Index: head/sys/boot/common/part.c =================================================================== --- head/sys/boot/common/part.c (revision 292056) +++ head/sys/boot/common/part.c (revision 292057) @@ -1,856 +1,861 @@ /*- * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PART_DEBUG #define DEBUG(fmt, args...) printf("%s: " fmt "\n" , __func__ , ## args) #else #define DEBUG(fmt, args...) #endif #ifdef LOADER_GPT_SUPPORT #define MAXTBLSZ 64 static const uuid_t gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; static const uuid_t gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; static const uuid_t gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; static const uuid_t gpt_uuid_efi = GPT_ENT_TYPE_EFI; static const uuid_t gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; static const uuid_t gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; static const uuid_t gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; static const uuid_t gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; static const uuid_t gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; static const uuid_t gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; #endif struct pentry { struct ptable_entry part; uint64_t flags; union { uint8_t bsd; uint8_t mbr; uuid_t gpt; uint16_t vtoc8; } type; STAILQ_ENTRY(pentry) entry; }; struct ptable { enum ptable_type type; uint16_t sectorsize; uint64_t sectors; STAILQ_HEAD(, pentry) entries; }; static struct parttypes { enum partition_type type; const char *desc; } ptypes[] = { { PART_UNKNOWN, "Unknown" }, { PART_EFI, "EFI" }, { PART_FREEBSD, "FreeBSD" }, { PART_FREEBSD_BOOT, "FreeBSD boot" }, { PART_FREEBSD_NANDFS, "FreeBSD nandfs" }, { PART_FREEBSD_UFS, "FreeBSD UFS" }, { PART_FREEBSD_ZFS, "FreeBSD ZFS" }, { PART_FREEBSD_SWAP, "FreeBSD swap" }, { PART_FREEBSD_VINUM, "FreeBSD vinum" }, { PART_LINUX, "Linux" }, { PART_LINUX_SWAP, "Linux swap" }, { PART_DOS, "DOS/Windows" }, }; const char * parttype2str(enum partition_type type) { int i; for (i = 0; i < sizeof(ptypes) / sizeof(ptypes[0]); i++) if (ptypes[i].type == type) return (ptypes[i].desc); return (ptypes[0].desc); } #ifdef LOADER_GPT_SUPPORT static void uuid_letoh(uuid_t *uuid) { uuid->time_low = le32toh(uuid->time_low); uuid->time_mid = le16toh(uuid->time_mid); uuid->time_hi_and_version = le16toh(uuid->time_hi_and_version); } static enum partition_type gpt_parttype(uuid_t type) { if (uuid_equal(&type, &gpt_uuid_efi, NULL)) return (PART_EFI); else if (uuid_equal(&type, &gpt_uuid_ms_basic_data, NULL)) return (PART_DOS); else if (uuid_equal(&type, &gpt_uuid_freebsd_boot, NULL)) return (PART_FREEBSD_BOOT); else if (uuid_equal(&type, &gpt_uuid_freebsd_ufs, NULL)) return (PART_FREEBSD_UFS); else if (uuid_equal(&type, &gpt_uuid_freebsd_zfs, NULL)) return (PART_FREEBSD_ZFS); else if (uuid_equal(&type, &gpt_uuid_freebsd_swap, NULL)) return (PART_FREEBSD_SWAP); else if (uuid_equal(&type, &gpt_uuid_freebsd_vinum, NULL)) return (PART_FREEBSD_VINUM); else if (uuid_equal(&type, &gpt_uuid_freebsd_nandfs, NULL)) return (PART_FREEBSD_NANDFS); else if (uuid_equal(&type, &gpt_uuid_freebsd, NULL)) return (PART_FREEBSD); return (PART_UNKNOWN); } static struct gpt_hdr* gpt_checkhdr(struct gpt_hdr *hdr, uint64_t lba_self, uint64_t lba_last, uint16_t sectorsize) { uint32_t sz, crc; if (memcmp(hdr->hdr_sig, GPT_HDR_SIG, sizeof(hdr->hdr_sig)) != 0) { DEBUG("no GPT signature"); return (NULL); } sz = le32toh(hdr->hdr_size); if (sz < 92 || sz > sectorsize) { DEBUG("invalid GPT header size: %d", sz); return (NULL); } crc = le32toh(hdr->hdr_crc_self); hdr->hdr_crc_self = 0; if (crc32(hdr, sz) != crc) { DEBUG("GPT header's CRC doesn't match"); return (NULL); } hdr->hdr_crc_self = crc; hdr->hdr_revision = le32toh(hdr->hdr_revision); if (hdr->hdr_revision < GPT_HDR_REVISION) { DEBUG("unsupported GPT revision %d", hdr->hdr_revision); return (NULL); } hdr->hdr_lba_self = le64toh(hdr->hdr_lba_self); if (hdr->hdr_lba_self != lba_self) { DEBUG("self LBA doesn't match"); return (NULL); } hdr->hdr_lba_alt = le64toh(hdr->hdr_lba_alt); if (hdr->hdr_lba_alt == hdr->hdr_lba_self) { DEBUG("invalid alternate LBA"); return (NULL); } hdr->hdr_entries = le32toh(hdr->hdr_entries); hdr->hdr_entsz = le32toh(hdr->hdr_entsz); if (hdr->hdr_entries == 0 || hdr->hdr_entsz < sizeof(struct gpt_ent) || sectorsize % hdr->hdr_entsz != 0) { DEBUG("invalid entry size or number of entries"); return (NULL); } hdr->hdr_lba_start = le64toh(hdr->hdr_lba_start); hdr->hdr_lba_end = le64toh(hdr->hdr_lba_end); hdr->hdr_lba_table = le64toh(hdr->hdr_lba_table); hdr->hdr_crc_table = le32toh(hdr->hdr_crc_table); uuid_letoh(&hdr->hdr_uuid); return (hdr); } static int gpt_checktbl(const struct gpt_hdr *hdr, u_char *tbl, size_t size, uint64_t lba_last) { struct gpt_ent *ent; int i, cnt; cnt = size / hdr->hdr_entsz; if (hdr->hdr_entries <= cnt) { cnt = hdr->hdr_entries; /* Check CRC only when buffer size is enough for table. */ if (hdr->hdr_crc_table != crc32(tbl, hdr->hdr_entries * hdr->hdr_entsz)) { DEBUG("GPT table's CRC doesn't match"); return (-1); } } for (i = 0; i < cnt; i++) { ent = (struct gpt_ent *)(tbl + i * hdr->hdr_entsz); uuid_letoh(&ent->ent_type); if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL)) continue; ent->ent_lba_start = le64toh(ent->ent_lba_start); ent->ent_lba_end = le64toh(ent->ent_lba_end); } return (0); } static struct ptable* ptable_gptread(struct ptable *table, void *dev, diskread_t dread) { struct pentry *entry; struct gpt_hdr *phdr, hdr; struct gpt_ent *ent; u_char *buf, *tbl; uint64_t offset; int pri, sec, i; size_t size; buf = malloc(table->sectorsize); if (buf == NULL) return (NULL); tbl = malloc(table->sectorsize * MAXTBLSZ); if (tbl == NULL) { free(buf); return (NULL); } /* Read the primary GPT header. */ if (dread(dev, buf, 1, 1) != 0) { ptable_close(table); table = NULL; goto out; } pri = sec = 0; /* Check the primary GPT header. */ phdr = gpt_checkhdr((struct gpt_hdr *)buf, 1, table->sectors - 1, table->sectorsize); if (phdr != NULL) { /* Read the primary GPT table. */ size = MIN(MAXTBLSZ, (phdr->hdr_entries * phdr->hdr_entsz + table->sectorsize - 1) / table->sectorsize); if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 && gpt_checktbl(phdr, tbl, size * table->sectorsize, table->sectors - 1) == 0) { memcpy(&hdr, phdr, sizeof(hdr)); pri = 1; } } offset = pri ? hdr.hdr_lba_alt: table->sectors - 1; /* Read the backup GPT header. */ if (dread(dev, buf, 1, offset) != 0) phdr = NULL; else phdr = gpt_checkhdr((struct gpt_hdr *)buf, offset, table->sectors - 1, table->sectorsize); if (phdr != NULL) { /* * Compare primary and backup headers. * If they are equal, then we do not need to read backup * table. If they are different, then prefer backup header * and try to read backup table. */ if (pri == 0 || uuid_equal(&hdr.hdr_uuid, &phdr->hdr_uuid, NULL) == 0 || hdr.hdr_revision != phdr->hdr_revision || hdr.hdr_size != phdr->hdr_size || hdr.hdr_lba_start != phdr->hdr_lba_start || hdr.hdr_lba_end != phdr->hdr_lba_end || hdr.hdr_entries != phdr->hdr_entries || hdr.hdr_entsz != phdr->hdr_entsz || hdr.hdr_crc_table != phdr->hdr_crc_table) { /* Read the backup GPT table. */ size = MIN(MAXTBLSZ, (phdr->hdr_entries * phdr->hdr_entsz + table->sectorsize - 1) / table->sectorsize); if (dread(dev, tbl, size, phdr->hdr_lba_table) == 0 && gpt_checktbl(phdr, tbl, size * table->sectorsize, table->sectors - 1) == 0) { memcpy(&hdr, phdr, sizeof(hdr)); sec = 1; } } } - DEBUG("GPT detected"); if (pri == 0 && sec == 0) { /* Both primary and backup tables are invalid. */ table->type = PTABLE_NONE; goto out; } + DEBUG("GPT detected"); size = MIN(hdr.hdr_entries * hdr.hdr_entsz, MAXTBLSZ * table->sectorsize); for (i = 0; i < size / hdr.hdr_entsz; i++) { ent = (struct gpt_ent *)(tbl + i * hdr.hdr_entsz); if (uuid_equal(&ent->ent_type, &gpt_uuid_unused, NULL)) continue; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = ent->ent_lba_start; entry->part.end = ent->ent_lba_end; entry->part.index = i + 1; entry->part.type = gpt_parttype(ent->ent_type); entry->flags = le64toh(ent->ent_attr); memcpy(&entry->type.gpt, &ent->ent_type, sizeof(uuid_t)); STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new GPT partition added"); } out: free(buf); free(tbl); return (table); } #endif /* LOADER_GPT_SUPPORT */ #ifdef LOADER_MBR_SUPPORT /* We do not need to support too many EBR partitions in the loader */ #define MAXEBRENTRIES 8 static enum partition_type mbr_parttype(uint8_t type) { switch (type) { case DOSPTYP_386BSD: return (PART_FREEBSD); case DOSPTYP_LINSWP: return (PART_LINUX_SWAP); case DOSPTYP_LINUX: return (PART_LINUX); case 0x01: case 0x04: case 0x06: case 0x07: case 0x0b: case 0x0c: case 0x0e: return (PART_DOS); } return (PART_UNKNOWN); } struct ptable* ptable_ebrread(struct ptable *table, void *dev, diskread_t dread) { struct dos_partition *dp; struct pentry *e1, *entry; uint32_t start, end, offset; u_char *buf; int i, index; STAILQ_FOREACH(e1, &table->entries, entry) { if (e1->type.mbr == DOSPTYP_EXT || e1->type.mbr == DOSPTYP_EXTLBA) break; } if (e1 == NULL) return (table); index = 5; offset = e1->part.start; buf = malloc(table->sectorsize); if (buf == NULL) return (table); DEBUG("EBR detected"); for (i = 0; i < MAXEBRENTRIES; i++) { #if 0 /* Some BIOSes return an incorrect number of sectors */ if (offset >= table->sectors) break; #endif if (dread(dev, buf, 1, offset) != 0) break; dp = (struct dos_partition *)(buf + DOSPARTOFF); if (dp[0].dp_typ == 0) break; start = le32toh(dp[0].dp_start); if (dp[0].dp_typ == DOSPTYP_EXT && dp[1].dp_typ == 0) { offset = e1->part.start + start; continue; } end = le32toh(dp[0].dp_size); entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = offset + start; entry->part.end = entry->part.start + end - 1; entry->part.index = index++; entry->part.type = mbr_parttype(dp[0].dp_typ); entry->flags = dp[0].dp_flag; entry->type.mbr = dp[0].dp_typ; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new EBR partition added"); if (dp[1].dp_typ == 0) break; offset = e1->part.start + le32toh(dp[1].dp_start); } free(buf); return (table); } #endif /* LOADER_MBR_SUPPORT */ static enum partition_type bsd_parttype(uint8_t type) { switch (type) { case FS_NANDFS: return (PART_FREEBSD_NANDFS); case FS_SWAP: return (PART_FREEBSD_SWAP); case FS_BSDFFS: return (PART_FREEBSD_UFS); case FS_VINUM: return (PART_FREEBSD_VINUM); case FS_ZFS: return (PART_FREEBSD_ZFS); } return (PART_UNKNOWN); } struct ptable* ptable_bsdread(struct ptable *table, void *dev, diskread_t dread) { struct disklabel *dl; struct partition *part; struct pentry *entry; u_char *buf; uint32_t raw_offset; int i; if (table->sectorsize < sizeof(struct disklabel)) { DEBUG("Too small sectorsize"); return (table); } buf = malloc(table->sectorsize); if (buf == NULL) return (table); if (dread(dev, buf, 1, 1) != 0) { DEBUG("read failed"); ptable_close(table); table = NULL; goto out; } dl = (struct disklabel *)buf; if (le32toh(dl->d_magic) != DISKMAGIC && le32toh(dl->d_magic2) != DISKMAGIC) goto out; if (le32toh(dl->d_secsize) != table->sectorsize) { DEBUG("unsupported sector size"); goto out; } dl->d_npartitions = le16toh(dl->d_npartitions); if (dl->d_npartitions > 20 || dl->d_npartitions < 8) { DEBUG("invalid number of partitions"); goto out; } DEBUG("BSD detected"); part = &dl->d_partitions[0]; raw_offset = le32toh(part[RAW_PART].p_offset); for (i = 0; i < dl->d_npartitions; i++, part++) { if (i == RAW_PART) continue; if (part->p_size == 0) continue; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = le32toh(part->p_offset) - raw_offset; entry->part.end = entry->part.start + le32toh(part->p_size) + 1; entry->part.type = bsd_parttype(part->p_fstype); entry->part.index = i; /* starts from zero */ entry->type.bsd = part->p_fstype; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new BSD partition added"); } table->type = PTABLE_BSD; out: free(buf); return (table); } #ifdef LOADER_VTOC8_SUPPORT static enum partition_type vtoc8_parttype(uint16_t type) { switch (type) { case VTOC_TAG_FREEBSD_NANDFS: return (PART_FREEBSD_NANDFS); case VTOC_TAG_FREEBSD_SWAP: return (PART_FREEBSD_SWAP); case VTOC_TAG_FREEBSD_UFS: return (PART_FREEBSD_UFS); case VTOC_TAG_FREEBSD_VINUM: return (PART_FREEBSD_VINUM); case VTOC_TAG_FREEBSD_ZFS: return (PART_FREEBSD_ZFS); }; return (PART_UNKNOWN); } static struct ptable* ptable_vtoc8read(struct ptable *table, void *dev, diskread_t dread) { struct pentry *entry; struct vtoc8 *dl; u_char *buf; uint16_t sum, heads, sectors; int i; if (table->sectorsize != sizeof(struct vtoc8)) return (table); buf = malloc(table->sectorsize); if (buf == NULL) return (table); if (dread(dev, buf, 1, 0) != 0) { DEBUG("read failed"); ptable_close(table); table = NULL; goto out; } dl = (struct vtoc8 *)buf; /* Check the sum */ for (i = sum = 0; i < sizeof(struct vtoc8); i += sizeof(sum)) sum ^= be16dec(buf + i); if (sum != 0) { DEBUG("incorrect checksum"); goto out; } if (be16toh(dl->nparts) != VTOC8_NPARTS) { DEBUG("invalid number of entries"); goto out; } sectors = be16toh(dl->nsecs); heads = be16toh(dl->nheads); if (sectors * heads == 0) { DEBUG("invalid geometry"); goto out; } DEBUG("VTOC8 detected"); for (i = 0; i < VTOC8_NPARTS; i++) { dl->part[i].tag = be16toh(dl->part[i].tag); if (i == VTOC_RAW_PART || dl->part[i].tag == VTOC_TAG_UNASSIGNED) continue; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = be32toh(dl->map[i].cyl) * heads * sectors; entry->part.end = be32toh(dl->map[i].nblks) + entry->part.start - 1; entry->part.type = vtoc8_parttype(dl->part[i].tag); entry->part.index = i; /* starts from zero */ entry->type.vtoc8 = dl->part[i].tag; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new VTOC8 partition added"); } table->type = PTABLE_VTOC8; out: free(buf); return (table); } #endif /* LOADER_VTOC8_SUPPORT */ struct ptable* ptable_open(void *dev, off_t sectors, uint16_t sectorsize, diskread_t *dread) { struct dos_partition *dp; struct ptable *table; u_char *buf; int i, count; #ifdef LOADER_MBR_SUPPORT struct pentry *entry; uint32_t start, end; int has_ext; #endif table = NULL; buf = malloc(sectorsize); if (buf == NULL) return (NULL); /* First, read the MBR. */ if (dread(dev, buf, 1, DOSBBSECTOR) != 0) { DEBUG("read failed"); goto out; } table = malloc(sizeof(*table)); if (table == NULL) goto out; table->sectors = sectors; table->sectorsize = sectorsize; table->type = PTABLE_NONE; STAILQ_INIT(&table->entries); #ifdef LOADER_VTOC8_SUPPORT if (be16dec(buf + offsetof(struct vtoc8, magic)) == VTOC_MAGIC) { if (ptable_vtoc8read(table, dev, dread) == NULL) { /* Read error. */ table = NULL; goto out; } else if (table->type == PTABLE_VTOC8) goto out; } #endif /* Check the BSD label. */ if (ptable_bsdread(table, dev, dread) == NULL) { /* Read error. */ table = NULL; goto out; } else if (table->type == PTABLE_BSD) goto out; #if defined(LOADER_GPT_SUPPORT) || defined(LOADER_MBR_SUPPORT) /* Check the MBR magic. */ if (buf[DOSMAGICOFFSET] != 0x55 || buf[DOSMAGICOFFSET + 1] != 0xaa) { DEBUG("magic sequence not found"); +#if defined(LOADER_GPT_SUPPORT) + /* There is no PMBR, check that we have backup GPT */ + table->type = PTABLE_GPT; + table = ptable_gptread(table, dev, dread); +#endif goto out; } /* Check that we have PMBR. Also do some validation. */ dp = (struct dos_partition *)(buf + DOSPARTOFF); for (i = 0, count = 0; i < NDOSPART; i++) { if (dp[i].dp_flag != 0 && dp[i].dp_flag != 0x80) { DEBUG("invalid partition flag %x", dp[i].dp_flag); goto out; } #ifdef LOADER_GPT_SUPPORT if (dp[i].dp_typ == DOSPTYP_PMBR) { table->type = PTABLE_GPT; DEBUG("PMBR detected"); } #endif if (dp[i].dp_typ != 0) count++; } /* Do we have some invalid values? */ if (table->type == PTABLE_GPT && count > 1) { if (dp[1].dp_typ != DOSPTYP_HFS) { table->type = PTABLE_NONE; DEBUG("Incorrect PMBR, ignore it"); } else DEBUG("Bootcamp detected"); } #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) { table = ptable_gptread(table, dev, dread); goto out; } #endif #ifdef LOADER_MBR_SUPPORT /* Read MBR. */ DEBUG("MBR detected"); table->type = PTABLE_MBR; for (i = has_ext = 0; i < NDOSPART; i++) { if (dp[i].dp_typ == 0) continue; start = le32dec(&(dp[i].dp_start)); end = le32dec(&(dp[i].dp_size)); if (start == 0 || end == 0) continue; #if 0 /* Some BIOSes return an incorrect number of sectors */ if (start + end - 1 >= sectors) continue; /* XXX: ignore */ #endif if (dp[i].dp_typ == DOSPTYP_EXT || dp[i].dp_typ == DOSPTYP_EXTLBA) has_ext = 1; entry = malloc(sizeof(*entry)); if (entry == NULL) break; entry->part.start = start; entry->part.end = start + end - 1; entry->part.index = i + 1; entry->part.type = mbr_parttype(dp[i].dp_typ); entry->flags = dp[i].dp_flag; entry->type.mbr = dp[i].dp_typ; STAILQ_INSERT_TAIL(&table->entries, entry, entry); DEBUG("new MBR partition added"); } if (has_ext) { table = ptable_ebrread(table, dev, dread); /* FALLTHROUGH */ } #endif /* LOADER_MBR_SUPPORT */ #endif /* LOADER_MBR_SUPPORT || LOADER_GPT_SUPPORT */ out: free(buf); return (table); } void ptable_close(struct ptable *table) { struct pentry *entry; while (!STAILQ_EMPTY(&table->entries)) { entry = STAILQ_FIRST(&table->entries); STAILQ_REMOVE_HEAD(&table->entries, entry); free(entry); } free(table); } enum ptable_type ptable_gettype(const struct ptable *table) { return (table->type); } int ptable_getpart(const struct ptable *table, struct ptable_entry *part, int index) { struct pentry *entry; if (part == NULL || table == NULL) return (EINVAL); STAILQ_FOREACH(entry, &table->entries, entry) { if (entry->part.index != index) continue; memcpy(part, &entry->part, sizeof(*part)); return (0); } return (ENOENT); } /* * Search for a slice with the following preferences: * * 1: Active FreeBSD slice * 2: Non-active FreeBSD slice * 3: Active Linux slice * 4: non-active Linux slice * 5: Active FAT/FAT32 slice * 6: non-active FAT/FAT32 slice */ #define PREF_RAWDISK 0 #define PREF_FBSD_ACT 1 #define PREF_FBSD 2 #define PREF_LINUX_ACT 3 #define PREF_LINUX 4 #define PREF_DOS_ACT 5 #define PREF_DOS 6 #define PREF_NONE 7 int ptable_getbestpart(const struct ptable *table, struct ptable_entry *part) { struct pentry *entry, *best; int pref, preflevel; if (part == NULL || table == NULL) return (EINVAL); best = NULL; preflevel = pref = PREF_NONE; STAILQ_FOREACH(entry, &table->entries, entry) { #ifdef LOADER_MBR_SUPPORT if (table->type == PTABLE_MBR) { switch (entry->type.mbr) { case DOSPTYP_386BSD: pref = entry->flags & 0x80 ? PREF_FBSD_ACT: PREF_FBSD; break; case DOSPTYP_LINUX: pref = entry->flags & 0x80 ? PREF_LINUX_ACT: PREF_LINUX; break; case 0x01: /* DOS/Windows */ case 0x04: case 0x06: case 0x0c: case 0x0e: case DOSPTYP_FAT32: pref = entry->flags & 0x80 ? PREF_DOS_ACT: PREF_DOS; break; default: pref = PREF_NONE; } } #endif /* LOADER_MBR_SUPPORT */ #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) { if (entry->part.type == PART_DOS) pref = PREF_DOS; else if (entry->part.type == PART_FREEBSD_UFS || entry->part.type == PART_FREEBSD_ZFS) pref = PREF_FBSD; else pref = PREF_NONE; } #endif /* LOADER_GPT_SUPPORT */ if (pref < preflevel) { preflevel = pref; best = entry; } } if (best != NULL) { memcpy(part, &best->part, sizeof(*part)); return (0); } return (ENOENT); } void ptable_iterate(const struct ptable *table, void *arg, ptable_iterate_t *iter) { struct pentry *entry; char name[32]; name[0] = '\0'; STAILQ_FOREACH(entry, &table->entries, entry) { #ifdef LOADER_MBR_SUPPORT if (table->type == PTABLE_MBR) sprintf(name, "s%d", entry->part.index); else #endif #ifdef LOADER_GPT_SUPPORT if (table->type == PTABLE_GPT) sprintf(name, "p%d", entry->part.index); else #endif #ifdef LOADER_VTOC8_SUPPORT if (table->type == PTABLE_VTOC8) sprintf(name, "%c", (u_char) 'a' + entry->part.index); else #endif if (table->type == PTABLE_BSD) sprintf(name, "%c", (u_char) 'a' + entry->part.index); iter(arg, name, &entry->part); } } Index: head/sys/geom/part/g_part_gpt.c =================================================================== --- head/sys/geom/part/g_part_gpt.c (revision 292056) +++ head/sys/geom/part/g_part_gpt.c (revision 292057) @@ -1,1377 +1,1378 @@ /*- * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "g_part_if.h" FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support"); CTASSERT(offsetof(struct gpt_hdr, padding) == 92); CTASSERT(sizeof(struct gpt_ent) == 128); #define EQUUID(a,b) (memcmp(a, b, sizeof(struct uuid)) == 0) #define MBRSIZE 512 enum gpt_elt { GPT_ELT_PRIHDR, GPT_ELT_PRITBL, GPT_ELT_SECHDR, GPT_ELT_SECTBL, GPT_ELT_COUNT }; enum gpt_state { GPT_STATE_UNKNOWN, /* Not determined. */ GPT_STATE_MISSING, /* No signature found. */ GPT_STATE_CORRUPT, /* Checksum mismatch. */ GPT_STATE_INVALID, /* Nonconformant/invalid. */ GPT_STATE_OK /* Perfectly fine. */ }; struct g_part_gpt_table { struct g_part_table base; u_char mbr[MBRSIZE]; struct gpt_hdr *hdr; quad_t lba[GPT_ELT_COUNT]; enum gpt_state state[GPT_ELT_COUNT]; int bootcamp; }; struct g_part_gpt_entry { struct g_part_entry base; struct gpt_ent ent; }; static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t); static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t); static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *); static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *); static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *); static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *); static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *, struct sbuf *, const char *); static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *); static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *); static int g_part_gpt_read(struct g_part_table *, struct g_consumer *); static int g_part_gpt_setunset(struct g_part_table *table, struct g_part_entry *baseentry, const char *attrib, unsigned int set); static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *, char *, size_t); static int g_part_gpt_write(struct g_part_table *, struct g_consumer *); static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *, struct g_part_parms *); static int g_part_gpt_recover(struct g_part_table *); static kobj_method_t g_part_gpt_methods[] = { KOBJMETHOD(g_part_add, g_part_gpt_add), KOBJMETHOD(g_part_bootcode, g_part_gpt_bootcode), KOBJMETHOD(g_part_create, g_part_gpt_create), KOBJMETHOD(g_part_destroy, g_part_gpt_destroy), KOBJMETHOD(g_part_dumpconf, g_part_gpt_dumpconf), KOBJMETHOD(g_part_dumpto, g_part_gpt_dumpto), KOBJMETHOD(g_part_modify, g_part_gpt_modify), KOBJMETHOD(g_part_resize, g_part_gpt_resize), KOBJMETHOD(g_part_name, g_part_gpt_name), KOBJMETHOD(g_part_probe, g_part_gpt_probe), KOBJMETHOD(g_part_read, g_part_gpt_read), KOBJMETHOD(g_part_recover, g_part_gpt_recover), KOBJMETHOD(g_part_setunset, g_part_gpt_setunset), KOBJMETHOD(g_part_type, g_part_gpt_type), KOBJMETHOD(g_part_write, g_part_gpt_write), { 0, 0 } }; static struct g_part_scheme g_part_gpt_scheme = { "GPT", g_part_gpt_methods, sizeof(struct g_part_gpt_table), .gps_entrysz = sizeof(struct g_part_gpt_entry), .gps_minent = 128, .gps_maxent = 4096, .gps_bootcodesz = MBRSIZE, }; G_PART_SCHEME_DECLARE(g_part_gpt); static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT; static struct uuid gpt_uuid_apple_core_storage = GPT_ENT_TYPE_APPLE_CORE_STORAGE; static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS; static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL; static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID; static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE; static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY; static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS; static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT; static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI; static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD; static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT; static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS; static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP; static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS; static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM; static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS; static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA; static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM; static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID; static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP; static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS; static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG; static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED; static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR; static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA; static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED; static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA; static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA; static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD; static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD; static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS; static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS; static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID; static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP; static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR; static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED; static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP; static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1; static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM; static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD; static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY; static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER; static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2; static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32; static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64; static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT; static struct g_part_uuid_alias { struct uuid *uuid; int alias; int mbrtype; } gpt_uuid_alias_match[] = { { &gpt_uuid_apple_boot, G_PART_ALIAS_APPLE_BOOT, 0xab }, { &gpt_uuid_apple_core_storage, G_PART_ALIAS_APPLE_CORE_STORAGE, 0 }, { &gpt_uuid_apple_hfs, G_PART_ALIAS_APPLE_HFS, 0xaf }, { &gpt_uuid_apple_label, G_PART_ALIAS_APPLE_LABEL, 0 }, { &gpt_uuid_apple_raid, G_PART_ALIAS_APPLE_RAID, 0 }, { &gpt_uuid_apple_raid_offline, G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 }, { &gpt_uuid_apple_tv_recovery, G_PART_ALIAS_APPLE_TV_RECOVERY, 0 }, { &gpt_uuid_apple_ufs, G_PART_ALIAS_APPLE_UFS, 0 }, { &gpt_uuid_bios_boot, G_PART_ALIAS_BIOS_BOOT, 0 }, { &gpt_uuid_efi, G_PART_ALIAS_EFI, 0xee }, { &gpt_uuid_freebsd, G_PART_ALIAS_FREEBSD, 0xa5 }, { &gpt_uuid_freebsd_boot, G_PART_ALIAS_FREEBSD_BOOT, 0 }, { &gpt_uuid_freebsd_nandfs, G_PART_ALIAS_FREEBSD_NANDFS, 0 }, { &gpt_uuid_freebsd_swap, G_PART_ALIAS_FREEBSD_SWAP, 0 }, { &gpt_uuid_freebsd_ufs, G_PART_ALIAS_FREEBSD_UFS, 0 }, { &gpt_uuid_freebsd_vinum, G_PART_ALIAS_FREEBSD_VINUM, 0 }, { &gpt_uuid_freebsd_zfs, G_PART_ALIAS_FREEBSD_ZFS, 0 }, { &gpt_uuid_linux_data, G_PART_ALIAS_LINUX_DATA, 0x0b }, { &gpt_uuid_linux_lvm, G_PART_ALIAS_LINUX_LVM, 0 }, { &gpt_uuid_linux_raid, G_PART_ALIAS_LINUX_RAID, 0 }, { &gpt_uuid_linux_swap, G_PART_ALIAS_LINUX_SWAP, 0 }, { &gpt_uuid_vmfs, G_PART_ALIAS_VMFS, 0 }, { &gpt_uuid_vmkdiag, G_PART_ALIAS_VMKDIAG, 0 }, { &gpt_uuid_vmreserved, G_PART_ALIAS_VMRESERVED, 0 }, { &gpt_uuid_vmvsanhdr, G_PART_ALIAS_VMVSANHDR, 0 }, { &gpt_uuid_mbr, G_PART_ALIAS_MBR, 0 }, { &gpt_uuid_ms_basic_data, G_PART_ALIAS_MS_BASIC_DATA, 0x0b }, { &gpt_uuid_ms_ldm_data, G_PART_ALIAS_MS_LDM_DATA, 0 }, { &gpt_uuid_ms_ldm_metadata, G_PART_ALIAS_MS_LDM_METADATA, 0 }, { &gpt_uuid_ms_reserved, G_PART_ALIAS_MS_RESERVED, 0 }, { &gpt_uuid_netbsd_ccd, G_PART_ALIAS_NETBSD_CCD, 0 }, { &gpt_uuid_netbsd_cgd, G_PART_ALIAS_NETBSD_CGD, 0 }, { &gpt_uuid_netbsd_ffs, G_PART_ALIAS_NETBSD_FFS, 0 }, { &gpt_uuid_netbsd_lfs, G_PART_ALIAS_NETBSD_LFS, 0 }, { &gpt_uuid_netbsd_raid, G_PART_ALIAS_NETBSD_RAID, 0 }, { &gpt_uuid_netbsd_swap, G_PART_ALIAS_NETBSD_SWAP, 0 }, { &gpt_uuid_dfbsd_swap, G_PART_ALIAS_DFBSD_SWAP, 0 }, { &gpt_uuid_dfbsd_ufs1, G_PART_ALIAS_DFBSD_UFS, 0 }, { &gpt_uuid_dfbsd_vinum, G_PART_ALIAS_DFBSD_VINUM, 0 }, { &gpt_uuid_dfbsd_ccd, G_PART_ALIAS_DFBSD_CCD, 0 }, { &gpt_uuid_dfbsd_legacy, G_PART_ALIAS_DFBSD_LEGACY, 0 }, { &gpt_uuid_dfbsd_hammer, G_PART_ALIAS_DFBSD_HAMMER, 0 }, { &gpt_uuid_dfbsd_hammer2, G_PART_ALIAS_DFBSD_HAMMER2, 0 }, { &gpt_uuid_dfbsd_label32, G_PART_ALIAS_DFBSD, 0xa5 }, { &gpt_uuid_dfbsd_label64, G_PART_ALIAS_DFBSD64, 0xa5 }, { &gpt_uuid_prep_boot, G_PART_ALIAS_PREP_BOOT, 0x41 }, { NULL, 0, 0 } }; static int gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start, quad_t end) { if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX) return (EINVAL); mbr += DOSPARTOFF + idx * DOSPARTSIZE; mbr[0] = 0; if (start == 1) { /* * Treat the PMBR partition specially to maximize * interoperability with BIOSes. */ mbr[1] = mbr[3] = 0; mbr[2] = 2; } else mbr[1] = mbr[2] = mbr[3] = 0xff; mbr[4] = typ; mbr[5] = mbr[6] = mbr[7] = 0xff; le32enc(mbr + 8, (uint32_t)start); le32enc(mbr + 12, (uint32_t)(end - start + 1)); return (0); } static int gpt_map_type(struct uuid *t) { struct g_part_uuid_alias *uap; for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { if (EQUUID(t, uap->uuid)) return (uap->mbrtype); } return (0); } static void gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp) { bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); gpt_write_mbr_entry(table->mbr, 0, 0xee, 1, MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC); } /* * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the * whole disk anymore. Rather, it covers the GPT table and the EFI * system partition only. This way the HFS+ partition and any FAT * partitions can be added to the MBR without creating an overlap. */ static int gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname) { uint8_t *p; p = table->mbr + DOSPARTOFF; if (p[4] != 0xee || le32dec(p + 8) != 1) return (0); p += DOSPARTSIZE; if (p[4] != 0xaf) return (0); printf("GEOM: %s: enabling Boot Camp\n", provname); return (1); } static void gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; int bootable, error, index, slices, typ; table = (struct g_part_gpt_table *)basetable; bootable = -1; for (index = 0; index < NDOSPART; index++) { if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index]) bootable = index; } bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); slices = 0; LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; index = baseentry->gpe_index - 1; if (index >= NDOSPART) continue; entry = (struct g_part_gpt_entry *)baseentry; switch (index) { case 0: /* This must be the EFI system partition. */ if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi)) goto disable; error = gpt_write_mbr_entry(table->mbr, index, 0xee, 1ull, entry->ent.ent_lba_end); break; case 1: /* This must be the HFS+ partition. */ if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs)) goto disable; error = gpt_write_mbr_entry(table->mbr, index, 0xaf, entry->ent.ent_lba_start, entry->ent.ent_lba_end); break; default: typ = gpt_map_type(&entry->ent.ent_type); error = gpt_write_mbr_entry(table->mbr, index, typ, entry->ent.ent_lba_start, entry->ent.ent_lba_end); break; } if (error) continue; if (index == bootable) table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80; slices |= 1 << index; } if ((slices & 3) == 3) return; disable: table->bootcamp = 0; gpt_create_pmbr(table, pp); } static struct gpt_hdr * gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp, enum gpt_elt elt) { struct gpt_hdr *buf, *hdr; struct g_provider *pp; quad_t lba, last; int error; uint32_t crc, sz; pp = cp->provider; last = (pp->mediasize / pp->sectorsize) - 1; table->state[elt] = GPT_STATE_MISSING; /* * If the primary header is valid look for secondary * header in AlternateLBA, otherwise in the last medium's LBA. */ if (elt == GPT_ELT_SECHDR) { if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK) table->lba[elt] = last; } else table->lba[elt] = 1; buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (NULL); hdr = NULL; if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0) goto fail; table->state[elt] = GPT_STATE_CORRUPT; sz = le32toh(buf->hdr_size); if (sz < 92 || sz > pp->sectorsize) goto fail; hdr = g_malloc(sz, M_WAITOK | M_ZERO); bcopy(buf, hdr, sz); hdr->hdr_size = sz; crc = le32toh(buf->hdr_crc_self); buf->hdr_crc_self = 0; if (crc32(buf, sz) != crc) goto fail; hdr->hdr_crc_self = crc; table->state[elt] = GPT_STATE_INVALID; hdr->hdr_revision = le32toh(buf->hdr_revision); if (hdr->hdr_revision < GPT_HDR_REVISION) goto fail; hdr->hdr_lba_self = le64toh(buf->hdr_lba_self); if (hdr->hdr_lba_self != table->lba[elt]) goto fail; hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt); if (hdr->hdr_lba_alt == hdr->hdr_lba_self || hdr->hdr_lba_alt > last) goto fail; /* Check the managed area. */ hdr->hdr_lba_start = le64toh(buf->hdr_lba_start); if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last) goto fail; hdr->hdr_lba_end = le64toh(buf->hdr_lba_end); if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last) goto fail; /* Check the table location and size of the table. */ hdr->hdr_entries = le32toh(buf->hdr_entries); hdr->hdr_entsz = le32toh(buf->hdr_entsz); if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 || (hdr->hdr_entsz & 7) != 0) goto fail; hdr->hdr_lba_table = le64toh(buf->hdr_lba_table); if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last) goto fail; if (hdr->hdr_lba_table >= hdr->hdr_lba_start && hdr->hdr_lba_table <= hdr->hdr_lba_end) goto fail; lba = hdr->hdr_lba_table + (hdr->hdr_entries * hdr->hdr_entsz + pp->sectorsize - 1) / pp->sectorsize - 1; if (lba >= last) goto fail; if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end) goto fail; table->state[elt] = GPT_STATE_OK; le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid); hdr->hdr_crc_table = le32toh(buf->hdr_crc_table); /* save LBA for secondary header */ if (elt == GPT_ELT_PRIHDR) table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt; g_free(buf); return (hdr); fail: if (hdr != NULL) g_free(hdr); g_free(buf); return (NULL); } static struct gpt_ent * gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp, enum gpt_elt elt, struct gpt_hdr *hdr) { struct g_provider *pp; struct gpt_ent *ent, *tbl; char *buf, *p; unsigned int idx, sectors, tblsz, size; int error; if (hdr == NULL) return (NULL); pp = cp->provider; table->lba[elt] = hdr->hdr_lba_table; table->state[elt] = GPT_STATE_MISSING; tblsz = hdr->hdr_entries * hdr->hdr_entsz; sectors = (tblsz + pp->sectorsize - 1) / pp->sectorsize; buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO); for (idx = 0; idx < sectors; idx += MAXPHYS / pp->sectorsize) { size = (sectors - idx > MAXPHYS / pp->sectorsize) ? MAXPHYS: (sectors - idx) * pp->sectorsize; p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize, size, &error); if (p == NULL) { g_free(buf); return (NULL); } bcopy(p, buf + idx * pp->sectorsize, size); g_free(p); } table->state[elt] = GPT_STATE_CORRUPT; if (crc32(buf, tblsz) != hdr->hdr_crc_table) { g_free(buf); return (NULL); } table->state[elt] = GPT_STATE_OK; tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent), M_WAITOK | M_ZERO); for (idx = 0, ent = tbl, p = buf; idx < hdr->hdr_entries; idx++, ent++, p += hdr->hdr_entsz) { le_uuid_dec(p, &ent->ent_type); le_uuid_dec(p + 16, &ent->ent_uuid); ent->ent_lba_start = le64dec(p + 32); ent->ent_lba_end = le64dec(p + 40); ent->ent_attr = le64dec(p + 48); /* Keep UTF-16 in little-endian. */ bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name)); } g_free(buf); return (tbl); } static int gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec) { if (pri == NULL || sec == NULL) return (0); if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid)) return (0); return ((pri->hdr_revision == sec->hdr_revision && pri->hdr_size == sec->hdr_size && pri->hdr_lba_start == sec->hdr_lba_start && pri->hdr_lba_end == sec->hdr_lba_end && pri->hdr_entries == sec->hdr_entries && pri->hdr_entsz == sec->hdr_entsz && pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0); } static int gpt_parse_type(const char *type, struct uuid *uuid) { struct uuid tmp; const char *alias; int error; struct g_part_uuid_alias *uap; if (type[0] == '!') { error = parse_uuid(type + 1, &tmp); if (error) return (error); if (EQUUID(&tmp, &gpt_uuid_unused)) return (EINVAL); *uuid = tmp; return (0); } for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) { alias = g_part_alias_name(uap->alias); if (!strcasecmp(type, alias)) { *uuid = *uap->uuid; return (0); } } return (EINVAL); } static int g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; int error; entry = (struct g_part_gpt_entry *)baseentry; error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); if (error) return (error); kern_uuidgen(&entry->ent.ent_uuid, 1); entry->ent.ent_lba_start = baseentry->gpe_start; entry->ent.ent_lba_end = baseentry->gpe_end; if (baseentry->gpe_deleted) { entry->ent.ent_attr = 0; bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name)); } if (gpp->gpp_parms & G_PART_PARM_LABEL) g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, sizeof(entry->ent.ent_name) / sizeof(entry->ent.ent_name[0])); return (0); } static int g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_gpt_table *table; size_t codesz; codesz = DOSPARTOFF; table = (struct g_part_gpt_table *)basetable; bzero(table->mbr, codesz); codesz = MIN(codesz, gpp->gpp_codesize); if (codesz > 0) bcopy(gpp->gpp_codeptr, table->mbr, codesz); return (0); } static int g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_provider *pp; struct g_part_gpt_table *table; size_t tblsz; /* We don't nest, which means that our depth should be 0. */ if (basetable->gpt_depth != 0) return (ENXIO); table = (struct g_part_gpt_table *)basetable; pp = gpp->gpp_provider; tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + pp->sectorsize - 1) / pp->sectorsize; if (pp->sectorsize < MBRSIZE || pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) * pp->sectorsize) return (ENOSPC); gpt_create_pmbr(table, pp); /* Allocate space for the header */ table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO); bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); table->hdr->hdr_revision = GPT_HDR_REVISION; table->hdr->hdr_size = offsetof(struct gpt_hdr, padding); kern_uuidgen(&table->hdr->hdr_uuid, 1); table->hdr->hdr_entries = basetable->gpt_entries; table->hdr->hdr_entsz = sizeof(struct gpt_ent); g_gpt_set_defaults(basetable, pp); return (0); } static int g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp) { struct g_part_gpt_table *table; struct g_provider *pp; table = (struct g_part_gpt_table *)basetable; pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; g_free(table->hdr); table->hdr = NULL; /* * Wipe the first 2 sectors to clear the partitioning. Wipe the last * sector only if it has valid secondary header. */ basetable->gpt_smhead |= 3; if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1) basetable->gpt_smtail |= 1; return (0); } static void g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry, struct sbuf *sb, const char *indent) { struct g_part_gpt_entry *entry; entry = (struct g_part_gpt_entry *)baseentry; if (indent == NULL) { /* conftxt: libdisk compatibility */ sbuf_printf(sb, " xs GPT xt "); sbuf_printf_uuid(sb, &entry->ent.ent_type); } else if (entry != NULL) { /* confxml: partition entry information */ sbuf_printf(sb, "%s\n"); if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME) sbuf_printf(sb, "%sbootme\n", indent); if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) { sbuf_printf(sb, "%sbootonce\n", indent); } if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) { sbuf_printf(sb, "%sbootfailed\n", indent); } sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->ent.ent_type); sbuf_printf(sb, "\n"); sbuf_printf(sb, "%s", indent); sbuf_printf_uuid(sb, &entry->ent.ent_uuid); sbuf_printf(sb, "\n"); } else { /* confxml: scheme information */ } } static int g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry) { struct g_part_gpt_entry *entry; entry = (struct g_part_gpt_entry *)baseentry; return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) || EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) || EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0); } static int g_part_gpt_modify(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; int error; entry = (struct g_part_gpt_entry *)baseentry; if (gpp->gpp_parms & G_PART_PARM_TYPE) { error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type); if (error) return (error); } if (gpp->gpp_parms & G_PART_PARM_LABEL) g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name, sizeof(entry->ent.ent_name) / sizeof(entry->ent.ent_name[0])); return (0); } static int g_part_gpt_resize(struct g_part_table *basetable, struct g_part_entry *baseentry, struct g_part_parms *gpp) { struct g_part_gpt_entry *entry; if (baseentry == NULL) return (g_part_gpt_recover(basetable)); entry = (struct g_part_gpt_entry *)baseentry; baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1; entry->ent.ent_lba_end = baseentry->gpe_end; return (0); } static const char * g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_gpt_entry *entry; char c; entry = (struct g_part_gpt_entry *)baseentry; c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p'; snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index); return (buf); } static int g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp) { struct g_provider *pp; u_char *buf; int error, index, pri, res; /* We don't nest, which means that our depth should be 0. */ if (table->gpt_depth != 0) return (ENXIO); pp = cp->provider; /* * Sanity-check the provider. Since the first sector on the provider * must be a PMBR and a PMBR is 512 bytes large, the sector size * must be at least 512 bytes. Also, since the theoretical minimum * number of sectors needed by GPT is 6, any medium that has less * than 6 sectors is never going to be able to hold a GPT. The * number 6 comes from: * 1 sector for the PMBR * 2 sectors for the GPT headers (each 1 sector) * 2 sectors for the GPT tables (each 1 sector) * 1 sector for an actual partition * It's better to catch this pathological case early than behaving * pathologically later on... */ if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize) return (ENOSPC); /* * Check that there's a MBR or a PMBR. If it's a PMBR, we return * as the highest priority on a match, otherwise we assume some * GPT-unaware tool has destroyed the GPT by recreating a MBR and * we really want the MBR scheme to take precedence. */ buf = g_read_data(cp, 0L, pp->sectorsize, &error); if (buf == NULL) return (error); res = le16dec(buf + DOSMAGICOFFSET); pri = G_PART_PROBE_PRI_LOW; - for (index = 0; index < NDOSPART; index++) { - if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) - pri = G_PART_PROBE_PRI_HIGH; - } - g_free(buf); - if (res != DOSMAGIC) - return (ENXIO); + if (res == DOSMAGIC) { + for (index = 0; index < NDOSPART; index++) { + if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee) + pri = G_PART_PROBE_PRI_HIGH; + } + g_free(buf); - /* Check that there's a primary header. */ - buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); - if (buf == NULL) - return (error); - res = memcmp(buf, GPT_HDR_SIG, 8); - g_free(buf); - if (res == 0) - return (pri); + /* Check that there's a primary header. */ + buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error); + if (buf == NULL) + return (error); + res = memcmp(buf, GPT_HDR_SIG, 8); + g_free(buf); + if (res == 0) + return (pri); + } else + g_free(buf); /* No primary? Check that there's a secondary. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) return (error); res = memcmp(buf, GPT_HDR_SIG, 8); g_free(buf); return ((res == 0) ? pri : ENXIO); } static int g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp) { struct gpt_hdr *prihdr, *sechdr; struct gpt_ent *tbl, *pritbl, *sectbl; struct g_provider *pp; struct g_part_gpt_table *table; struct g_part_gpt_entry *entry; u_char *buf; uint64_t last; int error, index; table = (struct g_part_gpt_table *)basetable; pp = cp->provider; last = (pp->mediasize / pp->sectorsize) - 1; /* Read the PMBR */ buf = g_read_data(cp, 0, pp->sectorsize, &error); if (buf == NULL) return (error); bcopy(buf, table->mbr, MBRSIZE); g_free(buf); /* Read the primary header and table. */ prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR); if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) { pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr); } else { table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; pritbl = NULL; } /* Read the secondary header and table. */ sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR); if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) { sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr); } else { table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; sectbl = NULL; } /* Fail if we haven't got any good tables at all. */ if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK && table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { printf("GEOM: %s: corrupt or invalid GPT detected.\n", pp->name); printf("GEOM: %s: GPT rejected -- may not be recoverable.\n", pp->name); return (EINVAL); } /* * If both headers are good but they disagree with each other, * then invalidate one. We prefer to keep the primary header, * unless the primary table is corrupt. */ if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK && table->state[GPT_ELT_SECHDR] == GPT_STATE_OK && !gpt_matched_hdrs(prihdr, sechdr)) { if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) { table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID; table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING; g_free(sechdr); sechdr = NULL; } else { table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID; table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING; g_free(prihdr); prihdr = NULL; } } if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) { printf("GEOM: %s: the primary GPT table is corrupt or " "invalid.\n", pp->name); printf("GEOM: %s: using the secondary instead -- recovery " "strongly advised.\n", pp->name); table->hdr = sechdr; basetable->gpt_corrupt = 1; if (prihdr != NULL) g_free(prihdr); tbl = sectbl; if (pritbl != NULL) g_free(pritbl); } else { if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) { printf("GEOM: %s: the secondary GPT table is corrupt " "or invalid.\n", pp->name); printf("GEOM: %s: using the primary only -- recovery " "suggested.\n", pp->name); basetable->gpt_corrupt = 1; } else if (table->lba[GPT_ELT_SECHDR] != last) { printf( "GEOM: %s: the secondary GPT header is not in " "the last LBA.\n", pp->name); basetable->gpt_corrupt = 1; } table->hdr = prihdr; if (sechdr != NULL) g_free(sechdr); tbl = pritbl; if (sectbl != NULL) g_free(sectbl); } basetable->gpt_first = table->hdr->hdr_lba_start; basetable->gpt_last = table->hdr->hdr_lba_end; basetable->gpt_entries = (table->hdr->hdr_lba_start - 2) * pp->sectorsize / table->hdr->hdr_entsz; for (index = table->hdr->hdr_entries - 1; index >= 0; index--) { if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused)) continue; entry = (struct g_part_gpt_entry *)g_part_new_entry( basetable, index + 1, tbl[index].ent_lba_start, tbl[index].ent_lba_end); entry->ent = tbl[index]; } g_free(tbl); /* * Under Mac OS X, the MBR mirrors the first 4 GPT partitions * if (and only if) any FAT32 or FAT16 partitions have been * created. This happens irrespective of whether Boot Camp is * used/enabled, though it's generally understood to be done * to support legacy Windows under Boot Camp. We refer to this * mirroring simply as Boot Camp. We try to detect Boot Camp * so that we can update the MBR if and when GPT changes have * been made. Note that we do not enable Boot Camp if not * previously enabled because we can't assume that we're on a * Mac alongside Mac OS X. */ table->bootcamp = gpt_is_bootcamp(table, pp->name); return (0); } static int g_part_gpt_recover(struct g_part_table *basetable) { struct g_part_gpt_table *table; struct g_provider *pp; table = (struct g_part_gpt_table *)basetable; pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; gpt_create_pmbr(table, pp); g_gpt_set_defaults(basetable, pp); basetable->gpt_corrupt = 0; return (0); } static int g_part_gpt_setunset(struct g_part_table *basetable, struct g_part_entry *baseentry, const char *attrib, unsigned int set) { struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; struct g_provider *pp; uint8_t *p; uint64_t attr; int i; table = (struct g_part_gpt_table *)basetable; entry = (struct g_part_gpt_entry *)baseentry; if (strcasecmp(attrib, "active") == 0) { if (table->bootcamp) { /* The active flag must be set on a valid entry. */ if (entry == NULL) return (ENXIO); if (baseentry->gpe_index > NDOSPART) return (EINVAL); for (i = 0; i < NDOSPART; i++) { p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; p[0] = (i == baseentry->gpe_index - 1) ? ((set) ? 0x80 : 0) : 0; } } else { /* The PMBR is marked as active without an entry. */ if (entry != NULL) return (ENXIO); for (i = 0; i < NDOSPART; i++) { p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE]; p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0; } } return (0); } else if (strcasecmp(attrib, "lenovofix") == 0) { /* * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR. * This workaround allows Lenovo X220, T420, T520, etc to boot * from GPT Partitions in BIOS mode. */ if (entry != NULL) return (ENXIO); pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider; bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART); gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1, MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX)); return (0); } if (entry == NULL) return (ENODEV); attr = 0; if (strcasecmp(attrib, "bootme") == 0) { attr |= GPT_ENT_ATTR_BOOTME; } else if (strcasecmp(attrib, "bootonce") == 0) { attr |= GPT_ENT_ATTR_BOOTONCE; if (set) attr |= GPT_ENT_ATTR_BOOTME; } else if (strcasecmp(attrib, "bootfailed") == 0) { /* * It should only be possible to unset BOOTFAILED, but it might * be useful for test purposes to also be able to set it. */ attr |= GPT_ENT_ATTR_BOOTFAILED; } if (attr == 0) return (EINVAL); if (set) attr = entry->ent.ent_attr | attr; else attr = entry->ent.ent_attr & ~attr; if (attr != entry->ent.ent_attr) { entry->ent.ent_attr = attr; if (!baseentry->gpe_created) baseentry->gpe_modified = 1; } return (0); } static const char * g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry, char *buf, size_t bufsz) { struct g_part_gpt_entry *entry; struct uuid *type; struct g_part_uuid_alias *uap; entry = (struct g_part_gpt_entry *)baseentry; type = &entry->ent.ent_type; for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) if (EQUUID(type, uap->uuid)) return (g_part_alias_name(uap->alias)); buf[0] = '!'; snprintf_uuid(buf + 1, bufsz - 1, type); return (buf); } static int g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp) { unsigned char *buf, *bp; struct g_provider *pp; struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; size_t tblsz; uint32_t crc; int error, index; pp = cp->provider; table = (struct g_part_gpt_table *)basetable; tblsz = (table->hdr->hdr_entries * table->hdr->hdr_entsz + pp->sectorsize - 1) / pp->sectorsize; /* Reconstruct the MBR from the GPT if under Boot Camp. */ if (table->bootcamp) gpt_update_bootcamp(basetable, pp); /* Write the PMBR */ buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO); bcopy(table->mbr, buf, MBRSIZE); error = g_write_data(cp, 0, buf, pp->sectorsize); g_free(buf); if (error) return (error); /* Allocate space for the header and entries. */ buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO); memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig)); le32enc(buf + 8, table->hdr->hdr_revision); le32enc(buf + 12, table->hdr->hdr_size); le64enc(buf + 40, table->hdr->hdr_lba_start); le64enc(buf + 48, table->hdr->hdr_lba_end); le_uuid_enc(buf + 56, &table->hdr->hdr_uuid); le32enc(buf + 80, table->hdr->hdr_entries); le32enc(buf + 84, table->hdr->hdr_entsz); LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; entry = (struct g_part_gpt_entry *)baseentry; index = baseentry->gpe_index - 1; bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index; le_uuid_enc(bp, &entry->ent.ent_type); le_uuid_enc(bp + 16, &entry->ent.ent_uuid); le64enc(bp + 32, entry->ent.ent_lba_start); le64enc(bp + 40, entry->ent.ent_lba_end); le64enc(bp + 48, entry->ent.ent_attr); memcpy(bp + 56, entry->ent.ent_name, sizeof(entry->ent.ent_name)); } crc = crc32(buf + pp->sectorsize, table->hdr->hdr_entries * table->hdr->hdr_entsz); le32enc(buf + 88, crc); /* Write primary meta-data. */ le32enc(buf + 16, 0); /* hdr_crc_self. */ le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_self. */ le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_alt. */ le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]); /* hdr_lba_table. */ crc = crc32(buf, table->hdr->hdr_size); le32enc(buf + 16, crc); for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { error = g_write_data(cp, (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize, buf + (index + 1) * pp->sectorsize, (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: (tblsz - index) * pp->sectorsize); if (error) goto out; } error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize, buf, pp->sectorsize); if (error) goto out; /* Write secondary meta-data. */ le32enc(buf + 16, 0); /* hdr_crc_self. */ le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]); /* hdr_lba_self. */ le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]); /* hdr_lba_alt. */ le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]); /* hdr_lba_table. */ crc = crc32(buf, table->hdr->hdr_size); le32enc(buf + 16, crc); for (index = 0; index < tblsz; index += MAXPHYS / pp->sectorsize) { error = g_write_data(cp, (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize, buf + (index + 1) * pp->sectorsize, (tblsz - index > MAXPHYS / pp->sectorsize) ? MAXPHYS: (tblsz - index) * pp->sectorsize); if (error) goto out; } error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize, buf, pp->sectorsize); out: g_free(buf); return (error); } static void g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp) { struct g_part_entry *baseentry; struct g_part_gpt_entry *entry; struct g_part_gpt_table *table; quad_t start, end, min, max; quad_t lba, last; size_t spb, tblsz; table = (struct g_part_gpt_table *)basetable; last = pp->mediasize / pp->sectorsize - 1; tblsz = (basetable->gpt_entries * sizeof(struct gpt_ent) + pp->sectorsize - 1) / pp->sectorsize; table->lba[GPT_ELT_PRIHDR] = 1; table->lba[GPT_ELT_PRITBL] = 2; table->lba[GPT_ELT_SECHDR] = last; table->lba[GPT_ELT_SECTBL] = last - tblsz; table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK; table->state[GPT_ELT_PRITBL] = GPT_STATE_OK; table->state[GPT_ELT_SECHDR] = GPT_STATE_OK; table->state[GPT_ELT_SECTBL] = GPT_STATE_OK; max = start = 2 + tblsz; min = end = last - tblsz - 1; LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) { if (baseentry->gpe_deleted) continue; entry = (struct g_part_gpt_entry *)baseentry; if (entry->ent.ent_lba_start < min) min = entry->ent.ent_lba_start; if (entry->ent.ent_lba_end > max) max = entry->ent.ent_lba_end; } spb = 4096 / pp->sectorsize; if (spb > 1) { lba = start + ((start % spb) ? spb - start % spb : 0); if (lba <= min) start = lba; lba = end - (end + 1) % spb; if (max <= lba) end = lba; } table->hdr->hdr_lba_start = start; table->hdr->hdr_lba_end = end; basetable->gpt_first = start; basetable->gpt_last = end; } static void g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len) { u_int bo; uint32_t ch; uint16_t c; bo = LITTLE_ENDIAN; /* GPT is little-endian */ while (len > 0 && *str != 0) { ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); str++, len--; if ((ch & 0xf800) == 0xd800) { if (len > 0) { c = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str); str++, len--; } else c = 0xfffd; if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) { ch = ((ch & 0x3ff) << 10) + (c & 0x3ff); ch += 0x10000; } else ch = 0xfffd; } else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */ bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN; continue; } else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */ continue; /* Write the Unicode character in UTF-8 */ if (ch < 0x80) g_conf_printf_escaped(sb, "%c", ch); else if (ch < 0x800) g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6), 0x80 | (ch & 0x3f)); else if (ch < 0x10000) g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); else if (ch < 0x200000) g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 | (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); } } static void g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len) { size_t s16idx, s8idx; uint32_t utfchar; unsigned int c, utfbytes; s8idx = s16idx = 0; utfchar = 0; utfbytes = 0; bzero(s16, s16len << 1); while (s8[s8idx] != 0 && s16idx < s16len) { c = s8[s8idx++]; if ((c & 0xc0) != 0x80) { /* Initial characters. */ if (utfbytes != 0) { /* Incomplete encoding of previous char. */ s16[s16idx++] = htole16(0xfffd); } if ((c & 0xf8) == 0xf0) { utfchar = c & 0x07; utfbytes = 3; } else if ((c & 0xf0) == 0xe0) { utfchar = c & 0x0f; utfbytes = 2; } else if ((c & 0xe0) == 0xc0) { utfchar = c & 0x1f; utfbytes = 1; } else { utfchar = c & 0x7f; utfbytes = 0; } } else { /* Followup characters. */ if (utfbytes > 0) { utfchar = (utfchar << 6) + (c & 0x3f); utfbytes--; } else if (utfbytes == 0) utfbytes = ~0; } /* * Write the complete Unicode character as UTF-16 when we * have all the UTF-8 charactars collected. */ if (utfbytes == 0) { /* * If we need to write 2 UTF-16 characters, but * we only have room for 1, then we truncate the * string by writing a 0 instead. */ if (utfchar >= 0x10000 && s16idx < s16len - 1) { s16[s16idx++] = htole16(0xd800 | ((utfchar >> 10) - 0x40)); s16[s16idx++] = htole16(0xdc00 | (utfchar & 0x3ff)); } else s16[s16idx++] = (utfchar >= 0x10000) ? 0 : htole16(utfchar); } } /* * If our input string was truncated, append an invalid encoding * character to the output string. */ if (utfbytes != 0 && s16idx < s16len) s16[s16idx++] = htole16(0xfffd); }