Index: head/sys/kern/kern_linker.c =================================================================== --- head/sys/kern/kern_linker.c (revision 286093) +++ head/sys/kern/kern_linker.c (revision 286094) @@ -1,2144 +1,2144 @@ /*- * Copyright (c) 1997-2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kld.h" #include "opt_hwpmc_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linker_if.h" #ifdef HWPMC_HOOKS #include #endif #ifdef KLD_DEBUG int kld_debug = 0; SYSCTL_INT(_debug, OID_AUTO, kld_debug, CTLFLAG_RWTUN, &kld_debug, 0, "Set various levels of KLD debug"); #endif /* * static char *linker_search_path(const char *name, struct mod_depend * *verinfo); */ static const char *linker_basename(const char *path); /* * Find a currently loaded file given its filename. */ static linker_file_t linker_find_file_by_name(const char* _filename); /* * Find a currently loaded file given its file id. */ static linker_file_t linker_find_file_by_id(int _fileid); /* Metadata from the static kernel */ SET_DECLARE(modmetadata_set, struct mod_metadata); MALLOC_DEFINE(M_LINKER, "linker", "kernel linker"); linker_file_t linker_kernel_file; static struct sx kld_sx; /* kernel linker lock */ /* * Load counter used by clients to determine if a linker file has been * re-loaded. This counter is incremented for each file load. */ static int loadcnt; static linker_class_list_t classes; static linker_file_list_t linker_files; static int next_file_id = 1; static int linker_no_more_classes = 0; #define LINKER_GET_NEXT_FILE_ID(a) do { \ linker_file_t lftmp; \ \ if (!cold) \ sx_assert(&kld_sx, SA_XLOCKED); \ retry: \ TAILQ_FOREACH(lftmp, &linker_files, link) { \ if (next_file_id == lftmp->id) { \ next_file_id++; \ goto retry; \ } \ } \ (a) = next_file_id; \ } while(0) /* XXX wrong name; we're looking at version provision tags here, not modules */ typedef TAILQ_HEAD(, modlist) modlisthead_t; struct modlist { TAILQ_ENTRY(modlist) link; /* chain together all modules */ linker_file_t container; const char *name; int version; }; typedef struct modlist *modlist_t; static modlisthead_t found_modules; static int linker_file_add_dependency(linker_file_t file, linker_file_t dep); static caddr_t linker_file_lookup_symbol_internal(linker_file_t file, const char* name, int deps); static int linker_load_module(const char *kldname, const char *modname, struct linker_file *parent, const struct mod_depend *verinfo, struct linker_file **lfpp); static modlist_t modlist_lookup2(const char *name, const struct mod_depend *verinfo); static void linker_init(void *arg) { sx_init(&kld_sx, "kernel linker"); TAILQ_INIT(&classes); TAILQ_INIT(&linker_files); } SYSINIT(linker, SI_SUB_KLD, SI_ORDER_FIRST, linker_init, 0); static void linker_stop_class_add(void *arg) { linker_no_more_classes = 1; } SYSINIT(linker_class, SI_SUB_KLD, SI_ORDER_ANY, linker_stop_class_add, NULL); int linker_add_class(linker_class_t lc) { /* * We disallow any class registration past SI_ORDER_ANY * of SI_SUB_KLD. We bump the reference count to keep the * ops from being freed. */ if (linker_no_more_classes == 1) return (EPERM); kobj_class_compile((kobj_class_t) lc); ((kobj_class_t)lc)->refs++; /* XXX: kobj_mtx */ TAILQ_INSERT_TAIL(&classes, lc, link); return (0); } static void linker_file_sysinit(linker_file_t lf) { struct sysinit **start, **stop, **sipp, **xipp, *save; KLD_DPF(FILE, ("linker_file_sysinit: calling SYSINITs for %s\n", lf->filename)); sx_assert(&kld_sx, SA_XLOCKED); if (linker_file_lookup_set(lf, "sysinit_set", &start, &stop, NULL) != 0) return; /* * Perform a bubble sort of the system initialization objects by * their subsystem (primary key) and order (secondary key). * * Since some things care about execution order, this is the operation * which ensures continued function. */ for (sipp = start; sipp < stop; sipp++) { for (xipp = sipp + 1; xipp < stop; xipp++) { if ((*sipp)->subsystem < (*xipp)->subsystem || ((*sipp)->subsystem == (*xipp)->subsystem && (*sipp)->order <= (*xipp)->order)) continue; /* skip */ save = *sipp; *sipp = *xipp; *xipp = save; } } /* * Traverse the (now) ordered list of system initialization tasks. * Perform each task, and continue on to the next task. */ sx_xunlock(&kld_sx); mtx_lock(&Giant); for (sipp = start; sipp < stop; sipp++) { if ((*sipp)->subsystem == SI_SUB_DUMMY) continue; /* skip dummy task(s) */ /* Call function */ (*((*sipp)->func)) ((*sipp)->udata); } mtx_unlock(&Giant); sx_xlock(&kld_sx); } static void linker_file_sysuninit(linker_file_t lf) { struct sysinit **start, **stop, **sipp, **xipp, *save; KLD_DPF(FILE, ("linker_file_sysuninit: calling SYSUNINITs for %s\n", lf->filename)); sx_assert(&kld_sx, SA_XLOCKED); if (linker_file_lookup_set(lf, "sysuninit_set", &start, &stop, NULL) != 0) return; /* * Perform a reverse bubble sort of the system initialization objects * by their subsystem (primary key) and order (secondary key). * * Since some things care about execution order, this is the operation * which ensures continued function. */ for (sipp = start; sipp < stop; sipp++) { for (xipp = sipp + 1; xipp < stop; xipp++) { if ((*sipp)->subsystem > (*xipp)->subsystem || ((*sipp)->subsystem == (*xipp)->subsystem && (*sipp)->order >= (*xipp)->order)) continue; /* skip */ save = *sipp; *sipp = *xipp; *xipp = save; } } /* * Traverse the (now) ordered list of system initialization tasks. * Perform each task, and continue on to the next task. */ sx_xunlock(&kld_sx); mtx_lock(&Giant); for (sipp = start; sipp < stop; sipp++) { if ((*sipp)->subsystem == SI_SUB_DUMMY) continue; /* skip dummy task(s) */ /* Call function */ (*((*sipp)->func)) ((*sipp)->udata); } mtx_unlock(&Giant); sx_xlock(&kld_sx); } static void linker_file_register_sysctls(linker_file_t lf) { struct sysctl_oid **start, **stop, **oidp; KLD_DPF(FILE, ("linker_file_register_sysctls: registering SYSCTLs for %s\n", lf->filename)); sx_assert(&kld_sx, SA_XLOCKED); if (linker_file_lookup_set(lf, "sysctl_set", &start, &stop, NULL) != 0) return; sx_xunlock(&kld_sx); - sysctl_wlock(); + sysctl_xlock(); for (oidp = start; oidp < stop; oidp++) sysctl_register_oid(*oidp); - sysctl_wunlock(); + sysctl_xunlock(); sx_xlock(&kld_sx); } static void linker_file_unregister_sysctls(linker_file_t lf) { struct sysctl_oid **start, **stop, **oidp; KLD_DPF(FILE, ("linker_file_unregister_sysctls: unregistering SYSCTLs" " for %s\n", lf->filename)); sx_assert(&kld_sx, SA_XLOCKED); if (linker_file_lookup_set(lf, "sysctl_set", &start, &stop, NULL) != 0) return; sx_xunlock(&kld_sx); - sysctl_wlock(); + sysctl_xlock(); for (oidp = start; oidp < stop; oidp++) sysctl_unregister_oid(*oidp); - sysctl_wunlock(); + sysctl_xunlock(); sx_xlock(&kld_sx); } static int linker_file_register_modules(linker_file_t lf) { struct mod_metadata **start, **stop, **mdp; const moduledata_t *moddata; int first_error, error; KLD_DPF(FILE, ("linker_file_register_modules: registering modules" " in %s\n", lf->filename)); sx_assert(&kld_sx, SA_XLOCKED); if (linker_file_lookup_set(lf, "modmetadata_set", &start, &stop, NULL) != 0) { /* * This fallback should be unnecessary, but if we get booted * from boot2 instead of loader and we are missing our * metadata then we have to try the best we can. */ if (lf == linker_kernel_file) { start = SET_BEGIN(modmetadata_set); stop = SET_LIMIT(modmetadata_set); } else return (0); } first_error = 0; for (mdp = start; mdp < stop; mdp++) { if ((*mdp)->md_type != MDT_MODULE) continue; moddata = (*mdp)->md_data; KLD_DPF(FILE, ("Registering module %s in %s\n", moddata->name, lf->filename)); error = module_register(moddata, lf); if (error) { printf("Module %s failed to register: %d\n", moddata->name, error); if (first_error == 0) first_error = error; } } return (first_error); } static void linker_init_kernel_modules(void) { sx_xlock(&kld_sx); linker_file_register_modules(linker_kernel_file); sx_xunlock(&kld_sx); } SYSINIT(linker_kernel, SI_SUB_KLD, SI_ORDER_ANY, linker_init_kernel_modules, 0); static int linker_load_file(const char *filename, linker_file_t *result) { linker_class_t lc; linker_file_t lf; int foundfile, error, modules; /* Refuse to load modules if securelevel raised */ if (prison0.pr_securelevel > 0) return (EPERM); sx_assert(&kld_sx, SA_XLOCKED); lf = linker_find_file_by_name(filename); if (lf) { KLD_DPF(FILE, ("linker_load_file: file %s is already loaded," " incrementing refs\n", filename)); *result = lf; lf->refs++; return (0); } foundfile = 0; error = 0; /* * We do not need to protect (lock) classes here because there is * no class registration past startup (SI_SUB_KLD, SI_ORDER_ANY) * and there is no class deregistration mechanism at this time. */ TAILQ_FOREACH(lc, &classes, link) { KLD_DPF(FILE, ("linker_load_file: trying to load %s\n", filename)); error = LINKER_LOAD_FILE(lc, filename, &lf); /* * If we got something other than ENOENT, then it exists but * we cannot load it for some other reason. */ if (error != ENOENT) foundfile = 1; if (lf) { error = linker_file_register_modules(lf); if (error == EEXIST) { linker_file_unload(lf, LINKER_UNLOAD_FORCE); return (error); } modules = !TAILQ_EMPTY(&lf->modules); linker_file_register_sysctls(lf); linker_file_sysinit(lf); lf->flags |= LINKER_FILE_LINKED; /* * If all of the modules in this file failed * to load, unload the file and return an * error of ENOEXEC. */ if (modules && TAILQ_EMPTY(&lf->modules)) { linker_file_unload(lf, LINKER_UNLOAD_FORCE); return (ENOEXEC); } EVENTHANDLER_INVOKE(kld_load, lf); *result = lf; return (0); } } /* * Less than ideal, but tells the user whether it failed to load or * the module was not found. */ if (foundfile) { /* * If the file type has not been recognized by the last try * printout a message before to fail. */ if (error == ENOSYS) printf("linker_load_file: Unsupported file type\n"); /* * Format not recognized or otherwise unloadable. * When loading a module that is statically built into * the kernel EEXIST percolates back up as the return * value. Preserve this so that apps like sysinstall * can recognize this special case and not post bogus * dialog boxes. */ if (error != EEXIST) error = ENOEXEC; } else error = ENOENT; /* Nothing found */ return (error); } int linker_reference_module(const char *modname, struct mod_depend *verinfo, linker_file_t *result) { modlist_t mod; int error; sx_xlock(&kld_sx); if ((mod = modlist_lookup2(modname, verinfo)) != NULL) { *result = mod->container; (*result)->refs++; sx_xunlock(&kld_sx); return (0); } error = linker_load_module(NULL, modname, NULL, verinfo, result); sx_xunlock(&kld_sx); return (error); } int linker_release_module(const char *modname, struct mod_depend *verinfo, linker_file_t lf) { modlist_t mod; int error; sx_xlock(&kld_sx); if (lf == NULL) { KASSERT(modname != NULL, ("linker_release_module: no file or name")); mod = modlist_lookup2(modname, verinfo); if (mod == NULL) { sx_xunlock(&kld_sx); return (ESRCH); } lf = mod->container; } else KASSERT(modname == NULL && verinfo == NULL, ("linker_release_module: both file and name")); error = linker_file_unload(lf, LINKER_UNLOAD_NORMAL); sx_xunlock(&kld_sx); return (error); } static linker_file_t linker_find_file_by_name(const char *filename) { linker_file_t lf; char *koname; koname = malloc(strlen(filename) + 4, M_LINKER, M_WAITOK); sprintf(koname, "%s.ko", filename); sx_assert(&kld_sx, SA_XLOCKED); TAILQ_FOREACH(lf, &linker_files, link) { if (strcmp(lf->filename, koname) == 0) break; if (strcmp(lf->filename, filename) == 0) break; } free(koname, M_LINKER); return (lf); } static linker_file_t linker_find_file_by_id(int fileid) { linker_file_t lf; sx_assert(&kld_sx, SA_XLOCKED); TAILQ_FOREACH(lf, &linker_files, link) if (lf->id == fileid && lf->flags & LINKER_FILE_LINKED) break; return (lf); } int linker_file_foreach(linker_predicate_t *predicate, void *context) { linker_file_t lf; int retval = 0; sx_xlock(&kld_sx); TAILQ_FOREACH(lf, &linker_files, link) { retval = predicate(lf, context); if (retval != 0) break; } sx_xunlock(&kld_sx); return (retval); } linker_file_t linker_make_file(const char *pathname, linker_class_t lc) { linker_file_t lf; const char *filename; if (!cold) sx_assert(&kld_sx, SA_XLOCKED); filename = linker_basename(pathname); KLD_DPF(FILE, ("linker_make_file: new file, filename='%s' for pathname='%s'\n", filename, pathname)); lf = (linker_file_t)kobj_create((kobj_class_t)lc, M_LINKER, M_WAITOK); if (lf == NULL) return (NULL); lf->ctors_addr = 0; lf->ctors_size = 0; lf->refs = 1; lf->userrefs = 0; lf->flags = 0; lf->filename = strdup(filename, M_LINKER); lf->pathname = strdup(pathname, M_LINKER); LINKER_GET_NEXT_FILE_ID(lf->id); lf->ndeps = 0; lf->deps = NULL; lf->loadcnt = ++loadcnt; STAILQ_INIT(&lf->common); TAILQ_INIT(&lf->modules); TAILQ_INSERT_TAIL(&linker_files, lf, link); return (lf); } int linker_file_unload(linker_file_t file, int flags) { module_t mod, next; modlist_t ml, nextml; struct common_symbol *cp; int error, i; /* Refuse to unload modules if securelevel raised. */ if (prison0.pr_securelevel > 0) return (EPERM); sx_assert(&kld_sx, SA_XLOCKED); KLD_DPF(FILE, ("linker_file_unload: lf->refs=%d\n", file->refs)); /* Easy case of just dropping a reference. */ if (file->refs > 1) { file->refs--; return (0); } /* Give eventhandlers a chance to prevent the unload. */ error = 0; EVENTHANDLER_INVOKE(kld_unload_try, file, &error); if (error != 0) return (EBUSY); KLD_DPF(FILE, ("linker_file_unload: file is unloading," " informing modules\n")); /* * Quiesce all the modules to give them a chance to veto the unload. */ MOD_SLOCK; for (mod = TAILQ_FIRST(&file->modules); mod; mod = module_getfnext(mod)) { error = module_quiesce(mod); if (error != 0 && flags != LINKER_UNLOAD_FORCE) { KLD_DPF(FILE, ("linker_file_unload: module %s" " vetoed unload\n", module_getname(mod))); /* * XXX: Do we need to tell all the quiesced modules * that they can resume work now via a new module * event? */ MOD_SUNLOCK; return (error); } } MOD_SUNLOCK; /* * Inform any modules associated with this file that they are * being unloaded. */ MOD_XLOCK; for (mod = TAILQ_FIRST(&file->modules); mod; mod = next) { next = module_getfnext(mod); MOD_XUNLOCK; /* * Give the module a chance to veto the unload. */ if ((error = module_unload(mod)) != 0) { #ifdef KLD_DEBUG MOD_SLOCK; KLD_DPF(FILE, ("linker_file_unload: module %s" " failed unload\n", module_getname(mod))); MOD_SUNLOCK; #endif return (error); } MOD_XLOCK; module_release(mod); } MOD_XUNLOCK; TAILQ_FOREACH_SAFE(ml, &found_modules, link, nextml) { if (ml->container == file) { TAILQ_REMOVE(&found_modules, ml, link); free(ml, M_LINKER); } } /* * Don't try to run SYSUNINITs if we are unloaded due to a * link error. */ if (file->flags & LINKER_FILE_LINKED) { file->flags &= ~LINKER_FILE_LINKED; linker_file_sysuninit(file); linker_file_unregister_sysctls(file); } TAILQ_REMOVE(&linker_files, file, link); if (file->deps) { for (i = 0; i < file->ndeps; i++) linker_file_unload(file->deps[i], flags); free(file->deps, M_LINKER); file->deps = NULL; } while ((cp = STAILQ_FIRST(&file->common)) != NULL) { STAILQ_REMOVE_HEAD(&file->common, link); free(cp, M_LINKER); } LINKER_UNLOAD(file); EVENTHANDLER_INVOKE(kld_unload, file->filename, file->address, file->size); if (file->filename) { free(file->filename, M_LINKER); file->filename = NULL; } if (file->pathname) { free(file->pathname, M_LINKER); file->pathname = NULL; } kobj_delete((kobj_t) file, M_LINKER); return (0); } int linker_ctf_get(linker_file_t file, linker_ctf_t *lc) { return (LINKER_CTF_GET(file, lc)); } static int linker_file_add_dependency(linker_file_t file, linker_file_t dep) { linker_file_t *newdeps; sx_assert(&kld_sx, SA_XLOCKED); file->deps = realloc(file->deps, (file->ndeps + 1) * sizeof(*newdeps), M_LINKER, M_WAITOK | M_ZERO); file->deps[file->ndeps] = dep; file->ndeps++; KLD_DPF(FILE, ("linker_file_add_dependency:" " adding %s as dependency for %s\n", dep->filename, file->filename)); return (0); } /* * Locate a linker set and its contents. This is a helper function to avoid * linker_if.h exposure elsewhere. Note: firstp and lastp are really void **. * This function is used in this file so we can avoid having lots of (void **) * casts. */ int linker_file_lookup_set(linker_file_t file, const char *name, void *firstp, void *lastp, int *countp) { sx_assert(&kld_sx, SA_LOCKED); return (LINKER_LOOKUP_SET(file, name, firstp, lastp, countp)); } /* * List all functions in a file. */ int linker_file_function_listall(linker_file_t lf, linker_function_nameval_callback_t callback_func, void *arg) { return (LINKER_EACH_FUNCTION_NAMEVAL(lf, callback_func, arg)); } caddr_t linker_file_lookup_symbol(linker_file_t file, const char *name, int deps) { caddr_t sym; int locked; locked = sx_xlocked(&kld_sx); if (!locked) sx_xlock(&kld_sx); sym = linker_file_lookup_symbol_internal(file, name, deps); if (!locked) sx_xunlock(&kld_sx); return (sym); } static caddr_t linker_file_lookup_symbol_internal(linker_file_t file, const char *name, int deps) { c_linker_sym_t sym; linker_symval_t symval; caddr_t address; size_t common_size = 0; int i; sx_assert(&kld_sx, SA_XLOCKED); KLD_DPF(SYM, ("linker_file_lookup_symbol: file=%p, name=%s, deps=%d\n", file, name, deps)); if (LINKER_LOOKUP_SYMBOL(file, name, &sym) == 0) { LINKER_SYMBOL_VALUES(file, sym, &symval); if (symval.value == 0) /* * For commons, first look them up in the * dependencies and only allocate space if not found * there. */ common_size = symval.size; else { KLD_DPF(SYM, ("linker_file_lookup_symbol: symbol" ".value=%p\n", symval.value)); return (symval.value); } } if (deps) { for (i = 0; i < file->ndeps; i++) { address = linker_file_lookup_symbol_internal( file->deps[i], name, 0); if (address) { KLD_DPF(SYM, ("linker_file_lookup_symbol:" " deps value=%p\n", address)); return (address); } } } if (common_size > 0) { /* * This is a common symbol which was not found in the * dependencies. We maintain a simple common symbol table in * the file object. */ struct common_symbol *cp; STAILQ_FOREACH(cp, &file->common, link) { if (strcmp(cp->name, name) == 0) { KLD_DPF(SYM, ("linker_file_lookup_symbol:" " old common value=%p\n", cp->address)); return (cp->address); } } /* * Round the symbol size up to align. */ common_size = (common_size + sizeof(int) - 1) & -sizeof(int); cp = malloc(sizeof(struct common_symbol) + common_size + strlen(name) + 1, M_LINKER, M_WAITOK | M_ZERO); cp->address = (caddr_t)(cp + 1); cp->name = cp->address + common_size; strcpy(cp->name, name); bzero(cp->address, common_size); STAILQ_INSERT_TAIL(&file->common, cp, link); KLD_DPF(SYM, ("linker_file_lookup_symbol: new common" " value=%p\n", cp->address)); return (cp->address); } KLD_DPF(SYM, ("linker_file_lookup_symbol: fail\n")); return (0); } /* * Both DDB and stack(9) rely on the kernel linker to provide forward and * backward lookup of symbols. However, DDB and sometimes stack(9) need to * do this in a lockfree manner. We provide a set of internal helper * routines to perform these operations without locks, and then wrappers that * optionally lock. * * linker_debug_lookup() is ifdef DDB as currently it's only used by DDB. */ #ifdef DDB static int linker_debug_lookup(const char *symstr, c_linker_sym_t *sym) { linker_file_t lf; TAILQ_FOREACH(lf, &linker_files, link) { if (LINKER_LOOKUP_SYMBOL(lf, symstr, sym) == 0) return (0); } return (ENOENT); } #endif static int linker_debug_search_symbol(caddr_t value, c_linker_sym_t *sym, long *diffp) { linker_file_t lf; c_linker_sym_t best, es; u_long diff, bestdiff, off; best = 0; off = (uintptr_t)value; bestdiff = off; TAILQ_FOREACH(lf, &linker_files, link) { if (LINKER_SEARCH_SYMBOL(lf, value, &es, &diff) != 0) continue; if (es != 0 && diff < bestdiff) { best = es; bestdiff = diff; } if (bestdiff == 0) break; } if (best) { *sym = best; *diffp = bestdiff; return (0); } else { *sym = 0; *diffp = off; return (ENOENT); } } static int linker_debug_symbol_values(c_linker_sym_t sym, linker_symval_t *symval) { linker_file_t lf; TAILQ_FOREACH(lf, &linker_files, link) { if (LINKER_SYMBOL_VALUES(lf, sym, symval) == 0) return (0); } return (ENOENT); } static int linker_debug_search_symbol_name(caddr_t value, char *buf, u_int buflen, long *offset) { linker_symval_t symval; c_linker_sym_t sym; int error; *offset = 0; error = linker_debug_search_symbol(value, &sym, offset); if (error) return (error); error = linker_debug_symbol_values(sym, &symval); if (error) return (error); strlcpy(buf, symval.name, buflen); return (0); } /* * DDB Helpers. DDB has to look across multiple files with their own symbol * tables and string tables. * * Note that we do not obey list locking protocols here. We really don't need * DDB to hang because somebody's got the lock held. We'll take the chance * that the files list is inconsistant instead. */ #ifdef DDB int linker_ddb_lookup(const char *symstr, c_linker_sym_t *sym) { return (linker_debug_lookup(symstr, sym)); } #endif int linker_ddb_search_symbol(caddr_t value, c_linker_sym_t *sym, long *diffp) { return (linker_debug_search_symbol(value, sym, diffp)); } int linker_ddb_symbol_values(c_linker_sym_t sym, linker_symval_t *symval) { return (linker_debug_symbol_values(sym, symval)); } int linker_ddb_search_symbol_name(caddr_t value, char *buf, u_int buflen, long *offset) { return (linker_debug_search_symbol_name(value, buf, buflen, offset)); } /* * stack(9) helper for non-debugging environemnts. Unlike DDB helpers, we do * obey locking protocols, and offer a significantly less complex interface. */ int linker_search_symbol_name(caddr_t value, char *buf, u_int buflen, long *offset) { int error; sx_slock(&kld_sx); error = linker_debug_search_symbol_name(value, buf, buflen, offset); sx_sunlock(&kld_sx); return (error); } /* * Syscalls. */ int kern_kldload(struct thread *td, const char *file, int *fileid) { const char *kldname, *modname; linker_file_t lf; int error; if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); if ((error = priv_check(td, PRIV_KLD_LOAD)) != 0) return (error); /* * It is possible that kldloaded module will attach a new ifnet, * so vnet context must be set when this ocurs. */ CURVNET_SET(TD_TO_VNET(td)); /* * If file does not contain a qualified name or any dot in it * (kldname.ko, or kldname.ver.ko) treat it as an interface * name. */ if (strchr(file, '/') || strchr(file, '.')) { kldname = file; modname = NULL; } else { kldname = NULL; modname = file; } sx_xlock(&kld_sx); error = linker_load_module(kldname, modname, NULL, NULL, &lf); if (error) { sx_xunlock(&kld_sx); goto done; } lf->userrefs++; if (fileid != NULL) *fileid = lf->id; sx_xunlock(&kld_sx); done: CURVNET_RESTORE(); return (error); } int sys_kldload(struct thread *td, struct kldload_args *uap) { char *pathname = NULL; int error, fileid; td->td_retval[0] = -1; pathname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); error = copyinstr(uap->file, pathname, MAXPATHLEN, NULL); if (error == 0) { error = kern_kldload(td, pathname, &fileid); if (error == 0) td->td_retval[0] = fileid; } free(pathname, M_TEMP); return (error); } int kern_kldunload(struct thread *td, int fileid, int flags) { linker_file_t lf; int error = 0; if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); if ((error = priv_check(td, PRIV_KLD_UNLOAD)) != 0) return (error); CURVNET_SET(TD_TO_VNET(td)); sx_xlock(&kld_sx); lf = linker_find_file_by_id(fileid); if (lf) { KLD_DPF(FILE, ("kldunload: lf->userrefs=%d\n", lf->userrefs)); if (lf->userrefs == 0) { /* * XXX: maybe LINKER_UNLOAD_FORCE should override ? */ printf("kldunload: attempt to unload file that was" " loaded by the kernel\n"); error = EBUSY; } else { lf->userrefs--; error = linker_file_unload(lf, flags); if (error) lf->userrefs++; } } else error = ENOENT; sx_xunlock(&kld_sx); CURVNET_RESTORE(); return (error); } int sys_kldunload(struct thread *td, struct kldunload_args *uap) { return (kern_kldunload(td, uap->fileid, LINKER_UNLOAD_NORMAL)); } int sys_kldunloadf(struct thread *td, struct kldunloadf_args *uap) { if (uap->flags != LINKER_UNLOAD_NORMAL && uap->flags != LINKER_UNLOAD_FORCE) return (EINVAL); return (kern_kldunload(td, uap->fileid, uap->flags)); } int sys_kldfind(struct thread *td, struct kldfind_args *uap) { char *pathname; const char *filename; linker_file_t lf; int error; #ifdef MAC error = mac_kld_check_stat(td->td_ucred); if (error) return (error); #endif td->td_retval[0] = -1; pathname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); if ((error = copyinstr(uap->file, pathname, MAXPATHLEN, NULL)) != 0) goto out; filename = linker_basename(pathname); sx_xlock(&kld_sx); lf = linker_find_file_by_name(filename); if (lf) td->td_retval[0] = lf->id; else error = ENOENT; sx_xunlock(&kld_sx); out: free(pathname, M_TEMP); return (error); } int sys_kldnext(struct thread *td, struct kldnext_args *uap) { linker_file_t lf; int error = 0; #ifdef MAC error = mac_kld_check_stat(td->td_ucred); if (error) return (error); #endif sx_xlock(&kld_sx); if (uap->fileid == 0) lf = TAILQ_FIRST(&linker_files); else { lf = linker_find_file_by_id(uap->fileid); if (lf == NULL) { error = ENOENT; goto out; } lf = TAILQ_NEXT(lf, link); } /* Skip partially loaded files. */ while (lf != NULL && !(lf->flags & LINKER_FILE_LINKED)) lf = TAILQ_NEXT(lf, link); if (lf) td->td_retval[0] = lf->id; else td->td_retval[0] = 0; out: sx_xunlock(&kld_sx); return (error); } int sys_kldstat(struct thread *td, struct kldstat_args *uap) { struct kld_file_stat stat; int error, version; /* * Check the version of the user's structure. */ if ((error = copyin(&uap->stat->version, &version, sizeof(version))) != 0) return (error); if (version != sizeof(struct kld_file_stat_1) && version != sizeof(struct kld_file_stat)) return (EINVAL); error = kern_kldstat(td, uap->fileid, &stat); if (error != 0) return (error); return (copyout(&stat, uap->stat, version)); } int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat) { linker_file_t lf; int namelen; #ifdef MAC int error; error = mac_kld_check_stat(td->td_ucred); if (error) return (error); #endif sx_xlock(&kld_sx); lf = linker_find_file_by_id(fileid); if (lf == NULL) { sx_xunlock(&kld_sx); return (ENOENT); } /* Version 1 fields: */ namelen = strlen(lf->filename) + 1; if (namelen > MAXPATHLEN) namelen = MAXPATHLEN; bcopy(lf->filename, &stat->name[0], namelen); stat->refs = lf->refs; stat->id = lf->id; stat->address = lf->address; stat->size = lf->size; /* Version 2 fields: */ namelen = strlen(lf->pathname) + 1; if (namelen > MAXPATHLEN) namelen = MAXPATHLEN; bcopy(lf->pathname, &stat->pathname[0], namelen); sx_xunlock(&kld_sx); td->td_retval[0] = 0; return (0); } int sys_kldfirstmod(struct thread *td, struct kldfirstmod_args *uap) { linker_file_t lf; module_t mp; int error = 0; #ifdef MAC error = mac_kld_check_stat(td->td_ucred); if (error) return (error); #endif sx_xlock(&kld_sx); lf = linker_find_file_by_id(uap->fileid); if (lf) { MOD_SLOCK; mp = TAILQ_FIRST(&lf->modules); if (mp != NULL) td->td_retval[0] = module_getid(mp); else td->td_retval[0] = 0; MOD_SUNLOCK; } else error = ENOENT; sx_xunlock(&kld_sx); return (error); } int sys_kldsym(struct thread *td, struct kldsym_args *uap) { char *symstr = NULL; c_linker_sym_t sym; linker_symval_t symval; linker_file_t lf; struct kld_sym_lookup lookup; int error = 0; #ifdef MAC error = mac_kld_check_stat(td->td_ucred); if (error) return (error); #endif if ((error = copyin(uap->data, &lookup, sizeof(lookup))) != 0) return (error); if (lookup.version != sizeof(lookup) || uap->cmd != KLDSYM_LOOKUP) return (EINVAL); symstr = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); if ((error = copyinstr(lookup.symname, symstr, MAXPATHLEN, NULL)) != 0) goto out; sx_xlock(&kld_sx); if (uap->fileid != 0) { lf = linker_find_file_by_id(uap->fileid); if (lf == NULL) error = ENOENT; else if (LINKER_LOOKUP_SYMBOL(lf, symstr, &sym) == 0 && LINKER_SYMBOL_VALUES(lf, sym, &symval) == 0) { lookup.symvalue = (uintptr_t) symval.value; lookup.symsize = symval.size; error = copyout(&lookup, uap->data, sizeof(lookup)); } else error = ENOENT; } else { TAILQ_FOREACH(lf, &linker_files, link) { if (LINKER_LOOKUP_SYMBOL(lf, symstr, &sym) == 0 && LINKER_SYMBOL_VALUES(lf, sym, &symval) == 0) { lookup.symvalue = (uintptr_t)symval.value; lookup.symsize = symval.size; error = copyout(&lookup, uap->data, sizeof(lookup)); break; } } if (lf == NULL) error = ENOENT; } sx_xunlock(&kld_sx); out: free(symstr, M_TEMP); return (error); } /* * Preloaded module support */ static modlist_t modlist_lookup(const char *name, int ver) { modlist_t mod; TAILQ_FOREACH(mod, &found_modules, link) { if (strcmp(mod->name, name) == 0 && (ver == 0 || mod->version == ver)) return (mod); } return (NULL); } static modlist_t modlist_lookup2(const char *name, const struct mod_depend *verinfo) { modlist_t mod, bestmod; int ver; if (verinfo == NULL) return (modlist_lookup(name, 0)); bestmod = NULL; TAILQ_FOREACH(mod, &found_modules, link) { if (strcmp(mod->name, name) != 0) continue; ver = mod->version; if (ver == verinfo->md_ver_preferred) return (mod); if (ver >= verinfo->md_ver_minimum && ver <= verinfo->md_ver_maximum && (bestmod == NULL || ver > bestmod->version)) bestmod = mod; } return (bestmod); } static modlist_t modlist_newmodule(const char *modname, int version, linker_file_t container) { modlist_t mod; mod = malloc(sizeof(struct modlist), M_LINKER, M_NOWAIT | M_ZERO); if (mod == NULL) panic("no memory for module list"); mod->container = container; mod->name = modname; mod->version = version; TAILQ_INSERT_TAIL(&found_modules, mod, link); return (mod); } static void linker_addmodules(linker_file_t lf, struct mod_metadata **start, struct mod_metadata **stop, int preload) { struct mod_metadata *mp, **mdp; const char *modname; int ver; for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_VERSION) continue; modname = mp->md_cval; ver = ((struct mod_version *)mp->md_data)->mv_version; if (modlist_lookup(modname, ver) != NULL) { printf("module %s already present!\n", modname); /* XXX what can we do? this is a build error. :-( */ continue; } modlist_newmodule(modname, ver, lf); } } static void linker_preload(void *arg) { caddr_t modptr; const char *modname, *nmodname; char *modtype; linker_file_t lf, nlf; linker_class_t lc; int error; linker_file_list_t loaded_files; linker_file_list_t depended_files; struct mod_metadata *mp, *nmp; struct mod_metadata **start, **stop, **mdp, **nmdp; const struct mod_depend *verinfo; int nver; int resolves; modlist_t mod; struct sysinit **si_start, **si_stop; TAILQ_INIT(&loaded_files); TAILQ_INIT(&depended_files); TAILQ_INIT(&found_modules); error = 0; modptr = NULL; sx_xlock(&kld_sx); while ((modptr = preload_search_next_name(modptr)) != NULL) { modname = (char *)preload_search_info(modptr, MODINFO_NAME); modtype = (char *)preload_search_info(modptr, MODINFO_TYPE); if (modname == NULL) { printf("Preloaded module at %p does not have a" " name!\n", modptr); continue; } if (modtype == NULL) { printf("Preloaded module at %p does not have a type!\n", modptr); continue; } if (bootverbose) printf("Preloaded %s \"%s\" at %p.\n", modtype, modname, modptr); lf = NULL; TAILQ_FOREACH(lc, &classes, link) { error = LINKER_LINK_PRELOAD(lc, modname, &lf); if (!error) break; lf = NULL; } if (lf) TAILQ_INSERT_TAIL(&loaded_files, lf, loaded); } /* * First get a list of stuff in the kernel. */ if (linker_file_lookup_set(linker_kernel_file, MDT_SETNAME, &start, &stop, NULL) == 0) linker_addmodules(linker_kernel_file, start, stop, 1); /* * This is a once-off kinky bubble sort to resolve relocation * dependency requirements. */ restart: TAILQ_FOREACH(lf, &loaded_files, loaded) { error = linker_file_lookup_set(lf, MDT_SETNAME, &start, &stop, NULL); /* * First, look to see if we would successfully link with this * stuff. */ resolves = 1; /* unless we know otherwise */ if (!error) { for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_DEPEND) continue; modname = mp->md_cval; verinfo = mp->md_data; for (nmdp = start; nmdp < stop; nmdp++) { nmp = *nmdp; if (nmp->md_type != MDT_VERSION) continue; nmodname = nmp->md_cval; if (strcmp(modname, nmodname) == 0) break; } if (nmdp < stop) /* it's a self reference */ continue; /* * ok, the module isn't here yet, we * are not finished */ if (modlist_lookup2(modname, verinfo) == NULL) resolves = 0; } } /* * OK, if we found our modules, we can link. So, "provide" * the modules inside and add it to the end of the link order * list. */ if (resolves) { if (!error) { for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_VERSION) continue; modname = mp->md_cval; nver = ((struct mod_version *) mp->md_data)->mv_version; if (modlist_lookup(modname, nver) != NULL) { printf("module %s already" " present!\n", modname); TAILQ_REMOVE(&loaded_files, lf, loaded); linker_file_unload(lf, LINKER_UNLOAD_FORCE); /* we changed tailq next ptr */ goto restart; } modlist_newmodule(modname, nver, lf); } } TAILQ_REMOVE(&loaded_files, lf, loaded); TAILQ_INSERT_TAIL(&depended_files, lf, loaded); /* * Since we provided modules, we need to restart the * sort so that the previous files that depend on us * have a chance. Also, we've busted the tailq next * pointer with the REMOVE. */ goto restart; } } /* * At this point, we check to see what could not be resolved.. */ while ((lf = TAILQ_FIRST(&loaded_files)) != NULL) { TAILQ_REMOVE(&loaded_files, lf, loaded); printf("KLD file %s is missing dependencies\n", lf->filename); linker_file_unload(lf, LINKER_UNLOAD_FORCE); } /* * We made it. Finish off the linking in the order we determined. */ TAILQ_FOREACH_SAFE(lf, &depended_files, loaded, nlf) { if (linker_kernel_file) { linker_kernel_file->refs++; error = linker_file_add_dependency(lf, linker_kernel_file); if (error) panic("cannot add dependency"); } lf->userrefs++; /* so we can (try to) kldunload it */ error = linker_file_lookup_set(lf, MDT_SETNAME, &start, &stop, NULL); if (!error) { for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_DEPEND) continue; modname = mp->md_cval; verinfo = mp->md_data; mod = modlist_lookup2(modname, verinfo); if (mod == NULL) { printf("KLD file %s - cannot find " "dependency \"%s\"\n", lf->filename, modname); goto fail; } /* Don't count self-dependencies */ if (lf == mod->container) continue; mod->container->refs++; error = linker_file_add_dependency(lf, mod->container); if (error) panic("cannot add dependency"); } } /* * Now do relocation etc using the symbol search paths * established by the dependencies */ error = LINKER_LINK_PRELOAD_FINISH(lf); if (error) { printf("KLD file %s - could not finalize loading\n", lf->filename); goto fail; } linker_file_register_modules(lf); if (linker_file_lookup_set(lf, "sysinit_set", &si_start, &si_stop, NULL) == 0) sysinit_add(si_start, si_stop); linker_file_register_sysctls(lf); lf->flags |= LINKER_FILE_LINKED; continue; fail: TAILQ_REMOVE(&depended_files, lf, loaded); linker_file_unload(lf, LINKER_UNLOAD_FORCE); } sx_xunlock(&kld_sx); /* woohoo! we made it! */ } SYSINIT(preload, SI_SUB_KLD, SI_ORDER_MIDDLE, linker_preload, 0); /* * Search for a not-loaded module by name. * * Modules may be found in the following locations: * * - preloaded (result is just the module name) - on disk (result is full path * to module) * * If the module name is qualified in any way (contains path, etc.) the we * simply return a copy of it. * * The search path can be manipulated via sysctl. Note that we use the ';' * character as a separator to be consistent with the bootloader. */ static char linker_hintfile[] = "linker.hints"; static char linker_path[MAXPATHLEN] = "/boot/kernel;/boot/modules"; SYSCTL_STRING(_kern, OID_AUTO, module_path, CTLFLAG_RWTUN, linker_path, sizeof(linker_path), "module load search path"); TUNABLE_STR("module_path", linker_path, sizeof(linker_path)); static char *linker_ext_list[] = { "", ".ko", NULL }; /* * Check if file actually exists either with or without extension listed in * the linker_ext_list. (probably should be generic for the rest of the * kernel) */ static char * linker_lookup_file(const char *path, int pathlen, const char *name, int namelen, struct vattr *vap) { struct nameidata nd; struct thread *td = curthread; /* XXX */ char *result, **cpp, *sep; int error, len, extlen, reclen, flags; enum vtype type; extlen = 0; for (cpp = linker_ext_list; *cpp; cpp++) { len = strlen(*cpp); if (len > extlen) extlen = len; } extlen++; /* trailing '\0' */ sep = (path[pathlen - 1] != '/') ? "/" : ""; reclen = pathlen + strlen(sep) + namelen + extlen + 1; result = malloc(reclen, M_LINKER, M_WAITOK); for (cpp = linker_ext_list; *cpp; cpp++) { snprintf(result, reclen, "%.*s%s%.*s%s", pathlen, path, sep, namelen, name, *cpp); /* * Attempt to open the file, and return the path if * we succeed and it's a regular file. */ NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, result, td); flags = FREAD; error = vn_open(&nd, &flags, 0, NULL); if (error == 0) { NDFREE(&nd, NDF_ONLY_PNBUF); type = nd.ni_vp->v_type; if (vap) VOP_GETATTR(nd.ni_vp, vap, td->td_ucred); VOP_UNLOCK(nd.ni_vp, 0); vn_close(nd.ni_vp, FREAD, td->td_ucred, td); if (type == VREG) return (result); } } free(result, M_LINKER); return (NULL); } #define INT_ALIGN(base, ptr) ptr = \ (base) + (((ptr) - (base) + sizeof(int) - 1) & ~(sizeof(int) - 1)) /* * Lookup KLD which contains requested module in the "linker.hints" file. If * version specification is available, then try to find the best KLD. * Otherwise just find the latest one. */ static char * linker_hints_lookup(const char *path, int pathlen, const char *modname, int modnamelen, const struct mod_depend *verinfo) { struct thread *td = curthread; /* XXX */ struct ucred *cred = td ? td->td_ucred : NULL; struct nameidata nd; struct vattr vattr, mattr; u_char *hints = NULL; u_char *cp, *recptr, *bufend, *result, *best, *pathbuf, *sep; int error, ival, bestver, *intp, found, flags, clen, blen; ssize_t reclen; result = NULL; bestver = found = 0; sep = (path[pathlen - 1] != '/') ? "/" : ""; reclen = imax(modnamelen, strlen(linker_hintfile)) + pathlen + strlen(sep) + 1; pathbuf = malloc(reclen, M_LINKER, M_WAITOK); snprintf(pathbuf, reclen, "%.*s%s%s", pathlen, path, sep, linker_hintfile); NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, pathbuf, td); flags = FREAD; error = vn_open(&nd, &flags, 0, NULL); if (error) goto bad; NDFREE(&nd, NDF_ONLY_PNBUF); if (nd.ni_vp->v_type != VREG) goto bad; best = cp = NULL; error = VOP_GETATTR(nd.ni_vp, &vattr, cred); if (error) goto bad; /* * XXX: we need to limit this number to some reasonable value */ if (vattr.va_size > LINKER_HINTS_MAX) { printf("hints file too large %ld\n", (long)vattr.va_size); goto bad; } hints = malloc(vattr.va_size, M_TEMP, M_WAITOK); if (hints == NULL) goto bad; error = vn_rdwr(UIO_READ, nd.ni_vp, (caddr_t)hints, vattr.va_size, 0, UIO_SYSSPACE, IO_NODELOCKED, cred, NOCRED, &reclen, td); if (error) goto bad; VOP_UNLOCK(nd.ni_vp, 0); vn_close(nd.ni_vp, FREAD, cred, td); nd.ni_vp = NULL; if (reclen != 0) { printf("can't read %zd\n", reclen); goto bad; } intp = (int *)hints; ival = *intp++; if (ival != LINKER_HINTS_VERSION) { printf("hints file version mismatch %d\n", ival); goto bad; } bufend = hints + vattr.va_size; recptr = (u_char *)intp; clen = blen = 0; while (recptr < bufend && !found) { intp = (int *)recptr; reclen = *intp++; ival = *intp++; cp = (char *)intp; switch (ival) { case MDT_VERSION: clen = *cp++; if (clen != modnamelen || bcmp(cp, modname, clen) != 0) break; cp += clen; INT_ALIGN(hints, cp); ival = *(int *)cp; cp += sizeof(int); clen = *cp++; if (verinfo == NULL || ival == verinfo->md_ver_preferred) { found = 1; break; } if (ival >= verinfo->md_ver_minimum && ival <= verinfo->md_ver_maximum && ival > bestver) { bestver = ival; best = cp; blen = clen; } break; default: break; } recptr += reclen + sizeof(int); } /* * Finally check if KLD is in the place */ if (found) result = linker_lookup_file(path, pathlen, cp, clen, &mattr); else if (best) result = linker_lookup_file(path, pathlen, best, blen, &mattr); /* * KLD is newer than hints file. What we should do now? */ if (result && timespeccmp(&mattr.va_mtime, &vattr.va_mtime, >)) printf("warning: KLD '%s' is newer than the linker.hints" " file\n", result); bad: free(pathbuf, M_LINKER); if (hints) free(hints, M_TEMP); if (nd.ni_vp != NULL) { VOP_UNLOCK(nd.ni_vp, 0); vn_close(nd.ni_vp, FREAD, cred, td); } /* * If nothing found or hints is absent - fallback to the old * way by using "kldname[.ko]" as module name. */ if (!found && !bestver && result == NULL) result = linker_lookup_file(path, pathlen, modname, modnamelen, NULL); return (result); } /* * Lookup KLD which contains requested module in the all directories. */ static char * linker_search_module(const char *modname, int modnamelen, const struct mod_depend *verinfo) { char *cp, *ep, *result; /* * traverse the linker path */ for (cp = linker_path; *cp; cp = ep + 1) { /* find the end of this component */ for (ep = cp; (*ep != 0) && (*ep != ';'); ep++); result = linker_hints_lookup(cp, ep - cp, modname, modnamelen, verinfo); if (result != NULL) return (result); if (*ep == 0) break; } return (NULL); } /* * Search for module in all directories listed in the linker_path. */ static char * linker_search_kld(const char *name) { char *cp, *ep, *result; int len; /* qualified at all? */ if (strchr(name, '/')) return (strdup(name, M_LINKER)); /* traverse the linker path */ len = strlen(name); for (ep = linker_path; *ep; ep++) { cp = ep; /* find the end of this component */ for (; *ep != 0 && *ep != ';'; ep++); result = linker_lookup_file(cp, ep - cp, name, len, NULL); if (result != NULL) return (result); } return (NULL); } static const char * linker_basename(const char *path) { const char *filename; filename = strrchr(path, '/'); if (filename == NULL) return path; if (filename[1]) filename++; return (filename); } #ifdef HWPMC_HOOKS /* * Inform hwpmc about the set of kernel modules currently loaded. */ void * linker_hwpmc_list_objects(void) { linker_file_t lf; struct pmckern_map_in *kobase; int i, nmappings; nmappings = 0; sx_slock(&kld_sx); TAILQ_FOREACH(lf, &linker_files, link) nmappings++; /* Allocate nmappings + 1 entries. */ kobase = malloc((nmappings + 1) * sizeof(struct pmckern_map_in), M_LINKER, M_WAITOK | M_ZERO); i = 0; TAILQ_FOREACH(lf, &linker_files, link) { /* Save the info for this linker file. */ kobase[i].pm_file = lf->filename; kobase[i].pm_address = (uintptr_t)lf->address; i++; } sx_sunlock(&kld_sx); KASSERT(i > 0, ("linker_hpwmc_list_objects: no kernel objects?")); /* The last entry of the malloced area comprises of all zeros. */ KASSERT(kobase[i].pm_file == NULL, ("linker_hwpmc_list_objects: last object not NULL")); return ((void *)kobase); } #endif /* * Find a file which contains given module and load it, if "parent" is not * NULL, register a reference to it. */ static int linker_load_module(const char *kldname, const char *modname, struct linker_file *parent, const struct mod_depend *verinfo, struct linker_file **lfpp) { linker_file_t lfdep; const char *filename; char *pathname; int error; sx_assert(&kld_sx, SA_XLOCKED); if (modname == NULL) { /* * We have to load KLD */ KASSERT(verinfo == NULL, ("linker_load_module: verinfo" " is not NULL")); pathname = linker_search_kld(kldname); } else { if (modlist_lookup2(modname, verinfo) != NULL) return (EEXIST); if (kldname != NULL) pathname = strdup(kldname, M_LINKER); else if (rootvnode == NULL) pathname = NULL; else /* * Need to find a KLD with required module */ pathname = linker_search_module(modname, strlen(modname), verinfo); } if (pathname == NULL) return (ENOENT); /* * Can't load more than one file with the same basename XXX: * Actually it should be possible to have multiple KLDs with * the same basename but different path because they can * provide different versions of the same modules. */ filename = linker_basename(pathname); if (linker_find_file_by_name(filename)) error = EEXIST; else do { error = linker_load_file(pathname, &lfdep); if (error) break; if (modname && verinfo && modlist_lookup2(modname, verinfo) == NULL) { linker_file_unload(lfdep, LINKER_UNLOAD_FORCE); error = ENOENT; break; } if (parent) { error = linker_file_add_dependency(parent, lfdep); if (error) break; } if (lfpp) *lfpp = lfdep; } while (0); free(pathname, M_LINKER); return (error); } /* * This routine is responsible for finding dependencies of userland initiated * kldload(2)'s of files. */ int linker_load_dependencies(linker_file_t lf) { linker_file_t lfdep; struct mod_metadata **start, **stop, **mdp, **nmdp; struct mod_metadata *mp, *nmp; const struct mod_depend *verinfo; modlist_t mod; const char *modname, *nmodname; int ver, error = 0, count; /* * All files are dependant on /kernel. */ sx_assert(&kld_sx, SA_XLOCKED); if (linker_kernel_file) { linker_kernel_file->refs++; error = linker_file_add_dependency(lf, linker_kernel_file); if (error) return (error); } if (linker_file_lookup_set(lf, MDT_SETNAME, &start, &stop, &count) != 0) return (0); for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_VERSION) continue; modname = mp->md_cval; ver = ((struct mod_version *)mp->md_data)->mv_version; mod = modlist_lookup(modname, ver); if (mod != NULL) { printf("interface %s.%d already present in the KLD" " '%s'!\n", modname, ver, mod->container->filename); return (EEXIST); } } for (mdp = start; mdp < stop; mdp++) { mp = *mdp; if (mp->md_type != MDT_DEPEND) continue; modname = mp->md_cval; verinfo = mp->md_data; nmodname = NULL; for (nmdp = start; nmdp < stop; nmdp++) { nmp = *nmdp; if (nmp->md_type != MDT_VERSION) continue; nmodname = nmp->md_cval; if (strcmp(modname, nmodname) == 0) break; } if (nmdp < stop)/* early exit, it's a self reference */ continue; mod = modlist_lookup2(modname, verinfo); if (mod) { /* woohoo, it's loaded already */ lfdep = mod->container; lfdep->refs++; error = linker_file_add_dependency(lf, lfdep); if (error) break; continue; } error = linker_load_module(NULL, modname, lf, verinfo, NULL); if (error) { printf("KLD %s: depends on %s - not available or" " version mismatch\n", lf->filename, modname); break; } } if (error) return (error); linker_addmodules(lf, start, stop, 0); return (error); } static int sysctl_kern_function_list_iterate(const char *name, void *opaque) { struct sysctl_req *req; req = opaque; return (SYSCTL_OUT(req, name, strlen(name) + 1)); } /* * Export a nul-separated, double-nul-terminated list of all function names * in the kernel. */ static int sysctl_kern_function_list(SYSCTL_HANDLER_ARGS) { linker_file_t lf; int error; #ifdef MAC error = mac_kld_check_stat(req->td->td_ucred); if (error) return (error); #endif error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sx_xlock(&kld_sx); TAILQ_FOREACH(lf, &linker_files, link) { error = LINKER_EACH_FUNCTION_NAME(lf, sysctl_kern_function_list_iterate, req); if (error) { sx_xunlock(&kld_sx); return (error); } } sx_xunlock(&kld_sx); return (SYSCTL_OUT(req, "", 1)); } SYSCTL_PROC(_kern, OID_AUTO, function_list, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, sysctl_kern_function_list, "", "kernel function list"); Index: head/sys/kern/kern_sysctl.c =================================================================== --- head/sys/kern/kern_sysctl.c (revision 286093) +++ head/sys/kern/kern_sysctl.c (revision 286094) @@ -1,1848 +1,1850 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Quite extensively rewritten by Poul-Henning Kamp of the FreeBSD * project, to make these variables more userfriendly. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_compat.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include static MALLOC_DEFINE(M_SYSCTL, "sysctl", "sysctl internal magic"); static MALLOC_DEFINE(M_SYSCTLOID, "sysctloid", "sysctl dynamic oids"); static MALLOC_DEFINE(M_SYSCTLTMP, "sysctltmp", "sysctl temp output buffer"); /* * The sysctllock protects the MIB tree. It also protects sysctl * contexts used with dynamic sysctls. The sysctl_register_oid() and * sysctl_unregister_oid() routines require the sysctllock to already - * be held, so the sysctl_wlock() and sysctl_wunlock() routines are + * be held, so the sysctl_xlock() and sysctl_xunlock() routines are * provided for the few places in the kernel which need to use that * API rather than using the dynamic API. Use of the dynamic API is * strongly encouraged for most code. * * The sysctlmemlock is used to limit the amount of user memory wired for * sysctl requests. This is implemented by serializing any userland * sysctl requests larger than a single page via an exclusive lock. */ -static struct rmlock sysctllock; +static struct sx sysctllock; static struct sx sysctlmemlock; -#define SYSCTL_WLOCK() rm_wlock(&sysctllock) -#define SYSCTL_WUNLOCK() rm_wunlock(&sysctllock) -#define SYSCTL_RLOCK(tracker) rm_rlock(&sysctllock, (tracker)) -#define SYSCTL_RUNLOCK(tracker) rm_runlock(&sysctllock, (tracker)) -#define SYSCTL_WLOCKED() rm_wowned(&sysctllock) -#define SYSCTL_ASSERT_LOCKED() rm_assert(&sysctllock, RA_LOCKED) -#define SYSCTL_ASSERT_WLOCKED() rm_assert(&sysctllock, RA_WLOCKED) -#define SYSCTL_ASSERT_RLOCKED() rm_assert(&sysctllock, RA_RLOCKED) -#define SYSCTL_INIT() rm_init_flags(&sysctllock, "sysctl lock", \ - RM_SLEEPABLE) +#define SYSCTL_XLOCK() sx_xlock(&sysctllock) +#define SYSCTL_XUNLOCK() sx_xunlock(&sysctllock) +#define SYSCTL_SLOCK() sx_slock(&sysctllock) +#define SYSCTL_SUNLOCK() sx_sunlock(&sysctllock) +#define SYSCTL_XLOCKED() sx_xlocked(&sysctllock) +#define SYSCTL_ASSERT_LOCKED() sx_assert(&sysctllock, SA_LOCKED) +#define SYSCTL_ASSERT_XLOCKED() sx_assert(&sysctllock, SA_XLOCKED) +#define SYSCTL_ASSERT_SLOCKED() sx_assert(&sysctllock, SA_SLOCKED) +#define SYSCTL_INIT() sx_init(&sysctllock, "sysctl lock") #define SYSCTL_SLEEP(ch, wmesg, timo) \ - rm_sleep(ch, &sysctllock, 0, wmesg, timo) + sx_sleep(ch, &sysctllock, 0, wmesg, timo) static int sysctl_root(SYSCTL_HANDLER_ARGS); /* Root list */ struct sysctl_oid_list sysctl__children = SLIST_HEAD_INITIALIZER(&sysctl__children); static int sysctl_remove_oid_locked(struct sysctl_oid *oidp, int del, int recurse); static int sysctl_old_kernel(struct sysctl_req *, const void *, size_t); static int sysctl_new_kernel(struct sysctl_req *, void *, size_t); +static void +sysctl_lock(bool xlock) +{ + + if (xlock) + SYSCTL_XLOCK(); + else + SYSCTL_SLOCK(); +} + +static bool +sysctl_unlock(void) +{ + bool xlocked; + + xlocked = SYSCTL_XLOCKED(); + if (xlocked) + SYSCTL_XUNLOCK(); + else + SYSCTL_SUNLOCK(); + return (xlocked); +} + static struct sysctl_oid * sysctl_find_oidname(const char *name, struct sysctl_oid_list *list) { struct sysctl_oid *oidp; SYSCTL_ASSERT_LOCKED(); SLIST_FOREACH(oidp, list, oid_link) { if (strcmp(oidp->oid_name, name) == 0) { return (oidp); } } return (NULL); } /* * Initialization of the MIB tree. * * Order by number in each list. */ void -sysctl_wlock(void) +sysctl_xlock(void) { - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); } void -sysctl_wunlock(void) +sysctl_xunlock(void) { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); } static int sysctl_root_handler_locked(struct sysctl_oid *oid, void *arg1, intptr_t arg2, - struct sysctl_req *req, struct rm_priotracker *tracker) + struct sysctl_req *req) { int error; + bool xlocked; if (oid->oid_kind & CTLFLAG_DYN) atomic_add_int(&oid->oid_running, 1); + xlocked = sysctl_unlock(); - if (tracker != NULL) - SYSCTL_RUNLOCK(tracker); - else - SYSCTL_WUNLOCK(); - if (!(oid->oid_kind & CTLFLAG_MPSAFE)) mtx_lock(&Giant); error = oid->oid_handler(oid, arg1, arg2, req); if (!(oid->oid_kind & CTLFLAG_MPSAFE)) mtx_unlock(&Giant); - if (tracker != NULL) - SYSCTL_RLOCK(tracker); - else - SYSCTL_WLOCK(); - + sysctl_lock(xlocked); if (oid->oid_kind & CTLFLAG_DYN) { if (atomic_fetchadd_int(&oid->oid_running, -1) == 1 && (oid->oid_kind & CTLFLAG_DYING) != 0) wakeup(&oid->oid_running); } return (error); } static void sysctl_load_tunable_by_oid_locked(struct sysctl_oid *oidp) { struct sysctl_req req; struct sysctl_oid *curr; char *penv = NULL; char path[64]; ssize_t rem = sizeof(path); ssize_t len; int val_int; long val_long; int64_t val_64; quad_t val_quad; int error; path[--rem] = 0; for (curr = oidp; curr != NULL; curr = SYSCTL_PARENT(curr)) { len = strlen(curr->oid_name); rem -= len; if (curr != oidp) rem -= 1; if (rem < 0) { printf("OID path exceeds %d bytes\n", (int)sizeof(path)); return; } memcpy(path + rem, curr->oid_name, len); if (curr != oidp) path[rem + len] = '.'; } memset(&req, 0, sizeof(req)); req.td = curthread; req.oldfunc = sysctl_old_kernel; req.newfunc = sysctl_new_kernel; req.lock = REQ_UNWIRED; switch (oidp->oid_kind & CTLTYPE) { case CTLTYPE_INT: if (getenv_int(path + rem, &val_int) == 0) return; req.newlen = sizeof(val_int); req.newptr = &val_int; break; case CTLTYPE_UINT: if (getenv_uint(path + rem, (unsigned int *)&val_int) == 0) return; req.newlen = sizeof(val_int); req.newptr = &val_int; break; case CTLTYPE_LONG: if (getenv_long(path + rem, &val_long) == 0) return; req.newlen = sizeof(val_long); req.newptr = &val_long; break; case CTLTYPE_ULONG: if (getenv_ulong(path + rem, (unsigned long *)&val_long) == 0) return; req.newlen = sizeof(val_long); req.newptr = &val_long; break; case CTLTYPE_S64: if (getenv_quad(path + rem, &val_quad) == 0) return; val_64 = val_quad; req.newlen = sizeof(val_64); req.newptr = &val_64; break; case CTLTYPE_U64: /* XXX there is no getenv_uquad() */ if (getenv_quad(path + rem, &val_quad) == 0) return; val_64 = val_quad; req.newlen = sizeof(val_64); req.newptr = &val_64; break; case CTLTYPE_STRING: penv = kern_getenv(path + rem); if (penv == NULL) return; req.newlen = strlen(penv); req.newptr = penv; break; default: return; } error = sysctl_root_handler_locked(oidp, oidp->oid_arg1, - oidp->oid_arg2, &req, NULL); + oidp->oid_arg2, &req); if (error != 0) printf("Setting sysctl %s failed: %d\n", path + rem, error); if (penv != NULL) freeenv(penv); } void sysctl_register_oid(struct sysctl_oid *oidp) { struct sysctl_oid_list *parent = oidp->oid_parent; struct sysctl_oid *p; struct sysctl_oid *q; int oid_number; int timeout = 2; /* * First check if another oid with the same name already * exists in the parent's list. */ - SYSCTL_ASSERT_WLOCKED(); + SYSCTL_ASSERT_XLOCKED(); p = sysctl_find_oidname(oidp->oid_name, parent); if (p != NULL) { if ((p->oid_kind & CTLTYPE) == CTLTYPE_NODE) { p->oid_refcnt++; return; } else { printf("can't re-use a leaf (%s)!\n", p->oid_name); return; } } /* get current OID number */ oid_number = oidp->oid_number; #if (OID_AUTO >= 0) #error "OID_AUTO is expected to be a negative value" #endif /* * Any negative OID number qualifies as OID_AUTO. Valid OID * numbers should always be positive. * * NOTE: DO NOT change the starting value here, change it in * , and make sure it is at least 256 to * accomodate e.g. net.inet.raw as a static sysctl node. */ if (oid_number < 0) { static int newoid; /* * By decrementing the next OID number we spend less * time inserting the OIDs into a sorted list. */ if (--newoid < CTL_AUTO_START) newoid = 0x7fffffff; oid_number = newoid; } /* * Insert the OID into the parent's list sorted by OID number. */ retry: q = NULL; SLIST_FOREACH(p, parent, oid_link) { /* check if the current OID number is in use */ if (oid_number == p->oid_number) { /* get the next valid OID number */ if (oid_number < CTL_AUTO_START || oid_number == 0x7fffffff) { /* wraparound - restart */ oid_number = CTL_AUTO_START; /* don't loop forever */ if (!timeout--) panic("sysctl: Out of OID numbers\n"); goto retry; } else { oid_number++; } } else if (oid_number < p->oid_number) break; q = p; } /* check for non-auto OID number collision */ if (oidp->oid_number >= 0 && oidp->oid_number < CTL_AUTO_START && oid_number >= CTL_AUTO_START) { printf("sysctl: OID number(%d) is already in use for '%s'\n", oidp->oid_number, oidp->oid_name); } /* update the OID number, if any */ oidp->oid_number = oid_number; if (q != NULL) SLIST_INSERT_AFTER(q, oidp, oid_link); else SLIST_INSERT_HEAD(parent, oidp, oid_link); if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE && #ifdef VIMAGE (oidp->oid_kind & CTLFLAG_VNET) == 0 && #endif (oidp->oid_kind & CTLFLAG_TUN) != 0 && (oidp->oid_kind & CTLFLAG_NOFETCH) == 0) { /* only fetch value once */ oidp->oid_kind |= CTLFLAG_NOFETCH; /* try to fetch value from kernel environment */ sysctl_load_tunable_by_oid_locked(oidp); } } void sysctl_unregister_oid(struct sysctl_oid *oidp) { struct sysctl_oid *p; int error; - SYSCTL_ASSERT_WLOCKED(); + SYSCTL_ASSERT_XLOCKED(); error = ENOENT; if (oidp->oid_number == OID_AUTO) { error = EINVAL; } else { SLIST_FOREACH(p, oidp->oid_parent, oid_link) { if (p == oidp) { SLIST_REMOVE(oidp->oid_parent, oidp, sysctl_oid, oid_link); error = 0; break; } } } /* * This can happen when a module fails to register and is * being unloaded afterwards. It should not be a panic() * for normal use. */ if (error) printf("%s: failed to unregister sysctl\n", __func__); } /* Initialize a new context to keep track of dynamically added sysctls. */ int sysctl_ctx_init(struct sysctl_ctx_list *c) { if (c == NULL) { return (EINVAL); } /* * No locking here, the caller is responsible for not adding * new nodes to a context until after this function has * returned. */ TAILQ_INIT(c); return (0); } /* Free the context, and destroy all dynamic oids registered in this context */ int sysctl_ctx_free(struct sysctl_ctx_list *clist) { struct sysctl_ctx_entry *e, *e1; int error; error = 0; /* * First perform a "dry run" to check if it's ok to remove oids. * XXX FIXME * XXX This algorithm is a hack. But I don't know any * XXX better solution for now... */ - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); TAILQ_FOREACH(e, clist, link) { error = sysctl_remove_oid_locked(e->entry, 0, 0); if (error) break; } /* * Restore deregistered entries, either from the end, * or from the place where error occured. * e contains the entry that was not unregistered */ if (error) e1 = TAILQ_PREV(e, sysctl_ctx_list, link); else e1 = TAILQ_LAST(clist, sysctl_ctx_list); while (e1 != NULL) { sysctl_register_oid(e1->entry); e1 = TAILQ_PREV(e1, sysctl_ctx_list, link); } if (error) { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return(EBUSY); } /* Now really delete the entries */ e = TAILQ_FIRST(clist); while (e != NULL) { e1 = TAILQ_NEXT(e, link); error = sysctl_remove_oid_locked(e->entry, 1, 0); if (error) panic("sysctl_remove_oid: corrupt tree, entry: %s", e->entry->oid_name); free(e, M_SYSCTLOID); e = e1; } - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (error); } /* Add an entry to the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_add(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; - SYSCTL_ASSERT_WLOCKED(); + SYSCTL_ASSERT_XLOCKED(); if (clist == NULL || oidp == NULL) return(NULL); e = malloc(sizeof(struct sysctl_ctx_entry), M_SYSCTLOID, M_WAITOK); e->entry = oidp; TAILQ_INSERT_HEAD(clist, e, link); return (e); } /* Find an entry in the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_find(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; - SYSCTL_ASSERT_WLOCKED(); + SYSCTL_ASSERT_XLOCKED(); if (clist == NULL || oidp == NULL) return(NULL); TAILQ_FOREACH(e, clist, link) { if(e->entry == oidp) return(e); } return (e); } /* * Delete an entry from the context. * NOTE: this function doesn't free oidp! You have to remove it * with sysctl_remove_oid(). */ int sysctl_ctx_entry_del(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; if (clist == NULL || oidp == NULL) return (EINVAL); - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); e = sysctl_ctx_entry_find(clist, oidp); if (e != NULL) { TAILQ_REMOVE(clist, e, link); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); free(e, M_SYSCTLOID); return (0); } else { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (ENOENT); } } /* * Remove dynamically created sysctl trees. * oidp - top of the tree to be removed * del - if 0 - just deregister, otherwise free up entries as well * recurse - if != 0 traverse the subtree to be deleted */ int sysctl_remove_oid(struct sysctl_oid *oidp, int del, int recurse) { int error; - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); error = sysctl_remove_oid_locked(oidp, del, recurse); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (error); } int sysctl_remove_name(struct sysctl_oid *parent, const char *name, int del, int recurse) { struct sysctl_oid *p, *tmp; int error; error = ENOENT; - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); SLIST_FOREACH_SAFE(p, SYSCTL_CHILDREN(parent), oid_link, tmp) { if (strcmp(p->oid_name, name) == 0) { error = sysctl_remove_oid_locked(p, del, recurse); break; } } - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (error); } static int sysctl_remove_oid_locked(struct sysctl_oid *oidp, int del, int recurse) { struct sysctl_oid *p, *tmp; int error; - SYSCTL_ASSERT_WLOCKED(); + SYSCTL_ASSERT_XLOCKED(); if (oidp == NULL) return(EINVAL); if ((oidp->oid_kind & CTLFLAG_DYN) == 0) { printf("can't remove non-dynamic nodes!\n"); return (EINVAL); } /* * WARNING: normal method to do this should be through * sysctl_ctx_free(). Use recursing as the last resort * method to purge your sysctl tree of leftovers... * However, if some other code still references these nodes, * it will panic. */ if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oidp->oid_refcnt == 1) { SLIST_FOREACH_SAFE(p, SYSCTL_CHILDREN(oidp), oid_link, tmp) { if (!recurse) { printf("Warning: failed attempt to " "remove oid %s with child %s\n", oidp->oid_name, p->oid_name); return (ENOTEMPTY); } error = sysctl_remove_oid_locked(p, del, recurse); if (error) return (error); } } } if (oidp->oid_refcnt > 1 ) { oidp->oid_refcnt--; } else { if (oidp->oid_refcnt == 0) { printf("Warning: bad oid_refcnt=%u (%s)!\n", oidp->oid_refcnt, oidp->oid_name); return (EINVAL); } sysctl_unregister_oid(oidp); if (del) { /* * Wait for all threads running the handler to drain. * This preserves the previous behavior when the * sysctl lock was held across a handler invocation, * and is necessary for module unload correctness. */ while (oidp->oid_running > 0) { oidp->oid_kind |= CTLFLAG_DYING; SYSCTL_SLEEP(&oidp->oid_running, "oidrm", 0); } if (oidp->oid_descr) free(__DECONST(char *, oidp->oid_descr), M_SYSCTLOID); free(__DECONST(char *, oidp->oid_name), M_SYSCTLOID); free(oidp, M_SYSCTLOID); } } return (0); } /* * Create new sysctls at run time. * clist may point to a valid context initialized with sysctl_ctx_init(). */ struct sysctl_oid * sysctl_add_oid(struct sysctl_ctx_list *clist, struct sysctl_oid_list *parent, int number, const char *name, int kind, void *arg1, intptr_t arg2, int (*handler)(SYSCTL_HANDLER_ARGS), const char *fmt, const char *descr) { struct sysctl_oid *oidp; /* You have to hook up somewhere.. */ if (parent == NULL) return(NULL); /* Check if the node already exists, otherwise create it */ - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); oidp = sysctl_find_oidname(name, parent); if (oidp != NULL) { if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { oidp->oid_refcnt++; /* Update the context */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (oidp); } else { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); printf("can't re-use a leaf (%s)!\n", name); return (NULL); } } oidp = malloc(sizeof(struct sysctl_oid), M_SYSCTLOID, M_WAITOK|M_ZERO); oidp->oid_parent = parent; SLIST_INIT(&oidp->oid_children); oidp->oid_number = number; oidp->oid_refcnt = 1; oidp->oid_name = strdup(name, M_SYSCTLOID); oidp->oid_handler = handler; oidp->oid_kind = CTLFLAG_DYN | kind; oidp->oid_arg1 = arg1; oidp->oid_arg2 = arg2; oidp->oid_fmt = fmt; if (descr != NULL) oidp->oid_descr = strdup(descr, M_SYSCTLOID); /* Update the context, if used */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); /* Register this oid */ sysctl_register_oid(oidp); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (oidp); } /* * Rename an existing oid. */ void sysctl_rename_oid(struct sysctl_oid *oidp, const char *name) { char *newname; char *oldname; newname = strdup(name, M_SYSCTLOID); - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); oldname = __DECONST(char *, oidp->oid_name); oidp->oid_name = newname; - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); free(oldname, M_SYSCTLOID); } /* * Reparent an existing oid. */ int sysctl_move_oid(struct sysctl_oid *oid, struct sysctl_oid_list *parent) { struct sysctl_oid *oidp; - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); if (oid->oid_parent == parent) { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (0); } oidp = sysctl_find_oidname(oid->oid_name, parent); if (oidp != NULL) { - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (EEXIST); } sysctl_unregister_oid(oid); oid->oid_parent = parent; oid->oid_number = OID_AUTO; sysctl_register_oid(oid); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); return (0); } /* * Register the kernel's oids on startup. */ SET_DECLARE(sysctl_set, struct sysctl_oid); static void sysctl_register_all(void *arg) { struct sysctl_oid **oidp; sx_init(&sysctlmemlock, "sysctl mem"); SYSCTL_INIT(); - SYSCTL_WLOCK(); + SYSCTL_XLOCK(); SET_FOREACH(oidp, sysctl_set) sysctl_register_oid(*oidp); - SYSCTL_WUNLOCK(); + SYSCTL_XUNLOCK(); } SYSINIT(sysctl, SI_SUB_KMEM, SI_ORDER_FIRST, sysctl_register_all, 0); /* * "Staff-functions" * * These functions implement a presently undocumented interface * used by the sysctl program to walk the tree, and get the type * so it can print the value. * This interface is under work and consideration, and should probably * be killed with a big axe by the first person who can find the time. * (be aware though, that the proper interface isn't as obvious as it * may seem, there are various conflicting requirements. * * {0,0} printf the entire MIB-tree. * {0,1,...} return the name of the "..." OID. * {0,2,...} return the next OID. * {0,3} return the OID of the name in "new" * {0,4,...} return the kind & format info for the "..." OID. * {0,5,...} return the description the "..." OID. */ #ifdef SYSCTL_DEBUG static void sysctl_sysctl_debug_dump_node(struct sysctl_oid_list *l, int i) { int k; struct sysctl_oid *oidp; SYSCTL_ASSERT_LOCKED(); SLIST_FOREACH(oidp, l, oid_link) { for (k=0; koid_number, oidp->oid_name); printf("%c%c", oidp->oid_kind & CTLFLAG_RD ? 'R':' ', oidp->oid_kind & CTLFLAG_WR ? 'W':' '); if (oidp->oid_handler) printf(" *Handler"); switch (oidp->oid_kind & CTLTYPE) { case CTLTYPE_NODE: printf(" Node\n"); if (!oidp->oid_handler) { sysctl_sysctl_debug_dump_node( SYSCTL_CHILDREN(oidp), i + 2); } break; case CTLTYPE_INT: printf(" Int\n"); break; case CTLTYPE_UINT: printf(" u_int\n"); break; case CTLTYPE_LONG: printf(" Long\n"); break; case CTLTYPE_ULONG: printf(" u_long\n"); break; case CTLTYPE_STRING: printf(" String\n"); break; case CTLTYPE_U64: printf(" uint64_t\n"); break; case CTLTYPE_S64: printf(" int64_t\n"); break; case CTLTYPE_OPAQUE: printf(" Opaque/struct\n"); break; default: printf("\n"); } } } static int sysctl_sysctl_debug(SYSCTL_HANDLER_ARGS) { - struct rm_priotracker tracker; int error; error = priv_check(req->td, PRIV_SYSCTL_DEBUG); if (error) return (error); - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); sysctl_sysctl_debug_dump_node(&sysctl__children, 0); - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); return (ENOENT); } SYSCTL_PROC(_sysctl, 0, debug, CTLTYPE_STRING|CTLFLAG_RD|CTLFLAG_MPSAFE, 0, 0, sysctl_sysctl_debug, "-", ""); #endif static int sysctl_sysctl_name(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int error = 0; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children, *lsp2; - struct rm_priotracker tracker; char buf[10]; - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); while (namelen) { if (!lsp) { snprintf(buf,sizeof(buf),"%d",*name); if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, buf, strlen(buf)); if (error) goto out; namelen--; name++; continue; } lsp2 = 0; SLIST_FOREACH(oid, lsp, oid_link) { if (oid->oid_number != *name) continue; if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, oid->oid_name, strlen(oid->oid_name)); if (error) goto out; namelen--; name++; if ((oid->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oid->oid_handler) break; lsp2 = SYSCTL_CHILDREN(oid); break; } lsp = lsp2; } error = SYSCTL_OUT(req, "", 1); out: - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); return (error); } /* * XXXRW/JA: Shouldn't return name data for nodes that we don't permit in * capability mode. */ static SYSCTL_NODE(_sysctl, 1, name, CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_CAPRD, sysctl_sysctl_name, ""); static int sysctl_sysctl_next_ls(struct sysctl_oid_list *lsp, int *name, u_int namelen, int *next, int *len, int level, struct sysctl_oid **oidpp) { struct sysctl_oid *oidp; SYSCTL_ASSERT_LOCKED(); *len = level; SLIST_FOREACH(oidp, lsp, oid_link) { *next = oidp->oid_number; *oidpp = oidp; if (oidp->oid_kind & CTLFLAG_SKIP) continue; if (!namelen) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) return (0); if (oidp->oid_handler) /* We really should call the handler here...*/ return (0); lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, 0, 0, next+1, len, level+1, oidpp)) return (0); goto emptynode; } if (oidp->oid_number < *name) continue; if (oidp->oid_number > *name) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) return (0); if (oidp->oid_handler) return (0); lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) return (0); goto next; } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) continue; if (oidp->oid_handler) continue; lsp = SYSCTL_CHILDREN(oidp); if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) return (0); next: namelen = 1; emptynode: *len = level; } return (1); } static int sysctl_sysctl_next(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int i, j, error; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children; - struct rm_priotracker tracker; int newoid[CTL_MAXNAME]; - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); i = sysctl_sysctl_next_ls(lsp, name, namelen, newoid, &j, 1, &oid); - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); if (i) return (ENOENT); error = SYSCTL_OUT(req, newoid, j * sizeof (int)); return (error); } /* * XXXRW/JA: Shouldn't return next data for nodes that we don't permit in * capability mode. */ static SYSCTL_NODE(_sysctl, 2, next, CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_CAPRD, sysctl_sysctl_next, ""); static int name2oid(char *name, int *oid, int *len, struct sysctl_oid **oidpp) { struct sysctl_oid *oidp; struct sysctl_oid_list *lsp = &sysctl__children; char *p; SYSCTL_ASSERT_LOCKED(); for (*len = 0; *len < CTL_MAXNAME;) { p = strsep(&name, "."); oidp = SLIST_FIRST(lsp); for (;; oidp = SLIST_NEXT(oidp, oid_link)) { if (oidp == NULL) return (ENOENT); if (strcmp(p, oidp->oid_name) == 0) break; } *oid++ = oidp->oid_number; (*len)++; if (name == NULL || *name == '\0') { if (oidpp) *oidpp = oidp; return (0); } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oidp->oid_handler) break; lsp = SYSCTL_CHILDREN(oidp); } return (ENOENT); } static int sysctl_sysctl_name2oid(SYSCTL_HANDLER_ARGS) { char *p; int error, oid[CTL_MAXNAME], len = 0; struct sysctl_oid *op = 0; - struct rm_priotracker tracker; if (!req->newlen) return (ENOENT); if (req->newlen >= MAXPATHLEN) /* XXX arbitrary, undocumented */ return (ENAMETOOLONG); p = malloc(req->newlen+1, M_SYSCTL, M_WAITOK); error = SYSCTL_IN(req, p, req->newlen); if (error) { free(p, M_SYSCTL); return (error); } p [req->newlen] = '\0'; - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); error = name2oid(p, oid, &len, &op); - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); free(p, M_SYSCTL); if (error) return (error); error = SYSCTL_OUT(req, oid, len * sizeof *oid); return (error); } /* * XXXRW/JA: Shouldn't return name2oid data for nodes that we don't permit in * capability mode. */ SYSCTL_PROC(_sysctl, 3, name2oid, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE | CTLFLAG_CAPRW, 0, 0, sysctl_sysctl_name2oid, "I", ""); static int sysctl_sysctl_oidfmt(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; - struct rm_priotracker tracker; int error; - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) goto out; if (oid->oid_fmt == NULL) { error = ENOENT; goto out; } error = SYSCTL_OUT(req, &oid->oid_kind, sizeof(oid->oid_kind)); if (error) goto out; error = SYSCTL_OUT(req, oid->oid_fmt, strlen(oid->oid_fmt) + 1); out: - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); return (error); } static SYSCTL_NODE(_sysctl, 4, oidfmt, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLFLAG_CAPRD, sysctl_sysctl_oidfmt, ""); static int sysctl_sysctl_oiddescr(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; - struct rm_priotracker tracker; int error; - SYSCTL_RLOCK(&tracker); + SYSCTL_SLOCK(); error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) goto out; if (oid->oid_descr == NULL) { error = ENOENT; goto out; } error = SYSCTL_OUT(req, oid->oid_descr, strlen(oid->oid_descr) + 1); out: - SYSCTL_RUNLOCK(&tracker); + SYSCTL_SUNLOCK(); return (error); } static SYSCTL_NODE(_sysctl, 5, oiddescr, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLFLAG_CAPRD, sysctl_sysctl_oiddescr, ""); /* * Default "handler" functions. */ /* * Handle an int, signed or unsigned. * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_int(SYSCTL_HANDLER_ARGS) { int tmpout, error = 0; /* * Attempt to get a coherent snapshot by making a copy of the data. */ if (arg1) tmpout = *(int *)arg1; else tmpout = arg2; error = SYSCTL_OUT(req, &tmpout, sizeof(int)); if (error || !req->newptr) return (error); if (!arg1) error = EPERM; else error = SYSCTL_IN(req, arg1, sizeof(int)); return (error); } /* * Based on on sysctl_handle_int() convert milliseconds into ticks. * Note: this is used by TCP. */ int sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS) { int error, s, tt; tt = *(int *)arg1; s = (int)((int64_t)tt * 1000 / hz); error = sysctl_handle_int(oidp, &s, 0, req); if (error || !req->newptr) return (error); tt = (int)((int64_t)s * hz / 1000); if (tt < 1) return (EINVAL); *(int *)arg1 = tt; return (0); } /* * Handle a long, signed or unsigned. * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_long(SYSCTL_HANDLER_ARGS) { int error = 0; long tmplong; #ifdef SCTL_MASK32 int tmpint; #endif /* * Attempt to get a coherent snapshot by making a copy of the data. */ if (arg1) tmplong = *(long *)arg1; else tmplong = arg2; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { tmpint = tmplong; error = SYSCTL_OUT(req, &tmpint, sizeof(int)); } else #endif error = SYSCTL_OUT(req, &tmplong, sizeof(long)); if (error || !req->newptr) return (error); if (!arg1) error = EPERM; #ifdef SCTL_MASK32 else if (req->flags & SCTL_MASK32) { error = SYSCTL_IN(req, &tmpint, sizeof(int)); *(long *)arg1 = (long)tmpint; } #endif else error = SYSCTL_IN(req, arg1, sizeof(long)); return (error); } /* * Handle a 64 bit int, signed or unsigned. * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_64(SYSCTL_HANDLER_ARGS) { int error = 0; uint64_t tmpout; /* * Attempt to get a coherent snapshot by making a copy of the data. */ if (arg1) tmpout = *(uint64_t *)arg1; else tmpout = arg2; error = SYSCTL_OUT(req, &tmpout, sizeof(uint64_t)); if (error || !req->newptr) return (error); if (!arg1) error = EPERM; else error = SYSCTL_IN(req, arg1, sizeof(uint64_t)); return (error); } /* * Handle our generic '\0' terminated 'C' string. * Two cases: * a variable string: point arg1 at it, arg2 is max length. * a constant string: point arg1 at it, arg2 is zero. */ int sysctl_handle_string(SYSCTL_HANDLER_ARGS) { size_t outlen; int error = 0, ro_string = 0; /* * A zero-length buffer indicates a fixed size read-only * string: */ if (arg2 == 0) { arg2 = strlen((char *)arg1) + 1; ro_string = 1; } if (req->oldptr != NULL) { char *tmparg; if (ro_string) { tmparg = arg1; } else { /* try to make a coherent snapshot of the string */ tmparg = malloc(arg2, M_SYSCTLTMP, M_WAITOK); memcpy(tmparg, arg1, arg2); } outlen = strnlen(tmparg, arg2 - 1) + 1; error = SYSCTL_OUT(req, tmparg, outlen); if (!ro_string) free(tmparg, M_SYSCTLTMP); } else { outlen = strnlen((char *)arg1, arg2 - 1) + 1; error = SYSCTL_OUT(req, NULL, outlen); } if (error || !req->newptr) return (error); if ((req->newlen - req->newidx) >= arg2) { error = EINVAL; } else { arg2 = (req->newlen - req->newidx); error = SYSCTL_IN(req, arg1, arg2); ((char *)arg1)[arg2] = '\0'; } return (error); } /* * Handle any kind of opaque data. * arg1 points to it, arg2 is the size. */ int sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) { int error, tries; u_int generation; struct sysctl_req req2; /* * Attempt to get a coherent snapshot, by using the thread * pre-emption counter updated from within mi_switch() to * determine if we were pre-empted during a bcopy() or * copyout(). Make 3 attempts at doing this before giving up. * If we encounter an error, stop immediately. */ tries = 0; req2 = *req; retry: generation = curthread->td_generation; error = SYSCTL_OUT(req, arg1, arg2); if (error) return (error); tries++; if (generation != curthread->td_generation && tries < 3) { *req = req2; goto retry; } error = SYSCTL_IN(req, arg1, arg2); return (error); } /* * Transfer functions to/from kernel space. * XXX: rather untested at this point */ static int sysctl_old_kernel(struct sysctl_req *req, const void *p, size_t l) { size_t i = 0; if (req->oldptr) { i = l; if (req->oldlen <= req->oldidx) i = 0; else if (i > req->oldlen - req->oldidx) i = req->oldlen - req->oldidx; if (i > 0) bcopy(p, (char *)req->oldptr + req->oldidx, i); } req->oldidx += l; if (req->oldptr && i != l) return (ENOMEM); return (0); } static int sysctl_new_kernel(struct sysctl_req *req, void *p, size_t l) { if (!req->newptr) return (0); if (req->newlen - req->newidx < l) return (EINVAL); bcopy((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (0); } int kernel_sysctl(struct thread *td, int *name, u_int namelen, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval, int flags) { int error = 0; struct sysctl_req req; bzero(&req, sizeof req); req.td = td; req.flags = flags; if (oldlenp) { req.oldlen = *oldlenp; } req.validlen = req.oldlen; if (old) { req.oldptr= old; } if (new != NULL) { req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_kernel; req.newfunc = sysctl_new_kernel; req.lock = REQ_UNWIRED; + SYSCTL_SLOCK(); error = sysctl_root(0, name, namelen, &req); + SYSCTL_SUNLOCK(); if (req.lock == REQ_WIRED && req.validlen > 0) vsunlock(req.oldptr, req.validlen); if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.validlen) *retval = req.validlen; else *retval = req.oldidx; } return (error); } int kernel_sysctlbyname(struct thread *td, char *name, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval, int flags) { int oid[CTL_MAXNAME]; size_t oidlen, plen; int error; oid[0] = 0; /* sysctl internal magic */ oid[1] = 3; /* name2oid */ oidlen = sizeof(oid); error = kernel_sysctl(td, oid, 2, oid, &oidlen, (void *)name, strlen(name), &plen, flags); if (error) return (error); error = kernel_sysctl(td, oid, plen / sizeof(int), old, oldlenp, new, newlen, retval, flags); return (error); } /* * Transfer function to/from user space. */ static int sysctl_old_user(struct sysctl_req *req, const void *p, size_t l) { size_t i, len, origidx; int error; origidx = req->oldidx; req->oldidx += l; if (req->oldptr == NULL) return (0); /* * If we have not wired the user supplied buffer and we are currently * holding locks, drop a witness warning, as it's possible that * write operations to the user page can sleep. */ if (req->lock != REQ_WIRED) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "sysctl_old_user()"); i = l; len = req->validlen; if (len <= origidx) i = 0; else { if (i > len - origidx) i = len - origidx; if (req->lock == REQ_WIRED) { error = copyout_nofault(p, (char *)req->oldptr + origidx, i); } else error = copyout(p, (char *)req->oldptr + origidx, i); if (error != 0) return (error); } if (i < l) return (ENOMEM); return (0); } static int sysctl_new_user(struct sysctl_req *req, void *p, size_t l) { int error; if (!req->newptr) return (0); if (req->newlen - req->newidx < l) return (EINVAL); WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "sysctl_new_user()"); error = copyin((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (error); } /* * Wire the user space destination buffer. If set to a value greater than * zero, the len parameter limits the maximum amount of wired memory. */ int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len) { int ret; size_t wiredlen; wiredlen = (len > 0 && len < req->oldlen) ? len : req->oldlen; ret = 0; if (req->lock != REQ_WIRED && req->oldptr && req->oldfunc == sysctl_old_user) { if (wiredlen != 0) { ret = vslock(req->oldptr, wiredlen); if (ret != 0) { if (ret != ENOMEM) return (ret); wiredlen = 0; } } req->lock = REQ_WIRED; req->validlen = wiredlen; } return (0); } int sysctl_find_oid(int *name, u_int namelen, struct sysctl_oid **noid, int *nindx, struct sysctl_req *req) { struct sysctl_oid_list *lsp; struct sysctl_oid *oid; int indx; SYSCTL_ASSERT_LOCKED(); lsp = &sysctl__children; indx = 0; while (indx < CTL_MAXNAME) { SLIST_FOREACH(oid, lsp, oid_link) { if (oid->oid_number == name[indx]) break; } if (oid == NULL) return (ENOENT); indx++; if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oid->oid_handler != NULL || indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; KASSERT((oid->oid_kind & CTLFLAG_DYING) == 0, ("%s found DYING node %p", __func__, oid)); return (0); } lsp = SYSCTL_CHILDREN(oid); } else if (indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; KASSERT((oid->oid_kind & CTLFLAG_DYING) == 0, ("%s found DYING node %p", __func__, oid)); return (0); } else { return (ENOTDIR); } } return (ENOENT); } /* * Traverse our tree, and find the right node, execute whatever it points * to, and return the resulting error code. */ static int sysctl_root(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; - struct rm_priotracker tracker; int error, indx, lvl; - SYSCTL_RLOCK(&tracker); + SYSCTL_ASSERT_SLOCKED(); error = sysctl_find_oid(arg1, arg2, &oid, &indx, req); if (error) - goto out; + return (error); if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { /* * You can't call a sysctl when it's a node, but has * no handler. Inform the user that it's a node. * The indx may or may not be the same as namelen. */ - if (oid->oid_handler == NULL) { - error = EISDIR; - goto out; - } + if (oid->oid_handler == NULL) + return (EISDIR); } /* Is this sysctl writable? */ - if (req->newptr && !(oid->oid_kind & CTLFLAG_WR)) { - error = EPERM; - goto out; - } + if (req->newptr && !(oid->oid_kind & CTLFLAG_WR)) + return (EPERM); KASSERT(req->td != NULL, ("sysctl_root(): req->td == NULL")); #ifdef CAPABILITY_MODE /* * If the process is in capability mode, then don't permit reading or * writing unless specifically granted for the node. */ if (IN_CAPABILITY_MODE(req->td)) { - if ((req->oldptr && !(oid->oid_kind & CTLFLAG_CAPRD)) || - (req->newptr && !(oid->oid_kind & CTLFLAG_CAPWR))) { - error = EPERM; - goto out; - } + if (req->oldptr && !(oid->oid_kind & CTLFLAG_CAPRD)) + return (EPERM); + if (req->newptr && !(oid->oid_kind & CTLFLAG_CAPWR)) + return (EPERM); } #endif /* Is this sysctl sensitive to securelevels? */ if (req->newptr && (oid->oid_kind & CTLFLAG_SECURE)) { lvl = (oid->oid_kind & CTLMASK_SECURE) >> CTLSHIFT_SECURE; error = securelevel_gt(req->td->td_ucred, lvl); if (error) - goto out; + return (error); } /* Is this sysctl writable by only privileged users? */ if (req->newptr && !(oid->oid_kind & CTLFLAG_ANYBODY)) { int priv; if (oid->oid_kind & CTLFLAG_PRISON) priv = PRIV_SYSCTL_WRITEJAIL; #ifdef VIMAGE else if ((oid->oid_kind & CTLFLAG_VNET) && prison_owns_vnet(req->td->td_ucred)) priv = PRIV_SYSCTL_WRITEJAIL; #endif else priv = PRIV_SYSCTL_WRITE; error = priv_check(req->td, priv); if (error) - goto out; + return (error); } - if (!oid->oid_handler) { - error = EINVAL; - goto out; - } + if (!oid->oid_handler) + return (EINVAL); if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { arg1 = (int *)arg1 + indx; arg2 -= indx; } else { arg1 = oid->oid_arg1; arg2 = oid->oid_arg2; } #ifdef MAC error = mac_system_check_sysctl(req->td->td_ucred, oid, arg1, arg2, req); if (error != 0) - goto out; + return (error); #endif #ifdef VIMAGE if ((oid->oid_kind & CTLFLAG_VNET) && arg1 != NULL) arg1 = (void *)(curvnet->vnet_data_base + (uintptr_t)arg1); #endif - error = sysctl_root_handler_locked(oid, arg1, arg2, req, &tracker); + error = sysctl_root_handler_locked(oid, arg1, arg2, req); KFAIL_POINT_ERROR(_debug_fail_point, sysctl_running, error); -out: - SYSCTL_RUNLOCK(&tracker); return (error); } #ifndef _SYS_SYSPROTO_H_ struct sysctl_args { int *name; u_int namelen; void *old; size_t *oldlenp; void *new; size_t newlen; }; #endif int sys___sysctl(struct thread *td, struct sysctl_args *uap) { int error, i, name[CTL_MAXNAME]; size_t j; if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) return (EINVAL); error = copyin(uap->name, &name, uap->namelen * sizeof(int)); if (error) return (error); error = userland_sysctl(td, name, uap->namelen, uap->old, uap->oldlenp, 0, uap->new, uap->newlen, &j, 0); if (error && error != ENOMEM) return (error); if (uap->oldlenp) { i = copyout(&j, uap->oldlenp, sizeof(j)); if (i) return (i); } return (error); } /* * This is used from various compatibility syscalls too. That's why name * must be in kernel space. */ int userland_sysctl(struct thread *td, int *name, u_int namelen, void *old, size_t *oldlenp, int inkernel, void *new, size_t newlen, size_t *retval, int flags) { int error = 0, memlocked; struct sysctl_req req; bzero(&req, sizeof req); req.td = td; req.flags = flags; if (oldlenp) { if (inkernel) { req.oldlen = *oldlenp; } else { error = copyin(oldlenp, &req.oldlen, sizeof(*oldlenp)); if (error) return (error); } } req.validlen = req.oldlen; if (old) { if (!useracc(old, req.oldlen, VM_PROT_WRITE)) return (EFAULT); req.oldptr= old; } if (new != NULL) { if (!useracc(new, newlen, VM_PROT_READ)) return (EFAULT); req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_user; req.newfunc = sysctl_new_user; req.lock = REQ_UNWIRED; #ifdef KTRACE if (KTRPOINT(curthread, KTR_SYSCTL)) ktrsysctl(name, namelen); #endif if (req.oldptr && req.oldlen > PAGE_SIZE) { memlocked = 1; sx_xlock(&sysctlmemlock); } else memlocked = 0; CURVNET_SET(TD_TO_VNET(td)); for (;;) { req.oldidx = 0; req.newidx = 0; + SYSCTL_SLOCK(); error = sysctl_root(0, name, namelen, &req); + SYSCTL_SUNLOCK(); if (error != EAGAIN) break; kern_yield(PRI_USER); } CURVNET_RESTORE(); if (req.lock == REQ_WIRED && req.validlen > 0) vsunlock(req.oldptr, req.validlen); if (memlocked) sx_xunlock(&sysctlmemlock); if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.validlen) *retval = req.validlen; else *retval = req.oldidx; } return (error); } /* * Drain into a sysctl struct. The user buffer should be wired if a page * fault would cause issue. */ static int sbuf_sysctl_drain(void *arg, const char *data, int len) { struct sysctl_req *req = arg; int error; error = SYSCTL_OUT(req, data, len); KASSERT(error >= 0, ("Got unexpected negative value %d", error)); return (error == 0 ? len : -error); } struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req) { /* Supply a default buffer size if none given. */ if (buf == NULL && length == 0) length = 64; s = sbuf_new(s, buf, length, SBUF_FIXEDLEN | SBUF_INCLUDENUL); sbuf_set_drain(s, sbuf_sysctl_drain, req); return (s); } Index: head/sys/kern/vfs_init.c =================================================================== --- head/sys/kern/vfs_init.c (revision 286093) +++ head/sys/kern/vfs_init.c (revision 286094) @@ -1,370 +1,370 @@ /*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed * to Berkeley by John Heidemann of the UCLA Ficus project. * * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_init.c 8.3 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include static int vfs_register(struct vfsconf *); static int vfs_unregister(struct vfsconf *); MALLOC_DEFINE(M_VNODE, "vnodes", "Dynamically allocated vnodes"); /* * The highest defined VFS number. */ int maxvfsconf = VFS_GENERIC + 1; /* * Single-linked list of configured VFSes. * New entries are added/deleted by vfs_register()/vfs_unregister() */ struct vfsconfhead vfsconf = TAILQ_HEAD_INITIALIZER(vfsconf); struct sx vfsconf_sx; SX_SYSINIT(vfsconf, &vfsconf_sx, "vfsconf"); /* * Loader.conf variable vfs.typenumhash enables setting vfc_typenum using a hash * calculation on vfc_name, so that it doesn't change when file systems are * loaded in a different order. This will avoid the NFS server file handles from * changing for file systems that use vfc_typenum in their fsid. */ static int vfs_typenumhash = 1; SYSCTL_INT(_vfs, OID_AUTO, typenumhash, CTLFLAG_RDTUN, &vfs_typenumhash, 0, "Set vfc_typenum using a hash calculation on vfc_name, so that it does not" "change when file systems are loaded in a different order."); /* * A Zen vnode attribute structure. * * Initialized when the first filesystem registers by vfs_register(). */ struct vattr va_null; /* * vfs_init.c * * Allocate and fill in operations vectors. * * An undocumented feature of this approach to defining operations is that * there can be multiple entries in vfs_opv_descs for the same operations * vector. This allows third parties to extend the set of operations * supported by another layer in a binary compatibile way. For example, * assume that NFS needed to be modified to support Ficus. NFS has an entry * (probably nfs_vnopdeop_decls) declaring all the operations NFS supports by * default. Ficus could add another entry (ficus_nfs_vnodeop_decl_entensions) * listing those new operations Ficus adds to NFS, all without modifying the * NFS code. (Of couse, the OTW NFS protocol still needs to be munged, but * that is a(whole)nother story.) This is a feature. */ /* * Routines having to do with the management of the vnode table. */ static struct vfsconf * vfs_byname_locked(const char *name) { struct vfsconf *vfsp; sx_assert(&vfsconf_sx, SA_LOCKED); if (!strcmp(name, "ffs")) name = "ufs"; TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { if (!strcmp(name, vfsp->vfc_name)) return (vfsp); } return (NULL); } struct vfsconf * vfs_byname(const char *name) { struct vfsconf *vfsp; vfsconf_slock(); vfsp = vfs_byname_locked(name); vfsconf_sunlock(); return (vfsp); } struct vfsconf * vfs_byname_kld(const char *fstype, struct thread *td, int *error) { struct vfsconf *vfsp; int fileid, loaded; vfsp = vfs_byname(fstype); if (vfsp != NULL) return (vfsp); /* Try to load the respective module. */ *error = kern_kldload(td, fstype, &fileid); loaded = (*error == 0); if (*error == EEXIST) *error = 0; if (*error) return (NULL); /* Look up again to see if the VFS was loaded. */ vfsp = vfs_byname(fstype); if (vfsp == NULL) { if (loaded) (void)kern_kldunload(td, fileid, LINKER_UNLOAD_FORCE); *error = ENODEV; return (NULL); } return (vfsp); } /* Register a new filesystem type in the global table */ static int vfs_register(struct vfsconf *vfc) { struct sysctl_oid *oidp; struct vfsops *vfsops; static int once; struct vfsconf *tvfc; uint32_t hashval; int secondpass; if (!once) { vattr_null(&va_null); once = 1; } if (vfc->vfc_version != VFS_VERSION) { printf("ERROR: filesystem %s, unsupported ABI version %x\n", vfc->vfc_name, vfc->vfc_version); return (EINVAL); } vfsconf_lock(); if (vfs_byname_locked(vfc->vfc_name) != NULL) { vfsconf_unlock(); return (EEXIST); } if (vfs_typenumhash != 0) { /* * Calculate a hash on vfc_name to use for vfc_typenum. Unless * all of 1<->255 are assigned, it is limited to 8bits since * that is what ZFS uses from vfc_typenum and is also the * preferred range for vfs_getnewfsid(). */ hashval = fnv_32_str(vfc->vfc_name, FNV1_32_INIT); hashval &= 0xff; secondpass = 0; do { /* Look for and fix any collision. */ TAILQ_FOREACH(tvfc, &vfsconf, vfc_list) { if (hashval == tvfc->vfc_typenum) { if (hashval == 255 && secondpass == 0) { hashval = 1; secondpass = 1; } else hashval++; break; } } } while (tvfc != NULL); vfc->vfc_typenum = hashval; if (vfc->vfc_typenum >= maxvfsconf) maxvfsconf = vfc->vfc_typenum + 1; } else vfc->vfc_typenum = maxvfsconf++; TAILQ_INSERT_TAIL(&vfsconf, vfc, vfc_list); /* * Initialise unused ``struct vfsops'' fields, to use * the vfs_std*() functions. Note, we need the mount * and unmount operations, at the least. The check * for vfsops available is just a debugging aid. */ KASSERT(vfc->vfc_vfsops != NULL, ("Filesystem %s has no vfsops", vfc->vfc_name)); /* * Check the mount and unmount operations. */ vfsops = vfc->vfc_vfsops; KASSERT(vfsops->vfs_mount != NULL, ("Filesystem %s has no mount op", vfc->vfc_name)); KASSERT(vfsops->vfs_unmount != NULL, ("Filesystem %s has no unmount op", vfc->vfc_name)); if (vfsops->vfs_root == NULL) /* return file system's root vnode */ vfsops->vfs_root = vfs_stdroot; if (vfsops->vfs_quotactl == NULL) /* quota control */ vfsops->vfs_quotactl = vfs_stdquotactl; if (vfsops->vfs_statfs == NULL) /* return file system's status */ vfsops->vfs_statfs = vfs_stdstatfs; if (vfsops->vfs_sync == NULL) /* * flush unwritten data (nosync) * file systems can use vfs_stdsync * explicitly by setting it in the * vfsop vector. */ vfsops->vfs_sync = vfs_stdnosync; if (vfsops->vfs_vget == NULL) /* convert an inode number to a vnode */ vfsops->vfs_vget = vfs_stdvget; if (vfsops->vfs_fhtovp == NULL) /* turn an NFS file handle into a vnode */ vfsops->vfs_fhtovp = vfs_stdfhtovp; if (vfsops->vfs_checkexp == NULL) /* check if file system is exported */ vfsops->vfs_checkexp = vfs_stdcheckexp; if (vfsops->vfs_init == NULL) /* file system specific initialisation */ vfsops->vfs_init = vfs_stdinit; if (vfsops->vfs_uninit == NULL) /* file system specific uninitialisation */ vfsops->vfs_uninit = vfs_stduninit; if (vfsops->vfs_extattrctl == NULL) /* extended attribute control */ vfsops->vfs_extattrctl = vfs_stdextattrctl; if (vfsops->vfs_sysctl == NULL) vfsops->vfs_sysctl = vfs_stdsysctl; /* * Call init function for this VFS... */ (*(vfc->vfc_vfsops->vfs_init))(vfc); vfsconf_unlock(); /* * If this filesystem has a sysctl node under vfs * (i.e. vfs.xxfs), then change the oid number of that node to * match the filesystem's type number. This allows user code * which uses the type number to read sysctl variables defined * by the filesystem to continue working. Since the oids are * in a sorted list, we need to make sure the order is * preserved by re-registering the oid after modifying its * number. */ - sysctl_wlock(); + sysctl_xlock(); SLIST_FOREACH(oidp, SYSCTL_CHILDREN(&sysctl___vfs), oid_link) { if (strcmp(oidp->oid_name, vfc->vfc_name) == 0) { sysctl_unregister_oid(oidp); oidp->oid_number = vfc->vfc_typenum; sysctl_register_oid(oidp); break; } } - sysctl_wunlock(); + sysctl_xunlock(); return (0); } /* Remove registration of a filesystem type */ static int vfs_unregister(struct vfsconf *vfc) { struct vfsconf *vfsp; int error, maxtypenum; vfsconf_lock(); vfsp = vfs_byname_locked(vfc->vfc_name); if (vfsp == NULL) { vfsconf_unlock(); return (EINVAL); } if (vfsp->vfc_refcount != 0) { vfsconf_unlock(); return (EBUSY); } if (vfc->vfc_vfsops->vfs_uninit != NULL) { error = (*vfc->vfc_vfsops->vfs_uninit)(vfsp); if (error != 0) { vfsconf_unlock(); return (error); } } TAILQ_REMOVE(&vfsconf, vfsp, vfc_list); maxtypenum = VFS_GENERIC; TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) if (maxtypenum < vfsp->vfc_typenum) maxtypenum = vfsp->vfc_typenum; maxvfsconf = maxtypenum + 1; vfsconf_unlock(); return (0); } /* * Standard kernel module handling code for filesystem modules. * Referenced from VFS_SET(). */ int vfs_modevent(module_t mod, int type, void *data) { struct vfsconf *vfc; int error = 0; vfc = (struct vfsconf *)data; switch (type) { case MOD_LOAD: if (vfc) error = vfs_register(vfc); break; case MOD_UNLOAD: if (vfc) error = vfs_unregister(vfc); break; default: error = EOPNOTSUPP; break; } return (error); } Index: head/sys/sys/sysctl.h =================================================================== --- head/sys/sys/sysctl.h (revision 286093) +++ head/sys/sys/sysctl.h (revision 286094) @@ -1,827 +1,827 @@ /*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)sysctl.h 8.1 (Berkeley) 6/2/93 * $FreeBSD$ */ #ifndef _SYS_SYSCTL_H_ #define _SYS_SYSCTL_H_ #include struct thread; /* * Definitions for sysctl call. The sysctl call uses a hierarchical name * for objects that can be examined or modified. The name is expressed as * a sequence of integers. Like a file path name, the meaning of each * component depends on its place in the hierarchy. The top-level and kern * identifiers are defined here, and other identifiers are defined in the * respective subsystem header files. */ #define CTL_MAXNAME 24 /* largest number of components supported */ /* * Each subsystem defined by sysctl defines a list of variables * for that subsystem. Each name is either a node with further * levels defined below it, or it is a leaf of some particular * type given below. Each sysctl level defines a set of name/type * pairs to be used by sysctl(8) in manipulating the subsystem. */ struct ctlname { char *ctl_name; /* subsystem name */ int ctl_type; /* type of name */ }; #define CTLTYPE 0xf /* mask for the type */ #define CTLTYPE_NODE 1 /* name is a node */ #define CTLTYPE_INT 2 /* name describes an integer */ #define CTLTYPE_STRING 3 /* name describes a string */ #define CTLTYPE_S64 4 /* name describes a signed 64-bit number */ #define CTLTYPE_OPAQUE 5 /* name describes a structure */ #define CTLTYPE_STRUCT CTLTYPE_OPAQUE /* name describes a structure */ #define CTLTYPE_UINT 6 /* name describes an unsigned integer */ #define CTLTYPE_LONG 7 /* name describes a long */ #define CTLTYPE_ULONG 8 /* name describes an unsigned long */ #define CTLTYPE_U64 9 /* name describes an unsigned 64-bit number */ #define CTLFLAG_RD 0x80000000 /* Allow reads of variable */ #define CTLFLAG_WR 0x40000000 /* Allow writes to the variable */ #define CTLFLAG_RW (CTLFLAG_RD|CTLFLAG_WR) #define CTLFLAG_ANYBODY 0x10000000 /* All users can set this var */ #define CTLFLAG_SECURE 0x08000000 /* Permit set only if securelevel<=0 */ #define CTLFLAG_PRISON 0x04000000 /* Prisoned roots can fiddle */ #define CTLFLAG_DYN 0x02000000 /* Dynamic oid - can be freed */ #define CTLFLAG_SKIP 0x01000000 /* Skip this sysctl when listing */ #define CTLMASK_SECURE 0x00F00000 /* Secure level */ #define CTLFLAG_TUN 0x00080000 /* Default value is loaded from getenv() */ #define CTLFLAG_RDTUN (CTLFLAG_RD|CTLFLAG_TUN) #define CTLFLAG_RWTUN (CTLFLAG_RW|CTLFLAG_TUN) #define CTLFLAG_MPSAFE 0x00040000 /* Handler is MP safe */ #define CTLFLAG_VNET 0x00020000 /* Prisons with vnet can fiddle */ #define CTLFLAG_DYING 0x00010000 /* Oid is being removed */ #define CTLFLAG_CAPRD 0x00008000 /* Can be read in capability mode */ #define CTLFLAG_CAPWR 0x00004000 /* Can be written in capability mode */ #define CTLFLAG_STATS 0x00002000 /* Statistics, not a tuneable */ #define CTLFLAG_NOFETCH 0x00001000 /* Don't fetch tunable from getenv() */ #define CTLFLAG_CAPRW (CTLFLAG_CAPRD|CTLFLAG_CAPWR) /* * Secure level. Note that CTLFLAG_SECURE == CTLFLAG_SECURE1. * * Secure when the securelevel is raised to at least N. */ #define CTLSHIFT_SECURE 20 #define CTLFLAG_SECURE1 (CTLFLAG_SECURE | (0 << CTLSHIFT_SECURE)) #define CTLFLAG_SECURE2 (CTLFLAG_SECURE | (1 << CTLSHIFT_SECURE)) #define CTLFLAG_SECURE3 (CTLFLAG_SECURE | (2 << CTLSHIFT_SECURE)) /* * USE THIS instead of a hardwired number from the categories below * to get dynamically assigned sysctl entries using the linker-set * technology. This is the way nearly all new sysctl variables should * be implemented. * e.g. SYSCTL_INT(_parent, OID_AUTO, name, CTLFLAG_RW, &variable, 0, ""); */ #define OID_AUTO (-1) /* * The starting number for dynamically-assigned entries. WARNING! * ALL static sysctl entries should have numbers LESS than this! */ #define CTL_AUTO_START 0x100 #ifdef _KERNEL #include #ifdef KLD_MODULE /* XXX allow overspecification of type in external kernel modules */ #define SYSCTL_CT_ASSERT_MASK CTLTYPE #else #define SYSCTL_CT_ASSERT_MASK 0 #endif #define SYSCTL_HANDLER_ARGS struct sysctl_oid *oidp, void *arg1, \ intptr_t arg2, struct sysctl_req *req /* definitions for sysctl_req 'lock' member */ #define REQ_UNWIRED 1 #define REQ_WIRED 2 /* definitions for sysctl_req 'flags' member */ #if defined(__amd64__) || defined(__powerpc64__) ||\ (defined(__mips__) && defined(__mips_n64)) #define SCTL_MASK32 1 /* 32 bit emulation */ #endif /* * This describes the access space for a sysctl request. This is needed * so that we can use the interface from the kernel or from user-space. */ struct sysctl_req { struct thread *td; /* used for access checking */ int lock; /* wiring state */ void *oldptr; size_t oldlen; size_t oldidx; int (*oldfunc)(struct sysctl_req *, const void *, size_t); void *newptr; size_t newlen; size_t newidx; int (*newfunc)(struct sysctl_req *, void *, size_t); size_t validlen; int flags; }; SLIST_HEAD(sysctl_oid_list, sysctl_oid); /* * This describes one "oid" in the MIB tree. Potentially more nodes can * be hidden behind it, expanded by the handler. */ struct sysctl_oid { struct sysctl_oid_list oid_children; struct sysctl_oid_list *oid_parent; SLIST_ENTRY(sysctl_oid) oid_link; int oid_number; u_int oid_kind; void *oid_arg1; intptr_t oid_arg2; const char *oid_name; int (*oid_handler)(SYSCTL_HANDLER_ARGS); const char *oid_fmt; int oid_refcnt; u_int oid_running; const char *oid_descr; }; #define SYSCTL_IN(r, p, l) (r->newfunc)(r, p, l) #define SYSCTL_OUT(r, p, l) (r->oldfunc)(r, p, l) #define SYSCTL_OUT_STR(r, p) (r->oldfunc)(r, p, strlen(p) + 1) int sysctl_handle_int(SYSCTL_HANDLER_ARGS); int sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS); int sysctl_handle_long(SYSCTL_HANDLER_ARGS); int sysctl_handle_64(SYSCTL_HANDLER_ARGS); int sysctl_handle_string(SYSCTL_HANDLER_ARGS); int sysctl_handle_opaque(SYSCTL_HANDLER_ARGS); int sysctl_handle_counter_u64(SYSCTL_HANDLER_ARGS); int sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS); int sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS); int sysctl_dpcpu_int(SYSCTL_HANDLER_ARGS); int sysctl_dpcpu_long(SYSCTL_HANDLER_ARGS); int sysctl_dpcpu_quad(SYSCTL_HANDLER_ARGS); /* * These functions are used to add/remove an oid from the mib. */ void sysctl_register_oid(struct sysctl_oid *oidp); void sysctl_unregister_oid(struct sysctl_oid *oidp); /* Declare a static oid to allow child oids to be added to it. */ #define SYSCTL_DECL(name) \ extern struct sysctl_oid sysctl__##name /* Hide these in macros. */ #define SYSCTL_CHILDREN(oid_ptr) (&(oid_ptr)->oid_children) #define SYSCTL_PARENT(oid_ptr) \ (((oid_ptr)->oid_parent != &sysctl__children) ? \ __containerof((oid_ptr)->oid_parent, struct sysctl_oid, \ oid_children) : (struct sysctl_oid *)NULL) #define SYSCTL_STATIC_CHILDREN(oid_name) (&sysctl__##oid_name.oid_children) /* === Structs and macros related to context handling. === */ /* All dynamically created sysctls can be tracked in a context list. */ struct sysctl_ctx_entry { struct sysctl_oid *entry; TAILQ_ENTRY(sysctl_ctx_entry) link; }; TAILQ_HEAD(sysctl_ctx_list, sysctl_ctx_entry); #define SYSCTL_NODE_CHILDREN(parent, name) \ sysctl__##parent##_##name.oid_children #ifndef NO_SYSCTL_DESCR #define __DESCR(d) d #else #define __DESCR(d) "" #endif /* This macro is only for internal use */ #define SYSCTL_OID_RAW(id, parent_child_head, nbr, name, kind, a1, a2, handler, fmt, descr) \ struct sysctl_oid id = { \ .oid_parent = (parent_child_head), \ .oid_children = SLIST_HEAD_INITIALIZER(&id.oid_children), \ .oid_number = (nbr), \ .oid_kind = (kind), \ .oid_arg1 = (a1), \ .oid_arg2 = (a2), \ .oid_name = (name), \ .oid_handler = (handler), \ .oid_fmt = (fmt), \ .oid_descr = __DESCR(descr) \ }; \ DATA_SET(sysctl_set, id) /* This constructs a static "raw" MIB oid. */ #define SYSCTL_OID(parent, nbr, name, kind, a1, a2, handler, fmt, descr) \ static SYSCTL_OID_RAW(sysctl__##parent##_##name, \ SYSCTL_CHILDREN(&sysctl__##parent), \ nbr, #name, kind, a1, a2, handler, fmt, descr) /* This constructs a global "raw" MIB oid. */ #define SYSCTL_OID_GLOBAL(parent, nbr, name, kind, a1, a2, handler, fmt, descr) \ SYSCTL_OID_RAW(sysctl__##parent##_##name, \ SYSCTL_CHILDREN(&sysctl__##parent), \ nbr, #name, kind, a1, a2, handler, fmt, descr) #define SYSCTL_ADD_OID(ctx, parent, nbr, name, kind, a1, a2, handler, fmt, descr) \ sysctl_add_oid(ctx, parent, nbr, name, kind, a1, a2, handler, fmt, __DESCR(descr)) /* This constructs a root node from which other nodes can hang. */ #define SYSCTL_ROOT_NODE(nbr, name, access, handler, descr) \ SYSCTL_OID_RAW(sysctl___##name, &sysctl__children, \ nbr, #name, CTLTYPE_NODE|(access), NULL, 0, \ handler, "N", descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_NODE) /* This constructs a node from which other oids can hang. */ #define SYSCTL_NODE(parent, nbr, name, access, handler, descr) \ SYSCTL_OID_GLOBAL(parent, nbr, name, CTLTYPE_NODE|(access), \ NULL, 0, handler, "N", descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_NODE) #define SYSCTL_ADD_NODE(ctx, parent, nbr, name, access, handler, descr) \ ({ \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_NODE); \ sysctl_add_oid(ctx, parent, nbr, name, CTLTYPE_NODE|(access), \ NULL, 0, handler, "N", __DESCR(descr)); \ }) #define SYSCTL_ADD_ROOT_NODE(ctx, nbr, name, access, handler, descr) \ ({ \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_NODE); \ sysctl_add_oid(ctx, &sysctl__children, nbr, name, \ CTLTYPE_NODE|(access), \ NULL, 0, handler, "N", __DESCR(descr)); \ }) /* Oid for a string. len can be 0 to indicate '\0' termination. */ #define SYSCTL_STRING(parent, nbr, name, access, arg, len, descr) \ SYSCTL_OID(parent, nbr, name, CTLTYPE_STRING|(access), \ arg, len, sysctl_handle_string, "A", descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_STRING) #define SYSCTL_ADD_STRING(ctx, parent, nbr, name, access, arg, len, descr) \ ({ \ char *__arg = (arg); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_STRING); \ sysctl_add_oid(ctx, parent, nbr, name, CTLTYPE_STRING|(access), \ __arg, len, sysctl_handle_string, "A", __DESCR(descr)); \ }) /* Oid for an int. If ptr is SYSCTL_NULL_INT_PTR, val is returned. */ #define SYSCTL_NULL_INT_PTR ((int *)NULL) #define SYSCTL_INT(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_int, "I", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT) && \ sizeof(int) == sizeof(*(ptr))) #define SYSCTL_ADD_INT(ctx, parent, nbr, name, access, ptr, val, descr) \ ({ \ int *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | (access), \ __ptr, val, sysctl_handle_int, "I", __DESCR(descr)); \ }) /* Oid for an unsigned int. If ptr is NULL, val is returned. */ #define SYSCTL_NULL_UINT_PTR ((unsigned *)NULL) #define SYSCTL_UINT(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_UINT | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_int, "IU", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_UINT) && \ sizeof(unsigned) == sizeof(*(ptr))) #define SYSCTL_ADD_UINT(ctx, parent, nbr, name, access, ptr, val, descr) \ ({ \ unsigned *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_UINT); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_UINT | CTLFLAG_MPSAFE | (access), \ __ptr, val, sysctl_handle_int, "IU", __DESCR(descr)); \ }) /* Oid for a long. The pointer must be non NULL. */ #define SYSCTL_NULL_LONG_PTR ((long *)NULL) #define SYSCTL_LONG(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_LONG | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_long, "L", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_LONG) && \ sizeof(long) == sizeof(*(ptr))) #define SYSCTL_ADD_LONG(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ long *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_LONG); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_LONG | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_long, "L", __DESCR(descr)); \ }) /* Oid for an unsigned long. The pointer must be non NULL. */ #define SYSCTL_NULL_ULONG_PTR ((unsigned long *)NULL) #define SYSCTL_ULONG(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_ULONG | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_long, "LU", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_ULONG) && \ sizeof(unsigned long) == sizeof(*(ptr))) #define SYSCTL_ADD_ULONG(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ unsigned long *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_ULONG); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_ULONG | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_long, "LU", __DESCR(descr)); \ }) /* Oid for a quad. The pointer must be non NULL. */ #define SYSCTL_NULL_QUAD_PTR ((int64_t *)NULL) #define SYSCTL_QUAD(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_S64 | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_64, "Q", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_S64) && \ sizeof(int64_t) == sizeof(*(ptr))) #define SYSCTL_ADD_QUAD(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ int64_t *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_S64); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_S64 | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_64, "Q", __DESCR(descr)); \ }) #define SYSCTL_NULL_UQUAD_PTR ((uint64_t *)NULL) #define SYSCTL_UQUAD(parent, nbr, name, access, ptr, val, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_U64 | CTLFLAG_MPSAFE | (access), \ ptr, val, sysctl_handle_64, "QU", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_U64) && \ sizeof(uint64_t) == sizeof(*(ptr))) #define SYSCTL_ADD_UQUAD(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ uint64_t *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_U64); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_U64 | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_64, "QU", __DESCR(descr)); \ }) /* Oid for a CPU dependant variable */ #define SYSCTL_ADD_UAUTO(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ struct sysctl_oid *__ret; \ CTASSERT((sizeof(uint64_t) == sizeof(*(ptr)) || \ sizeof(unsigned) == sizeof(*(ptr))) && \ ((access) & CTLTYPE) == 0); \ if (sizeof(uint64_t) == sizeof(*(ptr))) { \ __ret = sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_U64 | CTLFLAG_MPSAFE | (access), \ (ptr), 0, sysctl_handle_64, "QU", \ __DESCR(descr)); \ } else { \ __ret = sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_UINT | CTLFLAG_MPSAFE | (access), \ (ptr), 0, sysctl_handle_int, "IU", \ __DESCR(descr)); \ } \ __ret; \ }) /* Oid for a 64-bit unsigned counter(9). The pointer must be non NULL. */ #define SYSCTL_COUNTER_U64(parent, nbr, name, access, ptr, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_U64 | CTLFLAG_MPSAFE | (access), \ (ptr), 0, sysctl_handle_counter_u64, "QU", descr); \ CTASSERT((((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_U64) && \ sizeof(counter_u64_t) == sizeof(*(ptr)) && \ sizeof(uint64_t) == sizeof(**(ptr))) #define SYSCTL_ADD_COUNTER_U64(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ counter_u64_t *__ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_U64); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_U64 | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_counter_u64, "QU", __DESCR(descr)); \ }) /* Oid for an opaque object. Specified by a pointer and a length. */ #define SYSCTL_OPAQUE(parent, nbr, name, access, ptr, len, fmt, descr) \ SYSCTL_OID(parent, nbr, name, CTLTYPE_OPAQUE|(access), \ ptr, len, sysctl_handle_opaque, fmt, descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_OPAQUE) #define SYSCTL_ADD_OPAQUE(ctx, parent, nbr, name, access, ptr, len, fmt, descr) \ ({ \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_OPAQUE); \ sysctl_add_oid(ctx, parent, nbr, name, CTLTYPE_OPAQUE|(access), \ ptr, len, sysctl_handle_opaque, fmt, __DESCR(descr)); \ }) /* Oid for a struct. Specified by a pointer and a type. */ #define SYSCTL_STRUCT(parent, nbr, name, access, ptr, type, descr) \ SYSCTL_OID(parent, nbr, name, CTLTYPE_OPAQUE|(access), \ ptr, sizeof(struct type), sysctl_handle_opaque, \ "S," #type, descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_OPAQUE) #define SYSCTL_ADD_STRUCT(ctx, parent, nbr, name, access, ptr, type, descr) \ ({ \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_OPAQUE); \ sysctl_add_oid(ctx, parent, nbr, name, CTLTYPE_OPAQUE|(access), \ (ptr), sizeof(struct type), \ sysctl_handle_opaque, "S," #type, __DESCR(descr)); \ }) /* Oid for a procedure. Specified by a pointer and an arg. */ #define SYSCTL_PROC(parent, nbr, name, access, ptr, arg, handler, fmt, descr) \ SYSCTL_OID(parent, nbr, name, (access), \ ptr, arg, handler, fmt, descr); \ CTASSERT(((access) & CTLTYPE) != 0) #define SYSCTL_ADD_PROC(ctx, parent, nbr, name, access, ptr, arg, handler, fmt, descr) \ ({ \ CTASSERT(((access) & CTLTYPE) != 0); \ sysctl_add_oid(ctx, parent, nbr, name, (access), \ (ptr), (arg), (handler), (fmt), __DESCR(descr)); \ }) /* Oid to handle limits on uma(9) zone specified by pointer. */ #define SYSCTL_UMA_MAX(parent, nbr, name, access, ptr, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | (access), \ (ptr), 0, sysctl_handle_uma_zone_max, "I", descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT) #define SYSCTL_ADD_UMA_MAX(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ uma_zone_t __ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | (access), \ __ptr, 0, sysctl_handle_uma_zone_max, "I", __DESCR(descr)); \ }) /* Oid to obtain current use of uma(9) zone specified by pointer. */ #define SYSCTL_UMA_CUR(parent, nbr, name, access, ptr, descr) \ SYSCTL_OID(parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD | (access), \ (ptr), 0, sysctl_handle_uma_zone_cur, "I", descr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT) #define SYSCTL_ADD_UMA_CUR(ctx, parent, nbr, name, access, ptr, descr) \ ({ \ uma_zone_t __ptr = (ptr); \ CTASSERT(((access) & CTLTYPE) == 0 || \ ((access) & SYSCTL_CT_ASSERT_MASK) == CTLTYPE_INT); \ sysctl_add_oid(ctx, parent, nbr, name, \ CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD | (access), \ __ptr, 0, sysctl_handle_uma_zone_cur, "I", __DESCR(descr)); \ }) /* * A macro to generate a read-only sysctl to indicate the presense of optional * kernel features. */ #define FEATURE(name, desc) \ SYSCTL_INT(_kern_features, OID_AUTO, name, CTLFLAG_RD | CTLFLAG_CAPRD, \ SYSCTL_NULL_INT_PTR, 1, desc) #endif /* _KERNEL */ /* * Top-level identifiers */ #define CTL_UNSPEC 0 /* unused */ #define CTL_KERN 1 /* "high kernel": proc, limits */ #define CTL_VM 2 /* virtual memory */ #define CTL_VFS 3 /* filesystem, mount type is next */ #define CTL_NET 4 /* network, see socket.h */ #define CTL_DEBUG 5 /* debugging parameters */ #define CTL_HW 6 /* generic cpu/io */ #define CTL_MACHDEP 7 /* machine dependent */ #define CTL_USER 8 /* user-level */ #define CTL_P1003_1B 9 /* POSIX 1003.1B */ /* * CTL_KERN identifiers */ #define KERN_OSTYPE 1 /* string: system version */ #define KERN_OSRELEASE 2 /* string: system release */ #define KERN_OSREV 3 /* int: system revision */ #define KERN_VERSION 4 /* string: compile time info */ #define KERN_MAXVNODES 5 /* int: max vnodes */ #define KERN_MAXPROC 6 /* int: max processes */ #define KERN_MAXFILES 7 /* int: max open files */ #define KERN_ARGMAX 8 /* int: max arguments to exec */ #define KERN_SECURELVL 9 /* int: system security level */ #define KERN_HOSTNAME 10 /* string: hostname */ #define KERN_HOSTID 11 /* int: host identifier */ #define KERN_CLOCKRATE 12 /* struct: struct clockrate */ #define KERN_VNODE 13 /* struct: vnode structures */ #define KERN_PROC 14 /* struct: process entries */ #define KERN_FILE 15 /* struct: file entries */ #define KERN_PROF 16 /* node: kernel profiling info */ #define KERN_POSIX1 17 /* int: POSIX.1 version */ #define KERN_NGROUPS 18 /* int: # of supplemental group ids */ #define KERN_JOB_CONTROL 19 /* int: is job control available */ #define KERN_SAVED_IDS 20 /* int: saved set-user/group-ID */ #define KERN_BOOTTIME 21 /* struct: time kernel was booted */ #define KERN_NISDOMAINNAME 22 /* string: YP domain name */ #define KERN_UPDATEINTERVAL 23 /* int: update process sleep time */ #define KERN_OSRELDATE 24 /* int: kernel release date */ #define KERN_NTP_PLL 25 /* node: NTP PLL control */ #define KERN_BOOTFILE 26 /* string: name of booted kernel */ #define KERN_MAXFILESPERPROC 27 /* int: max open files per proc */ #define KERN_MAXPROCPERUID 28 /* int: max processes per uid */ #define KERN_DUMPDEV 29 /* struct cdev *: device to dump on */ #define KERN_IPC 30 /* node: anything related to IPC */ #define KERN_DUMMY 31 /* unused */ #define KERN_PS_STRINGS 32 /* int: address of PS_STRINGS */ #define KERN_USRSTACK 33 /* int: address of USRSTACK */ #define KERN_LOGSIGEXIT 34 /* int: do we log sigexit procs? */ #define KERN_IOV_MAX 35 /* int: value of UIO_MAXIOV */ #define KERN_HOSTUUID 36 /* string: host UUID identifier */ #define KERN_ARND 37 /* int: from arc4rand() */ /* * KERN_PROC subtypes */ #define KERN_PROC_ALL 0 /* everything */ #define KERN_PROC_PID 1 /* by process id */ #define KERN_PROC_PGRP 2 /* by process group id */ #define KERN_PROC_SESSION 3 /* by session of pid */ #define KERN_PROC_TTY 4 /* by controlling tty */ #define KERN_PROC_UID 5 /* by effective uid */ #define KERN_PROC_RUID 6 /* by real uid */ #define KERN_PROC_ARGS 7 /* get/set arguments/proctitle */ #define KERN_PROC_PROC 8 /* only return procs */ #define KERN_PROC_SV_NAME 9 /* get syscall vector name */ #define KERN_PROC_RGID 10 /* by real group id */ #define KERN_PROC_GID 11 /* by effective group id */ #define KERN_PROC_PATHNAME 12 /* path to executable */ #define KERN_PROC_OVMMAP 13 /* Old VM map entries for process */ #define KERN_PROC_OFILEDESC 14 /* Old file descriptors for process */ #define KERN_PROC_KSTACK 15 /* Kernel stacks for process */ #define KERN_PROC_INC_THREAD 0x10 /* * modifier for pid, pgrp, tty, * uid, ruid, gid, rgid and proc * This effectively uses 16-31 */ #define KERN_PROC_VMMAP 32 /* VM map entries for process */ #define KERN_PROC_FILEDESC 33 /* File descriptors for process */ #define KERN_PROC_GROUPS 34 /* process groups */ #define KERN_PROC_ENV 35 /* get environment */ #define KERN_PROC_AUXV 36 /* get ELF auxiliary vector */ #define KERN_PROC_RLIMIT 37 /* process resource limits */ #define KERN_PROC_PS_STRINGS 38 /* get ps_strings location */ #define KERN_PROC_UMASK 39 /* process umask */ #define KERN_PROC_OSREL 40 /* osreldate for process binary */ #define KERN_PROC_SIGTRAMP 41 /* signal trampoline location */ #define KERN_PROC_CWD 42 /* process current working directory */ /* * KERN_IPC identifiers */ #define KIPC_MAXSOCKBUF 1 /* int: max size of a socket buffer */ #define KIPC_SOCKBUF_WASTE 2 /* int: wastage factor in sockbuf */ #define KIPC_SOMAXCONN 3 /* int: max length of connection q */ #define KIPC_MAX_LINKHDR 4 /* int: max length of link header */ #define KIPC_MAX_PROTOHDR 5 /* int: max length of network header */ #define KIPC_MAX_HDR 6 /* int: max total length of headers */ #define KIPC_MAX_DATALEN 7 /* int: max length of data? */ /* * CTL_HW identifiers */ #define HW_MACHINE 1 /* string: machine class */ #define HW_MODEL 2 /* string: specific machine model */ #define HW_NCPU 3 /* int: number of cpus */ #define HW_BYTEORDER 4 /* int: machine byte order */ #define HW_PHYSMEM 5 /* int: total memory */ #define HW_USERMEM 6 /* int: non-kernel memory */ #define HW_PAGESIZE 7 /* int: software page size */ #define HW_DISKNAMES 8 /* strings: disk drive names */ #define HW_DISKSTATS 9 /* struct: diskstats[] */ #define HW_FLOATINGPT 10 /* int: has HW floating point? */ #define HW_MACHINE_ARCH 11 /* string: machine architecture */ #define HW_REALMEM 12 /* int: 'real' memory */ /* * CTL_USER definitions */ #define USER_CS_PATH 1 /* string: _CS_PATH */ #define USER_BC_BASE_MAX 2 /* int: BC_BASE_MAX */ #define USER_BC_DIM_MAX 3 /* int: BC_DIM_MAX */ #define USER_BC_SCALE_MAX 4 /* int: BC_SCALE_MAX */ #define USER_BC_STRING_MAX 5 /* int: BC_STRING_MAX */ #define USER_COLL_WEIGHTS_MAX 6 /* int: COLL_WEIGHTS_MAX */ #define USER_EXPR_NEST_MAX 7 /* int: EXPR_NEST_MAX */ #define USER_LINE_MAX 8 /* int: LINE_MAX */ #define USER_RE_DUP_MAX 9 /* int: RE_DUP_MAX */ #define USER_POSIX2_VERSION 10 /* int: POSIX2_VERSION */ #define USER_POSIX2_C_BIND 11 /* int: POSIX2_C_BIND */ #define USER_POSIX2_C_DEV 12 /* int: POSIX2_C_DEV */ #define USER_POSIX2_CHAR_TERM 13 /* int: POSIX2_CHAR_TERM */ #define USER_POSIX2_FORT_DEV 14 /* int: POSIX2_FORT_DEV */ #define USER_POSIX2_FORT_RUN 15 /* int: POSIX2_FORT_RUN */ #define USER_POSIX2_LOCALEDEF 16 /* int: POSIX2_LOCALEDEF */ #define USER_POSIX2_SW_DEV 17 /* int: POSIX2_SW_DEV */ #define USER_POSIX2_UPE 18 /* int: POSIX2_UPE */ #define USER_STREAM_MAX 19 /* int: POSIX2_STREAM_MAX */ #define USER_TZNAME_MAX 20 /* int: POSIX2_TZNAME_MAX */ #define CTL_P1003_1B_ASYNCHRONOUS_IO 1 /* boolean */ #define CTL_P1003_1B_MAPPED_FILES 2 /* boolean */ #define CTL_P1003_1B_MEMLOCK 3 /* boolean */ #define CTL_P1003_1B_MEMLOCK_RANGE 4 /* boolean */ #define CTL_P1003_1B_MEMORY_PROTECTION 5 /* boolean */ #define CTL_P1003_1B_MESSAGE_PASSING 6 /* boolean */ #define CTL_P1003_1B_PRIORITIZED_IO 7 /* boolean */ #define CTL_P1003_1B_PRIORITY_SCHEDULING 8 /* boolean */ #define CTL_P1003_1B_REALTIME_SIGNALS 9 /* boolean */ #define CTL_P1003_1B_SEMAPHORES 10 /* boolean */ #define CTL_P1003_1B_FSYNC 11 /* boolean */ #define CTL_P1003_1B_SHARED_MEMORY_OBJECTS 12 /* boolean */ #define CTL_P1003_1B_SYNCHRONIZED_IO 13 /* boolean */ #define CTL_P1003_1B_TIMERS 14 /* boolean */ #define CTL_P1003_1B_AIO_LISTIO_MAX 15 /* int */ #define CTL_P1003_1B_AIO_MAX 16 /* int */ #define CTL_P1003_1B_AIO_PRIO_DELTA_MAX 17 /* int */ #define CTL_P1003_1B_DELAYTIMER_MAX 18 /* int */ #define CTL_P1003_1B_MQ_OPEN_MAX 19 /* int */ #define CTL_P1003_1B_PAGESIZE 20 /* int */ #define CTL_P1003_1B_RTSIG_MAX 21 /* int */ #define CTL_P1003_1B_SEM_NSEMS_MAX 22 /* int */ #define CTL_P1003_1B_SEM_VALUE_MAX 23 /* int */ #define CTL_P1003_1B_SIGQUEUE_MAX 24 /* int */ #define CTL_P1003_1B_TIMER_MAX 25 /* int */ #define CTL_P1003_1B_MAXID 26 #ifdef _KERNEL /* * Declare some common oids. */ extern struct sysctl_oid_list sysctl__children; SYSCTL_DECL(_kern); SYSCTL_DECL(_kern_features); SYSCTL_DECL(_kern_ipc); SYSCTL_DECL(_kern_proc); SYSCTL_DECL(_kern_sched); SYSCTL_DECL(_kern_sched_stats); SYSCTL_DECL(_sysctl); SYSCTL_DECL(_vm); SYSCTL_DECL(_vm_stats); SYSCTL_DECL(_vm_stats_misc); SYSCTL_DECL(_vfs); SYSCTL_DECL(_net); SYSCTL_DECL(_debug); SYSCTL_DECL(_debug_sizeof); SYSCTL_DECL(_dev); SYSCTL_DECL(_hw); SYSCTL_DECL(_hw_bus); SYSCTL_DECL(_hw_bus_devices); SYSCTL_DECL(_hw_bus_info); SYSCTL_DECL(_machdep); SYSCTL_DECL(_user); SYSCTL_DECL(_compat); SYSCTL_DECL(_regression); SYSCTL_DECL(_security); SYSCTL_DECL(_security_bsd); extern char machine[]; extern char osrelease[]; extern char ostype[]; extern char kern_ident[]; /* Dynamic oid handling */ struct sysctl_oid *sysctl_add_oid(struct sysctl_ctx_list *clist, struct sysctl_oid_list *parent, int nbr, const char *name, int kind, void *arg1, intptr_t arg2, int (*handler)(SYSCTL_HANDLER_ARGS), const char *fmt, const char *descr); int sysctl_remove_name(struct sysctl_oid *parent, const char *name, int del, int recurse); void sysctl_rename_oid(struct sysctl_oid *oidp, const char *name); int sysctl_move_oid(struct sysctl_oid *oidp, struct sysctl_oid_list *parent); int sysctl_remove_oid(struct sysctl_oid *oidp, int del, int recurse); int sysctl_ctx_init(struct sysctl_ctx_list *clist); int sysctl_ctx_free(struct sysctl_ctx_list *clist); struct sysctl_ctx_entry *sysctl_ctx_entry_add(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp); struct sysctl_ctx_entry *sysctl_ctx_entry_find(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp); int sysctl_ctx_entry_del(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp); int kernel_sysctl(struct thread *td, int *name, u_int namelen, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval, int flags); int kernel_sysctlbyname(struct thread *td, char *name, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval, int flags); int userland_sysctl(struct thread *td, int *name, u_int namelen, void *old, size_t *oldlenp, int inkernel, void *new, size_t newlen, size_t *retval, int flags); int sysctl_find_oid(int *name, u_int namelen, struct sysctl_oid **noid, int *nindx, struct sysctl_req *req); -void sysctl_wlock(void); -void sysctl_wunlock(void); +void sysctl_xlock(void); +void sysctl_xunlock(void); int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len); struct sbuf; struct sbuf *sbuf_new_for_sysctl(struct sbuf *, char *, int, struct sysctl_req *); #else /* !_KERNEL */ #include __BEGIN_DECLS int sysctl(const int *, u_int, void *, size_t *, const void *, size_t); int sysctlbyname(const char *, void *, size_t *, const void *, size_t); int sysctlnametomib(const char *, int *, size_t *); __END_DECLS #endif /* _KERNEL */ #endif /* !_SYS_SYSCTL_H_ */