Index: head/sys/dev/sfxge/common/efx_mcdi.c =================================================================== --- head/sys/dev/sfxge/common/efx_mcdi.c (revision 291927) +++ head/sys/dev/sfxge/common/efx_mcdi.c (revision 291928) @@ -1,1687 +1,1687 @@ /*- * Copyright (c) 2008-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_regs_mcdi.h" #include "efx_impl.h" #if EFSYS_OPT_MCDI #if EFSYS_OPT_SIENA static efx_mcdi_ops_t __efx_mcdi_siena_ops = { siena_mcdi_init, /* emco_init */ siena_mcdi_request_copyin, /* emco_request_copyin */ siena_mcdi_request_poll, /* emco_request_poll */ siena_mcdi_request_copyout, /* emco_request_copyout */ siena_mcdi_poll_reboot, /* emco_poll_reboot */ siena_mcdi_fini, /* emco_fini */ siena_mcdi_fw_update_supported, /* emco_fw_update_supported */ siena_mcdi_macaddr_change_supported, - /* emco_macaddr_change_supported */ + /* emco_macaddr_change_supported */ siena_mcdi_link_control_supported, - /* emco_link_control_supported */ + /* emco_link_control_supported */ }; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON static efx_mcdi_ops_t __efx_mcdi_hunt_ops = { hunt_mcdi_init, /* emco_init */ hunt_mcdi_request_copyin, /* emco_request_copyin */ hunt_mcdi_request_poll, /* emco_request_poll */ hunt_mcdi_request_copyout, /* emco_request_copyout */ hunt_mcdi_poll_reboot, /* emco_poll_reboot */ hunt_mcdi_fini, /* emco_fini */ hunt_mcdi_fw_update_supported, /* emco_fw_update_supported */ hunt_mcdi_macaddr_change_supported, - /* emco_macaddr_change_supported */ + /* emco_macaddr_change_supported */ hunt_mcdi_link_control_supported, - /* emco_link_control_supported */ + /* emco_link_control_supported */ }; #endif /* EFSYS_OPT_HUNTINGTON */ __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { efx_mcdi_ops_t *emcop; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0); switch (enp->en_family) { #if EFSYS_OPT_FALCON case EFX_FAMILY_FALCON: emcop = NULL; emtp = NULL; break; #endif /* EFSYS_OPT_FALCON */ #if EFSYS_OPT_SIENA case EFX_FAMILY_SIENA: emcop = (efx_mcdi_ops_t *)&__efx_mcdi_siena_ops; break; #endif /* EFSYS_OPT_SIENA */ #if EFSYS_OPT_HUNTINGTON case EFX_FAMILY_HUNTINGTON: emcop = (efx_mcdi_ops_t *)&__efx_mcdi_hunt_ops; break; #endif /* EFSYS_OPT_HUNTINGTON */ default: EFSYS_ASSERT(0); rc = ENOTSUP; goto fail1; } if (enp->en_features & EFX_FEATURE_MCDI_DMA) { /* MCDI requires a DMA buffer in host memory */ if ((emtp == NULL) || (emtp->emt_dma_mem) == NULL) { rc = EINVAL; goto fail2; } } enp->en_mcdi.em_emtp = emtp; if (emcop != NULL && emcop->emco_init != NULL) { if ((rc = emcop->emco_init(enp, emtp)) != 0) goto fail3; } enp->en_mcdi.em_emcop = emcop; enp->en_mod_flags |= EFX_MOD_MCDI; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); enp->en_mcdi.em_emcop = NULL; enp->en_mcdi.em_emtp = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; return (rc); } void efx_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, ==, EFX_MOD_MCDI); if (emcop != NULL && emcop->emco_fini != NULL) emcop->emco_fini(enp); emip->emi_port = 0; emip->emi_aborted = 0; enp->en_mcdi.em_emcop = NULL; enp->en_mod_flags &= ~EFX_MOD_MCDI; } void efx_mcdi_new_epoch( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); int state; /* Start a new epoch (allow fresh MCDI requests to succeed) */ EFSYS_LOCK(enp->en_eslp, state); emip->emi_new_epoch = B_TRUE; EFSYS_UNLOCK(enp->en_eslp, state); } void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; unsigned int seq; boolean_t new_epoch; int state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); if (emcop == NULL || emcop->emco_request_copyin == NULL) return; /* * efx_mcdi_request_start() is naturally serialised against both * efx_mcdi_request_poll() and efx_mcdi_ev_cpl()/efx_mcdi_ev_death(), * by virtue of there only being one outstanding MCDI request. * Unfortunately, upper layers may also call efx_mcdi_request_abort() * at any time, to timeout a pending mcdi request, That request may * then subsequently complete, meaning efx_mcdi_ev_cpl() or * efx_mcdi_ev_death() may end up running in parallel with * efx_mcdi_request_start(). This race is handled by ensuring that * %emi_pending_req, %emi_ev_cpl and %emi_seq are protected by the * en_eslp lock. */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req == NULL); emip->emi_pending_req = emrp; emip->emi_ev_cpl = ev_cpl; emip->emi_poll_cnt = 0; seq = emip->emi_seq++ & EFX_MASK32(MCDI_HEADER_SEQ); new_epoch = emip->emi_new_epoch; EFSYS_UNLOCK(enp->en_eslp, state); emcop->emco_request_copyin(enp, emrp, seq, ev_cpl, new_epoch); } __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; boolean_t completed; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); completed = B_FALSE; if (emcop != NULL && emcop->emco_request_poll != NULL) completed = emcop->emco_request_poll(enp); return (completed); } __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; boolean_t aborted; int state; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * efx_mcdi_ev_* may have already completed this event, and be * spinning/blocked on the upper layer lock. So it *is* legitimate * to for emi_pending_req to be NULL. If there is a pending event * completed request, then provide a "credit" to allow * efx_mcdi_ev_cpl() to accept a single spurious completion. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; aborted = (emrp != NULL); if (aborted) { emip->emi_pending_req = NULL; /* Error the request */ emrp->emr_out_length_used = 0; emrp->emr_rc = ETIMEDOUT; /* Provide a credit for seqno/emr_pending_req mismatches */ if (emip->emi_ev_cpl) ++emip->emi_aborted; /* * The upper layer has called us, so we don't * need to complete the request. */ } EFSYS_UNLOCK(enp->en_eslp, state); return (aborted); } __checkReturn efx_rc_t efx_mcdi_request_errcode( __in unsigned int err) { switch (err) { /* MCDI v1 */ case MC_CMD_ERR_EPERM: return (EACCES); case MC_CMD_ERR_ENOENT: return (ENOENT); case MC_CMD_ERR_EINTR: return (EINTR); case MC_CMD_ERR_EACCES: return (EACCES); case MC_CMD_ERR_EBUSY: return (EBUSY); case MC_CMD_ERR_EINVAL: return (EINVAL); case MC_CMD_ERR_EDEADLK: return (EDEADLK); case MC_CMD_ERR_ENOSYS: return (ENOTSUP); case MC_CMD_ERR_ETIME: return (ETIMEDOUT); case MC_CMD_ERR_ENOTSUP: return (ENOTSUP); case MC_CMD_ERR_EALREADY: return (EALREADY); /* MCDI v2 */ #ifdef MC_CMD_ERR_EAGAIN case MC_CMD_ERR_EAGAIN: return (EAGAIN); #endif #ifdef MC_CMD_ERR_ENOSPC case MC_CMD_ERR_ENOSPC: return (ENOSPC); #endif case MC_CMD_ERR_ALLOC_FAIL: return (ENOMEM); case MC_CMD_ERR_NO_VADAPTOR: return (ENOENT); case MC_CMD_ERR_NO_EVB_PORT: return (ENOENT); case MC_CMD_ERR_NO_VSWITCH: return (ENODEV); case MC_CMD_ERR_VLAN_LIMIT: return (EINVAL); case MC_CMD_ERR_BAD_PCI_FUNC: return (ENODEV); case MC_CMD_ERR_BAD_VLAN_MODE: return (EINVAL); case MC_CMD_ERR_BAD_VSWITCH_TYPE: return (EINVAL); case MC_CMD_ERR_BAD_VPORT_TYPE: return (EINVAL); case MC_CMD_ERR_MAC_EXIST: return (EEXIST); default: EFSYS_PROBE1(mc_pcol_error, int, err); return (EIO); } } void efx_mcdi_raise_exception( __in efx_nic_t *enp, __in_opt efx_mcdi_req_t *emrp, __in int rc) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_exception_t exception; /* Reboot or Assertion failure only */ EFSYS_ASSERT(rc == EIO || rc == EINTR); /* * If MC_CMD_REBOOT causes a reboot (dependent on parameters), * then the EIO is not worthy of an exception. */ if (emrp != NULL && emrp->emr_cmd == MC_CMD_REBOOT && rc == EIO) return; exception = (rc == EIO) ? EFX_MCDI_EXCEPTION_MC_REBOOT : EFX_MCDI_EXCEPTION_MC_BADASSERT; emtp->emt_exception(emtp->emt_context, exception); } static efx_rc_t efx_mcdi_poll_reboot( __in efx_nic_t *enp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; return (emcop->emco_poll_reboot(enp)); } void efx_mcdi_execute( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_FALSE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_execute_quiet( __in efx_nic_t *enp, __inout efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); emrp->emr_quiet = B_TRUE; emtp->emt_execute(emtp->emt_context, emrp); } void efx_mcdi_ev_cpl( __in efx_nic_t *enp, __in unsigned int seq, __in unsigned int outlen, __in int errcode) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_mcdi_req_t *emrp; int state; EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI); EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); /* * Serialise against efx_mcdi_request_poll()/efx_mcdi_request_start() * when we're completing an aborted request. */ EFSYS_LOCK(enp->en_eslp, state); if (emip->emi_pending_req == NULL || !emip->emi_ev_cpl || (seq != ((emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ)))) { EFSYS_ASSERT(emip->emi_aborted > 0); if (emip->emi_aborted > 0) --emip->emi_aborted; EFSYS_UNLOCK(enp->en_eslp, state); return; } emrp = emip->emi_pending_req; emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); /* * Fill out the remaining hdr fields, and copyout the payload * if the user supplied an output buffer. */ if (errcode != 0) { if (!emrp->emr_quiet) { EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd, int, errcode); } emrp->emr_out_length_used = 0; emrp->emr_rc = efx_mcdi_request_errcode(errcode); } else { emrp->emr_out_length_used = outlen; emrp->emr_rc = 0; } emcop->emco_request_copyout(enp, emrp); emtp->emt_ev_cpl(emtp->emt_context); } void efx_mcdi_ev_death( __in efx_nic_t *enp, __in int rc) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_mcdi_req_t *emrp = NULL; boolean_t ev_cpl; int state; /* * The MCDI request (if there is one) has been terminated, either * by a BADASSERT or REBOOT event. * * If there is an outstanding event-completed MCDI operation, then we * will never receive the completion event (because both MCDI * completions and BADASSERT events are sent to the same evq). So * complete this MCDI op. * * This function might run in parallel with efx_mcdi_request_poll() * for poll completed mcdi requests, and also with * efx_mcdi_request_start() for post-watchdog completions. */ EFSYS_LOCK(enp->en_eslp, state); emrp = emip->emi_pending_req; ev_cpl = emip->emi_ev_cpl; if (emrp != NULL && emip->emi_ev_cpl) { emip->emi_pending_req = NULL; emrp->emr_out_length_used = 0; emrp->emr_rc = rc; ++emip->emi_aborted; } /* * Since we're running in parallel with a request, consume the * status word before dropping the lock. */ if (rc == EIO || rc == EINTR) { EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); (void) efx_mcdi_poll_reboot(enp); emip->emi_new_epoch = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); efx_mcdi_raise_exception(enp, emrp, rc); if (emrp != NULL && ev_cpl) emtp->emt_ev_cpl(emtp->emt_context); } __checkReturn efx_rc_t efx_mcdi_version( __in efx_nic_t *enp, __out_ecount_opt(4) uint16_t versionp[4], __out_opt uint32_t *buildp, __out_opt efx_mcdi_boot_t *statusp) { efx_mcdi_req_t req; uint8_t payload[MAX(MAX(MC_CMD_GET_VERSION_IN_LEN, MC_CMD_GET_VERSION_OUT_LEN), MAX(MC_CMD_GET_BOOT_STATUS_IN_LEN, MC_CMD_GET_BOOT_STATUS_OUT_LEN))]; efx_word_t *ver_words; uint16_t version[4]; uint32_t build; efx_mcdi_boot_t status; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_features, &, EFX_FEATURE_MCDI); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_VERSION; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VERSION_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VERSION_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* bootrom support */ if (req.emr_out_length_used == MC_CMD_GET_VERSION_V0_OUT_LEN) { version[0] = version[1] = version[2] = version[3] = 0; build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); goto version; } if (req.emr_out_length_used < MC_CMD_GET_VERSION_OUT_LEN) { rc = EMSGSIZE; goto fail2; } ver_words = MCDI_OUT2(req, efx_word_t, GET_VERSION_OUT_VERSION); version[0] = EFX_WORD_FIELD(ver_words[0], EFX_WORD_0); version[1] = EFX_WORD_FIELD(ver_words[1], EFX_WORD_0); version[2] = EFX_WORD_FIELD(ver_words[2], EFX_WORD_0); version[3] = EFX_WORD_FIELD(ver_words[3], EFX_WORD_0); build = MCDI_OUT_DWORD(req, GET_VERSION_OUT_FIRMWARE); version: /* The bootrom doesn't understand BOOT_STATUS */ if (MC_FW_VERSION_IS_BOOTLOADER(build)) { status = EFX_MCDI_BOOT_ROM; goto out; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOOT_STATUS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOOT_STATUS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOOT_STATUS_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot access BOOT_STATUS */ status = EFX_MCDI_BOOT_PRIMARY; version[0] = version[1] = version[2] = version[3] = 0; build = 0; goto out; } if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } if (req.emr_out_length_used < MC_CMD_GET_BOOT_STATUS_OUT_LEN) { rc = EMSGSIZE; goto fail4; } if (MCDI_OUT_DWORD_FIELD(req, GET_BOOT_STATUS_OUT_FLAGS, GET_BOOT_STATUS_OUT_FLAGS_PRIMARY)) status = EFX_MCDI_BOOT_PRIMARY; else status = EFX_MCDI_BOOT_SECONDARY; out: if (versionp != NULL) memcpy(versionp, version, sizeof (version)); if (buildp != NULL) *buildp = build; if (statusp != NULL) *statusp = status; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_do_reboot( __in efx_nic_t *enp, __in boolean_t after_assertion) { uint8_t payload[MAX(MC_CMD_REBOOT_IN_LEN, MC_CMD_REBOOT_OUT_LEN)]; efx_mcdi_req_t req; efx_rc_t rc; /* * We could require the caller to have caused en_mod_flags=0 to * call this function. This doesn't help the other port though, * who's about to get the MC ripped out from underneath them. * Since they have to cope with the subsequent fallout of MCDI * failures, we should as well. */ EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_REBOOT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_REBOOT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_REBOOT_OUT_LEN; MCDI_IN_SET_DWORD(req, REBOOT_IN_FLAGS, (after_assertion ? MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION : 0)); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc == EACCES) { /* Unprivileged functions cannot reboot the MC. */ goto out; } /* A successful reboot request returns EIO. */ if (req.emr_rc != 0 && req.emr_rc != EIO) { rc = req.emr_rc; goto fail1; } out: return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_FALSE)); } __checkReturn efx_rc_t efx_mcdi_exit_assertion_handler( __in efx_nic_t *enp) { return (efx_mcdi_do_reboot(enp, B_TRUE)); } __checkReturn efx_rc_t efx_mcdi_read_assertion( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_ASSERTS_IN_LEN, MC_CMD_GET_ASSERTS_OUT_LEN)]; const char *reason; unsigned int flags; unsigned int index; unsigned int ofst; int retry; efx_rc_t rc; /* * Before we attempt to chat to the MC, we should verify that the MC * isn't in it's assertion handler, either due to a previous reboot, * or because we're reinitializing due to an eec_exception(). * * Use GET_ASSERTS to read any assertion state that may be present. * Retry this command twice. Once because a boot-time assertion failure * might cause the 1st MCDI request to fail. And once again because * we might race with efx_mcdi_exit_assertion_handler() running on * partner port(s) on the same NIC. */ retry = 2; do { (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_ASSERTS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_ASSERTS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_ASSERTS_OUT_LEN; MCDI_IN_SET_DWORD(req, GET_ASSERTS_IN_CLEAR, 1); efx_mcdi_execute_quiet(enp, &req); } while ((req.emr_rc == EINTR || req.emr_rc == EIO) && retry-- > 0); if (req.emr_rc != 0) { if (req.emr_rc == EACCES) { /* Unprivileged functions cannot clear assertions. */ goto out; } rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_ASSERTS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } /* Print out any assertion state recorded */ flags = MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return (0); reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : (flags == MC_CMD_GET_ASSERTS_FLAGS_ADDR_TRAP) ? "illegal address trap" : "unknown assertion"; EFSYS_PROBE3(mcpu_assertion, const char *, reason, unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_SAVED_PC_OFFS), unsigned int, MCDI_OUT_DWORD(req, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers (r1 ... r31) */ ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; for (index = 1; index < 1 + MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; index++) { EFSYS_PROBE2(mcpu_register, unsigned int, index, unsigned int, EFX_DWORD_FIELD(*MCDI_OUT(req, efx_dword_t, ofst), EFX_DWORD_0)); ofst += sizeof (efx_dword_t); } EFSYS_ASSERT(ofst <= MC_CMD_GET_ASSERTS_OUT_LEN); out: return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Internal routines for for specific MCDI requests. */ __checkReturn efx_rc_t efx_mcdi_drv_attach( __in efx_nic_t *enp, __in boolean_t attach) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRV_ATTACH_IN_LEN, MC_CMD_DRV_ATTACH_EXT_OUT_LEN)]; uint32_t flags; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_DRV_ATTACH; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRV_ATTACH_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRV_ATTACH_EXT_OUT_LEN; /* * Use DONT_CARE for the datapath firmware type to ensure that the * driver can attach to an unprivileged function. The datapath firmware * type to use is controlled by the 'sfboot' utility. */ MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_NEW_STATE, attach ? 1 : 0); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_UPDATE, 1); MCDI_IN_SET_DWORD(req, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_DONT_CARE); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (attach == B_FALSE) { flags = 0; } else if (enp->en_family == EFX_FAMILY_SIENA) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); /* Create synthetic privileges for Siena functions */ flags = EFX_NIC_FUNC_LINKCTRL | EFX_NIC_FUNC_TRUSTED; if (emip->emi_port == 1) flags |= EFX_NIC_FUNC_PRIMARY; } else { EFX_STATIC_ASSERT(EFX_NIC_FUNC_PRIMARY == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)); EFX_STATIC_ASSERT(EFX_NIC_FUNC_LINKCTRL == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)); EFX_STATIC_ASSERT(EFX_NIC_FUNC_TRUSTED == (1u << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)); /* Save function privilege flags (EF10 and later) */ if (req.emr_out_length_used < MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { rc = EMSGSIZE; goto fail3; } flags = MCDI_OUT_DWORD(req, DRV_ATTACH_EXT_OUT_FUNC_FLAGS); } encp->enc_func_flags = flags; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_board_cfg( __in efx_nic_t *enp, __out_opt uint32_t *board_typep, __out_opt efx_dword_t *capabilitiesp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_BOARD_CFG_IN_LEN, MC_CMD_GET_BOARD_CFG_OUT_LENMIN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_BOARD_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_BOARD_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_BOARD_CFG_OUT_LENMIN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (mac_addrp != NULL) { uint8_t *addrp; if (emip->emi_port == 1) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0); } else if (emip->emi_port == 2) { addrp = MCDI_OUT2(req, uint8_t, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1); } else { rc = EINVAL; goto fail3; } EFX_MAC_ADDR_COPY(mac_addrp, addrp); } if (capabilitiesp != NULL) { if (emip->emi_port == 1) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); } else if (emip->emi_port == 2) { *capabilitiesp = *MCDI_OUT2(req, efx_dword_t, GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); } else { rc = EINVAL; goto fail4; } } if (board_typep != NULL) { *board_typep = MCDI_OUT_DWORD(req, GET_BOARD_CFG_OUT_BOARD_TYPE); } return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_resource_limits( __in efx_nic_t *enp, __out_opt uint32_t *nevqp, __out_opt uint32_t *nrxqp, __out_opt uint32_t *ntxqp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_RESOURCE_LIMITS_IN_LEN, MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_RESOURCE_LIMITS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_RESOURCE_LIMITS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_RESOURCE_LIMITS_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (nevqp != NULL) *nevqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_EVQ); if (nrxqp != NULL) *nrxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_RXQ); if (ntxqp != NULL) *ntxqp = MCDI_OUT_DWORD(req, GET_RESOURCE_LIMITS_OUT_TXQ); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_phy_cfg( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PHY_CFG_IN_LEN, MC_CMD_GET_PHY_CFG_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PHY_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PHY_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PHY_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PHY_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } encp->enc_phy_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_TYPE); #if EFSYS_OPT_NAMES (void) strncpy(encp->enc_phy_name, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_NAME), MIN(sizeof (encp->enc_phy_name) - 1, MC_CMD_GET_PHY_CFG_OUT_NAME_LEN)); #endif /* EFSYS_OPT_NAMES */ (void) memset(encp->enc_phy_revision, 0, sizeof (encp->enc_phy_revision)); memcpy(encp->enc_phy_revision, MCDI_OUT2(req, char, GET_PHY_CFG_OUT_REVISION), MIN(sizeof (encp->enc_phy_revision) - 1, MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN)); #if EFSYS_OPT_PHY_LED_CONTROL encp->enc_led_mask = ((1 << EFX_PHY_LED_DEFAULT) | (1 << EFX_PHY_LED_OFF) | (1 << EFX_PHY_LED_ON)); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_PROPS encp->enc_phy_nprops = 0; #endif /* EFSYS_OPT_PHY_PROPS */ /* Get the media type of the fixed port, if recognised. */ EFX_STATIC_ASSERT(MC_CMD_MEDIA_XAUI == EFX_PHY_MEDIA_XAUI); EFX_STATIC_ASSERT(MC_CMD_MEDIA_CX4 == EFX_PHY_MEDIA_CX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_KX4 == EFX_PHY_MEDIA_KX4); EFX_STATIC_ASSERT(MC_CMD_MEDIA_XFP == EFX_PHY_MEDIA_XFP); EFX_STATIC_ASSERT(MC_CMD_MEDIA_SFP_PLUS == EFX_PHY_MEDIA_SFP_PLUS); EFX_STATIC_ASSERT(MC_CMD_MEDIA_BASE_T == EFX_PHY_MEDIA_BASE_T); EFX_STATIC_ASSERT(MC_CMD_MEDIA_QSFP_PLUS == EFX_PHY_MEDIA_QSFP_PLUS); epp->ep_fixed_port_type = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_MEDIA_TYPE); if (epp->ep_fixed_port_type >= EFX_PHY_MEDIA_NTYPES) epp->ep_fixed_port_type = EFX_PHY_MEDIA_INVALID; epp->ep_phy_cap_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_SUPPORTED_CAP); #if EFSYS_OPT_PHY_FLAGS encp->enc_phy_flags_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_FLAGS); #endif /* EFSYS_OPT_PHY_FLAGS */ encp->enc_port = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_PRT); /* Populate internal state */ encp->enc_mcdi_mdio_channel = (uint8_t)MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_CHANNEL); #if EFSYS_OPT_PHY_STATS encp->enc_mcdi_phy_stat_mask = MCDI_OUT_DWORD(req, GET_PHY_CFG_OUT_STATS_MASK); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_BIST encp->enc_bist_mask = 0; if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_SHORT)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_SHORT); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST_CABLE_LONG)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_CABLE_LONG); if (MCDI_OUT_DWORD_FIELD(req, GET_PHY_CFG_OUT_FLAGS, GET_PHY_CFG_OUT_BIST)) encp->enc_bist_mask |= (1 << EFX_BIST_TYPE_PHY_NORMAL); #endif /* EFSYS_OPT_BIST */ return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_firmware_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL && emcop->emco_fw_update_supported != NULL) { if ((rc = emcop->emco_fw_update_supported(enp, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported updates */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL && emcop->emco_macaddr_change_supported != NULL) { if ((rc = emcop->emco_macaddr_change_supported(enp, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported MAC changes */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_mcdi_ops_t *emcop = enp->en_mcdi.em_emcop; efx_rc_t rc; if (emcop != NULL && emcop->emco_link_control_supported != NULL) { if ((rc = emcop->emco_link_control_supported(enp, supportedp)) != 0) goto fail1; } else { /* Earlier devices always supported link control */ *supportedp = B_TRUE; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_BIST #if EFSYS_OPT_HUNTINGTON /* * Enter bist offline mode. This is a fw mode which puts the NIC into a state * where memory BIST tests can be run and not much else can interfere or happen. * A reboot is required to exit this mode. */ __checkReturn efx_rc_t efx_mcdi_bist_enable_offline( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_ENABLE_OFFLINE_BIST_OUT_LEN == 0); req.emr_cmd = MC_CMD_ENABLE_OFFLINE_BIST; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON */ __checkReturn efx_rc_t efx_mcdi_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_START_BIST_IN_LEN, MC_CMD_START_BIST_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_START_BIST; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_START_BIST_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_START_BIST_OUT_LEN; switch (type) { case EFX_BIST_TYPE_PHY_NORMAL: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST); break; case EFX_BIST_TYPE_PHY_CABLE_SHORT: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_SHORT); break; case EFX_BIST_TYPE_PHY_CABLE_LONG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PHY_BIST_CABLE_LONG); break; case EFX_BIST_TYPE_MC_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_MC_MEM_BIST); break; case EFX_BIST_TYPE_SAT_MEM: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_PORT_MEM_BIST); break; case EFX_BIST_TYPE_REG: MCDI_IN_SET_DWORD(req, START_BIST_IN_TYPE, MC_CMD_REG_BIST); break; default: EFSYS_ASSERT(0); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_BIST */ /* Enable logging of some events (e.g. link state changes) */ __checkReturn efx_rc_t efx_mcdi_log_ctrl( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_LOG_CTRL_IN_LEN, MC_CMD_LOG_CTRL_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_LOG_CTRL; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LOG_CTRL_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LOG_CTRL_OUT_LEN; MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST, MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ); MCDI_IN_SET_DWORD(req, LOG_CTRL_IN_LOG_DEST_EVQ, 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_MAC_STATS typedef enum efx_stats_action_e { EFX_STATS_CLEAR, EFX_STATS_UPLOAD, EFX_STATS_ENABLE_NOEVENTS, EFX_STATS_ENABLE_EVENTS, EFX_STATS_DISABLE, } efx_stats_action_t; static __checkReturn efx_rc_t efx_mcdi_mac_stats( __in efx_nic_t *enp, __in_opt efsys_mem_t *esmp, __in efx_stats_action_t action) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_MAC_STATS_IN_LEN, MC_CMD_MAC_STATS_OUT_DMA_LEN)]; int clear = (action == EFX_STATS_CLEAR); int upload = (action == EFX_STATS_UPLOAD); int enable = (action == EFX_STATS_ENABLE_NOEVENTS); int events = (action == EFX_STATS_ENABLE_EVENTS); int disable = (action == EFX_STATS_DISABLE); efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_MAC_STATS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_MAC_STATS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_MAC_STATS_OUT_DMA_LEN; MCDI_IN_POPULATE_DWORD_6(req, MAC_STATS_IN_CMD, MAC_STATS_IN_DMA, upload, MAC_STATS_IN_CLEAR, clear, MAC_STATS_IN_PERIODIC_CHANGE, enable | events | disable, MAC_STATS_IN_PERIODIC_ENABLE, enable | events, MAC_STATS_IN_PERIODIC_NOEVENT, !events, MAC_STATS_IN_PERIOD_MS, (enable | events) ? 1000: 0); if (esmp != NULL) { int bytes = MC_CMD_MAC_NSTATS * sizeof (uint64_t); EFX_STATIC_ASSERT(MC_CMD_MAC_NSTATS * sizeof (uint64_t) <= EFX_MAC_STATS_SIZE); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_LO, EFSYS_MEM_ADDR(esmp) & 0xffffffff); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_ADDR_HI, EFSYS_MEM_ADDR(esmp) >> 32); MCDI_IN_SET_DWORD(req, MAC_STATS_IN_DMA_LEN, bytes); } else { EFSYS_ASSERT(!upload && !enable && !events); } /* * NOTE: Do not use EVB_PORT_ID_ASSIGNED when disabling periodic stats, * as this may fail (and leave periodic DMA enabled) if the * vadapter has already been deleted. */ MCDI_IN_SET_DWORD(req, MAC_STATS_IN_PORT_ID, (disable ? EVB_PORT_ID_NULL : enp->en_vport_id)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { /* EF10: Expect ENOENT if no DMA queues are initialised */ if ((req.emr_rc != ENOENT) || (enp->en_rx_qcount + enp->en_tx_qcount != 0)) { rc = req.emr_rc; goto fail1; } } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_clear( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_CLEAR)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. */ if ((rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_UPLOAD)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period, __in boolean_t events) { efx_rc_t rc; /* * The MC DMAs aggregate statistics for our convenience, so we can * avoid having to pull the statistics buffer into the cache to * maintain cumulative statistics. * Huntington uses a fixed 1sec period, so use that on Siena too. */ if (period == 0) rc = efx_mcdi_mac_stats(enp, NULL, EFX_STATS_DISABLE); else if (events) rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_EVENTS); else rc = efx_mcdi_mac_stats(enp, esmp, EFX_STATS_ENABLE_NOEVENTS); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MAC_STATS */ #if EFSYS_OPT_HUNTINGTON /* * This function returns the pf and vf number of a function. If it is a pf the * vf number is 0xffff. The vf number is the index of the vf on that * function. So if you have 3 vfs on pf 0 the 3 vfs will return (pf=0,vf=0), * (pf=0,vf=1), (pf=0,vf=2) aand the pf will return (pf=0, vf=0xffff). */ __checkReturn efx_rc_t efx_mcdi_get_function_info( __in efx_nic_t *enp, __out uint32_t *pfp, __out_opt uint32_t *vfp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_FUNCTION_INFO_IN_LEN, MC_CMD_GET_FUNCTION_INFO_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_FUNCTION_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_FUNCTION_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_FUNCTION_INFO_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *pfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_PF); if (vfp != NULL) *vfp = MCDI_OUT_DWORD(req, GET_FUNCTION_INFO_OUT_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_privilege_mask( __in efx_nic_t *enp, __in uint32_t pf, __in uint32_t vf, __out uint32_t *maskp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_PRIVILEGE_MASK_IN_LEN, MC_CMD_PRIVILEGE_MASK_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_PRIVILEGE_MASK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_PRIVILEGE_MASK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_PRIVILEGE_MASK_OUT_LEN; MCDI_IN_POPULATE_DWORD_2(req, PRIVILEGE_MASK_IN_FUNCTION, PRIVILEGE_MASK_IN_FUNCTION_PF, pf, PRIVILEGE_MASK_IN_FUNCTION_VF, vf); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_PRIVILEGE_MASK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, PRIVILEGE_MASK_OUT_OLD_MASK); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_HUNTINGTON */ __checkReturn efx_rc_t efx_mcdi_set_workaround( __in efx_nic_t *enp, __in uint32_t type, __in boolean_t enabled, __out_opt uint32_t *flagsp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_WORKAROUND_IN_LEN, MC_CMD_WORKAROUND_EXT_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_WORKAROUND; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_WORKAROUND_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_WORKAROUND_OUT_LEN; MCDI_IN_SET_DWORD(req, WORKAROUND_IN_TYPE, type); MCDI_IN_SET_DWORD(req, WORKAROUND_IN_ENABLED, enabled ? 1 : 0); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (flagsp != NULL) { if (req.emr_out_length_used >= MC_CMD_WORKAROUND_EXT_OUT_LEN) *flagsp = MCDI_OUT_DWORD(req, WORKAROUND_EXT_OUT_FLAGS); else *flagsp = 0; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_workarounds( __in efx_nic_t *enp, __out_opt uint32_t *implementedp, __out_opt uint32_t *enabledp) { efx_mcdi_req_t req; uint8_t payload[MC_CMD_GET_WORKAROUNDS_OUT_LEN]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_WORKAROUNDS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_WORKAROUNDS_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (implementedp != NULL) { *implementedp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_IMPLEMENTED); } if (enabledp != NULL) { *enabledp = MCDI_OUT_DWORD(req, GET_WORKAROUNDS_OUT_ENABLED); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_MCDI */ Index: head/sys/dev/sfxge/common/hunt_mcdi.c =================================================================== --- head/sys/dev/sfxge/common/hunt_mcdi.c (revision 291927) +++ head/sys/dev/sfxge/common/hunt_mcdi.c (revision 291928) @@ -1,524 +1,538 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON #if EFSYS_OPT_MCDI #ifndef WITH_MCDI_V2 #error "WITH_MCDI_V2 required for Huntington MCDIv2 commands." #endif typedef enum efx_mcdi_header_type_e { EFX_MCDI_HEADER_TYPE_V1, /* MCDIv0 (BootROM), MCDIv1 commands */ EFX_MCDI_HEADER_TYPE_V2, /* MCDIv2 commands */ } efx_mcdi_header_type_t; /* * Return the header format to use for sending an MCDI request. * * An MCDIv1 (Siena compatible) command should use MCDIv2 encapsulation if the * request input buffer or response output buffer are too large for the MCDIv1 * format. An MCDIv2 command must always be sent using MCDIv2 encapsulation. */ #define EFX_MCDI_HEADER_TYPE(_cmd, _length) \ ((((_cmd) & ~EFX_MASK32(MCDI_HEADER_CODE)) || \ ((_length) & ~EFX_MASK32(MCDI_HEADER_DATALEN))) ? \ EFX_MCDI_HEADER_TYPE_V2 : EFX_MCDI_HEADER_TYPE_V1) /* * MCDI Header NOT_EPOCH flag * ========================== * A new epoch begins at initial startup or after an MC reboot, and defines when * the MC should reject stale MCDI requests. * * The first MCDI request sent by the host should contain NOT_EPOCH=0, and all * subsequent requests (until the next MC reboot) should contain NOT_EPOCH=1. * * After rebooting the MC will fail all requests with NOT_EPOCH=1 by writing a * response with ERROR=1 and DATALEN=0 until a request is seen with NOT_EPOCH=0. */ __checkReturn efx_rc_t hunt_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *emtp) { efsys_mem_t *esmp = emtp->emt_dma_mem; efx_dword_t dword; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); EFSYS_ASSERT(enp->en_features & EFX_FEATURE_MCDI_DMA); /* A host DMA buffer is required for Huntington MCDI */ if (esmp == NULL) { rc = EINVAL; goto fail1; } /* * Ensure that the MC doorbell is in a known state before issuing MCDI * commands. The recovery algorithm requires that the MC command buffer * must be 256 byte aligned. See bug24769. */ if ((EFSYS_MEM_ADDR(esmp) & 0xFF) != 0) { rc = EINVAL; goto fail2; } EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 1); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_HWRD_REG, &dword, B_FALSE); /* Save initial MC reboot status */ (void) hunt_mcdi_poll_reboot(enp); /* Start a new epoch (allow fresh MCDI requests to succeed) */ efx_mcdi_new_epoch(enp); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void hunt_mcdi_fini( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); emip->emi_new_epoch = B_FALSE; } void hunt_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; efx_mcdi_header_type_t hdr_type; efx_dword_t dword; efx_dword_t hdr[2]; unsigned int xflags; unsigned int pos; size_t offset; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; offset = 0; hdr_type = EFX_MCDI_HEADER_TYPE(emrp->emr_cmd, MAX(emrp->emr_in_length, emrp->emr_out_length)); if (hdr_type == EFX_MCDI_HEADER_TYPE_V2) { /* Construct MCDI v2 header */ EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, MC_CMD_V2_EXTN, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, 0, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFSYS_MEM_WRITED(esmp, offset, &hdr[0]); offset += sizeof (efx_dword_t); EFX_POPULATE_DWORD_2(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD, emrp->emr_cmd, MC_CMD_V2_EXTN_IN_ACTUAL_LEN, emrp->emr_in_length); EFSYS_MEM_WRITED(esmp, offset, &hdr[1]); offset += sizeof (efx_dword_t); } else { /* Construct MCDI v1 header */ EFX_POPULATE_DWORD_8(hdr[0], MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_NOT_EPOCH, new_epoch ? 0 : 1, MCDI_HEADER_ERROR, 0, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFSYS_MEM_WRITED(esmp, 0, &hdr[0]); offset += sizeof (efx_dword_t); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr, offset, emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Construct the payload */ for (pos = 0; pos < emrp->emr_in_length; pos += sizeof (efx_dword_t)) { memcpy(&dword, MCDI_IN(*emrp, efx_dword_t, pos), MIN(sizeof (dword), emrp->emr_in_length - pos)); EFSYS_MEM_WRITED(esmp, offset + pos, &dword); } /* Ring the doorbell to post the command DMA address to the MC */ EFSYS_ASSERT((EFSYS_MEM_ADDR(esmp) & 0xFF) == 0); /* Guarantee ordering of memory (MCDI request) and PIO (MC doorbell) */ EFSYS_DMA_SYNC_FOR_DEVICE(esmp, 0, offset + emrp->emr_in_length); EFSYS_PIO_WRITE_BARRIER(); EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, EFSYS_MEM_ADDR(esmp) >> 32); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_LWRD_REG, &dword, B_FALSE); EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, EFSYS_MEM_ADDR(esmp) & 0xffffffff); EFX_BAR_WRITED(enp, ER_DZ_MC_DB_HWRD_REG, &dword, B_FALSE); } void hunt_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; unsigned int pos; unsigned int offset; efx_dword_t hdr[2]; efx_dword_t data; size_t bytes; if (emrp->emr_out_buf == NULL) return; /* Read the command header to detect MCDI response format */ EFSYS_MEM_READD(esmp, 0, &hdr[0]); if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) { offset = 2 * sizeof (efx_dword_t); /* * Read the actual payload length. The length given in the event * is only correct for responses with the V1 format. */ EFSYS_MEM_READD(esmp, sizeof (efx_dword_t), &hdr[1]); emrp->emr_out_length_used = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } else { offset = sizeof (efx_dword_t); } /* Copy payload out into caller supplied buffer */ bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); for (pos = 0; pos < bytes; pos += sizeof (efx_dword_t)) { EFSYS_MEM_READD(esmp, offset + pos, &data); memcpy(MCDI_OUT(*emrp, efx_dword_t, pos), &data, MIN(sizeof (data), bytes - pos)); } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, offset, emrp->emr_out_buf, emrp->emr_out_length_used); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } +static __checkReturn boolean_t +hunt_mcdi_poll_response( + __in efx_nic_t *enp) +{ + const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; + efsys_mem_t *esmp = emtp->emt_dma_mem; + efx_dword_t hdr; + + EFSYS_MEM_READD(esmp, 0, &hdr); + return (EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE) ? B_TRUE : B_FALSE); +} + __checkReturn boolean_t hunt_mcdi_request_poll( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efsys_mem_t *esmp = emtp->emt_dma_mem; efx_mcdi_req_t *emrp; efx_dword_t hdr[2]; unsigned int seq; unsigned int cmd; unsigned int length; size_t offset; int state; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* Serialise against post-watchdog efx_mcdi_ev* */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req != NULL); EFSYS_ASSERT(!emip->emi_ev_cpl); emrp = emip->emi_pending_req; offset = 0; - /* Read the command header */ - EFSYS_MEM_READD(esmp, offset, &hdr[0]); - offset += sizeof (efx_dword_t); - if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_RESPONSE) == 0) { + /* Check if a response is available */ + if (hunt_mcdi_poll_response(enp) == B_FALSE) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } + + /* Read the response header */ + EFSYS_MEM_READD(esmp, offset, &hdr[0]); + offset += sizeof (efx_dword_t); if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE) == MC_CMD_V2_EXTN) { EFSYS_MEM_READD(esmp, offset, &hdr[1]); offset += sizeof (efx_dword_t); cmd = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD); length = EFX_DWORD_FIELD(hdr[1], MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } else { cmd = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_CODE); length = EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_DATALEN); } /* Request complete */ emip->emi_pending_req = NULL; seq = (emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ); /* Check for synchronous reboot */ if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR) != 0 && length == 0) { /* The MC has rebooted since the request was sent. */ EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); hunt_mcdi_poll_reboot(enp); EFSYS_UNLOCK(enp->en_eslp, state); rc = EIO; goto fail1; } /* Ensure stale MCDI requests fail after an MC reboot. */ emip->emi_new_epoch = B_FALSE; EFSYS_UNLOCK(enp->en_eslp, state); /* Check that the returned data is consistent */ if (cmd != emrp->emr_cmd || EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_SEQ) != seq) { /* Response is for a different request */ rc = EIO; goto fail2; } if (EFX_DWORD_FIELD(hdr[0], MCDI_HEADER_ERROR)) { efx_dword_t err[2]; int errcode; int argnum; /* Read error code (and arg num for MCDI v2 commands) */ EFSYS_MEM_READD(esmp, offset + MC_CMD_ERR_CODE_OFST, &err[0]); errcode = EFX_DWORD_FIELD(err[0], EFX_DWORD_0); EFSYS_MEM_READD(esmp, offset + MC_CMD_ERR_ARG_OFST, &err[1]); argnum = EFX_DWORD_FIELD(err[1], EFX_DWORD_0); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, offset, &err, sizeof (err)); } #endif /* EFSYS_OPT_MCDI_LOGGING */ rc = efx_mcdi_request_errcode(errcode); if (!emrp->emr_quiet) { EFSYS_PROBE3(mcdi_err_arg, int, emrp->emr_cmd, int, errcode, int, argnum); } goto fail3; } else { emrp->emr_out_length_used = length; emrp->emr_rc = 0; hunt_mcdi_request_copyout(enp, emrp); } goto out; fail3: if (!emrp->emr_quiet) EFSYS_PROBE(fail3); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Fill out error state */ emrp->emr_rc = rc; emrp->emr_out_length_used = 0; /* Reboot/Assertion */ if (rc == EIO || rc == EINTR) efx_mcdi_raise_exception(enp, emrp, rc); out: return (B_TRUE); } efx_rc_t hunt_mcdi_poll_reboot( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t dword; uint32_t old_status; uint32_t new_status; efx_rc_t rc; old_status = emip->emi_mc_reboot_status; /* Update MC reboot status word */ EFX_BAR_TBL_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, 0, &dword, B_FALSE); new_status = dword.ed_u32[0]; /* MC has rebooted if the value has changed */ if (new_status != old_status) { emip->emi_mc_reboot_status = new_status; /* * FIXME: Ignore detected MC REBOOT for now. * * The Siena support for checking for MC reboot from status * flags is broken - see comments in siena_mcdi_poll_reboot(). * As the generic MCDI code is shared the Huntington reboot * detection suffers similar problems. * * Do not report an error when the boot status changes until * this can be handled by common code drivers (and reworked to * support Siena too). */ if (B_FALSE) { rc = EIO; goto fail1; } } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_mcdi_fw_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* * Use privilege mask state at MCDI attach. * Admin privilege must be used prior to introduction of * specific flag. */ *supportedp = (encp->enc_privilege_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN) == MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN; return (0); } __checkReturn efx_rc_t hunt_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t privilege_mask = encp->enc_privilege_mask; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* * Use privilege mask state at MCDI attach. * Admin privilege must be used prior to introduction of * specific flag (at v4.6). */ *supportedp = ((privilege_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING) == MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING) || ((privilege_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN) == MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN); return (0); } __checkReturn efx_rc_t hunt_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t privilege_mask = encp->enc_privilege_mask; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* * Use privilege mask state at MCDI attach. * Admin privilege used prior to introduction of * specific flag. */ *supportedp = ((privilege_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK) == MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK) || ((privilege_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN) == MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN); return (0); } #endif /* EFSYS_OPT_MCDI */ #endif /* EFSYS_OPT_HUNTINGTON */ Index: head/sys/dev/sfxge/common/siena_mcdi.c =================================================================== --- head/sys/dev/sfxge/common/siena_mcdi.c (revision 291927) +++ head/sys/dev/sfxge/common/siena_mcdi.c (revision 291928) @@ -1,407 +1,424 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_SIENA && EFSYS_OPT_MCDI #define SIENA_MCDI_PDU(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_PDU_OFST >> 2 \ : MC_SMEM_P1_PDU_OFST >> 2) #define SIENA_MCDI_DOORBELL(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_DOORBELL_OFST >> 2 \ : MC_SMEM_P1_DOORBELL_OFST >> 2) #define SIENA_MCDI_STATUS(_emip) \ (((emip)->emi_port == 1) \ ? MC_SMEM_P0_STATUS_OFST >> 2 \ : MC_SMEM_P1_STATUS_OFST >> 2) void siena_mcdi_request_copyin( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in unsigned int seq, __in boolean_t ev_cpl, __in boolean_t new_epoch) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_dword_t hdr; efx_dword_t dword; unsigned int xflags; unsigned int pdur; unsigned int dbr; unsigned int pos; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); _NOTE(ARGUNUSED(new_epoch)) EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); pdur = SIENA_MCDI_PDU(emip); dbr = SIENA_MCDI_DOORBELL(emip); xflags = 0; if (ev_cpl) xflags |= MCDI_HEADER_XFLAGS_EVREQ; /* Construct the header in shared memory */ EFX_POPULATE_DWORD_6(hdr, MCDI_HEADER_CODE, emrp->emr_cmd, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_DATALEN, emrp->emr_in_length, MCDI_HEADER_SEQ, seq, MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_XFLAGS, xflags); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_TRUE); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_REQUEST, &hdr, sizeof (hdr), emrp->emr_in_buf, emrp->emr_in_length); } #endif /* EFSYS_OPT_MCDI_LOGGING */ /* Construct the payload */ for (pos = 0; pos < emrp->emr_in_length; pos += sizeof (efx_dword_t)) { memcpy(&dword, MCDI_IN(*emrp, efx_dword_t, pos), MIN(sizeof (dword), emrp->emr_in_length - pos)); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, pdur + 1 + (pos >> 2), &dword, B_FALSE); } /* Ring the doorbell */ EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xd004be11); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, dbr, &dword, B_FALSE); } void siena_mcdi_request_copyout( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; efx_dword_t hdr; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); unsigned int pos; unsigned int pdur; efx_dword_t data; pdur = SIENA_MCDI_PDU(emip); /* Copy payload out if caller supplied buffer */ if (emrp->emr_out_buf != NULL) { size_t bytes = MIN(emrp->emr_out_length_used, emrp->emr_out_length); for (pos = 0; pos < bytes; pos += sizeof (efx_dword_t)) { EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur + 1 + (pos >> 2), &data, B_FALSE); memcpy(MCDI_OUT(*emrp, efx_dword_t, pos), &data, MIN(sizeof (data), bytes - pos)); } } #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_FALSE); emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, sizeof (hdr), emrp->emr_out_buf, emrp->emr_out_length_used); } #endif /* EFSYS_OPT_MCDI_LOGGING */ } efx_rc_t siena_mcdi_poll_reboot( __in efx_nic_t *enp) { #ifndef EFX_GRACEFUL_MC_REBOOT /* * This function is not being used properly. * Until its callers are fixed, it should always return 0. */ _NOTE(ARGUNUSED(enp)) return (0); #else efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); unsigned int rebootr; efx_dword_t dword; uint32_t value; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); rebootr = SIENA_MCDI_STATUS(emip); EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, rebootr, &dword, B_FALSE); value = EFX_DWORD_FIELD(dword, EFX_DWORD_0); if (value == 0) return (0); EFX_ZERO_DWORD(dword); EFX_BAR_TBL_WRITED(enp, FR_CZ_MC_TREG_SMEM, rebootr, &dword, B_FALSE); if (value == MC_STATUS_DWORD_ASSERT) return (EINTR); else return (EIO); #endif } +static __checkReturn boolean_t +siena_mcdi_poll_response( + __in efx_nic_t *enp) +{ + efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); + efx_dword_t hdr; + unsigned int pdur; + + EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); + pdur = SIENA_MCDI_PDU(emip); + + EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_FALSE); + return (EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE) ? B_TRUE : B_FALSE); +} + __checkReturn boolean_t siena_mcdi_request_poll( __in efx_nic_t *enp) { #if EFSYS_OPT_MCDI_LOGGING const efx_mcdi_transport_t *emtp = enp->en_mcdi.em_emtp; #endif efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_mcdi_req_t *emrp; efx_dword_t hdr; unsigned int pdur; unsigned int seq; unsigned int length; int state; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* Serialise against post-watchdog efx_mcdi_ev* */ EFSYS_LOCK(enp->en_eslp, state); EFSYS_ASSERT(emip->emi_pending_req != NULL); EFSYS_ASSERT(!emip->emi_ev_cpl); emrp = emip->emi_pending_req; /* Check for reboot atomically w.r.t efx_mcdi_request_start */ if (emip->emi_poll_cnt++ == 0) { if ((rc = siena_mcdi_poll_reboot(enp)) != 0) { emip->emi_pending_req = NULL; EFSYS_UNLOCK(enp->en_eslp, state); goto fail1; } } EFSYS_ASSERT(emip->emi_port == 1 || emip->emi_port == 2); pdur = SIENA_MCDI_PDU(emip); - /* Read the command header */ - EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_FALSE); - if (EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE) == 0) { + /* Check if a response is available */ + if (siena_mcdi_poll_response(enp) == B_FALSE) { EFSYS_UNLOCK(enp->en_eslp, state); return (B_FALSE); } + + /* Read the response header */ + EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur, &hdr, B_FALSE); /* Request complete */ emip->emi_pending_req = NULL; seq = (emip->emi_seq - 1) & EFX_MASK32(MCDI_HEADER_SEQ); /* Check for synchronous reboot */ if (EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR) != 0 && EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN) == 0) { /* Consume status word */ EFSYS_SPIN(EFX_MCDI_STATUS_SLEEP_US); siena_mcdi_poll_reboot(enp); EFSYS_UNLOCK(enp->en_eslp, state); rc = EIO; goto fail2; } EFSYS_UNLOCK(enp->en_eslp, state); /* Check that the returned data is consistent */ if (EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE) != emrp->emr_cmd || EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ) != seq) { /* Response is for a different request */ rc = EIO; goto fail3; } length = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); if (EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR)) { efx_dword_t errdword; int errcode; EFSYS_ASSERT3U(length, ==, 4); EFX_BAR_TBL_READD(enp, FR_CZ_MC_TREG_SMEM, pdur + 1 + (MC_CMD_ERR_CODE_OFST >> 2), &errdword, B_FALSE); errcode = EFX_DWORD_FIELD(errdword, EFX_DWORD_0); #if EFSYS_OPT_MCDI_LOGGING if (emtp->emt_logger != NULL) { emtp->emt_logger(emtp->emt_context, EFX_LOG_MCDI_RESPONSE, &hdr, sizeof (hdr), &errdword, sizeof (errdword)); } #endif /* EFSYS_OPT_MCDI_LOGGING */ rc = efx_mcdi_request_errcode(errcode); if (!emrp->emr_quiet) { EFSYS_PROBE2(mcdi_err, int, emrp->emr_cmd, int, errcode); } goto fail4; } else { emrp->emr_out_length_used = length; emrp->emr_rc = 0; siena_mcdi_request_copyout(enp, emrp); } goto out; fail4: if (!emrp->emr_quiet) EFSYS_PROBE(fail4); fail3: if (!emrp->emr_quiet) EFSYS_PROBE(fail3); fail2: if (!emrp->emr_quiet) EFSYS_PROBE(fail2); fail1: if (!emrp->emr_quiet) EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Fill out error state */ emrp->emr_rc = rc; emrp->emr_out_length_used = 0; /* Reboot/Assertion */ if (rc == EIO || rc == EINTR) efx_mcdi_raise_exception(enp, emrp, rc); out: return (B_TRUE); } __checkReturn efx_rc_t siena_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_oword_t oword; unsigned int portnum; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_SIENA); /* Determine the port number to use for MCDI */ EFX_BAR_READO(enp, FR_AZ_CS_DEBUG_REG, &oword); portnum = EFX_OWORD_FIELD(oword, FRF_CZ_CS_PORT_NUM); if (portnum == 0) { /* Presumably booted from ROM; only MCDI port 1 will work */ emip->emi_port = 1; } else if (portnum <= 2) { emip->emi_port = portnum; } else { rc = EINVAL; goto fail1; } /* * Wipe the atomic reboot status so subsequent MCDI requests succeed. * BOOT_STATUS is preserved so eno_nic_probe() can boot out of the * assertion handler. */ (void) siena_mcdi_poll_reboot(enp); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_mcdi_fini( __in efx_nic_t *enp) { } __checkReturn efx_rc_t siena_mcdi_fw_update_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); *supportedp = B_TRUE; return (0); } __checkReturn efx_rc_t siena_mcdi_macaddr_change_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); *supportedp = B_TRUE; return (0); } __checkReturn efx_rc_t siena_mcdi_link_control_supported( __in efx_nic_t *enp, __out boolean_t *supportedp) { EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); *supportedp = B_TRUE; return (0); } #endif /* EFSYS_OPT_SIENA && EFSYS_OPT_MCDI */