Index: head/sys/compat/linux/linux_misc.c =================================================================== --- head/sys/compat/linux/linux_misc.c (revision 283418) +++ head/sys/compat/linux/linux_misc.c (revision 283419) @@ -1,2288 +1,2290 @@ /*- * Copyright (c) 2002 Doug Rabson * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #if defined(__i386__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include #include #include int stclohz; /* Statistics clock frequency */ static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, RLIMIT_MEMLOCK, RLIMIT_AS }; struct l_sysinfo { l_long uptime; /* Seconds since boot */ l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ #define LINUX_SYSINFO_LOADS_SCALE 65536 l_ulong totalram; /* Total usable main memory size */ l_ulong freeram; /* Available memory size */ l_ulong sharedram; /* Amount of shared memory */ l_ulong bufferram; /* Memory used by buffers */ l_ulong totalswap; /* Total swap space size */ l_ulong freeswap; /* swap space still available */ l_ushort procs; /* Number of current processes */ l_ushort pads; l_ulong totalbig; l_ulong freebig; l_uint mem_unit; char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ }; struct l_pselect6arg { l_uintptr_t ss; l_size_t ss_len; }; int linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) { struct l_sysinfo sysinfo; vm_object_t object; int i, j; struct timespec ts; getnanouptime(&ts); if (ts.tv_nsec != 0) ts.tv_sec++; sysinfo.uptime = ts.tv_sec; /* Use the information from the mib to get our load averages */ for (i = 0; i < 3; i++) sysinfo.loads[i] = averunnable.ldavg[i] * LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; sysinfo.totalram = physmem * PAGE_SIZE; sysinfo.freeram = sysinfo.totalram - vm_cnt.v_wire_count * PAGE_SIZE; sysinfo.sharedram = 0; mtx_lock(&vm_object_list_mtx); TAILQ_FOREACH(object, &vm_object_list, object_list) if (object->shadow_count > 1) sysinfo.sharedram += object->resident_page_count; mtx_unlock(&vm_object_list_mtx); sysinfo.sharedram *= PAGE_SIZE; sysinfo.bufferram = 0; swap_pager_status(&i, &j); sysinfo.totalswap = i * PAGE_SIZE; sysinfo.freeswap = (i - j) * PAGE_SIZE; sysinfo.procs = nprocs; /* The following are only present in newer Linux kernels. */ sysinfo.totalbig = 0; sysinfo.freebig = 0; sysinfo.mem_unit = 1; return (copyout(&sysinfo, args->info, sizeof(sysinfo))); } int linux_alarm(struct thread *td, struct linux_alarm_args *args) { struct itimerval it, old_it; u_int secs; int error; #ifdef DEBUG if (ldebug(alarm)) printf(ARGS(alarm, "%u"), args->secs); #endif secs = args->secs; if (secs > INT_MAX) secs = INT_MAX; it.it_value.tv_sec = (long) secs; it.it_value.tv_usec = 0; it.it_interval.tv_sec = 0; it.it_interval.tv_usec = 0; error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); if (error) return (error); if (timevalisset(&old_it.it_value)) { if (old_it.it_value.tv_usec != 0) old_it.it_value.tv_sec++; td->td_retval[0] = old_it.it_value.tv_sec; } return (0); } int linux_brk(struct thread *td, struct linux_brk_args *args) { struct vmspace *vm = td->td_proc->p_vmspace; vm_offset_t new, old; struct obreak_args /* { char * nsize; } */ tmp; #ifdef DEBUG if (ldebug(brk)) printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend); #endif old = (vm_offset_t)vm->vm_daddr + ctob(vm->vm_dsize); new = (vm_offset_t)args->dsend; tmp.nsize = (char *)new; if (((caddr_t)new > vm->vm_daddr) && !sys_obreak(td, &tmp)) td->td_retval[0] = (long)new; else td->td_retval[0] = (long)old; return (0); } #if defined(__i386__) /* XXX: what about amd64/linux32? */ int linux_uselib(struct thread *td, struct linux_uselib_args *args) { struct nameidata ni; struct vnode *vp; struct exec *a_out; struct vattr attr; vm_offset_t vmaddr; unsigned long file_offset; unsigned long bss_size; char *library; ssize_t aresid; int error, locked, writecount; LCONVPATHEXIST(td, args->library, &library); #ifdef DEBUG if (ldebug(uselib)) printf(ARGS(uselib, "%s"), library); #endif a_out = NULL; locked = 0; vp = NULL; NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, library, td); error = namei(&ni); LFREEPATH(library); if (error) goto cleanup; vp = ni.ni_vp; NDFREE(&ni, NDF_ONLY_PNBUF); /* * From here on down, we have a locked vnode that must be unlocked. * XXX: The code below largely duplicates exec_check_permissions(). */ locked = 1; /* Writable? */ error = VOP_GET_WRITECOUNT(vp, &writecount); if (error != 0) goto cleanup; if (writecount != 0) { error = ETXTBSY; goto cleanup; } /* Executable? */ error = VOP_GETATTR(vp, &attr, td->td_ucred); if (error) goto cleanup; if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { /* EACCESS is what exec(2) returns. */ error = ENOEXEC; goto cleanup; } /* Sensible size? */ if (attr.va_size == 0) { error = ENOEXEC; goto cleanup; } /* Can we access it? */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) goto cleanup; /* * XXX: This should use vn_open() so that it is properly authorized, * and to reduce code redundancy all over the place here. * XXX: Not really, it duplicates far more of exec_check_permissions() * than vn_open(). */ #ifdef MAC error = mac_vnode_check_open(td->td_ucred, vp, VREAD); if (error) goto cleanup; #endif error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error) goto cleanup; /* Pull in executable header into exec_map */ error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); if (error) goto cleanup; /* Is it a Linux binary ? */ if (((a_out->a_magic >> 16) & 0xff) != 0x64) { error = ENOEXEC; goto cleanup; } /* * While we are here, we should REALLY do some more checks */ /* Set file/virtual offset based on a.out variant. */ switch ((int)(a_out->a_magic & 0xffff)) { case 0413: /* ZMAGIC */ file_offset = 1024; break; case 0314: /* QMAGIC */ file_offset = 0; break; default: error = ENOEXEC; goto cleanup; } bss_size = round_page(a_out->a_bss); /* Check various fields in header for validity/bounds. */ if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { error = ENOEXEC; goto cleanup; } /* text + data can't exceed file size */ if (a_out->a_data + a_out->a_text > attr.va_size) { error = EFAULT; goto cleanup; } /* * text/data/bss must not exceed limits * XXX - this is not complete. it should check current usage PLUS * the resources needed by this library. */ PROC_LOCK(td->td_proc); if (a_out->a_text > maxtsiz || a_out->a_data + bss_size > lim_cur(td->td_proc, RLIMIT_DATA) || racct_set(td->td_proc, RACCT_DATA, a_out->a_data + bss_size) != 0) { PROC_UNLOCK(td->td_proc); error = ENOMEM; goto cleanup; } PROC_UNLOCK(td->td_proc); /* * Prevent more writers. * XXX: Note that if any of the VM operations fail below we don't * clear this flag. */ VOP_SET_TEXT(vp); /* * Lock no longer needed */ locked = 0; VOP_UNLOCK(vp, 0); /* * Check if file_offset page aligned. Currently we cannot handle * misalinged file offsets, and so we read in the entire image * (what a waste). */ if (file_offset & PAGE_MASK) { #ifdef DEBUG printf("uselib: Non page aligned binary %lu\n", file_offset); #endif /* Map text+data read/write/execute */ /* a_entry is the load address and is page aligned */ vmaddr = trunc_page(a_out->a_entry); /* get anon user mapping, read+write+execute */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, td->td_ucred, NOCRED, &aresid, td); if (error != 0) goto cleanup; if (aresid != 0) { error = ENOEXEC; goto cleanup; } } else { #ifdef DEBUG printf("uselib: Page aligned binary %lu\n", file_offset); #endif /* * for QMAGIC, a_entry is 20 bytes beyond the load address * to skip the executable header */ vmaddr = trunc_page(a_out->a_entry); /* * Map it all into the process's space as a single * copy-on-write "data" segment. */ error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr, a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); if (error) goto cleanup; } #ifdef DEBUG printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0], ((long *)vmaddr)[1]); #endif if (bss_size != 0) { /* Calculate BSS start address */ vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + a_out->a_data; /* allocate some 'anon' space */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; } cleanup: /* Unlock vnode if needed */ if (locked) VOP_UNLOCK(vp, 0); /* Release the temporary mapping. */ if (a_out) kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); return (error); } #endif /* __i386__ */ int linux_select(struct thread *td, struct linux_select_args *args) { l_timeval ltv; struct timeval tv0, tv1, utv, *tvp; int error; #ifdef DEBUG if (ldebug(select)) printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds, (void *)args->readfds, (void *)args->writefds, (void *)args->exceptfds, (void *)args->timeout); #endif /* * Store current time for computation of the amount of * time left. */ if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) goto select_out; utv.tv_sec = ltv.tv_sec; utv.tv_usec = ltv.tv_usec; #ifdef DEBUG if (ldebug(select)) printf(LMSG("incoming timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timevalclear(&utv); } microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_select(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, sizeof(l_int) * 8); #ifdef DEBUG if (ldebug(select)) printf(LMSG("real select returns %d"), error); #endif if (error) goto select_out; if (args->timeout) { if (td->td_retval[0]) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); #ifdef DEBUG if (ldebug(select)) printf(LMSG("outgoing timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif ltv.tv_sec = utv.tv_sec; ltv.tv_usec = utv.tv_usec; if ((error = copyout(<v, args->timeout, sizeof(ltv)))) goto select_out; } select_out: #ifdef DEBUG if (ldebug(select)) printf(LMSG("select_out -> %d"), error); #endif return (error); } int linux_mremap(struct thread *td, struct linux_mremap_args *args) { struct munmap_args /* { void *addr; size_t len; } */ bsd_args; int error = 0; #ifdef DEBUG if (ldebug(mremap)) printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"), (void *)(uintptr_t)args->addr, (unsigned long)args->old_len, (unsigned long)args->new_len, (unsigned long)args->flags); #endif if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { td->td_retval[0] = 0; return (EINVAL); } /* * Check for the page alignment. * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. */ if (args->addr & PAGE_MASK) { td->td_retval[0] = 0; return (EINVAL); } args->new_len = round_page(args->new_len); args->old_len = round_page(args->old_len); if (args->new_len > args->old_len) { td->td_retval[0] = 0; return (ENOMEM); } if (args->new_len < args->old_len) { bsd_args.addr = (caddr_t)((uintptr_t)args->addr + args->new_len); bsd_args.len = args->old_len - args->new_len; error = sys_munmap(td, &bsd_args); } td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; return (error); } #define LINUX_MS_ASYNC 0x0001 #define LINUX_MS_INVALIDATE 0x0002 #define LINUX_MS_SYNC 0x0004 int linux_msync(struct thread *td, struct linux_msync_args *args) { struct msync_args bsd_args; bsd_args.addr = (caddr_t)(uintptr_t)args->addr; bsd_args.len = (uintptr_t)args->len; bsd_args.flags = args->fl & ~LINUX_MS_SYNC; return (sys_msync(td, &bsd_args)); } int linux_time(struct thread *td, struct linux_time_args *args) { struct timeval tv; l_time_t tm; int error; #ifdef DEBUG if (ldebug(time)) printf(ARGS(time, "*")); #endif microtime(&tv); tm = tv.tv_sec; if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) return (error); td->td_retval[0] = tm; return (0); } struct l_times_argv { l_clock_t tms_utime; l_clock_t tms_stime; l_clock_t tms_cutime; l_clock_t tms_cstime; }; /* * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK * auxiliary vector entry. */ #define CLK_TCK 100 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ CONVNTCK(r) : CONVOTCK(r)) int linux_times(struct thread *td, struct linux_times_args *args) { struct timeval tv, utime, stime, cutime, cstime; struct l_times_argv tms; struct proc *p; int error; #ifdef DEBUG if (ldebug(times)) printf(ARGS(times, "*")); #endif if (args->buf != NULL) { p = td->td_proc; PROC_LOCK(p); PROC_STATLOCK(p); calcru(p, &utime, &stime); PROC_STATUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = CONVTCK(utime); tms.tms_stime = CONVTCK(stime); tms.tms_cutime = CONVTCK(cutime); tms.tms_cstime = CONVTCK(cstime); if ((error = copyout(&tms, args->buf, sizeof(tms)))) return (error); } microuptime(&tv); td->td_retval[0] = (int)CONVTCK(tv); return (0); } int linux_newuname(struct thread *td, struct linux_newuname_args *args) { struct l_new_utsname utsname; char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; char *p; #ifdef DEBUG if (ldebug(newuname)) printf(ARGS(newuname, "*")); #endif linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); bzero(&utsname, sizeof(utsname)); strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); for (p = utsname.version; *p != '\0'; ++p) if (*p == '\n') { *p = '\0'; break; } strlcpy(utsname.machine, linux_kplatform, LINUX_MAX_UTSNAME); return (copyout(&utsname, args->buf, sizeof(utsname))); } struct l_utimbuf { l_time_t l_actime; l_time_t l_modtime; }; int linux_utime(struct thread *td, struct linux_utime_args *args) { struct timeval tv[2], *tvp; struct l_utimbuf lut; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utime)) printf(ARGS(utime, "%s, *"), fname); #endif if (args->times) { if ((error = copyin(args->times, &lut, sizeof lut))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = lut.l_actime; tv[0].tv_usec = 0; tv[1].tv_sec = lut.l_modtime; tv[1].tv_usec = 0; tvp = tv; } else tvp = NULL; error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_utimes(struct thread *td, struct linux_utimes_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utimes)) printf(ARGS(utimes, "%s, *"), fname); #endif if (args->tptr != NULL) { if ((error = copyin(args->tptr, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_futimesat(struct thread *td, struct linux_futimesat_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); #ifdef DEBUG if (ldebug(futimesat)) printf(ARGS(futimesat, "%s, *"), fname); #endif if (args->utimes != NULL) { if ((error = copyin(args->utimes, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_common_wait(struct thread *td, int pid, int *status, int options, struct rusage *ru) { int error, tmpstat; error = kern_wait(td, pid, &tmpstat, options, ru); if (error) return (error); if (status) { tmpstat &= 0xffff; if (WIFSIGNALED(tmpstat)) tmpstat = (tmpstat & 0xffffff80) | BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat)); else if (WIFSTOPPED(tmpstat)) tmpstat = (tmpstat & 0xffff00ff) | (BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8); error = copyout(&tmpstat, status, sizeof(int)); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_waitpid(struct thread *td, struct linux_waitpid_args *args) { int options; #ifdef DEBUG if (ldebug(waitpid)) printf(ARGS(waitpid, "%d, %p, %d"), args->pid, (void *)args->status, args->options); #endif /* * this is necessary because the test in kern_wait doesn't work * because we mess with the options here */ if (args->options & ~(WUNTRACED | WNOHANG | WCONTINUED | __WCLONE)) return (EINVAL); options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; return (linux_common_wait(td, args->pid, args->status, options, NULL)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_wait4(struct thread *td, struct linux_wait4_args *args) { int error, options; struct rusage ru, *rup; #ifdef DEBUG if (ldebug(wait4)) printf(ARGS(wait4, "%d, %p, %d, %p"), args->pid, (void *)args->status, args->options, (void *)args->rusage); #endif options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; if (args->rusage != NULL) rup = &ru; else rup = NULL; error = linux_common_wait(td, args->pid, args->status, options, rup); if (error != 0) return (error); if (args->rusage != NULL) error = linux_copyout_rusage(&ru, args->rusage); return (error); } int linux_waitid(struct thread *td, struct linux_waitid_args *args) { int status, options, sig; struct __wrusage wru; siginfo_t siginfo; l_siginfo_t lsi; idtype_t idtype; struct proc *p; int error; options = 0; linux_to_bsd_waitopts(args->options, &options); if (options & ~(WNOHANG | WNOWAIT | WEXITED | WUNTRACED | WCONTINUED)) return (EINVAL); if (!(options & (WEXITED | WUNTRACED | WCONTINUED))) return (EINVAL); switch (args->idtype) { case LINUX_P_ALL: idtype = P_ALL; break; case LINUX_P_PID: if (args->id <= 0) return (EINVAL); idtype = P_PID; break; case LINUX_P_PGID: if (args->id <= 0) return (EINVAL); idtype = P_PGID; break; default: return (EINVAL); } error = kern_wait6(td, idtype, args->id, &status, options, &wru, &siginfo); if (error != 0) return (error); if (args->rusage != NULL) { error = linux_copyout_rusage(&wru.wru_children, args->rusage); if (error != 0) return (error); } if (args->info != NULL) { p = td->td_proc; if (td->td_retval[0] == 0) bzero(&lsi, sizeof(lsi)); else { sig = BSD_TO_LINUX_SIGNAL(siginfo.si_signo); siginfo_to_lsiginfo(&siginfo, &lsi, sig); } error = copyout(&lsi, args->info, sizeof(lsi)); } td->td_retval[0] = 0; return (error); } int linux_mknod(struct thread *td, struct linux_mknod_args *args) { char *path; int error; LCONVPATHCREAT(td, args->path, &path); #ifdef DEBUG if (ldebug(mknod)) - printf(ARGS(mknod, "%s, %d, %d"), path, args->mode, args->dev); + printf(ARGS(mknod, "%s, %d, %ju"), path, args->mode, + (uintmax_t)args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } int linux_mknodat(struct thread *td, struct linux_mknodat_args *args) { char *path; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHCREAT_AT(td, args->filename, &path, dfd); #ifdef DEBUG if (ldebug(mknodat)) printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, dfd, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } /* * UGH! This is just about the dumbest idea I've ever heard!! */ int linux_personality(struct thread *td, struct linux_personality_args *args) { #ifdef DEBUG if (ldebug(personality)) printf(ARGS(personality, "%lu"), (unsigned long)args->per); #endif if (args->per != 0) return (EINVAL); /* Yes Jim, it's still a Linux... */ td->td_retval[0] = 0; return (0); } struct l_itimerval { l_timeval it_interval; l_timeval it_value; }; #define B2L_ITIMERVAL(bip, lip) \ (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; int linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv, oitv; #ifdef DEBUG if (ldebug(setitimer)) printf(ARGS(setitimer, "%p, %p"), (void *)uap->itv, (void *)uap->oitv); #endif if (uap->itv == NULL) { uap->itv = uap->oitv; return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); } error = copyin(uap->itv, &ls, sizeof(ls)); if (error != 0) return (error); B2L_ITIMERVAL(&aitv, &ls); #ifdef DEBUG if (ldebug(setitimer)) { printf("setitimer: value: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec); printf("setitimer: interval: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec); } #endif error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); B2L_ITIMERVAL(&ls, &oitv); return (copyout(&ls, uap->oitv, sizeof(ls))); } int linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv; #ifdef DEBUG if (ldebug(getitimer)) printf(ARGS(getitimer, "%p"), (void *)uap->itv); #endif error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); B2L_ITIMERVAL(&ls, &aitv); return (copyout(&ls, uap->itv, sizeof(ls))); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_nice(struct thread *td, struct linux_nice_args *args) { struct setpriority_args bsd_args; bsd_args.which = PRIO_PROCESS; bsd_args.who = 0; /* current process */ bsd_args.prio = args->inc; return (sys_setpriority(td, &bsd_args)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_setgroups(struct thread *td, struct linux_setgroups_args *args) { struct ucred *newcred, *oldcred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int ngrp, error; struct proc *p; ngrp = args->gidsetsize; if (ngrp < 0 || ngrp >= ngroups_max + 1) return (EINVAL); linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_TEMP, M_WAITOK); error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); if (error) goto out; newcred = crget(); p = td->td_proc; PROC_LOCK(p); oldcred = crcopysafe(p, newcred); /* * cr_groups[0] holds egid. Setting the whole set from * the supplied set will cause egid to be changed too. * Keep cr_groups[0] unchanged to prevent that. */ if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) { PROC_UNLOCK(p); crfree(newcred); goto out; } if (ngrp > 0) { newcred->cr_ngroups = ngrp + 1; bsd_gidset = newcred->cr_groups; ngrp--; while (ngrp >= 0) { bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; ngrp--; } } else newcred->cr_ngroups = 1; setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); error = 0; out: free(linux_gidset, M_TEMP); return (error); } int linux_getgroups(struct thread *td, struct linux_getgroups_args *args) { struct ucred *cred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int bsd_gidsetsz, ngrp, error; cred = td->td_ucred; bsd_gidset = cred->cr_groups; bsd_gidsetsz = cred->cr_ngroups - 1; /* * cr_groups[0] holds egid. Returning the whole set * here will cause a duplicate. Exclude cr_groups[0] * to prevent that. */ if ((ngrp = args->gidsetsize) == 0) { td->td_retval[0] = bsd_gidsetsz; return (0); } if (ngrp < bsd_gidsetsz) return (EINVAL); ngrp = 0; linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), M_TEMP, M_WAITOK); while (ngrp < bsd_gidsetsz) { linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; ngrp++; } error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); free(linux_gidset, M_TEMP); if (error) return (error); td->td_retval[0] = ngrp; return (0); } int linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) { struct rlimit bsd_rlim; struct l_rlimit rlim; u_int which; int error; #ifdef DEBUG if (ldebug(setrlimit)) printf(ARGS(setrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); error = copyin(args->rlim, &rlim, sizeof(rlim)); if (error) return (error); bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; return (kern_setrlimit(td, which, &bsd_rlim)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(old_getrlimit)) printf(ARGS(old_getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); #ifdef COMPAT_LINUX32 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; if (rlim.rlim_cur == UINT_MAX) rlim.rlim_cur = INT_MAX; rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; if (rlim.rlim_max == UINT_MAX) rlim.rlim_max = INT_MAX; #else rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; if (rlim.rlim_cur == ULONG_MAX) rlim.rlim_cur = LONG_MAX; rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; if (rlim.rlim_max == ULONG_MAX) rlim.rlim_max = LONG_MAX; #endif return (copyout(&rlim, args->rlim, sizeof(rlim))); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(getrlimit)) printf(ARGS(getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_sched_setscheduler(struct thread *td, struct linux_sched_setscheduler_args *args) { struct sched_param sched_param; struct thread *tdt; int error, policy; #ifdef DEBUG if (ldebug(sched_setscheduler)) printf(ARGS(sched_setscheduler, "%d, %d, %p"), args->pid, args->policy, (const void *)args->param); #endif switch (args->policy) { case LINUX_SCHED_OTHER: policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: policy = SCHED_FIFO; break; case LINUX_SCHED_RR: policy = SCHED_RR; break; default: return (EINVAL); } error = copyin(args->param, &sched_param, sizeof(sched_param)); if (error) return (error); tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_setscheduler(td, tdt, policy, &sched_param); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getscheduler(struct thread *td, struct linux_sched_getscheduler_args *args) { struct thread *tdt; int error, policy; #ifdef DEBUG if (ldebug(sched_getscheduler)) printf(ARGS(sched_getscheduler, "%d"), args->pid); #endif tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getscheduler(td, tdt, &policy); PROC_UNLOCK(tdt->td_proc); switch (policy) { case SCHED_OTHER: td->td_retval[0] = LINUX_SCHED_OTHER; break; case SCHED_FIFO: td->td_retval[0] = LINUX_SCHED_FIFO; break; case SCHED_RR: td->td_retval[0] = LINUX_SCHED_RR; break; } return (error); } int linux_sched_get_priority_max(struct thread *td, struct linux_sched_get_priority_max_args *args) { struct sched_get_priority_max_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_max)) printf(ARGS(sched_get_priority_max, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_max(td, &bsd)); } int linux_sched_get_priority_min(struct thread *td, struct linux_sched_get_priority_min_args *args) { struct sched_get_priority_min_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_min)) printf(ARGS(sched_get_priority_min, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_min(td, &bsd)); } #define REBOOT_CAD_ON 0x89abcdef #define REBOOT_CAD_OFF 0 #define REBOOT_HALT 0xcdef0123 #define REBOOT_RESTART 0x01234567 #define REBOOT_RESTART2 0xA1B2C3D4 #define REBOOT_POWEROFF 0x4321FEDC #define REBOOT_MAGIC1 0xfee1dead #define REBOOT_MAGIC2 0x28121969 #define REBOOT_MAGIC2A 0x05121996 #define REBOOT_MAGIC2B 0x16041998 int linux_reboot(struct thread *td, struct linux_reboot_args *args) { struct reboot_args bsd_args; #ifdef DEBUG if (ldebug(reboot)) printf(ARGS(reboot, "0x%x"), args->cmd); #endif if (args->magic1 != REBOOT_MAGIC1) return (EINVAL); switch (args->magic2) { case REBOOT_MAGIC2: case REBOOT_MAGIC2A: case REBOOT_MAGIC2B: break; default: return (EINVAL); } switch (args->cmd) { case REBOOT_CAD_ON: case REBOOT_CAD_OFF: return (priv_check(td, PRIV_REBOOT)); case REBOOT_HALT: bsd_args.opt = RB_HALT; break; case REBOOT_RESTART: case REBOOT_RESTART2: bsd_args.opt = 0; break; case REBOOT_POWEROFF: bsd_args.opt = RB_POWEROFF; break; default: return (EINVAL); } return (sys_reboot(td, &bsd_args)); } /* * The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify * td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that * are assumed to be preserved. The following lightweight syscalls fixes * this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c * * linux_getpid() - MP SAFE * linux_getgid() - MP SAFE * linux_getuid() - MP SAFE */ int linux_getpid(struct thread *td, struct linux_getpid_args *args) { #ifdef DEBUG if (ldebug(getpid)) printf(ARGS(getpid, "")); #endif td->td_retval[0] = td->td_proc->p_pid; return (0); } int linux_gettid(struct thread *td, struct linux_gettid_args *args) { struct linux_emuldata *em; #ifdef DEBUG if (ldebug(gettid)) printf(ARGS(gettid, "")); #endif em = em_find(td); KASSERT(em != NULL, ("gettid: emuldata not found.\n")); td->td_retval[0] = em->em_tid; return (0); } int linux_getppid(struct thread *td, struct linux_getppid_args *args) { #ifdef DEBUG if (ldebug(getppid)) printf(ARGS(getppid, "")); #endif PROC_LOCK(td->td_proc); td->td_retval[0] = td->td_proc->p_pptr->p_pid; PROC_UNLOCK(td->td_proc); return (0); } int linux_getgid(struct thread *td, struct linux_getgid_args *args) { #ifdef DEBUG if (ldebug(getgid)) printf(ARGS(getgid, "")); #endif td->td_retval[0] = td->td_ucred->cr_rgid; return (0); } int linux_getuid(struct thread *td, struct linux_getuid_args *args) { #ifdef DEBUG if (ldebug(getuid)) printf(ARGS(getuid, "")); #endif td->td_retval[0] = td->td_ucred->cr_ruid; return (0); } int linux_getsid(struct thread *td, struct linux_getsid_args *args) { struct getsid_args bsd; #ifdef DEBUG if (ldebug(getsid)) printf(ARGS(getsid, "%i"), args->pid); #endif bsd.pid = args->pid; return (sys_getsid(td, &bsd)); } int linux_nosys(struct thread *td, struct nosys_args *ignore) { return (ENOSYS); } int linux_getpriority(struct thread *td, struct linux_getpriority_args *args) { struct getpriority_args bsd_args; int error; #ifdef DEBUG if (ldebug(getpriority)) printf(ARGS(getpriority, "%i, %i"), args->which, args->who); #endif bsd_args.which = args->which; bsd_args.who = args->who; error = sys_getpriority(td, &bsd_args); td->td_retval[0] = 20 - td->td_retval[0]; return (error); } int linux_sethostname(struct thread *td, struct linux_sethostname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(sethostname)) printf(ARGS(sethostname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_HOSTNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, args->len, 0, 0)); } int linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(setdomainname)) printf(ARGS(setdomainname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_NISDOMAINNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, args->len, 0, 0)); } int linux_exit_group(struct thread *td, struct linux_exit_group_args *args) { #ifdef DEBUG if (ldebug(exit_group)) printf(ARGS(exit_group, "%i"), args->error_code); #endif LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, args->error_code); /* * XXX: we should send a signal to the parent if * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) * as it doesnt occur often. */ exit1(td, W_EXITCODE(args->error_code, 0)); /* NOTREACHED */ } #define _LINUX_CAPABILITY_VERSION 0x19980330 struct l_user_cap_header { l_int version; l_int pid; }; struct l_user_cap_data { l_int effective; l_int permitted; l_int inheritable; }; int linux_capget(struct thread *td, struct linux_capget_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); if (args->datap) { /* * The current implementation doesn't support setting * a capability (it's essentially a stub) so indicate * that no capabilities are currently set or available * to request. */ bzero (&lucd, sizeof(lucd)); error = copyout(&lucd, args->datap, sizeof(lucd)); } return (error); } int linux_capset(struct thread *td, struct linux_capset_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL || args->datap == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); error = copyin(args->datap, &lucd, sizeof(lucd)); if (error != 0) return (error); /* We currently don't support setting any capabilities. */ if (lucd.effective || lucd.permitted || lucd.inheritable) { linux_msg(td, "capset effective=0x%x, permitted=0x%x, " "inheritable=0x%x is not implemented", (int)lucd.effective, (int)lucd.permitted, (int)lucd.inheritable); return (EPERM); } return (0); } int linux_prctl(struct thread *td, struct linux_prctl_args *args) { int error = 0, max_size; struct proc *p = td->td_proc; char comm[LINUX_MAX_COMM_LEN]; struct linux_emuldata *em; int pdeath_signal; #ifdef DEBUG if (ldebug(prctl)) - printf(ARGS(prctl, "%d, %d, %d, %d, %d"), args->option, - args->arg2, args->arg3, args->arg4, args->arg5); + printf(ARGS(prctl, "%d, %ju, %ju, %ju, %ju"), args->option, + (uintmax_t)args->arg2, (uintmax_t)args->arg3, + (uintmax_t)args->arg4, (uintmax_t)args->arg5); #endif switch (args->option) { case LINUX_PR_SET_PDEATHSIG: if (!LINUX_SIG_VALID(args->arg2)) return (EINVAL); em = em_find(td); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); em->pdeath_signal = args->arg2; break; case LINUX_PR_GET_PDEATHSIG: em = em_find(td); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); pdeath_signal = em->pdeath_signal; error = copyout(&pdeath_signal, (void *)(register_t)args->arg2, sizeof(pdeath_signal)); break; case LINUX_PR_GET_KEEPCAPS: /* * Indicate that we always clear the effective and * permitted capability sets when the user id becomes * non-zero (actually the capability sets are simply * always zero in the current implementation). */ td->td_retval[0] = 0; break; case LINUX_PR_SET_KEEPCAPS: /* * Ignore requests to keep the effective and permitted * capability sets when the user id becomes non-zero. */ break; case LINUX_PR_SET_NAME: /* * To be on the safe side we need to make sure to not * overflow the size a linux program expects. We already * do this here in the copyin, so that we don't need to * check on copyout. */ max_size = MIN(sizeof(comm), sizeof(p->p_comm)); error = copyinstr((void *)(register_t)args->arg2, comm, max_size, NULL); /* Linux silently truncates the name if it is too long. */ if (error == ENAMETOOLONG) { /* * XXX: copyinstr() isn't documented to populate the * array completely, so do a copyin() to be on the * safe side. This should be changed in case * copyinstr() is changed to guarantee this. */ error = copyin((void *)(register_t)args->arg2, comm, max_size - 1); comm[max_size - 1] = '\0'; } if (error) return (error); PROC_LOCK(p); strlcpy(p->p_comm, comm, sizeof(p->p_comm)); PROC_UNLOCK(p); break; case LINUX_PR_GET_NAME: PROC_LOCK(p); strlcpy(comm, p->p_comm, sizeof(comm)); PROC_UNLOCK(p); error = copyout(comm, (void *)(register_t)args->arg2, strlen(comm) + 1); break; default: error = EINVAL; break; } return (error); } int linux_sched_setparam(struct thread *td, struct linux_sched_setparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error; #ifdef DEBUG if (ldebug(sched_setparam)) printf(ARGS(sched_setparam, "%d, *"), uap->pid); #endif error = copyin(uap->param, &sched_param, sizeof(sched_param)); if (error) return (error); tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_setparam(td, tdt, &sched_param); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getparam(struct thread *td, struct linux_sched_getparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error; #ifdef DEBUG if (ldebug(sched_getparam)) printf(ARGS(sched_getparam, "%d, *"), uap->pid); #endif tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getparam(td, tdt, &sched_param); PROC_UNLOCK(tdt->td_proc); if (error == 0) error = copyout(&sched_param, uap->param, sizeof(sched_param)); return (error); } /* * Get affinity of a process. */ int linux_sched_getaffinity(struct thread *td, struct linux_sched_getaffinity_args *args) { int error; struct thread *tdt; struct cpuset_getaffinity_args cga; #ifdef DEBUG if (ldebug(sched_getaffinity)) printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); PROC_UNLOCK(tdt->td_proc); cga.level = CPU_LEVEL_WHICH; cga.which = CPU_WHICH_TID; cga.id = tdt->td_tid; cga.cpusetsize = sizeof(cpuset_t); cga.mask = (cpuset_t *) args->user_mask_ptr; if ((error = sys_cpuset_getaffinity(td, &cga)) == 0) td->td_retval[0] = sizeof(cpuset_t); return (error); } /* * Set affinity of a process. */ int linux_sched_setaffinity(struct thread *td, struct linux_sched_setaffinity_args *args) { struct cpuset_setaffinity_args csa; struct thread *tdt; #ifdef DEBUG if (ldebug(sched_setaffinity)) printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); PROC_UNLOCK(tdt->td_proc); csa.level = CPU_LEVEL_WHICH; csa.which = CPU_WHICH_TID; csa.id = tdt->td_tid; csa.cpusetsize = sizeof(cpuset_t); csa.mask = (cpuset_t *) args->user_mask_ptr; return (sys_cpuset_setaffinity(td, &csa)); } struct linux_rlimit64 { uint64_t rlim_cur; uint64_t rlim_max; }; int linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) { struct rlimit rlim, nrlim; struct linux_rlimit64 lrlim; struct proc *p; u_int which; int flags; int error; #ifdef DEBUG if (ldebug(prlimit64)) printf(ARGS(prlimit64, "%d, %d, %p, %p"), args->pid, args->resource, (void *)args->new, (void *)args->old); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); if (args->new != NULL) { /* * Note. Unlike FreeBSD where rlim is signed 64-bit Linux * rlim is unsigned 64-bit. FreeBSD treats negative limits * as INFINITY so we do not need a conversion even. */ error = copyin(args->new, &nrlim, sizeof(nrlim)); if (error != 0) return (error); } flags = PGET_HOLD | PGET_NOTWEXIT; if (args->new != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget(args->pid, flags, &p); if (error != 0) return (error); if (args->old != NULL) { PROC_LOCK(p); lim_rlimit(p, which, &rlim); PROC_UNLOCK(p); if (rlim.rlim_cur == RLIM_INFINITY) lrlim.rlim_cur = LINUX_RLIM_INFINITY; else lrlim.rlim_cur = rlim.rlim_cur; if (rlim.rlim_max == RLIM_INFINITY) lrlim.rlim_max = LINUX_RLIM_INFINITY; else lrlim.rlim_max = rlim.rlim_max; error = copyout(&lrlim, args->old, sizeof(lrlim)); if (error != 0) goto out; } if (args->new != NULL) error = kern_proc_setrlimit(td, p, which, &nrlim); out: PRELE(p); return (error); } int linux_pselect6(struct thread *td, struct linux_pselect6_args *args) { struct timeval utv, tv0, tv1, *tvp; struct l_pselect6arg lpse6; struct l_timespec lts; struct timespec uts; l_sigset_t l_ss; sigset_t *ssp; sigset_t ss; int error; ssp = NULL; if (args->sig != NULL) { error = copyin(args->sig, &lpse6, sizeof(lpse6)); if (error != 0) return (error); if (lpse6.ss_len != sizeof(l_ss)) return (EINVAL); if (lpse6.ss != 0) { error = copyin(PTRIN(lpse6.ss), &l_ss, sizeof(l_ss)); if (error != 0) return (error); linux_to_bsd_sigset(&l_ss, &ss); ssp = &ss; } } /* * Currently glibc changes nanosecond number to microsecond. * This mean losing precision but for now it is hardly seen. */ if (args->tsp != NULL) { error = copyin(args->tsp, <s, sizeof(lts)); if (error != 0) return (error); uts.tv_sec = lts.tv_sec; uts.tv_nsec = lts.tv_nsec; TIMESPEC_TO_TIMEVAL(&utv, &uts); if (itimerfix(&utv)) return (EINVAL); microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_pselect(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, ssp, sizeof(l_int) * 8); if (error == 0 && args->tsp != NULL) { if (td->td_retval[0] != 0) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); TIMEVAL_TO_TIMESPEC(&utv, &uts); lts.tv_sec = uts.tv_sec; lts.tv_nsec = uts.tv_nsec; error = copyout(<s, args->tsp, sizeof(lts)); } return (error); } int linux_sched_rr_get_interval(struct thread *td, struct linux_sched_rr_get_interval_args *uap) { struct timespec ts; struct l_timespec lts; struct thread *tdt; int error; /* * According to man in case the invalid pid specified * EINVAL should be returned. */ if (uap->pid < 0) return (EINVAL); tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_rr_get_interval_td(td, tdt, &ts); PROC_UNLOCK(tdt->td_proc); if (error != 0) return (error); lts.tv_sec = ts.tv_sec; lts.tv_nsec = ts.tv_nsec; return (copyout(<s, uap->interval, sizeof(lts))); } /* * In case when the Linux thread is the initial thread in * the thread group thread id is equal to the process id. * Glibc depends on this magic (assert in pthread_getattr_np.c). */ struct thread * linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) { struct linux_emuldata *em; struct thread *tdt; struct proc *p; tdt = NULL; if (tid == 0 || tid == td->td_tid) { tdt = td; PROC_LOCK(tdt->td_proc); } else if (tid > PID_MAX) tdt = tdfind(tid, pid); else { /* * Initial thread where the tid equal to the pid. */ p = pfind(tid); if (p != NULL) { if (SV_PROC_ABI(p) != SV_ABI_LINUX) { /* * p is not a Linuxulator process. */ PROC_UNLOCK(p); return (NULL); } FOREACH_THREAD_IN_PROC(p, tdt) { em = em_find(tdt); if (tid == em->em_tid) return (tdt); } PROC_UNLOCK(p); } return (NULL); } return (tdt); } void linux_to_bsd_waitopts(int options, int *bsdopts) { if (options & LINUX_WNOHANG) *bsdopts |= WNOHANG; if (options & LINUX_WUNTRACED) *bsdopts |= WUNTRACED; if (options & LINUX_WEXITED) *bsdopts |= WEXITED; if (options & LINUX_WCONTINUED) *bsdopts |= WCONTINUED; if (options & LINUX_WNOWAIT) *bsdopts |= WNOWAIT; if (options & __WCLONE) *bsdopts |= WLINUXCLONE; } Index: head/sys/compat/linux/linux_signal.c =================================================================== --- head/sys/compat/linux/linux_signal.c (revision 283418) +++ head/sys/compat/linux/linux_signal.c (revision 283419) @@ -1,812 +1,812 @@ /*- * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include "opt_compat.h" #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include static int linux_do_tkill(struct thread *td, struct thread *tdt, ksiginfo_t *ksi); static void sicode_to_lsicode(int si_code, int *lsi_code); #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) void linux_to_bsd_sigset(l_sigset_t *lss, sigset_t *bss) { int b, l; SIGEMPTYSET(*bss); bss->__bits[0] = lss->__bits[0] & ~((1U << LINUX_SIGTBLSZ) - 1); bss->__bits[1] = lss->__bits[1]; for (l = 1; l <= LINUX_SIGTBLSZ; l++) { if (LINUX_SIGISMEMBER(*lss, l)) { b = linux_to_bsd_signal[_SIG_IDX(l)]; if (b) SIGADDSET(*bss, b); } } } void bsd_to_linux_sigset(sigset_t *bss, l_sigset_t *lss) { int b, l; LINUX_SIGEMPTYSET(*lss); lss->__bits[0] = bss->__bits[0] & ~((1U << LINUX_SIGTBLSZ) - 1); lss->__bits[1] = bss->__bits[1]; for (b = 1; b <= LINUX_SIGTBLSZ; b++) { if (SIGISMEMBER(*bss, b)) { l = bsd_to_linux_signal[_SIG_IDX(b)]; if (l) LINUX_SIGADDSET(*lss, l); } } } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ static void linux_to_bsd_sigaction(l_sigaction_t *lsa, struct sigaction *bsa) { linux_to_bsd_sigset(&lsa->lsa_mask, &bsa->sa_mask); bsa->sa_handler = PTRIN(lsa->lsa_handler); bsa->sa_flags = 0; if (lsa->lsa_flags & LINUX_SA_NOCLDSTOP) bsa->sa_flags |= SA_NOCLDSTOP; if (lsa->lsa_flags & LINUX_SA_NOCLDWAIT) bsa->sa_flags |= SA_NOCLDWAIT; if (lsa->lsa_flags & LINUX_SA_SIGINFO) bsa->sa_flags |= SA_SIGINFO; if (lsa->lsa_flags & LINUX_SA_ONSTACK) bsa->sa_flags |= SA_ONSTACK; if (lsa->lsa_flags & LINUX_SA_RESTART) bsa->sa_flags |= SA_RESTART; if (lsa->lsa_flags & LINUX_SA_ONESHOT) bsa->sa_flags |= SA_RESETHAND; if (lsa->lsa_flags & LINUX_SA_NOMASK) bsa->sa_flags |= SA_NODEFER; } static void bsd_to_linux_sigaction(struct sigaction *bsa, l_sigaction_t *lsa) { bsd_to_linux_sigset(&bsa->sa_mask, &lsa->lsa_mask); #ifdef COMPAT_LINUX32 lsa->lsa_handler = (uintptr_t)bsa->sa_handler; #else lsa->lsa_handler = bsa->sa_handler; #endif lsa->lsa_restorer = 0; /* unsupported */ lsa->lsa_flags = 0; if (bsa->sa_flags & SA_NOCLDSTOP) lsa->lsa_flags |= LINUX_SA_NOCLDSTOP; if (bsa->sa_flags & SA_NOCLDWAIT) lsa->lsa_flags |= LINUX_SA_NOCLDWAIT; if (bsa->sa_flags & SA_SIGINFO) lsa->lsa_flags |= LINUX_SA_SIGINFO; if (bsa->sa_flags & SA_ONSTACK) lsa->lsa_flags |= LINUX_SA_ONSTACK; if (bsa->sa_flags & SA_RESTART) lsa->lsa_flags |= LINUX_SA_RESTART; if (bsa->sa_flags & SA_RESETHAND) lsa->lsa_flags |= LINUX_SA_ONESHOT; if (bsa->sa_flags & SA_NODEFER) lsa->lsa_flags |= LINUX_SA_NOMASK; } int linux_do_sigaction(struct thread *td, int linux_sig, l_sigaction_t *linux_nsa, l_sigaction_t *linux_osa) { struct sigaction act, oact, *nsa, *osa; int error, sig; if (!LINUX_SIG_VALID(linux_sig)) return (EINVAL); osa = (linux_osa != NULL) ? &oact : NULL; if (linux_nsa != NULL) { nsa = &act; linux_to_bsd_sigaction(linux_nsa, nsa); } else nsa = NULL; if (linux_sig <= LINUX_SIGTBLSZ) sig = linux_to_bsd_signal[_SIG_IDX(linux_sig)]; else sig = linux_sig; error = kern_sigaction(td, sig, nsa, osa, 0); if (error) return (error); if (linux_osa != NULL) bsd_to_linux_sigaction(osa, linux_osa); return (0); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_signal(struct thread *td, struct linux_signal_args *args) { l_sigaction_t nsa, osa; int error; #ifdef DEBUG if (ldebug(signal)) printf(ARGS(signal, "%d, %p"), args->sig, (void *)(uintptr_t)args->handler); #endif nsa.lsa_handler = args->handler; nsa.lsa_flags = LINUX_SA_ONESHOT | LINUX_SA_NOMASK; LINUX_SIGEMPTYSET(nsa.lsa_mask); error = linux_do_sigaction(td, args->sig, &nsa, &osa); td->td_retval[0] = (int)(intptr_t)osa.lsa_handler; return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_rt_sigaction(struct thread *td, struct linux_rt_sigaction_args *args) { l_sigaction_t nsa, osa; int error; #ifdef DEBUG if (ldebug(rt_sigaction)) printf(ARGS(rt_sigaction, "%ld, %p, %p, %ld"), (long)args->sig, (void *)args->act, (void *)args->oact, (long)args->sigsetsize); #endif if (args->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); if (args->act != NULL) { error = copyin(args->act, &nsa, sizeof(l_sigaction_t)); if (error) return (error); } error = linux_do_sigaction(td, args->sig, args->act ? &nsa : NULL, args->oact ? &osa : NULL); if (args->oact != NULL && !error) { error = copyout(&osa, args->oact, sizeof(l_sigaction_t)); } return (error); } static int linux_do_sigprocmask(struct thread *td, int how, l_sigset_t *new, l_sigset_t *old) { sigset_t omask, nmask; sigset_t *nmaskp; int error; td->td_retval[0] = 0; switch (how) { case LINUX_SIG_BLOCK: how = SIG_BLOCK; break; case LINUX_SIG_UNBLOCK: how = SIG_UNBLOCK; break; case LINUX_SIG_SETMASK: how = SIG_SETMASK; break; default: return (EINVAL); } if (new != NULL) { linux_to_bsd_sigset(new, &nmask); nmaskp = &nmask; } else nmaskp = NULL; error = kern_sigprocmask(td, how, nmaskp, &omask, 0); if (error == 0 && old != NULL) bsd_to_linux_sigset(&omask, old); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_sigprocmask(struct thread *td, struct linux_sigprocmask_args *args) { l_osigset_t mask; l_sigset_t set, oset; int error; #ifdef DEBUG if (ldebug(sigprocmask)) printf(ARGS(sigprocmask, "%d, *, *"), args->how); #endif if (args->mask != NULL) { error = copyin(args->mask, &mask, sizeof(l_osigset_t)); if (error) return (error); LINUX_SIGEMPTYSET(set); set.__bits[0] = mask; } error = linux_do_sigprocmask(td, args->how, args->mask ? &set : NULL, args->omask ? &oset : NULL); if (args->omask != NULL && !error) { mask = oset.__bits[0]; error = copyout(&mask, args->omask, sizeof(l_osigset_t)); } return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_rt_sigprocmask(struct thread *td, struct linux_rt_sigprocmask_args *args) { l_sigset_t set, oset; int error; #ifdef DEBUG if (ldebug(rt_sigprocmask)) printf(ARGS(rt_sigprocmask, "%d, %p, %p, %ld"), args->how, (void *)args->mask, (void *)args->omask, (long)args->sigsetsize); #endif if (args->sigsetsize != sizeof(l_sigset_t)) return EINVAL; if (args->mask != NULL) { error = copyin(args->mask, &set, sizeof(l_sigset_t)); if (error) return (error); } error = linux_do_sigprocmask(td, args->how, args->mask ? &set : NULL, args->omask ? &oset : NULL); if (args->omask != NULL && !error) { error = copyout(&oset, args->omask, sizeof(l_sigset_t)); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_sgetmask(struct thread *td, struct linux_sgetmask_args *args) { struct proc *p = td->td_proc; l_sigset_t mask; #ifdef DEBUG if (ldebug(sgetmask)) printf(ARGS(sgetmask, "")); #endif PROC_LOCK(p); bsd_to_linux_sigset(&td->td_sigmask, &mask); PROC_UNLOCK(p); td->td_retval[0] = mask.__bits[0]; return (0); } int linux_ssetmask(struct thread *td, struct linux_ssetmask_args *args) { struct proc *p = td->td_proc; l_sigset_t lset; sigset_t bset; #ifdef DEBUG if (ldebug(ssetmask)) printf(ARGS(ssetmask, "%08lx"), (unsigned long)args->mask); #endif PROC_LOCK(p); bsd_to_linux_sigset(&td->td_sigmask, &lset); td->td_retval[0] = lset.__bits[0]; LINUX_SIGEMPTYSET(lset); lset.__bits[0] = args->mask; linux_to_bsd_sigset(&lset, &bset); td->td_sigmask = bset; SIG_CANTMASK(td->td_sigmask); signotify(td); PROC_UNLOCK(p); return (0); } int linux_sigpending(struct thread *td, struct linux_sigpending_args *args) { struct proc *p = td->td_proc; sigset_t bset; l_sigset_t lset; l_osigset_t mask; #ifdef DEBUG if (ldebug(sigpending)) printf(ARGS(sigpending, "*")); #endif PROC_LOCK(p); bset = p->p_siglist; SIGSETOR(bset, td->td_siglist); SIGSETAND(bset, td->td_sigmask); PROC_UNLOCK(p); bsd_to_linux_sigset(&bset, &lset); mask = lset.__bits[0]; return (copyout(&mask, args->mask, sizeof(mask))); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ /* * MPSAFE */ int linux_rt_sigpending(struct thread *td, struct linux_rt_sigpending_args *args) { struct proc *p = td->td_proc; sigset_t bset; l_sigset_t lset; if (args->sigsetsize > sizeof(lset)) return EINVAL; /* NOT REACHED */ #ifdef DEBUG if (ldebug(rt_sigpending)) printf(ARGS(rt_sigpending, "*")); #endif PROC_LOCK(p); bset = p->p_siglist; SIGSETOR(bset, td->td_siglist); SIGSETAND(bset, td->td_sigmask); PROC_UNLOCK(p); bsd_to_linux_sigset(&bset, &lset); return (copyout(&lset, args->set, args->sigsetsize)); } /* * MPSAFE */ int linux_rt_sigtimedwait(struct thread *td, struct linux_rt_sigtimedwait_args *args) { int error, sig; l_timeval ltv; struct timeval tv; struct timespec ts, *tsa; l_sigset_t lset; sigset_t bset; l_siginfo_t linfo; ksiginfo_t info; #ifdef DEBUG if (ldebug(rt_sigtimedwait)) printf(ARGS(rt_sigtimedwait, "*")); #endif if (args->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); if ((error = copyin(args->mask, &lset, sizeof(lset)))) return (error); linux_to_bsd_sigset(&lset, &bset); tsa = NULL; if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) return (error); #ifdef DEBUG if (ldebug(rt_sigtimedwait)) printf(LMSG("linux_rt_sigtimedwait: " - "incoming timeout (%d/%d)\n"), - ltv.tv_sec, ltv.tv_usec); + "incoming timeout (%jd/%jd)\n"), + (intmax_t)ltv.tv_sec, (intmax_t)ltv.tv_usec); #endif tv.tv_sec = (long)ltv.tv_sec; tv.tv_usec = (suseconds_t)ltv.tv_usec; if (itimerfix(&tv)) { /* * The timeout was invalid. Convert it to something * valid that will act as it does under Linux. */ tv.tv_sec += tv.tv_usec / 1000000; tv.tv_usec %= 1000000; if (tv.tv_usec < 0) { tv.tv_sec -= 1; tv.tv_usec += 1000000; } if (tv.tv_sec < 0) timevalclear(&tv); #ifdef DEBUG if (ldebug(rt_sigtimedwait)) printf(LMSG("linux_rt_sigtimedwait: " "converted timeout (%jd/%ld)\n"), (intmax_t)tv.tv_sec, tv.tv_usec); #endif } TIMEVAL_TO_TIMESPEC(&tv, &ts); tsa = &ts; } error = kern_sigtimedwait(td, bset, &info, tsa); #ifdef DEBUG if (ldebug(rt_sigtimedwait)) printf(LMSG("linux_rt_sigtimedwait: " "sigtimedwait returning (%d)\n"), error); #endif if (error) return (error); sig = BSD_TO_LINUX_SIGNAL(info.ksi_signo); if (args->ptr) { memset(&linfo, 0, sizeof(linfo)); ksiginfo_to_lsiginfo(&info, &linfo, sig); error = copyout(&linfo, args->ptr, sizeof(linfo)); } if (error == 0) td->td_retval[0] = sig; return (error); } int linux_kill(struct thread *td, struct linux_kill_args *args) { struct kill_args /* { int pid; int signum; } */ tmp; #ifdef DEBUG if (ldebug(kill)) printf(ARGS(kill, "%d, %d"), args->pid, args->signum); #endif /* * Allow signal 0 as a means to check for privileges */ if (!LINUX_SIG_VALID(args->signum) && args->signum != 0) return (EINVAL); if (args->signum > 0 && args->signum <= LINUX_SIGTBLSZ) tmp.signum = linux_to_bsd_signal[_SIG_IDX(args->signum)]; else tmp.signum = args->signum; tmp.pid = args->pid; return (sys_kill(td, &tmp)); } static int linux_do_tkill(struct thread *td, struct thread *tdt, ksiginfo_t *ksi) { struct proc *p; int error; p = tdt->td_proc; AUDIT_ARG_SIGNUM(ksi->ksi_signo); AUDIT_ARG_PID(p->p_pid); AUDIT_ARG_PROCESS(p); error = p_cansignal(td, p, ksi->ksi_signo); if (error != 0 || ksi->ksi_signo == 0) goto out; tdksignal(tdt, ksi->ksi_signo, ksi); out: PROC_UNLOCK(p); return (error); } int linux_tgkill(struct thread *td, struct linux_tgkill_args *args) { struct thread *tdt; ksiginfo_t ksi; int sig; #ifdef DEBUG if (ldebug(tgkill)) printf(ARGS(tgkill, "%d, %d, %d"), args->tgid, args->pid, args->sig); #endif if (args->pid <= 0 || args->tgid <=0) return (EINVAL); /* * Allow signal 0 as a means to check for privileges */ if (!LINUX_SIG_VALID(args->sig) && args->sig != 0) return (EINVAL); if (args->sig > 0 && args->sig <= LINUX_SIGTBLSZ) sig = linux_to_bsd_signal[_SIG_IDX(args->sig)]; else sig = args->sig; tdt = linux_tdfind(td, args->pid, args->tgid); if (tdt == NULL) return (ESRCH); ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_LWP; ksi.ksi_errno = 0; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_proc->p_ucred->cr_ruid; return (linux_do_tkill(td, tdt, &ksi)); } /* * Deprecated since 2.5.75. Replaced by tgkill(). */ int linux_tkill(struct thread *td, struct linux_tkill_args *args) { struct thread *tdt; ksiginfo_t ksi; int sig; #ifdef DEBUG if (ldebug(tkill)) printf(ARGS(tkill, "%i, %i"), args->tid, args->sig); #endif if (args->tid <= 0) return (EINVAL); if (!LINUX_SIG_VALID(args->sig)) return (EINVAL); if (args->sig > 0 && args->sig <= LINUX_SIGTBLSZ) sig = linux_to_bsd_signal[_SIG_IDX(args->sig)]; else sig = args->sig; tdt = linux_tdfind(td, args->tid, -1); if (tdt == NULL) return (ESRCH); ksiginfo_init(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = SI_LWP; ksi.ksi_errno = 0; ksi.ksi_pid = td->td_proc->p_pid; ksi.ksi_uid = td->td_proc->p_ucred->cr_ruid; return (linux_do_tkill(td, tdt, &ksi)); } void ksiginfo_to_lsiginfo(const ksiginfo_t *ksi, l_siginfo_t *lsi, l_int sig) { siginfo_to_lsiginfo(&ksi->ksi_info, lsi, sig); } static void sicode_to_lsicode(int si_code, int *lsi_code) { switch (si_code) { case SI_USER: *lsi_code = LINUX_SI_USER; break; case SI_KERNEL: *lsi_code = LINUX_SI_KERNEL; break; case SI_QUEUE: *lsi_code = LINUX_SI_QUEUE; break; case SI_TIMER: *lsi_code = LINUX_SI_TIMER; break; case SI_MESGQ: *lsi_code = LINUX_SI_MESGQ; break; case SI_ASYNCIO: *lsi_code = LINUX_SI_ASYNCIO; break; case SI_LWP: *lsi_code = LINUX_SI_TKILL; break; default: *lsi_code = si_code; break; } } void siginfo_to_lsiginfo(const siginfo_t *si, l_siginfo_t *lsi, l_int sig) { /* sig alredy converted */ lsi->lsi_signo = sig; sicode_to_lsicode(si->si_code, &lsi->lsi_code); switch (si->si_code) { case SI_LWP: lsi->lsi_pid = si->si_pid; lsi->lsi_uid = si->si_uid; break; case SI_TIMER: lsi->lsi_int = si->si_value.sival_int; lsi->lsi_ptr = PTROUT(si->si_value.sival_ptr); lsi->lsi_tid = si->si_timerid; break; case SI_QUEUE: lsi->lsi_pid = si->si_pid; lsi->lsi_uid = si->si_uid; lsi->lsi_ptr = PTROUT(si->si_value.sival_ptr); break; case SI_ASYNCIO: lsi->lsi_int = si->si_value.sival_int; lsi->lsi_ptr = PTROUT(si->si_value.sival_ptr); break; default: switch (sig) { case LINUX_SIGPOLL: /* XXX si_fd? */ lsi->lsi_band = si->si_band; break; case LINUX_SIGCHLD: lsi->lsi_errno = 0; lsi->lsi_pid = si->si_pid; lsi->lsi_uid = si->si_uid; if (si->si_code == CLD_STOPPED) lsi->lsi_status = BSD_TO_LINUX_SIGNAL(si->si_status); else if (si->si_code == CLD_CONTINUED) lsi->lsi_status = BSD_TO_LINUX_SIGNAL(SIGCONT); else lsi->lsi_status = si->si_status; break; case LINUX_SIGBUS: case LINUX_SIGILL: case LINUX_SIGFPE: case LINUX_SIGSEGV: lsi->lsi_addr = PTROUT(si->si_addr); break; default: lsi->lsi_pid = si->si_pid; lsi->lsi_uid = si->si_uid; if (sig >= LINUX_SIGRTMIN) { lsi->lsi_int = si->si_value.sival_int; lsi->lsi_ptr = PTROUT(si->si_value.sival_ptr); } break; } break; } } void lsiginfo_to_ksiginfo(const l_siginfo_t *lsi, ksiginfo_t *ksi, int sig) { ksi->ksi_signo = sig; ksi->ksi_code = lsi->lsi_code; /* XXX. Convert. */ ksi->ksi_pid = lsi->lsi_pid; ksi->ksi_uid = lsi->lsi_uid; ksi->ksi_status = lsi->lsi_status; ksi->ksi_addr = PTRIN(lsi->lsi_addr); ksi->ksi_info.si_value.sival_int = lsi->lsi_int; } int linux_rt_sigqueueinfo(struct thread *td, struct linux_rt_sigqueueinfo_args *args) { l_siginfo_t linfo; struct proc *p; ksiginfo_t ksi; int error; int sig; if (!LINUX_SIG_VALID(args->sig)) return (EINVAL); error = copyin(args->info, &linfo, sizeof(linfo)); if (error != 0) return (error); if (linfo.lsi_code >= 0) return (EPERM); if (args->sig > 0 && args->sig <= LINUX_SIGTBLSZ) sig = linux_to_bsd_signal[_SIG_IDX(args->sig)]; else sig = args->sig; error = ESRCH; if ((p = pfind(args->pid)) != NULL || (p = zpfind(args->pid)) != NULL) { error = p_cansignal(td, p, sig); if (error != 0) { PROC_UNLOCK(p); return (error); } ksiginfo_init(&ksi); lsiginfo_to_ksiginfo(&linfo, &ksi, sig); error = tdsendsignal(p, NULL, sig, &ksi); PROC_UNLOCK(p); } return (error); } Index: head/sys/compat/linux/linux_stats.c =================================================================== --- head/sys/compat/linux/linux_stats.c (revision 283418) +++ head/sys/compat/linux/linux_stats.c (revision 283419) @@ -1,630 +1,630 @@ /*- * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #define LINUX_SHMFS_MAGIC 0x01021994 static void translate_vnhook_major_minor(struct vnode *vp, struct stat *sb) { int major, minor; if (vp->v_type == VCHR && vp->v_rdev != NULL && linux_driver_get_major_minor(devtoname(vp->v_rdev), &major, &minor) == 0) { sb->st_rdev = (major << 8 | minor); } } static int linux_kern_statat(struct thread *td, int flag, int fd, char *path, enum uio_seg pathseg, struct stat *sbp) { return (kern_statat(td, flag, fd, path, pathseg, sbp, translate_vnhook_major_minor)); } static int linux_kern_stat(struct thread *td, char *path, enum uio_seg pathseg, struct stat *sbp) { return (linux_kern_statat(td, 0, AT_FDCWD, path, pathseg, sbp)); } static int linux_kern_lstat(struct thread *td, char *path, enum uio_seg pathseg, struct stat *sbp) { return (linux_kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, path, pathseg, sbp)); } /* * XXX: This was removed from newstat_copyout(), and almost identical * XXX: code was in stat64_copyout(). findcdev() needs to be replaced * XXX: with something that does lookup and locking properly. * XXX: When somebody fixes this: please try to avoid duplicating it. */ #if 0 static void disk_foo(struct somestat *tbuf) { struct cdevsw *cdevsw; struct cdev *dev; /* Lie about disk drives which are character devices * in FreeBSD but block devices under Linux. */ if (S_ISCHR(tbuf.st_mode) && (dev = findcdev(buf->st_rdev)) != NULL) { cdevsw = dev_refthread(dev); if (cdevsw != NULL) { if (cdevsw->d_flags & D_DISK) { tbuf.st_mode &= ~S_IFMT; tbuf.st_mode |= S_IFBLK; /* XXX this may not be quite right */ /* Map major number to 0 */ tbuf.st_dev = minor(buf->st_dev) & 0xf; tbuf.st_rdev = buf->st_rdev & 0xff; } dev_relthread(dev); } } } #endif static void translate_fd_major_minor(struct thread *td, int fd, struct stat *buf) { struct file *fp; struct vnode *vp; int major, minor; /* * No capability rights required here. */ if ((!S_ISCHR(buf->st_mode) && !S_ISBLK(buf->st_mode)) || fget(td, fd, 0, &fp) != 0) return; vp = fp->f_vnode; if (vp != NULL && vp->v_rdev != NULL && linux_driver_get_major_minor(devtoname(vp->v_rdev), &major, &minor) == 0) { buf->st_rdev = (major << 8 | minor); } else if (fp->f_type == DTYPE_PTS) { struct tty *tp = fp->f_data; /* Convert the numbers for the slave device. */ if (linux_driver_get_major_minor(devtoname(tp->t_dev), &major, &minor) == 0) { buf->st_rdev = (major << 8 | minor); } } fdrop(fp, td); } static int newstat_copyout(struct stat *buf, void *ubuf) { struct l_newstat tbuf; bzero(&tbuf, sizeof(tbuf)); tbuf.st_dev = minor(buf->st_dev) | (major(buf->st_dev) << 8); tbuf.st_ino = buf->st_ino; tbuf.st_mode = buf->st_mode; tbuf.st_nlink = buf->st_nlink; tbuf.st_uid = buf->st_uid; tbuf.st_gid = buf->st_gid; tbuf.st_rdev = buf->st_rdev; tbuf.st_size = buf->st_size; tbuf.st_atim.tv_sec = buf->st_atim.tv_sec; tbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec; tbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec; tbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec; tbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec; tbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec; tbuf.st_blksize = buf->st_blksize; tbuf.st_blocks = buf->st_blocks; return (copyout(&tbuf, ubuf, sizeof(tbuf))); } int linux_newstat(struct thread *td, struct linux_newstat_args *args) { struct stat buf; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(newstat)) printf(ARGS(newstat, "%s, *"), path); #endif error = linux_kern_stat(td, path, UIO_SYSSPACE, &buf); LFREEPATH(path); if (error) return (error); return (newstat_copyout(&buf, args->buf)); } int linux_newlstat(struct thread *td, struct linux_newlstat_args *args) { struct stat sb; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(newlstat)) printf(ARGS(newlstat, "%s, *"), path); #endif error = linux_kern_lstat(td, path, UIO_SYSSPACE, &sb); LFREEPATH(path); if (error) return (error); return (newstat_copyout(&sb, args->buf)); } int linux_newfstat(struct thread *td, struct linux_newfstat_args *args) { struct stat buf; int error; #ifdef DEBUG if (ldebug(newfstat)) printf(ARGS(newfstat, "%d, *"), args->fd); #endif error = kern_fstat(td, args->fd, &buf); translate_fd_major_minor(td, args->fd, &buf); if (!error) error = newstat_copyout(&buf, args->buf); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int stat_copyout(struct stat *buf, void *ubuf) { struct l_stat lbuf; bzero(&lbuf, sizeof(lbuf)); lbuf.st_dev = buf->st_dev; lbuf.st_ino = buf->st_ino; lbuf.st_mode = buf->st_mode; lbuf.st_nlink = buf->st_nlink; lbuf.st_uid = buf->st_uid; lbuf.st_gid = buf->st_gid; lbuf.st_rdev = buf->st_rdev; if (buf->st_size < (quad_t)1 << 32) lbuf.st_size = buf->st_size; else lbuf.st_size = -2; lbuf.st_atim.tv_sec = buf->st_atim.tv_sec; lbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec; lbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec; lbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec; lbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec; lbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec; lbuf.st_blksize = buf->st_blksize; lbuf.st_blocks = buf->st_blocks; lbuf.st_flags = buf->st_flags; lbuf.st_gen = buf->st_gen; return (copyout(&lbuf, ubuf, sizeof(lbuf))); } int linux_stat(struct thread *td, struct linux_stat_args *args) { struct stat buf; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(stat)) printf(ARGS(stat, "%s, *"), path); #endif error = linux_kern_stat(td, path, UIO_SYSSPACE, &buf); if (error) { LFREEPATH(path); return (error); } LFREEPATH(path); return(stat_copyout(&buf, args->up)); } int linux_lstat(struct thread *td, struct linux_lstat_args *args) { struct stat buf; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(lstat)) printf(ARGS(lstat, "%s, *"), path); #endif error = linux_kern_lstat(td, path, UIO_SYSSPACE, &buf); if (error) { LFREEPATH(path); return (error); } LFREEPATH(path); return(stat_copyout(&buf, args->up)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ struct l_statfs { l_long f_type; l_long f_bsize; l_long f_blocks; l_long f_bfree; l_long f_bavail; l_long f_files; l_long f_ffree; l_fsid_t f_fsid; l_long f_namelen; l_long f_spare[6]; }; #define LINUX_CODA_SUPER_MAGIC 0x73757245L #define LINUX_EXT2_SUPER_MAGIC 0xEF53L #define LINUX_HPFS_SUPER_MAGIC 0xf995e849L #define LINUX_ISOFS_SUPER_MAGIC 0x9660L #define LINUX_MSDOS_SUPER_MAGIC 0x4d44L #define LINUX_NCP_SUPER_MAGIC 0x564cL #define LINUX_NFS_SUPER_MAGIC 0x6969L #define LINUX_NTFS_SUPER_MAGIC 0x5346544EL #define LINUX_PROC_SUPER_MAGIC 0x9fa0L #define LINUX_UFS_SUPER_MAGIC 0x00011954L /* XXX - UFS_MAGIC in Linux */ #define LINUX_DEVFS_SUPER_MAGIC 0x1373L static long bsd_to_linux_ftype(const char *fstypename) { int i; static struct {const char *bsd_name; long linux_type;} b2l_tbl[] = { {"ufs", LINUX_UFS_SUPER_MAGIC}, {"cd9660", LINUX_ISOFS_SUPER_MAGIC}, {"nfs", LINUX_NFS_SUPER_MAGIC}, {"ext2fs", LINUX_EXT2_SUPER_MAGIC}, {"procfs", LINUX_PROC_SUPER_MAGIC}, {"msdosfs", LINUX_MSDOS_SUPER_MAGIC}, {"ntfs", LINUX_NTFS_SUPER_MAGIC}, {"nwfs", LINUX_NCP_SUPER_MAGIC}, {"hpfs", LINUX_HPFS_SUPER_MAGIC}, {"coda", LINUX_CODA_SUPER_MAGIC}, {"devfs", LINUX_DEVFS_SUPER_MAGIC}, {NULL, 0L}}; for (i = 0; b2l_tbl[i].bsd_name != NULL; i++) if (strcmp(b2l_tbl[i].bsd_name, fstypename) == 0) return (b2l_tbl[i].linux_type); return (0L); } static void bsd_to_linux_statfs(struct statfs *bsd_statfs, struct l_statfs *linux_statfs) { linux_statfs->f_type = bsd_to_linux_ftype(bsd_statfs->f_fstypename); linux_statfs->f_bsize = bsd_statfs->f_bsize; linux_statfs->f_blocks = bsd_statfs->f_blocks; linux_statfs->f_bfree = bsd_statfs->f_bfree; linux_statfs->f_bavail = bsd_statfs->f_bavail; linux_statfs->f_ffree = bsd_statfs->f_ffree; linux_statfs->f_files = bsd_statfs->f_files; linux_statfs->f_fsid.val[0] = bsd_statfs->f_fsid.val[0]; linux_statfs->f_fsid.val[1] = bsd_statfs->f_fsid.val[1]; linux_statfs->f_namelen = MAXNAMLEN; } int linux_statfs(struct thread *td, struct linux_statfs_args *args) { struct l_statfs linux_statfs; struct statfs bsd_statfs; char *path; int error, dev_shm; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(statfs)) printf(ARGS(statfs, "%s, *"), path); #endif dev_shm = 0; error = kern_statfs(td, path, UIO_SYSSPACE, &bsd_statfs); if (strncmp(path, "/dev/shm", sizeof("/dev/shm") - 1) == 0) dev_shm = (path[8] == '\0' || (path[8] == '/' && path[9] == '\0')); LFREEPATH(path); if (error) return (error); bsd_to_linux_statfs(&bsd_statfs, &linux_statfs); if (dev_shm) linux_statfs.f_type = LINUX_SHMFS_MAGIC; return copyout(&linux_statfs, args->buf, sizeof(linux_statfs)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static void bsd_to_linux_statfs64(struct statfs *bsd_statfs, struct l_statfs64 *linux_statfs) { linux_statfs->f_type = bsd_to_linux_ftype(bsd_statfs->f_fstypename); linux_statfs->f_bsize = bsd_statfs->f_bsize; linux_statfs->f_blocks = bsd_statfs->f_blocks; linux_statfs->f_bfree = bsd_statfs->f_bfree; linux_statfs->f_bavail = bsd_statfs->f_bavail; linux_statfs->f_ffree = bsd_statfs->f_ffree; linux_statfs->f_files = bsd_statfs->f_files; linux_statfs->f_fsid.val[0] = bsd_statfs->f_fsid.val[0]; linux_statfs->f_fsid.val[1] = bsd_statfs->f_fsid.val[1]; linux_statfs->f_namelen = MAXNAMLEN; } int linux_statfs64(struct thread *td, struct linux_statfs64_args *args) { struct l_statfs64 linux_statfs; struct statfs bsd_statfs; char *path; int error; if (args->bufsize != sizeof(struct l_statfs64)) return EINVAL; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(statfs64)) printf(ARGS(statfs64, "%s, *"), path); #endif error = kern_statfs(td, path, UIO_SYSSPACE, &bsd_statfs); LFREEPATH(path); if (error) return (error); bsd_to_linux_statfs64(&bsd_statfs, &linux_statfs); return copyout(&linux_statfs, args->buf, sizeof(linux_statfs)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_fstatfs(struct thread *td, struct linux_fstatfs_args *args) { struct l_statfs linux_statfs; struct statfs bsd_statfs; int error; #ifdef DEBUG if (ldebug(fstatfs)) printf(ARGS(fstatfs, "%d, *"), args->fd); #endif error = kern_fstatfs(td, args->fd, &bsd_statfs); if (error) return error; bsd_to_linux_statfs(&bsd_statfs, &linux_statfs); return copyout(&linux_statfs, args->buf, sizeof(linux_statfs)); } struct l_ustat { l_daddr_t f_tfree; l_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; int linux_ustat(struct thread *td, struct linux_ustat_args *args) { #ifdef DEBUG if (ldebug(ustat)) - printf(ARGS(ustat, "%d, *"), args->dev); + printf(ARGS(ustat, "%ju, *"), (uintmax_t)args->dev); #endif return (EOPNOTSUPP); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int stat64_copyout(struct stat *buf, void *ubuf) { struct l_stat64 lbuf; bzero(&lbuf, sizeof(lbuf)); lbuf.st_dev = minor(buf->st_dev) | (major(buf->st_dev) << 8); lbuf.st_ino = buf->st_ino; lbuf.st_mode = buf->st_mode; lbuf.st_nlink = buf->st_nlink; lbuf.st_uid = buf->st_uid; lbuf.st_gid = buf->st_gid; lbuf.st_rdev = buf->st_rdev; lbuf.st_size = buf->st_size; lbuf.st_atim.tv_sec = buf->st_atim.tv_sec; lbuf.st_atim.tv_nsec = buf->st_atim.tv_nsec; lbuf.st_mtim.tv_sec = buf->st_mtim.tv_sec; lbuf.st_mtim.tv_nsec = buf->st_mtim.tv_nsec; lbuf.st_ctim.tv_sec = buf->st_ctim.tv_sec; lbuf.st_ctim.tv_nsec = buf->st_ctim.tv_nsec; lbuf.st_blksize = buf->st_blksize; lbuf.st_blocks = buf->st_blocks; /* * The __st_ino field makes all the difference. In the Linux kernel * it is conditionally compiled based on STAT64_HAS_BROKEN_ST_INO, * but without the assignment to __st_ino the runtime linker refuses * to mmap(2) any shared libraries. I guess it's broken alright :-) */ lbuf.__st_ino = buf->st_ino; return (copyout(&lbuf, ubuf, sizeof(lbuf))); } int linux_stat64(struct thread *td, struct linux_stat64_args *args) { struct stat buf; char *filename; int error; LCONVPATHEXIST(td, args->filename, &filename); #ifdef DEBUG if (ldebug(stat64)) printf(ARGS(stat64, "%s, *"), filename); #endif error = linux_kern_stat(td, filename, UIO_SYSSPACE, &buf); LFREEPATH(filename); if (error) return (error); return (stat64_copyout(&buf, args->statbuf)); } int linux_lstat64(struct thread *td, struct linux_lstat64_args *args) { struct stat sb; char *filename; int error; LCONVPATHEXIST(td, args->filename, &filename); #ifdef DEBUG if (ldebug(lstat64)) printf(ARGS(lstat64, "%s, *"), args->filename); #endif error = linux_kern_lstat(td, filename, UIO_SYSSPACE, &sb); LFREEPATH(filename); if (error) return (error); return (stat64_copyout(&sb, args->statbuf)); } int linux_fstat64(struct thread *td, struct linux_fstat64_args *args) { struct stat buf; int error; #ifdef DEBUG if (ldebug(fstat64)) printf(ARGS(fstat64, "%d, *"), args->fd); #endif error = kern_fstat(td, args->fd, &buf); translate_fd_major_minor(td, args->fd, &buf); if (!error) error = stat64_copyout(&buf, args->statbuf); return (error); } int linux_fstatat64(struct thread *td, struct linux_fstatat64_args *args) { char *path; int error, dfd, flag; struct stat buf; if (args->flag & ~LINUX_AT_SYMLINK_NOFOLLOW) return (EINVAL); flag = (args->flag & LINUX_AT_SYMLINK_NOFOLLOW) ? AT_SYMLINK_NOFOLLOW : 0; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); #ifdef DEBUG if (ldebug(fstatat64)) printf(ARGS(fstatat64, "%i, %s, %i"), args->dfd, path, args->flag); #endif error = linux_kern_statat(td, flag, dfd, path, UIO_SYSSPACE, &buf); if (!error) error = stat64_copyout(&buf, args->statbuf); LFREEPATH(path); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */