Index: head/sys/amd64/linux32/linux32_machdep.c =================================================================== --- head/sys/amd64/linux32/linux32_machdep.c (revision 283373) +++ head/sys/amd64/linux32/linux32_machdep.c (revision 283374) @@ -1,1078 +1,1062 @@ /*- * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2002 Doug Rabson * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct l_old_select_argv { l_int nfds; l_uintptr_t readfds; l_uintptr_t writefds; l_uintptr_t exceptfds; l_uintptr_t timeout; } __packed; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } static int linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, l_int flags, l_int fd, l_loff_t pos); int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru) { lru->ru_utime.tv_sec = ru->ru_utime.tv_sec; lru->ru_utime.tv_usec = ru->ru_utime.tv_usec; lru->ru_stime.tv_sec = ru->ru_stime.tv_sec; lru->ru_stime.tv_usec = ru->ru_stime.tv_usec; lru->ru_maxrss = ru->ru_maxrss; lru->ru_ixrss = ru->ru_ixrss; lru->ru_idrss = ru->ru_idrss; lru->ru_isrss = ru->ru_isrss; lru->ru_minflt = ru->ru_minflt; lru->ru_majflt = ru->ru_majflt; lru->ru_nswap = ru->ru_nswap; lru->ru_inblock = ru->ru_inblock; lru->ru_oublock = ru->ru_oublock; lru->ru_msgsnd = ru->ru_msgsnd; lru->ru_msgrcv = ru->ru_msgrcv; lru->ru_nsignals = ru->ru_nsignals; lru->ru_nvcsw = ru->ru_nvcsw; lru->ru_nivcsw = ru->ru_nivcsw; } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; struct vmspace *oldvmspace; char *path; int error; LCONVPATHEXIST(td, args->path, &path); #ifdef DEBUG if (ldebug(execve)) printf(ARGS(execve, "%s"), path); #endif error = pre_execve(td, &oldvmspace); if (error != 0) { free(path, M_TEMP); return (error); } error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); free(path, M_TEMP); if (error == 0) error = kern_execve(td, &eargs, NULL); if (error == 0) { /* Linux process can execute FreeBSD one, do not attempt * to create emuldata for such process using * linux_proc_init, this leads to a panic on KASSERT * because such process has p->p_emuldata == NULL. */ if (SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX) error = linux_proc_init(td, 0, 0); } post_execve(td, error, oldvmspace); return (error); } CTASSERT(sizeof(struct l_iovec32) == 8); static int linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop) { struct l_iovec32 iov32; struct iovec *iov; struct uio *uio; uint32_t iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp, int error) { struct l_iovec32 iov32; struct iovec *iov; uint32_t iovlen; int i; *iovp = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof(struct iovec); iov = malloc(iovlen, M_IOV, M_WAITOK); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(iov, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } *iovp = iov; return(0); } int linux_readv(struct thread *td, struct linux_readv_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int linux_writev(struct thread *td, struct linux_writev_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } struct l_ipc_kludge { l_uintptr_t msgp; l_long msgtyp; } __packed; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = args->ptr; a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(args->ptr, &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = args->ptr; a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == 0) return (EINVAL); error = copyin(args->ptr, &tmp, sizeof(tmp)); if (error) return (error); a.msgp = PTRIN(tmp.msgp); a.msgtyp = tmp.msgtyp; } else { a.msgp = args->ptr; a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; a.shmid = args->arg1; a.shmaddr = args->ptr; a.shmflg = args->arg2; a.raddr = PTRIN((l_uint)args->arg3); return (linux_shmat(td, &a)); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = args->ptr; return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = args->ptr; return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; #ifdef DEBUG if (ldebug(old_select)) printf(ARGS(old_select, "%p"), args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = PTRIN(linux_args.readfds); newsel.writefds = PTRIN(linux_args.writefds); newsel.exceptfds = PTRIN(linux_args.exceptfds); newsel.timeout = PTRIN(linux_args.timeout); return (linux_select(td, &newsel)); } int linux_set_cloned_tls(struct thread *td, void *desc) { struct user_segment_descriptor sd; struct l_user_desc info; struct pcb *pcb; int error; int a[2]; error = copyin(desc, &info, sizeof(struct l_user_desc)); if (error) { printf(LMSG("copyin failed!")); } else { /* We might copy out the entry_number as GUGS32_SEL. */ info.entry_number = GUGS32_SEL; error = copyout(&info, desc, sizeof(struct l_user_desc)); if (error) printf(LMSG("copyout failed!")); a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(clone)) printf("Segment created in clone with " "CLONE_SETTLS: lobase: %x, hibase: %x, " "lolimit: %x, hilimit: %x, type: %i, " "dpl: %i, p: %i, xx: %i, long: %i, " "def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_long, sd.sd_def32, sd.sd_gran); #endif pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; /* XXXKIB pcb->pcb_gs32sd = sd; */ td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL); set_pcb_flags(pcb, PCB_32BIT); } return (error); } int linux_set_upcall_kse(struct thread *td, register_t stack) { td->td_frame->tf_rsp = stack; return (0); } #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { #ifdef DEBUG if (ldebug(mmap2)) printf(ARGS(mmap2, "0x%08x, %d, %d, 0x%08x, %d, %d"), args->addr, args->len, args->prot, args->flags, args->fd, args->pgoff); #endif return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot, args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * PAGE_SIZE)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG if (ldebug(mmap)) printf(ARGS(mmap, "0x%08x, %d, %d, 0x%08x, %d, %d"), linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pgoff); #endif return (linux_mmap_common(td, linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, (uint32_t)linux_args.pgoff)); } static int linux_mmap_common(struct thread *td, l_uintptr_t addr, l_size_t len, l_int prot, l_int flags, l_int fd, l_loff_t pos) { struct proc *p = td->td_proc; struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; struct file *fp; cap_rights_t rights; error = 0; bsd_args.flags = 0; fp = NULL; /* * Linux mmap(2): * You must specify exactly one of MAP_SHARED and MAP_PRIVATE */ if (!((flags & LINUX_MAP_SHARED) ^ (flags & LINUX_MAP_PRIVATE))) return (EINVAL); if (flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (flags & LINUX_MAP_ANON) { /* Enforce pos to be on page boundary, then ignore. */ if ((pos & PAGE_MASK) != 0) return (EINVAL); pos = 0; bsd_args.flags |= MAP_ANON; } else bsd_args.flags |= MAP_NOSYNC; if (flags & LINUX_MAP_GROWSDOWN) bsd_args.flags |= MAP_STACK; /* * PROT_READ, PROT_WRITE, or PROT_EXEC implies PROT_READ and PROT_EXEC * on Linux/i386. We do this to ensure maximum compatibility. * Linux/ia64 does the same in i386 emulation mode. */ bsd_args.prot = prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; /* Linux does not check file descriptor when MAP_ANONYMOUS is set. */ bsd_args.fd = (bsd_args.flags & MAP_ANON) ? -1 : fd; if (bsd_args.fd != -1) { /* * Linux follows Solaris mmap(2) description: * The file descriptor fildes is opened with * read permission, regardless of the * protection options specified. */ error = fget(td, bsd_args.fd, cap_rights_init(&rights, CAP_MMAP), &fp); if (error != 0) return (error); if (fp->f_type != DTYPE_VNODE) { fdrop(fp, td); return (EINVAL); } /* Linux mmap() just fails for O_WRONLY files */ if (!(fp->f_flag & FREAD)) { fdrop(fp, td); return (EACCES); } fdrop(fp, td); } if (flags & LINUX_MAP_GROWSDOWN) { /* * The Linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, Linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in Linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It then maps the top SGROWSIZ bytes, * and auto grows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ if ((caddr_t)PTRIN(addr) + len > p->p_vmspace->vm_maxsaddr) { /* * Some Linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ PROC_LOCK(p); p->p_vmspace->vm_maxsaddr = (char *)LINUX32_USRSTACK - lim_cur(p, RLIMIT_STACK); PROC_UNLOCK(p); } /* * This gives us our maximum stack size and a new BOS. * If we're using VM_STACK, then mmap will just map * the top SGROWSIZ bytes, and let the stack grow down * to the limit at BOS. If we're not using VM_STACK * we map the full stack, since we don't have a way * to autogrow it. */ if (len > STACK_SIZE - GUARD_SIZE) { bsd_args.addr = (caddr_t)PTRIN(addr); bsd_args.len = len; } else { bsd_args.addr = (caddr_t)PTRIN(addr) - (STACK_SIZE - GUARD_SIZE - len); bsd_args.len = STACK_SIZE - GUARD_SIZE; } } else { bsd_args.addr = (caddr_t)PTRIN(addr); bsd_args.len = len; } bsd_args.pos = pos; #ifdef DEBUG if (ldebug(mmap)) printf("-> %s(%p, %d, %d, 0x%08x, %d, 0x%x)\n", __func__, (void *)bsd_args.addr, (int)bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif error = sys_mmap(td, &bsd_args); #ifdef DEBUG if (ldebug(mmap)) printf("-> %s() return: 0x%x (0x%08x)\n", __func__, error, (u_int)td->td_retval[0]); #endif return (error); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { struct mprotect_args bsd_args; bsd_args.addr = uap->addr; bsd_args.len = uap->len; bsd_args.prot = uap->prot; if (bsd_args.prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) bsd_args.prot |= PROT_READ | PROT_EXEC; return (sys_mprotect(td, &bsd_args)); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; #ifdef DEBUG if (ldebug(sigaction)) printf(ARGS(sigaction, "%d, %p, %p"), args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We don't use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; #ifdef DEBUG if (ldebug(sigsuspend)) printf(ARGS(sigsuspend, "%08lx"), (unsigned long)args->mask); #endif LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; #ifdef DEBUG if (ldebug(rt_sigsuspend)) printf(ARGS(rt_sigsuspend, "%p, %d"), (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; #ifdef DEBUG if (ldebug(pause)) printf(ARGS(pause, "")); #endif PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; #ifdef DEBUG if (ldebug(sigaltstack)) printf(ARGS(sigaltstack, "%p, %p"), uap->uss, uap->uoss); #endif if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = PTRIN(lss.ss_sp); ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = PTROUT(oss.ss_sp); lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) { struct ftruncate_args sa; #ifdef DEBUG if (ldebug(ftruncate64)) printf(ARGS(ftruncate64, "%u, %jd"), args->fd, (intmax_t)args->length); #endif sa.fd = args->fd; sa.length = args->length; return sys_ftruncate(td, &sa); } int linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) { struct timeval atv; l_timeval atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); atv32.tv_sec = atv.tv_sec; atv32.tv_usec = atv.tv_usec; error = copyout(&atv32, uap->tp, sizeof(atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = tz_minuteswest; rtz.tz_dsttime = tz_dsttime; error = copyout(&rtz, uap->tzp, sizeof(rtz)); } return (error); } int linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap) { l_timeval atv32; struct timeval atv, *tvp; struct timezone atz, *tzp; int error; if (uap->tp) { error = copyin(uap->tp, &atv32, sizeof(atv32)); if (error) return (error); atv.tv_sec = atv32.tv_sec; atv.tv_usec = atv32.tv_usec; tvp = &atv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &atz, sizeof(atz)); if (error) return (error); tzp = &atz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) { struct l_rusage s32; struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error != 0) return (error); if (uap->rusage != NULL) { bsd_to_linux_rusage(&s, &s32); error = copyout(&s32, uap->rusage, sizeof(s32)); } return (error); } int -linux_sched_rr_get_interval(struct thread *td, - struct linux_sched_rr_get_interval_args *uap) -{ - struct timespec ts; - struct l_timespec ts32; - int error; - - error = kern_sched_rr_get_interval(td, uap->pid, &ts); - if (error != 0) - return (error); - ts32.tv_sec = ts.tv_sec; - ts32.tv_nsec = ts.tv_nsec; - return (copyout(&ts32, uap->interval, sizeof(ts32))); -} - -int linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) { struct l_user_desc info; struct user_segment_descriptor sd; struct pcb *pcb; int a[2]; int error; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); #ifdef DEBUG if (ldebug(set_thread_area)) printf(ARGS(set_thread_area, "%i, %x, %x, %i, %i, %i, " "%i, %i, %i"), info.entry_number, info.base_addr, info.limit, info.seg_32bit, info.contents, info.read_exec_only, info.limit_in_pages, info.seg_not_present, info.useable); #endif /* * Semantics of Linux version: every thread in the system has array * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. * This syscall loads one of the selected TLS decriptors with a value * and also loads GDT descriptors 6, 7 and 8 with the content of * the per-thread descriptors. * * Semantics of FreeBSD version: I think we can ignore that Linux has * three per-thread descriptors and use just the first one. * The tls_array[] is used only in [gs]et_thread_area() syscalls and * for loading the GDT descriptors. We use just one GDT descriptor * for TLS, so we will load just one. * * XXX: This doesn't work when a user space process tries to use more * than one TLS segment. Comment in the Linux source says wine might * do this. */ /* * GLIBC reads current %gs and call set_thread_area() with it. * We should let GUDATA_SEL and GUGS32_SEL proceed as well because * we use these segments. */ switch (info.entry_number) { case GUGS32_SEL: case GUDATA_SEL: case 6: case -1: info.entry_number = GUGS32_SEL; break; default: return (EINVAL); } /* * We have to copy out the GDT entry we use. * * XXX: What if a user space program does not check the return value * and tries to use 6, 7 or 8? */ error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (error); if (LINUX_LDT_empty(&info)) { a[0] = 0; a[1] = 0; } else { a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); } memcpy(&sd, &a, sizeof(a)); #ifdef DEBUG if (ldebug(set_thread_area)) printf("Segment created in set_thread_area: " "lobase: %x, hibase: %x, lolimit: %x, hilimit: %x, " "type: %i, dpl: %i, p: %i, xx: %i, long: %i, " "def32: %i, gran: %i\n", sd.sd_lobase, sd.sd_hibase, sd.sd_lolimit, sd.sd_hilimit, sd.sd_type, sd.sd_dpl, sd.sd_p, sd.sd_xx, sd.sd_long, sd.sd_def32, sd.sd_gran); #endif pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; set_pcb_flags(pcb, PCB_32BIT); update_gdt_gsbase(td, info.base_addr); return (0); } int linux_wait4(struct thread *td, struct linux_wait4_args *args) { int error, options; struct rusage ru, *rup; struct l_rusage lru; #ifdef DEBUG if (ldebug(wait4)) printf(ARGS(wait4, "%d, %p, %d, %p"), args->pid, (void *)args->status, args->options, (void *)args->rusage); #endif options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; if (args->rusage != NULL) rup = &ru; else rup = NULL; error = linux_common_wait(td, args->pid, args->status, options, rup); if (error) return (error); if (args->rusage != NULL) { bsd_to_linux_rusage(rup, &lru); error = copyout(&lru, args->rusage, sizeof(lru)); } return (error); } Index: head/sys/compat/linux/linux_misc.c =================================================================== --- head/sys/compat/linux/linux_misc.c (revision 283373) +++ head/sys/compat/linux/linux_misc.c (revision 283374) @@ -1,1930 +1,1960 @@ /*- * Copyright (c) 2002 Doug Rabson * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #if defined(__i386__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include #include #include #include /* DTrace init */ LIN_SDT_PROVIDER_DECLARE(LINUX_DTRACE); /* Linuxulator-global DTrace probes */ LIN_SDT_PROBE_DECLARE(locks, emul_lock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_lock, unlock); LIN_SDT_PROBE_DECLARE(locks, emul_shared_rlock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_shared_rlock, unlock); LIN_SDT_PROBE_DECLARE(locks, emul_shared_wlock, locked); LIN_SDT_PROBE_DECLARE(locks, emul_shared_wlock, unlock); int stclohz; /* Statistics clock frequency */ static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, RLIMIT_MEMLOCK, RLIMIT_AS }; struct l_sysinfo { l_long uptime; /* Seconds since boot */ l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ #define LINUX_SYSINFO_LOADS_SCALE 65536 l_ulong totalram; /* Total usable main memory size */ l_ulong freeram; /* Available memory size */ l_ulong sharedram; /* Amount of shared memory */ l_ulong bufferram; /* Memory used by buffers */ l_ulong totalswap; /* Total swap space size */ l_ulong freeswap; /* swap space still available */ l_ushort procs; /* Number of current processes */ l_ushort pads; l_ulong totalbig; l_ulong freebig; l_uint mem_unit; char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ }; int linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) { struct l_sysinfo sysinfo; vm_object_t object; int i, j; struct timespec ts; getnanouptime(&ts); if (ts.tv_nsec != 0) ts.tv_sec++; sysinfo.uptime = ts.tv_sec; /* Use the information from the mib to get our load averages */ for (i = 0; i < 3; i++) sysinfo.loads[i] = averunnable.ldavg[i] * LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; sysinfo.totalram = physmem * PAGE_SIZE; sysinfo.freeram = sysinfo.totalram - vm_cnt.v_wire_count * PAGE_SIZE; sysinfo.sharedram = 0; mtx_lock(&vm_object_list_mtx); TAILQ_FOREACH(object, &vm_object_list, object_list) if (object->shadow_count > 1) sysinfo.sharedram += object->resident_page_count; mtx_unlock(&vm_object_list_mtx); sysinfo.sharedram *= PAGE_SIZE; sysinfo.bufferram = 0; swap_pager_status(&i, &j); sysinfo.totalswap = i * PAGE_SIZE; sysinfo.freeswap = (i - j) * PAGE_SIZE; sysinfo.procs = nprocs; /* The following are only present in newer Linux kernels. */ sysinfo.totalbig = 0; sysinfo.freebig = 0; sysinfo.mem_unit = 1; return (copyout(&sysinfo, args->info, sizeof(sysinfo))); } int linux_alarm(struct thread *td, struct linux_alarm_args *args) { struct itimerval it, old_it; u_int secs; int error; #ifdef DEBUG if (ldebug(alarm)) printf(ARGS(alarm, "%u"), args->secs); #endif secs = args->secs; if (secs > INT_MAX) secs = INT_MAX; it.it_value.tv_sec = (long) secs; it.it_value.tv_usec = 0; it.it_interval.tv_sec = 0; it.it_interval.tv_usec = 0; error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); if (error) return (error); if (timevalisset(&old_it.it_value)) { if (old_it.it_value.tv_usec != 0) old_it.it_value.tv_sec++; td->td_retval[0] = old_it.it_value.tv_sec; } return (0); } int linux_brk(struct thread *td, struct linux_brk_args *args) { struct vmspace *vm = td->td_proc->p_vmspace; vm_offset_t new, old; struct obreak_args /* { char * nsize; } */ tmp; #ifdef DEBUG if (ldebug(brk)) printf(ARGS(brk, "%p"), (void *)(uintptr_t)args->dsend); #endif old = (vm_offset_t)vm->vm_daddr + ctob(vm->vm_dsize); new = (vm_offset_t)args->dsend; tmp.nsize = (char *)new; if (((caddr_t)new > vm->vm_daddr) && !sys_obreak(td, &tmp)) td->td_retval[0] = (long)new; else td->td_retval[0] = (long)old; return (0); } #if defined(__i386__) /* XXX: what about amd64/linux32? */ int linux_uselib(struct thread *td, struct linux_uselib_args *args) { struct nameidata ni; struct vnode *vp; struct exec *a_out; struct vattr attr; vm_offset_t vmaddr; unsigned long file_offset; unsigned long bss_size; char *library; ssize_t aresid; int error, locked, writecount; LCONVPATHEXIST(td, args->library, &library); #ifdef DEBUG if (ldebug(uselib)) printf(ARGS(uselib, "%s"), library); #endif a_out = NULL; locked = 0; vp = NULL; NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, library, td); error = namei(&ni); LFREEPATH(library); if (error) goto cleanup; vp = ni.ni_vp; NDFREE(&ni, NDF_ONLY_PNBUF); /* * From here on down, we have a locked vnode that must be unlocked. * XXX: The code below largely duplicates exec_check_permissions(). */ locked = 1; /* Writable? */ error = VOP_GET_WRITECOUNT(vp, &writecount); if (error != 0) goto cleanup; if (writecount != 0) { error = ETXTBSY; goto cleanup; } /* Executable? */ error = VOP_GETATTR(vp, &attr, td->td_ucred); if (error) goto cleanup; if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { /* EACCESS is what exec(2) returns. */ error = ENOEXEC; goto cleanup; } /* Sensible size? */ if (attr.va_size == 0) { error = ENOEXEC; goto cleanup; } /* Can we access it? */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) goto cleanup; /* * XXX: This should use vn_open() so that it is properly authorized, * and to reduce code redundancy all over the place here. * XXX: Not really, it duplicates far more of exec_check_permissions() * than vn_open(). */ #ifdef MAC error = mac_vnode_check_open(td->td_ucred, vp, VREAD); if (error) goto cleanup; #endif error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error) goto cleanup; /* Pull in executable header into exec_map */ error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); if (error) goto cleanup; /* Is it a Linux binary ? */ if (((a_out->a_magic >> 16) & 0xff) != 0x64) { error = ENOEXEC; goto cleanup; } /* * While we are here, we should REALLY do some more checks */ /* Set file/virtual offset based on a.out variant. */ switch ((int)(a_out->a_magic & 0xffff)) { case 0413: /* ZMAGIC */ file_offset = 1024; break; case 0314: /* QMAGIC */ file_offset = 0; break; default: error = ENOEXEC; goto cleanup; } bss_size = round_page(a_out->a_bss); /* Check various fields in header for validity/bounds. */ if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { error = ENOEXEC; goto cleanup; } /* text + data can't exceed file size */ if (a_out->a_data + a_out->a_text > attr.va_size) { error = EFAULT; goto cleanup; } /* * text/data/bss must not exceed limits * XXX - this is not complete. it should check current usage PLUS * the resources needed by this library. */ PROC_LOCK(td->td_proc); if (a_out->a_text > maxtsiz || a_out->a_data + bss_size > lim_cur(td->td_proc, RLIMIT_DATA) || racct_set(td->td_proc, RACCT_DATA, a_out->a_data + bss_size) != 0) { PROC_UNLOCK(td->td_proc); error = ENOMEM; goto cleanup; } PROC_UNLOCK(td->td_proc); /* * Prevent more writers. * XXX: Note that if any of the VM operations fail below we don't * clear this flag. */ VOP_SET_TEXT(vp); /* * Lock no longer needed */ locked = 0; VOP_UNLOCK(vp, 0); /* * Check if file_offset page aligned. Currently we cannot handle * misalinged file offsets, and so we read in the entire image * (what a waste). */ if (file_offset & PAGE_MASK) { #ifdef DEBUG printf("uselib: Non page aligned binary %lu\n", file_offset); #endif /* Map text+data read/write/execute */ /* a_entry is the load address and is page aligned */ vmaddr = trunc_page(a_out->a_entry); /* get anon user mapping, read+write+execute */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, td->td_ucred, NOCRED, &aresid, td); if (error != 0) goto cleanup; if (aresid != 0) { error = ENOEXEC; goto cleanup; } } else { #ifdef DEBUG printf("uselib: Page aligned binary %lu\n", file_offset); #endif /* * for QMAGIC, a_entry is 20 bytes beyond the load address * to skip the executable header */ vmaddr = trunc_page(a_out->a_entry); /* * Map it all into the process's space as a single * copy-on-write "data" segment. */ error = vm_mmap(&td->td_proc->p_vmspace->vm_map, &vmaddr, a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); if (error) goto cleanup; } #ifdef DEBUG printf("mem=%08lx = %08lx %08lx\n", (long)vmaddr, ((long *)vmaddr)[0], ((long *)vmaddr)[1]); #endif if (bss_size != 0) { /* Calculate BSS start address */ vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + a_out->a_data; /* allocate some 'anon' space */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; } cleanup: /* Unlock vnode if needed */ if (locked) VOP_UNLOCK(vp, 0); /* Release the temporary mapping. */ if (a_out) kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); return (error); } #endif /* __i386__ */ int linux_select(struct thread *td, struct linux_select_args *args) { l_timeval ltv; struct timeval tv0, tv1, utv, *tvp; int error; #ifdef DEBUG if (ldebug(select)) printf(ARGS(select, "%d, %p, %p, %p, %p"), args->nfds, (void *)args->readfds, (void *)args->writefds, (void *)args->exceptfds, (void *)args->timeout); #endif /* * Store current time for computation of the amount of * time left. */ if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) goto select_out; utv.tv_sec = ltv.tv_sec; utv.tv_usec = ltv.tv_usec; #ifdef DEBUG if (ldebug(select)) printf(LMSG("incoming timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timevalclear(&utv); } microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_select(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, sizeof(l_int) * 8); #ifdef DEBUG if (ldebug(select)) printf(LMSG("real select returns %d"), error); #endif if (error) goto select_out; if (args->timeout) { if (td->td_retval[0]) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); #ifdef DEBUG if (ldebug(select)) printf(LMSG("outgoing timeout (%jd/%ld)"), (intmax_t)utv.tv_sec, utv.tv_usec); #endif ltv.tv_sec = utv.tv_sec; ltv.tv_usec = utv.tv_usec; if ((error = copyout(<v, args->timeout, sizeof(ltv)))) goto select_out; } select_out: #ifdef DEBUG if (ldebug(select)) printf(LMSG("select_out -> %d"), error); #endif return (error); } int linux_mremap(struct thread *td, struct linux_mremap_args *args) { struct munmap_args /* { void *addr; size_t len; } */ bsd_args; int error = 0; #ifdef DEBUG if (ldebug(mremap)) printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"), (void *)(uintptr_t)args->addr, (unsigned long)args->old_len, (unsigned long)args->new_len, (unsigned long)args->flags); #endif if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { td->td_retval[0] = 0; return (EINVAL); } /* * Check for the page alignment. * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. */ if (args->addr & PAGE_MASK) { td->td_retval[0] = 0; return (EINVAL); } args->new_len = round_page(args->new_len); args->old_len = round_page(args->old_len); if (args->new_len > args->old_len) { td->td_retval[0] = 0; return (ENOMEM); } if (args->new_len < args->old_len) { bsd_args.addr = (caddr_t)((uintptr_t)args->addr + args->new_len); bsd_args.len = args->old_len - args->new_len; error = sys_munmap(td, &bsd_args); } td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; return (error); } #define LINUX_MS_ASYNC 0x0001 #define LINUX_MS_INVALIDATE 0x0002 #define LINUX_MS_SYNC 0x0004 int linux_msync(struct thread *td, struct linux_msync_args *args) { struct msync_args bsd_args; bsd_args.addr = (caddr_t)(uintptr_t)args->addr; bsd_args.len = (uintptr_t)args->len; bsd_args.flags = args->fl & ~LINUX_MS_SYNC; return (sys_msync(td, &bsd_args)); } int linux_time(struct thread *td, struct linux_time_args *args) { struct timeval tv; l_time_t tm; int error; #ifdef DEBUG if (ldebug(time)) printf(ARGS(time, "*")); #endif microtime(&tv); tm = tv.tv_sec; if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) return (error); td->td_retval[0] = tm; return (0); } struct l_times_argv { l_clock_t tms_utime; l_clock_t tms_stime; l_clock_t tms_cutime; l_clock_t tms_cstime; }; /* * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK * auxiliary vector entry. */ #define CLK_TCK 100 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ CONVNTCK(r) : CONVOTCK(r)) int linux_times(struct thread *td, struct linux_times_args *args) { struct timeval tv, utime, stime, cutime, cstime; struct l_times_argv tms; struct proc *p; int error; #ifdef DEBUG if (ldebug(times)) printf(ARGS(times, "*")); #endif if (args->buf != NULL) { p = td->td_proc; PROC_LOCK(p); PROC_STATLOCK(p); calcru(p, &utime, &stime); PROC_STATUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = CONVTCK(utime); tms.tms_stime = CONVTCK(stime); tms.tms_cutime = CONVTCK(cutime); tms.tms_cstime = CONVTCK(cstime); if ((error = copyout(&tms, args->buf, sizeof(tms)))) return (error); } microuptime(&tv); td->td_retval[0] = (int)CONVTCK(tv); return (0); } int linux_newuname(struct thread *td, struct linux_newuname_args *args) { struct l_new_utsname utsname; char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; char *p; #ifdef DEBUG if (ldebug(newuname)) printf(ARGS(newuname, "*")); #endif linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); bzero(&utsname, sizeof(utsname)); strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); for (p = utsname.version; *p != '\0'; ++p) if (*p == '\n') { *p = '\0'; break; } strlcpy(utsname.machine, linux_platform, LINUX_MAX_UTSNAME); return (copyout(&utsname, args->buf, sizeof(utsname))); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) struct l_utimbuf { l_time_t l_actime; l_time_t l_modtime; }; int linux_utime(struct thread *td, struct linux_utime_args *args) { struct timeval tv[2], *tvp; struct l_utimbuf lut; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utime)) printf(ARGS(utime, "%s, *"), fname); #endif if (args->times) { if ((error = copyin(args->times, &lut, sizeof lut))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = lut.l_actime; tv[0].tv_usec = 0; tv[1].tv_sec = lut.l_modtime; tv[1].tv_usec = 0; tvp = tv; } else tvp = NULL; error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_utimes(struct thread *td, struct linux_utimes_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error; LCONVPATHEXIST(td, args->fname, &fname); #ifdef DEBUG if (ldebug(utimes)) printf(ARGS(utimes, "%s, *"), fname); #endif if (args->tptr != NULL) { if ((error = copyin(args->tptr, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } int linux_futimesat(struct thread *td, struct linux_futimesat_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &fname, dfd); #ifdef DEBUG if (ldebug(futimesat)) printf(ARGS(futimesat, "%s, *"), fname); #endif if (args->utimes != NULL) { if ((error = copyin(args->utimes, ltv, sizeof ltv))) { LFREEPATH(fname); return (error); } tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_common_wait(struct thread *td, int pid, int *status, int options, struct rusage *ru) { int error, tmpstat; error = kern_wait(td, pid, &tmpstat, options, ru); if (error) return (error); if (status) { tmpstat &= 0xffff; if (WIFSIGNALED(tmpstat)) tmpstat = (tmpstat & 0xffffff80) | BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat)); else if (WIFSTOPPED(tmpstat)) tmpstat = (tmpstat & 0xffff00ff) | (BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8); error = copyout(&tmpstat, status, sizeof(int)); } return (error); } int linux_waitpid(struct thread *td, struct linux_waitpid_args *args) { int options; #ifdef DEBUG if (ldebug(waitpid)) printf(ARGS(waitpid, "%d, %p, %d"), args->pid, (void *)args->status, args->options); #endif /* * this is necessary because the test in kern_wait doesn't work * because we mess with the options here */ if (args->options & ~(WUNTRACED | WNOHANG | WCONTINUED | __WCLONE)) return (EINVAL); options = (args->options & (WNOHANG | WUNTRACED)); /* WLINUXCLONE should be equal to __WCLONE, but we make sure */ if (args->options & __WCLONE) options |= WLINUXCLONE; return (linux_common_wait(td, args->pid, args->status, options, NULL)); } int linux_mknod(struct thread *td, struct linux_mknod_args *args) { char *path; int error; LCONVPATHCREAT(td, args->path, &path); #ifdef DEBUG if (ldebug(mknod)) printf(ARGS(mknod, "%s, %d, %d"), path, args->mode, args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } int linux_mknodat(struct thread *td, struct linux_mknodat_args *args) { char *path; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHCREAT_AT(td, args->filename, &path, dfd); #ifdef DEBUG if (ldebug(mknodat)) printf(ARGS(mknodat, "%s, %d, %d"), path, args->mode, args->dev); #endif switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, dfd, path, UIO_SYSSPACE, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, dfd, path, UIO_SYSSPACE, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, dfd, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } LFREEPATH(path); return (error); } /* * UGH! This is just about the dumbest idea I've ever heard!! */ int linux_personality(struct thread *td, struct linux_personality_args *args) { #ifdef DEBUG if (ldebug(personality)) printf(ARGS(personality, "%lu"), (unsigned long)args->per); #endif if (args->per != 0) return (EINVAL); /* Yes Jim, it's still a Linux... */ td->td_retval[0] = 0; return (0); } struct l_itimerval { l_timeval it_interval; l_timeval it_value; }; #define B2L_ITIMERVAL(bip, lip) \ (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; int linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv, oitv; #ifdef DEBUG if (ldebug(setitimer)) printf(ARGS(setitimer, "%p, %p"), (void *)uap->itv, (void *)uap->oitv); #endif if (uap->itv == NULL) { uap->itv = uap->oitv; return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); } error = copyin(uap->itv, &ls, sizeof(ls)); if (error != 0) return (error); B2L_ITIMERVAL(&aitv, &ls); #ifdef DEBUG if (ldebug(setitimer)) { printf("setitimer: value: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_value.tv_sec, aitv.it_value.tv_usec); printf("setitimer: interval: sec: %jd, usec: %ld\n", (intmax_t)aitv.it_interval.tv_sec, aitv.it_interval.tv_usec); } #endif error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); B2L_ITIMERVAL(&ls, &oitv); return (copyout(&ls, uap->oitv, sizeof(ls))); } int linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv; #ifdef DEBUG if (ldebug(getitimer)) printf(ARGS(getitimer, "%p"), (void *)uap->itv); #endif error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); B2L_ITIMERVAL(&ls, &aitv); return (copyout(&ls, uap->itv, sizeof(ls))); } int linux_nice(struct thread *td, struct linux_nice_args *args) { struct setpriority_args bsd_args; bsd_args.which = PRIO_PROCESS; bsd_args.who = 0; /* current process */ bsd_args.prio = args->inc; return (sys_setpriority(td, &bsd_args)); } int linux_setgroups(struct thread *td, struct linux_setgroups_args *args) { struct ucred *newcred, *oldcred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int ngrp, error; struct proc *p; ngrp = args->gidsetsize; if (ngrp < 0 || ngrp >= ngroups_max + 1) return (EINVAL); linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_TEMP, M_WAITOK); error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); if (error) goto out; newcred = crget(); p = td->td_proc; PROC_LOCK(p); oldcred = crcopysafe(p, newcred); /* * cr_groups[0] holds egid. Setting the whole set from * the supplied set will cause egid to be changed too. * Keep cr_groups[0] unchanged to prevent that. */ if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0)) != 0) { PROC_UNLOCK(p); crfree(newcred); goto out; } if (ngrp > 0) { newcred->cr_ngroups = ngrp + 1; bsd_gidset = newcred->cr_groups; ngrp--; while (ngrp >= 0) { bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; ngrp--; } } else newcred->cr_ngroups = 1; setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); error = 0; out: free(linux_gidset, M_TEMP); return (error); } int linux_getgroups(struct thread *td, struct linux_getgroups_args *args) { struct ucred *cred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int bsd_gidsetsz, ngrp, error; cred = td->td_ucred; bsd_gidset = cred->cr_groups; bsd_gidsetsz = cred->cr_ngroups - 1; /* * cr_groups[0] holds egid. Returning the whole set * here will cause a duplicate. Exclude cr_groups[0] * to prevent that. */ if ((ngrp = args->gidsetsize) == 0) { td->td_retval[0] = bsd_gidsetsz; return (0); } if (ngrp < bsd_gidsetsz) return (EINVAL); ngrp = 0; linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), M_TEMP, M_WAITOK); while (ngrp < bsd_gidsetsz) { linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; ngrp++; } error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); free(linux_gidset, M_TEMP); if (error) return (error); td->td_retval[0] = ngrp; return (0); } int linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) { struct rlimit bsd_rlim; struct l_rlimit rlim; u_int which; int error; #ifdef DEBUG if (ldebug(setrlimit)) printf(ARGS(setrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); error = copyin(args->rlim, &rlim, sizeof(rlim)); if (error) return (error); bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; return (kern_setrlimit(td, which, &bsd_rlim)); } int linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(old_getrlimit)) printf(ARGS(old_getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); #ifdef COMPAT_LINUX32 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; if (rlim.rlim_cur == UINT_MAX) rlim.rlim_cur = INT_MAX; rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; if (rlim.rlim_max == UINT_MAX) rlim.rlim_max = INT_MAX; #else rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; if (rlim.rlim_cur == ULONG_MAX) rlim.rlim_cur = LONG_MAX; rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; if (rlim.rlim_max == ULONG_MAX) rlim.rlim_max = LONG_MAX; #endif return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) { struct l_rlimit rlim; struct proc *p = td->td_proc; struct rlimit bsd_rlim; u_int which; #ifdef DEBUG if (ldebug(getrlimit)) printf(ARGS(getrlimit, "%d, %p"), args->resource, (void *)args->rlim); #endif if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); PROC_LOCK(p); lim_rlimit(p, which, &bsd_rlim); PROC_UNLOCK(p); rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_sched_setscheduler(struct thread *td, struct linux_sched_setscheduler_args *args) { struct sched_setscheduler_args bsd; #ifdef DEBUG if (ldebug(sched_setscheduler)) printf(ARGS(sched_setscheduler, "%d, %d, %p"), args->pid, args->policy, (const void *)args->param); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } bsd.pid = args->pid; bsd.param = (struct sched_param *)args->param; return (sys_sched_setscheduler(td, &bsd)); } int linux_sched_getscheduler(struct thread *td, struct linux_sched_getscheduler_args *args) { struct sched_getscheduler_args bsd; int error; #ifdef DEBUG if (ldebug(sched_getscheduler)) printf(ARGS(sched_getscheduler, "%d"), args->pid); #endif bsd.pid = args->pid; error = sys_sched_getscheduler(td, &bsd); switch (td->td_retval[0]) { case SCHED_OTHER: td->td_retval[0] = LINUX_SCHED_OTHER; break; case SCHED_FIFO: td->td_retval[0] = LINUX_SCHED_FIFO; break; case SCHED_RR: td->td_retval[0] = LINUX_SCHED_RR; break; } return (error); } int linux_sched_get_priority_max(struct thread *td, struct linux_sched_get_priority_max_args *args) { struct sched_get_priority_max_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_max)) printf(ARGS(sched_get_priority_max, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_max(td, &bsd)); } int linux_sched_get_priority_min(struct thread *td, struct linux_sched_get_priority_min_args *args) { struct sched_get_priority_min_args bsd; #ifdef DEBUG if (ldebug(sched_get_priority_min)) printf(ARGS(sched_get_priority_min, "%d"), args->policy); #endif switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_min(td, &bsd)); } #define REBOOT_CAD_ON 0x89abcdef #define REBOOT_CAD_OFF 0 #define REBOOT_HALT 0xcdef0123 #define REBOOT_RESTART 0x01234567 #define REBOOT_RESTART2 0xA1B2C3D4 #define REBOOT_POWEROFF 0x4321FEDC #define REBOOT_MAGIC1 0xfee1dead #define REBOOT_MAGIC2 0x28121969 #define REBOOT_MAGIC2A 0x05121996 #define REBOOT_MAGIC2B 0x16041998 int linux_reboot(struct thread *td, struct linux_reboot_args *args) { struct reboot_args bsd_args; #ifdef DEBUG if (ldebug(reboot)) printf(ARGS(reboot, "0x%x"), args->cmd); #endif if (args->magic1 != REBOOT_MAGIC1) return (EINVAL); switch (args->magic2) { case REBOOT_MAGIC2: case REBOOT_MAGIC2A: case REBOOT_MAGIC2B: break; default: return (EINVAL); } switch (args->cmd) { case REBOOT_CAD_ON: case REBOOT_CAD_OFF: return (priv_check(td, PRIV_REBOOT)); case REBOOT_HALT: bsd_args.opt = RB_HALT; break; case REBOOT_RESTART: case REBOOT_RESTART2: bsd_args.opt = 0; break; case REBOOT_POWEROFF: bsd_args.opt = RB_POWEROFF; break; default: return (EINVAL); } return (sys_reboot(td, &bsd_args)); } /* * The FreeBSD native getpid(2), getgid(2) and getuid(2) also modify * td->td_retval[1] when COMPAT_43 is defined. This clobbers registers that * are assumed to be preserved. The following lightweight syscalls fixes * this. See also linux_getgid16() and linux_getuid16() in linux_uid16.c * * linux_getpid() - MP SAFE * linux_getgid() - MP SAFE * linux_getuid() - MP SAFE */ int linux_getpid(struct thread *td, struct linux_getpid_args *args) { struct linux_emuldata *em; #ifdef DEBUG if (ldebug(getpid)) printf(ARGS(getpid, "")); #endif if (linux_use26(td)) { em = em_find(td->td_proc, EMUL_DONTLOCK); KASSERT(em != NULL, ("getpid: emuldata not found.\n")); td->td_retval[0] = em->shared->group_pid; } else { td->td_retval[0] = td->td_proc->p_pid; } return (0); } int linux_gettid(struct thread *td, struct linux_gettid_args *args) { #ifdef DEBUG if (ldebug(gettid)) printf(ARGS(gettid, "")); #endif td->td_retval[0] = td->td_proc->p_pid; return (0); } int linux_getppid(struct thread *td, struct linux_getppid_args *args) { struct linux_emuldata *em; struct proc *p, *pp; #ifdef DEBUG if (ldebug(getppid)) printf(ARGS(getppid, "")); #endif if (!linux_use26(td)) { PROC_LOCK(td->td_proc); td->td_retval[0] = td->td_proc->p_pptr->p_pid; PROC_UNLOCK(td->td_proc); return (0); } em = em_find(td->td_proc, EMUL_DONTLOCK); KASSERT(em != NULL, ("getppid: process emuldata not found.\n")); /* find the group leader */ p = pfind(em->shared->group_pid); if (p == NULL) { #ifdef DEBUG printf(LMSG("parent process not found.\n")); #endif return (0); } pp = p->p_pptr; /* switch to parent */ PROC_LOCK(pp); PROC_UNLOCK(p); /* if its also linux process */ if (pp->p_sysent == &elf_linux_sysvec) { em = em_find(pp, EMUL_DONTLOCK); KASSERT(em != NULL, ("getppid: parent emuldata not found.\n")); td->td_retval[0] = em->shared->group_pid; } else td->td_retval[0] = pp->p_pid; PROC_UNLOCK(pp); return (0); } int linux_getgid(struct thread *td, struct linux_getgid_args *args) { #ifdef DEBUG if (ldebug(getgid)) printf(ARGS(getgid, "")); #endif td->td_retval[0] = td->td_ucred->cr_rgid; return (0); } int linux_getuid(struct thread *td, struct linux_getuid_args *args) { #ifdef DEBUG if (ldebug(getuid)) printf(ARGS(getuid, "")); #endif td->td_retval[0] = td->td_ucred->cr_ruid; return (0); } int linux_getsid(struct thread *td, struct linux_getsid_args *args) { struct getsid_args bsd; #ifdef DEBUG if (ldebug(getsid)) printf(ARGS(getsid, "%i"), args->pid); #endif bsd.pid = args->pid; return (sys_getsid(td, &bsd)); } int linux_nosys(struct thread *td, struct nosys_args *ignore) { return (ENOSYS); } int linux_getpriority(struct thread *td, struct linux_getpriority_args *args) { struct getpriority_args bsd_args; int error; #ifdef DEBUG if (ldebug(getpriority)) printf(ARGS(getpriority, "%i, %i"), args->which, args->who); #endif bsd_args.which = args->which; bsd_args.who = args->who; error = sys_getpriority(td, &bsd_args); td->td_retval[0] = 20 - td->td_retval[0]; return (error); } int linux_sethostname(struct thread *td, struct linux_sethostname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(sethostname)) printf(ARGS(sethostname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_HOSTNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, args->len, 0, 0)); } int linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) { int name[2]; #ifdef DEBUG if (ldebug(setdomainname)) printf(ARGS(setdomainname, "*, %i"), args->len); #endif name[0] = CTL_KERN; name[1] = KERN_NISDOMAINNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, args->len, 0, 0)); } int linux_exit_group(struct thread *td, struct linux_exit_group_args *args) { struct linux_emuldata *em; #ifdef DEBUG if (ldebug(exit_group)) printf(ARGS(exit_group, "%i"), args->error_code); #endif em = em_find(td->td_proc, EMUL_DONTLOCK); if (em->shared->refs > 1) { EMUL_SHARED_WLOCK(&emul_shared_lock); em->shared->flags |= EMUL_SHARED_HASXSTAT; em->shared->xstat = W_EXITCODE(args->error_code, 0); EMUL_SHARED_WUNLOCK(&emul_shared_lock); if (linux_use26(td)) linux_kill_threads(td, SIGKILL); } /* * XXX: we should send a signal to the parent if * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) * as it doesnt occur often. */ exit1(td, W_EXITCODE(args->error_code, 0)); return (0); } #define _LINUX_CAPABILITY_VERSION 0x19980330 struct l_user_cap_header { l_int version; l_int pid; }; struct l_user_cap_data { l_int effective; l_int permitted; l_int inheritable; }; int linux_capget(struct thread *td, struct linux_capget_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); if (args->datap) { /* * The current implementation doesn't support setting * a capability (it's essentially a stub) so indicate * that no capabilities are currently set or available * to request. */ bzero (&lucd, sizeof(lucd)); error = copyout(&lucd, args->datap, sizeof(lucd)); } return (error); } int linux_capset(struct thread *td, struct linux_capset_args *args) { struct l_user_cap_header luch; struct l_user_cap_data lucd; int error; if (args->hdrp == NULL || args->datap == NULL) return (EFAULT); error = copyin(args->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); if (luch.version != _LINUX_CAPABILITY_VERSION) { luch.version = _LINUX_CAPABILITY_VERSION; error = copyout(&luch, args->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); error = copyin(args->datap, &lucd, sizeof(lucd)); if (error != 0) return (error); /* We currently don't support setting any capabilities. */ if (lucd.effective || lucd.permitted || lucd.inheritable) { linux_msg(td, "capset effective=0x%x, permitted=0x%x, " "inheritable=0x%x is not implemented", (int)lucd.effective, (int)lucd.permitted, (int)lucd.inheritable); return (EPERM); } return (0); } int linux_prctl(struct thread *td, struct linux_prctl_args *args) { int error = 0, max_size; struct proc *p = td->td_proc; char comm[LINUX_MAX_COMM_LEN]; struct linux_emuldata *em; int pdeath_signal; #ifdef DEBUG if (ldebug(prctl)) printf(ARGS(prctl, "%d, %d, %d, %d, %d"), args->option, args->arg2, args->arg3, args->arg4, args->arg5); #endif switch (args->option) { case LINUX_PR_SET_PDEATHSIG: if (!LINUX_SIG_VALID(args->arg2)) return (EINVAL); em = em_find(p, EMUL_DOLOCK); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); em->pdeath_signal = args->arg2; EMUL_UNLOCK(&emul_lock); break; case LINUX_PR_GET_PDEATHSIG: em = em_find(p, EMUL_DOLOCK); KASSERT(em != NULL, ("prctl: emuldata not found.\n")); pdeath_signal = em->pdeath_signal; EMUL_UNLOCK(&emul_lock); error = copyout(&pdeath_signal, (void *)(register_t)args->arg2, sizeof(pdeath_signal)); break; case LINUX_PR_GET_KEEPCAPS: /* * Indicate that we always clear the effective and * permitted capability sets when the user id becomes * non-zero (actually the capability sets are simply * always zero in the current implementation). */ td->td_retval[0] = 0; break; case LINUX_PR_SET_KEEPCAPS: /* * Ignore requests to keep the effective and permitted * capability sets when the user id becomes non-zero. */ break; case LINUX_PR_SET_NAME: /* * To be on the safe side we need to make sure to not * overflow the size a linux program expects. We already * do this here in the copyin, so that we don't need to * check on copyout. */ max_size = MIN(sizeof(comm), sizeof(p->p_comm)); error = copyinstr((void *)(register_t)args->arg2, comm, max_size, NULL); /* Linux silently truncates the name if it is too long. */ if (error == ENAMETOOLONG) { /* * XXX: copyinstr() isn't documented to populate the * array completely, so do a copyin() to be on the * safe side. This should be changed in case * copyinstr() is changed to guarantee this. */ error = copyin((void *)(register_t)args->arg2, comm, max_size - 1); comm[max_size - 1] = '\0'; } if (error) return (error); PROC_LOCK(p); strlcpy(p->p_comm, comm, sizeof(p->p_comm)); PROC_UNLOCK(p); break; case LINUX_PR_GET_NAME: PROC_LOCK(p); strlcpy(comm, p->p_comm, sizeof(comm)); PROC_UNLOCK(p); error = copyout(comm, (void *)(register_t)args->arg2, strlen(comm) + 1); break; default: error = EINVAL; break; } return (error); } /* * Get affinity of a process. */ int linux_sched_getaffinity(struct thread *td, struct linux_sched_getaffinity_args *args) { int error; struct cpuset_getaffinity_args cga; #ifdef DEBUG if (ldebug(sched_getaffinity)) printf(ARGS(sched_getaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); cga.level = CPU_LEVEL_WHICH; cga.which = CPU_WHICH_PID; cga.id = args->pid; cga.cpusetsize = sizeof(cpuset_t); cga.mask = (cpuset_t *) args->user_mask_ptr; if ((error = sys_cpuset_getaffinity(td, &cga)) == 0) td->td_retval[0] = sizeof(cpuset_t); return (error); } /* * Set affinity of a process. */ int linux_sched_setaffinity(struct thread *td, struct linux_sched_setaffinity_args *args) { struct cpuset_setaffinity_args csa; #ifdef DEBUG if (ldebug(sched_setaffinity)) printf(ARGS(sched_setaffinity, "%d, %d, *"), args->pid, args->len); #endif if (args->len < sizeof(cpuset_t)) return (EINVAL); csa.level = CPU_LEVEL_WHICH; csa.which = CPU_WHICH_PID; csa.id = args->pid; csa.cpusetsize = sizeof(cpuset_t); csa.mask = (cpuset_t *) args->user_mask_ptr; return (sys_cpuset_setaffinity(td, &csa)); } + +int +linux_sched_rr_get_interval(struct thread *td, + struct linux_sched_rr_get_interval_args *uap) +{ + struct timespec ts; + struct l_timespec lts; + struct thread *tdt; + struct proc *p; + int error; + + if (uap->pid == 0) { + tdt = td; + p = tdt->td_proc; + PROC_LOCK(p); + } else { + p = pfind(uap->pid); + if (p == NULL) + return (ESRCH); + tdt = FIRST_THREAD_IN_PROC(p); + } + + error = kern_sched_rr_get_interval_td(td, tdt, &ts); + PROC_UNLOCK(p); + if (error != 0) + return (error); + lts.tv_sec = ts.tv_sec; + lts.tv_nsec = ts.tv_nsec; + return (copyout(<s, uap->interval, sizeof(lts))); +} Index: head/sys/kern/p1003_1b.c =================================================================== --- head/sys/kern/p1003_1b.c (revision 283373) +++ head/sys/kern/p1003_1b.c (revision 283374) @@ -1,315 +1,328 @@ /*- * Copyright (c) 1996, 1997, 1998 * HD Associates, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by HD Associates, Inc * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL HD ASSOCIATES OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* p1003_1b: Real Time common code. */ #include __FBSDID("$FreeBSD$"); #include "opt_posix.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_P31B, "p1003.1b", "Posix 1003.1B"); /* The system calls return ENOSYS if an entry is called that is not run-time * supported. I am also logging since some programs start to use this when * they shouldn't. That will be removed if annoying. */ int syscall_not_present(struct thread *td, const char *s, struct nosys_args *uap) { log(LOG_ERR, "cmd %s pid %d tried to use non-present %s\n", td->td_name, td->td_proc->p_pid, s); /* a " return nosys(p, uap); " here causes a core dump. */ return ENOSYS; } #if !defined(_KPOSIX_PRIORITY_SCHEDULING) /* Not configured but loadable via a module: */ static int sched_attach(void) { return 0; } SYSCALL_NOT_PRESENT_GEN(sched_setparam) SYSCALL_NOT_PRESENT_GEN(sched_getparam) SYSCALL_NOT_PRESENT_GEN(sched_setscheduler) SYSCALL_NOT_PRESENT_GEN(sched_getscheduler) SYSCALL_NOT_PRESENT_GEN(sched_yield) SYSCALL_NOT_PRESENT_GEN(sched_get_priority_max) SYSCALL_NOT_PRESENT_GEN(sched_get_priority_min) SYSCALL_NOT_PRESENT_GEN(sched_rr_get_interval) #else /* Configured in kernel version: */ static struct ksched *ksched; static int sched_attach(void) { int ret = ksched_attach(&ksched); if (ret == 0) p31b_setcfg(CTL_P1003_1B_PRIORITY_SCHEDULING, 200112L); return ret; } int sys_sched_setparam(struct thread *td, struct sched_setparam_args *uap) { struct thread *targettd; struct proc *targetp; int e; struct sched_param sched_param; e = copyin(uap->param, &sched_param, sizeof(sched_param)); if (e) return (e); if (uap->pid == 0) { targetp = td->td_proc; targettd = td; PROC_LOCK(targetp); } else { targetp = pfind(uap->pid); if (targetp == NULL) return (ESRCH); targettd = FIRST_THREAD_IN_PROC(targetp); } e = p_cansched(td, targetp); if (e == 0) { e = ksched_setparam(ksched, targettd, (const struct sched_param *)&sched_param); } PROC_UNLOCK(targetp); return (e); } int sys_sched_getparam(struct thread *td, struct sched_getparam_args *uap) { int e; struct sched_param sched_param; struct thread *targettd; struct proc *targetp; if (uap->pid == 0) { targetp = td->td_proc; targettd = td; PROC_LOCK(targetp); } else { targetp = pfind(uap->pid); if (targetp == NULL) { return (ESRCH); } targettd = FIRST_THREAD_IN_PROC(targetp); } e = p_cansee(td, targetp); if (e == 0) { e = ksched_getparam(ksched, targettd, &sched_param); } PROC_UNLOCK(targetp); if (e == 0) e = copyout(&sched_param, uap->param, sizeof(sched_param)); return (e); } int sys_sched_setscheduler(struct thread *td, struct sched_setscheduler_args *uap) { int e; struct sched_param sched_param; struct thread *targettd; struct proc *targetp; /* Don't allow non root user to set a scheduler policy. */ e = priv_check(td, PRIV_SCHED_SET); if (e) return (e); e = copyin(uap->param, &sched_param, sizeof(sched_param)); if (e) return (e); if (uap->pid == 0) { targetp = td->td_proc; targettd = td; PROC_LOCK(targetp); } else { targetp = pfind(uap->pid); if (targetp == NULL) return (ESRCH); targettd = FIRST_THREAD_IN_PROC(targetp); } e = p_cansched(td, targetp); if (e == 0) { e = ksched_setscheduler(ksched, targettd, uap->policy, (const struct sched_param *)&sched_param); } PROC_UNLOCK(targetp); return (e); } int sys_sched_getscheduler(struct thread *td, struct sched_getscheduler_args *uap) { int e, policy; struct thread *targettd; struct proc *targetp; if (uap->pid == 0) { targetp = td->td_proc; targettd = td; PROC_LOCK(targetp); } else { targetp = pfind(uap->pid); if (targetp == NULL) return (ESRCH); targettd = FIRST_THREAD_IN_PROC(targetp); } e = p_cansee(td, targetp); if (e == 0) { e = ksched_getscheduler(ksched, targettd, &policy); td->td_retval[0] = policy; } PROC_UNLOCK(targetp); return (e); } int sys_sched_yield(struct thread *td, struct sched_yield_args *uap) { sched_relinquish(curthread); return 0; } int sys_sched_get_priority_max(struct thread *td, struct sched_get_priority_max_args *uap) { int error, prio; error = ksched_get_priority_max(ksched, uap->policy, &prio); td->td_retval[0] = prio; return (error); } int sys_sched_get_priority_min(struct thread *td, struct sched_get_priority_min_args *uap) { int error, prio; error = ksched_get_priority_min(ksched, uap->policy, &prio); td->td_retval[0] = prio; return (error); } int sys_sched_rr_get_interval(struct thread *td, struct sched_rr_get_interval_args *uap) { struct timespec timespec; int error; error = kern_sched_rr_get_interval(td, uap->pid, ×pec); if (error == 0) error = copyout(×pec, uap->interval, sizeof(timespec)); return (error); } int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts) { int e; struct thread *targettd; struct proc *targetp; if (pid == 0) { targettd = td; targetp = td->td_proc; PROC_LOCK(targetp); } else { targetp = pfind(pid); if (targetp == NULL) return (ESRCH); targettd = FIRST_THREAD_IN_PROC(targetp); } - e = p_cansee(td, targetp); - if (e == 0) - e = ksched_rr_get_interval(ksched, targettd, ts); + e = kern_sched_rr_get_interval_td(td, targettd, ts); PROC_UNLOCK(targetp); return (e); } +int +kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, + struct timespec *ts) +{ + struct proc *p; + int error; + + p = targettd->td_proc; + PROC_LOCK_ASSERT(p, MA_OWNED); + + error = p_cansee(td, p); + if (error == 0) + error = ksched_rr_get_interval(ksched, targettd, ts); + return (error); +} #endif static void p31binit(void *notused) { (void) sched_attach(); p31b_setcfg(CTL_P1003_1B_PAGESIZE, PAGE_SIZE); } SYSINIT(p31b, SI_SUB_P1003_1B, SI_ORDER_FIRST, p31binit, NULL); Index: head/sys/sys/syscallsubr.h =================================================================== --- head/sys/sys/syscallsubr.h (revision 283373) +++ head/sys/sys/syscallsubr.h (revision 283374) @@ -1,242 +1,244 @@ /*- * Copyright (c) 2002 Ian Dowse. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSCALLSUBR_H_ #define _SYS_SYSCALLSUBR_H_ #include #include #include #include #include struct file; enum idtype; struct itimerval; struct image_args; struct jail; struct kevent; struct kevent_copyops; struct kld_file_stat; struct ksiginfo; struct mbuf; struct msghdr; struct msqid_ds; struct pollfd; struct ogetdirentries_args; struct rlimit; struct rusage; union semun; struct sendfile_args; struct sockaddr; struct stat; struct thr_param; struct __wrusage; int kern___getcwd(struct thread *td, char *buf, enum uio_seg bufseg, u_int buflen, u_int path_max); int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp); int kern_accessat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int flags, int mode); int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta); int kern_alternate_path(struct thread *td, const char *prefix, const char *path, enum uio_seg pathseg, char **pathbuf, int create, int dirfd); int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds); int kern_chdir(struct thread *td, char *path, enum uio_seg pathseg); int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id); int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts); int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_close(struct thread *td, int fd); int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p); int kern_fchmodat(struct thread *td, int fd, char *path, enum uio_seg pathseg, mode_t mode, int flag); int kern_fchownat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int uid, int gid, int flag); int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg); int kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg); int kern_fhstat(struct thread *td, fhandle_t fh, struct stat *buf); int kern_fhstatfs(struct thread *td, fhandle_t fh, struct statfs *buf); int kern_fstat(struct thread *td, int fd, struct stat *sbp); int kern_fstatfs(struct thread *td, int fd, struct statfs *buf); int kern_ftruncate(struct thread *td, int fd, off_t length); int kern_futimes(struct thread *td, int fd, struct timeval *tptr, enum uio_seg tptrseg); int kern_futimens(struct thread *td, int fd, struct timespec *tptr, enum uio_seg tptrseg); int kern_getdirentries(struct thread *td, int fd, char *buf, u_int count, long *basep, ssize_t *residp, enum uio_seg bufseg); int kern_getfsstat(struct thread *td, struct statfs **buf, size_t bufsize, size_t *countp, enum uio_seg bufseg, int flags); int kern_getitimer(struct thread *, u_int, struct itimerval *); int kern_getppid(struct thread *); int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getrusage(struct thread *td, int who, struct rusage *rup); int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t *valsize); int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data); int kern_jail(struct thread *td, struct jail *j); int kern_jail_get(struct thread *td, struct uio *options, int flags); int kern_jail_set(struct thread *td, struct uio *options, int flags); int kern_kevent(struct thread *td, int fd, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kldload(struct thread *td, const char *file, int *fileid); int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat); int kern_kldunload(struct thread *td, int fileid, int flags); int kern_linkat(struct thread *td, int fd1, int fd2, char *path1, char *path2, enum uio_seg segflg, int follow); int kern_lutimes(struct thread *td, char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_mkdirat(struct thread *td, int fd, char *path, enum uio_seg segflg, int mode); int kern_mkfifoat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int mode); int kern_mknodat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int mode, int dev); int kern_msgctl(struct thread *, int, int, struct msqid_ds *); int kern_msgsnd(struct thread *, int, const void *, size_t, int, long); int kern_msgrcv(struct thread *, int, void *, size_t, long, int, long *); int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt); int kern_ogetdirentries(struct thread *td, struct ogetdirentries_args *uap, long *ploff); int kern_openat(struct thread *td, int fd, char *path, enum uio_seg pathseg, int flags, int mode); int kern_pathconf(struct thread *td, char *path, enum uio_seg pathseg, int name, u_long flags); int kern_pipe(struct thread *td, int fildes[2]); int kern_pipe2(struct thread *td, int fildes[2], int flags); int kern_poll(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); int kern_posix_fadvise(struct thread *td, int fd, off_t offset, off_t len, int advice); int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len); int kern_procctl(struct thread *td, enum idtype idtype, id_t id, int com, void *data); int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits); int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data); int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_readlinkat(struct thread *td, int fd, char *path, enum uio_seg pathseg, char *buf, enum uio_seg bufseg, size_t count); int kern_readv(struct thread *td, int fd, struct uio *auio); int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp); int kern_renameat(struct thread *td, int oldfd, char *old, int newfd, char *new, enum uio_seg pathseg); int kern_rmdirat(struct thread *td, int fd, char *path, enum uio_seg pathseg); int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts); +int kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, + struct timespec *ts); int kern_semctl(struct thread *td, int semid, int semnum, int cmd, union semun *arg, register_t *rval); int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits); int kern_sendfile(struct thread *td, struct sendfile_args *uap, struct uio *hdr_uio, struct uio *trl_uio, int compat); int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); int kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups); int kern_setitimer(struct thread *, u_int, struct itimerval *, struct itimerval *); int kern_setrlimit(struct thread *, u_int, struct rlimit *); int kern_setsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t valsize); int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp); int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg); int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz); int kern_sigaction(struct thread *td, int sig, struct sigaction *act, struct sigaction *oact, int flags); int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss); int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags); int kern_sigsuspend(struct thread *td, sigset_t mask); int kern_sigtimedwait(struct thread *td, sigset_t waitset, struct ksiginfo *ksi, struct timespec *timeout); int kern_statat(struct thread *td, int flag, int fd, char *path, enum uio_seg pathseg, struct stat *sbp, void (*hook)(struct vnode *vp, struct stat *sbp)); int kern_statfs(struct thread *td, char *path, enum uio_seg pathseg, struct statfs *buf); int kern_symlinkat(struct thread *td, char *path1, int fd, char *path2, enum uio_seg segflg); int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id); int kern_ktimer_delete(struct thread *, int); int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval); int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val); int kern_ktimer_getoverrun(struct thread *td, int timer_id); int kern_thr_alloc(struct proc *, int pages, struct thread **); int kern_thr_exit(struct thread *td); int kern_thr_new(struct thread *td, struct thr_param *param); int kern_thr_suspend(struct thread *td, struct timespec *tsp); int kern_truncate(struct thread *td, char *path, enum uio_seg pathseg, off_t length); int kern_unlinkat(struct thread *td, int fd, char *path, enum uio_seg pathseg, ino_t oldinum); int kern_utimesat(struct thread *td, int fd, char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_utimensat(struct thread *td, int fd, char *path, enum uio_seg pathseg, struct timespec *tptr, enum uio_seg tptrseg, int follow); int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rup); int kern_wait6(struct thread *td, enum idtype idtype, id_t id, int *status, int options, struct __wrusage *wrup, siginfo_t *sip); int kern_writev(struct thread *td, int fd, struct uio *auio); int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv); /* flags for kern_sigaction */ #define KSA_OSIGSET 0x0001 /* uses osigact_t */ #define KSA_FREEBSD4 0x0002 /* uses ucontext4 */ #endif /* !_SYS_SYSCALLSUBR_H_ */