Index: projects/clang380-import/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp =================================================================== --- projects/clang380-import/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp (revision 293385) +++ projects/clang380-import/contrib/llvm/lib/CodeGen/AsmPrinter/DwarfDebug.cpp (revision 293386) @@ -1,2018 +1,2018 @@ //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf debug info into asm files. // //===----------------------------------------------------------------------===// #include "DwarfDebug.h" #include "ByteStreamer.h" #include "DIEHash.h" #include "DebugLocEntry.h" #include "DwarfCompileUnit.h" #include "DwarfExpression.h" #include "DwarfUnit.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/DIE.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/ValueHandle.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MD5.h" #include "llvm/Support/Path.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "dwarfdebug" static cl::opt DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, cl::desc("Disable debug info printing")); static cl::opt UnknownLocations( "use-unknown-locations", cl::Hidden, cl::desc("Make an absence of debug location information explicit."), cl::init(false)); static cl::opt GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, cl::desc("Generate GNU-style pubnames and pubtypes"), cl::init(false)); static cl::opt GenerateARangeSection("generate-arange-section", cl::Hidden, cl::desc("Generate dwarf aranges"), cl::init(false)); namespace { enum DefaultOnOff { Default, Enable, Disable }; } static cl::opt DwarfAccelTables("dwarf-accel-tables", cl::Hidden, cl::desc("Output prototype dwarf accelerator tables."), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static cl::opt SplitDwarf("split-dwarf", cl::Hidden, cl::desc("Output DWARF5 split debug info."), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static cl::opt DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, cl::desc("Generate DWARF pubnames and pubtypes sections"), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static cl::opt DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, cl::desc("Emit DWARF linkage-name attributes."), cl::values(clEnumVal(Default, "Default for platform"), clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled"), clEnumValEnd), cl::init(Default)); static const char *const DWARFGroupName = "DWARF Emission"; static const char *const DbgTimerName = "DWARF Debug Writer"; void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) { BS.EmitInt8( Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) : dwarf::OperationEncodingString(Op)); } void DebugLocDwarfExpression::EmitSigned(int64_t Value) { BS.EmitSLEB128(Value, Twine(Value)); } void DebugLocDwarfExpression::EmitUnsigned(uint64_t Value) { BS.EmitULEB128(Value, Twine(Value)); } bool DebugLocDwarfExpression::isFrameRegister(unsigned MachineReg) { // This information is not available while emitting .debug_loc entries. return false; } //===----------------------------------------------------------------------===// /// resolve - Look in the DwarfDebug map for the MDNode that /// corresponds to the reference. template T *DbgVariable::resolve(TypedDINodeRef Ref) const { return DD->resolve(Ref); } bool DbgVariable::isBlockByrefVariable() const { assert(Var && "Invalid complex DbgVariable!"); return Var->getType() .resolve(DD->getTypeIdentifierMap()) ->isBlockByrefStruct(); } const DIType *DbgVariable::getType() const { DIType *Ty = Var->getType().resolve(DD->getTypeIdentifierMap()); // FIXME: isBlockByrefVariable should be reformulated in terms of complex // addresses instead. if (Ty->isBlockByrefStruct()) { /* Byref variables, in Blocks, are declared by the programmer as "SomeType VarName;", but the compiler creates a __Block_byref_x_VarName struct, and gives the variable VarName either the struct, or a pointer to the struct, as its type. This is necessary for various behind-the-scenes things the compiler needs to do with by-reference variables in blocks. However, as far as the original *programmer* is concerned, the variable should still have type 'SomeType', as originally declared. The following function dives into the __Block_byref_x_VarName struct to find the original type of the variable. This will be passed back to the code generating the type for the Debug Information Entry for the variable 'VarName'. 'VarName' will then have the original type 'SomeType' in its debug information. The original type 'SomeType' will be the type of the field named 'VarName' inside the __Block_byref_x_VarName struct. NOTE: In order for this to not completely fail on the debugger side, the Debug Information Entry for the variable VarName needs to have a DW_AT_location that tells the debugger how to unwind through the pointers and __Block_byref_x_VarName struct to find the actual value of the variable. The function addBlockByrefType does this. */ DIType *subType = Ty; uint16_t tag = Ty->getTag(); if (tag == dwarf::DW_TAG_pointer_type) subType = resolve(cast(Ty)->getBaseType()); auto Elements = cast(subType)->getElements(); for (unsigned i = 0, N = Elements.size(); i < N; ++i) { auto *DT = cast(Elements[i]); if (getName() == DT->getName()) return resolve(DT->getBaseType()); } } return Ty; } static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = { DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4), DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2), DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)}; DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) : Asm(A), MMI(Asm->MMI), DebugLocs(A->OutStreamer->isVerboseAsm()), PrevLabel(nullptr), InfoHolder(A, "info_string", DIEValueAllocator), SkeletonHolder(A, "skel_string", DIEValueAllocator), IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()), AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)), AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)), AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4)), AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) { CurFn = nullptr; CurMI = nullptr; Triple TT(Asm->getTargetTriple()); // Make sure we know our "debugger tuning." The target option takes // precedence; fall back to triple-based defaults. if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) DebuggerTuning = Asm->TM.Options.DebuggerTuning; - else if (IsDarwin || TT.isOSFreeBSD()) + else if (IsDarwin) DebuggerTuning = DebuggerKind::LLDB; else if (TT.isPS4CPU()) DebuggerTuning = DebuggerKind::SCE; else DebuggerTuning = DebuggerKind::GDB; // Turn on accelerator tables for LLDB by default. if (DwarfAccelTables == Default) HasDwarfAccelTables = tuneForLLDB(); else HasDwarfAccelTables = DwarfAccelTables == Enable; // Handle split DWARF. Off by default for now. if (SplitDwarf == Default) HasSplitDwarf = false; else HasSplitDwarf = SplitDwarf == Enable; // Pubnames/pubtypes on by default for GDB. if (DwarfPubSections == Default) HasDwarfPubSections = tuneForGDB(); else HasDwarfPubSections = DwarfPubSections == Enable; // SCE does not use linkage names. if (DwarfLinkageNames == Default) UseLinkageNames = !tuneForSCE(); else UseLinkageNames = DwarfLinkageNames == Enable; unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber : MMI->getModule()->getDwarfVersion(); // Use dwarf 4 by default if nothing is requested. DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION; // Work around a GDB bug. GDB doesn't support the standard opcode; // SCE doesn't support GNU's; LLDB prefers the standard opcode, which // is defined as of DWARF 3. // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); beginModule(); } } // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. DwarfDebug::~DwarfDebug() { } static bool isObjCClass(StringRef Name) { return Name.startswith("+") || Name.startswith("-"); } static bool hasObjCCategory(StringRef Name) { if (!isObjCClass(Name)) return false; return Name.find(") ") != StringRef::npos; } static void getObjCClassCategory(StringRef In, StringRef &Class, StringRef &Category) { if (!hasObjCCategory(In)) { Class = In.slice(In.find('[') + 1, In.find(' ')); Category = ""; return; } Class = In.slice(In.find('[') + 1, In.find('(')); Category = In.slice(In.find('[') + 1, In.find(' ')); return; } static StringRef getObjCMethodName(StringRef In) { return In.slice(In.find(' ') + 1, In.find(']')); } // Add the various names to the Dwarf accelerator table names. // TODO: Determine whether or not we should add names for programs // that do not have a DW_AT_name or DW_AT_linkage_name field - this // is only slightly different than the lookup of non-standard ObjC names. void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) { if (!SP->isDefinition()) return; addAccelName(SP->getName(), Die); // If the linkage name is different than the name, go ahead and output // that as well into the name table. if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName()) addAccelName(SP->getLinkageName(), Die); // If this is an Objective-C selector name add it to the ObjC accelerator // too. if (isObjCClass(SP->getName())) { StringRef Class, Category; getObjCClassCategory(SP->getName(), Class, Category); addAccelObjC(Class, Die); if (Category != "") addAccelObjC(Category, Die); // Also add the base method name to the name table. addAccelName(getObjCMethodName(SP->getName()), Die); } } /// Check whether we should create a DIE for the given Scope, return true /// if we don't create a DIE (the corresponding DIE is null). bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { if (Scope->isAbstractScope()) return false; // We don't create a DIE if there is no Range. const SmallVectorImpl &Ranges = Scope->getRanges(); if (Ranges.empty()) return true; if (Ranges.size() > 1) return false; // We don't create a DIE if we have a single Range and the end label // is null. return !getLabelAfterInsn(Ranges.front().second); } template void forBothCUs(DwarfCompileUnit &CU, Func F) { F(CU); if (auto *SkelCU = CU.getSkeleton()) F(*SkelCU); } void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) { assert(Scope && Scope->getScopeNode()); assert(Scope->isAbstractScope()); assert(!Scope->getInlinedAt()); const MDNode *SP = Scope->getScopeNode(); ProcessedSPNodes.insert(SP); // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram // was inlined from another compile unit. auto &CU = SPMap[SP]; forBothCUs(*CU, [&](DwarfCompileUnit &CU) { CU.constructAbstractSubprogramScopeDIE(Scope); }); } void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const { if (!GenerateGnuPubSections) return; U.addFlag(D, dwarf::DW_AT_GNU_pubnames); } // Create new DwarfCompileUnit for the given metadata node with tag // DW_TAG_compile_unit. DwarfCompileUnit & DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) { StringRef FN = DIUnit->getFilename(); CompilationDir = DIUnit->getDirectory(); auto OwnedUnit = make_unique( InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); DwarfCompileUnit &NewCU = *OwnedUnit; DIE &Die = NewCU.getUnitDie(); InfoHolder.addUnit(std::move(OwnedUnit)); if (useSplitDwarf()) NewCU.setSkeleton(constructSkeletonCU(NewCU)); // LTO with assembly output shares a single line table amongst multiple CUs. // To avoid the compilation directory being ambiguous, let the line table // explicitly describe the directory of all files, never relying on the // compilation directory. if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) Asm->OutStreamer->getContext().setMCLineTableCompilationDir( NewCU.getUniqueID(), CompilationDir); NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit->getProducer()); NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, DIUnit->getSourceLanguage()); NewCU.addString(Die, dwarf::DW_AT_name, FN); if (!useSplitDwarf()) { NewCU.initStmtList(); // If we're using split dwarf the compilation dir is going to be in the // skeleton CU and so we don't need to duplicate it here. if (!CompilationDir.empty()) NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); addGnuPubAttributes(NewCU, Die); } if (DIUnit->isOptimized()) NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); StringRef Flags = DIUnit->getFlags(); if (!Flags.empty()) NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); if (unsigned RVer = DIUnit->getRuntimeVersion()) NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, dwarf::DW_FORM_data1, RVer); if (useSplitDwarf()) NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); else NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection()); if (DIUnit->getDWOId()) { // This CU is either a clang module DWO or a skeleton CU. NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, DIUnit->getDWOId()); if (!DIUnit->getSplitDebugFilename().empty()) // This is a prefabricated skeleton CU. NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, DIUnit->getSplitDebugFilename()); } CUMap.insert(std::make_pair(DIUnit, &NewCU)); CUDieMap.insert(std::make_pair(&Die, &NewCU)); return NewCU; } void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, const DIImportedEntity *N) { if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) D->addChild(TheCU.constructImportedEntityDIE(N)); } // Emit all Dwarf sections that should come prior to the content. Create // global DIEs and emit initial debug info sections. This is invoked by // the target AsmPrinter. void DwarfDebug::beginModule() { if (DisableDebugInfoPrinting) return; const Module *M = MMI->getModule(); NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); if (!CU_Nodes) return; TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes); SingleCU = CU_Nodes->getNumOperands() == 1; for (MDNode *N : CU_Nodes->operands()) { auto *CUNode = cast(N); DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode); for (auto *IE : CUNode->getImportedEntities()) CU.addImportedEntity(IE); for (auto *GV : CUNode->getGlobalVariables()) CU.getOrCreateGlobalVariableDIE(GV); for (auto *SP : CUNode->getSubprograms()) SPMap.insert(std::make_pair(SP, &CU)); for (auto *Ty : CUNode->getEnumTypes()) { // The enum types array by design contains pointers to // MDNodes rather than DIRefs. Unique them here. CU.getOrCreateTypeDIE(cast(resolve(Ty->getRef()))); } for (auto *Ty : CUNode->getRetainedTypes()) { // The retained types array by design contains pointers to // MDNodes rather than DIRefs. Unique them here. DIType *RT = cast(resolve(Ty->getRef())); if (!RT->isExternalTypeRef()) // There is no point in force-emitting a forward declaration. CU.getOrCreateTypeDIE(RT); } // Emit imported_modules last so that the relevant context is already // available. for (auto *IE : CUNode->getImportedEntities()) constructAndAddImportedEntityDIE(CU, IE); } // Tell MMI that we have debug info. MMI->setDebugInfoAvailability(true); } void DwarfDebug::finishVariableDefinitions() { for (const auto &Var : ConcreteVariables) { DIE *VariableDie = Var->getDIE(); assert(VariableDie); // FIXME: Consider the time-space tradeoff of just storing the unit pointer // in the ConcreteVariables list, rather than looking it up again here. // DIE::getUnit isn't simple - it walks parent pointers, etc. DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit()); assert(Unit); DbgVariable *AbsVar = getExistingAbstractVariable( InlinedVariable(Var->getVariable(), Var->getInlinedAt())); if (AbsVar && AbsVar->getDIE()) { Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, *AbsVar->getDIE()); } else Unit->applyVariableAttributes(*Var, *VariableDie); } } void DwarfDebug::finishSubprogramDefinitions() { for (const auto &P : SPMap) forBothCUs(*P.second, [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(cast(P.first)); }); } // Collect info for variables that were optimized out. void DwarfDebug::collectDeadVariables() { const Module *M = MMI->getModule(); if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) { for (MDNode *N : CU_Nodes->operands()) { auto *TheCU = cast(N); // Construct subprogram DIE and add variables DIEs. DwarfCompileUnit *SPCU = static_cast(CUMap.lookup(TheCU)); assert(SPCU && "Unable to find Compile Unit!"); for (auto *SP : TheCU->getSubprograms()) { if (ProcessedSPNodes.count(SP) != 0) continue; SPCU->collectDeadVariables(SP); } } } } void DwarfDebug::finalizeModuleInfo() { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); finishSubprogramDefinitions(); finishVariableDefinitions(); // Collect info for variables that were optimized out. collectDeadVariables(); // Handle anything that needs to be done on a per-unit basis after // all other generation. for (const auto &P : CUMap) { auto &TheCU = *P.second; // Emit DW_AT_containing_type attribute to connect types with their // vtable holding type. TheCU.constructContainingTypeDIEs(); // Add CU specific attributes if we need to add any. // If we're splitting the dwarf out now that we've got the entire // CU then add the dwo id to it. auto *SkCU = TheCU.getSkeleton(); if (useSplitDwarf()) { // Emit a unique identifier for this CU. uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie()); TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, ID); SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, ID); // We don't keep track of which addresses are used in which CU so this // is a bit pessimistic under LTO. if (!AddrPool.isEmpty()) { const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol(); SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base, Sym, Sym); } if (!SkCU->getRangeLists().empty()) { const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, Sym, Sym); } } // If we have code split among multiple sections or non-contiguous // ranges of code then emit a DW_AT_ranges attribute on the unit that will // remain in the .o file, otherwise add a DW_AT_low_pc. // FIXME: We should use ranges allow reordering of code ala // .subsections_via_symbols in mach-o. This would mean turning on // ranges for all subprogram DIEs for mach-o. DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; if (unsigned NumRanges = TheCU.getRanges().size()) { if (NumRanges > 1) // A DW_AT_low_pc attribute may also be specified in combination with // DW_AT_ranges to specify the default base address for use in // location lists (see Section 2.6.2) and range lists (see Section // 2.17.3). U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); else U.setBaseAddress(TheCU.getRanges().front().getStart()); U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); } } // Compute DIE offsets and sizes. InfoHolder.computeSizeAndOffsets(); if (useSplitDwarf()) SkeletonHolder.computeSizeAndOffsets(); } // Emit all Dwarf sections that should come after the content. void DwarfDebug::endModule() { assert(CurFn == nullptr); assert(CurMI == nullptr); // If we aren't actually generating debug info (check beginModule - // conditionalized on !DisableDebugInfoPrinting and the presence of the // llvm.dbg.cu metadata node) if (!MMI->hasDebugInfo()) return; // Finalize the debug info for the module. finalizeModuleInfo(); emitDebugStr(); if (useSplitDwarf()) emitDebugLocDWO(); else // Emit info into a debug loc section. emitDebugLoc(); // Corresponding abbreviations into a abbrev section. emitAbbreviations(); // Emit all the DIEs into a debug info section. emitDebugInfo(); // Emit info into a debug aranges section. if (GenerateARangeSection) emitDebugARanges(); // Emit info into a debug ranges section. emitDebugRanges(); if (useSplitDwarf()) { emitDebugStrDWO(); emitDebugInfoDWO(); emitDebugAbbrevDWO(); emitDebugLineDWO(); // Emit DWO addresses. AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); } // Emit info into the dwarf accelerator table sections. if (useDwarfAccelTables()) { emitAccelNames(); emitAccelObjC(); emitAccelNamespaces(); emitAccelTypes(); } // Emit the pubnames and pubtypes sections if requested. if (HasDwarfPubSections) { emitDebugPubNames(GenerateGnuPubSections); emitDebugPubTypes(GenerateGnuPubSections); } // clean up. SPMap.clear(); AbstractVariables.clear(); } // Find abstract variable, if any, associated with Var. DbgVariable * DwarfDebug::getExistingAbstractVariable(InlinedVariable IV, const DILocalVariable *&Cleansed) { // More then one inlined variable corresponds to one abstract variable. Cleansed = IV.first; auto I = AbstractVariables.find(Cleansed); if (I != AbstractVariables.end()) return I->second.get(); return nullptr; } DbgVariable *DwarfDebug::getExistingAbstractVariable(InlinedVariable IV) { const DILocalVariable *Cleansed; return getExistingAbstractVariable(IV, Cleansed); } void DwarfDebug::createAbstractVariable(const DILocalVariable *Var, LexicalScope *Scope) { auto AbsDbgVariable = make_unique(Var, /* IA */ nullptr, this); InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get()); AbstractVariables[Var] = std::move(AbsDbgVariable); } void DwarfDebug::ensureAbstractVariableIsCreated(InlinedVariable IV, const MDNode *ScopeNode) { const DILocalVariable *Cleansed = nullptr; if (getExistingAbstractVariable(IV, Cleansed)) return; createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope( cast(ScopeNode))); } void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped( InlinedVariable IV, const MDNode *ScopeNode) { const DILocalVariable *Cleansed = nullptr; if (getExistingAbstractVariable(IV, Cleansed)) return; if (LexicalScope *Scope = LScopes.findAbstractScope(cast_or_null(ScopeNode))) createAbstractVariable(Cleansed, Scope); } // Collect variable information from side table maintained by MMI. void DwarfDebug::collectVariableInfoFromMMITable( DenseSet &Processed) { for (const auto &VI : MMI->getVariableDbgInfo()) { if (!VI.Var) continue; assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && "Expected inlined-at fields to agree"); InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt()); Processed.insert(Var); LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); // If variable scope is not found then skip this variable. if (!Scope) continue; ensureAbstractVariableIsCreatedIfScoped(Var, Scope->getScopeNode()); auto RegVar = make_unique(Var.first, Var.second, this); RegVar->initializeMMI(VI.Expr, VI.Slot); if (InfoHolder.addScopeVariable(Scope, RegVar.get())) ConcreteVariables.push_back(std::move(RegVar)); } } // Get .debug_loc entry for the instruction range starting at MI. static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) { const DIExpression *Expr = MI->getDebugExpression(); assert(MI->getNumOperands() == 4); if (MI->getOperand(0).isReg()) { MachineLocation MLoc; // If the second operand is an immediate, this is a // register-indirect address. if (!MI->getOperand(1).isImm()) MLoc.set(MI->getOperand(0).getReg()); else MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); return DebugLocEntry::Value(Expr, MLoc); } if (MI->getOperand(0).isImm()) return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm()); if (MI->getOperand(0).isFPImm()) return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm()); if (MI->getOperand(0).isCImm()) return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm()); llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); } /// Determine whether two variable pieces overlap. static bool piecesOverlap(const DIExpression *P1, const DIExpression *P2) { if (!P1->isBitPiece() || !P2->isBitPiece()) return true; unsigned l1 = P1->getBitPieceOffset(); unsigned l2 = P2->getBitPieceOffset(); unsigned r1 = l1 + P1->getBitPieceSize(); unsigned r2 = l2 + P2->getBitPieceSize(); // True where [l1,r1[ and [r1,r2[ overlap. return (l1 < r2) && (l2 < r1); } /// Build the location list for all DBG_VALUEs in the function that /// describe the same variable. If the ranges of several independent /// pieces of the same variable overlap partially, split them up and /// combine the ranges. The resulting DebugLocEntries are will have /// strict monotonically increasing begin addresses and will never /// overlap. // // Input: // // Ranges History [var, loc, piece ofs size] // 0 | [x, (reg0, piece 0, 32)] // 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry // 2 | | ... // 3 | [clobber reg0] // 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of // x. // // Output: // // [0-1] [x, (reg0, piece 0, 32)] // [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)] // [3-4] [x, (reg1, piece 32, 32)] // [4- ] [x, (mem, piece 0, 64)] void DwarfDebug::buildLocationList(SmallVectorImpl &DebugLoc, const DbgValueHistoryMap::InstrRanges &Ranges) { SmallVector OpenRanges; for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { const MachineInstr *Begin = I->first; const MachineInstr *End = I->second; assert(Begin->isDebugValue() && "Invalid History entry"); // Check if a variable is inaccessible in this range. if (Begin->getNumOperands() > 1 && Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) { OpenRanges.clear(); continue; } // If this piece overlaps with any open ranges, truncate them. const DIExpression *DIExpr = Begin->getDebugExpression(); auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(), [&](DebugLocEntry::Value R) { return piecesOverlap(DIExpr, R.getExpression()); }); OpenRanges.erase(Last, OpenRanges.end()); const MCSymbol *StartLabel = getLabelBeforeInsn(Begin); assert(StartLabel && "Forgot label before DBG_VALUE starting a range!"); const MCSymbol *EndLabel; if (End != nullptr) EndLabel = getLabelAfterInsn(End); else if (std::next(I) == Ranges.end()) EndLabel = Asm->getFunctionEnd(); else EndLabel = getLabelBeforeInsn(std::next(I)->first); assert(EndLabel && "Forgot label after instruction ending a range!"); DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n"); auto Value = getDebugLocValue(Begin); DebugLocEntry Loc(StartLabel, EndLabel, Value); bool couldMerge = false; // If this is a piece, it may belong to the current DebugLocEntry. if (DIExpr->isBitPiece()) { // Add this value to the list of open ranges. OpenRanges.push_back(Value); // Attempt to add the piece to the last entry. if (!DebugLoc.empty()) if (DebugLoc.back().MergeValues(Loc)) couldMerge = true; } if (!couldMerge) { // Need to add a new DebugLocEntry. Add all values from still // valid non-overlapping pieces. if (OpenRanges.size()) Loc.addValues(OpenRanges); DebugLoc.push_back(std::move(Loc)); } // Attempt to coalesce the ranges of two otherwise identical // DebugLocEntries. auto CurEntry = DebugLoc.rbegin(); DEBUG({ dbgs() << CurEntry->getValues().size() << " Values:\n"; for (auto &Value : CurEntry->getValues()) Value.getExpression()->dump(); dbgs() << "-----\n"; }); auto PrevEntry = std::next(CurEntry); if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) DebugLoc.pop_back(); } } DbgVariable *DwarfDebug::createConcreteVariable(LexicalScope &Scope, InlinedVariable IV) { ensureAbstractVariableIsCreatedIfScoped(IV, Scope.getScopeNode()); ConcreteVariables.push_back( make_unique(IV.first, IV.second, this)); InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get()); return ConcreteVariables.back().get(); } // Find variables for each lexical scope. void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, const DISubprogram *SP, DenseSet &Processed) { // Grab the variable info that was squirreled away in the MMI side-table. collectVariableInfoFromMMITable(Processed); for (const auto &I : DbgValues) { InlinedVariable IV = I.first; if (Processed.count(IV)) continue; // Instruction ranges, specifying where IV is accessible. const auto &Ranges = I.second; if (Ranges.empty()) continue; LexicalScope *Scope = nullptr; if (const DILocation *IA = IV.second) Scope = LScopes.findInlinedScope(IV.first->getScope(), IA); else Scope = LScopes.findLexicalScope(IV.first->getScope()); // If variable scope is not found then skip this variable. if (!Scope) continue; Processed.insert(IV); DbgVariable *RegVar = createConcreteVariable(*Scope, IV); const MachineInstr *MInsn = Ranges.front().first; assert(MInsn->isDebugValue() && "History must begin with debug value"); // Check if the first DBG_VALUE is valid for the rest of the function. if (Ranges.size() == 1 && Ranges.front().second == nullptr) { RegVar->initializeDbgValue(MInsn); continue; } // Handle multiple DBG_VALUE instructions describing one variable. DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); // Build the location list for this variable. SmallVector Entries; buildLocationList(Entries, Ranges); // If the variable has an DIBasicType, extract it. Basic types cannot have // unique identifiers, so don't bother resolving the type with the // identifier map. const DIBasicType *BT = dyn_cast( static_cast(IV.first->getType())); // Finalize the entry by lowering it into a DWARF bytestream. for (auto &Entry : Entries) Entry.finalize(*Asm, List, BT); } // Collect info for variables that were optimized out. for (const DILocalVariable *DV : SP->getVariables()) { if (Processed.insert(InlinedVariable(DV, nullptr)).second) if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope())) createConcreteVariable(*Scope, InlinedVariable(DV, nullptr)); } } // Return Label preceding the instruction. MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) { MCSymbol *Label = LabelsBeforeInsn.lookup(MI); assert(Label && "Didn't insert label before instruction"); return Label; } // Return Label immediately following the instruction. MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) { return LabelsAfterInsn.lookup(MI); } // Process beginning of an instruction. void DwarfDebug::beginInstruction(const MachineInstr *MI) { assert(CurMI == nullptr); CurMI = MI; // Check if source location changes, but ignore DBG_VALUE locations. if (!MI->isDebugValue()) { DebugLoc DL = MI->getDebugLoc(); if (DL != PrevInstLoc) { if (DL) { unsigned Flags = 0; PrevInstLoc = DL; if (DL == PrologEndLoc) { Flags |= DWARF2_FLAG_PROLOGUE_END; PrologEndLoc = DebugLoc(); Flags |= DWARF2_FLAG_IS_STMT; } if (DL.getLine() != Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine()) Flags |= DWARF2_FLAG_IS_STMT; const MDNode *Scope = DL.getScope(); recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); } else if (UnknownLocations) { PrevInstLoc = DL; recordSourceLine(0, 0, nullptr, 0); } } } // Insert labels where requested. DenseMap::iterator I = LabelsBeforeInsn.find(MI); // No label needed. if (I == LabelsBeforeInsn.end()) return; // Label already assigned. if (I->second) return; if (!PrevLabel) { PrevLabel = MMI->getContext().createTempSymbol(); Asm->OutStreamer->EmitLabel(PrevLabel); } I->second = PrevLabel; } // Process end of an instruction. void DwarfDebug::endInstruction() { assert(CurMI != nullptr); // Don't create a new label after DBG_VALUE instructions. // They don't generate code. if (!CurMI->isDebugValue()) PrevLabel = nullptr; DenseMap::iterator I = LabelsAfterInsn.find(CurMI); CurMI = nullptr; // No label needed. if (I == LabelsAfterInsn.end()) return; // Label already assigned. if (I->second) return; // We need a label after this instruction. if (!PrevLabel) { PrevLabel = MMI->getContext().createTempSymbol(); Asm->OutStreamer->EmitLabel(PrevLabel); } I->second = PrevLabel; } // Each LexicalScope has first instruction and last instruction to mark // beginning and end of a scope respectively. Create an inverse map that list // scopes starts (and ends) with an instruction. One instruction may start (or // end) multiple scopes. Ignore scopes that are not reachable. void DwarfDebug::identifyScopeMarkers() { SmallVector WorkList; WorkList.push_back(LScopes.getCurrentFunctionScope()); while (!WorkList.empty()) { LexicalScope *S = WorkList.pop_back_val(); const SmallVectorImpl &Children = S->getChildren(); if (!Children.empty()) WorkList.append(Children.begin(), Children.end()); if (S->isAbstractScope()) continue; for (const InsnRange &R : S->getRanges()) { assert(R.first && "InsnRange does not have first instruction!"); assert(R.second && "InsnRange does not have second instruction!"); requestLabelBeforeInsn(R.first); requestLabelAfterInsn(R.second); } } } static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { // First known non-DBG_VALUE and non-frame setup location marks // the beginning of the function body. for (const auto &MBB : *MF) for (const auto &MI : MBB) if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && MI.getDebugLoc()) return MI.getDebugLoc(); return DebugLoc(); } // Gather pre-function debug information. Assumes being called immediately // after the function entry point has been emitted. void DwarfDebug::beginFunction(const MachineFunction *MF) { CurFn = MF; // If there's no debug info for the function we're not going to do anything. if (!MMI->hasDebugInfo()) return; auto DI = MF->getFunction()->getSubprogram(); if (!DI) return; // Grab the lexical scopes for the function, if we don't have any of those // then we're not going to be able to do anything. LScopes.initialize(*MF); if (LScopes.empty()) return; assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); // Make sure that each lexical scope will have a begin/end label. identifyScopeMarkers(); // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function // belongs to so that we add to the correct per-cu line table in the // non-asm case. LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); // FnScope->getScopeNode() and DI->second should represent the same function, // though they may not be the same MDNode due to inline functions merged in // LTO where the debug info metadata still differs (either due to distinct // written differences - two versions of a linkonce_odr function // written/copied into two separate files, or some sub-optimal metadata that // isn't structurally identical (see: file path/name info from clang, which // includes the directory of the cpp file being built, even when the file name // is absolute (such as an <> lookup header))) DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); assert(TheCU && "Unable to find compile unit!"); if (Asm->OutStreamer->hasRawTextSupport()) // Use a single line table if we are generating assembly. Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); else Asm->OutStreamer->getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); // Calculate history for local variables. calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), DbgValues); // Request labels for the full history. for (const auto &I : DbgValues) { const auto &Ranges = I.second; if (Ranges.empty()) continue; // The first mention of a function argument gets the CurrentFnBegin // label, so arguments are visible when breaking at function entry. const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); if (DIVar->isParameter() && getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) { LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); if (Ranges.front().first->getDebugExpression()->isBitPiece()) { // Mark all non-overlapping initial pieces. for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { const DIExpression *Piece = I->first->getDebugExpression(); if (std::all_of(Ranges.begin(), I, [&](DbgValueHistoryMap::InstrRange Pred) { return !piecesOverlap(Piece, Pred.first->getDebugExpression()); })) LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); else break; } } } for (const auto &Range : Ranges) { requestLabelBeforeInsn(Range.first); if (Range.second) requestLabelAfterInsn(Range.second); } } PrevInstLoc = DebugLoc(); PrevLabel = Asm->getFunctionBegin(); // Record beginning of function. PrologEndLoc = findPrologueEndLoc(MF); if (DILocation *L = PrologEndLoc) { // We'd like to list the prologue as "not statements" but GDB behaves // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. auto *SP = L->getInlinedAtScope()->getSubprogram(); recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT); } } // Gather and emit post-function debug information. void DwarfDebug::endFunction(const MachineFunction *MF) { assert(CurFn == MF && "endFunction should be called with the same function as beginFunction"); if (!MMI->hasDebugInfo() || LScopes.empty() || !MF->getFunction()->getSubprogram()) { // If we don't have a lexical scope for this function then there will // be a hole in the range information. Keep note of this by setting the // previously used section to nullptr. PrevCU = nullptr; CurFn = nullptr; return; } // Set DwarfDwarfCompileUnitID in MCContext to default value. Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); auto *SP = cast(FnScope->getScopeNode()); DwarfCompileUnit &TheCU = *SPMap.lookup(SP); DenseSet ProcessedVars; collectVariableInfo(TheCU, SP, ProcessedVars); // Add the range of this function to the list of ranges for the CU. TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd())); // Under -gmlt, skip building the subprogram if there are no inlined // subroutines inside it. if (TheCU.getCUNode()->getEmissionKind() == DIBuilder::LineTablesOnly && LScopes.getAbstractScopesList().empty() && !IsDarwin) { assert(InfoHolder.getScopeVariables().empty()); assert(DbgValues.empty()); // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed // by a -gmlt CU. Add a test and remove this assertion. assert(AbstractVariables.empty()); LabelsBeforeInsn.clear(); LabelsAfterInsn.clear(); PrevLabel = nullptr; CurFn = nullptr; return; } #ifndef NDEBUG size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); #endif // Construct abstract scopes. for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { auto *SP = cast(AScope->getScopeNode()); // Collect info for variables that were optimized out. for (const DILocalVariable *DV : SP->getVariables()) { if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second) continue; ensureAbstractVariableIsCreated(InlinedVariable(DV, nullptr), DV->getScope()); assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes && "ensureAbstractVariableIsCreated inserted abstract scopes"); } constructAbstractSubprogramScopeDIE(AScope); } TheCU.constructSubprogramScopeDIE(FnScope); if (auto *SkelCU = TheCU.getSkeleton()) if (!LScopes.getAbstractScopesList().empty()) SkelCU->constructSubprogramScopeDIE(FnScope); // Clear debug info // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the // DbgVariables except those that are also in AbstractVariables (since they // can be used cross-function) InfoHolder.getScopeVariables().clear(); DbgValues.clear(); LabelsBeforeInsn.clear(); LabelsAfterInsn.clear(); PrevLabel = nullptr; CurFn = nullptr; } // Register a source line with debug info. Returns the unique label that was // emitted and which provides correspondence to the source line list. void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, unsigned Flags) { StringRef Fn; StringRef Dir; unsigned Src = 1; unsigned Discriminator = 0; if (auto *Scope = cast_or_null(S)) { Fn = Scope->getFilename(); Dir = Scope->getDirectory(); if (auto *LBF = dyn_cast(Scope)) Discriminator = LBF->getDiscriminator(); unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID(); Src = static_cast(*InfoHolder.getUnits()[CUID]) .getOrCreateSourceID(Fn, Dir); } Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0, Discriminator, Fn); } //===----------------------------------------------------------------------===// // Emit Methods //===----------------------------------------------------------------------===// // Emit the debug info section. void DwarfDebug::emitDebugInfo() { DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Holder.emitUnits(/* UseOffsets */ false); } // Emit the abbreviation section. void DwarfDebug::emitAbbreviations() { DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); } void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section, StringRef TableName) { Accel.FinalizeTable(Asm, TableName); Asm->OutStreamer->SwitchSection(Section); // Emit the full data. Accel.emit(Asm, Section->getBeginSymbol(), this); } // Emit visible names into a hashed accelerator table section. void DwarfDebug::emitAccelNames() { emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), "Names"); } // Emit objective C classes and categories into a hashed accelerator table // section. void DwarfDebug::emitAccelObjC() { emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), "ObjC"); } // Emit namespace dies into a hashed accelerator table. void DwarfDebug::emitAccelNamespaces() { emitAccel(AccelNamespace, Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), "namespac"); } // Emit type dies into a hashed accelerator table. void DwarfDebug::emitAccelTypes() { emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), "types"); } // Public name handling. // The format for the various pubnames: // // dwarf pubnames - offset/name pairs where the offset is the offset into the CU // for the DIE that is named. // // gnu pubnames - offset/index value/name tuples where the offset is the offset // into the CU and the index value is computed according to the type of value // for the DIE that is named. // // For type units the offset is the offset of the skeleton DIE. For split dwarf // it's the offset within the debug_info/debug_types dwo section, however, the // reference in the pubname header doesn't change. /// computeIndexValue - Compute the gdb index value for the DIE and CU. static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, const DIE *Die) { dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; // We could have a specification DIE that has our most of our knowledge, // look for that now. if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); if (SpecDIE.findAttribute(dwarf::DW_AT_external)) Linkage = dwarf::GIEL_EXTERNAL; } else if (Die->findAttribute(dwarf::DW_AT_external)) Linkage = dwarf::GIEL_EXTERNAL; switch (Die->getTag()) { case dwarf::DW_TAG_class_type: case dwarf::DW_TAG_structure_type: case dwarf::DW_TAG_union_type: case dwarf::DW_TAG_enumeration_type: return dwarf::PubIndexEntryDescriptor( dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus ? dwarf::GIEL_STATIC : dwarf::GIEL_EXTERNAL); case dwarf::DW_TAG_typedef: case dwarf::DW_TAG_base_type: case dwarf::DW_TAG_subrange_type: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); case dwarf::DW_TAG_namespace: return dwarf::GIEK_TYPE; case dwarf::DW_TAG_subprogram: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); case dwarf::DW_TAG_variable: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); case dwarf::DW_TAG_enumerator: return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, dwarf::GIEL_STATIC); default: return dwarf::GIEK_NONE; } } /// emitDebugPubNames - Emit visible names into a debug pubnames section. /// void DwarfDebug::emitDebugPubNames(bool GnuStyle) { MCSection *PSec = GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() : Asm->getObjFileLowering().getDwarfPubNamesSection(); emitDebugPubSection(GnuStyle, PSec, "Names", &DwarfCompileUnit::getGlobalNames); } void DwarfDebug::emitDebugPubSection( bool GnuStyle, MCSection *PSec, StringRef Name, const StringMap &(DwarfCompileUnit::*Accessor)() const) { for (const auto &NU : CUMap) { DwarfCompileUnit *TheU = NU.second; const auto &Globals = (TheU->*Accessor)(); if (Globals.empty()) continue; if (auto *Skeleton = TheU->getSkeleton()) TheU = Skeleton; // Start the dwarf pubnames section. Asm->OutStreamer->SwitchSection(PSec); // Emit the header. Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); Asm->OutStreamer->EmitLabel(BeginLabel); Asm->OutStreamer->AddComment("DWARF Version"); Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); Asm->emitDwarfSymbolReference(TheU->getLabelBegin()); Asm->OutStreamer->AddComment("Compilation Unit Length"); Asm->EmitInt32(TheU->getLength()); // Emit the pubnames for this compilation unit. for (const auto &GI : Globals) { const char *Name = GI.getKeyData(); const DIE *Entity = GI.second; Asm->OutStreamer->AddComment("DIE offset"); Asm->EmitInt32(Entity->getOffset()); if (GnuStyle) { dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); Asm->OutStreamer->AddComment( Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); Asm->EmitInt8(Desc.toBits()); } Asm->OutStreamer->AddComment("External Name"); Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); } Asm->OutStreamer->AddComment("End Mark"); Asm->EmitInt32(0); Asm->OutStreamer->EmitLabel(EndLabel); } } void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { MCSection *PSec = GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() : Asm->getObjFileLowering().getDwarfPubTypesSection(); emitDebugPubSection(GnuStyle, PSec, "Types", &DwarfCompileUnit::getGlobalTypes); } // Emit visible names into a debug str section. void DwarfDebug::emitDebugStr() { DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); } void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, const DebugLocStream::Entry &Entry) { auto &&Comments = DebugLocs.getComments(Entry); auto Comment = Comments.begin(); auto End = Comments.end(); for (uint8_t Byte : DebugLocs.getBytes(Entry)) Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : ""); } static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, ByteStreamer &Streamer, const DebugLocEntry::Value &Value, unsigned PieceOffsetInBits) { DebugLocDwarfExpression DwarfExpr(*AP.MF->getSubtarget().getRegisterInfo(), AP.getDwarfDebug()->getDwarfVersion(), Streamer); // Regular entry. if (Value.isInt()) { if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || BT->getEncoding() == dwarf::DW_ATE_signed_char)) DwarfExpr.AddSignedConstant(Value.getInt()); else DwarfExpr.AddUnsignedConstant(Value.getInt()); } else if (Value.isLocation()) { MachineLocation Loc = Value.getLoc(); const DIExpression *Expr = Value.getExpression(); if (!Expr || !Expr->getNumElements()) // Regular entry. AP.EmitDwarfRegOp(Streamer, Loc); else { // Complex address entry. if (Loc.getOffset()) { DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset()); DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end(), PieceOffsetInBits); } else DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(), PieceOffsetInBits); } } // else ... ignore constant fp. There is not any good way to // to represent them here in dwarf. // FIXME: ^ } void DebugLocEntry::finalize(const AsmPrinter &AP, DebugLocStream::ListBuilder &List, const DIBasicType *BT) { DebugLocStream::EntryBuilder Entry(List, Begin, End); BufferByteStreamer Streamer = Entry.getStreamer(); const DebugLocEntry::Value &Value = Values[0]; if (Value.isBitPiece()) { // Emit all pieces that belong to the same variable and range. assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) { return P.isBitPiece(); }) && "all values are expected to be pieces"); assert(std::is_sorted(Values.begin(), Values.end()) && "pieces are expected to be sorted"); unsigned Offset = 0; for (auto Piece : Values) { const DIExpression *Expr = Piece.getExpression(); unsigned PieceOffset = Expr->getBitPieceOffset(); unsigned PieceSize = Expr->getBitPieceSize(); assert(Offset <= PieceOffset && "overlapping or duplicate pieces"); if (Offset < PieceOffset) { // The DWARF spec seriously mandates pieces with no locations for gaps. DebugLocDwarfExpression Expr(*AP.MF->getSubtarget().getRegisterInfo(), AP.getDwarfDebug()->getDwarfVersion(), Streamer); Expr.AddOpPiece(PieceOffset-Offset, 0); Offset += PieceOffset-Offset; } Offset += PieceSize; emitDebugLocValue(AP, BT, Streamer, Piece, PieceOffset); } } else { assert(Values.size() == 1 && "only pieces may have >1 value"); emitDebugLocValue(AP, BT, Streamer, Value, 0); } } void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) { // Emit the size. Asm->OutStreamer->AddComment("Loc expr size"); Asm->EmitInt16(DebugLocs.getBytes(Entry).size()); // Emit the entry. APByteStreamer Streamer(*Asm); emitDebugLocEntry(Streamer, Entry); } // Emit locations into the debug loc section. void DwarfDebug::emitDebugLoc() { // Start the dwarf loc section. Asm->OutStreamer->SwitchSection( Asm->getObjFileLowering().getDwarfLocSection()); unsigned char Size = Asm->getDataLayout().getPointerSize(); for (const auto &List : DebugLocs.getLists()) { Asm->OutStreamer->EmitLabel(List.Label); const DwarfCompileUnit *CU = List.CU; for (const auto &Entry : DebugLocs.getEntries(List)) { // Set up the range. This range is relative to the entry point of the // compile unit. This is a hard coded 0 for low_pc when we're emitting // ranges, or the DW_AT_low_pc on the compile unit otherwise. if (auto *Base = CU->getBaseAddress()) { Asm->EmitLabelDifference(Entry.BeginSym, Base, Size); Asm->EmitLabelDifference(Entry.EndSym, Base, Size); } else { Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size); Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size); } emitDebugLocEntryLocation(Entry); } Asm->OutStreamer->EmitIntValue(0, Size); Asm->OutStreamer->EmitIntValue(0, Size); } } void DwarfDebug::emitDebugLocDWO() { Asm->OutStreamer->SwitchSection( Asm->getObjFileLowering().getDwarfLocDWOSection()); for (const auto &List : DebugLocs.getLists()) { Asm->OutStreamer->EmitLabel(List.Label); for (const auto &Entry : DebugLocs.getEntries(List)) { // Just always use start_length for now - at least that's one address // rather than two. We could get fancier and try to, say, reuse an // address we know we've emitted elsewhere (the start of the function? // The start of the CU or CU subrange that encloses this range?) Asm->EmitInt8(dwarf::DW_LLE_start_length_entry); unsigned idx = AddrPool.getIndex(Entry.BeginSym); Asm->EmitULEB128(idx); Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4); emitDebugLocEntryLocation(Entry); } Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry); } } struct ArangeSpan { const MCSymbol *Start, *End; }; // Emit a debug aranges section, containing a CU lookup for any // address we can tie back to a CU. void DwarfDebug::emitDebugARanges() { // Provides a unique id per text section. MapVector> SectionMap; // Filter labels by section. for (const SymbolCU &SCU : ArangeLabels) { if (SCU.Sym->isInSection()) { // Make a note of this symbol and it's section. MCSection *Section = &SCU.Sym->getSection(); if (!Section->getKind().isMetadata()) SectionMap[Section].push_back(SCU); } else { // Some symbols (e.g. common/bss on mach-o) can have no section but still // appear in the output. This sucks as we rely on sections to build // arange spans. We can do it without, but it's icky. SectionMap[nullptr].push_back(SCU); } } // Add terminating symbols for each section. for (const auto &I : SectionMap) { MCSection *Section = I.first; MCSymbol *Sym = nullptr; if (Section) Sym = Asm->OutStreamer->endSection(Section); // Insert a final terminator. SectionMap[Section].push_back(SymbolCU(nullptr, Sym)); } DenseMap> Spans; for (auto &I : SectionMap) { const MCSection *Section = I.first; SmallVector &List = I.second; if (List.size() < 2) continue; // If we have no section (e.g. common), just write out // individual spans for each symbol. if (!Section) { for (const SymbolCU &Cur : List) { ArangeSpan Span; Span.Start = Cur.Sym; Span.End = nullptr; if (Cur.CU) Spans[Cur.CU].push_back(Span); } continue; } // Sort the symbols by offset within the section. std::sort(List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) { unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; // Symbols with no order assigned should be placed at the end. // (e.g. section end labels) if (IA == 0) return false; if (IB == 0) return true; return IA < IB; }); // Build spans between each label. const MCSymbol *StartSym = List[0].Sym; for (size_t n = 1, e = List.size(); n < e; n++) { const SymbolCU &Prev = List[n - 1]; const SymbolCU &Cur = List[n]; // Try and build the longest span we can within the same CU. if (Cur.CU != Prev.CU) { ArangeSpan Span; Span.Start = StartSym; Span.End = Cur.Sym; Spans[Prev.CU].push_back(Span); StartSym = Cur.Sym; } } } // Start the dwarf aranges section. Asm->OutStreamer->SwitchSection( Asm->getObjFileLowering().getDwarfARangesSection()); unsigned PtrSize = Asm->getDataLayout().getPointerSize(); // Build a list of CUs used. std::vector CUs; for (const auto &it : Spans) { DwarfCompileUnit *CU = it.first; CUs.push_back(CU); } // Sort the CU list (again, to ensure consistent output order). std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) { return A->getUniqueID() < B->getUniqueID(); }); // Emit an arange table for each CU we used. for (DwarfCompileUnit *CU : CUs) { std::vector &List = Spans[CU]; // Describe the skeleton CU's offset and length, not the dwo file's. if (auto *Skel = CU->getSkeleton()) CU = Skel; // Emit size of content not including length itself. unsigned ContentSize = sizeof(int16_t) + // DWARF ARange version number sizeof(int32_t) + // Offset of CU in the .debug_info section sizeof(int8_t) + // Pointer Size (in bytes) sizeof(int8_t); // Segment Size (in bytes) unsigned TupleSize = PtrSize * 2; // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. unsigned Padding = OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize); ContentSize += Padding; ContentSize += (List.size() + 1) * TupleSize; // For each compile unit, write the list of spans it covers. Asm->OutStreamer->AddComment("Length of ARange Set"); Asm->EmitInt32(ContentSize); Asm->OutStreamer->AddComment("DWARF Arange version number"); Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); Asm->emitDwarfSymbolReference(CU->getLabelBegin()); Asm->OutStreamer->AddComment("Address Size (in bytes)"); Asm->EmitInt8(PtrSize); Asm->OutStreamer->AddComment("Segment Size (in bytes)"); Asm->EmitInt8(0); Asm->OutStreamer->EmitFill(Padding, 0xff); for (const ArangeSpan &Span : List) { Asm->EmitLabelReference(Span.Start, PtrSize); // Calculate the size as being from the span start to it's end. if (Span.End) { Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); } else { // For symbols without an end marker (e.g. common), we // write a single arange entry containing just that one symbol. uint64_t Size = SymSize[Span.Start]; if (Size == 0) Size = 1; Asm->OutStreamer->EmitIntValue(Size, PtrSize); } } Asm->OutStreamer->AddComment("ARange terminator"); Asm->OutStreamer->EmitIntValue(0, PtrSize); Asm->OutStreamer->EmitIntValue(0, PtrSize); } } // Emit visible names into a debug ranges section. void DwarfDebug::emitDebugRanges() { // Start the dwarf ranges section. Asm->OutStreamer->SwitchSection( Asm->getObjFileLowering().getDwarfRangesSection()); // Size for our labels. unsigned char Size = Asm->getDataLayout().getPointerSize(); // Grab the specific ranges for the compile units in the module. for (const auto &I : CUMap) { DwarfCompileUnit *TheCU = I.second; if (auto *Skel = TheCU->getSkeleton()) TheCU = Skel; // Iterate over the misc ranges for the compile units in the module. for (const RangeSpanList &List : TheCU->getRangeLists()) { // Emit our symbol so we can find the beginning of the range. Asm->OutStreamer->EmitLabel(List.getSym()); for (const RangeSpan &Range : List.getRanges()) { const MCSymbol *Begin = Range.getStart(); const MCSymbol *End = Range.getEnd(); assert(Begin && "Range without a begin symbol?"); assert(End && "Range without an end symbol?"); if (auto *Base = TheCU->getBaseAddress()) { Asm->EmitLabelDifference(Begin, Base, Size); Asm->EmitLabelDifference(End, Base, Size); } else { Asm->OutStreamer->EmitSymbolValue(Begin, Size); Asm->OutStreamer->EmitSymbolValue(End, Size); } } // And terminate the list with two 0 values. Asm->OutStreamer->EmitIntValue(0, Size); Asm->OutStreamer->EmitIntValue(0, Size); } } } // DWARF5 Experimental Separate Dwarf emitters. void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, std::unique_ptr NewU) { NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name, U.getCUNode()->getSplitDebugFilename()); if (!CompilationDir.empty()) NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); addGnuPubAttributes(*NewU, Die); SkeletonHolder.addUnit(std::move(NewU)); } // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, // DW_AT_addr_base, DW_AT_ranges_base. DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { auto OwnedUnit = make_unique( CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); DwarfCompileUnit &NewCU = *OwnedUnit; NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection()); NewCU.initStmtList(); initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); return NewCU; } // Emit the .debug_info.dwo section for separated dwarf. This contains the // compile units that would normally be in debug_info. void DwarfDebug::emitDebugInfoDWO() { assert(useSplitDwarf() && "No split dwarf debug info?"); // Don't emit relocations into the dwo file. InfoHolder.emitUnits(/* UseOffsets */ true); } // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the // abbreviations for the .debug_info.dwo section. void DwarfDebug::emitDebugAbbrevDWO() { assert(useSplitDwarf() && "No split dwarf?"); InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); } void DwarfDebug::emitDebugLineDWO() { assert(useSplitDwarf() && "No split dwarf?"); Asm->OutStreamer->SwitchSection( Asm->getObjFileLowering().getDwarfLineDWOSection()); SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams()); } // Emit the .debug_str.dwo section for separated dwarf. This contains the // string section and is identical in format to traditional .debug_str // sections. void DwarfDebug::emitDebugStrDWO() { assert(useSplitDwarf() && "No split dwarf?"); MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), OffSec); } MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { if (!useSplitDwarf()) return nullptr; if (SingleCU) SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory()); return &SplitTypeUnitFileTable; } uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { MD5 Hash; Hash.update(Identifier); // ... take the least significant 8 bytes and return those. Our MD5 // implementation always returns its results in little endian, swap bytes // appropriately. MD5::MD5Result Result; Hash.final(Result); return support::endian::read64le(Result + 8); } void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, StringRef Identifier, DIE &RefDie, const DICompositeType *CTy) { // Fast path if we're building some type units and one has already used the // address pool we know we're going to throw away all this work anyway, so // don't bother building dependent types. if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) return; const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy]; if (TU) { CU.addDIETypeSignature(RefDie, *TU); return; } bool TopLevelType = TypeUnitsUnderConstruction.empty(); AddrPool.resetUsedFlag(); auto OwnedUnit = make_unique( InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm, this, &InfoHolder, getDwoLineTable(CU)); DwarfTypeUnit &NewTU = *OwnedUnit; DIE &UnitDie = NewTU.getUnitDie(); TU = &NewTU; TypeUnitsUnderConstruction.push_back( std::make_pair(std::move(OwnedUnit), CTy)); NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, CU.getLanguage()); uint64_t Signature = makeTypeSignature(Identifier); NewTU.setTypeSignature(Signature); if (useSplitDwarf()) NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection()); else { CU.applyStmtList(UnitDie); NewTU.initSection( Asm->getObjFileLowering().getDwarfTypesSection(Signature)); } NewTU.setType(NewTU.createTypeDIE(CTy)); if (TopLevelType) { auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); TypeUnitsUnderConstruction.clear(); // Types referencing entries in the address table cannot be placed in type // units. if (AddrPool.hasBeenUsed()) { // Remove all the types built while building this type. // This is pessimistic as some of these types might not be dependent on // the type that used an address. for (const auto &TU : TypeUnitsToAdd) DwarfTypeUnits.erase(TU.second); // Construct this type in the CU directly. // This is inefficient because all the dependent types will be rebuilt // from scratch, including building them in type units, discovering that // they depend on addresses, throwing them out and rebuilding them. CU.constructTypeDIE(RefDie, cast(CTy)); return; } // If the type wasn't dependent on fission addresses, finish adding the type // and all its dependent types. for (auto &TU : TypeUnitsToAdd) InfoHolder.addUnit(std::move(TU.first)); } CU.addDIETypeSignature(RefDie, NewTU); } // Accelerator table mutators - add each name along with its companion // DIE to the proper table while ensuring that the name that we're going // to reference is in the string table. We do this since the names we // add may not only be identical to the names in the DIE. void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) { if (!useDwarfAccelTables()) return; AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); } void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) { if (!useDwarfAccelTables()) return; AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); } void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) { if (!useDwarfAccelTables()) return; AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); } void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) { if (!useDwarfAccelTables()) return; AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); } Index: projects/clang380-import/contrib/llvm/tools/clang/lib/Driver/ToolChains.h =================================================================== --- projects/clang380-import/contrib/llvm/tools/clang/lib/Driver/ToolChains.h (revision 293385) +++ projects/clang380-import/contrib/llvm/tools/clang/lib/Driver/ToolChains.h (revision 293386) @@ -1,1146 +1,1143 @@ //===--- ToolChains.h - ToolChain Implementations ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_H #define LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_H #include "Tools.h" #include "clang/Basic/VersionTuple.h" #include "clang/Driver/Action.h" #include "clang/Driver/Multilib.h" #include "clang/Driver/ToolChain.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/Compiler.h" #include #include namespace clang { namespace driver { namespace toolchains { /// Generic_GCC - A tool chain using the 'gcc' command to perform /// all subcommands; this relies on gcc translating the majority of /// command line options. class LLVM_LIBRARY_VISIBILITY Generic_GCC : public ToolChain { public: /// \brief Struct to store and manipulate GCC versions. /// /// We rely on assumptions about the form and structure of GCC version /// numbers: they consist of at most three '.'-separated components, and each /// component is a non-negative integer except for the last component. For /// the last component we are very flexible in order to tolerate release /// candidates or 'x' wildcards. /// /// Note that the ordering established among GCCVersions is based on the /// preferred version string to use. For example we prefer versions without /// a hard-coded patch number to those with a hard coded patch number. /// /// Currently this doesn't provide any logic for textual suffixes to patches /// in the way that (for example) Debian's version format does. If that ever /// becomes necessary, it can be added. struct GCCVersion { /// \brief The unparsed text of the version. std::string Text; /// \brief The parsed major, minor, and patch numbers. int Major, Minor, Patch; /// \brief The text of the parsed major, and major+minor versions. std::string MajorStr, MinorStr; /// \brief Any textual suffix on the patch number. std::string PatchSuffix; static GCCVersion Parse(StringRef VersionText); bool isOlderThan(int RHSMajor, int RHSMinor, int RHSPatch, StringRef RHSPatchSuffix = StringRef()) const; bool operator<(const GCCVersion &RHS) const { return isOlderThan(RHS.Major, RHS.Minor, RHS.Patch, RHS.PatchSuffix); } bool operator>(const GCCVersion &RHS) const { return RHS < *this; } bool operator<=(const GCCVersion &RHS) const { return !(*this > RHS); } bool operator>=(const GCCVersion &RHS) const { return !(*this < RHS); } }; /// \brief This is a class to find a viable GCC installation for Clang to /// use. /// /// This class tries to find a GCC installation on the system, and report /// information about it. It starts from the host information provided to the /// Driver, and has logic for fuzzing that where appropriate. class GCCInstallationDetector { bool IsValid; llvm::Triple GCCTriple; const Driver &D; // FIXME: These might be better as path objects. std::string GCCInstallPath; std::string GCCParentLibPath; /// The primary multilib appropriate for the given flags. Multilib SelectedMultilib; /// On Biarch systems, this corresponds to the default multilib when /// targeting the non-default multilib. Otherwise, it is empty. llvm::Optional BiarchSibling; GCCVersion Version; // We retain the list of install paths that were considered and rejected in // order to print out detailed information in verbose mode. std::set CandidateGCCInstallPaths; /// The set of multilibs that the detected installation supports. MultilibSet Multilibs; public: explicit GCCInstallationDetector(const Driver &D) : IsValid(false), D(D) {} void init(const llvm::Triple &TargetTriple, const llvm::opt::ArgList &Args, ArrayRef ExtraTripleAliases = None); /// \brief Check whether we detected a valid GCC install. bool isValid() const { return IsValid; } /// \brief Get the GCC triple for the detected install. const llvm::Triple &getTriple() const { return GCCTriple; } /// \brief Get the detected GCC installation path. StringRef getInstallPath() const { return GCCInstallPath; } /// \brief Get the detected GCC parent lib path. StringRef getParentLibPath() const { return GCCParentLibPath; } /// \brief Get the detected Multilib const Multilib &getMultilib() const { return SelectedMultilib; } /// \brief Get the whole MultilibSet const MultilibSet &getMultilibs() const { return Multilibs; } /// Get the biarch sibling multilib (if it exists). /// \return true iff such a sibling exists bool getBiarchSibling(Multilib &M) const; /// \brief Get the detected GCC version string. const GCCVersion &getVersion() const { return Version; } /// \brief Print information about the detected GCC installation. void print(raw_ostream &OS) const; private: static void CollectLibDirsAndTriples(const llvm::Triple &TargetTriple, const llvm::Triple &BiarchTriple, SmallVectorImpl &LibDirs, SmallVectorImpl &TripleAliases, SmallVectorImpl &BiarchLibDirs, SmallVectorImpl &BiarchTripleAliases); void ScanLibDirForGCCTriple(const llvm::Triple &TargetArch, const llvm::opt::ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix = false); void scanLibDirForGCCTripleSolaris(const llvm::Triple &TargetArch, const llvm::opt::ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix = false); }; protected: GCCInstallationDetector GCCInstallation; // \brief A class to find a viable CUDA installation class CudaInstallationDetector { bool IsValid; const Driver &D; std::string CudaInstallPath; std::string CudaLibPath; std::string CudaLibDevicePath; std::string CudaIncludePath; llvm::StringMap CudaLibDeviceMap; public: CudaInstallationDetector(const Driver &D) : IsValid(false), D(D) {} void init(const llvm::Triple &TargetTriple, const llvm::opt::ArgList &Args); /// \brief Check whether we detected a valid Cuda install. bool isValid() const { return IsValid; } /// \brief Print information about the detected CUDA installation. void print(raw_ostream &OS) const; /// \brief Get the detected Cuda installation path. StringRef getInstallPath() const { return CudaInstallPath; } /// \brief Get the detected Cuda Include path. StringRef getIncludePath() const { return CudaIncludePath; } /// \brief Get the detected Cuda library path. StringRef getLibPath() const { return CudaLibPath; } /// \brief Get the detected Cuda device library path. StringRef getLibDevicePath() const { return CudaLibDevicePath; } /// \brief Get libdevice file for given architecture std::string getLibDeviceFile(StringRef Gpu) const { return CudaLibDeviceMap.lookup(Gpu); } }; CudaInstallationDetector CudaInstallation; public: Generic_GCC(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~Generic_GCC() override; void printVerboseInfo(raw_ostream &OS) const override; bool IsUnwindTablesDefault() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; bool IsIntegratedAssemblerDefault() const override; protected: Tool *getTool(Action::ActionClass AC) const override; Tool *buildAssembler() const override; Tool *buildLinker() const override; /// \name ToolChain Implementation Helper Functions /// @{ /// \brief Check whether the target triple's architecture is 64-bits. bool isTarget64Bit() const { return getTriple().isArch64Bit(); } /// \brief Check whether the target triple's architecture is 32-bits. bool isTarget32Bit() const { return getTriple().isArch32Bit(); } bool addLibStdCXXIncludePaths(Twine Base, Twine Suffix, StringRef GCCTriple, StringRef GCCMultiarchTriple, StringRef TargetMultiarchTriple, Twine IncludeSuffix, const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const; /// @} private: mutable std::unique_ptr Preprocess; mutable std::unique_ptr Compile; }; class LLVM_LIBRARY_VISIBILITY MachO : public ToolChain { protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; Tool *getTool(Action::ActionClass AC) const override; private: mutable std::unique_ptr Lipo; mutable std::unique_ptr Dsymutil; mutable std::unique_ptr VerifyDebug; public: MachO(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~MachO() override; /// @name MachO specific toolchain API /// { /// Get the "MachO" arch name for a particular compiler invocation. For /// example, Apple treats different ARM variations as distinct architectures. StringRef getMachOArchName(const llvm::opt::ArgList &Args) const; /// Add the linker arguments to link the ARC runtime library. virtual void AddLinkARCArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const {} /// Add the linker arguments to link the compiler runtime library. virtual void AddLinkRuntimeLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const; virtual void addStartObjectFileArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { } virtual void addMinVersionArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const {} /// On some iOS platforms, kernel and kernel modules were built statically. Is /// this such a target? virtual bool isKernelStatic() const { return false; } /// Is the target either iOS or an iOS simulator? bool isTargetIOSBased() const { return false; } void AddLinkRuntimeLib(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs, StringRef DarwinLibName, bool AlwaysLink = false, bool IsEmbedded = false, bool AddRPath = false) const; /// Add any profiling runtime libraries that are needed. This is essentially a /// MachO specific version of addProfileRT in Tools.cpp. void addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override { // There aren't any profiling libs for embedded targets currently. } /// } /// @name ToolChain Implementation /// { std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType) const override; types::ID LookupTypeForExtension(const char *Ext) const override; bool HasNativeLLVMSupport() const override; llvm::opt::DerivedArgList * TranslateArgs(const llvm::opt::DerivedArgList &Args, const char *BoundArch) const override; bool IsBlocksDefault() const override { // Always allow blocks on Apple; users interested in versioning are // expected to use /usr/include/Block.h. return true; } bool IsIntegratedAssemblerDefault() const override { // Default integrated assembler to on for Apple's MachO targets. return true; } bool IsMathErrnoDefault() const override { return false; } bool IsEncodeExtendedBlockSignatureDefault() const override { return true; } bool IsObjCNonFragileABIDefault() const override { // Non-fragile ABI is default for everything but i386. return getTriple().getArch() != llvm::Triple::x86; } bool UseObjCMixedDispatch() const override { return true; } bool IsUnwindTablesDefault() const override; RuntimeLibType GetDefaultRuntimeLibType() const override { return ToolChain::RLT_CompilerRT; } bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; bool SupportsProfiling() const override; bool SupportsObjCGC() const override { return false; } bool UseDwarfDebugFlags() const override; bool UseSjLjExceptions(const llvm::opt::ArgList &Args) const override { return false; } /// } }; /// Darwin - The base Darwin tool chain. class LLVM_LIBRARY_VISIBILITY Darwin : public MachO { public: /// Whether the information on the target has been initialized. // // FIXME: This should be eliminated. What we want to do is make this part of // the "default target for arguments" selection process, once we get out of // the argument translation business. mutable bool TargetInitialized; enum DarwinPlatformKind { MacOS, IPhoneOS, IPhoneOSSimulator, TvOS, TvOSSimulator, WatchOS, WatchOSSimulator }; mutable DarwinPlatformKind TargetPlatform; /// The OS version we are targeting. mutable VersionTuple TargetVersion; private: void AddDeploymentTarget(llvm::opt::DerivedArgList &Args) const; public: Darwin(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~Darwin() override; std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType) const override; /// @name Apple Specific Toolchain Implementation /// { void addMinVersionArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; void addStartObjectFileArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; bool isKernelStatic() const override { return (!(isTargetIPhoneOS() && !isIPhoneOSVersionLT(6, 0)) && !isTargetWatchOS()); } void addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; protected: /// } /// @name Darwin specific Toolchain functions /// { // FIXME: Eliminate these ...Target functions and derive separate tool chains // for these targets and put version in constructor. void setTarget(DarwinPlatformKind Platform, unsigned Major, unsigned Minor, unsigned Micro) const { // FIXME: For now, allow reinitialization as long as values don't // change. This will go away when we move away from argument translation. if (TargetInitialized && TargetPlatform == Platform && TargetVersion == VersionTuple(Major, Minor, Micro)) return; assert(!TargetInitialized && "Target already initialized!"); TargetInitialized = true; TargetPlatform = Platform; TargetVersion = VersionTuple(Major, Minor, Micro); } bool isTargetIPhoneOS() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == IPhoneOS || TargetPlatform == TvOS; } bool isTargetIOSSimulator() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == IPhoneOSSimulator || TargetPlatform == TvOSSimulator; } bool isTargetIOSBased() const { assert(TargetInitialized && "Target not initialized!"); return isTargetIPhoneOS() || isTargetIOSSimulator(); } bool isTargetTvOS() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == TvOS; } bool isTargetTvOSSimulator() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == TvOSSimulator; } bool isTargetTvOSBased() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == TvOS || TargetPlatform == TvOSSimulator; } bool isTargetWatchOS() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == WatchOS; } bool isTargetWatchOSSimulator() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == WatchOSSimulator; } bool isTargetWatchOSBased() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == WatchOS || TargetPlatform == WatchOSSimulator; } bool isTargetMacOS() const { assert(TargetInitialized && "Target not initialized!"); return TargetPlatform == MacOS; } bool isTargetInitialized() const { return TargetInitialized; } VersionTuple getTargetVersion() const { assert(TargetInitialized && "Target not initialized!"); return TargetVersion; } bool isIPhoneOSVersionLT(unsigned V0, unsigned V1 = 0, unsigned V2 = 0) const { assert(isTargetIOSBased() && "Unexpected call for non iOS target!"); return TargetVersion < VersionTuple(V0, V1, V2); } bool isMacosxVersionLT(unsigned V0, unsigned V1 = 0, unsigned V2 = 0) const { assert(isTargetMacOS() && "Unexpected call for non OS X target!"); return TargetVersion < VersionTuple(V0, V1, V2); } public: /// } /// @name ToolChain Implementation /// { // Darwin tools support multiple architecture (e.g., i386 and x86_64) and // most development is done against SDKs, so compiling for a different // architecture should not get any special treatment. bool isCrossCompiling() const override { return false; } llvm::opt::DerivedArgList * TranslateArgs(const llvm::opt::DerivedArgList &Args, const char *BoundArch) const override; ObjCRuntime getDefaultObjCRuntime(bool isNonFragile) const override; bool hasBlocksRuntime() const override; bool UseObjCMixedDispatch() const override { // This is only used with the non-fragile ABI and non-legacy dispatch. // Mixed dispatch is used everywhere except OS X before 10.6. return !(isTargetMacOS() && isMacosxVersionLT(10, 6)); } unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override { // Stack protectors default to on for user code on 10.5, // and for everything in 10.6 and beyond if (isTargetIOSBased() || isTargetWatchOSBased()) return 1; else if (isTargetMacOS() && !isMacosxVersionLT(10, 6)) return 1; else if (isTargetMacOS() && !isMacosxVersionLT(10, 5) && !KernelOrKext) return 1; return 0; } bool SupportsObjCGC() const override; void CheckObjCARC() const override; bool UseSjLjExceptions(const llvm::opt::ArgList &Args) const override; SanitizerMask getSupportedSanitizers() const override; }; /// DarwinClang - The Darwin toolchain used by Clang. class LLVM_LIBRARY_VISIBILITY DarwinClang : public Darwin { public: DarwinClang(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); /// @name Apple ToolChain Implementation /// { void AddLinkRuntimeLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; void AddCCKextLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; void addClangWarningOptions(llvm::opt::ArgStringList &CC1Args) const override; void AddLinkARCArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; unsigned GetDefaultDwarfVersion() const override { return 2; } // Until dtrace (via CTF) and LLDB can deal with distributed debug info, // Darwin defaults to standalone/full debug info. bool GetDefaultStandaloneDebug() const override { return true; } llvm::DebuggerKind getDefaultDebuggerTuning() const override { return llvm::DebuggerKind::LLDB; } /// } private: void AddLinkSanitizerLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs, StringRef Sanitizer) const; }; class LLVM_LIBRARY_VISIBILITY Generic_ELF : public Generic_GCC { virtual void anchor(); public: Generic_ELF(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args) : Generic_GCC(D, Triple, Args) {} void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; }; class LLVM_LIBRARY_VISIBILITY CloudABI : public Generic_ELF { public: CloudABI(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool HasNativeLLVMSupport() const override { return true; } bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override { return ToolChain::CST_Libcxx; } void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; bool isPIEDefault() const override { return false; } protected: Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY Solaris : public Generic_GCC { public: Solaris(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsIntegratedAssemblerDefault() const override { return true; } void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; unsigned GetDefaultDwarfVersion() const override { return 2; } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY MinGW : public ToolChain { public: MinGW(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsIntegratedAssemblerDefault() const override; bool IsUnwindTablesDefault() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; bool UseSEHExceptions() const; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; protected: Tool *getTool(Action::ActionClass AC) const override; Tool *buildLinker() const override; Tool *buildAssembler() const override; private: std::string Base; std::string GccLibDir; std::string Ver; std::string Arch; mutable std::unique_ptr Preprocessor; mutable std::unique_ptr Compiler; void findGccLibDir(); }; class LLVM_LIBRARY_VISIBILITY OpenBSD : public Generic_ELF { public: OpenBSD(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } bool isPIEDefault() const override { return true; } unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override { return 2; } unsigned GetDefaultDwarfVersion() const override { return 2; } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY Bitrig : public Generic_ELF { public: Bitrig(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override { return 1; } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY FreeBSD : public Generic_ELF { public: FreeBSD(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool HasNativeLLVMSupport() const override; bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; bool UseSjLjExceptions(const llvm::opt::ArgList &Args) const override; bool isPIEDefault() const override; SanitizerMask getSupportedSanitizers() const override; unsigned GetDefaultDwarfVersion() const override { return 2; } // Until dtrace (via CTF) and LLDB can deal with distributed debug info, // FreeBSD defaults to standalone/full debug info. bool GetDefaultStandaloneDebug() const override { return true; } - llvm::DebuggerKind getDefaultDebuggerTuning() const override { - return llvm::DebuggerKind::LLDB; - } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY NetBSD : public Generic_ELF { public: NetBSD(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; bool IsUnwindTablesDefault() const override { return true; } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY Minix : public Generic_ELF { public: Minix(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY DragonFly : public Generic_ELF { public: DragonFly(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsMathErrnoDefault() const override { return false; } protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY Linux : public Generic_ELF { public: Linux(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool HasNativeLLVMSupport() const override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCudaIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; bool isPIEDefault() const override; SanitizerMask getSupportedSanitizers() const override; void addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; virtual std::string computeSysRoot() const; std::vector ExtraOpts; protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY CudaToolChain : public Linux { public: CudaToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); llvm::opt::DerivedArgList * TranslateArgs(const llvm::opt::DerivedArgList &Args, const char *BoundArch) const override; void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; }; class LLVM_LIBRARY_VISIBILITY MipsLLVMToolChain : public Linux { protected: Tool *buildLinker() const override; public: MipsLLVMToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared = false) const override; std::string computeSysRoot() const override; RuntimeLibType GetDefaultRuntimeLibType() const override { return GCCInstallation.isValid() ? RuntimeLibType::RLT_Libgcc : RuntimeLibType::RLT_CompilerRT; } private: Multilib SelectedMultilib; std::string LibSuffix; }; class LLVM_LIBRARY_VISIBILITY HexagonToolChain : public Linux { protected: GCCVersion GCCLibAndIncVersion; Tool *buildAssembler() const override; Tool *buildLinker() const override; public: HexagonToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~HexagonToolChain() override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; StringRef GetGCCLibAndIncVersion() const { return GCCLibAndIncVersion.Text; } bool IsIntegratedAssemblerDefault() const override { return true; } std::string getHexagonTargetDir( const std::string &InstalledDir, const SmallVectorImpl &PrefixDirs) const; void getHexagonLibraryPaths(const llvm::opt::ArgList &Args, ToolChain::path_list &LibPaths) const; static const StringRef GetDefaultCPU(); static const StringRef GetTargetCPUVersion(const llvm::opt::ArgList &Args); static Optional getSmallDataThreshold( const llvm::opt::ArgList &Args); }; class LLVM_LIBRARY_VISIBILITY AMDGPUToolChain : public Generic_ELF { protected: Tool *buildLinker() const override; public: AMDGPUToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsIntegratedAssemblerDefault() const override { return true; } }; class LLVM_LIBRARY_VISIBILITY NaClToolChain : public Generic_ELF { public: NaClToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; bool IsIntegratedAssemblerDefault() const override { return getTriple().getArch() == llvm::Triple::mipsel; } // Get the path to the file containing NaCl's ARM macros. // It lives in NaClToolChain because the ARMAssembler tool needs a // const char * that it can pass around, const char *GetNaClArmMacrosPath() const { return NaClArmMacrosPath.c_str(); } std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType) const override; protected: Tool *buildLinker() const override; Tool *buildAssembler() const override; private: std::string NaClArmMacrosPath; }; /// TCEToolChain - A tool chain using the llvm bitcode tools to perform /// all subcommands. See http://tce.cs.tut.fi for our peculiar target. class LLVM_LIBRARY_VISIBILITY TCEToolChain : public ToolChain { public: TCEToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~TCEToolChain() override; bool IsMathErrnoDefault() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; }; class LLVM_LIBRARY_VISIBILITY MSVCToolChain : public ToolChain { public: MSVCToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); llvm::opt::DerivedArgList * TranslateArgs(const llvm::opt::DerivedArgList &Args, const char *BoundArch) const override; bool IsIntegratedAssemblerDefault() const override; bool IsUnwindTablesDefault() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; bool getWindowsSDKDir(std::string &path, int &major, std::string &windowsSDKIncludeVersion, std::string &windowsSDKLibVersion) const; bool getWindowsSDKLibraryPath(std::string &path) const; /// \brief Check if Universal CRT should be used if available bool useUniversalCRT(std::string &visualStudioDir) const; bool getUniversalCRTSdkDir(std::string &path, std::string &ucrtVersion) const; bool getUniversalCRTLibraryPath(std::string &path) const; bool getVisualStudioInstallDir(std::string &path) const; bool getVisualStudioBinariesFolder(const char *clangProgramPath, std::string &path) const; std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType) const override; SanitizerMask getSupportedSanitizers() const override; protected: void AddSystemIncludeWithSubfolder(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, const std::string &folder, const Twine &subfolder1, const Twine &subfolder2 = "", const Twine &subfolder3 = "") const; Tool *buildLinker() const override; Tool *buildAssembler() const override; }; class LLVM_LIBRARY_VISIBILITY CrossWindowsToolChain : public Generic_GCC { public: CrossWindowsToolChain(const Driver &D, const llvm::Triple &T, const llvm::opt::ArgList &Args); bool IsIntegratedAssemblerDefault() const override { return true; } bool IsUnwindTablesDefault() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; unsigned int GetDefaultStackProtectorLevel(bool KernelOrKext) const override { return 0; } void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; SanitizerMask getSupportedSanitizers() const override; protected: Tool *buildLinker() const override; Tool *buildAssembler() const override; }; class LLVM_LIBRARY_VISIBILITY XCoreToolChain : public ToolChain { public: XCoreToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; public: bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; bool SupportsProfiling() const override; bool hasBlocksRuntime() const override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const override; }; /// MyriadToolChain - A tool chain using either clang or the external compiler /// installed by the Movidius SDK to perform all subcommands. class LLVM_LIBRARY_VISIBILITY MyriadToolChain : public Generic_GCC { public: MyriadToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); ~MyriadToolChain() override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; Tool *SelectTool(const JobAction &JA) const override; unsigned GetDefaultDwarfVersion() const override { return 2; } protected: Tool *buildLinker() const override; bool isShaveCompilation(const llvm::Triple &T) const { return T.getArch() == llvm::Triple::shave; } private: mutable std::unique_ptr Compiler; mutable std::unique_ptr Assembler; }; class LLVM_LIBRARY_VISIBILITY WebAssembly final : public ToolChain { public: WebAssembly(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); private: bool IsMathErrnoDefault() const override; bool IsObjCNonFragileABIDefault() const override; bool UseObjCMixedDispatch() const override; bool isPICDefault() const override; bool isPIEDefault() const override; bool isPICDefaultForced() const override; bool IsIntegratedAssemblerDefault() const override; bool hasBlocksRuntime() const override; bool SupportsObjCGC() const override; bool SupportsProfiling() const override; bool HasNativeLLVMSupport() const override; void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; Tool *buildLinker() const override; }; class LLVM_LIBRARY_VISIBILITY PS4CPU : public Generic_ELF { public: PS4CPU(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args); bool IsMathErrnoDefault() const override { return false; } bool IsObjCNonFragileABIDefault() const override { return true; } bool HasNativeLLVMSupport() const override; bool isPICDefault() const override; unsigned GetDefaultStackProtectorLevel(bool KernelOrKext) const override { return 2; // SSPStrong } llvm::DebuggerKind getDefaultDebuggerTuning() const override { return llvm::DebuggerKind::SCE; } SanitizerMask getSupportedSanitizers() const override; protected: Tool *buildAssembler() const override; Tool *buildLinker() const override; }; } // end namespace toolchains } // end namespace driver } // end namespace clang #endif // LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_H