Index: stable/10/sys/dev/nvme/nvme_ns.c =================================================================== --- stable/10/sys/dev/nvme/nvme_ns.c (revision 291212) +++ stable/10/sys/dev/nvme/nvme_ns.c (revision 291213) @@ -1,563 +1,566 @@ /*- * Copyright (C) 2012-2013 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" static void nvme_bio_child_inbed(struct bio *parent, int bio_error); static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl); static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t alignment); static void nvme_free_child_bios(int num_bios, struct bio **child_bios); static struct bio ** nvme_allocate_child_bios(int num_bios); static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios); static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment); static int nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_namespace *ns; struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ns = cdev->si_drv1; ctrlr = ns->ctrlr; switch (cmd) { case NVME_IO_TEST: case NVME_BIO_TEST: nvme_ns_test(ns, cmd, arg); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id, 1 /* is_user_buffer */, 0 /* is_admin_cmd */)); case DIOCGMEDIASIZE: *(off_t *)arg = (off_t)nvme_ns_get_size(ns); break; case DIOCGSECTORSIZE: *(u_int *)arg = nvme_ns_get_sector_size(ns); break; default: return (ENOTTY); } return (0); } static int nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { int error = 0; if (flags & FWRITE) error = securelevel_gt(td->td_ucred, 0); return (error); } static int nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused, struct thread *td) { return (0); } static void nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl) { struct bio *bp = arg; /* * TODO: add more extensive translation of NVMe status codes * to different bio error codes (i.e. EIO, EINVAL, etc.) */ if (nvme_completion_is_error(cpl)) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; } else bp->bio_resid = 0; biodone(bp); } static void nvme_ns_strategy(struct bio *bp) { struct nvme_namespace *ns; int err; ns = bp->bio_dev->si_drv1; err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done); if (err) { bp->bio_error = err; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; biodone(bp); } } static struct cdevsw nvme_ns_cdevsw = { .d_version = D_VERSION, .d_flags = D_DISK, .d_read = physread, .d_write = physwrite, .d_open = nvme_ns_open, .d_close = nvme_ns_close, .d_strategy = nvme_ns_strategy, .d_ioctl = nvme_ns_ioctl }; uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns) { return ns->ctrlr->max_xfer_size; } uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns) { return (1 << ns->data.lbaf[ns->data.flbas.format].lbads); } uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns) { return (ns->data.nsze); } uint64_t nvme_ns_get_size(struct nvme_namespace *ns) { return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns)); } uint32_t nvme_ns_get_flags(struct nvme_namespace *ns) { return (ns->flags); } const char * nvme_ns_get_serial_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.sn); } const char * nvme_ns_get_model_number(struct nvme_namespace *ns) { return ((const char *)ns->ctrlr->cdata.mn); } const struct nvme_namespace_data * nvme_ns_get_data(struct nvme_namespace *ns) { return (&ns->data); } static void nvme_ns_bio_done(void *arg, const struct nvme_completion *status) { struct bio *bp = arg; nvme_cb_fn_t bp_cb_fn; bp_cb_fn = bp->bio_driver1; if (bp->bio_driver2) free(bp->bio_driver2, M_NVME); if (nvme_completion_is_error(status)) { bp->bio_flags |= BIO_ERROR; if (bp->bio_error == 0) bp->bio_error = EIO; } if ((bp->bio_flags & BIO_ERROR) == 0) bp->bio_resid = 0; else bp->bio_resid = bp->bio_bcount; bp_cb_fn(bp, status); } static void nvme_bio_child_inbed(struct bio *parent, int bio_error) { struct nvme_completion parent_cpl; - int inbed; + int children, inbed; if (bio_error != 0) { parent->bio_flags |= BIO_ERROR; parent->bio_error = bio_error; } /* * atomic_fetchadd will return value before adding 1, so we still - * must add 1 to get the updated inbed number. + * must add 1 to get the updated inbed number. Save bio_children + * before incrementing to guard against race conditions when + * two children bios complete on different queues. */ + children = atomic_load_acq_int(&parent->bio_children); inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1; - if (inbed == parent->bio_children) { + if (inbed == children) { bzero(&parent_cpl, sizeof(parent_cpl)); if (parent->bio_flags & BIO_ERROR) parent_cpl.status.sc = NVME_SC_DATA_TRANSFER_ERROR; nvme_ns_bio_done(parent, &parent_cpl); } } static void nvme_bio_child_done(void *arg, const struct nvme_completion *cpl) { struct bio *child = arg; struct bio *parent; int bio_error; parent = child->bio_parent; g_destroy_bio(child); bio_error = nvme_completion_is_error(cpl) ? EIO : 0; nvme_bio_child_inbed(parent, bio_error); } static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align) { uint32_t num_segs, offset, remainder; if (align == 0) return (1); KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n")); num_segs = size / align; remainder = size & (align - 1); offset = addr & (align - 1); if (remainder > 0 || offset > 0) num_segs += 1 + (remainder + offset - 1) / align; return (num_segs); } static void nvme_free_child_bios(int num_bios, struct bio **child_bios) { int i; for (i = 0; i < num_bios; i++) { if (child_bios[i] != NULL) g_destroy_bio(child_bios[i]); } free(child_bios, M_NVME); } static struct bio ** nvme_allocate_child_bios(int num_bios) { struct bio **child_bios; int err = 0, i; child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT); if (child_bios == NULL) return (NULL); for (i = 0; i < num_bios; i++) { child_bios[i] = g_new_bio(); if (child_bios[i] == NULL) err = ENOMEM; } if (err == ENOMEM) { nvme_free_child_bios(num_bios, child_bios); return (NULL); } return (child_bios); } static struct bio ** nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios) { struct bio **child_bios; struct bio *child; uint64_t cur_offset; caddr_t data; uint32_t rem_bcount; int i; #ifdef NVME_UNMAPPED_BIO_SUPPORT struct vm_page **ma; uint32_t ma_offset; #endif *num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, alignment); child_bios = nvme_allocate_child_bios(*num_bios); if (child_bios == NULL) return (NULL); bp->bio_children = *num_bios; bp->bio_inbed = 0; cur_offset = bp->bio_offset; rem_bcount = bp->bio_bcount; data = bp->bio_data; #ifdef NVME_UNMAPPED_BIO_SUPPORT ma_offset = bp->bio_ma_offset; ma = bp->bio_ma; #endif for (i = 0; i < *num_bios; i++) { child = child_bios[i]; child->bio_parent = bp; child->bio_cmd = bp->bio_cmd; child->bio_offset = cur_offset; child->bio_bcount = min(rem_bcount, alignment - (cur_offset & (alignment - 1))); child->bio_flags = bp->bio_flags; #ifdef NVME_UNMAPPED_BIO_SUPPORT if (bp->bio_flags & BIO_UNMAPPED) { child->bio_ma_offset = ma_offset; child->bio_ma = ma; child->bio_ma_n = nvme_get_num_segments(child->bio_ma_offset, child->bio_bcount, PAGE_SIZE); ma_offset = (ma_offset + child->bio_bcount) & PAGE_MASK; ma += child->bio_ma_n; if (ma_offset != 0) ma -= 1; } else #endif { child->bio_data = data; data += child->bio_bcount; } cur_offset += child->bio_bcount; rem_bcount -= child->bio_bcount; } return (child_bios); } static int nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp, uint32_t alignment) { struct bio *child; struct bio **child_bios; int err, i, num_bios; child_bios = nvme_construct_child_bios(bp, alignment, &num_bios); if (child_bios == NULL) return (ENOMEM); for (i = 0; i < num_bios; i++) { child = child_bios[i]; err = nvme_ns_bio_process(ns, child, nvme_bio_child_done); if (err != 0) { nvme_bio_child_inbed(bp, err); g_destroy_bio(child); } } free(child_bios, M_NVME); return (0); } int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn) { struct nvme_dsm_range *dsm_range; uint32_t num_bios; int err; bp->bio_driver1 = cb_fn; if (ns->stripesize > 0 && (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) { num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount, ns->stripesize); if (num_bios > 1) return (nvme_ns_split_bio(ns, bp, ns->stripesize)); } switch (bp->bio_cmd) { case BIO_READ: err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_WRITE: err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp); break; case BIO_FLUSH: err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp); break; case BIO_DELETE: dsm_range = malloc(sizeof(struct nvme_dsm_range), M_NVME, M_ZERO | M_WAITOK); dsm_range->length = bp->bio_bcount/nvme_ns_get_sector_size(ns); dsm_range->starting_lba = bp->bio_offset/nvme_ns_get_sector_size(ns); bp->bio_driver2 = dsm_range; err = nvme_ns_cmd_deallocate(ns, dsm_range, 1, nvme_ns_bio_done, bp); if (err != 0) free(dsm_range, M_NVME); break; default: err = EIO; break; } return (err); } int nvme_ns_construct(struct nvme_namespace *ns, uint16_t id, struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; int unit; ns->ctrlr = ctrlr; ns->id = id; ns->stripesize = 0; if (pci_get_devid(ctrlr->dev) == 0x09538086 && ctrlr->cdata.vs[3] != 0) ns->stripesize = (1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size; /* * Namespaces are reconstructed after a controller reset, so check * to make sure we only call mtx_init once on each mtx. * * TODO: Move this somewhere where it gets called at controller * construction time, which is not invoked as part of each * controller reset. */ if (!mtx_initialized(&ns->lock)) mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF); status.done = FALSE; nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data, nvme_completion_poll_cb, &status); while (status.done == FALSE) DELAY(5); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_namespace failed\n"); return (ENXIO); } /* * Note: format is a 0-based value, so > is appropriate here, * not >=. */ if (ns->data.flbas.format > ns->data.nlbaf) { printf("lba format %d exceeds number supported (%d)\n", ns->data.flbas.format, ns->data.nlbaf+1); return (1); } if (ctrlr->cdata.oncs.dsm) ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED; if (ctrlr->cdata.vwc.present) ns->flags |= NVME_NS_FLUSH_SUPPORTED; /* * cdev may have already been created, if we are reconstructing the * namespace after a controller-level reset. */ if (ns->cdev != NULL) return (0); /* * Namespace IDs start at 1, so we need to subtract 1 to create a * correct unit number. */ unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1; /* * MAKEDEV_ETERNAL was added in r210923, for cdevs that will never * be destroyed. This avoids refcounting on the cdev object. * That should be OK case here, as long as we're not supporting PCIe * surprise removal nor namespace deletion. */ #ifdef MAKEDEV_ETERNAL_KLD ns->cdev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &nvme_ns_cdevsw, unit, NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", device_get_unit(ctrlr->dev), ns->id); #else ns->cdev = make_dev_credf(0, &nvme_ns_cdevsw, unit, NULL, UID_ROOT, GID_WHEEL, 0600, "nvme%dns%d", device_get_unit(ctrlr->dev), ns->id); #endif #ifdef NVME_UNMAPPED_BIO_SUPPORT ns->cdev->si_flags |= SI_UNMAPPED; #endif if (ns->cdev != NULL) ns->cdev->si_drv1 = ns; return (0); } void nvme_ns_destruct(struct nvme_namespace *ns) { if (ns->cdev != NULL) destroy_dev(ns->cdev); }