Index: head/sys/dev/usb/wlan/if_rum.c =================================================================== --- head/sys/dev/usb/wlan/if_rum.c (revision 292175) +++ head/sys/dev/usb/wlan/if_rum.c (revision 292176) @@ -1,3019 +1,3020 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2005-2007 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * Copyright (c) 2007-2008 Hans Petter Selasky + * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com.tw/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR rum_debug #include #include #include #include #ifdef USB_DEBUG static int rum_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, "Debug level"); #endif static const STRUCT_USB_HOST_ID rum_devs[] = { #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } RUM_DEV(ABOCOM, HWU54DM), RUM_DEV(ABOCOM, RT2573_2), RUM_DEV(ABOCOM, RT2573_3), RUM_DEV(ABOCOM, RT2573_4), RUM_DEV(ABOCOM, WUG2700), RUM_DEV(AMIT, CGWLUSB2GO), RUM_DEV(ASUS, RT2573_1), RUM_DEV(ASUS, RT2573_2), RUM_DEV(BELKIN, F5D7050A), RUM_DEV(BELKIN, F5D9050V3), RUM_DEV(CISCOLINKSYS, WUSB54GC), RUM_DEV(CISCOLINKSYS, WUSB54GR), RUM_DEV(CONCEPTRONIC2, C54RU2), RUM_DEV(COREGA, CGWLUSB2GL), RUM_DEV(COREGA, CGWLUSB2GPX), RUM_DEV(DICKSMITH, CWD854F), RUM_DEV(DICKSMITH, RT2573), RUM_DEV(EDIMAX, EW7318USG), RUM_DEV(DLINK2, DWLG122C1), RUM_DEV(DLINK2, WUA1340), RUM_DEV(DLINK2, DWA111), RUM_DEV(DLINK2, DWA110), RUM_DEV(GIGABYTE, GNWB01GS), RUM_DEV(GIGABYTE, GNWI05GS), RUM_DEV(GIGASET, RT2573), RUM_DEV(GOODWAY, RT2573), RUM_DEV(GUILLEMOT, HWGUSB254LB), RUM_DEV(GUILLEMOT, HWGUSB254V2AP), RUM_DEV(HUAWEI3COM, WUB320G), RUM_DEV(MELCO, G54HP), RUM_DEV(MELCO, SG54HP), RUM_DEV(MELCO, SG54HG), RUM_DEV(MELCO, WLIUCG), RUM_DEV(MELCO, WLRUCG), RUM_DEV(MELCO, WLRUCGAOSS), RUM_DEV(MSI, RT2573_1), RUM_DEV(MSI, RT2573_2), RUM_DEV(MSI, RT2573_3), RUM_DEV(MSI, RT2573_4), RUM_DEV(NOVATECH, RT2573), RUM_DEV(PLANEX2, GWUS54HP), RUM_DEV(PLANEX2, GWUS54MINI2), RUM_DEV(PLANEX2, GWUSMM), RUM_DEV(QCOM, RT2573), RUM_DEV(QCOM, RT2573_2), RUM_DEV(QCOM, RT2573_3), RUM_DEV(RALINK, RT2573), RUM_DEV(RALINK, RT2573_2), RUM_DEV(RALINK, RT2671), RUM_DEV(SITECOMEU, WL113R2), RUM_DEV(SITECOMEU, WL172), RUM_DEV(SPARKLAN, RT2573), RUM_DEV(SURECOM, RT2573), #undef RUM_DEV }; static device_probe_t rum_match; static device_attach_t rum_attach; static device_detach_t rum_detach; static usb_callback_t rum_bulk_read_callback; static usb_callback_t rum_bulk_write_callback; static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data); static struct ieee80211vap *rum_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rum_vap_delete(struct ieee80211vap *); static void rum_cmdq_cb(void *, int); static int rum_cmd_sleepable(struct rum_softc *, const void *, size_t, uint8_t, CMD_FUNC_PROTO); static void rum_tx_free(struct rum_tx_data *, int); static void rum_setup_tx_list(struct rum_softc *); static void rum_unsetup_tx_list(struct rum_softc *); static int rum_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); static void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, struct ieee80211_key *, uint32_t, uint8_t, uint8_t, int, int, int); static uint32_t rum_tx_crypto_flags(struct rum_softc *, struct ieee80211_node *, const struct ieee80211_key *); static int rum_tx_mgt(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static int rum_tx_raw(struct rum_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static int rum_transmit(struct ieee80211com *, struct mbuf *); static void rum_start(struct rum_softc *); static void rum_parent(struct ieee80211com *); static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); static uint32_t rum_read(struct rum_softc *, uint16_t); static void rum_read_multi(struct rum_softc *, uint16_t, void *, int); static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, uint32_t); static int rum_bbp_busy(struct rum_softc *); static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); static void rum_select_antenna(struct rum_softc *); static void rum_enable_mrr(struct rum_softc *); static void rum_set_txpreamble(struct rum_softc *); static void rum_set_basicrates(struct rum_softc *); static void rum_select_band(struct rum_softc *, struct ieee80211_channel *); static void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); static void rum_set_maxretry(struct rum_softc *, struct ieee80211vap *); static int rum_enable_tsf_sync(struct rum_softc *); static void rum_enable_tsf(struct rum_softc *); static void rum_abort_tsf_sync(struct rum_softc *); static void rum_get_tsf(struct rum_softc *, uint64_t *); static void rum_update_slot_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_update_slot(struct ieee80211com *); static int rum_wme_update(struct ieee80211com *); static void rum_set_bssid(struct rum_softc *, const uint8_t *); static void rum_set_macaddr(struct rum_softc *, const uint8_t *); static void rum_update_mcast(struct ieee80211com *); static void rum_update_promisc(struct ieee80211com *); static void rum_setpromisc(struct rum_softc *); static const char *rum_get_rf(int); static void rum_read_eeprom(struct rum_softc *); static int rum_bbp_wakeup(struct rum_softc *); static int rum_bbp_init(struct rum_softc *); static void rum_clr_shkey_regs(struct rum_softc *); static int rum_init(struct rum_softc *); static void rum_stop(struct rum_softc *); static void rum_load_microcode(struct rum_softc *, const uint8_t *, size_t); static int rum_set_beacon(struct rum_softc *, struct ieee80211vap *); static int rum_alloc_beacon(struct rum_softc *, struct ieee80211vap *); static void rum_update_beacon_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_update_beacon(struct ieee80211vap *, int); static int rum_common_key_set(struct rum_softc *, struct ieee80211_key *, uint16_t); static void rum_group_key_set_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_group_key_del_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_pair_key_set_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_pair_key_del_cb(struct rum_softc *, union sec_param *, uint8_t); static int rum_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static int rum_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int rum_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rum_scan_start(struct ieee80211com *); static void rum_scan_end(struct ieee80211com *); static void rum_set_channel(struct ieee80211com *); static int rum_get_rssi(struct rum_softc *, uint8_t); static void rum_ratectl_start(struct rum_softc *, struct ieee80211_node *); static void rum_ratectl_timeout(void *); static void rum_ratectl_task(void *, int); static int rum_pause(struct rum_softc *, int); static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { { RT2573_TXRX_CSR0, 0x025fb032 }, { RT2573_TXRX_CSR1, 0x9eaa9eaf }, { RT2573_TXRX_CSR2, 0x8a8b8c8d }, { RT2573_TXRX_CSR3, 0x00858687 }, { RT2573_TXRX_CSR7, 0x2e31353b }, { RT2573_TXRX_CSR8, 0x2a2a2a2c }, { RT2573_TXRX_CSR15, 0x0000000f }, { RT2573_MAC_CSR6, 0x00000fff }, { RT2573_MAC_CSR8, 0x016c030a }, { RT2573_MAC_CSR10, 0x00000718 }, { RT2573_MAC_CSR12, 0x00000004 }, { RT2573_MAC_CSR13, 0x00007f00 }, { RT2573_SEC_CSR2, 0x00000000 }, { RT2573_SEC_CSR3, 0x00000000 }, { RT2573_SEC_CSR4, 0x00000000 }, { RT2573_PHY_CSR1, 0x000023b0 }, { RT2573_PHY_CSR5, 0x00040a06 }, { RT2573_PHY_CSR6, 0x00080606 }, { RT2573_PHY_CSR7, 0x00000408 }, { RT2573_AIFSN_CSR, 0x00002273 }, { RT2573_CWMIN_CSR, 0x00002344 }, { RT2573_CWMAX_CSR, 0x000034aa } }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { { 3, 0x80 }, { 15, 0x30 }, { 17, 0x20 }, { 21, 0xc8 }, { 22, 0x38 }, { 23, 0x06 }, { 24, 0xfe }, { 25, 0x0a }, { 26, 0x0d }, { 32, 0x0b }, { 34, 0x12 }, { 37, 0x07 }, { 39, 0xf8 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 60, 0x10 }, { 61, 0x04 }, { 62, 0x04 }, { 75, 0xfe }, { 86, 0xfe }, { 88, 0xfe }, { 90, 0x0f }, { 99, 0x00 }, { 102, 0x16 }, { 107, 0x04 } }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } }, rum_rf5225[] = { { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } }; static const struct usb_config rum_config[RUM_N_TRANSFER] = { [RUM_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = rum_bulk_write_callback, .timeout = 5000, /* ms */ }, [RUM_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = rum_bulk_read_callback, }, }; static int rum_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); } static int rum_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct rum_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; uint8_t iface_index, bands; uint32_t tmp; int error, ntries; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; RUM_LOCK_INIT(sc); RUM_CMDQ_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = RT2573_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RUM_LOCK(sc); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 100; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); RUM_UNLOCK(sc); goto detach; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", tmp, rum_get_rf(sc->rf_rev)); rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); RUM_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_HOSTAP /* HostAp mode supported */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* bg scanning supported */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ ; ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_AES_CCM | IEEE80211_CRYPTO_TKIPMIC | IEEE80211_CRYPTO_TKIP; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) setbit(&bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic); ic->ic_update_promisc = rum_update_promisc; ic->ic_raw_xmit = rum_raw_xmit; ic->ic_scan_start = rum_scan_start; ic->ic_scan_end = rum_scan_end; ic->ic_set_channel = rum_set_channel; ic->ic_transmit = rum_transmit; ic->ic_parent = rum_parent; ic->ic_vap_create = rum_vap_create; ic->ic_vap_delete = rum_vap_delete; ic->ic_updateslot = rum_update_slot; ic->ic_wme.wme_update = rum_wme_update; ic->ic_update_mcast = rum_update_mcast; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2573_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2573_RX_RADIOTAP_PRESENT); TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); if (bootverbose) ieee80211_announce(ic); return (0); detach: rum_detach(self); return (ENXIO); /* failure */ } static int rum_detach(device_t self) { struct rum_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; /* Prevent further ioctls */ RUM_LOCK(sc); sc->sc_detached = 1; RUM_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); /* free TX list, if any */ RUM_LOCK(sc); rum_unsetup_tx_list(sc); RUM_UNLOCK(sc); if (ic->ic_softc == sc) { ieee80211_draintask(ic, &sc->cmdq_task); ieee80211_ifdetach(ic); } mbufq_drain(&sc->sc_snd); RUM_CMDQ_LOCK_DESTROY(sc); RUM_LOCK_DESTROY(sc); return (0); } static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); if (rum_pause(sc, hz / 100)) break; } return (err); } static struct ieee80211vap * rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rum_softc *sc = ic->ic_softc; struct rum_vap *rvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(rvp, M_80211_VAP); return (NULL); } /* override state transition machine */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = rum_newstate; vap->iv_key_alloc = rum_key_alloc; vap->iv_key_set = rum_key_set; vap->iv_key_delete = rum_key_delete; vap->iv_update_beacon = rum_update_beacon; vap->iv_max_aid = RT2573_ADDR_MAX; usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void rum_vap_delete(struct ieee80211vap *vap) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; m_freem(rvp->bcn_mbuf); usb_callout_drain(&rvp->ratectl_ch); ieee80211_draintask(ic, &rvp->ratectl_task); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } static void rum_cmdq_cb(void *arg, int pending) { struct rum_softc *sc = arg; struct rum_cmdq *rc; RUM_CMDQ_LOCK(sc); while (sc->cmdq[sc->cmdq_first].func != NULL) { rc = &sc->cmdq[sc->cmdq_first]; RUM_CMDQ_UNLOCK(sc); RUM_LOCK(sc); rc->func(sc, &rc->data, rc->rvp_id); RUM_UNLOCK(sc); RUM_CMDQ_LOCK(sc); memset(rc, 0, sizeof (*rc)); sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; } RUM_CMDQ_UNLOCK(sc); } static int rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, uint8_t rvp_id, CMD_FUNC_PROTO) { struct ieee80211com *ic = &sc->sc_ic; KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); RUM_CMDQ_LOCK(sc); if (sc->cmdq[sc->cmdq_last].func != NULL) { device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); RUM_CMDQ_UNLOCK(sc); return EAGAIN; } if (ptr != NULL) memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; sc->cmdq[sc->cmdq_last].func = func; sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; RUM_CMDQ_UNLOCK(sc); ieee80211_runtask(ic, &sc->cmdq_task); return 0; } static void rum_tx_free(struct rum_tx_data *data, int txerr) { struct rum_softc *sc = data->sc; if (data->m != NULL) { ieee80211_tx_complete(data->ni, data->m, txerr); data->m = NULL; data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void rum_setup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void rum_unsetup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_softc; const struct ieee80211_txparam *tp; enum ieee80211_state ostate; struct ieee80211_node *ni; int ret; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RUM_LOCK(sc); usb_callout_stop(&rvp->ratectl_ch); switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) rum_abort_tsf_sync(sc); break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (vap->iv_opmode != IEEE80211_M_MONITOR) { if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || ni->ni_chan == IEEE80211_CHAN_ANYC) { ret = EINVAL; goto run_fail; } rum_update_slot_cb(sc, NULL, 0); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_maxretry(sc, vap); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); rum_set_bssid(sc, sc->sc_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { if ((ret = rum_alloc_beacon(sc, vap)) != 0) goto run_fail; } if (vap->iv_opmode != IEEE80211_M_MONITOR && vap->iv_opmode != IEEE80211_M_AHDEMO) { if ((ret = rum_enable_tsf_sync(sc)) != 0) goto run_fail; } else rum_enable_tsf(sc); /* enable automatic rate adaptation */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) rum_ratectl_start(sc, ni); ieee80211_free_node(ni); break; default: break; } RUM_UNLOCK(sc); IEEE80211_LOCK(ic); return (rvp->newstate(vap, nstate, arg)); run_fail: RUM_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return ret; } static void rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ieee80211vap *vap; struct rum_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; unsigned int len; int actlen, sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete, %d bytes\n", actlen); /* free resources */ data = usbd_xfer_get_priv(xfer); rum_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { DPRINTFN(0, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; rum_get_tsf(sc, &tap->wt_tsf); tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m); } /* align end on a 4-bytes boundary */ len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; if ((len % 64) == 0) len += 4; DPRINTFN(11, "sending frame len=%u xferlen=%u\n", m->m_pkthdr.len, len); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } rum_start(sc); break; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); counter_u64_add(sc->sc_ic.ic_oerrors, 1); data = usbd_xfer_get_priv(xfer); if (data != NULL) { rum_tx_free(data, error); usbd_xfer_set_priv(xfer, NULL); } if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct usb_page_cache *pc; uint32_t flags; uint8_t rssi = 0; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", len); if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { DPRINTF("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } len -= RT2573_RX_DESC_SIZE; pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); flags = le32toh(sc->sc_rx_desc.flags); if (flags & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not * request to receive those frames when we * filled RUM_TXRX_CSR2: */ DPRINTFN(5, "PHY or CRC error\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { switch (flags & RT2573_RX_DEC_MASK) { case RT2573_RX_IV_ERROR: DPRINTFN(5, "IV/EIV error\n"); break; case RT2573_RX_MIC_ERROR: DPRINTFN(5, "MIC error\n"); break; case RT2573_RX_KEY_ERROR: DPRINTFN(5, "Key error\n"); break; } counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF("could not allocate mbuf\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } usbd_copy_out(pc, RT2573_RX_DESC_SIZE, mtod(m, uint8_t *), len); wh = mtod(m, struct ieee80211_frame_min *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && (flags & RT2573_RX_CIP_MASK) != RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; m->m_flags |= M_WEP; } /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; if (ieee80211_radiotap_active(ic)) { struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, (flags & RT2573_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); rum_get_tsf(sc, &tap->wr_tsf); tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; tap->wr_antnoise = RT2573_NOISE_FLOOR; tap->wr_antenna = sc->rx_ant; } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ RUM_UNLOCK(sc); if (m) { if (m->m_len >= sizeof(struct ieee80211_frame_min)) ni = ieee80211_find_rxnode(ic, wh); else ni = NULL; if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, RT2573_NOISE_FLOOR); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, RT2573_NOISE_FLOOR); } RUM_LOCK(sc); rum_start(sc); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static uint8_t rum_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } /* * Map net80211 cipher to RT2573 security mode. */ static uint8_t rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) { switch (cipher) { case IEEE80211_CIPHER_WEP: return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); case IEEE80211_CIPHER_TKIP: return RT2573_MODE_TKIP; case IEEE80211_CIPHER_AES_CCM: return RT2573_MODE_AES_CCMP; default: device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); return 0; } } static void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, int hdrlen, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; struct wmeParams *wmep = &sc->wme_params[qid]; uint16_t plcp_length; int remainder; flags |= RT2573_TX_VALID; flags |= len << 16; if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { const struct ieee80211_cipher *cip = k->wk_cipher; len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; desc->eiv = 0; /* for WEP */ cip->ic_setiv(k, (uint8_t *)&desc->iv); } /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { flags |= RT2573_TX_OFDM; plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { if (rate == 0) rate = 2; /* avoid division by zero */ plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->flags = htole32(flags); desc->hdrlen = hdrlen; desc->xflags = xflags; desc->wme = htole16(RT2573_QID(qid) | RT2573_AIFSN(wmep->wmep_aifsn) | RT2573_LOGCWMIN(wmep->wmep_logcwmin) | RT2573_LOGCWMAX(wmep->wmep_logcwmax)); } static int rum_sendprot(struct rum_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct rum_tx_data *data; struct mbuf *mprot; int protrate, pktlen, flags, isshort; uint16_t dur; RUM_LOCK_ASSERT(sc); KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = 0; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2573_TX_NEED_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return (ENOBUFS); } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); data->rate = protrate; rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, mprot->m_pkthdr.len, protrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static uint32_t rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, const struct ieee80211_key *k) { struct ieee80211vap *vap = ni->ni_vap; u_int cipher; uint32_t flags = 0; uint8_t mode, pos; if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { cipher = k->wk_cipher->ic_cipher; pos = k->wk_keyix; mode = rum_crypto_mode(sc, cipher, k->wk_keylen); if (mode == 0) return 0; flags |= RT2573_TX_CIP_MODE(mode); /* Do not trust GROUP flag */ if (!(k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) flags |= RT2573_TX_KEY_PAIR; else pos += 0 * RT2573_SKEY_MAX; /* vap id */ flags |= RT2573_TX_KEY_ID(pos); if (cipher == IEEE80211_CIPHER_TKIP) flags |= RT2573_TX_TKIPMIC; } return flags; } static int rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k = NULL; uint32_t flags = 0; uint16_t dur; uint8_t ac, type, xflags = 0; int hdrlen; RUM_LOCK_ASSERT(sc); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; hdrlen = ieee80211_anyhdrsize(wh); ac = M_WME_GETAC(m0); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_get_txkey(ni, m0); if (k == NULL) return (ENOENT); if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && !k->wk_cipher->ic_encap(k, m0)) return (ENOBUFS); wh = mtod(m0, struct ieee80211_frame *); } tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); /* tell hardware to add timestamp for probe responses */ if (type == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RT2573_TX_TIMESTAMP; } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; if (k != NULL) flags |= rum_tx_crypto_flags(sc, ni, k); data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return (0); } static int rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct rum_tx_data *data; uint32_t flags; uint8_t ac, type, xflags = 0; int rate, error; RUM_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ac = params->ibp_pri & 3; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) return (EINVAL); flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RT2573_TX_NEED_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = rum_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error || sc->tx_nfree == 0) return (ENOBUFS); flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; /* XXX need to setup descriptor ourself */ rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k = NULL; uint32_t flags = 0; uint16_t dur; uint8_t ac, type, qos, xflags = 0; int error, hdrlen, rate; RUM_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; hdrlen = ieee80211_anyhdrsize(wh); if (IEEE80211_QOS_HAS_SEQ(wh)) qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; else qos = 0; ac = M_WME_GETAC(m0); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = ni->ni_txrate; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_get_txkey(ni, m0); if (k == NULL) { m_freem(m0); return (ENOENT); } if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && !k->wk_cipher->ic_encap(k, m0)) { m_freem(m0); return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rum_sendprot(sc, m0, ni, prot, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } } if (k != NULL) flags |= rum_tx_crypto_flags(sc, ni, k); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* Unicast frame, check if an ACK is expected. */ if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK) flags |= RT2573_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); } rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rum_softc *sc = ic->ic_softc; int error; RUM_LOCK(sc); if (!sc->sc_running) { RUM_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RUM_UNLOCK(sc); return (error); } rum_start(sc); RUM_UNLOCK(sc); return (0); } static void rum_start(struct rum_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RUM_LOCK_ASSERT(sc); if (!sc->sc_running) return; while (sc->tx_nfree >= RUM_TX_MINFREE && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rum_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } } } static void rum_parent(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); RUM_LOCK(sc); if (sc->sc_detached) { RUM_UNLOCK(sc); return; } RUM_UNLOCK(sc); if (ic->ic_nrunning > 0) { if (rum_init(sc) == 0) ieee80211_start_all(ic); else ieee80211_stop(vap); } else rum_stop(sc); } static void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } } static uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof val); return le32toh(val); } static void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not multi read MAC register: %s\n", usbd_errstr(error)); } } static usb_error_t rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = htole32(val); return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); } static usb_error_t rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { struct usb_device_request req; usb_error_t error; size_t offset; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); /* write at most 64 bytes at a time */ for (offset = 0; offset < len; offset += 64) { USETW(req.wIndex, reg + offset); USETW(req.wLength, MIN(len - offset, 64)); error = rum_do_request(sc, &req, (char *)buf + offset); if (error != 0) { device_printf(sc->sc_dev, "could not multi write MAC register: %s\n", usbd_errstr(error)); return (error); } } return (USB_ERR_NORMAL_COMPLETION); } static usb_error_t rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) { return (rum_write(sc, reg, rum_read(sc, reg) | mask)); } static usb_error_t rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) { return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); } static usb_error_t rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) { return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); } static int rum_bbp_busy(struct rum_softc *sc) { int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) return (ETIMEDOUT); return (0); } static void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; DPRINTFN(2, "reg=0x%08x\n", reg); if (rum_bbp_busy(sc) != 0) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } static uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; DPRINTFN(2, "reg=0x%08x\n", reg); if (rum_bbp_busy(sc) != 0) { device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return val & 0xff; if (rum_pause(sc, hz / 100)) break; } device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } static void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); } static void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rum_enable_mrr(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); } else { rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); } } static void rum_set_txpreamble(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); else rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); } static void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0xf); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); if (IEEE80211_IS_CHAN_2GHZ(c)) { rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, RT2573_PA_PE_5GHZ); } else { rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, RT2573_PA_PE_2GHZ); } } static void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != ic->ic_curchan->ic_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } ic->ic_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_pause(sc, hz / 100); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); bbp3 &= ~RT2573_SMART_MODE; if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); /* give the chip some extra time to do the switchover */ rum_pause(sc, hz / 100); } static void rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) { const struct ieee80211_txparam *tp; struct ieee80211_node *ni = vap->iv_bss; struct rum_vap *rvp = RUM_VAP(vap); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | RT2573_LONG_RETRY(rvp->maxretry), RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static int rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; if (vap->iv_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) return EIO; } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; switch (vap->iv_opmode) { case IEEE80211_M_STA: /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); break; case IEEE80211_M_IBSS: /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); tmp |= RT2573_BCN_TX_EN; break; case IEEE80211_M_HOSTAP: /* SYNC with nobody */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); tmp |= RT2573_BCN_TX_EN; break; default: device_printf(sc->sc_dev, "Enabling TSF failed. undefined opmode %d\n", vap->iv_opmode); return EINVAL; } if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) return EIO; return 0; } static void rum_enable_tsf(struct rum_softc *sc) { rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); } static void rum_abort_tsf_sync(struct rum_softc *sc) { rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); } static void rum_get_tsf(struct rum_softc *sc, uint64_t *buf) { rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); } static void rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; slottime = IEEE80211_GET_SLOTTIME(ic); rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); DPRINTF("setting slot time to %uus\n", slottime); } static void rum_update_slot(struct ieee80211com *ic) { rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); } static int rum_wme_update(struct ieee80211com *ic) { const struct wmeParams *chanp = ic->ic_wme.wme_chanParams.cap_wmeParams; struct rum_softc *sc = ic->ic_softc; int error = 0; RUM_LOCK(sc); error = rum_write(sc, RT2573_AIFSN_CSR, chanp[WME_AC_VO].wmep_aifsn << 12 | chanp[WME_AC_VI].wmep_aifsn << 8 | chanp[WME_AC_BK].wmep_aifsn << 4 | chanp[WME_AC_BE].wmep_aifsn); if (error) goto print_err; error = rum_write(sc, RT2573_CWMIN_CSR, chanp[WME_AC_VO].wmep_logcwmin << 12 | chanp[WME_AC_VI].wmep_logcwmin << 8 | chanp[WME_AC_BK].wmep_logcwmin << 4 | chanp[WME_AC_BE].wmep_logcwmin); if (error) goto print_err; error = rum_write(sc, RT2573_CWMAX_CSR, chanp[WME_AC_VO].wmep_logcwmax << 12 | chanp[WME_AC_VI].wmep_logcwmax << 8 | chanp[WME_AC_BK].wmep_logcwmax << 4 | chanp[WME_AC_BE].wmep_logcwmax); if (error) goto print_err; error = rum_write(sc, RT2573_TXOP01_CSR, chanp[WME_AC_BK].wmep_txopLimit << 16 | chanp[WME_AC_BE].wmep_txopLimit); if (error) goto print_err; error = rum_write(sc, RT2573_TXOP23_CSR, chanp[WME_AC_VO].wmep_txopLimit << 16 | chanp[WME_AC_VI].wmep_txopLimit); if (error) goto print_err; memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); print_err: RUM_UNLOCK(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", __func__, error); } return (error); } static void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { rum_write(sc, RT2573_MAC_CSR4, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); rum_write(sc, RT2573_MAC_CSR5, bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); } static void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { rum_write(sc, RT2573_MAC_CSR2, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); rum_write(sc, RT2573_MAC_CSR3, addr[4] | addr[5] << 8 | 0xff << 16); } static void rum_setpromisc(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_promisc == 0) rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); else rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? "entering" : "leaving"); } static void rum_update_promisc(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); if (sc->sc_running) rum_setpromisc(sc); RUM_UNLOCK(sc); } static void rum_update_mcast(struct ieee80211com *ic) { /* Ignore. */ } static const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return "RT2527 (MIMO XR)"; case RT2573_RF_2528: return "RT2528"; case RT2573_RF_5225: return "RT5225 (MIMO XR)"; case RT2573_RF_5226: return "RT5226"; default: return "unknown"; } } static void rum_read_eeprom(struct rum_softc *sc) { uint16_t val; #ifdef RUM_DEBUG int i; #endif /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF("RF revision=%d\n", sc->rf_rev); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = le16toh(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF("RF freq=%d\n", sc->rffreq); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* XXX default Tx power for 802.11a channels */ memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); #endif /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif } static int rum_bbp_wakeup(struct rum_softc *sc) { unsigned int ntries; for (ntries = 0; ntries < 100; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP/RF to wakeup\n"); return (ETIMEDOUT); } return (0); } static int rum_bbp_init(struct rum_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { const uint8_t val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; } static void rum_clr_shkey_regs(struct rum_softc *sc) { rum_write(sc, RT2573_SEC_CSR0, 0); rum_write(sc, RT2573_SEC_CSR1, 0); rum_write(sc, RT2573_SEC_CSR5, 0); } static int rum_init(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; int i, ret; RUM_LOCK(sc); if (sc->sc_running) { ret = 0; goto end; } /* initialize MAC registers to default values */ for (i = 0; i < nitems(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* reset some WME parameters to default values */ sc->wme_params[0].wmep_aifsn = 2; sc->wme_params[0].wmep_logcwmin = 4; sc->wme_params[0].wmep_logcwmax = 10; /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ if ((ret = rum_bbp_wakeup(sc)) != 0) goto end; if ((ret = rum_bbp_init(sc)) != 0) goto end; /* select default channel */ rum_select_band(sc, ic->ic_curchan); rum_select_antenna(sc); rum_set_chan(sc, ic->ic_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); /* clear security registers (if required) */ if (sc->sc_clr_shkeys == 0) { rum_clr_shkey_regs(sc); sc->sc_clr_shkeys = 1; } rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); /* * Allocate Tx and Rx xfer queues. */ rum_setup_tx_list(sc); /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); sc->sc_running = 1; usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); end: RUM_UNLOCK(sc); if (ret != 0) rum_stop(sc); return ret; } static void rum_stop(struct rum_softc *sc) { RUM_LOCK(sc); if (!sc->sc_running) { RUM_UNLOCK(sc); return; } sc->sc_running = 0; RUM_UNLOCK(sc); /* * Drain the USB transfers, if not already drained: */ usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); RUM_LOCK(sc); rum_unsetup_tx_list(sc); /* disable Rx */ rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); rum_write(sc, RT2573_MAC_CSR1, 0); RUM_UNLOCK(sc); } static void rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) { struct usb_device_request req; uint16_t reg = RT2573_MCU_CODE_BASE; usb_error_t err; /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) { err = rum_write(sc, reg, UGETDW(ucode)); if (err) { /* firmware already loaded ? */ device_printf(sc->sc_dev, "Firmware load " "failure! (ignored)\n"); break; } } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_MCU_CNTL; USETW(req.wValue, RT2573_MCU_RUN); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = rum_do_request(sc, &req, NULL); if (err != 0) { device_printf(sc->sc_dev, "could not run firmware: %s\n", usbd_errstr(err)); } /* give the chip some time to boot */ rum_pause(sc, hz / 8); } static int rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct rum_vap *rvp = RUM_VAP(vap); struct mbuf *m = rvp->bcn_mbuf; const struct ieee80211_txparam *tp; struct rum_tx_desc desc; RUM_LOCK_ASSERT(sc); if (m == NULL) return EINVAL; if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) return EINVAL; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); /* copy the Tx descriptor into NIC memory */ if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, RT2573_TX_DESC_SIZE) != 0) return EIO; /* copy beacon header and payload into NIC memory */ if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, mtod(m, uint8_t *), m->m_pkthdr.len) != 0) return EIO; return 0; } static int rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m; if (ni->ni_chan == IEEE80211_CHAN_ANYC) return EINVAL; m = ieee80211_beacon_alloc(ni); if (m == NULL) return ENOMEM; if (rvp->bcn_mbuf != NULL) m_freem(rvp->bcn_mbuf); rvp->bcn_mbuf = m; return (rum_set_beacon(sc, vap)); } static void rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211vap *vap = data->vap; rum_set_beacon(sc, vap); } static void rum_update_beacon(struct ieee80211vap *vap, int item) { struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_softc; struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m = rvp->bcn_mbuf; int mcast = 0; RUM_LOCK(sc); if (m == NULL) { m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); RUM_UNLOCK(sc); return; } rvp->bcn_mbuf = m; } switch (item) { case IEEE80211_BEACON_ERP: rum_update_slot(ic); break; case IEEE80211_BEACON_TIM: mcast = 1; /*TODO*/ break; default: break; } RUM_UNLOCK(sc); setbit(bo->bo_flags, item); ieee80211_beacon_update(ni, m, mcast); rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); } static int rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, uint16_t base) { if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) return EIO; if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, k->wk_txmic, 8)) return EIO; if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, k->wk_rxmic, 8)) return EIO; } return 0; } static void rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; uint8_t mode; if (sc->sc_clr_shkeys == 0) { rum_clr_shkey_regs(sc); sc->sc_clr_shkeys = 1; } mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (mode == 0) goto print_err; DPRINTFN(1, "setting group key %d for vap %d, mode %d " "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); /* Install the key. */ if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) goto print_err; /* Set cipher mode. */ if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) != 0) goto print_err; /* Mark this key as valid. */ if (rum_setbits(sc, RT2573_SEC_CSR0, 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) goto print_err; return; print_err: device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", __func__, k->wk_keyix, rvp_id); } static void rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; DPRINTF("%s: removing group key %d for vap %d\n", __func__, k->wk_keyix, rvp_id); rum_clrbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); rum_clrbits(sc, RT2573_SEC_CSR0, rvp_id * RT2573_SKEY_MAX + k->wk_keyix); } static void rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; uint8_t buf[IEEE80211_ADDR_LEN + 1]; uint8_t mode; mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (mode == 0) goto print_err; DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); /* Install the key. */ if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) goto print_err; IEEE80211_ADDR_COPY(buf, k->wk_macaddr); buf[IEEE80211_ADDR_LEN] = mode; /* Set transmitter address and cipher mode. */ if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), buf, sizeof buf) != 0) goto print_err; /* Enable key table lookup for this vap. */ if (sc->vap_key_count[rvp_id]++ == 0) if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) goto print_err; /* Mark this key as valid. */ if (rum_setbits(sc, k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 1 << (k->wk_keyix % 32)) != 0) goto print_err; return; print_err: device_printf(sc->sc_dev, "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, rvp_id); } static void rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 1 << (k->wk_keyix % 32)); sc->keys_bmap &= ~(1 << k->wk_keyix); if (--sc->vap_key_count[rvp_id] == 0) rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); } static int rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct rum_softc *sc = vap->iv_ic->ic_softc; uint8_t i; if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { RUM_LOCK(sc); for (i = 0; i < RT2573_ADDR_MAX; i++) { if ((sc->keys_bmap & (1 << i)) == 0) { sc->keys_bmap |= 1 << i; *keyix = i; break; } } RUM_UNLOCK(sc); if (i == RT2573_ADDR_MAX) { device_printf(sc->sc_dev, "%s: no free space in the key table\n", __func__); return 0; } } else *keyix = 0; } else { *keyix = k - vap->iv_nw_keys; } *rxkeyix = *keyix; return 1; } static int rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct rum_softc *sc = vap->iv_ic->ic_softc; int group; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return 1; } group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, group ? rum_group_key_set_cb : rum_pair_key_set_cb); } static int rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct rum_softc *sc = vap->iv_ic->ic_softc; int group; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return 1; } group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, group ? rum_group_key_del_cb : rum_pair_key_del_cb); } static int rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct rum_softc *sc = ni->ni_ic->ic_softc; int ret; RUM_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!sc->sc_running) { ret = ENETDOWN; goto bad; } if (sc->tx_nfree < RUM_TX_MINFREE) { ret = EIO; goto bad; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if ((ret = rum_tx_mgt(sc, m, ni)) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) goto bad; } RUM_UNLOCK(sc); return 0; bad: RUM_UNLOCK(sc); m_freem(m); return ret; } static void rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct rum_vap *rvp = RUM_VAP(vap); /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); } static void rum_ratectl_timeout(void *arg) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct ieee80211com *ic = vap->iv_ic; ieee80211_runtask(ic, &rvp->ratectl_task); } static void rum_ratectl_task(void *arg, int pending) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct rum_softc *sc = vap->iv_ic->ic_softc; struct ieee80211_node *ni; int ok[3], fail; int sum, success, retrycnt; RUM_LOCK(sc); /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ success = ok[0] + ok[1] + ok[2]; sum = success + fail; /* XXX at least */ retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); if (sum != 0) { ni = ieee80211_ref_node(vap->iv_bss); ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); (void) ieee80211_ratectl_rate(ni, NULL, 0); ieee80211_free_node(ni); } /* count TX retry-fail as Tx errors */ if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); RUM_UNLOCK(sc); } static void rum_scan_start(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); rum_abort_tsf_sync(sc); rum_set_bssid(sc, ieee80211broadcastaddr); RUM_UNLOCK(sc); } static void rum_scan_end(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); if (ic->ic_opmode != IEEE80211_M_AHDEMO) rum_enable_tsf_sync(sc); else rum_enable_tsf(sc); rum_set_bssid(sc, sc->sc_bssid); RUM_UNLOCK(sc); } static void rum_set_channel(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); rum_set_chan(sc, ic->ic_curchan); RUM_UNLOCK(sc); } static int rum_get_rssi(struct rum_softc *sc, uint8_t raw) { struct ieee80211com *ic = &sc->sc_ic; int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No RSSI mapping * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2573_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (!sc->ext_5ghz_lna && lna != 1) rssi += 4; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; } static int rum_pause(struct rum_softc *sc, int timeout) { usb_pause_mtx(&sc->sc_mtx, timeout); return (0); } static device_method_t rum_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rum_match), DEVMETHOD(device_attach, rum_attach), DEVMETHOD(device_detach, rum_detach), DEVMETHOD_END }; static driver_t rum_driver = { .name = "rum", .methods = rum_methods, .size = sizeof(struct rum_softc), }; static devclass_t rum_devclass; DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); MODULE_DEPEND(rum, wlan, 1, 1, 1); MODULE_DEPEND(rum, usb, 1, 1, 1); MODULE_VERSION(rum, 1); USB_PNP_HOST_INFO(rum_devs); Index: head/sys/dev/usb/wlan/if_urtwn.c =================================================================== --- head/sys/dev/usb/wlan/if_urtwn.c (revision 292175) +++ head/sys/dev/usb/wlan/if_urtwn.c (revision 292176) @@ -1,4639 +1,4640 @@ /* $OpenBSD: if_urtwn.c,v 1.16 2011/02/10 17:26:40 jakemsr Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * Copyright (c) 2014 Kevin Lo + * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU. */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR urtwn_debug #include #include #include #ifdef USB_DEBUG static int urtwn_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, urtwn, CTLFLAG_RW, 0, "USB urtwn"); SYSCTL_INT(_hw_usb_urtwn, OID_AUTO, debug, CTLFLAG_RWTUN, &urtwn_debug, 0, "Debug level"); #endif #define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh) /* various supported device vendors/products */ static const STRUCT_USB_HOST_ID urtwn_devs[] = { #define URTWN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } #define URTWN_RTL8188E_DEV(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTWN_RTL8188E) } #define URTWN_RTL8188E 1 URTWN_DEV(ABOCOM, RTL8188CU_1), URTWN_DEV(ABOCOM, RTL8188CU_2), URTWN_DEV(ABOCOM, RTL8192CU), URTWN_DEV(ASUS, RTL8192CU), URTWN_DEV(ASUS, USBN10NANO), URTWN_DEV(AZUREWAVE, RTL8188CE_1), URTWN_DEV(AZUREWAVE, RTL8188CE_2), URTWN_DEV(AZUREWAVE, RTL8188CU), URTWN_DEV(BELKIN, F7D2102), URTWN_DEV(BELKIN, RTL8188CU), URTWN_DEV(BELKIN, RTL8192CU), URTWN_DEV(CHICONY, RTL8188CUS_1), URTWN_DEV(CHICONY, RTL8188CUS_2), URTWN_DEV(CHICONY, RTL8188CUS_3), URTWN_DEV(CHICONY, RTL8188CUS_4), URTWN_DEV(CHICONY, RTL8188CUS_5), URTWN_DEV(COREGA, RTL8192CU), URTWN_DEV(DLINK, RTL8188CU), URTWN_DEV(DLINK, RTL8192CU_1), URTWN_DEV(DLINK, RTL8192CU_2), URTWN_DEV(DLINK, RTL8192CU_3), URTWN_DEV(DLINK, DWA131B), URTWN_DEV(EDIMAX, EW7811UN), URTWN_DEV(EDIMAX, RTL8192CU), URTWN_DEV(FEIXUN, RTL8188CU), URTWN_DEV(FEIXUN, RTL8192CU), URTWN_DEV(GUILLEMOT, HWNUP150), URTWN_DEV(HAWKING, RTL8192CU), URTWN_DEV(HP3, RTL8188CU), URTWN_DEV(NETGEAR, WNA1000M), URTWN_DEV(NETGEAR, RTL8192CU), URTWN_DEV(NETGEAR4, RTL8188CU), URTWN_DEV(NOVATECH, RTL8188CU), URTWN_DEV(PLANEX2, RTL8188CU_1), URTWN_DEV(PLANEX2, RTL8188CU_2), URTWN_DEV(PLANEX2, RTL8188CU_3), URTWN_DEV(PLANEX2, RTL8188CU_4), URTWN_DEV(PLANEX2, RTL8188CUS), URTWN_DEV(PLANEX2, RTL8192CU), URTWN_DEV(REALTEK, RTL8188CE_0), URTWN_DEV(REALTEK, RTL8188CE_1), URTWN_DEV(REALTEK, RTL8188CTV), URTWN_DEV(REALTEK, RTL8188CU_0), URTWN_DEV(REALTEK, RTL8188CU_1), URTWN_DEV(REALTEK, RTL8188CU_2), URTWN_DEV(REALTEK, RTL8188CU_3), URTWN_DEV(REALTEK, RTL8188CU_COMBO), URTWN_DEV(REALTEK, RTL8188CUS), URTWN_DEV(REALTEK, RTL8188RU_1), URTWN_DEV(REALTEK, RTL8188RU_2), URTWN_DEV(REALTEK, RTL8188RU_3), URTWN_DEV(REALTEK, RTL8191CU), URTWN_DEV(REALTEK, RTL8192CE), URTWN_DEV(REALTEK, RTL8192CU), URTWN_DEV(SITECOMEU, RTL8188CU_1), URTWN_DEV(SITECOMEU, RTL8188CU_2), URTWN_DEV(SITECOMEU, RTL8192CU), URTWN_DEV(TRENDNET, RTL8188CU), URTWN_DEV(TRENDNET, RTL8192CU), URTWN_DEV(ZYXEL, RTL8192CU), /* URTWN_RTL8188E */ URTWN_RTL8188E_DEV(DLINK, DWA123D1), URTWN_RTL8188E_DEV(DLINK, DWA125D1), URTWN_RTL8188E_DEV(ELECOM, WDC150SU2M), URTWN_RTL8188E_DEV(REALTEK, RTL8188ETV), URTWN_RTL8188E_DEV(REALTEK, RTL8188EU), #undef URTWN_RTL8188E_DEV #undef URTWN_DEV }; static device_probe_t urtwn_match; static device_attach_t urtwn_attach; static device_detach_t urtwn_detach; static usb_callback_t urtwn_bulk_tx_callback; static usb_callback_t urtwn_bulk_rx_callback; static void urtwn_drain_mbufq(struct urtwn_softc *sc); static usb_error_t urtwn_do_request(struct urtwn_softc *, struct usb_device_request *, void *); static struct ieee80211vap *urtwn_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void urtwn_vap_delete(struct ieee80211vap *); static struct mbuf * urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int, int *); static struct mbuf * urtwn_report_intr(struct usb_xfer *, struct urtwn_data *, int *, int8_t *); static struct mbuf * urtwn_rxeof(struct urtwn_softc *, uint8_t *, int, int *, int8_t *); static void urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *, void *); static void urtwn_txeof(struct urtwn_softc *, struct urtwn_data *, int); static int urtwn_alloc_list(struct urtwn_softc *, struct urtwn_data[], int, int); static int urtwn_alloc_rx_list(struct urtwn_softc *); static int urtwn_alloc_tx_list(struct urtwn_softc *); static void urtwn_free_list(struct urtwn_softc *, struct urtwn_data data[], int); static void urtwn_free_rx_list(struct urtwn_softc *); static void urtwn_free_tx_list(struct urtwn_softc *); static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *); static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *); static usb_error_t urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static usb_error_t urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t); static usb_error_t urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t); static usb_error_t urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t); static usb_error_t urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t); static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t); static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t); static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int); static void urtwn_cmdq_cb(void *, int); static int urtwn_cmd_sleepable(struct urtwn_softc *, const void *, size_t, CMD_FUNC_PROTO); static void urtwn_r92c_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static void urtwn_r88e_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t); static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t); static int urtwn_efuse_read_next(struct urtwn_softc *, uint8_t *); static int urtwn_efuse_read_data(struct urtwn_softc *, uint8_t *, uint8_t, uint8_t); #ifdef URTWN_DEBUG static void urtwn_dump_rom_contents(struct urtwn_softc *, uint8_t *, uint16_t); #endif static int urtwn_efuse_read(struct urtwn_softc *, uint8_t *, uint16_t); static int urtwn_efuse_switch_power(struct urtwn_softc *); static int urtwn_read_chipid(struct urtwn_softc *); static int urtwn_read_rom(struct urtwn_softc *); static int urtwn_r88e_read_rom(struct urtwn_softc *); static int urtwn_ra_init(struct urtwn_softc *); static void urtwn_init_beacon(struct urtwn_softc *, struct urtwn_vap *); static int urtwn_setup_beacon(struct urtwn_softc *, struct ieee80211_node *); static void urtwn_update_beacon(struct ieee80211vap *, int); static int urtwn_tx_beacon(struct urtwn_softc *sc, struct urtwn_vap *); static int urtwn_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static void urtwn_key_set_cb(struct urtwn_softc *, union sec_param *); static void urtwn_key_del_cb(struct urtwn_softc *, union sec_param *); static int urtwn_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int urtwn_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static void urtwn_tsf_task_adhoc(void *, int); static void urtwn_tsf_sync_enable(struct urtwn_softc *, struct ieee80211vap *); static void urtwn_set_led(struct urtwn_softc *, int, int); static void urtwn_set_mode(struct urtwn_softc *, uint8_t); static void urtwn_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); static int urtwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void urtwn_watchdog(void *); static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t); static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *); static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *); static int urtwn_tx_data(struct urtwn_softc *, struct ieee80211_node *, struct mbuf *, struct urtwn_data *); static void urtwn_tx_start(struct urtwn_softc *, struct mbuf *, uint8_t, struct urtwn_data *); static int urtwn_transmit(struct ieee80211com *, struct mbuf *); static void urtwn_start(struct urtwn_softc *); static void urtwn_parent(struct ieee80211com *); static int urtwn_r92c_power_on(struct urtwn_softc *); static int urtwn_r88e_power_on(struct urtwn_softc *); static int urtwn_llt_init(struct urtwn_softc *); static void urtwn_fw_reset(struct urtwn_softc *); static void urtwn_r88e_fw_reset(struct urtwn_softc *); static int urtwn_fw_loadpage(struct urtwn_softc *, int, const uint8_t *, int); static int urtwn_load_firmware(struct urtwn_softc *); static int urtwn_dma_init(struct urtwn_softc *); static int urtwn_mac_init(struct urtwn_softc *); static void urtwn_bb_init(struct urtwn_softc *); static void urtwn_rf_init(struct urtwn_softc *); static void urtwn_cam_init(struct urtwn_softc *); static int urtwn_cam_write(struct urtwn_softc *, uint32_t, uint32_t); static void urtwn_pa_bias_init(struct urtwn_softc *); static void urtwn_rxfilter_init(struct urtwn_softc *); static void urtwn_edca_init(struct urtwn_softc *); static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]); static void urtwn_get_txpower(struct urtwn_softc *, int, struct ieee80211_channel *, struct ieee80211_channel *, uint16_t[]); static void urtwn_r88e_get_txpower(struct urtwn_softc *, int, struct ieee80211_channel *, struct ieee80211_channel *, uint16_t[]); static void urtwn_set_txpower(struct urtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static void urtwn_set_rx_bssid_all(struct urtwn_softc *, int); static void urtwn_set_gain(struct urtwn_softc *, uint8_t); static void urtwn_scan_start(struct ieee80211com *); static void urtwn_scan_end(struct ieee80211com *); static void urtwn_set_channel(struct ieee80211com *); static int urtwn_wme_update(struct ieee80211com *); static void urtwn_set_promisc(struct urtwn_softc *); static void urtwn_update_promisc(struct ieee80211com *); static void urtwn_update_mcast(struct ieee80211com *); static struct ieee80211_node *urtwn_r88e_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void urtwn_r88e_newassoc(struct ieee80211_node *, int); static void urtwn_r88e_node_free(struct ieee80211_node *); static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static void urtwn_iq_calib(struct urtwn_softc *); static void urtwn_lc_calib(struct urtwn_softc *); static int urtwn_init(struct urtwn_softc *); static void urtwn_stop(struct urtwn_softc *); static void urtwn_abort_xfers(struct urtwn_softc *); static int urtwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void urtwn_ms_delay(struct urtwn_softc *); /* Aliases. */ #define urtwn_bb_write urtwn_write_4 #define urtwn_bb_read urtwn_read_4 static const struct usb_config urtwn_config[URTWN_N_TRANSFER] = { [URTWN_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = URTWN_RXBUFSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = urtwn_bulk_rx_callback, }, [URTWN_BULK_TX_BE] = { .type = UE_BULK, .endpoint = 0x03, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_BK] = { .type = UE_BULK, .endpoint = 0x03, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1, }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_VI] = { .type = UE_BULK, .endpoint = 0x02, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_VO] = { .type = UE_BULK, .endpoint = 0x02, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, }; static const struct wme_to_queue { uint16_t reg; uint8_t qid; } wme2queue[WME_NUM_AC] = { { R92C_EDCA_BE_PARAM, URTWN_BULK_TX_BE}, { R92C_EDCA_BK_PARAM, URTWN_BULK_TX_BK}, { R92C_EDCA_VI_PARAM, URTWN_BULK_TX_VI}, { R92C_EDCA_VO_PARAM, URTWN_BULK_TX_VO} }; static int urtwn_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != URTWN_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != URTWN_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(urtwn_devs, sizeof(urtwn_devs), uaa)); } static int urtwn_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct urtwn_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; uint8_t bands; int error; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; if (USB_GET_DRIVER_INFO(uaa) == URTWN_RTL8188E) sc->chip |= URTWN_CHIP_88E; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); URTWN_CMDQ_LOCK_INIT(sc); URTWN_NT_LOCK_INIT(sc); callout_init(&sc->sc_watchdog_ch, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_iface_index = URTWN_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &sc->sc_iface_index, sc->sc_xfer, urtwn_config, URTWN_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } URTWN_LOCK(sc); error = urtwn_read_chipid(sc); if (error) { device_printf(sc->sc_dev, "unsupported test chip\n"); URTWN_UNLOCK(sc); goto detach; } /* Determine number of Tx/Rx chains. */ if (sc->chip & URTWN_CHIP_92C) { sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2; sc->nrxchains = 2; } else { sc->ntxchains = 1; sc->nrxchains = 1; } if (sc->chip & URTWN_CHIP_88E) error = urtwn_r88e_read_rom(sc); else error = urtwn_read_rom(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot read rom, error %d\n", __func__, error); URTWN_UNLOCK(sc); goto detach; } device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n", (sc->chip & URTWN_CHIP_92C) ? "8192CU" : (sc->chip & URTWN_CHIP_88E) ? "8188EU" : (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" : (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" : "8188CUS", sc->ntxchains, sc->nrxchains); URTWN_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_IBSS /* adhoc mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ ; ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = urtwn_raw_xmit; ic->ic_scan_start = urtwn_scan_start; ic->ic_scan_end = urtwn_scan_end; ic->ic_set_channel = urtwn_set_channel; ic->ic_transmit = urtwn_transmit; ic->ic_parent = urtwn_parent; ic->ic_vap_create = urtwn_vap_create; ic->ic_vap_delete = urtwn_vap_delete; ic->ic_wme.wme_update = urtwn_wme_update; ic->ic_update_promisc = urtwn_update_promisc; ic->ic_update_mcast = urtwn_update_mcast; if (sc->chip & URTWN_CHIP_88E) { ic->ic_node_alloc = urtwn_r88e_node_alloc; ic->ic_newassoc = urtwn_r88e_newassoc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = urtwn_r88e_node_free; } ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), URTWN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), URTWN_RX_RADIOTAP_PRESENT); TASK_INIT(&sc->cmdq_task, 0, urtwn_cmdq_cb, sc); if (bootverbose) ieee80211_announce(ic); return (0); detach: urtwn_detach(self); return (ENXIO); /* failure */ } static int urtwn_detach(device_t self) { struct urtwn_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; /* Prevent further ioctls. */ URTWN_LOCK(sc); sc->sc_flags |= URTWN_DETACHED; URTWN_UNLOCK(sc); urtwn_stop(sc); callout_drain(&sc->sc_watchdog_ch); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, URTWN_N_TRANSFER); /* Prevent further allocations from RX/TX data lists. */ URTWN_LOCK(sc); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); URTWN_UNLOCK(sc); /* drain USB transfers */ for (x = 0; x != URTWN_N_TRANSFER; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* Free data buffers. */ URTWN_LOCK(sc); urtwn_free_tx_list(sc); urtwn_free_rx_list(sc); URTWN_UNLOCK(sc); if (ic->ic_softc == sc) { ieee80211_draintask(ic, &sc->cmdq_task); ieee80211_ifdetach(ic); } URTWN_NT_LOCK_DESTROY(sc); URTWN_CMDQ_LOCK_DESTROY(sc); mtx_destroy(&sc->sc_mtx); return (0); } static void urtwn_drain_mbufq(struct urtwn_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; URTWN_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static usb_error_t urtwn_do_request(struct urtwn_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; URTWN_ASSERT_LOCKED(sc); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); usb_pause_mtx(&sc->sc_mtx, hz / 100); } return (err); } static struct ieee80211vap * urtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct urtwn_softc *sc = ic->ic_softc; struct urtwn_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct urtwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_IBSS) urtwn_init_beacon(sc, uvp); /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = urtwn_newstate; vap->iv_update_beacon = urtwn_update_beacon; vap->iv_key_alloc = urtwn_key_alloc; vap->iv_key_set = urtwn_key_set; vap->iv_key_delete = urtwn_key_delete; if (opmode == IEEE80211_M_IBSS) { uvp->recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = urtwn_ibss_recv_mgmt; TASK_INIT(&uvp->tsf_task_adhoc, 0, urtwn_tsf_task_adhoc, vap); } if (URTWN_CHIP_HAS_RATECTL(sc)) ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void urtwn_vap_delete(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct urtwn_softc *sc = ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); if (uvp->bcn_mbuf != NULL) m_freem(uvp->bcn_mbuf); if (vap->iv_opmode == IEEE80211_M_IBSS) ieee80211_draintask(ic, &uvp->tsf_task_adhoc); if (URTWN_CHIP_HAS_RATECTL(sc)) ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static struct mbuf * urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen, int *rssi_p) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct mbuf *m; struct r92c_rx_stat *stat; uint32_t rxdw0, rxdw3; uint8_t rate, cipher; int8_t rssi = 0; int infosz; /* * don't pass packets to the ieee80211 framework if the driver isn't * RUNNING. */ if (!(sc->sc_flags & URTWN_RUNNING)) return (NULL); stat = (struct r92c_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); rxdw3 = le32toh(stat->rxdw3); if (rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR)) { /* * This should not happen since we setup our Rx filter * to not receive these frames. */ counter_u64_add(ic->ic_ierrors, 1); return (NULL); } if (pktlen < sizeof(struct ieee80211_frame_ack) || pktlen > MCLBYTES) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } rate = MS(rxdw3, R92C_RXDW3_RATE); cipher = MS(rxdw0, R92C_RXDW0_CIPHER); infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { if (sc->chip & URTWN_CHIP_88E) rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]); else rssi = urtwn_get_rssi(sc, rate, &stat[1]); /* Update our average RSSI. */ urtwn_update_avgrssi(sc, rate, rssi); } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "could not create RX mbuf\n"); return (NULL); } /* Finalize mbuf. */ memcpy(mtod(m, uint8_t *), (uint8_t *)&stat[1] + infosz, pktlen); m->m_pkthdr.len = m->m_len = pktlen; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && cipher != R92C_CAM_ALGO_NONE) { m->m_flags |= M_WEP; } if (ieee80211_radiotap_active(ic)) { struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; /* Map HW rate index to 802.11 rate. */ if (!(rxdw3 & R92C_RXDW3_HT)) { tap->wr_rate = ridx2rate[rate]; } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } tap->wr_dbm_antsignal = rssi; tap->wr_dbm_antnoise = URTWN_NOISE_FLOOR; } *rssi_p = rssi; return (m); } static struct mbuf * urtwn_report_intr(struct usb_xfer *xfer, struct urtwn_data *data, int *rssi, int8_t *nf) { struct urtwn_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct r92c_rx_stat *stat; uint8_t *buf; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); if (len < sizeof(*stat)) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } buf = data->buf; stat = (struct r92c_rx_stat *)buf; if (sc->chip & URTWN_CHIP_88E) { int report_sel = MS(le32toh(stat->rxdw3), R88E_RXDW3_RPT); switch (report_sel) { case R88E_RXDW3_RPT_RX: return (urtwn_rxeof(sc, buf, len, rssi, nf)); case R88E_RXDW3_RPT_TX1: urtwn_r88e_ratectl_tx_complete(sc, &stat[1]); break; default: DPRINTFN(7, "case %d was not handled\n", report_sel); break; } } else return (urtwn_rxeof(sc, buf, len, rssi, nf)); return (NULL); } static struct mbuf * urtwn_rxeof(struct urtwn_softc *sc, uint8_t *buf, int len, int *rssi, int8_t *nf) { struct r92c_rx_stat *stat; struct mbuf *m, *m0 = NULL, *prevm = NULL; uint32_t rxdw0; int totlen, pktlen, infosz, npkts; /* Get the number of encapsulated frames. */ stat = (struct r92c_rx_stat *)buf; npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT); DPRINTFN(6, "Rx %d frames in one chunk\n", npkts); /* Process all of them. */ while (npkts-- > 0) { if (len < sizeof(*stat)) break; stat = (struct r92c_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (pktlen == 0) break; infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (totlen > len) break; m = urtwn_rx_frame(sc, buf, pktlen, rssi); if (m0 == NULL) m0 = m; if (prevm == NULL) prevm = m; else { prevm->m_next = m; prevm = m; } /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } return (m0); } static void urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *sc, void *arg) { struct r88e_tx_rpt_ccx *rpt = arg; struct ieee80211vap *vap; struct ieee80211_node *ni; uint8_t macid; int ntries; macid = MS(rpt->rptb1, R88E_RPTB1_MACID); ntries = MS(rpt->rptb2, R88E_RPTB2_RETRY_CNT); URTWN_NT_LOCK(sc); ni = sc->node_list[macid]; if (ni != NULL) { vap = ni->ni_vap; if (rpt->rptb1 & R88E_RPTB1_PKT_OK) { ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ntries, NULL); } else { ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &ntries, NULL); } } else DPRINTFN(8, "macid %d, ni is NULL\n", macid); URTWN_NT_UNLOCK(sc); } static void urtwn_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtwn_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m = NULL, *next; struct urtwn_data *data; int8_t nf; int rssi = 1; URTWN_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = urtwn_report_intr(xfer, data, &rssi, &nf); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ URTWN_UNLOCK(sc); while (m != NULL) { next = m->m_next; m->m_next = NULL; wh = mtod(m, struct ieee80211_frame_min *); if (m->m_len >= sizeof(*wh)) ni = ieee80211_find_rxnode(ic, wh); else ni = NULL; nf = URTWN_NOISE_FLOOR; if (ni != NULL) { (void)ieee80211_input(ni, m, rssi - nf, nf); ieee80211_free_node(ni); } else { (void)ieee80211_input_all(ic, m, rssi - nf, nf); } m = next; } URTWN_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } } static void urtwn_txeof(struct urtwn_softc *sc, struct urtwn_data *data, int status) { URTWN_ASSERT_LOCKED(sc); if (data->ni != NULL) /* not a beacon frame */ ieee80211_tx_complete(data->ni, data->m, status); data->ni = NULL; data->m = NULL; sc->sc_txtimer = 0; STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); } static int urtwn_alloc_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct urtwn_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: urtwn_free_list(sc, data, ndata); return (error); } static int urtwn_alloc_rx_list(struct urtwn_softc *sc) { int error, i; error = urtwn_alloc_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT, URTWN_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < URTWN_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int urtwn_alloc_tx_list(struct urtwn_softc *sc) { int error, i; error = urtwn_alloc_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT, URTWN_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < URTWN_TX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); return (0); } static void urtwn_free_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct urtwn_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static void urtwn_free_rx_list(struct urtwn_softc *sc) { urtwn_free_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT); } static void urtwn_free_tx_list(struct urtwn_softc *sc) { urtwn_free_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT); } static void urtwn_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtwn_softc *sc = usbd_xfer_softc(xfer); struct urtwn_data *data; URTWN_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)){ case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); urtwn_txeof(sc, data, 0); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF("%s: empty pending queue\n", __func__); goto finish; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); urtwn_txeof(sc, data, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } finish: /* Kick-start more transmit */ urtwn_start(sc); } static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *sc) { struct urtwn_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else DPRINTF("%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *sc) { struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); bf = _urtwn_getbuf(sc); if (bf == NULL) DPRINTF("%s: stop queue\n", __func__); return (bf); } static usb_error_t urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (urtwn_do_request(sc, &req, buf)); } static usb_error_t urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val) { return (urtwn_write_region_1(sc, addr, &val, sizeof(val))); } static usb_error_t urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val))); } static usb_error_t urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val))); } static usb_error_t urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (urtwn_do_request(sc, &req, buf)); } static uint8_t urtwn_read_1(struct urtwn_softc *sc, uint16_t addr) { uint8_t val; if (urtwn_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } static uint16_t urtwn_read_2(struct urtwn_softc *sc, uint16_t addr) { uint16_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (le16toh(val)); } static uint32_t urtwn_read_4(struct urtwn_softc *sc, uint16_t addr) { uint32_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (le32toh(val)); } static int urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len) { struct r92c_fw_cmd cmd; usb_error_t error; int ntries; /* Wait for current FW box to be empty. */ for (ntries = 0; ntries < 100; ntries++) { if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur))) break; urtwn_ms_delay(sc); } if (ntries == 100) { device_printf(sc->sc_dev, "could not send firmware command\n"); return (ETIMEDOUT); } memset(&cmd, 0, sizeof(cmd)); cmd.id = id; if (len > 3) cmd.id |= R92C_CMD_FLAG_EXT; KASSERT(len <= sizeof(cmd.msg), ("urtwn_fw_cmd\n")); memcpy(cmd.msg, buf, len); /* Write the first word last since that will trigger the FW. */ error = urtwn_write_region_1(sc, R92C_HMEBOX_EXT(sc->fwcur), (uint8_t *)&cmd + 4, 2); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_region_1(sc, R92C_HMEBOX(sc->fwcur), (uint8_t *)&cmd + 0, 4); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX; return (0); } static void urtwn_cmdq_cb(void *arg, int pending) { struct urtwn_softc *sc = arg; struct urtwn_cmdq *item; /* * Device must be powered on (via urtwn_power_on()) * before any command may be sent. */ URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { URTWN_UNLOCK(sc); return; } URTWN_CMDQ_LOCK(sc); while (sc->cmdq[sc->cmdq_first].func != NULL) { item = &sc->cmdq[sc->cmdq_first]; sc->cmdq_first = (sc->cmdq_first + 1) % URTWN_CMDQ_SIZE; URTWN_CMDQ_UNLOCK(sc); item->func(sc, &item->data); URTWN_CMDQ_LOCK(sc); memset(item, 0, sizeof (*item)); } URTWN_CMDQ_UNLOCK(sc); URTWN_UNLOCK(sc); } static int urtwn_cmd_sleepable(struct urtwn_softc *sc, const void *ptr, size_t len, CMD_FUNC_PROTO) { struct ieee80211com *ic = &sc->sc_ic; KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); URTWN_CMDQ_LOCK(sc); if (sc->cmdq[sc->cmdq_last].func != NULL) { device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); URTWN_CMDQ_UNLOCK(sc); return (EAGAIN); } if (ptr != NULL) memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); sc->cmdq[sc->cmdq_last].func = func; sc->cmdq_last = (sc->cmdq_last + 1) % URTWN_CMDQ_SIZE; URTWN_CMDQ_UNLOCK(sc); ieee80211_runtask(ic, &sc->cmdq_task); return (0); } static __inline void urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { sc->sc_rf_write(sc, chain, addr, val); } static void urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static void urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static uint32_t urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr) { uint32_t reg[R92C_MAX_CHAINS], val; reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)); if (chain != 0) reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain)); urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain), RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) | R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] | R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain)); else val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain)); return (MS(val, R92C_LSSI_READBACK_DATA)); } static int urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { usb_error_t error; int ntries; error = urtwn_write_4(sc, R92C_LLT_INIT, SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | SM(R92C_LLT_INIT_ADDR, addr) | SM(R92C_LLT_INIT_DATA, data)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Wait for write operation to complete. */ for (ntries = 0; ntries < 20; ntries++) { if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == R92C_LLT_INIT_OP_NO_ACTIVE) return (0); urtwn_ms_delay(sc); } return (ETIMEDOUT); } static int urtwn_efuse_read_next(struct urtwn_softc *sc, uint8_t *val) { uint32_t reg; usb_error_t error; int ntries; if (sc->last_rom_addr >= URTWN_EFUSE_MAX_LEN) return (EFAULT); reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); reg = RW(reg, R92C_EFUSE_CTRL_ADDR, sc->last_rom_addr); reg &= ~R92C_EFUSE_CTRL_VALID; error = urtwn_write_4(sc, R92C_EFUSE_CTRL, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); if (reg & R92C_EFUSE_CTRL_VALID) break; urtwn_ms_delay(sc); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read efuse byte at address 0x%x\n", sc->last_rom_addr); return (ETIMEDOUT); } *val = MS(reg, R92C_EFUSE_CTRL_DATA); sc->last_rom_addr++; return (0); } static int urtwn_efuse_read_data(struct urtwn_softc *sc, uint8_t *rom, uint8_t off, uint8_t msk) { uint8_t reg; int i, error; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; error = urtwn_efuse_read_next(sc, ®); if (error != 0) return (error); DPRINTF("rom[0x%03X] == 0x%02X\n", off * 8 + i * 2, reg); rom[off * 8 + i * 2 + 0] = reg; error = urtwn_efuse_read_next(sc, ®); if (error != 0) return (error); DPRINTF("rom[0x%03X] == 0x%02X\n", off * 8 + i * 2 + 1, reg); rom[off * 8 + i * 2 + 1] = reg; } return (0); } #ifdef URTWN_DEBUG static void urtwn_dump_rom_contents(struct urtwn_softc *sc, uint8_t *rom, uint16_t size) { int i; /* Dump ROM contents. */ device_printf(sc->sc_dev, "%s:", __func__); for (i = 0; i < size; i++) { if (i % 32 == 0) printf("\n%03X: ", i); else if (i % 4 == 0) printf(" "); printf("%02X", rom[i]); } printf("\n"); } #endif static int urtwn_efuse_read(struct urtwn_softc *sc, uint8_t *rom, uint16_t size) { #define URTWN_CHK(res) do { \ if ((error = res) != 0) \ goto end; \ } while(0) uint8_t msk, off, reg; int error; URTWN_CHK(urtwn_efuse_switch_power(sc)); /* Read full ROM image. */ sc->last_rom_addr = 0; memset(rom, 0xff, size); URTWN_CHK(urtwn_efuse_read_next(sc, ®)); while (reg != 0xff) { /* check for extended header */ if ((sc->chip & URTWN_CHIP_88E) && (reg & 0x1f) == 0x0f) { off = reg >> 5; URTWN_CHK(urtwn_efuse_read_next(sc, ®)); if ((reg & 0x0f) != 0x0f) off = ((reg & 0xf0) >> 1) | off; else continue; } else off = reg >> 4; msk = reg & 0xf; URTWN_CHK(urtwn_efuse_read_data(sc, rom, off, msk)); URTWN_CHK(urtwn_efuse_read_next(sc, ®)); } end: #ifdef URTWN_DEBUG if (urtwn_debug >= 2) urtwn_dump_rom_contents(sc, rom, size); #endif urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_OFF); if (error != 0) { device_printf(sc->sc_dev, "%s: error while reading ROM\n", __func__); } return (error); #undef URTWN_CHK } static int urtwn_efuse_switch_power(struct urtwn_softc *sc) { usb_error_t error; uint32_t reg; error = urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_ON); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL); if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) { error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL, reg | R92C_SYS_ISO_CTRL_PWC_EV12V); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_ELDR)) { error = urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_ELDR); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } reg = urtwn_read_2(sc, R92C_SYS_CLKR); if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) != (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) { error = urtwn_write_2(sc, R92C_SYS_CLKR, reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } return (0); } static int urtwn_read_chipid(struct urtwn_softc *sc) { uint32_t reg; if (sc->chip & URTWN_CHIP_88E) return (0); reg = urtwn_read_4(sc, R92C_SYS_CFG); if (reg & R92C_SYS_CFG_TRP_VAUX_EN) return (EIO); if (reg & R92C_SYS_CFG_TYPE_92C) { sc->chip |= URTWN_CHIP_92C; /* Check if it is a castrated 8192C. */ if (MS(urtwn_read_4(sc, R92C_HPON_FSM), R92C_HPON_FSM_CHIP_BONDING_ID) == R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) sc->chip |= URTWN_CHIP_92C_1T2R; } if (reg & R92C_SYS_CFG_VENDOR_UMC) { sc->chip |= URTWN_CHIP_UMC; if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) sc->chip |= URTWN_CHIP_UMC_A_CUT; } return (0); } static int urtwn_read_rom(struct urtwn_softc *sc) { struct r92c_rom *rom = &sc->rom.r92c_rom; int error; /* Read full ROM image. */ error = urtwn_efuse_read(sc, (uint8_t *)rom, sizeof(*rom)); if (error != 0) return (error); /* XXX Weird but this is what the vendor driver does. */ sc->last_rom_addr = 0x1fa; error = urtwn_efuse_read_next(sc, &sc->pa_setting); if (error != 0) return (error); DPRINTF("PA setting=0x%x\n", sc->pa_setting); sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE); sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY); DPRINTF("regulatory type=%d\n", sc->regulatory); IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr); sc->sc_rf_write = urtwn_r92c_rf_write; sc->sc_power_on = urtwn_r92c_power_on; return (0); } static int urtwn_r88e_read_rom(struct urtwn_softc *sc) { uint8_t *rom = sc->rom.r88e_rom; uint16_t addr; int error, i; error = urtwn_efuse_read(sc, rom, sizeof(sc->rom.r88e_rom)); if (error != 0) return (error); addr = 0x10; for (i = 0; i < 6; i++) sc->cck_tx_pwr[i] = rom[addr++]; for (i = 0; i < 5; i++) sc->ht40_tx_pwr[i] = rom[addr++]; sc->bw20_tx_pwr_diff = (rom[addr] & 0xf0) >> 4; if (sc->bw20_tx_pwr_diff & 0x08) sc->bw20_tx_pwr_diff |= 0xf0; sc->ofdm_tx_pwr_diff = (rom[addr] & 0xf); if (sc->ofdm_tx_pwr_diff & 0x08) sc->ofdm_tx_pwr_diff |= 0xf0; sc->regulatory = MS(rom[0xc1], R92C_ROM_RF1_REGULATORY); IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, &rom[0xd7]); sc->sc_rf_write = urtwn_r88e_rf_write; sc->sc_power_on = urtwn_r88e_power_on; return (0); } /* * Initialize rate adaptation in firmware. */ static int urtwn_ra_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct ieee80211_rateset *rs; struct r92c_fw_cmd_macid_cfg cmd; uint32_t rates, basicrates; uint8_t mode; int maxrate, maxbasicrate, error, i, j; ni = ieee80211_ref_node(vap->iv_bss); rs = &ni->ni_rates; /* Get normal and basic rates mask. */ rates = basicrates = 0; maxrate = maxbasicrate = 0; for (i = 0; i < rs->rs_nrates; i++) { /* Convert 802.11 rate to HW rate index. */ for (j = 0; j < nitems(ridx2rate); j++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == ridx2rate[j]) break; if (j == nitems(ridx2rate)) /* Unknown rate, skip. */ continue; rates |= 1 << j; if (j > maxrate) maxrate = j; if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) { basicrates |= 1 << j; if (j > maxbasicrate) maxbasicrate = j; } } if (ic->ic_curmode == IEEE80211_MODE_11B) mode = R92C_RAID_11B; else mode = R92C_RAID_11BG; DPRINTF("mode=0x%x rates=0x%08x, basicrates=0x%08x\n", mode, rates, basicrates); /* Set rates mask for group addressed frames. */ cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | basicrates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { ieee80211_free_node(ni); device_printf(sc->sc_dev, "could not add broadcast station\n"); return (error); } /* Set initial MRR rate. */ DPRINTF("maxbasicrate=%d\n", maxbasicrate); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate); /* Set rates mask for unicast frames. */ cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | rates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { ieee80211_free_node(ni); device_printf(sc->sc_dev, "could not add BSS station\n"); return (error); } /* Set initial MRR rate. */ DPRINTF("maxrate=%d\n", maxrate); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate); /* Indicate highest supported rate. */ ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1]; ieee80211_free_node(ni); return (0); } static void urtwn_init_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp) { struct r92c_tx_desc *txd = &uvp->bcn_desc; txd->txdw0 = htole32( SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_BMCAST | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); txd->txdw1 = htole32( SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BEACON) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); if (sc->chip & URTWN_CHIP_88E) { txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, URTWN_MACID_BC)); txd->txdseq |= htole16(R88E_TXDSEQ_HWSEQ_EN); } else { txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, URTWN_MACID_BC)); txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN); } txd->txdw4 = htole32(R92C_TXDW4_DRVRATE); txd->txdw5 = htole32(SM(R92C_TXDW5_DATARATE, URTWN_RIDX_CCK1)); } static int urtwn_setup_beacon(struct urtwn_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct urtwn_vap *uvp = URTWN_VAP(vap); struct mbuf *m; int error; URTWN_ASSERT_LOCKED(sc); if (ni->ni_chan == IEEE80211_CHAN_ANYC) return (EINVAL); m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); return (ENOMEM); } if (uvp->bcn_mbuf != NULL) m_freem(uvp->bcn_mbuf); uvp->bcn_mbuf = m; if ((error = urtwn_tx_beacon(sc, uvp)) != 0) return (error); /* XXX bcnq stuck workaround */ if ((error = urtwn_tx_beacon(sc, uvp)) != 0) return (error); return (0); } static void urtwn_update_beacon(struct ieee80211vap *vap, int item) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; int mcast = 0; URTWN_LOCK(sc); if (uvp->bcn_mbuf == NULL) { uvp->bcn_mbuf = ieee80211_beacon_alloc(ni); if (uvp->bcn_mbuf == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); URTWN_UNLOCK(sc); return; } } URTWN_UNLOCK(sc); if (item == IEEE80211_BEACON_TIM) mcast = 1; /* XXX */ setbit(bo->bo_flags, item); ieee80211_beacon_update(ni, uvp->bcn_mbuf, mcast); URTWN_LOCK(sc); urtwn_tx_beacon(sc, uvp); URTWN_UNLOCK(sc); } /* * Push a beacon frame into the chip. Beacon will * be repeated by the chip every R92C_BCN_INTERVAL. */ static int urtwn_tx_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp) { struct r92c_tx_desc *desc = &uvp->bcn_desc; struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); bf = urtwn_getbuf(sc); if (bf == NULL) return (ENOMEM); memcpy(bf->buf, desc, sizeof(*desc)); urtwn_tx_start(sc, uvp->bcn_mbuf, IEEE80211_FC0_TYPE_MGT, bf); sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); return (0); } static int urtwn_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; uint8_t i; if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { URTWN_LOCK(sc); /* * First 4 slots for group keys, * what is left - for pairwise. * XXX incompatible with IBSS RSN. */ for (i = IEEE80211_WEP_NKID; i < R92C_CAM_ENTRY_COUNT; i++) { if ((sc->keys_bmap & (1 << i)) == 0) { sc->keys_bmap |= 1 << i; *keyix = i; break; } } URTWN_UNLOCK(sc); if (i == R92C_CAM_ENTRY_COUNT) { device_printf(sc->sc_dev, "%s: no free space in the key table\n", __func__); return 0; } } else *keyix = 0; } else { *keyix = k - vap->iv_nw_keys; } *rxkeyix = *keyix; return 1; } static void urtwn_key_set_cb(struct urtwn_softc *sc, union sec_param *data) { struct ieee80211_key *k = &data->key; uint8_t algo, keyid; int i, error; if (k->wk_keyix < IEEE80211_WEP_NKID) keyid = k->wk_keyix; else keyid = 0; /* Map net80211 cipher to HW crypto algorithm. */ switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: if (k->wk_keylen < 8) algo = R92C_CAM_ALGO_WEP40; else algo = R92C_CAM_ALGO_WEP104; break; case IEEE80211_CIPHER_TKIP: algo = R92C_CAM_ALGO_TKIP; break; case IEEE80211_CIPHER_AES_CCM: algo = R92C_CAM_ALGO_AES; break; default: device_printf(sc->sc_dev, "%s: undefined cipher %d\n", __func__, k->wk_cipher->ic_cipher); return; } DPRINTFN(9, "keyix %d, keyid %d, algo %d/%d, flags %04X, len %d, " "macaddr %s\n", k->wk_keyix, keyid, k->wk_cipher->ic_cipher, algo, k->wk_flags, k->wk_keylen, ether_sprintf(k->wk_macaddr)); /* Write key. */ for (i = 0; i < 4; i++) { error = urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i), LE_READ_4(&k->wk_key[i * 4])); if (error != 0) goto fail; } /* Write CTL0 last since that will validate the CAM entry. */ error = urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix), LE_READ_4(&k->wk_macaddr[2])); if (error != 0) goto fail; error = urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix), SM(R92C_CAM_ALGO, algo) | SM(R92C_CAM_KEYID, keyid) | SM(R92C_CAM_MACLO, LE_READ_2(&k->wk_macaddr[0])) | R92C_CAM_VALID); if (error != 0) goto fail; return; fail: device_printf(sc->sc_dev, "%s fails, error %d\n", __func__, error); } static void urtwn_key_del_cb(struct urtwn_softc *sc, union sec_param *data) { struct ieee80211_key *k = &data->key; int i; DPRINTFN(9, "keyix %d, flags %04X, macaddr %s\n", k->wk_keyix, k->wk_flags, ether_sprintf(k->wk_macaddr)); urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix), 0); urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix), 0); /* Clear key. */ for (i = 0; i < 4; i++) urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i), 0); sc->keys_bmap &= ~(1 << k->wk_keyix); } static int urtwn_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return (1); } return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_set_cb)); } static int urtwn_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return (1); } return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_del_cb)); } static void urtwn_tsf_task_adhoc(void *arg, int pending) { struct ieee80211vap *vap = arg; struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct ieee80211_node *ni; uint32_t reg; URTWN_LOCK(sc); ni = ieee80211_ref_node(vap->iv_bss); reg = urtwn_read_1(sc, R92C_BCN_CTRL); /* Accept beacons with the same BSSID. */ urtwn_set_rx_bssid_all(sc, 0); /* Enable synchronization. */ reg &= ~R92C_BCN_CTRL_DIS_TSF_UDT0; urtwn_write_1(sc, R92C_BCN_CTRL, reg); /* Synchronize. */ usb_pause_mtx(&sc->sc_mtx, hz * ni->ni_intval * 5 / 1000); /* Disable synchronization. */ reg |= R92C_BCN_CTRL_DIS_TSF_UDT0; urtwn_write_1(sc, R92C_BCN_CTRL, reg); /* Remove beacon filter. */ urtwn_set_rx_bssid_all(sc, 1); /* Enable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0); reg |= R92C_BCN_CTRL_EN_BCN; urtwn_write_1(sc, R92C_BCN_CTRL, reg); ieee80211_free_node(ni); URTWN_UNLOCK(sc); } static void urtwn_tsf_sync_enable(struct urtwn_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = &sc->sc_ic; struct urtwn_vap *uvp = URTWN_VAP(vap); /* Reset TSF. */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0); switch (vap->iv_opmode) { case IEEE80211_M_STA: /* Enable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0); break; case IEEE80211_M_IBSS: ieee80211_runtask(ic, &uvp->tsf_task_adhoc); break; case IEEE80211_M_HOSTAP: /* Enable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0); urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN); break; default: device_printf(sc->sc_dev, "undefined opmode %d\n", vap->iv_opmode); return; } } static void urtwn_set_led(struct urtwn_softc *sc, int led, int on) { uint8_t reg; if (led == URTWN_LED_LINK) { if (sc->chip & URTWN_CHIP_88E) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0; urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60); if (!on) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90; urtwn_write_1(sc, R92C_LEDCFG2, reg | R92C_LEDCFG0_DIS); urtwn_write_1(sc, R92C_MAC_PINMUX_CFG, urtwn_read_1(sc, R92C_MAC_PINMUX_CFG) & 0xfe); } } else { reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70; if (!on) reg |= R92C_LEDCFG0_DIS; urtwn_write_1(sc, R92C_LEDCFG0, reg); } sc->ledlink = on; /* Save LED state. */ } } static void urtwn_set_mode(struct urtwn_softc *sc, uint8_t mode) { uint8_t reg; reg = urtwn_read_1(sc, R92C_MSR); reg = (reg & ~R92C_MSR_MASK) | mode; urtwn_write_1(sc, R92C_MSR, reg); } static void urtwn_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); uint64_t ni_tstamp, curr_tstamp; uvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); if (vap->iv_state == IEEE80211_S_RUN && (subtype == IEEE80211_FC0_SUBTYPE_BEACON || subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { ni_tstamp = le64toh(ni->ni_tstamp.tsf); #ifdef D3831 URTWN_LOCK(sc); urtwn_get_tsf(sc, &curr_tstamp); URTWN_UNLOCK(sc); curr_tstamp = le64toh(curr_tstamp); if (ni_tstamp >= curr_tstamp) (void) ieee80211_ibss_merge(ni); #else (void) sc; (void) curr_tstamp; #endif } } static int urtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct urtwn_vap *uvp = URTWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct urtwn_softc *sc = ic->ic_softc; struct ieee80211_node *ni; enum ieee80211_state ostate; uint32_t reg; uint8_t mode; int error = 0; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); URTWN_LOCK(sc); callout_stop(&sc->sc_watchdog_ch); if (ostate == IEEE80211_S_RUN) { /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); /* Set media status to 'No Link'. */ urtwn_set_mode(sc, R92C_MSR_NOLINK); /* Stop Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0); /* Disable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, (urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN) | R92C_BCN_CTRL_DIS_TSF_UDT0); /* Disable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) & ~R92C_MBID_TXBCN_RPT0); /* Reset TSF. */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0); /* Reset EDCA parameters. */ urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317); urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444); } switch (nstate) { case IEEE80211_S_INIT: /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); break; case IEEE80211_S_SCAN: /* Pause AC Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f); break; case IEEE80211_S_AUTH: urtwn_set_chan(sc, ic->ic_curchan, NULL); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); break; } ni = ieee80211_ref_node(vap->iv_bss); if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || ni->ni_chan == IEEE80211_CHAN_ANYC) { device_printf(sc->sc_dev, "%s: could not move to RUN state\n", __func__); error = EINVAL; goto end_run; } switch (vap->iv_opmode) { case IEEE80211_M_STA: mode = R92C_MSR_INFRA; break; case IEEE80211_M_IBSS: mode = R92C_MSR_ADHOC; break; case IEEE80211_M_HOSTAP: mode = R92C_MSR_AP; break; default: device_printf(sc->sc_dev, "undefined opmode %d\n", vap->iv_opmode); error = EINVAL; goto end_run; } /* Set media status to 'Associated'. */ urtwn_set_mode(sc, mode); /* Set BSSID. */ urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0])); urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4])); if (ic->ic_curmode == IEEE80211_MODE_11B) urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0); else /* 802.11b/g */ urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3); /* Enable Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Flush all AC queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0); /* Set beacon interval. */ urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval); /* Allow Rx from our BSSID only. */ if (ic->ic_promisc == 0) { reg = urtwn_read_4(sc, R92C_RCR); if (vap->iv_opmode != IEEE80211_M_HOSTAP) reg |= R92C_RCR_CBSSID_DATA; if (vap->iv_opmode != IEEE80211_M_IBSS) reg |= R92C_RCR_CBSSID_BCN; urtwn_write_4(sc, R92C_RCR, reg); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { error = urtwn_setup_beacon(sc, ni); if (error != 0) { device_printf(sc->sc_dev, "unable to push beacon into the chip, " "error %d\n", error); goto end_run; } } /* Enable TSF synchronization. */ urtwn_tsf_sync_enable(sc, vap); urtwn_write_1(sc, R92C_SIFS_CCK + 1, 10); urtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10); urtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10); urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10); urtwn_write_1(sc, R92C_R2T_SIFS + 1, 10); urtwn_write_1(sc, R92C_T2T_SIFS + 1, 10); /* Intialize rate adaptation. */ if (!(sc->chip & URTWN_CHIP_88E)) urtwn_ra_init(sc); /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); sc->avg_pwdb = -1; /* Reset average RSSI. */ /* Reset temperature calibration state machine. */ sc->thcal_state = 0; sc->thcal_lctemp = 0; end_run: ieee80211_free_node(ni); break; default: break; } URTWN_UNLOCK(sc); IEEE80211_LOCK(ic); return (error != 0 ? error : uvp->newstate(vap, nstate, arg)); } static void urtwn_watchdog(void *arg) { struct urtwn_softc *sc = arg; if (sc->sc_txtimer > 0) { if (--sc->sc_txtimer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); } } static void urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi) { int pwdb; /* Convert antenna signal to percentage. */ if (rssi <= -100 || rssi >= 20) pwdb = 0; else if (rssi >= 0) pwdb = 100; else pwdb = 100 + rssi; if (!(sc->chip & URTWN_CHIP_88E)) { if (rate <= URTWN_RIDX_CCK11) { /* CCK gain is smaller than OFDM/MCS gain. */ pwdb += 6; if (pwdb > 100) pwdb = 100; if (pwdb <= 14) pwdb -= 4; else if (pwdb <= 26) pwdb -= 8; else if (pwdb <= 34) pwdb -= 6; else if (pwdb <= 42) pwdb -= 2; } } if (sc->avg_pwdb == -1) /* Init. */ sc->avg_pwdb = pwdb; else if (sc->avg_pwdb < pwdb) sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1; else sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20); DPRINTFN(4, "PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb); } static int8_t urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 16, -12, -26, -46 }; struct r92c_rx_phystat *phy; struct r92c_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= URTWN_RIDX_CCK11) { cck = (struct r92c_rx_cck *)physt; if (sc->sc_flags & URTWN_FLAG_CCK_HIPWR) { rpt = (cck->agc_rpt >> 5) & 0x3; rssi = (cck->agc_rpt & 0x1f) << 1; } else { rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; } rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return (rssi); } static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { struct r92c_rx_phystat *phy; struct r88e_rx_cck *cck; uint8_t cck_agc_rpt, lna_idx, vga_idx; int8_t rssi; rssi = 0; if (rate <= URTWN_RIDX_CCK11) { cck = (struct r88e_rx_cck *)physt; cck_agc_rpt = cck->agc_rpt; lna_idx = (cck_agc_rpt & 0xe0) >> 5; vga_idx = cck_agc_rpt & 0x1f; switch (lna_idx) { case 7: if (vga_idx <= 27) rssi = -100 + 2* (27 - vga_idx); else rssi = -100; break; case 6: rssi = -48 + 2 * (2 - vga_idx); break; case 5: rssi = -42 + 2 * (7 - vga_idx); break; case 4: rssi = -36 + 2 * (7 - vga_idx); break; case 3: rssi = -24 + 2 * (7 - vga_idx); break; case 2: rssi = -12 + 2 * (5 - vga_idx); break; case 1: rssi = 8 - (2 * vga_idx); break; case 0: rssi = 14 - (2 * vga_idx); break; } rssi += 6; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return (rssi); } static __inline uint8_t rate2ridx(uint8_t rate) { switch (rate) { case 12: return 4; case 18: return 5; case 24: return 6; case 36: return 7; case 48: return 8; case 72: return 9; case 96: return 10; case 108: return 11; case 2: return 0; case 4: return 1; case 11: return 2; case 22: return 3; default: return 0; } } static int urtwn_tx_data(struct urtwn_softc *sc, struct ieee80211_node *ni, struct mbuf *m, struct urtwn_data *data) { const struct ieee80211_txparam *tp; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k = NULL; struct ieee80211_channel *chan; struct ieee80211_frame *wh; struct r92c_tx_desc *txd; uint8_t macid, raid, rate, ridx, subtype, type, tid, qsel; int hasqos, ismcast; URTWN_ASSERT_LOCKED(sc); /* * Software crypto. */ wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; hasqos = IEEE80211_QOS_HAS_SEQ(wh); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Select TX ring for this frame. */ if (hasqos) { tid = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid &= IEEE80211_QOS_TID; } else tid = 0; chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ? ni->ni_chan : ic->ic_curchan; tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; /* Choose a TX rate index. */ if (type == IEEE80211_FC0_TYPE_MGT) rate = tp->mgmtrate; else if (ismcast) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else if (m->m_flags & M_EAPOL) rate = tp->mgmtrate; else { if (URTWN_CHIP_HAS_RATECTL(sc)) { /* XXX pass pktlen */ (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } else { if (ic->ic_curmode != IEEE80211_MODE_11B) rate = 108; else rate = 22; } } ridx = rate2ridx(rate); if (ic->ic_curmode != IEEE80211_MODE_11B) raid = R92C_RAID_11BG; else raid = R92C_RAID_11B; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); return (ENOBUFS); } /* in case packet header moved, reset pointer */ wh = mtod(m, struct ieee80211_frame *); } /* Fill Tx descriptor. */ txd = (struct r92c_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); if (ismcast) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); if (!ismcast) { if (sc->chip & URTWN_CHIP_88E) { struct urtwn_node *un = URTWN_NODE(ni); macid = un->id; } else macid = URTWN_MACID_BSS; if (type == IEEE80211_FC0_TYPE_DATA) { qsel = tid % URTWN_MAX_TID; if (sc->chip & URTWN_CHIP_88E) { txd->txdw2 |= htole32( R88E_TXDW2_AGGBK | R88E_TXDW2_CCX_RPT); } else txd->txdw1 |= htole32(R92C_TXDW1_AGGBK); if (ic->ic_flags & IEEE80211_F_USEPROT) { switch (ic->ic_protmode) { case IEEE80211_PROT_CTSONLY: txd->txdw4 |= htole32( R92C_TXDW4_CTS2SELF | R92C_TXDW4_HWRTSEN); break; case IEEE80211_PROT_RTSCTS: txd->txdw4 |= htole32( R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); break; default: break; } } txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, URTWN_RIDX_OFDM24)); txd->txdw5 |= htole32(0x0001ff00); } else /* IEEE80211_FC0_TYPE_MGT */ qsel = R92C_TXDW1_QSEL_MGNT; } else { macid = URTWN_MACID_BC; qsel = R92C_TXDW1_QSEL_MGNT; } txd->txdw1 |= htole32( SM(R92C_TXDW1_QSEL, qsel) | SM(R92C_TXDW1_RAID, raid)); if (sc->chip & URTWN_CHIP_88E) txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, macid)); else txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, macid)); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ridx)); /* Force this rate if needed. */ if (URTWN_CHIP_HAS_RATECTL(sc) || ismcast || (m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA) txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); if (!hasqos) { /* Use HW sequence numbering for non-QoS frames. */ if (sc->chip & URTWN_CHIP_88E) txd->txdseq = htole16(R88E_TXDSEQ_HWSEQ_EN); else txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN); } else { /* Set sequence number. */ txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE); } if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { uint8_t cipher; switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: case IEEE80211_CIPHER_TKIP: cipher = R92C_TXDW1_CIPHER_RC4; break; case IEEE80211_CIPHER_AES_CCM: cipher = R92C_TXDW1_CIPHER_AES; break; default: device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, k->wk_cipher->ic_cipher); return (EINVAL); } txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher)); } if (ieee80211_radiotap_active_vap(vap)) { struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } data->ni = ni; urtwn_tx_start(sc, m, type, data); return (0); } static void urtwn_tx_start(struct urtwn_softc *sc, struct mbuf *m, uint8_t type, struct urtwn_data *data) { struct usb_xfer *xfer; struct r92c_tx_desc *txd; uint16_t ac, sum; int i, xferlen; URTWN_ASSERT_LOCKED(sc); ac = M_WME_GETAC(m); switch (type) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: xfer = sc->sc_xfer[URTWN_BULK_TX_VO]; break; default: xfer = sc->sc_xfer[wme2queue[ac].qid]; break; } txd = (struct r92c_tx_desc *)data->buf; txd->txdw0 |= htole32(SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len)); /* Compute Tx descriptor checksum. */ sum = 0; for (i = 0; i < sizeof(*txd) / 2; i++) sum ^= ((uint16_t *)txd)[i]; txd->txdsum = sum; /* NB: already little endian. */ xferlen = sizeof(*txd) + m->m_pkthdr.len; m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]); data->buflen = xferlen; data->m = m; STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); usbd_transfer_start(xfer); } static int urtwn_transmit(struct ieee80211com *ic, struct mbuf *m) { struct urtwn_softc *sc = ic->ic_softc; int error; URTWN_LOCK(sc); if ((sc->sc_flags & URTWN_RUNNING) == 0) { URTWN_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { URTWN_UNLOCK(sc); return (error); } urtwn_start(sc); URTWN_UNLOCK(sc); return (0); } static void urtwn_start(struct urtwn_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = urtwn_getbuf(sc); if (bf == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (urtwn_tx_data(sc, ni, m, bf) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); m_freem(m); ieee80211_free_node(ni); break; } sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); } } static void urtwn_parent(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_DETACHED) { URTWN_UNLOCK(sc); return; } URTWN_UNLOCK(sc); if (ic->ic_nrunning > 0) { if (urtwn_init(sc) != 0) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) ieee80211_stop(vap); } else ieee80211_start_all(ic); } else urtwn_stop(sc); } static __inline int urtwn_power_on(struct urtwn_softc *sc) { return sc->sc_power_on(sc); } static int urtwn_r92c_power_on(struct urtwn_softc *sc) { uint32_t reg; usb_error_t error; int ntries; /* Wait for autoload done bit. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for chip autoload\n"); return (ETIMEDOUT); } /* Unlock ISO/CLK/Power control register. */ error = urtwn_write_1(sc, R92C_RSV_CTRL, 0); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Move SPS into PWM mode. */ error = urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); urtwn_ms_delay(sc); reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL); if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) { error = urtwn_write_1(sc, R92C_LDOV12D_CTRL, reg | R92C_LDOV12D_CTRL_LDV12_EN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); urtwn_ms_delay(sc); error = urtwn_write_1(sc, R92C_SYS_ISO_CTRL, urtwn_read_1(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_MD2PP); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } /* Auto enable WLAN. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 1000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MAC auto ON\n"); return (ETIMEDOUT); } /* Enable radio, GPIO and LED functions. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Release RF digital isolation. */ error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL, urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Initialize MAC. */ error = urtwn_write_1(sc, R92C_APSD_CTRL, urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 200; ntries++) { if (!(urtwn_read_1(sc, R92C_APSD_CTRL) & R92C_APSD_CTRL_OFF_STATUS)) break; urtwn_ms_delay(sc); } if (ntries == 200) { device_printf(sc->sc_dev, "timeout waiting for MAC initialization\n"); return (ETIMEDOUT); } /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC; error = urtwn_write_2(sc, R92C_CR, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_1(sc, 0xfe10, 0x19); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static int urtwn_r88e_power_on(struct urtwn_softc *sc) { uint32_t reg; usb_error_t error; int ntries; /* Wait for power ready bit. */ for (ntries = 0; ntries < 5000; ntries++) { if (urtwn_read_4(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_SUS_HOST) break; urtwn_ms_delay(sc); } if (ntries == 5000) { device_printf(sc->sc_dev, "timeout waiting for chip power up\n"); return (ETIMEDOUT); } /* Reset BB. */ error = urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Disable HWPDN. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Disable WL suspend. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~(R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_AFSM_PCIE)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 5000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; urtwn_ms_delay(sc); } if (ntries == 5000) return (ETIMEDOUT); /* Enable LDO normal mode. */ error = urtwn_write_1(sc, R92C_LPLDO_CTRL, urtwn_read_1(sc, R92C_LPLDO_CTRL) & ~0x10); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ error = urtwn_write_2(sc, R92C_CR, 0); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN; error = urtwn_write_2(sc, R92C_CR, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static int urtwn_llt_init(struct urtwn_softc *sc) { int i, error, page_count, pktbuf_count; page_count = (sc->chip & URTWN_CHIP_88E) ? R88E_TX_PAGE_COUNT : R92C_TX_PAGE_COUNT; pktbuf_count = (sc->chip & URTWN_CHIP_88E) ? R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT; /* Reserve pages [0; page_count]. */ for (i = 0; i < page_count; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* NB: 0xff indicates end-of-list. */ if ((error = urtwn_llt_write(sc, i, 0xff)) != 0) return (error); /* * Use pages [page_count + 1; pktbuf_count - 1] * as ring buffer. */ for (++i; i < pktbuf_count - 1; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* Make the last page point to the beginning of the ring buffer. */ error = urtwn_llt_write(sc, i, page_count + 1); return (error); } static void urtwn_fw_reset(struct urtwn_softc *sc) { uint16_t reg; int ntries; /* Tell 8051 to reset itself. */ urtwn_write_1(sc, R92C_HMETFR + 3, 0x20); /* Wait until 8051 resets by itself. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_CPUEN)) return; urtwn_ms_delay(sc); } /* Force 8051 reset. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); } static void urtwn_r88e_fw_reset(struct urtwn_softc *sc) { uint16_t reg; reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN); } static int urtwn_fw_loadpage(struct urtwn_softc *sc, int page, const uint8_t *buf, int len) { uint32_t reg; usb_error_t error = USB_ERR_NORMAL_COMPLETION; int off, mlen; reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = RW(reg, R92C_MCUFWDL_PAGE, page); urtwn_write_4(sc, R92C_MCUFWDL, reg); off = R92C_FW_START_ADDR; while (len > 0) { if (len > 196) mlen = 196; else if (len > 4) mlen = 4; else mlen = 1; /* XXX fix this deconst */ error = urtwn_write_region_1(sc, off, __DECONST(uint8_t *, buf), mlen); if (error != USB_ERR_NORMAL_COMPLETION) break; off += mlen; buf += mlen; len -= mlen; } return (error); } static int urtwn_load_firmware(struct urtwn_softc *sc) { const struct firmware *fw; const struct r92c_fw_hdr *hdr; const char *imagename; const u_char *ptr; size_t len; uint32_t reg; int mlen, ntries, page, error; URTWN_UNLOCK(sc); /* Read firmware image from the filesystem. */ if (sc->chip & URTWN_CHIP_88E) imagename = "urtwn-rtl8188eufw"; else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) imagename = "urtwn-rtl8192cfwU"; else imagename = "urtwn-rtl8192cfwT"; fw = firmware_get(imagename); URTWN_LOCK(sc); if (fw == NULL) { device_printf(sc->sc_dev, "failed loadfirmware of file %s\n", imagename); return (ENOENT); } len = fw->datasize; if (len < sizeof(*hdr)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } ptr = fw->data; hdr = (const struct r92c_fw_hdr *)ptr; /* Check if there is a valid FW header and skip it. */ if ((le16toh(hdr->signature) >> 4) == 0x88c || (le16toh(hdr->signature) >> 4) == 0x88e || (le16toh(hdr->signature) >> 4) == 0x92c) { DPRINTF("FW V%d.%d %02d-%02d %02d:%02d\n", le16toh(hdr->version), le16toh(hdr->subversion), hdr->month, hdr->date, hdr->hour, hdr->minute); ptr += sizeof(*hdr); len -= sizeof(*hdr); } if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) { if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_fw_reset(sc); else urtwn_fw_reset(sc); urtwn_write_1(sc, R92C_MCUFWDL, 0); } if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN); } urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 2, urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08); /* Reset the FWDL checksum. */ urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT); for (page = 0; len > 0; page++) { mlen = min(len, R92C_FW_PAGE_SIZE); error = urtwn_fw_loadpage(sc, page, ptr, mlen); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware page\n"); goto fail; } ptr += mlen; len -= mlen; } urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 1, 0); /* Wait for checksum report. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for checksum report\n"); error = ETIMEDOUT; goto fail; } reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY; urtwn_write_4(sc, R92C_MCUFWDL, reg); if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_fw_reset(sc); /* Wait for firmware readiness. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static int urtwn_dma_init(struct urtwn_softc *sc) { struct usb_endpoint *ep, *ep_end; usb_error_t usb_err; uint32_t reg; int hashq, hasnq, haslq, nqueues, ntx; int error, pagecount, npubqpages, nqpages, nrempages, tx_boundary; /* Initialize LLT table. */ error = urtwn_llt_init(sc); if (error != 0) return (error); /* Determine the number of bulk-out pipes. */ ntx = 0; ep = sc->sc_udev->endpoints; ep_end = sc->sc_udev->endpoints + sc->sc_udev->endpoints_max; for (; ep != ep_end; ep++) { if ((ep->edesc == NULL) || (ep->iface_index != sc->sc_iface_index)) continue; if (UE_GET_DIR(ep->edesc->bEndpointAddress) == UE_DIR_OUT) ntx++; } if (ntx == 0) { device_printf(sc->sc_dev, "%d: invalid number of Tx bulk pipes\n", ntx); return (EIO); } /* Get Tx queues to USB endpoints mapping. */ hashq = hasnq = haslq = nqueues = 0; switch (ntx) { case 1: hashq = 1; break; case 2: hashq = hasnq = 1; break; case 3: case 4: hashq = hasnq = haslq = 1; break; } nqueues = hashq + hasnq + haslq; if (nqueues == 0) return (EIO); npubqpages = nqpages = nrempages = pagecount = 0; if (sc->chip & URTWN_CHIP_88E) tx_boundary = R88E_TX_PAGE_BOUNDARY; else { pagecount = R92C_TX_PAGE_COUNT; npubqpages = R92C_PUBQ_NPAGES; tx_boundary = R92C_TX_PAGE_BOUNDARY; } /* Set number of pages for normal priority queue. */ if (sc->chip & URTWN_CHIP_88E) { usb_err = urtwn_write_2(sc, R92C_RQPN_NPQ, 0xd); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_4(sc, R92C_RQPN, 0x808e000d); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); } else { /* Get the number of pages for each queue. */ nqpages = (pagecount - npubqpages) / nqueues; /* * The remaining pages are assigned to the high priority * queue. */ nrempages = (pagecount - npubqpages) % nqueues; usb_err = urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_4(sc, R92C_RQPN, /* Set number of pages for public queue. */ SM(R92C_RQPN_PUBQ, npubqpages) | /* Set number of pages for high priority queue. */ SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) | /* Set number of pages for low priority queue. */ SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) | /* Load values. */ R92C_RQPN_LD); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); } usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TRXFF_BNDY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TDECTRL + 1, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set queue to USB pipe mapping. */ reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; if (nqueues == 1) { if (hashq) reg |= R92C_TRXDMA_CTRL_QMAP_HQ; else if (hasnq) reg |= R92C_TRXDMA_CTRL_QMAP_NQ; else reg |= R92C_TRXDMA_CTRL_QMAP_LQ; } else if (nqueues == 2) { /* * All 2-endpoints configs have high and normal * priority queues. */ reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; } else reg |= R92C_TRXDMA_CTRL_QMAP_3EP; usb_err = urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set Tx/Rx transfer page boundary. */ usb_err = urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, (sc->chip & URTWN_CHIP_88E) ? 0x23ff : 0x27ff); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set Tx/Rx transfer page size. */ usb_err = urtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static int urtwn_mac_init(struct urtwn_softc *sc) { usb_error_t error; int i; /* Write MAC initialization values. */ if (sc->chip & URTWN_CHIP_88E) { for (i = 0; i < nitems(rtl8188eu_mac); i++) { error = urtwn_write_1(sc, rtl8188eu_mac[i].reg, rtl8188eu_mac[i].val); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07); } else { for (i = 0; i < nitems(rtl8192cu_mac); i++) error = urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } return (0); } static void urtwn_bb_init(struct urtwn_softc *sc) { const struct urtwn_bb_prog *prog; uint32_t reg; uint8_t crystalcap; int i; /* Enable BB and RF. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_DIO_RF); if (!(sc->chip & URTWN_CHIP_88E)) urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83); urtwn_write_1(sc, R92C_RF_CTRL, R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f); urtwn_write_1(sc, 0x15, 0xe9); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); } /* Select BB programming based on board type. */ if (sc->chip & URTWN_CHIP_88E) prog = &rtl8188eu_bb_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8188ce_bb_prog; else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) prog = &rtl8188ru_bb_prog; else prog = &rtl8188cu_bb_prog; } else { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8192ce_bb_prog; else prog = &rtl8192cu_bb_prog; } /* Write BB initialization values. */ for (i = 0; i < prog->count; i++) { urtwn_bb_write(sc, prog->regs[i], prog->vals[i]); urtwn_ms_delay(sc); } if (sc->chip & URTWN_CHIP_92C_1T2R) { /* 8192C 1T only configuration. */ reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO); reg = (reg & ~0x00000003) | 0x2; urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO); reg = (reg & ~0x00300033) | 0x00200022; urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING); reg = (reg & ~0xff000000) | 0x45 << 24; urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg = (reg & ~0x000000ff) | 0x23; urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); reg = (reg & ~0x00000030) | 1 << 4; urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); reg = urtwn_bb_read(sc, 0xe74); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe74, reg); reg = urtwn_bb_read(sc, 0xe78); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe78, reg); reg = urtwn_bb_read(sc, 0xe7c); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe7c, reg); reg = urtwn_bb_read(sc, 0xe80); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe80, reg); reg = urtwn_bb_read(sc, 0xe88); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe88, reg); } /* Write AGC values. */ for (i = 0; i < prog->agccount; i++) { urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); urtwn_ms_delay(sc); } if (sc->chip & URTWN_CHIP_88E) { urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420); urtwn_ms_delay(sc); crystalcap = sc->rom.r88e_rom[0xb9]; if (crystalcap == 0xff) crystalcap = 0x20; crystalcap &= 0x3f; reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL); urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL, RW(reg, R92C_AFE_XTAL_CTRL_ADDR, crystalcap | crystalcap << 6)); } else { if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR) sc->sc_flags |= URTWN_FLAG_CCK_HIPWR; } } static void urtwn_rf_init(struct urtwn_softc *sc) { const struct urtwn_rf_prog *prog; uint32_t reg, type; int i, j, idx, off; /* Select RF programming based on board type. */ if (sc->chip & URTWN_CHIP_88E) prog = rtl8188eu_rf_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = rtl8188ce_rf_prog; else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) prog = rtl8188ru_rf_prog; else prog = rtl8188cu_rf_prog; } else prog = rtl8192ce_rf_prog; for (i = 0; i < sc->nrxchains; i++) { /* Save RF_ENV control type. */ idx = i / 2; off = (i % 2) * 16; reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); type = (reg >> off) & 0x10; /* Set RF_ENV enable. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x100000; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); urtwn_ms_delay(sc); /* Set RF_ENV output high. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x10; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); urtwn_ms_delay(sc); /* Set address and data lengths of RF registers. */ reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); urtwn_ms_delay(sc); reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); urtwn_ms_delay(sc); /* Write RF initialization values for this chain. */ for (j = 0; j < prog[i].count; j++) { if (prog[i].regs[j] >= 0xf9 && prog[i].regs[j] <= 0xfe) { /* * These are fake RF registers offsets that * indicate a delay is required. */ usb_pause_mtx(&sc->sc_mtx, hz / 20); /* 50ms */ continue; } urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]); urtwn_ms_delay(sc); } /* Restore RF_ENV control type. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); reg &= ~(0x10 << off) | (type << off); urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg); /* Cache RF register CHNLBW. */ sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW); } if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) { urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255); urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00); } } static void urtwn_cam_init(struct urtwn_softc *sc) { /* Invalidate all CAM entries. */ urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR); } static int urtwn_cam_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { usb_error_t error; error = urtwn_write_4(sc, R92C_CAMWRITE, data); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE | SM(R92C_CAMCMD_ADDR, addr)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static void urtwn_pa_bias_init(struct urtwn_softc *sc) { uint8_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { if (sc->pa_setting & (1 << i)) continue; urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406); } if (!(sc->pa_setting & 0x10)) { reg = urtwn_read_1(sc, 0x16); reg = (reg & ~0xf0) | 0x90; urtwn_write_1(sc, 0x16, reg); } } static void urtwn_rxfilter_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t rcr; uint16_t filter; URTWN_ASSERT_LOCKED(sc); /* Accept all multicast frames. */ urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff); urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff); /* Filter for management frames. */ filter = 0x7f3f; switch (vap->iv_opmode) { case IEEE80211_M_STA: filter &= ~( R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_REQ) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_REQ) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_PROBE_REQ)); break; case IEEE80211_M_HOSTAP: filter &= ~( R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_RESP) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_RESP) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_BEACON)); break; case IEEE80211_M_MONITOR: case IEEE80211_M_IBSS: break; default: device_printf(sc->sc_dev, "%s: undefined opmode %d\n", __func__, vap->iv_opmode); break; } urtwn_write_2(sc, R92C_RXFLTMAP0, filter); /* Reject all control frames. */ urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000); /* Reject all data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0x0000); rcr = R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_APM | R92C_RCR_HTC_LOC_CTRL | R92C_RCR_APP_PHYSTS | R92C_RCR_APP_ICV | R92C_RCR_APP_MIC; if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Accept all frames. */ rcr |= R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF | R92C_RCR_AAP; } /* Set Rx filter. */ urtwn_write_4(sc, R92C_RCR, rcr); if (ic->ic_promisc != 0) { /* Update Rx filter. */ urtwn_set_promisc(sc); } } static void urtwn_edca_init(struct urtwn_softc *sc) { urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a); urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a); urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a); urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a); urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324); urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226); } static void urtwn_write_txpower(struct urtwn_softc *sc, int chain, uint16_t power[URTWN_RIDX_COUNT]) { uint32_t reg; /* Write per-CCK rate Tx power. */ if (chain == 0) { reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32); reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]); urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]); reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } else { reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32); reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]); reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } /* Write per-OFDM rate Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain), SM(R92C_TXAGC_RATE06, power[ 4]) | SM(R92C_TXAGC_RATE09, power[ 5]) | SM(R92C_TXAGC_RATE12, power[ 6]) | SM(R92C_TXAGC_RATE18, power[ 7])); urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain), SM(R92C_TXAGC_RATE24, power[ 8]) | SM(R92C_TXAGC_RATE36, power[ 9]) | SM(R92C_TXAGC_RATE48, power[10]) | SM(R92C_TXAGC_RATE54, power[11])); /* Write per-MCS Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain), SM(R92C_TXAGC_MCS00, power[12]) | SM(R92C_TXAGC_MCS01, power[13]) | SM(R92C_TXAGC_MCS02, power[14]) | SM(R92C_TXAGC_MCS03, power[15])); urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain), SM(R92C_TXAGC_MCS04, power[16]) | SM(R92C_TXAGC_MCS05, power[17]) | SM(R92C_TXAGC_MCS06, power[18]) | SM(R92C_TXAGC_MCS07, power[19])); urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain), SM(R92C_TXAGC_MCS08, power[20]) | SM(R92C_TXAGC_MCS09, power[21]) | SM(R92C_TXAGC_MCS10, power[22]) | SM(R92C_TXAGC_MCS11, power[23])); urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain), SM(R92C_TXAGC_MCS12, power[24]) | SM(R92C_TXAGC_MCS13, power[25]) | SM(R92C_TXAGC_MCS14, power[26]) | SM(R92C_TXAGC_MCS15, power[27])); } static void urtwn_get_txpower(struct urtwn_softc *sc, int chain, struct ieee80211_channel *c, struct ieee80211_channel *extc, uint16_t power[URTWN_RIDX_COUNT]) { struct ieee80211com *ic = &sc->sc_ic; struct r92c_rom *rom = &sc->rom.r92c_rom; uint16_t cckpow, ofdmpow, htpow, diff, max; const struct urtwn_txpwr *base; int ridx, chan, group; /* Determine channel group. */ chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan <= 3) group = 0; else if (chan <= 9) group = 1; else group = 2; /* Get original Tx power based on board type and RF chain. */ if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) base = &rtl8188ru_txagc[chain]; else base = &rtl8192cu_txagc[chain]; } else base = &rtl8192cu_txagc[chain]; memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) { power[ridx] = base->pwr[0][ridx]; /* Apply vendor limits. */ if (extc != NULL) max = rom->ht40_max_pwr[group]; else max = rom->ht20_max_pwr[group]; max = (max >> (chain * 4)) & 0xf; if (power[ridx] > max) power[ridx] = max; } else if (sc->regulatory == 1) { if (extc == NULL) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = rom->cck_tx_pwr[chain][group]; for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = rom->ht40_1s_tx_pwr[chain][group]; if (sc->ntxchains > 1) { /* Apply reduction for 2 spatial streams. */ diff = rom->ht40_2s_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow = (htpow > diff) ? htpow - diff : 0; } /* Compute per-OFDM rate Tx power. */ diff = rom->ofdm_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; ofdmpow = htpow + diff; /* HT->OFDM correction. */ for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } /* Compute per-MCS Tx power. */ if (extc == NULL) { diff = rom->ht20_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow += diff; /* HT40->HT20 correction. */ } for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += htpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } #ifdef URTWN_DEBUG if (urtwn_debug >= 4) { /* Dump per-rate Tx power values. */ printf("Tx power for chain %d:\n", chain); for (ridx = URTWN_RIDX_CCK1; ridx < URTWN_RIDX_COUNT; ridx++) printf("Rate %d = %u\n", ridx, power[ridx]); } #endif } static void urtwn_r88e_get_txpower(struct urtwn_softc *sc, int chain, struct ieee80211_channel *c, struct ieee80211_channel *extc, uint16_t power[URTWN_RIDX_COUNT]) { struct ieee80211com *ic = &sc->sc_ic; uint16_t cckpow, ofdmpow, bw20pow, htpow; const struct urtwn_r88e_txpwr *base; int ridx, chan, group; /* Determine channel group. */ chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan <= 2) group = 0; else if (chan <= 5) group = 1; else if (chan <= 8) group = 2; else if (chan <= 11) group = 3; else if (chan <= 13) group = 4; else group = 5; /* Get original Tx power based on board type and RF chain. */ base = &rtl8188eu_txagc[chain]; memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) power[ridx] = base->pwr[0][ridx]; else if (sc->regulatory == 1) { if (extc == NULL) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = sc->cck_tx_pwr[group]; for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = sc->ht40_tx_pwr[group]; /* Compute per-OFDM rate Tx power. */ ofdmpow = htpow + sc->ofdm_tx_pwr_diff; for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } bw20pow = htpow + sc->bw20_tx_pwr_diff; for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += bw20pow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } } static void urtwn_set_txpower(struct urtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint16_t power[URTWN_RIDX_COUNT]; int i; for (i = 0; i < sc->ntxchains; i++) { /* Compute per-rate Tx power values. */ if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_get_txpower(sc, i, c, extc, power); else urtwn_get_txpower(sc, i, c, extc, power); /* Write per-rate Tx power values to hardware. */ urtwn_write_txpower(sc, i, power); } } static void urtwn_set_rx_bssid_all(struct urtwn_softc *sc, int enable) { uint32_t reg; reg = urtwn_read_4(sc, R92C_RCR); if (enable) reg &= ~R92C_RCR_CBSSID_BCN; else reg |= R92C_RCR_CBSSID_BCN; urtwn_write_4(sc, R92C_RCR, reg); } static void urtwn_set_gain(struct urtwn_softc *sc, uint8_t gain) { uint32_t reg; reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); if (!(sc->chip & URTWN_CHIP_88E)) { reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); } } static void urtwn_scan_start(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); /* Receive beacons / probe responses from any BSSID. */ if (ic->ic_opmode != IEEE80211_M_IBSS) urtwn_set_rx_bssid_all(sc, 1); /* Set gain for scanning. */ urtwn_set_gain(sc, 0x20); URTWN_UNLOCK(sc); } static void urtwn_scan_end(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); /* Restore limitations. */ if (ic->ic_promisc == 0 && ic->ic_opmode != IEEE80211_M_IBSS) urtwn_set_rx_bssid_all(sc, 0); /* Set gain under link. */ urtwn_set_gain(sc, 0x32); URTWN_UNLOCK(sc); } static void urtwn_set_channel(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; struct ieee80211_channel *c = ic->ic_curchan; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); URTWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_SCAN) { /* Make link LED blink during scan. */ urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink); } urtwn_set_chan(sc, c, NULL); sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); URTWN_UNLOCK(sc); } static int urtwn_wme_update(struct ieee80211com *ic) { const struct wmeParams *wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; struct urtwn_softc *sc = ic->ic_softc; uint8_t aifs, acm, slottime; int ac; acm = 0; slottime = IEEE80211_GET_SLOTTIME(ic); URTWN_LOCK(sc); for (ac = WME_AC_BE; ac < WME_NUM_AC; ac++) { /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ aifs = wmep[ac].wmep_aifsn * slottime + IEEE80211_DUR_SIFS; urtwn_write_4(sc, wme2queue[ac].reg, SM(R92C_EDCA_PARAM_TXOP, wmep[ac].wmep_txopLimit) | SM(R92C_EDCA_PARAM_ECWMIN, wmep[ac].wmep_logcwmin) | SM(R92C_EDCA_PARAM_ECWMAX, wmep[ac].wmep_logcwmax) | SM(R92C_EDCA_PARAM_AIFS, aifs)); if (ac != WME_AC_BE) acm |= wmep[ac].wmep_acm << ac; } if (acm != 0) acm |= R92C_ACMHWCTRL_EN; urtwn_write_1(sc, R92C_ACMHWCTRL, (urtwn_read_1(sc, R92C_ACMHWCTRL) & ~R92C_ACMHWCTRL_ACM_MASK) | acm); URTWN_UNLOCK(sc); return 0; } static void urtwn_set_promisc(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t rcr, mask1, mask2; URTWN_ASSERT_LOCKED(sc); if (vap->iv_opmode == IEEE80211_M_MONITOR) return; mask1 = R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF | R92C_RCR_AAP; mask2 = R92C_RCR_APM; if (vap->iv_state == IEEE80211_S_RUN) { switch (vap->iv_opmode) { case IEEE80211_M_STA: mask2 |= R92C_RCR_CBSSID_DATA; /* FALLTHROUGH */ case IEEE80211_M_HOSTAP: mask2 |= R92C_RCR_CBSSID_BCN; break; case IEEE80211_M_IBSS: mask2 |= R92C_RCR_CBSSID_DATA; break; default: device_printf(sc->sc_dev, "%s: undefined opmode %d\n", __func__, vap->iv_opmode); return; } } rcr = urtwn_read_4(sc, R92C_RCR); if (ic->ic_promisc == 0) rcr = (rcr & ~mask1) | mask2; else rcr = (rcr & ~mask2) | mask1; urtwn_write_4(sc, R92C_RCR, rcr); } static void urtwn_update_promisc(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_RUNNING) urtwn_set_promisc(sc); URTWN_UNLOCK(sc); } static void urtwn_update_mcast(struct ieee80211com *ic) { /* XXX do nothing? */ } static struct ieee80211_node * urtwn_r88e_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct urtwn_node *un; un = malloc(sizeof (struct urtwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (un == NULL) return NULL; un->id = URTWN_MACID_UNDEFINED; return &un->ni; } static void urtwn_r88e_newassoc(struct ieee80211_node *ni, int isnew) { struct urtwn_softc *sc = ni->ni_ic->ic_softc; struct urtwn_node *un = URTWN_NODE(ni); uint8_t id; if (!isnew) return; URTWN_NT_LOCK(sc); for (id = 0; id <= URTWN_MACID_MAX(sc); id++) { if (id != URTWN_MACID_BC && sc->node_list[id] == NULL) { un->id = id; sc->node_list[id] = ni; break; } } URTWN_NT_UNLOCK(sc); if (id > URTWN_MACID_MAX(sc)) { device_printf(sc->sc_dev, "%s: node table is full\n", __func__); } } static void urtwn_r88e_node_free(struct ieee80211_node *ni) { struct urtwn_softc *sc = ni->ni_ic->ic_softc; struct urtwn_node *un = URTWN_NODE(ni); URTWN_NT_LOCK(sc); if (un->id != URTWN_MACID_UNDEFINED) sc->node_list[un->id] = NULL; URTWN_NT_UNLOCK(sc); sc->sc_node_free(ni); } static void urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t reg; u_int chan; int i; chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan == 0 || chan == IEEE80211_CHAN_ANY) { device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } /* Set Tx power for this new channel. */ urtwn_set_txpower(sc, c, extc); for (i = 0; i < sc->nrxchains; i++) { urtwn_rf_write(sc, i, R92C_RF_CHNLBW, RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan)); } #ifndef IEEE80211_NO_HT if (extc != NULL) { /* Is secondary channel below or above primary? */ int prichlo = c->ic_freq < extc->ic_freq; urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ); reg = urtwn_read_1(sc, R92C_RRSR + 2); reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5; urtwn_write_1(sc, R92C_RRSR + 2, reg); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ); /* Set CCK side band. */ reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM); reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4; urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg); reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF); reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10; urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg); urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) & ~R92C_FPGA0_ANAPARAM2_CBW20); reg = urtwn_bb_read(sc, 0x818); reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26; urtwn_bb_write(sc, 0x818, reg); /* Select 40MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan); } else #endif { urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ); if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) | R92C_FPGA0_ANAPARAM2_CBW20); } /* Select 20MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan | ((sc->chip & URTWN_CHIP_88E) ? R88E_RF_CHNLBW_BW20 : R92C_RF_CHNLBW_BW20)); } } static void urtwn_iq_calib(struct urtwn_softc *sc) { /* TODO */ } static void urtwn_lc_calib(struct urtwn_softc *sc) { uint32_t rf_ac[2]; uint8_t txmode; int i; txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3); if ((txmode & 0x70) != 0) { /* Disable all continuous Tx. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70); /* Set RF mode to standby mode. */ for (i = 0; i < sc->nrxchains; i++) { rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC); urtwn_rf_write(sc, i, R92C_RF_AC, RW(rf_ac[i], R92C_RF_AC_MODE, R92C_RF_AC_MODE_STANDBY)); } } else { /* Block all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0xff); } /* Start calibration. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART); /* Give calibration the time to complete. */ usb_pause_mtx(&sc->sc_mtx, hz / 10); /* 100ms */ /* Restore configuration. */ if ((txmode & 0x70) != 0) { /* Restore Tx mode. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode); /* Restore RF mode. */ for (i = 0; i < sc->nrxchains; i++) urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]); } else { /* Unblock all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0x00); } } static int urtwn_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t reg; usb_error_t usb_err = USB_ERR_NORMAL_COMPLETION; int error; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_RUNNING) { URTWN_UNLOCK(sc); return (0); } /* Init firmware commands ring. */ sc->fwcur = 0; /* Allocate Tx/Rx buffers. */ error = urtwn_alloc_rx_list(sc); if (error != 0) goto fail; error = urtwn_alloc_tx_list(sc); if (error != 0) goto fail; /* Power on adapter. */ error = urtwn_power_on(sc); if (error != 0) goto fail; /* Initialize DMA. */ error = urtwn_dma_init(sc); if (error != 0) goto fail; /* Set info size in Rx descriptors (in 64-bit words). */ urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4); /* Init interrupts. */ if (sc->chip & URTWN_CHIP_88E) { usb_err = urtwn_write_4(sc, R88E_HISR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM | R88E_HIMR_CPWM2 | R88E_HIMR_TBDER | R88E_HIMR_PSTIMEOUT); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW | R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR | R88E_HIMRE_TXERR); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION, urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) | R92C_USB_SPECIAL_OPTION_INT_BULK_SEL); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; } else { usb_err = urtwn_write_4(sc, R92C_HISR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R92C_HIMR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; } /* Set MAC address. */ IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr); usb_err = urtwn_write_region_1(sc, R92C_MACID, macaddr, IEEE80211_ADDR_LEN); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; /* Set initial network type. */ urtwn_set_mode(sc, R92C_MSR_INFRA); /* Initialize Rx filter. */ urtwn_rxfilter_init(sc); /* Set response rate. */ reg = urtwn_read_4(sc, R92C_RRSR); reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M); urtwn_write_4(sc, R92C_RRSR, reg); /* Set short/long retry limits. */ urtwn_write_2(sc, R92C_RL, SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30)); /* Initialize EDCA parameters. */ urtwn_edca_init(sc); /* Setup rate fallback. */ if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000); urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404); urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201); urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605); } urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL, urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) | R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW); /* Set ACK timeout. */ urtwn_write_1(sc, R92C_ACKTO, 0x40); /* Setup USB aggregation. */ reg = urtwn_read_4(sc, R92C_TDECTRL); reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6); urtwn_write_4(sc, R92C_TDECTRL, reg); urtwn_write_1(sc, R92C_TRXDMA_CTRL, urtwn_read_1(sc, R92C_TRXDMA_CTRL) | R92C_TRXDMA_CTRL_RXDMA_AGG_EN); urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48); if (sc->chip & URTWN_CHIP_88E) urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH + 1, 4); else { urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4); urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION, urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) | R92C_USB_SPECIAL_OPTION_AGG_EN); urtwn_write_1(sc, R92C_USB_AGG_TH, 8); urtwn_write_1(sc, R92C_USB_AGG_TO, 6); } /* Initialize beacon parameters. */ urtwn_write_2(sc, R92C_BCN_CTRL, 0x1010); urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404); urtwn_write_1(sc, R92C_DRVERLYINT, 0x05); urtwn_write_1(sc, R92C_BCNDMATIM, 0x02); urtwn_write_2(sc, R92C_BCNTCFG, 0x660f); if (!(sc->chip & URTWN_CHIP_88E)) { /* Setup AMPDU aggregation. */ urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */ urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16); urtwn_write_2(sc, R92C_MAX_AGGR_NUM, 0x0708); urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff); } /* Load 8051 microcode. */ error = urtwn_load_firmware(sc); if (error != 0) goto fail; /* Initialize MAC/BB/RF blocks. */ error = urtwn_mac_init(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: error while initializing MAC block\n", __func__); goto fail; } urtwn_bb_init(sc); urtwn_rf_init(sc); /* Reinitialize Rx filter (D3845 is not committed yet). */ urtwn_rxfilter_init(sc); if (sc->chip & URTWN_CHIP_88E) { urtwn_write_2(sc, R92C_CR, urtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN | R92C_CR_MACRXEN); } /* Turn CCK and OFDM blocks on. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_CCK_EN; usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_OFDM_EN; usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; /* Clear per-station keys table. */ urtwn_cam_init(sc); /* Enable decryption / encryption. */ urtwn_write_2(sc, R92C_SECCFG, R92C_SECCFG_TXUCKEY_DEF | R92C_SECCFG_RXUCKEY_DEF | R92C_SECCFG_TXENC_ENA | R92C_SECCFG_RXDEC_ENA | R92C_SECCFG_TXBCKEY_DEF | R92C_SECCFG_RXBCKEY_DEF); /* * Install static keys (if any). * Must be called after urtwn_cam_init(). */ ieee80211_runtask(ic, &sc->cmdq_task); /* Enable hardware sequence numbering. */ urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff); /* Enable per-packet TX report. */ if (sc->chip & URTWN_CHIP_88E) { urtwn_write_1(sc, R88E_TX_RPT_CTRL, urtwn_read_1(sc, R88E_TX_RPT_CTRL) | R88E_TX_RPT1_ENA); } /* Perform LO and IQ calibrations. */ urtwn_iq_calib(sc); /* Perform LC calibration. */ urtwn_lc_calib(sc); /* Fix USB interference issue. */ if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_1(sc, 0xfe40, 0xe0); urtwn_write_1(sc, 0xfe41, 0x8d); urtwn_write_1(sc, 0xfe42, 0x80); urtwn_pa_bias_init(sc); } /* Initialize GPIO setting. */ urtwn_write_1(sc, R92C_GPIO_MUXCFG, urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT); /* Fix for lower temperature. */ if (!(sc->chip & URTWN_CHIP_88E)) urtwn_write_1(sc, 0x15, 0xe9); usbd_transfer_start(sc->sc_xfer[URTWN_BULK_RX]); sc->sc_flags |= URTWN_RUNNING; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); fail: if (usb_err != USB_ERR_NORMAL_COMPLETION) error = EIO; URTWN_UNLOCK(sc); return (error); } static void urtwn_stop(struct urtwn_softc *sc) { URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { URTWN_UNLOCK(sc); return; } sc->sc_flags &= ~URTWN_RUNNING; callout_stop(&sc->sc_watchdog_ch); urtwn_abort_xfers(sc); urtwn_drain_mbufq(sc); URTWN_UNLOCK(sc); } static void urtwn_abort_xfers(struct urtwn_softc *sc) { int i; URTWN_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < URTWN_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static int urtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct urtwn_softc *sc = ic->ic_softc; struct urtwn_data *bf; int error; /* prevent management frames from being sent if we're not ready */ URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { error = ENETDOWN; goto end; } bf = urtwn_getbuf(sc); if (bf == NULL) { error = ENOBUFS; goto end; } if ((error = urtwn_tx_data(sc, ni, m, bf)) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); goto end; } sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); end: if (error != 0) m_freem(m); URTWN_UNLOCK(sc); return (error); } static void urtwn_ms_delay(struct urtwn_softc *sc) { usb_pause_mtx(&sc->sc_mtx, hz / 1000); } static device_method_t urtwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, urtwn_match), DEVMETHOD(device_attach, urtwn_attach), DEVMETHOD(device_detach, urtwn_detach), DEVMETHOD_END }; static driver_t urtwn_driver = { "urtwn", urtwn_methods, sizeof(struct urtwn_softc) }; static devclass_t urtwn_devclass; DRIVER_MODULE(urtwn, uhub, urtwn_driver, urtwn_devclass, NULL, NULL); MODULE_DEPEND(urtwn, usb, 1, 1, 1); MODULE_DEPEND(urtwn, wlan, 1, 1, 1); MODULE_DEPEND(urtwn, firmware, 1, 1, 1); MODULE_VERSION(urtwn, 1); USB_PNP_HOST_INFO(urtwn_devs); Index: head/sys/dev/wpi/if_wpi.c =================================================================== --- head/sys/dev/wpi/if_wpi.c (revision 292175) +++ head/sys/dev/wpi/if_wpi.c (revision 292176) @@ -1,5651 +1,5652 @@ /*- * Copyright (c) 2006,2007 * Damien Bergamini * Benjamin Close + * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. * * The 3945ABG network adapter doesn't use traditional hardware as * many other adaptors do. Instead at run time the eeprom is set into a known * state and told to load boot firmware. The boot firmware loads an init and a * main binary firmware image into SRAM on the card via DMA. * Once the firmware is loaded, the driver/hw then * communicate by way of circular dma rings via the SRAM to the firmware. * * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. * The 4 tx data rings allow for prioritization QoS. * * The rx data ring consists of 32 dma buffers. Two registers are used to * indicate where in the ring the driver and the firmware are up to. The * driver sets the initial read index (reg1) and the initial write index (reg2), * the firmware updates the read index (reg1) on rx of a packet and fires an * interrupt. The driver then processes the buffers starting at reg1 indicating * to the firmware which buffers have been accessed by updating reg2. At the * same time allocating new memory for the processed buffer. * * A similar thing happens with the tx rings. The difference is the firmware * stop processing buffers once the queue is full and until confirmation * of a successful transmition (tx_done) has occurred. * * The command ring operates in the same manner as the tx queues. * * All communication direct to the card (ie eeprom) is classed as Stage1 * communication * * All communication via the firmware to the card is classed as State2. * The firmware consists of 2 parts. A bootstrap firmware and a runtime * firmware. The bootstrap firmware and runtime firmware are loaded * from host memory via dma to the card then told to execute. From this point * on the majority of communications between the driver and the card goes * via the firmware. */ #include "opt_wlan.h" #include "opt_wpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct wpi_ident { uint16_t vendor; uint16_t device; uint16_t subdevice; const char *name; }; static const struct wpi_ident wpi_ident_table[] = { /* The below entries support ABG regardless of the subid */ { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, /* The below entries only support BG */ { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, { 0, 0, 0, NULL } }; static int wpi_probe(device_t); static int wpi_attach(device_t); static void wpi_radiotap_attach(struct wpi_softc *); static void wpi_sysctlattach(struct wpi_softc *); static void wpi_init_beacon(struct wpi_vap *); static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void wpi_vap_delete(struct ieee80211vap *); static int wpi_detach(device_t); static int wpi_shutdown(device_t); static int wpi_suspend(device_t); static int wpi_resume(device_t); static int wpi_nic_lock(struct wpi_softc *); static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, void **, bus_size_t, bus_size_t); static void wpi_dma_contig_free(struct wpi_dma_info *); static int wpi_alloc_shared(struct wpi_softc *); static void wpi_free_shared(struct wpi_softc *); static int wpi_alloc_fwmem(struct wpi_softc *); static void wpi_free_fwmem(struct wpi_softc *); static int wpi_alloc_rx_ring(struct wpi_softc *); static void wpi_update_rx_ring(struct wpi_softc *); static void wpi_update_rx_ring_ps(struct wpi_softc *); static void wpi_reset_rx_ring(struct wpi_softc *); static void wpi_free_rx_ring(struct wpi_softc *); static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, uint8_t); static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); static void wpi_update_tx_ring_ps(struct wpi_softc *, struct wpi_tx_ring *); static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); static int wpi_read_eeprom(struct wpi_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *); static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t); static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t); static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *, struct ieee80211_channel *); static int wpi_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel[]); static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t); static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void wpi_node_free(struct ieee80211_node *); static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); static void wpi_restore_node(void *, struct ieee80211_node *); static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *); static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void wpi_calib_timeout(void *); static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, struct wpi_rx_data *); static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *, struct wpi_rx_data *); static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); static void wpi_notif_intr(struct wpi_softc *); static void wpi_wakeup_intr(struct wpi_softc *); #ifdef WPI_DEBUG static void wpi_debug_registers(struct wpi_softc *); #endif static void wpi_fatal_intr(struct wpi_softc *); static void wpi_intr(void *); static void wpi_free_txfrags(struct wpi_softc *, uint16_t); static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *); static int wpi_tx_data(struct wpi_softc *, struct mbuf *, struct ieee80211_node *); static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int wpi_transmit(struct ieee80211com *, struct mbuf *); static void wpi_watchdog_rfkill(void *); static void wpi_scan_timeout(void *); static void wpi_tx_timeout(void *); static void wpi_parent(struct ieee80211com *); static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t, int); static int wpi_mrr_setup(struct wpi_softc *); static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *); static int wpi_add_broadcast_node(struct wpi_softc *, int); static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *); static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *); static int wpi_updateedca(struct ieee80211com *); static void wpi_set_promisc(struct wpi_softc *); static void wpi_update_promisc(struct ieee80211com *); static void wpi_update_mcast(struct ieee80211com *); static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); static void wpi_power_calibration(struct wpi_softc *); static int wpi_set_txpower(struct wpi_softc *, int); static int wpi_get_power_index(struct wpi_softc *, struct wpi_power_group *, uint8_t, int, int); static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int); static int wpi_send_btcoex(struct wpi_softc *); static int wpi_send_rxon(struct wpi_softc *, int, int); static int wpi_config(struct wpi_softc *); static uint16_t wpi_get_active_dwell_time(struct wpi_softc *, struct ieee80211_channel *, uint8_t); static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t); static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *, struct ieee80211_channel *); static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t); static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *); static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); static int wpi_config_beacon(struct wpi_vap *); static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); static void wpi_update_beacon(struct ieee80211vap *, int); static void wpi_newassoc(struct ieee80211_node *, int); static int wpi_run(struct wpi_softc *, struct ieee80211vap *); static int wpi_load_key(struct ieee80211_node *, const struct ieee80211_key *); static void wpi_load_key_cb(void *, struct ieee80211_node *); static int wpi_set_global_keys(struct ieee80211_node *); static int wpi_del_key(struct ieee80211_node *, const struct ieee80211_key *); static void wpi_del_key_cb(void *, struct ieee80211_node *); static int wpi_process_key(struct ieee80211vap *, const struct ieee80211_key *, int); static int wpi_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int wpi_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static int wpi_post_alive(struct wpi_softc *); static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, uint32_t); static int wpi_load_firmware(struct wpi_softc *); static int wpi_read_firmware(struct wpi_softc *); static void wpi_unload_firmware(struct wpi_softc *); static int wpi_clock_wait(struct wpi_softc *); static int wpi_apm_init(struct wpi_softc *); static void wpi_apm_stop_master(struct wpi_softc *); static void wpi_apm_stop(struct wpi_softc *); static void wpi_nic_config(struct wpi_softc *); static int wpi_hw_init(struct wpi_softc *); static void wpi_hw_stop(struct wpi_softc *); static void wpi_radio_on(void *, int); static void wpi_radio_off(void *, int); static int wpi_init(struct wpi_softc *); static void wpi_stop_locked(struct wpi_softc *); static void wpi_stop(struct wpi_softc *); static void wpi_scan_start(struct ieee80211com *); static void wpi_scan_end(struct ieee80211com *); static void wpi_set_channel(struct ieee80211com *); static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void wpi_scan_mindwell(struct ieee80211_scan_state *); static void wpi_hw_reset(void *, int); static device_method_t wpi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, wpi_probe), DEVMETHOD(device_attach, wpi_attach), DEVMETHOD(device_detach, wpi_detach), DEVMETHOD(device_shutdown, wpi_shutdown), DEVMETHOD(device_suspend, wpi_suspend), DEVMETHOD(device_resume, wpi_resume), DEVMETHOD_END }; static driver_t wpi_driver = { "wpi", wpi_methods, sizeof (struct wpi_softc) }; static devclass_t wpi_devclass; DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); MODULE_VERSION(wpi, 1); MODULE_DEPEND(wpi, pci, 1, 1, 1); MODULE_DEPEND(wpi, wlan, 1, 1, 1); MODULE_DEPEND(wpi, firmware, 1, 1, 1); static int wpi_probe(device_t dev) { const struct wpi_ident *ident; for (ident = wpi_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return ENXIO; } static int wpi_attach(device_t dev) { struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev); struct ieee80211com *ic; uint8_t i; int error, rid; #ifdef WPI_DEBUG int supportsa = 1; const struct wpi_ident *ident; #endif sc->sc_dev = dev; #ifdef WPI_DEBUG error = resource_int_value(device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); if (error != 0) sc->sc_debug = 0; #else sc->sc_debug = 0; #endif DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); if (error != 0) { device_printf(dev, "PCIe capability structure not found!\n"); return error; } /* * Some card's only support 802.11b/g not a, check to see if * this is one such card. A 0x0 in the subdevice table indicates * the entire subdevice range is to be ignored. */ #ifdef WPI_DEBUG for (ident = wpi_ident_table; ident->name != NULL; ident++) { if (ident->subdevice && pci_get_subdevice(dev) == ident->subdevice) { supportsa = 0; break; } } #endif /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); /* Enable bus-mastering. */ pci_enable_busmaster(dev); rid = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "can't map mem space\n"); return ENOMEM; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); rid = 1; if (pci_alloc_msi(dev, &rid) == 0) rid = 1; else rid = 0; /* Install interrupt handler. */ sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); if (sc->irq == NULL) { device_printf(dev, "can't map interrupt\n"); error = ENOMEM; goto fail; } WPI_LOCK_INIT(sc); WPI_TX_LOCK_INIT(sc); WPI_RXON_LOCK_INIT(sc); WPI_NT_LOCK_INIT(sc); WPI_TXQ_LOCK_INIT(sc); WPI_TXQ_STATE_LOCK_INIT(sc); /* Allocate DMA memory for firmware transfers. */ if ((error = wpi_alloc_fwmem(sc)) != 0) { device_printf(dev, "could not allocate memory for firmware, error %d\n", error); goto fail; } /* Allocate shared page. */ if ((error = wpi_alloc_shared(sc)) != 0) { device_printf(dev, "could not allocate shared page\n"); goto fail; } /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */ for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { device_printf(dev, "could not allocate TX ring %d, error %d\n", i, error); goto fail; } } /* Allocate RX ring. */ if ((error = wpi_alloc_rx_ring(sc)) != 0) { device_printf(dev, "could not allocate RX ring, error %d\n", error); goto fail; } /* Clear pending interrupts. */ WPI_WRITE(sc, WPI_INT, 0xffffffff); ic = &sc->sc_ic; ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_HOSTAP /* Host access point mode */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_TXFRAG /* handle tx frags */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_WME /* 802.11e */ | IEEE80211_C_PMGT /* Station-side power mgmt */ ; ic->ic_cryptocaps = IEEE80211_CRYPTO_AES_CCM; /* * Read in the eeprom and also setup the channels for * net80211. We don't set the rates as net80211 does this for us */ if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) { device_printf(dev, "could not read EEPROM, error %d\n", error); goto fail; } #ifdef WPI_DEBUG if (bootverbose) { device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); device_printf(sc->sc_dev, "Hardware Type: %c\n", sc->type > 1 ? 'B': '?'); device_printf(sc->sc_dev, "Hardware Revision: %c\n", ((sc->rev & 0xf0) == 0xd0) ? 'D': '?'); device_printf(sc->sc_dev, "SKU %s support 802.11a\n", supportsa ? "does" : "does not"); /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check what sc->rev really represents - benjsc 20070615 */ } #endif ieee80211_ifattach(ic); ic->ic_vap_create = wpi_vap_create; ic->ic_vap_delete = wpi_vap_delete; ic->ic_parent = wpi_parent; ic->ic_raw_xmit = wpi_raw_xmit; ic->ic_transmit = wpi_transmit; ic->ic_node_alloc = wpi_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = wpi_node_free; ic->ic_wme.wme_update = wpi_updateedca; ic->ic_update_promisc = wpi_update_promisc; ic->ic_update_mcast = wpi_update_mcast; ic->ic_newassoc = wpi_newassoc; ic->ic_scan_start = wpi_scan_start; ic->ic_scan_end = wpi_scan_end; ic->ic_set_channel = wpi_set_channel; ic->ic_scan_curchan = wpi_scan_curchan; ic->ic_scan_mindwell = wpi_scan_mindwell; ic->ic_setregdomain = wpi_setregdomain; sc->sc_update_rx_ring = wpi_update_rx_ring; sc->sc_update_tx_ring = wpi_update_tx_ring; wpi_radiotap_attach(sc); callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0); callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0); callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0); callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc); TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc); TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc); sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->sc_tq); error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq"); if (error != 0) { device_printf(dev, "can't start threads, error %d\n", error); goto fail; } wpi_sysctlattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, wpi_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "can't establish interrupt, error %d\n", error); goto fail; } if (bootverbose) ieee80211_announce(ic); #ifdef WPI_DEBUG if (sc->sc_debug & WPI_DEBUG_HW) ieee80211_announce_channels(ic); #endif DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; fail: wpi_detach(dev); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } /* * Attach the interface to 802.11 radiotap. */ static void wpi_radiotap_attach(struct wpi_softc *sc) { struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap; struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); ieee80211_radiotap_attach(&sc->sc_ic, &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT, &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); } static void wpi_sysctlattach(struct wpi_softc *sc) { #ifdef WPI_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, "control debugging printfs"); #endif } static void wpi_init_beacon(struct wpi_vap *wvp) { struct wpi_buf *bcn = &wvp->wv_bcbuf; struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; cmd->id = WPI_ID_BROADCAST; cmd->ofdm_mask = 0xff; cmd->cck_mask = 0x0f; cmd->lifetime = htole32(WPI_LIFETIME_INFINITE); /* * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue * XXX by using WPI_TX_NEED_ACK instead (with some side effects). */ cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP); bcn->code = WPI_CMD_SET_BEACON; bcn->ac = WPI_CMD_QUEUE_NUM; bcn->size = sizeof(struct wpi_cmd_beacon); } static struct ieee80211vap * wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct wpi_vap *wvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &wvp->wv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { WPI_VAP_LOCK_INIT(wvp); wpi_init_beacon(wvp); } /* Override with driver methods. */ vap->iv_key_set = wpi_key_set; vap->iv_key_delete = wpi_key_delete; if (opmode == IEEE80211_M_IBSS) { wvp->wv_recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = wpi_ibss_recv_mgmt; } wvp->wv_newstate = vap->iv_newstate; vap->iv_newstate = wpi_newstate; vap->iv_update_beacon = wpi_update_beacon; vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1; ieee80211_ratectl_init(vap); /* Complete setup. */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void wpi_vap_delete(struct ieee80211vap *vap) { struct wpi_vap *wvp = WPI_VAP(vap); struct wpi_buf *bcn = &wvp->wv_bcbuf; enum ieee80211_opmode opmode = vap->iv_opmode; ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { if (bcn->m != NULL) m_freem(bcn->m); WPI_VAP_LOCK_DESTROY(wvp); } free(wvp, M_80211_VAP); } static int wpi_detach(device_t dev) { struct wpi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint8_t qid; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if (ic->ic_vap_create == wpi_vap_create) { ieee80211_draintask(ic, &sc->sc_radioon_task); wpi_stop(sc); if (sc->sc_tq != NULL) { taskqueue_drain_all(sc->sc_tq); taskqueue_free(sc->sc_tq); } callout_drain(&sc->watchdog_rfkill); callout_drain(&sc->tx_timeout); callout_drain(&sc->scan_timeout); callout_drain(&sc->calib_to); ieee80211_ifdetach(ic); } /* Uninstall interrupt handler. */ if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); pci_release_msi(dev); } if (sc->txq[0].data_dmat) { /* Free DMA resources. */ for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) wpi_free_tx_ring(sc, &sc->txq[qid]); wpi_free_rx_ring(sc); wpi_free_shared(sc); } if (sc->fw_dma.tag) wpi_free_fwmem(sc); if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); WPI_TXQ_STATE_LOCK_DESTROY(sc); WPI_TXQ_LOCK_DESTROY(sc); WPI_NT_LOCK_DESTROY(sc); WPI_RXON_LOCK_DESTROY(sc); WPI_TX_LOCK_DESTROY(sc); WPI_LOCK_DESTROY(sc); return 0; } static int wpi_shutdown(device_t dev) { struct wpi_softc *sc = device_get_softc(dev); wpi_stop(sc); return 0; } static int wpi_suspend(device_t dev) { struct wpi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; ieee80211_suspend_all(ic); return 0; } static int wpi_resume(device_t dev) { struct wpi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); ieee80211_resume_all(ic); return 0; } /* * Grab exclusive access to NIC memory. */ static int wpi_nic_lock(struct wpi_softc *sc) { int ntries; /* Request exclusive access to NIC. */ WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 1000; ntries++) { if ((WPI_READ(sc, WPI_GP_CNTRL) & (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == WPI_GP_CNTRL_MAC_ACCESS_ENA) return 0; DELAY(10); } device_printf(sc->sc_dev, "could not lock memory\n"); return ETIMEDOUT; } /* * Release lock on NIC memory. */ static __inline void wpi_nic_unlock(struct wpi_softc *sc) { WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); } static __inline uint32_t wpi_prph_read(struct wpi_softc *sc, uint32_t addr) { WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); WPI_BARRIER_READ_WRITE(sc); return WPI_READ(sc, WPI_PRPH_RDATA); } static __inline void wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) { WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); WPI_BARRIER_WRITE(sc); WPI_WRITE(sc, WPI_PRPH_WDATA, data); } static __inline void wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) { wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); } static __inline void wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) { wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); } static __inline void wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, const uint32_t *data, uint32_t count) { for (; count != 0; count--, data++, addr += 4) wpi_prph_write(sc, addr, *data); } static __inline uint32_t wpi_mem_read(struct wpi_softc *sc, uint32_t addr) { WPI_WRITE(sc, WPI_MEM_RADDR, addr); WPI_BARRIER_READ_WRITE(sc); return WPI_READ(sc, WPI_MEM_RDATA); } static __inline void wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, int count) { for (; count > 0; count--, addr += 4) *data++ = wpi_mem_read(sc, addr); } static int wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) { uint8_t *out = data; uint32_t val; int error, ntries; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if ((error = wpi_nic_lock(sc)) != 0) return error; for (; count > 0; count -= 2, addr++) { WPI_WRITE(sc, WPI_EEPROM, addr << 2); for (ntries = 0; ntries < 10; ntries++) { val = WPI_READ(sc, WPI_EEPROM); if (val & WPI_EEPROM_READ_VALID) break; DELAY(5); } if (ntries == 10) { device_printf(sc->sc_dev, "timeout reading ROM at 0x%x\n", addr); return ETIMEDOUT; } *out++= val >> 16; if (count > 1) *out ++= val >> 24; } wpi_nic_unlock(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static void wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); *(bus_addr_t *)arg = segs[0].ds_addr; } /* * Allocates a contiguous block of dma memory of the requested size and * alignment. */ static int wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment) { int error; dma->tag = NULL; dma->size = size; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &dma->tag); if (error != 0) goto fail; error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); if (error != 0) goto fail; error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); if (error != 0) goto fail; bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: wpi_dma_contig_free(dma); return error; } static void wpi_dma_contig_free(struct wpi_dma_info *dma) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_free(dma->tag, dma->vaddr, dma->map); dma->vaddr = NULL; } if (dma->tag != NULL) { bus_dma_tag_destroy(dma->tag); dma->tag = NULL; } } /* * Allocate a shared page between host and NIC. */ static int wpi_alloc_shared(struct wpi_softc *sc) { /* Shared buffer must be aligned on a 4KB boundary. */ return wpi_dma_contig_alloc(sc, &sc->shared_dma, (void **)&sc->shared, sizeof (struct wpi_shared), 4096); } static void wpi_free_shared(struct wpi_softc *sc) { wpi_dma_contig_free(&sc->shared_dma); } /* * Allocate DMA-safe memory for firmware transfer. */ static int wpi_alloc_fwmem(struct wpi_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); } static void wpi_free_fwmem(struct wpi_softc *sc) { wpi_dma_contig_free(&sc->fw_dma); } static int wpi_alloc_rx_ring(struct wpi_softc *sc) { struct wpi_rx_ring *ring = &sc->rxq; bus_size_t size; int i, error; ring->cur = 0; ring->update = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Allocate RX descriptors (16KB aligned.) */ size = WPI_RX_RING_COUNT * sizeof (uint32_t); error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate RX ring DMA memory, error %d\n", __func__, error); goto fail; } /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA tag, error %d\n", __func__, error); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < WPI_RX_RING_COUNT; i++) { struct wpi_rx_data *data = &ring->data[i]; bus_addr_t paddr; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (data->m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate RX mbuf\n", __func__); error = ENOBUFS; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); goto fail; } /* Set physical address of RX buffer. */ ring->desc[i] = htole32(paddr); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; fail: wpi_free_rx_ring(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } static void wpi_update_rx_ring(struct wpi_softc *sc) { WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7); } static void wpi_update_rx_ring_ps(struct wpi_softc *sc) { struct wpi_rx_ring *ring = &sc->rxq; if (ring->update != 0) { /* Wait for INT_WAKEUP event. */ return; } WPI_TXQ_LOCK(sc); WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n", __func__); ring->update = 1; } else { wpi_update_rx_ring(sc); WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); } WPI_TXQ_UNLOCK(sc); } static void wpi_reset_rx_ring(struct wpi_softc *sc) { struct wpi_rx_ring *ring = &sc->rxq; int ntries; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (wpi_nic_lock(sc) == 0) { WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (WPI_READ(sc, WPI_FH_RX_STATUS) & WPI_FH_RX_STATUS_IDLE) break; DELAY(10); } wpi_nic_unlock(sc); } ring->cur = 0; ring->update = 0; } static void wpi_free_rx_ring(struct wpi_softc *sc) { struct wpi_rx_ring *ring = &sc->rxq; int i; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); wpi_dma_contig_free(&ring->desc_dma); for (i = 0; i < WPI_RX_RING_COUNT; i++) { struct wpi_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static int wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid) { bus_addr_t paddr; bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; ring->pending = 0; ring->update = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Allocate TX descriptors (16KB aligned.) */ size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX ring DMA memory, error %d\n", __func__, error); goto fail; } /* Update shared area with ring physical address. */ sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, BUS_DMASYNC_PREWRITE); size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, size, 4); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX cmd DMA memory, error %d\n", __func__, error); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA tag, error %d\n", __func__, error); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < WPI_TX_RING_COUNT; i++) { struct wpi_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; paddr += sizeof (struct wpi_tx_cmd); error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA map, error %d\n", __func__, error); goto fail; } } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; fail: wpi_free_tx_ring(sc, ring); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } static void wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) { WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); } static void wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring) { if (ring->update != 0) { /* Wait for INT_WAKEUP event. */ return; } WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n", __func__, ring->qid); ring->update = 1; } else { wpi_update_tx_ring(sc, ring); WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); } } static void wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) { int i; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); for (i = 0; i < WPI_TX_RING_COUNT; i++) { struct wpi_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = 0; ring->pending = 0; ring->update = 0; } static void wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) { int i; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); wpi_dma_contig_free(&ring->desc_dma); wpi_dma_contig_free(&ring->cmd_dma); for (i = 0; i < WPI_TX_RING_COUNT; i++) { struct wpi_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } /* * Extract various information from EEPROM. */ static int wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { #define WPI_CHK(res) do { \ if ((error = res) != 0) \ goto fail; \ } while (0) uint8_t i; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Adapter has to be powered on for EEPROM access to work. */ if ((error = wpi_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { device_printf(sc->sc_dev, "bad EEPROM signature\n"); error = EIO; goto fail; } /* Clear HW ownership of EEPROM. */ WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); /* Read the hardware capabilities, revision and SKU type. */ WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap, sizeof(sc->cap))); WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, sizeof(sc->rev))); WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, sizeof(sc->type))); sc->rev = le16toh(sc->rev); DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, sc->rev, sc->type); /* Read the regulatory domain (4 ASCII characters.) */ WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, sizeof(sc->domain))); /* Read MAC address. */ WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, IEEE80211_ADDR_LEN)); /* Read the list of authorized channels. */ for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) WPI_CHK(wpi_read_eeprom_channels(sc, i)); /* Read the list of TX power groups. */ for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) WPI_CHK(wpi_read_eeprom_group(sc, i)); fail: wpi_apm_stop(sc); /* Power OFF adapter. */ DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, __func__); return error; #undef WPI_CHK } /* * Translate EEPROM flags to net80211. */ static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel) { uint32_t nflags; nflags = 0; if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0) nflags |= IEEE80211_CHAN_PASSIVE; if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0) nflags |= IEEE80211_CHAN_NOADHOC; if (channel->flags & WPI_EEPROM_CHAN_RADAR) { nflags |= IEEE80211_CHAN_DFS; /* XXX apparently IBSS may still be marked */ nflags |= IEEE80211_CHAN_NOADHOC; } /* XXX HOSTAP uses WPI_MODE_IBSS */ if (nflags & IEEE80211_CHAN_NOADHOC) nflags |= IEEE80211_CHAN_NOHOSTAP; return nflags; } static void wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n) { struct ieee80211com *ic = &sc->sc_ic; struct wpi_eeprom_chan *channels = sc->eeprom_channels[n]; const struct wpi_chan_band *band = &wpi_bands[n]; struct ieee80211_channel *c; uint32_t nflags; uint8_t chan, i; for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { DPRINTF(sc, WPI_DEBUG_EEPROM, "Channel Not Valid: %d, band %d\n", band->chan[i],n); continue; } chan = band->chan[i]; nflags = wpi_eeprom_channel_flags(&channels[i]); c = &ic->ic_channels[ic->ic_nchans++]; c->ic_ieee = chan; c->ic_maxregpower = channels[i].maxpwr; c->ic_maxpower = 2*c->ic_maxregpower; if (n == 0) { /* 2GHz band */ c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); /* G =>'s B is supported */ c->ic_flags = IEEE80211_CHAN_B | nflags; c = &ic->ic_channels[ic->ic_nchans++]; c[0] = c[-1]; c->ic_flags = IEEE80211_CHAN_G | nflags; } else { /* 5GHz band */ c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); c->ic_flags = IEEE80211_CHAN_A | nflags; } /* Save maximum allowed TX power for this channel. */ sc->maxpwr[chan] = channels[i].maxpwr; DPRINTF(sc, WPI_DEBUG_EEPROM, "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d," " offset %d\n", chan, c->ic_freq, channels[i].flags, sc->maxpwr[chan], IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans); } } /** * Read the eeprom to find out what channels are valid for the given * band and update net80211 with what we find. */ static int wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n) { struct ieee80211com *ic = &sc->sc_ic; const struct wpi_chan_band *band = &wpi_bands[n]; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n], band->nchan * sizeof (struct wpi_eeprom_chan)); if (error != 0) { DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } wpi_read_eeprom_band(sc, n); ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static struct wpi_eeprom_chan * wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c) { int i, j; for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++) for (i = 0; i < wpi_bands[j].nchan; i++) if (wpi_bands[j].chan[i] == c->ic_ieee) return &sc->eeprom_channels[j][i]; return NULL; } /* * Enforce flags read from EEPROM. */ static int wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, int nchan, struct ieee80211_channel chans[]) { struct wpi_softc *sc = ic->ic_softc; int i; for (i = 0; i < nchan; i++) { struct ieee80211_channel *c = &chans[i]; struct wpi_eeprom_chan *channel; channel = wpi_find_eeprom_channel(sc, c); if (channel == NULL) { ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", __func__, c->ic_ieee, c->ic_freq, c->ic_flags); return EINVAL; } c->ic_flags |= wpi_eeprom_channel_flags(channel); } return 0; } static int wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n) { struct wpi_power_group *group = &sc->groups[n]; struct wpi_eeprom_group rgroup; int i, error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, sizeof rgroup)) != 0) { DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } /* Save TX power group information. */ group->chan = rgroup.chan; group->maxpwr = rgroup.maxpwr; /* Retrieve temperature at which the samples were taken. */ group->temp = (int16_t)le16toh(rgroup.temp); DPRINTF(sc, WPI_DEBUG_EEPROM, "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan, group->maxpwr, group->temp); for (i = 0; i < WPI_SAMPLES_COUNT; i++) { group->samples[i].index = rgroup.samples[i].index; group->samples[i].power = rgroup.samples[i].power; DPRINTF(sc, WPI_DEBUG_EEPROM, "\tsample %d: index=%d power=%d\n", i, group->samples[i].index, group->samples[i].power); } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static __inline uint8_t wpi_add_node_entry_adhoc(struct wpi_softc *sc) { uint8_t newid = WPI_ID_IBSS_MIN; for (; newid <= WPI_ID_IBSS_MAX; newid++) { if ((sc->nodesmsk & (1 << newid)) == 0) { sc->nodesmsk |= 1 << newid; return newid; } } return WPI_ID_UNDEFINED; } static __inline uint8_t wpi_add_node_entry_sta(struct wpi_softc *sc) { sc->nodesmsk |= 1 << WPI_ID_BSS; return WPI_ID_BSS; } static __inline int wpi_check_node_entry(struct wpi_softc *sc, uint8_t id) { if (id == WPI_ID_UNDEFINED) return 0; return (sc->nodesmsk >> id) & 1; } static __inline void wpi_clear_node_table(struct wpi_softc *sc) { sc->nodesmsk = 0; } static __inline void wpi_del_node_entry(struct wpi_softc *sc, uint8_t id) { sc->nodesmsk &= ~(1 << id); } static struct ieee80211_node * wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct wpi_node *wn; wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (wn == NULL) return NULL; wn->id = WPI_ID_UNDEFINED; return &wn->ni; } static void wpi_node_free(struct ieee80211_node *ni) { struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); if (wn->id != WPI_ID_UNDEFINED) { WPI_NT_LOCK(sc); if (wpi_check_node_entry(sc, wn->id)) { wpi_del_node_entry(sc, wn->id); wpi_del_node(sc, ni); } WPI_NT_UNLOCK(sc); } sc->sc_node_free(ni); } static __inline int wpi_check_bss_filter(struct wpi_softc *sc) { return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0; } static void wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = vap->iv_ic->ic_softc; struct wpi_vap *wvp = WPI_VAP(vap); uint64_t ni_tstamp, rx_tstamp; wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); if (vap->iv_state == IEEE80211_S_RUN && (subtype == IEEE80211_FC0_SUBTYPE_BEACON || subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { ni_tstamp = le64toh(ni->ni_tstamp.tsf); rx_tstamp = le64toh(sc->rx_tstamp); if (ni_tstamp >= rx_tstamp) { DPRINTF(sc, WPI_DEBUG_STATE, "ibss merge, tsf %ju tstamp %ju\n", (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); (void) ieee80211_ibss_merge(ni); } } } static void wpi_restore_node(void *arg, struct ieee80211_node *ni) { struct wpi_softc *sc = arg; struct wpi_node *wn = WPI_NODE(ni); int error; WPI_NT_LOCK(sc); if (wn->id != WPI_ID_UNDEFINED) { wn->id = WPI_ID_UNDEFINED; if ((error = wpi_add_ibss_node(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not add IBSS node, error %d\n", __func__, error); } } WPI_NT_UNLOCK(sc); } static void wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp) { struct ieee80211com *ic = &sc->sc_ic; /* Set group keys once. */ WPI_NT_LOCK(sc); wvp->wv_gtk = 0; WPI_NT_UNLOCK(sc); ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc); ieee80211_crypto_reload_keys(ic); } /** * Called by net80211 when ever there is a change to 80211 state machine */ static int wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct wpi_vap *wvp = WPI_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct wpi_softc *sc = ic->ic_softc; int error = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); WPI_TXQ_LOCK(sc); if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) { DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); WPI_TXQ_UNLOCK(sc); return ENXIO; } WPI_TXQ_UNLOCK(sc); DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) { if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not set power saving level\n", __func__); return error; } wpi_set_led(sc, WPI_LED_LINK, 1, 0); } switch (nstate) { case IEEE80211_S_SCAN: WPI_RXON_LOCK(sc); if (wpi_check_bss_filter(sc) != 0) { sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); } } WPI_RXON_UNLOCK(sc); break; case IEEE80211_S_ASSOC: if (vap->iv_state != IEEE80211_S_RUN) break; /* FALLTHROUGH */ case IEEE80211_S_AUTH: /* * NB: do not optimize AUTH -> AUTH state transmission - * this will break powersave with non-QoS AP! */ /* * The node must be registered in the firmware before auth. * Also the associd must be cleared on RUN -> ASSOC * transitions. */ if ((error = wpi_auth(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to AUTH state, error %d\n", __func__, error); } break; case IEEE80211_S_RUN: /* * RUN -> RUN transition: * STA mode: Just restart the timers. * IBSS mode: Process IBSS merge. */ if (vap->iv_state == IEEE80211_S_RUN) { if (vap->iv_opmode != IEEE80211_M_IBSS) { WPI_RXON_LOCK(sc); wpi_calib_timeout(sc); WPI_RXON_UNLOCK(sc); break; } else { /* * Drop the BSS_FILTER bit * (there is no another way to change bssid). */ WPI_RXON_LOCK(sc); sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); } WPI_RXON_UNLOCK(sc); /* Restore all what was lost. */ wpi_restore_node_table(sc, wvp); /* XXX set conditionally? */ wpi_updateedca(ic); } } /* * !RUN -> RUN requires setting the association id * which is done with a firmware cmd. We also defer * starting the timers until that work is done. */ if ((error = wpi_run(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to RUN state\n", __func__); } break; default: break; } if (error != 0) { DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return wvp->wv_newstate(vap, nstate, arg); } static void wpi_calib_timeout(void *arg) { struct wpi_softc *sc = arg; if (wpi_check_bss_filter(sc) == 0) return; wpi_power_calibration(sc); callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); } static __inline uint8_t rate2plcp(const uint8_t rate) { switch (rate) { case 12: return 0xd; case 18: return 0xf; case 24: return 0x5; case 36: return 0x7; case 48: return 0x9; case 72: return 0xb; case 96: return 0x1; case 108: return 0x3; case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; default: return 0; } } static __inline uint8_t plcp2rate(const uint8_t plcp) { switch (plcp) { case 0xd: return 12; case 0xf: return 18; case 0x5: return 24; case 0x7: return 36; case 0x9: return 48; case 0xb: return 72; case 0x1: return 96; case 0x3: return 108; case 10: return 2; case 20: return 4; case 55: return 11; case 110: return 22; default: return 0; } } /* Quickly determine if a given rate is CCK or OFDM. */ #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) static void wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, struct wpi_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct wpi_rx_ring *ring = &sc->rxq; struct wpi_rx_stat *stat; struct wpi_rx_head *head; struct wpi_rx_tail *tail; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m, *m1; bus_addr_t paddr; uint32_t flags; uint16_t len; int error; stat = (struct wpi_rx_stat *)(desc + 1); if (__predict_false(stat->len > WPI_STAT_MAXLEN)) { device_printf(sc->sc_dev, "invalid RX statistic header\n"); goto fail1; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); len = le16toh(head->len); tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len); flags = le32toh(tail->flags); DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d" " rate %x chan %d tstamp %ju\n", __func__, ring->cur, le32toh(desc->len), len, (int8_t)stat->rssi, head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp)); /* Discard frames with a bad FCS early. */ if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n", __func__, flags); goto fail1; } /* Discard frames that are too short. */ if (len < sizeof (struct ieee80211_frame_ack)) { DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n", __func__, len); goto fail1; } m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (__predict_false(m1 == NULL)) { DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n", __func__); goto fail1; } bus_dmamap_unload(ring->data_dmat, data->map); error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (__predict_false(error != 0 && error != EFBIG)) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m1); /* Try to reload the old mbuf. */ error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { panic("%s: could not load old RX mbuf", __func__); } /* Physical address may have changed. */ ring->desc[ring->cur] = htole32(paddr); bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); goto fail1; } m = data->m; data->m = m1; /* Update RX descriptor. */ ring->desc[ring->cur] = htole32(paddr); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Finalize mbuf. */ m->m_data = (caddr_t)(head + 1); m->m_pkthdr.len = m->m_len = len; /* Grab a reference to the source node. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) { /* Check whether decryption was successful or not. */ if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { DPRINTF(sc, WPI_DEBUG_RECV, "CCMP decryption failed 0x%x\n", flags); goto fail2; } m->m_flags |= M_WEP; } if (len >= sizeof(struct ieee80211_frame_min)) ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); else ni = NULL; sc->rx_tstamp = tail->tstamp; if (ieee80211_radiotap_active(ic)) { struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET); tap->wr_dbm_antnoise = WPI_RSSI_OFFSET; tap->wr_tsft = tail->tstamp; tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; tap->wr_rate = plcp2rate(head->plcp); } WPI_UNLOCK(sc); /* Send the frame to the 802.11 layer. */ if (ni != NULL) { (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET); /* Node is no longer needed. */ ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET); WPI_LOCK(sc); return; fail2: m_freem(m); fail1: counter_u64_add(ic->ic_ierrors, 1); } static void wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc, struct wpi_rx_data *data) { /* Ignore */ } static void wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) { struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; struct wpi_tx_data *data = &ring->data[desc->idx]; struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); struct mbuf *m; struct ieee80211_node *ni; struct ieee80211vap *vap; struct ieee80211com *ic; uint32_t status = le32toh(stat->status); int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT; KASSERT(data->ni != NULL, ("no node")); KASSERT(data->m != NULL, ("no mbuf")); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); DPRINTF(sc, WPI_DEBUG_XMIT, "%s: " "qid %d idx %d retries %d btkillcnt %d rate %x duration %d " "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, stat->btkillcnt, stat->rate, le32toh(stat->duration), status); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; vap = ni->ni_vap; ic = vap->iv_ic; /* * Update rate control statistics for the node. */ if (status & WPI_TX_STATUS_FAIL) { ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); } else ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0); WPI_TXQ_STATE_LOCK(sc); if (--ring->queued > 0) callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); else callout_stop(&sc->tx_timeout); WPI_TXQ_STATE_UNLOCK(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); } /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. */ static void wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) { struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; struct wpi_tx_data *data; struct wpi_tx_cmd *cmd; DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x " "type %s len %d\n", desc->qid, desc->idx, desc->flags, wpi_cmd_str(desc->type), le32toh(desc->len)); if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM) return; /* Not a command ack. */ KASSERT(ring->queued == 0, ("ring->queued must be 0")); data = &ring->data[desc->idx]; cmd = &ring->cmd[desc->idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(cmd); if (desc->type == WPI_CMD_SET_POWER_MODE) { struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data; bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_POSTREAD); WPI_TXQ_LOCK(sc); if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) { sc->sc_update_rx_ring = wpi_update_rx_ring_ps; sc->sc_update_tx_ring = wpi_update_tx_ring_ps; } else { sc->sc_update_rx_ring = wpi_update_rx_ring; sc->sc_update_tx_ring = wpi_update_tx_ring; } WPI_TXQ_UNLOCK(sc); } } static void wpi_notif_intr(struct wpi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t hw; bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, BUS_DMASYNC_POSTREAD); hw = le32toh(sc->shared->next) & 0xfff; hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; while (sc->rxq.cur != hw) { sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct wpi_rx_desc *desc; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); desc = mtod(data->m, struct wpi_rx_desc *); DPRINTF(sc, WPI_DEBUG_NOTIFY, "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags, desc->type, wpi_cmd_str(desc->type), le32toh(desc->len)); if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) { /* Reply to a command. */ wpi_cmd_done(sc, desc); } switch (desc->type) { case WPI_RX_DONE: /* An 802.11 frame has been received. */ wpi_rx_done(sc, desc, data); if (__predict_false(sc->sc_running == 0)) { /* wpi_stop() was called. */ return; } break; case WPI_TX_DONE: /* An 802.11 frame has been transmitted. */ wpi_tx_done(sc, desc); break; case WPI_RX_STATISTICS: case WPI_BEACON_STATISTICS: wpi_rx_statistics(sc, desc, data); break; case WPI_BEACON_MISSED: { struct wpi_beacon_missed *miss = (struct wpi_beacon_missed *)(desc + 1); uint32_t expected, misses, received, threshold; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); misses = le32toh(miss->consecutive); expected = le32toh(miss->expected); received = le32toh(miss->received); threshold = MAX(2, vap->iv_bmissthreshold); DPRINTF(sc, WPI_DEBUG_BMISS, "%s: beacons missed %u(%u) (received %u/%u)\n", __func__, misses, le32toh(miss->total), received, expected); if (misses >= threshold || (received == 0 && expected >= threshold)) { WPI_RXON_LOCK(sc); if (callout_pending(&sc->scan_timeout)) { wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL, 0, 1); } WPI_RXON_UNLOCK(sc); if (vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) ieee80211_beacon_miss(ic); } break; } #ifdef WPI_DEBUG case WPI_BEACON_SENT: { struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); uint64_t *tsf = (uint64_t *)(stat + 1); uint32_t *mode = (uint32_t *)(tsf + 1); bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, WPI_DEBUG_BEACON, "beacon sent: rts %u, ack %u, btkill %u, rate %u, " "duration %u, status %x, tsf %ju, mode %x\n", stat->rtsfailcnt, stat->ackfailcnt, stat->btkillcnt, stat->rate, le32toh(stat->duration), le32toh(stat->status), le64toh(*tsf), le32toh(*mode)); break; } #endif case WPI_UC_READY: { struct wpi_ucode_info *uc = (struct wpi_ucode_info *)(desc + 1); /* The microcontroller is ready. */ bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); DPRINTF(sc, WPI_DEBUG_RESET, "microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, le32toh(uc->valid)); if (le32toh(uc->valid) != 1) { device_printf(sc->sc_dev, "microcontroller initialization failed\n"); wpi_stop_locked(sc); return; } /* Save the address of the error log in SRAM. */ sc->errptr = le32toh(uc->errptr); break; } case WPI_STATE_CHANGED: { bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); uint32_t *status = (uint32_t *)(desc + 1); DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n", le32toh(*status)); if (le32toh(*status) & 1) { WPI_NT_LOCK(sc); wpi_clear_node_table(sc); WPI_NT_UNLOCK(sc); taskqueue_enqueue(sc->sc_tq, &sc->sc_radiooff_task); return; } break; } #ifdef WPI_DEBUG case WPI_START_SCAN: { bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); struct wpi_start_scan *scan = (struct wpi_start_scan *)(desc + 1); DPRINTF(sc, WPI_DEBUG_SCAN, "%s: scanning channel %d status %x\n", __func__, scan->chan, le32toh(scan->status)); break; } #endif case WPI_STOP_SCAN: { bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); struct wpi_stop_scan *scan = (struct wpi_stop_scan *)(desc + 1); DPRINTF(sc, WPI_DEBUG_SCAN, "scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan); WPI_RXON_LOCK(sc); callout_stop(&sc->scan_timeout); WPI_RXON_UNLOCK(sc); if (scan->status == WPI_SCAN_ABORTED) ieee80211_cancel_scan(vap); else ieee80211_scan_next(vap); break; } } if (sc->rxq.cur % 8 == 0) { /* Tell the firmware what we have processed. */ sc->sc_update_rx_ring(sc); } } } /* * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up * from power-down sleep mode. */ static void wpi_wakeup_intr(struct wpi_softc *sc) { int qid; DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: ucode wakeup from power-down sleep\n", __func__); /* Wakeup RX and TX rings. */ if (sc->rxq.update) { sc->rxq.update = 0; wpi_update_rx_ring(sc); } WPI_TXQ_LOCK(sc); for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) { struct wpi_tx_ring *ring = &sc->txq[qid]; if (ring->update) { ring->update = 0; wpi_update_tx_ring(sc, ring); } } WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); WPI_TXQ_UNLOCK(sc); } /* * This function prints firmware registers */ #ifdef WPI_DEBUG static void wpi_debug_registers(struct wpi_softc *sc) { size_t i; static const uint32_t csr_tbl[] = { WPI_HW_IF_CONFIG, WPI_INT, WPI_INT_MASK, WPI_FH_INT, WPI_GPIO_IN, WPI_RESET, WPI_GP_CNTRL, WPI_EEPROM, WPI_EEPROM_GP, WPI_GIO, WPI_UCODE_GP1, WPI_UCODE_GP2, WPI_GIO_CHICKEN, WPI_ANA_PLL, WPI_DBG_HPET_MEM, }; static const uint32_t prph_tbl[] = { WPI_APMG_CLK_CTRL, WPI_APMG_PS, WPI_APMG_PCI_STT, WPI_APMG_RFKILL, }; DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n"); for (i = 0; i < nitems(csr_tbl); i++) { DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i])); if ((i + 1) % 2 == 0) DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); } DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n"); if (wpi_nic_lock(sc) == 0) { for (i = 0; i < nitems(prph_tbl); i++) { DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", wpi_get_prph_string(prph_tbl[i]), wpi_prph_read(sc, prph_tbl[i])); if ((i + 1) % 2 == 0) DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); } DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); wpi_nic_unlock(sc); } else { DPRINTF(sc, WPI_DEBUG_REGISTER, "Cannot access internal registers.\n"); } } #endif /* * Dump the error log of the firmware when a firmware panic occurs. Although * we can't debug the firmware because it is neither open source nor free, it * can help us to identify certain classes of problems. */ static void wpi_fatal_intr(struct wpi_softc *sc) { struct wpi_fw_dump dump; uint32_t i, offset, count; /* Check that the error log address is valid. */ if (sc->errptr < WPI_FW_DATA_BASE || sc->errptr + sizeof (dump) > WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { printf("%s: bad firmware error log address 0x%08x\n", __func__, sc->errptr); return; } if (wpi_nic_lock(sc) != 0) { printf("%s: could not read firmware error log\n", __func__); return; } /* Read number of entries in the log. */ count = wpi_mem_read(sc, sc->errptr); if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { printf("%s: invalid count field (count = %u)\n", __func__, count); wpi_nic_unlock(sc); return; } /* Skip "count" field. */ offset = sc->errptr + sizeof (uint32_t); printf("firmware error log (count = %u):\n", count); for (i = 0; i < count; i++) { wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, sizeof (dump) / sizeof (uint32_t)); printf(" error type = \"%s\" (0x%08X)\n", (dump.desc < nitems(wpi_fw_errmsg)) ? wpi_fw_errmsg[dump.desc] : "UNKNOWN", dump.desc); printf(" error data = 0x%08X\n", dump.data); printf(" branch link = 0x%08X%08X\n", dump.blink[0], dump.blink[1]); printf(" interrupt link = 0x%08X%08X\n", dump.ilink[0], dump.ilink[1]); printf(" time = %u\n", dump.time); offset += sizeof (dump); } wpi_nic_unlock(sc); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); WPI_TXQ_LOCK(sc); for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { struct wpi_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } WPI_TXQ_UNLOCK(sc); printf(" rx ring: cur=%d\n", sc->rxq.cur); } static void wpi_intr(void *arg) { struct wpi_softc *sc = arg; uint32_t r1, r2; WPI_LOCK(sc); /* Disable interrupts. */ WPI_WRITE(sc, WPI_INT_MASK, 0); r1 = WPI_READ(sc, WPI_INT); if (__predict_false(r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)) goto end; /* Hardware gone! */ r2 = WPI_READ(sc, WPI_FH_INT); DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__, r1, r2); if (r1 == 0 && r2 == 0) goto done; /* Interrupt not for us. */ /* Acknowledge interrupts. */ WPI_WRITE(sc, WPI_INT, r1); WPI_WRITE(sc, WPI_FH_INT, r2); if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) { device_printf(sc->sc_dev, "fatal firmware error\n"); #ifdef WPI_DEBUG wpi_debug_registers(sc); #endif wpi_fatal_intr(sc); DPRINTF(sc, WPI_DEBUG_HW, "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" : "(Hardware Error)"); taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask); goto end; } if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || (r2 & WPI_FH_INT_RX)) wpi_notif_intr(sc); if (r1 & WPI_INT_ALIVE) wakeup(sc); /* Firmware is alive. */ if (r1 & WPI_INT_WAKEUP) wpi_wakeup_intr(sc); done: /* Re-enable interrupts. */ if (__predict_true(sc->sc_running)) WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); end: WPI_UNLOCK(sc); } static void wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac) { struct wpi_tx_ring *ring; struct wpi_tx_data *data; uint8_t cur; WPI_TXQ_LOCK(sc); ring = &sc->txq[ac]; while (ring->pending != 0) { ring->pending--; cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; data = &ring->data[cur]; bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_node_decref(data->ni); data->ni = NULL; } WPI_TXQ_UNLOCK(sc); } static int wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf) { struct ieee80211_frame *wh; struct wpi_tx_cmd *cmd; struct wpi_tx_data *data; struct wpi_tx_desc *desc; struct wpi_tx_ring *ring; struct mbuf *m1; bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER]; uint8_t cur, pad; uint16_t hdrlen; int error, i, nsegs, totlen, frag; WPI_TXQ_LOCK(sc); KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow")); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if (__predict_false(sc->sc_running == 0)) { /* wpi_stop() was called */ error = ENETDOWN; goto end; } wh = mtod(buf->m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); totlen = buf->m->m_pkthdr.len; frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG); if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) { error = EINVAL; goto end; } if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ pad = 4 - (hdrlen & 3); } else pad = 0; ring = &sc->txq[buf->ac]; cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; desc = &ring->desc[cur]; data = &ring->data[cur]; /* Prepare TX firmware command. */ cmd = &ring->cmd[cur]; cmd->code = buf->code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = cur; memcpy(cmd->data, buf->data, buf->size); /* Save and trim IEEE802.11 header. */ memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen); m_adj(buf->m, hdrlen); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); goto end; } if (error != 0) { /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); error = ENOBUFS; goto end; } buf->m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, segs, &nsegs, BUS_DMA_NOWAIT); if (__predict_false(error != 0)) { /* XXX fix this (applicable to the iwn(4) too) */ /* * NB: Do not return error; * original mbuf does not exist anymore. */ device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); if (ring->qid < WPI_CMD_QUEUE_NUM) { if_inc_counter(buf->ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); if (!frag) ieee80211_free_node(buf->ni); } m_freem(buf->m); error = 0; goto end; } } KASSERT(nsegs < WPI_MAX_SCATTER, ("too many DMA segments, nsegs (%d) should be less than %d", nsegs, WPI_MAX_SCATTER)); data->m = buf->m; data->ni = buf->ni; DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", __func__, ring->qid, cur, totlen, nsegs); /* Fill TX descriptor. */ desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs); /* First DMA segment is used by the TX command. */ desc->segs[0].addr = htole32(data->cmd_paddr); desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad); /* Other DMA segments are for data payload. */ seg = &segs[0]; for (i = 1; i <= nsegs; i++) { desc->segs[i].addr = htole32(seg->ds_addr); desc->segs[i].len = htole32(seg->ds_len); seg++; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); ring->pending += 1; if (!frag) { if (ring->qid < WPI_CMD_QUEUE_NUM) { WPI_TXQ_STATE_LOCK(sc); ring->queued += ring->pending; callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); WPI_TXQ_STATE_UNLOCK(sc); } /* Kick TX ring. */ ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; ring->pending = 0; sc->sc_update_tx_ring(sc, ring); } else ieee80211_node_incref(data->ni); end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, __func__); WPI_TXQ_UNLOCK(sc); return (error); } /* * Construct the data packet for a transmit buffer. */ static int wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { const struct ieee80211_txparam *tp; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct wpi_node *wn = WPI_NODE(ni); struct ieee80211_channel *chan; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct wpi_buf tx_data; struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; uint32_t flags; uint16_t ac, qos; uint8_t tid, type, rate; int swcrypt, ismcast, totlen; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); swcrypt = 1; /* Select EDCA Access Category and TX ring for this frame. */ if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; } else { qos = 0; tid = 0; } ac = M_WME_GETAC(m); chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ? ni->ni_chan : ic->ic_curchan; tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; /* Choose a TX rate index. */ if (type == IEEE80211_FC0_TYPE_MGT) rate = tp->mgmtrate; else if (ismcast) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else if (m->m_flags & M_EAPOL) rate = tp->mgmtrate; else { /* XXX pass pktlen */ (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) return (ENOBUFS); swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; if (ieee80211_radiotap_active_vap(vap)) { struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; ieee80211_radiotap_tx(vap, m); } flags = 0; if (!ismcast) { /* Unicast frame, check if an ACK is expected. */ if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK) flags |= WPI_TX_NEED_ACK; } if (!IEEE80211_QOS_HAS_SEQ(wh)) flags |= WPI_TX_AUTO_SEQ; if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) flags |= WPI_TX_MORE_FRAG; /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!ismcast) { /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { flags |= WPI_TX_NEED_RTS; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && WPI_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= WPI_TX_NEED_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= WPI_TX_NEED_RTS; } if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) flags |= WPI_TX_FULL_TXOP; } memset(tx, 0, sizeof (struct wpi_cmd_data)); if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= WPI_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } if (ismcast || type != IEEE80211_FC0_TYPE_DATA) tx->id = WPI_ID_BROADCAST; else { if (wn->id == WPI_ID_UNDEFINED) { device_printf(sc->sc_dev, "%s: undefined node id\n", __func__); return (EINVAL); } tx->id = wn->id; } if (!swcrypt) { switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_AES_CCM: tx->security = WPI_CIPHER_CCMP; break; default: break; } memcpy(tx->key, k->wk_key, k->wk_keylen); } if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { struct mbuf *next = m->m_nextpkt; tx->lnext = htole16(next->m_pkthdr.len); tx->fnext = htole32(tx->security | (flags & WPI_TX_NEED_ACK) | WPI_NEXT_STA_ID(tx->id)); } tx->len = htole16(totlen); tx->flags = htole32(flags); tx->plcp = rate2plcp(rate); tx->tid = tid; tx->lifetime = htole32(WPI_LIFETIME_INFINITE); tx->ofdm_mask = 0xff; tx->cck_mask = 0x0f; tx->rts_ntries = 7; tx->data_ntries = tp->maxretry; tx_data.ni = ni; tx_data.m = m; tx_data.size = sizeof(struct wpi_cmd_data); tx_data.code = WPI_CMD_TX_DATA; tx_data.ac = ac; return wpi_cmd2(sc, &tx_data); } static int wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k = NULL; struct ieee80211_frame *wh; struct wpi_buf tx_data; struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; uint32_t flags; uint8_t ac, type, rate; int swcrypt, totlen; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; swcrypt = 1; ac = params->ibp_pri & 3; /* Choose a TX rate index. */ rate = params->ibp_rate0; flags = 0; if (!IEEE80211_QOS_HAS_SEQ(wh)) flags |= WPI_TX_AUTO_SEQ; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= WPI_TX_NEED_ACK; if (params->ibp_flags & IEEE80211_BPF_RTS) flags |= WPI_TX_NEED_RTS; if (params->ibp_flags & IEEE80211_BPF_CTS) flags |= WPI_TX_NEED_CTS; if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) flags |= WPI_TX_FULL_TXOP; /* Encrypt the frame if need be. */ if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { /* Retrieve key for TX. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) return (ENOBUFS); swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; if (ieee80211_radiotap_active_vap(vap)) { struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (params->ibp_flags & IEEE80211_BPF_CRYPTO) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } memset(tx, 0, sizeof (struct wpi_cmd_data)); if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= WPI_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } if (!swcrypt) { switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_AES_CCM: tx->security = WPI_CIPHER_CCMP; break; default: break; } memcpy(tx->key, k->wk_key, k->wk_keylen); } tx->len = htole16(totlen); tx->flags = htole32(flags); tx->plcp = rate2plcp(rate); tx->id = WPI_ID_BROADCAST; tx->lifetime = htole32(WPI_LIFETIME_INFINITE); tx->rts_ntries = params->ibp_try1; tx->data_ntries = params->ibp_try0; tx_data.ni = ni; tx_data.m = m; tx_data.size = sizeof(struct wpi_cmd_data); tx_data.code = WPI_CMD_TX_DATA; tx_data.ac = ac; return wpi_cmd2(sc, &tx_data); } static __inline int wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac) { struct wpi_tx_ring *ring = &sc->txq[ac]; int retval; WPI_TXQ_STATE_LOCK(sc); retval = WPI_TX_RING_HIMARK - ring->queued; WPI_TXQ_STATE_UNLOCK(sc); return retval; } static int wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct wpi_softc *sc = ic->ic_softc; uint16_t ac; int error = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); ac = M_WME_GETAC(m); WPI_TX_LOCK(sc); /* NB: no fragments here */ if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) { error = sc->sc_running ? ENOBUFS : ENETDOWN; goto unlock; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = wpi_tx_data(sc, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = wpi_tx_data_raw(sc, m, ni, params); } unlock: WPI_TX_UNLOCK(sc); if (error != 0) { m_freem(m); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static int wpi_transmit(struct ieee80211com *ic, struct mbuf *m) { struct wpi_softc *sc = ic->ic_softc; struct ieee80211_node *ni; struct mbuf *mnext; uint16_t ac; int error, nmbufs; WPI_TX_LOCK(sc); DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__); /* Check if interface is up & running. */ if (__predict_false(sc->sc_running == 0)) { error = ENXIO; goto unlock; } nmbufs = 1; for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt) nmbufs++; /* Check for available space. */ ac = M_WME_GETAC(m); if (wpi_tx_ring_free_space(sc, ac) < nmbufs) { error = ENOBUFS; goto unlock; } error = 0; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; do { mnext = m->m_nextpkt; if (wpi_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, nmbufs); wpi_free_txfrags(sc, ac); ieee80211_free_mbuf(m); ieee80211_free_node(ni); break; } } while((m = mnext) != NULL); DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__); unlock: WPI_TX_UNLOCK(sc); return (error); } static void wpi_watchdog_rfkill(void *arg) { struct wpi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n"); /* No need to lock firmware memory. */ if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) { /* Radio kill switch is still off. */ callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); } else ieee80211_runtask(ic, &sc->sc_radioon_task); } static void wpi_scan_timeout(void *arg) { struct wpi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ic_printf(ic, "scan timeout\n"); taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask); } static void wpi_tx_timeout(void *arg) { struct wpi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ic_printf(ic, "device timeout\n"); taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask); } static void wpi_parent(struct ieee80211com *ic) { struct wpi_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (ic->ic_nrunning > 0) { if (wpi_init(sc) == 0) { ieee80211_notify_radio(ic, 1); ieee80211_start_all(ic); } else { ieee80211_notify_radio(ic, 0); ieee80211_stop(vap); } } else wpi_stop(sc); } /* * Send a command to the firmware. */ static int wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size, int async) { struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; struct wpi_tx_desc *desc; struct wpi_tx_data *data; struct wpi_tx_cmd *cmd; struct mbuf *m; bus_addr_t paddr; uint16_t totlen; int error; WPI_TXQ_LOCK(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if (__predict_false(sc->sc_running == 0)) { /* wpi_stop() was called */ if (code == WPI_CMD_SCAN) error = ENETDOWN; else error = 0; goto fail; } if (async == 0) WPI_LOCK_ASSERT(sc); DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n", __func__, wpi_cmd_str(code), size, async); desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; totlen = 4 + size; if (size > sizeof cmd->data) { /* Command is too large to fit in a descriptor. */ if (totlen > MCLBYTES) { error = EINVAL; goto fail; } m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) { error = ENOMEM; goto fail; } cmd = mtod(m, struct wpi_tx_cmd *); error = bus_dmamap_load(ring->data_dmat, data->map, cmd, totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); goto fail; } data->m = m; } else { cmd = &ring->cmd[ring->cur]; paddr = data->cmd_paddr; } cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); desc->nsegs = 1 + (WPI_PAD32(size) << 4); desc->segs[0].addr = htole32(paddr); desc->segs[0].len = htole32(totlen); if (size > sizeof cmd->data) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Kick command ring. */ ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; sc->sc_update_tx_ring(sc, ring); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); WPI_TXQ_UNLOCK(sc); return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); WPI_TXQ_UNLOCK(sc); return error; } /* * Configure HW multi-rate retries. */ static int wpi_mrr_setup(struct wpi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct wpi_mrr_setup mrr; uint8_t i; int error; /* CCK rates (not used with 802.11a). */ for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { mrr.rates[i].flags = 0; mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; /* Fallback to the immediate lower CCK rate (if any.) */ mrr.rates[i].next = (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; /* Try twice at this rate before falling back to "next". */ mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; } /* OFDM rates (not used with 802.11b). */ for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { mrr.rates[i].flags = 0; mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; /* Fallback to the immediate lower rate (if any.) */ /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? ((ic->ic_curmode == IEEE80211_MODE_11A) ? WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : i - 1; /* Try twice at this rate before falling back to "next". */ mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; } /* Setup MRR for control frames. */ mrr.which = htole32(WPI_MRR_CTL); error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not setup MRR for control frames\n"); return error; } /* Setup MRR for data frames. */ mrr.which = htole32(WPI_MRR_DATA); error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not setup MRR for data frames\n"); return error; } return 0; } static int wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct wpi_vap *wvp = WPI_VAP(ni->ni_vap); struct wpi_node *wn = WPI_NODE(ni); struct wpi_node_info node; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (wn->id == WPI_ID_UNDEFINED) return EINVAL; memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = wn->id; node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; node.action = htole32(WPI_ACTION_SET_RATE); node.antenna = WPI_ANTENNA_BOTH; DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__, wn->id, ether_sprintf(ni->ni_macaddr)); error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: wpi_cmd() call failed with error code %d\n", __func__, error); return error; } if (wvp->wv_gtk != 0) { error = wpi_set_global_keys(ni); if (error != 0) { device_printf(sc->sc_dev, "%s: error while setting global keys\n", __func__); return ENXIO; } } return 0; } /* * Broadcast node is used to send group-addressed and management frames. */ static int wpi_add_broadcast_node(struct wpi_softc *sc, int async) { struct ieee80211com *ic = &sc->sc_ic; struct wpi_node_info node; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); node.id = WPI_ID_BROADCAST; node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; node.action = htole32(WPI_ACTION_SET_RATE); node.antenna = WPI_ANTENNA_BOTH; DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__); return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async); } static int wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni) { struct wpi_node *wn = WPI_NODE(ni); int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); wn->id = wpi_add_node_entry_sta(sc); if ((error = wpi_add_node(sc, ni)) != 0) { wpi_del_node_entry(sc, wn->id); wn->id = WPI_ID_UNDEFINED; return error; } return 0; } static int wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni) { struct wpi_node *wn = WPI_NODE(ni); int error; KASSERT(wn->id == WPI_ID_UNDEFINED, ("the node %d was added before", wn->id)); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) { device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__); return ENOMEM; } if ((error = wpi_add_node(sc, ni)) != 0) { wpi_del_node_entry(sc, wn->id); wn->id = WPI_ID_UNDEFINED; return error; } return 0; } static void wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni) { struct wpi_node *wn = WPI_NODE(ni); struct wpi_cmd_del_node node; int error; KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed")); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.count = 1; DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__, wn->id, ether_sprintf(ni->ni_macaddr)); error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not delete node %u, error %d\n", __func__, wn->id, error); } } static int wpi_updateedca(struct ieee80211com *ic) { #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct wpi_softc *sc = ic->ic_softc; struct wpi_edca_params cmd; int aci, error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(WPI_EDCA_UPDATE); for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; cmd.ac[aci].aifsn = ac->wmep_aifsn; cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin)); cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax)); cmd.ac[aci].txoplimit = htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); DPRINTF(sc, WPI_DEBUG_EDCA, "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " "txoplimit=%d\n", aci, cmd.ac[aci].aifsn, cmd.ac[aci].cwmin, cmd.ac[aci].cwmax, cmd.ac[aci].txoplimit); } error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return error; #undef WPI_EXP2 } static void wpi_set_promisc(struct wpi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t promisc_filter; promisc_filter = WPI_FILTER_CTL; if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP) promisc_filter |= WPI_FILTER_PROMISC; if (ic->ic_promisc > 0) sc->rxon.filter |= htole32(promisc_filter); else sc->rxon.filter &= ~htole32(promisc_filter); } static void wpi_update_promisc(struct ieee80211com *ic) { struct wpi_softc *sc = ic->ic_softc; WPI_LOCK(sc); if (sc->sc_running == 0) { WPI_UNLOCK(sc); return; } WPI_UNLOCK(sc); WPI_RXON_LOCK(sc); wpi_set_promisc(sc); if (wpi_send_rxon(sc, 1, 1) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); } WPI_RXON_UNLOCK(sc); } static void wpi_update_mcast(struct ieee80211com *ic) { /* Ignore */ } static void wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct wpi_cmd_led led; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); led.which = which; led.unit = htole32(100000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); } static int wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) { struct wpi_cmd_timing cmd; uint64_t val, mod; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); memset(&cmd, 0, sizeof cmd); memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); cmd.bintval = htole16(ni->ni_intval); cmd.lintval = htole16(10); /* Compute remaining time until next beacon. */ val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; mod = le64toh(cmd.tstamp) % val; cmd.binitval = htole32((uint32_t)(val - mod)); DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); } /* * This function is called periodically (every 60 seconds) to adjust output * power to temperature changes. */ static void wpi_power_calibration(struct wpi_softc *sc) { int temp; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); /* Update sensor data. */ temp = (int)WPI_READ(sc, WPI_UCODE_GP2); DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp); /* Sanity-check read value. */ if (temp < -260 || temp > 25) { /* This can't be correct, ignore. */ DPRINTF(sc, WPI_DEBUG_TEMP, "out-of-range temperature reported: %d\n", temp); return; } DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp); /* Adjust Tx power if need be. */ if (abs(temp - sc->temp) <= 6) return; sc->temp = temp; if (wpi_set_txpower(sc, 1) != 0) { /* just warn, too bad for the automatic calibration... */ device_printf(sc->sc_dev,"could not adjust Tx power\n"); } } /* * Set TX power for current channel. */ static int wpi_set_txpower(struct wpi_softc *sc, int async) { struct wpi_power_group *group; struct wpi_cmd_txpower cmd; uint8_t chan; int idx, is_chan_5ghz, i; /* Retrieve current channel from last RXON. */ chan = sc->rxon.chan; is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0; /* Find the TX power group to which this channel belongs. */ if (is_chan_5ghz) { for (group = &sc->groups[1]; group < &sc->groups[4]; group++) if (chan <= group->chan) break; } else group = &sc->groups[0]; memset(&cmd, 0, sizeof cmd); cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ; cmd.chan = htole16(chan); /* Set TX power for all OFDM and CCK rates. */ for (i = 0; i <= WPI_RIDX_MAX ; i++) { /* Retrieve TX power for this channel/rate. */ idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i); cmd.rates[i].plcp = wpi_ridx_to_plcp[i]; if (is_chan_5ghz) { cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; } else { cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; } DPRINTF(sc, WPI_DEBUG_TEMP, "chan %d/ridx %d: power index %d\n", chan, i, idx); } return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); } /* * Determine Tx power index for a given channel/rate combination. * This takes into account the regulatory information from EEPROM and the * current temperature. */ static int wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, uint8_t chan, int is_chan_5ghz, int ridx) { /* Fixed-point arithmetic division using a n-bit fractional part. */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* Linear interpolation. */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) struct wpi_power_sample *sample; int pwr, idx; /* Default TX power is group maximum TX power minus 3dB. */ pwr = group->maxpwr / 2; /* Decrease TX power for highest OFDM rates to reduce distortion. */ switch (ridx) { case WPI_RIDX_OFDM36: pwr -= is_chan_5ghz ? 5 : 0; break; case WPI_RIDX_OFDM48: pwr -= is_chan_5ghz ? 10 : 7; break; case WPI_RIDX_OFDM54: pwr -= is_chan_5ghz ? 12 : 9; break; } /* Never exceed the channel maximum allowed TX power. */ pwr = min(pwr, sc->maxpwr[chan]); /* Retrieve TX power index into gain tables from samples. */ for (sample = group->samples; sample < &group->samples[3]; sample++) if (pwr > sample[1].power) break; /* Fixed-point linear interpolation using a 19-bit fractional part. */ idx = interpolate(pwr, sample[0].power, sample[0].index, sample[1].power, sample[1].index, 19); /*- * Adjust power index based on current temperature: * - if cooler than factory-calibrated: decrease output power * - if warmer than factory-calibrated: increase output power */ idx -= (sc->temp - group->temp) * 11 / 100; /* Decrease TX power for CCK rates (-5dB). */ if (ridx >= WPI_RIDX_CCK1) idx += 10; /* Make sure idx stays in a valid range. */ if (idx < 0) return 0; if (idx > WPI_MAX_PWR_INDEX) return WPI_MAX_PWR_INDEX; return idx; #undef interpolate #undef fdivround } /* * Set STA mode power saving level (between 0 and 5). * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. */ static int wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async) { struct wpi_pmgt_cmd cmd; const struct wpi_pmgt *pmgt; uint32_t max, reg; uint8_t skip_dtim; int i; DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: dtim=%d, level=%d, async=%d\n", __func__, dtim, level, async); /* Select which PS parameters to use. */ if (dtim <= 10) pmgt = &wpi_pmgt[0][level]; else pmgt = &wpi_pmgt[1][level]; memset(&cmd, 0, sizeof cmd); if (level != 0) /* not CAM */ cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ cmd.flags |= htole16(WPI_PS_PCI_PMGT); cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU); cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU); if (dtim == 0) { dtim = 1; skip_dtim = 0; } else skip_dtim = pmgt->skip_dtim; if (skip_dtim != 0) { cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); max = pmgt->intval[4]; if (max == (uint32_t)-1) max = dtim * (skip_dtim + 1); else if (max > dtim) max = (max / dtim) * dtim; } else max = dtim; for (i = 0; i < 5; i++) cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); } static int wpi_send_btcoex(struct wpi_softc *sc) { struct wpi_bluetooth cmd; memset(&cmd, 0, sizeof cmd); cmd.flags = WPI_BT_COEX_MODE_4WIRE; cmd.lead_time = WPI_BT_LEAD_TIME_DEF; cmd.max_kill = WPI_BT_MAX_KILL_DEF; DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", __func__); return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0); } static int wpi_send_rxon(struct wpi_softc *sc, int assoc, int async) { int error; if (async) WPI_RXON_LOCK_ASSERT(sc); if (assoc && wpi_check_bss_filter(sc) != 0) { struct wpi_assoc rxon_assoc; rxon_assoc.flags = sc->rxon.flags; rxon_assoc.filter = sc->rxon.filter; rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; rxon_assoc.cck_mask = sc->rxon.cck_mask; rxon_assoc.reserved = 0; error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc, sizeof (struct wpi_assoc), async); if (error != 0) { device_printf(sc->sc_dev, "RXON_ASSOC command failed, error %d\n", error); return error; } } else { if (async) { WPI_NT_LOCK(sc); error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), async); if (error == 0) wpi_clear_node_table(sc); WPI_NT_UNLOCK(sc); } else { error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon), async); if (error == 0) wpi_clear_node_table(sc); } if (error != 0) { device_printf(sc->sc_dev, "RXON command failed, error %d\n", error); return error; } /* Add broadcast node. */ error = wpi_add_broadcast_node(sc, async); if (error != 0) { device_printf(sc->sc_dev, "could not add broadcast node, error %d\n", error); return error; } } /* Configuration has changed, set Tx power accordingly. */ if ((error = wpi_set_txpower(sc, async)) != 0) { device_printf(sc->sc_dev, "%s: could not set TX power, error %d\n", __func__, error); return error; } return 0; } /** * Configure the card to listen to a particular channel, this transisions the * card in to being able to receive frames from remote devices. */ static int wpi_config(struct wpi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_channel *c = ic->ic_curchan; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Set power saving level to CAM during initialization. */ if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not set power saving level\n", __func__); return error; } /* Configure bluetooth coexistence. */ if ((error = wpi_send_btcoex(sc)) != 0) { device_printf(sc->sc_dev, "could not configure bluetooth coexistence\n"); return error; } /* Configure adapter. */ memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr); /* Set default channel. */ sc->rxon.chan = ieee80211_chan2ieee(ic, c); sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(c)) sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); sc->rxon.filter = WPI_FILTER_MULTICAST; switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->rxon.mode = WPI_MODE_STA; break; case IEEE80211_M_IBSS: sc->rxon.mode = WPI_MODE_IBSS; sc->rxon.filter |= WPI_FILTER_BEACON; break; case IEEE80211_M_HOSTAP: /* XXX workaround for beaconing */ sc->rxon.mode = WPI_MODE_IBSS; sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC; break; case IEEE80211_M_AHDEMO: sc->rxon.mode = WPI_MODE_HOSTAP; break; case IEEE80211_M_MONITOR: sc->rxon.mode = WPI_MODE_MONITOR; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); return EINVAL; } sc->rxon.filter = htole32(sc->rxon.filter); wpi_set_promisc(sc); sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ if ((error = wpi_send_rxon(sc, 0, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); return error; } /* Setup rate scalling. */ if ((error = wpi_mrr_setup(sc)) != 0) { device_printf(sc->sc_dev, "could not setup MRR, error %d\n", error); return error; } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static uint16_t wpi_get_active_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c, uint8_t n_probes) { /* No channel? Default to 2GHz settings. */ if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { return (WPI_ACTIVE_DWELL_TIME_2GHZ + WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); } /* 5GHz dwell time. */ return (WPI_ACTIVE_DWELL_TIME_5GHZ + WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); } /* * Limit the total dwell time. * * Returns the dwell time in milliseconds. */ static uint16_t wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t bintval = 0; /* bintval is in TU (1.024mS) */ if (vap != NULL) bintval = vap->iv_bss->ni_intval; /* * If it's non-zero, we should calculate the minimum of * it and the DWELL_BASE. * * XXX Yes, the math should take into account that bintval * is 1.024mS, not 1mS.. */ if (bintval > 0) { DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__, bintval); return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2)); } /* No association context? Default. */ return dwell_time; } static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c) { uint16_t passive; if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ; else passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ; /* Clamp to the beacon interval if we're associated. */ return (wpi_limit_dwell(sc, passive)); } static uint32_t wpi_get_scan_pause_time(uint32_t time, uint16_t bintval) { uint32_t mod = (time % bintval) * IEEE80211_DUR_TU; uint32_t nbeacons = time / bintval; if (mod > WPI_PAUSE_MAX_TIME) mod = WPI_PAUSE_MAX_TIME; return WPI_PAUSE_SCAN(nbeacons, mod); } /* * Send a scan request to the firmware. */ static int wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_scan_state *ss = ic->ic_scan; struct ieee80211vap *vap = ss->ss_vap; struct wpi_scan_hdr *hdr; struct wpi_cmd_data *tx; struct wpi_scan_essid *essids; struct wpi_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; uint16_t bintval, buflen, dwell_active, dwell_passive; uint8_t *buf, *frm, i, nssid; int bgscan, error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* * We are absolutely not allowed to send a scan command when another * scan command is pending. */ if (callout_pending(&sc->scan_timeout)) { device_printf(sc->sc_dev, "%s: called whilst scanning!\n", __func__); error = EAGAIN; goto fail; } bgscan = wpi_check_bss_filter(sc); bintval = vap->iv_bss->ni_intval; if (bgscan != 0 && bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) { error = EOPNOTSUPP; goto fail; } buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf == NULL) { device_printf(sc->sc_dev, "%s: could not allocate buffer for scan command\n", __func__); error = ENOMEM; goto fail; } hdr = (struct wpi_scan_hdr *)buf; /* * Move to the next channel if no packets are received within 10 msecs * after sending the probe request. */ hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT); hdr->quiet_threshold = htole16(1); if (bgscan != 0) { /* * Max needs to be greater than active and passive and quiet! * It's also in microseconds! */ hdr->max_svc = htole32(250 * IEEE80211_DUR_TU); hdr->pause_svc = htole32(wpi_get_scan_pause_time(100, bintval)); } hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON); tx = (struct wpi_cmd_data *)(hdr + 1); tx->flags = htole32(WPI_TX_AUTO_SEQ); tx->id = WPI_ID_BROADCAST; tx->lifetime = htole32(WPI_LIFETIME_INFINITE); if (IEEE80211_IS_CHAN_5GHZ(c)) { /* Send probe requests at 6Mbps. */ tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6]; rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; } else { hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); /* Send probe requests at 1Mbps. */ tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1]; rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; } essids = (struct wpi_scan_essid *)(tx + 1); nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); for (i = 0; i < nssid; i++) { essids[i].id = IEEE80211_ELEMID_SSID; essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len); #ifdef WPI_DEBUG if (sc->sc_debug & WPI_DEBUG_SCAN) { printf("Scanning Essid: "); ieee80211_print_essid(essids[i].data, essids[i].len); printf("\n"); } #endif } /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, NULL, 0); frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); /* Set length of probe request. */ tx->len = htole16(frm - (uint8_t *)wh); /* * Construct information about the channel that we * want to scan. The firmware expects this to be directly * after the scan probe request */ chan = (struct wpi_scan_chan *)frm; chan->chan = ieee80211_chan2ieee(ic, c); chan->flags = 0; if (nssid) { hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT; chan->flags |= WPI_CHAN_NPBREQS(nssid); } else hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER; if (!IEEE80211_IS_CHAN_PASSIVE(c)) chan->flags |= WPI_CHAN_ACTIVE; /* * Calculate the active/passive dwell times. */ dwell_active = wpi_get_active_dwell_time(sc, c, nssid); dwell_passive = wpi_get_passive_dwell_time(sc, c); /* Make sure they're valid. */ if (dwell_active > dwell_passive) dwell_active = dwell_passive; chan->active = htole16(dwell_active); chan->passive = htole16(dwell_passive); chan->dsp_gain = 0x6e; /* Default level */ if (IEEE80211_IS_CHAN_5GHZ(c)) chan->rf_gain = 0x3b; else chan->rf_gain = 0x28; DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n", chan->chan, IEEE80211_IS_CHAN_PASSIVE(c)); hdr->nchan++; if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) { /* XXX Force probe request transmission. */ memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan)); chan++; /* Reduce unnecessary delay. */ chan->flags = 0; chan->passive = chan->active = hdr->quiet_time; hdr->nchan++; } chan++; buflen = (uint8_t *)chan - buf; hdr->len = htole16(buflen); DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n", hdr->nchan); error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); free(buf, M_DEVBUF); if (error != 0) goto fail; callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); return error; } static int wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni = vap->iv_bss; struct ieee80211_channel *c = ni->ni_chan; int error; WPI_RXON_LOCK(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Update adapter configuration. */ sc->rxon.associd = 0; sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); sc->rxon.chan = ieee80211_chan2ieee(ic, c); sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(c)) sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(c)) { sc->rxon.cck_mask = 0; sc->rxon.ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(c)) { sc->rxon.cck_mask = 0x03; sc->rxon.ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon.cck_mask = 0x0f; sc->rxon.ofdm_mask = 0x15; } DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask); if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); WPI_RXON_UNLOCK(sc); return error; } static int wpi_config_beacon(struct wpi_vap *wvp) { struct ieee80211vap *vap = &wvp->wv_vap; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct wpi_buf *bcn = &wvp->wv_bcbuf; struct wpi_softc *sc = ic->ic_softc; struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; struct ieee80211_tim_ie *tie; struct mbuf *m; uint8_t *ptr; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); WPI_VAP_LOCK_ASSERT(wvp); cmd->len = htole16(bcn->m->m_pkthdr.len); cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; /* XXX seems to be unused */ if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) { tie = (struct ieee80211_tim_ie *) bo->bo_tim; ptr = mtod(bcn->m, uint8_t *); cmd->tim = htole16(bo->bo_tim - ptr); cmd->timsz = tie->tim_len; } /* Necessary for recursion in ieee80211_beacon_update(). */ m = bcn->m; bcn->m = m_dup(m, M_NOWAIT); if (bcn->m == NULL) { device_printf(sc->sc_dev, "%s: could not copy beacon frame\n", __func__); error = ENOMEM; goto end; } if ((error = wpi_cmd2(sc, bcn)) != 0) { device_printf(sc->sc_dev, "%s: could not update beacon frame, error %d", __func__, error); m_freem(bcn->m); } /* Restore mbuf. */ end: bcn->m = m; return error; } static int wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct wpi_vap *wvp = WPI_VAP(vap); struct wpi_buf *bcn = &wvp->wv_bcbuf; struct mbuf *m; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (ni->ni_chan == IEEE80211_CHAN_ANYC) return EINVAL; m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); return ENOMEM; } WPI_VAP_LOCK(wvp); if (bcn->m != NULL) m_freem(bcn->m); bcn->m = m; error = wpi_config_beacon(wvp); WPI_VAP_UNLOCK(wvp); return error; } static void wpi_update_beacon(struct ieee80211vap *vap, int item) { struct wpi_softc *sc = vap->iv_ic->ic_softc; struct wpi_vap *wvp = WPI_VAP(vap); struct wpi_buf *bcn = &wvp->wv_bcbuf; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; int mcast = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); WPI_VAP_LOCK(wvp); if (bcn->m == NULL) { bcn->m = ieee80211_beacon_alloc(ni); if (bcn->m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); WPI_VAP_UNLOCK(wvp); return; } } WPI_VAP_UNLOCK(wvp); if (item == IEEE80211_BEACON_TIM) mcast = 1; /* TODO */ setbit(bo->bo_flags, item); ieee80211_beacon_update(ni, bcn->m, mcast); WPI_VAP_LOCK(wvp); wpi_config_beacon(wvp); WPI_VAP_UNLOCK(wvp); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); } static void wpi_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); int error; WPI_NT_LOCK(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) { if ((error = wpi_add_ibss_node(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not add IBSS node, error %d\n", __func__, error); } } WPI_NT_UNLOCK(sc); } static int wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni = vap->iv_bss; struct ieee80211_channel *c = ni->ni_chan; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Link LED blinks while monitoring. */ wpi_set_led(sc, WPI_LED_LINK, 5, 5); return 0; } /* XXX kernel panic workaround */ if (c == IEEE80211_CHAN_ANYC) { device_printf(sc->sc_dev, "%s: incomplete configuration\n", __func__); return EINVAL; } if ((error = wpi_set_timing(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not set timing, error %d\n", __func__, error); return error; } /* Update adapter configuration. */ WPI_RXON_LOCK(sc); IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni)); sc->rxon.chan = ieee80211_chan2ieee(ic, c); sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(c)) sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(c)) { sc->rxon.cck_mask = 0; sc->rxon.ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(c)) { sc->rxon.cck_mask = 0x03; sc->rxon.ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon.cck_mask = 0x0f; sc->rxon.ofdm_mask = 0x15; } sc->rxon.filter |= htole32(WPI_FILTER_BSS); DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags); if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); return error; } /* Start periodic calibration timer. */ callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); WPI_RXON_UNLOCK(sc); if (vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_HOSTAP) { if ((error = wpi_setup_beacon(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not setup beacon, error %d\n", __func__, error); return error; } } if (vap->iv_opmode == IEEE80211_M_STA) { /* Add BSS node. */ WPI_NT_LOCK(sc); error = wpi_add_sta_node(sc, ni); WPI_NT_UNLOCK(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not add BSS node, error %d\n", __func__, error); return error; } } /* Link LED always on while associated. */ wpi_set_led(sc, WPI_LED_LINK, 0, 1); /* Enable power-saving mode if requested by user. */ if ((vap->iv_flags & IEEE80211_F_PMGTON) && vap->iv_opmode != IEEE80211_M_IBSS) (void)wpi_set_pslevel(sc, 0, 3, 1); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); return 0; } static int wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k) { const struct ieee80211_cipher *cip = k->wk_cipher; struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); struct wpi_node_info node; uint16_t kflags; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (wpi_check_node_entry(sc, wn->id) == 0) { device_printf(sc->sc_dev, "%s: node does not exist\n", __func__); return 0; } switch (cip->ic_cipher) { case IEEE80211_CIPHER_AES_CCM: kflags = WPI_KFLAG_CCMP; break; default: device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, cip->ic_cipher); return 0; } kflags |= WPI_KFLAG_KID(k->wk_keyix); if (k->wk_flags & IEEE80211_KEY_GROUP) kflags |= WPI_KFLAG_MULTICAST; memset(&node, 0, sizeof node); node.id = wn->id; node.control = WPI_NODE_UPDATE; node.flags = WPI_FLAG_KEY_SET; node.kflags = htole16(kflags); memcpy(node.key, k->wk_key, k->wk_keylen); again: DPRINTF(sc, WPI_DEBUG_KEY, "%s: setting %s key id %d for node %d (%s)\n", __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev, "can't update node info, error %d\n", error); return !error; } if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { kflags |= WPI_KFLAG_MULTICAST; node.kflags = htole16(kflags); goto again; } return 1; } static void wpi_load_key_cb(void *arg, struct ieee80211_node *ni) { const struct ieee80211_key *k = arg; struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); int error; if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) return; WPI_NT_LOCK(sc); error = wpi_load_key(ni, k); WPI_NT_UNLOCK(sc); if (error == 0) { device_printf(sc->sc_dev, "%s: error while setting key\n", __func__); } } static int wpi_set_global_keys(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *wk = &vap->iv_nw_keys[0]; int error = 1; for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++) if (wk->wk_keyix != IEEE80211_KEYIX_NONE) error = wpi_load_key(ni, wk); return !error; } static int wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k) { struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); struct wpi_node_info node; uint16_t kflags; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (wpi_check_node_entry(sc, wn->id) == 0) { DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__); return 1; /* Nothing to do. */ } kflags = WPI_KFLAG_KID(k->wk_keyix); if (k->wk_flags & IEEE80211_KEY_GROUP) kflags |= WPI_KFLAG_MULTICAST; memset(&node, 0, sizeof node); node.id = wn->id; node.control = WPI_NODE_UPDATE; node.flags = WPI_FLAG_KEY_SET; node.kflags = htole16(kflags); again: DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n", __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { device_printf(sc->sc_dev, "can't update node info, error %d\n", error); return !error; } if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { kflags |= WPI_KFLAG_MULTICAST; node.kflags = htole16(kflags); goto again; } return 1; } static void wpi_del_key_cb(void *arg, struct ieee80211_node *ni) { const struct ieee80211_key *k = arg; struct ieee80211vap *vap = ni->ni_vap; struct wpi_softc *sc = ni->ni_ic->ic_softc; struct wpi_node *wn = WPI_NODE(ni); int error; if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) return; WPI_NT_LOCK(sc); error = wpi_del_key(ni, k); WPI_NT_UNLOCK(sc); if (error == 0) { device_printf(sc->sc_dev, "%s: error while deleting key\n", __func__); } } static int wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, int set) { struct ieee80211com *ic = vap->iv_ic; struct wpi_softc *sc = ic->ic_softc; struct wpi_vap *wvp = WPI_VAP(vap); struct ieee80211_node *ni; int error, ni_ref = 0; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return 1; } if (!(k->wk_flags & IEEE80211_KEY_RECV)) { /* XMIT keys are handled in wpi_tx_data(). */ return 1; } /* Handle group keys. */ if (&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { WPI_NT_LOCK(sc); if (set) wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix); else wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix); WPI_NT_UNLOCK(sc); if (vap->iv_state == IEEE80211_S_RUN) { ieee80211_iterate_nodes(&ic->ic_sta, set ? wpi_load_key_cb : wpi_del_key_cb, __DECONST(void *, k)); } return 1; } switch (vap->iv_opmode) { case IEEE80211_M_STA: ni = vap->iv_bss; break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr); if (ni == NULL) return 0; /* should not happen */ ni_ref = 1; break; default: device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__, vap->iv_opmode); return 0; } WPI_NT_LOCK(sc); if (set) error = wpi_load_key(ni, k); else error = wpi_del_key(ni, k); WPI_NT_UNLOCK(sc); if (ni_ref) ieee80211_node_decref(ni); return error; } static int wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { return wpi_process_key(vap, k, 1); } static int wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { return wpi_process_key(vap, k, 0); } /* * This function is called after the runtime firmware notifies us of its * readiness (called in a process context). */ static int wpi_post_alive(struct wpi_softc *sc) { int ntries, error; /* Check (again) that the radio is not disabled. */ if ((error = wpi_nic_lock(sc)) != 0) return error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); /* NB: Runtime firmware must be up and running. */ if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { device_printf(sc->sc_dev, "RF switch: radio disabled (%s)\n", __func__); wpi_nic_unlock(sc); return EPERM; /* :-) */ } wpi_nic_unlock(sc); /* Wait for thermal sensor to calibrate. */ for (ntries = 0; ntries < 1000; ntries++) { if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) break; DELAY(10); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for thermal sensor calibration\n"); return ETIMEDOUT; } DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp); return 0; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory (no DMA transfer). */ static int wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size) { int error, ntries; DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size); size /= sizeof (uint32_t); if ((error = wpi_nic_lock(sc)) != 0) return error; /* Copy microcode image into NIC memory. */ wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, (const uint32_t *)ucode, size); wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); /* Start boot load now. */ wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); /* Wait for transfer to complete. */ for (ntries = 0; ntries < 1000; ntries++) { uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS); DPRINTF(sc, WPI_DEBUG_HW, "firmware status=0x%x, val=0x%x, result=0x%x\n", status, WPI_FH_TX_STATUS_IDLE(6), status & WPI_FH_TX_STATUS_IDLE(6)); if (status & WPI_FH_TX_STATUS_IDLE(6)) { DPRINTF(sc, WPI_DEBUG_HW, "Status Match! - ntries = %d\n", ntries); break; } DELAY(10); } if (ntries == 1000) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); wpi_nic_unlock(sc); return ETIMEDOUT; } /* Enable boot after power up. */ wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); wpi_nic_unlock(sc); return 0; } static int wpi_load_firmware(struct wpi_softc *sc) { struct wpi_fw_info *fw = &sc->fw; struct wpi_dma_info *dma = &sc->fw_dma; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); /* Copy initialization sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->init.data, fw->init.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find initialization sections. */ if ((error = wpi_nic_lock(sc)) != 0) return error; wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, dma->paddr + WPI_FW_DATA_MAXSZ); wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); wpi_nic_unlock(sc); /* Load firmware boot code. */ error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); return error; } /* Now press "execute". */ WPI_WRITE(sc, WPI_RESET, 0); /* Wait at most one second for first alive notification. */ if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } /* Copy runtime sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->main.data, fw->main.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find runtime sections. */ if ((error = wpi_nic_lock(sc)) != 0) return error; wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, dma->paddr + WPI_FW_DATA_MAXSZ); wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, WPI_FW_UPDATED | fw->main.textsz); wpi_nic_unlock(sc); return 0; } static int wpi_read_firmware(struct wpi_softc *sc) { const struct firmware *fp; struct wpi_fw_info *fw = &sc->fw; const struct wpi_firmware_hdr *hdr; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "Attempting Loading Firmware from %s module\n", WPI_FW_NAME); WPI_UNLOCK(sc); fp = firmware_get(WPI_FW_NAME); WPI_LOCK(sc); if (fp == NULL) { device_printf(sc->sc_dev, "could not load firmware image '%s'\n", WPI_FW_NAME); return EINVAL; } sc->fw_fp = fp; if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { device_printf(sc->sc_dev, "firmware file too short: %zu bytes\n", fp->datasize); error = EINVAL; goto fail; } fw->size = fp->datasize; fw->data = (const uint8_t *)fp->data; /* Extract firmware header information. */ hdr = (const struct wpi_firmware_hdr *)fw->data; /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ fw->main.textsz = le32toh(hdr->rtextsz); fw->main.datasz = le32toh(hdr->rdatasz); fw->init.textsz = le32toh(hdr->itextsz); fw->init.datasz = le32toh(hdr->idatasz); fw->boot.textsz = le32toh(hdr->btextsz); fw->boot.datasz = 0; /* Sanity-check firmware header. */ if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || fw->main.datasz > WPI_FW_DATA_MAXSZ || fw->init.textsz > WPI_FW_TEXT_MAXSZ || fw->init.datasz > WPI_FW_DATA_MAXSZ || fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || (fw->boot.textsz & 3) != 0) { device_printf(sc->sc_dev, "invalid firmware header\n"); error = EINVAL; goto fail; } /* Check that all firmware sections fit. */ if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + fw->init.textsz + fw->init.datasz + fw->boot.textsz) { device_printf(sc->sc_dev, "firmware file too short: %zu bytes\n", fw->size); error = EINVAL; goto fail; } /* Get pointers to firmware sections. */ fw->main.text = (const uint8_t *)(hdr + 1); fw->main.data = fw->main.text + fw->main.textsz; fw->init.text = fw->main.data + fw->main.datasz; fw->init.data = fw->init.text + fw->init.textsz; fw->boot.text = fw->init.data + fw->init.datasz; DPRINTF(sc, WPI_DEBUG_FIRMWARE, "Firmware Version: Major %d, Minor %d, Driver %d, \n" "runtime (text: %u, data: %u) init (text: %u, data %u) " "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver), fw->main.textsz, fw->main.datasz, fw->init.textsz, fw->init.datasz, fw->boot.textsz); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data); DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text); return 0; fail: wpi_unload_firmware(sc); return error; } /** * Free the referenced firmware image */ static void wpi_unload_firmware(struct wpi_softc *sc) { if (sc->fw_fp != NULL) { firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; } } static int wpi_clock_wait(struct wpi_softc *sc) { int ntries; /* Set "initialization complete" bit. */ WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); /* Wait for clock stabilization. */ for (ntries = 0; ntries < 2500; ntries++) { if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) return 0; DELAY(100); } device_printf(sc->sc_dev, "%s: timeout waiting for clock stabilization\n", __func__); return ETIMEDOUT; } static int wpi_apm_init(struct wpi_softc *sc) { uint32_t reg; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); /* Disable L0s exit timer (NMI bug workaround). */ WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER); /* Don't wait for ICH L0s (ICH bug workaround). */ WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); /* Set FH wait threshold to max (HW bug under stress workaround). */ WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); else WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); /* Wait for clock stabilization before accessing prph. */ if ((error = wpi_clock_wait(sc)) != 0) return error; if ((error = wpi_nic_lock(sc)) != 0) return error; /* Cleanup. */ wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400); wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200); /* Enable DMA and BSM (Bootstrap State Machine). */ wpi_prph_write(sc, WPI_APMG_CLK_EN, WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT); DELAY(20); /* Disable L1-Active. */ wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); wpi_nic_unlock(sc); return 0; } static void wpi_apm_stop_master(struct wpi_softc *sc) { int ntries; /* Stop busmaster DMA activity. */ WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == WPI_GP_CNTRL_MAC_PS) return; /* Already asleep. */ for (ntries = 0; ntries < 100; ntries++) { if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) return; DELAY(10); } device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); } static void wpi_apm_stop(struct wpi_softc *sc) { wpi_apm_stop_master(sc); /* Reset the entire device. */ WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); DELAY(10); /* Clear "initialization complete" bit. */ WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); } static void wpi_nic_config(struct wpi_softc *sc) { uint32_t rev; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); /* voodoo from the Linux "driver".. */ rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); if ((rev & 0xc0) == 0x40) WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); else if (!(rev & 0x80)) WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); if (sc->cap == 0x80) WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); if ((sc->rev & 0xf0) == 0xd0) WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); else WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); if (sc->type > 1) WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); } static int wpi_hw_init(struct wpi_softc *sc) { uint8_t chnl; int ntries, error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); /* Clear pending interrupts. */ WPI_WRITE(sc, WPI_INT, 0xffffffff); if ((error = wpi_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } /* Select VMAIN power source. */ if ((error = wpi_nic_lock(sc)) != 0) return error; wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); wpi_nic_unlock(sc); /* Spin until VMAIN gets selected. */ for (ntries = 0; ntries < 5000; ntries++) { if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) break; DELAY(10); } if (ntries == 5000) { device_printf(sc->sc_dev, "timeout selecting power source\n"); return ETIMEDOUT; } /* Perform adapter initialization. */ wpi_nic_config(sc); /* Initialize RX ring. */ if ((error = wpi_nic_lock(sc)) != 0) return error; /* Set physical address of RX ring. */ WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); /* Set physical address of RX read pointer. */ WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + offsetof(struct wpi_shared, next)); WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); /* Enable RX. */ WPI_WRITE(sc, WPI_FH_RX_CONFIG, WPI_FH_RX_CONFIG_DMA_ENA | WPI_FH_RX_CONFIG_RDRBD_ENA | WPI_FH_RX_CONFIG_WRSTATUS_ENA | WPI_FH_RX_CONFIG_MAXFRAG | WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | WPI_FH_RX_CONFIG_IRQ_DST_HOST | WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1)); (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ wpi_nic_unlock(sc); WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); /* Initialize TX rings. */ if ((error = wpi_nic_lock(sc)) != 0) return error; wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ /* Enable all 6 TX rings. */ wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); /* Set physical address of TX rings. */ WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); /* Enable all DMA channels. */ for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); } wpi_nic_unlock(sc); (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ /* Clear "radio off" and "commands blocked" bits. */ WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); /* Clear pending interrupts. */ WPI_WRITE(sc, WPI_INT, 0xffffffff); /* Enable interrupts. */ WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); /* _Really_ make sure "radio off" bit is cleared! */ WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); if ((error = wpi_load_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not load firmware, error %d\n", __func__, error); return error; } /* Wait at most one second for firmware alive notification. */ if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); /* Do post-firmware initialization. */ return wpi_post_alive(sc); } static void wpi_hw_stop(struct wpi_softc *sc) { uint8_t chnl, qid; int ntries; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) wpi_nic_lock(sc); WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); /* Disable interrupts. */ WPI_WRITE(sc, WPI_INT_MASK, 0); WPI_WRITE(sc, WPI_INT, 0xffffffff); WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); /* Make sure we no longer hold the NIC lock. */ wpi_nic_unlock(sc); if (wpi_nic_lock(sc) == 0) { /* Stop TX scheduler. */ wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); /* Stop all DMA channels. */ for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { if (WPI_READ(sc, WPI_FH_TX_STATUS) & WPI_FH_TX_STATUS_IDLE(chnl)) break; DELAY(10); } } wpi_nic_unlock(sc); } /* Stop RX ring. */ wpi_reset_rx_ring(sc); /* Reset all TX rings. */ for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) wpi_reset_tx_ring(sc, &sc->txq[qid]); if (wpi_nic_lock(sc) == 0) { wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_CTRL_DMA_CLK_RQT); wpi_nic_unlock(sc); } DELAY(5); /* Power OFF adapter. */ wpi_apm_stop(sc); } static void wpi_radio_on(void *arg0, int pending) { struct wpi_softc *sc = arg0; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); device_printf(sc->sc_dev, "RF switch: radio enabled\n"); WPI_LOCK(sc); callout_stop(&sc->watchdog_rfkill); WPI_UNLOCK(sc); if (vap != NULL) ieee80211_init(vap); } static void wpi_radio_off(void *arg0, int pending) { struct wpi_softc *sc = arg0; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); device_printf(sc->sc_dev, "RF switch: radio disabled\n"); ieee80211_notify_radio(ic, 0); wpi_stop(sc); if (vap != NULL) ieee80211_stop(vap); WPI_LOCK(sc); callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); WPI_UNLOCK(sc); } static int wpi_init(struct wpi_softc *sc) { int error = 0; WPI_LOCK(sc); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); if (sc->sc_running != 0) goto end; /* Check that the radio is not disabled by hardware switch. */ if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { device_printf(sc->sc_dev, "RF switch: radio disabled (%s)\n", __func__); callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); error = EINPROGRESS; goto end; } /* Read firmware images from the filesystem. */ if ((error = wpi_read_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not read firmware, error %d\n", __func__, error); goto end; } sc->sc_running = 1; /* Initialize hardware and upload firmware. */ error = wpi_hw_init(sc); wpi_unload_firmware(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not initialize hardware, error %d\n", __func__, error); goto fail; } /* Configure adapter now that it is ready. */ if ((error = wpi_config(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not configure device, error %d\n", __func__, error); goto fail; } DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); WPI_UNLOCK(sc); return 0; fail: wpi_stop_locked(sc); end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); WPI_UNLOCK(sc); return error; } static void wpi_stop_locked(struct wpi_softc *sc) { WPI_LOCK_ASSERT(sc); if (sc->sc_running == 0) return; WPI_TX_LOCK(sc); WPI_TXQ_LOCK(sc); sc->sc_running = 0; WPI_TXQ_UNLOCK(sc); WPI_TX_UNLOCK(sc); WPI_TXQ_STATE_LOCK(sc); callout_stop(&sc->tx_timeout); WPI_TXQ_STATE_UNLOCK(sc); WPI_RXON_LOCK(sc); callout_stop(&sc->scan_timeout); callout_stop(&sc->calib_to); WPI_RXON_UNLOCK(sc); /* Power OFF hardware. */ wpi_hw_stop(sc); } static void wpi_stop(struct wpi_softc *sc) { WPI_LOCK(sc); wpi_stop_locked(sc); WPI_UNLOCK(sc); } /* * Callback from net80211 to start a scan. */ static void wpi_scan_start(struct ieee80211com *ic) { struct wpi_softc *sc = ic->ic_softc; wpi_set_led(sc, WPI_LED_LINK, 20, 2); } /* * Callback from net80211 to terminate a scan. */ static void wpi_scan_end(struct ieee80211com *ic) { struct wpi_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap->iv_state == IEEE80211_S_RUN) wpi_set_led(sc, WPI_LED_LINK, 0, 1); } /** * Called by the net80211 framework to indicate to the driver * that the channel should be changed */ static void wpi_set_channel(struct ieee80211com *ic) { const struct ieee80211_channel *c = ic->ic_curchan; struct wpi_softc *sc = ic->ic_softc; int error; DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); WPI_LOCK(sc); sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); WPI_UNLOCK(sc); WPI_TX_LOCK(sc); sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); WPI_TX_UNLOCK(sc); /* * Only need to set the channel in Monitor mode. AP scanning and auth * are already taken care of by their respective firmware commands. */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { WPI_RXON_LOCK(sc); sc->rxon.chan = ieee80211_chan2ieee(ic, c); if (IEEE80211_IS_CHAN_2GHZ(c)) { sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); } else { sc->rxon.flags &= ~htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); } if ((error = wpi_send_rxon(sc, 0, 1)) != 0) device_printf(sc->sc_dev, "%s: error %d setting channel\n", __func__, error); WPI_RXON_UNLOCK(sc); } } /** * Called by net80211 to indicate that we need to scan the current * channel. The channel is previously be set via the wpi_set_channel * callback. */ static void wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct ieee80211com *ic = vap->iv_ic; struct wpi_softc *sc = ic->ic_softc; int error; WPI_RXON_LOCK(sc); error = wpi_scan(sc, ic->ic_curchan); WPI_RXON_UNLOCK(sc); if (error != 0) ieee80211_cancel_scan(vap); } /** * Called by the net80211 framework to indicate * the minimum dwell time has been met, terminate the scan. * We don't actually terminate the scan as the firmware will notify * us when it's finished and we have no way to interrupt it. */ static void wpi_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void wpi_hw_reset(void *arg, int pending) { struct wpi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); ieee80211_notify_radio(ic, 0); if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN)) ieee80211_cancel_scan(vap); wpi_stop(sc); if (vap != NULL) { ieee80211_stop(vap); ieee80211_init(vap); } } Index: head/sys/dev/wpi/if_wpi_debug.h =================================================================== --- head/sys/dev/wpi/if_wpi_debug.h (revision 292175) +++ head/sys/dev/wpi/if_wpi_debug.h (revision 292176) @@ -1,143 +1,144 @@ /*- * Copyright (c) 2006,2007 * Damien Bergamini * Benjamin Close + * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #ifndef __IF_WPI_DEBUG_H__ #define __IF_WPI_DEBUG_H__ #ifdef WPI_DEBUG enum { WPI_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ WPI_DEBUG_RECV = 0x00000002, /* basic recv operation */ WPI_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ WPI_DEBUG_HW = 0x00000008, /* Stage 1 (eeprom) debugging */ WPI_DEBUG_RESET = 0x00000010, /* reset processing */ WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ WPI_DEBUG_BEACON = 0x00000040, /* beacon handling */ WPI_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ WPI_DEBUG_INTR = 0x00000100, /* ISR */ WPI_DEBUG_SCAN = 0x00000200, /* Scan related operations */ WPI_DEBUG_NOTIFY = 0x00000400, /* State 2 Notif intr debug */ WPI_DEBUG_TEMP = 0x00000800, /* TXPower/Temp Calibration */ WPI_DEBUG_CMD = 0x00001000, /* cmd submission */ WPI_DEBUG_TRACE = 0x00002000, /* Print begin and start driver function */ WPI_DEBUG_PWRSAVE = 0x00004000, /* Power save operations */ WPI_DEBUG_EEPROM = 0x00008000, /* EEPROM info */ WPI_DEBUG_NODE = 0x00010000, /* node addition/removal */ WPI_DEBUG_KEY = 0x00020000, /* node key management */ WPI_DEBUG_EDCA = 0x00040000, /* WME info */ WPI_DEBUG_REGISTER = 0x00080000, /* print chipset register */ WPI_DEBUG_BMISS = 0x00100000, /* print number of missed beacons */ WPI_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, ...) do { \ if (sc->sc_debug & (m)) \ printf(__VA_ARGS__); \ } while (0) #define TRACE_STR_BEGIN "->%s: begin\n" #define TRACE_STR_DOING "->Doing %s\n" #define TRACE_STR_END "->%s: end\n" #define TRACE_STR_END_ERR "->%s: end in error\n" #define WPI_DESC(x) case x: return #x static const char *wpi_cmd_str(int cmd) { switch (cmd) { /* Notifications. */ WPI_DESC(WPI_UC_READY); WPI_DESC(WPI_RX_DONE); WPI_DESC(WPI_START_SCAN); WPI_DESC(WPI_SCAN_RESULTS); WPI_DESC(WPI_STOP_SCAN); WPI_DESC(WPI_BEACON_SENT); WPI_DESC(WPI_RX_STATISTICS); WPI_DESC(WPI_BEACON_STATISTICS); WPI_DESC(WPI_STATE_CHANGED); WPI_DESC(WPI_BEACON_MISSED); /* Command notifications. */ WPI_DESC(WPI_CMD_RXON); WPI_DESC(WPI_CMD_RXON_ASSOC); WPI_DESC(WPI_CMD_EDCA_PARAMS); WPI_DESC(WPI_CMD_TIMING); WPI_DESC(WPI_CMD_ADD_NODE); WPI_DESC(WPI_CMD_DEL_NODE); WPI_DESC(WPI_CMD_TX_DATA); WPI_DESC(WPI_CMD_MRR_SETUP); WPI_DESC(WPI_CMD_SET_LED); WPI_DESC(WPI_CMD_SET_POWER_MODE); WPI_DESC(WPI_CMD_SCAN); WPI_DESC(WPI_CMD_SCAN_ABORT); WPI_DESC(WPI_CMD_SET_BEACON); WPI_DESC(WPI_CMD_TXPOWER); WPI_DESC(WPI_CMD_BT_COEX); default: return "UNKNOWN CMD"; } } /* * Translate CSR code to string */ static const char *wpi_get_csr_string(size_t csr) { switch (csr) { WPI_DESC(WPI_HW_IF_CONFIG); WPI_DESC(WPI_INT); WPI_DESC(WPI_INT_MASK); WPI_DESC(WPI_FH_INT); WPI_DESC(WPI_GPIO_IN); WPI_DESC(WPI_RESET); WPI_DESC(WPI_GP_CNTRL); WPI_DESC(WPI_EEPROM); WPI_DESC(WPI_EEPROM_GP); WPI_DESC(WPI_GIO); WPI_DESC(WPI_UCODE_GP1); WPI_DESC(WPI_UCODE_GP2); WPI_DESC(WPI_GIO_CHICKEN); WPI_DESC(WPI_ANA_PLL); WPI_DESC(WPI_DBG_HPET_MEM); default: KASSERT(0, ("Unknown CSR: %d\n", csr)); return "UNKNOWN CSR"; } } static const char *wpi_get_prph_string(size_t prph) { switch (prph) { WPI_DESC(WPI_APMG_CLK_CTRL); WPI_DESC(WPI_APMG_PS); WPI_DESC(WPI_APMG_PCI_STT); WPI_DESC(WPI_APMG_RFKILL); default: KASSERT(0, ("Unknown register: %d\n", prph)); return "UNKNOWN PRPH"; } } #else #define DPRINTF(sc, m, ...) do { (void) sc; } while (0) #endif #endif /* __IF_WPI_DEBUG_H__ */