Index: head/sys/arm64/arm64/mp_machdep.c =================================================================== --- head/sys/arm64/arm64/mp_machdep.c (revision 290271) +++ head/sys/arm64/arm64/mp_machdep.c (revision 290272) @@ -1,437 +1,440 @@ /*- * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_kstack_pages.h" #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif #ifdef FDT #include #include #endif #include boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *); extern struct pcpu __pcpu[]; static enum { CPUS_UNKNOWN, #ifdef FDT CPUS_FDT, #endif } cpu_enum_method; static device_identify_t arm64_cpu_identify; static device_probe_t arm64_cpu_probe; static device_attach_t arm64_cpu_attach; static int ipi_handler(void *arg); struct mtx ap_boot_mtx; struct pcb stoppcbs[MAXCPU]; #ifdef INVARIANTS static uint32_t cpu_reg[MAXCPU][2]; #endif static device_t cpu_list[MAXCPU]; void mpentry(unsigned long cpuid); void init_secondary(uint64_t); uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16); /* Set to 1 once we're ready to let the APs out of the pen. */ volatile int aps_ready = 0; /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; static device_method_t arm64_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_identify, arm64_cpu_identify), DEVMETHOD(device_probe, arm64_cpu_probe), DEVMETHOD(device_attach, arm64_cpu_attach), DEVMETHOD_END }; static devclass_t arm64_cpu_devclass; static driver_t arm64_cpu_driver = { "arm64_cpu", arm64_cpu_methods, 0 }; DRIVER_MODULE(arm64_cpu, cpu, arm64_cpu_driver, arm64_cpu_devclass, 0, 0); static void arm64_cpu_identify(driver_t *driver, device_t parent) { if (device_find_child(parent, "arm64_cpu", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "arm64_cpu", -1) == NULL) device_printf(parent, "add child failed\n"); } static int arm64_cpu_probe(device_t dev) { u_int cpuid; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); + device_quiet(dev); return (0); } static int arm64_cpu_attach(device_t dev) { const uint32_t *reg; size_t reg_size; u_int cpuid; int i; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid)); reg = cpu_get_cpuid(dev, ®_size); if (reg == NULL) return (EINVAL); - device_printf(dev, "Found register:"); - for (i = 0; i < reg_size; i++) - printf(" %x", reg[i]); - printf("\n"); + if (bootverbose) { + device_printf(dev, "register <"); + for (i = 0; i < reg_size; i++) + printf("%s%x", (i == 0) ? "" : " ", reg[i]); + printf(">\n"); + } /* Set the device to start it later */ cpu_list[cpuid] = dev; return (0); } static void release_aps(void *dummy __unused) { int i; /* Setup the IPI handler */ for (i = 0; i < COUNT_IPI; i++) arm_setup_ipihandler(ipi_handler, i); atomic_store_rel_int(&aps_ready, 1); /* Wake up the other CPUs */ __asm __volatile("sev"); printf("Release APs\n"); for (i = 0; i < 2000; i++) { if (smp_started) return; DELAY(1000); } printf("APs not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); void init_secondary(uint64_t cpu) { struct pcpu *pcpup; int i; pcpup = &__pcpu[cpu]; /* * Set the pcpu pointer with a backup in tpidr_el1 to be * loaded when entering the kernel from userland. */ __asm __volatile( "mov x18, %0 \n" "msr tpidr_el1, %0" :: "r"(pcpup)); /* Spin until the BSP releases the APs */ while (!aps_ready) __asm __volatile("wfe"); /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pcpup->pc_curthread = pcpup->pc_idlethread; pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb; /* * Identify current CPU. This is necessary to setup * affinity registers and to provide support for * runtime chip identification. */ identify_cpu(); /* Configure the interrupt controller */ arm_init_secondary(); for (i = 0; i < COUNT_IPI; i++) arm_unmask_ipi(i); /* Start per-CPU event timers. */ cpu_initclocks_ap(); #ifdef VFP vfp_init(); #endif /* Enable interrupts */ intr_enable(); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); /* Enter the scheduler */ sched_throw(NULL); panic("scheduler returned us to init_secondary"); /* NOTREACHED */ } static int ipi_handler(void *arg) { u_int cpu, ipi; arg = (void *)((uintptr_t)arg & ~(1 << 16)); KASSERT((uintptr_t)arg < COUNT_IPI, ("Invalid IPI %ju", (uintptr_t)arg)); cpu = PCPU_GET(cpuid); ipi = (uintptr_t)arg; switch(ipi) { case IPI_AST: CTR0(KTR_SMP, "IPI_AST"); break; case IPI_PREEMPT: CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(curthread); break; case IPI_RENDEZVOUS: CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); break; case IPI_STOP: case IPI_STOP_HARD: CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD"); savectx(&stoppcbs[cpu]); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); CTR0(KTR_SMP, "IPI_STOP (restart)"); break; case IPI_HARDCLOCK: CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); break; default: panic("Unknown IPI %#0x on cpu %d", ipi, curcpu); } return (FILTER_HANDLED); } struct cpu_group * cpu_topo(void) { return (smp_topo_none()); } /* Determine if we running MP machine */ int cpu_mp_probe(void) { /* ARM64TODO: Read the u bit of mpidr_el1 to determine this */ return (1); } #ifdef FDT static boolean_t cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { uint64_t target_cpu; struct pcpu *pcpup; vm_paddr_t pa; int err; /* Check we are able to start this cpu */ if (id > mp_maxid) return (0); KASSERT(id < MAXCPU, ("Too mant CPUs")); KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size")); #ifdef INVARIANTS cpu_reg[id][0] = reg[0]; if (addr_size == 2) cpu_reg[id][1] = reg[1]; #endif /* We are already running on cpu 0 */ if (id == 0) return (1); pcpup = &__pcpu[id]; pcpu_init(pcpup, id, sizeof(struct pcpu)); dpcpu[id - 1] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE, M_WAITOK | M_ZERO); dpcpu_init(dpcpu[id - 1], id); target_cpu = reg[0]; if (addr_size == 2) { target_cpu <<= 32; target_cpu |= reg[1]; } printf("Starting CPU %u (%lx)\n", id, target_cpu); pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry); err = psci_cpu_on(target_cpu, pa, id); if (err != PSCI_RETVAL_SUCCESS) { /* Panic here if INVARIANTS are enabled */ KASSERT(0, ("Failed to start CPU %u (%lx)\n", id, target_cpu)); pcpu_destroy(pcpup); kmem_free(kernel_arena, (vm_offset_t)dpcpu[id - 1], DPCPU_SIZE); dpcpu[id - 1] = NULL; /* Notify the user that the CPU failed to start */ printf("Failed to start CPU %u (%lx)\n", id, target_cpu); } else CPU_SET(id, &all_cpus); return (1); } #endif /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); CPU_SET(0, &all_cpus); switch(cpu_enum_method) { #ifdef FDT case CPUS_FDT: ofw_cpu_early_foreach(cpu_init_fdt, true); break; #endif case CPUS_UNKNOWN: break; } } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { } void cpu_mp_setmaxid(void) { #ifdef FDT int cores; cores = ofw_cpu_early_foreach(NULL, false); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the device tree\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; cpu_enum_method = CPUS_FDT; return; } #endif if (bootverbose) printf("No CPU data, limiting to 1 core\n"); mp_ncpus = 1; mp_maxid = 0; }