP - * Perform an action for an individual licensed application. + * Perform an action for an individual licensed application - not used for V3 + * licensing. */ #define MC_CMD_LICENSED_APP_OP 0xf6 #undef MC_CMD_0xf6_PRIVILEGE_CTG #define MC_CMD_0xf6_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_LICENSED_APP_OP_IN msgrequest */ #define MC_CMD_LICENSED_APP_OP_IN_LENMIN 8 #define MC_CMD_LICENSED_APP_OP_IN_LENMAX 252 #define MC_CMD_LICENSED_APP_OP_IN_LEN(num) (8+4*(num)) /* application ID */ #define MC_CMD_LICENSED_APP_OP_IN_APP_ID_OFST 0 /* the type of operation requested */ #define MC_CMD_LICENSED_APP_OP_IN_OP_OFST 4 /* enum: validate application */ #define MC_CMD_LICENSED_APP_OP_IN_OP_VALIDATE 0x0 /* enum: mask application */ #define MC_CMD_LICENSED_APP_OP_IN_OP_MASK 0x1 /* arguments specific to this particular operation */ #define MC_CMD_LICENSED_APP_OP_IN_ARGS_OFST 8 #define MC_CMD_LICENSED_APP_OP_IN_ARGS_LEN 4 #define MC_CMD_LICENSED_APP_OP_IN_ARGS_MINNUM 0 #define MC_CMD_LICENSED_APP_OP_IN_ARGS_MAXNUM 61 /* MC_CMD_LICENSED_APP_OP_OUT msgresponse */ #define MC_CMD_LICENSED_APP_OP_OUT_LENMIN 0 #define MC_CMD_LICENSED_APP_OP_OUT_LENMAX 252 #define MC_CMD_LICENSED_APP_OP_OUT_LEN(num) (0+4*(num)) /* result specific to this particular operation */ #define MC_CMD_LICENSED_APP_OP_OUT_RESULT_OFST 0 #define MC_CMD_LICENSED_APP_OP_OUT_RESULT_LEN 4 #define MC_CMD_LICENSED_APP_OP_OUT_RESULT_MINNUM 0 #define MC_CMD_LICENSED_APP_OP_OUT_RESULT_MAXNUM 63 /* MC_CMD_LICENSED_APP_OP_VALIDATE_IN msgrequest */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_IN_LEN 72 /* application ID */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_IN_APP_ID_OFST 0 /* the type of operation requested */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_IN_OP_OFST 4 /* validation challenge */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_IN_CHALLENGE_OFST 8 #define MC_CMD_LICENSED_APP_OP_VALIDATE_IN_CHALLENGE_LEN 64 /* MC_CMD_LICENSED_APP_OP_VALIDATE_OUT msgresponse */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_OUT_LEN 68 /* feature expiry (time_t) */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_OUT_EXPIRY_OFST 0 /* validation response */ #define MC_CMD_LICENSED_APP_OP_VALIDATE_OUT_RESPONSE_OFST 4 #define MC_CMD_LICENSED_APP_OP_VALIDATE_OUT_RESPONSE_LEN 64 /* MC_CMD_LICENSED_APP_OP_MASK_IN msgrequest */ #define MC_CMD_LICENSED_APP_OP_MASK_IN_LEN 12 /* application ID */ #define MC_CMD_LICENSED_APP_OP_MASK_IN_APP_ID_OFST 0 /* the type of operation requested */ #define MC_CMD_LICENSED_APP_OP_MASK_IN_OP_OFST 4 /* flag */ #define MC_CMD_LICENSED_APP_OP_MASK_IN_FLAG_OFST 8 /* MC_CMD_LICENSED_APP_OP_MASK_OUT msgresponse */ #define MC_CMD_LICENSED_APP_OP_MASK_OUT_LEN 0 + + +/***********************************/ +/* MC_CMD_LICENSED_V3_VALIDATE_APP + * Perform validation for an individual licensed application - V3 licensing + * (Medford) + */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP 0xd4 +#undef MC_CMD_0xd4_PRIVILEGE_CTG + +#define MC_CMD_0xd4_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_LICENSED_V3_VALIDATE_APP_IN msgrequest */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_LEN 72 +/* application ID expressed as a single bit mask */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_APP_ID_OFST 0 +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_APP_ID_LEN 8 +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_APP_ID_LO_OFST 0 +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_APP_ID_HI_OFST 4 +/* challenge for validation */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_CHALLENGE_OFST 8 +#define MC_CMD_LICENSED_V3_VALIDATE_APP_IN_CHALLENGE_LEN 64 + +/* MC_CMD_LICENSED_V3_VALIDATE_APP_OUT msgresponse */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_LEN 72 +/* application expiry time */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_EXPIRY_TIME_OFST 0 +/* application expiry units */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_EXPIRY_UNITS_OFST 4 +/* enum: expiry units are accounting units */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_EXPIRY_UNIT_ACC 0x0 +/* enum: expiry units are calendar days */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_EXPIRY_UNIT_DAYS 0x1 +/* validation response to challenge */ +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_RESPONSE_OFST 8 +#define MC_CMD_LICENSED_V3_VALIDATE_APP_OUT_RESPONSE_LEN 64 + + +/***********************************/ +/* MC_CMD_LICENSED_V3_MASK_FEATURES + * Mask features - V3 licensing (Medford) + */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES 0xd5 +#undef MC_CMD_0xd5_PRIVILEGE_CTG + +#define MC_CMD_0xd5_PRIVILEGE_CTG SRIOV_CTG_GENERAL + +/* MC_CMD_LICENSED_V3_MASK_FEATURES_IN msgrequest */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_LEN 12 +/* mask to be applied to features to be changed */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_MASK_OFST 0 +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_MASK_LEN 8 +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_MASK_LO_OFST 0 +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_MASK_HI_OFST 4 +/* whether to turn on or turn off the masked features */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_FLAG_OFST 8 +/* enum: turn the features off */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_OFF 0x0 +/* enum: turn the features back on */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_IN_ON 0x1 + +/* MC_CMD_LICENSED_V3_MASK_FEATURES_OUT msgresponse */ +#define MC_CMD_LICENSED_V3_MASK_FEATURES_OUT_LEN 0 /***********************************/ /* MC_CMD_SET_PORT_SNIFF_CONFIG * Configure RX port sniffing for the physical port associated with the calling * function. Only a privileged function may change the port sniffing * configuration. A copy of all traffic delivered to the host (non-promiscuous * mode) or all traffic arriving at the port (promiscuous mode) may be * delivered to a specific queue, or a set of queues with RSS. */ #define MC_CMD_SET_PORT_SNIFF_CONFIG 0xf7 #undef MC_CMD_0xf7_PRIVILEGE_CTG #define MC_CMD_0xf7_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_PORT_SNIFF_CONFIG_IN msgrequest */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_LEN 16 /* configuration flags */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_FLAGS_OFST 0 #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_ENABLE_LBN 0 #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_ENABLE_WIDTH 1 #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_PROMISCUOUS_LBN 1 #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_PROMISCUOUS_WIDTH 1 /* receive queue handle (for RSS mode, this is the base queue) */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_RX_QUEUE_OFST 4 /* receive mode */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_RX_MODE_OFST 8 /* enum: receive to just the specified queue */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_RX_MODE_SIMPLE 0x0 /* enum: receive to multiple queues using RSS context */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_RX_MODE_RSS 0x1 /* RSS context (for RX_MODE_RSS) as returned by MC_CMD_RSS_CONTEXT_ALLOC. Note * that these handles should be considered opaque to the host, although a value * of 0xFFFFFFFF is guaranteed never to be a valid handle. */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_IN_RX_CONTEXT_OFST 12 /* MC_CMD_SET_PORT_SNIFF_CONFIG_OUT msgresponse */ #define MC_CMD_SET_PORT_SNIFF_CONFIG_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_PORT_SNIFF_CONFIG * Obtain the current RX port sniffing configuration for the physical port * associated with the calling function. Only a privileged function may read * the configuration. */ #define MC_CMD_GET_PORT_SNIFF_CONFIG 0xf8 #undef MC_CMD_0xf8_PRIVILEGE_CTG #define MC_CMD_0xf8_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_PORT_SNIFF_CONFIG_IN msgrequest */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_IN_LEN 0 /* MC_CMD_GET_PORT_SNIFF_CONFIG_OUT msgresponse */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_LEN 16 /* configuration flags */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_FLAGS_OFST 0 #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_ENABLE_LBN 0 #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_ENABLE_WIDTH 1 #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_PROMISCUOUS_LBN 1 #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_PROMISCUOUS_WIDTH 1 /* receiving queue handle (for RSS mode, this is the base queue) */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_RX_QUEUE_OFST 4 /* receive mode */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_RX_MODE_OFST 8 /* enum: receiving to just the specified queue */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_RX_MODE_SIMPLE 0x0 /* enum: receiving to multiple queues using RSS context */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_RX_MODE_RSS 0x1 /* RSS context (for RX_MODE_RSS) */ #define MC_CMD_GET_PORT_SNIFF_CONFIG_OUT_RX_CONTEXT_OFST 12 /***********************************/ /* MC_CMD_SET_PARSER_DISP_CONFIG * Change configuration related to the parser-dispatcher subsystem. */ #define MC_CMD_SET_PARSER_DISP_CONFIG 0xf9 #undef MC_CMD_0xf9_PRIVILEGE_CTG #define MC_CMD_0xf9_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_SET_PARSER_DISP_CONFIG_IN msgrequest */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_LENMIN 12 #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_LENMAX 252 #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_LEN(num) (8+4*(num)) /* the type of configuration setting to change */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_TYPE_OFST 0 /* enum: Per-TXQ enable for multicast UDP destination lookup for possible * internal loopback. (ENTITY is a queue handle, VALUE is a single boolean.) */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_TXQ_MCAST_UDP_DST_LOOKUP_EN 0x0 /* enum: Per-v-adaptor enable for suppression of self-transmissions on the * internal loopback path. (ENTITY is an EVB_PORT_ID, VALUE is a single * boolean.) */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_VADAPTOR_SUPPRESS_SELF_TX 0x1 /* handle for the entity to update: queue handle, EVB port ID, etc. depending * on the type of configuration setting being changed */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_ENTITY_OFST 4 /* new value: the details depend on the type of configuration setting being * changed */ #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_VALUE_OFST 8 #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_VALUE_LEN 4 #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_VALUE_MINNUM 1 #define MC_CMD_SET_PARSER_DISP_CONFIG_IN_VALUE_MAXNUM 61 /* MC_CMD_SET_PARSER_DISP_CONFIG_OUT msgresponse */ #define MC_CMD_SET_PARSER_DISP_CONFIG_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_PARSER_DISP_CONFIG * Read configuration related to the parser-dispatcher subsystem. */ #define MC_CMD_GET_PARSER_DISP_CONFIG 0xfa #undef MC_CMD_0xfa_PRIVILEGE_CTG #define MC_CMD_0xfa_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PARSER_DISP_CONFIG_IN msgrequest */ #define MC_CMD_GET_PARSER_DISP_CONFIG_IN_LEN 8 /* the type of configuration setting to read */ #define MC_CMD_GET_PARSER_DISP_CONFIG_IN_TYPE_OFST 0 /* Enum values, see field(s): */ /* MC_CMD_SET_PARSER_DISP_CONFIG/MC_CMD_SET_PARSER_DISP_CONFIG_IN/TYPE */ /* handle for the entity to query: queue handle, EVB port ID, etc. depending on * the type of configuration setting being read */ #define MC_CMD_GET_PARSER_DISP_CONFIG_IN_ENTITY_OFST 4 /* MC_CMD_GET_PARSER_DISP_CONFIG_OUT msgresponse */ #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_LENMIN 4 #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_LENMAX 252 #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_LEN(num) (0+4*(num)) /* current value: the details depend on the type of configuration setting being * read */ #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_VALUE_OFST 0 #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_VALUE_LEN 4 #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_VALUE_MINNUM 1 #define MC_CMD_GET_PARSER_DISP_CONFIG_OUT_VALUE_MAXNUM 63 /***********************************/ /* MC_CMD_SET_TX_PORT_SNIFF_CONFIG * Configure TX port sniffing for the physical port associated with the calling * function. Only a privileged function may change the port sniffing * configuration. A copy of all traffic transmitted through the port may be * delivered to a specific queue, or a set of queues with RSS. Note that these * packets are delivered with transmit timestamps in the packet prefix, not * receive timestamps, so it is likely that the queue(s) will need to be * dedicated as TX sniff receivers. */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG 0xfb #undef MC_CMD_0xfb_PRIVILEGE_CTG #define MC_CMD_0xfb_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN msgrequest */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_LEN 16 /* configuration flags */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_FLAGS_OFST 0 #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_ENABLE_LBN 0 #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_ENABLE_WIDTH 1 /* receive queue handle (for RSS mode, this is the base queue) */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_RX_QUEUE_OFST 4 /* receive mode */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_RX_MODE_OFST 8 /* enum: receive to just the specified queue */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_RX_MODE_SIMPLE 0x0 /* enum: receive to multiple queues using RSS context */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_RX_MODE_RSS 0x1 /* RSS context (for RX_MODE_RSS) as returned by MC_CMD_RSS_CONTEXT_ALLOC. Note * that these handles should be considered opaque to the host, although a value * of 0xFFFFFFFF is guaranteed never to be a valid handle. */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_IN_RX_CONTEXT_OFST 12 /* MC_CMD_SET_TX_PORT_SNIFF_CONFIG_OUT msgresponse */ #define MC_CMD_SET_TX_PORT_SNIFF_CONFIG_OUT_LEN 0 /***********************************/ /* MC_CMD_GET_TX_PORT_SNIFF_CONFIG * Obtain the current TX port sniffing configuration for the physical port * associated with the calling function. Only a privileged function may read * the configuration. */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG 0xfc #undef MC_CMD_0xfc_PRIVILEGE_CTG #define MC_CMD_0xfc_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_GET_TX_PORT_SNIFF_CONFIG_IN msgrequest */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_IN_LEN 0 /* MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT msgresponse */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_LEN 16 /* configuration flags */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_FLAGS_OFST 0 #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_ENABLE_LBN 0 #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_ENABLE_WIDTH 1 /* receiving queue handle (for RSS mode, this is the base queue) */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_RX_QUEUE_OFST 4 /* receive mode */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_RX_MODE_OFST 8 /* enum: receiving to just the specified queue */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_RX_MODE_SIMPLE 0x0 /* enum: receiving to multiple queues using RSS context */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_RX_MODE_RSS 0x1 /* RSS context (for RX_MODE_RSS) */ #define MC_CMD_GET_TX_PORT_SNIFF_CONFIG_OUT_RX_CONTEXT_OFST 12 /***********************************/ /* MC_CMD_RMON_STATS_RX_ERRORS * Per queue rx error stats. */ #define MC_CMD_RMON_STATS_RX_ERRORS 0xfe #undef MC_CMD_0xfe_PRIVILEGE_CTG #define MC_CMD_0xfe_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_RMON_STATS_RX_ERRORS_IN msgrequest */ #define MC_CMD_RMON_STATS_RX_ERRORS_IN_LEN 8 /* The rx queue to get stats for. */ #define MC_CMD_RMON_STATS_RX_ERRORS_IN_RX_QUEUE_OFST 0 #define MC_CMD_RMON_STATS_RX_ERRORS_IN_FLAGS_OFST 4 #define MC_CMD_RMON_STATS_RX_ERRORS_IN_RST_LBN 0 #define MC_CMD_RMON_STATS_RX_ERRORS_IN_RST_WIDTH 1 /* MC_CMD_RMON_STATS_RX_ERRORS_OUT msgresponse */ #define MC_CMD_RMON_STATS_RX_ERRORS_OUT_LEN 16 #define MC_CMD_RMON_STATS_RX_ERRORS_OUT_CRC_ERRORS_OFST 0 #define MC_CMD_RMON_STATS_RX_ERRORS_OUT_TRUNC_ERRORS_OFST 4 #define MC_CMD_RMON_STATS_RX_ERRORS_OUT_RX_NO_DESC_DROPS_OFST 8 #define MC_CMD_RMON_STATS_RX_ERRORS_OUT_RX_ABORT_OFST 12 /***********************************/ /* MC_CMD_GET_PCIE_RESOURCE_INFO * Find out about available PCIE resources */ #define MC_CMD_GET_PCIE_RESOURCE_INFO 0xfd /* MC_CMD_GET_PCIE_RESOURCE_INFO_IN msgrequest */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_IN_LEN 0 /* MC_CMD_GET_PCIE_RESOURCE_INFO_OUT msgresponse */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_LEN 28 /* The maximum number of PFs the device can expose */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_MAX_PFS_OFST 0 /* The maximum number of VFs the device can expose in total */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_MAX_VFS_OFST 4 /* The maximum number of MSI-X vectors the device can provide in total */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_MAX_VECTORS_OFST 8 /* the number of MSI-X vectors the device will allocate by default to each PF */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_DEFAULT_PF_VECTORS_OFST 12 /* the number of MSI-X vectors the device will allocate by default to each VF */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_DEFAULT_VF_VECTORS_OFST 16 /* the maximum number of MSI-X vectors the device can allocate to any one PF */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_MAX_PF_VECTORS_OFST 20 /* the maximum number of MSI-X vectors the device can allocate to any one VF */ #define MC_CMD_GET_PCIE_RESOURCE_INFO_OUT_MAX_VF_VECTORS_OFST 24 /***********************************/ /* MC_CMD_GET_PORT_MODES * Find out about available port modes */ #define MC_CMD_GET_PORT_MODES 0xff #undef MC_CMD_0xff_PRIVILEGE_CTG #define MC_CMD_0xff_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_PORT_MODES_IN msgrequest */ #define MC_CMD_GET_PORT_MODES_IN_LEN 0 /* MC_CMD_GET_PORT_MODES_OUT msgresponse */ #define MC_CMD_GET_PORT_MODES_OUT_LEN 12 /* Bitmask of port modes available on the board (indexed by TLV_PORT_MODE_*) */ #define MC_CMD_GET_PORT_MODES_OUT_MODES_OFST 0 /* Default (canonical) board mode */ #define MC_CMD_GET_PORT_MODES_OUT_DEFAULT_MODE_OFST 4 /* Current board mode */ #define MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST 8 /***********************************/ /* MC_CMD_READ_ATB * Sample voltages on the ATB */ #define MC_CMD_READ_ATB 0x100 #undef MC_CMD_0x100_PRIVILEGE_CTG #define MC_CMD_0x100_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_READ_ATB_IN msgrequest */ #define MC_CMD_READ_ATB_IN_LEN 16 #define MC_CMD_READ_ATB_IN_SIGNAL_BUS_OFST 0 #define MC_CMD_READ_ATB_IN_BUS_CCOM 0x0 /* enum */ #define MC_CMD_READ_ATB_IN_BUS_CKR 0x1 /* enum */ #define MC_CMD_READ_ATB_IN_BUS_CPCIE 0x8 /* enum */ #define MC_CMD_READ_ATB_IN_SIGNAL_EN_BITNO_OFST 4 #define MC_CMD_READ_ATB_IN_SIGNAL_SEL_OFST 8 #define MC_CMD_READ_ATB_IN_SETTLING_TIME_US_OFST 12 /* MC_CMD_READ_ATB_OUT msgresponse */ #define MC_CMD_READ_ATB_OUT_LEN 4 #define MC_CMD_READ_ATB_OUT_SAMPLE_MV_OFST 0 /***********************************/ /* MC_CMD_GET_WORKAROUNDS * Read the list of all implemented and all currently enabled workarounds. The * enums here must correspond with those in MC_CMD_WORKAROUND. */ #define MC_CMD_GET_WORKAROUNDS 0x59 #undef MC_CMD_0x59_PRIVILEGE_CTG #define MC_CMD_0x59_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_WORKAROUNDS_OUT msgresponse */ #define MC_CMD_GET_WORKAROUNDS_OUT_LEN 8 /* Each workaround is represented by a single bit according to the enums below. */ #define MC_CMD_GET_WORKAROUNDS_OUT_IMPLEMENTED_OFST 0 #define MC_CMD_GET_WORKAROUNDS_OUT_ENABLED_OFST 4 /* enum: Bug 17230 work around. */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG17230 0x2 /* enum: Bug 35388 work around (unsafe EVQ writes). */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG35388 0x4 /* enum: Bug35017 workaround (A64 tables must be identity map) */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG35017 0x8 /* enum: Bug 41750 present (MC_CMD_TRIGGER_INTERRUPT won't work) */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG41750 0x10 /* enum: Bug 42008 present (Interrupts can overtake associated events). Caution * - before adding code that queries this workaround, remember that there's * released Monza firmware that doesn't understand MC_CMD_WORKAROUND_BUG42008, * and will hence (incorrectly) report that the bug doesn't exist. */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG42008 0x20 /* enum: Bug 26807 features present in firmware (multicast filter chaining) */ #define MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 0x40 /***********************************/ /* MC_CMD_PRIVILEGE_MASK * Read/set privileges of an arbitrary PCIe function */ #define MC_CMD_PRIVILEGE_MASK 0x5a #undef MC_CMD_0x5a_PRIVILEGE_CTG #define MC_CMD_0x5a_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_PRIVILEGE_MASK_IN msgrequest */ #define MC_CMD_PRIVILEGE_MASK_IN_LEN 8 /* The target function to have its mask read or set e.g. PF 0 = 0xFFFF0000, VF * 1,3 = 0x00030001 */ #define MC_CMD_PRIVILEGE_MASK_IN_FUNCTION_OFST 0 #define MC_CMD_PRIVILEGE_MASK_IN_FUNCTION_PF_LBN 0 #define MC_CMD_PRIVILEGE_MASK_IN_FUNCTION_PF_WIDTH 16 #define MC_CMD_PRIVILEGE_MASK_IN_FUNCTION_VF_LBN 16 #define MC_CMD_PRIVILEGE_MASK_IN_FUNCTION_VF_WIDTH 16 #define MC_CMD_PRIVILEGE_MASK_IN_VF_NULL 0xffff /* enum */ /* New privilege mask to be set. The mask will only be changed if the MSB is * set to 1. */ #define MC_CMD_PRIVILEGE_MASK_IN_NEW_MASK_OFST 4 #define MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN 0x1 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK 0x2 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD 0x4 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP 0x8 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS 0x10 /* enum */ /* enum: Deprecated. Equivalent to MAC_SPOOFING_TX combined with CHANGE_MAC. */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING 0x20 #define MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST 0x40 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST 0x80 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST 0x100 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST 0x200 /* enum */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS 0x400 /* enum */ /* enum: Allows to set the TX packets' source MAC address to any arbitrary MAC * adress. */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING_TX 0x800 /* enum: Privilege that allows a Function to change the MAC address configured * in its associated vAdapter/vPort. */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_CHANGE_MAC 0x1000 /* enum: Privilege that allows a Function to install filters that specify VLANs * that are not in the permit list for the associated vPort. This privilege is * primarily to support ESX where vPorts are created that restrict traffic to * only a set of permitted VLANs. See the vPort flag FLAG_VLAN_RESTRICT. */ #define MC_CMD_PRIVILEGE_MASK_IN_GRP_UNRESTRICTED_VLAN 0x2000 /* enum: Set this bit to indicate that a new privilege mask is to be set, * otherwise the command will only read the existing mask. */ #define MC_CMD_PRIVILEGE_MASK_IN_DO_CHANGE 0x80000000 /* MC_CMD_PRIVILEGE_MASK_OUT msgresponse */ #define MC_CMD_PRIVILEGE_MASK_OUT_LEN 4 /* For an admin function, always all the privileges are reported. */ #define MC_CMD_PRIVILEGE_MASK_OUT_OLD_MASK_OFST 0 /***********************************/ /* MC_CMD_LINK_STATE_MODE * Read/set link state mode of a VF */ #define MC_CMD_LINK_STATE_MODE 0x5c #undef MC_CMD_0x5c_PRIVILEGE_CTG #define MC_CMD_0x5c_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_LINK_STATE_MODE_IN msgrequest */ #define MC_CMD_LINK_STATE_MODE_IN_LEN 8 /* The target function to have its link state mode read or set, must be a VF * e.g. VF 1,3 = 0x00030001 */ #define MC_CMD_LINK_STATE_MODE_IN_FUNCTION_OFST 0 #define MC_CMD_LINK_STATE_MODE_IN_FUNCTION_PF_LBN 0 #define MC_CMD_LINK_STATE_MODE_IN_FUNCTION_PF_WIDTH 16 #define MC_CMD_LINK_STATE_MODE_IN_FUNCTION_VF_LBN 16 #define MC_CMD_LINK_STATE_MODE_IN_FUNCTION_VF_WIDTH 16 /* New link state mode to be set */ #define MC_CMD_LINK_STATE_MODE_IN_NEW_MODE_OFST 4 #define MC_CMD_LINK_STATE_MODE_IN_LINK_STATE_AUTO 0x0 /* enum */ #define MC_CMD_LINK_STATE_MODE_IN_LINK_STATE_UP 0x1 /* enum */ #define MC_CMD_LINK_STATE_MODE_IN_LINK_STATE_DOWN 0x2 /* enum */ /* enum: Use this value to just read the existing setting without modifying it. */ #define MC_CMD_LINK_STATE_MODE_IN_DO_NOT_CHANGE 0xffffffff /* MC_CMD_LINK_STATE_MODE_OUT msgresponse */ #define MC_CMD_LINK_STATE_MODE_OUT_LEN 4 #define MC_CMD_LINK_STATE_MODE_OUT_OLD_MODE_OFST 0 /***********************************/ /* MC_CMD_GET_SNAPSHOT_LENGTH * Obtain the curent range of allowable values for the SNAPSHOT_LENGTH * parameter to MC_CMD_INIT_RXQ. */ #define MC_CMD_GET_SNAPSHOT_LENGTH 0x101 #undef MC_CMD_0x101_PRIVILEGE_CTG #define MC_CMD_0x101_PRIVILEGE_CTG SRIOV_CTG_GENERAL /* MC_CMD_GET_SNAPSHOT_LENGTH_IN msgrequest */ #define MC_CMD_GET_SNAPSHOT_LENGTH_IN_LEN 0 /* MC_CMD_GET_SNAPSHOT_LENGTH_OUT msgresponse */ #define MC_CMD_GET_SNAPSHOT_LENGTH_OUT_LEN 8 /* Minimum acceptable snapshot length. */ #define MC_CMD_GET_SNAPSHOT_LENGTH_OUT_RX_SNAPLEN_MIN_OFST 0 /* Maximum acceptable snapshot length. */ #define MC_CMD_GET_SNAPSHOT_LENGTH_OUT_RX_SNAPLEN_MAX_OFST 4 /***********************************/ /* MC_CMD_FUSE_DIAGS * Additional fuse diagnostics */ #define MC_CMD_FUSE_DIAGS 0x102 #undef MC_CMD_0x102_PRIVILEGE_CTG #define MC_CMD_0x102_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_FUSE_DIAGS_IN msgrequest */ #define MC_CMD_FUSE_DIAGS_IN_LEN 0 /* MC_CMD_FUSE_DIAGS_OUT msgresponse */ #define MC_CMD_FUSE_DIAGS_OUT_LEN 48 /* Total number of mismatched bits between pairs in area 0 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA0_MISMATCH_BITS_OFST 0 /* Total number of unexpectedly clear (set in B but not A) bits in area 0 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA0_PAIR_A_BAD_BITS_OFST 4 /* Total number of unexpectedly clear (set in A but not B) bits in area 0 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA0_PAIR_B_BAD_BITS_OFST 8 /* Checksum of data after logical OR of pairs in area 0 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA0_CHECKSUM_OFST 12 /* Total number of mismatched bits between pairs in area 1 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA1_MISMATCH_BITS_OFST 16 /* Total number of unexpectedly clear (set in B but not A) bits in area 1 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA1_PAIR_A_BAD_BITS_OFST 20 /* Total number of unexpectedly clear (set in A but not B) bits in area 1 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA1_PAIR_B_BAD_BITS_OFST 24 /* Checksum of data after logical OR of pairs in area 1 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA1_CHECKSUM_OFST 28 /* Total number of mismatched bits between pairs in area 2 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA2_MISMATCH_BITS_OFST 32 /* Total number of unexpectedly clear (set in B but not A) bits in area 2 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA2_PAIR_A_BAD_BITS_OFST 36 /* Total number of unexpectedly clear (set in A but not B) bits in area 2 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA2_PAIR_B_BAD_BITS_OFST 40 /* Checksum of data after logical OR of pairs in area 2 */ #define MC_CMD_FUSE_DIAGS_OUT_AREA2_CHECKSUM_OFST 44 /***********************************/ /* MC_CMD_PRIVILEGE_MODIFY * Modify the privileges of a set of PCIe functions. Note that this operation * only effects non-admin functions unless the admin privilege itself is * included in one of the masks provided. */ #define MC_CMD_PRIVILEGE_MODIFY 0x60 #undef MC_CMD_0x60_PRIVILEGE_CTG #define MC_CMD_0x60_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PRIVILEGE_MODIFY_IN msgrequest */ #define MC_CMD_PRIVILEGE_MODIFY_IN_LEN 16 /* The groups of functions to have their privilege masks modified. */ #define MC_CMD_PRIVILEGE_MODIFY_IN_FN_GROUP_OFST 0 #define MC_CMD_PRIVILEGE_MODIFY_IN_NONE 0x0 /* enum */ #define MC_CMD_PRIVILEGE_MODIFY_IN_ALL 0x1 /* enum */ #define MC_CMD_PRIVILEGE_MODIFY_IN_PFS_ONLY 0x2 /* enum */ #define MC_CMD_PRIVILEGE_MODIFY_IN_VFS_ONLY 0x3 /* enum */ #define MC_CMD_PRIVILEGE_MODIFY_IN_VFS_OF_PF 0x4 /* enum */ #define MC_CMD_PRIVILEGE_MODIFY_IN_ONE 0x5 /* enum */ /* For VFS_OF_PF specify the PF, for ONE specify the target function */ #define MC_CMD_PRIVILEGE_MODIFY_IN_FUNCTION_OFST 4 #define MC_CMD_PRIVILEGE_MODIFY_IN_FUNCTION_PF_LBN 0 #define MC_CMD_PRIVILEGE_MODIFY_IN_FUNCTION_PF_WIDTH 16 #define MC_CMD_PRIVILEGE_MODIFY_IN_FUNCTION_VF_LBN 16 #define MC_CMD_PRIVILEGE_MODIFY_IN_FUNCTION_VF_WIDTH 16 /* Privileges to be added to the target functions. For privilege definitions * refer to the command MC_CMD_PRIVILEGE_MASK */ #define MC_CMD_PRIVILEGE_MODIFY_IN_ADD_MASK_OFST 8 /* Privileges to be removed from the target functions. For privilege * definitions refer to the command MC_CMD_PRIVILEGE_MASK */ #define MC_CMD_PRIVILEGE_MODIFY_IN_REMOVE_MASK_OFST 12 /* MC_CMD_PRIVILEGE_MODIFY_OUT msgresponse */ #define MC_CMD_PRIVILEGE_MODIFY_OUT_LEN 0 /***********************************/ /* MC_CMD_XPM_READ_BYTES * Read XPM memory */ #define MC_CMD_XPM_READ_BYTES 0x103 #undef MC_CMD_0x103_PRIVILEGE_CTG #define MC_CMD_0x103_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_READ_BYTES_IN msgrequest */ #define MC_CMD_XPM_READ_BYTES_IN_LEN 8 /* Start address (byte) */ #define MC_CMD_XPM_READ_BYTES_IN_ADDR_OFST 0 /* Count (bytes) */ #define MC_CMD_XPM_READ_BYTES_IN_COUNT_OFST 4 /* MC_CMD_XPM_READ_BYTES_OUT msgresponse */ #define MC_CMD_XPM_READ_BYTES_OUT_LENMIN 0 #define MC_CMD_XPM_READ_BYTES_OUT_LENMAX 252 #define MC_CMD_XPM_READ_BYTES_OUT_LEN(num) (0+1*(num)) /* Data */ #define MC_CMD_XPM_READ_BYTES_OUT_DATA_OFST 0 #define MC_CMD_XPM_READ_BYTES_OUT_DATA_LEN 1 #define MC_CMD_XPM_READ_BYTES_OUT_DATA_MINNUM 0 #define MC_CMD_XPM_READ_BYTES_OUT_DATA_MAXNUM 252 /***********************************/ /* MC_CMD_XPM_WRITE_BYTES * Write XPM memory */ #define MC_CMD_XPM_WRITE_BYTES 0x104 #undef MC_CMD_0x104_PRIVILEGE_CTG #define MC_CMD_0x104_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_WRITE_BYTES_IN msgrequest */ #define MC_CMD_XPM_WRITE_BYTES_IN_LENMIN 8 #define MC_CMD_XPM_WRITE_BYTES_IN_LENMAX 252 #define MC_CMD_XPM_WRITE_BYTES_IN_LEN(num) (8+1*(num)) /* Start address (byte) */ #define MC_CMD_XPM_WRITE_BYTES_IN_ADDR_OFST 0 /* Count (bytes) */ #define MC_CMD_XPM_WRITE_BYTES_IN_COUNT_OFST 4 /* Data */ #define MC_CMD_XPM_WRITE_BYTES_IN_DATA_OFST 8 #define MC_CMD_XPM_WRITE_BYTES_IN_DATA_LEN 1 #define MC_CMD_XPM_WRITE_BYTES_IN_DATA_MINNUM 0 #define MC_CMD_XPM_WRITE_BYTES_IN_DATA_MAXNUM 244 /* MC_CMD_XPM_WRITE_BYTES_OUT msgresponse */ #define MC_CMD_XPM_WRITE_BYTES_OUT_LEN 0 /***********************************/ /* MC_CMD_XPM_READ_SECTOR * Read XPM sector */ #define MC_CMD_XPM_READ_SECTOR 0x105 #undef MC_CMD_0x105_PRIVILEGE_CTG #define MC_CMD_0x105_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_READ_SECTOR_IN msgrequest */ #define MC_CMD_XPM_READ_SECTOR_IN_LEN 8 /* Sector index */ #define MC_CMD_XPM_READ_SECTOR_IN_INDEX_OFST 0 /* Sector size */ #define MC_CMD_XPM_READ_SECTOR_IN_SIZE_OFST 4 /* MC_CMD_XPM_READ_SECTOR_OUT msgresponse */ #define MC_CMD_XPM_READ_SECTOR_OUT_LENMIN 4 #define MC_CMD_XPM_READ_SECTOR_OUT_LENMAX 36 #define MC_CMD_XPM_READ_SECTOR_OUT_LEN(num) (4+1*(num)) /* Sector type */ #define MC_CMD_XPM_READ_SECTOR_OUT_TYPE_OFST 0 #define MC_CMD_XPM_READ_SECTOR_OUT_BLANK 0x0 /* enum */ #define MC_CMD_XPM_READ_SECTOR_OUT_CRYPTO_KEY_128 0x1 /* enum */ #define MC_CMD_XPM_READ_SECTOR_OUT_CRYPTO_KEY_256 0x2 /* enum */ #define MC_CMD_XPM_READ_SECTOR_OUT_INVALID 0xff /* enum */ /* Sector data */ #define MC_CMD_XPM_READ_SECTOR_OUT_DATA_OFST 4 #define MC_CMD_XPM_READ_SECTOR_OUT_DATA_LEN 1 #define MC_CMD_XPM_READ_SECTOR_OUT_DATA_MINNUM 0 #define MC_CMD_XPM_READ_SECTOR_OUT_DATA_MAXNUM 32 /***********************************/ /* MC_CMD_XPM_WRITE_SECTOR * Write XPM sector */ #define MC_CMD_XPM_WRITE_SECTOR 0x106 #undef MC_CMD_0x106_PRIVILEGE_CTG #define MC_CMD_0x106_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_WRITE_SECTOR_IN msgrequest */ #define MC_CMD_XPM_WRITE_SECTOR_IN_LENMIN 12 #define MC_CMD_XPM_WRITE_SECTOR_IN_LENMAX 44 #define MC_CMD_XPM_WRITE_SECTOR_IN_LEN(num) (12+1*(num)) /* If writing fails due to an uncorrectable error, try up to RETRIES following * sectors (or until no more space available). If 0, only one write attempt is * made. Note that uncorrectable errors are unlikely, thanks to XPM self-repair * mechanism. */ #define MC_CMD_XPM_WRITE_SECTOR_IN_RETRIES_OFST 0 #define MC_CMD_XPM_WRITE_SECTOR_IN_RETRIES_LEN 1 #define MC_CMD_XPM_WRITE_SECTOR_IN_RESERVED_OFST 1 #define MC_CMD_XPM_WRITE_SECTOR_IN_RESERVED_LEN 3 /* Sector type */ #define MC_CMD_XPM_WRITE_SECTOR_IN_TYPE_OFST 4 /* Enum values, see field(s): */ /* MC_CMD_XPM_READ_SECTOR/MC_CMD_XPM_READ_SECTOR_OUT/TYPE */ /* Sector size */ #define MC_CMD_XPM_WRITE_SECTOR_IN_SIZE_OFST 8 /* Sector data */ #define MC_CMD_XPM_WRITE_SECTOR_IN_DATA_OFST 12 #define MC_CMD_XPM_WRITE_SECTOR_IN_DATA_LEN 1 #define MC_CMD_XPM_WRITE_SECTOR_IN_DATA_MINNUM 0 #define MC_CMD_XPM_WRITE_SECTOR_IN_DATA_MAXNUM 32 /* MC_CMD_XPM_WRITE_SECTOR_OUT msgresponse */ #define MC_CMD_XPM_WRITE_SECTOR_OUT_LEN 4 /* New sector index */ #define MC_CMD_XPM_WRITE_SECTOR_OUT_INDEX_OFST 0 /***********************************/ /* MC_CMD_XPM_INVALIDATE_SECTOR * Invalidate XPM sector */ #define MC_CMD_XPM_INVALIDATE_SECTOR 0x107 #undef MC_CMD_0x107_PRIVILEGE_CTG #define MC_CMD_0x107_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_INVALIDATE_SECTOR_IN msgrequest */ #define MC_CMD_XPM_INVALIDATE_SECTOR_IN_LEN 4 /* Sector index */ #define MC_CMD_XPM_INVALIDATE_SECTOR_IN_INDEX_OFST 0 /* MC_CMD_XPM_INVALIDATE_SECTOR_OUT msgresponse */ #define MC_CMD_XPM_INVALIDATE_SECTOR_OUT_LEN 0 /***********************************/ /* MC_CMD_XPM_BLANK_CHECK * Blank-check XPM memory and report bad locations */ #define MC_CMD_XPM_BLANK_CHECK 0x108 #undef MC_CMD_0x108_PRIVILEGE_CTG #define MC_CMD_0x108_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_BLANK_CHECK_IN msgrequest */ #define MC_CMD_XPM_BLANK_CHECK_IN_LEN 8 /* Start address (byte) */ #define MC_CMD_XPM_BLANK_CHECK_IN_ADDR_OFST 0 /* Count (bytes) */ #define MC_CMD_XPM_BLANK_CHECK_IN_COUNT_OFST 4 /* MC_CMD_XPM_BLANK_CHECK_OUT msgresponse */ #define MC_CMD_XPM_BLANK_CHECK_OUT_LENMIN 4 #define MC_CMD_XPM_BLANK_CHECK_OUT_LENMAX 252 #define MC_CMD_XPM_BLANK_CHECK_OUT_LEN(num) (4+2*(num)) /* Total number of bad (non-blank) locations */ #define MC_CMD_XPM_BLANK_CHECK_OUT_BAD_COUNT_OFST 0 /* Addresses of bad locations (may be less than BAD_COUNT, if all cannot fit * into MCDI response) */ #define MC_CMD_XPM_BLANK_CHECK_OUT_BAD_ADDR_OFST 4 #define MC_CMD_XPM_BLANK_CHECK_OUT_BAD_ADDR_LEN 2 #define MC_CMD_XPM_BLANK_CHECK_OUT_BAD_ADDR_MINNUM 0 #define MC_CMD_XPM_BLANK_CHECK_OUT_BAD_ADDR_MAXNUM 124 /***********************************/ /* MC_CMD_XPM_REPAIR * Blank-check and repair XPM memory */ #define MC_CMD_XPM_REPAIR 0x109 #undef MC_CMD_0x109_PRIVILEGE_CTG #define MC_CMD_0x109_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_REPAIR_IN msgrequest */ #define MC_CMD_XPM_REPAIR_IN_LEN 8 /* Start address (byte) */ #define MC_CMD_XPM_REPAIR_IN_ADDR_OFST 0 /* Count (bytes) */ #define MC_CMD_XPM_REPAIR_IN_COUNT_OFST 4 /* MC_CMD_XPM_REPAIR_OUT msgresponse */ #define MC_CMD_XPM_REPAIR_OUT_LEN 0 /***********************************/ /* MC_CMD_XPM_DECODER_TEST * Test XPM memory address decoders for gross manufacturing defects. Can only * be performed on an unprogrammed part. */ #define MC_CMD_XPM_DECODER_TEST 0x10a #undef MC_CMD_0x10a_PRIVILEGE_CTG #define MC_CMD_0x10a_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_DECODER_TEST_IN msgrequest */ #define MC_CMD_XPM_DECODER_TEST_IN_LEN 0 /* MC_CMD_XPM_DECODER_TEST_OUT msgresponse */ #define MC_CMD_XPM_DECODER_TEST_OUT_LEN 0 /***********************************/ /* MC_CMD_XPM_WRITE_TEST * XPM memory write test. Test XPM write logic for gross manufacturing defects * by writing to a dedicated test row. There are 16 locations in the test row * and the test can only be performed on locations that have not been * previously used (i.e. can be run at most 16 times). The test will pick the * first available location to use, or fail with ENOSPC if none left. */ #define MC_CMD_XPM_WRITE_TEST 0x10b #undef MC_CMD_0x10b_PRIVILEGE_CTG #define MC_CMD_0x10b_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_XPM_WRITE_TEST_IN msgrequest */ #define MC_CMD_XPM_WRITE_TEST_IN_LEN 0 /* MC_CMD_XPM_WRITE_TEST_OUT msgresponse */ #define MC_CMD_XPM_WRITE_TEST_OUT_LEN 0 /***********************************/ /* MC_CMD_EXEC_SIGNED * Check the CMAC of the contents of IMEM and DMEM against the value supplied * and if correct begin execution from the start of IMEM. The caller supplies a * key ID, the length of IMEM and DMEM to validate and the expected CMAC. CMAC * computation runs from the start of IMEM, and from the start of DMEM + 16k, * to match flash booting. The command will respond with EINVAL if the CMAC * does match, otherwise it will respond with success before it jumps to IMEM. */ #define MC_CMD_EXEC_SIGNED 0x10c #undef MC_CMD_0x10c_PRIVILEGE_CTG #define MC_CMD_0x10c_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_EXEC_SIGNED_IN msgrequest */ #define MC_CMD_EXEC_SIGNED_IN_LEN 28 /* the length of code to include in the CMAC */ #define MC_CMD_EXEC_SIGNED_IN_CODELEN_OFST 0 /* the length of date to include in the CMAC */ #define MC_CMD_EXEC_SIGNED_IN_DATALEN_OFST 4 /* the XPM sector containing the key to use */ #define MC_CMD_EXEC_SIGNED_IN_KEYSECTOR_OFST 8 /* the expected CMAC value */ #define MC_CMD_EXEC_SIGNED_IN_CMAC_OFST 12 #define MC_CMD_EXEC_SIGNED_IN_CMAC_LEN 16 /* MC_CMD_EXEC_SIGNED_OUT msgresponse */ #define MC_CMD_EXEC_SIGNED_OUT_LEN 0 /***********************************/ /* MC_CMD_PREPARE_SIGNED * Prepare to upload a signed image. This will scrub the specified length of * the data region, which must be at least as large as the DATALEN supplied to * MC_CMD_EXEC_SIGNED. */ #define MC_CMD_PREPARE_SIGNED 0x10d #undef MC_CMD_0x10d_PRIVILEGE_CTG #define MC_CMD_0x10d_PRIVILEGE_CTG SRIOV_CTG_ADMIN /* MC_CMD_PREPARE_SIGNED_IN msgrequest */ #define MC_CMD_PREPARE_SIGNED_IN_LEN 4 /* the length of data area to clear */ #define MC_CMD_PREPARE_SIGNED_IN_DATALEN_OFST 0 /* MC_CMD_PREPARE_SIGNED_OUT msgresponse */ #define MC_CMD_PREPARE_SIGNED_OUT_LEN 0 #endif /* _SIENA_MC_DRIVER_PCOL_H */ Index: projects/release-pkg/sys/dev/sfxge/common/efx_rx.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/efx_rx.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/efx_rx.c (revision 293803) @@ -1,1377 +1,1371 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_rx_init( __in efx_nic_t *enp); static void falconsiena_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_HDR_SPLIT static __checkReturn efx_rc_t falconsiena_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size); #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER static __checkReturn efx_rc_t falconsiena_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t falconsiena_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); static __checkReturn efx_rc_t falconsiena_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); static __checkReturn efx_rc_t falconsiena_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); #endif /* EFSYS_OPT_RX_SCALE */ static void falconsiena_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); static void falconsiena_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); static __checkReturn efx_rc_t falconsiena_rx_qflush( __in efx_rxq_t *erp); static void falconsiena_rx_qenable( __in efx_rxq_t *erp); static __checkReturn efx_rc_t falconsiena_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp); static void falconsiena_rx_qdestroy( __in efx_rxq_t *erp); #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ #if EFSYS_OPT_FALCON static efx_rx_ops_t __efx_rx_falcon_ops = { falconsiena_rx_init, /* erxo_init */ falconsiena_rx_fini, /* erxo_fini */ #if EFSYS_OPT_RX_HDR_SPLIT falconsiena_rx_hdr_split_enable, /* erxo_hdr_split_enable */ #endif #if EFSYS_OPT_RX_SCATTER falconsiena_rx_scatter_enable, /* erxo_scatter_enable */ #endif #if EFSYS_OPT_RX_SCALE falconsiena_rx_scale_mode_set, /* erxo_scale_mode_set */ falconsiena_rx_scale_key_set, /* erxo_scale_key_set */ falconsiena_rx_scale_tbl_set, /* erxo_scale_tbl_set */ #endif falconsiena_rx_qpost, /* erxo_qpost */ falconsiena_rx_qpush, /* erxo_qpush */ falconsiena_rx_qflush, /* erxo_qflush */ falconsiena_rx_qenable, /* erxo_qenable */ falconsiena_rx_qcreate, /* erxo_qcreate */ falconsiena_rx_qdestroy, /* erxo_qdestroy */ }; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA static efx_rx_ops_t __efx_rx_siena_ops = { falconsiena_rx_init, /* erxo_init */ falconsiena_rx_fini, /* erxo_fini */ #if EFSYS_OPT_RX_HDR_SPLIT falconsiena_rx_hdr_split_enable, /* erxo_hdr_split_enable */ #endif #if EFSYS_OPT_RX_SCATTER falconsiena_rx_scatter_enable, /* erxo_scatter_enable */ #endif #if EFSYS_OPT_RX_SCALE falconsiena_rx_scale_mode_set, /* erxo_scale_mode_set */ falconsiena_rx_scale_key_set, /* erxo_scale_key_set */ falconsiena_rx_scale_tbl_set, /* erxo_scale_tbl_set */ #endif falconsiena_rx_qpost, /* erxo_qpost */ falconsiena_rx_qpush, /* erxo_qpush */ falconsiena_rx_qflush, /* erxo_qflush */ falconsiena_rx_qenable, /* erxo_qenable */ falconsiena_rx_qcreate, /* erxo_qcreate */ falconsiena_rx_qdestroy, /* erxo_qdestroy */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static efx_rx_ops_t __efx_rx_ef10_ops = { ef10_rx_init, /* erxo_init */ ef10_rx_fini, /* erxo_fini */ #if EFSYS_OPT_RX_HDR_SPLIT ef10_rx_hdr_split_enable, /* erxo_hdr_split_enable */ #endif #if EFSYS_OPT_RX_SCATTER ef10_rx_scatter_enable, /* erxo_scatter_enable */ #endif #if EFSYS_OPT_RX_SCALE ef10_rx_scale_mode_set, /* erxo_scale_mode_set */ ef10_rx_scale_key_set, /* erxo_scale_key_set */ ef10_rx_scale_tbl_set, /* erxo_scale_tbl_set */ #endif ef10_rx_qpost, /* erxo_qpost */ ef10_rx_qpush, /* erxo_qpush */ ef10_rx_qflush, /* erxo_qflush */ ef10_rx_qenable, /* erxo_qenable */ ef10_rx_qcreate, /* erxo_qcreate */ ef10_rx_qdestroy, /* erxo_qdestroy */ }; #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp) { efx_rx_ops_t *erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); if (!(enp->en_mod_flags & EFX_MOD_EV)) { rc = EINVAL; goto fail1; } if (enp->en_mod_flags & EFX_MOD_RX) { rc = EINVAL; goto fail2; } switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: erxop = (efx_rx_ops_t *)&__efx_rx_falcon_ops; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: erxop = (efx_rx_ops_t *)&__efx_rx_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: erxop = (efx_rx_ops_t *)&__efx_rx_ef10_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: erxop = (efx_rx_ops_t *)&__efx_rx_ef10_ops; break; #endif /* EFSYS_OPT_MEDFORD */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail3; } if ((rc = erxop->erxo_init(enp)) != 0) goto fail4; enp->en_erxop = erxop; enp->en_mod_flags |= EFX_MOD_RX; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_erxop = NULL; enp->en_mod_flags &= ~EFX_MOD_RX; return (rc); } void efx_rx_fini( __in efx_nic_t *enp) { efx_rx_ops_t *erxop = enp->en_erxop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); EFSYS_ASSERT3U(enp->en_rx_qcount, ==, 0); erxop->erxo_fini(enp); enp->en_erxop = NULL; enp->en_mod_flags &= ~EFX_MOD_RX; } #if EFSYS_OPT_RX_HDR_SPLIT __checkReturn efx_rc_t efx_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); EFSYS_ASSERT3U(enp->en_family, >=, EFX_FAMILY_SIENA); if ((rc = erxop->erxo_hdr_split_enable(enp, hdr_buf_size, pld_buf_size)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if ((rc = erxop->erxo_scatter_enable(enp, buf_size)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t efx_rx_hash_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if (supportp == NULL) { rc = EINVAL; goto fail1; } /* Report if resources are available to insert RX hash value */ *supportp = enp->en_hash_support; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_rx_scale_support_get( __in efx_nic_t *enp, __out efx_rx_scale_support_t *supportp) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if (supportp == NULL) { rc = EINVAL; goto fail1; } /* Report if resources are available to support RSS */ *supportp = enp->en_rss_support; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if (erxop->erxo_scale_mode_set != NULL) { if ((rc = erxop->erxo_scale_mode_set(enp, alg, type, insert)) != 0) goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if ((rc = erxop->erxo_scale_key_set(enp, key, n)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); if ((rc = erxop->erxo_scale_tbl_set(enp, table, n)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added) { efx_nic_t *enp = erp->er_enp; efx_rx_ops_t *erxop = enp->en_erxop; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); erxop->erxo_qpost(erp, addrp, size, n, completed, added); } void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp) { efx_nic_t *enp = erp->er_enp; efx_rx_ops_t *erxop = enp->en_erxop; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); erxop->erxo_qpush(erp, added, pushedp); } __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_rx_ops_t *erxop = enp->en_erxop; efx_rc_t rc; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); if ((rc = erxop->erxo_qflush(erp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_rx_qenable( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_rx_ops_t *erxop = enp->en_erxop; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); erxop->erxo_qenable(erp); } __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp) { efx_rx_ops_t *erxop = enp->en_erxop; efx_rxq_t *erp; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_RX); /* Allocate an RXQ object */ EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (efx_rxq_t), erp); if (erp == NULL) { rc = ENOMEM; goto fail1; } erp->er_magic = EFX_RXQ_MAGIC; erp->er_enp = enp; erp->er_index = index; erp->er_mask = n - 1; erp->er_esmp = esmp; if ((rc = erxop->erxo_qcreate(enp, index, label, type, esmp, n, id, eep, erp)) != 0) goto fail2; enp->en_rx_qcount++; *erpp = erp; return (0); fail2: EFSYS_PROBE(fail2); EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_rxq_t), erp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void efx_rx_qdestroy( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_rx_ops_t *erxop = enp->en_erxop; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); erxop->erxo_qdestroy(erp); } /* * Psuedo-header info for Siena/Falcon. * * The psuedo-header is a byte array of one of the forms: * * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.TT.TT.TT.TT * XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.XX.LL.LL * * where: * * TT.TT.TT.TT is a 32-bit Toeplitz hash * LL.LL is a 16-bit LFSR hash * * Hash values are in network (big-endian) byte order. * * * On EF10 the pseudo-header is laid out as: * (See also SF-109306-TC section 9) * * Toeplitz hash (32 bits, little-endian) * Out-of-band outer VLAN tag * (16 bits, big-endian, 0 if the packet did not have an outer VLAN tag) * Out-of-band inner VLAN tag * (16 bits, big-endian, 0 if the packet did not have an inner VLAN tag) * Packet length (16 bits, little-endian, may be 0) * MAC timestamp (32 bits, little-endian, may be 0) * VLAN tag * (16 bits, big-endian, 0 if the packet did not have an outer VLAN tag) * VLAN tag * (16 bits, big-endian, 0 if the packet did not have an inner VLAN tag) */ __checkReturn efx_rc_t efx_psuedo_hdr_pkt_length_get( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp) { if (enp->en_family != EFX_FAMILY_HUNTINGTON && enp->en_family != EFX_FAMILY_MEDFORD) { EFSYS_ASSERT(0); return (ENOTSUP); } *pkt_lengthp = buffer[8] | (buffer[9] << 8); return (0); } #if EFSYS_OPT_RX_SCALE uint32_t efx_psuedo_hdr_hash_get( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer) { if (func == EFX_RX_HASHALG_TOEPLITZ) { switch (enp->en_family) { case EFX_FAMILY_FALCON: case EFX_FAMILY_SIENA: return ((buffer[12] << 24) | (buffer[13] << 16) | (buffer[14] << 8) | buffer[15]); case EFX_FAMILY_HUNTINGTON: case EFX_FAMILY_MEDFORD: return (buffer[0] | (buffer[1] << 8) | (buffer[2] << 16) | (buffer[3] << 24)); default: EFSYS_ASSERT(0); return (0); } } else if (func == EFX_RX_HASHALG_LFSR) { EFSYS_ASSERT(enp->en_family == EFX_FAMILY_FALCON || enp->en_family == EFX_FAMILY_SIENA); return ((buffer[14] << 8) | buffer[15]); } else { EFSYS_ASSERT(0); return (0); } } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_FALCON || EFSYS_OPT_SIENA static __checkReturn efx_rc_t falconsiena_rx_init( __in efx_nic_t *enp) { efx_oword_t oword; unsigned int index; EFX_BAR_READO(enp, FR_AZ_RX_CFG_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_DESC_PUSH_EN, 0); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_ALG, 0); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_IP_HASH, 0); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_TCP_SUP, 0); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_INSRT_HDR, 0); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_USR_BUF_SIZE, 0x3000 / 32); EFX_BAR_WRITEO(enp, FR_AZ_RX_CFG_REG, &oword); /* Zero the RSS table */ for (index = 0; index < FR_BZ_RX_INDIRECTION_TBL_ROWS; index++) { EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_BZ_RX_INDIRECTION_TBL, index, &oword, B_TRUE); } #if EFSYS_OPT_RX_SCALE /* The RSS key and indirection table are writable. */ enp->en_rss_support = EFX_RX_SCALE_EXCLUSIVE; /* Hardware can insert RX hash with/without RSS */ enp->en_hash_support = EFX_RX_HASH_AVAILABLE; #endif /* EFSYS_OPT_RX_SCALE */ return (0); } #if EFSYS_OPT_RX_HDR_SPLIT static __checkReturn efx_rc_t falconsiena_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size) { unsigned int nhdr32; unsigned int npld32; efx_oword_t oword; efx_rc_t rc; nhdr32 = hdr_buf_size / 32; if ((nhdr32 == 0) || (nhdr32 >= (1 << FRF_CZ_RX_HDR_SPLIT_HDR_BUF_SIZE_WIDTH)) || ((hdr_buf_size % 32) != 0)) { rc = EINVAL; goto fail1; } npld32 = pld_buf_size / 32; if ((npld32 == 0) || (npld32 >= (1 << FRF_CZ_RX_HDR_SPLIT_PLD_BUF_SIZE_WIDTH)) || ((pld_buf_size % 32) != 0)) { rc = EINVAL; goto fail2; } if (enp->en_rx_qcount > 0) { rc = EBUSY; goto fail3; } EFX_BAR_READO(enp, FR_AZ_RX_CFG_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_CZ_RX_HDR_SPLIT_EN, 1); EFX_SET_OWORD_FIELD(oword, FRF_CZ_RX_HDR_SPLIT_HDR_BUF_SIZE, nhdr32); EFX_SET_OWORD_FIELD(oword, FRF_CZ_RX_HDR_SPLIT_PLD_BUF_SIZE, npld32); EFX_BAR_WRITEO(enp, FR_AZ_RX_CFG_REG, &oword); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER static __checkReturn efx_rc_t falconsiena_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size) { unsigned int nbuf32; efx_oword_t oword; efx_rc_t rc; nbuf32 = buf_size / 32; if ((nbuf32 == 0) || (nbuf32 >= (1 << FRF_BZ_RX_USR_BUF_SIZE_WIDTH)) || ((buf_size % 32) != 0)) { rc = EINVAL; goto fail1; } if (enp->en_rx_qcount > 0) { rc = EBUSY; goto fail2; } /* Set scatter buffer size */ EFX_BAR_READO(enp, FR_AZ_RX_CFG_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_USR_BUF_SIZE, nbuf32); EFX_BAR_WRITEO(enp, FR_AZ_RX_CFG_REG, &oword); /* Enable scatter for packets not matching a filter */ EFX_BAR_READO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, 1); EFX_BAR_WRITEO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCATTER */ #define EFX_RX_LFSR_HASH(_enp, _insert) \ do { \ efx_oword_t oword; \ \ EFX_BAR_READO((_enp), FR_AZ_RX_CFG_REG, &oword); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_ALG, 0); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_IP_HASH, 0); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_TCP_SUP, 0); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_INSRT_HDR, \ (_insert) ? 1 : 0); \ EFX_BAR_WRITEO((_enp), FR_AZ_RX_CFG_REG, &oword); \ \ if ((_enp)->en_family == EFX_FAMILY_SIENA) { \ EFX_BAR_READO((_enp), FR_CZ_RX_RSS_IPV6_REG3, \ &oword); \ EFX_SET_OWORD_FIELD(oword, \ FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 0); \ EFX_BAR_WRITEO((_enp), FR_CZ_RX_RSS_IPV6_REG3, \ &oword); \ } \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_RX_TOEPLITZ_IPV4_HASH(_enp, _insert, _ip, _tcp) \ do { \ efx_oword_t oword; \ \ EFX_BAR_READO((_enp), FR_AZ_RX_CFG_REG, &oword); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_ALG, 1); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_IP_HASH, \ (_ip) ? 1 : 0); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_TCP_SUP, \ (_tcp) ? 0 : 1); \ EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_HASH_INSRT_HDR, \ (_insert) ? 1 : 0); \ EFX_BAR_WRITEO((_enp), FR_AZ_RX_CFG_REG, &oword); \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #define EFX_RX_TOEPLITZ_IPV6_HASH(_enp, _ip, _tcp, _rc) \ do { \ efx_oword_t oword; \ \ if ((_enp)->en_family == EFX_FAMILY_FALCON) { \ (_rc) = ((_ip) || (_tcp)) ? ENOTSUP : 0; \ break; \ } \ \ EFX_BAR_READO((_enp), FR_CZ_RX_RSS_IPV6_REG3, &oword); \ EFX_SET_OWORD_FIELD(oword, \ FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1); \ EFX_SET_OWORD_FIELD(oword, \ FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, (_ip) ? 1 : 0); \ EFX_SET_OWORD_FIELD(oword, \ FRF_CZ_RX_RSS_IPV6_TCP_SUPPRESS, (_tcp) ? 0 : 1); \ EFX_BAR_WRITEO((_enp), FR_CZ_RX_RSS_IPV6_REG3, &oword); \ \ (_rc) = 0; \ \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t falconsiena_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert) { efx_rc_t rc; switch (alg) { case EFX_RX_HASHALG_LFSR: EFX_RX_LFSR_HASH(enp, insert); break; case EFX_RX_HASHALG_TOEPLITZ: EFX_RX_TOEPLITZ_IPV4_HASH(enp, insert, type & (1 << EFX_RX_HASH_IPV4), type & (1 << EFX_RX_HASH_TCPIPV4)); EFX_RX_TOEPLITZ_IPV6_HASH(enp, type & (1 << EFX_RX_HASH_IPV6), type & (1 << EFX_RX_HASH_TCPIPV6), rc); if (rc != 0) goto fail1; break; default: rc = EINVAL; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); EFX_RX_LFSR_HASH(enp, B_FALSE); return (rc); } #endif #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t falconsiena_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n) { efx_oword_t oword; unsigned int byte; unsigned int offset; efx_rc_t rc; byte = 0; /* Write Toeplitz IPv4 hash key */ EFX_ZERO_OWORD(oword); for (offset = (FRF_BZ_RX_RSS_TKEY_LBN + FRF_BZ_RX_RSS_TKEY_WIDTH) / 8; offset > 0 && byte < n; --offset) oword.eo_u8[offset - 1] = key[byte++]; EFX_BAR_WRITEO(enp, FR_BZ_RX_RSS_TKEY_REG, &oword); byte = 0; /* Verify Toeplitz IPv4 hash key */ EFX_BAR_READO(enp, FR_BZ_RX_RSS_TKEY_REG, &oword); for (offset = (FRF_BZ_RX_RSS_TKEY_LBN + FRF_BZ_RX_RSS_TKEY_WIDTH) / 8; offset > 0 && byte < n; --offset) { if (oword.eo_u8[offset - 1] != key[byte++]) { rc = EFAULT; goto fail1; } } if ((enp->en_features & EFX_FEATURE_IPV6) == 0) goto done; EFSYS_ASSERT3U(enp->en_family, !=, EFX_FAMILY_FALCON); byte = 0; /* Write Toeplitz IPv6 hash key 3 */ EFX_BAR_READO(enp, FR_CZ_RX_RSS_IPV6_REG3, &oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH) / 8; offset > 0 && byte < n; --offset) oword.eo_u8[offset - 1] = key[byte++]; EFX_BAR_WRITEO(enp, FR_CZ_RX_RSS_IPV6_REG3, &oword); /* Write Toeplitz IPv6 hash key 2 */ EFX_ZERO_OWORD(oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_MID_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_MID_WIDTH) / 8; offset > 0 && byte < n; --offset) oword.eo_u8[offset - 1] = key[byte++]; EFX_BAR_WRITEO(enp, FR_CZ_RX_RSS_IPV6_REG2, &oword); /* Write Toeplitz IPv6 hash key 1 */ EFX_ZERO_OWORD(oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_LO_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_LO_WIDTH) / 8; offset > 0 && byte < n; --offset) oword.eo_u8[offset - 1] = key[byte++]; EFX_BAR_WRITEO(enp, FR_CZ_RX_RSS_IPV6_REG1, &oword); byte = 0; /* Verify Toeplitz IPv6 hash key 3 */ EFX_BAR_READO(enp, FR_CZ_RX_RSS_IPV6_REG3, &oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH) / 8; offset > 0 && byte < n; --offset) { if (oword.eo_u8[offset - 1] != key[byte++]) { rc = EFAULT; goto fail2; } } /* Verify Toeplitz IPv6 hash key 2 */ EFX_BAR_READO(enp, FR_CZ_RX_RSS_IPV6_REG2, &oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_MID_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_MID_WIDTH) / 8; offset > 0 && byte < n; --offset) { if (oword.eo_u8[offset - 1] != key[byte++]) { rc = EFAULT; goto fail3; } } /* Verify Toeplitz IPv6 hash key 1 */ EFX_BAR_READO(enp, FR_CZ_RX_RSS_IPV6_REG1, &oword); for (offset = (FRF_CZ_RX_RSS_IPV6_TKEY_LO_LBN + FRF_CZ_RX_RSS_IPV6_TKEY_LO_WIDTH) / 8; offset > 0 && byte < n; --offset) { if (oword.eo_u8[offset - 1] != key[byte++]) { rc = EFAULT; goto fail4; } } done: return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t falconsiena_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n) { efx_oword_t oword; int index; efx_rc_t rc; EFX_STATIC_ASSERT(EFX_RSS_TBL_SIZE == FR_BZ_RX_INDIRECTION_TBL_ROWS); EFX_STATIC_ASSERT(EFX_MAXRSS == (1 << FRF_BZ_IT_QUEUE_WIDTH)); if (n > FR_BZ_RX_INDIRECTION_TBL_ROWS) { rc = EINVAL; goto fail1; } for (index = 0; index < FR_BZ_RX_INDIRECTION_TBL_ROWS; index++) { uint32_t byte; /* Calculate the entry to place in the table */ byte = (n > 0) ? (uint32_t)table[index % n] : 0; EFSYS_PROBE2(table, int, index, uint32_t, byte); EFX_POPULATE_OWORD_1(oword, FRF_BZ_IT_QUEUE, byte); /* Write the table */ EFX_BAR_TBL_WRITEO(enp, FR_BZ_RX_INDIRECTION_TBL, index, &oword, B_TRUE); } for (index = FR_BZ_RX_INDIRECTION_TBL_ROWS - 1; index >= 0; --index) { uint32_t byte; /* Determine if we're starting a new batch */ byte = (n > 0) ? (uint32_t)table[index % n] : 0; /* Read the table */ EFX_BAR_TBL_READO(enp, FR_BZ_RX_INDIRECTION_TBL, index, &oword, B_TRUE); /* Verify the entry */ if (EFX_OWORD_FIELD(oword, FRF_BZ_IT_QUEUE) != byte) { rc = EFAULT; goto fail2; } } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif static void falconsiena_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added) { efx_qword_t qword; unsigned int i; unsigned int offset; unsigned int id; /* The client driver must not overfill the queue */ EFSYS_ASSERT3U(added - completed + n, <=, EFX_RXQ_LIMIT(erp->er_mask + 1)); id = added & (erp->er_mask); for (i = 0; i < n; i++) { EFSYS_PROBE4(rx_post, unsigned int, erp->er_index, unsigned int, id, efsys_dma_addr_t, addrp[i], size_t, size); EFX_POPULATE_QWORD_3(qword, FSF_AZ_RX_KER_BUF_SIZE, (uint32_t)(size), FSF_AZ_RX_KER_BUF_ADDR_DW0, (uint32_t)(addrp[i] & 0xffffffff), FSF_AZ_RX_KER_BUF_ADDR_DW1, (uint32_t)(addrp[i] >> 32)); offset = id * sizeof (efx_qword_t); EFSYS_MEM_WRITEQ(erp->er_esmp, offset, &qword); id = (id + 1) & (erp->er_mask); } } static void falconsiena_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp) { efx_nic_t *enp = erp->er_enp; unsigned int pushed = *pushedp; uint32_t wptr; efx_oword_t oword; efx_dword_t dword; /* All descriptors are pushed */ *pushedp = added; /* Push the populated descriptors out */ wptr = added & erp->er_mask; EFX_POPULATE_OWORD_1(oword, FRF_AZ_RX_DESC_WPTR, wptr); /* Only write the third DWORD */ EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, EFX_OWORD_FIELD(oword, EFX_DWORD_3)); /* Guarantee ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(erp->er_esmp, erp->er_mask + 1, wptr, pushed & erp->er_mask); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_TBL_WRITED3(enp, FR_BZ_RX_DESC_UPD_REGP0, erp->er_index, &dword, B_FALSE); } static __checkReturn efx_rc_t falconsiena_rx_qflush( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_oword_t oword; uint32_t label; label = erp->er_index; /* Flush the queue */ EFX_POPULATE_OWORD_2(oword, FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, FRF_AZ_RX_FLUSH_DESCQ, label); EFX_BAR_WRITEO(enp, FR_AZ_RX_FLUSH_DESCQ_REG, &oword); return (0); } static void falconsiena_rx_qenable( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_oword_t oword; EFSYS_ASSERT3U(erp->er_magic, ==, EFX_RXQ_MAGIC); EFX_BAR_TBL_READO(enp, FR_AZ_RX_DESC_PTR_TBL, erp->er_index, &oword, B_TRUE); EFX_SET_OWORD_FIELD(oword, FRF_AZ_RX_DC_HW_RPTR, 0); EFX_SET_OWORD_FIELD(oword, FRF_AZ_RX_DESCQ_HW_RPTR, 0); EFX_SET_OWORD_FIELD(oword, FRF_AZ_RX_DESCQ_EN, 1); EFX_BAR_TBL_WRITEO(enp, FR_AZ_RX_DESC_PTR_TBL, erp->er_index, &oword, B_TRUE); } static __checkReturn efx_rc_t falconsiena_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_oword_t oword; uint32_t size; - boolean_t split; boolean_t jumbo; efx_rc_t rc; EFX_STATIC_ASSERT(EFX_EV_RX_NLABELS == (1 << FRF_AZ_RX_DESCQ_LABEL_WIDTH)); EFSYS_ASSERT3U(label, <, EFX_EV_RX_NLABELS); EFSYS_ASSERT3U(enp->en_rx_qcount + 1, <, encp->enc_rxq_limit); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MAXNDESCS)); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MINNDESCS)); if (!ISP2(n) || (n < EFX_RXQ_MINNDESCS) || (n > EFX_RXQ_MAXNDESCS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_rxq_limit) { rc = EINVAL; goto fail2; } for (size = 0; (1 << size) <= (EFX_RXQ_MAXNDESCS / EFX_RXQ_MINNDESCS); size++) if ((1 << size) == (int)(n / EFX_RXQ_MINNDESCS)) break; if (id + (1 << size) >= encp->enc_buftbl_limit) { rc = EINVAL; goto fail3; } switch (type) { case EFX_RXQ_TYPE_DEFAULT: - split = B_FALSE; jumbo = B_FALSE; break; #if EFSYS_OPT_RX_HDR_SPLIT case EFX_RXQ_TYPE_SPLIT_HEADER: if ((enp->en_family < EFX_FAMILY_SIENA) || ((index & 1) != 0)) { rc = EINVAL; goto fail4; } split = B_TRUE; jumbo = B_TRUE; break; case EFX_RXQ_TYPE_SPLIT_PAYLOAD: if ((enp->en_family < EFX_FAMILY_SIENA) || ((index & 1) == 0)) { rc = EINVAL; goto fail4; } split = B_FALSE; jumbo = B_TRUE; break; #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER case EFX_RXQ_TYPE_SCATTER: if (enp->en_family < EFX_FAMILY_SIENA) { rc = EINVAL; goto fail4; } - split = B_FALSE; jumbo = B_TRUE; break; #endif /* EFSYS_OPT_RX_SCATTER */ default: rc = EINVAL; goto fail4; } /* Set up the new descriptor queue */ - EFX_POPULATE_OWORD_10(oword, - FRF_CZ_RX_HDR_SPLIT, split, - FRF_AZ_RX_ISCSI_DDIG_EN, 0, - FRF_AZ_RX_ISCSI_HDIG_EN, 0, + EFX_POPULATE_OWORD_7(oword, FRF_AZ_RX_DESCQ_BUF_BASE_ID, id, FRF_AZ_RX_DESCQ_EVQ_ID, eep->ee_index, FRF_AZ_RX_DESCQ_OWNER_ID, 0, FRF_AZ_RX_DESCQ_LABEL, label, FRF_AZ_RX_DESCQ_SIZE, size, FRF_AZ_RX_DESCQ_TYPE, 0, FRF_AZ_RX_DESCQ_JUMBO, jumbo); EFX_BAR_TBL_WRITEO(enp, FR_AZ_RX_DESC_PTR_TBL, erp->er_index, &oword, B_TRUE); return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void falconsiena_rx_qdestroy( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_oword_t oword; EFSYS_ASSERT(enp->en_rx_qcount != 0); --enp->en_rx_qcount; /* Purge descriptor queue */ EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_AZ_RX_DESC_PTR_TBL, erp->er_index, &oword, B_TRUE); /* Free the RXQ object */ EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_rxq_t), erp); } static void falconsiena_rx_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } #endif /* EFSYS_OPT_FALCON || EFSYS_OPT_SIENA */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_ev.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_ev.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_ev.c (revision 293803) @@ -1,1032 +1,1027 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_MON_STATS #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn efx_rc_t efx_mcdi_init_evq( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq, __out_opt uint32_t *irqp) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_OUT_LEN)]; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; int supports_rx_batching; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_IN_LEN(npages) > MC_CMD_INIT_EVQ_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_IRQ_NUM, irq); /* * On Huntington RX and TX event batching can only be requested * together (even if the datapath firmware doesn't actually support RX * batching). * Cut through is incompatible with RX batching and so enabling cut * through disables RX batching (but it does not affect TX batching). * * So always enable RX and TX event batching, and enable cut through * if RX event batching isn't supported (i.e. on low latency firmware). */ supports_rx_batching = enp->en_nic_cfg.enc_rx_batching_enabled ? 1 : 0; MCDI_IN_POPULATE_DWORD_6(req, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_IN_FLAG_INT_ARMD, 0, INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_batching, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) { rc = EMSGSIZE; goto fail3; } if (irqp != NULL) *irqp = MCDI_OUT_DWORD(req, INIT_EVQ_OUT_IRQ); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_evq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_EVQ_IN_LEN, MC_CMD_FINI_EVQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_ev_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t irq; efx_rc_t rc; _NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */ EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS)); EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS)); if (!ISP2(n) || (n < EFX_EVQ_MINNEVS) || (n > EFX_EVQ_MAXNEVS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } /* Set up the handler table */ eep->ee_rx = ef10_ev_rx; eep->ee_tx = ef10_ev_tx; eep->ee_driver = ef10_ev_driver; eep->ee_drv_gen = ef10_ev_drv_gen; eep->ee_mcdi = ef10_ev_mcdi; /* * Set up the event queue * NOTE: ignore the returned IRQ param as firmware does not set it. */ irq = index; /* INIT_EVQ expects function-relative vector number */ if ((rc = efx_mcdi_init_evq(enp, index, esmp, n, irq, NULL)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) efx_mcdi_fini_evq(eep->ee_enp, eep->ee_index); } __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; rptr = count & eep->ee_mask; if (enp->en_nic_cfg.enc_bug35388_workaround) { EFX_STATIC_ASSERT(EFX_EVQ_MINNEVS > (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_STATIC_ASSERT(EFX_EVQ_MAXNEVS < (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); } else { EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr); EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); } return (0); } static __checkReturn efx_rc_t efx_mcdi_driver_event( __in efx_nic_t *enp, __in uint32_t evq, __in efx_qword_t data) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRIVER_EVENT_IN_LEN, MC_CMD_DRIVER_EVENT_OUT_LEN)]; efx_rc_t rc; req.emr_cmd = MC_CMD_DRIVER_EVENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN; MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO, EFX_QWORD_FIELD(data, EFX_DWORD_0)); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI, EFX_QWORD_FIELD(data, EFX_DWORD_1)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t event; EFX_POPULATE_QWORD_3(event, ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV, ESF_DZ_DRV_SUB_CODE, 0, ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data); (void) efx_mcdi_driver_event(enp, eep->ee_index, event); } __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_dword_t dword; uint32_t timer_val, mode; efx_rc_t rc; if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { timer_val = 0; mode = FFE_CZ_TIMER_MODE_DIS; } else { /* Calculate the timer value in quanta */ timer_val = us * 1000 / encp->enc_evq_timer_quantum_ns; /* Moderation value is base 0 so we need to deduct 1 */ if (timer_val > 0) timer_val--; mode = FFE_CZ_TIMER_MODE_INT_HLDOFF; } if (encp->enc_bug35388_workaround) { EFX_POPULATE_DWORD_3(dword, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, timer_val); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, 0); } else { EFX_POPULATE_DWORD_2(dword, FRF_CZ_TC_TIMER_MODE, mode, FRF_CZ_TC_TIMER_VAL, timer_val); EFX_BAR_TBL_WRITED(enp, FR_BZ_TIMER_COMMAND_REGP0, eep->ee_index, &dword, 0); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t size; #if 0 boolean_t parse_err; #endif uint32_t label; uint32_t mcast; uint32_t eth_base_class; uint32_t eth_tag_class; uint32_t l3_class; uint32_t l4_class; uint32_t next_read_lbits; - boolean_t soft1, soft2; uint16_t flags; boolean_t should_abort; efx_evq_rxq_state_t *eersp; unsigned int desc_count; unsigned int last_used_id; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); /* * FIXME: likely to be incomplete, incorrect and inefficient. * Improvements in all three areas are required. */ if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } flags = 0; size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT) != 0) { /* * This may be part of a scattered frame, or it may be a * truncated frame if scatter is disabled on this RXQ. * Overlength frames can be received if e.g. a VF is configured * for 1500 MTU but connected to a port set to 9000 MTU * (see bug56567). * FIXME: There is not yet any driver that supports scatter on * Huntington. Scatter support is required for OSX. */ flags |= EFX_PKT_CONT; } #if 0 /* TODO What to do if the packet is flagged with parsing error */ parse_err = (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE) != 0); #endif label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) { /* Ethernet frame CRC bad */ flags |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CRC0_ERR) != 0) { /* IP+TCP, bad CRC in iSCSI header */ flags |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CRC1_ERR) != 0) { /* IP+TCP, bad CRC in iSCSI payload or FCoE or FCoIP */ flags |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) { /* ECC memory error */ flags |= EFX_DISCARD; } - - /* FIXME: do we need soft bits from RXDP firmware ? */ - soft1 = (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_EV_SOFT1) != 0); - soft2 = (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_EV_SOFT2) != 0); mcast = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS); if (mcast == ESE_DZ_MAC_CLASS_UCAST) flags |= EFX_PKT_UNICAST; eth_base_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_BASE_CLASS); eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS); l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS); l4_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L4_CLASS); /* bottom 4 bits of incremented index (not last desc consumed) */ next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS); /* Increment the count of descriptors read */ eersp = &eep->ee_rxq_state[label]; desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); eersp->eers_rx_read_ptr += desc_count; /* * FIXME: add error checking to make sure this a batched event. * This could also be an aborted scatter, see Bug36629. */ if (desc_count > 1) { EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH); flags |= EFX_PKT_PREFIX_LEN; } /* Calculate the index of the the last descriptor consumed */ last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask; /* EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_OVERRIDE_HOLDOFF); */ switch (eth_base_class) { case ESE_DZ_ETH_BASE_CLASS_LLC_SNAP: case ESE_DZ_ETH_BASE_CLASS_LLC: case ESE_DZ_ETH_BASE_CLASS_ETH2: default: break; } switch (eth_tag_class) { case ESE_DZ_ETH_TAG_CLASS_RSVD7: case ESE_DZ_ETH_TAG_CLASS_RSVD6: case ESE_DZ_ETH_TAG_CLASS_RSVD5: case ESE_DZ_ETH_TAG_CLASS_RSVD4: break; case ESE_DZ_ETH_TAG_CLASS_RSVD3: /* Triple tagged */ case ESE_DZ_ETH_TAG_CLASS_VLAN2: /* Double tagged */ case ESE_DZ_ETH_TAG_CLASS_VLAN1: /* VLAN tagged */ flags |= EFX_PKT_VLAN_TAGGED; break; case ESE_DZ_ETH_TAG_CLASS_NONE: default: break; } switch (l3_class) { case ESE_DZ_L3_CLASS_RSVD7: /* Used by firmware for packet overrun */ #if 0 parse_err = B_TRUE; #endif flags |= EFX_DISCARD; break; case ESE_DZ_L3_CLASS_ARP: case ESE_DZ_L3_CLASS_FCOE: break; case ESE_DZ_L3_CLASS_IP6_FRAG: case ESE_DZ_L3_CLASS_IP6: flags |= EFX_PKT_IPV6; break; case ESE_DZ_L3_CLASS_IP4_FRAG: case ESE_DZ_L3_CLASS_IP4: flags |= EFX_PKT_IPV4; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR) == 0) flags |= EFX_CKSUM_IPV4; break; case ESE_DZ_L3_CLASS_UNKNOWN: default: break; } switch (l4_class) { case ESE_DZ_L4_CLASS_RSVD7: case ESE_DZ_L4_CLASS_RSVD6: case ESE_DZ_L4_CLASS_RSVD5: case ESE_DZ_L4_CLASS_RSVD4: case ESE_DZ_L4_CLASS_RSVD3: break; case ESE_DZ_L4_CLASS_UDP: flags |= EFX_PKT_UDP; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR) == 0) flags |= EFX_CKSUM_TCPUDP; break; case ESE_DZ_L4_CLASS_TCP: flags |= EFX_PKT_TCP; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR) == 0) flags |= EFX_CKSUM_TCPUDP; break; case ESE_DZ_L4_CLASS_UNKNOWN: default: break; } /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags); return (should_abort); } static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } /* Per-packet TX completion (was per-descriptor for Falcon/Siena) */ id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { unsigned int code; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE); switch (code) { case ESE_DZ_DRV_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case ESE_DZ_DRV_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case ESE_DZ_DRV_START_UP_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); should_abort = B_FALSE; data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned code; boolean_t should_abort = B_FALSE; EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(eqp, CMDDONE_SEQ), MCDI_EV_FIELD(eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(eqp, CMDDONE_ERRNO)); break; #if EFSYS_OPT_MCDI_PROXY_AUTH case MCDI_EVENT_CODE_PROXY_RESPONSE: /* * This event notifies a function that an authorization request * has been processed. If the request was authorized then the * function can now re-send the original MCDI request. * See SF-113652-SW "SR-IOV Proxied Network Access Control". */ efx_mcdi_ev_proxy_response(enp, MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE), MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC)); break; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; hunt_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; efx_rc_t rc; /* Decode monitor stat for MCDI sensor (if supported) */ if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) { /* Report monitor stat change */ should_abort = eecp->eec_monitor(arg, id, value); } else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else { EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ } #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: /* Falcon/Siena only (should not been seen with Huntington). */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MC_REBOOT: /* MC_REBOOT event is used for Huntington (EF10) and later. */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } case MCDI_EVENT_CODE_TX_ERR: { /* * After a TXQ error is detected, firmware sends a TX_ERR event. * This may be followed by TX completions (which we discard), * and then finally by a TX_FLUSH event. Firmware destroys the * TXQ automatically after sending the TX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_TXQ_ERR; EFSYS_PROBE1(tx_descq_err, uint32_t, MCDI_EV_FIELD(eqp, DATA)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR, MCDI_EV_FIELD(eqp, TX_ERR_DATA)); break; } case MCDI_EVENT_CODE_TX_FLUSH: { uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ); /* * EF10 firmware sends two TX_FLUSH events: one to the txq's * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with TX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, txq_index); break; } case MCDI_EVENT_CODE_RX_ERR: { /* * After an RXQ error is detected, firmware sends an RX_ERR * event. This may be followed by RX events (which we discard), * and then finally by an RX_FLUSH event. Firmware destroys the * RXQ automatically after sending the RX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_RXQ_ERR; EFSYS_PROBE1(rx_descq_err, uint32_t, MCDI_EV_FIELD(eqp, DATA)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR, MCDI_EV_FIELD(eqp, RX_ERR_DATA)); break; } case MCDI_EVENT_CODE_RX_FLUSH: { uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ); /* * EF10 firmware sends two RX_FLUSH events: one to the rxq's * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with RX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); should_abort = eecp->eec_rxq_flush_done(arg, rxq_index); break; } default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = erp->er_mask; } void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = 0; } #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_filter.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_filter.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_filter.c (revision 293803) @@ -1,1376 +1,1383 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs_mcdi.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON #if EFSYS_OPT_FILTER -#define HFE_SPEC(hftp, index) ((hftp)->hft_entry[(index)].hfe_spec) +#define EFE_SPEC(eftp, index) ((eftp)->eft_entry[(index)].efe_spec) static efx_filter_spec_t * -hunt_filter_entry_spec( - __in const hunt_filter_table_t *hftp, +ef10_filter_entry_spec( + __in const ef10_filter_table_t *eftp, __in unsigned int index) { - return ((efx_filter_spec_t *)(HFE_SPEC(hftp, index) & - ~(uintptr_t)EFX_HUNT_FILTER_FLAGS)); + return ((efx_filter_spec_t *)(EFE_SPEC(eftp, index) & + ~(uintptr_t)EFX_EF10_FILTER_FLAGS)); } static boolean_t -hunt_filter_entry_is_busy( - __in const hunt_filter_table_t *hftp, +ef10_filter_entry_is_busy( + __in const ef10_filter_table_t *eftp, __in unsigned int index) { - if (HFE_SPEC(hftp, index) & EFX_HUNT_FILTER_FLAG_BUSY) + if (EFE_SPEC(eftp, index) & EFX_EF10_FILTER_FLAG_BUSY) return (B_TRUE); else return (B_FALSE); } static boolean_t -hunt_filter_entry_is_auto_old( - __in const hunt_filter_table_t *hftp, +ef10_filter_entry_is_auto_old( + __in const ef10_filter_table_t *eftp, __in unsigned int index) { - if (HFE_SPEC(hftp, index) & EFX_HUNT_FILTER_FLAG_AUTO_OLD) + if (EFE_SPEC(eftp, index) & EFX_EF10_FILTER_FLAG_AUTO_OLD) return (B_TRUE); else return (B_FALSE); } static void -hunt_filter_set_entry( - __inout hunt_filter_table_t *hftp, +ef10_filter_set_entry( + __inout ef10_filter_table_t *eftp, __in unsigned int index, __in_opt const efx_filter_spec_t *efsp) { - HFE_SPEC(hftp, index) = (uintptr_t)efsp; + EFE_SPEC(eftp, index) = (uintptr_t)efsp; } static void -hunt_filter_set_entry_busy( - __inout hunt_filter_table_t *hftp, +ef10_filter_set_entry_busy( + __inout ef10_filter_table_t *eftp, __in unsigned int index) { - HFE_SPEC(hftp, index) |= (uintptr_t)EFX_HUNT_FILTER_FLAG_BUSY; + EFE_SPEC(eftp, index) |= (uintptr_t)EFX_EF10_FILTER_FLAG_BUSY; } static void -hunt_filter_set_entry_not_busy( - __inout hunt_filter_table_t *hftp, +ef10_filter_set_entry_not_busy( + __inout ef10_filter_table_t *eftp, __in unsigned int index) { - HFE_SPEC(hftp, index) &= ~(uintptr_t)EFX_HUNT_FILTER_FLAG_BUSY; + EFE_SPEC(eftp, index) &= ~(uintptr_t)EFX_EF10_FILTER_FLAG_BUSY; } static void -hunt_filter_set_entry_auto_old( - __inout hunt_filter_table_t *hftp, +ef10_filter_set_entry_auto_old( + __inout ef10_filter_table_t *eftp, __in unsigned int index) { - EFSYS_ASSERT(hunt_filter_entry_spec(hftp, index) != NULL); - HFE_SPEC(hftp, index) |= (uintptr_t)EFX_HUNT_FILTER_FLAG_AUTO_OLD; + EFSYS_ASSERT(ef10_filter_entry_spec(eftp, index) != NULL); + EFE_SPEC(eftp, index) |= (uintptr_t)EFX_EF10_FILTER_FLAG_AUTO_OLD; } static void -hunt_filter_set_entry_not_auto_old( - __inout hunt_filter_table_t *hftp, +ef10_filter_set_entry_not_auto_old( + __inout ef10_filter_table_t *eftp, __in unsigned int index) { - HFE_SPEC(hftp, index) &= ~(uintptr_t)EFX_HUNT_FILTER_FLAG_AUTO_OLD; - EFSYS_ASSERT(hunt_filter_entry_spec(hftp, index) != NULL); + EFE_SPEC(eftp, index) &= ~(uintptr_t)EFX_EF10_FILTER_FLAG_AUTO_OLD; + EFSYS_ASSERT(ef10_filter_entry_spec(eftp, index) != NULL); } __checkReturn efx_rc_t -hunt_filter_init( +ef10_filter_init( __in efx_nic_t *enp) { efx_rc_t rc; - hunt_filter_table_t *hftp; + ef10_filter_table_t *eftp; - EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); #define MATCH_MASK(match) (EFX_MASK32(match) << EFX_LOW_BIT(match)) EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_HOST == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_IP)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_HOST == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_IP)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_MAC == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_MAC)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_PORT == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_PORT)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_MAC == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_MAC)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_PORT == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_PORT)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_ETHER_TYPE == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_ETHER_TYPE)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_INNER_VID == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_INNER_VLAN)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_OUTER_VID == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_OUTER_VLAN)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_IP_PROTO == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_IP_PROTO)); #undef MATCH_MASK - EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (hunt_filter_table_t), hftp); + EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (ef10_filter_table_t), eftp); - if (!hftp) { + if (!eftp) { rc = ENOMEM; goto fail1; } - enp->en_filter.ef_hunt_filter_table = hftp; + enp->en_filter.ef_ef10_filter_table = eftp; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void -hunt_filter_fini( +ef10_filter_fini( __in efx_nic_t *enp) { - EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); - if (enp->en_filter.ef_hunt_filter_table != NULL) { - EFSYS_KMEM_FREE(enp->en_esip, sizeof (hunt_filter_table_t), - enp->en_filter.ef_hunt_filter_table); + if (enp->en_filter.ef_ef10_filter_table != NULL) { + EFSYS_KMEM_FREE(enp->en_esip, sizeof (ef10_filter_table_t), + enp->en_filter.ef_ef10_filter_table); } } static __checkReturn efx_rc_t efx_mcdi_filter_op_add( __in efx_nic_t *enp, __in efx_filter_spec_t *spec, __in unsigned int filter_op, - __inout hunt_filter_handle_t *handle) + __inout ef10_filter_handle_t *handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FILTER_OP_IN_LEN, MC_CMD_FILTER_OP_OUT_LEN)]; uint32_t match_fields = 0; efx_rc_t rc; memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FILTER_OP; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FILTER_OP_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FILTER_OP_OUT_LEN; switch (filter_op) { case MC_CMD_FILTER_OP_IN_OP_REPLACE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_LO, - handle->hfh_lo); + handle->efh_lo); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_HI, - handle->hfh_hi); + handle->efh_hi); /* Fall through */ case MC_CMD_FILTER_OP_IN_OP_INSERT: case MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, filter_op); break; default: EFSYS_ASSERT(0); rc = EINVAL; goto fail1; } if (spec->efs_match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) { /* * The LOC_MAC_IG match flag can represent unknown unicast * or multicast filters - use the MAC address to distinguish * them. */ if (EFX_MAC_ADDR_IS_MULTICAST(spec->efs_loc_mac)) match_fields |= 1U << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN; else match_fields |= 1U << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN; } match_fields |= spec->efs_match_flags & (~EFX_FILTER_MATCH_LOC_MAC_IG); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_MATCH_FIELDS, match_fields); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_DEST, MC_CMD_FILTER_OP_IN_RX_DEST_HOST); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_QUEUE, spec->efs_dmaq_id); if (spec->efs_flags & EFX_FILTER_FLAG_RX_RSS) { MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_CONTEXT, spec->efs_rss_context); } MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_MODE, spec->efs_flags & EFX_FILTER_FLAG_RX_RSS ? MC_CMD_FILTER_OP_IN_RX_MODE_RSS : MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_TX_DEST, MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT); if (filter_op != MC_CMD_FILTER_OP_IN_OP_REPLACE) { /* * NOTE: Unlike most MCDI requests, the filter fields * are presented in network (big endian) byte order. */ memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_SRC_MAC), spec->efs_rem_mac, EFX_MAC_ADDR_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_DST_MAC), spec->efs_loc_mac, EFX_MAC_ADDR_LEN); MCDI_IN_SET_WORD(req, FILTER_OP_IN_SRC_PORT, __CPU_TO_BE_16(spec->efs_rem_port)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_DST_PORT, __CPU_TO_BE_16(spec->efs_loc_port)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_ETHER_TYPE, __CPU_TO_BE_16(spec->efs_ether_type)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_INNER_VLAN, __CPU_TO_BE_16(spec->efs_inner_vid)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_OUTER_VLAN, __CPU_TO_BE_16(spec->efs_outer_vid)); /* IP protocol (in low byte, high byte is zero) */ MCDI_IN_SET_BYTE(req, FILTER_OP_IN_IP_PROTO, spec->efs_ip_proto); EFX_STATIC_ASSERT(sizeof (spec->efs_rem_host) == MC_CMD_FILTER_OP_IN_SRC_IP_LEN); EFX_STATIC_ASSERT(sizeof (spec->efs_loc_host) == MC_CMD_FILTER_OP_IN_DST_IP_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_SRC_IP), &spec->efs_rem_host.eo_byte[0], MC_CMD_FILTER_OP_IN_SRC_IP_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_DST_IP), &spec->efs_loc_host.eo_byte[0], MC_CMD_FILTER_OP_IN_DST_IP_LEN); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_FILTER_OP_OUT_LEN) { rc = EMSGSIZE; goto fail3; } - handle->hfh_lo = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_LO); - handle->hfh_hi = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_HI); + handle->efh_lo = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_LO); + handle->efh_hi = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_HI); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_filter_op_delete( __in efx_nic_t *enp, __in unsigned int filter_op, - __inout hunt_filter_handle_t *handle) + __inout ef10_filter_handle_t *handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FILTER_OP_IN_LEN, MC_CMD_FILTER_OP_OUT_LEN)]; efx_rc_t rc; memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FILTER_OP; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FILTER_OP_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FILTER_OP_OUT_LEN; switch (filter_op) { case MC_CMD_FILTER_OP_IN_OP_REMOVE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REMOVE); break; case MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); break; default: EFSYS_ASSERT(0); rc = EINVAL; goto fail1; } - MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_LO, handle->hfh_lo); - MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_HI, handle->hfh_hi); + MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_LO, handle->efh_lo); + MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_HI, handle->efh_hi); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_FILTER_OP_OUT_LEN) { rc = EMSGSIZE; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn boolean_t -hunt_filter_equal( +ef10_filter_equal( __in const efx_filter_spec_t *left, __in const efx_filter_spec_t *right) { /* FIXME: Consider rx vs tx filters (look at efs_flags) */ if (left->efs_match_flags != right->efs_match_flags) return (B_FALSE); if (!EFX_OWORD_IS_EQUAL(left->efs_rem_host, right->efs_rem_host)) return (B_FALSE); if (!EFX_OWORD_IS_EQUAL(left->efs_loc_host, right->efs_loc_host)) return (B_FALSE); if (memcmp(left->efs_rem_mac, right->efs_rem_mac, EFX_MAC_ADDR_LEN)) return (B_FALSE); if (memcmp(left->efs_loc_mac, right->efs_loc_mac, EFX_MAC_ADDR_LEN)) return (B_FALSE); if (left->efs_rem_port != right->efs_rem_port) return (B_FALSE); if (left->efs_loc_port != right->efs_loc_port) return (B_FALSE); if (left->efs_inner_vid != right->efs_inner_vid) return (B_FALSE); if (left->efs_outer_vid != right->efs_outer_vid) return (B_FALSE); if (left->efs_ether_type != right->efs_ether_type) return (B_FALSE); if (left->efs_ip_proto != right->efs_ip_proto) return (B_FALSE); return (B_TRUE); } static __checkReturn boolean_t -hunt_filter_same_dest( +ef10_filter_same_dest( __in const efx_filter_spec_t *left, __in const efx_filter_spec_t *right) { if ((left->efs_flags & EFX_FILTER_FLAG_RX_RSS) && (right->efs_flags & EFX_FILTER_FLAG_RX_RSS)) { if (left->efs_rss_context == right->efs_rss_context) return (B_TRUE); } else if ((~(left->efs_flags) & EFX_FILTER_FLAG_RX_RSS) && (~(right->efs_flags) & EFX_FILTER_FLAG_RX_RSS)) { if (left->efs_dmaq_id == right->efs_dmaq_id) return (B_TRUE); } return (B_FALSE); } static __checkReturn uint32_t -hunt_filter_hash( +ef10_filter_hash( __in efx_filter_spec_t *spec) { EFX_STATIC_ASSERT((sizeof (efx_filter_spec_t) % sizeof (uint32_t)) == 0); EFX_STATIC_ASSERT((EFX_FIELD_OFFSET(efx_filter_spec_t, efs_outer_vid) % sizeof (uint32_t)) == 0); /* * As the area of the efx_filter_spec_t we need to hash is DWORD * aligned and an exact number of DWORDs in size we can use the * optimised efx_hash_dwords() rather than efx_hash_bytes() */ return (efx_hash_dwords((const uint32_t *)&spec->efs_outer_vid, (sizeof (efx_filter_spec_t) - EFX_FIELD_OFFSET(efx_filter_spec_t, efs_outer_vid)) / sizeof (uint32_t), 0)); } /* * Decide whether a filter should be exclusive or else should allow * delivery to additional recipients. Currently we decide that * filters for specific local unicast MAC and IP addresses are * exclusive. */ static __checkReturn boolean_t -hunt_filter_is_exclusive( +ef10_filter_is_exclusive( __in efx_filter_spec_t *spec) { if ((spec->efs_match_flags & EFX_FILTER_MATCH_LOC_MAC) && !EFX_MAC_ADDR_IS_MULTICAST(spec->efs_loc_mac)) return (B_TRUE); if ((spec->efs_match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if ((spec->efs_ether_type == EFX_ETHER_TYPE_IPV4) && ((spec->efs_loc_host.eo_u8[0] & 0xf) != 0xe)) return (B_TRUE); if ((spec->efs_ether_type == EFX_ETHER_TYPE_IPV6) && (spec->efs_loc_host.eo_u8[0] != 0xff)) return (B_TRUE); } return (B_FALSE); } __checkReturn efx_rc_t -hunt_filter_restore( +ef10_filter_restore( __in efx_nic_t *enp) { int tbl_id; efx_filter_spec_t *spec; - hunt_filter_table_t *hftp = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; boolean_t restoring; int state; efx_rc_t rc; - EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); - for (tbl_id = 0; tbl_id < EFX_HUNT_FILTER_TBL_ROWS; tbl_id++) { + for (tbl_id = 0; tbl_id < EFX_EF10_FILTER_TBL_ROWS; tbl_id++) { EFSYS_LOCK(enp->en_eslp, state); - spec = hunt_filter_entry_spec(hftp, tbl_id); + spec = ef10_filter_entry_spec(eftp, tbl_id); if (spec == NULL) { restoring = B_FALSE; - } else if (hunt_filter_entry_is_busy(hftp, tbl_id)) { + } else if (ef10_filter_entry_is_busy(eftp, tbl_id)) { /* Ignore busy entries. */ restoring = B_FALSE; } else { - hunt_filter_set_entry_busy(hftp, tbl_id); + ef10_filter_set_entry_busy(eftp, tbl_id); restoring = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); if (restoring == B_FALSE) continue; - if (hunt_filter_is_exclusive(spec)) { + if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_INSERT, - &hftp->hft_entry[tbl_id].hfe_handle); + &eftp->eft_entry[tbl_id].efe_handle); } else { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE, - &hftp->hft_entry[tbl_id].hfe_handle); + &eftp->eft_entry[tbl_id].efe_handle); } if (rc != 0) goto fail1; EFSYS_LOCK(enp->en_eslp, state); - hunt_filter_set_entry_not_busy(hftp, tbl_id); + ef10_filter_set_entry_not_busy(eftp, tbl_id); EFSYS_UNLOCK(enp->en_eslp, state); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * An arbitrary search limit for the software hash table. As per the linux net * driver. */ -#define EFX_HUNT_FILTER_SEARCH_LIMIT 200 +#define EF10_FILTER_SEARCH_LIMIT 200 static __checkReturn efx_rc_t -hunt_filter_add_internal( +ef10_filter_add_internal( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace, __out_opt uint32_t *filter_id) { efx_rc_t rc; - hunt_filter_table_t *hftp = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *saved_spec; uint32_t hash; unsigned int depth; int ins_index; boolean_t replacing = B_FALSE; unsigned int i; int state; boolean_t locked = B_FALSE; - EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); #if EFSYS_OPT_RX_SCALE spec->efs_rss_context = enp->en_rss_context; #endif - hash = hunt_filter_hash(spec); + hash = ef10_filter_hash(spec); /* * FIXME: Add support for inserting filters of different priorities * and removing lower priority multicast filters (bug 42378) */ /* * Find any existing filters with the same match tuple or * else a free slot to insert at. If any of them are busy, * we have to wait and retry. */ for (;;) { ins_index = -1; depth = 1; EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; for (;;) { - i = (hash + depth) & (EFX_HUNT_FILTER_TBL_ROWS - 1); - saved_spec = hunt_filter_entry_spec(hftp, i); + i = (hash + depth) & (EFX_EF10_FILTER_TBL_ROWS - 1); + saved_spec = ef10_filter_entry_spec(eftp, i); if (!saved_spec) { if (ins_index < 0) { ins_index = i; } - } else if (hunt_filter_equal(spec, saved_spec)) { - if (hunt_filter_entry_is_busy(hftp, i)) + } else if (ef10_filter_equal(spec, saved_spec)) { + if (ef10_filter_entry_is_busy(eftp, i)) break; if (saved_spec->efs_priority == EFX_FILTER_PRI_AUTO) { ins_index = i; goto found; - } else if (hunt_filter_is_exclusive(spec)) { + } else if (ef10_filter_is_exclusive(spec)) { if (may_replace) { ins_index = i; goto found; } else { rc = EEXIST; goto fail1; } } /* Leave existing */ } /* * Once we reach the maximum search depth, use * the first suitable slot or return EBUSY if * there was none. */ - if (depth == EFX_HUNT_FILTER_SEARCH_LIMIT) { + if (depth == EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = EBUSY; goto fail2; } goto found; } depth++; } EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; } found: /* * Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ - saved_spec = hunt_filter_entry_spec(hftp, ins_index); + saved_spec = ef10_filter_entry_spec(eftp, ins_index); if (saved_spec) { if (saved_spec->efs_priority == EFX_FILTER_PRI_AUTO) { /* This is a filter we are refreshing */ - hunt_filter_set_entry_not_auto_old(hftp, ins_index); + ef10_filter_set_entry_not_auto_old(eftp, ins_index); goto out_unlock; } replacing = B_TRUE; } else { EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (*spec), saved_spec); if (!saved_spec) { rc = ENOMEM; goto fail3; } *saved_spec = *spec; - hunt_filter_set_entry(hftp, ins_index, saved_spec); + ef10_filter_set_entry(eftp, ins_index, saved_spec); } - hunt_filter_set_entry_busy(hftp, ins_index); + ef10_filter_set_entry_busy(eftp, ins_index); EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; /* * On replacing the filter handle may change after after a successful * replace operation. */ if (replacing) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_REPLACE, - &hftp->hft_entry[ins_index].hfe_handle); - } else if (hunt_filter_is_exclusive(spec)) { + &eftp->eft_entry[ins_index].efe_handle); + } else if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_INSERT, - &hftp->hft_entry[ins_index].hfe_handle); + &eftp->eft_entry[ins_index].efe_handle); } else { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE, - &hftp->hft_entry[ins_index].hfe_handle); + &eftp->eft_entry[ins_index].efe_handle); } if (rc != 0) goto fail4; EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; if (replacing) { /* Update the fields that may differ */ saved_spec->efs_priority = spec->efs_priority; saved_spec->efs_flags = spec->efs_flags; saved_spec->efs_rss_context = spec->efs_rss_context; saved_spec->efs_dmaq_id = spec->efs_dmaq_id; } - hunt_filter_set_entry_not_busy(hftp, ins_index); + ef10_filter_set_entry_not_busy(eftp, ins_index); out_unlock: EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; if (filter_id) *filter_id = ins_index; return (0); fail4: EFSYS_PROBE(fail4); if (!replacing) { EFSYS_KMEM_FREE(enp->en_esip, sizeof (*spec), saved_spec); saved_spec = NULL; } - hunt_filter_set_entry_not_busy(hftp, ins_index); - hunt_filter_set_entry(hftp, ins_index, NULL); + ef10_filter_set_entry_not_busy(eftp, ins_index); + ef10_filter_set_entry(eftp, ins_index, NULL); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); if (locked) EFSYS_UNLOCK(enp->en_eslp, state); return (rc); } __checkReturn efx_rc_t -hunt_filter_add( +ef10_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace) { efx_rc_t rc; - rc = hunt_filter_add_internal(enp, spec, may_replace, NULL); + rc = ef10_filter_add_internal(enp, spec, may_replace, NULL); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t -hunt_filter_delete_internal( +ef10_filter_delete_internal( __in efx_nic_t *enp, __in uint32_t filter_id) { efx_rc_t rc; - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *spec; int state; - uint32_t filter_idx = filter_id % EFX_HUNT_FILTER_TBL_ROWS; + uint32_t filter_idx = filter_id % EFX_EF10_FILTER_TBL_ROWS; /* * Find the software table entry and mark it busy. Don't * remove it yet; any attempt to update while we're waiting * for the firmware must find the busy entry. * * FIXME: What if the busy flag is never cleared? */ EFSYS_LOCK(enp->en_eslp, state); - while (hunt_filter_entry_is_busy(table, filter_idx)) { + while (ef10_filter_entry_is_busy(table, filter_idx)) { EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_SPIN(1); EFSYS_LOCK(enp->en_eslp, state); } - if ((spec = hunt_filter_entry_spec(table, filter_idx)) != NULL) { - hunt_filter_set_entry_busy(table, filter_idx); + if ((spec = ef10_filter_entry_spec(table, filter_idx)) != NULL) { + ef10_filter_set_entry_busy(table, filter_idx); } EFSYS_UNLOCK(enp->en_eslp, state); if (spec == NULL) { rc = ENOENT; goto fail1; } /* * Try to remove the hardware filter. This may fail if the MC has * rebooted (which frees all hardware filter resources). */ - if (hunt_filter_is_exclusive(spec)) { + if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_delete(enp, MC_CMD_FILTER_OP_IN_OP_REMOVE, - &table->hft_entry[filter_idx].hfe_handle); + &table->eft_entry[filter_idx].efe_handle); } else { rc = efx_mcdi_filter_op_delete(enp, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE, - &table->hft_entry[filter_idx].hfe_handle); + &table->eft_entry[filter_idx].efe_handle); } /* Free the software table entry */ EFSYS_LOCK(enp->en_eslp, state); - hunt_filter_set_entry_not_busy(table, filter_idx); - hunt_filter_set_entry(table, filter_idx, NULL); + ef10_filter_set_entry_not_busy(table, filter_idx); + ef10_filter_set_entry(table, filter_idx, NULL); EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_KMEM_FREE(enp->en_esip, sizeof (*spec), spec); /* Check result of hardware filter removal */ if (rc != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t -hunt_filter_delete( +ef10_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec) { efx_rc_t rc; - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *saved_spec; unsigned int hash; unsigned int depth; unsigned int i; int state; boolean_t locked = B_FALSE; - EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); - hash = hunt_filter_hash(spec); + hash = ef10_filter_hash(spec); EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; depth = 1; for (;;) { - i = (hash + depth) & (EFX_HUNT_FILTER_TBL_ROWS - 1); - saved_spec = hunt_filter_entry_spec(table, i); - if (saved_spec && hunt_filter_equal(spec, saved_spec) && - hunt_filter_same_dest(spec, saved_spec)) { + i = (hash + depth) & (EFX_EF10_FILTER_TBL_ROWS - 1); + saved_spec = ef10_filter_entry_spec(table, i); + if (saved_spec && ef10_filter_equal(spec, saved_spec) && + ef10_filter_same_dest(spec, saved_spec)) { break; } - if (depth == EFX_HUNT_FILTER_SEARCH_LIMIT) { + if (depth == EF10_FILTER_SEARCH_LIMIT) { rc = ENOENT; goto fail1; } depth++; } EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; - rc = hunt_filter_delete_internal(enp, i); + rc = ef10_filter_delete_internal(enp, i); if (rc != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); if (locked) EFSYS_UNLOCK(enp->en_eslp, state); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_parser_disp_info( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PARSER_DISP_INFO_IN_LEN, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX)]; efx_rc_t rc; uint32_t i; boolean_t support_unknown_ucast = B_FALSE; boolean_t support_unknown_mcast = B_FALSE; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PARSER_DISP_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PARSER_DISP_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, GET_PARSER_DISP_INFO_OUT_OP, MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } *length = MCDI_OUT_DWORD(req, GET_PARSER_DISP_INFO_OUT_NUM_SUPPORTED_MATCHES); if (req.emr_out_length_used < MC_CMD_GET_PARSER_DISP_INFO_OUT_LEN(*length)) { rc = EMSGSIZE; goto fail2; } memcpy(list, MCDI_OUT2(req, uint32_t, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES), (*length) * sizeof (uint32_t)); EFX_STATIC_ASSERT(sizeof (uint32_t) == MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_LEN); /* * Remove UNKNOWN UCAST and MCAST flags, and if both are present, change * the lower priority one to LOC_MAC_IG. */ for (i = 0; i < *length; i++) { if (list[i] & MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN) { list[i] &= (~MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN); support_unknown_ucast = B_TRUE; } if (list[i] & MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) { list[i] &= (~MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN); support_unknown_mcast = B_TRUE; } if (support_unknown_ucast && support_unknown_mcast) { list[i] &= EFX_FILTER_MATCH_LOC_MAC_IG; break; } } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t -hunt_filter_supported_filters( +ef10_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { efx_rc_t rc; if ((rc = efx_mcdi_get_parser_disp_info(enp, list, length) != 0)) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t -hunt_filter_unicast_refresh( +ef10_filter_unicast_refresh( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *addr, __in boolean_t all_unicst, __in efx_filter_flag_t filter_flags) { - hunt_filter_table_t *hftp = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; efx_rc_t rc; if (all_unicst == B_TRUE) goto use_uc_def; /* Insert the filter for the local station address */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, - hftp->hft_default_rxq); + eftp->eft_default_rxq); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, addr); - rc = hunt_filter_add_internal(enp, &spec, B_TRUE, - &hftp->hft_unicst_filter_index); + rc = ef10_filter_add_internal(enp, &spec, B_TRUE, + &eftp->eft_unicst_filter_index); if (rc != 0) { /* * Fall back to an unknown filter. We may be able to subscribe * to it even if we couldn't insert the unicast filter. */ goto use_uc_def; } - hftp->hft_unicst_filter_set = B_TRUE; + eftp->eft_unicst_filter_set = B_TRUE; return (0); use_uc_def: /* Insert the unknown unicast filter */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, - hftp->hft_default_rxq); + eftp->eft_default_rxq); efx_filter_spec_set_uc_def(&spec); - rc = hunt_filter_add_internal(enp, &spec, B_TRUE, - &hftp->hft_unicst_filter_index); + rc = ef10_filter_add_internal(enp, &spec, B_TRUE, + &eftp->eft_unicst_filter_index); if (rc != 0) goto fail1; - hftp->hft_unicst_filter_set = B_TRUE; + eftp->eft_unicst_filter_set = B_TRUE; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); - if (hftp->hft_unicst_filter_set != B_FALSE) { - (void) hunt_filter_delete_internal(enp, - hftp->hft_unicst_filter_index); + if (eftp->eft_unicst_filter_set != B_FALSE) { + (void) ef10_filter_delete_internal(enp, + eftp->eft_unicst_filter_index); - hftp->hft_unicst_filter_set = B_FALSE; + eftp->eft_unicst_filter_set = B_FALSE; } return (rc); } static __checkReturn efx_rc_t -hunt_filter_multicast_refresh( +ef10_filter_multicast_refresh( __in efx_nic_t *enp, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in int count, __in efx_filter_flag_t filter_flags) { - hunt_filter_table_t *hftp = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; uint8_t addr[6]; unsigned i; efx_rc_t rc; if (all_mulcst == B_TRUE) goto use_mc_def; if (mulcst == B_FALSE) count = 0; if (count + (brdcst ? 1 : 0) > - EFX_ARRAY_SIZE(hftp->hft_mulcst_filter_indexes)) { + EFX_ARRAY_SIZE(eftp->eft_mulcst_filter_indexes)) { /* Too many MAC addresses; use unknown multicast filter */ goto use_mc_def; } /* Insert/renew multicast address list filters */ - hftp->hft_mulcst_filter_count = count; - for (i = 0; i < hftp->hft_mulcst_filter_count; i++) { + eftp->eft_mulcst_filter_count = count; + for (i = 0; i < eftp->eft_mulcst_filter_count; i++) { efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, - hftp->hft_default_rxq); + eftp->eft_default_rxq); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, &addrs[i * EFX_MAC_ADDR_LEN]); - rc = hunt_filter_add_internal(enp, &spec, B_TRUE, - &hftp->hft_mulcst_filter_indexes[i]); + rc = ef10_filter_add_internal(enp, &spec, B_TRUE, + &eftp->eft_mulcst_filter_indexes[i]); if (rc != 0) { /* Rollback, then use unknown multicast filter */ goto rollback; } } if (brdcst == B_TRUE) { /* Insert/renew broadcast address filter */ - hftp->hft_mulcst_filter_count++; + eftp->eft_mulcst_filter_count++; efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, - hftp->hft_default_rxq); + eftp->eft_default_rxq); EFX_MAC_BROADCAST_ADDR_SET(addr); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, addr); - rc = hunt_filter_add_internal(enp, &spec, B_TRUE, - &hftp->hft_mulcst_filter_indexes[ - hftp->hft_mulcst_filter_count - 1]); + rc = ef10_filter_add_internal(enp, &spec, B_TRUE, + &eftp->eft_mulcst_filter_indexes[ + eftp->eft_mulcst_filter_count - 1]); if (rc != 0) { /* Rollback, then use unknown multicast filter */ goto rollback; } } return (0); rollback: /* * Rollback by removing any filters we have inserted * before inserting the unknown multicast filter. */ while (i--) { - (void) hunt_filter_delete_internal(enp, - hftp->hft_mulcst_filter_indexes[i]); + (void) ef10_filter_delete_internal(enp, + eftp->eft_mulcst_filter_indexes[i]); } - hftp->hft_mulcst_filter_count = 0; + eftp->eft_mulcst_filter_count = 0; use_mc_def: /* Insert the unknown multicast filter */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, - hftp->hft_default_rxq); + eftp->eft_default_rxq); efx_filter_spec_set_mc_def(&spec); - rc = hunt_filter_add_internal(enp, &spec, B_TRUE, - &hftp->hft_mulcst_filter_indexes[0]); + rc = ef10_filter_add_internal(enp, &spec, B_TRUE, + &eftp->eft_mulcst_filter_indexes[0]); if (rc != 0) goto fail1; - hftp->hft_mulcst_filter_count = 1; + eftp->eft_mulcst_filter_count = 1; /* * FIXME: If brdcst == B_FALSE, add a filter to drop broadcast traffic. */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t hunt_filter_get_workarounds( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; uint32_t implemented = 0; uint32_t enabled = 0; efx_rc_t rc; rc = efx_mcdi_get_workarounds(enp, &implemented, &enabled); if (rc == 0) { /* Check if chained multicast filter support is enabled */ if (implemented & enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807) encp->enc_bug26807_workaround = B_TRUE; else encp->enc_bug26807_workaround = B_FALSE; } else if (rc == ENOTSUP) { /* * Firmware is too old to support GET_WORKAROUNDS, and support * for this workaround was implemented later. */ encp->enc_bug26807_workaround = B_FALSE; } else { goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Reconfigure all filters. * If all_unicst and/or all mulcst filters cannot be applied then * return ENOTSUP (Note the filters for the specified addresses are * still applied in this case). */ __checkReturn efx_rc_t -hunt_filter_reconfigure( +ef10_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in int count) { - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_flag_t filter_flags; unsigned i; int all_unicst_rc; int all_mulcst_rc; efx_rc_t rc; - if (table->hft_default_rxq == NULL) { + if (table->eft_default_rxq == NULL) { /* * Filters direct traffic to the default RXQ, and so cannot be * inserted until it is available. Any currently configured * filters must be removed (ignore errors in case the MC * has rebooted, which removes hardware filters). */ - if (table->hft_unicst_filter_set != B_FALSE) { - (void) hunt_filter_delete_internal(enp, - table->hft_unicst_filter_index); - table->hft_unicst_filter_set = B_FALSE; + if (table->eft_unicst_filter_set != B_FALSE) { + (void) ef10_filter_delete_internal(enp, + table->eft_unicst_filter_index); + table->eft_unicst_filter_set = B_FALSE; } - for (i = 0; i < table->hft_mulcst_filter_count; i++) { - (void) hunt_filter_delete_internal(enp, - table->hft_mulcst_filter_indexes[i]); + for (i = 0; i < table->eft_mulcst_filter_count; i++) { + (void) ef10_filter_delete_internal(enp, + table->eft_mulcst_filter_indexes[i]); } - table->hft_mulcst_filter_count = 0; + table->eft_mulcst_filter_count = 0; return (0); } - if (table->hft_using_rss) + if (table->eft_using_rss) filter_flags = EFX_FILTER_FLAG_RX_RSS; else filter_flags = 0; /* Mark old filters which may need to be removed */ - if (table->hft_unicst_filter_set != B_FALSE) { - hunt_filter_set_entry_auto_old(table, - table->hft_unicst_filter_index); + if (table->eft_unicst_filter_set != B_FALSE) { + ef10_filter_set_entry_auto_old(table, + table->eft_unicst_filter_index); } - for (i = 0; i < table->hft_mulcst_filter_count; i++) { - hunt_filter_set_entry_auto_old(table, - table->hft_mulcst_filter_indexes[i]); + for (i = 0; i < table->eft_mulcst_filter_count; i++) { + ef10_filter_set_entry_auto_old(table, + table->eft_mulcst_filter_indexes[i]); } /* Insert or renew unicast filters */ - if ((all_unicst_rc = hunt_filter_unicast_refresh(enp, mac_addr, + if ((all_unicst_rc = ef10_filter_unicast_refresh(enp, mac_addr, all_unicst, filter_flags)) != 0) { if (all_unicst == B_FALSE) { rc = all_unicst_rc; goto fail1; } /* Retry without all_unicast flag */ - rc = hunt_filter_unicast_refresh(enp, mac_addr, + rc = ef10_filter_unicast_refresh(enp, mac_addr, B_FALSE, filter_flags); if (rc != 0) goto fail2; } /* * WORKAROUND_BUG26807 controls firmware support for chained multicast * filters, and can only be enabled or disabled when the hardware filter * table is empty. * * Firmware will reset (FLR) functions which have inserted filters in * the hardware filter table when the workaround is enabled/disabled. * Functions without any hardware filters are not reset. * * Re-check if the workaround is enabled after adding unicast hardware * filters. This ensures that encp->enc_workaround_bug26807 matches the * firmware state, and that later changes to enable/disable the * workaround will result in this function seeing a reset (FLR). + * + * FIXME: On Medford mulicast chaining should always be on. */ if ((rc = hunt_filter_get_workarounds(enp)) != 0) goto fail3; /* Insert or renew multicast filters */ - if ((all_mulcst_rc = hunt_filter_multicast_refresh(enp, mulcst, + if ((all_mulcst_rc = ef10_filter_multicast_refresh(enp, mulcst, all_mulcst, brdcst, addrs, count, filter_flags)) != 0) { if (all_mulcst == B_FALSE) { rc = all_mulcst_rc; goto fail4; } /* Retry without all_mulcast flag */ - rc = hunt_filter_multicast_refresh(enp, mulcst, + rc = ef10_filter_multicast_refresh(enp, mulcst, B_FALSE, brdcst, addrs, count, filter_flags); if (rc != 0) goto fail5; } /* Remove old filters which were not renewed */ - for (i = 0; i < EFX_ARRAY_SIZE(table->hft_entry); i++) { - if (hunt_filter_entry_is_auto_old(table, i)) { - (void) hunt_filter_delete_internal(enp, i); + for (i = 0; i < EFX_ARRAY_SIZE(table->eft_entry); i++) { + if (ef10_filter_entry_is_auto_old(table, i)) { + (void) ef10_filter_delete_internal(enp, i); } } /* report if any optional flags were rejected */ if (((all_unicst != B_FALSE) && (all_unicst_rc != 0)) || ((all_mulcst != B_FALSE) && (all_mulcst_rc != 0))) { rc = ENOTSUP; } return (rc); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Clear auto old flags */ - for (i = 0; i < EFX_ARRAY_SIZE(table->hft_entry); i++) { - if (hunt_filter_entry_is_auto_old(table, i)) { - hunt_filter_set_entry_not_auto_old(table, i); + for (i = 0; i < EFX_ARRAY_SIZE(table->eft_entry); i++) { + if (ef10_filter_entry_is_auto_old(table, i)) { + ef10_filter_set_entry_not_auto_old(table, i); } } return (rc); } void -hunt_filter_get_default_rxq( +ef10_filter_get_default_rxq( __in efx_nic_t *enp, __out efx_rxq_t **erpp, __out boolean_t *using_rss) { - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; - *erpp = table->hft_default_rxq; - *using_rss = table->hft_using_rss; + *erpp = table->eft_default_rxq; + *using_rss = table->eft_using_rss; } void -hunt_filter_default_rxq_set( +ef10_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss) { - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; #if EFSYS_OPT_RX_SCALE EFSYS_ASSERT((using_rss == B_FALSE) || (enp->en_rss_context != EF10_RSS_CONTEXT_INVALID)); - table->hft_using_rss = using_rss; + table->eft_using_rss = using_rss; #else EFSYS_ASSERT(using_rss == B_FALSE); - table->hft_using_rss = B_FALSE; + table->eft_using_rss = B_FALSE; #endif - table->hft_default_rxq = erp; + table->eft_default_rxq = erp; } void -hunt_filter_default_rxq_clear( +ef10_filter_default_rxq_clear( __in efx_nic_t *enp) { - hunt_filter_table_t *table = enp->en_filter.ef_hunt_filter_table; + ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; - table->hft_default_rxq = NULL; - table->hft_using_rss = B_FALSE; + table->eft_default_rxq = NULL; + table->eft_using_rss = B_FALSE; } #endif /* EFSYS_OPT_FILTER */ #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_impl.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_impl.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_impl.h (revision 293803) @@ -1,1027 +1,1046 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_HUNT_IMPL_H #define _SYS_HUNT_IMPL_H #include "efx.h" #include "efx_regs.h" #include "efx_regs_ef10.h" #include "efx_mcdi.h" #ifdef __cplusplus extern "C" { #endif /* * FIXME: This is just a power of 2 which fits in an MCDI v1 message, and could * possibly be increased, or the write size reported by newer firmware used * instead. */ #define EF10_NVRAM_CHUNK 0x80 /* Alignment requirement for value written to RX WPTR: * the WPTR must be aligned to an 8 descriptor boundary */ #define HUNTINGTON_RX_WPTR_ALIGN 8 /* Invalid RSS context handle */ #define EF10_RSS_CONTEXT_INVALID (0xffffffff) /* EV */ __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp); void ef10_ev_fini( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep); void ef10_ev_qdestroy( __in efx_evq_t *eep); __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label); void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label); /* INTR */ __checkReturn efx_rc_t ef10_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); void ef10_intr_enable( __in efx_nic_t *enp); void ef10_intr_disable( __in efx_nic_t *enp); void ef10_intr_disable_unlocked( __in efx_nic_t *enp); __checkReturn efx_rc_t ef10_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); void +ef10_intr_status_line( + __in efx_nic_t *enp, + __out boolean_t *fatalp, + __out uint32_t *qmaskp); + + void +ef10_intr_status_message( + __in efx_nic_t *enp, + __in unsigned int message, + __out boolean_t *fatalp); + + void +ef10_intr_fatal( + __in efx_nic_t *enp); + void ef10_intr_fini( __in efx_nic_t *enp); /* NIC */ extern __checkReturn efx_rc_t hunt_nic_probe( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); extern __checkReturn efx_rc_t hunt_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp); extern __checkReturn efx_rc_t hunt_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t hunt_nic_reset( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_nic_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t hunt_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void hunt_nic_fini( __in efx_nic_t *enp); extern void hunt_nic_unprobe( __in efx_nic_t *enp); /* MAC */ extern __checkReturn efx_rc_t hunt_mac_poll( __in efx_nic_t *enp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t hunt_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); extern __checkReturn efx_rc_t hunt_mac_addr_set( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_mac_reconfigure( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_mac_multicast_list_set( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void hunt_mac_filter_default_rxq_clear( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK extern __checkReturn efx_rc_t hunt_mac_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t loopback_type); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS extern __checkReturn efx_rc_t hunt_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MCDI */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t ef10_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern void ef10_mcdi_fini( __in efx_nic_t *enp); extern void ef10_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch); extern __checkReturn boolean_t ef10_mcdi_poll_response( __in efx_nic_t *enp); extern void ef10_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length); extern void ef10_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp); extern efx_rc_t ef10_mcdi_poll_reboot( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_mcdi_feature_supported( __in efx_nic_t *enp, __in efx_mcdi_feature_id_t id, __out boolean_t *supportedp); #endif /* EFSYS_OPT_MCDI */ /* NVRAM */ #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD extern __checkReturn efx_rc_t ef10_nvram_buf_read_tlv( __in efx_nic_t *enp, __in_bcount(max_seg_size) caddr_t seg_data, __in size_t max_seg_size, __in uint32_t tag, __deref_out_bcount_opt(*sizep) caddr_t *datap, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_buf_write_tlv( __inout_bcount(partn_size) caddr_t partn_data, __in size_t partn_size, __in uint32_t tag, __in_bcount(tag_size) caddr_t tag_data, __in size_t tag_size, __out size_t *total_lengthp); extern __checkReturn efx_rc_t ef10_nvram_partn_read_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __deref_out_bcount_opt(*sizep) caddr_t *datap, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_partn_write_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_write_segment_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t all_segments); extern __checkReturn efx_rc_t ef10_nvram_partn_size( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_partn_lock( __in efx_nic_t *enp, - __in unsigned int partn); + __in uint32_t partn); extern __checkReturn efx_rc_t ef10_nvram_partn_read( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_erase( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_partn_write( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern void ef10_nvram_partn_unlock( __in efx_nic_t *enp, - __in unsigned int partn); + __in uint32_t partn); #endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */ #if EFSYS_OPT_NVRAM #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t ef10_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t ef10_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t ef10_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *pref_chunkp); extern __checkReturn efx_rc_t ef10_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t ef10_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void ef10_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t ef10_nvram_partn_set_version( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t ef10_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); #endif /* EFSYS_OPT_NVRAM */ /* PHY */ typedef struct hunt_link_state_s { uint32_t hls_adv_cap_mask; uint32_t hls_lp_cap_mask; unsigned int hls_fcntl; efx_link_mode_t hls_link_mode; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t hls_loopback; #endif boolean_t hls_mac_up; } hunt_link_state_t; extern void hunt_phy_link_ev( __in efx_nic_t *enp, __in efx_qword_t *eqp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t hunt_phy_get_link( __in efx_nic_t *enp, __out hunt_link_state_t *hlsp); extern __checkReturn efx_rc_t hunt_phy_power( __in efx_nic_t *enp, __in boolean_t on); extern __checkReturn efx_rc_t hunt_phy_reconfigure( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_phy_verify( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); #if EFSYS_OPT_PHY_STATS extern __checkReturn efx_rc_t hunt_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS #if EFSYS_OPT_NAMES extern const char * hunt_phy_prop_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t hunt_phy_prop_get( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t flags, __out uint32_t *valp); extern __checkReturn efx_rc_t hunt_phy_prop_set( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t val); #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_BIST extern __checkReturn efx_rc_t hunt_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t hunt_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t hunt_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt __drv_when(count > 0, __notnull) uint32_t *value_maskp, __out_ecount_opt(count) __drv_when(count > 0, __notnull) unsigned long *valuesp, __in size_t count); extern void hunt_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ /* SRAM */ #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t ef10_sram_test( __in efx_nic_t *enp, __in efx_sram_pattern_fn_t func); #endif /* EFSYS_OPT_DIAG */ /* TX */ extern __checkReturn efx_rc_t ef10_tx_init( __in efx_nic_t *enp); extern void ef10_tx_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __in efx_txq_t *etp, __out unsigned int *addedp); extern void ef10_tx_qdestroy( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void ef10_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t ef10_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern __checkReturn efx_rc_t ef10_tx_qflush( __in efx_txq_t *etp); extern void ef10_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpio_enable( __in efx_txq_t *etp); extern void ef10_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t ef10_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t ef10_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t ef10_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void ef10_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void hunt_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); extern void ef10_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t vlan_tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS extern void ef10_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ /* PIO */ /* Missing register definitions */ #ifndef ER_DZ_TX_PIOBUF_OFST #define ER_DZ_TX_PIOBUF_OFST 0x00001000 #endif #ifndef ER_DZ_TX_PIOBUF_STEP #define ER_DZ_TX_PIOBUF_STEP 8192 #endif #ifndef ER_DZ_TX_PIOBUF_ROWS #define ER_DZ_TX_PIOBUF_ROWS 2048 #endif #ifndef ER_DZ_TX_PIOBUF_SIZE #define ER_DZ_TX_PIOBUF_SIZE 2048 #endif #define HUNT_PIOBUF_NBUFS (16) #define HUNT_PIOBUF_SIZE (ER_DZ_TX_PIOBUF_SIZE) #define HUNT_MIN_PIO_ALLOC_SIZE (HUNT_PIOBUF_SIZE / 32) #define HUNT_LEGACY_PF_PRIVILEGE_MASK \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS) #define HUNT_LEGACY_VF_PRIVILEGE_MASK 0 typedef uint32_t efx_piobuf_handle_t; #define EFX_PIOBUF_HANDLE_INVALID ((efx_piobuf_handle_t) -1) extern __checkReturn efx_rc_t hunt_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t hunt_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum); extern __checkReturn efx_rc_t hunt_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle); extern __checkReturn efx_rc_t hunt_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index); /* VPD */ #if EFSYS_OPT_VPD extern __checkReturn efx_rc_t ef10_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t ef10_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t ef10_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t ef10_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t ef10_vpd_set( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t ef10_vpd_next( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t ef10_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void ef10_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* RX */ extern __checkReturn efx_rc_t ef10_rx_init( __in efx_nic_t *enp); #if EFSYS_OPT_RX_HDR_SPLIT extern __checkReturn efx_rc_t ef10_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size); #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER extern __checkReturn efx_rc_t ef10_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE extern __checkReturn efx_rc_t ef10_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t ef10_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); extern __checkReturn efx_rc_t ef10_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); #endif /* EFSYS_OPT_RX_SCALE */ extern void ef10_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); extern void ef10_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); extern __checkReturn efx_rc_t ef10_rx_qflush( __in efx_rxq_t *erp); extern void ef10_rx_qenable( __in efx_rxq_t *erp); extern __checkReturn efx_rc_t ef10_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp); extern void ef10_rx_qdestroy( __in efx_rxq_t *erp); extern void ef10_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_FILTER -typedef struct hunt_filter_handle_s { - uint32_t hfh_lo; - uint32_t hfh_hi; -} hunt_filter_handle_t; +typedef struct ef10_filter_handle_s { + uint32_t efh_lo; + uint32_t efh_hi; +} ef10_filter_handle_t; -typedef struct hunt_filter_entry_s { - uintptr_t hfe_spec; /* pointer to filter spec plus busy bit */ - hunt_filter_handle_t hfe_handle; -} hunt_filter_entry_t; +typedef struct ef10_filter_entry_s { + uintptr_t efe_spec; /* pointer to filter spec plus busy bit */ + ef10_filter_handle_t efe_handle; +} ef10_filter_entry_t; /* * BUSY flag indicates that an update is in progress. * AUTO_OLD flag is used to mark and sweep MAC packet filters. */ -#define EFX_HUNT_FILTER_FLAG_BUSY 1U -#define EFX_HUNT_FILTER_FLAG_AUTO_OLD 2U -#define EFX_HUNT_FILTER_FLAGS 3U +#define EFX_EF10_FILTER_FLAG_BUSY 1U +#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2U +#define EFX_EF10_FILTER_FLAGS 3U -#define EFX_HUNT_FILTER_TBL_ROWS 8192 +/* + * Size of the hash table used by the driver. Doesn't need to be the + * same size as the hardware's table. + */ +#define EFX_EF10_FILTER_TBL_ROWS 8192 /* Allow for the broadcast address to be added to the multicast list */ -#define EFX_HUNT_FILTER_MULTICAST_FILTERS_MAX (EFX_MAC_MULTICAST_LIST_MAX + 1) +#define EFX_EF10_FILTER_MULTICAST_FILTERS_MAX (EFX_MAC_MULTICAST_LIST_MAX + 1) -typedef struct hunt_filter_table_s { - hunt_filter_entry_t hft_entry[EFX_HUNT_FILTER_TBL_ROWS]; - efx_rxq_t * hft_default_rxq; - boolean_t hft_using_rss; - uint32_t hft_unicst_filter_index; - boolean_t hft_unicst_filter_set; - uint32_t hft_mulcst_filter_indexes[ - EFX_HUNT_FILTER_MULTICAST_FILTERS_MAX]; - uint32_t hft_mulcst_filter_count; -} hunt_filter_table_t; +typedef struct ef10_filter_table_s { + ef10_filter_entry_t eft_entry[EFX_EF10_FILTER_TBL_ROWS]; + efx_rxq_t * eft_default_rxq; + boolean_t eft_using_rss; + uint32_t eft_unicst_filter_index; + boolean_t eft_unicst_filter_set; + uint32_t eft_mulcst_filter_indexes[ + EFX_EF10_FILTER_MULTICAST_FILTERS_MAX]; + uint32_t eft_mulcst_filter_count; +} ef10_filter_table_t; __checkReturn efx_rc_t -hunt_filter_init( +ef10_filter_init( __in efx_nic_t *enp); void -hunt_filter_fini( +ef10_filter_fini( __in efx_nic_t *enp); __checkReturn efx_rc_t -hunt_filter_restore( +ef10_filter_restore( __in efx_nic_t *enp); __checkReturn efx_rc_t -hunt_filter_add( +ef10_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace); __checkReturn efx_rc_t -hunt_filter_delete( +ef10_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t -hunt_filter_supported_filters( +ef10_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); extern __checkReturn efx_rc_t -hunt_filter_reconfigure( +ef10_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern void -hunt_filter_get_default_rxq( +ef10_filter_get_default_rxq( __in efx_nic_t *enp, __out efx_rxq_t **erpp, __out boolean_t *using_rss); extern void -hunt_filter_default_rxq_set( +ef10_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void -hunt_filter_default_rxq_clear( +ef10_filter_default_rxq_clear( __in efx_nic_t *enp); #endif /* EFSYS_OPT_FILTER */ extern __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp); extern __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp); #ifdef __cplusplus } #endif #endif /* _SYS_HUNT_IMPL_H */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_intr.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_intr.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_intr.c (revision 293803) @@ -1,159 +1,201 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON __checkReturn efx_rc_t ef10_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp) { _NOTE(ARGUNUSED(enp, type, esmp)) return (0); } void ef10_intr_enable( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } void ef10_intr_disable( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } void ef10_intr_disable_unlocked( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } static __checkReturn efx_rc_t efx_mcdi_trigger_interrupt( __in efx_nic_t *enp, __in unsigned int level) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_TRIGGER_INTERRUPT_IN_LEN, MC_CMD_TRIGGER_INTERRUPT_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); if (level >= enp->en_nic_cfg.enc_intr_limit) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_TRIGGER_INTERRUPT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_TRIGGER_INTERRUPT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_TRIGGER_INTERRUPT_OUT_LEN; MCDI_IN_SET_DWORD(req, TRIGGER_INTERRUPT_IN_INTR_LEVEL, level); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_intr_trigger( __in efx_nic_t *enp, __in unsigned int level) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_rc_t rc; if (encp->enc_bug41750_workaround) { /* * bug 41750: Test interrupts don't work on Greenport * bug 50084: Test interrupts don't work on VFs */ rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_trigger_interrupt(enp, level)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } + void +ef10_intr_status_line( + __in efx_nic_t *enp, + __out boolean_t *fatalp, + __out uint32_t *qmaskp) +{ + efx_dword_t dword; + + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); + + /* Read the queue mask and implicitly acknowledge the interrupt. */ + EFX_BAR_READD(enp, ER_DZ_BIU_INT_ISR_REG, &dword, B_FALSE); + *qmaskp = EFX_DWORD_FIELD(dword, EFX_DWORD_0); + + EFSYS_PROBE1(qmask, uint32_t, *qmaskp); + + *fatalp = B_FALSE; +} + + void +ef10_intr_status_message( + __in efx_nic_t *enp, + __in unsigned int message, + __out boolean_t *fatalp) +{ + EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || + enp->en_family == EFX_FAMILY_MEDFORD); + + _NOTE(ARGUNUSED(enp, message)) + + /* EF10 fatal errors are reported via events */ + *fatalp = B_FALSE; +} + + void +ef10_intr_fatal( + __in efx_nic_t *enp) +{ + /* EF10 fatal errors are reported via events */ + _NOTE(ARGUNUSED(enp)) +} void ef10_intr_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_mac.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_mac.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_mac.c (revision 293803) @@ -1,696 +1,696 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON __checkReturn efx_rc_t hunt_mac_poll( __in efx_nic_t *enp, __out efx_link_mode_t *link_modep) { /* * TBD: Consider a common Siena/Huntington function. The code is * essentially identical. */ efx_port_t *epp = &(enp->en_port); hunt_link_state_t hls; efx_rc_t rc; if ((rc = hunt_phy_get_link(enp, &hls)) != 0) goto fail1; epp->ep_adv_cap_mask = hls.hls_adv_cap_mask; epp->ep_fcntl = hls.hls_fcntl; *link_modep = hls.hls_link_mode; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); *link_modep = EFX_LINK_UNKNOWN; return (rc); } __checkReturn efx_rc_t hunt_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp) { /* * TBD: Consider a common Siena/Huntington function. The code is * essentially identical. */ hunt_link_state_t hls; efx_rc_t rc; /* * Because Huntington doesn't *require* polling, we can't rely on * hunt_mac_poll() being executed to populate epp->ep_mac_up. */ if ((rc = hunt_phy_get_link(enp, &hls)) != 0) goto fail1; *mac_upp = hls.hls_mac_up; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Huntington uses MC_CMD_VADAPTOR_SET_MAC to set the * MAC address; the address field in MC_CMD_SET_MAC has no * effect. * MC_CMD_VADAPTOR_SET_MAC requires mac-spoofing privilege and * the port to have no filters or queues active. */ static __checkReturn efx_rc_t efx_mcdi_vadapter_set_mac( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_SET_MAC_IN_LEN, MC_CMD_VADAPTOR_SET_MAC_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_SET_MAC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_SET_MAC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_SET_MAC_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, enp->en_vport_id); EFX_MAC_ADDR_COPY(MCDI_IN2(req, uint8_t, VADAPTOR_SET_MAC_IN_MACADDR), epp->ep_mac_addr); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_mac_addr_set( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_vadapter_set_mac(enp)) != 0) { if (rc != ENOTSUP) goto fail1; /* Fallback for older firmware without Vadapter support */ if ((rc = hunt_mac_reconfigure(enp)) != 0) goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_mac_reconfigure( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_SET_MAC_IN_LEN, MC_CMD_SET_MAC_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SET_MAC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SET_MAC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SET_MAC_OUT_LEN; MCDI_IN_SET_DWORD(req, SET_MAC_IN_MTU, epp->ep_mac_pdu); MCDI_IN_SET_DWORD(req, SET_MAC_IN_DRAIN, epp->ep_mac_drain ? 1 : 0); EFX_MAC_ADDR_COPY(MCDI_IN2(req, uint8_t, SET_MAC_IN_ADDR), epp->ep_mac_addr); /* * Note: The Huntington MAC does not support REJECT_BRDCST. * The REJECT_UNCST flag will also prevent multicast traffic * from reaching the filters. As Huntington filters drop any * traffic that does not match a filter it is ok to leave the * MAC running in promiscuous mode. See bug41141. */ MCDI_IN_POPULATE_DWORD_2(req, SET_MAC_IN_REJECT, SET_MAC_IN_REJECT_UNCST, 0, SET_MAC_IN_REJECT_BRDCST, 0); /* * Flow control, whether it is auto-negotiated or not, * is set via the PHY advertised capabilities. When set to * automatic the MAC will use the PHY settings to determine * the flow control settings. */ MCDI_IN_SET_DWORD(req, SET_MAC_IN_FCNTL, MC_CMD_FCNTL_AUTO); /* Do not include the Ethernet frame checksum in RX packets */ MCDI_IN_POPULATE_DWORD_1(req, SET_MAC_IN_FLAGS, SET_MAC_IN_FLAG_INCLUDE_FCS, 0); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { /* * Unprivileged functions cannot control link state, * but still need to configure filters. */ if (req.emr_rc != EACCES) { rc = req.emr_rc; goto fail1; } } /* * Apply the filters for the MAC configuration. * If the NIC isn't ready to accept filters this may * return success without setting anything. */ rc = efx_filter_reconfigure(enp, epp->ep_mac_addr, epp->ep_all_unicst, epp->ep_mulcst, epp->ep_all_mulcst, epp->ep_brdcst, epp->ep_mulcst_addr_list, epp->ep_mulcst_addr_count); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_mac_multicast_list_set( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_mac_ops_t *emop = epp->ep_emop; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); /* FIXME: Insert filters for multicast list */ if ((rc = emop->emo_reconfigure(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss) { efx_port_t *epp = &(enp->en_port); efx_rxq_t *old_rxq; boolean_t old_using_rss; efx_rc_t rc; - hunt_filter_get_default_rxq(enp, &old_rxq, &old_using_rss); + ef10_filter_get_default_rxq(enp, &old_rxq, &old_using_rss); - hunt_filter_default_rxq_set(enp, erp, using_rss); + ef10_filter_default_rxq_set(enp, erp, using_rss); rc = efx_filter_reconfigure(enp, epp->ep_mac_addr, epp->ep_all_unicst, epp->ep_mulcst, epp->ep_all_mulcst, epp->ep_brdcst, epp->ep_mulcst_addr_list, epp->ep_mulcst_addr_count); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); - hunt_filter_default_rxq_set(enp, old_rxq, old_using_rss); + ef10_filter_default_rxq_set(enp, old_rxq, old_using_rss); return (rc); } void hunt_mac_filter_default_rxq_clear( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); - hunt_filter_default_rxq_clear(enp); + ef10_filter_default_rxq_clear(enp); efx_filter_reconfigure(enp, epp->ep_mac_addr, epp->ep_all_unicst, epp->ep_mulcst, epp->ep_all_mulcst, epp->ep_brdcst, epp->ep_mulcst_addr_list, epp->ep_mulcst_addr_count); } #if EFSYS_OPT_LOOPBACK __checkReturn efx_rc_t hunt_mac_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t loopback_type) { /* * TBD: Consider a common Siena/Huntington function. The code is * essentially identical. */ efx_port_t *epp = &(enp->en_port); efx_phy_ops_t *epop = epp->ep_epop; efx_loopback_type_t old_loopback_type; efx_link_mode_t old_loopback_link_mode; efx_rc_t rc; /* The PHY object handles this on Huntington */ old_loopback_type = epp->ep_loopback_type; old_loopback_link_mode = epp->ep_loopback_link_mode; epp->ep_loopback_type = loopback_type; epp->ep_loopback_link_mode = link_mode; if ((rc = epop->epo_reconfigure(enp)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); epp->ep_loopback_type = old_loopback_type; epp->ep_loopback_link_mode = old_loopback_link_mode; return (rc); } #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS #define HUNT_MAC_STAT_READ(_esmp, _field, _eqp) \ EFSYS_MEM_READQ((_esmp), (_field) * sizeof (efx_qword_t), _eqp) __checkReturn efx_rc_t hunt_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp) { efx_qword_t value; efx_qword_t generation_start; efx_qword_t generation_end; _NOTE(ARGUNUSED(enp)) /* Read END first so we don't race with the MC */ EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, EFX_MAC_STATS_SIZE); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_GENERATION_END, &generation_end); EFSYS_MEM_READ_BARRIER(); /* TX */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_CONTROL_PKTS, &value); EFSYS_STAT_SUBR_QWORD(&(stat[EFX_MAC_TX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_PAUSE_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_PAUSE_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_UNICAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_UNICST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_MULTICAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_MULTICST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_BROADCAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_BRDCST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_OCTETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_LT64_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_LE_64_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_64_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_LE_64_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_65_TO_127_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_65_TO_127_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_128_TO_255_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_128_TO_255_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_256_TO_511_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_256_TO_511_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_512_TO_1023_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_512_TO_1023_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_1024_TO_15XX_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_1024_TO_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_15XX_TO_JUMBO_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_GE_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_GTJUMBO_PKTS, &value); EFSYS_STAT_INCR_QWORD(&(stat[EFX_MAC_TX_GE_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_BAD_FCS_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_SINGLE_COLLISION_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_SGL_COL_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_MULTIPLE_COLLISION_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_MULT_COL_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_EXCESSIVE_COLLISION_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_EX_COL_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_LATE_COLLISION_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_LATE_COL_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_DEFERRED_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_DEF_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_TX_EXCESSIVE_DEFERRED_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_TX_EX_DEF_PKTS]), &value); /* RX */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_OCTETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_UNICAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_UNICST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_MULTICAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_MULTICST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_BROADCAST_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_BRDCST_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_PAUSE_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_PAUSE_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_UNDERSIZE_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_LE_64_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_64_PKTS, &value); EFSYS_STAT_INCR_QWORD(&(stat[EFX_MAC_RX_LE_64_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_65_TO_127_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_65_TO_127_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_128_TO_255_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_128_TO_255_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_256_TO_511_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_256_TO_511_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_512_TO_1023_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_512_TO_1023_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_1024_TO_15XX_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_1024_TO_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_15XX_TO_JUMBO_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_GE_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_GTJUMBO_PKTS, &value); EFSYS_STAT_INCR_QWORD(&(stat[EFX_MAC_RX_GE_15XX_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_BAD_FCS_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_FCS_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_OVERFLOW_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_DROP_EVENTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_FALSE_CARRIER_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_FALSE_CARRIER_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_SYMBOL_ERROR_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_SYMBOL_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_ALIGN_ERROR_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_ALIGN_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_INTERNAL_ERROR_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_INTERNAL_ERRORS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_JABBER_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_JABBER_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_LANES01_CHAR_ERR, &value); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE0_CHAR_ERR]), &(value.eq_dword[0])); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE1_CHAR_ERR]), &(value.eq_dword[1])); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_LANES23_CHAR_ERR, &value); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE2_CHAR_ERR]), &(value.eq_dword[0])); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE3_CHAR_ERR]), &(value.eq_dword[1])); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_LANES01_DISP_ERR, &value); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE0_DISP_ERR]), &(value.eq_dword[0])); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE1_DISP_ERR]), &(value.eq_dword[1])); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_LANES23_DISP_ERR, &value); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE2_DISP_ERR]), &(value.eq_dword[0])); EFSYS_STAT_SET_DWORD(&(stat[EFX_MAC_RX_LANE3_DISP_ERR]), &(value.eq_dword[1])); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_MATCH_FAULT, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_MATCH_FAULT]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RX_NODESC_DROPS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RX_NODESC_DROP_CNT]), &value); /* Packet memory (EF10 only) */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_TRUNC_BB_OVERFLOW, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_TRUNC_BB_OVERFLOW]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_DISCARD_BB_OVERFLOW, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_DISCARD_BB_OVERFLOW]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_TRUNC_VFIFO_FULL, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_TRUNC_VFIFO_FULL]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_DISCARD_VFIFO_FULL, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_DISCARD_VFIFO_FULL]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_TRUNC_QBB, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_TRUNC_QBB]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_DISCARD_QBB, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_DISCARD_QBB]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_PM_DISCARD_MAPPING, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_PM_DISCARD_MAPPING]), &value); /* RX datapath */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RXDP_Q_DISABLED_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RXDP_Q_DISABLED_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RXDP_DI_DROPPED_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RXDP_DI_DROPPED_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RXDP_STREAMING_PKTS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RXDP_STREAMING_PKTS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RXDP_HLB_FETCH_CONDITIONS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RXDP_HLB_FETCH]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_RXDP_HLB_WAIT_CONDITIONS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_RXDP_HLB_WAIT]), &value); /* VADAPTER RX */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_UNICAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_UNICAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_UNICAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_MULTICAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_MULTICAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_BROADCAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_BROADCAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_BAD_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_BAD_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_BAD_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_BAD_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_RX_OVERFLOW, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_RX_OVERFLOW]), &value); /* VADAPTER TX */ HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_UNICAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_UNICAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_UNICAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_MULTICAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_MULTICAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_BROADCAST_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_BROADCAST_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_BAD_PACKETS, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_BAD_PACKETS]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_BAD_BYTES, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_BAD_BYTES]), &value); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_VADAPTER_TX_OVERFLOW, &value); EFSYS_STAT_SET_QWORD(&(stat[EFX_MAC_VADAPTER_TX_OVERFLOW]), &value); EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, EFX_MAC_STATS_SIZE); EFSYS_MEM_READ_BARRIER(); HUNT_MAC_STAT_READ(esmp, MC_CMD_MAC_GENERATION_START, &generation_start); /* Check that we didn't read the stats in the middle of a DMA */ /* Not a good enough check ? */ if (memcmp(&generation_start, &generation_end, sizeof (generation_start))) return (EAGAIN); if (generationp) *generationp = EFX_QWORD_FIELD(generation_start, EFX_DWORD_0); return (0); } #endif /* EFSYS_OPT_MAC_STATS */ #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_mcdi.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_mcdi.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_mcdi.c (revision 293803) @@ -1,423 +1,431 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #if EFSYS_OPT_MCDI #ifndef WITH_MCDI_V2 #error "WITH_MCDI_V2 required for EF10 MCDIv2 commands." #endif typedef enum efx_mcdi_header_type_e { EFX_MCDI_HEADER_TYPE_V1, /* MCDIv0 (BootROM), MCDIv1 commands */ EFX_MCDI_HEADER_TYPE_V2, /* MCDIv2 commands */ } efx_mcdi_header_type_t; /* * Return the header format to use for sending an MCDI request. * * An MCDIv1 (Siena compatible) command should use MCDIv2 encapsulation if the * request input buffer or response output buffer are too large for the MCDIv1 * format. An MCDIv2 command must always be sent using MCDIv2 encapsulation. */ #define EFX_MCDI_HEADER_TYPE(_cmd, _length) \ ((((_cmd) & ~EFX_MASK32(MCDI_HEADER_CODE)) || \ ((_length) & ~EFX_MASK32(MCDI_HEADER_DATALEN))) ? \ EFX_MCDI_HEADER_TYPE_V2 : EFX_MCDI_HEADER_TYPE_V1) /* * MCDI Header NOT_EPOCH flag * ========================== * A new epoch begins at initial startup or after an MC reboot, and defines when * the MC should reject stale MCDI requests. * * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1. * * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0. */ __checkReturn efx_rc_t ef10_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { + efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efsys_mem_t *esmp = emtp->emt_dma_mem; efx_dword_t dword; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); EFSYS_ASSERT(enp->en_features & EFX_FEATURE_MCDI_DMA); + + /* + * All EF10 firmware supports MCDIv2 and MCDIv1. + * Medford BootROM supports MCDIv2 and MCDIv1. + * Huntington BootROM supports MCDIv1 only. + */ + emip->emi_max_version = 2; /* A host DMA buffer is required for EF10 MCDI */ if (esmp == NULL) { rc = EINVAL; goto fail1; } /* * Ensure that the MC doorbell is in a known state before issuing MCDI * commands. The recovery algorithm requires that the MC command buffer * must be 256 byte aligned. See bug24769. */ if ((EFSYS_MEM_ADDR(esmp) & 0xFF) != 0) { rc = EINVAL; goto fail2; } EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 1); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_HWRD_REG, &dword, B_FALSE); /* Save initial MC reboot status */ (void) ef10_mcdi_poll_reboot(enp); /* Start a new epoch (allow fresh MCDI requests to succeed) */ efx_mcdi_new_epoch(enp); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); emip->emi_new_epoch = B_FALSE; } void ef10_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; efx_mcdi_header_type_t hdr_type; efx_dword_t dword; efx_dword_t hdr[2]; unsigned int xflags; unsigned int pos; size_t offset; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; offset = 0; hdr_type = EFX_MCDI_HEADER_TYPE(emrp->emr_cmd, MAX(emrp->emr_in_length, emrp->emr_out_length)); if (hdr_type == EFX_MCDI_HEADER_TYPE_V2) { /* Construct MCDI v2 header */ EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, MC_CMD_V2_EXTN, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, 0, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFSYS_MEM_WRITED(esmp, offset, &hdr[0]); offset += sizeof (efx_dword_t); EFX_POPULATE_DWORD_2(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd, MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length); EFSYS_MEM_WRITED(esmp, offset, &hdr[1]); offset += sizeof (efx_dword_t); } else { /* Construct MCDI v1 header */ EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFSYS_MEM_WRITED(esmp, 0, &hdr[0]); offset += sizeof (efx_dword_t); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr, offset, emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Construct the payload */ for (pos = 0; pos < emrp->emr_in_length; pos += sizeof (efx_dword_t)) { memcpy(&dword, MCDI_IN(*emrp, efx_dword_t, pos), MIN(sizeof (dword), emrp->emr_in_length - pos)); EFSYS_MEM_WRITED(esmp, offset + pos, &dword); } /* Ring the doorbell to post the command DMA address to the MC */ EFSYS_ASSERT((EFSYS_MEM_ADDR(esmp) & 0xFF) == 0); /* Guarantee ordering of memory (MCDI request) and PIO (MC doorbell) */ EFSYS_DMA_SYNC_FOR_DEVICE(esmp, 0, offset + emrp->emr_in_length); EFSYS_PIO_WRITE_BARRIER(); EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, EFSYS_MEM_ADDR(esmp) >> 32); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_LWRD_REG, &dword, B_FALSE); EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, EFSYS_MEM_ADDR(esmp) & 0xffffffff); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_HWRD_REG, &dword, B_FALSE); } void ef10_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif /* EFSYS_OPT_MCDI_LOGGING */ efx_dword_t hdr[2]; unsigned int hdr_len; size_t bytes; if (emrp->emr_out_buf == NULL) return; /* Read the command header to detect MCDI response format */ hdr_len = sizeof (hdr[0]); ef10_mcdi_read_response(enp, &hdr[0], 0, hdr_len); if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) { /* * Read the actual payload length. The length given in the event * is only correct for responses with the V1 format. */ ef10_mcdi_read_response(enp, &hdr[1], hdr_len, sizeof (hdr[1])); hdr_len += sizeof (hdr[1]); emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } /* Copy payload out into caller supplied buffer */ bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); ef10_mcdi_read_response(enp, emrp->emr_out_buf, hdr_len, bytes); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, hdr_len, emrp->emr_out_buf, bytes); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } __checkReturn boolean_t ef10_mcdi_poll_response( __in efx_nic_t *enp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; efx_dword_t hdr; EFSYS_MEM_READD(esmp, 0, &hdr); return (EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE) ? B_TRUE : B_FALSE); } void ef10_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; unsigned int pos; efx_dword_t data; for (pos = 0; pos < length; pos += sizeof (efx_dword_t)) { EFSYS_MEM_READD(esmp, offset + pos, &data); memcpy((uint8_t *)bufferp + pos, &data, MIN(sizeof (data), length - pos)); } } efx_rc_t ef10_mcdi_poll_reboot( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t dword; uint32_t old_status; uint32_t new_status; efx_rc_t rc; old_status = emip->emi_mc_reboot_status; /* Update MC reboot status word */ EFX_BAR_TBL_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, 0, &dword, B_FALSE); new_status = dword.ed_u32[0]; /* MC has rebooted if the value has changed */ if (new_status != old_status) { emip->emi_mc_reboot_status = new_status; /* * FIXME: Ignore detected MC REBOOT for now. * * The Siena support for checking for MC reboot from status * flags is broken - see comments in siena_mcdi_poll_reboot(). * As the generic MCDI code is shared the EF10 reboot * detection suffers similar problems. * * Do not report an error when the boot status changes until * this can be handled by common code drivers (and reworked to * support Siena too). */ if (B_FALSE) { rc = EIO; goto fail1; } } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_mcdi_feature_supported( __in efx_nic_t *enp, __in efx_mcdi_feature_id_t id, __out boolean_t *supportedp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t privilege_mask = encp->enc_privilege_mask; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* * Use privilege mask state at MCDI attach. */ switch (id) { case EFX_MCDI_FEATURE_FW_UPDATE: /* * Admin privilege must be used prior to introduction of * specific flag. */ *supportedp = EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, ADMIN); break; case EFX_MCDI_FEATURE_LINK_CONTROL: /* * Admin privilege used prior to introduction of * specific flag. */ *supportedp = EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, LINK) || EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, ADMIN); break; case EFX_MCDI_FEATURE_MACADDR_CHANGE: /* * Admin privilege must be used prior to introduction of * mac spoofing privilege (at v4.6), which is used up to * introduction of change mac spoofing privilege (at v4.7) */ *supportedp = EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, CHANGE_MAC) || EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, MAC_SPOOFING) || EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, ADMIN); break; case EFX_MCDI_FEATURE_MAC_SPOOFING: /* * Admin privilege must be used prior to introduction of * mac spoofing privilege (at v4.6), which is used up to * introduction of mac spoofing TX privilege (at v4.7) */ *supportedp = EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, MAC_SPOOFING_TX) || EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, MAC_SPOOFING) || EFX_MCDI_HAVE_PRIVILEGE(privilege_mask, ADMIN); break; default: rc = ENOTSUP; goto fail1; break; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MCDI */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_nvram.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_nvram.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_nvram.c (revision 293803) @@ -1,1868 +1,1939 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM #include "ef10_tlv_layout.h" /* Cursor for TLV partition format */ typedef struct tlv_cursor_s { uint32_t *block; /* Base of data block */ uint32_t *current; /* Cursor position */ uint32_t *end; /* End tag position */ uint32_t *limit; /* Last dword of data block */ } tlv_cursor_t; static __checkReturn efx_rc_t tlv_validate_state( __in tlv_cursor_t *cursor); /* * Operations on TLV formatted partition data. */ static uint32_t tlv_tag( __in tlv_cursor_t *cursor) { uint32_t dword, tag; dword = cursor->current[0]; tag = __LE_TO_CPU_32(dword); return (tag); } static size_t tlv_length( __in tlv_cursor_t *cursor) { uint32_t dword, length; if (tlv_tag(cursor) == TLV_TAG_END) return (0); dword = cursor->current[1]; length = __LE_TO_CPU_32(dword); return ((size_t)length); } static uint8_t * tlv_value( __in tlv_cursor_t *cursor) { if (tlv_tag(cursor) == TLV_TAG_END) return (NULL); return ((uint8_t *)(&cursor->current[2])); } static uint8_t * tlv_item( __in tlv_cursor_t *cursor) { if (tlv_tag(cursor) == TLV_TAG_END) return (NULL); return ((uint8_t *)cursor->current); } /* * TLV item DWORD length is tag + length + value (rounded up to DWORD) * equivalent to tlv_n_words_for_len in mc-comms tlv.c */ #define TLV_DWORD_COUNT(length) \ (1 + 1 + (((length) + sizeof (uint32_t) - 1) / sizeof (uint32_t))) static uint32_t * tlv_next_item_ptr( __in tlv_cursor_t *cursor) { uint32_t length; length = tlv_length(cursor); return (cursor->current + TLV_DWORD_COUNT(length)); } static efx_rc_t tlv_advance( __in tlv_cursor_t *cursor) { efx_rc_t rc; if ((rc = tlv_validate_state(cursor)) != 0) goto fail1; if (cursor->current == cursor->end) { /* No more tags after END tag */ cursor->current = NULL; rc = ENOENT; goto fail2; } /* Advance to next item and validate */ cursor->current = tlv_next_item_ptr(cursor); if ((rc = tlv_validate_state(cursor)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static efx_rc_t tlv_rewind( __in tlv_cursor_t *cursor) { efx_rc_t rc; cursor->current = cursor->block; if ((rc = tlv_validate_state(cursor)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static efx_rc_t tlv_find( __in tlv_cursor_t *cursor, __in uint32_t tag) { efx_rc_t rc; rc = tlv_rewind(cursor); while (rc == 0) { if (tlv_tag(cursor) == tag) break; rc = tlv_advance(cursor); } return (rc); } static __checkReturn efx_rc_t tlv_validate_state( __in tlv_cursor_t *cursor) { efx_rc_t rc; /* Check cursor position */ if (cursor->current < cursor->block) { rc = EINVAL; goto fail1; } if (cursor->current > cursor->limit) { rc = EINVAL; goto fail2; } if (tlv_tag(cursor) != TLV_TAG_END) { /* Check current item has space for tag and length */ if (cursor->current > (cursor->limit - 2)) { cursor->current = NULL; rc = EFAULT; goto fail3; } /* Check we have value data for current item and another tag */ if (tlv_next_item_ptr(cursor) > (cursor->limit - 1)) { cursor->current = NULL; rc = EFAULT; goto fail4; } } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static efx_rc_t tlv_init_cursor( __in tlv_cursor_t *cursor, __in uint32_t *block, __in uint32_t *limit) { cursor->block = block; cursor->limit = limit; cursor->current = cursor->block; cursor->end = NULL; return (tlv_validate_state(cursor)); } static efx_rc_t tlv_init_cursor_from_size( __in tlv_cursor_t *cursor, __in uint8_t *block, __in size_t size) { uint32_t *limit; limit = (uint32_t *)(block + size - sizeof (uint32_t)); return (tlv_init_cursor(cursor, (uint32_t *)block, limit)); } static efx_rc_t tlv_require_end( __in tlv_cursor_t *cursor) { uint32_t *pos; efx_rc_t rc; if (cursor->end == NULL) { pos = cursor->current; if ((rc = tlv_find(cursor, TLV_TAG_END)) != 0) goto fail1; cursor->end = cursor->current; cursor->current = pos; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static size_t tlv_block_length_used( __in tlv_cursor_t *cursor) { efx_rc_t rc; if ((rc = tlv_validate_state(cursor)) != 0) goto fail1; if ((rc = tlv_require_end(cursor)) != 0) goto fail2; /* Return space used (including the END tag) */ return (cursor->end + 1 - cursor->block) * sizeof (uint32_t); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (0); } static __checkReturn uint32_t * tlv_write( __in tlv_cursor_t *cursor, __in uint32_t tag, __in_bcount(size) uint8_t *data, __in size_t size) { uint32_t len = size; uint32_t *ptr; ptr = cursor->current; *ptr++ = __CPU_TO_LE_32(tag); *ptr++ = __CPU_TO_LE_32(len); if (len > 0) { ptr[(len - 1) / sizeof (uint32_t)] = 0; memcpy(ptr, data, len); ptr += P2ROUNDUP(len, sizeof (uint32_t)) / sizeof (*ptr); } return (ptr); } static __checkReturn efx_rc_t tlv_insert( __in tlv_cursor_t *cursor, __in uint32_t tag, __in uint8_t *data, __in size_t size) { unsigned int delta; efx_rc_t rc; if ((rc = tlv_validate_state(cursor)) != 0) goto fail1; if ((rc = tlv_require_end(cursor)) != 0) goto fail2; if (tag == TLV_TAG_END) { rc = EINVAL; goto fail3; } delta = TLV_DWORD_COUNT(size); if (cursor->end + 1 + delta > cursor->limit) { rc = ENOSPC; goto fail4; } /* Move data up: new space at cursor->current */ memmove(cursor->current + delta, cursor->current, (cursor->end + 1 - cursor->current) * sizeof (uint32_t)); /* Adjust the end pointer */ cursor->end += delta; /* Write new TLV item */ tlv_write(cursor, tag, data, size); return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t tlv_modify( __in tlv_cursor_t *cursor, __in uint32_t tag, __in uint8_t *data, __in size_t size) { uint32_t *pos; unsigned int old_ndwords; unsigned int new_ndwords; unsigned int delta; efx_rc_t rc; if ((rc = tlv_validate_state(cursor)) != 0) goto fail1; if (tlv_tag(cursor) == TLV_TAG_END) { rc = EINVAL; goto fail2; } if (tlv_tag(cursor) != tag) { rc = EINVAL; goto fail3; } old_ndwords = TLV_DWORD_COUNT(tlv_length(cursor)); new_ndwords = TLV_DWORD_COUNT(size); if ((rc = tlv_require_end(cursor)) != 0) goto fail4; if (new_ndwords > old_ndwords) { /* Expand space used for TLV item */ delta = new_ndwords - old_ndwords; pos = cursor->current + old_ndwords; if (cursor->end + 1 + delta > cursor->limit) { rc = ENOSPC; goto fail5; } /* Move up: new space at (cursor->current + old_ndwords) */ memmove(pos + delta, pos, (cursor->end + 1 - pos) * sizeof (uint32_t)); /* Adjust the end pointer */ cursor->end += delta; } else if (new_ndwords < old_ndwords) { /* Shrink space used for TLV item */ delta = old_ndwords - new_ndwords; pos = cursor->current + new_ndwords; /* Move down: remove words at (cursor->current + new_ndwords) */ memmove(pos, pos + delta, (cursor->end + 1 - pos) * sizeof (uint32_t)); /* Zero the new space at the end of the TLV chain */ memset(cursor->end + 1 - delta, 0, delta * sizeof (uint32_t)); /* Adjust the end pointer */ cursor->end -= delta; } /* Write new data */ tlv_write(cursor, tag, data, size); return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Validate TLV formatted partition contents (before writing to flash) */ __checkReturn efx_rc_t efx_nvram_tlv_validate( __in efx_nic_t *enp, __in uint32_t partn, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size) { tlv_cursor_t cursor; struct tlv_partition_header *header; struct tlv_partition_trailer *trailer; size_t total_length; uint32_t cksum; int pos; efx_rc_t rc; EFX_STATIC_ASSERT(sizeof (*header) <= EF10_NVRAM_CHUNK); if ((partn_data == NULL) || (partn_size == 0)) { rc = EINVAL; goto fail1; } /* The partition header must be the first item (at offset zero) */ if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)partn_data, partn_size)) != 0) { rc = EFAULT; goto fail2; } if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) { rc = EINVAL; goto fail3; } header = (struct tlv_partition_header *)tlv_item(&cursor); /* Check TLV partition length (includes the END tag) */ total_length = __LE_TO_CPU_32(header->total_length); if (total_length > partn_size) { rc = EFBIG; goto fail4; } /* Check partition ends with PARTITION_TRAILER and END tags */ if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) { rc = EINVAL; goto fail5; } trailer = (struct tlv_partition_trailer *)tlv_item(&cursor); if ((rc = tlv_advance(&cursor)) != 0) { rc = EINVAL; goto fail6; } if (tlv_tag(&cursor) != TLV_TAG_END) { rc = EINVAL; goto fail7; } /* Check generation counts are consistent */ if (trailer->generation != header->generation) { rc = EINVAL; goto fail8; } /* Verify partition checksum */ cksum = 0; for (pos = 0; (size_t)pos < total_length; pos += sizeof (uint32_t)) { cksum += *((uint32_t *)(partn_data + pos)); } if (cksum != 0) { rc = EINVAL; goto fail9; } return (0); fail9: EFSYS_PROBE(fail9); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Read and validate a segment from a partition. A segment is a complete * tlv chain between PARTITION_HEADER and PARTITION_END tags. There may * be multiple segments in a partition, so seg_offset allows segments * beyond the first to be read. */ static __checkReturn efx_rc_t ef10_nvram_read_tlv_segment( __in efx_nic_t *enp, __in uint32_t partn, __in size_t seg_offset, __in_bcount(max_seg_size) caddr_t seg_data, __in size_t max_seg_size) { tlv_cursor_t cursor; struct tlv_partition_header *header; struct tlv_partition_trailer *trailer; size_t total_length; uint32_t cksum; int pos; efx_rc_t rc; EFX_STATIC_ASSERT(sizeof (*header) <= EF10_NVRAM_CHUNK); if ((seg_data == NULL) || (max_seg_size == 0)) { rc = EINVAL; goto fail1; } /* Read initial chunk of the segment, starting at offset */ if ((rc = ef10_nvram_partn_read(enp, partn, seg_offset, seg_data, EF10_NVRAM_CHUNK)) != 0) { goto fail2; } /* A PARTITION_HEADER tag must be the first item at the given offset */ if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data, max_seg_size)) != 0) { rc = EFAULT; goto fail3; } if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) { rc = EINVAL; goto fail4; } header = (struct tlv_partition_header *)tlv_item(&cursor); /* Check TLV segment length (includes the END tag) */ total_length = __LE_TO_CPU_32(header->total_length); if (total_length > max_seg_size) { rc = EFBIG; goto fail5; } /* Read the remaining segment content */ if (total_length > EF10_NVRAM_CHUNK) { if ((rc = ef10_nvram_partn_read(enp, partn, seg_offset + EF10_NVRAM_CHUNK, seg_data + EF10_NVRAM_CHUNK, total_length - EF10_NVRAM_CHUNK)) != 0) goto fail6; } /* Check segment ends with PARTITION_TRAILER and END tags */ if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) { rc = EINVAL; goto fail7; } trailer = (struct tlv_partition_trailer *)tlv_item(&cursor); if ((rc = tlv_advance(&cursor)) != 0) { rc = EINVAL; goto fail8; } if (tlv_tag(&cursor) != TLV_TAG_END) { rc = EINVAL; goto fail9; } /* Check data read from segment is consistent */ if (trailer->generation != header->generation) { /* * The partition data may have been modified between successive * MCDI NVRAM_READ requests by the MC or another PCI function. * * The caller must retry to obtain consistent partition data. */ rc = EAGAIN; goto fail10; } /* Verify segment checksum */ cksum = 0; for (pos = 0; (size_t)pos < total_length; pos += sizeof (uint32_t)) { cksum += *((uint32_t *)(seg_data + pos)); } if (cksum != 0) { rc = EINVAL; goto fail11; } return (0); fail11: EFSYS_PROBE(fail11); fail10: EFSYS_PROBE(fail10); fail9: EFSYS_PROBE(fail9); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Read a single TLV item from a host memory * buffer containing a TLV formatted segment. */ __checkReturn efx_rc_t ef10_nvram_buf_read_tlv( __in efx_nic_t *enp, __in_bcount(max_seg_size) caddr_t seg_data, __in size_t max_seg_size, __in uint32_t tag, __deref_out_bcount_opt(*sizep) caddr_t *datap, __out size_t *sizep) { tlv_cursor_t cursor; caddr_t data; size_t length; caddr_t value; efx_rc_t rc; if ((seg_data == NULL) || (max_seg_size == 0)) { rc = EINVAL; goto fail1; } /* Find requested TLV tag in segment data */ if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data, max_seg_size)) != 0) { rc = EFAULT; goto fail2; } if ((rc = tlv_find(&cursor, tag)) != 0) { rc = ENOENT; goto fail3; } value = (caddr_t)tlv_value(&cursor); length = tlv_length(&cursor); if (length == 0) data = NULL; else { /* Copy out data from TLV item */ EFSYS_KMEM_ALLOC(enp->en_esip, length, data); if (data == NULL) { rc = ENOMEM; goto fail4; } memcpy(data, value, length); } *datap = data; *sizep = length; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Read a single TLV item from the first segment in a TLV formatted partition */ __checkReturn efx_rc_t ef10_nvram_partn_read_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __deref_out_bcount_opt(*seg_sizep) caddr_t *seg_datap, __out size_t *seg_sizep) { caddr_t seg_data = NULL; size_t partn_size = 0; size_t length; caddr_t data; int retry; efx_rc_t rc; /* Allocate sufficient memory for the entire partition */ if ((rc = ef10_nvram_partn_size(enp, partn, &partn_size)) != 0) goto fail1; if (partn_size == 0) { rc = ENOENT; goto fail2; } EFSYS_KMEM_ALLOC(enp->en_esip, partn_size, seg_data); if (seg_data == NULL) { rc = ENOMEM; goto fail3; } /* * Read the first segment in a TLV partition. Retry until consistent * segment contents are returned. Inconsistent data may be read if: * a) the segment contents are invalid * b) the MC has rebooted while we were reading the partition * c) the partition has been modified while we were reading it * Limit retry attempts to ensure forward progress. */ retry = 10; do { rc = ef10_nvram_read_tlv_segment(enp, partn, 0, seg_data, partn_size); } while ((rc == EAGAIN) && (--retry > 0)); if (rc != 0) { /* Failed to obtain consistent segment data */ goto fail4; } if ((rc = ef10_nvram_buf_read_tlv(enp, seg_data, partn_size, tag, &data, &length)) != 0) goto fail5; EFSYS_KMEM_FREE(enp->en_esip, partn_size, seg_data); *seg_datap = data; *seg_sizep = length; return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); EFSYS_KMEM_FREE(enp->en_esip, partn_size, seg_data); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Compute the size of a segment. */ static __checkReturn efx_rc_t ef10_nvram_buf_segment_size( __in caddr_t seg_data, __in size_t max_seg_size, __out size_t *seg_sizep) { efx_rc_t rc; tlv_cursor_t cursor; struct tlv_partition_header *header; uint32_t cksum; int pos; uint32_t *end_tag_position; uint32_t segment_length; /* A PARTITION_HEADER tag must be the first item at the given offset */ if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data, max_seg_size)) != 0) { rc = EFAULT; goto fail1; } if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) { rc = EINVAL; goto fail2; } header = (struct tlv_partition_header *)tlv_item(&cursor); /* Check TLV segment length (includes the END tag) */ *seg_sizep = __LE_TO_CPU_32(header->total_length); if (*seg_sizep > max_seg_size) { rc = EFBIG; goto fail3; } /* Check segment ends with PARTITION_TRAILER and END tags */ if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) { rc = EINVAL; goto fail4; } if ((rc = tlv_advance(&cursor)) != 0) { rc = EINVAL; goto fail5; } if (tlv_tag(&cursor) != TLV_TAG_END) { rc = EINVAL; goto fail6; } end_tag_position = cursor.current; /* Verify segment checksum */ cksum = 0; for (pos = 0; (size_t)pos < *seg_sizep; pos += sizeof (uint32_t)) { cksum += *((uint32_t *)(seg_data + pos)); } if (cksum != 0) { rc = EINVAL; goto fail7; } /* * Calculate total length from HEADER to END tags and compare to * max_seg_size and the total_length field in the HEADER tag. */ segment_length = tlv_block_length_used(&cursor); if (segment_length > max_seg_size) { rc = EINVAL; goto fail8; } if (segment_length != *seg_sizep) { rc = EINVAL; goto fail9; } /* Skip over the first HEADER tag. */ rc = tlv_rewind(&cursor); rc = tlv_advance(&cursor); while (rc == 0) { if (tlv_tag(&cursor) == TLV_TAG_END) { /* Check that the END tag is the one found earlier. */ if (cursor.current != end_tag_position) goto fail10; break; } /* Check for duplicate HEADER tags before the END tag. */ if (tlv_tag(&cursor) == TLV_TAG_PARTITION_HEADER) { rc = EINVAL; goto fail11; } rc = tlv_advance(&cursor); } if (rc != 0) goto fail12; return (0); fail12: EFSYS_PROBE(fail12); fail11: EFSYS_PROBE(fail11); fail10: EFSYS_PROBE(fail10); fail9: EFSYS_PROBE(fail9); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Add or update a single TLV item in a host memory buffer containing a TLV * formatted segment. Historically partitions consisted of only one segment. */ __checkReturn efx_rc_t ef10_nvram_buf_write_tlv( __inout_bcount(max_seg_size) caddr_t seg_data, __in size_t max_seg_size, __in uint32_t tag, __in_bcount(tag_size) caddr_t tag_data, __in size_t tag_size, __out size_t *total_lengthp) { tlv_cursor_t cursor; struct tlv_partition_header *header; struct tlv_partition_trailer *trailer; uint32_t generation; uint32_t cksum; int pos; efx_rc_t rc; /* A PARTITION_HEADER tag must be the first item (at offset zero) */ if ((rc = tlv_init_cursor_from_size(&cursor, (uint8_t *)seg_data, max_seg_size)) != 0) { rc = EFAULT; goto fail1; } if (tlv_tag(&cursor) != TLV_TAG_PARTITION_HEADER) { rc = EINVAL; goto fail2; } header = (struct tlv_partition_header *)tlv_item(&cursor); /* Update the TLV chain to contain the new data */ if ((rc = tlv_find(&cursor, tag)) == 0) { /* Modify existing TLV item */ if ((rc = tlv_modify(&cursor, tag, (uint8_t *)tag_data, tag_size)) != 0) goto fail3; } else { /* Insert a new TLV item before the PARTITION_TRAILER */ rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER); if (rc != 0) { rc = EINVAL; goto fail4; } if ((rc = tlv_insert(&cursor, tag, (uint8_t *)tag_data, tag_size)) != 0) { rc = EINVAL; goto fail5; } } /* Find the trailer tag */ if ((rc = tlv_find(&cursor, TLV_TAG_PARTITION_TRAILER)) != 0) { rc = EINVAL; goto fail6; } trailer = (struct tlv_partition_trailer *)tlv_item(&cursor); /* Update PARTITION_HEADER and PARTITION_TRAILER fields */ *total_lengthp = tlv_block_length_used(&cursor); if (*total_lengthp > max_seg_size) { rc = ENOSPC; goto fail7; } generation = __LE_TO_CPU_32(header->generation) + 1; header->total_length = __CPU_TO_LE_32(*total_lengthp); header->generation = __CPU_TO_LE_32(generation); trailer->generation = __CPU_TO_LE_32(generation); /* Recompute PARTITION_TRAILER checksum */ trailer->checksum = 0; cksum = 0; for (pos = 0; (size_t)pos < *total_lengthp; pos += sizeof (uint32_t)) { cksum += *((uint32_t *)(seg_data + pos)); } trailer->checksum = ~cksum + 1; return (0); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Add or update a single TLV item in the first segment of a TLV formatted * dynamic config partition. The first segment is the current active * configuration. */ __checkReturn efx_rc_t ef10_nvram_partn_write_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size) { return ef10_nvram_partn_write_segment_tlv(enp, partn, tag, data, size, B_FALSE); } /* * Read a segment from nvram at the given offset into a buffer (segment_data) * and optionally write a new tag to it. */ static __checkReturn efx_rc_t ef10_nvram_segment_write_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size, __inout caddr_t *seg_datap, __inout size_t *partn_offsetp, __inout size_t *src_remain_lenp, __inout size_t *dest_remain_lenp, __in boolean_t write) { efx_rc_t rc; int status; size_t original_segment_size; size_t modified_segment_size; /* * Read the segment from NVRAM into the segment_data buffer and validate * it, returning if it does not validate. This is not a failure unless * this is the first segment in a partition. In this case the caller * must propogate the error. */ status = ef10_nvram_read_tlv_segment(enp, partn, *partn_offsetp, *seg_datap, *src_remain_lenp); if (status != 0) return (EINVAL); status = ef10_nvram_buf_segment_size(*seg_datap, *src_remain_lenp, &original_segment_size); if (status != 0) return (EINVAL); if (write) { /* Update the contents of the segment in the buffer */ if ((rc = ef10_nvram_buf_write_tlv(*seg_datap, *dest_remain_lenp, tag, data, size, &modified_segment_size)) != 0) goto fail1; *dest_remain_lenp -= modified_segment_size; *seg_datap += modified_segment_size; } else { /* * We won't modify this segment, but still need to update the * remaining lengths and pointers. */ *dest_remain_lenp -= original_segment_size; *seg_datap += original_segment_size; } *partn_offsetp += original_segment_size; *src_remain_lenp -= original_segment_size; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Add or update a single TLV item in either the first segment or in all * segments in a TLV formatted dynamic config partition. Dynamic config * partitions on boards that support RFID are divided into a number of segments, * each formatted like a partition, with header, trailer and end tags. The first * segment is the current active configuration. * * The segments are initialised by manftest and each contain a different * configuration e.g. firmware variant. The firmware can be instructed * via RFID to copy a segment to replace the first segment, hence changing the * active configuration. This allows ops to change the configuration of a board * prior to shipment using RFID. * * Changes to the dynamic config may need to be written to all segments (e.g. * firmware versions) or just the first segment (changes to the active * configuration). See SF-111324-SW "The use of RFID in Solarflare Products". * If only the first segment is written the code still needs to be aware of the * possible presence of subsequent segments as writing to a segment may cause * its size to increase, which would overwrite the subsequent segments and * invalidate them. */ __checkReturn efx_rc_t ef10_nvram_partn_write_segment_tlv( __in efx_nic_t *enp, __in uint32_t partn, __in uint32_t tag, __in_bcount(size) caddr_t data, __in size_t size, __in boolean_t all_segments) { size_t partn_size = 0; caddr_t partn_data; size_t total_length = 0; efx_rc_t rc; size_t current_offset = 0; size_t remaining_original_length; size_t remaining_modified_length; caddr_t segment_data; EFSYS_ASSERT3U(partn, ==, NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG); /* Allocate sufficient memory for the entire partition */ if ((rc = ef10_nvram_partn_size(enp, partn, &partn_size)) != 0) goto fail1; EFSYS_KMEM_ALLOC(enp->en_esip, partn_size, partn_data); if (partn_data == NULL) { rc = ENOMEM; goto fail2; } remaining_original_length = partn_size; remaining_modified_length = partn_size; segment_data = partn_data; /* Lock the partition */ if ((rc = ef10_nvram_partn_lock(enp, partn)) != 0) goto fail3; /* Iterate over each (potential) segment to update it. */ do { boolean_t write = all_segments || current_offset == 0; rc = ef10_nvram_segment_write_tlv(enp, partn, tag, data, size, &segment_data, ¤t_offset, &remaining_original_length, &remaining_modified_length, write); if (rc != 0) { if (current_offset == 0) { /* * If no data has been read then the first * segment is invalid, which is an error. */ goto fail4; } break; } } while (current_offset < partn_size); total_length = segment_data - partn_data; /* * We've run out of space. This should actually be dealt with by * ef10_nvram_buf_write_tlv returning ENOSPC. */ if (total_length > partn_size) { rc = ENOSPC; goto fail5; } /* Erase the whole partition in NVRAM */ if ((rc = ef10_nvram_partn_erase(enp, partn, 0, partn_size)) != 0) goto fail6; /* Write new partition contents from the buffer to NVRAM */ if ((rc = ef10_nvram_partn_write(enp, partn, 0, partn_data, total_length)) != 0) goto fail7; /* Unlock the partition */ ef10_nvram_partn_unlock(enp, partn); EFSYS_KMEM_FREE(enp->en_esip, partn_size, partn_data); return (0); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); ef10_nvram_partn_unlock(enp, partn); fail3: EFSYS_PROBE(fail3); EFSYS_KMEM_FREE(enp->en_esip, partn_size, partn_data); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Get the size of a NVRAM partition. This is the total size allocated in nvram, * not the data used by the segments in the partition. */ __checkReturn efx_rc_t ef10_nvram_partn_size( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out size_t *sizep) { efx_rc_t rc; if ((rc = efx_mcdi_nvram_info(enp, partn, sizep, NULL, NULL, NULL)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_partn_lock( __in efx_nic_t *enp, - __in unsigned int partn) + __in uint32_t partn) { efx_rc_t rc; if ((rc = efx_mcdi_nvram_update_start(enp, partn)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_partn_read( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { size_t chunk; efx_rc_t rc; while (size > 0) { chunk = MIN(size, EF10_NVRAM_CHUNK); if ((rc = efx_mcdi_nvram_read(enp, partn, offset, data, chunk)) != 0) { goto fail1; } size -= chunk; data += chunk; offset += chunk; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_partn_erase( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __in size_t size) { efx_rc_t rc; uint32_t erase_size; if ((rc = efx_mcdi_nvram_info(enp, partn, NULL, NULL, &erase_size, NULL)) != 0) goto fail1; if (erase_size == 0) { if ((rc = efx_mcdi_nvram_erase(enp, partn, offset, size)) != 0) goto fail2; } else { if (size % erase_size != 0) { rc = EINVAL; goto fail3; } while (size > 0) { if ((rc = efx_mcdi_nvram_erase(enp, partn, offset, erase_size)) != 0) goto fail4; offset += erase_size; size -= erase_size; } } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_partn_write( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { size_t chunk; uint32_t write_size; efx_rc_t rc; if ((rc = efx_mcdi_nvram_info(enp, partn, NULL, NULL, NULL, &write_size)) != 0) goto fail1; if (write_size != 0) { /* * Check that the size is a multiple of the write chunk size if * the write chunk size is available. */ if (size % write_size != 0) { rc = EINVAL; goto fail2; } } else { write_size = EF10_NVRAM_CHUNK; } while (size > 0) { chunk = MIN(size, write_size); if ((rc = efx_mcdi_nvram_write(enp, partn, offset, data, chunk)) != 0) { goto fail3; } size -= chunk; data += chunk; offset += chunk; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_nvram_partn_unlock( __in efx_nic_t *enp, - __in unsigned int partn) + __in uint32_t partn) { boolean_t reboot; efx_rc_t rc; reboot = B_FALSE; if ((rc = efx_mcdi_nvram_update_finish(enp, partn, reboot)) != 0) goto fail1; return; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); } __checkReturn efx_rc_t ef10_nvram_partn_set_version( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in_ecount(4) uint16_t version[4]) { struct tlv_partition_version partn_version; size_t size; efx_rc_t rc; /* Add or modify partition version TLV item */ partn_version.version_w = __CPU_TO_LE_16(version[0]); partn_version.version_x = __CPU_TO_LE_16(version[1]); partn_version.version_y = __CPU_TO_LE_16(version[2]); partn_version.version_z = __CPU_TO_LE_16(version[3]); size = sizeof (partn_version) - (2 * sizeof (uint32_t)); /* Write the version number to all segments in the partition */ if ((rc = ef10_nvram_partn_write_segment_tlv(enp, NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, TLV_TAG_PARTITION_VERSION(partn), (caddr_t)&partn_version.version_w, size, B_TRUE)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ #if EFSYS_OPT_NVRAM -/* FIXME: Update partition table for Medford */ - typedef struct ef10_parttbl_entry_s { unsigned int partn; unsigned int port; efx_nvram_type_t nvtype; } ef10_parttbl_entry_t; /* Translate EFX NVRAM types to firmware partition types */ -static ef10_parttbl_entry_t ef10_parttbl[] = { +static ef10_parttbl_entry_t hunt_parttbl[] = { {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 1, EFX_NVRAM_MC_FIRMWARE}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 2, EFX_NVRAM_MC_FIRMWARE}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 3, EFX_NVRAM_MC_FIRMWARE}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 4, EFX_NVRAM_MC_FIRMWARE}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 1, EFX_NVRAM_MC_GOLDEN}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 2, EFX_NVRAM_MC_GOLDEN}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 3, EFX_NVRAM_MC_GOLDEN}, {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 4, EFX_NVRAM_MC_GOLDEN}, {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 1, EFX_NVRAM_BOOTROM}, {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 2, EFX_NVRAM_BOOTROM}, {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 3, EFX_NVRAM_BOOTROM}, {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 4, EFX_NVRAM_BOOTROM}, {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 1, EFX_NVRAM_BOOTROM_CFG}, {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 2, EFX_NVRAM_BOOTROM_CFG}, {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 3, EFX_NVRAM_BOOTROM_CFG}, {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 4, EFX_NVRAM_BOOTROM_CFG}, {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 1, EFX_NVRAM_DYNAMIC_CFG}, {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 2, EFX_NVRAM_DYNAMIC_CFG}, {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 3, EFX_NVRAM_DYNAMIC_CFG}, {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 4, EFX_NVRAM_DYNAMIC_CFG}, {NVRAM_PARTITION_TYPE_FPGA, 1, EFX_NVRAM_FPGA}, {NVRAM_PARTITION_TYPE_FPGA, 2, EFX_NVRAM_FPGA}, {NVRAM_PARTITION_TYPE_FPGA, 3, EFX_NVRAM_FPGA}, {NVRAM_PARTITION_TYPE_FPGA, 4, EFX_NVRAM_FPGA}, {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 1, EFX_NVRAM_FPGA_BACKUP}, {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 2, EFX_NVRAM_FPGA_BACKUP}, {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 3, EFX_NVRAM_FPGA_BACKUP}, {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 4, EFX_NVRAM_FPGA_BACKUP} }; +static ef10_parttbl_entry_t medford_parttbl[] = { + {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 1, EFX_NVRAM_MC_FIRMWARE}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 2, EFX_NVRAM_MC_FIRMWARE}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 3, EFX_NVRAM_MC_FIRMWARE}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE, 4, EFX_NVRAM_MC_FIRMWARE}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 1, EFX_NVRAM_MC_GOLDEN}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 2, EFX_NVRAM_MC_GOLDEN}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 3, EFX_NVRAM_MC_GOLDEN}, + {NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 4, EFX_NVRAM_MC_GOLDEN}, + {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 1, EFX_NVRAM_BOOTROM}, + {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 2, EFX_NVRAM_BOOTROM}, + {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 3, EFX_NVRAM_BOOTROM}, + {NVRAM_PARTITION_TYPE_EXPANSION_ROM, 4, EFX_NVRAM_BOOTROM}, + {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 1, EFX_NVRAM_BOOTROM_CFG}, + {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 2, EFX_NVRAM_BOOTROM_CFG}, + {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 3, EFX_NVRAM_BOOTROM_CFG}, + {NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 4, EFX_NVRAM_BOOTROM_CFG}, + {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 1, EFX_NVRAM_DYNAMIC_CFG}, + {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 2, EFX_NVRAM_DYNAMIC_CFG}, + {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 3, EFX_NVRAM_DYNAMIC_CFG}, + {NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 4, EFX_NVRAM_DYNAMIC_CFG}, + {NVRAM_PARTITION_TYPE_FPGA, 1, EFX_NVRAM_FPGA}, + {NVRAM_PARTITION_TYPE_FPGA, 2, EFX_NVRAM_FPGA}, + {NVRAM_PARTITION_TYPE_FPGA, 3, EFX_NVRAM_FPGA}, + {NVRAM_PARTITION_TYPE_FPGA, 4, EFX_NVRAM_FPGA}, + {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 1, EFX_NVRAM_FPGA_BACKUP}, + {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 2, EFX_NVRAM_FPGA_BACKUP}, + {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 3, EFX_NVRAM_FPGA_BACKUP}, + {NVRAM_PARTITION_TYPE_FPGA_BACKUP, 4, EFX_NVRAM_FPGA_BACKUP} +}; + static __checkReturn ef10_parttbl_entry_t * ef10_parttbl_entry( __in efx_nic_t *enp, __in efx_nvram_type_t type) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); ef10_parttbl_entry_t *entry; - int i; + ef10_parttbl_entry_t *parttbl; + size_t parttbl_size = 0; + unsigned int i; EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES); - for (i = 0; i < EFX_ARRAY_SIZE(ef10_parttbl); i++) { - entry = &ef10_parttbl[i]; + switch (enp->en_family) { + case EFX_FAMILY_HUNTINGTON: + parttbl = hunt_parttbl; + parttbl_size = EFX_ARRAY_SIZE(hunt_parttbl); + break; - if (entry->port == emip->emi_port && entry->nvtype == type) - return (entry); + case EFX_FAMILY_MEDFORD: + parttbl = medford_parttbl; + parttbl_size = EFX_ARRAY_SIZE(medford_parttbl); + break; + + default: + EFSYS_ASSERT(B_FALSE); + goto not_found; } + if (parttbl != NULL) { + for (i = 0; i < parttbl_size; i++) { + entry = &parttbl[i]; + + if (entry->port == emip->emi_port && + entry->nvtype == type) { + return (entry); + } + } + } +not_found: return (NULL); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t ef10_nvram_test( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); ef10_parttbl_entry_t *entry; + ef10_parttbl_entry_t *parttbl; + size_t parttbl_size = 0; unsigned int npartns = 0; uint32_t *partns = NULL; size_t size; - int i; + unsigned int i; unsigned int j; efx_rc_t rc; /* Find supported partitions */ size = MC_CMD_NVRAM_PARTITIONS_OUT_TYPE_ID_MAXNUM * sizeof (uint32_t); EFSYS_KMEM_ALLOC(enp->en_esip, size, partns); if (partns == NULL) { rc = ENOMEM; goto fail1; } if ((rc = efx_mcdi_nvram_partitions(enp, (caddr_t)partns, size, &npartns)) != 0) { goto fail2; } /* * Iterate over the list of supported partition types * applicable to *this* port */ - for (i = 0; i < EFX_ARRAY_SIZE(ef10_parttbl); i++) { - entry = &ef10_parttbl[i]; + switch (enp->en_family) { + case EFX_FAMILY_HUNTINGTON: + parttbl = hunt_parttbl; + parttbl_size = EFX_ARRAY_SIZE(hunt_parttbl); + break; + case EFX_FAMILY_MEDFORD: + parttbl = medford_parttbl; + parttbl_size = EFX_ARRAY_SIZE(medford_parttbl); + break; + + default: + EFSYS_ASSERT(B_FALSE); + goto fail3; + } + + for (i = 0; i < parttbl_size; i++) { + entry = &parttbl[i]; + if (entry->port != emip->emi_port) continue; for (j = 0; j < npartns; j++) { if (entry->partn == partns[j]) { rc = efx_mcdi_nvram_test(enp, entry->partn); if (rc != 0) - goto fail3; + goto fail4; } } } EFSYS_KMEM_FREE(enp->en_esip, size, partns); return (0); +fail4: + EFSYS_PROBE(fail3); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); EFSYS_KMEM_FREE(enp->en_esip, size, partns); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ __checkReturn efx_rc_t ef10_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep) { ef10_parttbl_entry_t *entry; uint32_t partn; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } partn = entry->partn; if ((rc = ef10_nvram_partn_size(enp, partn, sizep)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); *sizep = 0; return (rc); } __checkReturn efx_rc_t ef10_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]) { ef10_parttbl_entry_t *entry; uint32_t partn; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } partn = entry->partn; /* FIXME: get highest partn version from all ports */ /* FIXME: return partn description if available */ if ((rc = efx_mcdi_nvram_metadata(enp, partn, subtypep, version, NULL, 0)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *chunk_sizep) { ef10_parttbl_entry_t *entry; uint32_t partn; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } partn = entry->partn; if ((rc = ef10_nvram_partn_lock(enp, partn)) != 0) goto fail2; if (chunk_sizep != NULL) *chunk_sizep = EF10_NVRAM_CHUNK; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { ef10_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = ef10_nvram_partn_read(enp, entry->partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type) { ef10_parttbl_entry_t *entry; size_t size; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = ef10_nvram_partn_size(enp, entry->partn, &size)) != 0) goto fail2; if ((rc = ef10_nvram_partn_erase(enp, entry->partn, 0, size)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size) { ef10_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = ef10_nvram_partn_write(enp, entry->partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type) { ef10_parttbl_entry_t *entry; if ((entry = ef10_parttbl_entry(enp, type)) != NULL) ef10_nvram_partn_unlock(enp, entry->partn); } __checkReturn efx_rc_t ef10_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]) { ef10_parttbl_entry_t *entry; - unsigned int partn; + uint32_t partn; efx_rc_t rc; if ((entry = ef10_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } partn = entry->partn; if ((rc = ef10_nvram_partn_set_version(enp, partn, version)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_NVRAM */ #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/hunt_rx.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/hunt_rx.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/hunt_rx.c (revision 293803) @@ -1,775 +1,794 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON static __checkReturn efx_rc_t efx_mcdi_init_rxq( __in efx_nic_t *enp, __in uint32_t size, __in uint32_t target_evq, __in uint32_t label, __in uint32_t instance, __in efsys_mem_t *esmp, __in boolean_t disable_scatter) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_RXQ_IN_LEN(EFX_RXQ_NBUFS(EFX_RXQ_MAXNDESCS)), MC_CMD_INIT_RXQ_OUT_LEN)]; int npages = EFX_RXQ_NBUFS(size); int i; efx_qword_t *dma_addr; uint64_t addr; efx_rc_t rc; EFSYS_ASSERT3U(size, <=, EFX_RXQ_MAXNDESCS); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_RXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_RXQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_RXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_SIZE, size); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_TARGET_EVQ, target_evq); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_LABEL, label); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_INSTANCE, instance); MCDI_IN_POPULATE_DWORD_6(req, INIT_RXQ_IN_FLAGS, INIT_RXQ_IN_FLAG_BUFF_MODE, 0, INIT_RXQ_IN_FLAG_HDR_SPLIT, 0, INIT_RXQ_IN_FLAG_TIMESTAMP, 0, INIT_RXQ_IN_CRC_MODE, 0, INIT_RXQ_IN_FLAG_PREFIX, 1, INIT_RXQ_IN_FLAG_DISABLE_SCATTER, disable_scatter); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_OWNER_ID, 0); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_rxq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_RXQ_IN_LEN, MC_CMD_FINI_RXQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_RXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance); efx_mcdi_execute(enp, &req); if ((req.emr_rc != 0) && (req.emr_rc != MC_CMD_ERR_EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t efx_mcdi_rss_context_alloc( __in efx_nic_t *enp, + __in efx_rx_scale_support_t scale_support, + __in uint32_t num_queues, __out uint32_t *rss_contextp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)]; uint32_t rss_context; + uint32_t context_type; efx_rc_t rc; + if (num_queues > EFX_MAXRSS) { + rc = EINVAL; + goto fail1; + } + + switch (scale_support) { + case EFX_RX_SCALE_EXCLUSIVE: + context_type = MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE; + break; + case EFX_RX_SCALE_SHARED: + context_type = MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED; + break; + default: + rc = EINVAL; + goto fail2; + } + (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID, EVB_PORT_ID_ASSIGNED); - MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_TYPE, - MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE); + MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_TYPE, context_type); /* NUM_QUEUES is only used to validate indirection table offsets */ - MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, 64); + MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, num_queues); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; - goto fail1; + goto fail3; } if (req.emr_out_length_used < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN) { rc = EMSGSIZE; - goto fail2; + goto fail4; } rss_context = MCDI_OUT_DWORD(req, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID); if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = ENOENT; - goto fail3; + goto fail5; } *rss_contextp = rss_context; return (0); +fail5: + EFSYS_PROBE(fail5); +fail4: + EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_free( __in efx_nic_t *enp, __in uint32_t rss_context) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_FREE_IN_LEN, MC_CMD_RSS_CONTEXT_FREE_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID, rss_context); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_flags( __in efx_nic_t *enp, __in uint32_t rss_context, __in efx_rx_hash_type_t type) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN, MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_FLAGS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, rss_context); MCDI_IN_POPULATE_DWORD_4(req, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV4_EN, (type & (1U << EFX_RX_HASH_IPV4)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV4_EN, (type & (1U << EFX_RX_HASH_TCPIPV4)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV6_EN, (type & (1U << EFX_RX_HASH_IPV6)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV6_EN, (type & (1U << EFX_RX_HASH_TCPIPV6)) ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_key( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) uint8_t *key, __in size_t n) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN, MC_CMD_RSS_CONTEXT_SET_KEY_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_KEY; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_KEY_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID, rss_context); EFSYS_ASSERT3U(n, ==, MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); if (n != MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN) { rc = EINVAL; goto fail2; } memcpy(MCDI_IN2(req, uint8_t, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY), key, n); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_table( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) unsigned int *table, __in size_t n) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN, MC_CMD_RSS_CONTEXT_SET_TABLE_OUT_LEN)]; uint8_t *req_table; int i, rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_TABLE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_TABLE_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID, rss_context); req_table = MCDI_IN2(req, uint8_t, RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE); for (i = 0; i < MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN; i++) { req_table[i] = (n > 0) ? (uint8_t)table[i % n] : 0; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ __checkReturn efx_rc_t ef10_rx_init( __in efx_nic_t *enp) { #if EFSYS_OPT_RX_SCALE - if (efx_mcdi_rss_context_alloc(enp, &enp->en_rss_context) == 0) { + if (efx_mcdi_rss_context_alloc(enp, EFX_RX_SCALE_EXCLUSIVE, EFX_MAXRSS, + &enp->en_rss_context) == 0) { /* * Allocated an exclusive RSS context, which allows both the * indirection table and key to be modified. */ enp->en_rss_support = EFX_RX_SCALE_EXCLUSIVE; enp->en_hash_support = EFX_RX_HASH_AVAILABLE; } else { /* * Failed to allocate an exclusive RSS context. Continue * operation without support for RSS. The pseudo-header in * received packets will not contain a Toeplitz hash value. */ enp->en_rss_support = EFX_RX_SCALE_UNAVAILABLE; enp->en_hash_support = EFX_RX_HASH_UNAVAILABLE; } #endif /* EFSYS_OPT_RX_SCALE */ return (0); } #if EFSYS_OPT_RX_HDR_SPLIT __checkReturn efx_rc_t ef10_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(enp, hdr_buf_size, pld_buf_size)) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t ef10_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size) { _NOTE(ARGUNUSED(enp, buf_size)) return (0); } #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert) { efx_rc_t rc; EFSYS_ASSERT3U(alg, ==, EFX_RX_HASHALG_TOEPLITZ); EFSYS_ASSERT3U(insert, ==, B_TRUE); if ((alg != EFX_RX_HASHALG_TOEPLITZ) || (insert == B_FALSE)) { rc = EINVAL; goto fail1; } if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail2; } if ((rc = efx_mcdi_rss_context_set_flags(enp, enp->en_rss_context, type)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n) { efx_rc_t rc; if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_rss_context_set_key(enp, enp->en_rss_context, key, n)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n) { efx_rc_t rc; if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_rss_context_set_table(enp, enp->en_rss_context, table, n)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ void ef10_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added) { efx_qword_t qword; unsigned int i; unsigned int offset; unsigned int id; /* The client driver must not overfill the queue */ EFSYS_ASSERT3U(added - completed + n, <=, EFX_RXQ_LIMIT(erp->er_mask + 1)); id = added & (erp->er_mask); for (i = 0; i < n; i++) { EFSYS_PROBE4(rx_post, unsigned int, erp->er_index, unsigned int, id, efsys_dma_addr_t, addrp[i], size_t, size); EFX_POPULATE_QWORD_3(qword, ESF_DZ_RX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_RX_KER_BUF_ADDR_DW0, (uint32_t)(addrp[i] & 0xffffffff), ESF_DZ_RX_KER_BUF_ADDR_DW1, (uint32_t)(addrp[i] >> 32)); offset = id * sizeof (efx_qword_t); EFSYS_MEM_WRITEQ(erp->er_esmp, offset, &qword); id = (id + 1) & (erp->er_mask); } } void ef10_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp) { efx_nic_t *enp = erp->er_enp; unsigned int pushed = *pushedp; uint32_t wptr; efx_dword_t dword; /* Hardware has alignment restriction for WPTR */ wptr = P2ALIGN(added, HUNTINGTON_RX_WPTR_ALIGN); if (pushed == wptr) return; *pushedp = wptr; /* Push the populated descriptors out */ wptr &= erp->er_mask; EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR, wptr); /* Guarantee ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(erp->er_esmp, erp->er_mask + 1, wptr, pushed & erp->er_mask); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_TBL_WRITED(enp, ER_DZ_RX_DESC_UPD_REG, erp->er_index, &dword, B_FALSE); } __checkReturn efx_rc_t ef10_rx_qflush( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_rc_t rc; if ((rc = efx_mcdi_fini_rxq(enp, erp->er_index)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_rx_qenable( __in efx_rxq_t *erp) { /* FIXME */ _NOTE(ARGUNUSED(erp)) /* FIXME */ } __checkReturn efx_rc_t ef10_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_rc_t rc; boolean_t disable_scatter; _NOTE(ARGUNUSED(erp)) EFX_STATIC_ASSERT(EFX_EV_RX_NLABELS == (1 << ESF_DZ_RX_QLABEL_WIDTH)); EFSYS_ASSERT3U(label, <, EFX_EV_RX_NLABELS); EFSYS_ASSERT3U(enp->en_rx_qcount + 1, <, encp->enc_rxq_limit); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MAXNDESCS)); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MINNDESCS)); if (!ISP2(n) || (n < EFX_RXQ_MINNDESCS) || (n > EFX_RXQ_MAXNDESCS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_rxq_limit) { rc = EINVAL; goto fail2; } /* Scatter can only be disabled if the firmware supports doing so */ if ((type != EFX_RXQ_TYPE_SCATTER) && enp->en_nic_cfg.enc_rx_disable_scatter_supported) { disable_scatter = B_TRUE; } else { disable_scatter = B_FALSE; } - - /* - * Note: EFX_RXQ_TYPE_SPLIT_HEADER and EFX_RXQ_TYPE_SPLIT_PAYLOAD are - * not supported here. - */ if ((rc = efx_mcdi_init_rxq(enp, n, eep->ee_index, label, index, esmp, disable_scatter)) != 0) goto fail3; erp->er_eep = eep; erp->er_label = label; ef10_ev_rxlabel_init(eep, erp, label); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_rx_qdestroy( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_evq_t *eep = erp->er_eep; unsigned int label = erp->er_label; ef10_ev_rxlabel_fini(eep, label); EFSYS_ASSERT(enp->en_rx_qcount != 0); --enp->en_rx_qcount; EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_rxq_t), erp); } void ef10_rx_fini( __in efx_nic_t *enp) { #if EFSYS_OPT_RX_SCALE if (enp->en_rss_support != EFX_RX_SCALE_UNAVAILABLE) { (void) efx_mcdi_rss_context_free(enp, enp->en_rss_context); } enp->en_rss_context = 0; enp->en_rss_support = EFX_RX_SCALE_UNAVAILABLE; #else _NOTE(ARGUNUSED(enp)) #endif /* EFSYS_OPT_RX_SCALE */ } #endif /* EFSYS_OPT_HUNTINGTON */ Index: projects/release-pkg/sys/dev/sfxge/common/mcdi_mon.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/mcdi_mon.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/mcdi_mon.c (revision 293803) @@ -1,557 +1,564 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_MCDI #if EFSYS_OPT_MON_STATS #define MCDI_MON_NEXT_PAGE (uint16_t)0xfffe #define MCDI_MON_INVALID_SENSOR (uint16_t)0xfffd #define MCDI_MON_PAGE_SIZE 0x20 /* Bitmasks of valid port(s) for each sensor */ #define MCDI_MON_PORT_NONE (0x00) #define MCDI_MON_PORT_P1 (0x01) #define MCDI_MON_PORT_P2 (0x02) #define MCDI_MON_PORT_P3 (0x04) #define MCDI_MON_PORT_P4 (0x08) #define MCDI_MON_PORT_Px (0xFFFF) /* Entry for MCDI sensor in sensor map */ #define STAT(portmask, stat) \ { (MCDI_MON_PORT_##portmask), (EFX_MON_STAT_##stat) } /* Entry for sensor next page flag in sensor map */ #define STAT_NEXT_PAGE() \ { MCDI_MON_PORT_NONE, MCDI_MON_NEXT_PAGE } /* Placeholder for gaps in the array */ #define STAT_NO_SENSOR() \ { MCDI_MON_PORT_NONE, MCDI_MON_INVALID_SENSOR } /* Map from MC sensors to monitor statistics */ static const struct mcdi_sensor_map_s { uint16_t msm_port_mask; uint16_t msm_stat; } mcdi_sensor_map[] = { /* Sensor page 0 MC_CMD_SENSOR_xxx */ STAT(Px, INT_TEMP), /* 0x00 CONTROLLER_TEMP */ STAT(Px, EXT_TEMP), /* 0x01 PHY_COMMON_TEMP */ STAT(Px, INT_COOLING), /* 0x02 CONTROLLER_COOLING */ STAT(P1, EXT_TEMP), /* 0x03 PHY0_TEMP */ STAT(P1, EXT_COOLING), /* 0x04 PHY0_COOLING */ STAT(P2, EXT_TEMP), /* 0x05 PHY1_TEMP */ STAT(P2, EXT_COOLING), /* 0x06 PHY1_COOLING */ STAT(Px, 1V), /* 0x07 IN_1V0 */ STAT(Px, 1_2V), /* 0x08 IN_1V2 */ STAT(Px, 1_8V), /* 0x09 IN_1V8 */ STAT(Px, 2_5V), /* 0x0a IN_2V5 */ STAT(Px, 3_3V), /* 0x0b IN_3V3 */ STAT(Px, 12V), /* 0x0c IN_12V0 */ STAT(Px, 1_2VA), /* 0x0d IN_1V2A */ STAT(Px, VREF), /* 0x0e IN_VREF */ STAT(Px, VAOE), /* 0x0f OUT_VAOE */ STAT(Px, AOE_TEMP), /* 0x10 AOE_TEMP */ STAT(Px, PSU_AOE_TEMP), /* 0x11 PSU_AOE_TEMP */ STAT(Px, PSU_TEMP), /* 0x12 PSU_TEMP */ STAT(Px, FAN0), /* 0x13 FAN_0 */ STAT(Px, FAN1), /* 0x14 FAN_1 */ STAT(Px, FAN2), /* 0x15 FAN_2 */ STAT(Px, FAN3), /* 0x16 FAN_3 */ STAT(Px, FAN4), /* 0x17 FAN_4 */ STAT(Px, VAOE_IN), /* 0x18 IN_VAOE */ STAT(Px, IAOE), /* 0x19 OUT_IAOE */ STAT(Px, IAOE_IN), /* 0x1a IN_IAOE */ STAT(Px, NIC_POWER), /* 0x1b NIC_POWER */ STAT(Px, 0_9V), /* 0x1c IN_0V9 */ STAT(Px, I0_9V), /* 0x1d IN_I0V9 */ STAT(Px, I1_2V), /* 0x1e IN_I1V2 */ STAT_NEXT_PAGE(), /* 0x1f Next page flag (not a sensor) */ /* Sensor page 1 MC_CMD_SENSOR_xxx */ STAT(Px, 0_9V_ADC), /* 0x20 IN_0V9_ADC */ STAT(Px, INT_TEMP2), /* 0x21 CONTROLLER_2_TEMP */ STAT(Px, VREG_TEMP), /* 0x22 VREG_INTERNAL_TEMP */ STAT(Px, VREG_0_9V_TEMP), /* 0x23 VREG_0V9_TEMP */ STAT(Px, VREG_1_2V_TEMP), /* 0x24 VREG_1V2_TEMP */ STAT(Px, INT_VPTAT), /* 0x25 CTRLR. VPTAT */ STAT(Px, INT_ADC_TEMP), /* 0x26 CTRLR. INTERNAL_TEMP */ STAT(Px, EXT_VPTAT), /* 0x27 CTRLR. VPTAT_EXTADC */ STAT(Px, EXT_ADC_TEMP), /* 0x28 CTRLR. INTERNAL_TEMP_EXTADC */ STAT(Px, AMBIENT_TEMP), /* 0x29 AMBIENT_TEMP */ STAT(Px, AIRFLOW), /* 0x2a AIRFLOW */ STAT(Px, VDD08D_VSS08D_CSR), /* 0x2b VDD08D_VSS08D_CSR */ STAT(Px, VDD08D_VSS08D_CSR_EXTADC), /* 0x2c VDD08D_VSS08D_CSR_EXTADC */ STAT(Px, HOTPOINT_TEMP), /* 0x2d HOTPOINT_TEMP */ STAT(P1, PHY_POWER_SWITCH_PORT0), /* 0x2e PHY_POWER_SWITCH_PORT0 */ STAT(P2, PHY_POWER_SWITCH_PORT1), /* 0x2f PHY_POWER_SWITCH_PORT1 */ STAT(Px, MUM_VCC), /* 0x30 MUM_VCC */ STAT(Px, 0V9_A), /* 0x31 0V9_A */ STAT(Px, I0V9_A), /* 0x32 I0V9_A */ STAT(Px, 0V9_A_TEMP), /* 0x33 0V9_A_TEMP */ STAT(Px, 0V9_B), /* 0x34 0V9_B */ STAT(Px, I0V9_B), /* 0x35 I0V9_B */ STAT(Px, 0V9_B_TEMP), /* 0x36 0V9_B_TEMP */ STAT(Px, CCOM_AVREG_1V2_SUPPLY), /* 0x37 CCOM_AVREG_1V2_SUPPLY */ STAT(Px, CCOM_AVREG_1V2_SUPPLY_EXT_ADC), /* 0x38 CCOM_AVREG_1V2_SUPPLY_EXT_ADC */ STAT(Px, CCOM_AVREG_1V8_SUPPLY), /* 0x39 CCOM_AVREG_1V8_SUPPLY */ STAT(Px, CCOM_AVREG_1V8_SUPPLY_EXT_ADC), /* 0x3a CCOM_AVREG_1V8_SUPPLY_EXT_ADC */ STAT_NO_SENSOR(), /* 0x3b (no sensor) */ STAT_NO_SENSOR(), /* 0x3c (no sensor) */ STAT_NO_SENSOR(), /* 0x3d (no sensor) */ STAT_NO_SENSOR(), /* 0x3e (no sensor) */ STAT_NEXT_PAGE(), /* 0x3f Next page flag (not a sensor) */ /* Sensor page 2 MC_CMD_SENSOR_xxx */ STAT(Px, CONTROLLER_MASTER_VPTAT), /* 0x40 MASTER_VPTAT */ STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP), /* 0x41 MASTER_INT_TEMP */ STAT(Px, CONTROLLER_MASTER_VPTAT_EXT_ADC), /* 0x42 MAST_VPTAT_EXT_ADC */ STAT(Px, CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC), /* 0x43 MASTER_INTERNAL_TEMP_EXT_ADC */ STAT(Px, CONTROLLER_SLAVE_VPTAT), /* 0x44 SLAVE_VPTAT */ STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP), /* 0x45 SLAVE_INTERNAL_TEMP */ STAT(Px, CONTROLLER_SLAVE_VPTAT_EXT_ADC), /* 0x46 SLAVE_VPTAT_EXT_ADC */ STAT(Px, CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC), /* 0x47 SLAVE_INTERNAL_TEMP_EXT_ADC */ + STAT_NO_SENSOR(), /* 0x48 (no sensor) */ + STAT(Px, SODIMM_VOUT), /* 0x49 SODIMM_VOUT */ + STAT(Px, SODIMM_0_TEMP), /* 0x4a SODIMM_0_TEMP */ + STAT(Px, SODIMM_1_TEMP), /* 0x4b SODIMM_1_TEMP */ + STAT(Px, PHY0_VCC), /* 0x4c PHY0_VCC */ + STAT(Px, PHY1_VCC), /* 0x4d PHY1_VCC */ + STAT(Px, CONTROLLER_TDIODE_TEMP), /* 0x4e CONTROLLER_TDIODE_TEMP */ }; #define MCDI_STATIC_SENSOR_ASSERT(_field) \ EFX_STATIC_ASSERT(MC_CMD_SENSOR_STATE_ ## _field \ == EFX_MON_STAT_STATE_ ## _field) static void mcdi_mon_decode_stats( __in efx_nic_t *enp, __in_ecount(sensor_mask_size) uint32_t *sensor_mask, __in size_t sensor_mask_size, __in_opt efsys_mem_t *esmp, __out_ecount_opt(sensor_mask_size) uint32_t *stat_maskp, __inout_ecount_opt(EFX_MON_NSTATS) efx_mon_stat_value_t *stat) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); uint16_t port_mask; uint16_t sensor; size_t sensor_max; uint32_t stat_mask[(EFX_ARRAY_SIZE(mcdi_sensor_map) + 31) / 32]; uint32_t idx = 0; uint32_t page = 0; /* Assert the MC_CMD_SENSOR and EFX_MON_STATE namespaces agree */ MCDI_STATIC_SENSOR_ASSERT(OK); MCDI_STATIC_SENSOR_ASSERT(WARNING); MCDI_STATIC_SENSOR_ASSERT(FATAL); MCDI_STATIC_SENSOR_ASSERT(BROKEN); MCDI_STATIC_SENSOR_ASSERT(NO_READING); EFX_STATIC_ASSERT(sizeof (stat_mask[0]) * 8 == EFX_MON_MASK_ELEMENT_SIZE); sensor_max = MIN((8 * sensor_mask_size), EFX_ARRAY_SIZE(mcdi_sensor_map)); port_mask = 1U << emip->emi_port; memset(stat_mask, 0, sizeof (stat_mask)); /* * The MCDI sensor readings in the DMA buffer are a packed array of * MC_CMD_SENSOR_VALUE_ENTRY structures, which only includes entries for * supported sensors (bit set in sensor_mask). The sensor_mask and * sensor readings do not include entries for the per-page NEXT_PAGE * flag. * * sensor_mask may legitimately contain MCDI sensors that the driver * does not understand. */ for (sensor = 0; sensor < sensor_max; ++sensor) { efx_mon_stat_t id = mcdi_sensor_map[sensor].msm_stat; if ((sensor % MCDI_MON_PAGE_SIZE) == MC_CMD_SENSOR_PAGE0_NEXT) { EFSYS_ASSERT3U(id, ==, MCDI_MON_NEXT_PAGE); page++; continue; } if (~(sensor_mask[page]) & (1U << sensor)) continue; idx++; if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0) continue; EFSYS_ASSERT(id < EFX_MON_NSTATS); /* * stat_mask is a bitmask indexed by EFX_MON_* monitor statistic * identifiers from efx_mon_stat_t (without NEXT_PAGE bits). * * If there is an entry in the MCDI sensor to monitor statistic * map then the sensor reading is used for the value of the * monitor statistic. */ stat_mask[id / EFX_MON_MASK_ELEMENT_SIZE] |= (1U << (id % EFX_MON_MASK_ELEMENT_SIZE)); if (stat != NULL && esmp != NULL && !EFSYS_MEM_IS_NULL(esmp)) { efx_dword_t dword; /* Get MCDI sensor reading from DMA buffer */ EFSYS_MEM_READD(esmp, 4 * (idx - 1), &dword); /* Update EFX monitor stat from MCDI sensor reading */ stat[id].emsv_value = (uint16_t)EFX_DWORD_FIELD(dword, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE); stat[id].emsv_state = (uint16_t)EFX_DWORD_FIELD(dword, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE); } } if (stat_maskp != NULL) { memcpy(stat_maskp, stat_mask, sizeof (stat_mask)); } } __checkReturn efx_rc_t mcdi_mon_ev( __in efx_nic_t *enp, __in efx_qword_t *eqp, __out efx_mon_stat_t *idp, __out efx_mon_stat_value_t *valuep) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint16_t port_mask; uint16_t sensor; uint16_t state; uint16_t value; efx_mon_stat_t id; efx_rc_t rc; port_mask = (emip->emi_port == 1) ? MCDI_MON_PORT_P1 : MCDI_MON_PORT_P2; sensor = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_MONITOR); state = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_STATE); value = (uint16_t)MCDI_EV_FIELD(eqp, SENSOREVT_VALUE); /* Hardware must support this MCDI sensor */ EFSYS_ASSERT3U(sensor, <, (8 * encp->enc_mcdi_sensor_mask_size)); EFSYS_ASSERT((sensor % MCDI_MON_PAGE_SIZE) != MC_CMD_SENSOR_PAGE0_NEXT); EFSYS_ASSERT(encp->enc_mcdi_sensor_maskp != NULL); EFSYS_ASSERT((encp->enc_mcdi_sensor_maskp[sensor / MCDI_MON_PAGE_SIZE] & (1U << (sensor % MCDI_MON_PAGE_SIZE))) != 0); /* But we don't have to understand it */ if (sensor >= EFX_ARRAY_SIZE(mcdi_sensor_map)) { rc = ENOTSUP; goto fail1; } id = mcdi_sensor_map[sensor].msm_stat; if ((port_mask & mcdi_sensor_map[sensor].msm_port_mask) == 0) return (ENODEV); EFSYS_ASSERT(id < EFX_MON_NSTATS); *idp = id; valuep->emsv_value = value; valuep->emsv_state = state; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_read_sensors( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint32_t size) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_READ_SENSORS_EXT_IN_LEN, MC_CMD_READ_SENSORS_EXT_OUT_LEN)]; uint32_t addr_lo, addr_hi; req.emr_cmd = MC_CMD_READ_SENSORS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_READ_SENSORS_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_READ_SENSORS_EXT_OUT_LEN; addr_lo = (uint32_t)(EFSYS_MEM_ADDR(esmp) & 0xffffffff); addr_hi = (uint32_t)(EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_LO, addr_lo); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_DMA_ADDR_HI, addr_hi); MCDI_IN_SET_DWORD(req, READ_SENSORS_EXT_IN_LENGTH, size); efx_mcdi_execute(enp, &req); return (req.emr_rc); } static __checkReturn efx_rc_t efx_mcdi_sensor_info_npages( __in efx_nic_t *enp, __out uint32_t *npagesp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN, MC_CMD_SENSOR_INFO_OUT_LENMAX)]; int page; efx_rc_t rc; EFSYS_ASSERT(npagesp != NULL); page = 0; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SENSOR_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page++); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } } while (MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK) & (1 << MC_CMD_SENSOR_PAGE0_NEXT)); *npagesp = page; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_sensor_info( __in efx_nic_t *enp, __out_ecount(npages) uint32_t *sensor_maskp, __in size_t npages) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_SENSOR_INFO_EXT_IN_LEN, MC_CMD_SENSOR_INFO_OUT_LENMAX)]; uint32_t page; efx_rc_t rc; EFSYS_ASSERT(sensor_maskp != NULL); for (page = 0; page < npages; page++) { uint32_t mask; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_SENSOR_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_SENSOR_INFO_EXT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_SENSOR_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, SENSOR_INFO_EXT_IN_PAGE, page); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } mask = MCDI_OUT_DWORD(req, SENSOR_INFO_OUT_MASK); if ((page != (npages - 1)) && ((mask & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) == 0)) { rc = EINVAL; goto fail2; } sensor_maskp[page] = mask; } if (sensor_maskp[npages - 1] & (1U << MC_CMD_SENSOR_PAGE0_NEXT)) { rc = EINVAL; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t mcdi_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t size = encp->enc_mon_stat_dma_buf_size; efx_rc_t rc; if ((rc = efx_mcdi_read_sensors(enp, esmp, size)) != 0) goto fail1; EFSYS_DMA_SYNC_FOR_KERNEL(esmp, 0, size); mcdi_mon_decode_stats(enp, encp->enc_mcdi_sensor_maskp, encp->enc_mcdi_sensor_mask_size, esmp, NULL, values); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t mcdi_mon_cfg_build( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t npages; efx_rc_t rc; switch (enp->en_family) { #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: encp->enc_mon_type = EFX_MON_SFC90X0; break; #endif #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: encp->enc_mon_type = EFX_MON_SFC91X0; break; #endif #if EFSYS_OPT_MEDFORD case EFX_FAMILY_MEDFORD: encp->enc_mon_type = EFX_MON_SFC92X0; break; #endif default: rc = EINVAL; goto fail1; } /* Get mc sensor mask size */ npages = 0; if ((rc = efx_mcdi_sensor_info_npages(enp, &npages)) != 0) goto fail2; encp->enc_mon_stat_dma_buf_size = npages * EFX_MON_STATS_PAGE_SIZE; encp->enc_mcdi_sensor_mask_size = npages * sizeof (uint32_t); /* Allocate mc sensor mask */ EFSYS_KMEM_ALLOC(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); if (encp->enc_mcdi_sensor_maskp == NULL) { rc = ENOMEM; goto fail3; } /* Read mc sensor mask */ if ((rc = efx_mcdi_sensor_info(enp, encp->enc_mcdi_sensor_maskp, npages)) != 0) goto fail4; /* Build monitor statistics mask */ mcdi_mon_decode_stats(enp, encp->enc_mcdi_sensor_maskp, encp->enc_mcdi_sensor_mask_size, NULL, encp->enc_mon_stat_mask, NULL); return (0); fail4: EFSYS_PROBE(fail4); EFSYS_KMEM_FREE(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void mcdi_mon_cfg_free( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); if (encp->enc_mcdi_sensor_maskp != NULL) { EFSYS_KMEM_FREE(enp->en_esip, encp->enc_mcdi_sensor_mask_size, encp->enc_mcdi_sensor_maskp); } } #endif /* EFSYS_OPT_MON_STATS */ #endif /* EFSYS_OPT_MON_MCDI */ Index: projects/release-pkg/sys/dev/sfxge/common/siena_flash.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/siena_flash.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/siena_flash.h (revision 293803) @@ -1,201 +1,214 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_SIENA_FLASH_H #define _SYS_SIENA_FLASH_H #pragma pack(1) /* Fixed locations near the start of flash (which may be in the internal PHY * firmware header) point to the boot header. * * - parsed by MC boot ROM and firmware * - reserved (but not parsed) by PHY firmware * - opaque to driver */ #define SIENA_MC_BOOT_PHY_FW_HDR_LEN (0x20) #define SIENA_MC_BOOT_PTR_LOCATION (0x18) /* First thing we try to boot */ #define SIENA_MC_BOOT_ALT_PTR_LOCATION (0x1c) /* Alternative if that fails */ #define SIENA_MC_BOOT_HDR_LEN (0x200) #define SIENA_MC_BOOT_MAGIC (0x51E4A001) #define SIENA_MC_BOOT_VERSION (1) /*Structures supporting an arbitrary number of binary blobs in the flash image intended to house code and tables for the satellite cpus*/ /*thanks to random.org for:*/ #define BLOBS_HEADER_MAGIC (0xBDA3BBD4) #define BLOB_HEADER_MAGIC (0xA1478A91) typedef struct blobs_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; efx_dword_t no_of_blobs; } blobs_hdr_t; typedef struct blob_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; efx_dword_t cpu_type; efx_dword_t build_variant; efx_dword_t offset; efx_dword_t length; efx_dword_t checksum; } blob_hdr_t; #define BLOB_CPU_TYPE_TXDI_TEXT (0) #define BLOB_CPU_TYPE_RXDI_TEXT (1) #define BLOB_CPU_TYPE_TXDP_TEXT (2) #define BLOB_CPU_TYPE_RXDP_TEXT (3) #define BLOB_CPU_TYPE_RXHRSL_HR_LUT (4) #define BLOB_CPU_TYPE_RXHRSL_HR_LUT_CFG (5) #define BLOB_CPU_TYPE_TXHRSL_HR_LUT (6) #define BLOB_CPU_TYPE_TXHRSL_HR_LUT_CFG (7) #define BLOB_CPU_TYPE_RXHRSL_HR_PGM (8) #define BLOB_CPU_TYPE_RXHRSL_SL_PGM (9) #define BLOB_CPU_TYPE_TXHRSL_HR_PGM (10) #define BLOB_CPU_TYPE_TXHRSL_SL_PGM (11) #define BLOB_CPU_TYPE_RXDI_VTBL0 (12) #define BLOB_CPU_TYPE_TXDI_VTBL0 (13) #define BLOB_CPU_TYPE_RXDI_VTBL1 (14) #define BLOB_CPU_TYPE_TXDI_VTBL1 (15) #define BLOB_CPU_TYPE_DUMPSPEC (32) +#define BLOB_CPU_TYPE_MC_XIP (33) + +#define BLOB_CPU_TYPE_INVALID (31) + +/* + * The upper four bits of the CPU type field specify the compression + * algorithm used for this blob. + */ +#define BLOB_COMPRESSION_MASK (0xf0000000) +#define BLOB_CPU_TYPE_MASK (0x0fffffff) + +#define BLOB_COMPRESSION_NONE (0x00000000) /* Stored as is */ +#define BLOB_COMPRESSION_LZ (0x10000000) /* see lib/lzdecoder.c */ typedef struct siena_mc_boot_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; /* = SIENA_MC_BOOT_MAGIC */ efx_word_t hdr_version; /* this structure definition is version 1 */ efx_byte_t board_type; efx_byte_t firmware_version_a; efx_byte_t firmware_version_b; efx_byte_t firmware_version_c; efx_word_t checksum; /* of whole header area + firmware image */ efx_word_t firmware_version_d; efx_byte_t mcfw_subtype; efx_byte_t reserved_a[1]; /* (set to 0) */ efx_dword_t firmware_text_offset; /* offset to firmware .text */ efx_dword_t firmware_text_size; /* length of firmware .text, in bytes */ efx_dword_t firmware_data_offset; /* offset to firmware .data */ efx_dword_t firmware_data_size; /* length of firmware .data, in bytes */ efx_byte_t spi_rate; /* SPI rate for reading image, 0 is BootROM default */ efx_byte_t spi_phase_adj; /* SPI SDO/SCL phase adjustment, 0 is default (no adj) */ efx_word_t reserved_b[1]; /* (set to 0) */ efx_dword_t reserved_c[7]; /* (set to 0) */ } siena_mc_boot_hdr_t; #define SIENA_MC_BOOT_HDR_PADDING \ (SIENA_MC_BOOT_HDR_LEN - sizeof(siena_mc_boot_hdr_t)) #define SIENA_MC_STATIC_CONFIG_MAGIC (0xBDCF5555) #define SIENA_MC_STATIC_CONFIG_VERSION (0) typedef struct siena_mc_static_config_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; /* = SIENA_MC_STATIC_CONFIG_MAGIC */ efx_word_t length; /* of header area (i.e. not including VPD) */ efx_byte_t version; efx_byte_t csum; /* over header area (i.e. not including VPD) */ efx_dword_t static_vpd_offset; efx_dword_t static_vpd_length; efx_dword_t capabilities; efx_byte_t mac_addr_base[6]; efx_byte_t green_mode_cal; /* Green mode calibration result */ efx_byte_t green_mode_valid; /* Whether cal holds a valid value */ efx_word_t mac_addr_count; efx_word_t mac_addr_stride; efx_word_t calibrated_vref; /* Vref as measured during production */ efx_word_t adc_vref; /* Vref as read by ADC */ efx_dword_t reserved2[1]; /* (write as zero) */ efx_dword_t num_dbi_items; struct { efx_word_t addr; efx_word_t byte_enables; efx_dword_t value; } dbi[]; } siena_mc_static_config_hdr_t; #define SIENA_MC_DYNAMIC_CONFIG_MAGIC (0xBDCFDDDD) #define SIENA_MC_DYNAMIC_CONFIG_VERSION (0) typedef struct siena_mc_fw_version_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t fw_subtype; efx_word_t version_w; efx_word_t version_x; efx_word_t version_y; efx_word_t version_z; } siena_mc_fw_version_t; typedef struct siena_mc_dynamic_config_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; /* = SIENA_MC_DYNAMIC_CONFIG_MAGIC */ efx_word_t length; /* of header area (i.e. not including VPD) */ efx_byte_t version; efx_byte_t csum; /* over header area (i.e. not including VPD) */ efx_dword_t dynamic_vpd_offset; efx_dword_t dynamic_vpd_length; efx_dword_t num_fw_version_items; siena_mc_fw_version_t fw_version[]; } siena_mc_dynamic_config_hdr_t; #define SIENA_MC_EXPROM_SINGLE_MAGIC (0xAA55) /* little-endian uint16_t */ #define SIENA_MC_EXPROM_COMBO_MAGIC (0xB0070102) /* little-endian uint32_t */ #define SIENA_MC_EXPROM_COMBO_V2_MAGIC (0xB0070103) /* little-endian uint32_t */ typedef struct siena_mc_combo_rom_hdr_s { /* GENERATED BY scripts/genfwdef */ efx_dword_t magic; /* = SIENA_MC_EXPROM_COMBO_MAGIC or SIENA_MC_EXPROM_COMBO_V2_MAGIC */ union { struct { efx_dword_t len1; /* length of first image */ efx_dword_t len2; /* length of second image */ efx_dword_t off1; /* offset of first byte to edit to combine images */ efx_dword_t off2; /* offset of second byte to edit to combine images */ efx_word_t infoblk0_off;/* infoblk offset */ efx_word_t infoblk1_off;/* infoblk offset */ efx_byte_t infoblk_len;/* length of space reserved for one infoblk structure */ efx_byte_t reserved[7];/* (set to 0) */ } v1; struct { efx_dword_t len1; /* length of first image */ efx_dword_t len2; /* length of second image */ efx_dword_t off1; /* offset of first byte to edit to combine images */ efx_dword_t off2; /* offset of second byte to edit to combine images */ efx_word_t infoblk_off;/* infoblk start offset */ efx_word_t infoblk_count;/* infoblk count */ efx_byte_t infoblk_len;/* length of space reserved for one infoblk structure */ efx_byte_t reserved[7];/* (set to 0) */ } v2; } data; } siena_mc_combo_rom_hdr_t; #pragma pack() #endif /* _SYS_SIENA_FLASH_H */ Index: projects/release-pkg/sys/dev/sfxge/common/siena_impl.h =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/siena_impl.h (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/siena_impl.h (revision 293803) @@ -1,487 +1,487 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_SIENA_IMPL_H #define _SYS_SIENA_IMPL_H #include "efx.h" #include "efx_regs.h" #include "efx_mcdi.h" #include "siena_flash.h" #ifdef __cplusplus extern "C" { #endif #if EFSYS_OPT_PHY_PROPS /* START MKCONFIG GENERATED SienaPhyHeaderPropsBlock a8db1f8eb5106efd */ typedef enum siena_phy_prop_e { SIENA_PHY_NPROPS } siena_phy_prop_t; /* END MKCONFIG GENERATED SienaPhyHeaderPropsBlock */ #endif /* EFSYS_OPT_PHY_PROPS */ #define SIENA_NVRAM_CHUNK 0x80 extern __checkReturn efx_rc_t siena_nic_probe( __in efx_nic_t *enp); #if EFSYS_OPT_PCIE_TUNE extern __checkReturn efx_rc_t siena_nic_pcie_extended_sync( __in efx_nic_t *enp); #endif extern __checkReturn efx_rc_t siena_nic_reset( __in efx_nic_t *enp); extern __checkReturn efx_rc_t siena_nic_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t siena_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void siena_nic_fini( __in efx_nic_t *enp); extern void siena_nic_unprobe( __in efx_nic_t *enp); #define SIENA_SRAM_ROWS 0x12000 extern void siena_sram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t siena_sram_test( __in efx_nic_t *enp, __in efx_sram_pattern_fn_t func); #endif /* EFSYS_OPT_DIAG */ #if EFSYS_OPT_MCDI extern __checkReturn efx_rc_t siena_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern void siena_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch); extern __checkReturn boolean_t siena_mcdi_poll_response( __in efx_nic_t *enp); extern void siena_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length); extern void siena_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp); extern efx_rc_t siena_mcdi_poll_reboot( __in efx_nic_t *enp); extern void siena_mcdi_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t siena_mcdi_feature_supported( __in efx_nic_t *enp, __in efx_mcdi_feature_id_t id, __out boolean_t *supportedp); #endif /* EFSYS_OPT_MCDI */ #if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD extern __checkReturn efx_rc_t siena_nvram_partn_size( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out size_t *sizep); extern __checkReturn efx_rc_t siena_nvram_partn_lock( __in efx_nic_t *enp, - __in unsigned int partn); + __in uint32_t partn); extern __checkReturn efx_rc_t siena_nvram_partn_read( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t siena_nvram_partn_erase( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __in size_t size); extern __checkReturn efx_rc_t siena_nvram_partn_write( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern void siena_nvram_partn_unlock( __in efx_nic_t *enp, - __in unsigned int partn); + __in uint32_t partn); extern __checkReturn efx_rc_t siena_nvram_get_dynamic_cfg( __in efx_nic_t *enp, - __in unsigned int index, + __in uint32_t partn, __in boolean_t vpd, __out siena_mc_dynamic_config_hdr_t **dcfgp, __out size_t *sizep); #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ #if EFSYS_OPT_NVRAM #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t siena_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t siena_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t siena_nvram_get_subtype( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out uint32_t *subtypep); extern __checkReturn efx_rc_t siena_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t siena_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *pref_chunkp); extern __checkReturn efx_rc_t siena_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t siena_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t siena_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void siena_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t siena_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_VPD extern __checkReturn efx_rc_t siena_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t siena_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t siena_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t siena_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t siena_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t siena_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t siena_vpd_set( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t siena_vpd_next( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t siena_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void siena_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ typedef struct siena_link_state_s { uint32_t sls_adv_cap_mask; uint32_t sls_lp_cap_mask; unsigned int sls_fcntl; efx_link_mode_t sls_link_mode; #if EFSYS_OPT_LOOPBACK efx_loopback_type_t sls_loopback; #endif boolean_t sls_mac_up; } siena_link_state_t; extern void siena_phy_link_ev( __in efx_nic_t *enp, __in efx_qword_t *eqp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t siena_phy_get_link( __in efx_nic_t *enp, __out siena_link_state_t *slsp); extern __checkReturn efx_rc_t siena_phy_power( __in efx_nic_t *enp, __in boolean_t on); extern __checkReturn efx_rc_t siena_phy_reconfigure( __in efx_nic_t *enp); extern __checkReturn efx_rc_t siena_phy_verify( __in efx_nic_t *enp); extern __checkReturn efx_rc_t siena_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); #if EFSYS_OPT_PHY_STATS extern void siena_phy_decode_stats( __in efx_nic_t *enp, __in uint32_t vmask, __in_opt efsys_mem_t *esmp, __out_opt uint64_t *smaskp, __inout_ecount_opt(EFX_PHY_NSTATS) uint32_t *stat); extern __checkReturn efx_rc_t siena_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS #if EFSYS_OPT_NAMES extern const char * siena_phy_prop_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t siena_phy_prop_get( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t flags, __out uint32_t *valp); extern __checkReturn efx_rc_t siena_phy_prop_set( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t val); #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_BIST extern __checkReturn efx_rc_t siena_phy_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t siena_phy_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt __drv_when(count > 0, __notnull) uint32_t *value_maskp, __out_ecount_opt(count) __drv_when(count > 0, __notnull) unsigned long *valuesp, __in size_t count); extern void siena_phy_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ extern __checkReturn efx_rc_t siena_mac_poll( __in efx_nic_t *enp, __out efx_link_mode_t *link_modep); extern __checkReturn efx_rc_t siena_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); extern __checkReturn efx_rc_t siena_mac_reconfigure( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK extern __checkReturn efx_rc_t siena_mac_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t loopback_type); #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_MAC_STATS extern __checkReturn efx_rc_t siena_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ #ifdef __cplusplus } #endif #endif /* _SYS_SIENA_IMPL_H */ Index: projects/release-pkg/sys/dev/sfxge/common/siena_mcdi.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/siena_mcdi.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/siena_mcdi.c (revision 293803) @@ -1,299 +1,302 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_SIENA && EFSYS_OPT_MCDI #define SIENA_MCDI_PDU(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_PDU_OFST >> 2 \ : MC_SMEM_P1_PDU_OFST >> 2) #define SIENA_MCDI_DOORBELL(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_DOORBELL_OFST >> 2 \ : MC_SMEM_P1_DOORBELL_OFST >> 2) #define SIENA_MCDI_STATUS(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_STATUS_OFST >> 2 \ : MC_SMEM_P1_STATUS_OFST >> 2) void siena_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr; efx_dword_t dword; unsigned int xflags; unsigned int pdur; unsigned int dbr; unsigned int pos; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); _NOTE(ARGUNUSED(new_epoch)) EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); pdur = SIENA_MCDI_PDU(emip); dbr = SIENA_MCDI_DOORBELL(emip); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; /* Construct the header in shared memory */ EFX_POPULATE_DWORD_6(hdr, MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_TRUE); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr, sizeof (hdr), emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Construct the payload */ for (pos = 0; pos < emrp->emr_in_length; pos += sizeof (efx_dword_t)) { memcpy(&dword, MCDI_IN(*emrp, efx_dword_t, pos), MIN(sizeof (dword), emrp->emr_in_length - pos)); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, pdur + 1 + (pos >> 2), &dword, B_FALSE); } /* Ring the doorbell */ EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xd004be11); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, dbr, &dword, B_FALSE); } void siena_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_dword_t hdr; #endif size_t bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); /* Copy payload out if caller supplied buffer */ if (emrp->emr_out_buf != NULL) { siena_mcdi_read_response(enp, emrp->emr_out_buf, sizeof (efx_dword_t), bytes); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { siena_mcdi_read_response(enp, &hdr, 0, sizeof (hdr)); emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, sizeof (hdr), emrp->emr_out_buf, bytes); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } efx_rc_t siena_mcdi_poll_reboot( __in efx_nic_t *enp) { #ifndef EFX_GRACEFUL_MC_REBOOT /* * This function is not being used properly. * Until its callers are fixed, it should always return 0. */ _NOTE(ARGUNUSED(enp)) return (0); #else efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); unsigned int rebootr; efx_dword_t dword; uint32_t value; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); rebootr = SIENA_MCDI_STATUS(emip); EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, rebootr, &dword, B_FALSE); value = EFX_DWORD_FIELD(dword, EFX_DWORD_0); if (value == 0) return (0); EFX_ZERO_DWORD(dword); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, rebootr, &dword, B_FALSE); if (value == MC_STATUS_DWORD_ASSERT) return (EINTR); else return (EIO); #endif } extern __checkReturn boolean_t siena_mcdi_poll_response( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr; unsigned int pdur; EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); pdur = SIENA_MCDI_PDU(emip); EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_FALSE); return (EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE) ? B_TRUE : B_FALSE); } void siena_mcdi_read_response( __in efx_nic_t *enp, __out void *bufferp, __in size_t offset, __in size_t length) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); unsigned int pdur; unsigned int pos; efx_dword_t data; EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); pdur = SIENA_MCDI_PDU(emip); for (pos = 0; pos < length; pos += sizeof (efx_dword_t)) { EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur + ((offset + pos) >> 2), &data, B_FALSE); memcpy((uint8_t *)bufferp + pos, &data, MIN(sizeof (data), length - pos)); } } __checkReturn efx_rc_t siena_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_oword_t oword; unsigned int portnum; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* Determine the port number to use for MCDI */ EFX_BAR_READO(enp, FR_AZ_CS_DEBUG_REG, &oword); portnum = EFX_OWORD_FIELD(oword, FRF_CZ_CS_PORT_NUM); if (portnum == 0) { /* Presumably booted from ROM; only MCDI port 1 will work */ emip->emi_port = 1; } else if (portnum <= 2) { emip->emi_port = portnum; } else { rc = EINVAL; goto fail1; } + /* Siena BootROM and firmware only support MCDIv1 */ + emip->emi_max_version = 1; + /* * Wipe the atomic reboot status so subsequent MCDI requests succeed. * BOOT_STATUS is preserved so eno_nic_probe() can boot out of the * assertion handler. */ (void) siena_mcdi_poll_reboot(enp); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_mcdi_fini( __in efx_nic_t *enp) { } __checkReturn efx_rc_t siena_mcdi_feature_supported( __in efx_nic_t *enp, __in efx_mcdi_feature_id_t id, __out boolean_t *supportedp) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); switch (id) { case EFX_MCDI_FEATURE_FW_UPDATE: case EFX_MCDI_FEATURE_LINK_CONTROL: case EFX_MCDI_FEATURE_MACADDR_CHANGE: case EFX_MCDI_FEATURE_MAC_SPOOFING: *supportedp = B_TRUE; break; default: rc = ENOTSUP; goto fail1; break; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_SIENA && EFSYS_OPT_MCDI */ Index: projects/release-pkg/sys/dev/sfxge/common/siena_nvram.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/siena_nvram.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/siena_nvram.c (revision 293803) @@ -1,872 +1,872 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_SIENA #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM __checkReturn efx_rc_t siena_nvram_partn_size( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out size_t *sizep) { efx_rc_t rc; if ((1 << partn) & ~enp->en_u.siena.enu_partn_mask) { rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_nvram_info(enp, partn, sizep, NULL, NULL, NULL)) != 0) { goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_partn_lock( __in efx_nic_t *enp, - __in unsigned int partn) + __in uint32_t partn) { efx_rc_t rc; if ((rc = efx_mcdi_nvram_update_start(enp, partn)) != 0) { goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_partn_read( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { size_t chunk; efx_rc_t rc; while (size > 0) { chunk = MIN(size, SIENA_NVRAM_CHUNK); if ((rc = efx_mcdi_nvram_read(enp, partn, offset, data, chunk)) != 0) { goto fail1; } size -= chunk; data += chunk; offset += chunk; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_partn_erase( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __in size_t size) { efx_rc_t rc; if ((rc = efx_mcdi_nvram_erase(enp, partn, offset, size)) != 0) { goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_partn_write( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { size_t chunk; efx_rc_t rc; while (size > 0) { chunk = MIN(size, SIENA_NVRAM_CHUNK); if ((rc = efx_mcdi_nvram_write(enp, partn, offset, data, chunk)) != 0) { goto fail1; } size -= chunk; data += chunk; offset += chunk; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_nvram_partn_unlock( __in efx_nic_t *enp, - __in unsigned int partn) + __in uint32_t partn) { boolean_t reboot; efx_rc_t rc; /* * Reboot into the new image only for PHYs. The driver has to * explicitly cope with an MC reboot after a firmware update. */ reboot = (partn == MC_CMD_NVRAM_TYPE_PHY_PORT0 || partn == MC_CMD_NVRAM_TYPE_PHY_PORT1 || partn == MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO); if ((rc = efx_mcdi_nvram_update_finish(enp, partn, reboot)) != 0) { goto fail1; } return; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); } #endif /* EFSYS_OPT_VPD || EFSYS_OPT_NVRAM */ #if EFSYS_OPT_NVRAM typedef struct siena_parttbl_entry_s { unsigned int partn; unsigned int port; efx_nvram_type_t nvtype; } siena_parttbl_entry_t; static siena_parttbl_entry_t siena_parttbl[] = { {MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO, 1, EFX_NVRAM_NULLPHY}, {MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO, 2, EFX_NVRAM_NULLPHY}, {MC_CMD_NVRAM_TYPE_MC_FW, 1, EFX_NVRAM_MC_FIRMWARE}, {MC_CMD_NVRAM_TYPE_MC_FW, 2, EFX_NVRAM_MC_FIRMWARE}, {MC_CMD_NVRAM_TYPE_MC_FW_BACKUP, 1, EFX_NVRAM_MC_GOLDEN}, {MC_CMD_NVRAM_TYPE_MC_FW_BACKUP, 2, EFX_NVRAM_MC_GOLDEN}, {MC_CMD_NVRAM_TYPE_EXP_ROM, 1, EFX_NVRAM_BOOTROM}, {MC_CMD_NVRAM_TYPE_EXP_ROM, 2, EFX_NVRAM_BOOTROM}, {MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0, 1, EFX_NVRAM_BOOTROM_CFG}, {MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1, 2, EFX_NVRAM_BOOTROM_CFG}, {MC_CMD_NVRAM_TYPE_PHY_PORT0, 1, EFX_NVRAM_PHY}, {MC_CMD_NVRAM_TYPE_PHY_PORT1, 2, EFX_NVRAM_PHY}, {MC_CMD_NVRAM_TYPE_FPGA, 1, EFX_NVRAM_FPGA}, {MC_CMD_NVRAM_TYPE_FPGA, 2, EFX_NVRAM_FPGA}, {MC_CMD_NVRAM_TYPE_FPGA_BACKUP, 1, EFX_NVRAM_FPGA_BACKUP}, {MC_CMD_NVRAM_TYPE_FPGA_BACKUP, 2, EFX_NVRAM_FPGA_BACKUP}, {MC_CMD_NVRAM_TYPE_FC_FW, 1, EFX_NVRAM_FCFW}, {MC_CMD_NVRAM_TYPE_FC_FW, 2, EFX_NVRAM_FCFW}, {MC_CMD_NVRAM_TYPE_CPLD, 1, EFX_NVRAM_CPLD}, {MC_CMD_NVRAM_TYPE_CPLD, 2, EFX_NVRAM_CPLD}, }; static __checkReturn siena_parttbl_entry_t * siena_parttbl_entry( __in efx_nic_t *enp, __in efx_nvram_type_t type) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); siena_parttbl_entry_t *entry; unsigned int i; EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES); for (i = 0; i < EFX_ARRAY_SIZE(siena_parttbl); i++) { entry = &siena_parttbl[i]; if (entry->port == emip->emi_port && entry->nvtype == type) return (entry); } return (NULL); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t siena_nvram_test( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); siena_parttbl_entry_t *entry; unsigned int i; efx_rc_t rc; /* * Iterate over the list of supported partition types * applicable to *this* port */ for (i = 0; i < EFX_ARRAY_SIZE(siena_parttbl); i++) { entry = &siena_parttbl[i]; if (entry->port != emip->emi_port || !(enp->en_u.siena.enu_partn_mask & (1 << entry->partn))) continue; if ((rc = efx_mcdi_nvram_test(enp, entry->partn)) != 0) { goto fail1; } } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ __checkReturn efx_rc_t siena_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep) { siena_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = siena_nvram_partn_size(enp, entry->partn, sizep)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); *sizep = 0; return (rc); } #define SIENA_DYNAMIC_CFG_SIZE(_nitems) \ (sizeof (siena_mc_dynamic_config_hdr_t) + ((_nitems) * \ sizeof (((siena_mc_dynamic_config_hdr_t *)NULL)->fw_version[0]))) __checkReturn efx_rc_t siena_nvram_get_dynamic_cfg( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __in boolean_t vpd, __out siena_mc_dynamic_config_hdr_t **dcfgp, __out size_t *sizep) { siena_mc_dynamic_config_hdr_t *dcfg = NULL; size_t size; uint8_t cksum; unsigned int vpd_offset; unsigned int vpd_length; unsigned int hdr_length; unsigned int nversions; unsigned int pos; unsigned int region; efx_rc_t rc; EFSYS_ASSERT(partn == MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 || partn == MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1); /* * Allocate sufficient memory for the entire dynamiccfg area, even * if we're not actually going to read in the VPD. */ if ((rc = siena_nvram_partn_size(enp, partn, &size)) != 0) goto fail1; EFSYS_KMEM_ALLOC(enp->en_esip, size, dcfg); if (dcfg == NULL) { rc = ENOMEM; goto fail2; } if ((rc = siena_nvram_partn_read(enp, partn, 0, (caddr_t)dcfg, SIENA_NVRAM_CHUNK)) != 0) goto fail3; /* Verify the magic */ if (EFX_DWORD_FIELD(dcfg->magic, EFX_DWORD_0) != SIENA_MC_DYNAMIC_CONFIG_MAGIC) goto invalid1; /* All future versions of the structure must be backwards compatable */ EFX_STATIC_ASSERT(SIENA_MC_DYNAMIC_CONFIG_VERSION == 0); hdr_length = EFX_WORD_FIELD(dcfg->length, EFX_WORD_0); nversions = EFX_DWORD_FIELD(dcfg->num_fw_version_items, EFX_DWORD_0); vpd_offset = EFX_DWORD_FIELD(dcfg->dynamic_vpd_offset, EFX_DWORD_0); vpd_length = EFX_DWORD_FIELD(dcfg->dynamic_vpd_length, EFX_DWORD_0); /* Verify the hdr doesn't overflow the partn size */ if (hdr_length > size || vpd_offset > size || vpd_length > size || vpd_length + vpd_offset > size) goto invalid2; /* Verify the header has room for all it's versions */ if (hdr_length < SIENA_DYNAMIC_CFG_SIZE(0) || hdr_length < SIENA_DYNAMIC_CFG_SIZE(nversions)) goto invalid3; /* * Read the remaining portion of the dcfg, either including * the whole of VPD (there is no vpd length in this structure, * so we have to parse each tag), or just the dcfg header itself */ region = vpd ? vpd_offset + vpd_length : hdr_length; if (region > SIENA_NVRAM_CHUNK) { if ((rc = siena_nvram_partn_read(enp, partn, SIENA_NVRAM_CHUNK, (caddr_t)dcfg + SIENA_NVRAM_CHUNK, region - SIENA_NVRAM_CHUNK)) != 0) goto fail4; } /* Verify checksum */ cksum = 0; for (pos = 0; pos < hdr_length; pos++) cksum += ((uint8_t *)dcfg)[pos]; if (cksum != 0) goto invalid4; goto done; invalid4: EFSYS_PROBE(invalid4); invalid3: EFSYS_PROBE(invalid3); invalid2: EFSYS_PROBE(invalid2); invalid1: EFSYS_PROBE(invalid1); /* * Construct a new "null" dcfg, with an empty version vector, * and an empty VPD chunk trailing. This has the neat side effect * of testing the exception paths in the write path. */ EFX_POPULATE_DWORD_1(dcfg->magic, EFX_DWORD_0, SIENA_MC_DYNAMIC_CONFIG_MAGIC); EFX_POPULATE_WORD_1(dcfg->length, EFX_WORD_0, sizeof (*dcfg)); EFX_POPULATE_BYTE_1(dcfg->version, EFX_BYTE_0, SIENA_MC_DYNAMIC_CONFIG_VERSION); EFX_POPULATE_DWORD_1(dcfg->dynamic_vpd_offset, EFX_DWORD_0, sizeof (*dcfg)); EFX_POPULATE_DWORD_1(dcfg->dynamic_vpd_length, EFX_DWORD_0, 0); EFX_POPULATE_DWORD_1(dcfg->num_fw_version_items, EFX_DWORD_0, 0); done: *dcfgp = dcfg; *sizep = size; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); EFSYS_KMEM_FREE(enp->en_esip, size, dcfg); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_get_subtype( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __out uint32_t *subtypep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_BOARD_CFG_IN_LEN, MC_CMD_GET_BOARD_CFG_OUT_LENMAX)]; efx_word_t *fw_list; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOARD_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMAX; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST + (partn + 1) * sizeof (efx_word_t)) { rc = ENOENT; goto fail3; } fw_list = MCDI_OUT2(req, efx_word_t, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); *subtypep = EFX_WORD_FIELD(fw_list[partn], EFX_WORD_0); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]) { siena_mc_dynamic_config_hdr_t *dcfg; siena_parttbl_entry_t *entry; - unsigned int dcfg_partn; - unsigned int partn; + uint32_t dcfg_partn; + uint32_t partn; unsigned int i; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } partn = entry->partn; if ((1 << partn) & ~enp->en_u.siena.enu_partn_mask) { rc = ENOTSUP; goto fail2; } if ((rc = siena_nvram_get_subtype(enp, partn, subtypep)) != 0) goto fail3; /* * Some partitions are accessible from both ports (for instance BOOTROM) * Find the highest version reported by all dcfg structures on ports * that have access to this partition. */ version[0] = version[1] = version[2] = version[3] = 0; for (i = 0; i < EFX_ARRAY_SIZE(siena_parttbl); i++) { unsigned int nitems; uint16_t temp[4]; size_t length; entry = &siena_parttbl[i]; if (entry->partn != partn) continue; dcfg_partn = (entry->port == 1) ? MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1; /* * Ingore missing partitions on port 2, assuming they're due * to to running on a single port part. */ if ((1 << dcfg_partn) & ~enp->en_u.siena.enu_partn_mask) { if (entry->port == 2) continue; } if ((rc = siena_nvram_get_dynamic_cfg(enp, dcfg_partn, B_FALSE, &dcfg, &length)) != 0) goto fail4; nitems = EFX_DWORD_FIELD(dcfg->num_fw_version_items, EFX_DWORD_0); if (nitems < entry->partn) goto done; temp[0] = EFX_WORD_FIELD(dcfg->fw_version[partn].version_w, EFX_WORD_0); temp[1] = EFX_WORD_FIELD(dcfg->fw_version[partn].version_x, EFX_WORD_0); temp[2] = EFX_WORD_FIELD(dcfg->fw_version[partn].version_y, EFX_WORD_0); temp[3] = EFX_WORD_FIELD(dcfg->fw_version[partn].version_z, EFX_WORD_0); if (memcmp(version, temp, sizeof (temp)) < 0) memcpy(version, temp, sizeof (temp)); done: EFSYS_KMEM_FREE(enp->en_esip, length, dcfg); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *chunk_sizep) { siena_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = siena_nvram_partn_lock(enp, entry->partn)) != 0) goto fail2; if (chunk_sizep != NULL) *chunk_sizep = SIENA_NVRAM_CHUNK; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size) { siena_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = siena_nvram_partn_read(enp, entry->partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type) { siena_parttbl_entry_t *entry; size_t size; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = siena_nvram_partn_size(enp, entry->partn, &size)) != 0) goto fail2; if ((rc = siena_nvram_partn_erase(enp, entry->partn, 0, size)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size) { siena_parttbl_entry_t *entry; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } if ((rc = siena_nvram_partn_write(enp, entry->partn, offset, data, size)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type) { siena_parttbl_entry_t *entry; if ((entry = siena_parttbl_entry(enp, type)) != NULL) siena_nvram_partn_unlock(enp, entry->partn); } __checkReturn efx_rc_t siena_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]) { siena_mc_dynamic_config_hdr_t *dcfg = NULL; siena_parttbl_entry_t *entry; unsigned int dcfg_partn; size_t partn_size; unsigned int hdr_length; unsigned int vpd_length; unsigned int vpd_offset; unsigned int nitems; unsigned int required_hdr_length; unsigned int pos; uint8_t cksum; uint32_t subtype; size_t length; efx_rc_t rc; if ((entry = siena_parttbl_entry(enp, type)) == NULL) { rc = ENOTSUP; goto fail1; } dcfg_partn = (entry->port == 1) ? MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1; if ((rc = siena_nvram_partn_size(enp, dcfg_partn, &partn_size)) != 0) goto fail2; if ((rc = siena_nvram_partn_lock(enp, dcfg_partn)) != 0) goto fail2; if ((rc = siena_nvram_get_dynamic_cfg(enp, dcfg_partn, B_TRUE, &dcfg, &length)) != 0) goto fail3; hdr_length = EFX_WORD_FIELD(dcfg->length, EFX_WORD_0); nitems = EFX_DWORD_FIELD(dcfg->num_fw_version_items, EFX_DWORD_0); vpd_length = EFX_DWORD_FIELD(dcfg->dynamic_vpd_length, EFX_DWORD_0); vpd_offset = EFX_DWORD_FIELD(dcfg->dynamic_vpd_offset, EFX_DWORD_0); /* * NOTE: This function will blatt any fields trailing the version * vector, or the VPD chunk. */ required_hdr_length = SIENA_DYNAMIC_CFG_SIZE(entry->partn + 1); if (required_hdr_length + vpd_length > length) { rc = ENOSPC; goto fail4; } if (vpd_offset < required_hdr_length) { (void) memmove((caddr_t)dcfg + required_hdr_length, (caddr_t)dcfg + vpd_offset, vpd_length); vpd_offset = required_hdr_length; EFX_POPULATE_DWORD_1(dcfg->dynamic_vpd_offset, EFX_DWORD_0, vpd_offset); } if (hdr_length < required_hdr_length) { (void) memset((caddr_t)dcfg + hdr_length, 0, required_hdr_length - hdr_length); hdr_length = required_hdr_length; EFX_POPULATE_WORD_1(dcfg->length, EFX_WORD_0, hdr_length); } /* Get the subtype to insert into the fw_subtype array */ if ((rc = siena_nvram_get_subtype(enp, entry->partn, &subtype)) != 0) goto fail5; /* Fill out the new version */ EFX_POPULATE_DWORD_1(dcfg->fw_version[entry->partn].fw_subtype, EFX_DWORD_0, subtype); EFX_POPULATE_WORD_1(dcfg->fw_version[entry->partn].version_w, EFX_WORD_0, version[0]); EFX_POPULATE_WORD_1(dcfg->fw_version[entry->partn].version_x, EFX_WORD_0, version[1]); EFX_POPULATE_WORD_1(dcfg->fw_version[entry->partn].version_y, EFX_WORD_0, version[2]); EFX_POPULATE_WORD_1(dcfg->fw_version[entry->partn].version_z, EFX_WORD_0, version[3]); /* Update the version count */ if (nitems < entry->partn + 1) { nitems = entry->partn + 1; EFX_POPULATE_DWORD_1(dcfg->num_fw_version_items, EFX_DWORD_0, nitems); } /* Update the checksum */ cksum = 0; for (pos = 0; pos < hdr_length; pos++) cksum += ((uint8_t *)dcfg)[pos]; dcfg->csum.eb_u8[0] -= cksum; /* Erase and write the new partition */ if ((rc = siena_nvram_partn_erase(enp, dcfg_partn, 0, partn_size)) != 0) goto fail6; /* Write out the new structure to nvram */ if ((rc = siena_nvram_partn_write(enp, dcfg_partn, 0, (caddr_t)dcfg, vpd_offset + vpd_length)) != 0) goto fail7; EFSYS_KMEM_FREE(enp->en_esip, length, dcfg); siena_nvram_partn_unlock(enp, dcfg_partn); return (0); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); EFSYS_KMEM_FREE(enp->en_esip, length, dcfg); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_NVRAM */ #endif /* EFSYS_OPT_SIENA */ Index: projects/release-pkg/sys/dev/sfxge/common/siena_vpd.c =================================================================== --- projects/release-pkg/sys/dev/sfxge/common/siena_vpd.c (revision 293802) +++ projects/release-pkg/sys/dev/sfxge/common/siena_vpd.c (revision 293803) @@ -1,613 +1,613 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_VPD #if EFSYS_OPT_SIENA static __checkReturn efx_rc_t siena_vpd_get_static( __in efx_nic_t *enp, - __in unsigned int partn, + __in uint32_t partn, __deref_out_bcount_opt(*sizep) caddr_t *svpdp, __out size_t *sizep) { siena_mc_static_config_hdr_t *scfg; caddr_t svpd; size_t size; uint8_t cksum; unsigned int vpd_offset; unsigned int vpd_length; unsigned int hdr_length; unsigned int pos; unsigned int region; efx_rc_t rc; EFSYS_ASSERT(partn == MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0 || partn == MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1); /* Allocate sufficient memory for the entire static cfg area */ if ((rc = siena_nvram_partn_size(enp, partn, &size)) != 0) goto fail1; EFSYS_KMEM_ALLOC(enp->en_esip, size, scfg); if (scfg == NULL) { rc = ENOMEM; goto fail2; } if ((rc = siena_nvram_partn_read(enp, partn, 0, (caddr_t)scfg, SIENA_NVRAM_CHUNK)) != 0) goto fail3; /* Verify the magic number */ if (EFX_DWORD_FIELD(scfg->magic, EFX_DWORD_0) != SIENA_MC_STATIC_CONFIG_MAGIC) { rc = EINVAL; goto fail4; } /* All future versions of the structure must be backwards compatable */ EFX_STATIC_ASSERT(SIENA_MC_STATIC_CONFIG_VERSION == 0); hdr_length = EFX_WORD_FIELD(scfg->length, EFX_WORD_0); vpd_offset = EFX_DWORD_FIELD(scfg->static_vpd_offset, EFX_DWORD_0); vpd_length = EFX_DWORD_FIELD(scfg->static_vpd_length, EFX_DWORD_0); /* Verify the hdr doesn't overflow the sector size */ if (hdr_length > size || vpd_offset > size || vpd_length > size || vpd_length + vpd_offset > size) { rc = EINVAL; goto fail5; } /* Read the remainder of scfg + static vpd */ region = vpd_offset + vpd_length; if (region > SIENA_NVRAM_CHUNK) { if ((rc = siena_nvram_partn_read(enp, partn, SIENA_NVRAM_CHUNK, (caddr_t)scfg + SIENA_NVRAM_CHUNK, region - SIENA_NVRAM_CHUNK)) != 0) goto fail6; } /* Verify checksum */ cksum = 0; for (pos = 0; pos < hdr_length; pos++) cksum += ((uint8_t *)scfg)[pos]; if (cksum != 0) { rc = EINVAL; goto fail7; } if (vpd_length == 0) svpd = NULL; else { /* Copy the vpd data out */ EFSYS_KMEM_ALLOC(enp->en_esip, vpd_length, svpd); if (svpd == NULL) { rc = ENOMEM; goto fail8; } memcpy(svpd, (caddr_t)scfg + vpd_offset, vpd_length); } EFSYS_KMEM_FREE(enp->en_esip, size, scfg); *svpdp = svpd; *sizep = vpd_length; return (0); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); EFSYS_KMEM_FREE(enp->en_esip, size, scfg); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_init( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); caddr_t svpd = NULL; unsigned partn; size_t size = 0; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); partn = (emip->emi_port == 1) ? MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1; /* * We need the static VPD sector to present a unified static+dynamic * VPD, that is, basically on every read, write, verify cycle. Since * it should *never* change we can just cache it here. */ if ((rc = siena_vpd_get_static(enp, partn, &svpd, &size)) != 0) goto fail1; if (svpd != NULL && size > 0) { if ((rc = efx_vpd_hunk_verify(svpd, size, NULL)) != 0) goto fail2; } enp->en_u.siena.enu_svpd = svpd; enp->en_u.siena.enu_svpd_length = size; return (0); fail2: EFSYS_PROBE(fail2); EFSYS_KMEM_FREE(enp->en_esip, size, svpd); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_size( __in efx_nic_t *enp, __out size_t *sizep) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); - unsigned int partn; + uint32_t partn; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* * This function returns the total size the user should allocate * for all VPD operations. We've already cached the static vpd, * so we just need to return an upper bound on the dynamic vpd. * Since the dynamic_config structure can change under our feet, * (as version numbers are inserted), just be safe and return the * total size of the dynamic_config *sector* */ partn = (emip->emi_port == 1) ? MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1; if ((rc = siena_nvram_partn_size(enp, partn, sizep)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); siena_mc_dynamic_config_hdr_t *dcfg = NULL; unsigned int vpd_length; unsigned int vpd_offset; unsigned int dcfg_partn; size_t dcfg_size; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); dcfg_partn = (emip->emi_port == 1) ? MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1; if ((rc = siena_nvram_get_dynamic_cfg(enp, dcfg_partn, B_TRUE, &dcfg, &dcfg_size)) != 0) goto fail1; vpd_length = EFX_DWORD_FIELD(dcfg->dynamic_vpd_length, EFX_DWORD_0); vpd_offset = EFX_DWORD_FIELD(dcfg->dynamic_vpd_offset, EFX_DWORD_0); if (vpd_length > size) { rc = EFAULT; /* Invalid dcfg: header bigger than sector */ goto fail2; } EFSYS_ASSERT3U(vpd_length, <=, size); memcpy(data, (caddr_t)dcfg + vpd_offset, vpd_length); /* Pad data with all-1s, consistent with update operations */ memset(data + vpd_length, 0xff, size - vpd_length); EFSYS_KMEM_FREE(enp->en_esip, dcfg_size, dcfg); return (0); fail2: EFSYS_PROBE(fail2); EFSYS_KMEM_FREE(enp->en_esip, dcfg_size, dcfg); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size) { efx_vpd_tag_t stag; efx_vpd_tag_t dtag; efx_vpd_keyword_t skey; efx_vpd_keyword_t dkey; unsigned int scont; unsigned int dcont; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* * Strictly you could take the view that dynamic vpd is optional. * Instead, to conform more closely to the read/verify/reinit() * paradigm, we require dynamic vpd. siena_vpd_reinit() will * reinitialize it as required. */ if ((rc = efx_vpd_hunk_verify(data, size, NULL)) != 0) goto fail1; /* * Verify that there is no duplication between the static and * dynamic cfg sectors. */ if (enp->en_u.siena.enu_svpd_length == 0) goto done; dcont = 0; _NOTE(CONSTANTCONDITION) while (1) { if ((rc = efx_vpd_hunk_next(data, size, &dtag, &dkey, NULL, NULL, &dcont)) != 0) goto fail2; if (dcont == 0) break; scont = 0; _NOTE(CONSTANTCONDITION) while (1) { if ((rc = efx_vpd_hunk_next( enp->en_u.siena.enu_svpd, enp->en_u.siena.enu_svpd_length, &stag, &skey, NULL, NULL, &scont)) != 0) goto fail3; if (scont == 0) break; if (stag == dtag && skey == dkey) { rc = EEXIST; goto fail4; } } } done: return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size) { boolean_t wantpid; efx_rc_t rc; /* * Only create a PID if the dynamic cfg doesn't have one */ if (enp->en_u.siena.enu_svpd_length == 0) wantpid = B_TRUE; else { unsigned int offset; uint8_t length; rc = efx_vpd_hunk_get(enp->en_u.siena.enu_svpd, enp->en_u.siena.enu_svpd_length, EFX_VPD_ID, 0, &offset, &length); if (rc == 0) wantpid = B_FALSE; else if (rc == ENOENT) wantpid = B_TRUE; else goto fail1; } if ((rc = efx_vpd_hunk_reinit(data, size, wantpid)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp) { unsigned int offset; uint8_t length; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* Attempt to satisfy the request from svpd first */ if (enp->en_u.siena.enu_svpd_length > 0) { if ((rc = efx_vpd_hunk_get(enp->en_u.siena.enu_svpd, enp->en_u.siena.enu_svpd_length, evvp->evv_tag, evvp->evv_keyword, &offset, &length)) == 0) { evvp->evv_length = length; memcpy(evvp->evv_value, enp->en_u.siena.enu_svpd + offset, length); return (0); } else if (rc != ENOENT) goto fail1; } /* And then from the provided data buffer */ if ((rc = efx_vpd_hunk_get(data, size, evvp->evv_tag, evvp->evv_keyword, &offset, &length)) != 0) goto fail2; evvp->evv_length = length; memcpy(evvp->evv_value, data + offset, length); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_set( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp) { efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* If the provided (tag,keyword) exists in svpd, then it is readonly */ if (enp->en_u.siena.enu_svpd_length > 0) { unsigned int offset; uint8_t length; if ((rc = efx_vpd_hunk_get(enp->en_u.siena.enu_svpd, enp->en_u.siena.enu_svpd_length, evvp->evv_tag, evvp->evv_keyword, &offset, &length)) == 0) { rc = EACCES; goto fail1; } } if ((rc = efx_vpd_hunk_set(data, size, evvp)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_vpd_next( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp) { _NOTE(ARGUNUSED(enp, data, size, evvp, contp)) return (ENOTSUP); } __checkReturn efx_rc_t siena_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); siena_mc_dynamic_config_hdr_t *dcfg = NULL; unsigned int vpd_offset; unsigned int dcfg_partn; unsigned int hdr_length; unsigned int pos; uint8_t cksum; size_t partn_size, dcfg_size; size_t vpd_length; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* Determine total length of all tags */ if ((rc = efx_vpd_hunk_length(data, size, &vpd_length)) != 0) goto fail1; /* Lock dynamic config sector for write, and read structure only */ dcfg_partn = (emip->emi_port == 1) ? MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 : MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1; if ((rc = siena_nvram_partn_size(enp, dcfg_partn, &partn_size)) != 0) goto fail2; if ((rc = siena_nvram_partn_lock(enp, dcfg_partn)) != 0) goto fail3; if ((rc = siena_nvram_get_dynamic_cfg(enp, dcfg_partn, B_FALSE, &dcfg, &dcfg_size)) != 0) goto fail4; hdr_length = EFX_WORD_FIELD(dcfg->length, EFX_WORD_0); /* Allocated memory should have room for the new VPD */ if (hdr_length + vpd_length > dcfg_size) { rc = ENOSPC; goto fail5; } /* Copy in new vpd and update header */ vpd_offset = dcfg_size - vpd_length; EFX_POPULATE_DWORD_1(dcfg->dynamic_vpd_offset, EFX_DWORD_0, vpd_offset); memcpy((caddr_t)dcfg + vpd_offset, data, vpd_length); EFX_POPULATE_DWORD_1(dcfg->dynamic_vpd_length, EFX_DWORD_0, vpd_length); /* Update the checksum */ cksum = 0; for (pos = 0; pos < hdr_length; pos++) cksum += ((uint8_t *)dcfg)[pos]; dcfg->csum.eb_u8[0] -= cksum; /* Erase and write the new sector */ if ((rc = siena_nvram_partn_erase(enp, dcfg_partn, 0, partn_size)) != 0) goto fail6; /* Write out the new structure to nvram */ if ((rc = siena_nvram_partn_write(enp, dcfg_partn, 0, (caddr_t)dcfg, vpd_offset + vpd_length)) != 0) goto fail7; EFSYS_KMEM_FREE(enp->en_esip, dcfg_size, dcfg); siena_nvram_partn_unlock(enp, dcfg_partn); return (0); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); EFSYS_KMEM_FREE(enp->en_esip, dcfg_size, dcfg); fail4: EFSYS_PROBE(fail4); siena_nvram_partn_unlock(enp, dcfg_partn); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_vpd_fini( __in efx_nic_t *enp) { EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); if (enp->en_u.siena.enu_svpd_length > 0) { EFSYS_KMEM_FREE(enp->en_esip, enp->en_u.siena.enu_svpd_length, enp->en_u.siena.enu_svpd); enp->en_u.siena.enu_svpd = NULL; enp->en_u.siena.enu_svpd_length = 0; } } #endif /* EFSYS_OPT_SIENA */ #endif /* EFSYS_OPT_VPD */ Index: projects/release-pkg/sys/dev/uart/uart_bus.h =================================================================== --- projects/release-pkg/sys/dev/uart/uart_bus.h (revision 293802) +++ projects/release-pkg/sys/dev/uart/uart_bus.h (revision 293803) @@ -1,215 +1,216 @@ /*- * Copyright (c) 2003 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _DEV_UART_BUS_H_ #define _DEV_UART_BUS_H_ #ifndef KLD_MODULE #include "opt_uart.h" #endif #include #include /* Drain and flush targets. */ #define UART_DRAIN_RECEIVER 0x0001 #define UART_DRAIN_TRANSMITTER 0x0002 #define UART_FLUSH_RECEIVER UART_DRAIN_RECEIVER #define UART_FLUSH_TRANSMITTER UART_DRAIN_TRANSMITTER /* Received character status bits. */ #define UART_STAT_BREAK 0x0100 #define UART_STAT_FRAMERR 0x0200 #define UART_STAT_OVERRUN 0x0400 #define UART_STAT_PARERR 0x0800 /* UART_IOCTL() requests */ #define UART_IOCTL_BREAK 1 #define UART_IOCTL_IFLOW 2 #define UART_IOCTL_OFLOW 3 #define UART_IOCTL_BAUD 4 /* * UART class & instance (=softc) */ struct uart_class { KOBJ_CLASS_FIELDS; struct uart_ops *uc_ops; /* Low-level console operations. */ u_int uc_range; /* Bus space address range. */ u_int uc_rclk; /* Default rclk for this device. */ u_int uc_rshift; /* Default regshift for this device. */ }; struct uart_softc { KOBJ_FIELDS; struct uart_class *sc_class; struct uart_bas sc_bas; device_t sc_dev; struct mtx sc_hwmtx_s; /* Spinlock protecting hardware. */ struct mtx *sc_hwmtx; struct resource *sc_rres; /* Register resource. */ int sc_rrid; int sc_rtype; /* SYS_RES_{IOPORT|MEMORY}. */ struct resource *sc_ires; /* Interrupt resource. */ void *sc_icookie; int sc_irid; struct callout sc_timer; int sc_callout:1; /* This UART is opened for callout. */ int sc_fastintr:1; /* This UART uses fast interrupts. */ int sc_hwiflow:1; /* This UART has HW input flow ctl. */ int sc_hwoflow:1; /* This UART has HW output flow ctl. */ int sc_leaving:1; /* This UART is going away. */ int sc_opened:1; /* This UART is open for business. */ int sc_polled:1; /* This UART has no interrupts. */ int sc_txbusy:1; /* This UART is transmitting. */ int sc_isquelch:1; /* This UART has input squelched. */ int sc_testintr:1; /* This UART is under int. testing. */ struct uart_devinfo *sc_sysdev; /* System device (or NULL). */ int sc_altbrk; /* State for alt break sequence. */ uint32_t sc_hwsig; /* Signal state. Used by HW driver. */ /* Receiver data. */ uint16_t *sc_rxbuf; int sc_rxbufsz; int sc_rxput; int sc_rxget; int sc_rxfifosz; /* Size of RX FIFO. */ /* Transmitter data. */ uint8_t *sc_txbuf; int sc_txdatasz; int sc_txfifosz; /* Size of TX FIFO and buffer. */ /* Pulse capturing support (PPS). */ struct pps_state sc_pps; int sc_pps_mode; + sbintime_t sc_pps_captime; /* Upper layer data. */ void *sc_softih; uint32_t sc_ttypend; union { /* TTY specific data. */ struct { struct tty *tp; } u_tty; /* Keyboard specific data. */ struct { } u_kbd; } sc_u; }; extern devclass_t uart_devclass; extern const char uart_driver_name[]; int uart_bus_attach(device_t dev); int uart_bus_detach(device_t dev); int uart_bus_resume(device_t dev); serdev_intr_t *uart_bus_ihand(device_t dev, int ipend); int uart_bus_ipend(device_t dev); int uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan); int uart_bus_sysdev(device_t dev); void uart_sched_softih(struct uart_softc *, uint32_t); int uart_tty_attach(struct uart_softc *); int uart_tty_detach(struct uart_softc *); struct mtx *uart_tty_getlock(struct uart_softc *); void uart_tty_intr(void *arg); /* * Receive buffer operations. */ static __inline int uart_rx_empty(struct uart_softc *sc) { return ((sc->sc_rxget == sc->sc_rxput) ? 1 : 0); } static __inline int uart_rx_full(struct uart_softc *sc) { return ((sc->sc_rxput + 1 < sc->sc_rxbufsz) ? (sc->sc_rxput + 1 == sc->sc_rxget) : (sc->sc_rxget == 0)); } static __inline int uart_rx_get(struct uart_softc *sc) { int ptr, xc; ptr = sc->sc_rxget; if (ptr == sc->sc_rxput) return (-1); xc = sc->sc_rxbuf[ptr++]; sc->sc_rxget = (ptr < sc->sc_rxbufsz) ? ptr : 0; return (xc); } static __inline int uart_rx_next(struct uart_softc *sc) { int ptr; ptr = sc->sc_rxget; if (ptr == sc->sc_rxput) return (-1); ptr += 1; sc->sc_rxget = (ptr < sc->sc_rxbufsz) ? ptr : 0; return (0); } static __inline int uart_rx_peek(struct uart_softc *sc) { int ptr; ptr = sc->sc_rxget; return ((ptr == sc->sc_rxput) ? -1 : sc->sc_rxbuf[ptr]); } static __inline int uart_rx_put(struct uart_softc *sc, int xc) { int ptr; ptr = (sc->sc_rxput + 1 < sc->sc_rxbufsz) ? sc->sc_rxput + 1 : 0; if (ptr == sc->sc_rxget) return (ENOSPC); sc->sc_rxbuf[sc->sc_rxput] = xc; sc->sc_rxput = ptr; return (0); } #endif /* _DEV_UART_BUS_H_ */ Index: projects/release-pkg/sys/dev/uart/uart_core.c =================================================================== --- projects/release-pkg/sys/dev/uart/uart_core.c (revision 293802) +++ projects/release-pkg/sys/dev/uart/uart_core.c (revision 293803) @@ -1,769 +1,812 @@ /*- * Copyright (c) 2003 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include "uart_if.h" devclass_t uart_devclass; const char uart_driver_name[] = "uart"; SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs = SLIST_HEAD_INITIALIZER(uart_sysdevs); static MALLOC_DEFINE(M_UART, "UART", "UART driver"); #ifndef UART_POLL_FREQ #define UART_POLL_FREQ 50 #endif static int uart_poll_freq = UART_POLL_FREQ; SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq, 0, "UART poll frequency"); static int uart_force_poll; SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll, 0, "Force UART polling"); -#define PPS_MODE_DISABLED 0 -#define PPS_MODE_CTS 1 -#define PPS_MODE_DCD 2 - static inline int -uart_pps_signal(int pps_mode) -{ - - switch(pps_mode) { - case PPS_MODE_CTS: - return (SER_CTS); - case PPS_MODE_DCD: - return (SER_DCD); - } - return (0); -} -static inline int uart_pps_mode_valid(int pps_mode) { + int opt; - switch(pps_mode) { - case PPS_MODE_DISABLED: - case PPS_MODE_CTS: - case PPS_MODE_DCD: - return (true); + switch(pps_mode & UART_PPS_SIGNAL_MASK) { + case UART_PPS_DISABLED: + case UART_PPS_CTS: + case UART_PPS_DCD: + break; + default: + return (false); } - return (false); + + opt = pps_mode & UART_PPS_OPTION_MASK; + if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0) + return (false); + + return (true); } -static const char * -uart_pps_mode_name(int pps_mode) +static void +uart_pps_print_mode(struct uart_softc *sc) { - switch(pps_mode) { - case PPS_MODE_DISABLED: - return ("disabled"); - case PPS_MODE_CTS: - return ("CTS"); - case PPS_MODE_DCD: - return ("DCD"); + + device_printf(sc->sc_dev, "PPS capture mode: "); + switch(sc->sc_pps_mode) { + case UART_PPS_DISABLED: + printf("disabled"); + case UART_PPS_CTS: + printf("CTS"); + case UART_PPS_DCD: + printf("DCD"); + default: + printf("invalid"); } - return ("invalid"); + if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE) + printf("-Inverted"); + if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) + printf("-NarrowPulse"); + printf("\n"); } static int uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS) { struct uart_softc *sc; int err, tmp; sc = arg1; tmp = sc->sc_pps_mode; err = sysctl_handle_int(oidp, &tmp, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (!uart_pps_mode_valid(tmp)) return (EINVAL); sc->sc_pps_mode = tmp; return(0); } static void +uart_pps_process(struct uart_softc *sc, int ser_sig) +{ + sbintime_t now; + int is_assert, pps_sig; + + /* Which signal is configured as PPS? Early out if none. */ + switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) { + case UART_PPS_CTS: + pps_sig = SER_CTS; + break; + case UART_PPS_DCD: + pps_sig = SER_DCD; + break; + default: + return; + } + + /* Early out if there is no change in the signal configured as PPS. */ + if ((ser_sig & SER_DELTA(pps_sig)) == 0) + return; + + /* + * In narrow-pulse mode we need to synthesize both capture and clear + * events from a single "delta occurred" indication from the uart + * hardware because the pulse width is too narrow to reliably detect + * both edges. However, when the pulse width is close to our interrupt + * processing latency we might intermittantly catch both edges. To + * guard against generating spurious events when that happens, we use a + * separate timer to ensure at least half a second elapses before we + * generate another event. + */ + pps_capture(&sc->sc_pps); + if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) { + now = getsbinuptime(); + if (now > sc->sc_pps_captime + 500 * SBT_1MS) { + sc->sc_pps_captime = now; + pps_event(&sc->sc_pps, PPS_CAPTUREASSERT); + pps_event(&sc->sc_pps, PPS_CAPTURECLEAR); + } + } else { + is_assert = ser_sig & pps_sig; + if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE) + is_assert = !is_assert; + pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT : + PPS_CAPTURECLEAR); + } +} + +static void uart_pps_init(struct uart_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(sc->sc_dev); tree = device_get_sysctl_tree(sc->sc_dev); /* * The historical default for pps capture mode is either DCD or CTS, * depending on the UART_PPS_ON_CTS kernel option. Start with that, * then try to fetch the tunable that overrides the mode for all uart * devices, then try to fetch the sysctl-tunable that overrides the mode * for one specific device. */ #ifdef UART_PPS_ON_CTS - sc->sc_pps_mode = PPS_MODE_CTS; + sc->sc_pps_mode = UART_PPS_CTS; #else - sc->sc_pps_mode = PPS_MODE_DCD; + sc->sc_pps_mode = UART_PPS_DCD; #endif TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode", CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, uart_pps_mode_sysctl, "I", - "pulse capturing mode - 0/1/2 - disabled/CTS/DCD"); + "pulse mode: 0/1/2=disabled/CTS/DCD; " + "add 0x10 to invert, 0x20 for narrow pulse"); if (!uart_pps_mode_valid(sc->sc_pps_mode)) { device_printf(sc->sc_dev, - "Invalid pps_mode %d configured; disabling PPS capture\n", + "Invalid pps_mode 0x%02x configured; disabling PPS capture\n", sc->sc_pps_mode); - sc->sc_pps_mode = PPS_MODE_DISABLED; + sc->sc_pps_mode = UART_PPS_DISABLED; } else if (bootverbose) { - device_printf(sc->sc_dev, "PPS capture mode %d (%s)\n", - sc->sc_pps_mode, uart_pps_mode_name(sc->sc_pps_mode)); + uart_pps_print_mode(sc); } sc->sc_pps.ppscap = PPS_CAPTUREBOTH; sc->sc_pps.driver_mtx = uart_tty_getlock(sc); sc->sc_pps.driver_abi = PPS_ABI_VERSION; pps_init_abi(&sc->sc_pps); } void uart_add_sysdev(struct uart_devinfo *di) { SLIST_INSERT_HEAD(&uart_sysdevs, di, next); } const char * uart_getname(struct uart_class *uc) { return ((uc != NULL) ? uc->name : NULL); } struct uart_ops * uart_getops(struct uart_class *uc) { return ((uc != NULL) ? uc->uc_ops : NULL); } int uart_getrange(struct uart_class *uc) { return ((uc != NULL) ? uc->uc_range : 0); } u_int uart_getregshift(struct uart_class *uc) { return ((uc != NULL) ? uc->uc_rshift : 0); } /* * Schedule a soft interrupt. We do this on the 0 to !0 transition * of the TTY pending interrupt status. */ void uart_sched_softih(struct uart_softc *sc, uint32_t ipend) { uint32_t new, old; do { old = sc->sc_ttypend; new = old | ipend; } while (!atomic_cmpset_32(&sc->sc_ttypend, old, new)); if ((old & SER_INT_MASK) == 0) swi_sched(sc->sc_softih, 0); } /* * A break condition has been detected. We treat the break condition as * a special case that should not happen during normal operation. When * the break condition is to be passed to higher levels in the form of * a NUL character, we really want the break to be in the right place in * the input stream. The overhead to achieve that is not in relation to * the exceptional nature of the break condition, so we permit ourselves * to be sloppy. */ static __inline int uart_intr_break(void *arg) { struct uart_softc *sc = arg; #if defined(KDB) if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { if (kdb_break()) return (0); } #endif if (sc->sc_opened) uart_sched_softih(sc, SER_INT_BREAK); return (0); } /* * Handle a receiver overrun situation. We lost at least 1 byte in the * input stream and it's our job to contain the situation. We grab as * much of the data we can, but otherwise flush the receiver FIFO to * create some breathing room. The net effect is that we avoid the * overrun condition to happen for the next X characters, where X is * related to the FIFO size at the cost of losing data right away. * So, instead of having multiple overrun interrupts in close proximity * to each other and possibly pessimizing UART interrupt latency for * other UARTs in a multiport configuration, we create a longer segment * of missing characters by freeing up the FIFO. * Each overrun condition is marked in the input buffer by a token. The * token represents the loss of at least one, but possible more bytes in * the input stream. */ static __inline int uart_intr_overrun(void *arg) { struct uart_softc *sc = arg; if (sc->sc_opened) { UART_RECEIVE(sc); if (uart_rx_put(sc, UART_STAT_OVERRUN)) sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; uart_sched_softih(sc, SER_INT_RXREADY); } UART_FLUSH(sc, UART_FLUSH_RECEIVER); return (0); } /* * Received data ready. */ static __inline int uart_intr_rxready(void *arg) { struct uart_softc *sc = arg; int rxp; rxp = sc->sc_rxput; UART_RECEIVE(sc); #if defined(KDB) if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { while (rxp != sc->sc_rxput) { kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk); if (rxp == sc->sc_rxbufsz) rxp = 0; } } #endif if (sc->sc_opened) uart_sched_softih(sc, SER_INT_RXREADY); else sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */ return (1); } /* * Line or modem status change (OOB signalling). * We pass the signals to the software interrupt handler for further * processing. Note that we merge the delta bits, but set the state * bits. This is to avoid losing state transitions due to having more * than 1 hardware interrupt between software interrupts. */ static __inline int uart_intr_sigchg(void *arg) { struct uart_softc *sc = arg; - int new, old, pps_sig, sig; + int new, old, sig; sig = UART_GETSIG(sc); /* - * Time pulse counting support. Note that both CTS and DCD are - * active-low signals. The status bit is high to indicate that - * the signal on the line is low, which corresponds to a PPS - * clear event. + * Time pulse counting support, invoked whenever the PPS parameters are + * currently set to capture either edge of the signal. */ if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) { - pps_sig = uart_pps_signal(sc->sc_pps_mode); - if (sig & SER_DELTA(pps_sig)) { - pps_capture(&sc->sc_pps); - pps_event(&sc->sc_pps, (sig & pps_sig) ? - PPS_CAPTURECLEAR : PPS_CAPTUREASSERT); - } + uart_pps_process(sc, sig); } /* * Keep track of signal changes, even when the device is not * opened. This allows us to inform upper layers about a * possible loss of DCD and thus the existence of a (possibly) * different connection when we have DCD back, during the time * that the device was closed. */ do { old = sc->sc_ttypend; new = old & ~SER_MASK_STATE; new |= sig & SER_INT_SIGMASK; } while (!atomic_cmpset_32(&sc->sc_ttypend, old, new)); if (sc->sc_opened) uart_sched_softih(sc, SER_INT_SIGCHG); return (1); } /* * The transmitter can accept more data. */ static __inline int uart_intr_txidle(void *arg) { struct uart_softc *sc = arg; if (sc->sc_txbusy) { sc->sc_txbusy = 0; uart_sched_softih(sc, SER_INT_TXIDLE); } return (0); } static int uart_intr(void *arg) { struct uart_softc *sc = arg; int cnt, ipend, testintr; if (sc->sc_leaving) return (FILTER_STRAY); cnt = 0; testintr = sc->sc_testintr; while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) { cnt++; if (ipend & SER_INT_OVERRUN) uart_intr_overrun(sc); if (ipend & SER_INT_BREAK) uart_intr_break(sc); if (ipend & SER_INT_RXREADY) uart_intr_rxready(sc); if (ipend & SER_INT_SIGCHG) uart_intr_sigchg(sc); if (ipend & SER_INT_TXIDLE) uart_intr_txidle(sc); } if (sc->sc_polled) { callout_reset(&sc->sc_timer, hz / uart_poll_freq, (timeout_t *)uart_intr, sc); } return ((cnt == 0) ? FILTER_STRAY : ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD : FILTER_HANDLED)); } serdev_intr_t * uart_bus_ihand(device_t dev, int ipend) { switch (ipend) { case SER_INT_BREAK: return (uart_intr_break); case SER_INT_OVERRUN: return (uart_intr_overrun); case SER_INT_RXREADY: return (uart_intr_rxready); case SER_INT_SIGCHG: return (uart_intr_sigchg); case SER_INT_TXIDLE: return (uart_intr_txidle); } return (NULL); } int uart_bus_ipend(device_t dev) { struct uart_softc *sc; sc = device_get_softc(dev); return (UART_IPEND(sc)); } int uart_bus_sysdev(device_t dev) { struct uart_softc *sc; sc = device_get_softc(dev); return ((sc->sc_sysdev != NULL) ? 1 : 0); } int uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan) { struct uart_softc *sc; struct uart_devinfo *sysdev; int error; sc = device_get_softc(dev); /* * All uart_class references are weak. Check that the needed * class has been compiled-in. Fail if not. */ if (sc->sc_class == NULL) return (ENXIO); /* * Initialize the instance. Note that the instance (=softc) does * not necessarily match the hardware specific softc. We can't do * anything about it now, because we may not attach to the device. * Hardware drivers cannot use any of the class specific fields * while probing. */ kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class); sc->sc_dev = dev; if (device_get_desc(dev) == NULL) device_set_desc(dev, uart_getname(sc->sc_class)); /* * Allocate the register resource. We assume that all UARTs have * a single register window in either I/O port space or memory * mapped I/O space. Any UART that needs multiple windows will * consequently not be supported by this driver as-is. We try I/O * port space first because that's the common case. */ sc->sc_rrid = rid; sc->sc_rtype = SYS_RES_IOPORT; sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid, RF_ACTIVE); if (sc->sc_rres == NULL) { sc->sc_rrid = rid; sc->sc_rtype = SYS_RES_MEMORY; sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid, RF_ACTIVE); if (sc->sc_rres == NULL) return (ENXIO); } /* * Fill in the bus access structure and compare this device with * a possible console device and/or a debug port. We set the flags * in the softc so that the hardware dependent probe can adjust * accordingly. In general, you don't want to permanently disrupt * console I/O. */ sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); sc->sc_bas.chan = chan; sc->sc_bas.regshft = regshft; sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk; SLIST_FOREACH(sysdev, &uart_sysdevs, next) { if (chan == sysdev->bas.chan && uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) { /* XXX check if ops matches class. */ sc->sc_sysdev = sysdev; sysdev->bas.rclk = sc->sc_bas.rclk; } } error = UART_PROBE(sc); bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); return ((error) ? error : BUS_PROBE_DEFAULT); } int uart_bus_attach(device_t dev) { struct uart_softc *sc, *sc0; const char *sep; int error, filt; /* * The sc_class field defines the type of UART we're going to work * with and thus the size of the softc. Replace the generic softc * with one that matches the UART now that we're certain we handle * the device. */ sc0 = device_get_softc(dev); if (sc0->sc_class->size > sizeof(*sc)) { sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO); bcopy(sc0, sc, sizeof(*sc)); device_set_softc(dev, sc); } else sc = sc0; /* * Now that we know the softc for this device, connect the back * pointer from the sysdev for this device, if any */ if (sc->sc_sysdev != NULL) sc->sc_sysdev->sc = sc; /* * Protect ourselves against interrupts while we're not completely * finished attaching and initializing. We don't expect interrupts * until after UART_ATTACH(), though. */ sc->sc_leaving = 1; mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN); if (sc->sc_hwmtx == NULL) sc->sc_hwmtx = &sc->sc_hwmtx_s; /* * Re-allocate. We expect that the softc contains the information * collected by uart_bus_probe() intact. */ sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid, RF_ACTIVE); if (sc->sc_rres == NULL) { mtx_destroy(&sc->sc_hwmtx_s); return (ENXIO); } sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); /* * Ensure there is room for at least three full FIFOs of data in the * receive buffer (handles the case of low-level drivers with huge * FIFOs), and also ensure that there is no less than the historical * size of 384 bytes (handles the typical small-FIFO case). */ sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3); sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf), M_UART, M_WAITOK); sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf), M_UART, M_WAITOK); error = UART_ATTACH(sc); if (error) goto fail; if (sc->sc_hwiflow || sc->sc_hwoflow) { sep = ""; device_print_prettyname(dev); if (sc->sc_hwiflow) { printf("%sRTS iflow", sep); sep = ", "; } if (sc->sc_hwoflow) { printf("%sCTS oflow", sep); sep = ", "; } printf("\n"); } if (sc->sc_sysdev != NULL) { if (sc->sc_sysdev->baudrate == 0) { if (UART_IOCTL(sc, UART_IOCTL_BAUD, (intptr_t)&sc->sc_sysdev->baudrate) != 0) sc->sc_sysdev->baudrate = -1; } switch (sc->sc_sysdev->type) { case UART_DEV_CONSOLE: device_printf(dev, "console"); break; case UART_DEV_DBGPORT: device_printf(dev, "debug port"); break; case UART_DEV_KEYBOARD: device_printf(dev, "keyboard"); break; default: device_printf(dev, "unknown system device"); break; } printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate, "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits, sc->sc_sysdev->stopbits); } sc->sc_leaving = 0; sc->sc_testintr = 1; filt = uart_intr(sc); sc->sc_testintr = 0; /* * Don't use interrupts if we couldn't clear any pending interrupt * conditions. We may have broken H/W and polling is probably the * safest thing to do. */ if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) { sc->sc_irid = 0; sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE); } if (sc->sc_ires != NULL) { error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY, uart_intr, NULL, sc, &sc->sc_icookie); sc->sc_fastintr = (error == 0) ? 1 : 0; if (!sc->sc_fastintr) error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY | INTR_MPSAFE, NULL, (driver_intr_t *)uart_intr, sc, &sc->sc_icookie); if (error) { device_printf(dev, "could not activate interrupt\n"); bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, sc->sc_ires); sc->sc_ires = NULL; } } if (sc->sc_ires == NULL) { /* No interrupt resource. Force polled mode. */ sc->sc_polled = 1; callout_init(&sc->sc_timer, 1); callout_reset(&sc->sc_timer, hz / uart_poll_freq, (timeout_t *)uart_intr, sc); } if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) { sep = ""; device_print_prettyname(dev); if (sc->sc_fastintr) { printf("%sfast interrupt", sep); sep = ", "; } if (sc->sc_polled) { printf("%spolled mode (%dHz)", sep, uart_poll_freq); sep = ", "; } printf("\n"); } if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) { if ((error = sc->sc_sysdev->attach(sc)) != 0) goto fail; } else { if ((error = uart_tty_attach(sc)) != 0) goto fail; uart_pps_init(sc); } if (sc->sc_sysdev != NULL) sc->sc_sysdev->hwmtx = sc->sc_hwmtx; return (0); fail: free(sc->sc_txbuf, M_UART); free(sc->sc_rxbuf, M_UART); if (sc->sc_ires != NULL) { bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie); bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, sc->sc_ires); } bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); mtx_destroy(&sc->sc_hwmtx_s); return (error); } int uart_bus_detach(device_t dev) { struct uart_softc *sc; sc = device_get_softc(dev); sc->sc_leaving = 1; if (sc->sc_sysdev != NULL) sc->sc_sysdev->hwmtx = NULL; UART_DETACH(sc); if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL) (*sc->sc_sysdev->detach)(sc); else uart_tty_detach(sc); free(sc->sc_txbuf, M_UART); free(sc->sc_rxbuf, M_UART); if (sc->sc_ires != NULL) { bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie); bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, sc->sc_ires); } bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); mtx_destroy(&sc->sc_hwmtx_s); if (sc->sc_class->size > sizeof(*sc)) { device_set_softc(dev, NULL); free(sc, M_UART); } else device_set_softc(dev, NULL); return (0); } int uart_bus_resume(device_t dev) { struct uart_softc *sc; sc = device_get_softc(dev); return (UART_ATTACH(sc)); } void uart_grab(struct uart_devinfo *di) { if (di->sc) UART_GRAB(di->sc); } void uart_ungrab(struct uart_devinfo *di) { if (di->sc) UART_UNGRAB(di->sc); } Index: projects/release-pkg/sys/dev/uart/uart_dev_ns8250.c =================================================================== --- projects/release-pkg/sys/dev/uart/uart_dev_ns8250.c (revision 293802) +++ projects/release-pkg/sys/dev/uart/uart_dev_ns8250.c (revision 293803) @@ -1,982 +1,1026 @@ /*- * Copyright (c) 2003 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_platform.h" #include "opt_uart.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #ifdef FDT #include #include #include #endif #include #include #ifdef FDT #include #endif #include #include +#include #include #include "uart_if.h" #define DEFAULT_RCLK 1843200 /* * Set the default baudrate tolerance to 3.0%. * * Some embedded boards have odd reference clocks (eg 25MHz) * and we need to handle higher variances in the target baud rate. */ #ifndef UART_DEV_TOLERANCE_PCT #define UART_DEV_TOLERANCE_PCT 30 #endif /* UART_DEV_TOLERANCE_PCT */ static int broken_txfifo = 0; SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN, &broken_txfifo, 0, "UART FIFO has QEMU emulation bug"); /* * Clear pending interrupts. THRE is cleared by reading IIR. Data * that may have been received gets lost here. */ static void ns8250_clrint(struct uart_bas *bas) { uint8_t iir, lsr; iir = uart_getreg(bas, REG_IIR); while ((iir & IIR_NOPEND) == 0) { iir &= IIR_IMASK; if (iir == IIR_RLS) { lsr = uart_getreg(bas, REG_LSR); if (lsr & (LSR_BI|LSR_FE|LSR_PE)) (void)uart_getreg(bas, REG_DATA); } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) (void)uart_getreg(bas, REG_DATA); else if (iir == IIR_MLSC) (void)uart_getreg(bas, REG_MSR); uart_barrier(bas); iir = uart_getreg(bas, REG_IIR); } } static int ns8250_delay(struct uart_bas *bas) { int divisor; u_char lcr; lcr = uart_getreg(bas, REG_LCR); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); /* 1/10th the time to transmit 1 character (estimate). */ if (divisor <= 134) return (16000000 * divisor / bas->rclk); return (16000 * divisor / (bas->rclk / 1000)); } static int ns8250_divisor(int rclk, int baudrate) { int actual_baud, divisor; int error; if (baudrate == 0) return (0); divisor = (rclk / (baudrate << 3) + 1) >> 1; if (divisor == 0 || divisor >= 65536) return (0); actual_baud = rclk / (divisor << 4); /* 10 times error in percent: */ error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; /* enforce maximum error tolerance: */ if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT) return (0); return (divisor); } static int ns8250_drain(struct uart_bas *bas, int what) { int delay, limit; delay = ns8250_delay(bas); if (what & UART_DRAIN_TRANSMITTER) { /* * Pick an arbitrary high limit to avoid getting stuck in * an infinite loop when the hardware is broken. Make the * limit high enough to handle large FIFOs. */ limit = 10*1024; while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) DELAY(delay); if (limit == 0) { /* printf("ns8250: transmitter appears stuck... "); */ return (EIO); } } if (what & UART_DRAIN_RECEIVER) { /* * Pick an arbitrary high limit to avoid getting stuck in * an infinite loop when the hardware is broken. Make the * limit high enough to handle large FIFOs and integrated * UARTs. The HP rx2600 for example has 3 UARTs on the * management board that tend to get a lot of data send * to it when the UART is first activated. */ limit=10*4096; while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { (void)uart_getreg(bas, REG_DATA); uart_barrier(bas); DELAY(delay << 2); } if (limit == 0) { /* printf("ns8250: receiver appears broken... "); */ return (EIO); } } return (0); } /* * We can only flush UARTs with FIFOs. UARTs without FIFOs should be * drained. WARNING: this function clobbers the FIFO setting! */ static void ns8250_flush(struct uart_bas *bas, int what) { uint8_t fcr; fcr = FCR_ENABLE; if (what & UART_FLUSH_TRANSMITTER) fcr |= FCR_XMT_RST; if (what & UART_FLUSH_RECEIVER) fcr |= FCR_RCV_RST; uart_setreg(bas, REG_FCR, fcr); uart_barrier(bas); } static int ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { int divisor; uint8_t lcr; lcr = 0; if (databits >= 8) lcr |= LCR_8BITS; else if (databits == 7) lcr |= LCR_7BITS; else if (databits == 6) lcr |= LCR_6BITS; else lcr |= LCR_5BITS; if (stopbits > 1) lcr |= LCR_STOPB; lcr |= parity << 3; /* Set baudrate. */ if (baudrate > 0) { divisor = ns8250_divisor(bas->rclk, baudrate); if (divisor == 0) return (EINVAL); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); uart_setreg(bas, REG_DLL, divisor & 0xff); uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff); uart_barrier(bas); } /* Set LCR and clear DLAB. */ uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); return (0); } /* * Low-level UART interface. */ static int ns8250_probe(struct uart_bas *bas); static void ns8250_init(struct uart_bas *bas, int, int, int, int); static void ns8250_term(struct uart_bas *bas); static void ns8250_putc(struct uart_bas *bas, int); static int ns8250_rxready(struct uart_bas *bas); static int ns8250_getc(struct uart_bas *bas, struct mtx *); struct uart_ops uart_ns8250_ops = { .probe = ns8250_probe, .init = ns8250_init, .term = ns8250_term, .putc = ns8250_putc, .rxready = ns8250_rxready, .getc = ns8250_getc, }; static int ns8250_probe(struct uart_bas *bas) { u_char val; /* Check known 0 bits that don't depend on DLAB. */ val = uart_getreg(bas, REG_IIR); if (val & 0x30) return (ENXIO); /* * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699 * chip, but otherwise doesn't seem to have a function. In * other words, uart(4) works regardless. Ignore that bit so * the probe succeeds. */ val = uart_getreg(bas, REG_MCR); if (val & 0xa0) return (ENXIO); return (0); } static void ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { u_char ier; if (bas->rclk == 0) bas->rclk = DEFAULT_RCLK; ns8250_param(bas, baudrate, databits, stopbits, parity); /* Disable all interrupt sources. */ /* * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA * UARTs split the receive time-out interrupt bit out separately as * 0x10. This gets handled by ier_mask and ier_rxbits below. */ ier = uart_getreg(bas, REG_IER) & 0xe0; uart_setreg(bas, REG_IER, ier); uart_barrier(bas); /* Disable the FIFO (if present). */ uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); /* Set RTS & DTR. */ uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); uart_barrier(bas); ns8250_clrint(bas); } static void ns8250_term(struct uart_bas *bas) { /* Clear RTS & DTR. */ uart_setreg(bas, REG_MCR, MCR_IE); uart_barrier(bas); } static void ns8250_putc(struct uart_bas *bas, int c) { int limit; limit = 250000; while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) DELAY(4); uart_setreg(bas, REG_DATA, c); uart_barrier(bas); limit = 250000; while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) DELAY(4); } static int ns8250_rxready(struct uart_bas *bas) { return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0); } static int ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx) { int c; uart_lock(hwmtx); while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) { uart_unlock(hwmtx); DELAY(4); uart_lock(hwmtx); } c = uart_getreg(bas, REG_DATA); uart_unlock(hwmtx); return (c); } static kobj_method_t ns8250_methods[] = { KOBJMETHOD(uart_attach, ns8250_bus_attach), KOBJMETHOD(uart_detach, ns8250_bus_detach), KOBJMETHOD(uart_flush, ns8250_bus_flush), KOBJMETHOD(uart_getsig, ns8250_bus_getsig), KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), KOBJMETHOD(uart_ipend, ns8250_bus_ipend), KOBJMETHOD(uart_param, ns8250_bus_param), KOBJMETHOD(uart_probe, ns8250_bus_probe), KOBJMETHOD(uart_receive, ns8250_bus_receive), KOBJMETHOD(uart_setsig, ns8250_bus_setsig), KOBJMETHOD(uart_transmit, ns8250_bus_transmit), KOBJMETHOD(uart_grab, ns8250_bus_grab), KOBJMETHOD(uart_ungrab, ns8250_bus_ungrab), { 0, 0 } }; struct uart_class uart_ns8250_class = { "ns8250", ns8250_methods, sizeof(struct ns8250_softc), .uc_ops = &uart_ns8250_ops, .uc_range = 8, .uc_rclk = DEFAULT_RCLK, .uc_rshift = 0 }; #ifdef FDT static struct ofw_compat_data compat_data[] = { {"ns16550", (uintptr_t)&uart_ns8250_class}, {NULL, (uintptr_t)NULL}, }; UART_FDT_CLASS_AND_DEVICE(compat_data); #endif -#define SIGCHG(c, i, s, d) \ - if (c) { \ - i |= (i & s) ? s : s | d; \ - } else { \ - i = (i & s) ? (i & ~s) | d : i; \ +/* Use token-pasting to form SER_ and MSR_ named constants. */ +#define SER(sig) SER_##sig +#define SERD(sig) SER_D##sig +#define MSR(sig) MSR_##sig +#define MSRD(sig) MSR_D##sig + +/* + * Detect signal changes using software delta detection. The previous state of + * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the + * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the + * new state of both the signal and the delta bits. + */ +#define SIGCHGSW(var, msr, sig) \ + if ((msr) & MSR(sig)) { \ + if ((var & SER(sig)) == 0) \ + var |= SERD(sig) | SER(sig); \ + } else { \ + if ((var & SER(sig)) != 0) \ + var = SERD(sig) | (var & ~SER(sig)); \ } +/* + * Detect signal changes using the hardware msr delta bits. This is currently + * used only when PPS timing information is being captured using the "narrow + * pulse" option. With a narrow PPS pulse the signal may not still be asserted + * by time the interrupt handler is invoked. The hardware will latch the fact + * that it changed in the delta bits. + */ +#define SIGCHGHW(var, msr, sig) \ + if ((msr) & MSRD(sig)) { \ + if (((msr) & MSR(sig)) != 0) \ + var |= SERD(sig) | SER(sig); \ + else \ + var = SERD(sig) | (var & ~SER(sig)); \ + } + int ns8250_bus_attach(struct uart_softc *sc) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; unsigned int ivar; #ifdef FDT phandle_t node; pcell_t cell; #endif ns8250->busy_detect = 0; #ifdef FDT /* * Check whether uart requires to read USR reg when IIR_BUSY and * has broken txfifo. */ node = ofw_bus_get_node(sc->sc_dev); if ((OF_getencprop(node, "busy-detect", &cell, sizeof(cell))) > 0) ns8250->busy_detect = cell ? 1 : 0; if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0) broken_txfifo = cell ? 1 : 0; #endif bas = &sc->sc_bas; ns8250->mcr = uart_getreg(bas, REG_MCR); ns8250->fcr = FCR_ENABLE; if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags", &ivar)) { if (UART_FLAGS_FCR_RX_LOW(ivar)) ns8250->fcr |= FCR_RX_LOW; else if (UART_FLAGS_FCR_RX_MEDL(ivar)) ns8250->fcr |= FCR_RX_MEDL; else if (UART_FLAGS_FCR_RX_HIGH(ivar)) ns8250->fcr |= FCR_RX_HIGH; else ns8250->fcr |= FCR_RX_MEDH; } else ns8250->fcr |= FCR_RX_MEDH; /* Get IER mask */ ivar = 0xf0; resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask", &ivar); ns8250->ier_mask = (uint8_t)(ivar & 0xff); /* Get IER RX interrupt bits */ ivar = IER_EMSC | IER_ERLS | IER_ERXRDY; resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits", &ivar); ns8250->ier_rxbits = (uint8_t)(ivar & 0xff); uart_setreg(bas, REG_FCR, ns8250->fcr); uart_barrier(bas); ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); if (ns8250->mcr & MCR_DTR) sc->sc_hwsig |= SER_DTR; if (ns8250->mcr & MCR_RTS) sc->sc_hwsig |= SER_RTS; ns8250_bus_getsig(sc); ns8250_clrint(bas); ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; ns8250->ier |= ns8250->ier_rxbits; uart_setreg(bas, REG_IER, ns8250->ier); uart_barrier(bas); /* * Timing of the H/W access was changed with r253161 of uart_core.c * It has been observed that an ITE IT8513E would signal a break * condition with pretty much every character it received, unless * it had enough time to settle between ns8250_bus_attach() and * ns8250_bus_ipend() -- which it accidentally had before r253161. * It's not understood why the UART chip behaves this way and it * could very well be that the DELAY make the H/W work in the same * accidental manner as before. More analysis is warranted, but * at least now we fixed a known regression. */ DELAY(200); return (0); } int ns8250_bus_detach(struct uart_softc *sc) { struct ns8250_softc *ns8250; struct uart_bas *bas; u_char ier; ns8250 = (struct ns8250_softc *)sc; bas = &sc->sc_bas; ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; uart_setreg(bas, REG_IER, ier); uart_barrier(bas); ns8250_clrint(bas); return (0); } int ns8250_bus_flush(struct uart_softc *sc, int what) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; int error; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); if (sc->sc_rxfifosz > 1) { ns8250_flush(bas, what); uart_setreg(bas, REG_FCR, ns8250->fcr); uart_barrier(bas); error = 0; } else error = ns8250_drain(bas, what); uart_unlock(sc->sc_hwmtx); return (error); } int ns8250_bus_getsig(struct uart_softc *sc) { - uint32_t new, old, sig; + uint32_t old, sig; uint8_t msr; + /* + * The delta bits are reputed to be broken on some hardware, so use + * software delta detection by default. Use the hardware delta bits + * when capturing PPS pulses which are too narrow for software detection + * to see the edges. Hardware delta for RI doesn't work like the + * others, so always use software for it. Other threads may be changing + * other (non-MSR) bits in sc_hwsig, so loop until it can succesfully + * update without other changes happening. Note that the SIGCHGxx() + * macros carefully preserve the delta bits when we have to loop several + * times and a signal transitions between iterations. + */ do { old = sc->sc_hwsig; sig = old; uart_lock(sc->sc_hwmtx); msr = uart_getreg(&sc->sc_bas, REG_MSR); uart_unlock(sc->sc_hwmtx); - SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR); - SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS); - SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD); - SIGCHG(msr & MSR_RI, sig, SER_RI, SER_DRI); - new = sig & ~SER_MASK_DELTA; - } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); + if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) { + SIGCHGHW(sig, msr, DSR); + SIGCHGHW(sig, msr, CTS); + SIGCHGHW(sig, msr, DCD); + } else { + SIGCHGSW(sig, msr, DSR); + SIGCHGSW(sig, msr, CTS); + SIGCHGSW(sig, msr, DCD); + } + SIGCHGSW(sig, msr, RI); + } while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA)); return (sig); } int ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) { struct uart_bas *bas; int baudrate, divisor, error; uint8_t efr, lcr; bas = &sc->sc_bas; error = 0; uart_lock(sc->sc_hwmtx); switch (request) { case UART_IOCTL_BREAK: lcr = uart_getreg(bas, REG_LCR); if (data) lcr |= LCR_SBREAK; else lcr &= ~LCR_SBREAK; uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_IFLOW: lcr = uart_getreg(bas, REG_LCR); uart_barrier(bas); uart_setreg(bas, REG_LCR, 0xbf); uart_barrier(bas); efr = uart_getreg(bas, REG_EFR); if (data) efr |= EFR_RTS; else efr &= ~EFR_RTS; uart_setreg(bas, REG_EFR, efr); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_OFLOW: lcr = uart_getreg(bas, REG_LCR); uart_barrier(bas); uart_setreg(bas, REG_LCR, 0xbf); uart_barrier(bas); efr = uart_getreg(bas, REG_EFR); if (data) efr |= EFR_CTS; else efr &= ~EFR_CTS; uart_setreg(bas, REG_EFR, efr); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); break; case UART_IOCTL_BAUD: lcr = uart_getreg(bas, REG_LCR); uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); uart_barrier(bas); divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); uart_barrier(bas); uart_setreg(bas, REG_LCR, lcr); uart_barrier(bas); baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0; if (baudrate > 0) *(int*)data = baudrate; else error = ENXIO; break; default: error = EINVAL; break; } uart_unlock(sc->sc_hwmtx); return (error); } int ns8250_bus_ipend(struct uart_softc *sc) { struct uart_bas *bas; struct ns8250_softc *ns8250; int ipend; uint8_t iir, lsr; ns8250 = (struct ns8250_softc *)sc; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); iir = uart_getreg(bas, REG_IIR); if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) { (void)uart_getreg(bas, DW_REG_USR); uart_unlock(sc->sc_hwmtx); return (0); } if (iir & IIR_NOPEND) { uart_unlock(sc->sc_hwmtx); return (0); } ipend = 0; if (iir & IIR_RXRDY) { lsr = uart_getreg(bas, REG_LSR); if (lsr & LSR_OE) ipend |= SER_INT_OVERRUN; if (lsr & LSR_BI) ipend |= SER_INT_BREAK; if (lsr & LSR_RXRDY) ipend |= SER_INT_RXREADY; } else { if (iir & IIR_TXRDY) { ipend |= SER_INT_TXIDLE; uart_setreg(bas, REG_IER, ns8250->ier); } else ipend |= SER_INT_SIGCHG; } if (ipend == 0) ns8250_clrint(bas); uart_unlock(sc->sc_hwmtx); return (ipend); } int ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, int stopbits, int parity) { struct ns8250_softc *ns8250; struct uart_bas *bas; int error, limit; ns8250 = (struct ns8250_softc*)sc; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); /* * When using DW UART with BUSY detection it is necessary to wait * until all serial transfers are finished before manipulating the * line control. LCR will not be affected when UART is busy. */ if (ns8250->busy_detect != 0) { /* * Pick an arbitrary high limit to avoid getting stuck in * an infinite loop in case when the hardware is broken. */ limit = 10 * 1024; while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) && --limit) DELAY(4); if (limit <= 0) { /* UART appears to be stuck */ uart_unlock(sc->sc_hwmtx); return (EIO); } } error = ns8250_param(bas, baudrate, databits, stopbits, parity); uart_unlock(sc->sc_hwmtx); return (error); } int ns8250_bus_probe(struct uart_softc *sc) { struct ns8250_softc *ns8250; struct uart_bas *bas; int count, delay, error, limit; uint8_t lsr, mcr, ier; ns8250 = (struct ns8250_softc *)sc; bas = &sc->sc_bas; error = ns8250_probe(bas); if (error) return (error); mcr = MCR_IE; if (sc->sc_sysdev == NULL) { /* By using ns8250_init() we also set DTR and RTS. */ ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE); } else mcr |= MCR_DTR | MCR_RTS; error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); if (error) return (error); /* * Set loopback mode. This avoids having garbage on the wire and * also allows us send and receive data. We set DTR and RTS to * avoid the possibility that automatic flow-control prevents * any data from being sent. */ uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); uart_barrier(bas); /* * Enable FIFOs. And check that the UART has them. If not, we're * done. Since this is the first time we enable the FIFOs, we reset * them. */ uart_setreg(bas, REG_FCR, FCR_ENABLE); uart_barrier(bas); if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) { /* * NS16450 or INS8250. We don't bother to differentiate * between them. They're too old to be interesting. */ uart_setreg(bas, REG_MCR, mcr); uart_barrier(bas); sc->sc_rxfifosz = sc->sc_txfifosz = 1; device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); return (0); } uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); uart_barrier(bas); count = 0; delay = ns8250_delay(bas); /* We have FIFOs. Drain the transmitter and receiver. */ error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); if (error) { uart_setreg(bas, REG_MCR, mcr); uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); goto describe; } /* * We should have a sufficiently clean "pipe" to determine the * size of the FIFOs. We send as much characters as is reasonable * and wait for the overflow bit in the LSR register to be * asserted, counting the characters as we send them. Based on * that count we know the FIFO size. */ do { uart_setreg(bas, REG_DATA, 0); uart_barrier(bas); count++; limit = 30; lsr = 0; /* * LSR bits are cleared upon read, so we must accumulate * them to be able to test LSR_OE below. */ while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && --limit) DELAY(delay); if (limit == 0) { ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; uart_setreg(bas, REG_IER, ier); uart_setreg(bas, REG_MCR, mcr); uart_setreg(bas, REG_FCR, 0); uart_barrier(bas); count = 0; goto describe; } } while ((lsr & LSR_OE) == 0 && count < 130); count--; uart_setreg(bas, REG_MCR, mcr); /* Reset FIFOs. */ ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); describe: if (count >= 14 && count <= 16) { sc->sc_rxfifosz = 16; device_set_desc(sc->sc_dev, "16550 or compatible"); } else if (count >= 28 && count <= 32) { sc->sc_rxfifosz = 32; device_set_desc(sc->sc_dev, "16650 or compatible"); } else if (count >= 56 && count <= 64) { sc->sc_rxfifosz = 64; device_set_desc(sc->sc_dev, "16750 or compatible"); } else if (count >= 112 && count <= 128) { sc->sc_rxfifosz = 128; device_set_desc(sc->sc_dev, "16950 or compatible"); } else { sc->sc_rxfifosz = 16; device_set_desc(sc->sc_dev, "Non-standard ns8250 class UART with FIFOs"); } /* * Force the Tx FIFO size to 16 bytes for now. We don't program the * Tx trigger. Also, we assume that all data has been sent when the * interrupt happens. */ sc->sc_txfifosz = 16; #if 0 /* * XXX there are some issues related to hardware flow control and * it's likely that uart(4) is the cause. This basicly needs more * investigation, but we avoid using for hardware flow control * until then. */ /* 16650s or higher have automatic flow control. */ if (sc->sc_rxfifosz > 16) { sc->sc_hwiflow = 1; sc->sc_hwoflow = 1; } #endif return (0); } int ns8250_bus_receive(struct uart_softc *sc) { struct uart_bas *bas; int xc; uint8_t lsr; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); lsr = uart_getreg(bas, REG_LSR); while (lsr & LSR_RXRDY) { if (uart_rx_full(sc)) { sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; break; } xc = uart_getreg(bas, REG_DATA); if (lsr & LSR_FE) xc |= UART_STAT_FRAMERR; if (lsr & LSR_PE) xc |= UART_STAT_PARERR; uart_rx_put(sc, xc); lsr = uart_getreg(bas, REG_LSR); } /* Discard everything left in the Rx FIFO. */ while (lsr & LSR_RXRDY) { (void)uart_getreg(bas, REG_DATA); uart_barrier(bas); lsr = uart_getreg(bas, REG_LSR); } uart_unlock(sc->sc_hwmtx); return (0); } int ns8250_bus_setsig(struct uart_softc *sc, int sig) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; uint32_t new, old; bas = &sc->sc_bas; do { old = sc->sc_hwsig; new = old; if (sig & SER_DDTR) { - SIGCHG(sig & SER_DTR, new, SER_DTR, - SER_DDTR); + new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR)); } if (sig & SER_DRTS) { - SIGCHG(sig & SER_RTS, new, SER_RTS, - SER_DRTS); + new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS)); } } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); uart_lock(sc->sc_hwmtx); ns8250->mcr &= ~(MCR_DTR|MCR_RTS); if (new & SER_DTR) ns8250->mcr |= MCR_DTR; if (new & SER_RTS) ns8250->mcr |= MCR_RTS; uart_setreg(bas, REG_MCR, ns8250->mcr); uart_barrier(bas); uart_unlock(sc->sc_hwmtx); return (0); } int ns8250_bus_transmit(struct uart_softc *sc) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas; int i; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) ; uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); uart_barrier(bas); for (i = 0; i < sc->sc_txdatasz; i++) { uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); uart_barrier(bas); } if (broken_txfifo) ns8250_drain(bas, UART_DRAIN_TRANSMITTER); else sc->sc_txbusy = 1; uart_unlock(sc->sc_hwmtx); if (broken_txfifo) uart_sched_softih(sc, SER_INT_TXIDLE); return (0); } void ns8250_bus_grab(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; u_char ier; /* * turn off all interrupts to enter polling mode. Leave the * saved mask alone. We'll restore whatever it was in ungrab. * All pending interupt signals are reset when IER is set to 0. */ uart_lock(sc->sc_hwmtx); ier = uart_getreg(bas, REG_IER); uart_setreg(bas, REG_IER, ier & ns8250->ier_mask); uart_barrier(bas); uart_unlock(sc->sc_hwmtx); } void ns8250_bus_ungrab(struct uart_softc *sc) { struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; struct uart_bas *bas = &sc->sc_bas; /* * Restore previous interrupt mask */ uart_lock(sc->sc_hwmtx); uart_setreg(bas, REG_IER, ns8250->ier); uart_barrier(bas); uart_unlock(sc->sc_hwmtx); } Index: projects/release-pkg/sys/dev/uart/uart_ppstypes.h =================================================================== --- projects/release-pkg/sys/dev/uart/uart_ppstypes.h (nonexistent) +++ projects/release-pkg/sys/dev/uart/uart_ppstypes.h (revision 293803) @@ -0,0 +1,46 @@ +/*- + * Copyright (c) 2015 Ian Lepore + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * $FreeBSD$ + */ + +#ifndef _DEV_UART_PPSTYPES_H_ +#define _DEV_UART_PPSTYPES_H_ + +/* + * These constants are shared by several drivers including uart and usb_serial. + */ + +#define UART_PPS_SIGNAL_MASK 0x0f +#define UART_PPS_OPTION_MASK 0xf0 + +#define UART_PPS_DISABLED 0x00 +#define UART_PPS_CTS 0x01 +#define UART_PPS_DCD 0x02 + +#define UART_PPS_INVERT_PULSE 0x10 +#define UART_PPS_NARROW_PULSE 0x20 + +#endif /* _DEV_UART_PPSTYPES_H_ */ Property changes on: projects/release-pkg/sys/dev/uart/uart_ppstypes.h ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: projects/release-pkg/sys =================================================================== --- projects/release-pkg/sys (revision 293802) +++ projects/release-pkg/sys (revision 293803) Property changes on: projects/release-pkg/sys ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/sys:r293760-293802 Index: projects/release-pkg/usr.sbin/ypldap/yp.c =================================================================== --- projects/release-pkg/usr.sbin/ypldap/yp.c (revision 293802) +++ projects/release-pkg/usr.sbin/ypldap/yp.c (revision 293803) @@ -1,652 +1,652 @@ /* $OpenBSD: yp.c,v 1.14 2015/02/11 01:26:00 pelikan Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 2008 Pierre-Yves Ritschard * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ypldap.h" void yp_dispatch(struct svc_req *, SVCXPRT *); void yp_disable_events(void); void yp_fd_event(int, short, void *); int yp_check(struct svc_req *); int yp_valid_domain(char *, struct ypresp_val *); void yp_make_val(struct ypresp_val *, char *, int); void yp_make_keyval(struct ypresp_key_val *, char *, char *); static struct env *env; struct yp_event { TAILQ_ENTRY(yp_event) ye_entry; struct event ye_event; }; struct yp_data { SVCXPRT *yp_trans_udp; SVCXPRT *yp_trans_tcp; TAILQ_HEAD(, yp_event) yd_events; }; void yp_disable_events(void) { struct yp_event *ye; while ((ye = TAILQ_FIRST(&env->sc_yp->yd_events)) != NULL) { TAILQ_REMOVE(&env->sc_yp->yd_events, ye, ye_entry); event_del(&ye->ye_event); free(ye); } } void yp_enable_events(void) { int i; - extern fd_set svc_fdset; + extern fd_set svc_fdset; struct yp_event *ye; - for (i = 0; i < getdtablesize(); i++) { + for (i = 0; i < FD_SETSIZE; i++) { if (FD_ISSET(i, &svc_fdset)) { if ((ye = calloc(1, sizeof(*ye))) == NULL) fatal(NULL); event_set(&ye->ye_event, i, EV_READ, yp_fd_event, NULL); event_add(&ye->ye_event, NULL); TAILQ_INSERT_TAIL(&env->sc_yp->yd_events, ye, ye_entry); } } } void yp_fd_event(int fd, short event, void *p) { svc_getreq_common(fd); yp_disable_events(); yp_enable_events(); } void yp_init(struct env *x_env) { struct yp_data *yp; if ((yp = calloc(1, sizeof(*yp))) == NULL) fatal(NULL); TAILQ_INIT(&yp->yd_events); env = x_env; env->sc_yp = yp; (void)pmap_unset(YPPROG, YPVERS); if ((yp->yp_trans_udp = svcudp_create(RPC_ANYSOCK)) == NULL) fatal("cannot create udp service"); if ((yp->yp_trans_tcp = svctcp_create(RPC_ANYSOCK, 0, 0)) == NULL) fatal("cannot create tcp service"); if (!svc_register(yp->yp_trans_udp, YPPROG, YPVERS, yp_dispatch, IPPROTO_UDP)) { fatal("unable to register (YPPROG, YPVERS, udp)"); } if (!svc_register(yp->yp_trans_tcp, YPPROG, YPVERS, yp_dispatch, IPPROTO_TCP)) { fatal("unable to register (YPPROG, YPVERS, tcp)"); } } /* * lots of inspiration from ypserv by Mats O Jansson */ void yp_dispatch(struct svc_req *req, SVCXPRT *trans) { xdrproc_t xdr_argument; xdrproc_t xdr_result; char *result; char *(*cb)(char *, struct svc_req *); union { domainname ypproc_domain_2_arg; domainname ypproc_domain_nonack_2_arg; ypreq_key ypproc_match_2_arg; ypreq_nokey ypproc_first_2_arg; ypreq_key ypproc_next_2_arg; ypreq_xfr ypproc_xfr_2_arg; ypreq_nokey ypproc_all_2_arg; ypreq_nokey ypproc_master_2_arg; ypreq_nokey ypproc_order_2_arg; domainname ypproc_maplist_2_arg; } argument; xdr_argument = (xdrproc_t) xdr_void; xdr_result = (xdrproc_t) xdr_void; cb = NULL; switch (req->rq_proc) { case YPPROC_NULL: xdr_argument = (xdrproc_t) xdr_void; xdr_result = (xdrproc_t) xdr_void; if (yp_check(req) == -1) return; result = NULL; if (!svc_sendreply(trans, (xdrproc_t) xdr_void, (void *)&result)) svcerr_systemerr(trans); return; case YPPROC_DOMAIN: xdr_argument = (xdrproc_t) xdr_domainname; xdr_result = (xdrproc_t) xdr_bool; if (yp_check(req) == -1) return; cb = (void *)ypproc_domain_2_svc; break; case YPPROC_DOMAIN_NONACK: xdr_argument = (xdrproc_t) xdr_domainname; xdr_result = (xdrproc_t) xdr_bool; if (yp_check(req) == -1) return; cb = (void *)ypproc_domain_nonack_2_svc; break; case YPPROC_MATCH: xdr_argument = (xdrproc_t) xdr_ypreq_key; xdr_result = (xdrproc_t) xdr_ypresp_val; if (yp_check(req) == -1) return; cb = (void *)ypproc_match_2_svc; break; case YPPROC_FIRST: xdr_argument = (xdrproc_t) xdr_ypreq_nokey; xdr_result = (xdrproc_t) xdr_ypresp_key_val; if (yp_check(req) == -1) return; cb = (void *)ypproc_first_2_svc; break; case YPPROC_NEXT: xdr_argument = (xdrproc_t) xdr_ypreq_key; xdr_result = (xdrproc_t) xdr_ypresp_key_val; if (yp_check(req) == -1) return; cb = (void *)ypproc_next_2_svc; break; case YPPROC_XFR: if (yp_check(req) == -1) return; svcerr_noproc(trans); return; case YPPROC_CLEAR: log_debug("ypproc_clear"); if (yp_check(req) == -1) return; svcerr_noproc(trans); return; case YPPROC_ALL: log_debug("ypproc_all"); if (yp_check(req) == -1) return; cb = (void *)ypproc_all_2_svc; break; case YPPROC_MASTER: log_debug("ypproc_master"); if (yp_check(req) == -1) return; cb = (void *)ypproc_master_2_svc; break; case YPPROC_ORDER: log_debug("ypproc_order"); if (yp_check(req) == -1) return; svcerr_noproc(trans); return; case YPPROC_MAPLIST: log_debug("ypproc_maplist"); if (yp_check(req) == -1) return; cb = (void *)ypproc_maplist_2_svc; break; default: svcerr_noproc(trans); return; } (void)memset(&argument, 0, sizeof(argument)); if (!svc_getargs(trans, xdr_argument, (caddr_t)&argument)) { svcerr_decode(trans); return; } result = (*cb)((char *)&argument, req); if (result != NULL && !svc_sendreply(trans, xdr_result, result)) svcerr_systemerr(trans); if (!svc_freeargs(trans, xdr_argument, (caddr_t)&argument)) { /* * ypserv does it too. */ fatal("unable to free arguments"); } } int yp_check(struct svc_req *req) { struct sockaddr_in *caller; caller = svc_getcaller(req->rq_xprt); /* * We might want to know who we allow here. */ return (0); } int yp_valid_domain(char *domain, struct ypresp_val *res) { if (domain == NULL) { log_debug("NULL domain !"); return (-1); } if (strcmp(domain, env->sc_domainname) != 0) { res->stat = YP_NODOM; return (-1); } return (0); } bool_t * ypproc_domain_2_svc(domainname *arg, struct svc_req *req) { static bool_t res; res = (bool_t)1; if (strcmp(*arg, env->sc_domainname) != 0) res = (bool_t)0; return (&res); } bool_t * ypproc_domain_nonack_2_svc(domainname *arg, struct svc_req *req) { static bool_t res; if (strcmp(*arg, env->sc_domainname) != 0) return NULL; res = (bool_t)1; return (&res); } ypresp_val * ypproc_match_2_svc(ypreq_key *arg, struct svc_req *req) { struct userent ukey; struct userent *ue; struct groupent gkey; struct groupent *ge; static struct ypresp_val res; const char *estr; char *bp, *cp; char key[YPMAXRECORD+1]; log_debug("matching '%.*s' in map %s", arg->key.keydat_len, arg->key.keydat_val, arg->map); if (yp_valid_domain(arg->domain, (struct ypresp_val *)&res) == -1) return (&res); if (env->sc_user_names == NULL) { /* * tree not ready. */ return (NULL); } if (arg->key.keydat_len > YPMAXRECORD) { log_debug("argument too long"); return (NULL); } bzero(key, sizeof(key)); (void)strncpy(key, arg->key.keydat_val, arg->key.keydat_len); if (strcmp(arg->map, "passwd.byname") == 0 || strcmp(arg->map, "master.passwd.byname") == 0) { ukey.ue_line = key; if ((ue = RB_FIND(user_name_tree, env->sc_user_names, &ukey)) == NULL) { res.stat = YP_NOKEY; return (&res); } yp_make_val(&res, ue->ue_line, 1); return (&res); } else if (strcmp(arg->map, "passwd.byuid") == 0 || strcmp(arg->map, "master.passwd.byuid") == 0) { ukey.ue_uid = strtonum(key, 0, UID_MAX, &estr); if (estr) { res.stat = YP_BADARGS; return (&res); } if ((ue = RB_FIND(user_uid_tree, &env->sc_user_uids, &ukey)) == NULL) { res.stat = YP_NOKEY; return (&res); } yp_make_val(&res, ue->ue_line, 1); return (&res); } else if (strcmp(arg->map, "group.bygid") == 0) { gkey.ge_gid = strtonum(key, 0, GID_MAX, &estr); if (estr) { res.stat = YP_BADARGS; return (&res); } if ((ge = RB_FIND(group_gid_tree, &env->sc_group_gids, &gkey)) == NULL) { res.stat = YP_NOKEY; return (&res); } yp_make_val(&res, ge->ge_line, 1); return (&res); } else if (strcmp(arg->map, "group.byname") == 0) { gkey.ge_line = key; if ((ge = RB_FIND(group_name_tree, env->sc_group_names, &gkey)) == NULL) { res.stat = YP_NOKEY; return (&res); } yp_make_val(&res, ge->ge_line, 1); return (&res); } else if (strcmp(arg->map, "netid.byname") == 0) { bp = cp = key; if (strncmp(bp, "unix.", strlen("unix.")) != 0) { res.stat = YP_BADARGS; return (&res); } bp += strlen("unix."); if (*bp == '\0') { res.stat = YP_BADARGS; return (&res); } if (!(cp = strsep(&bp, "@"))) { res.stat = YP_BADARGS; return (&res); } if (strcmp(bp, arg->domain) != 0) { res.stat = YP_BADARGS; return (&res); } ukey.ue_uid = strtonum(cp, 0, UID_MAX, &estr); if (estr) { res.stat = YP_BADARGS; return (&res); } if ((ue = RB_FIND(user_uid_tree, &env->sc_user_uids, &ukey)) == NULL) { res.stat = YP_NOKEY; return (&res); } yp_make_val(&res, ue->ue_netid_line, 0); return (&res); } else { log_debug("unknown map %s", arg->map); res.stat = YP_NOMAP; return (&res); } } ypresp_key_val * ypproc_first_2_svc(ypreq_nokey *arg, struct svc_req *req) { static struct ypresp_key_val res; if (yp_valid_domain(arg->domain, (struct ypresp_val *)&res) == -1) return (&res); if (strcmp(arg->map, "passwd.byname") == 0 || strcmp(arg->map, "master.passwd.byname") == 0) { if (env->sc_user_lines == NULL) return (NULL); yp_make_keyval(&res, env->sc_user_lines, env->sc_user_lines); } else if (strcmp(arg->map, "group.byname") == 0) { if (env->sc_group_lines == NULL) return (NULL); yp_make_keyval(&res, env->sc_group_lines, env->sc_group_lines); } else { log_debug("unknown map %s", arg->map); res.stat = YP_NOMAP; } return (&res); } ypresp_key_val * ypproc_next_2_svc(ypreq_key *arg, struct svc_req *req) { struct userent ukey; struct userent *ue; struct groupent gkey; struct groupent *ge; char *line; static struct ypresp_key_val res; char key[YPMAXRECORD+1]; if (yp_valid_domain(arg->domain, (struct ypresp_val *)&res) == -1) return (&res); if (strcmp(arg->map, "passwd.byname") == 0 || strcmp(arg->map, "master.passwd.byname") == 0) { bzero(key, sizeof(key)); (void)strncpy(key, arg->key.keydat_val, arg->key.keydat_len); ukey.ue_line = key; if ((ue = RB_FIND(user_name_tree, env->sc_user_names, &ukey)) == NULL) { /* * canacar's trick: * the user might have been deleted in between calls * to next since the tree may be modified by a reload. * next should still return the next user in * lexicographical order, hence insert the search key * and look up the next field, then remove it again. */ RB_INSERT(user_name_tree, env->sc_user_names, &ukey); if ((ue = RB_NEXT(user_name_tree, &env->sc_user_names, &ukey)) == NULL) { RB_REMOVE(user_name_tree, env->sc_user_names, &ukey); res.stat = YP_NOKEY; return (&res); } RB_REMOVE(user_name_tree, env->sc_user_names, &ukey); } line = ue->ue_line + (strlen(ue->ue_line) + 1); line = line + (strlen(line) + 1); yp_make_keyval(&res, line, line); return (&res); } else if (strcmp(arg->map, "group.byname") == 0) { bzero(key, sizeof(key)); (void)strncpy(key, arg->key.keydat_val, arg->key.keydat_len); gkey.ge_line = key; if ((ge = RB_FIND(group_name_tree, env->sc_group_names, &gkey)) == NULL) { /* * canacar's trick reloaded. */ RB_INSERT(group_name_tree, env->sc_group_names, &gkey); if ((ge = RB_NEXT(group_name_tree, &env->sc_group_names, &gkey)) == NULL) { RB_REMOVE(group_name_tree, env->sc_group_names, &gkey); res.stat = YP_NOKEY; return (&res); } RB_REMOVE(group_name_tree, env->sc_group_names, &gkey); } line = ge->ge_line + (strlen(ge->ge_line) + 1); line = line + (strlen(line) + 1); yp_make_keyval(&res, line, line); return (&res); } else { log_debug("unknown map %s", arg->map); res.stat = YP_NOMAP; return (&res); } } ypresp_all * ypproc_all_2_svc(ypreq_nokey *arg, struct svc_req *req) { static struct ypresp_all res; if (yp_valid_domain(arg->domain, (struct ypresp_val *)&res) == -1) return (&res); svcerr_auth(req->rq_xprt, AUTH_FAILED); return (NULL); } ypresp_master * ypproc_master_2_svc(ypreq_nokey *arg, struct svc_req *req) { static struct ypresp_master res; if (yp_valid_domain(arg->domain, (struct ypresp_val *)&res) == -1) return (&res); res.stat = YP_YPERR; return (&res); } ypresp_maplist * ypproc_maplist_2_svc(domainname *arg, struct svc_req *req) { size_t i; static struct { char *name; int cond; } mapnames[] = { { "passwd.byname", YPMAP_PASSWD_BYNAME }, { "passwd.byuid", YPMAP_PASSWD_BYUID }, { "master.passwd.byname", YPMAP_MASTER_PASSWD_BYNAME }, { "master.passwd.byuid", YPMAP_MASTER_PASSWD_BYUID }, { "group.byname", YPMAP_GROUP_BYNAME }, { "group.bygid", YPMAP_GROUP_BYGID }, { "netid.byname", YPMAP_NETID_BYNAME }, }; static ypresp_maplist res; static struct ypmaplist maps[sizeof(mapnames) / sizeof(mapnames[0])]; if (yp_valid_domain(*arg, (struct ypresp_val *)&res) == -1) return (&res); res.stat = YP_TRUE; res.maps = NULL; for (i = 0; i < sizeof(mapnames) / sizeof(mapnames[0]); i++) { if (!(env->sc_flags & mapnames[i].cond)) continue; maps[i].map = mapnames[i].name; maps[i].next = res.maps; res.maps = &maps[i]; } return (&res); } void yp_make_val(struct ypresp_val *res, char *line, int replacecolon) { static char buf[LINE_WIDTH]; bzero(buf, sizeof(buf)); if (replacecolon) line[strlen(line)] = ':'; (void)strlcpy(buf, line, sizeof(buf)); if (replacecolon) line[strcspn(line, ":")] = '\0'; log_debug("sending out %s", buf); res->stat = YP_TRUE; res->val.valdat_len = strlen(buf); res->val.valdat_val = buf; } void yp_make_keyval(struct ypresp_key_val *res, char *key, char *line) { static char keybuf[YPMAXRECORD+1]; static char buf[LINE_WIDTH]; bzero(keybuf, sizeof(keybuf)); bzero(buf, sizeof(buf)); (void)strlcpy(keybuf, key, sizeof(keybuf)); res->key.keydat_len = strlen(keybuf); res->key.keydat_val = keybuf; if (*line == '\0') { res->stat = YP_NOMORE; return; } res->stat = YP_TRUE; line[strlen(line)] = ':'; (void)strlcpy(buf, line, sizeof(buf)); line[strcspn(line, ":")] = '\0'; log_debug("sending out %s => %s", keybuf, buf); res->val.valdat_len = strlen(buf); res->val.valdat_val = buf; } Index: projects/release-pkg/usr.sbin/ypldap/ypldap.conf.5 =================================================================== --- projects/release-pkg/usr.sbin/ypldap/ypldap.conf.5 (revision 293802) +++ projects/release-pkg/usr.sbin/ypldap/ypldap.conf.5 (revision 293803) @@ -1,167 +1,170 @@ .\" $OpenBSD: ypldap.conf.5,v 1.19 2012/04/30 11:28:25 jmatthew Exp $ .\" $FreeBSD$ .\" .\" Copyright (c) 2008 Pierre-Yves Ritschard .\" .\" Permission to use, copy, modify, and distribute this software for any .\" purpose with or without fee is hereby granted, provided that the above .\" copyright notice and this permission notice appear in all copies. .\" .\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES .\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF .\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR .\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES .\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN .\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF .\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. .\" -.Dd $Mdocdate: April 30 2012 $ +.Dd $Mdocdate: January 13 2016 $ .Dt YPLDAP.CONF 5 .Os .Sh NAME .Nm ypldap.conf .Nd LDAP YP map daemon configuration file .Sh DESCRIPTION The .Xr ypldap 8 daemon provides YP maps using LDAP as a backend. .Sh SECTIONS The .Nm config file is divided into three main sections. .Bl -tag -width xxxx .It Sy Macros User-defined variables may be defined and used later, simplifying the configuration file. .It Sy Global Configuration Global settings for .Xr ypldap 8 . .It Sy Directories LDAP Directory specific parameters. .El .Sh MACROS Much like .Xr cpp 1 or .Xr m4 1 , macros can be defined that will later be expanded in context. Macro names must start with a letter, digit, or underscore, and may contain any of those characters. Macro names may not be reserved words (for example, .Ic domain ) . Macros are not expanded inside quotes. .Pp For example: .Bd -literal -offset indent fixed_gecos="Pulled from LDAP" fixed attribute gecos $fixed_gecos .Ed .Sh GLOBAL CONFIGURATION Global settings concern the main behaviour of the daemon. .Pp .Bl -tag -width Ds -compact .It domain Ar string Specify the name of the NIS domain .Nm will provide. .It interval Ar seconds Specify the interval in seconds at which the whole directory will be pulled from LDAP. .It provide map Ar string Specify a map that should be provided by .Nm The currently implemented maps are: passwd.byname, passwd.byuid, group.byname, group.bygid. .El .Sh DIRECTORIES Directories are used to describe the LDAP schema and help .Nm convert LDAP entries to .Xr passwd 5 , .Xr master.passwd 5 , and .Xr group 5 lines. A directory declaration is of the following form: .Bd -literal -offset indent directory "some.host" { # directives } .Ed .Pp Valid directives for directories are: .Bl -tag -width Ds .It Xo .Ic attribute Ar name Ic maps to Ar string .Xc Map the .Xr passwd 5 , .Xr master.passwd 5 , or .Xr group 5 attribute to the LDAP attribute name supplied. .It Ic basedn Ar string Use the supplied search base as starting point for the directory search. .It Ic groupdn Ar string Use the supplied search base as starting point for the directory search for groups. If not supplied, the basedn value will be used. .It Ic bindcred Ar string Use the supplied credentials for simple authentication against the directory. .It Ic binddn Ar string Use the supplied Distinguished Name to bind to the directory. .It Ic fixed attribute Ar attribute string Do not retrieve the specified attribute from LDAP but instead set it unconditionally to the supplied value for every entry. .It Ic group filter Ar string Use the supplied LDAP filter to retrieve group entries. .It Xo .Ic list Ar name Ic maps to Ar string .Xc Map the .Xr passwd 5 , .Xr master.passwd 5 , or .Xr group 5 attribute to the LDAP attribute name supplied. A list creates a comma separated list of all the LDAP attributes found. .Pp Valid attributes are: .Pp .Bl -tag -width groupmembers -offset indent -compact .It Ic name .It Ic passwd .It Ic uid .It Ic gid .It Ic gecos .It Ic home .It Ic shell .It Ic change .It Ic expire .It Ic class .It Ic groupname .It Ic grouppasswd .It Ic groupgid .It Ic groupmembers .El .It Ic passwd filter Ar string Use the supplied LDAP filter to retrieve password entries. .El .Sh FILES .Bl -tag -width "/etc/ypldap.conf" -compact .It Pa /etc/ypldap.conf .Xr ypldap 8 configuration file. +.It Pa /usr/share/example/ypldap/ypldap.conf +.Xr ypldap 8 +configuration file example. .El .Sh SEE ALSO .Xr ypbind 8 , .Xr ypldap 8 , .Xr ypserv 8 .Sh HISTORY The .Nm file format first appeared in .Ox 4.4 . Index: projects/release-pkg =================================================================== --- projects/release-pkg (revision 293802) +++ projects/release-pkg (revision 293803) Property changes on: projects/release-pkg ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r293760-293802