Index: head/sys/dev/otus/if_otus.c =================================================================== --- head/sys/dev/otus/if_otus.c (revision 288289) +++ head/sys/dev/otus/if_otus.c (revision 288290) @@ -1,3107 +1,3119 @@ /* $OpenBSD: if_otus.c,v 1.46 2015/03/14 03:38:49 jsg Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2015 Adrian Chadd * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros AR9001U chipset. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR otus_debug #include #include "if_otusreg.h" static int otus_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW, 0, "USB otus"); SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0, "Debug level"); #define OTUS_DEBUG_XMIT 0x00000001 #define OTUS_DEBUG_RECV 0x00000002 #define OTUS_DEBUG_TXDONE 0x00000004 #define OTUS_DEBUG_RXDONE 0x00000008 #define OTUS_DEBUG_CMD 0x00000010 #define OTUS_DEBUG_CMDDONE 0x00000020 #define OTUS_DEBUG_RESET 0x00000040 #define OTUS_DEBUG_STATE 0x00000080 #define OTUS_DEBUG_CMDNOTIFY 0x00000100 #define OTUS_DEBUG_REGIO 0x00000200 #define OTUS_DEBUG_IRQ 0x00000400 #define OTUS_DEBUG_TXCOMP 0x00000800 #define OTUS_DEBUG_ANY 0xffffffff #define OTUS_DPRINTF(sc, dm, ...) \ do { \ if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \ device_printf(sc->sc_dev, __VA_ARGS__); \ } while (0) #define OTUS_DEV(v, p) { USB_VPI(v, p, 0) } static const STRUCT_USB_HOST_ID otus_devs[] = { OTUS_DEV(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2), OTUS_DEV(USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN), OTUS_DEV(USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2), OTUS_DEV(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2), OTUS_DEV(USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100), OTUS_DEV(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300), OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494), OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600), OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81), OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82), OTUS_DEV(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221), OTUS_DEV(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N), }; static device_probe_t otus_match; static device_attach_t otus_attach; static device_detach_t otus_detach; static int otus_attachhook(struct otus_softc *); void otus_get_chanlist(struct otus_softc *); int otus_load_firmware(struct otus_softc *, const char *, uint32_t); int otus_open_pipes(struct otus_softc *); void otus_close_pipes(struct otus_softc *); static int otus_alloc_tx_cmd_list(struct otus_softc *); static void otus_free_tx_cmd_list(struct otus_softc *); static int otus_alloc_rx_list(struct otus_softc *); static void otus_free_rx_list(struct otus_softc *); static int otus_alloc_tx_list(struct otus_softc *); static void otus_free_tx_list(struct otus_softc *); static void otus_free_list(struct otus_softc *, struct otus_data [], int); static struct otus_data *_otus_getbuf(struct otus_softc *); static struct otus_data *otus_getbuf(struct otus_softc *); static void otus_freebuf(struct otus_softc *, struct otus_data *); static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *); static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *); static void otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *); void otus_next_scan(void *, int); static void otus_tx_task(void *, int pending); static void otus_wme_update_task(void *, int pending); void otus_do_async(struct otus_softc *, void (*)(struct otus_softc *, void *), void *, int); int otus_newstate(struct ieee80211vap *, enum ieee80211_state, int); int otus_cmd(struct otus_softc *, uint8_t, const void *, int, - void *); + void *, int); void otus_write(struct otus_softc *, uint32_t, uint32_t); int otus_write_barrier(struct otus_softc *); struct ieee80211_node *otus_node_alloc(struct ieee80211com *); int otus_media_change(struct ifnet *); int otus_read_eeprom(struct otus_softc *); void otus_newassoc(struct ieee80211_node *, int); void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int); void otus_sub_rxeof(struct otus_softc *, uint8_t *, int, struct mbufq *); static int otus_tx(struct otus_softc *, struct ieee80211_node *, struct mbuf *, struct otus_data *); int otus_ioctl(struct ifnet *, u_long, caddr_t); int otus_set_multi(struct otus_softc *); static void otus_updateedca(struct otus_softc *sc); static void otus_updateslot(struct otus_softc *sc); int otus_init_mac(struct otus_softc *); uint32_t otus_phy_get_def(struct otus_softc *, uint32_t); int otus_set_board_values(struct otus_softc *, struct ieee80211_channel *); int otus_program_phy(struct otus_softc *, struct ieee80211_channel *); int otus_set_rf_bank4(struct otus_softc *, struct ieee80211_channel *); void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *); static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *, int); int otus_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_set_key_cb(struct otus_softc *, void *); void otus_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_delete_key_cb(struct otus_softc *, void *); void otus_calibrate_to(void *, int); int otus_set_bssid(struct otus_softc *, const uint8_t *); int otus_set_macaddr(struct otus_softc *, const uint8_t *); void otus_led_newstate_type1(struct otus_softc *); void otus_led_newstate_type2(struct otus_softc *); void otus_led_newstate_type3(struct otus_softc *); int otus_init(struct otus_softc *sc); void otus_stop(struct otus_softc *sc); static device_method_t otus_methods[] = { DEVMETHOD(device_probe, otus_match), DEVMETHOD(device_attach, otus_attach), DEVMETHOD(device_detach, otus_detach), DEVMETHOD_END }; static driver_t otus_driver = { .name = "otus", .methods = otus_methods, .size = sizeof(struct otus_softc) }; static devclass_t otus_devclass; DRIVER_MODULE(otus, uhub, otus_driver, otus_devclass, NULL, 0); MODULE_DEPEND(otus, wlan, 1, 1, 1); MODULE_DEPEND(otus, usb, 1, 1, 1); MODULE_DEPEND(otus, firmware, 1, 1, 1); MODULE_VERSION(otus, 1); static usb_callback_t otus_bulk_tx_callback; static usb_callback_t otus_bulk_rx_callback; static usb_callback_t otus_bulk_irq_callback; static usb_callback_t otus_bulk_cmd_callback; static const struct usb_config otus_config[OTUS_N_XFER] = { [OTUS_BULK_TX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = 0x200, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = otus_bulk_tx_callback, .timeout = 5000, /* ms */ }, [OTUS_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = OTUS_RXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,}, .callback = otus_bulk_rx_callback, }, [OTUS_BULK_IRQ] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = OTUS_MAX_CTRLSZ, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = otus_bulk_irq_callback, }, [OTUS_BULK_CMD] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = OTUS_MAX_CTRLSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = otus_bulk_cmd_callback, .timeout = 5000, /* ms */ }, }; static int otus_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST || uaa->info.bIfaceIndex != 0 || uaa->info.bConfigIndex != 0) return (ENXIO); return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa)); } static int otus_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct otus_softc *sc = device_get_softc(self); int error; uint8_t iface_index; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc); TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc); TASK_INIT(&sc->wme_update_task, 0, otus_wme_update_task, sc); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = 0; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, otus_config, OTUS_N_XFER, sc, &sc->sc_mtx); if (error) { device_printf(sc->sc_dev, "could not allocate USB transfers, err=%s\n", usbd_errstr(error)); goto fail_usb; } if ((error = otus_open_pipes(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not open pipes\n", __func__); goto fail; } /* XXX check return status; fail out if appropriate */ if (otus_attachhook(sc) != 0) goto fail; return (0); fail: otus_close_pipes(sc); fail_usb: mtx_destroy(&sc->sc_mtx); return (ENXIO); } static int otus_detach(device_t self) { struct otus_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; otus_stop(sc); usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); taskqueue_drain(taskqueue_thread, &sc->tx_task); taskqueue_drain(taskqueue_thread, &sc->wme_update_task); #if 0 /* Wait for all queued asynchronous commands to complete. */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); #endif ieee80211_ifdetach(ic); otus_close_pipes(sc); mtx_destroy(&sc->sc_mtx); return 0; } static void otus_delay_ms(struct otus_softc *sc, int ms) { DELAY(1000 * ms); } static struct ieee80211vap * otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct otus_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = otus_newstate; /* XXX TODO: double-check */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K; ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void otus_vap_delete(struct ieee80211vap *vap) { struct otus_vap *uvp = OTUS_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void otus_parent(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; int startall = 0; if (ic->ic_nrunning > 0) { if (!sc->sc_running) { otus_init(sc); startall = 1; } else { (void) otus_set_multi(sc); } } else if (sc->sc_running) otus_stop(sc); if (startall) ieee80211_start_all(ic); } static void otus_drain_mbufq(struct otus_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; OTUS_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static void otus_tx_start(struct otus_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->tx_task); } static int otus_transmit(struct ieee80211com *ic, struct mbuf *m) { struct otus_softc *sc = ic->ic_softc; int error; OTUS_LOCK(sc); if (! sc->sc_running) { OTUS_UNLOCK(sc); return (ENXIO); } /* XXX TODO: handle fragments */ error = mbufq_enqueue(&sc->sc_snd, m); if (error) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: mbufq_enqueue failed: %d\n", __func__, error); OTUS_UNLOCK(sc); return (error); } OTUS_UNLOCK(sc); /* Kick TX */ otus_tx_start(sc); return (0); } static void _otus_start(struct otus_softc *sc) { struct ieee80211_node *ni; struct otus_data *bf; struct mbuf *m; OTUS_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = otus_getbuf(sc); if (bf == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: failed to get buffer\n", __func__); mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (otus_tx(sc, ni, m, bf) != 0) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: failed to transmit\n", __func__); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); otus_freebuf(sc, bf); ieee80211_free_node(ni); m_freem(m); break; } } } static void otus_tx_task(void *arg, int pending) { struct otus_softc *sc = arg; OTUS_LOCK(sc); _otus_start(sc); OTUS_UNLOCK(sc); } static int otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic= ni->ni_ic; struct otus_softc *sc = ic->ic_softc; struct otus_data *bf = NULL; int error = 0; /* Don't transmit if we're not running */ OTUS_LOCK(sc); if (! sc->sc_running) { error = ENETDOWN; goto error; } bf = otus_getbuf(sc); if (bf == NULL) { error = ENOBUFS; goto error; } /* * XXX TODO: support TX bpf params */ if (otus_tx(sc, ni, m, bf) != 0) { error = EIO; goto error; } OTUS_UNLOCK(sc); return (0); error: if (bf) otus_freebuf(sc, bf); OTUS_UNLOCK(sc); ieee80211_free_node(ni); m_freem(m); return (ENXIO); } static void otus_update_chw(struct ieee80211com *ic) { printf("%s: TODO\n", __func__); } static void otus_set_channel(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n", __func__, ic->ic_curchan->ic_freq); OTUS_LOCK(sc); (void) otus_set_chan(sc, ic->ic_curchan, 0); OTUS_UNLOCK(sc); } static void otus_wme_update_task(void *arg, int pending) { struct otus_softc *sc = arg; OTUS_LOCK(sc); /* * XXX TODO: take temporary copy of EDCA information * when scheduling this so we have a more time-correct view * of things. */ otus_updateedca(sc); OTUS_UNLOCK(sc); } static void otus_wme_schedule_update(struct otus_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->wme_update_task); } /* * This is called by net80211 in RX packet context, so we * can't sleep here. * * TODO: have net80211 schedule an update itself for its * own internal taskqueue. */ static int otus_wme_update(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; otus_wme_schedule_update(sc); return (0); } static int otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { /* For now, no A-MPDU TX support in the driver */ return (0); } static void otus_scan_start(struct ieee80211com *ic) { // printf("%s: TODO\n", __func__); } static void otus_scan_end(struct ieee80211com *ic) { // printf("%s: TODO\n", __func__); } static void otus_update_mcast(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; (void) otus_set_multi(sc); } static int otus_attachhook(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; usb_device_request_t req; uint32_t in, out; int error; uint8_t bands; /* Not locked */ error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load %s firmware\n", __func__, "init"); return (ENXIO); } /* XXX not locked? */ otus_delay_ms(sc, 1000); /* Not locked */ error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load %s firmware\n", __func__, "main"); return (ENXIO); } OTUS_LOCK(sc); /* Tell device that firmware transfer is complete. */ req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD_COMPLETE; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL, 0, NULL, 250) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: firmware initialization failed\n", __func__); return (ENXIO); } /* Send an ECHO command to check that everything is settled. */ in = 0xbadc0ffe; - if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out) != 0) { + if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: echo command failed\n", __func__); return (ENXIO); } if (in != out) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: echo reply mismatch: 0x%08x!=0x%08x\n", __func__, in, out); return (ENXIO); } /* Read entire EEPROM. */ if (otus_read_eeprom(sc) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not read EEPROM\n", __func__); return (ENXIO); } OTUS_UNLOCK(sc); sc->txmask = sc->eeprom.baseEepHeader.txMask; sc->rxmask = sc->eeprom.baseEepHeader.rxMask; sc->capflags = sc->eeprom.baseEepHeader.opCapFlags; IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr); sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */ device_printf(sc->sc_dev, "MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n", (sc->capflags & AR5416_OPFLAGS_11A) ? 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101), (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1, ether_sprintf(ic->ic_macaddr)); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ #if 0 IEEE80211_C_BGSCAN | /* Background scan. */ #endif IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_WME | /* WME/QoS */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_FF | /* Atheros fast-frames supported. */ IEEE80211_C_WPA; /* WPA/RSN. */ /* XXX TODO: 11n */ #if 0 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { /* Set supported .11b and .11g rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { /* Set supported .11a rates. */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; } #endif #if 0 /* Build the list of supported channels. */ otus_get_chanlist(sc); #else /* Set supported .11b and .11g rates. */ bands = 0; if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { setbit(&bands, IEEE80211_MODE_11A); } #if 0 if (sc->sc_ht) setbit(&bands, IEEE80211_MODE_11NG); #endif ieee80211_init_channels(ic, NULL, &bands); #endif ieee80211_ifattach(ic); ic->ic_raw_xmit = otus_raw_xmit; ic->ic_scan_start = otus_scan_start; ic->ic_scan_end = otus_scan_end; ic->ic_set_channel = otus_set_channel; ic->ic_vap_create = otus_vap_create; ic->ic_vap_delete = otus_vap_delete; ic->ic_update_mcast = otus_update_mcast; ic->ic_update_promisc = otus_update_mcast; ic->ic_parent = otus_parent; ic->ic_transmit = otus_transmit; ic->ic_update_chw = otus_update_chw; ic->ic_ampdu_enable = otus_ampdu_enable; ic->ic_wme.wme_update = otus_wme_update; ic->ic_newassoc = otus_newassoc; #ifdef notyet ic->ic_set_key = otus_set_key; ic->ic_delete_key = otus_delete_key; #endif ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), OTUS_RX_RADIOTAP_PRESENT); return (0); } void otus_get_chanlist(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t domain; uint8_t chan; int i; /* XXX regulatory domain. */ domain = le16toh(sc->eeprom.baseEepHeader.regDmn[0]); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "regdomain=0x%04x\n", domain); if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { for (i = 0; i < 14; i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { for (i = 14; i < nitems(ar_chans); i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } } int otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr) { usb_device_request_t req; char *ptr; const struct firmware *fw; int mlen, error, size; error = 0; /* Read firmware image from the filesystem. */ if ((fw = firmware_get(name)) == NULL) { device_printf(sc->sc_dev, "%s: failed loadfirmware of file %s\n", __func__, name); return (ENXIO); } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD; USETW(req.wIndex, 0); OTUS_LOCK(sc); /* XXX const */ ptr = __DECONST(char *, fw->data); size = fw->datasize; addr >>= 8; while (size > 0) { mlen = MIN(size, 4096); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, ptr, 0, NULL, 250) != 0) { error = EIO; break; } addr += mlen >> 8; ptr += mlen; size -= mlen; } OTUS_UNLOCK(sc); firmware_put(fw, FIRMWARE_UNLOAD); if (error != 0) device_printf(sc->sc_dev, "%s: %s: error=%d\n", __func__, name, error); return error; } int otus_open_pipes(struct otus_softc *sc) { #if 0 int isize, error; int i; #endif int error; OTUS_UNLOCK_ASSERT(sc); if ((error = otus_alloc_tx_cmd_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate command xfer\n", __func__); goto fail; } if ((error = otus_alloc_tx_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n", __func__); goto fail; } if ((error = otus_alloc_rx_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n", __func__); goto fail; } /* Enable RX transfers; needed for initial firmware messages */ OTUS_LOCK(sc); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]); OTUS_UNLOCK(sc); return 0; fail: otus_close_pipes(sc); return error; } void otus_close_pipes(struct otus_softc *sc) { otus_free_tx_cmd_list(sc); otus_free_tx_list(sc); otus_free_rx_list(sc); usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); } static void otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata) { int i; /* XXX TODO: someone has to have waken up waiters! */ for (i = 0; i < ndata; i++) { struct otus_tx_cmd *dp = &cmd[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } } } static int otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct otus_tx_cmd *dp = &cmd[i]; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); dp->odata = NULL; if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } } return (0); fail: otus_free_cmd_list(sc, cmd, ndata); return (error); } static int otus_alloc_tx_cmd_list(struct otus_softc *sc) { int error, i; error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT, OTUS_MAX_TXCMDSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_inactive); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); for (i = 0; i < OTUS_CMD_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i], next_cmd); return (0); } static void otus_free_tx_cmd_list(struct otus_softc *sc) { /* * XXX TODO: something needs to wake up any pending/sleeping * waiters! */ STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_inactive); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT); } static int otus_alloc_list(struct otus_softc *sc, struct otus_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct otus_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: otus_free_list(sc, data, ndata); return (error); } static int otus_alloc_rx_list(struct otus_softc *sc) { int error, i; error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT, OTUS_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < OTUS_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int otus_alloc_tx_list(struct otus_softc *sc) { int error, i; error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT, OTUS_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != OTUS_N_XFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } for (i = 0; i < OTUS_TX_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); } return (0); } static void otus_free_tx_list(struct otus_softc *sc) { int i; /* prevent further allocations from TX list(s) */ STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != OTUS_N_XFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT); } static void otus_free_rx_list(struct otus_softc *sc) { /* prevent further allocations from RX list(s) */ STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_rx_active); otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT); } static void otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct otus_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static struct otus_data * _otus_getbuf(struct otus_softc *sc) { struct otus_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else bf = NULL; return (bf); } static struct otus_data * otus_getbuf(struct otus_softc *sc) { struct otus_data *bf; OTUS_LOCK_ASSERT(sc); bf = _otus_getbuf(sc); return (bf); } static void otus_freebuf(struct otus_softc *sc, struct otus_data *bf) { OTUS_LOCK_ASSERT(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); } static struct otus_tx_cmd * _otus_get_txcmd(struct otus_softc *sc) { struct otus_tx_cmd *bf; bf = STAILQ_FIRST(&sc->sc_cmd_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd); else bf = NULL; return (bf); } static struct otus_tx_cmd * otus_get_txcmd(struct otus_softc *sc) { struct otus_tx_cmd *bf; OTUS_LOCK_ASSERT(sc); bf = _otus_get_txcmd(sc); if (bf == NULL) { device_printf(sc->sc_dev, "%s: no tx cmd buffers\n", __func__); } return (bf); } static void otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf) { OTUS_LOCK_ASSERT(sc); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd); } void otus_next_scan(void *arg, int pending) { #if 0 struct otus_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic.ic_if); usbd_ref_decr(sc->sc_udev); #endif } int otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct otus_vap *uvp = OTUS_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct otus_softc *sc = ic->ic_softc; struct ieee80211_node *ni; enum ieee80211_state ostate; ostate = vap->iv_state; OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); OTUS_LOCK(sc); /* XXX TODO: more fleshing out! */ switch (nstate) { case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (ic->ic_opmode == IEEE80211_M_STA) { otus_updateslot(sc); otus_set_bssid(sc, ni->ni_bssid); /* Start calibration timer. */ taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_to, hz); } break; default: break; } /* XXX TODO: calibration? */ sc->sc_led_newstate(sc); OTUS_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } int otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen, - void *odata) + void *odata, int odatalen) { struct otus_tx_cmd *cmd; struct ar_cmd_hdr *hdr; int xferlen, error; OTUS_LOCK_ASSERT(sc); /* Always bulk-out a multiple of 4 bytes. */ xferlen = (sizeof (*hdr) + ilen + 3) & ~3; if (xferlen > OTUS_MAX_TXCMDSZ) { device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n", __func__, code, xferlen, OTUS_MAX_TXCMDSZ); return (EIO); } cmd = otus_get_txcmd(sc); if (cmd == NULL) { device_printf(sc->sc_dev, "%s: failed to get buf\n", __func__); return (EIO); } hdr = (struct ar_cmd_hdr *)cmd->buf; hdr->code = code; hdr->len = ilen; hdr->token = ++sc->token; /* Don't care about endianness. */ cmd->token = hdr->token; /* XXX TODO: check max cmd length? */ memcpy((uint8_t *)&hdr[1], idata, ilen); OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: sending command code=0x%02x len=%d token=%d\n", __func__, code, ilen, hdr->token); cmd->odata = odata; + cmd->odatalen = odatalen; cmd->buflen = xferlen; /* Queue the command to the endpoint */ STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]); /* Sleep on the command; wait for it to complete */ error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz); /* * At this point we don't own cmd any longer; it'll be * freed by the cmd bulk path or the RX notification * path. If the data is made available then it'll be copied * to the caller. All that is left to do is communicate * status back to the caller. */ if (error != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for command 0x%02x reply\n", __func__, code); } return error; } void otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val) { OTUS_LOCK_ASSERT(sc); sc->write_buf[sc->write_idx].reg = htole32(reg); sc->write_buf[sc->write_idx].val = htole32(val); if (++sc->write_idx > (AR_MAX_WRITE_IDX-1)) (void)otus_write_barrier(sc); } int otus_write_barrier(struct otus_softc *sc) { int error; OTUS_LOCK_ASSERT(sc); if (sc->write_idx == 0) return 0; /* Nothing to flush. */ OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n", __func__, sc->write_idx); error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf, - sizeof (sc->write_buf[0]) * sc->write_idx, NULL); + sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0); sc->write_idx = 0; return error; } struct ieee80211_node * otus_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO); } #if 0 int otus_media_change(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++) if (otus_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) error = otus_init(sc); return error; } #endif int otus_read_eeprom(struct otus_softc *sc) { uint32_t regs[8], reg; uint8_t *eep; int i, j, error; OTUS_LOCK_ASSERT(sc); /* Read EEPROM by blocks of 32 bytes. */ eep = (uint8_t *)&sc->eeprom; reg = AR_EEPROM_OFFSET; for (i = 0; i < sizeof (sc->eeprom) / 32; i++) { for (j = 0; j < 8; j++, reg += 4) regs[j] = htole32(reg); - error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep); + error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32); if (error != 0) break; eep += 32; } return error; } void otus_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211com *ic = ni->ni_ic; struct otus_softc *sc = ic->ic_softc; struct otus_node *on = OTUS_NODE(ni); OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr)); on->tx_done = 0; on->tx_err = 0; on->tx_retries = 0; } static void otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr) { struct otus_tx_cmd *cmd; OTUS_LOCK_ASSERT(sc); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: received reply code=0x%02x len=%d token=%d\n", __func__, hdr->code, hdr->len, hdr->token); /* * Walk the list, freeing items that aren't ours, * stopping when we hit our token. */ while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: cmd=%p; hdr.token=%d, cmd.token=%d\n", __func__, cmd, (int) hdr->token, (int) cmd->token); if (hdr->token == cmd->token) { /* Copy answer into caller's supplied buffer. */ - if (cmd->odata != NULL) - memcpy(cmd->odata, &hdr[1], hdr->len); + if (cmd->odata != NULL) { + if (hdr->len != cmd->odatalen) { + device_printf(sc->sc_dev, + "%s: code 0x%02x, len=%d, olen=%d\n", + __func__, + (int) hdr->code, + (int) hdr->len, + (int) cmd->odatalen); + } + memcpy(cmd->odata, &hdr[1], + MIN(cmd->odatalen, hdr->len)); + } wakeup(cmd); } STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd); } } void otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ar_cmd_hdr *hdr; OTUS_LOCK_ASSERT(sc); if (__predict_false(len < sizeof (*hdr))) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "cmd too small %d\n", len); return; } hdr = (struct ar_cmd_hdr *)buf; if (__predict_false(sizeof (*hdr) + hdr->len > len || sizeof (*hdr) + hdr->len > 64)) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "cmd too large %d\n", hdr->len); return; } OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: code=%.02x\n", __func__, hdr->code); /* - * XXX TODO: has to reach into the cmd queue "waiting for + * This has to reach into the cmd queue "waiting for * an RX response" list, grab the head entry and check + * if we need to wake anyone up. */ if ((hdr->code & 0xc0) != 0xc0) { otus_cmd_handle_response(sc, hdr); return; } /* Received unsolicited notification. */ switch (hdr->code & 0x3f) { case AR_EVT_BEACON: break; case AR_EVT_TX_COMP: { struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1]; struct ieee80211_node *ni; ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr); if (ni == NULL) { device_printf(sc->sc_dev, "%s: txcomp on unknown node (%s)\n", __func__, ether_sprintf(tx->macaddr)); break; } OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP, "tx completed %s status=%d phy=0x%x\n", ether_sprintf(tx->macaddr), le16toh(tx->status), le32toh(tx->phy)); switch (le16toh(tx->status)) { case AR_TX_STATUS_COMP: #if 0 ackfailcnt = 0; ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); #endif /* * We don't get the above; only error notifications. * Sigh. So, don't worry about this. */ break; case AR_TX_STATUS_RETRY_COMP: OTUS_NODE(ni)->tx_retries++; break; case AR_TX_STATUS_FAILED: OTUS_NODE(ni)->tx_err++; break; } ieee80211_free_node(ni); break; } case AR_EVT_TBTT: break; case AR_EVT_DO_BB_RESET: /* * This is "tell driver to reset baseband" from ar9170-fw. * * I'm not sure what we should do here, so I'm going to * fall through; it gets generated when RTSRetryCnt internally * reaches '5' - I guess the firmware authors thought that * meant that the BB may have gone deaf or something. */ default: device_printf(sc->sc_dev, "%s: received notification code=0x%02x len=%d\n", __func__, hdr->code, hdr->len); } } void otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_rx_stats rxs; #if 0 struct ieee80211_node *ni; #endif struct ar_rx_tail *tail; struct ieee80211_frame *wh; struct mbuf *m; uint8_t *plcp; // int s; int mlen; if (__predict_false(len < AR_PLCP_HDR_LEN)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "sub-xfer too short %d\n", len); return; } plcp = buf; /* All bits in the PLCP header are set to 1 for non-MPDU. */ if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) { otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN, len - AR_PLCP_HDR_LEN); return; } /* Received MPDU. */ if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "MPDU too short %d\n", len); counter_u64_add(ic->ic_ierrors, 1); return; } tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail)); /* Discard error frames. */ if (__predict_false(tail->error != 0)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", tail->error); if (tail->error & AR_RX_ERROR_FCS) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n"); } else if (tail->error & AR_RX_ERROR_MMIC) { /* Report Michael MIC failures to net80211. */ #if 0 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx); #endif device_printf(sc->sc_dev, "%s: MIC failure\n", __func__); } counter_u64_add(ic->ic_ierrors, 1); return; } /* Compute MPDU's length. */ mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail); /* Make sure there's room for an 802.11 header + FCS. */ if (__predict_false(mlen < IEEE80211_MIN_LEN)) { counter_u64_add(ic->ic_ierrors, 1); return; } mlen -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */ wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN); m = m_get2(mlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "%s: failed m_get2()\n", __func__); counter_u64_add(ic->ic_ierrors, 1); } /* Finalize mbuf. */ memcpy(mtod(m, uint8_t *), wh, mlen); m->m_pkthdr.len = m->m_len = mlen; #if 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct otus_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = tail->rssi; tap->wr_rate = 2; /* In case it can't be found below. */ switch (tail->status & AR_RX_STATUS_MT_MASK) { case AR_RX_STATUS_MT_CCK: switch (plcp[0]) { case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; } if (tail->status & AR_RX_STATUS_SHPREAMBLE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case AR_RX_STATUS_MT_OFDM: switch (plcp[0] & 0xf) { case 0xb: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0xa: tap->wr_rate = 24; break; case 0xe: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xd: tap->wr_rate = 72; break; case 0x8: tap->wr_rate = 96; break; case 0xc: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif /* Add RSSI/NF to this mbuf */ bzero(&rxs, sizeof(rxs)); rxs.r_flags = IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.nf = sc->sc_nf[0]; /* XXX chain 0 != combined rssi/nf */ rxs.rssi = tail->rssi; /* XXX TODO: add MIMO RSSI/NF as well */ ieee80211_add_rx_params(m, &rxs); /* XXX make a method */ STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt); #if 0 OTUS_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = tail->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); OTUS_LOCK(sc); #endif } static void otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq) { struct otus_softc *sc = usbd_xfer_softc(xfer); caddr_t buf = data->buf; struct ar_rx_head *head; uint16_t hlen; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); while (len >= sizeof (*head)) { head = (struct ar_rx_head *)buf; if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "tag not valid 0x%x\n", le16toh(head->tag)); break; } hlen = le16toh(head->len); if (__predict_false(sizeof (*head) + hlen > len)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "xfer too short %d/%d\n", len, hlen); break; } /* Process sub-xfer. */ otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen, rxq); /* Next sub-xfer is aligned on a 32-bit boundary. */ hlen = (sizeof (*head) + hlen + 3) & ~3; buf += hlen; len -= hlen; } } static void otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; struct mbufq scrx; struct otus_data *data; OTUS_LOCK_ASSERT(sc); mbufq_init(&scrx, 1024); #if 0 device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n", __func__, USB_GET_STATE(xfer), error); #endif switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); otus_rxeof(xfer, data, &scrx); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: /* * XXX TODO: what if sc_rx isn't empty, but data * is empty? Then we leak mbufs. */ data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { //KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ OTUS_UNLOCK(sc); while ((m = mbufq_dequeue(&scrx)) != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input_mimo(ni, m, NULL); ieee80211_free_node(ni); } else (void)ieee80211_input_mimo_all(ic, m, NULL); } OTUS_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } } static void otus_txeof(struct usb_xfer *xfer, struct otus_data *data) { struct otus_softc *sc = usbd_xfer_softc(xfer); OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, "%s: called; data=%p\n", __func__, data); OTUS_LOCK_ASSERT(sc); if (data->m) { /* XXX status? */ /* XXX we get TX status via the RX path.. */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } } static void otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd) { struct otus_softc *sc = usbd_xfer_softc(xfer); OTUS_LOCK_ASSERT(sc); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: called; data=%p; odata=%p\n", __func__, cmd, cmd->odata); /* * Non-response commands still need wakeup so the caller * knows it was submitted and completed OK; response commands should * wait until they're ACKed by the firmware with a response. */ if (cmd->odata) { STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd); } else { wakeup(cmd); otus_free_txcmd(sc, cmd); } } static void otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { uint8_t which = OTUS_BULK_TX; struct otus_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct otus_data *data; OTUS_LOCK_ASSERT(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data == NULL) goto tr_setup; OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, "%s: transfer done %p\n", __func__, data); STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); otus_txeof(xfer, data); otus_freebuf(sc, data); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending[which]); if (data == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: empty pending queue sc %p\n", __func__, sc); goto finish; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: submitting transfer %p\n", __func__, data); usbd_transfer_submit(xfer); break; default: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); otus_txeof(xfer, data); otus_freebuf(sc, data); } counter_u64_add(ic->ic_oerrors, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } finish: /* Kick TX */ otus_tx_start(sc); } static void otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); #if 0 struct ieee80211com *ic = &sc->sc_ic; #endif struct otus_tx_cmd *cmd; OTUS_LOCK_ASSERT(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd == NULL) goto tr_setup; OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: transfer done %p\n", __func__, cmd); STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); otus_txcmdeof(xfer, cmd); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: cmd = STAILQ_FIRST(&sc->sc_cmd_pending); if (cmd == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: empty pending queue sc %p\n", __func__, sc); return; } STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd); STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd); usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen); usbd_transfer_submit(xfer); break; default: cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); otus_txcmdeof(xfer, cmd); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } /* * This isn't used by carl9170; it however may be used by the * initial bootloader. */ static void otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); int actlen; int sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: called; state=%d\n", __func__, USB_GET_STATE(xfer)); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: /* * Read usb frame data, if any. * "actlen" has the total length for all frames * transferred. */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: comp; %d bytes\n", __func__, actlen); #if 0 pc = usbd_xfer_get_frame(xfer, 0); otus_dump_usb_rx_page(sc, pc, actlen); #endif /* XXX fallthrough */ case USB_ST_SETUP: /* * Setup xfer frame lengths/count and data */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__); usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: /* Error */ /* * Print error message and clear stall * for example. */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__); break; } } /* * Map net80211 rate to hw rate for otus MAC/PHY. */ static uint8_t otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate) { int is_2ghz; is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)); switch (rate) { /* CCK */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); /* OFDM */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); default: device_printf(sc->sc_dev, "%s: unknown rate '%d'\n", __func__, (int) rate); case 0: if (is_2ghz) return (0x0); /* 1MB CCK */ else return (0xb); /* 6MB OFDM */ /* XXX TODO: HT */ } } static int otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate) { switch (hw_rate) { case 0x0: case 0x1: case 0x2: case 0x3: return (0); default: return (1); } } static void otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni) { int tx, tx_success, tx_retry; tx = OTUS_NODE(ni)->tx_done; tx_success = OTUS_NODE(ni)->tx_done - OTUS_NODE(ni)->tx_err; tx_retry = OTUS_NODE(ni)->tx_retries; ieee80211_ratectl_tx_update(ni->ni_vap, ni, &tx, &tx_success, &tx_retry); } /* * XXX TODO: support tx bpf parameters for configuration! */ static int otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m, struct otus_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_key *k; struct ar_tx_head *head; uint32_t phyctl; uint16_t macctl, qos; uint8_t qid, rate; int hasqos, xferlen; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "%s: m=%p: ieee80211_crypto_encap returns NULL\n", __func__, m); return (ENOBUFS); } wh = mtod(m, struct ieee80211_frame *); } /* Calculate transfer length; ensure data buffer is large enough */ xferlen = sizeof (*head) + m->m_pkthdr.len; if (xferlen > OTUS_TXBUFSZ) { device_printf(sc->sc_dev, "%s: 802.11 TX frame is %d bytes, max %d bytes\n", __func__, xferlen, OTUS_TXBUFSZ); return (ENOBUFS); } hasqos = !! IEEE80211_QOS_HAS_SEQ(wh); if (hasqos) { uint8_t tid; qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; qid = TID_TO_WME_AC(tid); } else { qos = 0; qid = WME_AC_BE; } /* Pickup a rate index. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) { /* Get lowest rate */ rate = otus_rate_to_hw_rate(sc, 0); } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = otus_rate_to_hw_rate(sc, ni->ni_txrate); } phyctl = 0; macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid); if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) == IEEE80211_QOS_ACKPOLICY_NOACK))) macctl |= AR_TX_MAC_NOACK; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold) macctl |= AR_TX_MAC_RTS; else if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) macctl |= AR_TX_MAC_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) macctl |= AR_TX_MAC_RTS; } } phyctl |= AR_TX_PHY_MCS(rate); if (otus_hw_rate_is_ofdm(sc, rate)) { phyctl |= AR_TX_PHY_MT_OFDM; /* Always use all tx antennas for now, just to be safe */ phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); } else { /* CCK */ phyctl |= AR_TX_PHY_MT_CCK; phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); } /* Update net80211 with the current counters */ otus_tx_update_ratectl(sc, ni); /* Update rate control stats for frames that are ACK'ed. */ if (!(macctl & AR_TX_MAC_NOACK)) OTUS_NODE(ni)->tx_done++; /* Fill Tx descriptor. */ head = (struct ar_tx_head *)data->buf; head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN); head->macctl = htole16(macctl); head->phyctl = htole32(phyctl); m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]); data->buflen = xferlen; data->ni = ni; data->m = m; OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x rate=0x%02x, ni_txrate=%d\n", __func__, m, data, head->len, head->macctl, head->phyctl, (int) rate, (int) ni->ni_txrate); /* Submit transfer */ STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]); return 0; } int otus_set_multi(struct otus_softc *sc) { uint32_t lo, hi; struct ieee80211com *ic = &sc->sc_ic; int r; if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) { lo = 0xffffffff; hi = 0xffffffff; } else { struct ieee80211vap *vap; struct ifnet *ifp; struct ifmultiaddr *ifma; lo = hi = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { caddr_t dl; uint32_t val; dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); val = LE_READ_4(dl + 4); /* Get address byte 5 */ val = val & 0x0000ff00; val = val >> 8; /* As per below, shift it >> 2 to get only 6 bits */ val = val >> 2; if (val < 32) lo |= 1 << val; else hi |= 1 << (val - 32); } if_maddr_runlock(ifp); } } #if 0 /* XXX openbsd code */ while (enm != NULL) { bit = enm->enm_addrlo[5] >> 2; if (bit < 32) lo |= 1 << bit; else hi |= 1 << (bit - 32); ETHER_NEXT_MULTI(step, enm); } #endif hi |= 1U << 31; /* Make sure the broadcast bit is set. */ OTUS_LOCK(sc); otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo); otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi); r = otus_write_barrier(sc); OTUS_UNLOCK(sc); return (r); } static void otus_updateedca(struct otus_softc *sc) { #define EXP2(val) ((1 << (val)) - 1) #define AIFS(val) ((val) * 9 + 10) struct ieee80211com *ic = &sc->sc_ic; const struct wmeParams *edca; OTUS_LOCK_ASSERT(sc); edca = ic->ic_wme.wme_chanParams.cap_wmeParams; /* Set CWmin/CWmax values. */ otus_write(sc, AR_MAC_REG_AC0_CW, EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_BE].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC1_CW, EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_BK].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC2_CW, EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VI].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC3_CW, EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VO].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */ EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VO].wmep_logcwmin)); /* Set AIFSN values. */ otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS, AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 | AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 | AIFS(edca[WME_AC_BE].wmep_aifsn)); otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS, AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 | /* Special TXQ. */ AIFS(edca[WME_AC_VO].wmep_aifsn) << 4 | AIFS(edca[WME_AC_VI].wmep_aifsn) >> 8); /* Set TXOP limit. */ otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP, edca[WME_AC_BK].wmep_txopLimit << 16 | edca[WME_AC_BE].wmep_txopLimit); otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP, edca[WME_AC_VO].wmep_txopLimit << 16 | edca[WME_AC_VI].wmep_txopLimit); /* XXX ACK policy? */ (void)otus_write_barrier(sc); #undef AIFS #undef EXP2 } static void otus_updateslot(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t slottime; OTUS_LOCK_ASSERT(sc); slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10); (void)otus_write_barrier(sc); } int otus_init_mac(struct otus_softc *sc) { int error; OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40); otus_write(sc, AR_MAC_REG_RETRY_MAX, 0); otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000); otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80); otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70); otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000); otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10); otus_write(sc, 0x1c3b2c, 0x19000000); /* NAV protects ACK only (in TXOP). */ otus_write(sc, 0x1c3b38, 0x201); /* Set beacon Tx power to 0x7. */ otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170); otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105); otus_write(sc, 0x1c3b9c, 0x10000a); /* Filter any control frames, BAR is bit 24. */ otus_write(sc, 0x1c368c, 0x0500ffff); otus_write(sc, 0x1c3c40, 0x1); otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f); otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f); otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb); otus_write(sc, 0x1c3694, 0x4003c1e); /* Enable LED0 and LED1. */ otus_write(sc, 0x1d0100, 0x3); otus_write(sc, 0x1d0104, 0x3); /* Switch MAC to OTUS interface. */ otus_write(sc, 0x1c3600, 0x3); otus_write(sc, 0x1c3c50, 0xffff); otus_write(sc, 0x1c3680, 0xf00008); /* Disable Rx timeout (workaround). */ otus_write(sc, 0x1c362c, 0); /* Set USB Rx stream mode maximum frame number to 2. */ otus_write(sc, 0x1e1110, 0x4); /* Set USB Rx stream mode timeout to 10us. */ otus_write(sc, 0x1e1114, 0x80); /* Set clock frequency to 88/80MHz. */ otus_write(sc, 0x1d4008, 0x73); /* Set WLAN DMA interrupt mode: generate intr per packet. */ otus_write(sc, 0x1c3d7c, 0x110011); otus_write(sc, 0x1c3bb0, 0x4); otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48); /* Disable HW decryption for now. */ otus_write(sc, 0x1c3678, 0x78); if ((error = otus_write_barrier(sc)) != 0) return error; /* Set default EDCA parameters. */ otus_updateedca(sc); return 0; } /* * Return default value for PHY register based on current operating mode. */ uint32_t otus_phy_get_def(struct otus_softc *sc, uint32_t reg) { int i; for (i = 0; i < nitems(ar5416_phy_regs); i++) if (AR_PHY(ar5416_phy_regs[i]) == reg) return sc->phy_vals[i]; return 0; /* Register not found. */ } /* * Update PHY's programming based on vendor-specific data stored in EEPROM. * This is for FEM-type devices only. */ int otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c) { const struct ModalEepHeader *eep; uint32_t tmp, offset; if (IEEE80211_IS_CHAN_5GHZ(c)) eep = &sc->eeprom.modalHeader[0]; else eep = &sc->eeprom.modalHeader[1]; /* Offset of chain 2. */ offset = 2 * 0x1000; tmp = le32toh(eep->antCtrlCommon); otus_write(sc, AR_PHY_SWITCH_COM, tmp); tmp = le32toh(eep->antCtrlChain[0]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp); tmp = le32toh(eep->antCtrlChain[1]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp); if (1 /* sc->sc_sco == AR_SCO_SCN */) { tmp = otus_phy_get_def(sc, AR_PHY_SETTLING); tmp &= ~(0x7f << 7); tmp |= (eep->switchSettling & 0x7f) << 7; otus_write(sc, AR_PHY_SETTLING, tmp); } tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ); tmp &= ~0xffff; tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize; otus_write(sc, AR_PHY_DESIRED_SZ, tmp); tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 | eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn; otus_write(sc, AR_PHY_RF_CTL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3); tmp &= ~(0xff << 16); tmp |= eep->txEndToRxOn << 16; otus_write(sc, AR_PHY_RF_CTL3, tmp); tmp = otus_phy_get_def(sc, AR_PHY_CCA); tmp &= ~(0x7f << 12); tmp |= (eep->thresh62 & 0x7f) << 12; otus_write(sc, AR_PHY_CCA, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18; if (IEEE80211_IS_CHAN_5GHZ(c)) { tmp &= ~(0xf << 10); tmp |= (eep->bswMargin[0] & 0xf) << 10; } otus_write(sc, AR_PHY_GAIN_2GHZ, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18; otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1); tmp &= ~(0xf << 16); tmp |= (eep->xpd & 0xf) << 16; otus_write(sc, AR_PHY_TPCRG1, tmp); return otus_write_barrier(sc); } int otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c) { const uint32_t *vals; int error, i; /* Select PHY programming based on band and bandwidth. */ if (IEEE80211_IS_CHAN_2GHZ(c)) vals = ar5416_phy_vals_2ghz_20mhz; else vals = ar5416_phy_vals_5ghz_20mhz; for (i = 0; i < nitems(ar5416_phy_regs); i++) otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]); sc->phy_vals = vals; if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */ if ((error = otus_set_board_values(sc, c)) != 0) return error; /* Initial Tx power settings. */ otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f); otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f); if (IEEE80211_IS_CHAN_2GHZ(c)) otus_write(sc, 0x1d4014, 0x5163); else otus_write(sc, 0x1d4014, 0x5143); return otus_write_barrier(sc); } static __inline uint8_t otus_reverse_bits(uint8_t v) { v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); return v; } int otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c) { uint8_t chansel, d0, d1; uint16_t data; int error; OTUS_LOCK_ASSERT(sc); d0 = 0; if (IEEE80211_IS_CHAN_5GHZ(c)) { chansel = (c->ic_freq - 4800) / 5; if (chansel & 1) d0 |= AR_BANK4_AMODE_REFSEL(2); else d0 |= AR_BANK4_AMODE_REFSEL(1); } else { d0 |= AR_BANK4_AMODE_REFSEL(2); if (c->ic_freq == 2484) { /* CH 14 */ d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ; chansel = 10 + (c->ic_freq - 2274) / 5; } else chansel = 16 + (c->ic_freq - 2272) / 5; chansel <<= 2; } d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP; d1 = otus_reverse_bits(chansel); /* Write bits 0-4 of d0 and d1. */ data = (d1 & 0x1f) << 5 | (d0 & 0x1f); otus_write(sc, AR_PHY(44), data); /* Write bits 5-7 of d0 and d1. */ data = (d1 >> 5) << 5 | (d0 >> 5); otus_write(sc, AR_PHY(58), data); if ((error = otus_write_barrier(sc)) == 0) otus_delay_ms(sc, 10); return error; } void otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) { #define COEFF_SCALE_SHIFT 24 uint32_t exp, man; /* exponent = 14 - floor(log2(coeff)) */ for (exp = 31; exp > 0; exp--) if (coeff & (1 << exp)) break; KASSERT(exp != 0, ("exp")); exp = 14 - (exp - COEFF_SCALE_SHIFT); /* mantissa = floor(coeff * 2^exponent + 0.5) */ man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); *mantissa = man >> (COEFF_SCALE_SHIFT - exp); *exponent = exp - 16; #undef COEFF_SCALE_SHIFT } static int otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc) { struct ieee80211com *ic = &sc->sc_ic; struct ar_cmd_frequency cmd; struct ar_rsp_frequency rsp; const uint32_t *vals; uint32_t coeff, exp, man, tmp; uint8_t code; int error, chan, i; error = 0; chan = ieee80211_chan2ieee(ic, c); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "setting channel %d (%dMHz)\n", chan, c->ic_freq); tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104; otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* Disable BB Heavy Clip. */ otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* XXX Is that FREQ_START ? */ - error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL); + error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0); if (error != 0) goto finish; /* Reprogram PHY and RF on channel band or bandwidth changes. */ if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) { OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n"); /* Cold/Warm reset BB/ADDA. */ otus_write(sc, 0x1d4004, sc->bb_reset ? 0x800 : 0x400); if ((error = otus_write_barrier(sc)) != 0) goto finish; otus_write(sc, 0x1d4004, 0); if ((error = otus_write_barrier(sc)) != 0) goto finish; sc->bb_reset = 0; if ((error = otus_program_phy(sc, c)) != 0) { device_printf(sc->sc_dev, "%s: could not program PHY\n", __func__); goto finish; } /* Select RF programming based on band. */ if (IEEE80211_IS_CHAN_5GHZ(c)) vals = ar5416_banks_vals_5ghz; else vals = ar5416_banks_vals_2ghz; for (i = 0; i < nitems(ar5416_banks_regs); i++) otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]); if ((error = otus_write_barrier(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not program RF\n", __func__); goto finish; } code = AR_CMD_RF_INIT; } else { code = AR_CMD_FREQUENCY; } if ((error = otus_set_rf_bank4(sc, c)) != 0) goto finish; tmp = (sc->txmask == 0x5) ? 0x340 : 0x240; otus_write(sc, AR_PHY_TURBO, tmp); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* Send firmware command to set channel. */ cmd.freq = htole32((uint32_t)c->ic_freq * 1000); cmd.dynht2040 = htole32(0); cmd.htena = htole32(1); /* Set Delta Slope (exponent and mantissa). */ coeff = (100 << 24) / c->ic_freq; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_exp = htole32(exp); cmd.dsc_man = htole32(man); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "ds coeff=%u exp=%u man=%u\n", coeff, exp, man); /* For Short GI, coeff is 9/10 that of normal coeff. */ coeff = (9 * coeff) / 10; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_shgi_exp = htole32(exp); cmd.dsc_shgi_man = htole32(man); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man); /* Set wait time for AGC and noise calibration (100 or 200ms). */ cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"); - error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp); + error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp)); if (error != 0) goto finish; if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) { OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "status=0x%x\n", le32toh(rsp.status)); /* Force cold reset on next channel. */ sc->bb_reset = 1; } #ifdef USB_DEBUG if (otus_debug & OTUS_DEBUG_RESET) { device_printf(sc->sc_dev, "calibration status=0x%x\n", le32toh(rsp.status)); for (i = 0; i < 2; i++) { /* 2 Rx chains */ /* Sign-extend 9-bit NF values. */ device_printf(sc->sc_dev, "noisefloor chain %d=%d\n", i, (((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); device_printf(sc->sc_dev, "noisefloor ext chain %d=%d\n", i, ((int32_t)le32toh(rsp.nf_ext[i])) >> 23); } } #endif for (i = 0; i < OTUS_NUM_CHAINS; i++) { sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); } sc->sc_curchan = c; finish: return (error); } #ifdef notyet int otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; /* Defer setting of WEP keys until interface is brought up. */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd); return 0; } void otus_set_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; struct ar_cmd_ekey key; uint16_t cipher; int error; memset(&key, 0, sizeof key); if (k->k_flags & IEEE80211_KEY_GROUP) { key.uid = htole16(k->k_id); IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr); key.macaddr[0] |= 0x80; } else { key.uid = htole16(OTUS_UID(cmd->associd)); IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr); } key.kix = htole16(0); /* Map net80211 cipher to hardware. */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: cipher = AR_CIPHER_WEP64; break; case IEEE80211_CIPHER_WEP104: cipher = AR_CIPHER_WEP128; break; case IEEE80211_CIPHER_TKIP: cipher = AR_CIPHER_TKIP; break; case IEEE80211_CIPHER_CCMP: cipher = AR_CIPHER_AES; break; default: return; } key.cipher = htole16(cipher); memcpy(key.key, k->k_key, MIN(k->k_len, 16)); - error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL); + error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) return; /* TKIP: set Tx/Rx MIC Key. */ key.kix = htole16(1); memcpy(key.key, k->k_key + 16, 16); - (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL); + (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); } void otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd); } void otus_delete_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t uid; if (k->k_flags & IEEE80211_KEY_GROUP) uid = htole32(k->k_id); else uid = htole32(OTUS_UID(cmd->associd)); - (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL); + (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0); } #endif /* * XXX TODO: check if we have to be doing any calibration in the host * or whether it's purely a firmware thing. */ void otus_calibrate_to(void *arg, int pending) { #if 0 struct otus_softc *sc = arg; device_printf(sc->sc_dev, "%s: called\n", __func__); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; int s; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); s = splnet(); ni = ic->ic_bss; ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn); splx(s); if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); usbd_ref_decr(sc->sc_udev); #endif } int otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid) { OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_BSSID_L, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); otus_write(sc, AR_MAC_REG_BSSID_H, bssid[4] | bssid[5] << 8); return otus_write_barrier(sc); } int otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr) { OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_MAC_ADDR_L, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); otus_write(sc, AR_MAC_REG_MAC_ADDR_H, addr[4] | addr[5] << 8); return otus_write_barrier(sc); } /* Default single-LED. */ void otus_led_newstate_type1(struct otus_softc *sc) { /* TBD */ device_printf(sc->sc_dev, "%s: TODO\n", __func__); } /* NETGEAR, dual-LED. */ void otus_led_newstate_type2(struct otus_softc *sc) { /* TBD */ device_printf(sc->sc_dev, "%s: TODO\n", __func__); } /* NETGEAR, single-LED/3 colors (blue, red, purple.) */ void otus_led_newstate_type3(struct otus_softc *sc) { #if 0 struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t state = sc->led_state; OTUS_LOCK_ASSERT(sc); if (!vap) { state = 0; /* led off */ } else if (vap->iv_state == IEEE80211_S_INIT) { state = 0; /* LED off. */ } else if (vap->iv_state == IEEE80211_S_RUN) { /* Associated, LED always on. */ if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state = AR_LED0_ON; /* 2GHz=>Red. */ else state = AR_LED1_ON; /* 5GHz=>Blue. */ } else { /* Scanning, blink LED. */ state ^= AR_LED0_ON | AR_LED1_ON; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state &= ~AR_LED1_ON; else state &= ~AR_LED0_ON; } if (state != sc->led_state) { otus_write(sc, 0x1d0104, state); if (otus_write_barrier(sc) == 0) sc->led_state = state; } #endif } int otus_init(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error; OTUS_UNLOCK_ASSERT(sc); OTUS_LOCK(sc); /* Drain any pending TX frames */ otus_drain_mbufq(sc); /* Init MAC */ if ((error = otus_init_mac(sc)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not initialize MAC\n", __func__); return error; } (void) otus_set_macaddr(sc, ic->ic_macaddr); #if 0 switch (ic->ic_opmode) { #ifdef notyet #ifndef IEEE80211_STA_ONLY case IEEE80211_M_HOSTAP: otus_write(sc, 0x1c3700, 0x0f0000a1); otus_write(sc, 0x1c3c40, 0x1); break; case IEEE80211_M_IBSS: otus_write(sc, 0x1c3700, 0x0f000000); otus_write(sc, 0x1c3c40, 0x1); break; #endif #endif case IEEE80211_M_STA: otus_write(sc, 0x1c3700, 0x0f000002); otus_write(sc, 0x1c3c40, 0x1); break; default: break; } #endif /* Expect STA operation */ otus_write(sc, 0x1c3700, 0x0f000002); otus_write(sc, 0x1c3c40, 0x1); /* XXX ic_opmode? */ otus_write(sc, AR_MAC_REG_SNIFFER, (ic->ic_opmode == IEEE80211_M_MONITOR) ? 0x2000001 : 0x2000000); (void)otus_write_barrier(sc); sc->bb_reset = 1; /* Force cold reset. */ if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not set channel\n", __func__); return error; } /* Start Rx. */ otus_write(sc, 0x1c3d30, 0x100); (void)otus_write_barrier(sc); sc->sc_running = 1; OTUS_UNLOCK(sc); return 0; } void otus_stop(struct otus_softc *sc) { #if 0 int s; #endif OTUS_UNLOCK_ASSERT(sc); OTUS_LOCK(sc); sc->sc_running = 0; sc->sc_tx_timer = 0; OTUS_UNLOCK(sc); taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); taskqueue_drain(taskqueue_thread, &sc->tx_task); taskqueue_drain(taskqueue_thread, &sc->wme_update_task); OTUS_LOCK(sc); sc->sc_running = 0; /* Stop Rx. */ otus_write(sc, 0x1c3d30, 0); (void)otus_write_barrier(sc); /* Drain any pending TX frames */ otus_drain_mbufq(sc); OTUS_UNLOCK(sc); } Index: head/sys/dev/otus/if_otusreg.h =================================================================== --- head/sys/dev/otus/if_otusreg.h (revision 288289) +++ head/sys/dev/otus/if_otusreg.h (revision 288290) @@ -1,1025 +1,1026 @@ /* $OpenBSD: if_otusreg.h,v 1.9 2013/11/26 20:33:18 deraadt Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2007-2008 Atheros Communications, Inc. * Copyright (c) 2015 Adrian Chadd * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ #ifndef __IF_OTUSREG_H__ #define __IF_OTUSREG_H__ /* USB Endpoints addresses. */ #define AR_EPT_BULK_TX_NO (UE_DIR_OUT | 1) #define AR_EPT_BULK_RX_NO (UE_DIR_IN | 2) #define AR_EPT_INTR_RX_NO (UE_DIR_IN | 3) #define AR_EPT_INTR_TX_NO (UE_DIR_OUT | 4) /* USB Requests. */ #define AR_FW_DOWNLOAD 0x30 #define AR_FW_DOWNLOAD_COMPLETE 0x31 /* Maximum number of writes that can fit in a single FW command is 7. */ #define AR_MAX_WRITE_IDX 6 /* 56 bytes */ #define AR_FW_INIT_ADDR 0x102800 #define AR_FW_MAIN_ADDR 0x200000 #define AR_USB_MODE_CTRL 0x1e1108 /* * AR9170 MAC registers. */ #define AR_MAC_REG_BASE 0x1c3000 #define AR_MAC_REG_MAC_ADDR_L (AR_MAC_REG_BASE + 0x610) #define AR_MAC_REG_MAC_ADDR_H (AR_MAC_REG_BASE + 0x614) #define AR_MAC_REG_BSSID_L (AR_MAC_REG_BASE + 0x618) #define AR_MAC_REG_BSSID_H (AR_MAC_REG_BASE + 0x61c) #define AR_MAC_REG_GROUP_HASH_TBL_L (AR_MAC_REG_BASE + 0x624) #define AR_MAC_REG_GROUP_HASH_TBL_H (AR_MAC_REG_BASE + 0x628) #define AR_MAC_REG_BASIC_RATE (AR_MAC_REG_BASE + 0x630) #define AR_MAC_REG_MANDATORY_RATE (AR_MAC_REG_BASE + 0x634) #define AR_MAC_REG_RTS_CTS_RATE (AR_MAC_REG_BASE + 0x638) #define AR_MAC_REG_BACKOFF_PROTECT (AR_MAC_REG_BASE + 0x63c) #define AR_MAC_REG_RX_THRESHOLD (AR_MAC_REG_BASE + 0x640) #define AR_MAC_REG_RX_PE_DELAY (AR_MAC_REG_BASE + 0x64c) #define AR_MAC_REG_DYNAMIC_SIFS_ACK (AR_MAC_REG_BASE + 0x658) #define AR_MAC_REG_SNIFFER (AR_MAC_REG_BASE + 0x674) #define AR_MAC_REG_ACK_EXTENSION (AR_MAC_REG_BASE + 0x690) #define AR_MAC_REG_EIFS_AND_SIFS (AR_MAC_REG_BASE + 0x698) #define AR_MAC_REG_BUSY (AR_MAC_REG_BASE + 0x6e8) #define AR_MAC_REG_BUSY_EXT (AR_MAC_REG_BASE + 0x6ec) #define AR_MAC_REG_SLOT_TIME (AR_MAC_REG_BASE + 0x6f0) #define AR_MAC_REG_AC0_CW (AR_MAC_REG_BASE + 0xb00) #define AR_MAC_REG_AC1_CW (AR_MAC_REG_BASE + 0xb04) #define AR_MAC_REG_AC2_CW (AR_MAC_REG_BASE + 0xb08) #define AR_MAC_REG_AC3_CW (AR_MAC_REG_BASE + 0xb0c) #define AR_MAC_REG_AC4_CW (AR_MAC_REG_BASE + 0xb10) #define AR_MAC_REG_AC1_AC0_AIFS (AR_MAC_REG_BASE + 0xb14) #define AR_MAC_REG_AC3_AC2_AIFS (AR_MAC_REG_BASE + 0xb18) #define AR_MAC_REG_RETRY_MAX (AR_MAC_REG_BASE + 0xb28) #define AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION \ (AR_MAC_REG_BASE + 0xb30) #define AR_MAC_REG_AC1_AC0_TXOP (AR_MAC_REG_BASE + 0xb44) #define AR_MAC_REG_AC3_AC2_TXOP (AR_MAC_REG_BASE + 0xb48) #define AR_MAC_REG_OFDM_PHY_ERRORS (AR_MAC_REG_BASE + 0xcb4) #define AR_MAC_REG_CCK_PHY_ERRORS (AR_MAC_REG_BASE + 0xcb8) #define AR_MAC_REG_BCN_HT1 (AR_MAC_REG_BASE + 0xda0) /* Possible values for register AR_USB_MODE_CTRL. */ #define AR_USB_DS_ENA (1 << 0) #define AR_USB_US_ENA (1 << 1) #define AR_USB_US_PACKET_MODE (1 << 3) #define AR_USB_RX_STREAM_4K (0 << 4) #define AR_USB_RX_STREAM_8K (1 << 4) #define AR_USB_RX_STREAM_16K (2 << 4) #define AR_USB_RX_STREAM_32K (3 << 4) #define AR_USB_TX_STREAM_MODE (1 << 6) #define AR_LED0_ON (1 << 0) #define AR_LED1_ON (1 << 1) /* * PHY registers. */ #define AR_PHY_BASE 0x1c5800 #define AR_PHY(reg) (AR_PHY_BASE + (reg) * 4) #define AR_PHY_TURBO (AR_PHY_BASE + 0x0004) #define AR_PHY_RF_CTL3 (AR_PHY_BASE + 0x0028) #define AR_PHY_RF_CTL4 (AR_PHY_BASE + 0x0034) #define AR_PHY_SETTLING (AR_PHY_BASE + 0x0044) #define AR_PHY_RXGAIN (AR_PHY_BASE + 0x0048) #define AR_PHY_DESIRED_SZ (AR_PHY_BASE + 0x0050) #define AR_PHY_FIND_SIG (AR_PHY_BASE + 0x0058) #define AR_PHY_AGC_CTL1 (AR_PHY_BASE + 0x005c) #define AR_PHY_SFCORR (AR_PHY_BASE + 0x0068) #define AR_PHY_SFCORR_LOW (AR_PHY_BASE + 0x006c) #define AR_PHY_TIMING_CTRL4 (AR_PHY_BASE + 0x0120) #define AR_PHY_TIMING5 (AR_PHY_BASE + 0x0124) #define AR_PHY_POWER_TX_RATE1 (AR_PHY_BASE + 0x0134) #define AR_PHY_POWER_TX_RATE2 (AR_PHY_BASE + 0x0138) #define AR_PHY_POWER_TX_RATE_MAX (AR_PHY_BASE + 0x013c) #define AR_PHY_SWITCH_CHAIN_0 (AR_PHY_BASE + 0x0160) #define AR_PHY_SWITCH_COM (AR_PHY_BASE + 0x0164) #define AR_PHY_HEAVY_CLIP_ENABLE (AR_PHY_BASE + 0x01e0) #define AR_PHY_CCK_DETECT (AR_PHY_BASE + 0x0a08) #define AR_PHY_GAIN_2GHZ (AR_PHY_BASE + 0x0a0c) #define AR_PHY_POWER_TX_RATE3 (AR_PHY_BASE + 0x0a34) #define AR_PHY_POWER_TX_RATE4 (AR_PHY_BASE + 0x0a38) #define AR_PHY_TPCRG1 (AR_PHY_BASE + 0x0a58) #define AR_PHY_POWER_TX_RATE5 (AR_PHY_BASE + 0x0b8c) #define AR_PHY_POWER_TX_RATE6 (AR_PHY_BASE + 0x0b90) #define AR_PHY_POWER_TX_RATE7 (AR_PHY_BASE + 0x0bcc) #define AR_PHY_POWER_TX_RATE8 (AR_PHY_BASE + 0x0bd0) #define AR_PHY_POWER_TX_RATE9 (AR_PHY_BASE + 0x0bd4) #define AR_PHY_CCA (AR_PHY_BASE + 0x3064) #define AR_SEEPROM_HW_TYPE_OFFSET 0x1374 #define AR_EEPROM_OFFSET 0x1600 #define AR_BANK4_CHUP (1 << 0) #define AR_BANK4_BMODE_LF_SYNTH_FREQ (1 << 1) #define AR_BANK4_AMODE_REFSEL(x) ((x) << 2) #define AR_BANK4_ADDR(x) ((x) << 5) /* Tx descriptor. */ struct ar_tx_head { uint16_t len; uint16_t macctl; #define AR_TX_MAC_RTS (1 << 0) #define AR_TX_MAC_CTS (1 << 1) #define AR_TX_MAC_BACKOFF (1 << 3) #define AR_TX_MAC_NOACK (1 << 2) #define AR_TX_MAC_HW_DUR (1 << 9) #define AR_TX_MAC_QID(qid) ((qid) << 10) #define AR_TX_MAC_RATE_PROBING (1 << 15) uint32_t phyctl; /* Modulation type. */ #define AR_TX_PHY_MT_CCK 0 #define AR_TX_PHY_MT_OFDM 1 #define AR_TX_PHY_MT_HT 2 #define AR_TX_PHY_GF (1 << 2) #define AR_TX_PHY_BW_SHIFT 3 #define AR_TX_PHY_TPC_SHIFT 9 #define AR_TX_PHY_ANTMSK(msk) ((msk) << 15) #define AR_TX_PHY_MCS(mcs) ((mcs) << 18) #define AR_TX_PHY_SHGI (1U << 31) } __packed; /* USB Rx stream mode header. */ struct ar_rx_head { uint16_t len; uint16_t tag; #define AR_RX_HEAD_TAG 0x4e00 } __packed; /* Rx descriptor. */ struct ar_rx_tail { uint8_t rssi_ant[3]; uint8_t rssi_ant_ext[3]; uint8_t rssi; /* Combined RSSI. */ uint8_t evm[2][6]; /* Error Vector Magnitude. */ uint8_t phy_err; uint8_t sa_idx; uint8_t da_idx; uint8_t error; #define AR_RX_ERROR_TIMEOUT (1 << 0) #define AR_RX_ERROR_OVERRUN (1 << 1) #define AR_RX_ERROR_DECRYPT (1 << 2) #define AR_RX_ERROR_FCS (1 << 3) #define AR_RX_ERROR_BAD_RA (1 << 4) #define AR_RX_ERROR_PLCP (1 << 5) #define AR_RX_ERROR_MMIC (1 << 6) uint8_t status; /* Modulation type (same as AR_TX_PHY_MT). */ #define AR_RX_STATUS_MT_MASK 0x3 #define AR_RX_STATUS_MT_CCK 0 #define AR_RX_STATUS_MT_OFDM 1 #define AR_RX_STATUS_MT_HT 2 #define AR_RX_STATUS_SHPREAMBLE (1 << 3) } __packed; #define AR_PLCP_HDR_LEN 12 /* Magic PLCP header for firmware notifications through Rx bulk pipe. */ static uint8_t AR_PLCP_HDR_INTR[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* Firmware command/reply header. */ struct ar_cmd_hdr { uint8_t len; uint8_t code; #define AR_CMD_RREG 0x00 #define AR_CMD_WREG 0x01 #define AR_CMD_RMEM 0x02 #define AR_CMD_WMEM 0x03 #define AR_CMD_BITAND 0x04 #define AR_CMD_BITOR 0x05 #define AR_CMD_EKEY 0x28 #define AR_CMD_DKEY 0x29 #define AR_CMD_FREQUENCY 0x30 #define AR_CMD_RF_INIT 0x31 #define AR_CMD_SYNTH 0x32 #define AR_CMD_FREQ_STRAT 0x33 #define AR_CMD_ECHO 0x80 #define AR_CMD_TALLY 0x81 #define AR_CMD_TALLY_APD 0x82 #define AR_CMD_CONFIG 0x83 #define AR_CMD_RESET 0x90 #define AR_CMD_DKRESET 0x91 #define AR_CMD_DKTX_STATUS 0x92 #define AR_CMD_FDC 0xa0 #define AR_CMD_WREEPROM 0xb0 #define AR_CMD_WFLASH AR_CMD_WREEPROM #define AR_CMD_FLASH_ERASE 0xb1 #define AR_CMD_FLASH_PROG 0xb2 #define AR_CMD_FLASH_CHKSUM 0xb3 #define AR_CMD_FLASH_READ 0xb4 #define AR_CMD_FW_DL_INIT 0xb5 #define AR_CMD_MEM_WREEPROM 0xbb /* Those have the 2 MSB set to 1. */ #define AR_EVT_BEACON 0x00 #define AR_EVT_TX_COMP 0x01 #define AR_EVT_TBTT 0x02 #define AR_EVT_ATIM 0x03 #define AR_EVT_DO_BB_RESET 0x09 uint16_t token; /* Driver private data. */ } __packed; /* Structure for command AR_CMD_RF_INIT/AR_CMD_FREQUENCY. */ struct ar_cmd_frequency { uint32_t freq; uint32_t dynht2040; uint32_t htena; uint32_t dsc_exp; uint32_t dsc_man; uint32_t dsc_shgi_exp; uint32_t dsc_shgi_man; uint32_t check_loop_count; } __packed; /* Firmware reply for command AR_CMD_FREQUENCY. */ struct ar_rsp_frequency { uint32_t status; #define AR_CAL_ERR_AGC (1 << 0) /* AGC cal unfinished. */ #define AR_CAL_ERR_NF (1 << 1) /* Noise cal unfinished. */ #define AR_CAL_ERR_NF_VAL (1 << 2) /* NF value unexpected. */ uint32_t nf[3]; /* Noisefloor. */ uint32_t nf_ext[3]; /* Noisefloor ext. */ } __packed; /* Structure for command AR_CMD_EKEY. */ struct ar_cmd_ekey { uint16_t uid; /* user ID */ uint16_t kix; uint16_t cipher; #define AR_CIPHER_NONE 0 #define AR_CIPHER_WEP64 1 #define AR_CIPHER_TKIP 2 #define AR_CIPHER_AES 4 #define AR_CIPHER_WEP128 5 #define AR_CIPHER_WEP256 6 #define AR_CIPHER_CENC 7 uint8_t macaddr[IEEE80211_ADDR_LEN]; uint8_t key[16]; } __packed; /* Structure for event AR_EVT_TX_COMP. */ struct ar_evt_tx_comp { uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t phy; uint16_t status; #define AR_TX_STATUS_COMP 0 #define AR_TX_STATUS_RETRY_COMP 1 #define AR_TX_STATUS_FAILED 2 } __packed; /* List of supported channels. */ static const uint8_t ar_chans[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165, 34, 38, 42, 46 }; /* * This data is automatically generated from the "otus.ini" file. * It is stored in a different way though, to reduce kernel's .rodata * section overhead (5.1KB instead of 8.5KB). */ /* NB: apply AR_PHY(). */ static const uint16_t ar5416_phy_regs[] = { 0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, 0x009, 0x00a, 0x00b, 0x00c, 0x00d, 0x00e, 0x00f, 0x010, 0x011, 0x012, 0x013, 0x014, 0x015, 0x016, 0x017, 0x018, 0x01a, 0x01b, 0x040, 0x041, 0x042, 0x043, 0x045, 0x046, 0x047, 0x048, 0x049, 0x04a, 0x04b, 0x04d, 0x04e, 0x04f, 0x051, 0x052, 0x053, 0x055, 0x056, 0x058, 0x059, 0x05c, 0x05d, 0x05e, 0x05f, 0x060, 0x061, 0x062, 0x063, 0x064, 0x065, 0x066, 0x067, 0x068, 0x069, 0x06a, 0x06b, 0x06c, 0x06d, 0x070, 0x071, 0x072, 0x073, 0x074, 0x075, 0x076, 0x077, 0x078, 0x079, 0x07a, 0x07b, 0x07c, 0x07f, 0x080, 0x081, 0x082, 0x083, 0x084, 0x085, 0x086, 0x087, 0x088, 0x089, 0x08a, 0x08b, 0x08c, 0x08d, 0x08e, 0x08f, 0x090, 0x091, 0x092, 0x093, 0x094, 0x095, 0x096, 0x097, 0x098, 0x099, 0x09a, 0x09b, 0x09c, 0x09d, 0x09e, 0x09f, 0x0a0, 0x0a1, 0x0a2, 0x0a3, 0x0a4, 0x0a5, 0x0a6, 0x0a7, 0x0a8, 0x0a9, 0x0aa, 0x0ab, 0x0ac, 0x0ad, 0x0ae, 0x0af, 0x0b0, 0x0b1, 0x0b2, 0x0b3, 0x0b4, 0x0b5, 0x0b6, 0x0b7, 0x0b8, 0x0b9, 0x0ba, 0x0bb, 0x0bc, 0x0bd, 0x0be, 0x0bf, 0x0c0, 0x0c1, 0x0c2, 0x0c3, 0x0c4, 0x0c5, 0x0c6, 0x0c7, 0x0c8, 0x0c9, 0x0ca, 0x0cb, 0x0cc, 0x0cd, 0x0ce, 0x0cf, 0x0d0, 0x0d1, 0x0d2, 0x0d3, 0x0d4, 0x0d5, 0x0d6, 0x0d7, 0x0d8, 0x0d9, 0x0da, 0x0db, 0x0dc, 0x0dd, 0x0de, 0x0df, 0x0e0, 0x0e1, 0x0e2, 0x0e3, 0x0e4, 0x0e5, 0x0e6, 0x0e7, 0x0e8, 0x0e9, 0x0ea, 0x0eb, 0x0ec, 0x0ed, 0x0ee, 0x0ef, 0x0f0, 0x0f1, 0x0f2, 0x0f3, 0x0f4, 0x0f5, 0x0f6, 0x0f7, 0x0f8, 0x0f9, 0x0fa, 0x0fb, 0x0fc, 0x0fd, 0x0fe, 0x0ff, 0x100, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, 0x109, 0x10a, 0x10b, 0x10c, 0x10d, 0x10e, 0x10f, 0x13c, 0x13d, 0x13e, 0x13f, 0x280, 0x281, 0x282, 0x283, 0x284, 0x285, 0x286, 0x287, 0x288, 0x289, 0x28a, 0x28b, 0x28c, 0x28d, 0x28e, 0x28f, 0x290, 0x291, 0x292, 0x293, 0x294, 0x295, 0x296, 0x297, 0x298, 0x299, 0x29a, 0x29b, 0x29d, 0x29e, 0x29f, 0x2c0, 0x2c1, 0x2c2, 0x2c3, 0x2c4, 0x2c5, 0x2c6, 0x2c7, 0x2c8, 0x2c9, 0x2ca, 0x2cb, 0x2cc, 0x2cd, 0x2ce, 0x2cf, 0x2d0, 0x2d1, 0x2d2, 0x2d3, 0x2d4, 0x2d5, 0x2d6, 0x2e2, 0x2e3, 0x2e4, 0x2e5, 0x2e6, 0x2e7, 0x2e8, 0x2e9, 0x2ea, 0x2eb, 0x2ec, 0x2ed, 0x2ee, 0x2ef, 0x2f0, 0x2f1, 0x2f2, 0x2f3, 0x2f4, 0x2f5, 0x2f6, 0x2f7, 0x2f8, 0x412, 0x448, 0x458, 0x683, 0x69b, 0x812, 0x848, 0x858, 0xa83, 0xa9b, 0xc19, 0xc57, 0xc5a, 0xc6f, 0xe9c, 0xed7, 0xed8, 0xed9, 0xeda, 0xedb, 0xedc, 0xedd, 0xede, 0xedf, 0xee0, 0xee1 }; static const uint32_t ar5416_phy_vals_5ghz_20mhz[] = { 0x00000007, 0x00000300, 0x00000000, 0xad848e19, 0x7d14e000, 0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e, 0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007, 0x00200400, 0x206a002e, 0x1372161e, 0x001a6a65, 0x1284233c, 0x6c48b4e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd10, 0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000007d0, 0x00000118, 0x10000fff, 0x0510081c, 0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f, 0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188, 0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000, 0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8, 0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042, 0x00000000, 0x00000040, 0x00000080, 0x000001a1, 0x000001e1, 0x00000021, 0x00000061, 0x00000168, 0x000001a8, 0x000001e8, 0x00000028, 0x00000068, 0x00000189, 0x000001c9, 0x00000009, 0x00000049, 0x00000089, 0x00000170, 0x000001b0, 0x000001f0, 0x00000030, 0x00000070, 0x00000191, 0x000001d1, 0x00000011, 0x00000051, 0x00000091, 0x000001b8, 0x000001f8, 0x00000038, 0x00000078, 0x00000199, 0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000, 0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013, 0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a, 0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021, 0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028, 0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d, 0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008, 0x00000440, 0xd6be4788, 0x012e8160, 0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6, 0x00000400, 0x000009b5, 0x00000000, 0x00000108, 0x3f3f3f3f, 0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc, 0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01, 0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a9caa, 0x1ce739ce, 0x051701ce, 0x18010000, 0x30032602, 0x48073e06, 0x560b4c0a, 0x641a600f, 0x7a4f6e1b, 0x8c5b7e5a, 0x9d0f96cf, 0xb51fa69f, 0xcb3fbd07, 0x0000d7bf, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f, 0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce, 0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a65, 0x0510001c, 0x00009b40, 0x012e8160, 0x09249126, 0x00180a65, 0x0510001c, 0x00009b40, 0x012e8160, 0x09249126, 0x0001c600, 0x004b6a8e, 0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207, 0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803, 0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0 }; #ifdef notyet static const uint32_t ar5416_phy_vals_5ghz_40mhz[] = { 0x00000007, 0x000003c4, 0x00000000, 0xad848e19, 0x7d14e000, 0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e, 0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007, 0x00200400, 0x206a002e, 0x13721c1e, 0x001a6a65, 0x1284233c, 0x6c48b4e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd10, 0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000007d0, 0x00000230, 0x10000fff, 0x0510081c, 0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f, 0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188, 0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000, 0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8, 0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042, 0x00000000, 0x00000040, 0x00000080, 0x000001a1, 0x000001e1, 0x00000021, 0x00000061, 0x00000168, 0x000001a8, 0x000001e8, 0x00000028, 0x00000068, 0x00000189, 0x000001c9, 0x00000009, 0x00000049, 0x00000089, 0x00000170, 0x000001b0, 0x000001f0, 0x00000030, 0x00000070, 0x00000191, 0x000001d1, 0x00000011, 0x00000051, 0x00000091, 0x000001b8, 0x000001f8, 0x00000038, 0x00000078, 0x00000199, 0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000, 0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013, 0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a, 0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021, 0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028, 0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d, 0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008, 0x00000440, 0xd6be4788, 0x012e8160, 0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6, 0x00000400, 0x000009b5, 0x00000000, 0x00000210, 0x3f3f3f3f, 0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc, 0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01, 0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a9caa, 0x1ce739ce, 0x051701ce, 0x18010000, 0x30032602, 0x48073e06, 0x560b4c0a, 0x641a600f, 0x7a4f6e1b, 0x8c5b7e5a, 0x9d0f96cf, 0xb51fa69f, 0xcb3fbcbf, 0x0000d7bf, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f, 0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce, 0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a65, 0x0510001c, 0x00009b40, 0x012e8160, 0x09249126, 0x00180a65, 0x0510001c, 0x00009b40, 0x012e8160, 0x09249126, 0x0001c600, 0x004b6a8e, 0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207, 0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803, 0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0 }; #endif #ifdef notyet static const uint32_t ar5416_phy_vals_2ghz_40mhz[] = { 0x00000007, 0x000003c4, 0x00000000, 0xad848e19, 0x7d14e000, 0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e, 0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007, 0x00200400, 0x206a002e, 0x13721c24, 0x00197a68, 0x1284233c, 0x6c48b0e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd20, 0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000898, 0x00000268, 0x10000fff, 0x0510001c, 0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f, 0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188, 0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000, 0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8, 0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042, 0x00000000, 0x00000040, 0x00000080, 0x00000141, 0x00000181, 0x000001c1, 0x00000001, 0x00000041, 0x000001a8, 0x000001e8, 0x00000028, 0x00000068, 0x000000a8, 0x00000169, 0x000001a9, 0x000001e9, 0x00000029, 0x00000069, 0x00000190, 0x000001d0, 0x00000010, 0x00000050, 0x00000090, 0x00000151, 0x00000191, 0x000001d1, 0x00000011, 0x00000051, 0x00000198, 0x000001d8, 0x00000018, 0x00000058, 0x00000098, 0x00000159, 0x00000199, 0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000, 0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013, 0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a, 0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021, 0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028, 0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d, 0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000e, 0x00000440, 0xd03e4788, 0x012a8160, 0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6, 0x00000400, 0x000009b5, 0x00000000, 0x00000210, 0x3f3f3f3f, 0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc, 0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01, 0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a7caa, 0x1ce739ce, 0x051701ce, 0x18010000, 0x2e032402, 0x4a0a3c06, 0x621a540b, 0x764f6c1b, 0x845b7a5a, 0x950f8ccf, 0xa5cf9b4f, 0xbddfaf1f, 0xd1ffc93f, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f, 0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce, 0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a68, 0x0510001c, 0x00009b40, 0x012a8160, 0x09249126, 0x00180a68, 0x0510001c, 0x00009b40, 0x012a8160, 0x09249126, 0x0001c600, 0x004b6a8e, 0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207, 0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803, 0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0 }; #endif static const uint32_t ar5416_phy_vals_2ghz_20mhz[] = { 0x00000007, 0x00000300, 0x00000000, 0xad848e19, 0x7d14e000, 0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e, 0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007, 0x00200400, 0x206a002e, 0x137216a4, 0x00197a68, 0x1284233c, 0x6c48b0e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd20, 0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000898, 0x00000134, 0x10000fff, 0x0510001c, 0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f, 0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188, 0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000, 0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8, 0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042, 0x00000000, 0x00000040, 0x00000080, 0x00000141, 0x00000181, 0x000001c1, 0x00000001, 0x00000041, 0x000001a8, 0x000001e8, 0x00000028, 0x00000068, 0x000000a8, 0x00000169, 0x000001a9, 0x000001e9, 0x00000029, 0x00000069, 0x00000190, 0x000001d0, 0x00000010, 0x00000050, 0x00000090, 0x00000151, 0x00000191, 0x000001d1, 0x00000011, 0x00000051, 0x00000198, 0x000001d8, 0x00000018, 0x00000058, 0x00000098, 0x00000159, 0x00000199, 0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000, 0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013, 0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a, 0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021, 0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028, 0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d, 0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000e, 0x00000440, 0xd03e4788, 0x012a8160, 0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6, 0x00000400, 0x000009b5, 0x00000000, 0x00000108, 0x3f3f3f3f, 0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc, 0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01, 0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a7caa, 0x1ce739ce, 0x051701ce, 0x18010000, 0x2e032402, 0x4a0a3c06, 0x621a540b, 0x764f6c1b, 0x845b7a5a, 0x950f8ccf, 0xa5cf9b4f, 0xbddfaf1f, 0xd1ffc93f, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f, 0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce, 0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f, 0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a68, 0x0510001c, 0x00009b40, 0x012a8160, 0x09249126, 0x00180a68, 0x0510001c, 0x00009b40, 0x012a8160, 0x09249126, 0x0001c600, 0x004b6a8e, 0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207, 0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803, 0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0 }; /* NB: apply AR_PHY(). */ static const uint8_t ar5416_banks_regs[] = { 0x2c, 0x38, 0x2c, 0x3b, 0x2c, 0x38, 0x3c, 0x2c, 0x3a, 0x2c, 0x39, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x38, 0x2c, 0x2c, 0x2c, 0x3c }; static const uint32_t ar5416_banks_vals_5ghz[] = { 0x1e5795e5, 0x02008020, 0x02108421, 0x00000008, 0x0e73ff17, 0x00000420, 0x01400018, 0x000001a1, 0x00000001, 0x00000013, 0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00006c00, 0x00002c00, 0x00004800, 0x00004000, 0x00006000, 0x00001000, 0x00004000, 0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00087c00, 0x00007c00, 0x00005400, 0x00000c00, 0x00001800, 0x00007c00, 0x00006c00, 0x00006c00, 0x00007c00, 0x00002c00, 0x00003c00, 0x00003800, 0x00001c00, 0x00000800, 0x00000408, 0x00004c15, 0x00004188, 0x0000201e, 0x00010408, 0x00000801, 0x00000c08, 0x0000181e, 0x00001016, 0x00002800, 0x00004010, 0x0000081c, 0x00000115, 0x00000015, 0x00000066, 0x0000001c, 0x00000000, 0x00000004, 0x00000015, 0x0000001f, 0x00000000, 0x000000a0, 0x00000000, 0x00000040, 0x0000001c }; static const uint32_t ar5416_banks_vals_2ghz[] = { 0x1e5795e5, 0x02008020, 0x02108421, 0x00000008, 0x0e73ff17, 0x00000420, 0x01c00018, 0x000001a1, 0x00000001, 0x00000013, 0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00006c00, 0x00002c00, 0x00004800, 0x00004000, 0x00006000, 0x00001000, 0x00004000, 0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00087c00, 0x00007c00, 0x00005400, 0x00000c00, 0x00001800, 0x00007c00, 0x00006c00, 0x00006c00, 0x00007c00, 0x00002c00, 0x00003c00, 0x00003800, 0x00001c00, 0x00000800, 0x00000408, 0x00004c15, 0x00004188, 0x0000201e, 0x00010408, 0x00000801, 0x00000c08, 0x0000181e, 0x00001016, 0x00002800, 0x00004010, 0x0000081c, 0x00000115, 0x00000015, 0x00000066, 0x0000001c, 0x00000000, 0x00000004, 0x00000015, 0x0000001f, 0x00000400, 0x000000a0, 0x00000000, 0x00000040, 0x0000001c }; /* * EEPROM. */ /* Possible flags for opCapFlags. */ #define AR5416_OPFLAGS_11A 0x01 #define AR5416_OPFLAGS_11G 0x02 #define AR5416_OPFLAGS_5G_HT40 0x04 #define AR5416_OPFLAGS_2G_HT40 0x08 #define AR5416_OPFLAGS_5G_HT20 0x10 #define AR5416_OPFLAGS_2G_HT20 0x20 #define AR5416_NUM_5G_CAL_PIERS 8 #define AR5416_NUM_2G_CAL_PIERS 4 #define AR5416_NUM_5G_20_TARGET_POWERS 8 #define AR5416_NUM_5G_40_TARGET_POWERS 8 #define AR5416_NUM_2G_CCK_TARGET_POWERS 3 #define AR5416_NUM_2G_20_TARGET_POWERS 4 #define AR5416_NUM_2G_40_TARGET_POWERS 4 #define AR5416_NUM_CTLS 24 #define AR5416_NUM_BAND_EDGES 8 #define AR5416_NUM_PD_GAINS 4 #define AR5416_PD_GAIN_ICEPTS 5 #define AR5416_EEPROM_MODAL_SPURS 5 #define AR5416_MAX_CHAINS 2 struct BaseEepHeader { uint16_t length; uint16_t checksum; uint16_t version; uint8_t opCapFlags; uint8_t eepMisc; uint16_t regDmn[2]; uint8_t macAddr[6]; uint8_t rxMask; uint8_t txMask; uint16_t rfSilent; uint16_t blueToothOptions; uint16_t deviceCap; uint32_t binBuildNumber; uint8_t deviceType; uint8_t futureBase[33]; } __packed; struct spurChanStruct { uint16_t spurChan; uint8_t spurRangeLow; uint8_t spurRangeHigh; } __packed; struct ModalEepHeader { uint32_t antCtrlChain[AR5416_MAX_CHAINS]; uint32_t antCtrlCommon; int8_t antennaGainCh[AR5416_MAX_CHAINS]; uint8_t switchSettling; uint8_t txRxAttenCh[AR5416_MAX_CHAINS]; uint8_t rxTxMarginCh[AR5416_MAX_CHAINS]; uint8_t adcDesiredSize; int8_t pgaDesiredSize; uint8_t xlnaGainCh[AR5416_MAX_CHAINS]; uint8_t txEndToXpaOff; uint8_t txEndToRxOn; uint8_t txFrameToXpaOn; uint8_t thresh62; uint8_t noiseFloorThreshCh[AR5416_MAX_CHAINS]; uint8_t xpdGain; uint8_t xpd; int8_t iqCalICh[AR5416_MAX_CHAINS]; int8_t iqCalQCh[AR5416_MAX_CHAINS]; uint8_t pdGainOverlap; uint8_t ob; uint8_t db; uint8_t xpaBiasLvl; uint8_t pwrDecreaseFor2Chain; uint8_t pwrDecreaseFor3Chain; uint8_t txFrameToDataStart; uint8_t txFrameToPaOn; uint8_t ht40PowerIncForPdadc; uint8_t bswAtten[AR5416_MAX_CHAINS]; uint8_t bswMargin[AR5416_MAX_CHAINS]; uint8_t swSettleHt40; uint8_t futureModal[22]; struct spurChanStruct spurChans[AR5416_EEPROM_MODAL_SPURS]; } __packed; struct calDataPerFreq { uint8_t pwrPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS]; uint8_t vpdPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS]; } __packed; struct CalTargetPowerLegacy { uint8_t bChannel; uint8_t tPow2x[4]; } __packed; struct CalTargetPowerHt { uint8_t bChannel; uint8_t tPow2x[8]; } __packed; struct CalCtlEdges { uint8_t bChannel; uint8_t tPowerFlag; } __packed; struct CalCtlData { struct CalCtlEdges ctlEdges[AR5416_MAX_CHAINS][AR5416_NUM_BAND_EDGES]; } __packed; struct ar5416eeprom { struct BaseEepHeader baseEepHeader; uint8_t custData[64]; struct ModalEepHeader modalHeader[2]; uint8_t calFreqPier5G[AR5416_NUM_5G_CAL_PIERS]; uint8_t calFreqPier2G[AR5416_NUM_2G_CAL_PIERS]; struct calDataPerFreq calPierData5G[AR5416_MAX_CHAINS] [AR5416_NUM_5G_CAL_PIERS]; struct calDataPerFreq calPierData2G[AR5416_MAX_CHAINS] [AR5416_NUM_2G_CAL_PIERS]; struct CalTargetPowerLegacy calTPow5G[AR5416_NUM_5G_20_TARGET_POWERS]; struct CalTargetPowerHt calTPow5GHT20[AR5416_NUM_5G_20_TARGET_POWERS]; struct CalTargetPowerHt calTPow5GHT40[AR5416_NUM_5G_40_TARGET_POWERS]; struct CalTargetPowerLegacy calTPowCck[AR5416_NUM_2G_CCK_TARGET_POWERS]; struct CalTargetPowerLegacy calTPow2G[AR5416_NUM_2G_20_TARGET_POWERS]; struct CalTargetPowerHt calTPow2GHT20[AR5416_NUM_2G_20_TARGET_POWERS]; struct CalTargetPowerHt calTPow2GHT40[AR5416_NUM_2G_40_TARGET_POWERS]; uint8_t ctlIndex[AR5416_NUM_CTLS]; struct CalCtlData ctlData[AR5416_NUM_CTLS]; uint8_t padding; } __packed; #define OTUS_NUM_CHAINS 2 #define OTUS_UID(aid) (IEEE80211_AID(aid) + 4) #define OTUS_MAX_TXCMDSZ 64 #define OTUS_RXBUFSZ (8 * 1024) /* Bumped for later A-MSDU and legacy fast-frames TX support */ #define OTUS_TXBUFSZ (8 * 1024) /* Default EDCA parameters for when QoS is disabled. */ static const struct wmeParams otus_edca_def[WME_NUM_AC] = { { 4, 10, 3, 0 }, { 4, 10, 7, 0 }, { 3, 4, 2, 94 }, { 2, 3, 2, 47 } }; #define OTUS_RIDX_CCK1 0 #define OTUS_RIDX_OFDM6 4 #define OTUS_RIDX_OFDM24 8 #define OTUS_RIDX_MAX 11 static const struct otus_rate { uint8_t rate; uint8_t mcs; } otus_rates[] = { { 2, 0x0 }, { 4, 0x1 }, { 11, 0x2 }, { 22, 0x3 }, { 12, 0xb }, { 18, 0xf }, { 24, 0xa }, { 36, 0xe }, { 48, 0x9 }, { 72, 0xd }, { 96, 0x8 }, { 108, 0xc } }; struct otus_rx_radiotap_header { struct ieee80211_radiotap_header wr_ihdr; uint8_t wr_flags; uint8_t wr_rate; uint16_t wr_chan_freq; uint16_t wr_chan_flags; uint8_t wr_antsignal; } __packed; #define OTUS_RX_RADIOTAP_PRESENT \ (1 << IEEE80211_RADIOTAP_FLAGS | \ 1 << IEEE80211_RADIOTAP_RATE | \ 1 << IEEE80211_RADIOTAP_CHANNEL | \ 1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) struct otus_tx_radiotap_header { struct ieee80211_radiotap_header wt_ihdr; uint8_t wt_flags; uint8_t wt_rate; uint16_t wt_chan_freq; uint16_t wt_chan_flags; } __packed; #define OTUS_TX_RADIOTAP_PRESENT \ (1 << IEEE80211_RADIOTAP_FLAGS | \ 1 << IEEE80211_RADIOTAP_RATE | \ 1 << IEEE80211_RADIOTAP_CHANNEL) struct otus_softc; /* Firmware commands */ struct otus_tx_cmd { uint8_t *buf; uint16_t buflen; void * *odata; + uint16_t odatalen; uint16_t token; STAILQ_ENTRY(otus_tx_cmd) next_cmd; }; /* TX, RX buffers */ struct otus_data { struct otus_softc *sc; uint8_t *buf; uint16_t buflen; struct mbuf *m; struct ieee80211_node *ni; STAILQ_ENTRY(otus_data) next; }; struct otus_node { struct ieee80211_node ni; uint64_t tx_done; uint64_t tx_err; uint64_t tx_retries; }; #define OTUS_CONFIG_INDEX 0 #define OTUS_IFACE_INDEX 0 /* * The carl9170 firmware has the following specification: * * 0 - USB control * 1 - TX * 2 - RX * 3 - IRQ * 4 - CMD * .. * 10 - end */ enum { OTUS_BULK_TX, OTUS_BULK_RX, OTUS_BULK_IRQ, OTUS_BULK_CMD, OTUS_N_XFER }; struct otus_vap { struct ieee80211vap vap; int (*newstate)(struct ieee80211vap *, enum ieee80211_state, int); }; #define OTUS_VAP(vap) ((struct otus_vap *)(vap)) #define OTUS_NODE(ni) ((struct otus_node *)(ni)) #define OTUS_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define OTUS_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define OTUS_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) #define OTUS_UNLOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_NOTOWNED) /* XXX the TX/RX endpoint dump says it's 0x200, (512)? */ #define OTUS_MAX_TXSZ 512 #define OTUS_MAX_RXSZ 512 /* intr/cmd endpoint dump says 0x40 */ #define OTUS_MAX_CTRLSZ 64 #define OTUS_CMD_LIST_COUNT 32 #define OTUS_RX_LIST_COUNT 128 #define OTUS_TX_LIST_COUNT 32 struct otus_softc { struct ieee80211com sc_ic; struct mbufq sc_snd; device_t sc_dev; struct usb_device *sc_udev; int (*sc_newstate)(struct ieee80211com *, enum ieee80211_state, int); void (*sc_led_newstate)(struct otus_softc *); struct usbd_interface *sc_iface; struct mtx sc_mtx; struct ar5416eeprom eeprom; uint8_t capflags; uint8_t rxmask; uint8_t txmask; int sc_running:1, sc_calibrating:1, sc_scanning:1; int sc_if_flags; int sc_tx_timer; int fixed_ridx; int bb_reset; struct ieee80211_channel *sc_curchan; struct task tx_task; struct task wme_update_task; struct timeout_task scan_to; struct timeout_task calib_to; /* register batch writes */ int write_idx; uint32_t led_state; /* current firmware message serial / token number */ int token; /* current noisefloor, from SET_FREQUENCY */ int sc_nf[OTUS_NUM_CHAINS]; const uint32_t *phy_vals; struct { uint32_t reg; uint32_t val; } __packed write_buf[AR_MAX_WRITE_IDX + 1]; struct otus_data sc_rx[OTUS_RX_LIST_COUNT]; struct otus_data sc_tx[OTUS_TX_LIST_COUNT]; struct otus_tx_cmd sc_cmd[OTUS_CMD_LIST_COUNT]; struct usb_xfer *sc_xfer[OTUS_N_XFER]; STAILQ_HEAD(, otus_data) sc_rx_active; STAILQ_HEAD(, otus_data) sc_rx_inactive; STAILQ_HEAD(, otus_data) sc_tx_active[OTUS_N_XFER]; STAILQ_HEAD(, otus_data) sc_tx_inactive; STAILQ_HEAD(, otus_data) sc_tx_pending[OTUS_N_XFER]; STAILQ_HEAD(, otus_tx_cmd) sc_cmd_active; STAILQ_HEAD(, otus_tx_cmd) sc_cmd_inactive; STAILQ_HEAD(, otus_tx_cmd) sc_cmd_pending; STAILQ_HEAD(, otus_tx_cmd) sc_cmd_waiting; union { struct otus_rx_radiotap_header th; uint8_t pad[64]; } sc_rxtapu; #define sc_rxtap sc_rxtapu.th int sc_rxtap_len; union { struct otus_tx_radiotap_header th; uint8_t pad[64]; } sc_txtapu; #define sc_txtap sc_txtapu.th int sc_txtap_len; }; #endif /* __IF_OTUSREG_H__ */