Index: head/sys/opencrypto/cryptodev.h =================================================================== --- head/sys/opencrypto/cryptodev.h (revision 285525) +++ head/sys/opencrypto/cryptodev.h (revision 285526) @@ -1,525 +1,523 @@ /* $FreeBSD$ */ /* $OpenBSD: cryptodev.h,v 1.31 2002/06/11 11:14:29 beck Exp $ */ /*- * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. * * Copyright (c) 2001 Theo de Raadt * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * */ #ifndef _CRYPTO_CRYPTO_H_ #define _CRYPTO_CRYPTO_H_ #include /* Some initial values */ #define CRYPTO_DRIVERS_INITIAL 4 #define CRYPTO_SW_SESSIONS 32 /* Hash values */ #define NULL_HASH_LEN 16 #define MD5_HASH_LEN 16 #define SHA1_HASH_LEN 20 #define RIPEMD160_HASH_LEN 20 #define SHA2_256_HASH_LEN 32 #define SHA2_384_HASH_LEN 48 #define SHA2_512_HASH_LEN 64 #define MD5_KPDK_HASH_LEN 16 #define SHA1_KPDK_HASH_LEN 20 #define AES_HASH_LEN 16 /* Maximum hash algorithm result length */ #define HASH_MAX_LEN SHA2_512_HASH_LEN /* Keep this updated */ /* HMAC values */ #define NULL_HMAC_BLOCK_LEN 64 #define MD5_HMAC_BLOCK_LEN 64 #define SHA1_HMAC_BLOCK_LEN 64 #define RIPEMD160_HMAC_BLOCK_LEN 64 #define SHA2_256_HMAC_BLOCK_LEN 64 #define SHA2_384_HMAC_BLOCK_LEN 128 #define SHA2_512_HMAC_BLOCK_LEN 128 /* Maximum HMAC block length */ #define HMAC_MAX_BLOCK_LEN SHA2_512_HMAC_BLOCK_LEN /* Keep this updated */ #define HMAC_IPAD_VAL 0x36 #define HMAC_OPAD_VAL 0x5C /* HMAC Key Length */ #define NULL_HMAC_KEY_LEN 0 #define MD5_HMAC_KEY_LEN 16 #define SHA1_HMAC_KEY_LEN 20 #define RIPEMD160_HMAC_KEY_LEN 20 #define SHA2_256_HMAC_KEY_LEN 32 #define SHA2_384_HMAC_KEY_LEN 48 #define SHA2_512_HMAC_KEY_LEN 64 #define AES_128_HMAC_KEY_LEN 16 #define AES_192_HMAC_KEY_LEN 24 #define AES_256_HMAC_KEY_LEN 32 /* Encryption algorithm block sizes */ #define NULL_BLOCK_LEN 4 #define DES_BLOCK_LEN 8 #define DES3_BLOCK_LEN 8 #define BLOWFISH_BLOCK_LEN 8 #define SKIPJACK_BLOCK_LEN 8 #define CAST128_BLOCK_LEN 8 #define RIJNDAEL128_BLOCK_LEN 16 #define AES_BLOCK_LEN 16 -#define AES_MIN_BLOCK_LEN 1 +#define AES_ICM_BLOCK_LEN 1 #define ARC4_BLOCK_LEN 1 #define CAMELLIA_BLOCK_LEN 16 #define EALG_MAX_BLOCK_LEN AES_BLOCK_LEN /* Keep this updated */ /* IV Lengths */ #define ARC4_IV_LEN 1 -#define AES_IV_LEN 12 +#define AES_GCM_IV_LEN 12 #define AES_XTS_IV_LEN 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ -#define AES_CTR_NONCE_SIZE 4 - /* Min and Max Encryption Key Sizes */ #define NULL_MIN_KEY 0 #define NULL_MAX_KEY 256 /* 2048 bits, max key */ #define DES_MIN_KEY 8 #define DES_MAX_KEY DES_MIN_KEY #define TRIPLE_DES_MIN_KEY 24 #define TRIPLE_DES_MAX_KEY TRIPLE_DES_MIN_KEY #define BLOWFISH_MIN_KEY 5 #define BLOWFISH_MAX_KEY 56 /* 448 bits, max key */ #define CAST_MIN_KEY 5 #define CAST_MAX_KEY 16 #define SKIPJACK_MIN_KEY 10 #define SKIPJACK_MAX_KEY SKIPJACK_MIN_KEY #define RIJNDAEL_MIN_KEY 16 #define RIJNDAEL_MAX_KEY 32 -#define AES_MIN_KEY 16 -#define AES_MAX_KEY 32 -#define AES_XTS_MIN_KEY 32 -#define AES_XTS_MAX_KEY 64 +#define AES_MIN_KEY RIJNDAEL_MIN_KEY +#define AES_MAX_KEY RIJNDAEL_MAX_KEY +#define AES_XTS_MIN_KEY (2 * AES_MIN_KEY) +#define AES_XTS_MAX_KEY (2 * AES_MAX_KEY) #define ARC4_MIN_KEY 1 #define ARC4_MAX_KEY 32 #define CAMELLIA_MIN_KEY 8 #define CAMELLIA_MAX_KEY 32 /* Maximum hash algorithm result length */ #define AALG_MAX_RESULT_LEN 64 /* Keep this updated */ #define CRYPTO_ALGORITHM_MIN 1 #define CRYPTO_DES_CBC 1 #define CRYPTO_3DES_CBC 2 #define CRYPTO_BLF_CBC 3 #define CRYPTO_CAST_CBC 4 #define CRYPTO_SKIPJACK_CBC 5 #define CRYPTO_MD5_HMAC 6 #define CRYPTO_SHA1_HMAC 7 #define CRYPTO_RIPEMD160_HMAC 8 #define CRYPTO_MD5_KPDK 9 #define CRYPTO_SHA1_KPDK 10 #define CRYPTO_RIJNDAEL128_CBC 11 /* 128 bit blocksize */ #define CRYPTO_AES_CBC 11 /* 128 bit blocksize -- the same as above */ #define CRYPTO_ARC4 12 #define CRYPTO_MD5 13 #define CRYPTO_SHA1 14 #define CRYPTO_NULL_HMAC 15 #define CRYPTO_NULL_CBC 16 #define CRYPTO_DEFLATE_COMP 17 /* Deflate compression algorithm */ #define CRYPTO_SHA2_256_HMAC 18 #define CRYPTO_SHA2_384_HMAC 19 #define CRYPTO_SHA2_512_HMAC 20 #define CRYPTO_CAMELLIA_CBC 21 #define CRYPTO_AES_XTS 22 #define CRYPTO_AES_ICM 23 /* commonly known as CTR mode */ #define CRYPTO_AES_NIST_GMAC 24 /* cipher side */ #define CRYPTO_AES_NIST_GCM_16 25 /* 16 byte ICV */ #define CRYPTO_AES_128_NIST_GMAC 26 /* auth side */ #define CRYPTO_AES_192_NIST_GMAC 27 /* auth side */ #define CRYPTO_AES_256_NIST_GMAC 28 /* auth side */ #define CRYPTO_ALGORITHM_MAX 28 /* Keep updated - see below */ #define CRYPTO_ALGO_VALID(x) ((x) >= CRYPTO_ALGORITHM_MIN && \ (x) <= CRYPTO_ALGORITHM_MAX) /* Algorithm flags */ #define CRYPTO_ALG_FLAG_SUPPORTED 0x01 /* Algorithm is supported */ #define CRYPTO_ALG_FLAG_RNG_ENABLE 0x02 /* Has HW RNG for DH/DSA */ #define CRYPTO_ALG_FLAG_DSA_SHA 0x04 /* Can do SHA on msg */ /* * Crypto driver/device flags. They can set in the crid * parameter when creating a session or submitting a key * op to affect the device/driver assigned. If neither * of these are specified then the crid is assumed to hold * the driver id of an existing (and suitable) device that * must be used to satisfy the request. */ #define CRYPTO_FLAG_HARDWARE 0x01000000 /* hardware accelerated */ #define CRYPTO_FLAG_SOFTWARE 0x02000000 /* software implementation */ /* NB: deprecated */ struct session_op { u_int32_t cipher; /* ie. CRYPTO_DES_CBC */ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */ u_int32_t keylen; /* cipher key */ caddr_t key; int mackeylen; /* mac key */ caddr_t mackey; u_int32_t ses; /* returns: session # */ }; struct session2_op { u_int32_t cipher; /* ie. CRYPTO_DES_CBC */ u_int32_t mac; /* ie. CRYPTO_MD5_HMAC */ u_int32_t keylen; /* cipher key */ caddr_t key; int mackeylen; /* mac key */ caddr_t mackey; u_int32_t ses; /* returns: session # */ int crid; /* driver id + flags (rw) */ int pad[4]; /* for future expansion */ }; struct crypt_op { u_int32_t ses; u_int16_t op; /* i.e. COP_ENCRYPT */ #define COP_ENCRYPT 1 #define COP_DECRYPT 2 u_int16_t flags; #define COP_F_BATCH 0x0008 /* Batch op if possible */ u_int len; caddr_t src, dst; /* become iov[] inside kernel */ caddr_t mac; /* must be big enough for chosen MAC */ caddr_t iv; }; /* op and flags the same as crypt_op */ struct crypt_aead { u_int32_t ses; u_int16_t op; /* i.e. COP_ENCRYPT */ u_int16_t flags; u_int len; u_int aadlen; u_int ivlen; caddr_t src, dst; /* become iov[] inside kernel */ caddr_t aad; /* additional authenticated data */ caddr_t tag; /* must fit for chosen TAG length */ caddr_t iv; }; /* * Parameters for looking up a crypto driver/device by * device name or by id. The latter are returned for * created sessions (crid) and completed key operations. */ struct crypt_find_op { int crid; /* driver id + flags */ char name[32]; /* device/driver name */ }; /* bignum parameter, in packed bytes, ... */ struct crparam { caddr_t crp_p; u_int crp_nbits; }; #define CRK_MAXPARAM 8 struct crypt_kop { u_int crk_op; /* ie. CRK_MOD_EXP or other */ u_int crk_status; /* return status */ u_short crk_iparams; /* # of input parameters */ u_short crk_oparams; /* # of output parameters */ u_int crk_crid; /* NB: only used by CIOCKEY2 (rw) */ struct crparam crk_param[CRK_MAXPARAM]; }; #define CRK_ALGORITM_MIN 0 #define CRK_MOD_EXP 0 #define CRK_MOD_EXP_CRT 1 #define CRK_DSA_SIGN 2 #define CRK_DSA_VERIFY 3 #define CRK_DH_COMPUTE_KEY 4 #define CRK_ALGORITHM_MAX 4 /* Keep updated - see below */ #define CRF_MOD_EXP (1 << CRK_MOD_EXP) #define CRF_MOD_EXP_CRT (1 << CRK_MOD_EXP_CRT) #define CRF_DSA_SIGN (1 << CRK_DSA_SIGN) #define CRF_DSA_VERIFY (1 << CRK_DSA_VERIFY) #define CRF_DH_COMPUTE_KEY (1 << CRK_DH_COMPUTE_KEY) /* * done against open of /dev/crypto, to get a cloned descriptor. * Please use F_SETFD against the cloned descriptor. */ #define CRIOGET _IOWR('c', 100, u_int32_t) #define CRIOASYMFEAT CIOCASYMFEAT #define CRIOFINDDEV CIOCFINDDEV /* the following are done against the cloned descriptor */ #define CIOCGSESSION _IOWR('c', 101, struct session_op) #define CIOCFSESSION _IOW('c', 102, u_int32_t) #define CIOCCRYPT _IOWR('c', 103, struct crypt_op) #define CIOCKEY _IOWR('c', 104, struct crypt_kop) #define CIOCASYMFEAT _IOR('c', 105, u_int32_t) #define CIOCGSESSION2 _IOWR('c', 106, struct session2_op) #define CIOCKEY2 _IOWR('c', 107, struct crypt_kop) #define CIOCFINDDEV _IOWR('c', 108, struct crypt_find_op) #define CIOCCRYPTAEAD _IOWR('c', 109, struct crypt_aead) struct cryptotstat { struct timespec acc; /* total accumulated time */ struct timespec min; /* min time */ struct timespec max; /* max time */ u_int32_t count; /* number of observations */ }; struct cryptostats { u_int32_t cs_ops; /* symmetric crypto ops submitted */ u_int32_t cs_errs; /* symmetric crypto ops that failed */ u_int32_t cs_kops; /* asymetric/key ops submitted */ u_int32_t cs_kerrs; /* asymetric/key ops that failed */ u_int32_t cs_intrs; /* crypto swi thread activations */ u_int32_t cs_rets; /* crypto return thread activations */ u_int32_t cs_blocks; /* symmetric op driver block */ u_int32_t cs_kblocks; /* symmetric op driver block */ /* * When CRYPTO_TIMING is defined at compile time and the * sysctl debug.crypto is set to 1, the crypto system will * accumulate statistics about how long it takes to process * crypto requests at various points during processing. */ struct cryptotstat cs_invoke; /* crypto_dipsatch -> crypto_invoke */ struct cryptotstat cs_done; /* crypto_invoke -> crypto_done */ struct cryptotstat cs_cb; /* crypto_done -> callback */ struct cryptotstat cs_finis; /* callback -> callback return */ }; #ifdef _KERNEL #if 0 #define CRYPTDEB(s) do { printf("%s:%d: %s\n", __FILE__, __LINE__, s); \ } while (0) #else #define CRYPTDEB(s) do { } while (0) #endif /* Standard initialization structure beginning */ struct cryptoini { int cri_alg; /* Algorithm to use */ int cri_klen; /* Key length, in bits */ int cri_mlen; /* Number of bytes we want from the entire hash. 0 means all. */ caddr_t cri_key; /* key to use */ u_int8_t cri_iv[EALG_MAX_BLOCK_LEN]; /* IV to use */ struct cryptoini *cri_next; }; /* Describe boundaries of a single crypto operation */ struct cryptodesc { int crd_skip; /* How many bytes to ignore from start */ int crd_len; /* How many bytes to process */ int crd_inject; /* Where to inject results, if applicable */ int crd_flags; #define CRD_F_ENCRYPT 0x01 /* Set when doing encryption */ #define CRD_F_IV_PRESENT 0x02 /* When encrypting, IV is already in place, so don't copy. */ #define CRD_F_IV_EXPLICIT 0x04 /* IV explicitly provided */ #define CRD_F_DSA_SHA_NEEDED 0x08 /* Compute SHA-1 of buffer for DSA */ #define CRD_F_COMP 0x0f /* Set when doing compression */ #define CRD_F_KEY_EXPLICIT 0x10 /* Key explicitly provided */ struct cryptoini CRD_INI; /* Initialization/context data */ #define crd_esn CRD_INI.cri_esn #define crd_iv CRD_INI.cri_iv #define crd_key CRD_INI.cri_key #define crd_alg CRD_INI.cri_alg #define crd_klen CRD_INI.cri_klen struct cryptodesc *crd_next; }; /* Structure describing complete operation */ struct cryptop { TAILQ_ENTRY(cryptop) crp_next; u_int64_t crp_sid; /* Session ID */ int crp_ilen; /* Input data total length */ int crp_olen; /* Result total length */ int crp_etype; /* * Error type (zero means no error). * All error codes except EAGAIN * indicate possible data corruption (as in, * the data have been touched). On all * errors, the crp_sid may have changed * (reset to a new one), so the caller * should always check and use the new * value on future requests. */ int crp_flags; #define CRYPTO_F_IMBUF 0x0001 /* Input/output are mbuf chains */ #define CRYPTO_F_IOV 0x0002 /* Input/output are uio */ #define CRYPTO_F_BATCH 0x0008 /* Batch op if possible */ #define CRYPTO_F_CBIMM 0x0010 /* Do callback immediately */ #define CRYPTO_F_DONE 0x0020 /* Operation completed */ #define CRYPTO_F_CBIFSYNC 0x0040 /* Do CBIMM if op is synchronous */ caddr_t crp_buf; /* Data to be processed */ caddr_t crp_opaque; /* Opaque pointer, passed along */ struct cryptodesc *crp_desc; /* Linked list of processing descriptors */ int (*crp_callback)(struct cryptop *); /* Callback function */ struct bintime crp_tstamp; /* performance time stamp */ }; #define CRYPTO_BUF_CONTIG 0x0 #define CRYPTO_BUF_IOV 0x1 #define CRYPTO_BUF_MBUF 0x2 #define CRYPTO_OP_DECRYPT 0x0 #define CRYPTO_OP_ENCRYPT 0x1 /* * Hints passed to process methods. */ #define CRYPTO_HINT_MORE 0x1 /* more ops coming shortly */ struct cryptkop { TAILQ_ENTRY(cryptkop) krp_next; u_int krp_op; /* ie. CRK_MOD_EXP or other */ u_int krp_status; /* return status */ u_short krp_iparams; /* # of input parameters */ u_short krp_oparams; /* # of output parameters */ u_int krp_crid; /* desired device, etc. */ u_int32_t krp_hid; struct crparam krp_param[CRK_MAXPARAM]; /* kvm */ int (*krp_callback)(struct cryptkop *); }; /* * Session ids are 64 bits. The lower 32 bits contain a "local id" which * is a driver-private session identifier. The upper 32 bits contain a * "hardware id" used by the core crypto code to identify the driver and * a copy of the driver's capabilities that can be used by client code to * optimize operation. */ #define CRYPTO_SESID2HID(_sid) (((_sid) >> 32) & 0x00ffffff) #define CRYPTO_SESID2CAPS(_sid) (((_sid) >> 32) & 0xff000000) #define CRYPTO_SESID2LID(_sid) (((u_int32_t) (_sid)) & 0xffffffff) MALLOC_DECLARE(M_CRYPTO_DATA); extern int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard); extern int crypto_freesession(u_int64_t sid); #define CRYPTOCAP_F_HARDWARE CRYPTO_FLAG_HARDWARE #define CRYPTOCAP_F_SOFTWARE CRYPTO_FLAG_SOFTWARE #define CRYPTOCAP_F_SYNC 0x04000000 /* operates synchronously */ extern int32_t crypto_get_driverid(device_t dev, int flags); extern int crypto_find_driver(const char *); extern device_t crypto_find_device_byhid(int hid); extern int crypto_getcaps(int hid); extern int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, u_int32_t flags); extern int crypto_kregister(u_int32_t, int, u_int32_t); extern int crypto_unregister(u_int32_t driverid, int alg); extern int crypto_unregister_all(u_int32_t driverid); extern int crypto_dispatch(struct cryptop *crp); extern int crypto_kdispatch(struct cryptkop *); #define CRYPTO_SYMQ 0x1 #define CRYPTO_ASYMQ 0x2 extern int crypto_unblock(u_int32_t, int); extern void crypto_done(struct cryptop *crp); extern void crypto_kdone(struct cryptkop *); extern int crypto_getfeat(int *); extern void crypto_freereq(struct cryptop *crp); extern struct cryptop *crypto_getreq(int num); extern int crypto_usercrypto; /* userland may do crypto requests */ extern int crypto_userasymcrypto; /* userland may do asym crypto reqs */ extern int crypto_devallowsoft; /* only use hardware crypto */ /* * Crypto-related utility routines used mainly by drivers. * * XXX these don't really belong here; but for now they're * kept apart from the rest of the system. */ struct uio; extern void cuio_copydata(struct uio* uio, int off, int len, caddr_t cp); extern void cuio_copyback(struct uio* uio, int off, int len, caddr_t cp); extern int cuio_getptr(struct uio *uio, int loc, int *off); extern int cuio_apply(struct uio *uio, int off, int len, int (*f)(void *, void *, u_int), void *arg); struct mbuf; struct iovec; extern int crypto_mbuftoiov(struct mbuf *mbuf, struct iovec **iovptr, int *cnt, int *allocated); extern void crypto_copyback(int flags, caddr_t buf, int off, int size, caddr_t in); extern void crypto_copydata(int flags, caddr_t buf, int off, int size, caddr_t out); extern int crypto_apply(int flags, caddr_t buf, int off, int len, int (*f)(void *, void *, u_int), void *arg); #endif /* _KERNEL */ #endif /* _CRYPTO_CRYPTO_H_ */ Index: head/sys/opencrypto/xform.c =================================================================== --- head/sys/opencrypto/xform.c (revision 285525) +++ head/sys/opencrypto/xform.c (revision 285526) @@ -1,984 +1,984 @@ /* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */ /*- * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr), * Niels Provos (provos@physnet.uni-hamburg.de) and * Damien Miller (djm@mindrot.org). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * AES XTS implementation in 2008 by Damien Miller * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Copyright (C) 2008, Damien Miller * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int null_setkey(u_int8_t **, u_int8_t *, int); static int des1_setkey(u_int8_t **, u_int8_t *, int); static int des3_setkey(u_int8_t **, u_int8_t *, int); static int blf_setkey(u_int8_t **, u_int8_t *, int); static int cast5_setkey(u_int8_t **, u_int8_t *, int); static int skipjack_setkey(u_int8_t **, u_int8_t *, int); static int rijndael128_setkey(u_int8_t **, u_int8_t *, int); static int aes_icm_setkey(u_int8_t **, u_int8_t *, int); static int aes_xts_setkey(u_int8_t **, u_int8_t *, int); static int cml_setkey(u_int8_t **, u_int8_t *, int); static void null_encrypt(caddr_t, u_int8_t *); static void des1_encrypt(caddr_t, u_int8_t *); static void des3_encrypt(caddr_t, u_int8_t *); static void blf_encrypt(caddr_t, u_int8_t *); static void cast5_encrypt(caddr_t, u_int8_t *); static void skipjack_encrypt(caddr_t, u_int8_t *); static void rijndael128_encrypt(caddr_t, u_int8_t *); static void aes_xts_encrypt(caddr_t, u_int8_t *); static void cml_encrypt(caddr_t, u_int8_t *); static void null_decrypt(caddr_t, u_int8_t *); static void des1_decrypt(caddr_t, u_int8_t *); static void des3_decrypt(caddr_t, u_int8_t *); static void blf_decrypt(caddr_t, u_int8_t *); static void cast5_decrypt(caddr_t, u_int8_t *); static void skipjack_decrypt(caddr_t, u_int8_t *); static void rijndael128_decrypt(caddr_t, u_int8_t *); static void aes_xts_decrypt(caddr_t, u_int8_t *); static void cml_decrypt(caddr_t, u_int8_t *); static void aes_icm_crypt(caddr_t, u_int8_t *); static void null_zerokey(u_int8_t **); static void des1_zerokey(u_int8_t **); static void des3_zerokey(u_int8_t **); static void blf_zerokey(u_int8_t **); static void cast5_zerokey(u_int8_t **); static void skipjack_zerokey(u_int8_t **); static void rijndael128_zerokey(u_int8_t **); static void aes_icm_zerokey(u_int8_t **); static void aes_xts_zerokey(u_int8_t **); static void cml_zerokey(u_int8_t **); static void aes_icm_reinit(caddr_t, u_int8_t *); static void aes_xts_reinit(caddr_t, u_int8_t *); static void aes_gcm_reinit(caddr_t, u_int8_t *); static void null_init(void *); static void null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len); static int null_update(void *, const u_int8_t *, u_int16_t); static void null_final(u_int8_t *, void *); static int MD5Update_int(void *, const u_int8_t *, u_int16_t); static void SHA1Init_int(void *); static int SHA1Update_int(void *, const u_int8_t *, u_int16_t); static void SHA1Final_int(u_int8_t *, void *); static int RMD160Update_int(void *, const u_int8_t *, u_int16_t); static int SHA256Update_int(void *, const u_int8_t *, u_int16_t); static int SHA384Update_int(void *, const u_int8_t *, u_int16_t); static int SHA512Update_int(void *, const u_int8_t *, u_int16_t); static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); #define AESICM_BLOCKSIZE 16 struct aes_icm_ctx { u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)]; /* ac_block is initalized to IV */ u_int8_t ac_block[AESICM_BLOCKSIZE]; int ac_nr; }; MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers"); /* Encryption instances */ struct enc_xform enc_xform_null = { CRYPTO_NULL_CBC, "NULL", /* NB: blocksize of 4 is to generate a properly aligned ESP header */ NULL_BLOCK_LEN, NULL_BLOCK_LEN, NULL_MIN_KEY, NULL_MAX_KEY, null_encrypt, null_decrypt, null_setkey, null_zerokey, NULL, }; struct enc_xform enc_xform_des = { CRYPTO_DES_CBC, "DES", DES_BLOCK_LEN, DES_BLOCK_LEN, DES_MIN_KEY, DES_MAX_KEY, des1_encrypt, des1_decrypt, des1_setkey, des1_zerokey, NULL, }; struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", DES3_BLOCK_LEN, DES3_BLOCK_LEN, TRIPLE_DES_MIN_KEY, TRIPLE_DES_MAX_KEY, des3_encrypt, des3_decrypt, des3_setkey, des3_zerokey, NULL, }; struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, BLOWFISH_MIN_KEY, BLOWFISH_MAX_KEY, blf_encrypt, blf_decrypt, blf_setkey, blf_zerokey, NULL, }; struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, CAST_MIN_KEY, CAST_MAX_KEY, cast5_encrypt, cast5_decrypt, cast5_setkey, cast5_zerokey, NULL, }; struct enc_xform enc_xform_skipjack = { CRYPTO_SKIPJACK_CBC, "Skipjack", SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, SKIPJACK_MIN_KEY, SKIPJACK_MAX_KEY, skipjack_encrypt, skipjack_decrypt, skipjack_setkey, skipjack_zerokey, NULL, }; struct enc_xform enc_xform_rijndael128 = { CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, RIJNDAEL_MIN_KEY, RIJNDAEL_MAX_KEY, rijndael128_encrypt, rijndael128_decrypt, rijndael128_setkey, rijndael128_zerokey, NULL, }; struct enc_xform enc_xform_aes_icm = { CRYPTO_AES_ICM, "AES-ICM", - RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, AES_MIN_KEY, AES_MAX_KEY, + AES_BLOCK_LEN, AES_BLOCK_LEN, AES_MIN_KEY, AES_MAX_KEY, aes_icm_crypt, aes_icm_crypt, aes_icm_setkey, rijndael128_zerokey, aes_icm_reinit, }; struct enc_xform enc_xform_aes_nist_gcm = { CRYPTO_AES_NIST_GCM_16, "AES-GCM", - AES_MIN_BLOCK_LEN, AES_IV_LEN, AES_MIN_KEY, AES_MAX_KEY, + AES_ICM_BLOCK_LEN, AES_GCM_IV_LEN, AES_MIN_KEY, AES_MAX_KEY, aes_icm_crypt, aes_icm_crypt, aes_icm_setkey, aes_icm_zerokey, aes_gcm_reinit, }; struct enc_xform enc_xform_aes_nist_gmac = { CRYPTO_AES_NIST_GMAC, "AES-GMAC", - AES_MIN_BLOCK_LEN, AES_IV_LEN, AES_MIN_KEY, AES_MAX_KEY, + AES_ICM_BLOCK_LEN, AES_GCM_IV_LEN, AES_MIN_KEY, AES_MAX_KEY, NULL, NULL, NULL, NULL, NULL, }; struct enc_xform enc_xform_aes_xts = { CRYPTO_AES_XTS, "AES-XTS", - AES_MIN_BLOCK_LEN, AES_XTS_IV_LEN, AES_XTS_MIN_KEY, AES_XTS_MAX_KEY, + AES_BLOCK_LEN, AES_XTS_IV_LEN, AES_XTS_MIN_KEY, AES_XTS_MAX_KEY, aes_xts_encrypt, aes_xts_decrypt, aes_xts_setkey, aes_xts_zerokey, aes_xts_reinit }; struct enc_xform enc_xform_arc4 = { CRYPTO_ARC4, "ARC4", ARC4_BLOCK_LEN, ARC4_IV_LEN, ARC4_MIN_KEY, ARC4_MAX_KEY, NULL, NULL, NULL, NULL, NULL, }; struct enc_xform enc_xform_camellia = { CRYPTO_CAMELLIA_CBC, "Camellia", CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, CAMELLIA_MIN_KEY, CAMELLIA_MAX_KEY, cml_encrypt, cml_decrypt, cml_setkey, cml_zerokey, NULL, }; /* Authentication instances */ struct auth_hash auth_hash_null = { /* NB: context isn't used */ CRYPTO_NULL_HMAC, "NULL-HMAC", NULL_HMAC_KEY_LEN, NULL_HASH_LEN, sizeof(int), NULL_HMAC_BLOCK_LEN, null_init, null_reinit, null_reinit, null_update, null_final }; struct auth_hash auth_hash_hmac_md5 = { CRYPTO_MD5_HMAC, "HMAC-MD5", MD5_HMAC_KEY_LEN, MD5_HASH_LEN, sizeof(MD5_CTX), MD5_HMAC_BLOCK_LEN, (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_hmac_sha1 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", SHA1_HMAC_KEY_LEN, SHA1_HASH_LEN, sizeof(SHA1_CTX), SHA1_HMAC_BLOCK_LEN, SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_hmac_ripemd_160 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", RIPEMD160_HMAC_KEY_LEN, RIPEMD160_HASH_LEN, sizeof(RMD160_CTX), RIPEMD160_HMAC_BLOCK_LEN, (void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int, (void (*)(u_int8_t *, void *)) RMD160Final }; struct auth_hash auth_hash_key_md5 = { CRYPTO_MD5_KPDK, "Keyed MD5", NULL_HMAC_KEY_LEN, MD5_KPDK_HASH_LEN, sizeof(MD5_CTX), 0, (void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int, (void (*)(u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_key_sha1 = { CRYPTO_SHA1_KPDK, "Keyed SHA1", NULL_HMAC_KEY_LEN, SHA1_KPDK_HASH_LEN, sizeof(SHA1_CTX), 0, SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_hmac_sha2_256 = { CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256", SHA2_256_HMAC_KEY_LEN, SHA2_256_HASH_LEN, sizeof(SHA256_CTX), SHA2_256_HMAC_BLOCK_LEN, (void (*)(void *)) SHA256_Init, NULL, NULL, SHA256Update_int, (void (*)(u_int8_t *, void *)) SHA256_Final }; struct auth_hash auth_hash_hmac_sha2_384 = { CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384", SHA2_384_HMAC_KEY_LEN, SHA2_384_HASH_LEN, sizeof(SHA384_CTX), SHA2_384_HMAC_BLOCK_LEN, (void (*)(void *)) SHA384_Init, NULL, NULL, SHA384Update_int, (void (*)(u_int8_t *, void *)) SHA384_Final }; struct auth_hash auth_hash_hmac_sha2_512 = { CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512", SHA2_512_HMAC_KEY_LEN, SHA2_512_HASH_LEN, sizeof(SHA512_CTX), SHA2_512_HMAC_BLOCK_LEN, (void (*)(void *)) SHA512_Init, NULL, NULL, SHA512Update_int, (void (*)(u_int8_t *, void *)) SHA512_Final }; struct auth_hash auth_hash_nist_gmac_aes_128 = { CRYPTO_AES_128_NIST_GMAC, "GMAC-AES-128", AES_128_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; struct auth_hash auth_hash_nist_gmac_aes_192 = { CRYPTO_AES_192_NIST_GMAC, "GMAC-AES-192", AES_192_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; struct auth_hash auth_hash_nist_gmac_aes_256 = { CRYPTO_AES_256_NIST_GMAC, "GMAC-AES-256", AES_256_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; /* Compression instance */ struct comp_algo comp_algo_deflate = { CRYPTO_DEFLATE_COMP, "Deflate", 90, deflate_compress, deflate_decompress }; /* * Encryption wrapper routines. */ static void null_encrypt(caddr_t key, u_int8_t *blk) { } static void null_decrypt(caddr_t key, u_int8_t *blk) { } static int null_setkey(u_int8_t **sched, u_int8_t *key, int len) { *sched = NULL; return 0; } static void null_zerokey(u_int8_t **sched) { *sched = NULL; } static void des1_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT); } static void des1_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT); } static int des1_setkey(u_int8_t **sched, u_int8_t *key, int len) { des_key_schedule *p; int err; p = malloc(sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (p != NULL) { des_set_key((des_cblock *) key, p[0]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des1_zerokey(u_int8_t **sched) { bzero(*sched, sizeof (des_key_schedule)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void des3_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT); } static void des3_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT); } static int des3_setkey(u_int8_t **sched, u_int8_t *key, int len) { des_key_schedule *p; int err; p = malloc(3*sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (p != NULL) { des_set_key((des_cblock *)(key + 0), p[0]); des_set_key((des_cblock *)(key + 8), p[1]); des_set_key((des_cblock *)(key + 16), p[2]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des3_zerokey(u_int8_t **sched) { bzero(*sched, 3*sizeof (des_key_schedule)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void blf_encrypt(caddr_t key, u_int8_t *blk) { BF_LONG t[2]; memcpy(t, blk, sizeof (t)); t[0] = ntohl(t[0]); t[1] = ntohl(t[1]); /* NB: BF_encrypt expects the block in host order! */ BF_encrypt(t, (BF_KEY *) key); t[0] = htonl(t[0]); t[1] = htonl(t[1]); memcpy(blk, t, sizeof (t)); } static void blf_decrypt(caddr_t key, u_int8_t *blk) { BF_LONG t[2]; memcpy(t, blk, sizeof (t)); t[0] = ntohl(t[0]); t[1] = ntohl(t[1]); /* NB: BF_decrypt expects the block in host order! */ BF_decrypt(t, (BF_KEY *) key); t[0] = htonl(t[0]); t[1] = htonl(t[1]); memcpy(blk, t, sizeof (t)); } static int blf_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; *sched = malloc(sizeof(BF_KEY), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { BF_set_key((BF_KEY *) *sched, len, key); err = 0; } else err = ENOMEM; return err; } static void blf_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(BF_KEY)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void cast5_encrypt(caddr_t key, u_int8_t *blk) { cast_encrypt((cast_key *) key, blk, blk); } static void cast5_decrypt(caddr_t key, u_int8_t *blk) { cast_decrypt((cast_key *) key, blk, blk); } static int cast5_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; *sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { cast_setkey((cast_key *)*sched, key, len); err = 0; } else err = ENOMEM; return err; } static void cast5_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(cast_key)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void skipjack_encrypt(caddr_t key, u_int8_t *blk) { skipjack_forwards(blk, blk, (u_int8_t **) key); } static void skipjack_decrypt(caddr_t key, u_int8_t *blk) { skipjack_backwards(blk, blk, (u_int8_t **) key); } static int skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; /* NB: allocate all the memory that's needed at once */ *sched = malloc(10 * (sizeof(u_int8_t *) + 0x100), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { u_int8_t** key_tables = (u_int8_t**) *sched; u_int8_t* table = (u_int8_t*) &key_tables[10]; int k; for (k = 0; k < 10; k++) { key_tables[k] = table; table += 0x100; } subkey_table_gen(key, (u_int8_t **) *sched); err = 0; } else err = ENOMEM; return err; } static void skipjack_zerokey(u_int8_t **sched) { bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void rijndael128_encrypt(caddr_t key, u_int8_t *blk) { rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } static void rijndael128_decrypt(caddr_t key, u_int8_t *blk) { rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk, (u_char *) blk); } static int rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; if (len != 16 && len != 24 && len != 32) return (EINVAL); *sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key, len * 8); err = 0; } else err = ENOMEM; return err; } static void rijndael128_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(rijndael_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } void aes_icm_reinit(caddr_t key, u_int8_t *iv) { struct aes_icm_ctx *ctx; ctx = (struct aes_icm_ctx *)key; bcopy(iv, ctx->ac_block, AESICM_BLOCKSIZE); } void aes_gcm_reinit(caddr_t key, u_int8_t *iv) { struct aes_icm_ctx *ctx; aes_icm_reinit(key, iv); ctx = (struct aes_icm_ctx *)key; /* GCM starts with 2 as counter 1 is used for final xor of tag. */ bzero(&ctx->ac_block[AESICM_BLOCKSIZE - 4], 4); ctx->ac_block[AESICM_BLOCKSIZE - 1] = 2; } void aes_icm_crypt(caddr_t key, u_int8_t *data) { struct aes_icm_ctx *ctx; u_int8_t keystream[AESICM_BLOCKSIZE]; int i; ctx = (struct aes_icm_ctx *)key; rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream); for (i = 0; i < AESICM_BLOCKSIZE; i++) data[i] ^= keystream[i]; explicit_bzero(keystream, sizeof(keystream)); /* increment counter */ for (i = AESICM_BLOCKSIZE - 1; i >= 0; i--) if (++ctx->ac_block[i]) /* continue on overflow */ break; } int aes_icm_setkey(u_int8_t **sched, u_int8_t *key, int len) { struct aes_icm_ctx *ctx; *sched = malloc(sizeof(struct aes_icm_ctx), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (*sched == NULL) return ENOMEM; ctx = (struct aes_icm_ctx *)*sched; ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key, len * 8); if (ctx->ac_nr == 0) return EINVAL; return 0; } void aes_icm_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(struct aes_icm_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } #define AES_XTS_BLOCKSIZE 16 #define AES_XTS_IVSIZE 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ struct aes_xts_ctx { rijndael_ctx key1; rijndael_ctx key2; u_int8_t tweak[AES_XTS_BLOCKSIZE]; }; void aes_xts_reinit(caddr_t key, u_int8_t *iv) { struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key; u_int64_t blocknum; u_int i; /* * Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ bcopy(iv, &blocknum, AES_XTS_IVSIZE); for (i = 0; i < AES_XTS_IVSIZE; i++) { ctx->tweak[i] = blocknum & 0xff; blocknum >>= 8; } /* Last 64 bits of IV are always zero */ bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak); } static void aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt) { u_int8_t block[AES_XTS_BLOCKSIZE]; u_int i, carry_in, carry_out; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) block[i] = data[i] ^ ctx->tweak[i]; if (do_encrypt) rijndael_encrypt(&ctx->key1, block, data); else rijndael_decrypt(&ctx->key1, block, data); for (i = 0; i < AES_XTS_BLOCKSIZE; i++) data[i] ^= ctx->tweak[i]; /* Exponentiate tweak */ carry_in = 0; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { carry_out = ctx->tweak[i] & 0x80; ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0); carry_in = carry_out; } if (carry_in) ctx->tweak[0] ^= AES_XTS_ALPHA; bzero(block, sizeof(block)); } void aes_xts_encrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 1); } void aes_xts_decrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 0); } int aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len) { struct aes_xts_ctx *ctx; if (len != 32 && len != 64) return EINVAL; *sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (*sched == NULL) return ENOMEM; ctx = (struct aes_xts_ctx *)*sched; rijndael_set_key(&ctx->key1, key, len * 4); rijndael_set_key(&ctx->key2, key + (len / 2), len * 4); return 0; } void aes_xts_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(struct aes_xts_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } static void cml_encrypt(caddr_t key, u_int8_t *blk) { camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk); } static void cml_decrypt(caddr_t key, u_int8_t *blk) { camellia_decrypt(((camellia_ctx *) key), (u_char *) blk, (u_char *) blk); } static int cml_setkey(u_int8_t **sched, u_int8_t *key, int len) { int err; if (len != 16 && len != 24 && len != 32) return (EINVAL); *sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*sched != NULL) { camellia_set_key((camellia_ctx *) *sched, (u_char *) key, len * 8); err = 0; } else err = ENOMEM; return err; } static void cml_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(camellia_ctx)); free(*sched, M_CRYPTO_DATA); *sched = NULL; } /* * And now for auth. */ static void null_init(void *ctx) { } static void null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len) { } static int null_update(void *ctx, const u_int8_t *buf, u_int16_t len) { return 0; } static void null_final(u_int8_t *buf, void *ctx) { if (buf != (u_int8_t *) 0) bzero(buf, 12); } static int RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { RMD160Update(ctx, buf, len); return 0; } static int MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { MD5Update(ctx, buf, len); return 0; } static void SHA1Init_int(void *ctx) { SHA1Init(ctx); } static int SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA1Update(ctx, buf, len); return 0; } static void SHA1Final_int(u_int8_t *blk, void *ctx) { SHA1Final(blk, ctx); } static int SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA256_Update(ctx, buf, len); return 0; } static int SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA384_Update(ctx, buf, len); return 0; } static int SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA512_Update(ctx, buf, len); return 0; } /* * And compression */ static u_int32_t deflate_compress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 0, out); } static u_int32_t deflate_decompress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 1, out); }