Index: head/sys/kern/sys_process.c =================================================================== --- head/sys/kern/sys_process.c (revision 286157) +++ head/sys/kern/sys_process.c (revision 286158) @@ -1,1311 +1,1318 @@ /*- * Copyright (c) 1994, Sean Eric Fagan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Sean Eric Fagan. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include struct ptrace_io_desc32 { int piod_op; uint32_t piod_offs; uint32_t piod_addr; uint32_t piod_len; }; struct ptrace_vm_entry32 { int pve_entry; int pve_timestamp; uint32_t pve_start; uint32_t pve_end; uint32_t pve_offset; u_int pve_prot; u_int pve_pathlen; int32_t pve_fileid; u_int pve_fsid; uint32_t pve_path; }; struct ptrace_lwpinfo32 { lwpid_t pl_lwpid; /* LWP described. */ int pl_event; /* Event that stopped the LWP. */ int pl_flags; /* LWP flags. */ sigset_t pl_sigmask; /* LWP signal mask */ sigset_t pl_siglist; /* LWP pending signal */ struct siginfo32 pl_siginfo; /* siginfo for signal */ char pl_tdname[MAXCOMLEN + 1]; /* LWP name. */ int pl_child_pid; /* New child pid */ }; #endif /* * Functions implemented using PROC_ACTION(): * * proc_read_regs(proc, regs) * Get the current user-visible register set from the process * and copy it into the regs structure (). * The process is stopped at the time read_regs is called. * * proc_write_regs(proc, regs) * Update the current register set from the passed in regs * structure. Take care to avoid clobbering special CPU * registers or privileged bits in the PSL. * Depending on the architecture this may have fix-up work to do, * especially if the IAR or PCW are modified. * The process is stopped at the time write_regs is called. * * proc_read_fpregs, proc_write_fpregs * deal with the floating point register set, otherwise as above. * * proc_read_dbregs, proc_write_dbregs * deal with the processor debug register set, otherwise as above. * * proc_sstep(proc) * Arrange for the process to trap after executing a single instruction. */ #define PROC_ACTION(action) do { \ int error; \ \ PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ if ((td->td_proc->p_flag & P_INMEM) == 0) \ error = EIO; \ else \ error = (action); \ return (error); \ } while(0) int proc_read_regs(struct thread *td, struct reg *regs) { PROC_ACTION(fill_regs(td, regs)); } int proc_write_regs(struct thread *td, struct reg *regs) { PROC_ACTION(set_regs(td, regs)); } int proc_read_dbregs(struct thread *td, struct dbreg *dbregs) { PROC_ACTION(fill_dbregs(td, dbregs)); } int proc_write_dbregs(struct thread *td, struct dbreg *dbregs) { PROC_ACTION(set_dbregs(td, dbregs)); } /* * Ptrace doesn't support fpregs at all, and there are no security holes * or translations for fpregs, so we can just copy them. */ int proc_read_fpregs(struct thread *td, struct fpreg *fpregs) { PROC_ACTION(fill_fpregs(td, fpregs)); } int proc_write_fpregs(struct thread *td, struct fpreg *fpregs) { PROC_ACTION(set_fpregs(td, fpregs)); } #ifdef COMPAT_FREEBSD32 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ int proc_read_regs32(struct thread *td, struct reg32 *regs32) { PROC_ACTION(fill_regs32(td, regs32)); } int proc_write_regs32(struct thread *td, struct reg32 *regs32) { PROC_ACTION(set_regs32(td, regs32)); } int proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) { PROC_ACTION(fill_dbregs32(td, dbregs32)); } int proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) { PROC_ACTION(set_dbregs32(td, dbregs32)); } int proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) { PROC_ACTION(fill_fpregs32(td, fpregs32)); } int proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) { PROC_ACTION(set_fpregs32(td, fpregs32)); } #endif int proc_sstep(struct thread *td) { PROC_ACTION(ptrace_single_step(td)); } int proc_rwmem(struct proc *p, struct uio *uio) { vm_map_t map; vm_offset_t pageno; /* page number */ vm_prot_t reqprot; int error, fault_flags, page_offset, writing; /* * Assert that someone has locked this vmspace. (Should be * curthread but we can't assert that.) This keeps the process * from exiting out from under us until this operation completes. */ KASSERT(p->p_lock >= 1, ("%s: process %p (pid %d) not held", __func__, p, p->p_pid)); /* * The map we want... */ map = &p->p_vmspace->vm_map; /* * If we are writing, then we request vm_fault() to create a private * copy of each page. Since these copies will not be writeable by the * process, we must explicity request that they be dirtied. */ writing = uio->uio_rw == UIO_WRITE; reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; /* * Only map in one page at a time. We don't have to, but it * makes things easier. This way is trivial - right? */ do { vm_offset_t uva; u_int len; vm_page_t m; uva = (vm_offset_t)uio->uio_offset; /* * Get the page number of this segment. */ pageno = trunc_page(uva); page_offset = uva - pageno; /* * How many bytes to copy */ len = min(PAGE_SIZE - page_offset, uio->uio_resid); /* * Fault and hold the page on behalf of the process. */ error = vm_fault_hold(map, pageno, reqprot, fault_flags, &m); if (error != KERN_SUCCESS) { if (error == KERN_RESOURCE_SHORTAGE) error = ENOMEM; else error = EFAULT; break; } /* * Now do the i/o move. */ error = uiomove_fromphys(&m, page_offset, len, uio); /* Make the I-cache coherent for breakpoints. */ if (writing && error == 0) { vm_map_lock_read(map); if (vm_map_check_protection(map, pageno, pageno + PAGE_SIZE, VM_PROT_EXECUTE)) vm_sync_icache(map, uva, len); vm_map_unlock_read(map); } /* * Release the page. */ vm_page_lock(m); vm_page_unhold(m); vm_page_unlock(m); } while (error == 0 && uio->uio_resid > 0); return (error); } static int ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) { struct vattr vattr; vm_map_t map; vm_map_entry_t entry; vm_object_t obj, tobj, lobj; struct vmspace *vm; struct vnode *vp; char *freepath, *fullpath; u_int pathlen; int error, index; error = 0; obj = NULL; vm = vmspace_acquire_ref(p); map = &vm->vm_map; vm_map_lock_read(map); do { entry = map->header.next; index = 0; while (index < pve->pve_entry && entry != &map->header) { entry = entry->next; index++; } if (index != pve->pve_entry) { error = EINVAL; break; } while (entry != &map->header && (entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { entry = entry->next; index++; } if (entry == &map->header) { error = ENOENT; break; } /* We got an entry. */ pve->pve_entry = index + 1; pve->pve_timestamp = map->timestamp; pve->pve_start = entry->start; pve->pve_end = entry->end - 1; pve->pve_offset = entry->offset; pve->pve_prot = entry->protection; /* Backing object's path needed? */ if (pve->pve_pathlen == 0) break; pathlen = pve->pve_pathlen; pve->pve_pathlen = 0; obj = entry->object.vm_object; if (obj != NULL) VM_OBJECT_RLOCK(obj); } while (0); vm_map_unlock_read(map); vmspace_free(vm); pve->pve_fsid = VNOVAL; pve->pve_fileid = VNOVAL; if (error == 0 && obj != NULL) { lobj = obj; for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { if (tobj != obj) VM_OBJECT_RLOCK(tobj); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; pve->pve_offset += tobj->backing_object_offset; } vp = vm_object_vnode(lobj); if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { freepath = NULL; fullpath = NULL; vn_fullpath(td, vp, &fullpath, &freepath); vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { pve->pve_fileid = vattr.va_fileid; pve->pve_fsid = vattr.va_fsid; } vput(vp); if (fullpath != NULL) { pve->pve_pathlen = strlen(fullpath) + 1; if (pve->pve_pathlen <= pathlen) { error = copyout(fullpath, pve->pve_path, pve->pve_pathlen); } else error = ENAMETOOLONG; } if (freepath != NULL) free(freepath, M_TEMP); } } if (error == 0) CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", p->p_pid, pve->pve_entry, pve->pve_start); return (error); } #ifdef COMPAT_FREEBSD32 static int ptrace_vm_entry32(struct thread *td, struct proc *p, struct ptrace_vm_entry32 *pve32) { struct ptrace_vm_entry pve; int error; pve.pve_entry = pve32->pve_entry; pve.pve_pathlen = pve32->pve_pathlen; pve.pve_path = (void *)(uintptr_t)pve32->pve_path; error = ptrace_vm_entry(td, p, &pve); if (error == 0) { pve32->pve_entry = pve.pve_entry; pve32->pve_timestamp = pve.pve_timestamp; pve32->pve_start = pve.pve_start; pve32->pve_end = pve.pve_end; pve32->pve_offset = pve.pve_offset; pve32->pve_prot = pve.pve_prot; pve32->pve_fileid = pve.pve_fileid; pve32->pve_fsid = pve.pve_fsid; } pve32->pve_pathlen = pve.pve_pathlen; return (error); } static void ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, struct ptrace_lwpinfo32 *pl32) { pl32->pl_lwpid = pl->pl_lwpid; pl32->pl_event = pl->pl_event; pl32->pl_flags = pl->pl_flags; pl32->pl_sigmask = pl->pl_sigmask; pl32->pl_siglist = pl->pl_siglist; siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); strcpy(pl32->pl_tdname, pl->pl_tdname); pl32->pl_child_pid = pl->pl_child_pid; } #endif /* COMPAT_FREEBSD32 */ /* * Process debugging system call. */ #ifndef _SYS_SYSPROTO_H_ struct ptrace_args { int req; pid_t pid; caddr_t addr; int data; }; #endif #ifdef COMPAT_FREEBSD32 /* * This CPP subterfuge is to try and reduce the number of ifdefs in * the body of the code. * COPYIN(uap->addr, &r.reg, sizeof r.reg); * becomes either: * copyin(uap->addr, &r.reg, sizeof r.reg); * or * copyin(uap->addr, &r.reg32, sizeof r.reg32); * .. except this is done at runtime. */ #define COPYIN(u, k, s) wrap32 ? \ copyin(u, k ## 32, s ## 32) : \ copyin(u, k, s) #define COPYOUT(k, u, s) wrap32 ? \ copyout(k ## 32, u, s ## 32) : \ copyout(k, u, s) #else #define COPYIN(u, k, s) copyin(u, k, s) #define COPYOUT(k, u, s) copyout(k, u, s) #endif int sys_ptrace(struct thread *td, struct ptrace_args *uap) { /* * XXX this obfuscation is to reduce stack usage, but the register * structs may be too large to put on the stack anyway. */ union { struct ptrace_io_desc piod; struct ptrace_lwpinfo pl; struct ptrace_vm_entry pve; struct dbreg dbreg; struct fpreg fpreg; struct reg reg; #ifdef COMPAT_FREEBSD32 struct dbreg32 dbreg32; struct fpreg32 fpreg32; struct reg32 reg32; struct ptrace_io_desc32 piod32; struct ptrace_lwpinfo32 pl32; struct ptrace_vm_entry32 pve32; #endif } r; void *addr; int error = 0; #ifdef COMPAT_FREEBSD32 int wrap32 = 0; if (SV_CURPROC_FLAG(SV_ILP32)) wrap32 = 1; #endif AUDIT_ARG_PID(uap->pid); AUDIT_ARG_CMD(uap->req); AUDIT_ARG_VALUE(uap->data); addr = &r; switch (uap->req) { case PT_GETREGS: case PT_GETFPREGS: case PT_GETDBREGS: case PT_LWPINFO: break; case PT_SETREGS: error = COPYIN(uap->addr, &r.reg, sizeof r.reg); break; case PT_SETFPREGS: error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg); break; case PT_SETDBREGS: error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg); break; case PT_IO: error = COPYIN(uap->addr, &r.piod, sizeof r.piod); break; case PT_VM_ENTRY: error = COPYIN(uap->addr, &r.pve, sizeof r.pve); break; default: addr = uap->addr; break; } if (error) return (error); error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); if (error) return (error); switch (uap->req) { case PT_VM_ENTRY: error = COPYOUT(&r.pve, uap->addr, sizeof r.pve); break; case PT_IO: error = COPYOUT(&r.piod, uap->addr, sizeof r.piod); break; case PT_GETREGS: error = COPYOUT(&r.reg, uap->addr, sizeof r.reg); break; case PT_GETFPREGS: error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg); break; case PT_GETDBREGS: error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg); break; case PT_LWPINFO: error = copyout(&r.pl, uap->addr, uap->data); break; } return (error); } #undef COPYIN #undef COPYOUT #ifdef COMPAT_FREEBSD32 /* * PROC_READ(regs, td2, addr); * becomes either: * proc_read_regs(td2, addr); * or * proc_read_regs32(td2, addr); * .. except this is done at runtime. There is an additional * complication in that PROC_WRITE disallows 32 bit consumers * from writing to 64 bit address space targets. */ #define PROC_READ(w, t, a) wrap32 ? \ proc_read_ ## w ## 32(t, a) : \ proc_read_ ## w (t, a) #define PROC_WRITE(w, t, a) wrap32 ? \ (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ proc_write_ ## w (t, a) #else #define PROC_READ(w, t, a) proc_read_ ## w (t, a) #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) #endif int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) { struct iovec iov; struct uio uio; struct proc *curp, *p, *pp; struct thread *td2 = NULL, *td3; struct ptrace_io_desc *piod = NULL; struct ptrace_lwpinfo *pl; int error, write, tmp, num; int proctree_locked = 0; lwpid_t tid = 0, *buf; #ifdef COMPAT_FREEBSD32 int wrap32 = 0, safe = 0; struct ptrace_io_desc32 *piod32 = NULL; struct ptrace_lwpinfo32 *pl32 = NULL; struct ptrace_lwpinfo plr; #endif curp = td->td_proc; /* Lock proctree before locking the process. */ switch (req) { case PT_TRACE_ME: case PT_ATTACH: case PT_STEP: case PT_CONTINUE: case PT_TO_SCE: case PT_TO_SCX: case PT_SYSCALL: case PT_FOLLOW_FORK: case PT_DETACH: sx_xlock(&proctree_lock); proctree_locked = 1; break; default: break; } write = 0; if (req == PT_TRACE_ME) { p = td->td_proc; PROC_LOCK(p); } else { if (pid <= PID_MAX) { if ((p = pfind(pid)) == NULL) { if (proctree_locked) sx_xunlock(&proctree_lock); return (ESRCH); } } else { td2 = tdfind(pid, -1); if (td2 == NULL) { if (proctree_locked) sx_xunlock(&proctree_lock); return (ESRCH); } p = td2->td_proc; tid = pid; pid = p->p_pid; } } AUDIT_ARG_PROCESS(p); if ((p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto fail; } if ((error = p_cansee(td, p)) != 0) goto fail; if ((error = p_candebug(td, p)) != 0) goto fail; /* * System processes can't be debugged. */ if ((p->p_flag & P_SYSTEM) != 0) { error = EINVAL; goto fail; } if (tid == 0) { if ((p->p_flag & P_STOPPED_TRACE) != 0) { KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); td2 = p->p_xthread; } else { td2 = FIRST_THREAD_IN_PROC(p); } tid = td2->td_tid; } #ifdef COMPAT_FREEBSD32 /* * Test if we're a 32 bit client and what the target is. * Set the wrap controls accordingly. */ if (SV_CURPROC_FLAG(SV_ILP32)) { if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) safe = 1; wrap32 = 1; } #endif /* * Permissions check */ switch (req) { case PT_TRACE_ME: /* Always legal. */ break; case PT_ATTACH: /* Self */ if (p->p_pid == td->td_proc->p_pid) { error = EINVAL; goto fail; } /* Already traced */ if (p->p_flag & P_TRACED) { error = EBUSY; goto fail; } /* Can't trace an ancestor if you're being traced. */ if (curp->p_flag & P_TRACED) { for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { if (pp == p) { error = EINVAL; goto fail; } } } /* OK */ break; case PT_CLEARSTEP: /* Allow thread to clear single step for itself */ if (td->td_tid == tid) break; /* FALLTHROUGH */ default: /* not being traced... */ if ((p->p_flag & P_TRACED) == 0) { error = EPERM; goto fail; } /* not being traced by YOU */ if (p->p_pptr != td->td_proc) { error = EBUSY; goto fail; } /* not currently stopped */ if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) == 0 || p->p_suspcount != p->p_numthreads || (p->p_flag & P_WAITED) == 0) { error = EBUSY; goto fail; } if ((p->p_flag & P_STOPPED_TRACE) == 0) { static int count = 0; if (count++ == 0) printf("P_STOPPED_TRACE not set.\n"); } /* OK */ break; } /* Keep this process around until we finish this request. */ _PHOLD(p); #ifdef FIX_SSTEP /* * Single step fixup ala procfs */ FIX_SSTEP(td2); #endif /* * Actually do the requests */ td->td_retval[0] = 0; switch (req) { case PT_TRACE_ME: /* set my trace flag and "owner" so it can read/write me */ p->p_flag |= P_TRACED; if (p->p_flag & P_PPWAIT) p->p_flag |= P_PPTRACE; p->p_oppid = p->p_pptr->p_pid; CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); break; case PT_ATTACH: /* security check done above */ /* * It would be nice if the tracing relationship was separate * from the parent relationship but that would require * another set of links in the proc struct or for "wait" * to scan the entire proc table. To make life easier, * we just re-parent the process we're trying to trace. * The old parent is remembered so we can put things back * on a "detach". */ p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; if (p->p_pptr != td->td_proc) { proc_reparent(p, td->td_proc); } data = SIGSTOP; CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, p->p_oppid); goto sendsig; /* in PT_CONTINUE below */ case PT_CLEARSTEP: CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, p->p_pid); error = ptrace_clear_single_step(td2); break; case PT_SETSTEP: CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, p->p_pid); error = ptrace_single_step(td2); break; case PT_SUSPEND: CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, p->p_pid); td2->td_dbgflags |= TDB_SUSPEND; thread_lock(td2); td2->td_flags |= TDF_NEEDSUSPCHK; thread_unlock(td2); break; case PT_RESUME: CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, p->p_pid); td2->td_dbgflags &= ~TDB_SUSPEND; break; case PT_FOLLOW_FORK: CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, p->p_flag & P_FOLLOWFORK ? "enabled" : "disabled", data ? "enabled" : "disabled"); if (data) p->p_flag |= P_FOLLOWFORK; else p->p_flag &= ~P_FOLLOWFORK; break; case PT_STEP: case PT_CONTINUE: case PT_TO_SCE: case PT_TO_SCX: case PT_SYSCALL: case PT_DETACH: /* Zero means do not send any signal */ if (data < 0 || data > _SIG_MAXSIG) { error = EINVAL; break; } switch (req) { case PT_STEP: CTR2(KTR_PTRACE, "PT_STEP: tid %d (pid %d)", td2->td_tid, p->p_pid); error = ptrace_single_step(td2); if (error) goto out; break; case PT_CONTINUE: case PT_TO_SCE: case PT_TO_SCX: case PT_SYSCALL: if (addr != (void *)1) { error = ptrace_set_pc(td2, (u_long)(uintfptr_t)addr); if (error) goto out; } switch (req) { case PT_TO_SCE: p->p_stops |= S_PT_SCE; CTR2(KTR_PTRACE, "PT_TO_SCE: pid %d, stops = %#x", p->p_pid, p->p_stops); break; case PT_TO_SCX: p->p_stops |= S_PT_SCX; CTR2(KTR_PTRACE, "PT_TO_SCX: pid %d, stops = %#x", p->p_pid, p->p_stops); break; case PT_SYSCALL: p->p_stops |= S_PT_SCE | S_PT_SCX; CTR2(KTR_PTRACE, "PT_SYSCALL: pid %d, stops = %#x", p->p_pid, p->p_stops); break; case PT_CONTINUE: CTR1(KTR_PTRACE, "PT_CONTINUE: pid %d", p->p_pid); break; } break; case PT_DETACH: - /* reset process parent */ + /* + * Reset the process parent. + * + * NB: This clears P_TRACED before reparenting + * a detached process back to its original + * parent. Otherwise the debugee will be set + * as an orphan of the debugger. + */ + p->p_flag &= ~(P_TRACED | P_WAITED | P_FOLLOWFORK); if (p->p_oppid != p->p_pptr->p_pid) { PROC_LOCK(p->p_pptr); sigqueue_take(p->p_ksi); PROC_UNLOCK(p->p_pptr); pp = proc_realparent(p); proc_reparent(p, pp); if (pp == initproc) p->p_sigparent = SIGCHLD; CTR2(KTR_PTRACE, "PT_DETACH: pid %d reparented to pid %d", p->p_pid, pp->p_pid); } else CTR1(KTR_PTRACE, "PT_DETACH: pid %d", p->p_pid); p->p_oppid = 0; - p->p_flag &= ~(P_TRACED | P_WAITED | P_FOLLOWFORK); p->p_stops = 0; /* should we send SIGCHLD? */ /* childproc_continued(p); */ break; } sendsig: if (proctree_locked) { sx_xunlock(&proctree_lock); proctree_locked = 0; } p->p_xsig = data; p->p_xthread = NULL; if ((p->p_flag & (P_STOPPED_SIG | P_STOPPED_TRACE)) != 0) { /* deliver or queue signal */ td2->td_dbgflags &= ~TDB_XSIG; td2->td_xsig = data; if (req == PT_DETACH) { FOREACH_THREAD_IN_PROC(p, td3) td3->td_dbgflags &= ~TDB_SUSPEND; } /* * unsuspend all threads, to not let a thread run, * you should use PT_SUSPEND to suspend it before * continuing process. */ PROC_SLOCK(p); p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SIG|P_WAITED); thread_unsuspend(p); PROC_SUNLOCK(p); if (req == PT_ATTACH) kern_psignal(p, data); } else { if (data) kern_psignal(p, data); } break; case PT_WRITE_I: case PT_WRITE_D: td2->td_dbgflags |= TDB_USERWR; write = 1; /* FALLTHROUGH */ case PT_READ_I: case PT_READ_D: PROC_UNLOCK(p); tmp = 0; /* write = 0 set above */ iov.iov_base = write ? (caddr_t)&data : (caddr_t)&tmp; iov.iov_len = sizeof(int); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(uintptr_t)addr; uio.uio_resid = sizeof(int); uio.uio_segflg = UIO_SYSSPACE; /* i.e.: the uap */ uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_td = td; error = proc_rwmem(p, &uio); if (uio.uio_resid != 0) { /* * XXX proc_rwmem() doesn't currently return ENOSPC, * so I think write() can bogusly return 0. * XXX what happens for short writes? We don't want * to write partial data. * XXX proc_rwmem() returns EPERM for other invalid * addresses. Convert this to EINVAL. Does this * clobber returns of EPERM for other reasons? */ if (error == 0 || error == ENOSPC || error == EPERM) error = EINVAL; /* EOF */ } if (!write) td->td_retval[0] = tmp; if (error == 0) { if (write) CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", p->p_pid, addr, data); else CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", p->p_pid, addr, tmp); } PROC_LOCK(p); break; case PT_IO: #ifdef COMPAT_FREEBSD32 if (wrap32) { piod32 = addr; iov.iov_base = (void *)(uintptr_t)piod32->piod_addr; iov.iov_len = piod32->piod_len; uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs; uio.uio_resid = piod32->piod_len; } else #endif { piod = addr; iov.iov_base = piod->piod_addr; iov.iov_len = piod->piod_len; uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; uio.uio_resid = piod->piod_len; } uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_segflg = UIO_USERSPACE; uio.uio_td = td; #ifdef COMPAT_FREEBSD32 tmp = wrap32 ? piod32->piod_op : piod->piod_op; #else tmp = piod->piod_op; #endif switch (tmp) { case PIOD_READ_D: case PIOD_READ_I: CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); uio.uio_rw = UIO_READ; break; case PIOD_WRITE_D: case PIOD_WRITE_I: CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); td2->td_dbgflags |= TDB_USERWR; uio.uio_rw = UIO_WRITE; break; default: error = EINVAL; goto out; } PROC_UNLOCK(p); error = proc_rwmem(p, &uio); #ifdef COMPAT_FREEBSD32 if (wrap32) piod32->piod_len -= uio.uio_resid; else #endif piod->piod_len -= uio.uio_resid; PROC_LOCK(p); break; case PT_KILL: CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); data = SIGKILL; goto sendsig; /* in PT_CONTINUE above */ case PT_SETREGS: CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); td2->td_dbgflags |= TDB_USERWR; error = PROC_WRITE(regs, td2, addr); break; case PT_GETREGS: CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); error = PROC_READ(regs, td2, addr); break; case PT_SETFPREGS: CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); td2->td_dbgflags |= TDB_USERWR; error = PROC_WRITE(fpregs, td2, addr); break; case PT_GETFPREGS: CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); error = PROC_READ(fpregs, td2, addr); break; case PT_SETDBREGS: CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); td2->td_dbgflags |= TDB_USERWR; error = PROC_WRITE(dbregs, td2, addr); break; case PT_GETDBREGS: CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, p->p_pid); error = PROC_READ(dbregs, td2, addr); break; case PT_LWPINFO: if (data <= 0 || #ifdef COMPAT_FREEBSD32 (!wrap32 && data > sizeof(*pl)) || (wrap32 && data > sizeof(*pl32))) { #else data > sizeof(*pl)) { #endif error = EINVAL; break; } #ifdef COMPAT_FREEBSD32 if (wrap32) { pl = &plr; pl32 = addr; } else #endif pl = addr; pl->pl_lwpid = td2->td_tid; pl->pl_event = PL_EVENT_NONE; pl->pl_flags = 0; if (td2->td_dbgflags & TDB_XSIG) { pl->pl_event = PL_EVENT_SIGNAL; if (td2->td_dbgksi.ksi_signo != 0 && #ifdef COMPAT_FREEBSD32 ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) + sizeof(pl->pl_siginfo)) || (wrap32 && data >= offsetof(struct ptrace_lwpinfo32, pl_siginfo) + sizeof(struct siginfo32))) #else data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) + sizeof(pl->pl_siginfo) #endif ){ pl->pl_flags |= PL_FLAG_SI; pl->pl_siginfo = td2->td_dbgksi.ksi_info; } } if ((pl->pl_flags & PL_FLAG_SI) == 0) bzero(&pl->pl_siginfo, sizeof(pl->pl_siginfo)); if (td2->td_dbgflags & TDB_SCE) pl->pl_flags |= PL_FLAG_SCE; else if (td2->td_dbgflags & TDB_SCX) pl->pl_flags |= PL_FLAG_SCX; if (td2->td_dbgflags & TDB_EXEC) pl->pl_flags |= PL_FLAG_EXEC; if (td2->td_dbgflags & TDB_FORK) { pl->pl_flags |= PL_FLAG_FORKED; pl->pl_child_pid = td2->td_dbg_forked; } if (td2->td_dbgflags & TDB_CHILD) pl->pl_flags |= PL_FLAG_CHILD; pl->pl_sigmask = td2->td_sigmask; pl->pl_siglist = td2->td_siglist; strcpy(pl->pl_tdname, td2->td_name); #ifdef COMPAT_FREEBSD32 if (wrap32) ptrace_lwpinfo_to32(pl, pl32); #endif CTR5(KTR_PTRACE, "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d", td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, pl->pl_child_pid); break; case PT_GETNUMLWPS: CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, p->p_numthreads); td->td_retval[0] = p->p_numthreads; break; case PT_GETLWPLIST: CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", p->p_pid, data, p->p_numthreads); if (data <= 0) { error = EINVAL; break; } num = imin(p->p_numthreads, data); PROC_UNLOCK(p); buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); tmp = 0; PROC_LOCK(p); FOREACH_THREAD_IN_PROC(p, td2) { if (tmp >= num) break; buf[tmp++] = td2->td_tid; } PROC_UNLOCK(p); error = copyout(buf, addr, tmp * sizeof(lwpid_t)); free(buf, M_TEMP); if (!error) td->td_retval[0] = tmp; PROC_LOCK(p); break; case PT_VM_TIMESTAMP: CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", p->p_pid, p->p_vmspace->vm_map.timestamp); td->td_retval[0] = p->p_vmspace->vm_map.timestamp; break; case PT_VM_ENTRY: PROC_UNLOCK(p); #ifdef COMPAT_FREEBSD32 if (wrap32) error = ptrace_vm_entry32(td, p, addr); else #endif error = ptrace_vm_entry(td, p, addr); PROC_LOCK(p); break; default: #ifdef __HAVE_PTRACE_MACHDEP if (req >= PT_FIRSTMACH) { PROC_UNLOCK(p); error = cpu_ptrace(td2, req, addr, data); PROC_LOCK(p); } else #endif /* Unknown request. */ error = EINVAL; break; } out: /* Drop our hold on this process now that the request has completed. */ _PRELE(p); fail: PROC_UNLOCK(p); if (proctree_locked) sx_xunlock(&proctree_lock); return (error); } #undef PROC_READ #undef PROC_WRITE /* * Stop a process because of a debugging event; * stay stopped until p->p_step is cleared * (cleared by PIOCCONT in procfs). */ void stopevent(struct proc *p, unsigned int event, unsigned int val) { PROC_LOCK_ASSERT(p, MA_OWNED); p->p_step = 1; CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event, val); do { if (event != S_EXIT) p->p_xsig = val; p->p_xthread = NULL; p->p_stype = event; /* Which event caused the stop? */ wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); } while (p->p_step); } Index: head/tests/sys/kern/ptrace_test.c =================================================================== --- head/tests/sys/kern/ptrace_test.c (revision 286157) +++ head/tests/sys/kern/ptrace_test.c (revision 286158) @@ -1,413 +1,886 @@ /*- * Copyright (c) 2015 John Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include /* * A variant of ATF_REQUIRE that is suitable for use in child * processes. This only works if the parent process is tripped up by * the early exit and fails some requirement itself. */ #define CHILD_REQUIRE(exp) do { \ if (!(exp)) \ child_fail_require(__FILE__, __LINE__, \ #exp " not met"); \ } while (0) -static void __dead2 +static __dead2 void child_fail_require(const char *file, int line, const char *str) { char buf[128]; snprintf(buf, sizeof(buf), "%s:%d: %s\n", file, line, str); write(2, buf, strlen(buf)); _exit(32); } +static void +trace_me(void) +{ + + /* Attach the parent process as a tracer of this process. */ + CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1); + + /* Trigger a stop. */ + raise(SIGSTOP); +} + +static void +attach_child(pid_t pid) +{ + pid_t wpid; + int status; + + ATF_REQUIRE(ptrace(PT_ATTACH, pid, NULL, 0) == 0); + + wpid = waitpid(pid, &status, 0); + ATF_REQUIRE(wpid == pid); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); +} + +static void +wait_for_zombie(pid_t pid) +{ + + /* + * Wait for a process to exit. This is kind of gross, but + * there is not a better way. + */ + for (;;) { + struct kinfo_proc kp; + size_t len; + int mib[4]; + + mib[0] = CTL_KERN; + mib[1] = KERN_PROC; + mib[2] = KERN_PROC_PID; + mib[3] = pid; + len = sizeof(kp); + if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) { + /* The KERN_PROC_PID sysctl fails for zombies. */ + ATF_REQUIRE(errno == ESRCH); + break; + } + usleep(5000); + } +} + /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_TRACE_ME. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_trace_me); ATF_TC_BODY(ptrace__parent_wait_after_trace_me, tc) { pid_t child, wpid; int status; ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ - CHILD_REQUIRE(ptrace(PT_TRACE_ME, 0, NULL, 0) != -1); + trace_me(); - /* Trigger a stop. */ - raise(SIGSTOP); - exit(1); } /* Parent process. */ /* The first wait() should report the stop from SIGSTOP. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFSTOPPED(status)); ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent debugger process "sees" the exit of a debugged * process exactly once when attached via PT_ATTACH. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_wait_after_attach); ATF_TC_BODY(ptrace__parent_wait_after_attach, tc) { pid_t child, wpid; int cpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for the parent to attach. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == 0); exit(1); } close(cpipe[1]); /* Parent process. */ /* Attach to the child process. */ - ATF_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) == 0); + attach_child(child); - /* The first wait() should report the SIGSTOP from PT_ATTACH. */ - wpid = waitpid(child, &status, 0); - ATF_REQUIRE(wpid == child); - ATF_REQUIRE(WIFSTOPPED(status)); - ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); - /* Continue the child ignoring the SIGSTOP. */ ATF_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal the child to exit. */ close(cpipe[0]); /* The second wait() should report the exit status. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); /* The child should no longer exist. */ wpid = waitpid(child, &status, 0); ATF_REQUIRE(wpid == -1); ATF_REQUIRE(errno == ECHILD); } /* * Verify that a parent process "sees" the exit of a debugged process only * after the debugger has seen it. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_child_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_child_debugger, tc) { pid_t child, debugger, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == 0); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); - /* - * Wait for the child to exit. This is kind of gross, but - * there is not a better way. - */ - for (;;) { - struct kinfo_proc kp; - size_t len; - int mib[4]; + wait_for_zombie(child); - mib[0] = CTL_KERN; - mib[1] = KERN_PROC; - mib[2] = KERN_PROC_PID; - mib[3] = child; - len = sizeof(kp); - if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) { - /* The KERN_PROC_PID sysctl fails for zombies. */ - ATF_REQUIRE(errno == ESRCH); - break; - } - usleep(5000); - } - /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ close(dpipe[0]); /* Wait for the debugger. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 0); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } /* * Verify that a parent process "sees" the exit of a debugged process * only after a non-direct-child debugger has seen it. In particular, * various wait() calls in the parent must avoid failing with ESRCH by * checking the parent's orphan list for the debugee. */ ATF_TC_WITHOUT_HEAD(ptrace__parent_sees_exit_after_unrelated_debugger); ATF_TC_BODY(ptrace__parent_sees_exit_after_unrelated_debugger, tc) { pid_t child, debugger, fpid, wpid; int cpipe[2], dpipe[2], status; char c; ATF_REQUIRE(pipe(cpipe) == 0); ATF_REQUIRE((child = fork()) != -1); if (child == 0) { /* Child process. */ close(cpipe[0]); /* Wait for parent to be ready. */ CHILD_REQUIRE(read(cpipe[1], &c, sizeof(c)) == sizeof(c)); exit(1); } close(cpipe[1]); ATF_REQUIRE(pipe(dpipe) == 0); ATF_REQUIRE((debugger = fork()) != -1); if (debugger == 0) { /* Debugger parent. */ /* * Fork again and drop the debugger parent so that the * debugger is not a child of the main parent. */ CHILD_REQUIRE((fpid = fork()) != -1); if (fpid != 0) exit(2); /* Debugger process. */ close(dpipe[0]); CHILD_REQUIRE(ptrace(PT_ATTACH, child, NULL, 0) != -1); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFSTOPPED(status)); CHILD_REQUIRE(WSTOPSIG(status) == SIGSTOP); CHILD_REQUIRE(ptrace(PT_CONTINUE, child, (caddr_t)1, 0) != -1); /* Signal parent that debugger is attached. */ CHILD_REQUIRE(write(dpipe[1], &c, sizeof(c)) == sizeof(c)); /* Wait for parent's failed wait. */ CHILD_REQUIRE(read(dpipe[1], &c, sizeof(c)) == sizeof(c)); wpid = waitpid(child, &status, 0); CHILD_REQUIRE(wpid == child); CHILD_REQUIRE(WIFEXITED(status)); CHILD_REQUIRE(WEXITSTATUS(status) == 1); exit(0); } close(dpipe[1]); /* Parent process. */ /* Wait for the debugger parent process to exit. */ wpid = waitpid(debugger, &status, 0); ATF_REQUIRE(wpid == debugger); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 2); /* A WNOHANG wait here should see the non-exited child. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Wait for the debugger to attach to the child. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Release the child. */ ATF_REQUIRE(write(cpipe[0], &c, sizeof(c)) == sizeof(c)); ATF_REQUIRE(read(cpipe[0], &c, sizeof(c)) == 0); close(cpipe[0]); - /* - * Wait for the child to exit. This is kind of gross, but - * there is not a better way. - */ - for (;;) { - struct kinfo_proc kp; - size_t len; - int mib[4]; + wait_for_zombie(child); - mib[0] = CTL_KERN; - mib[1] = KERN_PROC; - mib[2] = KERN_PROC_PID; - mib[3] = child; - len = sizeof(kp); - if (sysctl(mib, nitems(mib), &kp, &len, NULL, 0) == -1) { - /* The KERN_PROC_PID sysctl fails for zombies. */ - ATF_REQUIRE(errno == ESRCH); - break; - } - usleep(5000); - } - /* * This wait should return a pid of 0 to indicate no status to * report. The parent should see the child as non-exited * until the debugger sees the exit. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == 0); /* Signal the debugger to wait for the child. */ ATF_REQUIRE(write(dpipe[0], &c, sizeof(c)) == sizeof(c)); /* Wait for the debugger. */ ATF_REQUIRE(read(dpipe[0], &c, sizeof(c)) == 0); close(dpipe[0]); /* The child process should now be ready. */ wpid = waitpid(child, &status, WNOHANG); ATF_REQUIRE(wpid == child); ATF_REQUIRE(WIFEXITED(status)); ATF_REQUIRE(WEXITSTATUS(status) == 1); } +/* + * The parent process should always act the same regardless of how the + * debugger is attached to it. + */ +static __dead2 void +follow_fork_parent(void) +{ + pid_t fpid, wpid; + int status; + + CHILD_REQUIRE((fpid = fork()) != -1); + + if (fpid == 0) + /* Child */ + exit(2); + + wpid = waitpid(fpid, &status, 0); + CHILD_REQUIRE(wpid == fpid); + CHILD_REQUIRE(WIFEXITED(status)); + CHILD_REQUIRE(WEXITSTATUS(status) == 2); + + exit(1); +} + +/* + * Helper routine for follow fork tests. This waits for two stops + * that report both "sides" of a fork. It returns the pid of the new + * child process. + */ +static pid_t +handle_fork_events(pid_t parent) +{ + struct ptrace_lwpinfo pl; + bool fork_reported[2]; + pid_t child, wpid; + int i, status; + + fork_reported[0] = false; + fork_reported[1] = false; + child = -1; + + /* + * Each process should report a fork event. The parent should + * report a PL_FLAG_FORKED event, and the child should report + * a PL_FLAG_CHILD event. + */ + for (i = 0; i < 2; i++) { + wpid = wait(&status); + ATF_REQUIRE(wpid > 0); + ATF_REQUIRE(WIFSTOPPED(status)); + + ATF_REQUIRE(ptrace(PT_LWPINFO, wpid, (caddr_t)&pl, + sizeof(pl)) != -1); + ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != + 0); + ATF_REQUIRE((pl.pl_flags & (PL_FLAG_FORKED | PL_FLAG_CHILD)) != + (PL_FLAG_FORKED | PL_FLAG_CHILD)); + if (pl.pl_flags & PL_FLAG_CHILD) { + ATF_REQUIRE(wpid != parent); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + ATF_REQUIRE(!fork_reported[1]); + if (child == -1) + child = wpid; + else + ATF_REQUIRE(child == wpid); + fork_reported[1] = true; + } else { + ATF_REQUIRE(wpid == parent); + ATF_REQUIRE(WSTOPSIG(status) == SIGTRAP); + ATF_REQUIRE(!fork_reported[0]); + if (child == -1) + child = pl.pl_child_pid; + else + ATF_REQUIRE(child == pl.pl_child_pid); + fork_reported[0] = true; + } + } + + return (child); +} + +/* + * Verify that a new child process is stopped after a followed fork and + * that the traced parent sees the exit of the child after the debugger + * when both processes remain attached to the debugger. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached); +ATF_TC_BODY(ptrace__follow_fork_both_attached, tc) +{ + pid_t children[0], fpid, wpid; + int status; + + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + trace_me(); + follow_fork_parent(); + } + + /* Parent process. */ + children[0] = fpid; + + /* The first wait() should report the stop from SIGSTOP. */ + wpid = waitpid(children[0], &status, 0); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the child ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); + + /* + * The child can't exit until the grandchild reports status, so the + * grandchild should report its exit first to the debugger. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[1]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 2); + + wpid = wait(&status); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 1); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + +/* + * Verify that a new child process is stopped after a followed fork + * and that the traced parent sees the exit of the child when the new + * child process is detached after it reports its fork. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached); +ATF_TC_BODY(ptrace__follow_fork_child_detached, tc) +{ + pid_t children[0], fpid, wpid; + int status; + + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + trace_me(); + follow_fork_parent(); + } + + /* Parent process. */ + children[0] = fpid; + + /* The first wait() should report the stop from SIGSTOP. */ + wpid = waitpid(children[0], &status, 0); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the child ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); + + /* + * Should not see any status from the grandchild now, only the + * child. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 1); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + +/* + * Verify that a new child process is stopped after a followed fork + * and that the traced parent sees the exit of the child when the + * traced parent is detached after the fork. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached); +ATF_TC_BODY(ptrace__follow_fork_parent_detached, tc) +{ + pid_t children[0], fpid, wpid; + int status; + + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + trace_me(); + follow_fork_parent(); + } + + /* Parent process. */ + children[0] = fpid; + + /* The first wait() should report the stop from SIGSTOP. */ + wpid = waitpid(children[0], &status, 0); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFSTOPPED(status)); + ATF_REQUIRE(WSTOPSIG(status) == SIGSTOP); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the child ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); + + /* + * The child can't exit until the grandchild reports status, so the + * grandchild should report its exit first to the debugger. + * + * Even though the child process is detached, it is still a + * child of the debugger, so it will still report it's exit + * after the grandchild. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[1]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 2); + + wpid = wait(&status); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 1); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + +static void +attach_fork_parent(int cpipe[2]) +{ + pid_t fpid; + + close(cpipe[0]); + + /* Double-fork to disassociate from the debugger. */ + CHILD_REQUIRE((fpid = fork()) != -1); + if (fpid != 0) + exit(3); + + /* Send the pid of the disassociated child to the debugger. */ + fpid = getpid(); + CHILD_REQUIRE(write(cpipe[1], &fpid, sizeof(fpid)) == sizeof(fpid)); + + /* Wait for the debugger to attach. */ + CHILD_REQUIRE(read(cpipe[1], &fpid, sizeof(fpid)) == 0); +} + +/* + * Verify that a new child process is stopped after a followed fork and + * that the traced parent sees the exit of the child after the debugger + * when both processes remain attached to the debugger. In this test + * the parent that forks is not a direct child of the debugger. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_both_attached_unrelated_debugger); +ATF_TC_BODY(ptrace__follow_fork_both_attached_unrelated_debugger, tc) +{ + pid_t children[0], fpid, wpid; + int cpipe[2], status; + + ATF_REQUIRE(pipe(cpipe) == 0); + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + attach_fork_parent(cpipe); + follow_fork_parent(); + } + + /* Parent process. */ + close(cpipe[1]); + + /* Wait for the direct child to exit. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 3); + + /* Read the pid of the fork parent. */ + ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == + sizeof(children[0])); + + /* Attach to the fork parent. */ + attach_child(children[0]); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the fork parent ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + /* Signal the fork parent to continue. */ + close(cpipe[0]); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); + + /* + * The fork parent can't exit until the child reports status, + * so the child should report its exit first to the debugger. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[1]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 2); + + wpid = wait(&status); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 1); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + +/* + * Verify that a new child process is stopped after a followed fork + * and that the traced parent sees the exit of the child when the new + * child process is detached after it reports its fork. In this test + * the parent that forks is not a direct child of the debugger. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_child_detached_unrelated_debugger); +ATF_TC_BODY(ptrace__follow_fork_child_detached_unrelated_debugger, tc) +{ + pid_t children[0], fpid, wpid; + int cpipe[2], status; + + ATF_REQUIRE(pipe(cpipe) == 0); + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + attach_fork_parent(cpipe); + follow_fork_parent(); + } + + /* Parent process. */ + close(cpipe[1]); + + /* Wait for the direct child to exit. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 3); + + /* Read the pid of the fork parent. */ + ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == + sizeof(children[0])); + + /* Attach to the fork parent. */ + attach_child(children[0]); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the fork parent ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + /* Signal the fork parent to continue. */ + close(cpipe[0]); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_DETACH, children[1], (caddr_t)1, 0) != -1); + + /* + * Should not see any status from the child now, only the fork + * parent. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[0]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 1); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + +/* + * Verify that a new child process is stopped after a followed fork + * and that the traced parent sees the exit of the child when the + * traced parent is detached after the fork. In this test the parent + * that forks is not a direct child of the debugger. + */ +ATF_TC_WITHOUT_HEAD(ptrace__follow_fork_parent_detached_unrelated_debugger); +ATF_TC_BODY(ptrace__follow_fork_parent_detached_unrelated_debugger, tc) +{ + pid_t children[0], fpid, wpid; + int cpipe[2], status; + + ATF_REQUIRE(pipe(cpipe) == 0); + ATF_REQUIRE((fpid = fork()) != -1); + if (fpid == 0) { + attach_fork_parent(cpipe); + follow_fork_parent(); + } + + /* Parent process. */ + close(cpipe[1]); + + /* Wait for the direct child to exit. */ + wpid = waitpid(fpid, &status, 0); + ATF_REQUIRE(wpid == fpid); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 3); + + /* Read the pid of the fork parent. */ + ATF_REQUIRE(read(cpipe[0], &children[0], sizeof(children[0])) == + sizeof(children[0])); + + /* Attach to the fork parent. */ + attach_child(children[0]); + + ATF_REQUIRE(ptrace(PT_FOLLOW_FORK, children[0], NULL, 1) != -1); + + /* Continue the fork parent ignoring the SIGSTOP. */ + ATF_REQUIRE(ptrace(PT_CONTINUE, children[0], (caddr_t)1, 0) != -1); + + /* Signal the fork parent to continue. */ + close(cpipe[0]); + + children[1] = handle_fork_events(children[0]); + ATF_REQUIRE(children[1] > 0); + + ATF_REQUIRE(ptrace(PT_DETACH, children[0], (caddr_t)1, 0) != -1); + ATF_REQUIRE(ptrace(PT_CONTINUE, children[1], (caddr_t)1, 0) != -1); + + /* + * Should not see any status from the fork parent now, only + * the child. + */ + wpid = wait(&status); + ATF_REQUIRE(wpid == children[1]); + ATF_REQUIRE(WIFEXITED(status)); + ATF_REQUIRE(WEXITSTATUS(status) == 2); + + wpid = wait(&status); + ATF_REQUIRE(wpid == -1); + ATF_REQUIRE(errno == ECHILD); +} + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_trace_me); ATF_TP_ADD_TC(tp, ptrace__parent_wait_after_attach); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_child_debugger); ATF_TP_ADD_TC(tp, ptrace__parent_sees_exit_after_unrelated_debugger); + ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached); + ATF_TP_ADD_TC(tp, ptrace__follow_fork_child_detached); + ATF_TP_ADD_TC(tp, ptrace__follow_fork_parent_detached); + ATF_TP_ADD_TC(tp, ptrace__follow_fork_both_attached_unrelated_debugger); + ATF_TP_ADD_TC(tp, + ptrace__follow_fork_child_detached_unrelated_debugger); + ATF_TP_ADD_TC(tp, + ptrace__follow_fork_parent_detached_unrelated_debugger); return (atf_no_error()); }