Index: head/sys/dev/sfxge/common/efx.h =================================================================== --- head/sys/dev/sfxge/common/efx.h (revision 291921) +++ head/sys/dev/sfxge/common/efx.h (revision 291922) @@ -1,2322 +1,2323 @@ /*- * Copyright (c) 2006-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. * * $FreeBSD$ */ #ifndef _SYS_EFX_H #define _SYS_EFX_H #include "efsys.h" #include "efx_phy_ids.h" #ifdef __cplusplus extern "C" { #endif #define EFX_STATIC_ASSERT(_cond) \ ((void)sizeof(char[(_cond) ? 1 : -1])) #define EFX_ARRAY_SIZE(_array) \ (sizeof(_array) / sizeof((_array)[0])) #define EFX_FIELD_OFFSET(_type, _field) \ ((size_t) &(((_type *)0)->_field)) /* Return codes */ typedef __success(return == 0) int efx_rc_t; /* Chip families */ typedef enum efx_family_e { EFX_FAMILY_INVALID, EFX_FAMILY_FALCON, EFX_FAMILY_SIENA, EFX_FAMILY_HUNTINGTON, EFX_FAMILY_NTYPES } efx_family_t; extern __checkReturn efx_rc_t efx_family( __in uint16_t venid, __in uint16_t devid, __out efx_family_t *efp); extern __checkReturn efx_rc_t efx_infer_family( __in efsys_bar_t *esbp, __out efx_family_t *efp); #define EFX_PCI_VENID_SFC 0x1924 #define EFX_PCI_DEVID_FALCON 0x0710 /* SFC4000 */ #define EFX_PCI_DEVID_BETHPAGE 0x0803 /* SFC9020 */ #define EFX_PCI_DEVID_SIENA 0x0813 /* SFL9021 */ #define EFX_PCI_DEVID_SIENA_F1_UNINIT 0x0810 #define EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT 0x0901 #define EFX_PCI_DEVID_FARMINGDALE 0x0903 /* SFC9120 PF */ #define EFX_PCI_DEVID_GREENPORT 0x0923 /* SFC9140 PF */ #define EFX_PCI_DEVID_FARMINGDALE_VF 0x1903 /* SFC9120 VF */ #define EFX_PCI_DEVID_GREENPORT_VF 0x1923 /* SFC9140 VF */ #define EFX_MEM_BAR 2 /* Error codes */ enum { EFX_ERR_INVALID, EFX_ERR_SRAM_OOB, EFX_ERR_BUFID_DC_OOB, EFX_ERR_MEM_PERR, EFX_ERR_RBUF_OWN, EFX_ERR_TBUF_OWN, EFX_ERR_RDESQ_OWN, EFX_ERR_TDESQ_OWN, EFX_ERR_EVQ_OWN, EFX_ERR_EVFF_OFLO, EFX_ERR_ILL_ADDR, EFX_ERR_SRAM_PERR, EFX_ERR_NCODES }; /* Calculate the IEEE 802.3 CRC32 of a MAC addr */ extern __checkReturn uint32_t efx_crc32_calculate( __in uint32_t crc_init, __in_ecount(length) uint8_t const *input, __in int length); /* Type prototypes */ typedef struct efx_rxq_s efx_rxq_t; /* NIC */ typedef struct efx_nic_s efx_nic_t; #define EFX_NIC_FUNC_PRIMARY 0x00000001 #define EFX_NIC_FUNC_LINKCTRL 0x00000002 #define EFX_NIC_FUNC_TRUSTED 0x00000004 extern __checkReturn efx_rc_t efx_nic_create( __in efx_family_t family, __in efsys_identifier_t *esip, __in efsys_bar_t *esbp, __in efsys_lock_t *eslp, __deref_out efx_nic_t **enpp); extern __checkReturn efx_rc_t efx_nic_probe( __in efx_nic_t *enp); #if EFSYS_OPT_PCIE_TUNE extern __checkReturn efx_rc_t efx_nic_pcie_tune( __in efx_nic_t *enp, unsigned int nlanes); extern __checkReturn efx_rc_t efx_nic_pcie_extended_sync( __in efx_nic_t *enp); #endif /* EFSYS_OPT_PCIE_TUNE */ extern __checkReturn efx_rc_t efx_nic_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_nic_reset( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nic_register_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern void efx_nic_fini( __in efx_nic_t *enp); extern void efx_nic_unprobe( __in efx_nic_t *enp); extern void efx_nic_destroy( __in efx_nic_t *enp); #if EFSYS_OPT_MCDI #if EFSYS_OPT_HUNTINGTON /* Huntington requires MCDIv2 commands */ #define WITH_MCDI_V2 1 #endif typedef struct efx_mcdi_req_s efx_mcdi_req_t; typedef enum efx_mcdi_exception_e { EFX_MCDI_EXCEPTION_MC_REBOOT, EFX_MCDI_EXCEPTION_MC_BADASSERT, } efx_mcdi_exception_t; #if EFSYS_OPT_MCDI_LOGGING typedef enum efx_log_msg_e { EFX_LOG_INVALID, EFX_LOG_MCDI_REQUEST, EFX_LOG_MCDI_RESPONSE, } efx_log_msg_t; #endif /* EFSYS_OPT_MCDI_LOGGING */ typedef struct efx_mcdi_transport_s { void *emt_context; efsys_mem_t *emt_dma_mem; void (*emt_execute)(void *, efx_mcdi_req_t *); void (*emt_ev_cpl)(void *); void (*emt_exception)(void *, efx_mcdi_exception_t); #if EFSYS_OPT_MCDI_LOGGING void (*emt_logger)(void *, efx_log_msg_t, void *, size_t, void *, size_t); #endif /* EFSYS_OPT_MCDI_LOGGING */ } efx_mcdi_transport_t; extern __checkReturn efx_rc_t efx_mcdi_init( __in efx_nic_t *enp, __in const efx_mcdi_transport_t *mtp); extern __checkReturn efx_rc_t efx_mcdi_reboot( __in efx_nic_t *enp); void efx_mcdi_new_epoch( __in efx_nic_t *enp); extern void efx_mcdi_request_start( __in efx_nic_t *enp, __in efx_mcdi_req_t *emrp, __in boolean_t ev_cpl); extern __checkReturn boolean_t efx_mcdi_request_poll( __in efx_nic_t *enp); extern __checkReturn boolean_t efx_mcdi_request_abort( __in efx_nic_t *enp); extern void efx_mcdi_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_MCDI */ /* INTR */ #define EFX_NINTR_FALCON 64 #define EFX_NINTR_SIENA 1024 typedef enum efx_intr_type_e { EFX_INTR_INVALID = 0, EFX_INTR_LINE, EFX_INTR_MESSAGE, EFX_INTR_NTYPES } efx_intr_type_t; #define EFX_INTR_SIZE (sizeof (efx_oword_t)) extern __checkReturn efx_rc_t efx_intr_init( __in efx_nic_t *enp, __in efx_intr_type_t type, __in efsys_mem_t *esmp); extern void efx_intr_enable( __in efx_nic_t *enp); extern void efx_intr_disable( __in efx_nic_t *enp); extern void efx_intr_disable_unlocked( __in efx_nic_t *enp); #define EFX_INTR_NEVQS 32 extern __checkReturn efx_rc_t efx_intr_trigger( __in efx_nic_t *enp, __in unsigned int level); extern void efx_intr_status_line( __in efx_nic_t *enp, __out boolean_t *fatalp, __out uint32_t *maskp); extern void efx_intr_status_message( __in efx_nic_t *enp, __in unsigned int message, __out boolean_t *fatalp); extern void efx_intr_fatal( __in efx_nic_t *enp); extern void efx_intr_fini( __in efx_nic_t *enp); /* MAC */ #if EFSYS_OPT_MAC_STATS /* START MKCONFIG GENERATED EfxHeaderMacBlock e323546097fd7c65 */ typedef enum efx_mac_stat_e { EFX_MAC_RX_OCTETS, EFX_MAC_RX_PKTS, EFX_MAC_RX_UNICST_PKTS, EFX_MAC_RX_MULTICST_PKTS, EFX_MAC_RX_BRDCST_PKTS, EFX_MAC_RX_PAUSE_PKTS, EFX_MAC_RX_LE_64_PKTS, EFX_MAC_RX_65_TO_127_PKTS, EFX_MAC_RX_128_TO_255_PKTS, EFX_MAC_RX_256_TO_511_PKTS, EFX_MAC_RX_512_TO_1023_PKTS, EFX_MAC_RX_1024_TO_15XX_PKTS, EFX_MAC_RX_GE_15XX_PKTS, EFX_MAC_RX_ERRORS, EFX_MAC_RX_FCS_ERRORS, EFX_MAC_RX_DROP_EVENTS, EFX_MAC_RX_FALSE_CARRIER_ERRORS, EFX_MAC_RX_SYMBOL_ERRORS, EFX_MAC_RX_ALIGN_ERRORS, EFX_MAC_RX_INTERNAL_ERRORS, EFX_MAC_RX_JABBER_PKTS, EFX_MAC_RX_LANE0_CHAR_ERR, EFX_MAC_RX_LANE1_CHAR_ERR, EFX_MAC_RX_LANE2_CHAR_ERR, EFX_MAC_RX_LANE3_CHAR_ERR, EFX_MAC_RX_LANE0_DISP_ERR, EFX_MAC_RX_LANE1_DISP_ERR, EFX_MAC_RX_LANE2_DISP_ERR, EFX_MAC_RX_LANE3_DISP_ERR, EFX_MAC_RX_MATCH_FAULT, EFX_MAC_RX_NODESC_DROP_CNT, EFX_MAC_TX_OCTETS, EFX_MAC_TX_PKTS, EFX_MAC_TX_UNICST_PKTS, EFX_MAC_TX_MULTICST_PKTS, EFX_MAC_TX_BRDCST_PKTS, EFX_MAC_TX_PAUSE_PKTS, EFX_MAC_TX_LE_64_PKTS, EFX_MAC_TX_65_TO_127_PKTS, EFX_MAC_TX_128_TO_255_PKTS, EFX_MAC_TX_256_TO_511_PKTS, EFX_MAC_TX_512_TO_1023_PKTS, EFX_MAC_TX_1024_TO_15XX_PKTS, EFX_MAC_TX_GE_15XX_PKTS, EFX_MAC_TX_ERRORS, EFX_MAC_TX_SGL_COL_PKTS, EFX_MAC_TX_MULT_COL_PKTS, EFX_MAC_TX_EX_COL_PKTS, EFX_MAC_TX_LATE_COL_PKTS, EFX_MAC_TX_DEF_PKTS, EFX_MAC_TX_EX_DEF_PKTS, EFX_MAC_PM_TRUNC_BB_OVERFLOW, EFX_MAC_PM_DISCARD_BB_OVERFLOW, EFX_MAC_PM_TRUNC_VFIFO_FULL, EFX_MAC_PM_DISCARD_VFIFO_FULL, EFX_MAC_PM_TRUNC_QBB, EFX_MAC_PM_DISCARD_QBB, EFX_MAC_PM_DISCARD_MAPPING, EFX_MAC_RXDP_Q_DISABLED_PKTS, EFX_MAC_RXDP_DI_DROPPED_PKTS, EFX_MAC_RXDP_STREAMING_PKTS, EFX_MAC_RXDP_HLB_FETCH, EFX_MAC_RXDP_HLB_WAIT, EFX_MAC_VADAPTER_RX_UNICAST_PACKETS, EFX_MAC_VADAPTER_RX_UNICAST_BYTES, EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_RX_MULTICAST_BYTES, EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_RX_BROADCAST_BYTES, EFX_MAC_VADAPTER_RX_BAD_PACKETS, EFX_MAC_VADAPTER_RX_BAD_BYTES, EFX_MAC_VADAPTER_RX_OVERFLOW, EFX_MAC_VADAPTER_TX_UNICAST_PACKETS, EFX_MAC_VADAPTER_TX_UNICAST_BYTES, EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS, EFX_MAC_VADAPTER_TX_MULTICAST_BYTES, EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS, EFX_MAC_VADAPTER_TX_BROADCAST_BYTES, EFX_MAC_VADAPTER_TX_BAD_PACKETS, EFX_MAC_VADAPTER_TX_BAD_BYTES, EFX_MAC_VADAPTER_TX_OVERFLOW, EFX_MAC_NSTATS } efx_mac_stat_t; /* END MKCONFIG GENERATED EfxHeaderMacBlock */ #endif /* EFSYS_OPT_MAC_STATS */ typedef enum efx_link_mode_e { EFX_LINK_UNKNOWN = 0, EFX_LINK_DOWN, EFX_LINK_10HDX, EFX_LINK_10FDX, EFX_LINK_100HDX, EFX_LINK_100FDX, EFX_LINK_1000HDX, EFX_LINK_1000FDX, EFX_LINK_10000FDX, EFX_LINK_40000FDX, EFX_LINK_NMODES } efx_link_mode_t; #define EFX_MAC_ADDR_LEN 6 #define EFX_MAC_ADDR_IS_MULTICAST(_address) (((uint8_t*)_address)[0] & 0x01) #define EFX_MAC_MULTICAST_LIST_MAX 256 #define EFX_MAC_SDU_MAX 9202 #define EFX_MAC_PDU(_sdu) \ P2ROUNDUP(((_sdu) \ + /* EtherII */ 14 \ + /* VLAN */ 4 \ + /* CRC */ 4 \ + /* bug16011 */ 16), \ (1 << 3)) #define EFX_MAC_PDU_MIN 60 #define EFX_MAC_PDU_MAX EFX_MAC_PDU(EFX_MAC_SDU_MAX) extern __checkReturn efx_rc_t efx_mac_pdu_set( __in efx_nic_t *enp, __in size_t pdu); extern __checkReturn efx_rc_t efx_mac_addr_set( __in efx_nic_t *enp, __in uint8_t *addr); extern __checkReturn efx_rc_t efx_mac_filter_set( __in efx_nic_t *enp, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_multicast_list_set( __in efx_nic_t *enp, __in_ecount(6*count) uint8_t const *addrs, __in int count); extern __checkReturn efx_rc_t efx_mac_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss); extern void efx_mac_filter_default_rxq_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_mac_drain( __in efx_nic_t *enp, __in boolean_t enabled); extern __checkReturn efx_rc_t efx_mac_up( __in efx_nic_t *enp, __out boolean_t *mac_upp); #define EFX_FCNTL_RESPOND 0x00000001 #define EFX_FCNTL_GENERATE 0x00000002 extern __checkReturn efx_rc_t efx_mac_fcntl_set( __in efx_nic_t *enp, __in unsigned int fcntl, __in boolean_t autoneg); extern void efx_mac_fcntl_get( __in efx_nic_t *enp, __out unsigned int *fcntl_wantedp, __out unsigned int *fcntl_linkp); #define EFX_MAC_HASH_BITS (1 << 8) extern __checkReturn efx_rc_t efx_pktfilter_init( __in efx_nic_t *enp); extern void efx_pktfilter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_pktfilter_set( __in efx_nic_t *enp, __in boolean_t unicst, __in boolean_t brdcst); extern __checkReturn efx_rc_t efx_mac_hash_set( __in efx_nic_t *enp, __in_ecount(EFX_MAC_HASH_BITS) unsigned int const *bucket); #if EFSYS_OPT_MCAST_FILTER_LIST extern __checkReturn efx_rc_t efx_pktfilter_mcast_list_set( __in efx_nic_t *enp, __in uint8_t const *addrs, __in int count); #endif /* EFSYS_OPT_MCAST_FILTER_LIST */ extern __checkReturn efx_rc_t efx_pktfilter_mcast_all( __in efx_nic_t *enp); #if EFSYS_OPT_MAC_STATS #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_mac_stat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_MAC_STATS_SIZE 0x400 /* * Upload mac statistics supported by the hardware into the given buffer. * * The reference buffer must be at least %EFX_MAC_STATS_SIZE bytes, * and page aligned. * * The hardware will only DMA statistics that it understands (of course). * Drivers should not make any assumptions about which statistics are * supported, especially when the statistics are generated by firmware. * * Thus, drivers should zero this buffer before use, so that not-understood * statistics read back as zero. */ extern __checkReturn efx_rc_t efx_mac_stats_upload( __in efx_nic_t *enp, __in efsys_mem_t *esmp); extern __checkReturn efx_rc_t efx_mac_stats_periodic( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __in uint16_t period_ms, __in boolean_t events); extern __checkReturn efx_rc_t efx_mac_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MAC_NSTATS) efsys_stat_t *stat, __inout_opt uint32_t *generationp); #endif /* EFSYS_OPT_MAC_STATS */ /* MON */ typedef enum efx_mon_type_e { EFX_MON_INVALID = 0, EFX_MON_NULL, EFX_MON_LM87, EFX_MON_MAX6647, EFX_MON_SFC90X0, EFX_MON_SFC91X0, EFX_MON_NTYPES } efx_mon_type_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_name( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_init( __in efx_nic_t *enp); #if EFSYS_OPT_MON_STATS #define EFX_MON_STATS_PAGE_SIZE 0x100 #define EFX_MON_MASK_ELEMENT_SIZE 32 /* START MKCONFIG GENERATED MonitorHeaderStatsBlock c79c86b62a144846 */ typedef enum efx_mon_stat_e { EFX_MON_STAT_2_5V, EFX_MON_STAT_VCCP1, EFX_MON_STAT_VCC, EFX_MON_STAT_5V, EFX_MON_STAT_12V, EFX_MON_STAT_VCCP2, EFX_MON_STAT_EXT_TEMP, EFX_MON_STAT_INT_TEMP, EFX_MON_STAT_AIN1, EFX_MON_STAT_AIN2, EFX_MON_STAT_INT_COOLING, EFX_MON_STAT_EXT_COOLING, EFX_MON_STAT_1V, EFX_MON_STAT_1_2V, EFX_MON_STAT_1_8V, EFX_MON_STAT_3_3V, EFX_MON_STAT_1_2VA, EFX_MON_STAT_VREF, EFX_MON_STAT_VAOE, EFX_MON_STAT_AOE_TEMP, EFX_MON_STAT_PSU_AOE_TEMP, EFX_MON_STAT_PSU_TEMP, EFX_MON_STAT_FAN0, EFX_MON_STAT_FAN1, EFX_MON_STAT_FAN2, EFX_MON_STAT_FAN3, EFX_MON_STAT_FAN4, EFX_MON_STAT_VAOE_IN, EFX_MON_STAT_IAOE, EFX_MON_STAT_IAOE_IN, EFX_MON_STAT_NIC_POWER, EFX_MON_STAT_0_9V, EFX_MON_STAT_I0_9V, EFX_MON_STAT_I1_2V, EFX_MON_STAT_0_9V_ADC, EFX_MON_STAT_INT_TEMP2, EFX_MON_STAT_VREG_TEMP, EFX_MON_STAT_VREG_0_9V_TEMP, EFX_MON_STAT_VREG_1_2V_TEMP, EFX_MON_STAT_INT_VPTAT, EFX_MON_STAT_INT_ADC_TEMP, EFX_MON_STAT_EXT_VPTAT, EFX_MON_STAT_EXT_ADC_TEMP, EFX_MON_STAT_AMBIENT_TEMP, EFX_MON_STAT_AIRFLOW, EFX_MON_STAT_VDD08D_VSS08D_CSR, EFX_MON_STAT_VDD08D_VSS08D_CSR_EXTADC, EFX_MON_STAT_HOTPOINT_TEMP, EFX_MON_STAT_PHY_POWER_SWITCH_PORT0, EFX_MON_STAT_PHY_POWER_SWITCH_PORT1, EFX_MON_STAT_MUM_VCC, EFX_MON_STAT_0V9_A, EFX_MON_STAT_I0V9_A, EFX_MON_STAT_0V9_A_TEMP, EFX_MON_STAT_0V9_B, EFX_MON_STAT_I0V9_B, EFX_MON_STAT_0V9_B_TEMP, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V2_SUPPLY_EXT_ADC, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY, EFX_MON_STAT_CCOM_AVREG_1V8_SUPPLY_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_MASTER_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_MASTER_INTERNAL_TEMP_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP, EFX_MON_STAT_CONTROLLER_SLAVE_VPTAT_EXT_ADC, EFX_MON_STAT_CONTROLLER_SLAVE_INTERNAL_TEMP_EXT_ADC, EFX_MON_NSTATS } efx_mon_stat_t; /* END MKCONFIG GENERATED MonitorHeaderStatsBlock */ typedef enum efx_mon_stat_state_e { EFX_MON_STAT_STATE_OK = 0, EFX_MON_STAT_STATE_WARNING = 1, EFX_MON_STAT_STATE_FATAL = 2, EFX_MON_STAT_STATE_BROKEN = 3, EFX_MON_STAT_STATE_NO_READING = 4, } efx_mon_stat_state_t; typedef struct efx_mon_stat_value_s { uint16_t emsv_value; uint16_t emsv_state; } efx_mon_stat_value_t; #if EFSYS_OPT_NAMES extern const char * efx_mon_stat_name( __in efx_nic_t *enp, __in efx_mon_stat_t id); #endif /* EFSYS_OPT_NAMES */ extern __checkReturn efx_rc_t efx_mon_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_MON_NSTATS) efx_mon_stat_value_t *values); #endif /* EFSYS_OPT_MON_STATS */ extern void efx_mon_fini( __in efx_nic_t *enp); /* PHY */ #define PMA_PMD_MMD 1 #define PCS_MMD 3 #define PHY_XS_MMD 4 #define DTE_XS_MMD 5 #define AN_MMD 7 #define CL22EXT_MMD 29 #define MAXMMD ((1 << 5) - 1) extern __checkReturn efx_rc_t efx_phy_verify( __in efx_nic_t *enp); #if EFSYS_OPT_PHY_LED_CONTROL typedef enum efx_phy_led_mode_e { EFX_PHY_LED_DEFAULT = 0, EFX_PHY_LED_OFF, EFX_PHY_LED_ON, EFX_PHY_LED_FLASH, EFX_PHY_LED_NMODES } efx_phy_led_mode_t; extern __checkReturn efx_rc_t efx_phy_led_set( __in efx_nic_t *enp, __in efx_phy_led_mode_t mode); #endif /* EFSYS_OPT_PHY_LED_CONTROL */ extern __checkReturn efx_rc_t efx_port_init( __in efx_nic_t *enp); #if EFSYS_OPT_LOOPBACK typedef enum efx_loopback_type_e { EFX_LOOPBACK_OFF = 0, EFX_LOOPBACK_DATA = 1, EFX_LOOPBACK_GMAC = 2, EFX_LOOPBACK_XGMII = 3, EFX_LOOPBACK_XGXS = 4, EFX_LOOPBACK_XAUI = 5, EFX_LOOPBACK_GMII = 6, EFX_LOOPBACK_SGMII = 7, EFX_LOOPBACK_XGBR = 8, EFX_LOOPBACK_XFI = 9, EFX_LOOPBACK_XAUI_FAR = 10, EFX_LOOPBACK_GMII_FAR = 11, EFX_LOOPBACK_SGMII_FAR = 12, EFX_LOOPBACK_XFI_FAR = 13, EFX_LOOPBACK_GPHY = 14, EFX_LOOPBACK_PHY_XS = 15, EFX_LOOPBACK_PCS = 16, EFX_LOOPBACK_PMA_PMD = 17, EFX_LOOPBACK_XPORT = 18, EFX_LOOPBACK_XGMII_WS = 19, EFX_LOOPBACK_XAUI_WS = 20, EFX_LOOPBACK_XAUI_WS_FAR = 21, EFX_LOOPBACK_XAUI_WS_NEAR = 22, EFX_LOOPBACK_GMII_WS = 23, EFX_LOOPBACK_XFI_WS = 24, EFX_LOOPBACK_XFI_WS_FAR = 25, EFX_LOOPBACK_PHYXS_WS = 26, EFX_LOOPBACK_PMA_INT = 27, EFX_LOOPBACK_SD_NEAR = 28, EFX_LOOPBACK_SD_FAR = 29, EFX_LOOPBACK_PMA_INT_WS = 30, EFX_LOOPBACK_SD_FEP2_WS = 31, EFX_LOOPBACK_SD_FEP1_5_WS = 32, EFX_LOOPBACK_SD_FEP_WS = 33, EFX_LOOPBACK_SD_FES_WS = 34, EFX_LOOPBACK_NTYPES } efx_loopback_type_t; typedef enum efx_loopback_kind_e { EFX_LOOPBACK_KIND_OFF = 0, EFX_LOOPBACK_KIND_ALL, EFX_LOOPBACK_KIND_MAC, EFX_LOOPBACK_KIND_PHY, EFX_LOOPBACK_NKINDS } efx_loopback_kind_t; extern void efx_loopback_mask( __in efx_loopback_kind_t loopback_kind, __out efx_qword_t *maskp); extern __checkReturn efx_rc_t efx_port_loopback_set( __in efx_nic_t *enp, __in efx_link_mode_t link_mode, __in efx_loopback_type_t type); #if EFSYS_OPT_NAMES extern __checkReturn const char * efx_loopback_type_name( __in efx_nic_t *enp, __in efx_loopback_type_t type); #endif /* EFSYS_OPT_NAMES */ #endif /* EFSYS_OPT_LOOPBACK */ extern __checkReturn efx_rc_t efx_port_poll( __in efx_nic_t *enp, __out_opt efx_link_mode_t *link_modep); extern void efx_port_fini( __in efx_nic_t *enp); typedef enum efx_phy_cap_type_e { EFX_PHY_CAP_INVALID = 0, EFX_PHY_CAP_10HDX, EFX_PHY_CAP_10FDX, EFX_PHY_CAP_100HDX, EFX_PHY_CAP_100FDX, EFX_PHY_CAP_1000HDX, EFX_PHY_CAP_1000FDX, EFX_PHY_CAP_10000FDX, EFX_PHY_CAP_PAUSE, EFX_PHY_CAP_ASYM, EFX_PHY_CAP_AN, EFX_PHY_CAP_40000FDX, EFX_PHY_CAP_NTYPES } efx_phy_cap_type_t; #define EFX_PHY_CAP_CURRENT 0x00000000 #define EFX_PHY_CAP_DEFAULT 0x00000001 #define EFX_PHY_CAP_PERM 0x00000002 extern void efx_phy_adv_cap_get( __in efx_nic_t *enp, __in uint32_t flag, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_adv_cap_set( __in efx_nic_t *enp, __in uint32_t mask); extern void efx_phy_lp_cap_get( __in efx_nic_t *enp, __out uint32_t *maskp); extern __checkReturn efx_rc_t efx_phy_oui_get( __in efx_nic_t *enp, __out uint32_t *ouip); typedef enum efx_phy_media_type_e { EFX_PHY_MEDIA_INVALID = 0, EFX_PHY_MEDIA_XAUI, EFX_PHY_MEDIA_CX4, EFX_PHY_MEDIA_KX4, EFX_PHY_MEDIA_XFP, EFX_PHY_MEDIA_SFP_PLUS, EFX_PHY_MEDIA_BASE_T, EFX_PHY_MEDIA_QSFP_PLUS, EFX_PHY_MEDIA_NTYPES } efx_phy_media_type_t; /* Get the type of medium currently used. If the board has ports for * modules, a module is present, and we recognise the media type of * the module, then this will be the media type of the module. * Otherwise it will be the media type of the port. */ extern void efx_phy_media_type_get( __in efx_nic_t *enp, __out efx_phy_media_type_t *typep); #if EFSYS_OPT_PHY_STATS /* START MKCONFIG GENERATED PhyHeaderStatsBlock 30ed56ad501f8e36 */ typedef enum efx_phy_stat_e { EFX_PHY_STAT_OUI, EFX_PHY_STAT_PMA_PMD_LINK_UP, EFX_PHY_STAT_PMA_PMD_RX_FAULT, EFX_PHY_STAT_PMA_PMD_TX_FAULT, EFX_PHY_STAT_PMA_PMD_REV_A, EFX_PHY_STAT_PMA_PMD_REV_B, EFX_PHY_STAT_PMA_PMD_REV_C, EFX_PHY_STAT_PMA_PMD_REV_D, EFX_PHY_STAT_PCS_LINK_UP, EFX_PHY_STAT_PCS_RX_FAULT, EFX_PHY_STAT_PCS_TX_FAULT, EFX_PHY_STAT_PCS_BER, EFX_PHY_STAT_PCS_BLOCK_ERRORS, EFX_PHY_STAT_PHY_XS_LINK_UP, EFX_PHY_STAT_PHY_XS_RX_FAULT, EFX_PHY_STAT_PHY_XS_TX_FAULT, EFX_PHY_STAT_PHY_XS_ALIGN, EFX_PHY_STAT_PHY_XS_SYNC_A, EFX_PHY_STAT_PHY_XS_SYNC_B, EFX_PHY_STAT_PHY_XS_SYNC_C, EFX_PHY_STAT_PHY_XS_SYNC_D, EFX_PHY_STAT_AN_LINK_UP, EFX_PHY_STAT_AN_MASTER, EFX_PHY_STAT_AN_LOCAL_RX_OK, EFX_PHY_STAT_AN_REMOTE_RX_OK, EFX_PHY_STAT_CL22EXT_LINK_UP, EFX_PHY_STAT_SNR_A, EFX_PHY_STAT_SNR_B, EFX_PHY_STAT_SNR_C, EFX_PHY_STAT_SNR_D, EFX_PHY_STAT_PMA_PMD_SIGNAL_A, EFX_PHY_STAT_PMA_PMD_SIGNAL_B, EFX_PHY_STAT_PMA_PMD_SIGNAL_C, EFX_PHY_STAT_PMA_PMD_SIGNAL_D, EFX_PHY_STAT_AN_COMPLETE, EFX_PHY_STAT_PMA_PMD_REV_MAJOR, EFX_PHY_STAT_PMA_PMD_REV_MINOR, EFX_PHY_STAT_PMA_PMD_REV_MICRO, EFX_PHY_STAT_PCS_FW_VERSION_0, EFX_PHY_STAT_PCS_FW_VERSION_1, EFX_PHY_STAT_PCS_FW_VERSION_2, EFX_PHY_STAT_PCS_FW_VERSION_3, EFX_PHY_STAT_PCS_FW_BUILD_YY, EFX_PHY_STAT_PCS_FW_BUILD_MM, EFX_PHY_STAT_PCS_FW_BUILD_DD, EFX_PHY_STAT_PCS_OP_MODE, EFX_PHY_NSTATS } efx_phy_stat_t; /* END MKCONFIG GENERATED PhyHeaderStatsBlock */ #if EFSYS_OPT_NAMES extern const char * efx_phy_stat_name( __in efx_nic_t *enp, __in efx_phy_stat_t stat); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_STATS_SIZE 0x100 extern __checkReturn efx_rc_t efx_phy_stats_update( __in efx_nic_t *enp, __in efsys_mem_t *esmp, __inout_ecount(EFX_PHY_NSTATS) uint32_t *stat); #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS #if EFSYS_OPT_NAMES extern const char * efx_phy_prop_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ #define EFX_PHY_PROP_DEFAULT 0x00000001 extern __checkReturn efx_rc_t efx_phy_prop_get( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t flags, __out uint32_t *valp); extern __checkReturn efx_rc_t efx_phy_prop_set( __in efx_nic_t *enp, __in unsigned int id, __in uint32_t val); #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_BIST typedef enum efx_bist_type_e { EFX_BIST_TYPE_UNKNOWN, EFX_BIST_TYPE_PHY_NORMAL, EFX_BIST_TYPE_PHY_CABLE_SHORT, EFX_BIST_TYPE_PHY_CABLE_LONG, EFX_BIST_TYPE_MC_MEM, /* Test the MC DMEM and IMEM */ EFX_BIST_TYPE_SAT_MEM, /* Test the DMEM and IMEM of satellite cpus*/ EFX_BIST_TYPE_REG, /* Test the register memories */ EFX_BIST_TYPE_NTYPES, } efx_bist_type_t; typedef enum efx_bist_result_e { EFX_BIST_RESULT_UNKNOWN, EFX_BIST_RESULT_RUNNING, EFX_BIST_RESULT_PASSED, EFX_BIST_RESULT_FAILED, } efx_bist_result_t; typedef enum efx_phy_cable_status_e { EFX_PHY_CABLE_STATUS_OK, EFX_PHY_CABLE_STATUS_INVALID, EFX_PHY_CABLE_STATUS_OPEN, EFX_PHY_CABLE_STATUS_INTRAPAIRSHORT, EFX_PHY_CABLE_STATUS_INTERPAIRSHORT, EFX_PHY_CABLE_STATUS_BUSY, } efx_phy_cable_status_t; typedef enum efx_bist_value_e { EFX_BIST_PHY_CABLE_LENGTH_A, EFX_BIST_PHY_CABLE_LENGTH_B, EFX_BIST_PHY_CABLE_LENGTH_C, EFX_BIST_PHY_CABLE_LENGTH_D, EFX_BIST_PHY_CABLE_STATUS_A, EFX_BIST_PHY_CABLE_STATUS_B, EFX_BIST_PHY_CABLE_STATUS_C, EFX_BIST_PHY_CABLE_STATUS_D, EFX_BIST_FAULT_CODE, /* Memory BIST specific values. These match to the MC_CMD_BIST_POLL * response. */ EFX_BIST_MEM_TEST, EFX_BIST_MEM_ADDR, EFX_BIST_MEM_BUS, EFX_BIST_MEM_EXPECT, EFX_BIST_MEM_ACTUAL, EFX_BIST_MEM_ECC, EFX_BIST_MEM_ECC_PARITY, EFX_BIST_MEM_ECC_FATAL, EFX_BIST_NVALUES, } efx_bist_value_t; extern __checkReturn efx_rc_t efx_bist_enable_offline( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_bist_start( __in efx_nic_t *enp, __in efx_bist_type_t type); extern __checkReturn efx_rc_t efx_bist_poll( __in efx_nic_t *enp, __in efx_bist_type_t type, __out efx_bist_result_t *resultp, __out_opt uint32_t *value_maskp, __out_ecount_opt(count) unsigned long *valuesp, __in size_t count); extern void efx_bist_stop( __in efx_nic_t *enp, __in efx_bist_type_t type); #endif /* EFSYS_OPT_BIST */ #define EFX_FEATURE_IPV6 0x00000001 #define EFX_FEATURE_LFSR_HASH_INSERT 0x00000002 #define EFX_FEATURE_LINK_EVENTS 0x00000004 #define EFX_FEATURE_PERIODIC_MAC_STATS 0x00000008 #define EFX_FEATURE_WOL 0x00000010 #define EFX_FEATURE_MCDI 0x00000020 #define EFX_FEATURE_LOOKAHEAD_SPLIT 0x00000040 #define EFX_FEATURE_MAC_HEADER_FILTERS 0x00000080 #define EFX_FEATURE_TURBO 0x00000100 #define EFX_FEATURE_MCDI_DMA 0x00000200 #define EFX_FEATURE_TX_SRC_FILTERS 0x00000400 #define EFX_FEATURE_PIO_BUFFERS 0x00000800 #define EFX_FEATURE_FW_ASSISTED_TSO 0x00001000 typedef struct efx_nic_cfg_s { uint32_t enc_board_type; uint32_t enc_phy_type; #if EFSYS_OPT_NAMES char enc_phy_name[21]; #endif char enc_phy_revision[21]; efx_mon_type_t enc_mon_type; #if EFSYS_OPT_MON_STATS uint32_t enc_mon_stat_dma_buf_size; uint32_t enc_mon_stat_mask[(EFX_MON_NSTATS + 31) / 32]; #endif unsigned int enc_features; uint8_t enc_mac_addr[6]; uint8_t enc_port; /* PHY port number */ uint32_t enc_func_flags; uint32_t enc_intr_vec_base; uint32_t enc_intr_limit; uint32_t enc_evq_limit; uint32_t enc_txq_limit; uint32_t enc_rxq_limit; uint32_t enc_buftbl_limit; uint32_t enc_piobuf_limit; uint32_t enc_piobuf_size; uint32_t enc_evq_timer_quantum_ns; uint32_t enc_evq_timer_max_us; uint32_t enc_clk_mult; uint32_t enc_rx_prefix_size; uint32_t enc_rx_buf_align_start; uint32_t enc_rx_buf_align_end; #if EFSYS_OPT_LOOPBACK efx_qword_t enc_loopback_types[EFX_LINK_NMODES]; #endif /* EFSYS_OPT_LOOPBACK */ #if EFSYS_OPT_PHY_FLAGS uint32_t enc_phy_flags_mask; #endif /* EFSYS_OPT_PHY_FLAGS */ #if EFSYS_OPT_PHY_LED_CONTROL uint32_t enc_led_mask; #endif /* EFSYS_OPT_PHY_LED_CONTROL */ #if EFSYS_OPT_PHY_STATS uint64_t enc_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #if EFSYS_OPT_PHY_PROPS unsigned int enc_phy_nprops; #endif /* EFSYS_OPT_PHY_PROPS */ #if EFSYS_OPT_SIENA uint8_t enc_mcdi_mdio_channel; #if EFSYS_OPT_PHY_STATS uint32_t enc_mcdi_phy_stat_mask; #endif /* EFSYS_OPT_PHY_STATS */ #endif /* EFSYS_OPT_SIENA */ #if (EFSYS_OPT_SIENA || EFSYS_OPT_HUNTINGTON) #if EFSYS_OPT_MON_STATS uint32_t *enc_mcdi_sensor_maskp; uint32_t enc_mcdi_sensor_mask_size; #endif /* EFSYS_OPT_MON_STATS */ #endif /* (EFSYS_OPT_SIENA | EFSYS_OPT_HUNTINGTON) */ #if EFSYS_OPT_BIST uint32_t enc_bist_mask; #endif /* EFSYS_OPT_BIST */ #if EFSYS_OPT_HUNTINGTON uint32_t enc_pf; uint32_t enc_vf; uint32_t enc_privilege_mask; #endif /* EFSYS_OPT_HUNTINGTON */ boolean_t enc_bug26807_workaround; boolean_t enc_bug35388_workaround; boolean_t enc_bug41750_workaround; boolean_t enc_rx_batching_enabled; /* Maximum number of descriptors completed in an rx event. */ uint32_t enc_rx_batch_max; /* Number of rx descriptors the hardware requires for a push. */ uint32_t enc_rx_push_align; /* * Maximum number of bytes into the packet the TCP header can start for * the hardware to apply TSO packet edits. */ uint32_t enc_tx_tso_tcp_header_offset_limit; boolean_t enc_fw_assisted_tso_enabled; boolean_t enc_hw_tx_insert_vlan_enabled; /* Datapath firmware vadapter/vport/vswitch support */ boolean_t enc_datapath_cap_evb; boolean_t enc_rx_disable_scatter_supported; + boolean_t enc_allow_set_mac_with_installed_filters; /* External port identifier */ uint8_t enc_external_port; } efx_nic_cfg_t; #define EFX_PCI_FUNCTION_IS_PF(_encp) ((_encp)->enc_vf == 0xffff) #define EFX_PCI_FUNCTION_IS_VF(_encp) ((_encp)->enc_vf != 0xffff) #define EFX_PCI_FUNCTION(_encp) \ (EFX_PCI_FUNCTION_IS_PF(_encp) ? (_encp)->enc_pf : (_encp)->enc_vf) #define EFX_PCI_VF_PARENT(_encp) ((_encp)->enc_pf) extern const efx_nic_cfg_t * efx_nic_cfg_get( __in efx_nic_t *enp); /* Driver resource limits (minimum required/maximum usable). */ typedef struct efx_drv_limits_s { uint32_t edl_min_evq_count; uint32_t edl_max_evq_count; uint32_t edl_min_rxq_count; uint32_t edl_max_rxq_count; uint32_t edl_min_txq_count; uint32_t edl_max_txq_count; /* PIO blocks (sub-allocated from piobuf) */ uint32_t edl_min_pio_alloc_size; uint32_t edl_max_pio_alloc_count; } efx_drv_limits_t; extern __checkReturn efx_rc_t efx_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp); typedef enum efx_nic_region_e { EFX_REGION_VI, /* Memory BAR UC mapping */ EFX_REGION_PIO_WRITE_VI, /* Memory BAR WC mapping */ } efx_nic_region_t; extern __checkReturn efx_rc_t efx_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *evq_countp, __out uint32_t *rxq_countp, __out uint32_t *txq_countp); #if EFSYS_OPT_VPD typedef enum efx_vpd_tag_e { EFX_VPD_ID = 0x02, EFX_VPD_END = 0x0f, EFX_VPD_RO = 0x10, EFX_VPD_RW = 0x11, } efx_vpd_tag_t; typedef uint16_t efx_vpd_keyword_t; typedef struct efx_vpd_value_s { efx_vpd_tag_t evv_tag; efx_vpd_keyword_t evv_keyword; uint8_t evv_length; uint8_t evv_value[0x100]; } efx_vpd_value_t; #define EFX_VPD_KEYWORD(x, y) ((x) | ((y) << 8)) extern __checkReturn efx_rc_t efx_vpd_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_vpd_size( __in efx_nic_t *enp, __out size_t *sizep); extern __checkReturn efx_rc_t efx_vpd_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_verify( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_reinit( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_vpd_get( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size, __inout efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_set( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __in efx_vpd_value_t *evvp); extern __checkReturn efx_rc_t efx_vpd_next( __in efx_nic_t *enp, __inout_bcount(size) caddr_t data, __in size_t size, __out efx_vpd_value_t *evvp, __inout unsigned int *contp); extern __checkReturn efx_rc_t efx_vpd_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_vpd_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_VPD */ /* NVRAM */ #if EFSYS_OPT_NVRAM typedef enum efx_nvram_type_e { EFX_NVRAM_INVALID = 0, EFX_NVRAM_BOOTROM, EFX_NVRAM_BOOTROM_CFG, EFX_NVRAM_MC_FIRMWARE, EFX_NVRAM_MC_GOLDEN, EFX_NVRAM_PHY, EFX_NVRAM_NULLPHY, EFX_NVRAM_FPGA, EFX_NVRAM_FCFW, EFX_NVRAM_CPLD, EFX_NVRAM_FPGA_BACKUP, EFX_NVRAM_DYNAMIC_CFG, EFX_NVRAM_NTYPES, } efx_nvram_type_t; extern __checkReturn efx_rc_t efx_nvram_init( __in efx_nic_t *enp); #if EFSYS_OPT_DIAG extern __checkReturn efx_rc_t efx_nvram_test( __in efx_nic_t *enp); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_nvram_size( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out size_t *sizep); extern __checkReturn efx_rc_t efx_nvram_rw_start( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out_opt size_t *pref_chunkp); extern void efx_nvram_rw_finish( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_get_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __out uint32_t *subtypep, __out_ecount(4) uint16_t version[4]); extern __checkReturn efx_rc_t efx_nvram_read_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __out_bcount(size) caddr_t data, __in size_t size); extern __checkReturn efx_rc_t efx_nvram_set_version( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in_ecount(4) uint16_t version[4]); /* Validate contents of TLV formatted partition */ extern __checkReturn efx_rc_t efx_nvram_tlv_validate( __in efx_nic_t *enp, __in uint32_t partn, __in_bcount(partn_size) caddr_t partn_data, __in size_t partn_size); extern __checkReturn efx_rc_t efx_nvram_erase( __in efx_nic_t *enp, __in efx_nvram_type_t type); extern __checkReturn efx_rc_t efx_nvram_write_chunk( __in efx_nic_t *enp, __in efx_nvram_type_t type, __in unsigned int offset, __in_bcount(size) caddr_t data, __in size_t size); extern void efx_nvram_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_NVRAM */ #if EFSYS_OPT_BOOTCFG extern efx_rc_t efx_bootcfg_read( __in efx_nic_t *enp, __out_bcount(size) caddr_t data, __in size_t size); extern efx_rc_t efx_bootcfg_write( __in efx_nic_t *enp, __in_bcount(size) caddr_t data, __in size_t size); #endif /* EFSYS_OPT_BOOTCFG */ #if EFSYS_OPT_WOL typedef enum efx_wol_type_e { EFX_WOL_TYPE_INVALID, EFX_WOL_TYPE_MAGIC, EFX_WOL_TYPE_BITMAP, EFX_WOL_TYPE_LINK, EFX_WOL_NTYPES, } efx_wol_type_t; typedef enum efx_lightsout_offload_type_e { EFX_LIGHTSOUT_OFFLOAD_TYPE_INVALID, EFX_LIGHTSOUT_OFFLOAD_TYPE_ARP, EFX_LIGHTSOUT_OFFLOAD_TYPE_NS, } efx_lightsout_offload_type_t; #define EFX_WOL_BITMAP_MASK_SIZE (48) #define EFX_WOL_BITMAP_VALUE_SIZE (128) typedef union efx_wol_param_u { struct { uint8_t mac_addr[6]; } ewp_magic; struct { uint8_t mask[EFX_WOL_BITMAP_MASK_SIZE]; /* 1 bit per byte */ uint8_t value[EFX_WOL_BITMAP_VALUE_SIZE]; /* value to match */ uint8_t value_len; } ewp_bitmap; } efx_wol_param_t; typedef union efx_lightsout_offload_param_u { struct { uint8_t mac_addr[6]; uint32_t ip; } elop_arp; struct { uint8_t mac_addr[6]; uint32_t solicited_node[4]; uint32_t ip[4]; } elop_ns; } efx_lightsout_offload_param_t; extern __checkReturn efx_rc_t efx_wol_init( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_clear( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_wol_filter_add( __in efx_nic_t *enp, __in efx_wol_type_t type, __in efx_wol_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_wol_filter_remove( __in efx_nic_t *enp, __in uint32_t filter_id); extern __checkReturn efx_rc_t efx_lightsout_offload_add( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in efx_lightsout_offload_param_t *paramp, __out uint32_t *filter_idp); extern __checkReturn efx_rc_t efx_lightsout_offload_remove( __in efx_nic_t *enp, __in efx_lightsout_offload_type_t type, __in uint32_t filter_id); extern void efx_wol_fini( __in efx_nic_t *enp); #endif /* EFSYS_OPT_WOL */ #if EFSYS_OPT_DIAG typedef enum efx_pattern_type_t { EFX_PATTERN_BYTE_INCREMENT = 0, EFX_PATTERN_ALL_THE_SAME, EFX_PATTERN_BIT_ALTERNATE, EFX_PATTERN_BYTE_ALTERNATE, EFX_PATTERN_BYTE_CHANGING, EFX_PATTERN_BIT_SWEEP, EFX_PATTERN_NTYPES } efx_pattern_type_t; typedef void (*efx_sram_pattern_fn_t)( __in size_t row, __in boolean_t negate, __out efx_qword_t *eqp); extern __checkReturn efx_rc_t efx_sram_test( __in efx_nic_t *enp, __in efx_pattern_type_t type); #endif /* EFSYS_OPT_DIAG */ extern __checkReturn efx_rc_t efx_sram_buf_tbl_set( __in efx_nic_t *enp, __in uint32_t id, __in efsys_mem_t *esmp, __in size_t n); extern void efx_sram_buf_tbl_clear( __in efx_nic_t *enp, __in uint32_t id, __in size_t n); #define EFX_BUF_TBL_SIZE 0x20000 #define EFX_BUF_SIZE 4096 /* EV */ typedef struct efx_evq_s efx_evq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderEventQueueBlock 6f3843f5fe7cc843 */ typedef enum efx_ev_qstat_e { EV_ALL, EV_RX, EV_RX_OK, EV_RX_FRM_TRUNC, EV_RX_TOBE_DISC, EV_RX_PAUSE_FRM_ERR, EV_RX_BUF_OWNER_ID_ERR, EV_RX_IPV4_HDR_CHKSUM_ERR, EV_RX_TCP_UDP_CHKSUM_ERR, EV_RX_ETH_CRC_ERR, EV_RX_IP_FRAG_ERR, EV_RX_MCAST_PKT, EV_RX_MCAST_HASH_MATCH, EV_RX_TCP_IPV4, EV_RX_TCP_IPV6, EV_RX_UDP_IPV4, EV_RX_UDP_IPV6, EV_RX_OTHER_IPV4, EV_RX_OTHER_IPV6, EV_RX_NON_IP, EV_RX_BATCH, EV_TX, EV_TX_WQ_FF_FULL, EV_TX_PKT_ERR, EV_TX_PKT_TOO_BIG, EV_TX_UNEXPECTED, EV_GLOBAL, EV_GLOBAL_MNT, EV_DRIVER, EV_DRIVER_SRM_UPD_DONE, EV_DRIVER_TX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_DONE, EV_DRIVER_RX_DESCQ_FLS_FAILED, EV_DRIVER_RX_DSC_ERROR, EV_DRIVER_TX_DSC_ERROR, EV_DRV_GEN, EV_MCDI_RESPONSE, EV_NQSTATS } efx_ev_qstat_t; /* END MKCONFIG GENERATED EfxHeaderEventQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_ev_init( __in efx_nic_t *enp); extern void efx_ev_fini( __in efx_nic_t *enp); #define EFX_EVQ_MAXNEVS 32768 #define EFX_EVQ_MINNEVS 512 #define EFX_EVQ_SIZE(_nevs) ((_nevs) * sizeof (efx_qword_t)) #define EFX_EVQ_NBUFS(_nevs) (EFX_EVQ_SIZE(_nevs) / EFX_BUF_SIZE) extern __checkReturn efx_rc_t efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __deref_out efx_evq_t **eepp); extern void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data); typedef __checkReturn boolean_t (*efx_initialized_ev_t)( __in_opt void *arg); #define EFX_PKT_UNICAST 0x0004 #define EFX_PKT_START 0x0008 #define EFX_PKT_VLAN_TAGGED 0x0010 #define EFX_CKSUM_TCPUDP 0x0020 #define EFX_CKSUM_IPV4 0x0040 #define EFX_PKT_CONT 0x0080 #define EFX_CHECK_VLAN 0x0100 #define EFX_PKT_TCP 0x0200 #define EFX_PKT_UDP 0x0400 #define EFX_PKT_IPV4 0x0800 #define EFX_PKT_IPV6 0x1000 #define EFX_PKT_PREFIX_LEN 0x2000 #define EFX_ADDR_MISMATCH 0x4000 #define EFX_DISCARD 0x8000 #define EFX_EV_RX_NLABELS 32 #define EFX_EV_TX_NLABELS 32 typedef __checkReturn boolean_t (*efx_rx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id, __in uint32_t size, __in uint16_t flags); typedef __checkReturn boolean_t (*efx_tx_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t id); #define EFX_EXCEPTION_RX_RECOVERY 0x00000001 #define EFX_EXCEPTION_RX_DSC_ERROR 0x00000002 #define EFX_EXCEPTION_TX_DSC_ERROR 0x00000003 #define EFX_EXCEPTION_UNKNOWN_SENSOREVT 0x00000004 #define EFX_EXCEPTION_FWALERT_SRAM 0x00000005 #define EFX_EXCEPTION_UNKNOWN_FWALERT 0x00000006 #define EFX_EXCEPTION_RX_ERROR 0x00000007 #define EFX_EXCEPTION_TX_ERROR 0x00000008 #define EFX_EXCEPTION_EV_ERROR 0x00000009 typedef __checkReturn boolean_t (*efx_exception_ev_t)( __in_opt void *arg, __in uint32_t label, __in uint32_t data); typedef __checkReturn boolean_t (*efx_rxq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_rxq_flush_failed_ev_t)( __in_opt void *arg, __in uint32_t rxq_index); typedef __checkReturn boolean_t (*efx_txq_flush_done_ev_t)( __in_opt void *arg, __in uint32_t txq_index); typedef __checkReturn boolean_t (*efx_software_ev_t)( __in_opt void *arg, __in uint16_t magic); typedef __checkReturn boolean_t (*efx_sram_ev_t)( __in_opt void *arg, __in uint32_t code); #define EFX_SRAM_CLEAR 0 #define EFX_SRAM_UPDATE 1 #define EFX_SRAM_ILLEGAL_CLEAR 2 typedef __checkReturn boolean_t (*efx_wake_up_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_timer_ev_t)( __in_opt void *arg, __in uint32_t label); typedef __checkReturn boolean_t (*efx_link_change_ev_t)( __in_opt void *arg, __in efx_link_mode_t link_mode); #if EFSYS_OPT_MON_STATS typedef __checkReturn boolean_t (*efx_monitor_ev_t)( __in_opt void *arg, __in efx_mon_stat_t id, __in efx_mon_stat_value_t value); #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS typedef __checkReturn boolean_t (*efx_mac_stats_ev_t)( __in_opt void *arg, __in uint32_t generation ); #endif /* EFSYS_OPT_MAC_STATS */ typedef struct efx_ev_callbacks_s { efx_initialized_ev_t eec_initialized; efx_rx_ev_t eec_rx; efx_tx_ev_t eec_tx; efx_exception_ev_t eec_exception; efx_rxq_flush_done_ev_t eec_rxq_flush_done; efx_rxq_flush_failed_ev_t eec_rxq_flush_failed; efx_txq_flush_done_ev_t eec_txq_flush_done; efx_software_ev_t eec_software; efx_sram_ev_t eec_sram; efx_wake_up_ev_t eec_wake_up; efx_timer_ev_t eec_timer; efx_link_change_ev_t eec_link_change; #if EFSYS_OPT_MON_STATS efx_monitor_ev_t eec_monitor; #endif /* EFSYS_OPT_MON_STATS */ #if EFSYS_OPT_MAC_STATS efx_mac_stats_ev_t eec_mac_stats; #endif /* EFSYS_OPT_MAC_STATS */ } efx_ev_callbacks_t; extern __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_EV_PREFETCH extern void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count); #endif /* EFSYS_OPT_EV_PREFETCH */ extern void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); extern __checkReturn efx_rc_t efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us); extern __checkReturn efx_rc_t efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_ev_qdestroy( __in efx_evq_t *eep); /* RX */ extern __checkReturn efx_rc_t efx_rx_init( __inout efx_nic_t *enp); extern void efx_rx_fini( __in efx_nic_t *enp); #if EFSYS_OPT_RX_HDR_SPLIT __checkReturn efx_rc_t efx_rx_hdr_split_enable( __in efx_nic_t *enp, __in unsigned int hdr_buf_size, __in unsigned int pld_buf_size); #endif /* EFSYS_OPT_RX_HDR_SPLIT */ #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t efx_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size); #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE typedef enum efx_rx_hash_alg_e { EFX_RX_HASHALG_LFSR = 0, EFX_RX_HASHALG_TOEPLITZ } efx_rx_hash_alg_t; typedef enum efx_rx_hash_type_e { EFX_RX_HASH_IPV4 = 0, EFX_RX_HASH_TCPIPV4, EFX_RX_HASH_IPV6, EFX_RX_HASH_TCPIPV6, } efx_rx_hash_type_t; typedef enum efx_rx_hash_support_e { EFX_RX_HASH_UNAVAILABLE = 0, /* Hardware hash not inserted */ EFX_RX_HASH_AVAILABLE /* Insert hash with/without RSS */ } efx_rx_hash_support_t; #define EFX_RSS_TBL_SIZE 128 /* Rows in RX indirection table */ #define EFX_MAXRSS 64 /* RX indirection entry range */ #define EFX_MAXRSS_LEGACY 16 /* See bug16611 and bug17213 */ typedef enum efx_rx_scale_support_e { EFX_RX_SCALE_UNAVAILABLE = 0, /* Not supported */ EFX_RX_SCALE_EXCLUSIVE, /* Writable key/indirection table */ EFX_RX_SCALE_SHARED /* Read-only key/indirection table */ } efx_rx_scale_support_t; extern __checkReturn efx_rc_t efx_rx_hash_support_get( __in efx_nic_t *enp, __out efx_rx_hash_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_support_get( __in efx_nic_t *enp, __out efx_rx_scale_support_t *supportp); extern __checkReturn efx_rc_t efx_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert); extern __checkReturn efx_rc_t efx_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n); extern __checkReturn efx_rc_t efx_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n); extern uint32_t efx_psuedo_hdr_hash_get( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer); #endif /* EFSYS_OPT_RX_SCALE */ extern __checkReturn efx_rc_t efx_psuedo_hdr_pkt_length_get( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *pkt_lengthp); #define EFX_RXQ_MAXNDESCS 4096 #define EFX_RXQ_MINNDESCS 512 #define EFX_RXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_RXQ_NBUFS(_ndescs) (EFX_RXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_RXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_RXQ_DC_NDESCS(_dcsize) (8 << _dcsize) typedef enum efx_rxq_type_e { EFX_RXQ_TYPE_DEFAULT, EFX_RXQ_TYPE_SPLIT_HEADER, EFX_RXQ_TYPE_SPLIT_PAYLOAD, EFX_RXQ_TYPE_SCATTER, EFX_RXQ_NTYPES } efx_rxq_type_t; extern __checkReturn efx_rc_t efx_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __deref_out efx_rxq_t **erpp); typedef struct efx_buffer_s { efsys_dma_addr_t eb_addr; size_t eb_size; boolean_t eb_eop; } efx_buffer_t; typedef struct efx_desc_s { efx_qword_t ed_eq; } efx_desc_t; extern void efx_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added); extern void efx_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp); extern __checkReturn efx_rc_t efx_rx_qflush( __in efx_rxq_t *erp); extern void efx_rx_qenable( __in efx_rxq_t *erp); extern void efx_rx_qdestroy( __in efx_rxq_t *erp); /* TX */ typedef struct efx_txq_s efx_txq_t; #if EFSYS_OPT_QSTATS /* START MKCONFIG GENERATED EfxHeaderTransmitQueueBlock 12dff8778598b2db */ typedef enum efx_tx_qstat_e { TX_POST, TX_POST_PIO, TX_NQSTATS } efx_tx_qstat_t; /* END MKCONFIG GENERATED EfxHeaderTransmitQueueBlock */ #endif /* EFSYS_OPT_QSTATS */ extern __checkReturn efx_rc_t efx_tx_init( __in efx_nic_t *enp); extern void efx_tx_fini( __in efx_nic_t *enp); #define EFX_BUG35388_WORKAROUND(_encp) \ (((_encp) == NULL) ? 1 : ((_encp)->enc_bug35388_workaround != 0)) #define EFX_TXQ_MAXNDESCS(_encp) \ ((EFX_BUG35388_WORKAROUND(_encp)) ? 2048 : 4096) #define EFX_TXQ_MINNDESCS 512 #define EFX_TXQ_SIZE(_ndescs) ((_ndescs) * sizeof (efx_qword_t)) #define EFX_TXQ_NBUFS(_ndescs) (EFX_TXQ_SIZE(_ndescs) / EFX_BUF_SIZE) #define EFX_TXQ_LIMIT(_ndescs) ((_ndescs) - 16) #define EFX_TXQ_DC_NDESCS(_dcsize) (8 << _dcsize) #define EFX_TXQ_MAX_BUFS 8 /* Maximum independent of EFX_BUG35388_WORKAROUND. */ extern __checkReturn efx_rc_t efx_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __deref_out efx_txq_t **etpp, __out unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns); extern void efx_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed); extern __checkReturn efx_rc_t efx_tx_qflush( __in efx_txq_t *etp); extern void efx_tx_qenable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_enable( __in efx_txq_t *etp); extern void efx_tx_qpio_disable( __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(buf_length) uint8_t *buffer, __in size_t buf_length, __in size_t pio_buf_offset); extern __checkReturn efx_rc_t efx_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp); extern __checkReturn efx_rc_t efx_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp); extern void efx_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp); extern void efx_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp); extern void efx_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp); #if EFSYS_OPT_QSTATS #if EFSYS_OPT_NAMES extern const char * efx_tx_qstat_name( __in efx_nic_t *etp, __in unsigned int id); #endif /* EFSYS_OPT_NAMES */ extern void efx_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat); #endif /* EFSYS_OPT_QSTATS */ extern void efx_tx_qdestroy( __in efx_txq_t *etp); /* FILTER */ #if EFSYS_OPT_FILTER #define EFX_ETHER_TYPE_IPV4 0x0800 #define EFX_ETHER_TYPE_IPV6 0x86DD #define EFX_IPPROTO_TCP 6 #define EFX_IPPROTO_UDP 17 typedef enum efx_filter_flag_e { EFX_FILTER_FLAG_RX_RSS = 0x01, /* use RSS to spread across * multiple queues */ EFX_FILTER_FLAG_RX_SCATTER = 0x02, /* enable RX scatter */ EFX_FILTER_FLAG_RX_OVER_AUTO = 0x04, /* Override an automatic filter * (priority EFX_FILTER_PRI_AUTO). * May only be set by the filter * implementation for each type. * A removal request will * restore the automatic filter * in its place. */ EFX_FILTER_FLAG_RX = 0x08, /* Filter is for RX */ EFX_FILTER_FLAG_TX = 0x10, /* Filter is for TX */ } efx_filter_flag_t; typedef enum efx_filter_match_flags_e { EFX_FILTER_MATCH_REM_HOST = 0x0001, /* Match by remote IP host * address */ EFX_FILTER_MATCH_LOC_HOST = 0x0002, /* Match by local IP host * address */ EFX_FILTER_MATCH_REM_MAC = 0x0004, /* Match by remote MAC address */ EFX_FILTER_MATCH_REM_PORT = 0x0008, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_MAC = 0x0010, /* Match by remote TCP/UDP port */ EFX_FILTER_MATCH_LOC_PORT = 0x0020, /* Match by local TCP/UDP port */ EFX_FILTER_MATCH_ETHER_TYPE = 0x0040, /* Match by Ether-type */ EFX_FILTER_MATCH_INNER_VID = 0x0080, /* Match by inner VLAN ID */ EFX_FILTER_MATCH_OUTER_VID = 0x0100, /* Match by outer VLAN ID */ EFX_FILTER_MATCH_IP_PROTO = 0x0200, /* Match by IP transport * protocol */ EFX_FILTER_MATCH_LOC_MAC_IG = 0x0400, /* Match by local MAC address * I/G bit. Used for RX default * unicast and multicast/ * broadcast filters. */ } efx_filter_match_flags_t; typedef enum efx_filter_priority_s { EFX_FILTER_PRI_HINT = 0, /* Performance hint */ EFX_FILTER_PRI_AUTO, /* Automatic filter based on device * address list or hardware * requirements. This may only be used * by the filter implementation for * each NIC type. */ EFX_FILTER_PRI_MANUAL, /* Manually configured filter */ EFX_FILTER_PRI_REQUIRED, /* Required for correct behaviour of the * client (e.g. SR-IOV, HyperV VMQ etc.) */ } efx_filter_priority_t; /* * FIXME: All these fields are assumed to be in little-endian byte order. * It may be better for some to be big-endian. See bug42804. */ typedef struct efx_filter_spec_s { uint32_t efs_match_flags:12; uint32_t efs_priority:2; uint32_t efs_flags:6; uint32_t efs_dmaq_id:12; uint32_t efs_rss_context; uint16_t efs_outer_vid; uint16_t efs_inner_vid; uint8_t efs_loc_mac[EFX_MAC_ADDR_LEN]; uint8_t efs_rem_mac[EFX_MAC_ADDR_LEN]; uint16_t efs_ether_type; uint8_t efs_ip_proto; uint16_t efs_loc_port; uint16_t efs_rem_port; efx_oword_t efs_rem_host; efx_oword_t efs_loc_host; } efx_filter_spec_t; /* Default values for use in filter specifications */ #define EFX_FILTER_SPEC_RSS_CONTEXT_DEFAULT 0xffffffff #define EFX_FILTER_SPEC_RX_DMAQ_ID_DROP 0xfff #define EFX_FILTER_SPEC_VID_UNSPEC 0xffff extern __checkReturn efx_rc_t efx_filter_init( __in efx_nic_t *enp); extern void efx_filter_fini( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_insert( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_remove( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_restore( __in efx_nic_t *enp); extern __checkReturn efx_rc_t efx_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length); extern void efx_filter_spec_init_rx( __inout efx_filter_spec_t *spec, __in efx_filter_priority_t priority, __in efx_filter_flag_t flags, __in efx_rxq_t *erp); extern void efx_filter_spec_init_tx( __inout efx_filter_spec_t *spec, __in efx_txq_t *etp); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_local( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t host, __in uint16_t port); extern __checkReturn efx_rc_t efx_filter_spec_set_ipv4_full( __inout efx_filter_spec_t *spec, __in uint8_t proto, __in uint32_t lhost, __in uint16_t lport, __in uint32_t rhost, __in uint16_t rport); extern __checkReturn efx_rc_t efx_filter_spec_set_eth_local( __inout efx_filter_spec_t *spec, __in uint16_t vid, __in const uint8_t *addr); extern __checkReturn efx_rc_t efx_filter_spec_set_uc_def( __inout efx_filter_spec_t *spec); extern __checkReturn efx_rc_t efx_filter_spec_set_mc_def( __inout efx_filter_spec_t *spec); #endif /* EFSYS_OPT_FILTER */ /* HASH */ extern __checkReturn uint32_t efx_hash_dwords( __in_ecount(count) uint32_t const *input, __in size_t count, __in uint32_t init); extern __checkReturn uint32_t efx_hash_bytes( __in_ecount(length) uint8_t const *input, __in size_t length, __in uint32_t init); #ifdef __cplusplus } #endif #endif /* _SYS_EFX_H */ Index: head/sys/dev/sfxge/common/hunt_nic.c =================================================================== --- head/sys/dev/sfxge/common/hunt_nic.c (revision 291921) +++ head/sys/dev/sfxge/common/hunt_nic.c (revision 291922) @@ -1,1816 +1,1828 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #include "mcdi_mon.h" #if EFSYS_OPT_HUNTINGTON #include "ef10_tlv_layout.h" static __checkReturn efx_rc_t efx_mcdi_get_port_assignment( __in efx_nic_t *enp, __out uint32_t *portp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN, MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_port_modes( __in efx_nic_t *enp, __out uint32_t *modesp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN, MC_CMD_GET_PORT_MODES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_MODES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* Accept pre-Medford size (8 bytes - no CurrentMode field) */ if (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) { rc = EMSGSIZE; goto fail2; } *modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_alloc( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN, MC_CMD_VADAPTOR_ALLOC_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); + MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS, + VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED, + enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_free( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN, MC_CMD_VADAPTOR_FREE_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_mac_address_pf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_mac_address_vf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX; MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_clock( __in efx_nic_t *enp, __out uint32_t *sys_freqp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN, MC_CMD_GET_CLOCK_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_CLOCK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ); if (*sys_freqp == 0) { rc = EINVAL; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_vector_cfg( __in efx_nic_t *enp, __out_opt uint32_t *vec_basep, __out_opt uint32_t *pf_nvecp, __out_opt uint32_t *vf_nvecp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN, MC_CMD_GET_VECTOR_CFG_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_VECTOR_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (vec_basep != NULL) *vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE); if (pf_nvecp != NULL) *pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF); if (vf_nvecp != NULL) *vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_capabilities( __in efx_nic_t *enp, __out efx_dword_t *flagsp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_CAPABILITIES_IN_LEN, MC_CMD_GET_CAPABILITIES_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_CAPABILITIES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CAPABILITIES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *flagsp = *MCDI_OUT2(req, efx_dword_t, GET_CAPABILITIES_OUT_FLAGS1); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_vis( __in efx_nic_t *enp, __in uint32_t min_vi_count, __in uint32_t max_vi_count, __out_opt uint32_t *vi_basep, __out uint32_t *vi_countp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN, MC_CMD_ALLOC_VIS_OUT_LEN)]; efx_rc_t rc; if (vi_countp == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_VIS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_VIS_OUT_LEN; MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count); MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) { rc = EMSGSIZE; goto fail3; } if (vi_basep != NULL) *vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE); if (vi_countp != NULL) *vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_vis( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0); req.emr_cmd = MC_CMD_FREE_VIS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute_quiet(enp, &req); /* Ignore ELREADY (no allocated VIs, so nothing to free) */ if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_piobuf( __in efx_nic_t *enp, __out efx_piobuf_handle_t *handlep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN, MC_CMD_ALLOC_PIOBUF_OUT_LEN)]; efx_rc_t rc; if (handlep == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_piobuf( __in efx_nic_t *enp, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN, MC_CMD_FREE_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FREE_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_link_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_LINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_LINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle); MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_unlink_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_UNLINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void hunt_nic_alloc_piobufs( __in efx_nic_t *enp, __in uint32_t max_piobuf_count) { efx_piobuf_handle_t *handlep; unsigned int i; efx_rc_t rc; EFSYS_ASSERT3U(max_piobuf_count, <=, EFX_ARRAY_SIZE(enp->en_u.hunt.enu_piobuf_handle)); enp->en_u.hunt.enu_piobuf_count = 0; for (i = 0; i < max_piobuf_count; i++) { handlep = &enp->en_u.hunt.enu_piobuf_handle[i]; if ((rc = efx_mcdi_alloc_piobuf(enp, handlep)) != 0) goto fail1; enp->en_u.hunt.enu_pio_alloc_map[i] = 0; enp->en_u.hunt.enu_piobuf_count++; } return; fail1: for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) { handlep = &enp->en_u.hunt.enu_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_u.hunt.enu_piobuf_count = 0; } static void hunt_nic_free_piobufs( __in efx_nic_t *enp) { efx_piobuf_handle_t *handlep; unsigned int i; for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) { handlep = &enp->en_u.hunt.enu_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_u.hunt.enu_piobuf_count = 0; } /* Sub-allocate a block from a piobuf */ __checkReturn efx_rc_t hunt_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep) { efx_drv_cfg_t *edcp = &enp->en_drv_cfg; uint32_t blk_per_buf; uint32_t buf, blk; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); EFSYS_ASSERT(bufnump); EFSYS_ASSERT(handlep); EFSYS_ASSERT(blknump); EFSYS_ASSERT(offsetp); EFSYS_ASSERT(sizep); if ((edcp->edc_pio_alloc_size == 0) || (enp->en_u.hunt.enu_piobuf_count == 0)) { rc = ENOMEM; goto fail1; } blk_per_buf = HUNT_PIOBUF_SIZE / edcp->edc_pio_alloc_size; for (buf = 0; buf < enp->en_u.hunt.enu_piobuf_count; buf++) { uint32_t *map = &enp->en_u.hunt.enu_pio_alloc_map[buf]; if (~(*map) == 0) continue; EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map))); for (blk = 0; blk < blk_per_buf; blk++) { if ((*map & (1u << blk)) == 0) { *map |= (1u << blk); goto done; } } } rc = ENOMEM; goto fail2; done: *handlep = enp->en_u.hunt.enu_piobuf_handle[buf]; *bufnump = buf; *blknump = blk; *sizep = edcp->edc_pio_alloc_size; *offsetp = blk * (*sizep); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Free a piobuf sub-allocated block */ __checkReturn efx_rc_t hunt_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum) { uint32_t *map; efx_rc_t rc; if ((bufnum >= enp->en_u.hunt.enu_piobuf_count) || (blknum >= (8 * sizeof (*map)))) { rc = EINVAL; goto fail1; } map = &enp->en_u.hunt.enu_pio_alloc_map[bufnum]; if ((*map & (1u << blknum)) == 0) { rc = ENOENT; goto fail2; } *map &= ~(1u << blknum); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { return (efx_mcdi_link_piobuf(enp, vi_index, handle)); } __checkReturn efx_rc_t hunt_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index) { return (efx_mcdi_unlink_piobuf(enp, vi_index)); } static __checkReturn efx_rc_t hunt_get_datapath_caps( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_dword_t datapath_capabilities; efx_rc_t rc; if ((rc = efx_mcdi_get_capabilities(enp, &datapath_capabilities)) != 0) goto fail1; /* * Huntington RXDP firmware inserts a 0 or 14 byte prefix. * We only support the 14 byte prefix here. */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14) != 1) { rc = ENOTSUP; goto fail2; } encp->enc_rx_prefix_size = 14; /* Check if the firmware supports TSO */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_TX_TSO) == 1) encp->enc_fw_assisted_tso_enabled = B_TRUE; else encp->enc_fw_assisted_tso_enabled = B_FALSE; /* Check if the firmware has vadapter/vport/vswitch support */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_EVB) == 1) encp->enc_datapath_cap_evb = B_TRUE; else encp->enc_datapath_cap_evb = B_FALSE; /* Check if the firmware supports VLAN insertion */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_TX_VLAN_INSERTION) == 1) encp->enc_hw_tx_insert_vlan_enabled = B_TRUE; else encp->enc_hw_tx_insert_vlan_enabled = B_FALSE; /* Check if the firmware supports RX event batching */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_RX_BATCHING) == 1) { encp->enc_rx_batching_enabled = B_TRUE; encp->enc_rx_batch_max = 16; } else { encp->enc_rx_batching_enabled = B_FALSE; } /* Check if the firmware supports disabling scatter on RXQs */ if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, GET_CAPABILITIES_OUT_RX_DISABLE_SCATTER) == 1) { encp->enc_rx_disable_scatter_supported = B_TRUE; } else { encp->enc_rx_disable_scatter_supported = B_FALSE; + } + + /* Check if the firmware supports set mac with running filters */ + if (MCDI_CMD_DWORD_FIELD(&datapath_capabilities, + GET_CAPABILITIES_OUT_VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) + == 1) { + encp->enc_allow_set_mac_with_installed_filters = B_TRUE; + } else { + encp->enc_allow_set_mac_with_installed_filters = B_FALSE; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * The external port mapping is a one-based numbering of the external * connectors on the board. It does not distinguish off-board separated * outputs such as multi-headed cables. * The number of ports that map to each external port connector * on the board is determined by the chip family and the port modes to * which the NIC can be configured. The mapping table lists modes with * port numbering requirements in increasing order. */ static struct { efx_family_t family; uint32_t modes_mask; uint32_t stride; } __hunt_external_port_mappings[] = { /* Supported modes requiring 1 output per port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_10G) | (1 << TLV_PORT_MODE_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_10G_10G), 1 }, /* Supported modes requiring 2 outputs per port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_40G) | (1 << TLV_PORT_MODE_40G_40G) | (1 << TLV_PORT_MODE_40G_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_40G), 2 } /* * NOTE: Medford modes will require 4 outputs per port: * TLV_PORT_MODE_10G_10G_10G_10G_Q * TLV_PORT_MODE_10G_10G_10G_10G_Q2 * The Q2 mode routes outputs to external port 2. Support for this * will require a new field specifying the number to add after * scaling by stride. This is fixed at 1 currently. */ }; static __checkReturn efx_rc_t hunt_external_port_mapping( __in efx_nic_t *enp, __in uint32_t port, __out uint8_t *external_portp) { efx_rc_t rc; int i; uint32_t port_modes; uint32_t matches; uint32_t stride = 1; /* default 1-1 mapping */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes)) != 0) { /* No port mode information available - use default mapping */ goto out; } /* * Infer the internal port -> external port mapping from * the possible port modes for this NIC. */ for (i = 0; i < EFX_ARRAY_SIZE(__hunt_external_port_mappings); ++i) { if (__hunt_external_port_mappings[i].family != enp->en_family) continue; matches = (__hunt_external_port_mappings[i].modes_mask & port_modes); if (matches != 0) { stride = __hunt_external_port_mappings[i].stride; port_modes &= ~matches; } } if (port_modes != 0) { /* Some advertised modes are not supported */ rc = ENOTSUP; goto fail1; } out: /* * Scale as required by last matched mode and then convert to * one-based numbering */ *external_portp = (uint8_t)(port / stride) + 1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t hunt_board_cfg( __in efx_nic_t *enp) { efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint8_t mac_addr[6]; uint32_t board_type = 0; hunt_link_state_t hls; efx_port_t *epp = &(enp->en_port); uint32_t port; uint32_t pf; uint32_t vf; uint32_t mask; uint32_t flags; uint32_t sysclk; uint32_t base, nvec; efx_rc_t rc; if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0) goto fail1; /* * NOTE: The MCDI protocol numbers ports from zero. * The common code MCDI interface numbers ports from one. */ emip->emi_port = port + 1; if ((rc = hunt_external_port_mapping(enp, port, &encp->enc_external_port)) != 0) goto fail2; /* * Get PCIe function number from firmware (used for * per-function privilege and dynamic config info). * - PCIe PF: pf = PF number, vf = 0xffff. * - PCIe VF: pf = parent PF, vf = VF number. */ if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0) goto fail3; encp->enc_pf = pf; encp->enc_vf = vf; /* MAC address for this function */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { rc = efx_mcdi_get_mac_address_pf(enp, mac_addr); if ((rc == 0) && (mac_addr[0] & 0x02)) { /* * If the static config does not include a global MAC * address pool then the board may return a locally * administered MAC address (this should only happen on * incorrectly programmed boards). */ rc = EINVAL; } } else { rc = efx_mcdi_get_mac_address_vf(enp, mac_addr); } if (rc != 0) goto fail4; EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr); /* Board configuration */ rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL); if (rc != 0) { /* Unprivileged functions may not be able to read board cfg */ if (rc == EACCES) board_type = 0; else goto fail5; } encp->enc_board_type = board_type; encp->enc_clk_mult = 1; /* not used for Huntington */ /* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */ if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0) goto fail6; /* Obtain the default PHY advertised capabilities */ if ((rc = hunt_phy_get_link(enp, &hls)) != 0) goto fail7; epp->ep_default_adv_cap_mask = hls.hls_adv_cap_mask; epp->ep_adv_cap_mask = hls.hls_adv_cap_mask; /* * Enable firmware workarounds for hardware errata. * Expected responses are: * - 0 (zero): * Success: workaround enabled or disabled as requested. * - MC_CMD_ERR_ENOSYS (reported as ENOTSUP): * Firmware does not support the MC_CMD_WORKAROUND request. * (assume that the workaround is not supported). * - MC_CMD_ERR_ENOENT (reported as ENOENT): * Firmware does not support the requested workaround. * - MC_CMD_ERR_EPERM (reported as EACCES): * Unprivileged function cannot enable/disable workarounds. * * See efx_mcdi_request_errcode() for MCDI error translations. */ /* * If the bug35388 workaround is enabled, then use an indirect access * method to avoid unsafe EVQ writes. */ rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG35388, B_TRUE, NULL); if ((rc == 0) || (rc == EACCES)) encp->enc_bug35388_workaround = B_TRUE; else if ((rc == ENOTSUP) || (rc == ENOENT)) encp->enc_bug35388_workaround = B_FALSE; else goto fail8; /* * If the bug41750 workaround is enabled, then do not test interrupts, * as the test will fail (seen with Greenport controllers). */ rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG41750, B_TRUE, NULL); if (rc == 0) { encp->enc_bug41750_workaround = B_TRUE; } else if (rc == EACCES) { /* Assume a controller with 40G ports needs the workaround. */ if (epp->ep_default_adv_cap_mask & EFX_PHY_CAP_40000FDX) encp->enc_bug41750_workaround = B_TRUE; else encp->enc_bug41750_workaround = B_FALSE; } else if ((rc == ENOTSUP) || (rc == ENOENT)) { encp->enc_bug41750_workaround = B_FALSE; } else { goto fail9; } if (EFX_PCI_FUNCTION_IS_VF(encp)) { /* Interrupt testing does not work for VFs. See bug50084. */ encp->enc_bug41750_workaround = B_TRUE; } /* * If the bug26807 workaround is enabled, then firmware has enabled * support for chained multicast filters. Firmware will reset (FLR) * functions which have filters in the hardware filter table when the * workaround is enabled/disabled. * * We must recheck if the workaround is enabled after inserting the * first hardware filter, in case it has been changed since this check. */ rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807, B_TRUE, &flags); if (rc == 0) { encp->enc_bug26807_workaround = B_TRUE; if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) { /* * Other functions had installed filters before the * workaround was enabled, and they have been reset * by firmware. */ EFSYS_PROBE(bug26807_workaround_flr_done); /* FIXME: bump MC warm boot count ? */ } } else if (rc == EACCES) { /* * Unprivileged functions cannot enable the workaround in older * firmware. */ encp->enc_bug26807_workaround = B_FALSE; } else if ((rc == ENOTSUP) || (rc == ENOENT)) { encp->enc_bug26807_workaround = B_FALSE; } else { goto fail10; } /* Get sysclk frequency (in MHz). */ if ((rc = efx_mcdi_get_clock(enp, &sysclk)) != 0) goto fail11; /* * The timer quantum is 1536 sysclk cycles, documented for the * EV_TMR_VAL field of EV_TIMER_TBL. Scale for MHz and ns units. */ encp->enc_evq_timer_quantum_ns = 1536000UL / sysclk; /* 1536 cycles */ if (encp->enc_bug35388_workaround) { encp->enc_evq_timer_max_us = (encp->enc_evq_timer_quantum_ns << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH) / 1000; } else { encp->enc_evq_timer_max_us = (encp->enc_evq_timer_quantum_ns << FRF_CZ_TC_TIMER_VAL_WIDTH) / 1000; } /* Check capabilities of running datapath firmware */ if ((rc = hunt_get_datapath_caps(enp)) != 0) goto fail12; /* Alignment for receive packet DMA buffers */ encp->enc_rx_buf_align_start = 1; encp->enc_rx_buf_align_end = 64; /* RX DMA end padding */ /* Alignment for WPTR updates */ encp->enc_rx_push_align = HUNTINGTON_RX_WPTR_ALIGN; /* * Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use * MC_CMD_GET_RESOURCE_LIMITS here as that reports the available * resources (allocated to this PCIe function), which is zero until * after we have allocated VIs. */ encp->enc_evq_limit = 1024; encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET; encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET; encp->enc_buftbl_limit = 0xFFFFFFFF; encp->enc_piobuf_limit = HUNT_PIOBUF_NBUFS; encp->enc_piobuf_size = HUNT_PIOBUF_SIZE; /* * Get the current privilege mask. Note that this may be modified * dynamically, so this value is informational only. DO NOT use * the privilege mask to check for sufficient privileges, as that * can result in time-of-check/time-of-use bugs. */ if ((rc = efx_mcdi_privilege_mask(enp, pf, vf, &mask)) != 0) { if (rc != ENOTSUP) goto fail13; /* Fallback for old firmware without privilege mask support */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { /* Assume PF has admin privilege */ mask = HUNT_LEGACY_PF_PRIVILEGE_MASK; } else { /* VF is always unprivileged by default */ mask = HUNT_LEGACY_VF_PRIVILEGE_MASK; } } encp->enc_privilege_mask = mask; /* Get interrupt vector limits */ if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(encp)) goto fail14; /* Ignore error (cannot query vector limits from a VF). */ base = 0; nvec = 1024; } encp->enc_intr_vec_base = base; encp->enc_intr_limit = nvec; /* * Maximum number of bytes into the frame the TCP header can start for * firmware assisted TSO to work. */ encp->enc_tx_tso_tcp_header_offset_limit = 208; return (0); fail14: EFSYS_PROBE(fail14); fail13: EFSYS_PROBE(fail13); fail12: EFSYS_PROBE(fail12); fail11: EFSYS_PROBE(fail11); fail10: EFSYS_PROBE(fail10); fail9: EFSYS_PROBE(fail9); fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_probe( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* Read and clear any assertion state */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; /* Exit the assertion handler */ if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) if (rc != EACCES) goto fail2; if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0) goto fail3; if ((rc = hunt_board_cfg(enp)) != 0) if (rc != EACCES) goto fail4; /* * Set default driver config limits (based on board config). * * FIXME: For now allocate a fixed number of VIs which is likely to be * sufficient and small enough to allow multiple functions on the same * port. */ edcp->edc_min_vi_count = edcp->edc_max_vi_count = MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit)); /* The client driver must configure and enable PIO buffer support */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0) goto fail5; #endif #if EFSYS_OPT_LOOPBACK if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0) goto fail6; #endif #if EFSYS_OPT_MON_STATS if ((rc = mcdi_mon_cfg_build(enp)) != 0) { /* Unprivileged functions do not have access to sensors */ if (rc != EACCES) goto fail7; } #endif encp->enc_features = enp->en_features; return (0); #if EFSYS_OPT_MON_STATS fail7: EFSYS_PROBE(fail7); #endif #if EFSYS_OPT_LOOPBACK fail6: EFSYS_PROBE(fail6); #endif #if EFSYS_OPT_MAC_STATS fail5: EFSYS_PROBE(fail5); #endif fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_evq_count, max_evq_count; uint32_t min_rxq_count, max_rxq_count; uint32_t min_txq_count, max_txq_count; efx_rc_t rc; if (edlp == NULL) { rc = EINVAL; goto fail1; } /* Get minimum required and maximum usable VI limits */ min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit); min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit); min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit); edcp->edc_min_vi_count = MAX(min_evq_count, MAX(min_rxq_count, min_txq_count)); max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit); max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit); max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit); edcp->edc_max_vi_count = MAX(max_evq_count, MAX(max_rxq_count, max_txq_count)); /* * Check limits for sub-allocated piobuf blocks. * PIO is optional, so don't fail if the limits are incorrect. */ if ((encp->enc_piobuf_size == 0) || (encp->enc_piobuf_limit == 0) || (edlp->edl_min_pio_alloc_size == 0) || (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) { /* Disable PIO */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; } else { uint32_t blk_size, blk_count, blks_per_piobuf; blk_size = MAX(edlp->edl_min_pio_alloc_size, HUNT_MIN_PIO_ALLOC_SIZE); blks_per_piobuf = encp->enc_piobuf_size / blk_size; EFSYS_ASSERT3U(blks_per_piobuf, <=, 32); blk_count = (encp->enc_piobuf_limit * blks_per_piobuf); /* A zero max pio alloc count means unlimited */ if ((edlp->edl_max_pio_alloc_count > 0) && (edlp->edl_max_pio_alloc_count < blk_count)) { blk_count = edlp->edl_max_pio_alloc_count; } edcp->edc_pio_alloc_size = blk_size; edcp->edc_max_piobuf_count = (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN, MC_CMD_ENTITY_RESET_OUT_LEN)]; efx_rc_t rc; /* hunt_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail2; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ENTITY_RESET; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN; MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG, ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } /* Clear RX/TX DMA queue errors */ enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_init( __in efx_nic_t *enp) { efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_vi_count, max_vi_count; uint32_t vi_count, vi_base; uint32_t i; uint32_t retry; uint32_t delay_us; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* Enable reporting of some events (e.g. link change) */ if ((rc = efx_mcdi_log_ctrl(enp)) != 0) goto fail1; /* Allocate (optional) on-chip PIO buffers */ hunt_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count); /* * For best performance, PIO writes should use a write-combined * (WC) memory mapping. Using a separate WC mapping for the PIO * aperture of each VI would be a burden to drivers (and not * possible if the host page size is >4Kbyte). * * To avoid this we use a single uncached (UC) mapping for VI * register access, and a single WC mapping for extra VIs used * for PIO writes. * * Each piobuf must be linked to a VI in the WC mapping, and to * each VI that is using a sub-allocated block from the piobuf. */ min_vi_count = edcp->edc_min_vi_count; max_vi_count = edcp->edc_max_vi_count + enp->en_u.hunt.enu_piobuf_count; /* Ensure that the previously attached driver's VIs are freed */ if ((rc = efx_mcdi_free_vis(enp)) != 0) goto fail2; /* * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this * fails then retrying the request for fewer VI resources may succeed. */ vi_count = 0; if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count, &vi_base, &vi_count)) != 0) goto fail3; EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count); if (vi_count < min_vi_count) { rc = ENOMEM; goto fail4; } enp->en_u.hunt.enu_vi_base = vi_base; enp->en_u.hunt.enu_vi_count = vi_count; if (vi_count < min_vi_count + enp->en_u.hunt.enu_piobuf_count) { /* Not enough extra VIs to map piobufs */ hunt_nic_free_piobufs(enp); } enp->en_u.hunt.enu_pio_write_vi_base = vi_count - enp->en_u.hunt.enu_piobuf_count; /* Save UC memory mapping details */ enp->en_u.hunt.enu_uc_mem_map_offset = 0; if (enp->en_u.hunt.enu_piobuf_count > 0) { enp->en_u.hunt.enu_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_u.hunt.enu_pio_write_vi_base); } else { enp->en_u.hunt.enu_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_u.hunt.enu_vi_count); } /* Save WC memory mapping details */ enp->en_u.hunt.enu_wc_mem_map_offset = enp->en_u.hunt.enu_uc_mem_map_offset + enp->en_u.hunt.enu_uc_mem_map_size; enp->en_u.hunt.enu_wc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_u.hunt.enu_piobuf_count); /* Link piobufs to extra VIs in WC mapping */ if (enp->en_u.hunt.enu_piobuf_count > 0) { for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) { rc = efx_mcdi_link_piobuf(enp, enp->en_u.hunt.enu_pio_write_vi_base + i, enp->en_u.hunt.enu_piobuf_handle[i]); if (rc != 0) break; } } /* * Allocate a vAdaptor attached to our upstream vPort/pPort. * * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF * driver has yet to bring up the EVB port. See bug 56147. In this case, * retry the request several times after waiting a while. The wait time * between retries starts small (10ms) and exponentially increases. * Total wait time is a little over two seconds. Retry logic in the * client driver may mean this whole loop is repeated if it continues to * fail. */ retry = 0; delay_us = 10000; while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) || (rc != ENOENT)) { /* * Do not retry alloc for PF, or for other errors on * a VF. */ goto fail5; } /* VF startup before PF is ready. Retry allocation. */ if (retry > 5) { /* Too many attempts */ rc = EINVAL; goto fail6; } EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry); EFSYS_SLEEP(delay_us); retry++; if (delay_us < 500000) delay_us <<= 2; } enp->en_vport_id = EVB_PORT_ID_ASSIGNED; return (0); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); hunt_nic_free_piobufs(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t hunt_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp) { EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* * Report VIs that the client driver can use. * Do not include VIs used for PIO buffer writes. */ *vi_countp = enp->en_u.hunt.enu_pio_write_vi_base; return (0); } __checkReturn efx_rc_t hunt_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_HUNTINGTON); /* * TODO: Specify host memory mapping alignment and granularity * in efx_drv_limits_t so that they can be taken into account * when allocating extra VIs for PIO writes. */ switch (region) { case EFX_REGION_VI: /* UC mapped memory BAR region for VI registers */ *offsetp = enp->en_u.hunt.enu_uc_mem_map_offset; *sizep = enp->en_u.hunt.enu_uc_mem_map_size; break; case EFX_REGION_PIO_WRITE_VI: /* WC mapped memory BAR region for piobuf writes */ *offsetp = enp->en_u.hunt.enu_wc_mem_map_offset; *sizep = enp->en_u.hunt.enu_wc_mem_map_size; break; default: rc = EINVAL; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void hunt_nic_fini( __in efx_nic_t *enp) { uint32_t i; efx_rc_t rc; (void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id); enp->en_vport_id = 0; /* Unlink piobufs from extra VIs in WC mapping */ if (enp->en_u.hunt.enu_piobuf_count > 0) { for (i = 0; i < enp->en_u.hunt.enu_piobuf_count; i++) { rc = efx_mcdi_unlink_piobuf(enp, enp->en_u.hunt.enu_pio_write_vi_base + i); if (rc != 0) break; } } hunt_nic_free_piobufs(enp); (void) efx_mcdi_free_vis(enp); enp->en_u.hunt.enu_vi_count = 0; } void hunt_nic_unprobe( __in efx_nic_t *enp) { #if EFSYS_OPT_MON_STATS mcdi_mon_cfg_free(enp); #endif /* EFSYS_OPT_MON_STATS */ (void) efx_mcdi_drv_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t hunt_nic_register_test( __in efx_nic_t *enp) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(enp)) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_HUNTINGTON */ Index: head/sys/dev/sfxge/common/siena_nic.c =================================================================== --- head/sys/dev/sfxge/common/siena_nic.c (revision 291921) +++ head/sys/dev/sfxge/common/siena_nic.c (revision 291922) @@ -1,581 +1,582 @@ /*- * Copyright (c) 2009-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efsys.h" #include "efx.h" #include "efx_impl.h" #include "mcdi_mon.h" #if EFSYS_OPT_SIENA static __checkReturn efx_rc_t siena_nic_get_partn_mask( __in efx_nic_t *enp, __out unsigned int *maskp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_NVRAM_TYPES_IN_LEN, MC_CMD_NVRAM_TYPES_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_NVRAM_TYPES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_NVRAM_TYPES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_NVRAM_TYPES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_NVRAM_TYPES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *maskp = MCDI_OUT_DWORD(req, NVRAM_TYPES_OUT_TYPES); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_PCIE_TUNE __checkReturn efx_rc_t siena_nic_pcie_extended_sync( __in efx_nic_t *enp) { efx_rc_t rc; if ((rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG17230, B_TRUE, NULL) != 0)) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_PCIE_TUNE */ static __checkReturn efx_rc_t siena_board_cfg( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint8_t mac_addr[6]; efx_dword_t capabilities; uint32_t board_type; uint32_t nevq, nrxq, ntxq; efx_rc_t rc; /* External port identifier using one-based port numbering */ encp->enc_external_port = (uint8_t)enp->en_mcdi.em_emip.emi_port; /* Board configuration */ if ((rc = efx_mcdi_get_board_cfg(enp, &board_type, &capabilities, mac_addr)) != 0) goto fail1; EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr); encp->enc_board_type = board_type; /* Additional capabilities */ encp->enc_clk_mult = 1; if (EFX_DWORD_FIELD(capabilities, MC_CMD_CAPABILITIES_TURBO)) { enp->en_features |= EFX_FEATURE_TURBO; if (EFX_DWORD_FIELD(capabilities, MC_CMD_CAPABILITIES_TURBO_ACTIVE)) { encp->enc_clk_mult = 2; } } encp->enc_evq_timer_quantum_ns = EFX_EVQ_SIENA_TIMER_QUANTUM_NS / encp->enc_clk_mult; encp->enc_evq_timer_max_us = (encp->enc_evq_timer_quantum_ns << FRF_CZ_TC_TIMER_VAL_WIDTH) / 1000; /* When hash header insertion is enabled, Siena inserts 16 bytes */ encp->enc_rx_prefix_size = 16; /* Alignment for receive packet DMA buffers */ encp->enc_rx_buf_align_start = 1; encp->enc_rx_buf_align_end = 1; /* Alignment for WPTR updates */ encp->enc_rx_push_align = 1; /* Resource limits */ rc = efx_mcdi_get_resource_limits(enp, &nevq, &nrxq, &ntxq); if (rc != 0) { if (rc != ENOTSUP) goto fail2; nevq = 1024; nrxq = EFX_RXQ_LIMIT_TARGET; ntxq = EFX_TXQ_LIMIT_TARGET; } encp->enc_evq_limit = nevq; encp->enc_rxq_limit = MIN(EFX_RXQ_LIMIT_TARGET, nrxq); encp->enc_txq_limit = MIN(EFX_TXQ_LIMIT_TARGET, ntxq); encp->enc_buftbl_limit = SIENA_SRAM_ROWS - (encp->enc_txq_limit * EFX_TXQ_DC_NDESCS(EFX_TXQ_DC_SIZE)) - (encp->enc_rxq_limit * EFX_RXQ_DC_NDESCS(EFX_RXQ_DC_SIZE)); encp->enc_hw_tx_insert_vlan_enabled = B_FALSE; encp->enc_fw_assisted_tso_enabled = B_FALSE; + encp->enc_allow_set_mac_with_installed_filters = B_TRUE; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t siena_phy_cfg( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_rc_t rc; /* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */ if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0) goto fail1; #if EFSYS_OPT_PHY_STATS /* Convert the MCDI statistic mask into the EFX_PHY_STAT mask */ siena_phy_decode_stats(enp, encp->enc_mcdi_phy_stat_mask, NULL, &encp->enc_phy_stat_mask, NULL); #endif /* EFSYS_OPT_PHY_STATS */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nic_probe( __in efx_nic_t *enp) { efx_port_t *epp = &(enp->en_port); efx_nic_cfg_t *encp = &(enp->en_nic_cfg); siena_link_state_t sls; unsigned int mask; efx_oword_t oword; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* Test BIU */ if ((rc = efx_nic_biu_test(enp)) != 0) goto fail1; /* Clear the region register */ EFX_POPULATE_OWORD_4(oword, FRF_AZ_ADR_REGION0, 0, FRF_AZ_ADR_REGION1, (1 << 16), FRF_AZ_ADR_REGION2, (2 << 16), FRF_AZ_ADR_REGION3, (3 << 16)); EFX_BAR_WRITEO(enp, FR_AZ_ADR_REGION_REG, &oword); /* Read clear any assertion state */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail2; /* Exit the assertion handler */ if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail3; /* Wrestle control from the BMC */ if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0) goto fail4; if ((rc = siena_board_cfg(enp)) != 0) goto fail5; if ((rc = siena_phy_cfg(enp)) != 0) goto fail6; /* Obtain the default PHY advertised capabilities */ if ((rc = siena_nic_reset(enp)) != 0) goto fail7; if ((rc = siena_phy_get_link(enp, &sls)) != 0) goto fail8; epp->ep_default_adv_cap_mask = sls.sls_adv_cap_mask; epp->ep_adv_cap_mask = sls.sls_adv_cap_mask; #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM if ((rc = siena_nic_get_partn_mask(enp, &mask)) != 0) goto fail9; enp->en_u.siena.enu_partn_mask = mask; #endif #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0) goto fail10; #endif #if EFSYS_OPT_LOOPBACK if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0) goto fail11; #endif #if EFSYS_OPT_MON_STATS if ((rc = mcdi_mon_cfg_build(enp)) != 0) goto fail12; #endif encp->enc_features = enp->en_features; return (0); #if EFSYS_OPT_MON_STATS fail12: EFSYS_PROBE(fail12); #endif #if EFSYS_OPT_LOOPBACK fail11: EFSYS_PROBE(fail11); #endif #if EFSYS_OPT_MAC_STATS fail10: EFSYS_PROBE(fail10); #endif #if EFSYS_OPT_VPD || EFSYS_OPT_NVRAM fail9: EFSYS_PROBE(fail9); #endif fail8: EFSYS_PROBE(fail8); fail7: EFSYS_PROBE(fail7); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t siena_nic_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* siena_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail2; /* * Bug24908: ENTITY_RESET_IN_LEN is non zero but zero may be supplied * for backwards compatibility with PORT_RESET_IN_LEN. */ EFX_STATIC_ASSERT(MC_CMD_ENTITY_RESET_OUT_LEN == 0); req.emr_cmd = MC_CMD_ENTITY_RESET; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (0); } static void siena_nic_rx_cfg( __in efx_nic_t *enp) { efx_oword_t oword; /* * RX_INGR_EN is always enabled on Siena, because we rely on * the RX parser to be resiliant to missing SOP/EOP. */ EFX_BAR_READO(enp, FR_AZ_RX_CFG_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_BZ_RX_INGR_EN, 1); EFX_BAR_WRITEO(enp, FR_AZ_RX_CFG_REG, &oword); /* Disable parsing of additional 802.1Q in Q packets */ EFX_BAR_READO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_CZ_RX_FILTER_ALL_VLAN_ETHERTYPES, 0); EFX_BAR_WRITEO(enp, FR_AZ_RX_FILTER_CTL_REG, &oword); } static void siena_nic_usrev_dis( __in efx_nic_t *enp) { efx_oword_t oword; EFX_POPULATE_OWORD_1(oword, FRF_CZ_USREV_DIS, 1); EFX_BAR_WRITEO(enp, FR_CZ_USR_EV_CFG, &oword); } __checkReturn efx_rc_t siena_nic_init( __in efx_nic_t *enp) { efx_rc_t rc; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); /* Enable reporting of some events (e.g. link change) */ if ((rc = efx_mcdi_log_ctrl(enp)) != 0) goto fail1; siena_sram_init(enp); /* Configure Siena's RX block */ siena_nic_rx_cfg(enp); /* Disable USR_EVents for now */ siena_nic_usrev_dis(enp); /* bug17057: Ensure set_link is called */ if ((rc = siena_phy_reconfigure(enp)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void siena_nic_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } void siena_nic_unprobe( __in efx_nic_t *enp) { #if EFSYS_OPT_MON_STATS mcdi_mon_cfg_free(enp); #endif /* EFSYS_OPT_MON_STATS */ (void) efx_mcdi_drv_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG static efx_register_set_t __siena_registers[] = { { FR_AZ_ADR_REGION_REG_OFST, 0, 1 }, { FR_CZ_USR_EV_CFG_OFST, 0, 1 }, { FR_AZ_RX_CFG_REG_OFST, 0, 1 }, { FR_AZ_TX_CFG_REG_OFST, 0, 1 }, { FR_AZ_TX_RESERVED_REG_OFST, 0, 1 }, { FR_AZ_SRM_TX_DC_CFG_REG_OFST, 0, 1 }, { FR_AZ_RX_DC_CFG_REG_OFST, 0, 1 }, { FR_AZ_RX_DC_PF_WM_REG_OFST, 0, 1 }, { FR_AZ_DP_CTRL_REG_OFST, 0, 1 }, { FR_BZ_RX_RSS_TKEY_REG_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG1_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG2_OFST, 0, 1}, { FR_CZ_RX_RSS_IPV6_REG3_OFST, 0, 1} }; static const uint32_t __siena_register_masks[] = { 0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x000103FF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000, 0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF, 0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF, 0x001FFFFF, 0x00000000, 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x000003FF, 0x00000000, 0x00000000, 0x00000000, 0x00000FFF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000 }; static efx_register_set_t __siena_tables[] = { { FR_AZ_RX_FILTER_TBL0_OFST, FR_AZ_RX_FILTER_TBL0_STEP, FR_AZ_RX_FILTER_TBL0_ROWS }, { FR_CZ_RX_MAC_FILTER_TBL0_OFST, FR_CZ_RX_MAC_FILTER_TBL0_STEP, FR_CZ_RX_MAC_FILTER_TBL0_ROWS }, { FR_AZ_RX_DESC_PTR_TBL_OFST, FR_AZ_RX_DESC_PTR_TBL_STEP, FR_CZ_RX_DESC_PTR_TBL_ROWS }, { FR_AZ_TX_DESC_PTR_TBL_OFST, FR_AZ_TX_DESC_PTR_TBL_STEP, FR_CZ_TX_DESC_PTR_TBL_ROWS }, { FR_AZ_TIMER_TBL_OFST, FR_AZ_TIMER_TBL_STEP, FR_CZ_TIMER_TBL_ROWS }, { FR_CZ_TX_FILTER_TBL0_OFST, FR_CZ_TX_FILTER_TBL0_STEP, FR_CZ_TX_FILTER_TBL0_ROWS }, { FR_CZ_TX_MAC_FILTER_TBL0_OFST, FR_CZ_TX_MAC_FILTER_TBL0_STEP, FR_CZ_TX_MAC_FILTER_TBL0_ROWS } }; static const uint32_t __siena_table_masks[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000003FF, 0xFFFF0FFF, 0xFFFFFFFF, 0x00000E7F, 0x00000000, 0xFFFFFFFE, 0x0FFFFFFF, 0x01800000, 0x00000000, 0xFFFFFFFE, 0x0FFFFFFF, 0x0C000000, 0x00000000, 0x3FFFFFFF, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x000013FF, 0xFFFF07FF, 0xFFFFFFFF, 0x0000007F, 0x00000000, }; __checkReturn efx_rc_t siena_nic_register_test( __in efx_nic_t *enp) { efx_register_set_t *rsp; const uint32_t *dwordp; unsigned int nitems; unsigned int count; efx_rc_t rc; /* Fill out the register mask entries */ EFX_STATIC_ASSERT(EFX_ARRAY_SIZE(__siena_register_masks) == EFX_ARRAY_SIZE(__siena_registers) * 4); nitems = EFX_ARRAY_SIZE(__siena_registers); dwordp = __siena_register_masks; for (count = 0; count < nitems; ++count) { rsp = __siena_registers + count; rsp->mask.eo_u32[0] = *dwordp++; rsp->mask.eo_u32[1] = *dwordp++; rsp->mask.eo_u32[2] = *dwordp++; rsp->mask.eo_u32[3] = *dwordp++; } /* Fill out the register table entries */ EFX_STATIC_ASSERT(EFX_ARRAY_SIZE(__siena_table_masks) == EFX_ARRAY_SIZE(__siena_tables) * 4); nitems = EFX_ARRAY_SIZE(__siena_tables); dwordp = __siena_table_masks; for (count = 0; count < nitems; ++count) { rsp = __siena_tables + count; rsp->mask.eo_u32[0] = *dwordp++; rsp->mask.eo_u32[1] = *dwordp++; rsp->mask.eo_u32[2] = *dwordp++; rsp->mask.eo_u32[3] = *dwordp++; } if ((rc = efx_nic_test_registers(enp, __siena_registers, EFX_ARRAY_SIZE(__siena_registers))) != 0) goto fail1; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BYTE_ALTERNATE, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail2; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BYTE_CHANGING, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail3; if ((rc = efx_nic_test_tables(enp, __siena_tables, EFX_PATTERN_BIT_SWEEP, EFX_ARRAY_SIZE(__siena_tables))) != 0) goto fail4; return (0); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_SIENA */