Index: head/sbin/init/init.c =================================================================== --- head/sbin/init/init.c (revision 288445) +++ head/sbin/init/init.c (revision 288446) @@ -1,1725 +1,1739 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Donn Seeley at Berkeley Software Design, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char copyright[] = "@(#) Copyright (c) 1991, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint #if 0 static char sccsid[] = "@(#)init.c 8.1 (Berkeley) 7/15/93"; #endif static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SECURE #include #endif #ifdef LOGIN_CAP #include #endif #include "pathnames.h" /* * Sleep times; used to prevent thrashing. */ #define GETTY_SPACING 5 /* N secs minimum getty spacing */ #define GETTY_SLEEP 30 /* sleep N secs after spacing problem */ #define GETTY_NSPACE 3 /* max. spacing count to bring reaction */ #define WINDOW_WAIT 3 /* wait N secs after starting window */ #define STALL_TIMEOUT 30 /* wait N secs after warning */ #define DEATH_WATCH 10 /* wait N secs for procs to die */ #define DEATH_SCRIPT 120 /* wait for 2min for /etc/rc.shutdown */ #define RESOURCE_RC "daemon" #define RESOURCE_WINDOW "default" #define RESOURCE_GETTY "default" static void handle(sig_t, ...); static void delset(sigset_t *, ...); static void stall(const char *, ...) __printflike(1, 2); static void warning(const char *, ...) __printflike(1, 2); static void emergency(const char *, ...) __printflike(1, 2); static void disaster(int); static void badsys(int); static int runshutdown(void); static char *strk(char *); /* * We really need a recursive typedef... * The following at least guarantees that the return type of (*state_t)() * is sufficiently wide to hold a function pointer. */ typedef long (*state_func_t)(void); typedef state_func_t (*state_t)(void); static state_func_t single_user(void); static state_func_t runcom(void); static state_func_t read_ttys(void); static state_func_t multi_user(void); static state_func_t clean_ttys(void); static state_func_t catatonia(void); static state_func_t death(void); static state_func_t death_single(void); static state_func_t run_script(const char *); static enum { AUTOBOOT, FASTBOOT } runcom_mode = AUTOBOOT; #define FALSE 0 #define TRUE 1 static int Reboot = FALSE; static int howto = RB_AUTOBOOT; static int devfs; static void transition(state_t); static state_t requested_transition; static state_t current_state = death_single; static void open_console(void); static const char *get_shell(void); static void write_stderr(const char *message); typedef struct init_session { pid_t se_process; /* controlling process */ time_t se_started; /* used to avoid thrashing */ int se_flags; /* status of session */ #define SE_SHUTDOWN 0x1 /* session won't be restarted */ #define SE_PRESENT 0x2 /* session is in /etc/ttys */ int se_nspace; /* spacing count */ char *se_device; /* filename of port */ char *se_getty; /* what to run on that port */ char *se_getty_argv_space; /* pre-parsed argument array space */ char **se_getty_argv; /* pre-parsed argument array */ char *se_window; /* window system (started only once) */ char *se_window_argv_space; /* pre-parsed argument array space */ char **se_window_argv; /* pre-parsed argument array */ char *se_type; /* default terminal type */ struct init_session *se_prev; struct init_session *se_next; } session_t; static void free_session(session_t *); static session_t *new_session(session_t *, struct ttyent *); static session_t *sessions; static char **construct_argv(char *); static void start_window_system(session_t *); static void collect_child(pid_t); static pid_t start_getty(session_t *); static void transition_handler(int); static void alrm_handler(int); static void setsecuritylevel(int); static int getsecuritylevel(void); static int setupargv(session_t *, struct ttyent *); #ifdef LOGIN_CAP static void setprocresources(const char *); #endif static int clang; static int start_session_db(void); static void add_session(session_t *); static void del_session(session_t *); static session_t *find_session(pid_t); static DB *session_db; /* * The mother of all processes. */ int main(int argc, char *argv[]) { state_t initial_transition = runcom; char kenv_value[PATH_MAX]; int c; struct sigaction sa; sigset_t mask; /* Dispose of random users. */ if (getuid() != 0) errx(1, "%s", strerror(EPERM)); /* System V users like to reexec init. */ if (getpid() != 1) { #ifdef COMPAT_SYSV_INIT /* So give them what they want */ if (argc > 1) { if (strlen(argv[1]) == 1) { char runlevel = *argv[1]; int sig; switch (runlevel) { case '0': /* halt + poweroff */ sig = SIGUSR2; break; case '1': /* single-user */ sig = SIGTERM; break; case '6': /* reboot */ sig = SIGINT; break; case 'c': /* block further logins */ sig = SIGTSTP; break; case 'q': /* rescan /etc/ttys */ sig = SIGHUP; break; default: goto invalid; } kill(1, sig); _exit(0); } else invalid: errx(1, "invalid run-level ``%s''", argv[1]); } else #endif errx(1, "already running"); } /* * Note that this does NOT open a file... * Does 'init' deserve its own facility number? */ openlog("init", LOG_CONS, LOG_AUTH); /* * Create an initial session. */ if (setsid() < 0) warning("initial setsid() failed: %m"); /* * Establish an initial user so that programs running * single user do not freak out and die (like passwd). */ if (setlogin("root") < 0) warning("setlogin() failed: %m"); /* * This code assumes that we always get arguments through flags, * never through bits set in some random machine register. */ while ((c = getopt(argc, argv, "dsf")) != -1) switch (c) { case 'd': devfs = 1; break; case 's': initial_transition = single_user; break; case 'f': runcom_mode = FASTBOOT; break; default: warning("unrecognized flag '-%c'", c); break; } if (optind != argc) warning("ignoring excess arguments"); /* * We catch or block signals rather than ignore them, * so that they get reset on exec. */ handle(badsys, SIGSYS, 0); handle(disaster, SIGABRT, SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGXCPU, SIGXFSZ, 0); handle(transition_handler, SIGHUP, SIGINT, SIGTERM, SIGTSTP, SIGUSR1, SIGUSR2, 0); handle(alrm_handler, SIGALRM, 0); sigfillset(&mask); delset(&mask, SIGABRT, SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGSYS, SIGXCPU, SIGXFSZ, SIGHUP, SIGINT, SIGTERM, SIGTSTP, SIGALRM, SIGUSR1, SIGUSR2, 0); sigprocmask(SIG_SETMASK, &mask, (sigset_t *) 0); sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_IGN; sigaction(SIGTTIN, &sa, (struct sigaction *)0); sigaction(SIGTTOU, &sa, (struct sigaction *)0); /* * Paranoia. */ close(0); close(1); close(2); if (kenv(KENV_GET, "init_script", kenv_value, sizeof(kenv_value)) > 0) { state_func_t next_transition; if ((next_transition = run_script(kenv_value)) != 0) initial_transition = (state_t) next_transition; } if (kenv(KENV_GET, "init_chroot", kenv_value, sizeof(kenv_value)) > 0) { if (chdir(kenv_value) != 0 || chroot(".") != 0) warning("Can't chroot to %s: %m", kenv_value); } /* * Additional check if devfs needs to be mounted: * If "/" and "/dev" have the same device number, * then it hasn't been mounted yet. */ if (!devfs) { struct stat stst; dev_t root_devno; stat("/", &stst); root_devno = stst.st_dev; if (stat("/dev", &stst) != 0) warning("Can't stat /dev: %m"); else if (stst.st_dev == root_devno) devfs++; } if (devfs) { struct iovec iov[4]; char *s; int i; char _fstype[] = "fstype"; char _devfs[] = "devfs"; char _fspath[] = "fspath"; char _path_dev[]= _PATH_DEV; iov[0].iov_base = _fstype; iov[0].iov_len = sizeof(_fstype); iov[1].iov_base = _devfs; iov[1].iov_len = sizeof(_devfs); iov[2].iov_base = _fspath; iov[2].iov_len = sizeof(_fspath); /* * Try to avoid the trailing slash in _PATH_DEV. * Be *very* defensive. */ s = strdup(_PATH_DEV); if (s != NULL) { i = strlen(s); if (i > 0 && s[i - 1] == '/') s[i - 1] = '\0'; iov[3].iov_base = s; iov[3].iov_len = strlen(s) + 1; } else { iov[3].iov_base = _path_dev; iov[3].iov_len = sizeof(_path_dev); } nmount(iov, 4, 0); if (s != NULL) free(s); } /* * Start the state machine. */ transition(initial_transition); /* * Should never reach here. */ return 1; } /* * Associate a function with a signal handler. */ static void handle(sig_t handler, ...) { int sig; struct sigaction sa; sigset_t mask_everything; va_list ap; va_start(ap, handler); sa.sa_handler = handler; sigfillset(&mask_everything); while ((sig = va_arg(ap, int)) != 0) { sa.sa_mask = mask_everything; /* XXX SA_RESTART? */ sa.sa_flags = sig == SIGCHLD ? SA_NOCLDSTOP : 0; sigaction(sig, &sa, (struct sigaction *) 0); } va_end(ap); } /* * Delete a set of signals from a mask. */ static void delset(sigset_t *maskp, ...) { int sig; va_list ap; va_start(ap, maskp); while ((sig = va_arg(ap, int)) != 0) sigdelset(maskp, sig); va_end(ap); } /* * Log a message and sleep for a while (to give someone an opportunity * to read it and to save log or hardcopy output if the problem is chronic). * NB: should send a message to the session logger to avoid blocking. */ static void stall(const char *message, ...) { va_list ap; va_start(ap, message); vsyslog(LOG_ALERT, message, ap); va_end(ap); sleep(STALL_TIMEOUT); } /* * Like stall(), but doesn't sleep. * If cpp had variadic macros, the two functions could be #defines for another. * NB: should send a message to the session logger to avoid blocking. */ static void warning(const char *message, ...) { va_list ap; va_start(ap, message); vsyslog(LOG_ALERT, message, ap); va_end(ap); } /* * Log an emergency message. * NB: should send a message to the session logger to avoid blocking. */ static void emergency(const char *message, ...) { va_list ap; va_start(ap, message); vsyslog(LOG_EMERG, message, ap); va_end(ap); } /* * Catch a SIGSYS signal. * * These may arise if a system does not support sysctl. * We tolerate up to 25 of these, then throw in the towel. */ static void badsys(int sig) { static int badcount = 0; if (badcount++ < 25) return; disaster(sig); } /* * Catch an unexpected signal. */ static void disaster(int sig) { emergency("fatal signal: %s", (unsigned)sig < NSIG ? sys_siglist[sig] : "unknown signal"); sleep(STALL_TIMEOUT); _exit(sig); /* reboot */ } /* * Get the security level of the kernel. */ static int getsecuritylevel(void) { #ifdef KERN_SECURELVL int name[2], curlevel; size_t len; name[0] = CTL_KERN; name[1] = KERN_SECURELVL; len = sizeof curlevel; if (sysctl(name, 2, &curlevel, &len, NULL, 0) == -1) { emergency("cannot get kernel security level: %s", strerror(errno)); return (-1); } return (curlevel); #else return (-1); #endif } /* * Set the security level of the kernel. */ static void setsecuritylevel(int newlevel) { #ifdef KERN_SECURELVL int name[2], curlevel; curlevel = getsecuritylevel(); if (newlevel == curlevel) return; name[0] = CTL_KERN; name[1] = KERN_SECURELVL; if (sysctl(name, 2, NULL, NULL, &newlevel, sizeof newlevel) == -1) { emergency( "cannot change kernel security level from %d to %d: %s", curlevel, newlevel, strerror(errno)); return; } #ifdef SECURE warning("kernel security level changed from %d to %d", curlevel, newlevel); #endif #endif } /* * Change states in the finite state machine. * The initial state is passed as an argument. */ static void transition(state_t s) { current_state = s; for (;;) current_state = (state_t) (*current_state)(); } /* * Start a session and allocate a controlling terminal. * Only called by children of init after forking. */ static void open_console(void) { int fd; /* * Try to open /dev/console. Open the device with O_NONBLOCK to * prevent potential blocking on a carrier. */ revoke(_PATH_CONSOLE); if ((fd = open(_PATH_CONSOLE, O_RDWR | O_NONBLOCK)) != -1) { (void)fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) & ~O_NONBLOCK); if (login_tty(fd) == 0) return; close(fd); } /* No luck. Log output to file if possible. */ if ((fd = open(_PATH_DEVNULL, O_RDWR)) == -1) { stall("cannot open null device."); _exit(1); } if (fd != STDIN_FILENO) { dup2(fd, STDIN_FILENO); close(fd); } fd = open(_PATH_INITLOG, O_WRONLY | O_APPEND | O_CREAT, 0644); if (fd == -1) dup2(STDIN_FILENO, STDOUT_FILENO); else if (fd != STDOUT_FILENO) { dup2(fd, STDOUT_FILENO); close(fd); } dup2(STDOUT_FILENO, STDERR_FILENO); } static const char * get_shell(void) { static char kenv_value[PATH_MAX]; if (kenv(KENV_GET, "init_shell", kenv_value, sizeof(kenv_value)) > 0) return kenv_value; else return _PATH_BSHELL; } static void write_stderr(const char *message) { write(STDERR_FILENO, message, strlen(message)); } /* * Bring the system up single user. */ static state_func_t single_user(void) { pid_t pid, wpid; int status; sigset_t mask; const char *shell; char *argv[2]; #ifdef SECURE struct ttyent *typ; struct passwd *pp; static const char banner[] = "Enter root password, or ^D to go multi-user\n"; char *clear, *password; #endif #ifdef DEBUGSHELL char altshell[128]; #endif if (Reboot) { /* Instead of going single user, let's reboot the machine */ sync(); reboot(howto); _exit(0); } shell = get_shell(); if ((pid = fork()) == 0) { /* * Start the single user session. */ open_console(); #ifdef SECURE /* * Check the root password. * We don't care if the console is 'on' by default; * it's the only tty that can be 'off' and 'secure'. */ typ = getttynam("console"); pp = getpwnam("root"); if (typ && (typ->ty_status & TTY_SECURE) == 0 && pp && *pp->pw_passwd) { write_stderr(banner); for (;;) { clear = getpass("Password:"); if (clear == 0 || *clear == '\0') _exit(0); password = crypt(clear, pp->pw_passwd); bzero(clear, _PASSWORD_LEN); if (password == NULL || strcmp(password, pp->pw_passwd) == 0) break; warning("single-user login failed\n"); } } endttyent(); endpwent(); #endif /* SECURE */ #ifdef DEBUGSHELL { char *cp = altshell; int num; #define SHREQUEST "Enter full pathname of shell or RETURN for " write_stderr(SHREQUEST); write_stderr(shell); write_stderr(": "); while ((num = read(STDIN_FILENO, cp, 1)) != -1 && num != 0 && *cp != '\n' && cp < &altshell[127]) cp++; *cp = '\0'; if (altshell[0] != '\0') shell = altshell; } #endif /* DEBUGSHELL */ /* * Unblock signals. * We catch all the interesting ones, * and those are reset to SIG_DFL on exec. */ sigemptyset(&mask); sigprocmask(SIG_SETMASK, &mask, (sigset_t *) 0); /* * Fire off a shell. * If the default one doesn't work, try the Bourne shell. */ char name[] = "-sh"; argv[0] = name; argv[1] = 0; execv(shell, argv); emergency("can't exec %s for single user: %m", shell); execv(_PATH_BSHELL, argv); emergency("can't exec %s for single user: %m", _PATH_BSHELL); sleep(STALL_TIMEOUT); _exit(1); } if (pid == -1) { /* * We are seriously hosed. Do our best. */ emergency("can't fork single-user shell, trying again"); while (waitpid(-1, (int *) 0, WNOHANG) > 0) continue; return (state_func_t) single_user; } requested_transition = 0; do { if ((wpid = waitpid(-1, &status, WUNTRACED)) != -1) collect_child(wpid); if (wpid == -1) { if (errno == EINTR) continue; warning("wait for single-user shell failed: %m; restarting"); return (state_func_t) single_user; } if (wpid == pid && WIFSTOPPED(status)) { warning("init: shell stopped, restarting\n"); kill(pid, SIGCONT); wpid = -1; } } while (wpid != pid && !requested_transition); if (requested_transition) return (state_func_t) requested_transition; if (!WIFEXITED(status)) { if (WTERMSIG(status) == SIGKILL) { /* * reboot(8) killed shell? */ warning("single user shell terminated."); sleep(STALL_TIMEOUT); _exit(0); } else { warning("single user shell terminated, restarting"); return (state_func_t) single_user; } } runcom_mode = FASTBOOT; return (state_func_t) runcom; } /* * Run the system startup script. */ static state_func_t runcom(void) { state_func_t next_transition; if ((next_transition = run_script(_PATH_RUNCOM)) != 0) return next_transition; runcom_mode = AUTOBOOT; /* the default */ return (state_func_t) read_ttys; } /* * Run a shell script. * Returns 0 on success, otherwise the next transition to enter: * - single_user if fork/execv/waitpid failed, or if the script * terminated with a signal or exit code != 0. * - death_single if a SIGTERM was delivered to init(8). */ static state_func_t run_script(const char *script) { pid_t pid, wpid; int status; char *argv[4]; const char *shell; struct sigaction sa; shell = get_shell(); if ((pid = fork()) == 0) { sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_IGN; sigaction(SIGTSTP, &sa, (struct sigaction *)0); sigaction(SIGHUP, &sa, (struct sigaction *)0); open_console(); char _sh[] = "sh"; char _autoboot[] = "autoboot"; argv[0] = _sh; argv[1] = __DECONST(char *, script); argv[2] = runcom_mode == AUTOBOOT ? _autoboot : 0; argv[3] = 0; sigprocmask(SIG_SETMASK, &sa.sa_mask, (sigset_t *) 0); #ifdef LOGIN_CAP setprocresources(RESOURCE_RC); #endif execv(shell, argv); stall("can't exec %s for %s: %m", shell, script); _exit(1); /* force single user mode */ } if (pid == -1) { emergency("can't fork for %s on %s: %m", shell, script); while (waitpid(-1, (int *) 0, WNOHANG) > 0) continue; sleep(STALL_TIMEOUT); return (state_func_t) single_user; } /* * Copied from single_user(). This is a bit paranoid. */ requested_transition = 0; do { if ((wpid = waitpid(-1, &status, WUNTRACED)) != -1) collect_child(wpid); if (wpid == -1) { if (requested_transition == death_single) return (state_func_t) death_single; if (errno == EINTR) continue; warning("wait for %s on %s failed: %m; going to " "single user mode", shell, script); return (state_func_t) single_user; } if (wpid == pid && WIFSTOPPED(status)) { warning("init: %s on %s stopped, restarting\n", shell, script); kill(pid, SIGCONT); wpid = -1; } } while (wpid != pid); if (WIFSIGNALED(status) && WTERMSIG(status) == SIGTERM && requested_transition == catatonia) { /* /etc/rc executed /sbin/reboot; wait for the end quietly */ sigset_t s; sigfillset(&s); for (;;) sigsuspend(&s); } if (!WIFEXITED(status)) { warning("%s on %s terminated abnormally, going to single " "user mode", shell, script); return (state_func_t) single_user; } if (WEXITSTATUS(status)) return (state_func_t) single_user; return (state_func_t) 0; } /* * Open the session database. * * NB: We could pass in the size here; is it necessary? */ static int start_session_db(void) { if (session_db && (*session_db->close)(session_db)) emergency("session database close: %s", strerror(errno)); if ((session_db = dbopen(NULL, O_RDWR, 0, DB_HASH, NULL)) == 0) { emergency("session database open: %s", strerror(errno)); return (1); } return (0); } /* * Add a new login session. */ static void add_session(session_t *sp) { DBT key; DBT data; key.data = &sp->se_process; key.size = sizeof sp->se_process; data.data = &sp; data.size = sizeof sp; if ((*session_db->put)(session_db, &key, &data, 0)) emergency("insert %d: %s", sp->se_process, strerror(errno)); } /* * Delete an old login session. */ static void del_session(session_t *sp) { DBT key; key.data = &sp->se_process; key.size = sizeof sp->se_process; if ((*session_db->del)(session_db, &key, 0)) emergency("delete %d: %s", sp->se_process, strerror(errno)); } /* * Look up a login session by pid. */ static session_t * find_session(pid_t pid) { DBT key; DBT data; session_t *ret; key.data = &pid; key.size = sizeof pid; if ((*session_db->get)(session_db, &key, &data, 0) != 0) return 0; bcopy(data.data, (char *)&ret, sizeof(ret)); return ret; } /* * Construct an argument vector from a command line. */ static char ** construct_argv(char *command) { int argc = 0; char **argv = (char **) malloc(((strlen(command) + 1) / 2 + 1) * sizeof (char *)); if ((argv[argc++] = strk(command)) == 0) { free(argv); return (NULL); } while ((argv[argc++] = strk((char *) 0)) != NULL) continue; return argv; } /* * Deallocate a session descriptor. */ static void free_session(session_t *sp) { free(sp->se_device); if (sp->se_getty) { free(sp->se_getty); free(sp->se_getty_argv_space); free(sp->se_getty_argv); } if (sp->se_window) { free(sp->se_window); free(sp->se_window_argv_space); free(sp->se_window_argv); } if (sp->se_type) free(sp->se_type); free(sp); } /* * Allocate a new session descriptor. * Mark it SE_PRESENT. */ static session_t * new_session(session_t *sprev, struct ttyent *typ) { session_t *sp; int fd; if ((typ->ty_status & TTY_ON) == 0 || typ->ty_name == 0 || typ->ty_getty == 0) return 0; sp = (session_t *) calloc(1, sizeof (session_t)); sp->se_flags |= SE_PRESENT; sp->se_device = malloc(sizeof(_PATH_DEV) + strlen(typ->ty_name)); sprintf(sp->se_device, "%s%s", _PATH_DEV, typ->ty_name); /* * Attempt to open the device, if we get "device not configured" * then don't add the device to the session list. */ if ((fd = open(sp->se_device, O_RDONLY | O_NONBLOCK, 0)) < 0) { if (errno == ENXIO) { free_session(sp); return (0); } } else close(fd); if (setupargv(sp, typ) == 0) { free_session(sp); return (0); } sp->se_next = 0; if (sprev == 0) { sessions = sp; sp->se_prev = 0; } else { sprev->se_next = sp; sp->se_prev = sprev; } return sp; } /* * Calculate getty and if useful window argv vectors. */ static int setupargv(session_t *sp, struct ttyent *typ) { if (sp->se_getty) { free(sp->se_getty); free(sp->se_getty_argv_space); free(sp->se_getty_argv); } sp->se_getty = malloc(strlen(typ->ty_getty) + strlen(typ->ty_name) + 2); sprintf(sp->se_getty, "%s %s", typ->ty_getty, typ->ty_name); sp->se_getty_argv_space = strdup(sp->se_getty); sp->se_getty_argv = construct_argv(sp->se_getty_argv_space); if (sp->se_getty_argv == 0) { warning("can't parse getty for port %s", sp->se_device); free(sp->se_getty); free(sp->se_getty_argv_space); sp->se_getty = sp->se_getty_argv_space = 0; return (0); } if (sp->se_window) { free(sp->se_window); free(sp->se_window_argv_space); free(sp->se_window_argv); } sp->se_window = sp->se_window_argv_space = 0; sp->se_window_argv = 0; if (typ->ty_window) { sp->se_window = strdup(typ->ty_window); sp->se_window_argv_space = strdup(sp->se_window); sp->se_window_argv = construct_argv(sp->se_window_argv_space); if (sp->se_window_argv == 0) { warning("can't parse window for port %s", sp->se_device); free(sp->se_window_argv_space); free(sp->se_window); sp->se_window = sp->se_window_argv_space = 0; return (0); } } if (sp->se_type) free(sp->se_type); sp->se_type = typ->ty_type ? strdup(typ->ty_type) : 0; return (1); } /* * Walk the list of ttys and create sessions for each active line. */ static state_func_t read_ttys(void) { session_t *sp, *snext; struct ttyent *typ; /* * Destroy any previous session state. * There shouldn't be any, but just in case... */ for (sp = sessions; sp; sp = snext) { snext = sp->se_next; free_session(sp); } sessions = 0; if (start_session_db()) return (state_func_t) single_user; /* * Allocate a session entry for each active port. * Note that sp starts at 0. */ while ((typ = getttyent()) != NULL) if ((snext = new_session(sp, typ)) != NULL) sp = snext; endttyent(); return (state_func_t) multi_user; } /* * Start a window system running. */ static void start_window_system(session_t *sp) { pid_t pid; sigset_t mask; char term[64], *env[2]; int status; if ((pid = fork()) == -1) { emergency("can't fork for window system on port %s: %m", sp->se_device); /* hope that getty fails and we can try again */ return; } if (pid) { waitpid(-1, &status, 0); return; } /* reparent window process to the init to not make a zombie on exit */ if ((pid = fork()) == -1) { emergency("can't fork for window system on port %s: %m", sp->se_device); _exit(1); } if (pid) _exit(0); sigemptyset(&mask); sigprocmask(SIG_SETMASK, &mask, (sigset_t *) 0); if (setsid() < 0) emergency("setsid failed (window) %m"); #ifdef LOGIN_CAP setprocresources(RESOURCE_WINDOW); #endif if (sp->se_type) { /* Don't use malloc after fork */ strcpy(term, "TERM="); strncat(term, sp->se_type, sizeof(term) - 6); env[0] = term; env[1] = 0; } else env[0] = 0; execve(sp->se_window_argv[0], sp->se_window_argv, env); stall("can't exec window system '%s' for port %s: %m", sp->se_window_argv[0], sp->se_device); _exit(1); } /* * Start a login session running. */ static pid_t start_getty(session_t *sp) { pid_t pid; sigset_t mask; time_t current_time = time((time_t *) 0); int too_quick = 0; char term[64], *env[2]; if (current_time >= sp->se_started && current_time - sp->se_started < GETTY_SPACING) { if (++sp->se_nspace > GETTY_NSPACE) { sp->se_nspace = 0; too_quick = 1; } } else sp->se_nspace = 0; /* * fork(), not vfork() -- we can't afford to block. */ if ((pid = fork()) == -1) { emergency("can't fork for getty on port %s: %m", sp->se_device); return -1; } if (pid) return pid; if (too_quick) { warning("getty repeating too quickly on port %s, sleeping %d secs", sp->se_device, GETTY_SLEEP); sleep((unsigned) GETTY_SLEEP); } if (sp->se_window) { start_window_system(sp); sleep(WINDOW_WAIT); } sigemptyset(&mask); sigprocmask(SIG_SETMASK, &mask, (sigset_t *) 0); #ifdef LOGIN_CAP setprocresources(RESOURCE_GETTY); #endif if (sp->se_type) { /* Don't use malloc after fork */ strcpy(term, "TERM="); strncat(term, sp->se_type, sizeof(term) - 6); env[0] = term; env[1] = 0; } else env[0] = 0; execve(sp->se_getty_argv[0], sp->se_getty_argv, env); stall("can't exec getty '%s' for port %s: %m", sp->se_getty_argv[0], sp->se_device); _exit(1); } /* * Collect exit status for a child. * If an exiting login, start a new login running. */ static void collect_child(pid_t pid) { session_t *sp, *sprev, *snext; if (! sessions) return; if (! (sp = find_session(pid))) return; del_session(sp); sp->se_process = 0; if (sp->se_flags & SE_SHUTDOWN) { if ((sprev = sp->se_prev) != NULL) sprev->se_next = sp->se_next; else sessions = sp->se_next; if ((snext = sp->se_next) != NULL) snext->se_prev = sp->se_prev; free_session(sp); return; } if ((pid = start_getty(sp)) == -1) { /* serious trouble */ requested_transition = clean_ttys; return; } sp->se_process = pid; sp->se_started = time((time_t *) 0); add_session(sp); } /* * Catch a signal and request a state transition. */ static void transition_handler(int sig) { switch (sig) { case SIGHUP: if (current_state == read_ttys || current_state == multi_user || current_state == clean_ttys || current_state == catatonia) requested_transition = clean_ttys; break; case SIGUSR2: howto = RB_POWEROFF; case SIGUSR1: howto |= RB_HALT; case SIGINT: Reboot = TRUE; case SIGTERM: if (current_state == read_ttys || current_state == multi_user || current_state == clean_ttys || current_state == catatonia) requested_transition = death; else requested_transition = death_single; break; case SIGTSTP: if (current_state == runcom || current_state == read_ttys || current_state == clean_ttys || current_state == multi_user || current_state == catatonia) requested_transition = catatonia; break; default: requested_transition = 0; break; } } /* * Take the system multiuser. */ static state_func_t multi_user(void) { pid_t pid; session_t *sp; requested_transition = 0; /* * If the administrator has not set the security level to -1 * to indicate that the kernel should not run multiuser in secure * mode, and the run script has not set a higher level of security * than level 1, then put the kernel into secure mode. */ if (getsecuritylevel() == 0) setsecuritylevel(1); for (sp = sessions; sp; sp = sp->se_next) { if (sp->se_process) continue; if ((pid = start_getty(sp)) == -1) { /* serious trouble */ requested_transition = clean_ttys; break; } sp->se_process = pid; sp->se_started = time((time_t *) 0); add_session(sp); } while (!requested_transition) if ((pid = waitpid(-1, (int *) 0, 0)) != -1) collect_child(pid); return (state_func_t) requested_transition; } /* * This is an (n*2)+(n^2) algorithm. We hope it isn't run often... */ static state_func_t clean_ttys(void) { session_t *sp, *sprev; struct ttyent *typ; int devlen; char *old_getty, *old_window, *old_type; /* * mark all sessions for death, (!SE_PRESENT) * as we find or create new ones they'll be marked as keepers, * we'll later nuke all the ones not found in /etc/ttys */ for (sp = sessions; sp != NULL; sp = sp->se_next) sp->se_flags &= ~SE_PRESENT; devlen = sizeof(_PATH_DEV) - 1; while ((typ = getttyent()) != NULL) { for (sprev = 0, sp = sessions; sp; sprev = sp, sp = sp->se_next) if (strcmp(typ->ty_name, sp->se_device + devlen) == 0) break; if (sp) { /* we want this one to live */ sp->se_flags |= SE_PRESENT; if ((typ->ty_status & TTY_ON) == 0 || typ->ty_getty == 0) { sp->se_flags |= SE_SHUTDOWN; kill(sp->se_process, SIGHUP); continue; } sp->se_flags &= ~SE_SHUTDOWN; old_getty = sp->se_getty ? strdup(sp->se_getty) : 0; old_window = sp->se_window ? strdup(sp->se_window) : 0; old_type = sp->se_type ? strdup(sp->se_type) : 0; if (setupargv(sp, typ) == 0) { warning("can't parse getty for port %s", sp->se_device); sp->se_flags |= SE_SHUTDOWN; kill(sp->se_process, SIGHUP); } else if ( !old_getty || (!old_type && sp->se_type) || (old_type && !sp->se_type) || (!old_window && sp->se_window) || (old_window && !sp->se_window) || (strcmp(old_getty, sp->se_getty) != 0) || (old_window && strcmp(old_window, sp->se_window) != 0) || (old_type && strcmp(old_type, sp->se_type) != 0) ) { /* Don't set SE_SHUTDOWN here */ sp->se_nspace = 0; sp->se_started = 0; kill(sp->se_process, SIGHUP); } if (old_getty) free(old_getty); if (old_window) free(old_window); if (old_type) free(old_type); continue; } new_session(sprev, typ); } endttyent(); /* * sweep through and kill all deleted sessions * ones who's /etc/ttys line was deleted (SE_PRESENT unset) */ for (sp = sessions; sp != NULL; sp = sp->se_next) { if ((sp->se_flags & SE_PRESENT) == 0) { sp->se_flags |= SE_SHUTDOWN; kill(sp->se_process, SIGHUP); } } return (state_func_t) multi_user; } /* * Block further logins. */ static state_func_t catatonia(void) { session_t *sp; for (sp = sessions; sp; sp = sp->se_next) sp->se_flags |= SE_SHUTDOWN; return (state_func_t) multi_user; } /* * Note SIGALRM. */ static void alrm_handler(int sig) { (void)sig; clang = 1; } /* * Bring the system down to single user. */ static state_func_t death(void) { session_t *sp; + int block, blocked; + size_t len; + /* Temporarily block suspend. */ + len = sizeof(blocked); + block = 1; + if (sysctlbyname("kern.suspend_blocked", &blocked, &len, + &block, sizeof(block)) == -1) + blocked = 0; + /* * Also revoke the TTY here. Because runshutdown() may reopen * the TTY whose getty we're killing here, there is no guarantee * runshutdown() will perform the initial open() call, causing * the terminal attributes to be misconfigured. */ for (sp = sessions; sp; sp = sp->se_next) { sp->se_flags |= SE_SHUTDOWN; kill(sp->se_process, SIGHUP); revoke(sp->se_device); } /* Try to run the rc.shutdown script within a period of time */ runshutdown(); + + /* Unblock suspend if we blocked it. */ + if (!blocked) + sysctlbyname("kern.suspend_blocked", NULL, NULL, + &blocked, sizeof(blocked)); return (state_func_t) death_single; } /* * Do what is necessary to reinitialize single user mode or reboot * from an incomplete state. */ static state_func_t death_single(void) { int i; pid_t pid; static const int death_sigs[2] = { SIGTERM, SIGKILL }; revoke(_PATH_CONSOLE); for (i = 0; i < 2; ++i) { if (kill(-1, death_sigs[i]) == -1 && errno == ESRCH) return (state_func_t) single_user; clang = 0; alarm(DEATH_WATCH); do if ((pid = waitpid(-1, (int *)0, 0)) != -1) collect_child(pid); while (clang == 0 && errno != ECHILD); if (errno == ECHILD) return (state_func_t) single_user; } warning("some processes would not die; ps axl advised"); return (state_func_t) single_user; } /* * Run the system shutdown script. * * Exit codes: XXX I should document more * -2 shutdown script terminated abnormally * -1 fatal error - can't run script * 0 good. * >0 some error (exit code) */ static int runshutdown(void) { pid_t pid, wpid; int status; int shutdowntimeout; size_t len; char *argv[4]; const char *shell; struct sigaction sa; struct stat sb; /* * rc.shutdown is optional, so to prevent any unnecessary * complaints from the shell we simply don't run it if the * file does not exist. If the stat() here fails for other * reasons, we'll let the shell complain. */ if (stat(_PATH_RUNDOWN, &sb) == -1 && errno == ENOENT) return 0; shell = get_shell(); if ((pid = fork()) == 0) { sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_IGN; sigaction(SIGTSTP, &sa, (struct sigaction *)0); sigaction(SIGHUP, &sa, (struct sigaction *)0); open_console(); char _sh[] = "sh"; char _reboot[] = "reboot"; char _single[] = "single"; char _path_rundown[] = _PATH_RUNDOWN; argv[0] = _sh; argv[1] = _path_rundown; argv[2] = Reboot ? _reboot : _single; argv[3] = 0; sigprocmask(SIG_SETMASK, &sa.sa_mask, (sigset_t *) 0); #ifdef LOGIN_CAP setprocresources(RESOURCE_RC); #endif execv(shell, argv); warning("can't exec %s for %s: %m", shell, _PATH_RUNDOWN); _exit(1); /* force single user mode */ } if (pid == -1) { emergency("can't fork for %s on %s: %m", shell, _PATH_RUNDOWN); while (waitpid(-1, (int *) 0, WNOHANG) > 0) continue; sleep(STALL_TIMEOUT); return -1; } len = sizeof(shutdowntimeout); if (sysctlbyname("kern.init_shutdown_timeout", &shutdowntimeout, &len, NULL, 0) == -1 || shutdowntimeout < 2) shutdowntimeout = DEATH_SCRIPT; alarm(shutdowntimeout); clang = 0; /* * Copied from single_user(). This is a bit paranoid. * Use the same ALRM handler. */ do { if ((wpid = waitpid(-1, &status, WUNTRACED)) != -1) collect_child(wpid); if (clang == 1) { /* we were waiting for the sub-shell */ kill(wpid, SIGTERM); warning("timeout expired for %s on %s: %m; going to " "single user mode", shell, _PATH_RUNDOWN); return -1; } if (wpid == -1) { if (errno == EINTR) continue; warning("wait for %s on %s failed: %m; going to " "single user mode", shell, _PATH_RUNDOWN); return -1; } if (wpid == pid && WIFSTOPPED(status)) { warning("init: %s on %s stopped, restarting\n", shell, _PATH_RUNDOWN); kill(pid, SIGCONT); wpid = -1; } } while (wpid != pid && !clang); /* Turn off the alarm */ alarm(0); if (WIFSIGNALED(status) && WTERMSIG(status) == SIGTERM && requested_transition == catatonia) { /* * /etc/rc.shutdown executed /sbin/reboot; * wait for the end quietly */ sigset_t s; sigfillset(&s); for (;;) sigsuspend(&s); } if (!WIFEXITED(status)) { warning("%s on %s terminated abnormally, going to " "single user mode", shell, _PATH_RUNDOWN); return -2; } if ((status = WEXITSTATUS(status)) != 0) warning("%s returned status %d", _PATH_RUNDOWN, status); return status; } static char * strk(char *p) { static char *t; char *q; int c; if (p) t = p; if (!t) return 0; c = *t; while (c == ' ' || c == '\t' ) c = *++t; if (!c) { t = 0; return 0; } q = t; if (c == '\'') { c = *++t; q = t; while (c && c != '\'') c = *++t; if (!c) /* unterminated string */ q = t = 0; else *t++ = 0; } else { while (c && c != ' ' && c != '\t' ) c = *++t; *t++ = 0; if (!c) t = 0; } return q; } #ifdef LOGIN_CAP static void setprocresources(const char *cname) { login_cap_t *lc; if ((lc = login_getclassbyname(cname, NULL)) != NULL) { setusercontext(lc, (struct passwd*)NULL, 0, LOGIN_SETPRIORITY | LOGIN_SETRESOURCES | LOGIN_SETLOGINCLASS | LOGIN_SETCPUMASK); login_close(lc); } } #endif Index: head/sys/dev/acpica/acpi.c =================================================================== --- head/sys/dev/acpica/acpi.c (revision 288445) +++ head/sys/dev/acpica/acpi.c (revision 288446) @@ -1,4052 +1,4055 @@ /*- * Copyright (c) 2000 Takanori Watanabe * Copyright (c) 2000 Mitsuru IWASAKI * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) #include #endif #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_BUS ACPI_MODULE_NAME("ACPI") static d_open_t acpiopen; static d_close_t acpiclose; static d_ioctl_t acpiioctl; static struct cdevsw acpi_cdevsw = { .d_version = D_VERSION, .d_open = acpiopen, .d_close = acpiclose, .d_ioctl = acpiioctl, .d_name = "acpi", }; struct acpi_interface { ACPI_STRING *data; int num; }; /* Global mutex for locking access to the ACPI subsystem. */ struct mtx acpi_mutex; struct callout acpi_sleep_timer; /* Bitmap of device quirks. */ int acpi_quirks; /* Supported sleep states. */ static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; static void acpi_lookup(void *arg, const char *name, device_t *dev); static int acpi_modevent(struct module *mod, int event, void *junk); static int acpi_probe(device_t dev); static int acpi_attach(device_t dev); static int acpi_suspend(device_t dev); static int acpi_resume(device_t dev); static int acpi_shutdown(device_t dev); static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit); static int acpi_print_child(device_t bus, device_t child); static void acpi_probe_nomatch(device_t bus, device_t child); static void acpi_driver_added(device_t dev, driver_t *driver); static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result); static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value); static struct resource_list *acpi_get_rlist(device_t dev, device_t child); static void acpi_reserve_resources(device_t dev); static int acpi_sysres_alloc(device_t dev); static int acpi_set_resource(device_t dev, device_t child, int type, int rid, u_long start, u_long count); static struct resource *acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags); static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, u_long start, u_long end); static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r); static void acpi_delete_resource(device_t bus, device_t child, int type, int rid); static uint32_t acpi_isa_get_logicalid(device_t dev); static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids); static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret); static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *context, void **retval); static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg); static int acpi_set_powerstate(device_t child, int state); static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids); static void acpi_probe_children(device_t bus); static void acpi_probe_order(ACPI_HANDLE handle, int *order); static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status); static void acpi_sleep_enable(void *arg); static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); static void acpi_shutdown_final(void *arg, int howto); static void acpi_enable_fixed_events(struct acpi_softc *sc); static BOOLEAN acpi_has_hid(ACPI_HANDLE handle); static void acpi_resync_clock(struct acpi_softc *sc); static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_prep_walk(int sstate); static int acpi_wake_sysctl_walk(device_t dev); static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); static void acpi_system_eventhandler_sleep(void *arg, int state); static void acpi_system_eventhandler_wakeup(void *arg, int state); static int acpi_sname2sstate(const char *sname); static const char *acpi_sstate2sname(int sstate); static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_pm_func(u_long cmd, void *arg, ...); static int acpi_child_location_str_method(device_t acdev, device_t child, char *buf, size_t buflen); static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child, char *buf, size_t buflen); #if defined(__i386__) || defined(__amd64__) static void acpi_enable_pcie(void); #endif static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp); static void acpi_reset_interfaces(device_t dev); static device_method_t acpi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_probe), DEVMETHOD(device_attach, acpi_attach), DEVMETHOD(device_shutdown, acpi_shutdown), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_suspend, acpi_suspend), DEVMETHOD(device_resume, acpi_resume), /* Bus interface */ DEVMETHOD(bus_add_child, acpi_add_child), DEVMETHOD(bus_print_child, acpi_print_child), DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), DEVMETHOD(bus_driver_added, acpi_driver_added), DEVMETHOD(bus_read_ivar, acpi_read_ivar), DEVMETHOD(bus_write_ivar, acpi_write_ivar), DEVMETHOD(bus_get_resource_list, acpi_get_rlist), DEVMETHOD(bus_set_resource, acpi_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), DEVMETHOD(bus_release_resource, acpi_release_resource), DEVMETHOD(bus_delete_resource, acpi_delete_resource), DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method), DEVMETHOD(bus_child_location_str, acpi_child_location_str_method), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), DEVMETHOD(bus_get_domain, acpi_get_domain), /* ACPI bus */ DEVMETHOD(acpi_id_probe, acpi_device_id_probe), DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), DEVMETHOD(acpi_scan_children, acpi_device_scan_children), /* ISA emulation */ DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), DEVMETHOD_END }; static driver_t acpi_driver = { "acpi", acpi_methods, sizeof(struct acpi_softc), }; static devclass_t acpi_devclass; DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0); MODULE_VERSION(acpi, 1); ACPI_SERIAL_DECL(acpi, "ACPI root bus"); /* Local pools for managing system resources for ACPI child devices. */ static struct rman acpi_rman_io, acpi_rman_mem; #define ACPI_MINIMUM_AWAKETIME 5 /* Holds the description of the acpi0 device. */ static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging"); static char acpi_ca_version[12]; SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, acpi_ca_version, 0, "Version of Intel ACPI-CA"); /* * Allow overriding _OSI methods. */ static char acpi_install_interface[256]; TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, sizeof(acpi_install_interface)); static char acpi_remove_interface[256]; TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, sizeof(acpi_remove_interface)); /* Allow users to dump Debug objects without ACPI debugger. */ static int acpi_debug_objects; TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, acpi_debug_objects_sysctl, "I", "Enable Debug objects"); /* Allow the interpreter to ignore common mistakes in BIOS. */ static int acpi_interpreter_slack = 1; TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); /* Ignore register widths set by FADT and use default widths instead. */ static int acpi_ignore_reg_width = 1; TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); #ifdef __amd64__ /* Reset system clock while resuming. XXX Remove once tested. */ static int acpi_reset_clock = 1; TUNABLE_INT("debug.acpi.reset_clock", &acpi_reset_clock); SYSCTL_INT(_debug_acpi, OID_AUTO, reset_clock, CTLFLAG_RW, &acpi_reset_clock, 1, "Reset system clock while resuming."); #endif /* Allow users to override quirks. */ TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); static int acpi_susp_bounce; SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); /* * ACPI can only be loaded as a module by the loader; activating it after * system bootstrap time is not useful, and can be fatal to the system. * It also cannot be unloaded, since the entire system bus hierarchy hangs * off it. */ static int acpi_modevent(struct module *mod, int event, void *junk) { switch (event) { case MOD_LOAD: if (!cold) { printf("The ACPI driver cannot be loaded after boot.\n"); return (EPERM); } break; case MOD_UNLOAD: if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) return (EBUSY); break; default: break; } return (0); } /* * Perform early initialization. */ ACPI_STATUS acpi_Startup(void) { static int started = 0; ACPI_STATUS status; int val; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Only run the startup code once. The MADT driver also calls this. */ if (started) return_VALUE (AE_OK); started = 1; /* * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing * if more tables exist. */ if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { printf("ACPI: Table initialisation failed: %s\n", AcpiFormatException(status)); return_VALUE (status); } /* Set up any quirks we have for this system. */ if (acpi_quirks == ACPI_Q_OK) acpi_table_quirks(&acpi_quirks); /* If the user manually set the disabled hint to 0, force-enable ACPI. */ if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) acpi_quirks &= ~ACPI_Q_BROKEN; if (acpi_quirks & ACPI_Q_BROKEN) { printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); status = AE_SUPPORT; } return_VALUE (status); } /* * Detect ACPI and perform early initialisation. */ int acpi_identify(void) { ACPI_TABLE_RSDP *rsdp; ACPI_TABLE_HEADER *rsdt; ACPI_PHYSICAL_ADDRESS paddr; struct sbuf sb; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (!cold) return (ENXIO); /* Check that we haven't been disabled with a hint. */ if (resource_disabled("acpi", 0)) return (ENXIO); /* Check for other PM systems. */ if (power_pm_get_type() != POWER_PM_TYPE_NONE && power_pm_get_type() != POWER_PM_TYPE_ACPI) { printf("ACPI identify failed, other PM system enabled.\n"); return (ENXIO); } /* Initialize root tables. */ if (ACPI_FAILURE(acpi_Startup())) { printf("ACPI: Try disabling either ACPI or apic support.\n"); return (ENXIO); } if ((paddr = AcpiOsGetRootPointer()) == 0 || (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) return (ENXIO); if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; else paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) return (ENXIO); sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); sbuf_trim(&sb); sbuf_putc(&sb, ' '); sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); sbuf_trim(&sb); sbuf_finish(&sb); sbuf_delete(&sb); AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); return (0); } /* * Fetch some descriptive data from ACPI to put in our attach message. */ static int acpi_probe(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); device_set_desc(dev, acpi_desc); return_VALUE (BUS_PROBE_NOWILDCARD); } static int acpi_attach(device_t dev) { struct acpi_softc *sc; ACPI_STATUS status; int error, state; UINT32 flags; UINT8 TypeA, TypeB; char *env; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->acpi_dev = dev; callout_init(&sc->susp_force_to, 1); error = ENXIO; /* Initialize resource manager. */ acpi_rman_io.rm_type = RMAN_ARRAY; acpi_rman_io.rm_start = 0; acpi_rman_io.rm_end = 0xffff; acpi_rman_io.rm_descr = "ACPI I/O ports"; if (rman_init(&acpi_rman_io) != 0) panic("acpi rman_init IO ports failed"); acpi_rman_mem.rm_type = RMAN_ARRAY; acpi_rman_mem.rm_start = 0; acpi_rman_mem.rm_end = ~0ul; acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; if (rman_init(&acpi_rman_mem) != 0) panic("acpi rman_init memory failed"); /* Initialise the ACPI mutex */ mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); /* * Set the globals from our tunables. This is needed because ACPI-CA * uses UINT8 for some values and we have no tunable_byte. */ AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; #ifndef ACPI_DEBUG /* * Disable all debugging layers and levels. */ AcpiDbgLayer = 0; AcpiDbgLevel = 0; #endif /* Start up the ACPI CA subsystem. */ status = AcpiInitializeSubsystem(); if (ACPI_FAILURE(status)) { device_printf(dev, "Could not initialize Subsystem: %s\n", AcpiFormatException(status)); goto out; } /* Override OS interfaces if the user requested. */ acpi_reset_interfaces(dev); /* Load ACPI name space. */ status = AcpiLoadTables(); if (ACPI_FAILURE(status)) { device_printf(dev, "Could not load Namespace: %s\n", AcpiFormatException(status)); goto out; } #if defined(__i386__) || defined(__amd64__) /* Handle MCFG table if present. */ acpi_enable_pcie(); #endif /* * Note that some systems (specifically, those with namespace evaluation * issues that require the avoidance of parts of the namespace) must * avoid running _INI and _STA on everything, as well as dodging the final * object init pass. * * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). * * XXX We should arrange for the object init pass after we have attached * all our child devices, but on many systems it works here. */ flags = 0; if (testenv("debug.acpi.avoid")) flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; /* Bring the hardware and basic handlers online. */ if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { device_printf(dev, "Could not enable ACPI: %s\n", AcpiFormatException(status)); goto out; } /* * Call the ECDT probe function to provide EC functionality before * the namespace has been evaluated. * * XXX This happens before the sysresource devices have been probed and * attached so its resources come from nexus0. In practice, this isn't * a problem but should be addressed eventually. */ acpi_ec_ecdt_probe(dev); /* Bring device objects and regions online. */ if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { device_printf(dev, "Could not initialize ACPI objects: %s\n", AcpiFormatException(status)); goto out; } /* * Setup our sysctl tree. * * XXX: This doesn't check to make sure that none of these fail. */ sysctl_ctx_init(&sc->acpi_sysctl_ctx); sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), CTLFLAG_RD, 0, ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD, 0, 0, acpi_supported_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW, &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, "sleep delay in seconds"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "disable_on_reboot", CTLFLAG_RW, &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "handle_reboot", CTLFLAG_RW, &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); /* * Default to 1 second before sleeping to give some machines time to * stabilize. */ sc->acpi_sleep_delay = 1; if (bootverbose) sc->acpi_verbose = 1; if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { if (strcmp(env, "0") != 0) sc->acpi_verbose = 1; freeenv(env); } /* Only enable reboot by default if the FADT says it is available. */ if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) sc->acpi_handle_reboot = 1; #if !ACPI_REDUCED_HARDWARE /* Only enable S4BIOS by default if the FACS says it is available. */ if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) sc->acpi_s4bios = 1; #endif /* Probe all supported sleep states. */ acpi_sleep_states[ACPI_STATE_S0] = TRUE; for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) acpi_sleep_states[state] = TRUE; /* * Dispatch the default sleep state to devices. The lid switch is set * to UNKNOWN by default to avoid surprising users. */ sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; /* Pick the first valid sleep state for the sleep button default. */ sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) if (acpi_sleep_states[state]) { sc->acpi_sleep_button_sx = state; break; } acpi_enable_fixed_events(sc); /* * Scan the namespace and attach/initialise children. */ /* Register our shutdown handler. */ EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, SHUTDOWN_PRI_LAST); /* * Register our acpi event handlers. * XXX should be configurable eg. via userland policy manager. */ EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, sc, ACPI_EVENT_PRI_LAST); EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, sc, ACPI_EVENT_PRI_LAST); /* Flag our initial states. */ sc->acpi_enabled = TRUE; sc->acpi_sstate = ACPI_STATE_S0; sc->acpi_sleep_disabled = TRUE; /* Create the control device */ sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644, "acpi"); sc->acpi_dev_t->si_drv1 = sc; if ((error = acpi_machdep_init(dev))) goto out; /* Register ACPI again to pass the correct argument of pm_func. */ power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); if (!acpi_disabled("bus")) { EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); acpi_probe_children(dev); } /* Update all GPEs and enable runtime GPEs. */ status = AcpiUpdateAllGpes(); if (ACPI_FAILURE(status)) device_printf(dev, "Could not update all GPEs: %s\n", AcpiFormatException(status)); /* Allow sleep request after a while. */ callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, acpi_sleep_enable, sc); error = 0; out: return_VALUE (error); } static void acpi_set_power_children(device_t dev, int state) { device_t child; device_t *devlist; int dstate, i, numdevs; if (device_get_children(dev, &devlist, &numdevs) != 0) return; /* * Retrieve and set D-state for the sleep state if _SxD is present. * Skip children who aren't attached since they are handled separately. */ for (i = 0; i < numdevs; i++) { child = devlist[i]; dstate = state; if (device_is_attached(child) && acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) acpi_set_powerstate(child, dstate); } free(devlist, M_TEMP); } static int acpi_suspend(device_t dev) { int error; GIANT_REQUIRED; error = bus_generic_suspend(dev); if (error == 0) acpi_set_power_children(dev, ACPI_STATE_D3); return (error); } static int acpi_resume(device_t dev) { GIANT_REQUIRED; acpi_set_power_children(dev, ACPI_STATE_D0); return (bus_generic_resume(dev)); } static int acpi_shutdown(device_t dev) { GIANT_REQUIRED; /* Allow children to shutdown first. */ bus_generic_shutdown(dev); /* * Enable any GPEs that are able to power-on the system (i.e., RTC). * Also, disable any that are not valid for this state (most). */ acpi_wake_prep_walk(ACPI_STATE_S5); return (0); } /* * Handle a new device being added */ static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit) { struct acpi_device *ad; device_t child; if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) return (NULL); resource_list_init(&ad->ad_rl); child = device_add_child_ordered(bus, order, name, unit); if (child != NULL) device_set_ivars(child, ad); else free(ad, M_ACPIDEV); return (child); } static int acpi_print_child(device_t bus, device_t child) { struct acpi_device *adev = device_get_ivars(child); struct resource_list *rl = &adev->ad_rl; int retval = 0; retval += bus_print_child_header(bus, child); retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld"); if (device_get_flags(child)) retval += printf(" flags %#x", device_get_flags(child)); retval += bus_print_child_domain(bus, child); retval += bus_print_child_footer(bus, child); return (retval); } /* * If this device is an ACPI child but no one claimed it, attempt * to power it off. We'll power it back up when a driver is added. * * XXX Disabled for now since many necessary devices (like fdc and * ATA) don't claim the devices we created for them but still expect * them to be powered up. */ static void acpi_probe_nomatch(device_t bus, device_t child) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D3); #endif } /* * If a new driver has a chance to probe a child, first power it up. * * XXX Disabled for now (see acpi_probe_nomatch for details). */ static void acpi_driver_added(device_t dev, driver_t *driver) { device_t child, *devlist; int i, numdevs; DEVICE_IDENTIFY(driver, dev); if (device_get_children(dev, &devlist, &numdevs)) return; for (i = 0; i < numdevs; i++) { child = devlist[i]; if (device_get_state(child) == DS_NOTPRESENT) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D0); if (device_probe_and_attach(child) != 0) acpi_set_powerstate(child, ACPI_STATE_D3); #else device_probe_and_attach(child); #endif } } free(devlist, M_TEMP); } /* Location hint for devctl(8) */ static int acpi_child_location_str_method(device_t cbdev, device_t child, char *buf, size_t buflen) { struct acpi_device *dinfo = device_get_ivars(child); char buf2[32]; int pxm; if (dinfo->ad_handle) { snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle)); if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { snprintf(buf2, 32, " _PXM=%d", pxm); strlcat(buf, buf2, buflen); } } else { snprintf(buf, buflen, "unknown"); } return (0); } /* PnP information for devctl(8) */ static int acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf, size_t buflen) { struct acpi_device *dinfo = device_get_ivars(child); ACPI_DEVICE_INFO *adinfo; if (ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo))) { snprintf(buf, buflen, "unknown"); return (0); } snprintf(buf, buflen, "_HID=%s _UID=%lu", (adinfo->Valid & ACPI_VALID_HID) ? adinfo->HardwareId.String : "none", (adinfo->Valid & ACPI_VALID_UID) ? strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL); AcpiOsFree(adinfo); return (0); } /* * Handle per-device ivars */ static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } /* ACPI and ISA compatibility ivars */ switch(index) { case ACPI_IVAR_HANDLE: *(ACPI_HANDLE *)result = ad->ad_handle; break; case ACPI_IVAR_PRIVATE: *(void **)result = ad->ad_private; break; case ACPI_IVAR_FLAGS: *(int *)result = ad->ad_flags; break; case ISA_IVAR_VENDORID: case ISA_IVAR_SERIAL: case ISA_IVAR_COMPATID: *(int *)result = -1; break; case ISA_IVAR_LOGICALID: *(int *)result = acpi_isa_get_logicalid(child); break; default: return (ENOENT); } return (0); } static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } switch(index) { case ACPI_IVAR_HANDLE: ad->ad_handle = (ACPI_HANDLE)value; break; case ACPI_IVAR_PRIVATE: ad->ad_private = (void *)value; break; case ACPI_IVAR_FLAGS: ad->ad_flags = (int)value; break; default: panic("bad ivar write request (%d)", index); return (ENOENT); } return (0); } /* * Handle child resource allocation/removal */ static struct resource_list * acpi_get_rlist(device_t dev, device_t child) { struct acpi_device *ad; ad = device_get_ivars(child); return (&ad->ad_rl); } static int acpi_match_resource_hint(device_t dev, int type, long value) { struct acpi_device *ad = device_get_ivars(dev); struct resource_list *rl = &ad->ad_rl; struct resource_list_entry *rle; STAILQ_FOREACH(rle, rl, link) { if (rle->type != type) continue; if (rle->start <= value && rle->end >= value) return (1); } return (0); } /* * Wire device unit numbers based on resource matches in hints. */ static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp) { const char *s; long value; int line, matches, unit; /* * Iterate over all the hints for the devices with the specified * name to see if one's resources are a subset of this device. */ line = 0; for (;;) { if (resource_find_dev(&line, name, &unit, "at", NULL) != 0) break; /* Must have an "at" for acpi or isa. */ resource_string_value(name, unit, "at", &s); if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) continue; /* * Check for matching resources. We must have at least one match. * Since I/O and memory resources cannot be shared, if we get a * match on either of those, ignore any mismatches in IRQs or DRQs. * * XXX: We may want to revisit this to be more lenient and wire * as long as it gets one match. */ matches = 0; if (resource_long_value(name, unit, "port", &value) == 0) { /* * Floppy drive controllers are notorious for having a * wide variety of resources not all of which include the * first port that is specified by the hint (typically * 0x3f0) (see the comment above fdc_isa_alloc_resources() * in fdc_isa.c). However, they do all seem to include * port + 2 (e.g. 0x3f2) so for a floppy device, look for * 'value + 2' in the port resources instead of the hint * value. */ if (strcmp(name, "fdc") == 0) value += 2; if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) matches++; else continue; } if (resource_long_value(name, unit, "maddr", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) matches++; else continue; } if (matches > 0) goto matched; if (resource_long_value(name, unit, "irq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) matches++; else continue; } if (resource_long_value(name, unit, "drq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) matches++; else continue; } matched: if (matches > 0) { /* We have a winner! */ *unitp = unit; break; } } } /* * Fetch the VM domain for the given device 'dev'. * * Return 1 + domain if there's a domain, 0 if not found; * -1 upon an error. */ int acpi_parse_pxm(device_t dev, int *domain) { #if MAXMEMDOM > 1 ACPI_HANDLE h; int d, pxm; h = acpi_get_handle(dev); if ((h != NULL) && ACPI_SUCCESS(acpi_GetInteger(h, "_PXM", &pxm))) { d = acpi_map_pxm_to_vm_domainid(pxm); if (d < 0) return (-1); *domain = d; return (1); } #endif return (0); } /* * Fetch the NUMA domain for the given device. * * If a device has a _PXM method, map that to a NUMA domain. * * If none is found, then it'll call the parent method. * If there's no domain, return ENOENT. */ int acpi_get_domain(device_t dev, device_t child, int *domain) { int ret; ret = acpi_parse_pxm(child, domain); /* Error */ if (ret == -1) return (ENOENT); /* Found */ if (ret == 1) return (0); /* No _PXM node; go up a level */ return (bus_generic_get_domain(dev, child, domain)); } /* * Pre-allocate/manage all memory and IO resources. Since rman can't handle * duplicates, we merge any in the sysresource attach routine. */ static int acpi_sysres_alloc(device_t dev) { struct resource *res; struct resource_list *rl; struct resource_list_entry *rle; struct rman *rm; char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; device_t *children; int child_count, i; /* * Probe/attach any sysresource devices. This would be unnecessary if we * had multi-pass probe/attach. */ if (device_get_children(dev, &children, &child_count) != 0) return (ENXIO); for (i = 0; i < child_count; i++) { if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) device_probe_and_attach(children[i]); } free(children, M_TEMP); rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); STAILQ_FOREACH(rle, rl, link) { if (rle->res != NULL) { device_printf(dev, "duplicate resource for %lx\n", rle->start); continue; } /* Only memory and IO resources are valid here. */ switch (rle->type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: continue; } /* Pre-allocate resource and add to our rman pool. */ res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); if (res != NULL) { rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); rle->res = res; } else if (bootverbose) device_printf(dev, "reservation of %lx, %lx (%d) failed\n", rle->start, rle->count, rle->type); } return (0); } static char *pcilink_ids[] = { "PNP0C0F", NULL }; static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; /* * Reserve declared resources for devices found during attach once system * resources have been allocated. */ static void acpi_reserve_resources(device_t dev) { struct resource_list_entry *rle; struct resource_list *rl; struct acpi_device *ad; struct acpi_softc *sc; device_t *children; int child_count, i; sc = device_get_softc(dev); if (device_get_children(dev, &children, &child_count) != 0) return; for (i = 0; i < child_count; i++) { ad = device_get_ivars(children[i]); rl = &ad->ad_rl; /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL) continue; STAILQ_FOREACH(rle, rl, link) { /* * Don't reserve IRQ resources. There are many sticky things * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET * when using legacy routing). */ if (rle->type == SYS_RES_IRQ) continue; /* * Don't reserve the resource if it is already allocated. * The acpi_ec(4) driver can allocate its resources early * if ECDT is present. */ if (rle->res != NULL) continue; /* * Try to reserve the resource from our parent. If this * fails because the resource is a system resource, just * let it be. The resource range is already reserved so * that other devices will not use it. If the driver * needs to allocate the resource, then * acpi_alloc_resource() will sub-alloc from the system * resource. */ resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, rle->start, rle->end, rle->count, 0); } } free(children, M_TEMP); sc->acpi_resources_reserved = 1; } static int acpi_set_resource(device_t dev, device_t child, int type, int rid, u_long start, u_long count) { struct acpi_softc *sc = device_get_softc(dev); struct acpi_device *ad = device_get_ivars(child); struct resource_list *rl = &ad->ad_rl; ACPI_DEVICE_INFO *devinfo; u_long end; /* Ignore IRQ resources for PCI link devices. */ if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids) != NULL) return (0); /* * Ignore most resources for PCI root bridges. Some BIOSes * incorrectly enumerate the memory ranges they decode as plain * memory resources instead of as ResourceProducer ranges. Other * BIOSes incorrectly list system resource entries for I/O ranges * under the PCI bridge. Do allow the one known-correct case on * x86 of a PCI bridge claiming the I/O ports used for PCI config * access. */ if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { #if defined(__i386__) || defined(__amd64__) if (!(type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT)) #endif { AcpiOsFree(devinfo); return (0); } } AcpiOsFree(devinfo); } } /* If the resource is already allocated, fail. */ if (resource_list_busy(rl, type, rid)) return (EBUSY); /* If the resource is already reserved, release it. */ if (resource_list_reserved(rl, type, rid)) resource_list_unreserve(rl, dev, child, type, rid); /* Add the resource. */ end = (start + count - 1); resource_list_add(rl, type, rid, start, end, count); /* Don't reserve resources until the system resources are allocated. */ if (!sc->acpi_resources_reserved) return (0); /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, child, sysres_ids) != NULL) return (0); /* * Don't reserve IRQ resources. There are many sticky things to * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when * using legacy routing). */ if (type == SYS_RES_IRQ) return (0); /* * Reserve the resource. * * XXX: Ignores failure for now. Failure here is probably a * BIOS/firmware bug? */ resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); return (0); } static struct resource * acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { ACPI_RESOURCE ares; struct acpi_device *ad; struct resource_list_entry *rle; struct resource_list *rl; struct resource *res; int isdefault = (start == 0UL && end == ~0UL); /* * First attempt at allocating the resource. For direct children, * use resource_list_alloc() to handle reserved resources. For * other devices, pass the request up to our parent. */ if (bus == device_get_parent(child)) { ad = device_get_ivars(child); rl = &ad->ad_rl; /* * Simulate the behavior of the ISA bus for direct children * devices. That is, if a non-default range is specified for * a resource that doesn't exist, use bus_set_resource() to * add the resource before allocating it. Note that these * resources will not be reserved. */ if (!isdefault && resource_list_find(rl, type, *rid) == NULL) resource_list_add(rl, type, *rid, start, end, count); res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, flags); if (res != NULL && type == SYS_RES_IRQ) { /* * Since bus_config_intr() takes immediate effect, we cannot * configure the interrupt associated with a device when we * parse the resources but have to defer it until a driver * actually allocates the interrupt via bus_alloc_resource(). * * XXX: Should we handle the lookup failing? */ if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) acpi_config_intr(child, &ares); } /* * If this is an allocation of the "default" range for a given * RID, fetch the exact bounds for this resource from the * resource list entry to try to allocate the range from the * system resource regions. */ if (res == NULL && isdefault) { rle = resource_list_find(rl, type, *rid); if (rle != NULL) { start = rle->start; end = rle->end; count = rle->count; } } } else res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * If the first attempt failed and this is an allocation of a * specific range, try to satisfy the request via a suballocation * from our system resource regions. */ if (res == NULL && start + count - 1 == end) res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); return (res); } /* * Attempt to allocate a specific resource range from the system * resource ranges. Note that we only handle memory and I/O port * system resources. */ struct resource * acpi_alloc_sysres(device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct rman *rm; struct resource *res; switch (type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: return (NULL); } KASSERT(start + count - 1 == end, ("wildcard resource range")); res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, child); if (res == NULL) return (NULL); rman_set_rid(res, *rid); /* If requested, activate the resource using the parent's method. */ if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } return (res); } static int acpi_is_resource_managed(int type, struct resource *r) { /* We only handle memory and IO resources through rman. */ switch (type) { case SYS_RES_IOPORT: return (rman_is_region_manager(r, &acpi_rman_io)); case SYS_RES_MEMORY: return (rman_is_region_manager(r, &acpi_rman_mem)); } return (0); } static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, u_long start, u_long end) { if (acpi_is_resource_managed(type, r)) return (rman_adjust_resource(r, start, end)); return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { int ret; /* * If this resource belongs to one of our internal managers, * deactivate it and release it to the local pool. */ if (acpi_is_resource_managed(type, r)) { if (rman_get_flags(r) & RF_ACTIVE) { ret = bus_deactivate_resource(child, type, rid, r); if (ret != 0) return (ret); } return (rman_release_resource(r)); } return (bus_generic_rl_release_resource(bus, child, type, rid, r)); } static void acpi_delete_resource(device_t bus, device_t child, int type, int rid) { struct resource_list *rl; rl = acpi_get_rlist(bus, child); if (resource_list_busy(rl, type, rid)) { device_printf(bus, "delete_resource: Resource still owned by child" " (type=%d, rid=%d)\n", type, rid); return; } resource_list_unreserve(rl, bus, child, type, rid); resource_list_delete(rl, type, rid); } /* Allocate an IO port or memory resource, given its GAS. */ int acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, struct resource **res, u_int flags) { int error, res_type; error = ENOMEM; if (type == NULL || rid == NULL || gas == NULL || res == NULL) return (EINVAL); /* We only support memory and IO spaces. */ switch (gas->SpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: res_type = SYS_RES_MEMORY; break; case ACPI_ADR_SPACE_SYSTEM_IO: res_type = SYS_RES_IOPORT; break; default: return (EOPNOTSUPP); } /* * If the register width is less than 8, assume the BIOS author means * it is a bit field and just allocate a byte. */ if (gas->BitWidth && gas->BitWidth < 8) gas->BitWidth = 8; /* Validate the address after we're sure we support the space. */ if (gas->Address == 0 || gas->BitWidth == 0) return (EINVAL); bus_set_resource(dev, res_type, *rid, gas->Address, gas->BitWidth / 8); *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); if (*res != NULL) { *type = res_type; error = 0; } else bus_delete_resource(dev, res_type, *rid); return (error); } /* Probe _HID and _CID for compatible ISA PNP ids. */ static uint32_t acpi_isa_get_logicalid(device_t dev) { ACPI_DEVICE_INFO *devinfo; ACPI_HANDLE h; uint32_t pnpid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch and validate the HID. */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? PNP_EISAID(devinfo->HardwareId.String) : 0; AcpiOsFree(devinfo); return_VALUE (pnpid); } static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) { ACPI_DEVICE_INFO *devinfo; ACPI_PNP_DEVICE_ID *ids; ACPI_HANDLE h; uint32_t *pnpid; int i, valid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); pnpid = cids; /* Fetch and validate the CID */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); if ((devinfo->Valid & ACPI_VALID_CID) == 0) { AcpiOsFree(devinfo); return_VALUE (0); } if (devinfo->CompatibleIdList.Count < count) count = devinfo->CompatibleIdList.Count; ids = devinfo->CompatibleIdList.Ids; for (i = 0, valid = 0; i < count; i++) if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && strncmp(ids[i].String, "PNP", 3) == 0) { *pnpid++ = PNP_EISAID(ids[i].String); valid++; } AcpiOsFree(devinfo); return_VALUE (valid); } static char * acpi_device_id_probe(device_t bus, device_t dev, char **ids) { ACPI_HANDLE h; ACPI_OBJECT_TYPE t; int i; h = acpi_get_handle(dev); if (ids == NULL || h == NULL) return (NULL); t = acpi_get_type(dev); if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) return (NULL); /* Try to match one of the array of IDs with a HID or CID. */ for (i = 0; ids[i] != NULL; i++) { if (acpi_MatchHid(h, ids[i])) return (ids[i]); } return (NULL); } static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) { ACPI_HANDLE h; if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); return (AcpiEvaluateObject(h, pathname, parameters, ret)); } int acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) { struct acpi_softc *sc; ACPI_HANDLE handle; ACPI_STATUS status; char sxd[8]; handle = acpi_get_handle(dev); /* * XXX If we find these devices, don't try to power them down. * The serial and IRDA ports on my T23 hang the system when * set to D3 and it appears that such legacy devices may * need special handling in their drivers. */ if (dstate == NULL || handle == NULL || acpi_MatchHid(handle, "PNP0500") || acpi_MatchHid(handle, "PNP0501") || acpi_MatchHid(handle, "PNP0502") || acpi_MatchHid(handle, "PNP0510") || acpi_MatchHid(handle, "PNP0511")) return (ENXIO); /* * Override next state with the value from _SxD, if present. * Note illegal _S0D is evaluated because some systems expect this. */ sc = device_get_softc(bus); snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); status = acpi_GetInteger(handle, sxd, dstate); if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { device_printf(dev, "failed to get %s on %s: %s\n", sxd, acpi_name(handle), AcpiFormatException(status)); return (ENXIO); } return (0); } /* Callback arg for our implementation of walking the namespace. */ struct acpi_device_scan_ctx { acpi_scan_cb_t user_fn; void *arg; ACPI_HANDLE parent; }; static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) { struct acpi_device_scan_ctx *ctx; device_t dev, old_dev; ACPI_STATUS status; ACPI_OBJECT_TYPE type; /* * Skip this device if we think we'll have trouble with it or it is * the parent where the scan began. */ ctx = (struct acpi_device_scan_ctx *)arg; if (acpi_avoid(h) || h == ctx->parent) return (AE_OK); /* If this is not a valid device type (e.g., a method), skip it. */ if (ACPI_FAILURE(AcpiGetType(h, &type))) return (AE_OK); if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) return (AE_OK); /* * Call the user function with the current device. If it is unchanged * afterwards, return. Otherwise, we update the handle to the new dev. */ old_dev = acpi_get_device(h); dev = old_dev; status = ctx->user_fn(h, &dev, level, ctx->arg); if (ACPI_FAILURE(status) || old_dev == dev) return (status); /* Remove the old child and its connection to the handle. */ if (old_dev != NULL) { device_delete_child(device_get_parent(old_dev), old_dev); AcpiDetachData(h, acpi_fake_objhandler); } /* Recreate the handle association if the user created a device. */ if (dev != NULL) AcpiAttachData(h, acpi_fake_objhandler, dev); return (AE_OK); } static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg) { ACPI_HANDLE h; struct acpi_device_scan_ctx ctx; if (acpi_disabled("children")) return (AE_OK); if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); ctx.user_fn = user_fn; ctx.arg = arg; ctx.parent = h; return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, acpi_device_scan_cb, NULL, &ctx, NULL)); } /* * Even though ACPI devices are not PCI, we use the PCI approach for setting * device power states since it's close enough to ACPI. */ static int acpi_set_powerstate(device_t child, int state) { ACPI_HANDLE h; ACPI_STATUS status; h = acpi_get_handle(child); if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) return (EINVAL); if (h == NULL) return (0); /* Ignore errors if the power methods aren't present. */ status = acpi_pwr_switch_consumer(h, state); if (ACPI_SUCCESS(status)) { if (bootverbose) device_printf(child, "set ACPI power state D%d on %s\n", state, acpi_name(h)); } else if (status != AE_NOT_FOUND) device_printf(child, "failed to set ACPI power state D%d on %s: %s\n", state, acpi_name(h), AcpiFormatException(status)); return (0); } static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) { int result, cid_count, i; uint32_t lid, cids[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * ISA-style drivers attached to ACPI may persist and * probe manually if we return ENOENT. We never want * that to happen, so don't ever return it. */ result = ENXIO; /* Scan the supplied IDs for a match */ lid = acpi_isa_get_logicalid(child); cid_count = acpi_isa_get_compatid(child, cids, 8); while (ids && ids->ip_id) { if (lid == ids->ip_id) { result = 0; goto out; } for (i = 0; i < cid_count; i++) { if (cids[i] == ids->ip_id) { result = 0; goto out; } } ids++; } out: if (result == 0 && ids->ip_desc) device_set_desc(child, ids->ip_desc); return_VALUE (result); } #if defined(__i386__) || defined(__amd64__) /* * Look for a MCFG table. If it is present, use the settings for * domain (segment) 0 to setup PCI config space access via the memory * map. */ static void acpi_enable_pcie(void) { ACPI_TABLE_HEADER *hdr; ACPI_MCFG_ALLOCATION *alloc, *end; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); if (ACPI_FAILURE(status)) return; end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); while (alloc < end) { if (alloc->PciSegment == 0) { pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, alloc->EndBusNumber); return; } alloc++; } } #endif /* * Scan all of the ACPI namespace and attach child devices. * * We should only expect to find devices in the \_PR, \_TZ, \_SI, and * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. * However, in violation of the spec, some systems place their PCI link * devices in \, so we have to walk the whole namespace. We check the * type of namespace nodes, so this should be ok. */ static void acpi_probe_children(device_t bus) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * Scan the namespace and insert placeholders for all the devices that * we find. We also probe/attach any early devices. * * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because * we want to create nodes for all devices, not just those that are * currently present. (This assumes that we don't want to create/remove * devices as they appear, which might be smarter.) */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, NULL, bus, NULL); /* Pre-allocate resources for our rman from any sysresource devices. */ acpi_sysres_alloc(bus); /* Reserve resources already allocated to children. */ acpi_reserve_resources(bus); /* Create any static children by calling device identify methods. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); bus_generic_probe(bus); /* Probe/attach all children, created statically and from the namespace. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); bus_generic_attach(bus); /* Attach wake sysctls. */ acpi_wake_sysctl_walk(bus); ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); return_VOID; } /* * Determine the probe order for a given device. */ static void acpi_probe_order(ACPI_HANDLE handle, int *order) { ACPI_OBJECT_TYPE type; /* * 0. CPUs * 1. I/O port and memory system resource holders * 2. Clocks and timers (to handle early accesses) * 3. Embedded controllers (to handle early accesses) * 4. PCI Link Devices */ AcpiGetType(handle, &type); if (type == ACPI_TYPE_PROCESSOR) *order = 0; else if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) *order = 1; else if (acpi_MatchHid(handle, "PNP0100") || acpi_MatchHid(handle, "PNP0103") || acpi_MatchHid(handle, "PNP0B00")) *order = 2; else if (acpi_MatchHid(handle, "PNP0C09")) *order = 3; else if (acpi_MatchHid(handle, "PNP0C0F")) *order = 4; } /* * Evaluate a child device and determine whether we might attach a device to * it. */ static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { struct acpi_prw_data prw; ACPI_OBJECT_TYPE type; ACPI_HANDLE h; device_t bus, child; char *handle_str; int order; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (acpi_disabled("children")) return_ACPI_STATUS (AE_OK); /* Skip this device if we think we'll have trouble with it. */ if (acpi_avoid(handle)) return_ACPI_STATUS (AE_OK); bus = (device_t)context; if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { handle_str = acpi_name(handle); switch (type) { case ACPI_TYPE_DEVICE: /* * Since we scan from \, be sure to skip system scope objects. * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run * during the intialization and \_TZ_ is to support Notify() on it. */ if (strcmp(handle_str, "\\_SB_") == 0 || strcmp(handle_str, "\\_TZ_") == 0) break; if (acpi_parse_prw(handle, &prw) == 0) AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); /* * Ignore devices that do not have a _HID or _CID. They should * be discovered by other buses (e.g. the PCI bus driver). */ if (!acpi_has_hid(handle)) break; /* FALLTHROUGH */ case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: case ACPI_TYPE_POWER: /* * Create a placeholder device for this node. Sort the * placeholder so that the probe/attach passes will run * breadth-first. Orders less than ACPI_DEV_BASE_ORDER * are reserved for special objects (i.e., system * resources). */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); order = level * 10 + ACPI_DEV_BASE_ORDER; acpi_probe_order(handle, &order); child = BUS_ADD_CHILD(bus, order, NULL, -1); if (child == NULL) break; /* Associate the handle with the device_t and vice versa. */ acpi_set_handle(child, handle); AcpiAttachData(handle, acpi_fake_objhandler, child); /* * Check that the device is present. If it's not present, * leave it disabled (so that we have a device_t attached to * the handle, but we don't probe it). * * XXX PCI link devices sometimes report "present" but not * "functional" (i.e. if disabled). Go ahead and probe them * anyway since we may enable them later. */ if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { /* Never disable PCI link devices. */ if (acpi_MatchHid(handle, "PNP0C0F")) break; /* * Docking stations should remain enabled since the system * may be undocked at boot. */ if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) break; device_disable(child); break; } /* * Get the device's resource settings and attach them. * Note that if the device has _PRS but no _CRS, we need * to decide when it's appropriate to try to configure the * device. Ignore the return value here; it's OK for the * device not to have any resources. */ acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); break; } } return_ACPI_STATUS (AE_OK); } /* * AcpiAttachData() requires an object handler but never uses it. This is a * placeholder object handler so we can store a device_t in an ACPI_HANDLE. */ void acpi_fake_objhandler(ACPI_HANDLE h, void *data) { } static void acpi_shutdown_final(void *arg, int howto) { struct acpi_softc *sc = (struct acpi_softc *)arg; register_t intr; ACPI_STATUS status; /* * XXX Shutdown code should only run on the BSP (cpuid 0). * Some chipsets do not power off the system correctly if called from * an AP. */ if ((howto & RB_POWEROFF) != 0) { status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); return; } device_printf(sc->acpi_dev, "Powering system off\n"); intr = intr_disable(); status = AcpiEnterSleepState(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - %s\n", AcpiFormatException(status)); } else { DELAY(1000000); intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - timeout\n"); } } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { /* Reboot using the reset register. */ status = AcpiReset(); if (ACPI_SUCCESS(status)) { DELAY(1000000); device_printf(sc->acpi_dev, "reset failed - timeout\n"); } else if (status != AE_NOT_EXIST) device_printf(sc->acpi_dev, "reset failed - %s\n", AcpiFormatException(status)); } else if (sc->acpi_do_disable && panicstr == NULL) { /* * Only disable ACPI if the user requested. On some systems, writing * the disable value to SMI_CMD hangs the system. */ device_printf(sc->acpi_dev, "Shutting down\n"); AcpiTerminate(); } } static void acpi_enable_fixed_events(struct acpi_softc *sc) { static int first_time = 1; /* Enable and clear fixed events and install handlers. */ if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, acpi_event_power_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Power Button (fixed)\n"); } if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, acpi_event_sleep_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); } first_time = 0; } /* * Returns true if the device is actually present and should * be attached to. This requires the present, enabled, UI-visible * and diagnostics-passed bits to be set. */ BOOLEAN acpi_DeviceIsPresent(device_t dev) { ACPI_DEVICE_INFO *devinfo; ACPI_HANDLE h; BOOLEAN present; if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); /* If no _STA method, must be present */ present = (devinfo->Valid & ACPI_VALID_STA) == 0 || ACPI_DEVICE_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; AcpiOsFree(devinfo); return (present); } /* * Returns true if the battery is actually present and inserted. */ BOOLEAN acpi_BatteryIsPresent(device_t dev) { ACPI_DEVICE_INFO *devinfo; ACPI_HANDLE h; BOOLEAN present; if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); /* If no _STA method, must be present */ present = (devinfo->Valid & ACPI_VALID_STA) == 0 || ACPI_BATTERY_PRESENT(devinfo->CurrentStatus) ? TRUE : FALSE; AcpiOsFree(devinfo); return (present); } /* * Returns true if a device has at least one valid device ID. */ static BOOLEAN acpi_has_hid(ACPI_HANDLE h) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; if (h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); ret = FALSE; if ((devinfo->Valid & ACPI_VALID_HID) != 0) ret = TRUE; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) if (devinfo->CompatibleIdList.Count > 0) ret = TRUE; AcpiOsFree(devinfo); return (ret); } /* * Match a HID string against a handle */ BOOLEAN acpi_MatchHid(ACPI_HANDLE h, const char *hid) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; int i; if (hid == NULL || h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); ret = FALSE; if ((devinfo->Valid & ACPI_VALID_HID) != 0 && strcmp(hid, devinfo->HardwareId.String) == 0) ret = TRUE; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { ret = TRUE; break; } } AcpiOsFree(devinfo); return (ret); } /* * Return the handle of a named object within our scope, ie. that of (parent) * or one if its parents. */ ACPI_STATUS acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) { ACPI_HANDLE r; ACPI_STATUS status; /* Walk back up the tree to the root */ for (;;) { status = AcpiGetHandle(parent, path, &r); if (ACPI_SUCCESS(status)) { *result = r; return (AE_OK); } /* XXX Return error here? */ if (status != AE_NOT_FOUND) return (AE_OK); if (ACPI_FAILURE(AcpiGetParent(parent, &r))) return (AE_NOT_FOUND); parent = r; } } /* * Allocate a buffer with a preset data size. */ ACPI_BUFFER * acpi_AllocBuffer(int size) { ACPI_BUFFER *buf; if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) return (NULL); buf->Length = size; buf->Pointer = (void *)(buf + 1); return (buf); } ACPI_STATUS acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) { ACPI_OBJECT arg1; ACPI_OBJECT_LIST args; arg1.Type = ACPI_TYPE_INTEGER; arg1.Integer.Value = number; args.Count = 1; args.Pointer = &arg1; return (AcpiEvaluateObject(handle, path, &args, NULL)); } /* * Evaluate a path that should return an integer. */ ACPI_STATUS acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) { ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT param; if (handle == NULL) handle = ACPI_ROOT_OBJECT; /* * Assume that what we've been pointed at is an Integer object, or * a method that will return an Integer. */ buf.Pointer = ¶m; buf.Length = sizeof(param); status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) { if (param.Type == ACPI_TYPE_INTEGER) *number = param.Integer.Value; else status = AE_TYPE; } /* * In some applications, a method that's expected to return an Integer * may instead return a Buffer (probably to simplify some internal * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, * convert it into an Integer as best we can. * * This is a hack. */ if (status == AE_BUFFER_OVERFLOW) { if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { status = AE_NO_MEMORY; } else { status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) status = acpi_ConvertBufferToInteger(&buf, number); AcpiOsFree(buf.Pointer); } } return (status); } ACPI_STATUS acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) { ACPI_OBJECT *p; UINT8 *val; int i; p = (ACPI_OBJECT *)bufp->Pointer; if (p->Type == ACPI_TYPE_INTEGER) { *number = p->Integer.Value; return (AE_OK); } if (p->Type != ACPI_TYPE_BUFFER) return (AE_TYPE); if (p->Buffer.Length > sizeof(int)) return (AE_BAD_DATA); *number = 0; val = p->Buffer.Pointer; for (i = 0; i < p->Buffer.Length; i++) *number += val[i] << (i * 8); return (AE_OK); } /* * Iterate over the elements of an a package object, calling the supplied * function for each element. * * XXX possible enhancement might be to abort traversal on error. */ ACPI_STATUS acpi_ForeachPackageObject(ACPI_OBJECT *pkg, void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) { ACPI_OBJECT *comp; int i; if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) return (AE_BAD_PARAMETER); /* Iterate over components */ i = 0; comp = pkg->Package.Elements; for (; i < pkg->Package.Count; i++, comp++) func(comp, arg); return (AE_OK); } /* * Find the (index)th resource object in a set. */ ACPI_STATUS acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) { ACPI_RESOURCE *rp; int i; rp = (ACPI_RESOURCE *)buf->Pointer; i = index; while (i-- > 0) { /* Range check */ if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); /* Check for terminator */ if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) return (AE_NOT_FOUND); rp = ACPI_NEXT_RESOURCE(rp); } if (resp != NULL) *resp = rp; return (AE_OK); } /* * Append an ACPI_RESOURCE to an ACPI_BUFFER. * * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible * backing block. If the ACPI_RESOURCE is NULL, return an empty set of * resources. */ #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) { ACPI_RESOURCE *rp; void *newp; /* Initialise the buffer if necessary. */ if (buf->Pointer == NULL) { buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) return (AE_NO_MEMORY); rp = (ACPI_RESOURCE *)buf->Pointer; rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; } if (res == NULL) return (AE_OK); /* * Scan the current buffer looking for the terminator. * This will either find the terminator or hit the end * of the buffer and return an error. */ rp = (ACPI_RESOURCE *)buf->Pointer; for (;;) { /* Range check, don't go outside the buffer */ if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) break; rp = ACPI_NEXT_RESOURCE(rp); } /* * Check the size of the buffer and expand if required. * * Required size is: * size of existing resources before terminator + * size of new resource and header + * size of terminator. * * Note that this loop should really only run once, unless * for some reason we are stuffing a *really* huge resource. */ while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + res->Length + ACPI_RS_SIZE_NO_DATA + ACPI_RS_SIZE_MIN) >= buf->Length) { if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) return (AE_NO_MEMORY); bcopy(buf->Pointer, newp, buf->Length); rp = (ACPI_RESOURCE *)((u_int8_t *)newp + ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); AcpiOsFree(buf->Pointer); buf->Pointer = newp; buf->Length += buf->Length; } /* Insert the new resource. */ bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); /* And add the terminator. */ rp = ACPI_NEXT_RESOURCE(rp); rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; return (AE_OK); } /* * Set interrupt model. */ ACPI_STATUS acpi_SetIntrModel(int model) { return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); } /* * Walk subtables of a table and call a callback routine for each * subtable. The caller should provide the first subtable and a * pointer to the end of the table. This can be used to walk tables * such as MADT and SRAT that use subtable entries. */ void acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, void *arg) { ACPI_SUBTABLE_HEADER *entry; for (entry = first; (void *)entry < end; ) { /* Avoid an infinite loop if we hit a bogus entry. */ if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) return; handler(entry, arg); entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); } } /* * DEPRECATED. This interface has serious deficiencies and will be * removed. * * Immediately enter the sleep state. In the old model, acpiconf(8) ran * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. */ ACPI_STATUS acpi_SetSleepState(struct acpi_softc *sc, int state) { static int once; if (!once) { device_printf(sc->acpi_dev, "warning: acpi_SetSleepState() deprecated, need to update your software\n"); once = 1; } return (acpi_EnterSleepState(sc, state)); } #if defined(__amd64__) || defined(__i386__) static void acpi_sleep_force_task(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) device_printf(sc->acpi_dev, "force sleep state S%d failed\n", sc->acpi_next_sstate); } static void acpi_sleep_force(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; device_printf(sc->acpi_dev, "suspend request timed out, forcing sleep now\n"); /* * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). * Suspend from acpi_task thread instead. */ if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_sleep_force_task, sc))) device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); } #endif /* * Request that the system enter the given suspend state. All /dev/apm * devices and devd(8) will be notified. Userland then has a chance to * save state and acknowledge the request. The system sleeps once all * acks are in. */ int acpi_ReqSleepState(struct acpi_softc *sc, int state) { #if defined(__amd64__) || defined(__i386__) struct apm_clone_data *clone; ACPI_STATUS status; if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); - /* If a suspend request is already in progress, just return. */ - if (sc->acpi_next_sstate != 0) { + /* + * If a reboot/shutdown/suspend request is already in progress or + * suspend is blocked due to an upcoming shutdown, just return. + */ + if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { return (0); } /* Wait until sleep is enabled. */ while (sc->acpi_sleep_disabled) { AcpiOsSleep(1000); } ACPI_LOCK(acpi); sc->acpi_next_sstate = state; /* S5 (soft-off) should be entered directly with no waiting. */ if (state == ACPI_STATE_S5) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* Record the pending state and notify all apm devices. */ STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { clone->notify_status = APM_EV_NONE; if ((clone->flags & ACPI_EVF_DEVD) == 0) { selwakeuppri(&clone->sel_read, PZERO); KNOTE_LOCKED(&clone->sel_read.si_note, 0); } } /* If devd(8) is not running, immediately enter the sleep state. */ if (!devctl_process_running()) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* * Set a timeout to fire if userland doesn't ack the suspend request * in time. This way we still eventually go to sleep if we were * overheating or running low on battery, even if userland is hung. * We cancel this timeout once all userland acks are in or the * suspend request is aborted. */ callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); ACPI_UNLOCK(acpi); /* Now notify devd(8) also. */ acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); return (0); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } /* * Acknowledge (or reject) a pending sleep state. The caller has * prepared for suspend and is now ready for it to proceed. If the * error argument is non-zero, it indicates suspend should be cancelled * and gives an errno value describing why. Once all votes are in, * we suspend the system. */ int acpi_AckSleepState(struct apm_clone_data *clone, int error) { #if defined(__amd64__) || defined(__i386__) struct acpi_softc *sc; int ret, sleeping; /* If no pending sleep state, return an error. */ ACPI_LOCK(acpi); sc = clone->acpi_sc; if (sc->acpi_next_sstate == 0) { ACPI_UNLOCK(acpi); return (ENXIO); } /* Caller wants to abort suspend process. */ if (error) { sc->acpi_next_sstate = 0; callout_stop(&sc->susp_force_to); device_printf(sc->acpi_dev, "listener on %s cancelled the pending suspend\n", devtoname(clone->cdev)); ACPI_UNLOCK(acpi); return (0); } /* * Mark this device as acking the suspend request. Then, walk through * all devices, seeing if they agree yet. We only count devices that * are writable since read-only devices couldn't ack the request. */ sleeping = TRUE; clone->notify_status = APM_EV_ACKED; STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { if ((clone->flags & ACPI_EVF_WRITE) != 0 && clone->notify_status != APM_EV_ACKED) { sleeping = FALSE; break; } } /* If all devices have voted "yes", we will suspend now. */ if (sleeping) callout_stop(&sc->susp_force_to); ACPI_UNLOCK(acpi); ret = 0; if (sleeping) { if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) ret = ENODEV; } return (ret); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } static void acpi_sleep_enable(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; ACPI_LOCK_ASSERT(acpi); /* Reschedule if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) { callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); return; } sc->acpi_sleep_disabled = FALSE; } static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc) { ACPI_STATUS status; /* Fail if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) return (AE_ERROR); ACPI_LOCK(acpi); status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; sc->acpi_sleep_disabled = TRUE; ACPI_UNLOCK(acpi); return (status); } enum acpi_sleep_state { ACPI_SS_NONE, ACPI_SS_GPE_SET, ACPI_SS_DEV_SUSPEND, ACPI_SS_SLP_PREP, ACPI_SS_SLEPT, }; /* * Enter the desired system sleep state. * * Currently we support S1-S5 but S4 is only S4BIOS */ static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state) { register_t intr; ACPI_STATUS status; ACPI_EVENT_STATUS power_button_status; enum acpi_sleep_state slp_state; int sleep_result; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return_ACPI_STATUS (AE_BAD_PARAMETER); if (!acpi_sleep_states[state]) { device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", state); return (AE_SUPPORT); } /* Re-entry once we're suspending is not allowed. */ status = acpi_sleep_disable(sc); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "suspend request ignored (not ready yet)\n"); return (status); } if (state == ACPI_STATE_S5) { /* * Shut down cleanly and power off. This will call us back through the * shutdown handlers. */ shutdown_nice(RB_POWEROFF); return_ACPI_STATUS (AE_OK); } EVENTHANDLER_INVOKE(power_suspend_early); stop_all_proc(); EVENTHANDLER_INVOKE(power_suspend); if (smp_started) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); } /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE * drivers need this. */ mtx_lock(&Giant); slp_state = ACPI_SS_NONE; sc->acpi_sstate = state; /* Enable any GPEs as appropriate and requested by the user. */ acpi_wake_prep_walk(state); slp_state = ACPI_SS_GPE_SET; /* * Inform all devices that we are going to sleep. If at least one * device fails, DEVICE_SUSPEND() automatically resumes the tree. * * XXX Note that a better two-pass approach with a 'veto' pass * followed by a "real thing" pass would be better, but the current * bus interface does not provide for this. */ if (DEVICE_SUSPEND(root_bus) != 0) { device_printf(sc->acpi_dev, "device_suspend failed\n"); goto backout; } slp_state = ACPI_SS_DEV_SUSPEND; /* If testing device suspend only, back out of everything here. */ if (acpi_susp_bounce) goto backout; status = AcpiEnterSleepStatePrep(state); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); goto backout; } slp_state = ACPI_SS_SLP_PREP; if (sc->acpi_sleep_delay > 0) DELAY(sc->acpi_sleep_delay * 1000000); intr = intr_disable(); if (state != ACPI_STATE_S1) { sleep_result = acpi_sleep_machdep(sc, state); acpi_wakeup_machdep(sc, state, sleep_result, 0); /* * XXX According to ACPI specification SCI_EN bit should be restored * by ACPI platform (BIOS, firmware) to its pre-sleep state. * Unfortunately some BIOSes fail to do that and that leads to * unexpected and serious consequences during wake up like a system * getting stuck in SMI handlers. * This hack is picked up from Linux, which claims that it follows * Windows behavior. */ if (sleep_result == 1 && state != ACPI_STATE_S4) AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); AcpiLeaveSleepStatePrep(state); if (sleep_result == 1 && state == ACPI_STATE_S3) { /* * Prevent mis-interpretation of the wakeup by power button * as a request for power off. * Ideally we should post an appropriate wakeup event, * perhaps using acpi_event_power_button_wake or alike. * * Clearing of power button status after wakeup is mandated * by ACPI specification in section "Fixed Power Button". * * XXX As of ACPICA 20121114 AcpiGetEventStatus provides * status as 0/1 corressponding to inactive/active despite * its type being ACPI_EVENT_STATUS. In other words, * we should not test for ACPI_EVENT_FLAG_SET for time being. */ if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, &power_button_status)) && power_button_status != 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); device_printf(sc->acpi_dev, "cleared fixed power button status\n"); } } intr_restore(intr); /* call acpi_wakeup_machdep() again with interrupt enabled */ acpi_wakeup_machdep(sc, state, sleep_result, 1); if (sleep_result == -1) goto backout; /* Re-enable ACPI hardware on wakeup from sleep state 4. */ if (state == ACPI_STATE_S4) AcpiEnable(); } else { status = AcpiEnterSleepState(state); AcpiLeaveSleepStatePrep(state); intr_restore(intr); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", AcpiFormatException(status)); goto backout; } } slp_state = ACPI_SS_SLEPT; /* * Back out state according to how far along we got in the suspend * process. This handles both the error and success cases. */ backout: if (slp_state >= ACPI_SS_GPE_SET) { acpi_wake_prep_walk(state); sc->acpi_sstate = ACPI_STATE_S0; } if (slp_state >= ACPI_SS_DEV_SUSPEND) DEVICE_RESUME(root_bus); if (slp_state >= ACPI_SS_SLP_PREP) AcpiLeaveSleepState(state); if (slp_state >= ACPI_SS_SLEPT) { acpi_resync_clock(sc); acpi_enable_fixed_events(sc); } sc->acpi_next_sstate = 0; mtx_unlock(&Giant); if (smp_started) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } resume_all_proc(); EVENTHANDLER_INVOKE(power_resume); /* Allow another sleep request after a while. */ callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); /* Run /etc/rc.resume after we are back. */ if (devctl_process_running()) acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); return_ACPI_STATUS (status); } static void acpi_resync_clock(struct acpi_softc *sc) { #ifdef __amd64__ if (!acpi_reset_clock) return; /* * Warm up timecounter again and reset system clock. */ (void)timecounter->tc_get_timecount(timecounter); (void)timecounter->tc_get_timecount(timecounter); inittodr(time_second + sc->acpi_sleep_delay); #endif } /* Enable or disable the device's wake GPE. */ int acpi_wake_set_enable(device_t dev, int enable) { struct acpi_prw_data prw; ACPI_STATUS status; int flags; /* Make sure the device supports waking the system and get the GPE. */ if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) return (ENXIO); flags = acpi_get_flags(dev); if (enable) { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "enable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); } else { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "disable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); } return (0); } static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* Check that this is a wake-capable device and get its GPE. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); /* * The destination sleep state must be less than (i.e., higher power) * or equal to the value specified by _PRW. If this GPE cannot be * enabled for the next sleep state, then disable it. If it can and * the user requested it be enabled, turn on any required power resources * and set _PSW. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (bootverbose) device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", acpi_name(handle), sstate); } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { acpi_pwr_wake_enable(handle, 1); acpi_SetInteger(handle, "_PSW", 1); if (bootverbose) device_printf(dev, "wake_prep enabled for %s (S%d)\n", acpi_name(handle), sstate); } return (0); } static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* * Check that this is a wake-capable device and get its GPE. Return * now if the user didn't enable this device for wake. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) return (0); /* * If this GPE couldn't be enabled for the previous sleep state, it was * disabled before going to sleep so re-enable it. If it was enabled, * clear _PSW and turn off any power resources it used. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (bootverbose) device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); } else { acpi_SetInteger(handle, "_PSW", 0); acpi_pwr_wake_enable(handle, 0); if (bootverbose) device_printf(dev, "run_prep cleaned up for %s\n", acpi_name(handle)); } return (0); } static ACPI_STATUS acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { int sstate; /* If suspending, run the sleep prep function, otherwise wake. */ sstate = *(int *)context; if (AcpiGbl_SystemAwakeAndRunning) acpi_wake_sleep_prep(handle, sstate); else acpi_wake_run_prep(handle, sstate); return (AE_OK); } /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ static int acpi_wake_prep_walk(int sstate) { ACPI_HANDLE sb_handle; if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, acpi_wake_prep, NULL, &sstate, NULL); return (0); } /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ static int acpi_wake_sysctl_walk(device_t dev) { int error, i, numdevs; device_t *devlist; device_t child; ACPI_STATUS status; error = device_get_children(dev, &devlist, &numdevs); if (error != 0 || numdevs == 0) { if (numdevs == 0) free(devlist, M_TEMP); return (error); } for (i = 0; i < numdevs; i++) { child = devlist[i]; acpi_wake_sysctl_walk(child); if (!device_is_attached(child)) continue; status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); if (ACPI_SUCCESS(status)) { SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, "wake", CTLTYPE_INT | CTLFLAG_RW, child, 0, acpi_wake_set_sysctl, "I", "Device set to wake the system"); } } free(devlist, M_TEMP); return (0); } /* Enable or disable wake from userland. */ static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) { int enable, error; device_t dev; dev = (device_t)arg1; enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; error = sysctl_handle_int(oidp, &enable, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (enable != 0 && enable != 1) return (EINVAL); return (acpi_wake_set_enable(dev, enable)); } /* Parse a device's _PRW into a structure. */ int acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) { ACPI_STATUS status; ACPI_BUFFER prw_buffer; ACPI_OBJECT *res, *res2; int error, i, power_count; if (h == NULL || prw == NULL) return (EINVAL); /* * The _PRW object (7.2.9) is only required for devices that have the * ability to wake the system from a sleeping state. */ error = EINVAL; prw_buffer.Pointer = NULL; prw_buffer.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); if (ACPI_FAILURE(status)) return (ENOENT); res = (ACPI_OBJECT *)prw_buffer.Pointer; if (res == NULL) return (ENOENT); if (!ACPI_PKG_VALID(res, 2)) goto out; /* * Element 1 of the _PRW object: * The lowest power system sleeping state that can be entered while still * providing wake functionality. The sleeping state being entered must * be less than (i.e., higher power) or equal to this value. */ if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) goto out; /* * Element 0 of the _PRW object: */ switch (res->Package.Elements[0].Type) { case ACPI_TYPE_INTEGER: /* * If the data type of this package element is numeric, then this * _PRW package element is the bit index in the GPEx_EN, in the * GPE blocks described in the FADT, of the enable bit that is * enabled for the wake event. */ prw->gpe_handle = NULL; prw->gpe_bit = res->Package.Elements[0].Integer.Value; error = 0; break; case ACPI_TYPE_PACKAGE: /* * If the data type of this package element is a package, then this * _PRW package element is itself a package containing two * elements. The first is an object reference to the GPE Block * device that contains the GPE that will be triggered by the wake * event. The second element is numeric and it contains the bit * index in the GPEx_EN, in the GPE Block referenced by the * first element in the package, of the enable bit that is enabled for * the wake event. * * For example, if this field is a package then it is of the form: * Package() {\_SB.PCI0.ISA.GPE, 2} */ res2 = &res->Package.Elements[0]; if (!ACPI_PKG_VALID(res2, 2)) goto out; prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); if (prw->gpe_handle == NULL) goto out; if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) goto out; error = 0; break; default: goto out; } /* Elements 2 to N of the _PRW object are power resources. */ power_count = res->Package.Count - 2; if (power_count > ACPI_PRW_MAX_POWERRES) { printf("ACPI device %s has too many power resources\n", acpi_name(h)); power_count = 0; } prw->power_res_count = power_count; for (i = 0; i < power_count; i++) prw->power_res[i] = res->Package.Elements[i]; out: if (prw_buffer.Pointer != NULL) AcpiOsFree(prw_buffer.Pointer); return (error); } /* * ACPI Event Handlers */ /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ static void acpi_system_eventhandler_sleep(void *arg, int state) { struct acpi_softc *sc = (struct acpi_softc *)arg; int ret; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Check if button action is disabled or unknown. */ if (state == ACPI_STATE_UNKNOWN) return; /* Request that the system prepare to enter the given suspend state. */ ret = acpi_ReqSleepState(sc, state); if (ret != 0) device_printf(sc->acpi_dev, "request to enter state S%d failed (err %d)\n", state, ret); return_VOID; } static void acpi_system_eventhandler_wakeup(void *arg, int state) { ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Currently, nothing to do for wakeup. */ return_VOID; } /* * ACPICA Event Handlers (FixedEvent, also called from button notify handler) */ static void acpi_invoke_sleep_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); } static void acpi_invoke_wake_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); } UINT32 acpi_event_power_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_power_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } /* * XXX This static buffer is suboptimal. There is no locking so only * use this for single-threaded callers. */ char * acpi_name(ACPI_HANDLE handle) { ACPI_BUFFER buf; static char data[256]; buf.Length = sizeof(data); buf.Pointer = data; if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) return (data); return ("(unknown)"); } /* * Debugging/bug-avoidance. Avoid trying to fetch info on various * parts of the namespace. */ int acpi_avoid(ACPI_HANDLE handle) { char *cp, *env, *np; int len; np = acpi_name(handle); if (*np == '\\') np++; if ((env = kern_getenv("debug.acpi.avoid")) == NULL) return (0); /* Scan the avoid list checking for a match */ cp = env; for (;;) { while (*cp != 0 && isspace(*cp)) cp++; if (*cp == 0) break; len = 0; while (cp[len] != 0 && !isspace(cp[len])) len++; if (!strncmp(cp, np, len)) { freeenv(env); return(1); } cp += len; } freeenv(env); return (0); } /* * Debugging/bug-avoidance. Disable ACPI subsystem components. */ int acpi_disabled(char *subsys) { char *cp, *env; int len; if ((env = kern_getenv("debug.acpi.disabled")) == NULL) return (0); if (strcmp(env, "all") == 0) { freeenv(env); return (1); } /* Scan the disable list, checking for a match. */ cp = env; for (;;) { while (*cp != '\0' && isspace(*cp)) cp++; if (*cp == '\0') break; len = 0; while (cp[len] != '\0' && !isspace(cp[len])) len++; if (strncmp(cp, subsys, len) == 0) { freeenv(env); return (1); } cp += len; } freeenv(env); return (0); } static void acpi_lookup(void *arg, const char *name, device_t *dev) { ACPI_HANDLE handle; if (*dev != NULL) return; /* * Allow any handle name that is specified as an absolute path and * starts with '\'. We could restrict this to \_SB and friends, * but see acpi_probe_children() for notes on why we scan the entire * namespace for devices. * * XXX: The pathname argument to AcpiGetHandle() should be fixed to * be const. */ if (name[0] != '\\') return; if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), &handle))) return; *dev = acpi_get_device(handle); } /* * Control interface. * * We multiplex ioctls for all participating ACPI devices here. Individual * drivers wanting to be accessible via /dev/acpi should use the * register/deregister interface to make their handlers visible. */ struct acpi_ioctl_hook { TAILQ_ENTRY(acpi_ioctl_hook) link; u_long cmd; acpi_ioctl_fn fn; void *arg; }; static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; static int acpi_ioctl_hooks_initted; int acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) { struct acpi_ioctl_hook *hp; if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) return (ENOMEM); hp->cmd = cmd; hp->fn = fn; hp->arg = arg; ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted == 0) { TAILQ_INIT(&acpi_ioctl_hooks); acpi_ioctl_hooks_initted = 1; } TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); ACPI_UNLOCK(acpi); return (0); } void acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) { struct acpi_ioctl_hook *hp; ACPI_LOCK(acpi); TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) if (hp->cmd == cmd && hp->fn == fn) break; if (hp != NULL) { TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); free(hp, M_ACPIDEV); } ACPI_UNLOCK(acpi); } static int acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct acpi_softc *sc; struct acpi_ioctl_hook *hp; int error, state; error = 0; hp = NULL; sc = dev->si_drv1; /* * Scan the list of registered ioctls, looking for handlers. */ ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted) TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { if (hp->cmd == cmd) break; } ACPI_UNLOCK(acpi); if (hp) return (hp->fn(cmd, addr, hp->arg)); /* * Core ioctls are not permitted for non-writable user. * Currently, other ioctls just fetch information. * Not changing system behavior. */ if ((flag & FWRITE) == 0) return (EPERM); /* Core system ioctls. */ switch (cmd) { case ACPIIO_REQSLPSTATE: state = *(int *)addr; if (state != ACPI_STATE_S5) return (acpi_ReqSleepState(sc, state)); device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); error = EOPNOTSUPP; break; case ACPIIO_ACKSLPSTATE: error = *(int *)addr; error = acpi_AckSleepState(sc->acpi_clone, error); break; case ACPIIO_SETSLPSTATE: /* DEPRECATED */ state = *(int *)addr; if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) error = ENXIO; break; default: error = ENXIO; break; } return (error); } static int acpi_sname2sstate(const char *sname) { int sstate; if (toupper(sname[0]) == 'S') { sstate = sname[1] - '0'; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && sname[2] == '\0') return (sstate); } else if (strcasecmp(sname, "NONE") == 0) return (ACPI_STATE_UNKNOWN); return (-1); } static const char * acpi_sstate2sname(int sstate) { static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) return (snames[sstate]); else if (sstate == ACPI_STATE_UNKNOWN) return ("NONE"); return (NULL); } static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { int error; struct sbuf sb; UINT8 state; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (acpi_sleep_states[state]) sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); sbuf_trim(&sb); sbuf_finish(&sb); error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (error); } static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { char sleep_state[10]; int error, new_state, old_state; old_state = *(int *)oidp->oid_arg1; strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); if (error == 0 && req->newptr != NULL) { new_state = acpi_sname2sstate(sleep_state); if (new_state < ACPI_STATE_S1) return (EINVAL); if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) return (EOPNOTSUPP); if (new_state != old_state) *(int *)oidp->oid_arg1 = new_state; } return (error); } /* Inform devctl(4) when we receive a Notify. */ void acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) { char notify_buf[16]; ACPI_BUFFER handle_buf; ACPI_STATUS status; if (subsystem == NULL) return; handle_buf.Pointer = NULL; handle_buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); if (ACPI_FAILURE(status)) return; snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); AcpiOsFree(handle_buf.Pointer); } #ifdef ACPI_DEBUG /* * Support for parsing debug options from the kernel environment. * * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers * by specifying the names of the bits in the debug.acpi.layer and * debug.acpi.level environment variables. Bits may be unset by * prefixing the bit name with !. */ struct debugtag { char *name; UINT32 value; }; static struct debugtag dbg_layer[] = { {"ACPI_UTILITIES", ACPI_UTILITIES}, {"ACPI_HARDWARE", ACPI_HARDWARE}, {"ACPI_EVENTS", ACPI_EVENTS}, {"ACPI_TABLES", ACPI_TABLES}, {"ACPI_NAMESPACE", ACPI_NAMESPACE}, {"ACPI_PARSER", ACPI_PARSER}, {"ACPI_DISPATCHER", ACPI_DISPATCHER}, {"ACPI_EXECUTER", ACPI_EXECUTER}, {"ACPI_RESOURCES", ACPI_RESOURCES}, {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, {"ACPI_BATTERY", ACPI_BATTERY}, {"ACPI_BUS", ACPI_BUS}, {"ACPI_BUTTON", ACPI_BUTTON}, {"ACPI_EC", ACPI_EC}, {"ACPI_FAN", ACPI_FAN}, {"ACPI_POWERRES", ACPI_POWERRES}, {"ACPI_PROCESSOR", ACPI_PROCESSOR}, {"ACPI_THERMAL", ACPI_THERMAL}, {"ACPI_TIMER", ACPI_TIMER}, {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, {NULL, 0} }; static struct debugtag dbg_level[] = { {"ACPI_LV_INIT", ACPI_LV_INIT}, {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, {"ACPI_LV_INFO", ACPI_LV_INFO}, {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, /* Trace verbosity level 1 [Standard Trace Level] */ {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, {"ACPI_LV_PARSE", ACPI_LV_PARSE}, {"ACPI_LV_LOAD", ACPI_LV_LOAD}, {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, {"ACPI_LV_EXEC", ACPI_LV_EXEC}, {"ACPI_LV_NAMES", ACPI_LV_NAMES}, {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, {"ACPI_LV_TABLES", ACPI_LV_TABLES}, {"ACPI_LV_VALUES", ACPI_LV_VALUES}, {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, /* Trace verbosity level 2 [Function tracing and memory allocation] */ {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, {"ACPI_LV_ALL", ACPI_LV_ALL}, /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, {"ACPI_LV_THREADS", ACPI_LV_THREADS}, {"ACPI_LV_IO", ACPI_LV_IO}, {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, /* Exceptionally verbose output -- also used in the global "DebugLevel" */ {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, {NULL, 0} }; static void acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) { char *ep; int i, l; int set; while (*cp) { if (isspace(*cp)) { cp++; continue; } ep = cp; while (*ep && !isspace(*ep)) ep++; if (*cp == '!') { set = 0; cp++; if (cp == ep) continue; } else { set = 1; } l = ep - cp; for (i = 0; tag[i].name != NULL; i++) { if (!strncmp(cp, tag[i].name, l)) { if (set) *flag |= tag[i].value; else *flag &= ~tag[i].value; } } cp = ep; } } static void acpi_set_debugging(void *junk) { char *layer, *level; if (cold) { AcpiDbgLayer = 0; AcpiDbgLevel = 0; } layer = kern_getenv("debug.acpi.layer"); level = kern_getenv("debug.acpi.level"); if (layer == NULL && level == NULL) return; printf("ACPI set debug"); if (layer != NULL) { if (strcmp("NONE", layer) != 0) printf(" layer '%s'", layer); acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); freeenv(layer); } if (level != NULL) { if (strcmp("NONE", level) != 0) printf(" level '%s'", level); acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); freeenv(level); } printf("\n"); } SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, NULL); static int acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) { int error, *dbg; struct debugtag *tag; struct sbuf sb; char temp[128]; if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) return (ENOMEM); if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { tag = &dbg_layer[0]; dbg = &AcpiDbgLayer; } else { tag = &dbg_level[0]; dbg = &AcpiDbgLevel; } /* Get old values if this is a get request. */ ACPI_SERIAL_BEGIN(acpi); if (*dbg == 0) { sbuf_cpy(&sb, "NONE"); } else if (req->newptr == NULL) { for (; tag->name != NULL; tag++) { if ((*dbg & tag->value) == tag->value) sbuf_printf(&sb, "%s ", tag->name); } } sbuf_trim(&sb); sbuf_finish(&sb); strlcpy(temp, sbuf_data(&sb), sizeof(temp)); sbuf_delete(&sb); error = sysctl_handle_string(oidp, temp, sizeof(temp), req); /* Check for error or no change */ if (error == 0 && req->newptr != NULL) { *dbg = 0; kern_setenv((char *)oidp->oid_arg1, temp); acpi_set_debugging(NULL); } ACPI_SERIAL_END(acpi); return (error); } SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING, "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING, "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); #endif /* ACPI_DEBUG */ static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) { int error; int old; old = acpi_debug_objects; error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (old == acpi_debug_objects || (old && acpi_debug_objects)) return (0); ACPI_SERIAL_BEGIN(acpi); AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; ACPI_SERIAL_END(acpi); return (0); } static int acpi_parse_interfaces(char *str, struct acpi_interface *iface) { char *p; size_t len; int i, j; p = str; while (isspace(*p) || *p == ',') p++; len = strlen(p); if (len == 0) return (0); p = strdup(p, M_TEMP); for (i = 0; i < len; i++) if (p[i] == ',') p[i] = '\0'; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { i += strlen(p + i) + 1; j++; } if (j == 0) { free(p, M_TEMP); return (0); } iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); iface->num = j; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { iface->data[j] = p + i; i += strlen(p + i) + 1; j++; } return (j); } static void acpi_free_interfaces(struct acpi_interface *iface) { free(iface->data[0], M_TEMP); free(iface->data, M_TEMP); } static void acpi_reset_interfaces(device_t dev) { struct acpi_interface list; ACPI_STATUS status; int i; if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiInstallInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to install _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "installed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiRemoveInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to remove _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "removed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } } static int acpi_pm_func(u_long cmd, void *arg, ...) { int state, acpi_state; int error; struct acpi_softc *sc; va_list ap; error = 0; switch (cmd) { case POWER_CMD_SUSPEND: sc = (struct acpi_softc *)arg; if (sc == NULL) { error = EINVAL; goto out; } va_start(ap, arg); state = va_arg(ap, int); va_end(ap); switch (state) { case POWER_SLEEP_STATE_STANDBY: acpi_state = sc->acpi_standby_sx; break; case POWER_SLEEP_STATE_SUSPEND: acpi_state = sc->acpi_suspend_sx; break; case POWER_SLEEP_STATE_HIBERNATE: acpi_state = ACPI_STATE_S4; break; default: error = EINVAL; goto out; } if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) error = ENXIO; break; default: error = EINVAL; goto out; } out: return (error); } static void acpi_pm_register(void *arg) { if (!cold || resource_disabled("acpi", 0)) return; power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); } SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0); Index: head/sys/kern/kern_shutdown.c =================================================================== --- head/sys/kern/kern_shutdown.c (revision 288445) +++ head/sys/kern/kern_shutdown.c (revision 288446) @@ -1,897 +1,901 @@ /*- * Copyright (c) 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kdb.h" #include "opt_panic.h" #include "opt_sched.h" #include "opt_watchdog.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef PANIC_REBOOT_WAIT_TIME #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */ #endif static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME; SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN, &panic_reboot_wait_time, 0, "Seconds to wait before rebooting after a panic"); /* * Note that stdarg.h and the ANSI style va_start macro is used for both * ANSI and traditional C compilers. */ #include #ifdef KDB #ifdef KDB_UNATTENDED int debugger_on_panic = 0; #else int debugger_on_panic = 1; #endif SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic, CTLFLAG_RWTUN | CTLFLAG_SECURE, &debugger_on_panic, 0, "Run debugger on kernel panic"); #ifdef KDB_TRACE static int trace_on_panic = 1; #else static int trace_on_panic = 0; #endif SYSCTL_INT(_debug, OID_AUTO, trace_on_panic, CTLFLAG_RWTUN | CTLFLAG_SECURE, &trace_on_panic, 0, "Print stack trace on kernel panic"); #endif /* KDB */ static int sync_on_panic = 0; SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN, &sync_on_panic, 0, "Do a sync before rebooting from a panic"); static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0, "Shutdown environment"); #ifndef DIAGNOSTIC static int show_busybufs; #else static int show_busybufs = 1; #endif SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW, &show_busybufs, 0, ""); +int suspend_blocked = 0; +SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW, + &suspend_blocked, 0, "Block suspend due to a pending shutdown"); + /* * Variable panicstr contains argument to first call to panic; used as flag * to indicate that the kernel has already called panic. */ const char *panicstr; int dumping; /* system is dumping */ int rebooting; /* system is rebooting */ static struct dumperinfo dumper; /* our selected dumper */ /* Context information for dump-debuggers. */ static struct pcb dumppcb; /* Registers. */ lwpid_t dumptid; /* Thread ID. */ static struct cdevsw reroot_cdevsw = { .d_version = D_VERSION, .d_name = "reroot", }; static void poweroff_wait(void *, int); static void shutdown_halt(void *junk, int howto); static void shutdown_panic(void *junk, int howto); static void shutdown_reset(void *junk, int howto); static int kern_reroot(void); /* register various local shutdown events */ static void shutdown_conf(void *unused) { EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL, SHUTDOWN_PRI_FIRST); EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL, SHUTDOWN_PRI_LAST + 200); } SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL); /* * The only reason this exists is to create the /dev/reroot/ directory, * used by reroot code in init(8) as a mountpoint for tmpfs. */ static void reroot_conf(void *unused) { int error; struct cdev *cdev; error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev, &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot"); if (error != 0) { printf("%s: failed to create device node, error %d", __func__, error); } } SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL); /* * The system call that results in a reboot. */ /* ARGSUSED */ int sys_reboot(struct thread *td, struct reboot_args *uap) { int error; error = 0; #ifdef MAC error = mac_system_check_reboot(td->td_ucred, uap->opt); #endif if (error == 0) error = priv_check(td, PRIV_REBOOT); if (error == 0) { if (uap->opt & RB_REROOT) { error = kern_reroot(); } else { mtx_lock(&Giant); kern_reboot(uap->opt); mtx_unlock(&Giant); } } return (error); } /* * Called by events that want to shut down.. e.g on a PC */ void shutdown_nice(int howto) { if (initproc != NULL) { /* Send a signal to init(8) and have it shutdown the world. */ PROC_LOCK(initproc); if (howto & RB_POWEROFF) kern_psignal(initproc, SIGUSR2); else if (howto & RB_HALT) kern_psignal(initproc, SIGUSR1); else kern_psignal(initproc, SIGINT); PROC_UNLOCK(initproc); } else { /* No init(8) running, so simply reboot. */ kern_reboot(howto | RB_NOSYNC); } } static void print_uptime(void) { int f; struct timespec ts; getnanouptime(&ts); printf("Uptime: "); f = 0; if (ts.tv_sec >= 86400) { printf("%ldd", (long)ts.tv_sec / 86400); ts.tv_sec %= 86400; f = 1; } if (f || ts.tv_sec >= 3600) { printf("%ldh", (long)ts.tv_sec / 3600); ts.tv_sec %= 3600; f = 1; } if (f || ts.tv_sec >= 60) { printf("%ldm", (long)ts.tv_sec / 60); ts.tv_sec %= 60; f = 1; } printf("%lds\n", (long)ts.tv_sec); } int doadump(boolean_t textdump) { boolean_t coredump; int error; error = 0; if (dumping) return (EBUSY); if (dumper.dumper == NULL) return (ENXIO); savectx(&dumppcb); dumptid = curthread->td_tid; dumping++; coredump = TRUE; #ifdef DDB if (textdump && textdump_pending) { coredump = FALSE; textdump_dumpsys(&dumper); } #endif if (coredump) error = dumpsys(&dumper); dumping--; return (error); } /* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void kern_reboot(int howto) { static int once = 0; #if defined(SMP) /* * Bind us to CPU 0 so that all shutdown code runs there. Some * systems don't shutdown properly (i.e., ACPI power off) if we * run on another processor. */ if (!SCHEDULER_STOPPED()) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0")); } #endif /* We're in the process of rebooting. */ rebooting = 1; /* We are out of the debugger now. */ kdb_active = 0; /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) { once = 1; bufshutdown(show_busybufs); } print_uptime(); cngrab(); /* * Ok, now do things that assume all filesystem activity has * been completed. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) doadump(TRUE); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ } /* * The system call that results in changing the rootfs. */ static int kern_reroot(void) { struct vnode *oldrootvnode, *vp; struct mount *mp, *devmp; int error; if (curproc != initproc) return (EPERM); /* * Mark the filesystem containing currently-running executable * (the temporary copy of init(8)) busy. */ vp = curproc->p_textvp; error = vn_lock(vp, LK_SHARED); if (error != 0) return (error); mp = vp->v_mount; error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); VOP_UNLOCK(vp, 0); error = vfs_busy(mp, 0); vn_lock(vp, LK_SHARED | LK_RETRY); vfs_rel(mp); if (error != 0) { VOP_UNLOCK(vp, 0); return (ENOENT); } if (vp->v_iflag & VI_DOOMED) { VOP_UNLOCK(vp, 0); vfs_unbusy(mp); return (ENOENT); } } VOP_UNLOCK(vp, 0); /* * Remove the filesystem containing currently-running executable * from the mount list, to prevent it from being unmounted * by vfs_unmountall(), and to avoid confusing vfs_mountroot(). * * Also preserve /dev - forcibly unmounting it could cause driver * reinitialization. */ vfs_ref(rootdevmp); devmp = rootdevmp; rootdevmp = NULL; mtx_lock(&mountlist_mtx); TAILQ_REMOVE(&mountlist, mp, mnt_list); TAILQ_REMOVE(&mountlist, devmp, mnt_list); mtx_unlock(&mountlist_mtx); oldrootvnode = rootvnode; /* * Unmount everything except for the two filesystems preserved above. */ vfs_unmountall(); /* * Add /dev back; vfs_mountroot() will move it into its new place. */ mtx_lock(&mountlist_mtx); TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list); mtx_unlock(&mountlist_mtx); rootdevmp = devmp; vfs_rel(rootdevmp); /* * Mount the new rootfs. */ vfs_mountroot(); /* * Update all references to the old rootvnode. */ mountcheckdirs(oldrootvnode, rootvnode); /* * Add the temporary filesystem back and unbusy it. */ mtx_lock(&mountlist_mtx); TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list); mtx_unlock(&mountlist_mtx); vfs_unbusy(mp); return (0); } /* * If the shutdown was a clean halt, behave accordingly. */ static void shutdown_halt(void *junk, int howto) { if (howto & RB_HALT) { printf("\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); switch (cngetc()) { case -1: /* No console, just die */ cpu_halt(); /* NOTREACHED */ default: howto &= ~RB_HALT; break; } } } /* * Check to see if the system paniced, pause and then reboot * according to the specified delay. */ static void shutdown_panic(void *junk, int howto) { int loop; if (howto & RB_DUMP) { if (panic_reboot_wait_time != 0) { if (panic_reboot_wait_time != -1) { printf("Automatic reboot in %d seconds - " "press a key on the console to abort\n", panic_reboot_wait_time); for (loop = panic_reboot_wait_time * 10; loop > 0; --loop) { DELAY(1000 * 100); /* 1/10th second */ /* Did user type a key? */ if (cncheckc() != -1) break; } if (!loop) return; } } else { /* zero time specified - reboot NOW */ return; } printf("--> Press a key on the console to reboot,\n"); printf("--> or switch off the system now.\n"); cngetc(); } } /* * Everything done, now reset */ static void shutdown_reset(void *junk, int howto) { printf("Rebooting...\n"); DELAY(1000000); /* wait 1 sec for printf's to complete and be read */ /* * Acquiring smp_ipi_mtx here has a double effect: * - it disables interrupts avoiding CPU0 preemption * by fast handlers (thus deadlocking against other CPUs) * - it avoids deadlocks against smp_rendezvous() or, more * generally, threads busy-waiting, with this spinlock held, * and waiting for responses by threads on other CPUs * (ie. smp_tlb_shootdown()). * * For the !SMP case it just needs to handle the former problem. */ #ifdef SMP mtx_lock_spin(&smp_ipi_mtx); #else spinlock_enter(); #endif /* cpu_boot(howto); */ /* doesn't do anything at the moment */ cpu_reset(); /* NOTREACHED */ /* assuming reset worked */ } #if defined(WITNESS) || defined(INVARIANTS) static int kassert_warn_only = 0; #ifdef KDB static int kassert_do_kdb = 0; #endif #ifdef KTR static int kassert_do_ktr = 0; #endif static int kassert_do_log = 1; static int kassert_log_pps_limit = 4; static int kassert_log_mute_at = 0; static int kassert_log_panic_at = 0; static int kassert_warnings = 0; SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW, NULL, "kassert options"); SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, CTLFLAG_RWTUN, &kassert_warn_only, 0, "KASSERT triggers a panic (1) or just a warning (0)"); #ifdef KDB SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, CTLFLAG_RWTUN, &kassert_do_kdb, 0, "KASSERT will enter the debugger"); #endif #ifdef KTR SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, CTLFLAG_RWTUN, &kassert_do_ktr, 0, "KASSERT does a KTR, set this to the KTRMASK you want"); #endif SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, CTLFLAG_RWTUN, &kassert_do_log, 0, "KASSERT triggers a panic (1) or just a warning (0)"); SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RWTUN, &kassert_warnings, 0, "number of KASSERTs that have been triggered"); SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, CTLFLAG_RWTUN, &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic"); SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, CTLFLAG_RWTUN, &kassert_log_pps_limit, 0, "limit number of log messages per second"); SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, CTLFLAG_RWTUN, &kassert_log_mute_at, 0, "max number of KASSERTS to log"); static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, NULL, 0, kassert_sysctl_kassert, "I", "set to trigger a test kassert"); static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS) { int error, i; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error == 0) { i = 0; error = sysctl_handle_int(oidp, &i, 0, req); } if (error != 0 || req->newptr == NULL) return (error); KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i)); return (0); } /* * Called by KASSERT, this decides if we will panic * or if we will log via printf and/or ktr. */ void kassert_panic(const char *fmt, ...) { static char buf[256]; va_list ap; va_start(ap, fmt); (void)vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); /* * panic if we're not just warning, or if we've exceeded * kassert_log_panic_at warnings. */ if (!kassert_warn_only || (kassert_log_panic_at > 0 && kassert_warnings >= kassert_log_panic_at)) { va_start(ap, fmt); vpanic(fmt, ap); /* NORETURN */ } #ifdef KTR if (kassert_do_ktr) CTR0(ktr_mask, buf); #endif /* KTR */ /* * log if we've not yet met the mute limit. */ if (kassert_do_log && (kassert_log_mute_at == 0 || kassert_warnings < kassert_log_mute_at)) { static struct timeval lasterr; static int curerr; if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) { printf("KASSERT failed: %s\n", buf); kdb_backtrace(); } } #ifdef KDB if (kassert_do_kdb) { kdb_enter(KDB_WHY_KASSERT, buf); } #endif atomic_add_int(&kassert_warnings, 1); } #endif /* * Panic is called on unresolvable fatal errors. It prints "panic: mesg", * and then reboots. If we are called twice, then we avoid trying to sync * the disks as this often leads to recursive panics. */ void panic(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vpanic(fmt, ap); } void vpanic(const char *fmt, va_list ap) { #ifdef SMP cpuset_t other_cpus; #endif struct thread *td = curthread; int bootopt, newpanic; static char buf[256]; spinlock_enter(); #ifdef SMP /* * stop_cpus_hard(other_cpus) should prevent multiple CPUs from * concurrently entering panic. Only the winner will proceed * further. */ if (panicstr == NULL && !kdb_active) { other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); stop_cpus_hard(other_cpus); } /* * Ensure that the scheduler is stopped while panicking, even if panic * has been entered from kdb. */ td->td_stopsched = 1; #endif bootopt = RB_AUTOBOOT; newpanic = 0; if (panicstr) bootopt |= RB_NOSYNC; else { bootopt |= RB_DUMP; panicstr = fmt; newpanic = 1; } if (newpanic) { (void)vsnprintf(buf, sizeof(buf), fmt, ap); panicstr = buf; cngrab(); printf("panic: %s\n", buf); } else { printf("panic: "); vprintf(fmt, ap); printf("\n"); } #ifdef SMP printf("cpuid = %d\n", PCPU_GET(cpuid)); #endif #ifdef KDB if (newpanic && trace_on_panic) kdb_backtrace(); if (debugger_on_panic) kdb_enter(KDB_WHY_PANIC, "panic"); #endif /*thread_lock(td); */ td->td_flags |= TDF_INPANIC; /* thread_unlock(td); */ if (!sync_on_panic) bootopt |= RB_NOSYNC; kern_reboot(bootopt); } /* * Support for poweroff delay. * * Please note that setting this delay too short might power off your machine * before the write cache on your hard disk has been flushed, leading to * soft-updates inconsistencies. */ #ifndef POWEROFF_DELAY # define POWEROFF_DELAY 5000 #endif static int poweroff_delay = POWEROFF_DELAY; SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW, &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)"); static void poweroff_wait(void *junk, int howto) { if (!(howto & RB_POWEROFF) || poweroff_delay <= 0) return; DELAY(poweroff_delay * 1000); } /* * Some system processes (e.g. syncer) need to be stopped at appropriate * points in their main loops prior to a system shutdown, so that they * won't interfere with the shutdown process (e.g. by holding a disk buf * to cause sync to fail). For each of these system processes, register * shutdown_kproc() as a handler for one of shutdown events. */ static int kproc_shutdown_wait = 60; SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW, &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process"); void kproc_shutdown(void *arg, int howto) { struct proc *p; int error; if (panicstr) return; p = (struct proc *)arg; printf("Waiting (max %d seconds) for system process `%s' to stop...", kproc_shutdown_wait, p->p_comm); error = kproc_suspend(p, kproc_shutdown_wait * hz); if (error == EWOULDBLOCK) printf("timed out\n"); else printf("done\n"); } void kthread_shutdown(void *arg, int howto) { struct thread *td; int error; if (panicstr) return; td = (struct thread *)arg; printf("Waiting (max %d seconds) for system thread `%s' to stop...", kproc_shutdown_wait, td->td_name); error = kthread_suspend(td, kproc_shutdown_wait * hz); if (error == EWOULDBLOCK) printf("timed out\n"); else printf("done\n"); } static char dumpdevname[sizeof(((struct cdev*)NULL)->si_name)]; SYSCTL_STRING(_kern_shutdown, OID_AUTO, dumpdevname, CTLFLAG_RD, dumpdevname, 0, "Device for kernel dumps"); /* Registration of dumpers */ int set_dumper(struct dumperinfo *di, const char *devname, struct thread *td) { size_t wantcopy; int error; error = priv_check(td, PRIV_SETDUMPER); if (error != 0) return (error); if (di == NULL) { bzero(&dumper, sizeof dumper); dumpdevname[0] = '\0'; return (0); } if (dumper.dumper != NULL) return (EBUSY); dumper = *di; wantcopy = strlcpy(dumpdevname, devname, sizeof(dumpdevname)); if (wantcopy >= sizeof(dumpdevname)) { printf("set_dumper: device name truncated from '%s' -> '%s'\n", devname, dumpdevname); } return (0); } /* Call dumper with bounds checking. */ int dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical, off_t offset, size_t length) { if (length != 0 && (offset < di->mediaoffset || offset - di->mediaoffset + length > di->mediasize)) { printf("Attempt to write outside dump device boundaries.\n" "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n", (intmax_t)offset, (intmax_t)di->mediaoffset, (uintmax_t)length, (intmax_t)di->mediasize); return (ENOSPC); } return (di->dumper(di->priv, virtual, physical, offset, length)); } void mkdumpheader(struct kerneldumpheader *kdh, char *magic, uint32_t archver, uint64_t dumplen, uint32_t blksz) { bzero(kdh, sizeof(*kdh)); strlcpy(kdh->magic, magic, sizeof(kdh->magic)); strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture)); kdh->version = htod32(KERNELDUMPVERSION); kdh->architectureversion = htod32(archver); kdh->dumplength = htod64(dumplen); kdh->dumptime = htod64(time_second); kdh->blocksize = htod32(blksz); strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname)); strlcpy(kdh->versionstring, version, sizeof(kdh->versionstring)); if (panicstr != NULL) strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring)); kdh->parity = kerneldump_parity(kdh); } Index: head/sys/sys/systm.h =================================================================== --- head/sys/sys/systm.h (revision 288445) +++ head/sys/sys/systm.h (revision 288446) @@ -1,436 +1,437 @@ /*- * Copyright (c) 1982, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)systm.h 8.7 (Berkeley) 3/29/95 * $FreeBSD$ */ #ifndef _SYS_SYSTM_H_ #define _SYS_SYSTM_H_ #include #include #include #include #include #include /* for people using printf mainly */ extern int cold; /* nonzero if we are doing a cold boot */ +extern int suspend_blocked; /* block suspend due to pending shutdown */ extern int rebooting; /* kern_reboot() has been called. */ extern const char *panicstr; /* panic message */ extern char version[]; /* system version */ extern char compiler_version[]; /* compiler version */ extern char copyright[]; /* system copyright */ extern int kstack_pages; /* number of kernel stack pages */ extern u_long pagesizes[]; /* supported page sizes */ extern long physmem; /* physical memory */ extern long realmem; /* 'real' memory */ extern char *rootdevnames[2]; /* names of possible root devices */ extern int boothowto; /* reboot flags, from console subsystem */ extern int bootverbose; /* nonzero to print verbose messages */ extern int maxusers; /* system tune hint */ extern int ngroups_max; /* max # of supplemental groups */ extern int vm_guest; /* Running as virtual machine guest? */ /* * Detected virtual machine guest types. The intention is to expand * and/or add to the VM_GUEST_VM type if specific VM functionality is * ever implemented (e.g. vendor-specific paravirtualization features). * Keep in sync with vm_guest_sysctl_names[]. */ enum VM_GUEST { VM_GUEST_NO = 0, VM_GUEST_VM, VM_GUEST_XEN, VM_GUEST_HV, VM_GUEST_VMWARE, VM_LAST }; #if defined(WITNESS) || defined(INVARIANTS) void kassert_panic(const char *fmt, ...) __printflike(1, 2); #endif #ifdef INVARIANTS /* The option is always available */ #define KASSERT(exp,msg) do { \ if (__predict_false(!(exp))) \ kassert_panic msg; \ } while (0) #define VNASSERT(exp, vp, msg) do { \ if (__predict_false(!(exp))) { \ vn_printf(vp, "VNASSERT failed\n"); \ kassert_panic msg; \ } \ } while (0) #else #define KASSERT(exp,msg) do { \ } while (0) #define VNASSERT(exp, vp, msg) do { \ } while (0) #endif #ifndef CTASSERT /* Allow lint to override */ #define CTASSERT(x) _Static_assert(x, "compile-time assertion failed") #endif /* * Assert that a pointer can be loaded from memory atomically. * * This assertion enforces stronger alignment than necessary. For example, * on some architectures, atomicity for unaligned loads will depend on * whether or not the load spans multiple cache lines. */ #define ASSERT_ATOMIC_LOAD_PTR(var, msg) \ KASSERT(sizeof(var) == sizeof(void *) && \ ((uintptr_t)&(var) & (sizeof(void *) - 1)) == 0, msg) /* * Assert that a thread is in critical(9) section. */ #define CRITICAL_ASSERT(td) \ KASSERT((td)->td_critnest >= 1, ("Not in critical section")); /* * If we have already panic'd and this is the thread that called * panic(), then don't block on any mutexes but silently succeed. * Otherwise, the kernel will deadlock since the scheduler isn't * going to run the thread that holds any lock we need. */ #define SCHEDULER_STOPPED() __predict_false(curthread->td_stopsched) /* * XXX the hints declarations are even more misplaced than most declarations * in this file, since they are needed in one file (per arch) and only used * in two files. * XXX most of these variables should be const. */ extern int osreldate; extern int envmode; extern int hintmode; /* 0 = off. 1 = config, 2 = fallback */ extern int dynamic_kenv; extern struct mtx kenv_lock; extern char *kern_envp; extern char static_env[]; extern char static_hints[]; /* by config for now */ extern char **kenvp; extern const void *zero_region; /* address space maps to a zeroed page */ extern int unmapped_buf_allowed; extern int iosize_max_clamp; extern int devfs_iosize_max_clamp; #define IOSIZE_MAX (iosize_max_clamp ? INT_MAX : SSIZE_MAX) #define DEVFS_IOSIZE_MAX (devfs_iosize_max_clamp ? INT_MAX : SSIZE_MAX) /* * General function declarations. */ struct inpcb; struct lock_object; struct malloc_type; struct mtx; struct proc; struct socket; struct thread; struct tty; struct ucred; struct uio; struct _jmp_buf; struct trapframe; struct eventtimer; int setjmp(struct _jmp_buf *) __returns_twice; void longjmp(struct _jmp_buf *, int) __dead2; int dumpstatus(vm_offset_t addr, off_t count); int nullop(void); int eopnotsupp(void); int ureadc(int, struct uio *); void hashdestroy(void *, struct malloc_type *, u_long); void *hashinit(int count, struct malloc_type *type, u_long *hashmask); void *hashinit_flags(int count, struct malloc_type *type, u_long *hashmask, int flags); #define HASH_NOWAIT 0x00000001 #define HASH_WAITOK 0x00000002 void *phashinit(int count, struct malloc_type *type, u_long *nentries); void g_waitidle(void); void panic(const char *, ...) __dead2 __printflike(1, 2); void vpanic(const char *, __va_list) __dead2 __printflike(1, 0); void cpu_boot(int); void cpu_flush_dcache(void *, size_t); void cpu_rootconf(void); void critical_enter(void); void critical_exit(void); void init_param1(void); void init_param2(long physpages); void init_static_kenv(char *, size_t); void tablefull(const char *); #ifdef EARLY_PRINTF typedef void early_putc_t(int ch); extern early_putc_t *early_putc; #endif int kvprintf(char const *, void (*)(int, void*), void *, int, __va_list) __printflike(1, 0); void log(int, const char *, ...) __printflike(2, 3); void log_console(struct uio *); int asprintf(char **ret, struct malloc_type *mtp, const char *format, ...) __printflike(3, 4); int printf(const char *, ...) __printflike(1, 2); int snprintf(char *, size_t, const char *, ...) __printflike(3, 4); int sprintf(char *buf, const char *, ...) __printflike(2, 3); int uprintf(const char *, ...) __printflike(1, 2); int vprintf(const char *, __va_list) __printflike(1, 0); int vasprintf(char **ret, struct malloc_type *mtp, const char *format, __va_list ap) __printflike(3, 0); int vsnprintf(char *, size_t, const char *, __va_list) __printflike(3, 0); int vsnrprintf(char *, size_t, int, const char *, __va_list) __printflike(4, 0); int vsprintf(char *buf, const char *, __va_list) __printflike(2, 0); int ttyprintf(struct tty *, const char *, ...) __printflike(2, 3); int sscanf(const char *, char const *, ...) __nonnull(1) __nonnull(2); int vsscanf(const char *, char const *, __va_list) __nonnull(1) __nonnull(2); long strtol(const char *, char **, int) __nonnull(1); u_long strtoul(const char *, char **, int) __nonnull(1); quad_t strtoq(const char *, char **, int) __nonnull(1); u_quad_t strtouq(const char *, char **, int) __nonnull(1); void tprintf(struct proc *p, int pri, const char *, ...) __printflike(3, 4); void vtprintf(struct proc *, int, const char *, __va_list) __printflike(3, 0); void hexdump(const void *ptr, int length, const char *hdr, int flags); #define HD_COLUMN_MASK 0xff #define HD_DELIM_MASK 0xff00 #define HD_OMIT_COUNT (1 << 16) #define HD_OMIT_HEX (1 << 17) #define HD_OMIT_CHARS (1 << 18) #define ovbcopy(f, t, l) bcopy((f), (t), (l)) void bcopy(const void *from, void *to, size_t len) __nonnull(1) __nonnull(2); void bzero(void *buf, size_t len) __nonnull(1); void explicit_bzero(void *, size_t) __nonnull(1); void *memcpy(void *to, const void *from, size_t len) __nonnull(1) __nonnull(2); void *memmove(void *dest, const void *src, size_t n) __nonnull(1) __nonnull(2); int copystr(const void * __restrict kfaddr, void * __restrict kdaddr, size_t len, size_t * __restrict lencopied) __nonnull(1) __nonnull(2); int copyinstr(const void * __restrict udaddr, void * __restrict kaddr, size_t len, size_t * __restrict lencopied) __nonnull(1) __nonnull(2); int copyin(const void * __restrict udaddr, void * __restrict kaddr, size_t len) __nonnull(1) __nonnull(2); int copyin_nofault(const void * __restrict udaddr, void * __restrict kaddr, size_t len) __nonnull(1) __nonnull(2); int copyout(const void * __restrict kaddr, void * __restrict udaddr, size_t len) __nonnull(1) __nonnull(2); int copyout_nofault(const void * __restrict kaddr, void * __restrict udaddr, size_t len) __nonnull(1) __nonnull(2); int fubyte(volatile const void *base); long fuword(volatile const void *base); int fuword16(volatile const void *base); int32_t fuword32(volatile const void *base); int64_t fuword64(volatile const void *base); int fueword(volatile const void *base, long *val); int fueword32(volatile const void *base, int32_t *val); int fueword64(volatile const void *base, int64_t *val); int subyte(volatile void *base, int byte); int suword(volatile void *base, long word); int suword16(volatile void *base, int word); int suword32(volatile void *base, int32_t word); int suword64(volatile void *base, int64_t word); uint32_t casuword32(volatile uint32_t *base, uint32_t oldval, uint32_t newval); u_long casuword(volatile u_long *p, u_long oldval, u_long newval); int casueword32(volatile uint32_t *base, uint32_t oldval, uint32_t *oldvalp, uint32_t newval); int casueword(volatile u_long *p, u_long oldval, u_long *oldvalp, u_long newval); void realitexpire(void *); int sysbeep(int hertz, int period); void hardclock(int usermode, uintfptr_t pc); void hardclock_cnt(int cnt, int usermode); void hardclock_cpu(int usermode); void hardclock_sync(int cpu); void softclock(void *); void statclock(int usermode); void statclock_cnt(int cnt, int usermode); void profclock(int usermode, uintfptr_t pc); void profclock_cnt(int cnt, int usermode, uintfptr_t pc); int hardclockintr(void); void startprofclock(struct proc *); void stopprofclock(struct proc *); void cpu_startprofclock(void); void cpu_stopprofclock(void); sbintime_t cpu_idleclock(void); void cpu_activeclock(void); void cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt); void cpu_et_frequency(struct eventtimer *et, uint64_t newfreq); extern int cpu_deepest_sleep; extern int cpu_disable_c2_sleep; extern int cpu_disable_c3_sleep; int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeinpcb(struct ucred *cred, struct inpcb *inp); char *kern_getenv(const char *name); void freeenv(char *env); int getenv_int(const char *name, int *data); int getenv_uint(const char *name, unsigned int *data); int getenv_long(const char *name, long *data); int getenv_ulong(const char *name, unsigned long *data); int getenv_string(const char *name, char *data, int size); int getenv_quad(const char *name, quad_t *data); int kern_setenv(const char *name, const char *value); int kern_unsetenv(const char *name); int testenv(const char *name); typedef uint64_t (cpu_tick_f)(void); void set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var); extern cpu_tick_f *cpu_ticks; uint64_t cpu_tickrate(void); uint64_t cputick2usec(uint64_t tick); #ifdef APM_FIXUP_CALLTODO struct timeval; void adjust_timeout_calltodo(struct timeval *time_change); #endif /* APM_FIXUP_CALLTODO */ #include /* Initialize the world */ void consinit(void); void cpu_initclocks(void); void cpu_initclocks_bsp(void); void cpu_initclocks_ap(void); void usrinfoinit(void); /* Finalize the world */ void kern_reboot(int) __dead2; void shutdown_nice(int); /* Timeouts */ typedef void timeout_t(void *); /* timeout function type */ #define CALLOUT_HANDLE_INITIALIZER(handle) \ { NULL } void callout_handle_init(struct callout_handle *); struct callout_handle timeout(timeout_t *, void *, int); void untimeout(timeout_t *, void *, struct callout_handle); /* Stubs for obsolete functions that used to be for interrupt management */ static __inline intrmask_t splbio(void) { return 0; } static __inline intrmask_t splcam(void) { return 0; } static __inline intrmask_t splclock(void) { return 0; } static __inline intrmask_t splhigh(void) { return 0; } static __inline intrmask_t splimp(void) { return 0; } static __inline intrmask_t splnet(void) { return 0; } static __inline intrmask_t spltty(void) { return 0; } static __inline void splx(intrmask_t ipl __unused) { return; } /* * Common `proc' functions are declared here so that proc.h can be included * less often. */ int _sleep(void *chan, struct lock_object *lock, int pri, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags) __nonnull(1); #define msleep(chan, mtx, pri, wmesg, timo) \ _sleep((chan), &(mtx)->lock_object, (pri), (wmesg), \ tick_sbt * (timo), 0, C_HARDCLOCK) #define msleep_sbt(chan, mtx, pri, wmesg, bt, pr, flags) \ _sleep((chan), &(mtx)->lock_object, (pri), (wmesg), (bt), (pr), \ (flags)) int msleep_spin_sbt(void *chan, struct mtx *mtx, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags) __nonnull(1); #define msleep_spin(chan, mtx, wmesg, timo) \ msleep_spin_sbt((chan), (mtx), (wmesg), tick_sbt * (timo), \ 0, C_HARDCLOCK) int pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags); #define pause(wmesg, timo) \ pause_sbt((wmesg), tick_sbt * (timo), 0, C_HARDCLOCK) #define tsleep(chan, pri, wmesg, timo) \ _sleep((chan), NULL, (pri), (wmesg), tick_sbt * (timo), \ 0, C_HARDCLOCK) #define tsleep_sbt(chan, pri, wmesg, bt, pr, flags) \ _sleep((chan), NULL, (pri), (wmesg), (bt), (pr), (flags)) void wakeup(void *chan) __nonnull(1); void wakeup_one(void *chan) __nonnull(1); /* * Common `struct cdev *' stuff are declared here to avoid #include poisoning */ struct cdev; dev_t dev2udev(struct cdev *x); const char *devtoname(struct cdev *cdev); int poll_no_poll(int events); /* XXX: Should be void nanodelay(u_int nsec); */ void DELAY(int usec); /* Root mount holdback API */ struct root_hold_token; struct root_hold_token *root_mount_hold(const char *identifier); void root_mount_rel(struct root_hold_token *h); void root_mount_wait(void); int root_mounted(void); /* * Unit number allocation API. (kern/subr_unit.c) */ struct unrhdr; struct unrhdr *new_unrhdr(int low, int high, struct mtx *mutex); void init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex); void delete_unrhdr(struct unrhdr *uh); void clean_unrhdr(struct unrhdr *uh); void clean_unrhdrl(struct unrhdr *uh); int alloc_unr(struct unrhdr *uh); int alloc_unr_specific(struct unrhdr *uh, u_int item); int alloc_unrl(struct unrhdr *uh); void free_unr(struct unrhdr *uh, u_int item); void intr_prof_stack_use(struct thread *td, struct trapframe *frame); extern void (*softdep_ast_cleanup)(void); #endif /* !_SYS_SYSTM_H_ */