Index: head/gnu/usr.bin/gzip/match.S =================================================================== --- head/gnu/usr.bin/gzip/match.S (revision 28904) +++ head/gnu/usr.bin/gzip/match.S (revision 28905) @@ -1,379 +1,379 @@ /* match.s -- optional optimized asm version of longest match in deflate.c * Copyright (C) 1992-1993 Jean-loup Gailly * This is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License, see the file COPYING. * * The 68020 version has been written by Francesco Potorti` * with adaptations by Carsten Steger , * Andreas Schwab and * Kristoffer Eriksson */ -/* $Id$ */ +/* $Id: match.S,v 1.5 1997/02/22 15:45:59 peter Exp $ */ /* Preprocess with -DNO_UNDERLINE if your C compiler does not prefix * external symbols with an underline character '_'. */ -#ifdef NO_UNDERLINE +#ifdef __ELF__ /* NO_UNDERLINE */ # define _prev prev # define _window window # define _match_start match_start # define _prev_length prev_length # define _good_match good_match # define _nice_match nice_match # define _strstart strstart # define _max_chain_length max_chain_length # define _match_init match_init # define _longest_match longest_match #endif #ifdef DYN_ALLOC error: DYN_ALLOC not yet supported in match.s #endif #if defined(i386) || defined(_I386) /* This version is for 386 Unix or OS/2 in 32 bit mode. * Warning: it uses the AT&T syntax: mov source,dest * This file is only optional. If you want to force the C version, * add -DNO_ASM to CFLAGS in Makefile and set OBJA to an empty string. * If you have reduced WSIZE in gzip.h, then change its value below. * This version assumes static allocation of the arrays (-DDYN_ALLOC not used). */ .file "match.S" #define MAX_MATCH 258 #define MAX_MATCH2 $128 /* MAX_MATCH/2-1 */ #define MIN_MATCH 3 #define WSIZE $32768 #define MAX_DIST WSIZE - MAX_MATCH - MIN_MATCH - 1 .globl _match_init .globl _longest_match .text _match_init: ret /*----------------------------------------------------------------------- * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 */ _longest_match: /* int longest_match(cur_match) */ #define cur_match 20(%esp) /* return address */ /* esp+16 */ push %ebp /* esp+12 */ push %edi /* esp+8 */ push %esi /* esp+4 */ push %ebx /* esp */ /* * match equ esi * scan equ edi * chain_length equ ebp * best_len equ ebx * limit equ edx */ mov cur_match,%esi mov _max_chain_length,%ebp /* chain_length = max_chain_length */ mov _strstart,%edi mov %edi,%edx sub MAX_DIST,%edx /* limit = strstart-MAX_DIST */ jae limit_ok sub %edx,%edx /* limit = NIL */ limit_ok: add $2+_window,%edi /* edi = offset(window+strstart+2) */ mov _prev_length,%ebx /* best_len = prev_length */ movw -3(%ebx,%edi),%ax /* ax = scan[best_len-1..best_len] */ movw -2(%edi),%cx /* cx = scan[0..1] */ cmp _good_match,%ebx /* do we have a good match already? */ jb do_scan shr $2,%ebp /* chain_length >>= 2 */ jmp do_scan .align 4 long_loop: /* at this point, edi == scan+2, esi == cur_match */ movw -3(%ebx,%edi),%ax /* ax = scan[best_len-1..best_len] */ movw -2(%edi),%cx /* cx = scan[0..1] */ short_loop: /* * at this point, di == scan+2, si == cur_match, * ax = scan[best_len-1..best_len] and cx = scan[0..1] */ and WSIZE-1, %esi movw _prev(%esi,%esi),%si /* cur_match = prev[cur_match] */ /* top word of esi is still 0 */ cmp %edx,%esi /* cur_match <= limit ? */ jbe the_end dec %ebp /* --chain_length */ jz the_end do_scan: cmpw _window-1(%ebx,%esi),%ax/* check match at best_len-1 */ jne short_loop cmpw _window(%esi),%cx /* check min_match_length match */ jne short_loop lea _window+2(%esi),%esi /* si = match */ mov %edi,%eax /* ax = scan+2 */ mov MAX_MATCH2,%ecx /* scan for at most MAX_MATCH bytes */ rep; cmpsw /* loop until mismatch */ je maxmatch /* match of length MAX_MATCH? */ mismatch: movb -2(%edi),%cl /* mismatch on first or second byte? */ subb -2(%esi),%cl /* cl = 0 if first bytes equal */ xchg %edi,%eax /* edi = scan+2, eax = end of scan */ sub %edi,%eax /* eax = len */ sub %eax,%esi /* esi = cur_match + 2 + offset(window) */ sub $2+_window,%esi /* esi = cur_match */ subb $1,%cl /* set carry if cl == 0 (cannot use DEC) */ adc $0,%eax /* eax = carry ? len+1 : len */ cmp %ebx,%eax /* len > best_len ? */ jle long_loop mov %esi,_match_start /* match_start = cur_match */ mov %eax,%ebx /* ebx = best_len = len */ cmp _nice_match,%eax /* len >= nice_match ? */ jl long_loop the_end: mov %ebx,%eax /* result = eax = best_len */ pop %ebx pop %esi pop %edi pop %ebp ret maxmatch: cmpsb jmp mismatch #else /* ======================== 680x0 version ================================= */ #if defined(m68k)||defined(mc68k)||defined(__mc68000__)||defined(__MC68000__) # ifndef mc68000 # define mc68000 # endif #endif #if defined(__mc68020__) || defined(__MC68020__) || defined(sysV68) # ifndef mc68020 # define mc68020 # endif #endif #if defined(mc68020) || defined(mc68000) #if (defined(mc68020) || defined(NeXT)) && !defined(UNALIGNED_OK) # define UNALIGNED_OK #endif #ifdef sysV68 /* Try Motorola Delta style */ # define GLOBAL(symbol) global symbol # define TEXT text # define FILE(filename) file filename # define invert_maybe(src,dst) dst,src # define imm(data) &data # define reg(register) %register # define addl add.l # define addql addq.l # define blos blo.b # define bhis bhi.b # define bras bra.b # define clrl clr.l # define cmpmb cmpm.b # define cmpw cmp.w # define cmpl cmp.l # define lslw lsl.w # define lsrl lsr.l # define movel move.l # define movew move.w # define moveb move.b # define moveml movem.l # define subl sub.l # define subw sub.w # define subql subq.l # define IndBase(bd,An) (bd,An) # define IndBaseNdxl(bd,An,Xn) (bd,An,Xn.l) # define IndBaseNdxw(bd,An,Xn) (bd,An,Xn.w) # define predec(An) -(An) # define postinc(An) (An)+ #else /* default style (Sun 3, NeXT, Amiga, Atari) */ # define GLOBAL(symbol) .globl symbol # define TEXT .text # define FILE(filename) .even # define invert_maybe(src,dst) src,dst # if defined(sun) || defined(mc68k) # define imm(data) #data # else # define imm(data) \#data # endif # define reg(register) register # define blos bcss # if defined(sun) || defined(mc68k) # define movel movl # define movew movw # define moveb movb # endif # define IndBase(bd,An) An@(bd) # define IndBaseNdxl(bd,An,Xn) An@(bd,Xn:l) # define IndBaseNdxw(bd,An,Xn) An@(bd,Xn:w) # define predec(An) An@- # define postinc(An) An@+ #endif /* styles */ #define Best_Len reg(d0) /* unsigned */ #define Cur_Match reg(d1) /* Ipos */ #define Loop_Counter reg(d2) /* int */ #define Scan_Start reg(d3) /* unsigned short */ #define Scan_End reg(d4) /* unsigned short */ #define Limit reg(d5) /* IPos */ #define Chain_Length reg(d6) /* unsigned */ #define Scan_Test reg(d7) #define Scan reg(a0) /* *uch */ #define Match reg(a1) /* *uch */ #define Prev_Address reg(a2) /* *Pos */ #define Scan_Ini reg(a3) /* *uch */ #define Match_Ini reg(a4) /* *uch */ #define Stack_Pointer reg(sp) #define MAX_MATCH 258 #define MIN_MATCH 3 #define WSIZE 32768 #define MAX_DIST (WSIZE - MAX_MATCH - MIN_MATCH - 1) GLOBAL (_match_init) GLOBAL (_longest_match) TEXT FILE ("match.S") _match_init: rts /*----------------------------------------------------------------------- * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 */ /* int longest_match (cur_match) */ #ifdef UNALIGNED_OK # define pushreg 15928 /* d2-d6/a2-a4 */ # define popreg 7292 #else # define pushreg 16184 /* d2-d7/a2-a4 */ # define popreg 7420 #endif _longest_match: movel IndBase(4,Stack_Pointer),Cur_Match moveml imm(pushreg),predec(Stack_Pointer) movel _max_chain_length,Chain_Length movel _prev_length,Best_Len movel imm(_prev),Prev_Address movel imm(_window+MIN_MATCH),Match_Ini movel _strstart,Limit movel Match_Ini,Scan_Ini addl Limit,Scan_Ini subw imm(MAX_DIST),Limit bhis L__limit_ok clrl Limit L__limit_ok: cmpl invert_maybe(_good_match,Best_Len) blos L__length_ok lsrl imm(2),Chain_Length L__length_ok: subql imm(1),Chain_Length #ifdef UNALIGNED_OK movew IndBase(-MIN_MATCH,Scan_Ini),Scan_Start movew IndBaseNdxw(-MIN_MATCH-1,Scan_Ini,Best_Len),Scan_End #else moveb IndBase(-MIN_MATCH,Scan_Ini),Scan_Start lslw imm(8),Scan_Start moveb IndBase(-MIN_MATCH+1,Scan_Ini),Scan_Start moveb IndBaseNdxw(-MIN_MATCH-1,Scan_Ini,Best_Len),Scan_End lslw imm(8),Scan_End moveb IndBaseNdxw(-MIN_MATCH,Scan_Ini,Best_Len),Scan_End #endif bras L__do_scan L__long_loop: #ifdef UNALIGNED_OK movew IndBaseNdxw(-MIN_MATCH-1,Scan_Ini,Best_Len),Scan_End #else moveb IndBaseNdxw(-MIN_MATCH-1,Scan_Ini,Best_Len),Scan_End lslw imm(8),Scan_End moveb IndBaseNdxw(-MIN_MATCH,Scan_Ini,Best_Len),Scan_End #endif L__short_loop: lslw imm(1),Cur_Match movew IndBaseNdxl(0,Prev_Address,Cur_Match),Cur_Match cmpw invert_maybe(Limit,Cur_Match) dbls Chain_Length,L__do_scan bras L__return L__do_scan: movel Match_Ini,Match addl Cur_Match,Match #ifdef UNALIGNED_OK cmpw invert_maybe(IndBaseNdxw(-MIN_MATCH-1,Match,Best_Len),Scan_End) bne L__short_loop cmpw invert_maybe(IndBase(-MIN_MATCH,Match),Scan_Start) bne L__short_loop #else moveb IndBaseNdxw(-MIN_MATCH-1,Match,Best_Len),Scan_Test lslw imm(8),Scan_Test moveb IndBaseNdxw(-MIN_MATCH,Match,Best_Len),Scan_Test cmpw invert_maybe(Scan_Test,Scan_End) bne L__short_loop moveb IndBase(-MIN_MATCH,Match),Scan_Test lslw imm(8),Scan_Test moveb IndBase(-MIN_MATCH+1,Match),Scan_Test cmpw invert_maybe(Scan_Test,Scan_Start) bne L__short_loop #endif movew imm((MAX_MATCH-MIN_MATCH+1)-1),Loop_Counter movel Scan_Ini,Scan L__scan_loop: cmpmb postinc(Match),postinc(Scan) dbne Loop_Counter,L__scan_loop subl Scan_Ini,Scan addql imm(MIN_MATCH-1),Scan cmpl invert_maybe(Best_Len,Scan) bls L__short_loop movel Scan,Best_Len movel Cur_Match,_match_start cmpl invert_maybe(_nice_match,Best_Len) blos L__long_loop L__return: moveml postinc(Stack_Pointer),imm(popreg) rts #else error: this asm version is for 386 or 680x0 only #endif /* mc68000 || mc68020 */ #endif /* i386 || _I386 */ Index: head/gnu/usr.bin/gzip/trees.c =================================================================== --- head/gnu/usr.bin/gzip/trees.c (revision 28904) +++ head/gnu/usr.bin/gzip/trees.c (revision 28905) @@ -1,1075 +1,1075 @@ /* trees.c -- output deflated data using Huffman coding * Copyright (C) 1992-1993 Jean-loup Gailly * This is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License, see the file COPYING. */ /* * PURPOSE * * Encode various sets of source values using variable-length * binary code trees. * * DISCUSSION * * The PKZIP "deflation" process uses several Huffman trees. The more * common source values are represented by shorter bit sequences. * * Each code tree is stored in the ZIP file in a compressed form * which is itself a Huffman encoding of the lengths of * all the code strings (in ascending order by source values). * The actual code strings are reconstructed from the lengths in * the UNZIP process, as described in the "application note" * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program. * * REFERENCES * * Lynch, Thomas J. * Data Compression: Techniques and Applications, pp. 53-55. * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7. * * Storer, James A. * Data Compression: Methods and Theory, pp. 49-50. * Computer Science Press, 1988. ISBN 0-7167-8156-5. * * Sedgewick, R. * Algorithms, p290. * Addison-Wesley, 1983. ISBN 0-201-06672-6. * * INTERFACE * * void ct_init (ush *attr, int *methodp) * Allocate the match buffer, initialize the various tables and save * the location of the internal file attribute (ascii/binary) and * method (DEFLATE/STORE) * * void ct_tally (int dist, int lc); * Save the match info and tally the frequency counts. * * long flush_block (char *buf, ulg stored_len, int eof) * Determine the best encoding for the current block: dynamic trees, * static trees or store, and output the encoded block to the zip * file. Returns the total compressed length for the file so far. * */ #include #include "tailor.h" #include "gzip.h" #ifdef RCSID -static char rcsid[] = "$Id$"; +static char rcsid[] = "$Id: trees.c,v 1.6 1997/02/22 15:46:01 peter Exp $"; #endif /* =========================================================================== * Constants */ #define MAX_BITS 15 /* All codes must not exceed MAX_BITS bits */ #define MAX_BL_BITS 7 /* Bit length codes must not exceed MAX_BL_BITS bits */ #define LENGTH_CODES 29 /* number of length codes, not counting the special END_BLOCK code */ #define LITERALS 256 /* number of literal bytes 0..255 */ #define END_BLOCK 256 /* end of block literal code */ #define L_CODES (LITERALS+1+LENGTH_CODES) /* number of Literal or Length codes, including the END_BLOCK code */ #define D_CODES 30 /* number of distance codes */ #define BL_CODES 19 /* number of codes used to transfer the bit lengths */ local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */ = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; local int near extra_dbits[D_CODES] /* extra bits for each distance code */ = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */ = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 /* The three kinds of block type */ #ifndef LIT_BUFSIZE # ifdef SMALL_MEM # define LIT_BUFSIZE 0x2000 # else # ifdef MEDIUM_MEM # define LIT_BUFSIZE 0x4000 # else # define LIT_BUFSIZE 0x8000 # endif # endif #endif #ifndef DIST_BUFSIZE # define DIST_BUFSIZE LIT_BUFSIZE #endif /* Sizes of match buffers for literals/lengths and distances. There are * 4 reasons for limiting LIT_BUFSIZE to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input data is * still in the window so we can still emit a stored block even when input * comes from standard input. (This can also be done for all blocks if * LIT_BUFSIZE is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting trees * more frequently. * - I can't count above 4 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save * memory at the expense of compression). Some optimizations would be possible * if we rely on DIST_BUFSIZE == LIT_BUFSIZE. */ #if LIT_BUFSIZE > INBUFSIZ error cannot overlay l_buf and inbuf #endif #define REP_3_6 16 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ #define REPZ_3_10 17 /* repeat a zero length 3-10 times (3 bits of repeat count) */ #define REPZ_11_138 18 /* repeat a zero length 11-138 times (7 bits of repeat count) */ /* =========================================================================== * Local data */ /* Data structure describing a single value and its code string. */ typedef struct ct_data { union { ush freq; /* frequency count */ ush code; /* bit string */ } fc; union { ush dad; /* father node in Huffman tree */ ush len; /* length of bit string */ } dl; } ct_data; #define Freq fc.freq #define Code fc.code #define Dad dl.dad #define Len dl.len #define HEAP_SIZE (2*L_CODES+1) /* maximum heap size */ local ct_data near dyn_ltree[HEAP_SIZE]; /* literal and length tree */ local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */ local ct_data near static_ltree[L_CODES+2]; /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see ct_init * below). */ local ct_data near static_dtree[D_CODES]; /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ local ct_data near bl_tree[2*BL_CODES+1]; /* Huffman tree for the bit lengths */ typedef struct tree_desc { ct_data near *dyn_tree; /* the dynamic tree */ ct_data near *static_tree; /* corresponding static tree or NULL */ int near *extra_bits; /* extra bits for each code or NULL */ int extra_base; /* base index for extra_bits */ int elems; /* max number of elements in the tree */ int max_length; /* max bit length for the codes */ int max_code; /* largest code with non zero frequency */ } tree_desc; local tree_desc near l_desc = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0}; local tree_desc near d_desc = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0}; local tree_desc near bl_desc = {bl_tree, (ct_data near *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0}; local ush near bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ local uch near bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ local int heap_len; /* number of elements in the heap */ local int heap_max; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ local uch near depth[2*L_CODES+1]; /* Depth of each subtree used as tie breaker for trees of equal frequency */ local uch length_code[MAX_MATCH-MIN_MATCH+1]; /* length code for each normalized match length (0 == MIN_MATCH) */ local uch dist_code[512]; /* distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ local int near base_length[LENGTH_CODES]; /* First normalized length for each code (0 = MIN_MATCH) */ local int near base_dist[D_CODES]; /* First normalized distance for each code (0 = distance of 1) */ #define l_buf inbuf /* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */ /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */ local uch near flag_buf[(LIT_BUFSIZE/8)]; /* flag_buf is a bit array distinguishing literals from lengths in * l_buf, thus indicating the presence or absence of a distance. */ local unsigned last_lit; /* running index in l_buf */ local unsigned last_dist; /* running index in d_buf */ local unsigned last_flags; /* running index in flag_buf */ local uch flags; /* current flags not yet saved in flag_buf */ local uch flag_bit; /* current bit used in flags */ /* bits are filled in flags starting at bit 0 (least significant). * Note: these flags are overkill in the current code since we don't * take advantage of DIST_BUFSIZE == LIT_BUFSIZE. */ local ulg opt_len; /* bit length of current block with optimal trees */ local ulg static_len; /* bit length of current block with static trees */ local ulg compressed_len; /* total bit length of compressed file */ local ulg input_len; /* total byte length of input file */ /* input_len is for debugging only since we can get it by other means. */ ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */ int *file_method; /* pointer to DEFLATE or STORE */ #ifdef DEBUG extern ulg bits_sent; /* bit length of the compressed data */ extern long isize; /* byte length of input file */ #endif extern long block_start; /* window offset of current block */ extern unsigned near strstart; /* window offset of current string */ /* =========================================================================== * Local (static) routines in this file. */ local void init_block OF((void)); local void pqdownheap OF((ct_data near *tree, int k)); local void gen_bitlen OF((tree_desc near *desc)); local void gen_codes OF((ct_data near *tree, int max_code)); local void build_tree OF((tree_desc near *desc)); local void scan_tree OF((ct_data near *tree, int max_code)); local void send_tree OF((ct_data near *tree, int max_code)); local int build_bl_tree OF((void)); local void send_all_trees OF((int lcodes, int dcodes, int blcodes)); local void compress_block OF((ct_data near *ltree, ct_data near *dtree)); local void set_file_type OF((void)); #ifndef DEBUG # define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len) /* Send a code of the given tree. c and tree must not have side effects */ #else /* DEBUG */ # define send_code(c, tree) \ { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ send_bits(tree[c].Code, tree[c].Len); } #endif #define d_code(dist) \ ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) /* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. dist_code[256] and dist_code[257] are never * used. */ #define MAX(a,b) (a >= b ? a : b) /* the arguments must not have side effects */ /* =========================================================================== * Allocate the match buffer, initialize the various tables and save the * location of the internal file attribute (ascii/binary) and method * (DEFLATE/STORE). */ void ct_init(attr, methodp) ush *attr; /* pointer to internal file attribute */ int *methodp; /* pointer to compression method */ { int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ file_type = attr; file_method = methodp; compressed_len = input_len = 0L; if (static_dtree[0].Len != 0) return; /* ct_init already called */ /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1< dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "ct_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data near *)static_ltree, L_CODES+1); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bi_reverse(n, 5); } /* Initialize the first block of the first file: */ init_block(); } /* =========================================================================== * Initialize a new block. */ local void init_block() { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0; dyn_ltree[END_BLOCK].Freq = 1; opt_len = static_len = 0L; last_lit = last_dist = last_flags = 0; flags = 0; flag_bit = 1; } #define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(tree, top) \ {\ top = heap[SMALLEST]; \ heap[SMALLEST] = heap[heap_len--]; \ pqdownheap(tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ local void pqdownheap(tree, k) ct_data near *tree; /* the tree to restore */ int k; /* node to move down */ { int v = heap[k]; int j = k << 1; /* left son of k */ while (j <= heap_len) { /* Set j to the smallest of the two sons: */ if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++; /* Exit if v is smaller than both sons */ if (smaller(tree, v, heap[j])) break; /* Exchange v with the smallest son */ heap[k] = heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } heap[k] = v; } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ local void gen_bitlen(desc) tree_desc near *desc; /* the tree descriptor */ { ct_data near *tree = desc->dyn_tree; int near *extra = desc->extra_bits; int base = desc->extra_base; int max_code = desc->max_code; int max_length = desc->max_length; ct_data near *stree = desc->static_tree; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[heap[heap_max]].Len = 0; /* root of the heap */ for (h = heap_max+1; h < HEAP_SIZE; h++) { n = heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; opt_len += (ulg)f * (bits + xbits); if (stree) static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (bl_count[bits] == 0) bits--; bl_count[bits]--; /* move one leaf down the tree */ bl_count[bits+1] += 2; /* move one overflow item as its brother */ bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = bl_count[bits]; while (n != 0) { m = heap[--h]; if (m > max_code) continue; if (tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ local void gen_codes (tree, max_code) ct_data near *tree; /* the tree to decorate */ int max_code; /* largest code with non zero frequency */ { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<dyn_tree; ct_data near *stree = desc->static_tree; int elems = desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node = elems; /* next internal node of the tree */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ heap_len = 0, heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { heap[++heap_len] = max_code = n; depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (heap_len < 2) { int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0); tree[new].Freq = 1; depth[new] = 0; opt_len--; if (stree) static_len -= stree[new].Len; /* new is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ do { pqremove(tree, n); /* n = node of least frequency */ m = heap[SMALLEST]; /* m = node of next least frequency */ heap[--heap_max] = n; /* keep the nodes sorted by frequency */ heap[--heap_max] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; depth[node] = (uch) (MAX(depth[n], depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ heap[SMALLEST] = node++; pqdownheap(tree, SMALLEST); } while (heap_len >= 2); heap[--heap_max] = heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen((tree_desc near *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data near *)tree, max_code); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. Updates opt_len to take into account the repeat * counts. (The contribution of the bit length codes will be added later * during the construction of bl_tree.) */ local void scan_tree (tree, max_code) ct_data near *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (ush)0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { bl_tree[curlen].Freq += count; } else if (curlen != 0) { if (curlen != prevlen) bl_tree[curlen].Freq++; bl_tree[REP_3_6].Freq++; } else if (count <= 10) { bl_tree[REPZ_3_10].Freq++; } else { bl_tree[REPZ_11_138].Freq++; } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ local void send_tree (tree, max_code) ct_data near *tree; /* the tree to be scanned */ int max_code; /* and its largest code of non zero frequency */ { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen == 0) max_count = 138, min_count = 3; for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].Len; if (++count < max_count && curlen == nextlen) { continue; } else if (count < min_count) { do { send_code(curlen, bl_tree); } while (--count != 0); } else if (curlen != 0) { if (curlen != prevlen) { send_code(curlen, bl_tree); count--; } Assert(count >= 3 && count <= 6, " 3_6?"); send_code(REP_3_6, bl_tree); send_bits(count-3, 2); } else if (count <= 10) { send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3); } else { send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7); } count = 0; prevlen = curlen; if (nextlen == 0) { max_count = 138, min_count = 3; } else if (curlen == nextlen) { max_count = 6, min_count = 3; } else { max_count = 7, min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ local int build_bl_tree() { int max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree((ct_data near *)dyn_ltree, l_desc.max_code); scan_tree((ct_data near *)dyn_dtree, d_desc.max_code); /* Build the bit length tree: */ build_tree((tree_desc near *)(&bl_desc)); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { if (bl_tree[bl_order[max_blindex]].Len != 0) break; } /* Update opt_len to include the bit length tree and counts */ opt_len += 3*(max_blindex+1) + 5+5+4; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ local void send_all_trees(lcodes, dcodes, blcodes) int lcodes, dcodes, blcodes; /* number of codes for each tree */ { int rank; /* index in bl_order */ Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, "too many codes"); Tracev((stderr, "\nbl counts: ")); send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */ send_bits(dcodes-1, 5); send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(bl_tree[bl_order[rank]].Len, 3); } Tracev((stderr, "\nbl tree: sent %ld", bits_sent)); send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */ Tracev((stderr, "\nlit tree: sent %ld", bits_sent)); send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */ Tracev((stderr, "\ndist tree: sent %ld", bits_sent)); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. This function * returns the total compressed length for the file so far. */ ulg flush_block(buf, stored_len, eof) char *buf; /* input block, or NULL if too old */ ulg stored_len; /* length of input block */ int eof; /* true if this is the last block for a file */ { ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ int max_blindex; /* index of last bit length code of non zero freq */ flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */ /* Check if the file is ascii or binary */ if (*file_type == (ush)UNKNOWN) set_file_type(); /* Construct the literal and distance trees */ build_tree((tree_desc near *)(&l_desc)); Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len)); build_tree((tree_desc near *)(&d_desc)); Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(); /* Determine the best encoding. Compute first the block length in bytes */ opt_lenb = (opt_len+3+7)>>3; static_lenb = (static_len+3+7)>>3; input_len += stored_len; /* for debugging only */ Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ", opt_lenb, opt_len, static_lenb, static_len, stored_len, last_lit, last_dist)); if (static_lenb <= opt_lenb) opt_lenb = static_lenb; /* If compression failed and this is the first and last block, * and if the zip file can be seeked (to rewrite the local header), * the whole file is transformed into a stored file: */ #ifdef FORCE_METHOD if (level == 1 && eof && compressed_len == 0L) { /* force stored file */ #else if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) { #endif /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ if (buf == (char*)0) error ("block vanished"); copy_block(buf, (unsigned)stored_len, 0); /* without header */ compressed_len = stored_len << 3; *file_method = STORED; #ifdef FORCE_METHOD } else if (level == 2 && buf != (char*)0) { /* force stored block */ #else } else if (stored_len+4 <= opt_lenb && buf != (char*)0) { /* 4: two words for the lengths */ #endif /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */ compressed_len = (compressed_len + 3 + 7) & ~7L; compressed_len += (stored_len + 4) << 3; copy_block(buf, (unsigned)stored_len, 1); /* with header */ #ifdef FORCE_METHOD } else if (level == 3) { /* force static trees */ #else } else if (static_lenb == opt_lenb) { #endif send_bits((STATIC_TREES<<1)+eof, 3); compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree); compressed_len += 3 + static_len; } else { send_bits((DYN_TREES<<1)+eof, 3); send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1); compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree); compressed_len += 3 + opt_len; } Assert (compressed_len == bits_sent, "bad compressed size"); init_block(); if (eof) { Assert (input_len == isize, "bad input size"); bi_windup(); compressed_len += 7; /* align on byte boundary */ } Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3, compressed_len-7*eof)); return compressed_len >> 3; } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ int ct_tally (dist, lc) int dist; /* distance of matched string */ int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { l_buf[last_lit++] = (uch)lc; if (dist == 0) { /* lc is the unmatched char */ dyn_ltree[lc].Freq++; } else { /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ Assert((ush)dist < (ush)MAX_DIST && (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); dyn_ltree[length_code[lc]+LITERALS+1].Freq++; dyn_dtree[d_code(dist)].Freq++; d_buf[last_dist++] = (ush)dist; flags |= flag_bit; } flag_bit <<= 1; /* Output the flags if they fill a byte: */ if ((last_lit & 7) == 0) { flag_buf[last_flags++] = flags; flags = 0, flag_bit = 1; } /* Try to guess if it is profitable to stop the current block here */ if (level > 2 && (last_lit & 0xfff) == 0) { /* Compute an upper bound for the compressed length */ ulg out_length = (ulg)last_lit*8L; ulg in_length = (ulg)strstart-block_start; int dcode; for (dcode = 0; dcode < D_CODES; dcode++) { out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]); } out_length >>= 3; Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ", last_lit, last_dist, in_length, out_length, 100L - out_length*100L/in_length)); if (last_dist < last_lit/2 && out_length < in_length/2) return 1; } return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE); /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } /* =========================================================================== * Send the block data compressed using the given Huffman trees */ local void compress_block(ltree, dtree) ct_data near *ltree; /* literal tree */ ct_data near *dtree; /* distance tree */ { unsigned dist; /* distance of matched string */ int lc; /* match length or unmatched char (if dist == 0) */ unsigned lx = 0; /* running index in l_buf */ unsigned dx = 0; /* running index in d_buf */ unsigned fx = 0; /* running index in flag_buf */ uch flag = 0; /* current flags */ unsigned code; /* the code to send */ int extra; /* number of extra bits to send */ if (last_lit != 0) do { if ((lx & 7) == 0) flag = flag_buf[fx++]; lc = l_buf[lx++]; if ((flag & 1) == 0) { send_code(lc, ltree); /* send a literal byte */ Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = length_code[lc]; send_code(code+LITERALS+1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra != 0) { lc -= base_length[code]; send_bits(lc, extra); /* send the extra length bits */ } dist = d_buf[dx++]; /* Here, dist is the match distance - 1 */ code = d_code(dist); Assert (code < D_CODES, "bad d_code"); send_code(code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra != 0) { dist -= base_dist[code]; send_bits(dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ flag >>= 1; } while (lx < last_lit); send_code(END_BLOCK, ltree); } /* =========================================================================== * Set the file type to ASCII or BINARY, using a crude approximation: * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. * IN assertion: the fields freq of dyn_ltree are set and the total of all * frequencies does not exceed 64K (to fit in an int on 16 bit machines). */ local void set_file_type() { int n = 0; unsigned ascii_freq = 0; unsigned bin_freq = 0; while (n < 7) bin_freq += dyn_ltree[n++].Freq; while (n < 128) ascii_freq += dyn_ltree[n++].Freq; while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq; *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII; if (*file_type == BINARY && translate_eol) { - warn("-l used on binary file", ""); + WARN((stderr, "-l used on binary file", "")); } } Index: head/gnu/usr.bin/gzip/util.c =================================================================== --- head/gnu/usr.bin/gzip/util.c (revision 28904) +++ head/gnu/usr.bin/gzip/util.c (revision 28905) @@ -1,462 +1,456 @@ /* util.c -- utility functions for gzip support * Copyright (C) 1992-1993 Jean-loup Gailly * This is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License, see the file COPYING. */ #ifdef RCSID -static char rcsid[] = "$Id$"; +static char rcsid[] = "$Id: util.c,v 1.6 1997/02/22 15:46:10 peter Exp $"; #endif #include #include #include #include "tailor.h" #ifdef HAVE_UNISTD_H # include #endif #ifndef NO_FCNTL_H # include #endif #if defined(STDC_HEADERS) || !defined(NO_STDLIB_H) # include #else extern int errno; #endif #include "gzip.h" #include "crypt.h" extern ulg crc_32_tab[]; /* crc table, defined below */ /* =========================================================================== * Copy input to output unchanged: zcat == cat with --force. * IN assertion: insize bytes have already been read in inbuf. */ int copy(in, out) int in, out; /* input and output file descriptors */ { errno = 0; while (insize != 0 && (int)insize != EOF) { write_buf(out, (char*)inbuf, insize); bytes_out += insize; insize = read(in, (char*)inbuf, INBUFSIZ); } if ((int)insize == EOF && errno != 0) { read_error(); } bytes_in = bytes_out; return OK; } /* =========================================================================== * Run a set of bytes through the crc shift register. If s is a NULL * pointer, then initialize the crc shift register contents instead. * Return the current crc in either case. */ ulg updcrc(s, n) uch *s; /* pointer to bytes to pump through */ unsigned n; /* number of bytes in s[] */ { register ulg c; /* temporary variable */ static ulg crc = (ulg)0xffffffffL; /* shift register contents */ if (s == NULL) { c = 0xffffffffL; } else { c = crc; if (n) do { c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8); } while (--n); } crc = c; return c ^ 0xffffffffL; /* (instead of ~c for 64-bit machines) */ } /* =========================================================================== * Clear input and output buffers */ void clear_bufs() { outcnt = 0; insize = inptr = 0; bytes_in = bytes_out = 0L; } /* =========================================================================== * Fill the input buffer. This is called only when the buffer is empty. */ int fill_inbuf(eof_ok) int eof_ok; /* set if EOF acceptable as a result */ { int len; /* Read as much as possible */ insize = 0; errno = 0; do { len = read(ifd, (char*)inbuf+insize, INBUFSIZ-insize); if (len == 0 || len == EOF) break; insize += len; } while (insize < INBUFSIZ); if (insize == 0) { if (eof_ok) return EOF; read_error(); } bytes_in += (ulg)insize; inptr = 1; return inbuf[0]; } /* =========================================================================== * Write the output buffer outbuf[0..outcnt-1] and update bytes_out. * (used for the compressed data only) */ void flush_outbuf() { if (outcnt == 0) return; write_buf(ofd, (char *)outbuf, outcnt); bytes_out += (ulg)outcnt; outcnt = 0; } /* =========================================================================== * Write the output window window[0..outcnt-1] and update crc and bytes_out. * (Used for the decompressed data only.) */ void flush_window() { if (outcnt == 0) return; updcrc(window, outcnt); if (!test) { write_buf(ofd, (char *)window, outcnt); } bytes_out += (ulg)outcnt; outcnt = 0; } /* =========================================================================== * Does the same as write(), but also handles partial pipe writes and checks * for error return. */ void write_buf(fd, buf, cnt) int fd; voidp buf; unsigned cnt; { unsigned n; while ((n = write(fd, buf, cnt)) != cnt) { if (n == (unsigned)(-1)) { write_error(); } cnt -= n; buf = (voidp)((char*)buf+n); } } /* ======================================================================== * Put string s in lower case, return s. */ char *strlwr(s) char *s; { char *t; for (t = s; *t; t++) *t = tolow(*t); return s; } /* ======================================================================== * Return the base name of a file (remove any directory prefix and * any version suffix). For systems with file names that are not * case sensitive, force the base name to lower case. */ char *basename(fname) char *fname; { char *p; if ((p = strrchr(fname, PATH_SEP)) != NULL) fname = p+1; #ifdef PATH_SEP2 if ((p = strrchr(fname, PATH_SEP2)) != NULL) fname = p+1; #endif #ifdef PATH_SEP3 if ((p = strrchr(fname, PATH_SEP3)) != NULL) fname = p+1; #endif #ifdef SUFFIX_SEP if ((p = strrchr(fname, SUFFIX_SEP)) != NULL) *p = '\0'; #endif if (casemap('A') == 'a') strlwr(fname); return fname; } /* ======================================================================== * Make a file name legal for file systems not allowing file names with * multiple dots or starting with a dot (such as MSDOS), by changing * all dots except the last one into underlines. A target dependent * function can be used instead of this simple function by defining the macro * MAKE_LEGAL_NAME in tailor.h and providing the function in a target * dependent module. */ void make_simple_name(name) char *name; { char *p = strrchr(name, '.'); if (p == NULL) return; if (p == name) p++; do { if (*--p == '.') *p = '_'; } while (p != name); } #if defined(NO_STRING_H) && !defined(STDC_HEADERS) /* Provide missing strspn and strcspn functions. */ # ifndef __STDC__ # define const # endif int strspn OF((const char *s, const char *accept)); int strcspn OF((const char *s, const char *reject)); /* ======================================================================== * Return the length of the maximum initial segment * of s which contains only characters in accept. */ int strspn(s, accept) const char *s; const char *accept; { register const char *p; register const char *a; register int count = 0; for (p = s; *p != '\0'; ++p) { for (a = accept; *a != '\0'; ++a) { if (*p == *a) break; } if (*a == '\0') return count; ++count; } return count; } /* ======================================================================== * Return the length of the maximum inital segment of s * which contains no characters from reject. */ int strcspn(s, reject) const char *s; const char *reject; { register int count = 0; while (*s != '\0') { if (strchr(reject, *s++) != NULL) return count; ++count; } return count; } #endif /* NO_STRING_H */ /* ======================================================================== * Add an environment variable (if any) before argv, and update argc. * Return the expanded environment variable to be freed later, or NULL * if no options were added to argv. */ #define SEPARATOR " \t" /* separators in env variable */ char *add_envopt(argcp, argvp, env) int *argcp; /* pointer to argc */ char ***argvp; /* pointer to argv */ char *env; /* name of environment variable */ { char *p; /* running pointer through env variable */ char **oargv; /* runs through old argv array */ char **nargv; /* runs through new argv array */ int oargc = *argcp; /* old argc */ int nargc = 0; /* number of arguments in env variable */ env = (char*)getenv(env); if (env == NULL) return NULL; p = (char*)xmalloc(strlen(env)+1); env = strcpy(p, env); /* keep env variable intact */ for (p = env; *p; nargc++ ) { /* move through env */ p += strspn(p, SEPARATOR); /* skip leading separators */ if (*p == '\0') break; p += strcspn(p, SEPARATOR); /* find end of word */ if (*p) *p++ = '\0'; /* mark it */ } if (nargc == 0) { free(env); return NULL; } *argcp += nargc; /* Allocate the new argv array, with an extra element just in case * the original arg list did not end with a NULL. */ nargv = (char**)calloc(*argcp+1, sizeof(char *)); if (nargv == NULL) error("out of memory"); oargv = *argvp; *argvp = nargv; /* Copy the program name first */ if (oargc-- < 0) error("argc<=0"); *(nargv++) = *(oargv++); /* Then copy the environment args */ for (p = env; nargc > 0; nargc--) { p += strspn(p, SEPARATOR); /* skip separators */ *(nargv++) = p; /* store start */ while (*p++) ; /* skip over word */ } /* Finally copy the old args and add a NULL (usual convention) */ while (oargc--) *(nargv++) = *(oargv++); *nargv = NULL; return env; } /* ======================================================================== * Error handlers. */ void error(m) char *m; { fprintf(stderr, "\n%s: %s: %s\n", progname, ifname, m); abort_gzip(); -} - -void warn(a, b) - char *a, *b; /* message strings juxtaposed in output */ -{ - WARN((stderr, "%s: %s: warning: %s%s\n", progname, ifname, a, b)); } void read_error() { fprintf(stderr, "\n%s: ", progname); if (errno != 0) { perror(ifname); } else { fprintf(stderr, "%s: unexpected end of file\n", ifname); } abort_gzip(); } void write_error() { fprintf(stderr, "\n%s: ", progname); perror(ofname); abort_gzip(); } /* ======================================================================== * Display compression ratio on the given stream on 6 characters. */ void display_ratio(num, den, file) long num; long den; FILE *file; { long ratio; /* 1000 times the compression ratio */ if (den == 0) { ratio = 0; /* no compression */ } else if (den < 2147483L) { /* (2**31 -1)/1000 */ ratio = 1000L*num/den; } else { ratio = num/(den/1000L); } if (ratio < 0) { putc('-', file); ratio = -ratio; } else { putc(' ', file); } fprintf(file, "%2ld.%1ld%%", ratio / 10L, ratio % 10L); } /* ======================================================================== * Semi-safe malloc -- never returns NULL. */ voidp xmalloc (size) unsigned size; { voidp cp = (voidp)malloc (size); if (cp == NULL) error("out of memory"); return cp; } /* ======================================================================== * Table of CRC-32's of all single-byte values (made by makecrc.c) */ ulg crc_32_tab[] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL };