Index: head/sys/dev/hwpmc/hwpmc_amd.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_amd.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_amd.c	(revision 282658)
@@ -1,1033 +1,1033 @@
 /*-
  * Copyright (c) 2003-2008 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 /* Support for the AMD K7 and later processors */
 
 #include <sys/param.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/smp.h>
 #include <sys/systm.h>
 
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 
 #ifdef	HWPMC_DEBUG
 enum pmc_class	amd_pmc_class;
 #endif
 
 /* AMD K7 & K8 PMCs */
 struct amd_descr {
 	struct pmc_descr pm_descr;  /* "base class" */
 	uint32_t	pm_evsel;   /* address of EVSEL register */
 	uint32_t	pm_perfctr; /* address of PERFCTR register */
 };
 
 static  struct amd_descr amd_pmcdesc[AMD_NPMCS] =
 {
     {
 	.pm_descr =
 	{
 		.pd_name  = "",
 		.pd_class = -1,
 		.pd_caps  = AMD_PMC_CAPS,
 		.pd_width = 48
 	},
 	.pm_evsel   = AMD_PMC_EVSEL_0,
 	.pm_perfctr = AMD_PMC_PERFCTR_0
     },
     {
 	.pm_descr =
 	{
 		.pd_name  = "",
 		.pd_class = -1,
 		.pd_caps  = AMD_PMC_CAPS,
 		.pd_width = 48
 	},
 	.pm_evsel   = AMD_PMC_EVSEL_1,
 	.pm_perfctr = AMD_PMC_PERFCTR_1
     },
     {
 	.pm_descr =
 	{
 		.pd_name  = "",
 		.pd_class = -1,
 		.pd_caps  = AMD_PMC_CAPS,
 		.pd_width = 48
 	},
 	.pm_evsel   = AMD_PMC_EVSEL_2,
 	.pm_perfctr = AMD_PMC_PERFCTR_2
     },
     {
 	.pm_descr =
 	{
 		.pd_name  = "",
 		.pd_class = -1,
 		.pd_caps  = AMD_PMC_CAPS,
 		.pd_width = 48
 	},
 	.pm_evsel   = AMD_PMC_EVSEL_3,
 	.pm_perfctr = AMD_PMC_PERFCTR_3
     }
 };
 
 struct amd_event_code_map {
 	enum pmc_event	pe_ev;	 /* enum value */
 	uint8_t		pe_code; /* encoded event mask */
 	uint8_t		pe_mask; /* bits allowed in unit mask */
 };
 
 const struct amd_event_code_map amd_event_codes[] = {
 #if	defined(__i386__)	/* 32 bit Athlon (K7) only */
 	{ PMC_EV_K7_DC_ACCESSES, 		0x40, 0 },
 	{ PMC_EV_K7_DC_MISSES,			0x41, 0 },
 	{ PMC_EV_K7_DC_REFILLS_FROM_L2,		0x42, AMD_PMC_UNITMASK_MOESI },
 	{ PMC_EV_K7_DC_REFILLS_FROM_SYSTEM,	0x43, AMD_PMC_UNITMASK_MOESI },
 	{ PMC_EV_K7_DC_WRITEBACKS,		0x44, AMD_PMC_UNITMASK_MOESI },
 	{ PMC_EV_K7_L1_DTLB_MISS_AND_L2_DTLB_HITS, 0x45, 0 },
 	{ PMC_EV_K7_L1_AND_L2_DTLB_MISSES,	0x46, 0 },
 	{ PMC_EV_K7_MISALIGNED_REFERENCES,	0x47, 0 },
 
 	{ PMC_EV_K7_IC_FETCHES,			0x80, 0 },
 	{ PMC_EV_K7_IC_MISSES,			0x81, 0 },
 
 	{ PMC_EV_K7_L1_ITLB_MISSES,		0x84, 0 },
 	{ PMC_EV_K7_L1_L2_ITLB_MISSES,		0x85, 0 },
 
 	{ PMC_EV_K7_RETIRED_INSTRUCTIONS,	0xC0, 0 },
 	{ PMC_EV_K7_RETIRED_OPS,		0xC1, 0 },
 	{ PMC_EV_K7_RETIRED_BRANCHES,		0xC2, 0 },
 	{ PMC_EV_K7_RETIRED_BRANCHES_MISPREDICTED, 0xC3, 0 },
 	{ PMC_EV_K7_RETIRED_TAKEN_BRANCHES, 	0xC4, 0 },
 	{ PMC_EV_K7_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0 },
 	{ PMC_EV_K7_RETIRED_FAR_CONTROL_TRANSFERS, 0xC6, 0 },
 	{ PMC_EV_K7_RETIRED_RESYNC_BRANCHES,	0xC7, 0 },
 	{ PMC_EV_K7_INTERRUPTS_MASKED_CYCLES,	0xCD, 0 },
 	{ PMC_EV_K7_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0 },
 	{ PMC_EV_K7_HARDWARE_INTERRUPTS,	0xCF, 0 },
 #endif
 
 	{ PMC_EV_K8_FP_DISPATCHED_FPU_OPS,		0x00, 0x3F },
 	{ PMC_EV_K8_FP_CYCLES_WITH_NO_FPU_OPS_RETIRED,	0x01, 0x00 },
 	{ PMC_EV_K8_FP_DISPATCHED_FPU_FAST_FLAG_OPS,	0x02, 0x00 },
 
 	{ PMC_EV_K8_LS_SEGMENT_REGISTER_LOAD, 		0x20, 0x7F },
 	{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SELF_MODIFYING_CODE,
 	  						0x21, 0x00 },
 	{ PMC_EV_K8_LS_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x22, 0x00 },
 	{ PMC_EV_K8_LS_BUFFER2_FULL,			0x23, 0x00 },
 	{ PMC_EV_K8_LS_LOCKED_OPERATION,		0x24, 0x07 },
 	{ PMC_EV_K8_LS_MICROARCHITECTURAL_LATE_CANCEL,	0x25, 0x00 },
 	{ PMC_EV_K8_LS_RETIRED_CFLUSH_INSTRUCTIONS,	0x26, 0x00 },
 	{ PMC_EV_K8_LS_RETIRED_CPUID_INSTRUCTIONS,	0x27, 0x00 },
 
 	{ PMC_EV_K8_DC_ACCESS,				0x40, 0x00 },
 	{ PMC_EV_K8_DC_MISS,				0x41, 0x00 },
 	{ PMC_EV_K8_DC_REFILL_FROM_L2,			0x42, 0x1F },
 	{ PMC_EV_K8_DC_REFILL_FROM_SYSTEM,		0x43, 0x1F },
 	{ PMC_EV_K8_DC_COPYBACK,			0x44, 0x1F },
 	{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_HIT,	0x45, 0x00 },
 	{ PMC_EV_K8_DC_L1_DTLB_MISS_AND_L2_DTLB_MISS,	0x46, 0x00 },
 	{ PMC_EV_K8_DC_MISALIGNED_DATA_REFERENCE,	0x47, 0x00 },
 	{ PMC_EV_K8_DC_MICROARCHITECTURAL_LATE_CANCEL,	0x48, 0x00 },
 	{ PMC_EV_K8_DC_MICROARCHITECTURAL_EARLY_CANCEL, 0x49, 0x00 },
 	{ PMC_EV_K8_DC_ONE_BIT_ECC_ERROR,		0x4A, 0x03 },
 	{ PMC_EV_K8_DC_DISPATCHED_PREFETCH_INSTRUCTIONS, 0x4B, 0x07 },
 	{ PMC_EV_K8_DC_DCACHE_ACCESSES_BY_LOCKS,	0x4C, 0x03 },
 
 	{ PMC_EV_K8_BU_CPU_CLK_UNHALTED,		0x76, 0x00 },
 	{ PMC_EV_K8_BU_INTERNAL_L2_REQUEST,		0x7D, 0x1F },
 	{ PMC_EV_K8_BU_FILL_REQUEST_L2_MISS,		0x7E, 0x07 },
 	{ PMC_EV_K8_BU_FILL_INTO_L2,			0x7F, 0x03 },
 
 	{ PMC_EV_K8_IC_FETCH,				0x80, 0x00 },
 	{ PMC_EV_K8_IC_MISS,				0x81, 0x00 },
 	{ PMC_EV_K8_IC_REFILL_FROM_L2,			0x82, 0x00 },
 	{ PMC_EV_K8_IC_REFILL_FROM_SYSTEM,		0x83, 0x00 },
 	{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_HIT,	0x84, 0x00 },
 	{ PMC_EV_K8_IC_L1_ITLB_MISS_AND_L2_ITLB_MISS,	0x85, 0x00 },
 	{ PMC_EV_K8_IC_MICROARCHITECTURAL_RESYNC_BY_SNOOP, 0x86, 0x00 },
 	{ PMC_EV_K8_IC_INSTRUCTION_FETCH_STALL,		0x87, 0x00 },
 	{ PMC_EV_K8_IC_RETURN_STACK_HIT,		0x88, 0x00 },
 	{ PMC_EV_K8_IC_RETURN_STACK_OVERFLOW,		0x89, 0x00 },
 
 	{ PMC_EV_K8_FR_RETIRED_X86_INSTRUCTIONS,	0xC0, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_UOPS,			0xC1, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_BRANCHES,		0xC2, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_BRANCHES_MISPREDICTED,	0xC3, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES,		0xC4, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED, 0xC5, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_FAR_CONTROL_TRANSFERS,	0xC6, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_RESYNCS,			0xC7, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS,		0xC8, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_NEAR_RETURNS_MISPREDICTED, 0xC9, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_TAKEN_BRANCHES_MISPREDICTED_BY_ADDR_MISCOMPARE,
 							0xCA, 0x00 },
 	{ PMC_EV_K8_FR_RETIRED_FPU_INSTRUCTIONS,	0xCB, 0x0F },
 	{ PMC_EV_K8_FR_RETIRED_FASTPATH_DOUBLE_OP_INSTRUCTIONS,
 							0xCC, 0x07 },
 	{ PMC_EV_K8_FR_INTERRUPTS_MASKED_CYCLES,	0xCD, 0x00 },
 	{ PMC_EV_K8_FR_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES, 0xCE, 0x00 },
 	{ PMC_EV_K8_FR_TAKEN_HARDWARE_INTERRUPTS,	0xCF, 0x00 },
 
 	{ PMC_EV_K8_FR_DECODER_EMPTY,			0xD0, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALLS,			0xD1, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_FROM_BRANCH_ABORT_TO_RETIRE,
 							0xD2, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SERIALIZATION, 0xD3, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_FOR_SEGMENT_LOAD,	0xD4, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_REORDER_BUFFER_IS_FULL,
 							0xD5, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_RESERVATION_STATIONS_ARE_FULL,
 							0xD6, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FPU_IS_FULL,	0xD7, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_LS_IS_FULL,	0xD8, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_WAITING_FOR_ALL_TO_BE_QUIET,
 							0xD9, 0x00 },
 	{ PMC_EV_K8_FR_DISPATCH_STALL_WHEN_FAR_XFER_OR_RESYNC_BRANCH_PENDING,
 							0xDA, 0x00 },
 	{ PMC_EV_K8_FR_FPU_EXCEPTIONS,			0xDB, 0x0F },
 	{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR0,	0xDC, 0x00 },
 	{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR1,	0xDD, 0x00 },
 	{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR2,	0xDE, 0x00 },
 	{ PMC_EV_K8_FR_NUMBER_OF_BREAKPOINTS_FOR_DR3,	0xDF, 0x00 },
 
 	{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_ACCESS_EVENT, 0xE0, 0x7 },
 	{ PMC_EV_K8_NB_MEMORY_CONTROLLER_PAGE_TABLE_OVERFLOW, 0xE1, 0x00 },
 	{ PMC_EV_K8_NB_MEMORY_CONTROLLER_DRAM_COMMAND_SLOTS_MISSED,
 							0xE2, 0x00 },
 	{ PMC_EV_K8_NB_MEMORY_CONTROLLER_TURNAROUND,	0xE3, 0x07 },
 	{ PMC_EV_K8_NB_MEMORY_CONTROLLER_BYPASS_SATURATION, 0xE4, 0x0F },
 	{ PMC_EV_K8_NB_SIZED_COMMANDS,			0xEB, 0x7F },
 	{ PMC_EV_K8_NB_PROBE_RESULT,			0xEC, 0x0F },
 	{ PMC_EV_K8_NB_HT_BUS0_BANDWIDTH,		0xF6, 0x0F },
 	{ PMC_EV_K8_NB_HT_BUS1_BANDWIDTH,		0xF7, 0x0F },
 	{ PMC_EV_K8_NB_HT_BUS2_BANDWIDTH,		0xF8, 0x0F }
 
 };
 
 const int amd_event_codes_size =
 	sizeof(amd_event_codes) / sizeof(amd_event_codes[0]);
 
 /*
  * Per-processor information
  */
 
 struct amd_cpu {
 	struct pmc_hw	pc_amdpmcs[AMD_NPMCS];
 };
 
 static struct amd_cpu **amd_pcpu;
 
 /*
  * read a pmc register
  */
 
 static int
 amd_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	enum pmc_mode mode;
 	const struct amd_descr *pd;
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 	KASSERT(amd_pcpu[cpu],
 	    ("[amd,%d] null per-cpu, cpu %d", __LINE__, cpu));
 
 	pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
 	pd = &amd_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[amd,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
 		cpu, ri));
 
 	mode = PMC_TO_MODE(pm);
 
-	PMCDBG(MDP,REA,1,"amd-read id=%d class=%d", ri, pd->pm_descr.pd_class);
+	PMCDBG2(MDP,REA,1,"amd-read id=%d class=%d", ri, pd->pm_descr.pd_class);
 
 #ifdef	HWPMC_DEBUG
 	KASSERT(pd->pm_descr.pd_class == amd_pmc_class,
 	    ("[amd,%d] unknown PMC class (%d)", __LINE__,
 		pd->pm_descr.pd_class));
 #endif
 
 	tmp = rdmsr(pd->pm_perfctr); /* RDMSR serializes */
-	PMCDBG(MDP,REA,2,"amd-read (pre-munge) id=%d -> %jd", ri, tmp);
+	PMCDBG2(MDP,REA,2,"amd-read (pre-munge) id=%d -> %jd", ri, tmp);
 	if (PMC_IS_SAMPLING_MODE(mode)) {
 		/* Sign extend 48 bit value to 64 bits. */
 		tmp = (pmc_value_t) (((int64_t) tmp << 16) >> 16);
 		tmp = AMD_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	}
 	*v = tmp;
 
-	PMCDBG(MDP,REA,2,"amd-read (post-munge) id=%d -> %jd", ri, *v);
+	PMCDBG2(MDP,REA,2,"amd-read (post-munge) id=%d -> %jd", ri, *v);
 
 	return 0;
 }
 
 /*
  * Write a PMC MSR.
  */
 
 static int
 amd_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	const struct amd_descr *pd;
 	enum pmc_mode mode;
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
 	pd = &amd_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[amd,%d] PMC not owned (cpu%d,pmc%d)", __LINE__,
 		cpu, ri));
 
 	mode = PMC_TO_MODE(pm);
 
 #ifdef	HWPMC_DEBUG
 	KASSERT(pd->pm_descr.pd_class == amd_pmc_class,
 	    ("[amd,%d] unknown PMC class (%d)", __LINE__,
 		pd->pm_descr.pd_class));
 #endif
 
 	/* use 2's complement of the count for sampling mode PMCs */
 	if (PMC_IS_SAMPLING_MODE(mode))
 		v = AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 
-	PMCDBG(MDP,WRI,1,"amd-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1,"amd-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	/* write the PMC value */
 	wrmsr(pd->pm_perfctr, v);
 	return 0;
 }
 
 /*
  * configure hardware pmc according to the configuration recorded in
  * pmc 'pm'.
  */
 
 static int
 amd_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[amd,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
 		__LINE__, pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 	return 0;
 }
 
 /*
  * Retrieve a configured PMC pointer from hardware state.
  */
 
 static int
 amd_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = amd_pcpu[cpu]->pc_amdpmcs[ri].phw_pmc;
 
 	return 0;
 }
 
 /*
  * Machine dependent actions taken during the context switch in of a
  * thread.
  */
 
 static int
 amd_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc;
 
-	PMCDBG(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp,
+	PMCDBG3(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp,
 	    (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0);
 
 	/* enable the RDPMC instruction if needed */
 	if (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS)
 		load_cr4(rcr4() | CR4_PCE);
 
 	return 0;
 }
 
 /*
  * Machine dependent actions taken during the context switch out of a
  * thread.
  */
 
 static int
 amd_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc;
 	(void) pp;		/* can be NULL */
 
-	PMCDBG(MDP,SWO,1, "pc=%p pp=%p enable-msr=%d", pc, pp, pp ?
+	PMCDBG3(MDP,SWO,1, "pc=%p pp=%p enable-msr=%d", pc, pp, pp ?
 	    (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS) == 1 : 0);
 
 	/* always turn off the RDPMC instruction */
 	load_cr4(rcr4() & ~CR4_PCE);
 
 	return 0;
 }
 
 /*
  * Check if a given allocation is feasible.
  */
 
 static int
 amd_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	int i;
 	uint32_t allowed_unitmask, caps, config, unitmask;
 	enum pmc_event pe;
 	const struct pmc_descr *pd;
 
 	(void) cpu;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row index %d", __LINE__, ri));
 
 	pd = &amd_pmcdesc[ri].pm_descr;
 
 	/* check class match */
 	if (pd->pd_class != a->pm_class)
 		return EINVAL;
 
 	caps = pm->pm_caps;
 
-	PMCDBG(MDP,ALL,1,"amd-allocate ri=%d caps=0x%x", ri, caps);
+	PMCDBG2(MDP,ALL,1,"amd-allocate ri=%d caps=0x%x", ri, caps);
 
 	if ((pd->pd_caps & caps) != caps)
 		return EPERM;
 
 	pe = a->pm_ev;
 
 	/* map ev to the correct event mask code */
 	config = allowed_unitmask = 0;
 	for (i = 0; i < amd_event_codes_size; i++)
 		if (amd_event_codes[i].pe_ev == pe) {
 			config =
 			    AMD_PMC_TO_EVENTMASK(amd_event_codes[i].pe_code);
 			allowed_unitmask =
 			    AMD_PMC_TO_UNITMASK(amd_event_codes[i].pe_mask);
 			break;
 		}
 	if (i == amd_event_codes_size)
 		return EINVAL;
 
 	unitmask = a->pm_md.pm_amd.pm_amd_config & AMD_PMC_UNITMASK;
 	if (unitmask & ~allowed_unitmask) /* disallow reserved bits */
 		return EINVAL;
 
 	if (unitmask && (caps & PMC_CAP_QUALIFIER))
 		config |= unitmask;
 
 	if (caps & PMC_CAP_THRESHOLD)
 		config |= a->pm_md.pm_amd.pm_amd_config & AMD_PMC_COUNTERMASK;
 
 	/* set at least one of the 'usr' or 'os' caps */
 	if (caps & PMC_CAP_USER)
 		config |= AMD_PMC_USR;
 	if (caps & PMC_CAP_SYSTEM)
 		config |= AMD_PMC_OS;
 	if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0)
 		config |= (AMD_PMC_USR|AMD_PMC_OS);
 
 	if (caps & PMC_CAP_EDGE)
 		config |= AMD_PMC_EDGE;
 	if (caps & PMC_CAP_INVERT)
 		config |= AMD_PMC_INVERT;
 	if (caps & PMC_CAP_INTERRUPT)
 		config |= AMD_PMC_INT;
 
 	pm->pm_md.pm_amd.pm_amd_evsel = config; /* save config value */
 
-	PMCDBG(MDP,ALL,2,"amd-allocate ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"amd-allocate ri=%d -> config=0x%x", ri, config);
 
 	return 0;
 }
 
 /*
  * Release machine dependent state associated with a PMC.  This is a
  * no-op on this architecture.
  *
  */
 
 /* ARGSUSED0 */
 static int
 amd_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 #ifdef	HWPMC_DEBUG
 	const struct amd_descr *pd;
 #endif
 	struct pmc_hw *phw;
 
 	(void) pmc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
 
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[amd,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 #ifdef	HWPMC_DEBUG
 	pd = &amd_pmcdesc[ri];
 	if (pd->pm_descr.pd_class == amd_pmc_class)
 		KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel),
 		    ("[amd,%d] PMC %d released while active", __LINE__, ri));
 #endif
 
 	return 0;
 }
 
 /*
  * start a PMC.
  */
 
 static int
 amd_start_pmc(int cpu, int ri)
 {
 	uint32_t config;
 	struct pmc *pm;
 	struct pmc_hw *phw;
 	const struct amd_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
 	pm  = phw->phw_pmc;
 	pd = &amd_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[amd,%d] starting cpu%d,pmc%d with null pmc record", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,STA,1,"amd-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1,"amd-start cpu=%d ri=%d", cpu, ri);
 
 	KASSERT(AMD_PMC_IS_STOPPED(pd->pm_evsel),
 	    ("[amd,%d] pmc%d,cpu%d: Starting active PMC \"%s\"", __LINE__,
 	    ri, cpu, pd->pm_descr.pd_name));
 
 	/* turn on the PMC ENABLE bit */
 	config = pm->pm_md.pm_amd.pm_amd_evsel | AMD_PMC_ENABLE;
 
-	PMCDBG(MDP,STA,2,"amd-start config=0x%x", config);
+	PMCDBG1(MDP,STA,2,"amd-start config=0x%x", config);
 
 	wrmsr(pd->pm_evsel, config);
 	return 0;
 }
 
 /*
  * Stop a PMC.
  */
 
 static int
 amd_stop_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct pmc_hw *phw;
 	const struct amd_descr *pd;
 	uint64_t config;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
 	pm  = phw->phw_pmc;
 	pd  = &amd_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[amd,%d] cpu%d,pmc%d no PMC to stop", __LINE__,
 		cpu, ri));
 	KASSERT(!AMD_PMC_IS_STOPPED(pd->pm_evsel),
 	    ("[amd,%d] PMC%d, CPU%d \"%s\" already stopped",
 		__LINE__, ri, cpu, pd->pm_descr.pd_name));
 
-	PMCDBG(MDP,STO,1,"amd-stop ri=%d", ri);
+	PMCDBG1(MDP,STO,1,"amd-stop ri=%d", ri);
 
 	/* turn off the PMC ENABLE bit */
 	config = pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE;
 	wrmsr(pd->pm_evsel, config);
 	return 0;
 }
 
 /*
  * Interrupt handler.  This function needs to return '1' if the
  * interrupt was this CPU's PMCs or '0' otherwise.  It is not allowed
  * to sleep or do anything a 'fast' interrupt handler is not allowed
  * to do.
  */
 
 static int
 amd_intr(int cpu, struct trapframe *tf)
 {
 	int i, error, retval;
 	uint32_t config, evsel, perfctr;
 	struct pmc *pm;
 	struct amd_cpu *pac;
 	pmc_value_t v;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] out of range CPU %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	retval = 0;
 
 	pac = amd_pcpu[cpu];
 
 	/*
 	 * look for all PMCs that have interrupted:
 	 * - look for a running, sampling PMC which has overflowed
 	 *   and which has a valid 'struct pmc' association
 	 *
 	 * If found, we call a helper to process the interrupt.
 	 *
 	 * If multiple PMCs interrupt at the same time, the AMD64
 	 * processor appears to deliver as many NMIs as there are
 	 * outstanding PMC interrupts.  So we process only one NMI
 	 * interrupt at a time.
 	 */
 
 	for (i = 0; retval == 0 && i < AMD_NPMCS; i++) {
 
 		if ((pm = pac->pc_amdpmcs[i].phw_pmc) == NULL ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			continue;
 		}
 
 		if (!AMD_PMC_HAS_OVERFLOWED(i))
 			continue;
 
 		retval = 1;	/* Found an interrupting PMC. */
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		/* Stop the PMC, reload count. */
 		evsel   = AMD_PMC_EVSEL_0 + i;
 		perfctr = AMD_PMC_PERFCTR_0 + i;
 		v       = pm->pm_sc.pm_reloadcount;
 		config  = rdmsr(evsel);
 
 		KASSERT((config & ~AMD_PMC_ENABLE) ==
 		    (pm->pm_md.pm_amd.pm_amd_evsel & ~AMD_PMC_ENABLE),
 		    ("[amd,%d] config mismatch reg=0x%x pm=0x%x", __LINE__,
 			config, pm->pm_md.pm_amd.pm_amd_evsel));
 
 		wrmsr(evsel, config & ~AMD_PMC_ENABLE);
 		wrmsr(perfctr, AMD_RELOAD_COUNT_TO_PERFCTR_VALUE(v));
 
 		/* Restart the counter if logging succeeded. */
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error == 0)
 			wrmsr(evsel, config | AMD_PMC_ENABLE);
 	}
 
 	atomic_add_int(retval ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	return (retval);
 }
 
 /*
  * describe a PMC
  */
 static int
 amd_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	size_t copied;
 	const struct amd_descr *pd;
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] row-index %d out of range", __LINE__, ri));
 
 	phw = &amd_pcpu[cpu]->pc_amdpmcs[ri];
 	pd  = &amd_pmcdesc[ri];
 
 	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
 		 PMC_NAME_MAX, &copied)) != 0)
 		return error;
 
 	pi->pm_class = pd->pm_descr.pd_class;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return 0;
 }
 
 /*
  * i386 specific entry points
  */
 
 /*
  * return the MSR address of the given PMC.
  */
 
 static int
 amd_get_msr(int ri, uint32_t *msr)
 {
 	KASSERT(ri >= 0 && ri < AMD_NPMCS,
 	    ("[amd,%d] ri %d out of range", __LINE__, ri));
 
 	*msr = amd_pmcdesc[ri].pm_perfctr - AMD_PMC_PERFCTR_0;
 
 	return (0);
 }
 
 /*
  * processor dependent initialization.
  */
 
 static int
 amd_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int classindex, first_ri, n;
 	struct pmc_cpu *pc;
 	struct amd_cpu *pac;
 	struct pmc_hw  *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] insane cpu number %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"amd-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"amd-init cpu=%d", cpu);
 
 	amd_pcpu[cpu] = pac = malloc(sizeof(struct amd_cpu), M_PMC,
 	    M_WAITOK|M_ZERO);
 
 	/*
 	 * Set the content of the hardware descriptors to a known
 	 * state and initialize pointers in the MI per-cpu descriptor.
 	 */
 	pc = pmc_pcpu[cpu];
 #if	defined(__amd64__)
 	classindex = PMC_MDEP_CLASS_INDEX_K8;
 #elif	defined(__i386__)
 	classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ?
 	    PMC_MDEP_CLASS_INDEX_K8 : PMC_MDEP_CLASS_INDEX_K7;
 #endif
 	first_ri = md->pmd_classdep[classindex].pcd_ri;
 
 	KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu pointer", __LINE__));
 
 	for (n = 0, phw = pac->pc_amdpmcs; n < AMD_NPMCS; n++, phw++) {
 		phw->phw_state 	  = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
 		phw->phw_pmc	  = NULL;
 		pc->pc_hwpmcs[n + first_ri]  = phw;
 	}
 
 	return (0);
 }
 
 
 /*
  * processor dependent cleanup prior to the KLD
  * being unloaded
  */
 
 static int
 amd_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int classindex, first_ri, i;
 	uint32_t evsel;
 	struct pmc_cpu *pc;
 	struct amd_cpu *pac;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] insane cpu number (%d)", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"amd-cleanup cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"amd-cleanup cpu=%d", cpu);
 
 	/*
 	 * First, turn off all PMCs on this CPU.
 	 */
 	for (i = 0; i < 4; i++) { /* XXX this loop is now not needed */
 		evsel = rdmsr(AMD_PMC_EVSEL_0 + i);
 		evsel &= ~AMD_PMC_ENABLE;
 		wrmsr(AMD_PMC_EVSEL_0 + i, evsel);
 	}
 
 	/*
 	 * Next, free up allocated space.
 	 */
 	if ((pac = amd_pcpu[cpu]) == NULL)
 		return (0);
 
 	amd_pcpu[cpu] = NULL;
 
 #ifdef	HWPMC_DEBUG
 	for (i = 0; i < AMD_NPMCS; i++) {
 		KASSERT(pac->pc_amdpmcs[i].phw_pmc == NULL,
 		    ("[amd,%d] CPU%d/PMC%d in use", __LINE__, cpu, i));
 		KASSERT(AMD_PMC_IS_STOPPED(AMD_PMC_EVSEL_0 + i),
 		    ("[amd,%d] CPU%d/PMC%d not stopped", __LINE__, cpu, i));
 	}
 #endif
 
 	pc = pmc_pcpu[cpu];
 	KASSERT(pc != NULL, ("[amd,%d] NULL per-cpu state", __LINE__));
 
 #if	defined(__amd64__)
 	classindex = PMC_MDEP_CLASS_INDEX_K8;
 #elif	defined(__i386__)
 	classindex = md->pmd_cputype == PMC_CPU_AMD_K8 ? PMC_MDEP_CLASS_INDEX_K8 :
 	    PMC_MDEP_CLASS_INDEX_K7;
 #endif
 	first_ri = md->pmd_classdep[classindex].pcd_ri;
 
 	/*
 	 * Reset pointers in the MI 'per-cpu' state.
 	 */
 	for (i = 0; i < AMD_NPMCS; i++) {
 		pc->pc_hwpmcs[i + first_ri] = NULL;
 	}
 
 
 	free(pac, M_PMC);
 
 	return (0);
 }
 
 /*
  * Initialize ourselves.
  */
 
 struct pmc_mdep *
 pmc_amd_initialize(void)
 {
 	int classindex, error, i, ncpus;
 	struct pmc_classdep *pcd;
 	enum pmc_cputype cputype;
 	struct pmc_mdep *pmc_mdep;
 	enum pmc_class class;
 	char *name;
 
 	/*
 	 * The presence of hardware performance counters on the AMD
 	 * Athlon, Duron or later processors, is _not_ indicated by
 	 * any of the processor feature flags set by the 'CPUID'
 	 * instruction, so we only check the 'instruction family'
 	 * field returned by CPUID for instruction family >= 6.
 	 */
 
 	name = NULL;
 	switch (cpu_id & 0xF00) {
 #if	defined(__i386__)
 	case 0x600:		/* Athlon(tm) processor */
 		classindex = PMC_MDEP_CLASS_INDEX_K7;
 		cputype = PMC_CPU_AMD_K7;
 		class = PMC_CLASS_K7;
 		name = "K7";
 		break;
 #endif
 	case 0xF00:		/* Athlon64/Opteron processor */
 		classindex = PMC_MDEP_CLASS_INDEX_K8;
 		cputype = PMC_CPU_AMD_K8;
 		class = PMC_CLASS_K8;
 		name = "K8";
 		break;
 
 	default:
 		(void) printf("pmc: Unknown AMD CPU.\n");
 		return NULL;
 	}
 
 #ifdef	HWPMC_DEBUG
 	amd_pmc_class = class;
 #endif
 
 	/*
 	 * Allocate space for pointers to PMC HW descriptors and for
 	 * the MDEP structure used by MI code.
 	 */
 	amd_pcpu = malloc(sizeof(struct amd_cpu *) * pmc_cpu_max(), M_PMC,
 	    M_WAITOK|M_ZERO);
 
 	/*
 	 * These processors have two classes of PMCs: the TSC and
 	 * programmable PMCs.
 	 */
 	pmc_mdep = pmc_mdep_alloc(2);
 
 	pmc_mdep->pmd_cputype = cputype;
 
 	ncpus = pmc_cpu_max();
 
 	/* Initialize the TSC. */
 	error = pmc_tsc_initialize(pmc_mdep, ncpus);
 	if (error)
 		goto error;
 
 	/* Initialize AMD K7 and K8 PMC handling. */
 	pcd = &pmc_mdep->pmd_classdep[classindex];
 
 	pcd->pcd_caps		= AMD_PMC_CAPS;
 	pcd->pcd_class		= class;
 	pcd->pcd_num		= AMD_NPMCS;
 	pcd->pcd_ri		= pmc_mdep->pmd_npmc;
 	pcd->pcd_width		= 48;
 
 	/* fill in the correct pmc name and class */
 	for (i = 0; i < AMD_NPMCS; i++) {
 		(void) snprintf(amd_pmcdesc[i].pm_descr.pd_name,
 		    sizeof(amd_pmcdesc[i].pm_descr.pd_name), "%s-%d",
 		    name, i);
 		amd_pmcdesc[i].pm_descr.pd_class = class;
 	}
 
 	pcd->pcd_allocate_pmc	= amd_allocate_pmc;
 	pcd->pcd_config_pmc	= amd_config_pmc;
 	pcd->pcd_describe	= amd_describe;
 	pcd->pcd_get_config	= amd_get_config;
 	pcd->pcd_get_msr	= amd_get_msr;
 	pcd->pcd_pcpu_fini	= amd_pcpu_fini;
 	pcd->pcd_pcpu_init	= amd_pcpu_init;
 	pcd->pcd_read_pmc	= amd_read_pmc;
 	pcd->pcd_release_pmc	= amd_release_pmc;
 	pcd->pcd_start_pmc	= amd_start_pmc;
 	pcd->pcd_stop_pmc	= amd_stop_pmc;
 	pcd->pcd_write_pmc	= amd_write_pmc;
 
 	pmc_mdep->pmd_pcpu_init = NULL;
 	pmc_mdep->pmd_pcpu_fini = NULL;
 	pmc_mdep->pmd_intr	= amd_intr;
 	pmc_mdep->pmd_switch_in = amd_switch_in;
 	pmc_mdep->pmd_switch_out = amd_switch_out;
 
 	pmc_mdep->pmd_npmc     += AMD_NPMCS;
 
-	PMCDBG(MDP,INI,0,"%s","amd-initialize");
+	PMCDBG0(MDP,INI,0,"amd-initialize");
 
 	return (pmc_mdep);
 
   error:
 	if (error) {
 		free(pmc_mdep, M_PMC);
 		pmc_mdep = NULL;
 	}
 
 	return (NULL);
 }
 
 /*
  * Finalization code for AMD CPUs.
  */
 
 void
 pmc_amd_finalize(struct pmc_mdep *md)
 {
 #if	defined(INVARIANTS)
 	int classindex, i, ncpus, pmcclass;
 #endif
 
 	pmc_tsc_finalize(md);
 
 	KASSERT(amd_pcpu != NULL, ("[amd,%d] NULL per-cpu array pointer",
 	    __LINE__));
 
 #if	defined(INVARIANTS)
 	switch (md->pmd_cputype) {
 #if	defined(__i386__)
 	case PMC_CPU_AMD_K7:
 		classindex = PMC_MDEP_CLASS_INDEX_K7;
 		pmcclass = PMC_CLASS_K7;
 		break;
 #endif
 	default:
 		classindex = PMC_MDEP_CLASS_INDEX_K8;
 		pmcclass = PMC_CLASS_K8;
 	}
 
 	KASSERT(md->pmd_classdep[classindex].pcd_class == pmcclass,
 	    ("[amd,%d] pmc class mismatch", __LINE__));
 
 	ncpus = pmc_cpu_max();
 
 	for (i = 0; i < ncpus; i++)
 		KASSERT(amd_pcpu[i] == NULL, ("[amd,%d] non-null pcpu",
 		    __LINE__));
 #endif
 
 	free(amd_pcpu, M_PMC);
 	amd_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_core.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_core.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_core.c	(revision 282658)
@@ -1,2818 +1,2818 @@
 /*-
  * Copyright (c) 2008 Joseph Koshy
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Intel Core PMCs.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/intr_machdep.h>
 #if (__FreeBSD_version >= 1100000)
 #include <x86/apicvar.h>
 #else
 #include <machine/apicvar.h>
 #endif
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 
 #define	CORE_CPUID_REQUEST		0xA
 #define	CORE_CPUID_REQUEST_SIZE		0x4
 #define	CORE_CPUID_EAX			0x0
 #define	CORE_CPUID_EBX			0x1
 #define	CORE_CPUID_ECX			0x2
 #define	CORE_CPUID_EDX			0x3
 
 #define	IAF_PMC_CAPS			\
 	(PMC_CAP_READ | PMC_CAP_WRITE | PMC_CAP_INTERRUPT | \
 	 PMC_CAP_USER | PMC_CAP_SYSTEM)
 #define	IAF_RI_TO_MSR(RI)		((RI) + (1 << 30))
 
 #define	IAP_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM | \
     PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE |	 \
     PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE)
 
 #define	EV_IS_NOTARCH		0
 #define	EV_IS_ARCH_SUPP		1
 #define	EV_IS_ARCH_NOTSUPP	-1
 
 /*
  * "Architectural" events defined by Intel.  The values of these
  * symbols correspond to positions in the bitmask returned by
  * the CPUID.0AH instruction.
  */
 enum core_arch_events {
 	CORE_AE_BRANCH_INSTRUCTION_RETIRED	= 5,
 	CORE_AE_BRANCH_MISSES_RETIRED		= 6,
 	CORE_AE_INSTRUCTION_RETIRED		= 1,
 	CORE_AE_LLC_MISSES			= 4,
 	CORE_AE_LLC_REFERENCE			= 3,
 	CORE_AE_UNHALTED_REFERENCE_CYCLES	= 2,
 	CORE_AE_UNHALTED_CORE_CYCLES		= 0
 };
 
 static enum pmc_cputype	core_cputype;
 
 struct core_cpu {
 	volatile uint32_t	pc_resync;
 	volatile uint32_t	pc_iafctrl;	/* Fixed function control. */
 	volatile uint64_t	pc_globalctrl;	/* Global control register. */
 	struct pmc_hw		pc_corepmcs[];
 };
 
 static struct core_cpu **core_pcpu;
 
 static uint32_t core_architectural_events;
 static uint64_t core_pmcmask;
 
 static int core_iaf_ri;		/* relative index of fixed counters */
 static int core_iaf_width;
 static int core_iaf_npmc;
 
 static int core_iap_width;
 static int core_iap_npmc;
 
 static int
 core_pcpu_noop(struct pmc_mdep *md, int cpu)
 {
 	(void) md;
 	(void) cpu;
 	return (0);
 }
 
 static int
 core_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	struct pmc_cpu *pc;
 	struct core_cpu *cc;
 	struct pmc_hw *phw;
 	int core_ri, n, npmc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[iaf,%d] insane cpu number %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"core-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"core-init cpu=%d", cpu);
 
 	core_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAP].pcd_ri;
 	npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAP].pcd_num;
 
 	if (core_cputype != PMC_CPU_INTEL_CORE)
 		npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAF].pcd_num;
 
 	cc = malloc(sizeof(struct core_cpu) + npmc * sizeof(struct pmc_hw),
 	    M_PMC, M_WAITOK | M_ZERO);
 
 	core_pcpu[cpu] = cc;
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL && cc != NULL,
 	    ("[core,%d] NULL per-cpu structures cpu=%d", __LINE__, cpu));
 
 	for (n = 0, phw = cc->pc_corepmcs; n < npmc; n++, phw++) {
 		phw->phw_state 	  = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) |
 		    PMC_PHW_INDEX_TO_STATE(n + core_ri);
 		phw->phw_pmc	  = NULL;
 		pc->pc_hwpmcs[n + core_ri]  = phw;
 	}
 
 	return (0);
 }
 
 static int
 core_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int core_ri, n, npmc;
 	struct pmc_cpu *pc;
 	struct core_cpu *cc;
 	uint64_t msr = 0;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] insane cpu number (%d)", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"core-pcpu-fini cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"core-pcpu-fini cpu=%d", cpu);
 
 	if ((cc = core_pcpu[cpu]) == NULL)
 		return (0);
 
 	core_pcpu[cpu] = NULL;
 
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL, ("[core,%d] NULL per-cpu %d state", __LINE__,
 		cpu));
 
 	npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAP].pcd_num;
 	core_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAP].pcd_ri;
 
 	for (n = 0; n < npmc; n++) {
 		msr = rdmsr(IAP_EVSEL0 + n) & ~IAP_EVSEL_MASK;
 		wrmsr(IAP_EVSEL0 + n, msr);
 	}
 
 	if (core_cputype != PMC_CPU_INTEL_CORE) {
 		msr = rdmsr(IAF_CTRL) & ~IAF_CTRL_MASK;
 		wrmsr(IAF_CTRL, msr);
 		npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAF].pcd_num;
 	}
 
 	for (n = 0; n < npmc; n++)
 		pc->pc_hwpmcs[n + core_ri] = NULL;
 
 	free(cc, M_PMC);
 
 	return (0);
 }
 
 /*
  * Fixed function counters.
  */
 
 static pmc_value_t
 iaf_perfctr_value_to_reload_count(pmc_value_t v)
 {
 	v &= (1ULL << core_iaf_width) - 1;
 	return (1ULL << core_iaf_width) - v;
 }
 
 static pmc_value_t
 iaf_reload_count_to_perfctr_value(pmc_value_t rlc)
 {
 	return (1ULL << core_iaf_width) - rlc;
 }
 
 static int
 iaf_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event ev;
 	uint32_t caps, flags, validflags;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU %d", __LINE__, cpu));
 
-	PMCDBG(MDP,ALL,1, "iaf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps);
+	PMCDBG2(MDP,ALL,1, "iaf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps);
 
 	if (ri < 0 || ri > core_iaf_npmc)
 		return (EINVAL);
 
 	caps = a->pm_caps;
 
 	if (a->pm_class != PMC_CLASS_IAF ||
 	    (caps & IAF_PMC_CAPS) != caps)
 		return (EINVAL);
 
 	ev = pm->pm_event;
 	if (ev < PMC_EV_IAF_FIRST || ev > PMC_EV_IAF_LAST)
 		return (EINVAL);
 
 	if (ev == PMC_EV_IAF_INSTR_RETIRED_ANY && ri != 0)
 		return (EINVAL);
 	if (ev == PMC_EV_IAF_CPU_CLK_UNHALTED_CORE && ri != 1)
 		return (EINVAL);
 	if (ev == PMC_EV_IAF_CPU_CLK_UNHALTED_REF && ri != 2)
 		return (EINVAL);
 
 	flags = a->pm_md.pm_iaf.pm_iaf_flags;
 
 	validflags = IAF_MASK;
 
 	if (core_cputype != PMC_CPU_INTEL_ATOM &&
 		core_cputype != PMC_CPU_INTEL_ATOM_SILVERMONT)
 		validflags &= ~IAF_ANY;
 
 	if ((flags & ~validflags) != 0)
 		return (EINVAL);
 
 	if (caps & PMC_CAP_INTERRUPT)
 		flags |= IAF_PMI;
 	if (caps & PMC_CAP_SYSTEM)
 		flags |= IAF_OS;
 	if (caps & PMC_CAP_USER)
 		flags |= IAF_USR;
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
 		flags |= (IAF_OS | IAF_USR);
 
 	pm->pm_md.pm_iaf.pm_iaf_ctrl = (flags << (ri * 4));
 
-	PMCDBG(MDP,ALL,2, "iaf-allocate config=0x%jx",
+	PMCDBG1(MDP,ALL,2, "iaf-allocate config=0x%jx",
 	    (uintmax_t) pm->pm_md.pm_iaf.pm_iaf_ctrl);
 
 	return (0);
 }
 
 static int
 iaf_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "iaf-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "iaf-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(core_pcpu[cpu] != NULL, ("[core,%d] null per-cpu %d", __LINE__,
 	    cpu));
 
 	core_pcpu[cpu]->pc_corepmcs[ri + core_iaf_ri].phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 iaf_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char iaf_name[PMC_NAME_MAX];
 
 	phw = &core_pcpu[cpu]->pc_corepmcs[ri + core_iaf_ri];
 
 	(void) snprintf(iaf_name, sizeof(iaf_name), "IAF-%d", ri);
 	if ((error = copystr(iaf_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return (error);
 
 	pi->pm_class = PMC_CLASS_IAF;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 iaf_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = core_pcpu[cpu]->pc_corepmcs[ri + core_iaf_ri].phw_pmc;
 
 	return (0);
 }
 
 static int
 iaf_get_msr(int ri, uint32_t *msr)
 {
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[iaf,%d] ri %d out of range", __LINE__, ri));
 
 	*msr = IAF_RI_TO_MSR(ri);
 
 	return (0);
 }
 
 static int
 iaf_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = core_pcpu[cpu]->pc_corepmcs[ri + core_iaf_ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] cpu %d ri %d(%d) pmc not configured", __LINE__, cpu,
 		ri, ri + core_iaf_ri));
 
 	tmp = rdpmc(IAF_RI_TO_MSR(ri));
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = iaf_perfctr_value_to_reload_count(tmp);
 	else
 		*v = tmp;
 
-	PMCDBG(MDP,REA,1, "iaf-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
+	PMCDBG4(MDP,REA,1, "iaf-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
 	    IAF_RI_TO_MSR(ri), *v);
 
 	return (0);
 }
 
 static int
 iaf_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
-	PMCDBG(MDP,REL,1, "iaf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc);
+	PMCDBG3(MDP,REL,1, "iaf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	KASSERT(core_pcpu[cpu]->pc_corepmcs[ri + core_iaf_ri].phw_pmc == NULL,
 	    ("[core,%d] PHW pmc non-NULL", __LINE__));
 
 	return (0);
 }
 
 static int
 iaf_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct core_cpu *iafc;
 	uint64_t msr = 0;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,STA,1,"iaf-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1,"iaf-start cpu=%d ri=%d", cpu, ri);
 
 	iafc = core_pcpu[cpu];
 	pm = iafc->pc_corepmcs[ri + core_iaf_ri].phw_pmc;
 
 	iafc->pc_iafctrl |= pm->pm_md.pm_iaf.pm_iaf_ctrl;
 
  	msr = rdmsr(IAF_CTRL) & ~IAF_CTRL_MASK;
  	wrmsr(IAF_CTRL, msr | (iafc->pc_iafctrl & IAF_CTRL_MASK));
 
 	do {
 		iafc->pc_resync = 0;
 		iafc->pc_globalctrl |= (1ULL << (ri + IAF_OFFSET));
  		msr = rdmsr(IA_GLOBAL_CTRL) & ~IAF_GLOBAL_CTRL_MASK;
  		wrmsr(IA_GLOBAL_CTRL, msr | (iafc->pc_globalctrl &
  					     IAF_GLOBAL_CTRL_MASK));
 	} while (iafc->pc_resync != 0);
 
-	PMCDBG(MDP,STA,1,"iafctrl=%x(%x) globalctrl=%jx(%jx)",
+	PMCDBG4(MDP,STA,1,"iafctrl=%x(%x) globalctrl=%jx(%jx)",
 	    iafc->pc_iafctrl, (uint32_t) rdmsr(IAF_CTRL),
 	    iafc->pc_globalctrl, rdmsr(IA_GLOBAL_CTRL));
 
 	return (0);
 }
 
 static int
 iaf_stop_pmc(int cpu, int ri)
 {
 	uint32_t fc;
 	struct core_cpu *iafc;
 	uint64_t msr = 0;
 
-	PMCDBG(MDP,STO,1,"iaf-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1,"iaf-stop cpu=%d ri=%d", cpu, ri);
 
 	iafc = core_pcpu[cpu];
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	fc = (IAF_MASK << (ri * 4));
 
 	if (core_cputype != PMC_CPU_INTEL_ATOM &&
 		core_cputype != PMC_CPU_INTEL_ATOM_SILVERMONT)
 		fc &= ~IAF_ANY;
 
 	iafc->pc_iafctrl &= ~fc;
 
-	PMCDBG(MDP,STO,1,"iaf-stop iafctrl=%x", iafc->pc_iafctrl);
+	PMCDBG1(MDP,STO,1,"iaf-stop iafctrl=%x", iafc->pc_iafctrl);
  	msr = rdmsr(IAF_CTRL) & ~IAF_CTRL_MASK;
  	wrmsr(IAF_CTRL, msr | (iafc->pc_iafctrl & IAF_CTRL_MASK));
 
 	do {
 		iafc->pc_resync = 0;
 		iafc->pc_globalctrl &= ~(1ULL << (ri + IAF_OFFSET));
  		msr = rdmsr(IA_GLOBAL_CTRL) & ~IAF_GLOBAL_CTRL_MASK;
  		wrmsr(IA_GLOBAL_CTRL, msr | (iafc->pc_globalctrl &
  					     IAF_GLOBAL_CTRL_MASK));
 	} while (iafc->pc_resync != 0);
 
-	PMCDBG(MDP,STO,1,"iafctrl=%x(%x) globalctrl=%jx(%jx)",
+	PMCDBG4(MDP,STO,1,"iafctrl=%x(%x) globalctrl=%jx(%jx)",
 	    iafc->pc_iafctrl, (uint32_t) rdmsr(IAF_CTRL),
 	    iafc->pc_globalctrl, rdmsr(IA_GLOBAL_CTRL));
 
 	return (0);
 }
 
 static int
 iaf_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct core_cpu *cc;
 	struct pmc *pm;
 	uint64_t msr;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iaf_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	cc = core_pcpu[cpu];
 	pm = cc->pc_corepmcs[ri + core_iaf_ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = iaf_reload_count_to_perfctr_value(v);
 
 	/* Turn off fixed counters */
 	msr = rdmsr(IAF_CTRL) & ~IAF_CTRL_MASK;
 	wrmsr(IAF_CTRL, msr);
 
 	wrmsr(IAF_CTR0 + ri, v & ((1ULL << core_iaf_width) - 1));
 
 	/* Turn on fixed counters */
 	msr = rdmsr(IAF_CTRL) & ~IAF_CTRL_MASK;
 	wrmsr(IAF_CTRL, msr | (cc->pc_iafctrl & IAF_CTRL_MASK));
 
-	PMCDBG(MDP,WRI,1, "iaf-write cpu=%d ri=%d msr=0x%x v=%jx iafctrl=%jx "
+	PMCDBG6(MDP,WRI,1, "iaf-write cpu=%d ri=%d msr=0x%x v=%jx iafctrl=%jx "
 	    "pmc=%jx", cpu, ri, IAF_RI_TO_MSR(ri), v,
 	    (uintmax_t) rdmsr(IAF_CTRL),
 	    (uintmax_t) rdpmc(IAF_RI_TO_MSR(ri)));
 
 	return (0);
 }
 
 
 static void
 iaf_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(md != NULL, ("[iaf,%d] md is NULL", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "iaf-initialize");
+	PMCDBG0(MDP,INI,1, "iaf-initialize");
 
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAF];
 
 	pcd->pcd_caps	= IAF_PMC_CAPS;
 	pcd->pcd_class	= PMC_CLASS_IAF;
 	pcd->pcd_num	= npmc;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= pmcwidth;
 
 	pcd->pcd_allocate_pmc	= iaf_allocate_pmc;
 	pcd->pcd_config_pmc	= iaf_config_pmc;
 	pcd->pcd_describe	= iaf_describe;
 	pcd->pcd_get_config	= iaf_get_config;
 	pcd->pcd_get_msr	= iaf_get_msr;
 	pcd->pcd_pcpu_fini	= core_pcpu_noop;
 	pcd->pcd_pcpu_init	= core_pcpu_noop;
 	pcd->pcd_read_pmc	= iaf_read_pmc;
 	pcd->pcd_release_pmc	= iaf_release_pmc;
 	pcd->pcd_start_pmc	= iaf_start_pmc;
 	pcd->pcd_stop_pmc	= iaf_stop_pmc;
 	pcd->pcd_write_pmc	= iaf_write_pmc;
 
 	md->pmd_npmc	       += npmc;
 }
 
 /*
  * Intel programmable PMCs.
  */
 
 /*
  * Event descriptor tables.
  *
  * For each event id, we track:
  *
  * 1. The CPUs that the event is valid for.
  *
  * 2. If the event uses a fixed UMASK, the value of the umask field.
  *    If the event doesn't use a fixed UMASK, a mask of legal bits
  *    to check against.
  */
 
 struct iap_event_descr {
 	enum pmc_event	iap_ev;
 	unsigned char	iap_evcode;
 	unsigned char	iap_umask;
 	unsigned int	iap_flags;
 };
 
 #define	IAP_F_CC	(1 << 0)	/* CPU: Core */
 #define	IAP_F_CC2	(1 << 1)	/* CPU: Core2 family */
 #define	IAP_F_CC2E	(1 << 2)	/* CPU: Core2 Extreme only */
 #define	IAP_F_CA	(1 << 3)	/* CPU: Atom */
 #define	IAP_F_I7	(1 << 4)	/* CPU: Core i7 */
 #define	IAP_F_I7O	(1 << 4)	/* CPU: Core i7 (old) */
 #define	IAP_F_WM	(1 << 5)	/* CPU: Westmere */
 #define	IAP_F_SB	(1 << 6)	/* CPU: Sandy Bridge */
 #define	IAP_F_IB	(1 << 7)	/* CPU: Ivy Bridge */
 #define	IAP_F_SBX	(1 << 8)	/* CPU: Sandy Bridge Xeon */
 #define	IAP_F_IBX	(1 << 9)	/* CPU: Ivy Bridge Xeon */
 #define	IAP_F_HW	(1 << 10)	/* CPU: Haswell */
 #define	IAP_F_CAS	(1 << 11)	/* CPU: Atom Silvermont */
 #define	IAP_F_HWX	(1 << 12)	/* CPU: Haswell Xeon */
 #define	IAP_F_BW	(1 << 13)	/* CPU: Broadwell */
 #define	IAP_F_FM	(1 << 14)	/* Fixed mask */
 
 #define	IAP_F_ALLCPUSCORE2					\
     (IAP_F_CC | IAP_F_CC2 | IAP_F_CC2E | IAP_F_CA)
 
 /* Sub fields of UMASK that this event supports. */
 #define	IAP_M_CORE		(1 << 0) /* Core specificity */
 #define	IAP_M_AGENT		(1 << 1) /* Agent specificity */
 #define	IAP_M_PREFETCH		(1 << 2) /* Prefetch */
 #define	IAP_M_MESI		(1 << 3) /* MESI */
 #define	IAP_M_SNOOPRESPONSE	(1 << 4) /* Snoop response */
 #define	IAP_M_SNOOPTYPE		(1 << 5) /* Snoop type */
 #define	IAP_M_TRANSITION	(1 << 6) /* Transition */
 
 #define	IAP_F_CORE		(0x3 << 14) /* Core specificity */
 #define	IAP_F_AGENT		(0x1 << 13) /* Agent specificity */
 #define	IAP_F_PREFETCH		(0x3 << 12) /* Prefetch */
 #define	IAP_F_MESI		(0xF <<  8) /* MESI */
 #define	IAP_F_SNOOPRESPONSE	(0xB <<  8) /* Snoop response */
 #define	IAP_F_SNOOPTYPE		(0x3 <<  8) /* Snoop type */
 #define	IAP_F_TRANSITION	(0x1 << 12) /* Transition */
 
 #define	IAP_PREFETCH_RESERVED	(0x2 << 12)
 #define	IAP_CORE_THIS		(0x1 << 14)
 #define	IAP_CORE_ALL		(0x3 << 14)
 #define	IAP_F_CMASK		0xFF000000
 
 static struct iap_event_descr iap_events[] = {
 #undef IAPDESCR
 #define	IAPDESCR(N,EV,UM,FLAGS) {					\
 	.iap_ev = PMC_EV_IAP_EVENT_##N,					\
 	.iap_evcode = (EV),						\
 	.iap_umask = (UM),						\
 	.iap_flags = (FLAGS)						\
 	}
 
     IAPDESCR(02H_01H, 0x02, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(02H_81H, 0x02, 0x81, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(03H_00H, 0x03, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(03H_01H, 0x03, 0x01, IAP_F_FM | IAP_F_I7O | IAP_F_SB |
 	IAP_F_SBX | IAP_F_CAS),
     IAPDESCR(03H_02H, 0x03, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(03H_04H, 0x03, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_I7O |
 	IAP_F_CAS),
     IAPDESCR(03H_08H, 0x03, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_SB |
 	IAP_F_SBX | IAP_F_CAS | IAP_F_IB | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(03H_10H, 0x03, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_SB |
 	IAP_F_SBX | IAP_F_CAS),
     IAPDESCR(03H_20H, 0x03, 0x20, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_CAS),
     IAPDESCR(03H_40H, 0x03, 0x40, IAP_F_CAS),
     IAPDESCR(03H_80H, 0x03, 0x80, IAP_F_CAS),
 
     IAPDESCR(04H_00H, 0x04, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CAS),
     IAPDESCR(04H_01H, 0x04, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_I7O |
 	IAP_F_CAS),
     IAPDESCR(04H_02H, 0x04, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_CAS),
     IAPDESCR(04H_04H, 0x04, 0x04, IAP_F_CAS),
     IAPDESCR(04H_07H, 0x04, 0x07, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(04H_08H, 0x04, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_CAS),
     IAPDESCR(04H_10H, 0x04, 0x10, IAP_F_CAS),
     IAPDESCR(04H_20H, 0x04, 0x20, IAP_F_CAS),
     IAPDESCR(04H_40H, 0x04, 0x40, IAP_F_CAS),
     IAPDESCR(04H_80H, 0x04, 0x80, IAP_F_CAS),
 
     IAPDESCR(05H_00H, 0x05, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(05H_01H, 0x05, 0x01, IAP_F_FM | IAP_F_I7O | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(05H_02H, 0x05, 0x02, IAP_F_FM | IAP_F_I7O | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(05H_03H, 0x05, 0x03, IAP_F_FM | IAP_F_I7O | IAP_F_CAS),
 
     IAPDESCR(06H_00H, 0x06, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2 |
 	IAP_F_CC2E | IAP_F_CA),
     IAPDESCR(06H_01H, 0x06, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(06H_02H, 0x06, 0x02, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(06H_04H, 0x06, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(06H_08H, 0x06, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(06H_0FH, 0x06, 0x0F, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(07H_00H, 0x07, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2),
     IAPDESCR(07H_01H, 0x07, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX |
 	IAP_F_HW | IAP_F_HWX),
     IAPDESCR(07H_02H, 0x07, 0x02, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(07H_03H, 0x07, 0x03, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(07H_06H, 0x07, 0x06, IAP_F_FM | IAP_F_CA),
     IAPDESCR(07H_08H, 0x07, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_SB |
 	IAP_F_SBX),
 
     IAPDESCR(08H_01H, 0x08, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_02H, 0x08, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_04H, 0x08, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_05H, 0x08, 0x05, IAP_F_FM | IAP_F_CA),
     IAPDESCR(08H_06H, 0x08, 0x06, IAP_F_FM | IAP_F_CA),
     IAPDESCR(08H_07H, 0x08, 0x07, IAP_F_FM | IAP_F_CA),
     IAPDESCR(08H_08H, 0x08, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(08H_09H, 0x08, 0x09, IAP_F_FM | IAP_F_CA),
     IAPDESCR(08H_0EH, 0x08, 0x0E, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_10H, 0x08, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_20H, 0x08, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(08H_40H, 0x08, 0x40, IAP_F_FM | IAP_F_I7O | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_60H, 0x08, 0x60, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_80H, 0x08, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(08H_81H, 0x08, 0x81, IAP_F_FM | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(08H_82H, 0x08, 0x82, IAP_F_FM | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(08H_84H, 0x08, 0x84, IAP_F_FM | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(08H_88H, 0x08, 0x88, IAP_F_IB | IAP_F_IBX),
 
     IAPDESCR(09H_01H, 0x09, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_I7O),
     IAPDESCR(09H_02H, 0x09, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_I7O),
     IAPDESCR(09H_04H, 0x09, 0x04, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(09H_08H, 0x09, 0x08, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(0BH_01H, 0x0B, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0BH_02H, 0x0B, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0BH_10H, 0x0B, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(0CH_01H, 0x0C, 0x01, IAP_F_FM | IAP_F_CC2 | IAP_F_I7 |
 	IAP_F_WM),
     IAPDESCR(0CH_02H, 0x0C, 0x02, IAP_F_FM | IAP_F_CC2),
     IAPDESCR(0CH_03H, 0x0C, 0x03, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(0DH_03H, 0x0D, 0x03, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_HW |
        IAP_F_IB | IAP_F_IBX | IAP_F_HWX),
     IAPDESCR(0DH_40H, 0x0D, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(0EH_01H, 0x0E, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(0EH_02H, 0x0E, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0EH_10H, 0x0E, 0x10, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(0EH_20H, 0x0E, 0x20, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(0EH_40H, 0x0E, 0x40, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
 
     IAPDESCR(0FH_01H, 0x0F, 0x01, IAP_F_FM | IAP_F_I7),
     IAPDESCR(0FH_02H, 0x0F, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0FH_08H, 0x0F, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0FH_10H, 0x0F, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0FH_20H, 0x0F, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(0FH_80H, 0x0F, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(10H_00H, 0x10, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(10H_01H, 0x10, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB | IAP_F_IBX ),
     IAPDESCR(10H_02H, 0x10, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(10H_04H, 0x10, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(10H_08H, 0x10, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(10H_10H, 0x10, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(10H_20H, 0x10, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(10H_40H, 0x10, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(10H_80H, 0x10, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(10H_81H, 0x10, 0x81, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(11H_00H, 0x11, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2),
     IAPDESCR(11H_01H, 0x11, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_SB |
 	IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(11H_02H, 0x11, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB | IAP_F_IBX),
     IAPDESCR(11H_81H, 0x11, 0x81, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(12H_00H, 0x12, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(12H_01H, 0x12, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_02H, 0x12, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_04H, 0x12, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_08H, 0x12, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_10H, 0x12, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_20H, 0x12, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_40H, 0x12, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(12H_81H, 0x12, 0x81, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(13H_00H, 0x13, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(13H_01H, 0x13, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(13H_02H, 0x13, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(13H_04H, 0x13, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(13H_07H, 0x13, 0x07, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(13H_81H, 0x13, 0x81, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(14H_00H, 0x14, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2),
     IAPDESCR(14H_01H, 0x14, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	 IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(14H_02H, 0x14, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(17H_01H, 0x17, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_SBX),
 
     IAPDESCR(18H_00H, 0x18, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(18H_01H, 0x18, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(19H_00H, 0x19, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(19H_01H, 0x19, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(19H_02H, 0x19, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(1DH_01H, 0x1D, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(1DH_02H, 0x1D, 0x02, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(1DH_04H, 0x1D, 0x04, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(1EH_01H, 0x1E, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(20H_01H, 0x20, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(21H, 0x21, IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(22H, 0x22, IAP_M_CORE, IAP_F_CC2),
     IAPDESCR(23H, 0x23, IAP_M_CORE, IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(24H, 0x24, IAP_M_CORE | IAP_M_PREFETCH, IAP_F_ALLCPUSCORE2),
     IAPDESCR(24H_01H, 0x24, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_02H, 0x24, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(24H_03H, 0x24, 0x03, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_04H, 0x24, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_08H, 0x24, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_0CH, 0x24, 0x0C, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_10H, 0x24, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_20H, 0x24, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_21H, 0x24, 0x21, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_22H, 0x24, 0x22, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_24H, 0x24, 0x24, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_27H, 0x24, 0x27, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_30H, 0x24, 0x30, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_40H, 0x24, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_41H, 0x24, 0x41, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_42H, 0x24, 0x42, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_44H, 0x24, 0x44, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_50H, 0x24, 0x50, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_80H, 0x24, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_C0H, 0x24, 0xC0, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(24H_E1H, 0x24, 0xE1, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_E2H, 0x24, 0xE2, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_E4H, 0x24, 0xE4, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_E7H, 0x24, 0xE7, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_AAH, 0x24, 0xAA, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(24H_F8H, 0x24, 0xF8, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_3FH, 0x24, 0x3F, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(24H_FFH, 0x24, 0xFF, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_HW |
         IAP_F_HWX),
 
     IAPDESCR(25H, 0x25, IAP_M_CORE, IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(26H, 0x26, IAP_M_CORE | IAP_M_PREFETCH, IAP_F_ALLCPUSCORE2),
     IAPDESCR(26H_01H, 0x26, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_02H, 0x26, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_04H, 0x26, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_08H, 0x26, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_0FH, 0x26, 0x0F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_10H, 0x26, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_20H, 0x26, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_40H, 0x26, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_80H, 0x26, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_F0H, 0x26, 0xF0, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(26H_FFH, 0x26, 0xFF, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(27H, 0x27, IAP_M_CORE | IAP_M_PREFETCH, IAP_F_ALLCPUSCORE2),
     IAPDESCR(27H_01H, 0x27, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(27H_02H, 0x27, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_04H, 0x27, 0x04, IAP_F_FM | IAP_F_I7O | IAP_F_SB |
 	IAP_F_SBX),
     IAPDESCR(27H_08H, 0x27, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(27H_0EH, 0x27, 0x0E, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_0FH, 0x27, 0x0F, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(27H_10H, 0x27, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_20H, 0x27, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_40H, 0x27, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_50H, 0x27, 0x50, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(27H_80H, 0x27, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_E0H, 0x27, 0xE0, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(27H_F0H, 0x27, 0xF0, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(28H, 0x28, IAP_M_CORE | IAP_M_MESI, IAP_F_ALLCPUSCORE2),
     IAPDESCR(28H_01H, 0x28, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(28H_02H, 0x28, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SBX),
     IAPDESCR(28H_04H, 0x28, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(28H_08H, 0x28, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(28H_0FH, 0x28, 0x0F, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
 
     IAPDESCR(29H, 0x29, IAP_M_CORE | IAP_M_MESI, IAP_F_CC),
     IAPDESCR(29H, 0x29, IAP_M_CORE | IAP_M_MESI | IAP_M_PREFETCH,
 	IAP_F_CA | IAP_F_CC2),
     IAPDESCR(2AH, 0x2A, IAP_M_CORE | IAP_M_MESI, IAP_F_ALLCPUSCORE2),
     IAPDESCR(2BH, 0x2B, IAP_M_CORE | IAP_M_MESI, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(2EH, 0x2E, IAP_M_CORE | IAP_M_MESI | IAP_M_PREFETCH,
 	IAP_F_ALLCPUSCORE2),
     IAPDESCR(2EH_01H, 0x2E, 0x01, IAP_F_FM | IAP_F_WM),
     IAPDESCR(2EH_02H, 0x2E, 0x02, IAP_F_FM | IAP_F_WM),
     IAPDESCR(2EH_41H, 0x2E, 0x41, IAP_F_FM | IAP_F_ALLCPUSCORE2 | IAP_F_I7 |
 	IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(2EH_4FH, 0x2E, 0x4F, IAP_F_FM | IAP_F_ALLCPUSCORE2 | IAP_F_I7 |
 	IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
 
     IAPDESCR(30H, 0x30, IAP_M_CORE | IAP_M_MESI | IAP_M_PREFETCH,
 	IAP_F_ALLCPUSCORE2),
     IAPDESCR(30H_00H, 0x30, 0x00, IAP_F_CAS),
     IAPDESCR(31H_00H, 0x31, 0x00, IAP_F_CAS),
     IAPDESCR(32H, 0x32, IAP_M_CORE | IAP_M_MESI | IAP_M_PREFETCH, IAP_F_CC),
     IAPDESCR(32H, 0x32, IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(3AH, 0x3A, IAP_M_TRANSITION, IAP_F_CC),
     IAPDESCR(3AH_00H, 0x3A, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(3BH_C0H, 0x3B, 0xC0, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(3CH_00H, 0x3C, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX |
 	IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(3CH_01H, 0x3C, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX |
 	IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(3CH_02H, 0x3C, 0x02, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(3DH_01H, 0x3D, 0x01, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(40H, 0x40, IAP_M_MESI, IAP_F_CC | IAP_F_CC2),
     IAPDESCR(40H_01H, 0x40, 0x01, IAP_F_FM | IAP_F_I7),
     IAPDESCR(40H_02H, 0x40, 0x02, IAP_F_FM | IAP_F_I7),
     IAPDESCR(40H_04H, 0x40, 0x04, IAP_F_FM | IAP_F_I7),
     IAPDESCR(40H_08H, 0x40, 0x08, IAP_F_FM | IAP_F_I7),
     IAPDESCR(40H_0FH, 0x40, 0x0F, IAP_F_FM | IAP_F_I7),
     IAPDESCR(40H_21H, 0x40, 0x21, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(41H, 0x41, IAP_M_MESI, IAP_F_CC | IAP_F_CC2),
     IAPDESCR(41H_01H, 0x41, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(41H_02H, 0x41, 0x02, IAP_F_FM | IAP_F_I7),
     IAPDESCR(41H_04H, 0x41, 0x04, IAP_F_FM | IAP_F_I7),
     IAPDESCR(41H_08H, 0x41, 0x08, IAP_F_FM | IAP_F_I7),
     IAPDESCR(41H_0FH, 0x41, 0x0F, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(41H_22H, 0x41, 0x22, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(42H, 0x42, IAP_M_MESI, IAP_F_ALLCPUSCORE2),
     IAPDESCR(42H_01H, 0x42, 0x01, IAP_F_FM | IAP_F_I7),
     IAPDESCR(42H_02H, 0x42, 0x02, IAP_F_FM | IAP_F_I7),
     IAPDESCR(42H_04H, 0x42, 0x04, IAP_F_FM | IAP_F_I7),
     IAPDESCR(42H_08H, 0x42, 0x08, IAP_F_FM | IAP_F_I7),
     IAPDESCR(42H_10H, 0x42, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(43H_01H, 0x43, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7),
     IAPDESCR(43H_02H, 0x43, 0x02, IAP_F_FM | IAP_F_CA |
 	IAP_F_CC2 | IAP_F_I7),
 
     IAPDESCR(44H_02H, 0x44, 0x02, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(45H_0FH, 0x45, 0x0F, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(46H_00H, 0x46, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(47H_00H, 0x47, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(48H_00H, 0x48, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(48H_01H, 0x48, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(48H_02H, 0x48, 0x02, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(49H_00H, 0x49, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(49H_01H, 0x49, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX  | IAP_F_IBX |
 	IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_02H, 0x49, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX |
 	IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_04H, 0x49, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_0EH, 0x49, 0x0E, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_10H, 0x49, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_20H, 0x49, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_40H, 0x49, 0x40, IAP_F_FM | IAP_F_I7O | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_60H, 0x49, 0x60, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(49H_80H, 0x49, 0x80, IAP_F_FM | IAP_F_WM | IAP_F_I7 | IAP_F_HW |
         IAP_F_HWX),
 
     IAPDESCR(4BH_00H, 0x4B, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(4BH_01H, 0x4B, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 | IAP_F_I7O),
     IAPDESCR(4BH_02H, 0x4B, 0x02, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(4BH_03H, 0x4B, 0x03, IAP_F_FM | IAP_F_CC),
     IAPDESCR(4BH_08H, 0x4B, 0x08, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(4CH_00H, 0x4C, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(4CH_01H, 0x4C, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(4CH_02H, 0x4C, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(4DH_01H, 0x4D, 0x01, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(4EH_01H, 0x4E, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(4EH_02H, 0x4E, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(4EH_04H, 0x4E, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(4EH_10H, 0x4E, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(4FH_00H, 0x4F, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(4FH_02H, 0x4F, 0x02, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(4FH_04H, 0x4F, 0x04, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(4FH_08H, 0x4F, 0x08, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(4FH_10H, 0x4F, 0x10, IAP_F_FM | IAP_F_WM),
 
     IAPDESCR(51H_01H, 0x51, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(51H_02H, 0x51, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(51H_04H, 0x51, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(51H_08H, 0x51, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(52H_01H, 0x52, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(53H_01H, 0x53, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(58H_01H, 0x58, 0x01, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(58H_02H, 0x58, 0x02, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(58H_04H, 0x58, 0x04, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(58H_08H, 0x58, 0x08, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
 
     IAPDESCR(59H_20H, 0x59, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(59H_40H, 0x59, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(59H_80H, 0x59, 0x80, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(5BH_0CH, 0x5B, 0x0C, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(5BH_0FH, 0x5B, 0x0F, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(5BH_40H, 0x5B, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(5BH_4FH, 0x5B, 0x4F, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(5CH_01H, 0x5C, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(5CH_02H, 0x5C, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(5EH_01H, 0x5E, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(5FH_01H, 0x5F, 0x01, IAP_F_FM | IAP_F_IB ), 		/* IB not in manual */
     IAPDESCR(5FH_04H, 0x5F, 0x04, IAP_F_IBX | IAP_F_IB),
 
     IAPDESCR(60H, 0x60, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(60H_01H, 0x60, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(60H_02H, 0x60, 0x02, IAP_F_FM | IAP_F_WM | IAP_F_I7O | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(60H_04H, 0x60, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(60H_08H, 0x60, 0x08, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(61H, 0x61, IAP_M_AGENT, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(61H_00H, 0x61, 0x00, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(62H, 0x62, IAP_M_AGENT, IAP_F_ALLCPUSCORE2),
     IAPDESCR(62H_00H, 0x62, 0x00, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(63H, 0x63, IAP_M_AGENT | IAP_M_CORE,
 	IAP_F_CA | IAP_F_CC2),
     IAPDESCR(63H, 0x63, IAP_M_CORE, IAP_F_CC),
     IAPDESCR(63H_01H, 0x63, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(63H_02H, 0x63, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(64H, 0x64, IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(64H_40H, 0x64, 0x40, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(65H, 0x65, IAP_M_AGENT | IAP_M_CORE,
 	IAP_F_CA | IAP_F_CC2),
     IAPDESCR(65H, 0x65, IAP_M_CORE, IAP_F_CC),
 
     IAPDESCR(66H, 0x66, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(67H, 0x67, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(67H, 0x67, IAP_M_AGENT, IAP_F_CC),
 
     IAPDESCR(68H, 0x68, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(69H, 0x69, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(6AH, 0x6A, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(6BH, 0x6B, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(6CH, 0x6C, IAP_M_AGENT | IAP_M_CORE, IAP_F_ALLCPUSCORE2),
     IAPDESCR(6CH_01H, 0x6C, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(6DH, 0x6D, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(6DH, 0x6D, IAP_M_CORE, IAP_F_CC),
 
     IAPDESCR(6EH, 0x6E, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(6EH, 0x6E, IAP_M_CORE, IAP_F_CC),
 
     IAPDESCR(6FH, 0x6F, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(6FH, 0x6F, IAP_M_CORE, IAP_F_CC),
 
     IAPDESCR(70H, 0x70, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(70H, 0x70, IAP_M_CORE, IAP_F_CC),
 
     IAPDESCR(77H, 0x77, IAP_M_AGENT | IAP_M_SNOOPRESPONSE,
 	IAP_F_CA | IAP_F_CC2),
     IAPDESCR(77H, 0x77, IAP_M_AGENT | IAP_M_MESI, IAP_F_CC),
 
     IAPDESCR(78H, 0x78, IAP_M_CORE, IAP_F_CC),
     IAPDESCR(78H, 0x78, IAP_M_CORE | IAP_M_SNOOPTYPE, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(79H_02H, 0x79, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(79H_04H, 0x79, 0x04, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(79H_08H, 0x79, 0x08, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(79H_10H, 0x79, 0x10, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(79H_18H, 0x79, 0x18, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(79H_20H, 0x79, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(79H_24H, 0x79, 0x24, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(79H_30H, 0x79, 0x30, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(79H_18H, 0x79, 0x18, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(79H_24H, 0x79, 0x24, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(79H_3CH, 0x79, 0x3C, IAP_F_FM | IAP_F_IB | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
 
     IAPDESCR(7AH, 0x7A, IAP_M_AGENT, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(7BH, 0x7B, IAP_M_AGENT, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(7DH, 0x7D, IAP_M_CORE, IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(7EH, 0x7E, IAP_M_AGENT | IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
     IAPDESCR(7EH_00H, 0x7E, 0x00, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(7FH, 0x7F, IAP_M_CORE, IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(80H_00H, 0x80, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(80H_01H, 0x80, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_CAS),
     IAPDESCR(80H_02H, 0x80, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(80H_03H, 0x80, 0x03, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM | IAP_F_CAS),
     IAPDESCR(80H_04H, 0x80, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_IB | IAP_F_IBX),
 
     IAPDESCR(81H_00H, 0x81, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(81H_01H, 0x81, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(81H_02H, 0x81, 0x02, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(82H_01H, 0x82, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(82H_02H, 0x82, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(82H_04H, 0x82, 0x04, IAP_F_FM | IAP_F_CA),
     IAPDESCR(82H_10H, 0x82, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(82H_12H, 0x82, 0x12, IAP_F_FM | IAP_F_CC2),
     IAPDESCR(82H_40H, 0x82, 0x40, IAP_F_FM | IAP_F_CC2),
 
     IAPDESCR(83H_01H, 0x83, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(83H_02H, 0x83, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(85H_00H, 0x85, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(85H_01H, 0x85, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_02H, 0x85, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_04H, 0x85, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_0EH, 0x85, 0x0E, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_10H, 0x85, 0x10, IAP_F_FM | IAP_F_I7O | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_20H, 0x85, 0x20, IAP_F_FM | IAP_F_I7O | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_40H, 0x85, 0x40, IAP_F_FM | IAP_F_I7O | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_60H, 0x85, 0x60, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(85H_80H, 0x85, 0x80, IAP_F_FM | IAP_F_WM | IAP_F_I7O),
 
     IAPDESCR(86H_00H, 0x86, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(87H_00H, 0x87, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(87H_01H, 0x87, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(87H_02H, 0x87, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(87H_04H, 0x87, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(87H_08H, 0x87, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(87H_0FH, 0x87, 0x0F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(88H_00H, 0x88, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(88H_01H, 0x88, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_02H, 0x88, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_04H, 0x88, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_07H, 0x88, 0x07, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_08H, 0x88, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_10H, 0x88, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_20H, 0x88, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_30H, 0x88, 0x30, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_40H, 0x88, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_7FH, 0x88, 0x7F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(88H_41H, 0x88, 0x41, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_81H, 0x88, 0x81, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_82H, 0x88, 0x82, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_84H, 0x88, 0x84, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_88H, 0x88, 0x88, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_90H, 0x88, 0x90, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_A0H, 0x88, 0xA0, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(88H_FFH, 0x88, 0xFF, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(89H_00H, 0x89, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(89H_01H, 0x89, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_02H, 0x89, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_04H, 0x89, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_07H, 0x89, 0x07, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_08H, 0x89, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_10H, 0x89, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_20H, 0x89, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_30H, 0x89, 0x30, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_40H, 0x89, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_7FH, 0x89, 0x7F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(89H_41H, 0x89, 0x41, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_81H, 0x89, 0x81, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_82H, 0x89, 0x82, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_84H, 0x89, 0x84, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_88H, 0x89, 0x88, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_90H, 0x89, 0x90, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_A0H, 0x89, 0xA0, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(89H_FFH, 0x89, 0xFF, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(8AH_00H, 0x8A, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(8BH_00H, 0x8B, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(8CH_00H, 0x8C, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(8DH_00H, 0x8D, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(8EH_00H, 0x8E, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(8FH_00H, 0x8F, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(90H_00H, 0x90, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(91H_00H, 0x91, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(92H_00H, 0x92, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(93H_00H, 0x93, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(94H_00H, 0x94, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(97H_00H, 0x97, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(98H_00H, 0x98, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(9CH_01H, 0x9C, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(A0H_00H, 0xA0, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(A1H_01H, 0xA1, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_02H, 0xA1, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_04H, 0xA1, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |   /* No desc in IB for this*/
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_08H, 0xA1, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |   /* No desc in IB for this*/
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_0CH, 0xA1, 0x0C, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(A1H_10H, 0xA1, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |   /* No desc in IB for this*/
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_20H, 0xA1, 0x20, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |   /* No desc in IB for this*/
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_30H, 0xA1, 0x30, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(A1H_40H, 0xA1, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A1H_80H, 0xA1, 0x80, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(A2H_00H, 0xA2, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(A2H_01H, 0xA2, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A2H_02H, 0xA2, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(A2H_04H, 0xA2, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A2H_08H, 0xA2, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A2H_10H, 0xA2, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A2H_20H, 0xA2, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(A2H_40H, 0xA2, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(A2H_80H, 0xA2, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(A3H_01H, 0xA3, 0x01, IAP_F_FM | IAP_F_SBX | IAP_F_IBX | IAP_F_IB | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A3H_02H, 0xA3, 0x02, IAP_F_FM | IAP_F_SBX | IAP_F_IBX | IAP_F_IB | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A3H_04H, 0xA3, 0x04, IAP_F_FM | IAP_F_SBX | IAP_F_IBX | IAP_F_IB),
     IAPDESCR(A3H_05H, 0xA3, 0x05, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(A3H_08H, 0xA3, 0x08, IAP_F_FM | IAP_F_IBX | IAP_F_HW | IAP_F_IB | IAP_F_HWX),
     IAPDESCR(A3H_0CH, 0xA3, 0x08, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(A6H_01H, 0xA6, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(A7H_01H, 0xA7, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(A8H_01H, 0xA8, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_IBX |
 	IAP_F_IB |IAP_F_SB |  IAP_F_SBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(AAH_01H, 0xAA, 0x01, IAP_F_FM | IAP_F_CC2),
     IAPDESCR(AAH_02H, 0xAA, 0x02, IAP_F_FM | IAP_F_CA),
     IAPDESCR(AAH_03H, 0xAA, 0x03, IAP_F_FM | IAP_F_CA),
     IAPDESCR(AAH_08H, 0xAA, 0x08, IAP_F_FM | IAP_F_CC2),
 
     IAPDESCR(ABH_01H, 0xAB, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(ABH_02H, 0xAB, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
 
     IAPDESCR(ACH_02H, 0xAC, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(ACH_08H, 0xAC, 0x08, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(ACH_0AH, 0xAC, 0x0A, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(AEH_01H, 0xAE, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(B0H_00H, 0xB0, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(B0H_01H, 0xB0, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(B0H_02H, 0xB0, 0x02, IAP_F_FM | IAP_F_WM | IAP_F_I7O | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(B0H_04H, 0xB0, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(B0H_08H, 0xB0, 0x08, IAP_F_FM | IAP_F_WM | IAP_F_I7O |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(B0H_10H, 0xB0, 0x10, IAP_F_FM | IAP_F_WM | IAP_F_I7O),
     IAPDESCR(B0H_20H, 0xB0, 0x20, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(B0H_40H, 0xB0, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B0H_80H, 0xB0, 0x80, IAP_F_FM | IAP_F_CA | IAP_F_WM | IAP_F_I7O),
 
     IAPDESCR(B1H_00H, 0xB1, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(B1H_01H, 0xB1, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(B1H_02H, 0xB1, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(B1H_04H, 0xB1, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_08H, 0xB1, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_10H, 0xB1, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_1FH, 0xB1, 0x1F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_20H, 0xB1, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_3FH, 0xB1, 0x3F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_40H, 0xB1, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B1H_80H, 0xB1, 0x80, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM),
 
     IAPDESCR(B2H_01H, 0xB2, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(B3H_01H, 0xB3, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_WM | IAP_F_I7O),
     IAPDESCR(B3H_02H, 0xB3, 0x02, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_WM | IAP_F_I7O),
     IAPDESCR(B3H_04H, 0xB3, 0x04, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_WM | IAP_F_I7O),
     IAPDESCR(B3H_08H, 0xB3, 0x08, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(B3H_10H, 0xB3, 0x10, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(B3H_20H, 0xB3, 0x20, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(B3H_81H, 0xB3, 0x81, IAP_F_FM | IAP_F_CA),
     IAPDESCR(B3H_82H, 0xB3, 0x82, IAP_F_FM | IAP_F_CA),
     IAPDESCR(B3H_84H, 0xB3, 0x84, IAP_F_FM | IAP_F_CA),
     IAPDESCR(B3H_88H, 0xB3, 0x88, IAP_F_FM | IAP_F_CA),
     IAPDESCR(B3H_90H, 0xB3, 0x90, IAP_F_FM | IAP_F_CA),
     IAPDESCR(B3H_A0H, 0xB3, 0xA0, IAP_F_FM | IAP_F_CA),
 
     IAPDESCR(B4H_01H, 0xB4, 0x01, IAP_F_FM | IAP_F_WM),
     IAPDESCR(B4H_02H, 0xB4, 0x02, IAP_F_FM | IAP_F_WM),
     IAPDESCR(B4H_04H, 0xB4, 0x04, IAP_F_FM | IAP_F_WM),
 
     IAPDESCR(B6H_01H, 0xB6, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(B6H_04H, 0xB6, 0x04, IAP_F_CAS),
 
     IAPDESCR(B7H_01H, 0xB7, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_CAS |
 	IAP_F_HWX),
     IAPDESCR(B7H_02H, 0xB7, 0x02, IAP_F_CAS),
 
     IAPDESCR(B8H_01H, 0xB8, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B8H_02H, 0xB8, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(B8H_04H, 0xB8, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(BAH_01H, 0xBA, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(BAH_02H, 0xBA, 0x02, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(BBH_01H, 0xBB, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(BCH_11H, 0xBC, 0x11, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_12H, 0xBC, 0x12, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_14H, 0xBC, 0x14, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_18H, 0xBC, 0x18, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_21H, 0xBC, 0x21, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_22H, 0xBC, 0x22, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_24H, 0xBC, 0x24, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BCH_28H, 0xBC, 0x28, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(BDH_01H, 0xBD, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(BDH_20H, 0xBD, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(BFH_05H, 0xBF, 0x05, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(C0H_00H, 0xC0, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C0H_01H, 0xC0, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C0H_02H, 0xC0, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB),
     IAPDESCR(C0H_04H, 0xC0, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C0H_08H, 0xC0, 0x08, IAP_F_FM | IAP_F_CC2E),
 
     IAPDESCR(C1H_00H, 0xC1, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(C1H_01H, 0xC1, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(C1H_02H, 0xC1, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(C1H_08H, 0xC1, 0x08, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C1H_10H, 0xC1, 0x10, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C1H_20H, 0xC1, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(C1H_40H, 0xC1, 0x40, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C1H_80H, 0xC1, 0x80, IAP_F_IB | IAP_F_IBX),
     IAPDESCR(C1H_FEH, 0xC1, 0xFE, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(C2H_00H, 0xC2, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(C2H_01H, 0xC2, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C2H_02H, 0xC2, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C2H_04H, 0xC2, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C2H_07H, 0xC2, 0x07, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(C2H_08H, 0xC2, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(C2H_0FH, 0xC2, 0x0F, IAP_F_FM | IAP_F_CC2),
     IAPDESCR(C2H_10H, 0xC2, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CAS),
 
     IAPDESCR(C3H_00H, 0xC3, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(C3H_01H, 0xC3, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_CAS),
     IAPDESCR(C3H_02H, 0xC3, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
 	IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C3H_04H, 0xC3, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C3H_08H, 0xC3, 0x08, IAP_F_CAS),
     IAPDESCR(C3H_10H, 0xC3, 0x10, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(C3H_20H, 0xC3, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(C4H_00H, 0xC4, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C4H_01H, 0xC4, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_02H, 0xC4, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_04H, 0xC4, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_08H, 0xC4, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW |
         IAP_F_HWX),
     IAPDESCR(C4H_0CH, 0xC4, 0x0C, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(C4H_0FH, 0xC4, 0x0F, IAP_F_FM | IAP_F_CA),
     IAPDESCR(C4H_10H, 0xC4, 0x10, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_20H, 0xC4, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_40H, 0xC4, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C4H_7EH, 0xC4, 0x7E, IAP_F_CAS),
     IAPDESCR(C4H_BFH, 0xC4, 0xBF, IAP_F_CAS),
     IAPDESCR(C4H_EBH, 0xC4, 0xEB, IAP_F_CAS),
     IAPDESCR(C4H_F7H, 0xC4, 0xF7, IAP_F_CAS),
     IAPDESCR(C4H_F9H, 0xC4, 0xF9, IAP_F_CAS),
     IAPDESCR(C4H_FBH, 0xC4, 0xFB, IAP_F_CAS),
     IAPDESCR(C4H_FDH, 0xC4, 0xFD, IAP_F_CAS),
     IAPDESCR(C4H_FEH, 0xC4, 0xFE, IAP_F_CAS),
 
     IAPDESCR(C5H_00H, 0xC5, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(C5H_01H, 0xC5, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C5H_02H, 0xC5, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(C5H_04H, 0xC5, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C5H_10H, 0xC5, 0x10, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(C5H_20H, 0xC5, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(C5H_7EH, 0xC5, 0x7E, IAP_F_CAS),
     IAPDESCR(C5H_BFH, 0xC5, 0xBF, IAP_F_CAS),
     IAPDESCR(C5H_EBH, 0xC5, 0xEB, IAP_F_CAS),
     IAPDESCR(C5H_F7H, 0xC5, 0xF7, IAP_F_CAS),
     IAPDESCR(C5H_F9H, 0xC5, 0xF9, IAP_F_CAS),
     IAPDESCR(C5H_FBH, 0xC5, 0xFB, IAP_F_CAS),
     IAPDESCR(C5H_FDH, 0xC5, 0xFD, IAP_F_CAS),
     IAPDESCR(C5H_FEH, 0xC5, 0xFE, IAP_F_CAS),
 
     IAPDESCR(C6H_00H, 0xC6, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(C6H_01H, 0xC6, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(C6H_02H, 0xC6, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(C7H_00H, 0xC7, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(C7H_01H, 0xC7, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C7H_02H, 0xC7, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C7H_04H, 0xC7, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C7H_08H, 0xC7, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C7H_10H, 0xC7, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(C7H_1FH, 0xC7, 0x1F, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(C8H_00H, 0xC8, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(C8H_20H, 0xC8, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(C9H_00H, 0xC9, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
 
     IAPDESCR(CAH_00H, 0xCA, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(CAH_01H, 0xCA, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 | IAP_F_CAS),
     IAPDESCR(CAH_02H, 0xCA, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(CAH_04H, 0xCA, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(CAH_08H, 0xCA, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(CAH_10H, 0xCA, 0x10, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(CAH_1EH, 0xCA, 0x1E, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(CAH_20H, 0xCA, 0x20, IAP_F_CAS),
     IAPDESCR(CAH_3FH, 0xCA, 0x3F, IAP_F_CAS),
     IAPDESCR(CAH_50H, 0xCA, 0x50, IAP_F_CAS),
 
     IAPDESCR(CBH_01H, 0xCB, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_CAS),
     IAPDESCR(CBH_02H, 0xCB, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CBH_04H, 0xCB, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CBH_08H, 0xCB, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CBH_10H, 0xCB, 0x10, IAP_F_FM | IAP_F_CC2 | IAP_F_I7 |
 	IAP_F_WM),
     IAPDESCR(CBH_1FH, 0xCB, 0x1F, IAP_F_CAS),
     IAPDESCR(CBH_40H, 0xCB, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CBH_80H, 0xCB, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(CCH_00H, 0xCC, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(CCH_01H, 0xCC, 0x01, IAP_F_FM | IAP_F_ALLCPUSCORE2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CCH_02H, 0xCC, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CCH_03H, 0xCC, 0x03, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(CCH_20H, 0xCC, 0x20, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(CDH_00H, 0xCD, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(CDH_01H, 0xCD, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_CAS | IAP_F_HWX),
     IAPDESCR(CDH_02H, 0xCD, 0x02, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX),
 
     IAPDESCR(CEH_00H, 0xCE, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(CFH_00H, 0xCF, 0x00, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     /* Sandy Bridge / Sandy Bridge Xeon - 11, 12, 21, 41, 42, 81, 82 */
     IAPDESCR(D0H_00H, 0xD0, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D0H_01H, 0xD0, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(D0H_11H, 0xD0, 0x11, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D0H_12H, 0xD0, 0x12, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D0H_21H, 0xD0, 0x21, IAP_F_FM | IAP_F_SB | IAP_F_SBX),
     IAPDESCR(D0H_41H, 0xD0, 0x41, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D0H_42H, 0xD0, 0x42, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D0H_81H, 0xD0, 0x81, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D0H_82H, 0xD0, 0x82, IAP_F_FM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(D1H_01H, 0xD1, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_SB |
 	IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D1H_02H, 0xD1, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D1H_04H, 0xD1, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D1H_08H, 0xD1, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D1H_10H, 0xD1, 0x10, IAP_F_HW | IAP_F_IB | IAP_F_IBX | IAP_F_HWX),
     IAPDESCR(D1H_20H, 0xD1, 0x20, IAP_F_FM | IAP_F_SBX | IAP_F_IBX | IAP_F_IB |
         IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D1H_40H, 0xD1, 0x40, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(D2H_01H, 0xD2, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D2H_02H, 0xD2, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D2H_04H, 0xD2, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D2H_08H, 0xD2, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D2H_0FH, 0xD2, 0x0F, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM | IAP_F_SB | IAP_F_SBX | IAP_F_IB |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(D2H_10H, 0xD2, 0x10, IAP_F_FM | IAP_F_CC2E),
 
     IAPDESCR(D3H_01H, 0xD3, 0x01, IAP_F_FM | IAP_F_IB | IAP_F_SBX |
 	IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(D3H_03H, 0xD3, 0x03, IAP_F_IBX),
     IAPDESCR(D3H_04H, 0xD3, 0x04, IAP_F_FM | IAP_F_SBX | IAP_F_IBX),	/* Not defined for IBX */
     IAPDESCR(D3H_0CH, 0xD3, 0x0C, IAP_F_IBX),
     IAPDESCR(D3H_10H, 0xD3, 0x10, IAP_F_IBX  ),
     IAPDESCR(D3H_20H, 0xD3, 0x20, IAP_F_IBX  ),
 
     IAPDESCR(D4H_01H, 0xD4, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(D4H_02H, 0xD4, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_SB | IAP_F_SBX),
     IAPDESCR(D4H_04H, 0xD4, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(D4H_08H, 0xD4, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(D4H_0FH, 0xD4, 0x0F, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(D5H_01H, 0xD5, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2 |
 	IAP_F_I7 | IAP_F_WM),
     IAPDESCR(D5H_02H, 0xD5, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(D5H_04H, 0xD5, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(D5H_08H, 0xD5, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(D5H_0FH, 0xD5, 0x0F, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(D7H_00H, 0xD7, 0x00, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(D8H_00H, 0xD8, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D8H_01H, 0xD8, 0x01, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D8H_02H, 0xD8, 0x02, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D8H_03H, 0xD8, 0x03, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D8H_04H, 0xD8, 0x04, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(D9H_00H, 0xD9, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D9H_01H, 0xD9, 0x01, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D9H_02H, 0xD9, 0x02, IAP_F_FM | IAP_F_CC),
     IAPDESCR(D9H_03H, 0xD9, 0x03, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(DAH_00H, 0xDA, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(DAH_01H, 0xDA, 0x01, IAP_F_FM | IAP_F_CC),
     IAPDESCR(DAH_02H, 0xDA, 0x02, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(DBH_00H, 0xDB, 0x00, IAP_F_FM | IAP_F_CC),
     IAPDESCR(DBH_01H, 0xDB, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(DCH_01H, 0xDC, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(DCH_02H, 0xDC, 0x02, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(DCH_04H, 0xDC, 0x04, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(DCH_08H, 0xDC, 0x08, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(DCH_10H, 0xDC, 0x10, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
     IAPDESCR(DCH_1FH, 0xDC, 0x1F, IAP_F_FM | IAP_F_CA | IAP_F_CC2),
 
     IAPDESCR(E0H_00H, 0xE0, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2),
     IAPDESCR(E0H_01H, 0xE0, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM),
 
     IAPDESCR(E2H_00H, 0xE2, 0x00, IAP_F_FM | IAP_F_CC),
 
     IAPDESCR(E4H_00H, 0xE4, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(E4H_01H, 0xE4, 0x01, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(E5H_01H, 0xE5, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(E6H_00H, 0xE6, 0x00, IAP_F_FM | IAP_F_CC | IAP_F_CC2),
     IAPDESCR(E6H_01H, 0xE6, 0x01, IAP_F_FM | IAP_F_CA | IAP_F_I7 |
 	IAP_F_WM | IAP_F_SBX | IAP_F_CAS),
     IAPDESCR(E6H_02H, 0xE6, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(E6H_08H, 0xE6, 0x08, IAP_F_CAS),
     IAPDESCR(E6H_10H, 0xE6, 0x10, IAP_F_CAS),
     IAPDESCR(E6H_1FH, 0xE6, 0x1F, IAP_F_FM | IAP_F_IB |
         IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(E7H_01H, 0xE7, 0x01, IAP_F_CAS),
 
     IAPDESCR(E8H_01H, 0xE8, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(E8H_02H, 0xE8, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
     IAPDESCR(E8H_03H, 0xE8, 0x03, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(ECH_01H, 0xEC, 0x01, IAP_F_FM | IAP_F_WM),
 
     IAPDESCR(F0H_00H, 0xF0, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(F0H_01H, 0xF0, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_02H, 0xF0, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_04H, 0xF0, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_08H, 0xF0, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_10H, 0xF0, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_20H, 0xF0, 0x20, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_40H, 0xF0, 0x40, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F0H_80H, 0xF0, 0x80, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(F1H_01H, 0xF1, 0x01, IAP_F_FM | IAP_F_SB | IAP_F_IB |
 	IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F1H_02H, 0xF1, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F1H_04H, 0xF1, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F1H_07H, 0xF1, 0x07, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX | IAP_F_HW | IAP_F_HWX),
 
     IAPDESCR(F2H_01H, 0xF2, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(F2H_02H, 0xF2, 0x02, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(F2H_04H, 0xF2, 0x04, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(F2H_05H, 0xF2, 0x05, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F2H_06H, 0xF2, 0x06, IAP_F_FM | IAP_F_HW | IAP_F_HWX),
     IAPDESCR(F2H_08H, 0xF2, 0x08, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_IB | IAP_F_SBX | IAP_F_IBX),
     IAPDESCR(F2H_0AH, 0xF2, 0x0A, IAP_F_FM | IAP_F_SB | IAP_F_SBX |
 	IAP_F_IBX),
     IAPDESCR(F2H_0FH, 0xF2, 0x0F, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(F3H_01H, 0xF3, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F3H_02H, 0xF3, 0x02, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F3H_04H, 0xF3, 0x04, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F3H_08H, 0xF3, 0x08, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F3H_10H, 0xF3, 0x10, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F3H_20H, 0xF3, 0x20, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(F4H_01H, 0xF4, 0x01, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F4H_02H, 0xF4, 0x02, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F4H_04H, 0xF4, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7O),
     IAPDESCR(F4H_08H, 0xF4, 0x08, IAP_F_FM | IAP_F_I7O),
     IAPDESCR(F4H_10H, 0xF4, 0x10, IAP_F_FM | IAP_F_I7 | IAP_F_WM |
 	IAP_F_SB | IAP_F_SBX),
 
     IAPDESCR(F6H_01H, 0xF6, 0x01, IAP_F_FM | IAP_F_I7 | IAP_F_WM),
 
     IAPDESCR(F7H_01H, 0xF7, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(F7H_02H, 0xF7, 0x02, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(F7H_04H, 0xF7, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7),
 
     IAPDESCR(F8H_00H, 0xF8, 0x00, IAP_F_FM | IAP_F_ALLCPUSCORE2),
     IAPDESCR(F8H_01H, 0xF8, 0x01, IAP_F_FM | IAP_F_I7O),
 
     IAPDESCR(FDH_01H, 0xFD, 0x01, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_02H, 0xFD, 0x02, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_04H, 0xFD, 0x04, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_08H, 0xFD, 0x08, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_10H, 0xFD, 0x10, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_20H, 0xFD, 0x20, IAP_F_FM | IAP_F_WM | IAP_F_I7),
     IAPDESCR(FDH_40H, 0xFD, 0x40, IAP_F_FM | IAP_F_WM | IAP_F_I7),
 };
 
 static const int niap_events = sizeof(iap_events) / sizeof(iap_events[0]);
 
 static pmc_value_t
 iap_perfctr_value_to_reload_count(pmc_value_t v)
 {
 	v &= (1ULL << core_iap_width) - 1;
 	return (1ULL << core_iap_width) - v;
 }
 
 static pmc_value_t
 iap_reload_count_to_perfctr_value(pmc_value_t rlc)
 {
 	return (1ULL << core_iap_width) - rlc;
 }
 
 static int
 iap_pmc_has_overflowed(int ri)
 {
 	uint64_t v;
 
 	/*
 	 * We treat a Core (i.e., Intel architecture v1) PMC as has
 	 * having overflowed if its MSB is zero.
 	 */
 	v = rdpmc(ri);
 	return ((v & (1ULL << (core_iap_width - 1))) == 0);
 }
 
 /*
  * Check an event against the set of supported architectural events.
  *
  * If the event is not architectural EV_IS_NOTARCH is returned.
  * If the event is architectural and supported on this CPU, the correct
  * event+umask mapping is returned in map, and EV_IS_ARCH_SUPP is returned.
  * Otherwise, the function returns EV_IS_ARCH_NOTSUPP.
  */
 
 static int
 iap_is_event_architectural(enum pmc_event pe, enum pmc_event *map)
 {
 	enum core_arch_events ae;
 
 	switch (pe) {
 	case PMC_EV_IAP_ARCH_UNH_COR_CYC:
 		ae = CORE_AE_UNHALTED_CORE_CYCLES;
 		*map = PMC_EV_IAP_EVENT_3CH_00H;
 		break;
 	case PMC_EV_IAP_ARCH_INS_RET:
 		ae = CORE_AE_INSTRUCTION_RETIRED;
 		*map = PMC_EV_IAP_EVENT_C0H_00H;
 		break;
 	case PMC_EV_IAP_ARCH_UNH_REF_CYC:
 		ae = CORE_AE_UNHALTED_REFERENCE_CYCLES;
 		*map = PMC_EV_IAP_EVENT_3CH_01H;
 		break;
 	case PMC_EV_IAP_ARCH_LLC_REF:
 		ae = CORE_AE_LLC_REFERENCE;
 		*map = PMC_EV_IAP_EVENT_2EH_4FH;
 		break;
 	case PMC_EV_IAP_ARCH_LLC_MIS:
 		ae = CORE_AE_LLC_MISSES;
 		*map = PMC_EV_IAP_EVENT_2EH_41H;
 		break;
 	case PMC_EV_IAP_ARCH_BR_INS_RET:
 		ae = CORE_AE_BRANCH_INSTRUCTION_RETIRED;
 		*map = PMC_EV_IAP_EVENT_C4H_00H;
 		break;
 	case PMC_EV_IAP_ARCH_BR_MIS_RET:
 		ae = CORE_AE_BRANCH_MISSES_RETIRED;
 		*map = PMC_EV_IAP_EVENT_C5H_00H;
 		break;
 
 	default:	/* Non architectural event. */
 		return (EV_IS_NOTARCH);
 	}
 
 	return (((core_architectural_events & (1 << ae)) == 0) ?
 	    EV_IS_ARCH_NOTSUPP : EV_IS_ARCH_SUPP);
 }
 
 static int
 iap_event_corei7_ok_on_counter(enum pmc_event pe, int ri)
 {
 	uint32_t mask;
 
 	switch (pe) {
 		/*
 		 * Events valid only on counter 0, 1.
 		 */
 	case PMC_EV_IAP_EVENT_40H_01H:
 	case PMC_EV_IAP_EVENT_40H_02H:
 	case PMC_EV_IAP_EVENT_40H_04H:
 	case PMC_EV_IAP_EVENT_40H_08H:
 	case PMC_EV_IAP_EVENT_40H_0FH:
 	case PMC_EV_IAP_EVENT_41H_02H:
 	case PMC_EV_IAP_EVENT_41H_04H:
 	case PMC_EV_IAP_EVENT_41H_08H:
 	case PMC_EV_IAP_EVENT_42H_01H:
 	case PMC_EV_IAP_EVENT_42H_02H:
 	case PMC_EV_IAP_EVENT_42H_04H:
 	case PMC_EV_IAP_EVENT_42H_08H:
 	case PMC_EV_IAP_EVENT_43H_01H:
 	case PMC_EV_IAP_EVENT_43H_02H:
 	case PMC_EV_IAP_EVENT_51H_01H:
 	case PMC_EV_IAP_EVENT_51H_02H:
 	case PMC_EV_IAP_EVENT_51H_04H:
 	case PMC_EV_IAP_EVENT_51H_08H:
 	case PMC_EV_IAP_EVENT_63H_01H:
 	case PMC_EV_IAP_EVENT_63H_02H:
 		mask = 0x3;
 		break;
 
 	default:
 		mask = ~0;	/* Any row index is ok. */
 	}
 
 	return (mask & (1 << ri));
 }
 
 static int
 iap_event_westmere_ok_on_counter(enum pmc_event pe, int ri)
 {
 	uint32_t mask;
 
 	switch (pe) {
 		/*
 		 * Events valid only on counter 0.
 		 */
 	case PMC_EV_IAP_EVENT_60H_01H:
 	case PMC_EV_IAP_EVENT_60H_02H:
 	case PMC_EV_IAP_EVENT_60H_04H:
 	case PMC_EV_IAP_EVENT_60H_08H:
 	case PMC_EV_IAP_EVENT_B3H_01H:
 	case PMC_EV_IAP_EVENT_B3H_02H:
 	case PMC_EV_IAP_EVENT_B3H_04H:
 		mask = 0x1;
 		break;
 
 		/*
 		 * Events valid only on counter 0, 1.
 		 */
 	case PMC_EV_IAP_EVENT_4CH_01H:
 	case PMC_EV_IAP_EVENT_4EH_01H:
 	case PMC_EV_IAP_EVENT_4EH_02H:
 	case PMC_EV_IAP_EVENT_4EH_04H:
 	case PMC_EV_IAP_EVENT_51H_01H:
 	case PMC_EV_IAP_EVENT_51H_02H:
 	case PMC_EV_IAP_EVENT_51H_04H:
 	case PMC_EV_IAP_EVENT_51H_08H:
 	case PMC_EV_IAP_EVENT_63H_01H:
 	case PMC_EV_IAP_EVENT_63H_02H:
 		mask = 0x3;
 		break;
 
 	default:
 		mask = ~0;	/* Any row index is ok. */
 	}
 
 	return (mask & (1 << ri));
 }
 
 static int
 iap_event_sb_sbx_ib_ibx_ok_on_counter(enum pmc_event pe, int ri)
 {
 	uint32_t mask;
 
 	switch (pe) {
 		/* Events valid only on counter 0. */
 	case PMC_EV_IAP_EVENT_B7H_01H:
 		mask = 0x1;
 		break;
 		/* Events valid only on counter 1. */
 	case PMC_EV_IAP_EVENT_C0H_01H:
 		mask = 0x2;
 		break;
 		/* Events valid only on counter 2. */
 	case PMC_EV_IAP_EVENT_48H_01H:
 	case PMC_EV_IAP_EVENT_A2H_02H:
 	case PMC_EV_IAP_EVENT_A3H_08H:
 		mask = 0x4;
 		break;
 		/* Events valid only on counter 3. */
 	case PMC_EV_IAP_EVENT_BBH_01H:
 	case PMC_EV_IAP_EVENT_CDH_01H:
 	case PMC_EV_IAP_EVENT_CDH_02H:
 		mask = 0x8;
 		break;
 	default:
 		mask = ~0;	/* Any row index is ok. */
 	}
 
 	return (mask & (1 << ri));
 }
 
 static int
 iap_event_ok_on_counter(enum pmc_event pe, int ri)
 {
 	uint32_t mask;
 
 	switch (pe) {
 		/*
 		 * Events valid only on counter 0.
 		 */
 	case PMC_EV_IAP_EVENT_10H_00H:
 	case PMC_EV_IAP_EVENT_14H_00H:
 	case PMC_EV_IAP_EVENT_18H_00H:
 	case PMC_EV_IAP_EVENT_B3H_01H:
 	case PMC_EV_IAP_EVENT_B3H_02H:
 	case PMC_EV_IAP_EVENT_B3H_04H:
 	case PMC_EV_IAP_EVENT_C1H_00H:
 	case PMC_EV_IAP_EVENT_CBH_01H:
 	case PMC_EV_IAP_EVENT_CBH_02H:
 		mask = (1 << 0);
 		break;
 
 		/*
 		 * Events valid only on counter 1.
 		 */
 	case PMC_EV_IAP_EVENT_11H_00H:
 	case PMC_EV_IAP_EVENT_12H_00H:
 	case PMC_EV_IAP_EVENT_13H_00H:
 		mask = (1 << 1);
 		break;
 
 	default:
 		mask = ~0;	/* Any row index is ok. */
 	}
 
 	return (mask & (1 << ri));
 }
 
 static int
 iap_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	int arch, n, model;
 	enum pmc_event ev, map;
 	struct iap_event_descr *ie;
 	uint32_t c, caps, config, cpuflag, evsel, mask;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row-index value %d", __LINE__, ri));
 
 	/* check requested capabilities */
 	caps = a->pm_caps;
 	if ((IAP_PMC_CAPS & caps) != caps)
 		return (EPERM);
 	map = 0;	/* XXX: silent GCC warning */
 	arch = iap_is_event_architectural(pm->pm_event, &map);
 	if (arch == EV_IS_ARCH_NOTSUPP)
 		return (EOPNOTSUPP);
 	else if (arch == EV_IS_ARCH_SUPP)
 		ev = map;
 	else
 		ev = pm->pm_event;
 
 	/*
 	 * A small number of events are not supported in all the
 	 * processors based on a given microarchitecture.
 	 */
 	if (ev == PMC_EV_IAP_EVENT_0FH_01H || ev == PMC_EV_IAP_EVENT_0FH_80H) {
 		model = ((cpu_id & 0xF0000) >> 12) | ((cpu_id & 0xF0) >> 4);
 		if (core_cputype == PMC_CPU_INTEL_COREI7 && model != 0x2E)
 			return (EINVAL);
 	}
 
 	switch (core_cputype) {
 	case PMC_CPU_INTEL_COREI7:
 	case PMC_CPU_INTEL_NEHALEM_EX:
 		if (iap_event_corei7_ok_on_counter(ev, ri) == 0)
 			return (EINVAL);
 		break;
 	case PMC_CPU_INTEL_BROADWELL:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 	case PMC_CPU_INTEL_SANDYBRIDGE_XEON:
 	case PMC_CPU_INTEL_IVYBRIDGE:
 	case PMC_CPU_INTEL_IVYBRIDGE_XEON:
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_HASWELL_XEON:
 		if (iap_event_sb_sbx_ib_ibx_ok_on_counter(ev, ri) == 0)
 			return (EINVAL);
 		break;
 	case PMC_CPU_INTEL_WESTMERE:
 	case PMC_CPU_INTEL_WESTMERE_EX:
 		if (iap_event_westmere_ok_on_counter(ev, ri) == 0)
 			return (EINVAL);
 		break;
 	default:
 		if (iap_event_ok_on_counter(ev, ri) == 0)
 			return (EINVAL);
 	}
 
 	/*
 	 * Look for an event descriptor with matching CPU and event id
 	 * fields.
 	 */
 
 	switch (core_cputype) {
 	default:
 	case PMC_CPU_INTEL_ATOM:
 		cpuflag = IAP_F_CA;
 		break;
 	case PMC_CPU_INTEL_ATOM_SILVERMONT:
 		cpuflag = IAP_F_CAS;
 		break;
 	case PMC_CPU_INTEL_BROADWELL:
 		cpuflag = IAP_F_BW;
 		break;
 	case PMC_CPU_INTEL_CORE:
 		cpuflag = IAP_F_CC;
 		break;
 	case PMC_CPU_INTEL_CORE2:
 		cpuflag = IAP_F_CC2;
 		break;
 	case PMC_CPU_INTEL_CORE2EXTREME:
 		cpuflag = IAP_F_CC2 | IAP_F_CC2E;
 		break;
 	case PMC_CPU_INTEL_COREI7:
 		cpuflag = IAP_F_I7;
 		break;
 	case PMC_CPU_INTEL_HASWELL:
 		cpuflag = IAP_F_HW;
 		break;
 	case PMC_CPU_INTEL_HASWELL_XEON:
 		cpuflag = IAP_F_HWX;
 		break;
 	case PMC_CPU_INTEL_IVYBRIDGE:
 		cpuflag = IAP_F_IB;
 		break;
 	case PMC_CPU_INTEL_IVYBRIDGE_XEON:
 		cpuflag = IAP_F_IBX;
 		break;
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 		cpuflag = IAP_F_SB;
 		break;
 	case PMC_CPU_INTEL_SANDYBRIDGE_XEON:
 		cpuflag = IAP_F_SBX;
 		break;
 	case PMC_CPU_INTEL_WESTMERE:
 		cpuflag = IAP_F_WM;
 		break;
 	}
 
 	for (n = 0, ie = iap_events; n < niap_events; n++, ie++)
 		if (ie->iap_ev == ev && ie->iap_flags & cpuflag)
 			break;
 
 	if (n == niap_events)
 		return (EINVAL);
 
 	/*
 	 * A matching event descriptor has been found, so start
 	 * assembling the contents of the event select register.
 	 */
 	evsel = ie->iap_evcode;
 
 	config = a->pm_md.pm_iap.pm_iap_config & ~IAP_F_CMASK;
 
 	/*
 	 * If the event uses a fixed umask value, reject any umask
 	 * bits set by the user.
 	 */
 	if (ie->iap_flags & IAP_F_FM) {
 
 		if (IAP_UMASK(config) != 0)
 			return (EINVAL);
 
 		evsel |= (ie->iap_umask << 8);
 
 	} else {
 
 		/*
 		 * Otherwise, the UMASK value needs to be taken from
 		 * the MD fields of the allocation request.  Reject
 		 * requests that specify reserved bits.
 		 */
 
 		mask = 0;
 
 		if (ie->iap_umask & IAP_M_CORE) {
 			if ((c = (config & IAP_F_CORE)) != IAP_CORE_ALL &&
 			    c != IAP_CORE_THIS)
 				return (EINVAL);
 			mask |= IAP_F_CORE;
 		}
 
 		if (ie->iap_umask & IAP_M_AGENT)
 			mask |= IAP_F_AGENT;
 
 		if (ie->iap_umask & IAP_M_PREFETCH) {
 
 			if ((c = (config & IAP_F_PREFETCH)) ==
 			    IAP_PREFETCH_RESERVED)
 				return (EINVAL);
 
 			mask |= IAP_F_PREFETCH;
 		}
 
 		if (ie->iap_umask & IAP_M_MESI)
 			mask |= IAP_F_MESI;
 
 		if (ie->iap_umask & IAP_M_SNOOPRESPONSE)
 			mask |= IAP_F_SNOOPRESPONSE;
 
 		if (ie->iap_umask & IAP_M_SNOOPTYPE)
 			mask |= IAP_F_SNOOPTYPE;
 
 		if (ie->iap_umask & IAP_M_TRANSITION)
 			mask |= IAP_F_TRANSITION;
 
 		/*
 		 * If bits outside of the allowed set of umask bits
 		 * are set, reject the request.
 		 */
 		if (config & ~mask)
 			return (EINVAL);
 
 		evsel |= (config & mask);
 
 	}
 
 	/*
 	 * Only Atom and SandyBridge CPUs support the 'ANY' qualifier.
 	 */
 	if (core_cputype == PMC_CPU_INTEL_ATOM ||
 		core_cputype == PMC_CPU_INTEL_ATOM_SILVERMONT ||
 		core_cputype == PMC_CPU_INTEL_SANDYBRIDGE ||
 		core_cputype == PMC_CPU_INTEL_SANDYBRIDGE_XEON)
 		evsel |= (config & IAP_ANY);
 	else if (config & IAP_ANY)
 		return (EINVAL);
 
 	/*
 	 * Check offcore response configuration.
 	 */
 	if (a->pm_md.pm_iap.pm_iap_rsp != 0) {
 		if (ev != PMC_EV_IAP_EVENT_B7H_01H &&
 		    ev != PMC_EV_IAP_EVENT_BBH_01H)
 			return (EINVAL);
 		if (core_cputype == PMC_CPU_INTEL_COREI7 &&
 		    ev == PMC_EV_IAP_EVENT_BBH_01H)
 			return (EINVAL);
 		if ((core_cputype == PMC_CPU_INTEL_COREI7 ||
 		    core_cputype == PMC_CPU_INTEL_WESTMERE ||
 		    core_cputype == PMC_CPU_INTEL_NEHALEM_EX ||
 		    core_cputype == PMC_CPU_INTEL_WESTMERE_EX) &&
 		    a->pm_md.pm_iap.pm_iap_rsp & ~IA_OFFCORE_RSP_MASK_I7WM)
 			return (EINVAL);
 		else if ((core_cputype == PMC_CPU_INTEL_SANDYBRIDGE ||
 			core_cputype == PMC_CPU_INTEL_SANDYBRIDGE_XEON ||
 			core_cputype == PMC_CPU_INTEL_IVYBRIDGE ||
 			core_cputype == PMC_CPU_INTEL_IVYBRIDGE_XEON) &&
 		    a->pm_md.pm_iap.pm_iap_rsp & ~IA_OFFCORE_RSP_MASK_SBIB)
 			return (EINVAL);
 		pm->pm_md.pm_iap.pm_iap_rsp = a->pm_md.pm_iap.pm_iap_rsp;
 	}
 
 	if (caps & PMC_CAP_THRESHOLD)
 		evsel |= (a->pm_md.pm_iap.pm_iap_config & IAP_F_CMASK);
 	if (caps & PMC_CAP_USER)
 		evsel |= IAP_USR;
 	if (caps & PMC_CAP_SYSTEM)
 		evsel |= IAP_OS;
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
 		evsel |= (IAP_OS | IAP_USR);
 	if (caps & PMC_CAP_EDGE)
 		evsel |= IAP_EDGE;
 	if (caps & PMC_CAP_INVERT)
 		evsel |= IAP_INV;
 	if (caps & PMC_CAP_INTERRUPT)
 		evsel |= IAP_INT;
 
 	pm->pm_md.pm_iap.pm_iap_evsel = evsel;
 
 	return (0);
 }
 
 static int
 iap_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "iap-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "iap-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(core_pcpu[cpu] != NULL, ("[core,%d] null per-cpu %d", __LINE__,
 	    cpu));
 
 	core_pcpu[cpu]->pc_corepmcs[ri].phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 iap_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char iap_name[PMC_NAME_MAX];
 
 	phw = &core_pcpu[cpu]->pc_corepmcs[ri];
 
 	(void) snprintf(iap_name, sizeof(iap_name), "IAP-%d", ri);
 	if ((error = copystr(iap_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return (error);
 
 	pi->pm_class = PMC_CLASS_IAP;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 iap_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = core_pcpu[cpu]->pc_corepmcs[ri].phw_pmc;
 
 	return (0);
 }
 
 static int
 iap_get_msr(int ri, uint32_t *msr)
 {
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[iap,%d] ri %d out of range", __LINE__, ri));
 
 	*msr = ri;
 
 	return (0);
 }
 
 static int
 iap_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = core_pcpu[cpu]->pc_corepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
 		ri));
 
 	tmp = rdpmc(ri);
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = iap_perfctr_value_to_reload_count(tmp);
 	else
 		*v = tmp & ((1ULL << core_iap_width) - 1);
 
-	PMCDBG(MDP,REA,1, "iap-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
+	PMCDBG4(MDP,REA,1, "iap-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
 	    ri, *v);
 
 	return (0);
 }
 
 static int
 iap_release_pmc(int cpu, int ri, struct pmc *pm)
 {
 	(void) pm;
 
-	PMCDBG(MDP,REL,1, "iap-release cpu=%d ri=%d pm=%p", cpu, ri,
+	PMCDBG3(MDP,REL,1, "iap-release cpu=%d ri=%d pm=%p", cpu, ri,
 	    pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	KASSERT(core_pcpu[cpu]->pc_corepmcs[ri].phw_pmc
 	    == NULL, ("[core,%d] PHW pmc non-NULL", __LINE__));
 
 	return (0);
 }
 
 static int
 iap_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	uint32_t evsel;
 	struct core_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row-index %d", __LINE__, ri));
 
 	cc = core_pcpu[cpu];
 	pm = cc->pc_corepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] starting cpu%d,ri%d with no pmc configured",
 		__LINE__, cpu, ri));
 
-	PMCDBG(MDP,STA,1, "iap-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1, "iap-start cpu=%d ri=%d", cpu, ri);
 
 	evsel = pm->pm_md.pm_iap.pm_iap_evsel;
 
-	PMCDBG(MDP,STA,2, "iap-start/2 cpu=%d ri=%d evselmsr=0x%x evsel=0x%x",
+	PMCDBG4(MDP,STA,2, "iap-start/2 cpu=%d ri=%d evselmsr=0x%x evsel=0x%x",
 	    cpu, ri, IAP_EVSEL0 + ri, evsel);
 
 	/* Event specific configuration. */
 	switch (pm->pm_event) {
 	case PMC_EV_IAP_EVENT_B7H_01H:
 		wrmsr(IA_OFFCORE_RSP0, pm->pm_md.pm_iap.pm_iap_rsp);
 		break;
 	case PMC_EV_IAP_EVENT_BBH_01H:
 		wrmsr(IA_OFFCORE_RSP1, pm->pm_md.pm_iap.pm_iap_rsp);
 		break;
 	default:
 		break;
 	}
 
 	wrmsr(IAP_EVSEL0 + ri, evsel | IAP_EN);
 
 	if (core_cputype == PMC_CPU_INTEL_CORE)
 		return (0);
 
 	do {
 		cc->pc_resync = 0;
 		cc->pc_globalctrl |= (1ULL << ri);
 		wrmsr(IA_GLOBAL_CTRL, cc->pc_globalctrl);
 	} while (cc->pc_resync != 0);
 
 	return (0);
 }
 
 static int
 iap_stop_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct core_cpu *cc;
 	uint64_t msr;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row index %d", __LINE__, ri));
 
 	cc = core_pcpu[cpu];
 	pm = cc->pc_corepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,STO,1, "iap-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1, "iap-stop cpu=%d ri=%d", cpu, ri);
 
 	msr = rdmsr(IAP_EVSEL0 + ri) & ~IAP_EVSEL_MASK;
 	wrmsr(IAP_EVSEL0 + ri, msr);	/* stop hw */
 
 	if (core_cputype == PMC_CPU_INTEL_CORE)
 		return (0);
 
 	msr = 0;
 	do {
 		cc->pc_resync = 0;
 		cc->pc_globalctrl &= ~(1ULL << ri);
 		msr = rdmsr(IA_GLOBAL_CTRL) & ~IA_GLOBAL_CTRL_MASK;
 		wrmsr(IA_GLOBAL_CTRL, cc->pc_globalctrl);
 	} while (cc->pc_resync != 0);
 
 	return (0);
 }
 
 static int
 iap_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 	struct core_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[core,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < core_iap_npmc,
 	    ("[core,%d] illegal row index %d", __LINE__, ri));
 
 	cc = core_pcpu[cpu];
 	pm = cc->pc_corepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[core,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,WRI,1, "iap-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
+	PMCDBG4(MDP,WRI,1, "iap-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
 	    IAP_PMC0 + ri, v);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = iap_reload_count_to_perfctr_value(v);
 
 	/*
 	 * Write the new value to the counter.  The counter will be in
 	 * a stopped state when the pcd_write() entry point is called.
 	 */
 
 	wrmsr(IAP_PMC0 + ri, v & ((1ULL << core_iap_width) - 1));
 
 	return (0);
 }
 
 
 static void
 iap_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth,
     int flags)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(md != NULL, ("[iap,%d] md is NULL", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "iap-initialize");
+	PMCDBG0(MDP,INI,1, "iap-initialize");
 
 	/* Remember the set of architectural events supported. */
 	core_architectural_events = ~flags;
 
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_IAP];
 
 	pcd->pcd_caps	= IAP_PMC_CAPS;
 	pcd->pcd_class	= PMC_CLASS_IAP;
 	pcd->pcd_num	= npmc;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= pmcwidth;
 
 	pcd->pcd_allocate_pmc	= iap_allocate_pmc;
 	pcd->pcd_config_pmc	= iap_config_pmc;
 	pcd->pcd_describe	= iap_describe;
 	pcd->pcd_get_config	= iap_get_config;
 	pcd->pcd_get_msr	= iap_get_msr;
 	pcd->pcd_pcpu_fini	= core_pcpu_fini;
 	pcd->pcd_pcpu_init	= core_pcpu_init;
 	pcd->pcd_read_pmc	= iap_read_pmc;
 	pcd->pcd_release_pmc	= iap_release_pmc;
 	pcd->pcd_start_pmc	= iap_start_pmc;
 	pcd->pcd_stop_pmc	= iap_stop_pmc;
 	pcd->pcd_write_pmc	= iap_write_pmc;
 
 	md->pmd_npmc	       += npmc;
 }
 
 static int
 core_intr(int cpu, struct trapframe *tf)
 {
 	pmc_value_t v;
 	struct pmc *pm;
 	struct core_cpu *cc;
 	int error, found_interrupt, ri;
 	uint64_t msr;
 
-	PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	found_interrupt = 0;
 	cc = core_pcpu[cpu];
 
 	for (ri = 0; ri < core_iap_npmc; ri++) {
 
 		if ((pm = cc->pc_corepmcs[ri].phw_pmc) == NULL ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			continue;
 
 		if (!iap_pmc_has_overflowed(ri))
 			continue;
 
 		found_interrupt = 1;
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 
 		v = pm->pm_sc.pm_reloadcount;
 		v = iaf_reload_count_to_perfctr_value(v);
 
 		/*
 		 * Stop the counter, reload it but only restart it if
 		 * the PMC is not stalled.
 		 */
 		msr = rdmsr(IAP_EVSEL0 + ri) & ~IAP_EVSEL_MASK;
 		wrmsr(IAP_EVSEL0 + ri, msr);
 		wrmsr(IAP_PMC0 + ri, v);
 
 		if (error)
 			continue;
 
 		wrmsr(IAP_EVSEL0 + ri, msr | (pm->pm_md.pm_iap.pm_iap_evsel |
 					      IAP_EN));
 	}
 
 	if (found_interrupt)
 		lapic_reenable_pmc();
 
 	atomic_add_int(found_interrupt ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	return (found_interrupt);
 }
 
 static int
 core2_intr(int cpu, struct trapframe *tf)
 {
 	int error, found_interrupt, n;
 	uint64_t flag, intrstatus, intrenable, msr;
 	struct pmc *pm;
 	struct core_cpu *cc;
 	pmc_value_t v;
 
-	PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	/*
 	 * The IA_GLOBAL_STATUS (MSR 0x38E) register indicates which
 	 * PMCs have a pending PMI interrupt.  We take a 'snapshot' of
 	 * the current set of interrupting PMCs and process these
 	 * after stopping them.
 	 */
 	intrstatus = rdmsr(IA_GLOBAL_STATUS);
 	intrenable = intrstatus & core_pmcmask;
 
-	PMCDBG(MDP,INT, 1, "cpu=%d intrstatus=%jx", cpu,
+	PMCDBG2(MDP,INT, 1, "cpu=%d intrstatus=%jx", cpu,
 	    (uintmax_t) intrstatus);
 
 	found_interrupt = 0;
 	cc = core_pcpu[cpu];
 
 	KASSERT(cc != NULL, ("[core,%d] null pcpu", __LINE__));
 
 	cc->pc_globalctrl &= ~intrenable;
 	cc->pc_resync = 1;	/* MSRs now potentially out of sync. */
 
 	/*
 	 * Stop PMCs and clear overflow status bits.
 	 */
 	msr = rdmsr(IA_GLOBAL_CTRL) & ~IA_GLOBAL_CTRL_MASK;
 	wrmsr(IA_GLOBAL_CTRL, msr);
 	wrmsr(IA_GLOBAL_OVF_CTRL, intrenable |
 	    IA_GLOBAL_STATUS_FLAG_OVFBUF |
 	    IA_GLOBAL_STATUS_FLAG_CONDCHG);
 
 	/*
 	 * Look for interrupts from fixed function PMCs.
 	 */
 	for (n = 0, flag = (1ULL << IAF_OFFSET); n < core_iaf_npmc;
 	     n++, flag <<= 1) {
 
 		if ((intrstatus & flag) == 0)
 			continue;
 
 		found_interrupt = 1;
 
 		pm = cc->pc_corepmcs[n + core_iaf_ri].phw_pmc;
 		if (pm == NULL || pm->pm_state != PMC_STATE_RUNNING ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			continue;
 
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error)
 			intrenable &= ~flag;
 
 		v = iaf_reload_count_to_perfctr_value(pm->pm_sc.pm_reloadcount);
 
 		/* Reload sampling count. */
 		wrmsr(IAF_CTR0 + n, v);
 
-		PMCDBG(MDP,INT, 1, "iaf-intr cpu=%d error=%d v=%jx(%jx)", cpu,
+		PMCDBG4(MDP,INT, 1, "iaf-intr cpu=%d error=%d v=%jx(%jx)", cpu,
 		    error, (uintmax_t) v, (uintmax_t) rdpmc(IAF_RI_TO_MSR(n)));
 	}
 
 	/*
 	 * Process interrupts from the programmable counters.
 	 */
 	for (n = 0, flag = 1; n < core_iap_npmc; n++, flag <<= 1) {
 		if ((intrstatus & flag) == 0)
 			continue;
 
 		found_interrupt = 1;
 
 		pm = cc->pc_corepmcs[n].phw_pmc;
 		if (pm == NULL || pm->pm_state != PMC_STATE_RUNNING ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			continue;
 
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error)
 			intrenable &= ~flag;
 
 		v = iap_reload_count_to_perfctr_value(pm->pm_sc.pm_reloadcount);
 
-		PMCDBG(MDP,INT, 1, "iap-intr cpu=%d error=%d v=%jx", cpu, error,
+		PMCDBG3(MDP,INT, 1, "iap-intr cpu=%d error=%d v=%jx", cpu, error,
 		    (uintmax_t) v);
 
 		/* Reload sampling count. */
 		wrmsr(IAP_PMC0 + n, v);
 	}
 
 	/*
 	 * Reenable all non-stalled PMCs.
 	 */
-	PMCDBG(MDP,INT, 1, "cpu=%d intrenable=%jx", cpu,
+	PMCDBG2(MDP,INT, 1, "cpu=%d intrenable=%jx", cpu,
 	    (uintmax_t) intrenable);
 
 	cc->pc_globalctrl |= intrenable;
 
 	wrmsr(IA_GLOBAL_CTRL, cc->pc_globalctrl & IA_GLOBAL_CTRL_MASK);
 
-	PMCDBG(MDP,INT, 1, "cpu=%d fixedctrl=%jx globalctrl=%jx status=%jx "
+	PMCDBG5(MDP,INT, 1, "cpu=%d fixedctrl=%jx globalctrl=%jx status=%jx "
 	    "ovf=%jx", cpu, (uintmax_t) rdmsr(IAF_CTRL),
 	    (uintmax_t) rdmsr(IA_GLOBAL_CTRL),
 	    (uintmax_t) rdmsr(IA_GLOBAL_STATUS),
 	    (uintmax_t) rdmsr(IA_GLOBAL_OVF_CTRL));
 
 	if (found_interrupt)
 		lapic_reenable_pmc();
 
 	atomic_add_int(found_interrupt ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	return (found_interrupt);
 }
 
 int
 pmc_core_initialize(struct pmc_mdep *md, int maxcpu, int version_override)
 {
 	int cpuid[CORE_CPUID_REQUEST_SIZE];
 	int ipa_version, flags, nflags;
 
 	do_cpuid(CORE_CPUID_REQUEST, cpuid);
 
 	ipa_version = (version_override > 0) ? version_override :
 	    cpuid[CORE_CPUID_EAX] & 0xFF;
 	core_cputype = md->pmd_cputype;
 
-	PMCDBG(MDP,INI,1,"core-init cputype=%d ncpu=%d ipa-version=%d",
+	PMCDBG3(MDP,INI,1,"core-init cputype=%d ncpu=%d ipa-version=%d",
 	    core_cputype, maxcpu, ipa_version);
 
 	if (ipa_version < 1 || ipa_version > 3 ||
 	    (core_cputype != PMC_CPU_INTEL_CORE && ipa_version == 1)) {
 		/* Unknown PMC architecture. */
 		printf("hwpc_core: unknown PMC architecture: %d\n",
 		    ipa_version);
 		return (EPROGMISMATCH);
 	}
 
 	core_pmcmask = 0;
 
 	/*
 	 * Initialize programmable counters.
 	 */
 	core_iap_npmc = (cpuid[CORE_CPUID_EAX] >> 8) & 0xFF;
 	core_iap_width = (cpuid[CORE_CPUID_EAX] >> 16) & 0xFF;
 
 	core_pmcmask |= ((1ULL << core_iap_npmc) - 1);
 
 	nflags = (cpuid[CORE_CPUID_EAX] >> 24) & 0xFF;
 	flags = cpuid[CORE_CPUID_EBX] & ((1 << nflags) - 1);
 
 	iap_initialize(md, maxcpu, core_iap_npmc, core_iap_width, flags);
 
 	/*
 	 * Initialize fixed function counters, if present.
 	 */
 	if (core_cputype != PMC_CPU_INTEL_CORE) {
 		core_iaf_ri = core_iap_npmc;
 		core_iaf_npmc = cpuid[CORE_CPUID_EDX] & 0x1F;
 		core_iaf_width = (cpuid[CORE_CPUID_EDX] >> 5) & 0xFF;
 
 		iaf_initialize(md, maxcpu, core_iaf_npmc, core_iaf_width);
 		core_pmcmask |= ((1ULL << core_iaf_npmc) - 1) << IAF_OFFSET;
 	}
 
-	PMCDBG(MDP,INI,1,"core-init pmcmask=0x%jx iafri=%d", core_pmcmask,
+	PMCDBG2(MDP,INI,1,"core-init pmcmask=0x%jx iafri=%d", core_pmcmask,
 	    core_iaf_ri);
 
 	core_pcpu = malloc(sizeof(*core_pcpu) * maxcpu, M_PMC,
 	    M_ZERO | M_WAITOK);
 
 	/*
 	 * Choose the appropriate interrupt handler.
 	 */
 	if (ipa_version == 1)
 		md->pmd_intr = core_intr;
 	else
 		md->pmd_intr = core2_intr;
 
 	md->pmd_pcpu_fini = NULL;
 	md->pmd_pcpu_init = NULL;
 
 	return (0);
 }
 
 void
 pmc_core_finalize(struct pmc_mdep *md)
 {
-	PMCDBG(MDP,INI,1, "%s", "core-finalize");
+	PMCDBG0(MDP,INI,1, "core-finalize");
 
 	free(core_pcpu, M_PMC);
 	core_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_intel.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_intel.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_intel.c	(revision 282658)
@@ -1,381 +1,381 @@
 /*-
  * Copyright (c) 2008 Joseph Koshy
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Common code for handling Intel CPUs.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/cpu.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 
 static int
 intel_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc;
 
-	PMCDBG(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp,
+	PMCDBG3(MDP,SWI,1, "pc=%p pp=%p enable-msr=%d", pc, pp,
 	    pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS);
 
 	/* allow the RDPMC instruction if needed */
 	if (pp->pp_flags & PMC_PP_ENABLE_MSR_ACCESS)
 		load_cr4(rcr4() | CR4_PCE);
 
-	PMCDBG(MDP,SWI,1, "cr4=0x%jx", (uintmax_t) rcr4());
+	PMCDBG1(MDP,SWI,1, "cr4=0x%jx", (uintmax_t) rcr4());
 
 	return 0;
 }
 
 static int
 intel_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc;
 	(void) pp;		/* can be NULL */
 
-	PMCDBG(MDP,SWO,1, "pc=%p pp=%p cr4=0x%jx", pc, pp,
+	PMCDBG3(MDP,SWO,1, "pc=%p pp=%p cr4=0x%jx", pc, pp,
 	    (uintmax_t) rcr4());
 
 	/* always turn off the RDPMC instruction */
 	load_cr4(rcr4() & ~CR4_PCE);
 
 	return 0;
 }
 
 struct pmc_mdep *
 pmc_intel_initialize(void)
 {
 	struct pmc_mdep *pmc_mdep;
 	enum pmc_cputype cputype;
 	int error, model, nclasses, ncpus, stepping, verov;
 
 	KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
 	    ("[intel,%d] Initializing non-intel processor", __LINE__));
 
-	PMCDBG(MDP,INI,0, "intel-initialize cpuid=0x%x", cpu_id);
+	PMCDBG1(MDP,INI,0, "intel-initialize cpuid=0x%x", cpu_id);
 
 	cputype = -1;
 	nclasses = 2;
 	error = 0;
 	verov = 0;
 	model = ((cpu_id & 0xF0000) >> 12) | ((cpu_id & 0xF0) >> 4);
 	stepping = cpu_id & 0xF;
 
 	switch (cpu_id & 0xF00) {
 #if	defined(__i386__)
 	case 0x500:		/* Pentium family processors */
 		cputype = PMC_CPU_INTEL_P5;
 		break;
 #endif
 	case 0x600:		/* Pentium Pro, Celeron, Pentium II & III */
 		switch (model) {
 #if	defined(__i386__)
 		case 0x1:
 			cputype = PMC_CPU_INTEL_P6;
 			break;
 		case 0x3: case 0x5:
 			cputype = PMC_CPU_INTEL_PII;
 			break;
 		case 0x6: case 0x16:
 			cputype = PMC_CPU_INTEL_CL;
 			break;
 		case 0x7: case 0x8: case 0xA: case 0xB:
 			cputype = PMC_CPU_INTEL_PIII;
 			break;
 		case 0x9: case 0xD:
 			cputype = PMC_CPU_INTEL_PM;
 			break;
 #endif
 		case 0xE:
 			cputype = PMC_CPU_INTEL_CORE;
 			break;
 		case 0xF:
 			/* Per Intel document 315338-020. */
 			if (stepping == 0x7) {
 				cputype = PMC_CPU_INTEL_CORE;
 				verov = 1;
 			} else {
 				cputype = PMC_CPU_INTEL_CORE2;
 				nclasses = 3;
 			}
 			break;
 		case 0x17:
 			cputype = PMC_CPU_INTEL_CORE2EXTREME;
 			nclasses = 3;
 			break;
 		case 0x1C:	/* Per Intel document 320047-002. */
 			cputype = PMC_CPU_INTEL_ATOM;
 			nclasses = 3;
 			break;
 		case 0x1A:
 		case 0x1E:	/*
 				 * Per Intel document 253669-032 9/2009,
 				 * pages A-2 and A-57
 				 */
 		case 0x1F:	/*
 				 * Per Intel document 253669-032 9/2009,
 				 * pages A-2 and A-57
 				 */
 			cputype = PMC_CPU_INTEL_COREI7;
 			nclasses = 5;
 			break;
 		case 0x2E:
 			cputype = PMC_CPU_INTEL_NEHALEM_EX;
 			nclasses = 3;
 			break;
 		case 0x25:	/* Per Intel document 253669-033US 12/2009. */
 		case 0x2C:	/* Per Intel document 253669-033US 12/2009. */
 			cputype = PMC_CPU_INTEL_WESTMERE;
 			nclasses = 5;
 			break;
 		case 0x2F:	/* Westmere-EX, seen in wild */
 			cputype = PMC_CPU_INTEL_WESTMERE_EX;
 			nclasses = 3;
 			break;
 		case 0x2A:	/* Per Intel document 253669-039US 05/2011. */
 			cputype = PMC_CPU_INTEL_SANDYBRIDGE;
 			nclasses = 5;
 			break;
 		case 0x2D:	/* Per Intel document 253669-044US 08/2012. */
 			cputype = PMC_CPU_INTEL_SANDYBRIDGE_XEON;
 			nclasses = 3;
 			break;
 		case 0x3A:	/* Per Intel document 253669-043US 05/2012. */
 			cputype = PMC_CPU_INTEL_IVYBRIDGE;
 			nclasses = 3;
 			break;
 		case 0x3E:	/* Per Intel document 325462-045US 01/2013. */
 			cputype = PMC_CPU_INTEL_IVYBRIDGE_XEON;
 			nclasses = 3;
 			break;
 		case 0x3D:
 			cputype = PMC_CPU_INTEL_BROADWELL;
 			nclasses = 3;
 			break;
 		case 0x3F:	/* Per Intel document 325462-045US 09/2014. */
 		case 0x46:	/* Per Intel document 325462-045US 09/2014. */
 			        /* Should 46 be XEON. probably its own? */
 			cputype = PMC_CPU_INTEL_HASWELL_XEON;
 			nclasses = 3;
 			break;
 		case 0x3C:	/* Per Intel document 325462-045US 01/2013. */
 		case 0x45:	/* Per Intel document 325462-045US 09/2014. */
 			cputype = PMC_CPU_INTEL_HASWELL;
 			nclasses = 5;
 			break;
 		case 0x4D:      /* Per Intel document 330061-001 01/2014. */
 			cputype = PMC_CPU_INTEL_ATOM_SILVERMONT;
 			nclasses = 3;
 			break;
 		}
 		break;
 #if	defined(__i386__) || defined(__amd64__)
 	case 0xF00:		/* P4 */
 		if (model >= 0 && model <= 6) /* known models */
 			cputype = PMC_CPU_INTEL_PIV;
 		break;
 	}
 #endif
 
 	if ((int) cputype == -1) {
 		printf("pmc: Unknown Intel CPU.\n");
 		return (NULL);
 	}
 
 	/* Allocate base class and initialize machine dependent struct */
 	pmc_mdep = pmc_mdep_alloc(nclasses);
 
 	pmc_mdep->pmd_cputype	 = cputype;
 	pmc_mdep->pmd_switch_in	 = intel_switch_in;
 	pmc_mdep->pmd_switch_out = intel_switch_out;
 
 	ncpus = pmc_cpu_max();
 	error = pmc_tsc_initialize(pmc_mdep, ncpus);
 	if (error)
 		goto error;
 	switch (cputype) {
 #if	defined(__i386__) || defined(__amd64__)
 		/*
 		 * Intel Core, Core 2 and Atom processors.
 		 */
 	case PMC_CPU_INTEL_ATOM:
 	case PMC_CPU_INTEL_ATOM_SILVERMONT:
 	case PMC_CPU_INTEL_BROADWELL:
 	case PMC_CPU_INTEL_CORE:
 	case PMC_CPU_INTEL_CORE2:
 	case PMC_CPU_INTEL_CORE2EXTREME:
 	case PMC_CPU_INTEL_COREI7:
 	case PMC_CPU_INTEL_NEHALEM_EX:
 	case PMC_CPU_INTEL_IVYBRIDGE:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 	case PMC_CPU_INTEL_WESTMERE:
 	case PMC_CPU_INTEL_WESTMERE_EX:
 	case PMC_CPU_INTEL_SANDYBRIDGE_XEON:
 	case PMC_CPU_INTEL_IVYBRIDGE_XEON:
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_HASWELL_XEON:
 		error = pmc_core_initialize(pmc_mdep, ncpus, verov);
 		break;
 
 		/*
 		 * Intel Pentium 4 Processors, and P4/EMT64 processors.
 		 */
 
 	case PMC_CPU_INTEL_PIV:
 		error = pmc_p4_initialize(pmc_mdep, ncpus);
 		break;
 #endif
 
 #if	defined(__i386__)
 		/*
 		 * P6 Family Processors
 		 */
 
 	case PMC_CPU_INTEL_P6:
 	case PMC_CPU_INTEL_CL:
 	case PMC_CPU_INTEL_PII:
 	case PMC_CPU_INTEL_PIII:
 	case PMC_CPU_INTEL_PM:
 		error = pmc_p6_initialize(pmc_mdep, ncpus);
 		break;
 
 		/*
 		 * Intel Pentium PMCs.
 		 */
 
 	case PMC_CPU_INTEL_P5:
 		error = pmc_p5_initialize(pmc_mdep, ncpus);
 		break;
 #endif
 
 	default:
 		KASSERT(0, ("[intel,%d] Unknown CPU type", __LINE__));
 	}
 
 	if (error) {
 		pmc_tsc_finalize(pmc_mdep);
 		goto error;
 	}
 
 	/*
 	 * Init the uncore class.
 	 */
 #if	defined(__i386__) || defined(__amd64__)
 	switch (cputype) {
 		/*
 		 * Intel Corei7 and Westmere processors.
 		 */
 	case PMC_CPU_INTEL_COREI7:
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 	case PMC_CPU_INTEL_WESTMERE:
 	case PMC_CPU_INTEL_BROADWELL:
 		error = pmc_uncore_initialize(pmc_mdep, ncpus);
 		break;
 	default:
 		break;
 	}
 #endif
   error:
 	if (error) {
 		pmc_mdep_free(pmc_mdep);
 		pmc_mdep = NULL;
 	}
 
 	return (pmc_mdep);
 }
 
 void
 pmc_intel_finalize(struct pmc_mdep *md)
 {
 	pmc_tsc_finalize(md);
 
 	switch (md->pmd_cputype) {
 #if	defined(__i386__) || defined(__amd64__)
 	case PMC_CPU_INTEL_ATOM:
 	case PMC_CPU_INTEL_ATOM_SILVERMONT:
 	case PMC_CPU_INTEL_BROADWELL:
 	case PMC_CPU_INTEL_CORE:
 	case PMC_CPU_INTEL_CORE2:
 	case PMC_CPU_INTEL_CORE2EXTREME:
 	case PMC_CPU_INTEL_COREI7:
 	case PMC_CPU_INTEL_NEHALEM_EX:
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_HASWELL_XEON:
 	case PMC_CPU_INTEL_IVYBRIDGE:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 	case PMC_CPU_INTEL_WESTMERE:
 	case PMC_CPU_INTEL_WESTMERE_EX:
 	case PMC_CPU_INTEL_SANDYBRIDGE_XEON:
 	case PMC_CPU_INTEL_IVYBRIDGE_XEON:
 		pmc_core_finalize(md);
 		break;
 
 	case PMC_CPU_INTEL_PIV:
 		pmc_p4_finalize(md);
 		break;
 #endif
 #if	defined(__i386__)
 	case PMC_CPU_INTEL_P6:
 	case PMC_CPU_INTEL_CL:
 	case PMC_CPU_INTEL_PII:
 	case PMC_CPU_INTEL_PIII:
 	case PMC_CPU_INTEL_PM:
 		pmc_p6_finalize(md);
 		break;
 	case PMC_CPU_INTEL_P5:
 		pmc_p5_finalize(md);
 		break;
 #endif
 	default:
 		KASSERT(0, ("[intel,%d] unknown CPU type", __LINE__));
 	}
 
 	/*
 	 * Uncore.
 	 */
 #if	defined(__i386__) || defined(__amd64__)
 	switch (md->pmd_cputype) {
 	case PMC_CPU_INTEL_BROADWELL:
 	case PMC_CPU_INTEL_COREI7:
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 	case PMC_CPU_INTEL_WESTMERE:
 		pmc_uncore_finalize(md);
 		break;
 	default:
 		break;
 	}
 #endif
 }
Index: head/sys/dev/hwpmc/hwpmc_logging.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_logging.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_logging.c	(revision 282658)
@@ -1,1073 +1,1073 @@
 /*-
  * Copyright (c) 2005-2007 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 /*
  * Logging code for hwpmc(4)
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #if (__FreeBSD_version >= 1100000)
 #include <sys/capsicum.h>
 #else
 #include <sys/capability.h>
 #endif
 #include <sys/file.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/lock.h>
 #include <sys/module.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/pmclog.h>
 #include <sys/proc.h>
 #include <sys/signalvar.h>
 #include <sys/sysctl.h>
 #include <sys/systm.h>
 #include <sys/uio.h>
 #include <sys/unistd.h>
 #include <sys/vnode.h>
 
 /*
  * Sysctl tunables
  */
 
 SYSCTL_DECL(_kern_hwpmc);
 
 /*
  * kern.hwpmc.logbuffersize -- size of the per-cpu owner buffers.
  */
 
 static int pmclog_buffer_size = PMC_LOG_BUFFER_SIZE;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, logbuffersize, CTLFLAG_RDTUN,
     &pmclog_buffer_size, 0, "size of log buffers in kilobytes");
 
 /*
  * kern.hwpmc.nbuffer -- number of global log buffers
  */
 
 static int pmc_nlogbuffers = PMC_NLOGBUFFERS;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nbuffers, CTLFLAG_RDTUN,
     &pmc_nlogbuffers, 0, "number of global log buffers");
 
 /*
  * Global log buffer list and associated spin lock.
  */
 
 TAILQ_HEAD(, pmclog_buffer) pmc_bufferlist =
 	TAILQ_HEAD_INITIALIZER(pmc_bufferlist);
 static struct mtx pmc_bufferlist_mtx;	/* spin lock */
 static struct mtx pmc_kthread_mtx;	/* sleep lock */
 
 #define	PMCLOG_INIT_BUFFER_DESCRIPTOR(D) do {				\
 		const int __roundup = roundup(sizeof(*D),		\
 			sizeof(uint32_t));				\
 		(D)->plb_fence = ((char *) (D)) +			\
 			 1024*pmclog_buffer_size;			\
 		(D)->plb_base  = (D)->plb_ptr = ((char *) (D)) +	\
 			__roundup;					\
 	} while (0)
 
 
 /*
  * Log file record constructors.
  */
 #define	_PMCLOG_TO_HEADER(T,L)						\
 	((PMCLOG_HEADER_MAGIC << 24) |					\
 	 (PMCLOG_TYPE_ ## T << 16)   |					\
 	 ((L) & 0xFFFF))
 
 /* reserve LEN bytes of space and initialize the entry header */
 #define	_PMCLOG_RESERVE(PO,TYPE,LEN,ACTION) do {			\
 		uint32_t *_le;						\
 		int _len = roundup((LEN), sizeof(uint32_t));		\
 		if ((_le = pmclog_reserve((PO), _len)) == NULL) {	\
 			ACTION;						\
 		}							\
 		*_le = _PMCLOG_TO_HEADER(TYPE,_len);			\
 		_le += 3	/* skip over timestamp */
 
 #define	PMCLOG_RESERVE(P,T,L)		_PMCLOG_RESERVE(P,T,L,return)
 #define	PMCLOG_RESERVE_WITH_ERROR(P,T,L) _PMCLOG_RESERVE(P,T,L,		\
 	error=ENOMEM;goto error)
 
 #define	PMCLOG_EMIT32(V)	do { *_le++ = (V); } while (0)
 #define	PMCLOG_EMIT64(V)	do { 					\
 		*_le++ = (uint32_t) ((V) & 0xFFFFFFFF);			\
 		*_le++ = (uint32_t) (((V) >> 32) & 0xFFFFFFFF);		\
 	} while (0)
 
 
 /* Emit a string.  Caution: does NOT update _le, so needs to be last */
 #define	PMCLOG_EMITSTRING(S,L)	do { bcopy((S), _le, (L)); } while (0)
 #define	PMCLOG_EMITNULLSTRING(L) do { bzero(_le, (L)); } while (0)
 
 #define	PMCLOG_DESPATCH(PO)						\
 		pmclog_release((PO));					\
 	} while (0)
 
 
 /*
  * Assertions about the log file format.
  */
 
 CTASSERT(sizeof(struct pmclog_callchain) == 6*4 +
     PMC_CALLCHAIN_DEPTH_MAX*sizeof(uintfptr_t));
 CTASSERT(sizeof(struct pmclog_closelog) == 3*4);
 CTASSERT(sizeof(struct pmclog_dropnotify) == 3*4);
 CTASSERT(sizeof(struct pmclog_map_in) == PATH_MAX +
     4*4 + sizeof(uintfptr_t));
 CTASSERT(offsetof(struct pmclog_map_in,pl_pathname) ==
     4*4 + sizeof(uintfptr_t));
 CTASSERT(sizeof(struct pmclog_map_out) == 4*4 + 2*sizeof(uintfptr_t));
 CTASSERT(sizeof(struct pmclog_pcsample) == 6*4 + sizeof(uintfptr_t));
 CTASSERT(sizeof(struct pmclog_pmcallocate) == 6*4);
 CTASSERT(sizeof(struct pmclog_pmcattach) == 5*4 + PATH_MAX);
 CTASSERT(offsetof(struct pmclog_pmcattach,pl_pathname) == 5*4);
 CTASSERT(sizeof(struct pmclog_pmcdetach) == 5*4);
 CTASSERT(sizeof(struct pmclog_proccsw) == 5*4 + 8);
 CTASSERT(sizeof(struct pmclog_procexec) == 5*4 + PATH_MAX +
     sizeof(uintfptr_t));
 CTASSERT(offsetof(struct pmclog_procexec,pl_pathname) == 5*4 +
     sizeof(uintfptr_t));
 CTASSERT(sizeof(struct pmclog_procexit) == 5*4 + 8);
 CTASSERT(sizeof(struct pmclog_procfork) == 5*4);
 CTASSERT(sizeof(struct pmclog_sysexit) == 4*4);
 CTASSERT(sizeof(struct pmclog_userdata) == 4*4);
 
 /*
  * Log buffer structure
  */
 
 struct pmclog_buffer {
 	TAILQ_ENTRY(pmclog_buffer) plb_next;
 	char 		*plb_base;
 	char		*plb_ptr;
 	char 		*plb_fence;
 };
 
 /*
  * Prototypes
  */
 
 static int pmclog_get_buffer(struct pmc_owner *po);
 static void pmclog_loop(void *arg);
 static void pmclog_release(struct pmc_owner *po);
 static uint32_t *pmclog_reserve(struct pmc_owner *po, int length);
 static void pmclog_schedule_io(struct pmc_owner *po);
 static void pmclog_stop_kthread(struct pmc_owner *po);
 
 /*
  * Helper functions
  */
 
 /*
  * Get a log buffer
  */
 
 static int
 pmclog_get_buffer(struct pmc_owner *po)
 {
 	struct pmclog_buffer *plb;
 
 	mtx_assert(&po->po_mtx, MA_OWNED);
 
 	KASSERT(po->po_curbuf == NULL,
 	    ("[pmclog,%d] po=%p current buffer still valid", __LINE__, po));
 
 	mtx_lock_spin(&pmc_bufferlist_mtx);
 	if ((plb = TAILQ_FIRST(&pmc_bufferlist)) != NULL)
 		TAILQ_REMOVE(&pmc_bufferlist, plb, plb_next);
 	mtx_unlock_spin(&pmc_bufferlist_mtx);
 
-	PMCDBG(LOG,GTB,1, "po=%p plb=%p", po, plb);
+	PMCDBG2(LOG,GTB,1, "po=%p plb=%p", po, plb);
 
 #ifdef	HWPMC_DEBUG
 	if (plb)
 		KASSERT(plb->plb_ptr == plb->plb_base &&
 		    plb->plb_base < plb->plb_fence,
 		    ("[pmclog,%d] po=%p buffer invariants: ptr=%p "
 		    "base=%p fence=%p", __LINE__, po, plb->plb_ptr,
 		    plb->plb_base, plb->plb_fence));
 #endif
 
 	po->po_curbuf = plb;
 
 	/* update stats */
 	atomic_add_int(&pmc_stats.pm_buffer_requests, 1);
 	if (plb == NULL)
 		atomic_add_int(&pmc_stats.pm_buffer_requests_failed, 1);
 
 	return (plb ? 0 : ENOMEM);
 }
 
 /*
  * Log handler loop.
  *
  * This function is executed by each pmc owner's helper thread.
  */
 
 static void
 pmclog_loop(void *arg)
 {
 	int error;
 	struct pmc_owner *po;
 	struct pmclog_buffer *lb;
 	struct proc *p;
 	struct ucred *ownercred;
 	struct ucred *mycred;
 	struct thread *td;
 	struct uio auio;
 	struct iovec aiov;
 	size_t nbytes;
 
 	po = (struct pmc_owner *) arg;
 	p = po->po_owner;
 	td = curthread;
 	mycred = td->td_ucred;
 
 	PROC_LOCK(p);
 	ownercred = crhold(p->p_ucred);
 	PROC_UNLOCK(p);
 
-	PMCDBG(LOG,INI,1, "po=%p kt=%p", po, po->po_kthread);
+	PMCDBG2(LOG,INI,1, "po=%p kt=%p", po, po->po_kthread);
 	KASSERT(po->po_kthread == curthread->td_proc,
 	    ("[pmclog,%d] proc mismatch po=%p po/kt=%p curproc=%p", __LINE__,
 		po, po->po_kthread, curthread->td_proc));
 
 	lb = NULL;
 
 
 	/*
 	 * Loop waiting for I/O requests to be added to the owner
 	 * struct's queue.  The loop is exited when the log file
 	 * is deconfigured.
 	 */
 
 	mtx_lock(&pmc_kthread_mtx);
 
 	for (;;) {
 
 		/* check if we've been asked to exit */
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
 			break;
 
 		if (lb == NULL) { /* look for a fresh buffer to write */
 			mtx_lock_spin(&po->po_mtx);
 			if ((lb = TAILQ_FIRST(&po->po_logbuffers)) == NULL) {
 				mtx_unlock_spin(&po->po_mtx);
 
 				/* No more buffers and shutdown required. */
 				if (po->po_flags & PMC_PO_SHUTDOWN) {
 					mtx_unlock(&pmc_kthread_mtx);
 					/*
 			 		 * Close the file to get PMCLOG_EOF
 					 * error in pmclog(3).
 					 */
 					fo_close(po->po_file, curthread);
 					mtx_lock(&pmc_kthread_mtx);
 					break;
 				}
 
 				(void) msleep(po, &pmc_kthread_mtx, PWAIT,
 				    "pmcloop", 0);
 				continue;
 			}
 
 			TAILQ_REMOVE(&po->po_logbuffers, lb, plb_next);
 			mtx_unlock_spin(&po->po_mtx);
 		}
 
 		mtx_unlock(&pmc_kthread_mtx);
 
 		/* process the request */
-		PMCDBG(LOG,WRI,2, "po=%p base=%p ptr=%p", po,
+		PMCDBG3(LOG,WRI,2, "po=%p base=%p ptr=%p", po,
 		    lb->plb_base, lb->plb_ptr);
 		/* change our thread's credentials before issuing the I/O */
 
 		aiov.iov_base = lb->plb_base;
 		aiov.iov_len  = nbytes = lb->plb_ptr - lb->plb_base;
 
 		auio.uio_iov    = &aiov;
 		auio.uio_iovcnt = 1;
 		auio.uio_offset = -1;
 		auio.uio_resid  = nbytes;
 		auio.uio_rw     = UIO_WRITE;
 		auio.uio_segflg = UIO_SYSSPACE;
 		auio.uio_td     = td;
 
 		/* switch thread credentials -- see kern_ktrace.c */
 		td->td_ucred = ownercred;
 		error = fo_write(po->po_file, &auio, ownercred, 0, td);
 		td->td_ucred = mycred;
 
 		if (error) {
 			/* XXX some errors are recoverable */
 			/* send a SIGIO to the owner and exit */
 			PROC_LOCK(p);
 			kern_psignal(p, SIGIO);
 			PROC_UNLOCK(p);
 
 			mtx_lock(&pmc_kthread_mtx);
 
 			po->po_error = error; /* save for flush log */
 
-			PMCDBG(LOG,WRI,2, "po=%p error=%d", po, error);
+			PMCDBG2(LOG,WRI,2, "po=%p error=%d", po, error);
 
 			break;
 		}
 
 		mtx_lock(&pmc_kthread_mtx);
 
 		/* put the used buffer back into the global pool */
 		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);
 
 		mtx_lock_spin(&pmc_bufferlist_mtx);
 		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
 		mtx_unlock_spin(&pmc_bufferlist_mtx);
 
 		lb = NULL;
 	}
 
 	wakeup_one(po->po_kthread);
 	po->po_kthread = NULL;
 
 	mtx_unlock(&pmc_kthread_mtx);
 
 	/* return the current I/O buffer to the global pool */
 	if (lb) {
 		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);
 
 		mtx_lock_spin(&pmc_bufferlist_mtx);
 		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
 		mtx_unlock_spin(&pmc_bufferlist_mtx);
 	}
 
 	/*
 	 * Exit this thread, signalling the waiter
 	 */
 
 	crfree(ownercred);
 
 	kproc_exit(0);
 }
 
 /*
  * Release and log entry and schedule an I/O if needed.
  */
 
 static void
 pmclog_release(struct pmc_owner *po)
 {
 	KASSERT(po->po_curbuf->plb_ptr >= po->po_curbuf->plb_base,
 	    ("[pmclog,%d] buffer invariants po=%p ptr=%p base=%p", __LINE__,
 		po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_base));
 	KASSERT(po->po_curbuf->plb_ptr <= po->po_curbuf->plb_fence,
 	    ("[pmclog,%d] buffer invariants po=%p ptr=%p fenc=%p", __LINE__,
 		po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_fence));
 
 	/* schedule an I/O if we've filled a buffer */
 	if (po->po_curbuf->plb_ptr >= po->po_curbuf->plb_fence)
 		pmclog_schedule_io(po);
 
 	mtx_unlock_spin(&po->po_mtx);
 
-	PMCDBG(LOG,REL,1, "po=%p", po);
+	PMCDBG1(LOG,REL,1, "po=%p", po);
 }
 
 
 /*
  * Attempt to reserve 'length' bytes of space in an owner's log
  * buffer.  The function returns a pointer to 'length' bytes of space
  * if there was enough space or returns NULL if no space was
  * available.  Non-null returns do so with the po mutex locked.  The
  * caller must invoke pmclog_release() on the pmc owner structure
  * when done.
  */
 
 static uint32_t *
 pmclog_reserve(struct pmc_owner *po, int length)
 {
 	uintptr_t newptr, oldptr;
 	uint32_t *lh;
 	struct timespec ts;
 
-	PMCDBG(LOG,ALL,1, "po=%p len=%d", po, length);
+	PMCDBG2(LOG,ALL,1, "po=%p len=%d", po, length);
 
 	KASSERT(length % sizeof(uint32_t) == 0,
 	    ("[pmclog,%d] length not a multiple of word size", __LINE__));
 
 	mtx_lock_spin(&po->po_mtx);
 
 	/* No more data when shutdown in progress. */
 	if (po->po_flags & PMC_PO_SHUTDOWN) {
 		mtx_unlock_spin(&po->po_mtx);
 		return (NULL);
 	}
 
 	if (po->po_curbuf == NULL)
 		if (pmclog_get_buffer(po) != 0) {
 			mtx_unlock_spin(&po->po_mtx);
 			return (NULL);
 		}
 
 	KASSERT(po->po_curbuf != NULL,
 	    ("[pmclog,%d] po=%p no current buffer", __LINE__, po));
 
 	KASSERT(po->po_curbuf->plb_ptr >= po->po_curbuf->plb_base &&
 	    po->po_curbuf->plb_ptr <= po->po_curbuf->plb_fence,
 	    ("[pmclog,%d] po=%p buffer invariants: ptr=%p base=%p fence=%p",
 		__LINE__, po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_base,
 		po->po_curbuf->plb_fence));
 
 	oldptr = (uintptr_t) po->po_curbuf->plb_ptr;
 	newptr = oldptr + length;
 
 	KASSERT(oldptr != (uintptr_t) NULL,
 	    ("[pmclog,%d] po=%p Null log buffer pointer", __LINE__, po));
 
 	/*
 	 * If we have space in the current buffer, return a pointer to
 	 * available space with the PO structure locked.
 	 */
 	if (newptr <= (uintptr_t) po->po_curbuf->plb_fence) {
 		po->po_curbuf->plb_ptr = (char *) newptr;
 		goto done;
 	}
 
 	/*
 	 * Otherwise, schedule the current buffer for output and get a
 	 * fresh buffer.
 	 */
 	pmclog_schedule_io(po);
 
 	if (pmclog_get_buffer(po) != 0) {
 		mtx_unlock_spin(&po->po_mtx);
 		return (NULL);
 	}
 
 	KASSERT(po->po_curbuf != NULL,
 	    ("[pmclog,%d] po=%p no current buffer", __LINE__, po));
 
 	KASSERT(po->po_curbuf->plb_ptr != NULL,
 	    ("[pmclog,%d] null return from pmc_get_log_buffer", __LINE__));
 
 	KASSERT(po->po_curbuf->plb_ptr == po->po_curbuf->plb_base &&
 	    po->po_curbuf->plb_ptr <= po->po_curbuf->plb_fence,
 	    ("[pmclog,%d] po=%p buffer invariants: ptr=%p base=%p fence=%p",
 		__LINE__, po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_base,
 		po->po_curbuf->plb_fence));
 
 	oldptr = (uintptr_t) po->po_curbuf->plb_ptr;
 
  done:
 	lh = (uint32_t *) oldptr;
 	lh++;				/* skip header */
 	getnanotime(&ts);		/* fill in the timestamp */
 	*lh++ = ts.tv_sec & 0xFFFFFFFF;
 	*lh++ = ts.tv_nsec & 0xFFFFFFF;
 	return ((uint32_t *) oldptr);
 }
 
 /*
  * Schedule an I/O.
  *
  * Transfer the current buffer to the helper kthread.
  */
 
 static void
 pmclog_schedule_io(struct pmc_owner *po)
 {
 	KASSERT(po->po_curbuf != NULL,
 	    ("[pmclog,%d] schedule_io with null buffer po=%p", __LINE__, po));
 
 	KASSERT(po->po_curbuf->plb_ptr >= po->po_curbuf->plb_base,
 	    ("[pmclog,%d] buffer invariants po=%p ptr=%p base=%p", __LINE__,
 		po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_base));
 	KASSERT(po->po_curbuf->plb_ptr <= po->po_curbuf->plb_fence,
 	    ("[pmclog,%d] buffer invariants po=%p ptr=%p fenc=%p", __LINE__,
 		po, po->po_curbuf->plb_ptr, po->po_curbuf->plb_fence));
 
-	PMCDBG(LOG,SIO, 1, "po=%p", po);
+	PMCDBG1(LOG,SIO, 1, "po=%p", po);
 
 	mtx_assert(&po->po_mtx, MA_OWNED);
 
 	/*
 	 * Add the current buffer to the tail of the buffer list and
 	 * wakeup the helper.
 	 */
 	TAILQ_INSERT_TAIL(&po->po_logbuffers, po->po_curbuf, plb_next);
 	po->po_curbuf = NULL;
 	wakeup_one(po);
 }
 
 /*
  * Stop the helper kthread.
  */
 
 static void
 pmclog_stop_kthread(struct pmc_owner *po)
 {
 	/*
 	 * Close the file to force the thread out of fo_write,
 	 * unset flag, wakeup the helper thread,
 	 * wait for it to exit
 	 */
 
 	if (po->po_file != NULL)
 		fo_close(po->po_file, curthread);
 
 	mtx_lock(&pmc_kthread_mtx);
 	po->po_flags &= ~PMC_PO_OWNS_LOGFILE;
 	wakeup_one(po);
 	if (po->po_kthread)
 		msleep(po->po_kthread, &pmc_kthread_mtx, PPAUSE, "pmckstp", 0);
 	mtx_unlock(&pmc_kthread_mtx);
 }
 
 /*
  * Public functions
  */
 
 /*
  * Configure a log file for pmc owner 'po'.
  *
  * Parameter 'logfd' is a file handle referencing an open file in the
  * owner process.  This file needs to have been opened for writing.
  */
 
 int
 pmclog_configure_log(struct pmc_mdep *md, struct pmc_owner *po, int logfd)
 {
 	int error;
 	struct proc *p;
 	cap_rights_t rights;
 	/*
 	 * As long as it is possible to get a LOR between pmc_sx lock and
 	 * proctree/allproc sx locks used for adding a new process, assure
 	 * the former is not held here.
 	 */
 	sx_assert(&pmc_sx, SA_UNLOCKED);
-	PMCDBG(LOG,CFG,1, "config po=%p logfd=%d", po, logfd);
+	PMCDBG2(LOG,CFG,1, "config po=%p logfd=%d", po, logfd);
 
 	p = po->po_owner;
 
 	/* return EBUSY if a log file was already present */
 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		return (EBUSY);
 
 	KASSERT(po->po_kthread == NULL,
 	    ("[pmclog,%d] po=%p kthread (%p) already present", __LINE__, po,
 		po->po_kthread));
 	KASSERT(po->po_file == NULL,
 	    ("[pmclog,%d] po=%p file (%p) already present", __LINE__, po,
 		po->po_file));
 
 	/* get a reference to the file state */
 	error = fget_write(curthread, logfd,
 	    cap_rights_init(&rights, CAP_WRITE), &po->po_file);
 	if (error)
 		goto error;
 
 	/* mark process as owning a log file */
 	po->po_flags |= PMC_PO_OWNS_LOGFILE;
 	error = kproc_create(pmclog_loop, po, &po->po_kthread,
 	    RFHIGHPID, 0, "hwpmc: proc(%d)", p->p_pid);
 	if (error)
 		goto error;
 
 	/* mark process as using HWPMCs */
 	PROC_LOCK(p);
 	p->p_flag |= P_HWPMC;
 	PROC_UNLOCK(p);
 
 	/* create a log initialization entry */
 	PMCLOG_RESERVE_WITH_ERROR(po, INITIALIZE,
 	    sizeof(struct pmclog_initialize));
 	PMCLOG_EMIT32(PMC_VERSION);
 	PMCLOG_EMIT32(md->pmd_cputype);
 	PMCLOG_DESPATCH(po);
 
 	return (0);
 
  error:
 	/* shutdown the thread */
 	if (po->po_kthread)
 		pmclog_stop_kthread(po);
 
 	KASSERT(po->po_kthread == NULL, ("[pmclog,%d] po=%p kthread not "
 	    "stopped", __LINE__, po));
 
 	if (po->po_file)
 		(void) fdrop(po->po_file, curthread);
 	po->po_file  = NULL;	/* clear file and error state */
 	po->po_error = 0;
 
 	return (error);
 }
 
 
 /*
  * De-configure a log file.  This will throw away any buffers queued
  * for this owner process.
  */
 
 int
 pmclog_deconfigure_log(struct pmc_owner *po)
 {
 	int error;
 	struct pmclog_buffer *lb;
 
-	PMCDBG(LOG,CFG,1, "de-config po=%p", po);
+	PMCDBG1(LOG,CFG,1, "de-config po=%p", po);
 
 	if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
 		return (EINVAL);
 
 	KASSERT(po->po_sscount == 0,
 	    ("[pmclog,%d] po=%p still owning SS PMCs", __LINE__, po));
 	KASSERT(po->po_file != NULL,
 	    ("[pmclog,%d] po=%p no log file", __LINE__, po));
 
 	/* stop the kthread, this will reset the 'OWNS_LOGFILE' flag */
 	pmclog_stop_kthread(po);
 
 	KASSERT(po->po_kthread == NULL,
 	    ("[pmclog,%d] po=%p kthread not stopped", __LINE__, po));
 
 	/* return all queued log buffers to the global pool */
 	while ((lb = TAILQ_FIRST(&po->po_logbuffers)) != NULL) {
 		TAILQ_REMOVE(&po->po_logbuffers, lb, plb_next);
 		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);
 		mtx_lock_spin(&pmc_bufferlist_mtx);
 		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
 		mtx_unlock_spin(&pmc_bufferlist_mtx);
 	}
 
 	/* return the 'current' buffer to the global pool */
 	if ((lb = po->po_curbuf) != NULL) {
 		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);
 		mtx_lock_spin(&pmc_bufferlist_mtx);
 		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
 		mtx_unlock_spin(&pmc_bufferlist_mtx);
 	}
 
 	/* drop a reference to the fd */
 	error = fdrop(po->po_file, curthread);
 	po->po_file  = NULL;
 	po->po_error = 0;
 
 	return (error);
 }
 
 /*
  * Flush a process' log buffer.
  */
 
 int
 pmclog_flush(struct pmc_owner *po)
 {
 	int error;
 	struct pmclog_buffer *lb;
 
-	PMCDBG(LOG,FLS,1, "po=%p", po);
+	PMCDBG1(LOG,FLS,1, "po=%p", po);
 
 	/*
 	 * If there is a pending error recorded by the logger thread,
 	 * return that.
 	 */
 	if (po->po_error)
 		return (po->po_error);
 
 	error = 0;
 
 	/*
 	 * Check that we do have an active log file.
 	 */
 	mtx_lock(&pmc_kthread_mtx);
 	if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
 		error = EINVAL;
 		goto error;
 	}
 
 	/*
 	 * Schedule the current buffer if any and not empty.
 	 */
 	mtx_lock_spin(&po->po_mtx);
 	lb = po->po_curbuf;
 	if (lb && lb->plb_ptr != lb->plb_base) {
 		pmclog_schedule_io(po);
 	} else
 		error = ENOBUFS;
 	mtx_unlock_spin(&po->po_mtx);
 
  error:
 	mtx_unlock(&pmc_kthread_mtx);
 
 	return (error);
 }
 
 int
 pmclog_close(struct pmc_owner *po)
 {
 
-	PMCDBG(LOG,CLO,1, "po=%p", po);
+	PMCDBG1(LOG,CLO,1, "po=%p", po);
 
 	mtx_lock(&pmc_kthread_mtx);
 
 	/*
 	 * Schedule the current buffer.
 	 */
 	mtx_lock_spin(&po->po_mtx);
 	if (po->po_curbuf)
 		pmclog_schedule_io(po);
 	else
 		wakeup_one(po);
 	mtx_unlock_spin(&po->po_mtx);
 
 	/*
 	 * Initiate shutdown: no new data queued,
 	 * thread will close file on last block.
 	 */
 	po->po_flags |= PMC_PO_SHUTDOWN;
 
 	mtx_unlock(&pmc_kthread_mtx);
 
 	return (0);
 }
 
 void
 pmclog_process_callchain(struct pmc *pm, struct pmc_sample *ps)
 {
 	int n, recordlen;
 	uint32_t flags;
 	struct pmc_owner *po;
 
-	PMCDBG(LOG,SAM,1,"pm=%p pid=%d n=%d", pm, ps->ps_pid,
+	PMCDBG3(LOG,SAM,1,"pm=%p pid=%d n=%d", pm, ps->ps_pid,
 	    ps->ps_nsamples);
 
 	recordlen = offsetof(struct pmclog_callchain, pl_pc) +
 	    ps->ps_nsamples * sizeof(uintfptr_t);
 	po = pm->pm_owner;
 	flags = PMC_CALLCHAIN_TO_CPUFLAGS(ps->ps_cpu,ps->ps_flags);
 	PMCLOG_RESERVE(po, CALLCHAIN, recordlen);
 	PMCLOG_EMIT32(ps->ps_pid);
 	PMCLOG_EMIT32(pm->pm_id);
 	PMCLOG_EMIT32(flags);
 	for (n = 0; n < ps->ps_nsamples; n++)
 		PMCLOG_EMITADDR(ps->ps_pc[n]);
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_closelog(struct pmc_owner *po)
 {
 	PMCLOG_RESERVE(po,CLOSELOG,sizeof(struct pmclog_closelog));
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_dropnotify(struct pmc_owner *po)
 {
 	PMCLOG_RESERVE(po,DROPNOTIFY,sizeof(struct pmclog_dropnotify));
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_map_in(struct pmc_owner *po, pid_t pid, uintfptr_t start,
     const char *path)
 {
 	int pathlen, recordlen;
 
 	KASSERT(path != NULL, ("[pmclog,%d] map-in, null path", __LINE__));
 
 	pathlen = strlen(path) + 1;	/* #bytes for path name */
 	recordlen = offsetof(struct pmclog_map_in, pl_pathname) +
 	    pathlen;
 
 	PMCLOG_RESERVE(po, MAP_IN, recordlen);
 	PMCLOG_EMIT32(pid);
 	PMCLOG_EMITADDR(start);
 	PMCLOG_EMITSTRING(path,pathlen);
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_map_out(struct pmc_owner *po, pid_t pid, uintfptr_t start,
     uintfptr_t end)
 {
 	KASSERT(start <= end, ("[pmclog,%d] start > end", __LINE__));
 
 	PMCLOG_RESERVE(po, MAP_OUT, sizeof(struct pmclog_map_out));
 	PMCLOG_EMIT32(pid);
 	PMCLOG_EMITADDR(start);
 	PMCLOG_EMITADDR(end);
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_pmcallocate(struct pmc *pm)
 {
 	struct pmc_owner *po;
 	struct pmc_soft *ps;
 
 	po = pm->pm_owner;
 
-	PMCDBG(LOG,ALL,1, "pm=%p", pm);
+	PMCDBG1(LOG,ALL,1, "pm=%p", pm);
 
 	if (PMC_TO_CLASS(pm) == PMC_CLASS_SOFT) {
 		PMCLOG_RESERVE(po, PMCALLOCATEDYN,
 		    sizeof(struct pmclog_pmcallocatedyn));
 		PMCLOG_EMIT32(pm->pm_id);
 		PMCLOG_EMIT32(pm->pm_event);
 		PMCLOG_EMIT32(pm->pm_flags);
 		ps = pmc_soft_ev_acquire(pm->pm_event);
 		if (ps != NULL)
 			PMCLOG_EMITSTRING(ps->ps_ev.pm_ev_name,PMC_NAME_MAX);
 		else
 			PMCLOG_EMITNULLSTRING(PMC_NAME_MAX);
 		pmc_soft_ev_release(ps);
 		PMCLOG_DESPATCH(po);
 	} else {
 		PMCLOG_RESERVE(po, PMCALLOCATE,
 		    sizeof(struct pmclog_pmcallocate));
 		PMCLOG_EMIT32(pm->pm_id);
 		PMCLOG_EMIT32(pm->pm_event);
 		PMCLOG_EMIT32(pm->pm_flags);
 		PMCLOG_DESPATCH(po);
 	}
 }
 
 void
 pmclog_process_pmcattach(struct pmc *pm, pid_t pid, char *path)
 {
 	int pathlen, recordlen;
 	struct pmc_owner *po;
 
-	PMCDBG(LOG,ATT,1,"pm=%p pid=%d", pm, pid);
+	PMCDBG2(LOG,ATT,1,"pm=%p pid=%d", pm, pid);
 
 	po = pm->pm_owner;
 
 	pathlen = strlen(path) + 1;	/* #bytes for the string */
 	recordlen = offsetof(struct pmclog_pmcattach, pl_pathname) + pathlen;
 
 	PMCLOG_RESERVE(po, PMCATTACH, recordlen);
 	PMCLOG_EMIT32(pm->pm_id);
 	PMCLOG_EMIT32(pid);
 	PMCLOG_EMITSTRING(path, pathlen);
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_pmcdetach(struct pmc *pm, pid_t pid)
 {
 	struct pmc_owner *po;
 
-	PMCDBG(LOG,ATT,1,"!pm=%p pid=%d", pm, pid);
+	PMCDBG2(LOG,ATT,1,"!pm=%p pid=%d", pm, pid);
 
 	po = pm->pm_owner;
 
 	PMCLOG_RESERVE(po, PMCDETACH, sizeof(struct pmclog_pmcdetach));
 	PMCLOG_EMIT32(pm->pm_id);
 	PMCLOG_EMIT32(pid);
 	PMCLOG_DESPATCH(po);
 }
 
 /*
  * Log a context switch event to the log file.
  */
 
 void
 pmclog_process_proccsw(struct pmc *pm, struct pmc_process *pp, pmc_value_t v)
 {
 	struct pmc_owner *po;
 
 	KASSERT(pm->pm_flags & PMC_F_LOG_PROCCSW,
 	    ("[pmclog,%d] log-process-csw called gratuitously", __LINE__));
 
-	PMCDBG(LOG,SWO,1,"pm=%p pid=%d v=%jx", pm, pp->pp_proc->p_pid,
+	PMCDBG3(LOG,SWO,1,"pm=%p pid=%d v=%jx", pm, pp->pp_proc->p_pid,
 	    v);
 
 	po = pm->pm_owner;
 
 	PMCLOG_RESERVE(po, PROCCSW, sizeof(struct pmclog_proccsw));
 	PMCLOG_EMIT32(pm->pm_id);
 	PMCLOG_EMIT64(v);
 	PMCLOG_EMIT32(pp->pp_proc->p_pid);
 	PMCLOG_DESPATCH(po);
 }
 
 void
 pmclog_process_procexec(struct pmc_owner *po, pmc_id_t pmid, pid_t pid,
     uintfptr_t startaddr, char *path)
 {
 	int pathlen, recordlen;
 
-	PMCDBG(LOG,EXC,1,"po=%p pid=%d path=\"%s\"", po, pid, path);
+	PMCDBG3(LOG,EXC,1,"po=%p pid=%d path=\"%s\"", po, pid, path);
 
 	pathlen   = strlen(path) + 1;	/* #bytes for the path */
 	recordlen = offsetof(struct pmclog_procexec, pl_pathname) + pathlen;
 
 	PMCLOG_RESERVE(po, PROCEXEC, recordlen);
 	PMCLOG_EMIT32(pid);
 	PMCLOG_EMITADDR(startaddr);
 	PMCLOG_EMIT32(pmid);
 	PMCLOG_EMITSTRING(path,pathlen);
 	PMCLOG_DESPATCH(po);
 }
 
 /*
  * Log a process exit event (and accumulated pmc value) to the log file.
  */
 
 void
 pmclog_process_procexit(struct pmc *pm, struct pmc_process *pp)
 {
 	int ri;
 	struct pmc_owner *po;
 
 	ri = PMC_TO_ROWINDEX(pm);
-	PMCDBG(LOG,EXT,1,"pm=%p pid=%d v=%jx", pm, pp->pp_proc->p_pid,
+	PMCDBG3(LOG,EXT,1,"pm=%p pid=%d v=%jx", pm, pp->pp_proc->p_pid,
 	    pp->pp_pmcs[ri].pp_pmcval);
 
 	po = pm->pm_owner;
 
 	PMCLOG_RESERVE(po, PROCEXIT, sizeof(struct pmclog_procexit));
 	PMCLOG_EMIT32(pm->pm_id);
 	PMCLOG_EMIT64(pp->pp_pmcs[ri].pp_pmcval);
 	PMCLOG_EMIT32(pp->pp_proc->p_pid);
 	PMCLOG_DESPATCH(po);
 }
 
 /*
  * Log a fork event.
  */
 
 void
 pmclog_process_procfork(struct pmc_owner *po, pid_t oldpid, pid_t newpid)
 {
 	PMCLOG_RESERVE(po, PROCFORK, sizeof(struct pmclog_procfork));
 	PMCLOG_EMIT32(oldpid);
 	PMCLOG_EMIT32(newpid);
 	PMCLOG_DESPATCH(po);
 }
 
 /*
  * Log a process exit event of the form suitable for system-wide PMCs.
  */
 
 void
 pmclog_process_sysexit(struct pmc_owner *po, pid_t pid)
 {
 	PMCLOG_RESERVE(po, SYSEXIT, sizeof(struct pmclog_sysexit));
 	PMCLOG_EMIT32(pid);
 	PMCLOG_DESPATCH(po);
 }
 
 /*
  * Write a user log entry.
  */
 
 int
 pmclog_process_userlog(struct pmc_owner *po, struct pmc_op_writelog *wl)
 {
 	int error;
 
-	PMCDBG(LOG,WRI,1, "writelog po=%p ud=0x%x", po, wl->pm_userdata);
+	PMCDBG2(LOG,WRI,1, "writelog po=%p ud=0x%x", po, wl->pm_userdata);
 
 	error = 0;
 
 	PMCLOG_RESERVE_WITH_ERROR(po, USERDATA,
 	    sizeof(struct pmclog_userdata));
 	PMCLOG_EMIT32(wl->pm_userdata);
 	PMCLOG_DESPATCH(po);
 
  error:
 	return (error);
 }
 
 /*
  * Initialization.
  *
  * Create a pool of log buffers and initialize mutexes.
  */
 
 void
 pmclog_initialize()
 {
 	int n;
 	struct pmclog_buffer *plb;
 
 	if (pmclog_buffer_size <= 0) {
 		(void) printf("hwpmc: tunable logbuffersize=%d must be "
 		    "greater than zero.\n", pmclog_buffer_size);
 		pmclog_buffer_size = PMC_LOG_BUFFER_SIZE;
 	}
 
 	if (pmc_nlogbuffers <= 0) {
 		(void) printf("hwpmc: tunable nlogbuffers=%d must be greater "
 		    "than zero.\n", pmc_nlogbuffers);
 		pmc_nlogbuffers = PMC_NLOGBUFFERS;
 	}
 
 	/* create global pool of log buffers */
 	for (n = 0; n < pmc_nlogbuffers; n++) {
 		plb = malloc(1024 * pmclog_buffer_size, M_PMC,
 		    M_WAITOK|M_ZERO);
 		PMCLOG_INIT_BUFFER_DESCRIPTOR(plb);
 		TAILQ_INSERT_HEAD(&pmc_bufferlist, plb, plb_next);
 	}
 	mtx_init(&pmc_bufferlist_mtx, "pmc-buffer-list", "pmc-leaf",
 	    MTX_SPIN);
 	mtx_init(&pmc_kthread_mtx, "pmc-kthread", "pmc-sleep", MTX_DEF);
 }
 
 /*
  * Shutdown logging.
  *
  * Destroy mutexes and release memory back the to free pool.
  */
 
 void
 pmclog_shutdown()
 {
 	struct pmclog_buffer *plb;
 
 	mtx_destroy(&pmc_kthread_mtx);
 	mtx_destroy(&pmc_bufferlist_mtx);
 
 	while ((plb = TAILQ_FIRST(&pmc_bufferlist)) != NULL) {
 		TAILQ_REMOVE(&pmc_bufferlist, plb, plb_next);
 		free(plb, M_PMC);
 	}
 }
Index: head/sys/dev/hwpmc/hwpmc_mips.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_mips.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_mips.c	(revision 282658)
@@ -1,807 +1,807 @@
 /*-
  * Copyright (c) 2010, George V. Neville-Neil <gnn@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_hwpmc_hooks.h"
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/pmc_mdep.h>
 #include <machine/md_var.h>
 #include <machine/mips_opcode.h>
 #include <machine/vmparam.h>
 
 int mips_npmcs;
 
 /*
  * Per-processor information.
  */
 struct mips_cpu {
 	struct pmc_hw	*pc_mipspmcs;
 };
 
 static struct mips_cpu **mips_pcpu;
 
 #if defined(__mips_n64)
 #	define	MIPS_IS_VALID_KERNELADDR(reg)	((((reg) & 3) == 0) && \
 					((vm_offset_t)(reg) >= MIPS_XKPHYS_START))
 #else
 #	define	MIPS_IS_VALID_KERNELADDR(reg)	((((reg) & 3) == 0) && \
 					((vm_offset_t)(reg) >= MIPS_KSEG0_START))
 #endif
 
 /*
  * We need some reasonable default to prevent backtrace code
  * from wandering too far
  */
 #define	MAX_FUNCTION_SIZE 0x10000
 #define	MAX_PROLOGUE_SIZE 0x100
 
 static int
 mips_allocate_pmc(int cpu, int ri, struct pmc *pm,
   const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event pe;
 	uint32_t caps, config, counter;
 	uint32_t event;
 	int i;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row index %d", __LINE__, ri));
 
 	caps = a->pm_caps;
 	if (a->pm_class != mips_pmc_spec.ps_cpuclass)
 		return (EINVAL);
 	pe = a->pm_ev;
 	counter = MIPS_CTR_ALL;
 	event = 0;
 	for (i = 0; i < mips_event_codes_size; i++) {
 		if (mips_event_codes[i].pe_ev == pe) {
 			event = mips_event_codes[i].pe_code;
 			counter =  mips_event_codes[i].pe_counter;
 			break;
 		}
 	}
 
 	if (i == mips_event_codes_size)
 		return (EINVAL);
 
 	if ((counter != MIPS_CTR_ALL) && (counter != ri))
 		return (EINVAL);
 
 	config = mips_get_perfctl(cpu, ri, event, caps);
 
 	pm->pm_md.pm_mips_evsel = config;
 
-	PMCDBG(MDP,ALL,2,"mips-allocate ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"mips-allocate ri=%d -> config=0x%x", ri, config);
 
 	return 0;
 }
 
 
 static int
 mips_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row index %d", __LINE__, ri));
 
 	pm  = mips_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc;
 	tmp = mips_pmcn_read(ri);
-	PMCDBG(MDP,REA,2,"mips-read id=%d -> %jd", ri, tmp);
+	PMCDBG2(MDP,REA,2,"mips-read id=%d -> %jd", ri, tmp);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = tmp - (1UL << (mips_pmc_spec.ps_counter_width - 1));
 	else
 		*v = tmp;
 
 	return 0;
 }
 
 static int
 mips_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row-index %d", __LINE__, ri));
 
 	pm  = mips_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc;
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = (1UL << (mips_pmc_spec.ps_counter_width - 1)) - v;
 	
-	PMCDBG(MDP,WRI,1,"mips-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1,"mips-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	mips_pmcn_write(ri, v);
 
 	return 0;
 }
 
 static int
 mips_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &mips_pcpu[cpu]->pc_mipspmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[mips,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
 	    __LINE__, pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return 0;
 }
 
 static int
 mips_start_pmc(int cpu, int ri)
 {
 	uint32_t config;
         struct pmc *pm;
         struct pmc_hw *phw;
 
 	phw    = &mips_pcpu[cpu]->pc_mipspmcs[ri];
 	pm     = phw->phw_pmc;
 	config = pm->pm_md.pm_mips_evsel;
 
 	/* Enable the PMC. */
 	switch (ri) {
 	case 0:
 		mips_wr_perfcnt0(config);
 		break;
 	case 1:
 		mips_wr_perfcnt2(config);
 		break;
 	default:
 		break;
 	}
 
 	return 0;
 }
 
 static int
 mips_stop_pmc(int cpu, int ri)
 {
         struct pmc *pm;
         struct pmc_hw *phw;
 
 	phw    = &mips_pcpu[cpu]->pc_mipspmcs[ri];
 	pm     = phw->phw_pmc;
 
 	/*
 	 * Disable the PMCs.
 	 *
 	 * Clearing the entire register turns the counter off as well
 	 * as removes the previously sampled event.
 	 */
 	switch (ri) {
 	case 0:
 		mips_wr_perfcnt0(0);
 		break;
 	case 1:
 		mips_wr_perfcnt2(0);
 		break;
 	default:
 		break;
 	}
 	return 0;
 }
 
 static int
 mips_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &mips_pcpu[cpu]->pc_mipspmcs[ri];
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[mips,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	return 0;
 }
 
 static int
 mips_pmc_intr(int cpu, struct trapframe *tf)
 {
 	int error;
 	int retval, ri;
 	struct pmc *pm;
 	struct mips_cpu *pc;
 	uint32_t r0, r2;
 	pmc_value_t r;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] CPU %d out of range", __LINE__, cpu));
 
 	retval = 0;
 	pc = mips_pcpu[cpu];
 
 	/* Stop PMCs without clearing the counter */
 	r0 = mips_rd_perfcnt0();
 	mips_wr_perfcnt0(r0 & ~(0x1f));
 	r2 = mips_rd_perfcnt2();
 	mips_wr_perfcnt2(r2 & ~(0x1f));
 
 	for (ri = 0; ri < mips_npmcs; ri++) {
 		pm = mips_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc;
 		if (pm == NULL)
 			continue;
 		if (! PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			continue;
 
 		r = mips_pmcn_read(ri);
 
 		/* If bit 31 is set, the counter has overflowed */
 		if ((r & (1UL << (mips_pmc_spec.ps_counter_width - 1))) == 0)
 			continue;
 
 		retval = 1;
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error) {
 			/* Clear/disable the relevant counter */
 			if (ri == 0)
 				r0 = 0;
 			else if (ri == 1)
 				r2 = 0;
 			mips_stop_pmc(cpu, ri);
 		}
 
 		/* Reload sampling count */
 		mips_write_pmc(cpu, ri, pm->pm_sc.pm_reloadcount);
 	}
 
 	/*
 	 * Re-enable the PMC counters where they left off.
 	 *
 	 * Any counter which overflowed will have its sample count
 	 * reloaded in the loop above.
 	 */
 	mips_wr_perfcnt0(r0);
 	mips_wr_perfcnt2(r2);
 
 	return retval;
 }
 
 static int
 mips_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char mips_name[PMC_NAME_MAX];
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d], illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] row-index %d out of range", __LINE__, ri));
 
 	phw = &mips_pcpu[cpu]->pc_mipspmcs[ri];
 	snprintf(mips_name, sizeof(mips_name), "MIPS-%d", ri);
 	if ((error = copystr(mips_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return error;
 	pi->pm_class = mips_pmc_spec.ps_cpuclass;
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc	       = NULL;
 	}
 
 	return (0);
 }
 
 static int
 mips_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = mips_pcpu[cpu]->pc_mipspmcs[ri].phw_pmc;
 
 	return 0;
 }
 
 /*
  * XXX don't know what we should do here.
  */
 static int
 mips_pmc_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	return 0;
 }
 
 static int
 mips_pmc_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	return 0;
 }
 
 static int
 mips_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, i;
 	struct pmc_cpu *pc;
 	struct mips_cpu *pac;
 	struct pmc_hw  *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] wrong cpu number %d", __LINE__, cpu));
-	PMCDBG(MDP,INI,1,"mips-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"mips-init cpu=%d", cpu);
 
 	mips_pcpu[cpu] = pac = malloc(sizeof(struct mips_cpu), M_PMC,
 	    M_WAITOK|M_ZERO);
 	pac->pc_mipspmcs = malloc(sizeof(struct pmc_hw) * mips_npmcs,
 	    M_PMC, M_WAITOK|M_ZERO);
 	pc = pmc_pcpu[cpu];
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_MIPS].pcd_ri;
 	KASSERT(pc != NULL, ("[mips,%d] NULL per-cpu pointer", __LINE__));
 
 	for (i = 0, phw = pac->pc_mipspmcs; i < mips_npmcs; i++, phw++) {
 		phw->phw_state    = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
 		phw->phw_pmc      = NULL;
 		pc->pc_hwpmcs[i + first_ri] = phw;
 	}
 
 	/*
 	 * Clear the counter control register which has the effect
 	 * of disabling counting.
 	 */
 	for (i = 0; i < mips_npmcs; i++)
 		mips_pmcn_write(i, 0);
 
 	return 0;
 }
 
 static int
 mips_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	return 0;
 }
 
 struct pmc_mdep *
 pmc_mips_initialize()
 {
 	struct pmc_mdep *pmc_mdep;
 	struct pmc_classdep *pcd;
 	
 	/*
 	 * TODO: Use More bit of PerfCntlX register to detect actual 
 	 * number of counters
 	 */
 	mips_npmcs = 2;
 	
-	PMCDBG(MDP,INI,1,"mips-init npmcs=%d", mips_npmcs);
+	PMCDBG1(MDP,INI,1,"mips-init npmcs=%d", mips_npmcs);
 
 	/*
 	 * Allocate space for pointers to PMC HW descriptors and for
 	 * the MDEP structure used by MI code.
 	 */
 	mips_pcpu = malloc(sizeof(struct mips_cpu *) * pmc_cpu_max(), M_PMC,
 			   M_WAITOK|M_ZERO);
 
 	/* Just one class */
 	pmc_mdep = pmc_mdep_alloc(1);
 
 	pmc_mdep->pmd_cputype = mips_pmc_spec.ps_cputype;
 
 	pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_MIPS];
 	pcd->pcd_caps  = mips_pmc_spec.ps_capabilities;
 	pcd->pcd_class = mips_pmc_spec.ps_cpuclass;
 	pcd->pcd_num   = mips_npmcs;
 	pcd->pcd_ri    = pmc_mdep->pmd_npmc;
 	pcd->pcd_width = mips_pmc_spec.ps_counter_width;
 
 	pcd->pcd_allocate_pmc   = mips_allocate_pmc;
 	pcd->pcd_config_pmc     = mips_config_pmc;
 	pcd->pcd_pcpu_fini      = mips_pcpu_fini;
 	pcd->pcd_pcpu_init      = mips_pcpu_init;
 	pcd->pcd_describe       = mips_describe;
 	pcd->pcd_get_config	= mips_get_config;
 	pcd->pcd_read_pmc       = mips_read_pmc;
 	pcd->pcd_release_pmc    = mips_release_pmc;
 	pcd->pcd_start_pmc      = mips_start_pmc;
 	pcd->pcd_stop_pmc       = mips_stop_pmc;
  	pcd->pcd_write_pmc      = mips_write_pmc;
 
 	pmc_mdep->pmd_intr       = mips_pmc_intr;
 	pmc_mdep->pmd_switch_in  = mips_pmc_switch_in;
 	pmc_mdep->pmd_switch_out = mips_pmc_switch_out;
 	
 	pmc_mdep->pmd_npmc   += mips_npmcs;
 
 	return (pmc_mdep);
 }
 
 void
 pmc_mips_finalize(struct pmc_mdep *md)
 {
 	(void) md;
 }
 
 #ifdef	HWPMC_MIPS_BACKTRACE
 
 static int
 pmc_next_frame(register_t *pc, register_t *sp)
 {
 	InstFmt i;
 	uintptr_t va;
 	uint32_t instr, mask;
 	int more, stksize;
 	register_t ra = 0;
 
 	/* Jump here after a nonstandard (interrupt handler) frame */
 	stksize = 0;
 
 	/* check for bad SP: could foul up next frame */
 	if (!MIPS_IS_VALID_KERNELADDR(*sp)) {
 		goto error;
 	}
 
 	/* check for bad PC */
 	if (!MIPS_IS_VALID_KERNELADDR(*pc)) {
 		goto error;
 	}
 
 	/*
 	 * Find the beginning of the current subroutine by scanning
 	 * backwards from the current PC for the end of the previous
 	 * subroutine.
 	 */
 	va = *pc - sizeof(int);
 	while (1) {
 		instr = *((uint32_t *)va);
 
 		/* [d]addiu sp,sp,-X */
 		if (((instr & 0xffff8000) == 0x27bd8000)
 		    || ((instr & 0xffff8000) == 0x67bd8000))
 			break;
 
 		/* jr	ra */
 		if (instr == 0x03e00008) {
 			/* skip over branch-delay slot instruction */
 			va += 2 * sizeof(int);
 			break;
 		}
 
 		va -= sizeof(int);
 	}
 
 	/* skip over nulls which might separate .o files */
 	while ((instr = *((uint32_t *)va)) == 0)
 		va += sizeof(int);
 
 	/* scan forwards to find stack size and any saved registers */
 	stksize = 0;
 	more = 3;
 	mask = 0;
 	for (; more; va += sizeof(int),
 	    more = (more == 3) ? 3 : more - 1) {
 		/* stop if hit our current position */
 		if (va >= *pc)
 			break;
 		instr = *((uint32_t *)va);
 		i.word = instr;
 		switch (i.JType.op) {
 		case OP_SPECIAL:
 			switch (i.RType.func) {
 			case OP_JR:
 			case OP_JALR:
 				more = 2;	/* stop after next instruction */
 				break;
 
 			case OP_SYSCALL:
 			case OP_BREAK:
 				more = 1;	/* stop now */
 			};
 			break;
 
 		case OP_BCOND:
 		case OP_J:
 		case OP_JAL:
 		case OP_BEQ:
 		case OP_BNE:
 		case OP_BLEZ:
 		case OP_BGTZ:
 			more = 2;	/* stop after next instruction */
 			break;
 
 		case OP_COP0:
 		case OP_COP1:
 		case OP_COP2:
 		case OP_COP3:
 			switch (i.RType.rs) {
 			case OP_BCx:
 			case OP_BCy:
 				more = 2;	/* stop after next instruction */
 			};
 			break;
 
 		case OP_SW:
 		case OP_SD:
 			/* 
 			 * SP is being saved using S8(FP). Most likely it indicates
 			 * that SP is modified in the function and we can't get
 			 * its value safely without emulating code backward
 			 * So just bail out on functions like this
 			 */
 			if ((i.IType.rs == 30) && (i.IType.rt = 29))
 				return (-1);
 
 			/* look for saved registers on the stack */
 			if (i.IType.rs != 29)
 				break;
 			/* only restore the first one */
 			if (mask & (1 << i.IType.rt))
 				break;
 			mask |= (1 << i.IType.rt);
 			if (i.IType.rt == 31)
 				ra = *((register_t *)(*sp + (short)i.IType.imm));
 			break;
 
 		case OP_ADDI:
 		case OP_ADDIU:
 		case OP_DADDI:
 		case OP_DADDIU:
 			/* look for stack pointer adjustment */
 			if (i.IType.rs != 29 || i.IType.rt != 29)
 				break;
 			stksize = -((short)i.IType.imm);
 		}
 	}
 
 	if (!MIPS_IS_VALID_KERNELADDR(ra))
 		return (-1);
 
 	*pc = ra;
 	*sp += stksize;
 
 	return (0);
 
 error:
 	return (-1);
 }
 
 static int
 pmc_next_uframe(register_t *pc, register_t *sp, register_t *ra)
 {
 	int offset, registers_on_stack;
 	uint32_t opcode, mask;
 	register_t function_start;
 	int stksize;
 	InstFmt i;
 
 	registers_on_stack = 0;
 	mask = 0;
 	function_start = 0;
 	offset = 0;
 	stksize = 0;
 
 	while (offset < MAX_FUNCTION_SIZE) {
 		opcode = fuword32((void *)(*pc - offset));
 
 		/* [d]addiu sp, sp, -X*/
 		if (((opcode & 0xffff8000) == 0x27bd8000)
 		    || ((opcode & 0xffff8000) == 0x67bd8000)) {
 			function_start = *pc - offset;
 			registers_on_stack = 1;
 			break;
 		}
 
 		/* lui gp, X */
 		if ((opcode & 0xffff8000) == 0x3c1c0000) {
 			/*
 			 * Function might start with this instruction
 			 * Keep an eye on "jr ra" and sp correction
 			 * with positive value further on
 			 */
 			function_start = *pc - offset;
 		}
 
 		if (function_start) {
 			/*
 			 * Stop looking further. Possible end of
 			 * function instruction: it means there is no
 			 * stack modifications, sp is unchanged
 			 */
 
 			/* [d]addiu sp,sp,X */
 			if (((opcode & 0xffff8000) == 0x27bd0000)
 			    || ((opcode & 0xffff8000) == 0x67bd0000))
 				break;
 
 			if (opcode == 0x03e00008)
 				break;
 		}
 
 		offset += sizeof(int);
 	}
 
 	if (!function_start)
 		return (-1);
 
 	if (registers_on_stack) {
 		offset = 0;
 		while ((offset < MAX_PROLOGUE_SIZE)
 		    && ((function_start + offset) < *pc)) {
 			i.word = fuword32((void *)(function_start + offset));
 			switch (i.JType.op) {
 			case OP_SW:
 				/* look for saved registers on the stack */
 				if (i.IType.rs != 29)
 					break;
 				/* only restore the first one */
 				if (mask & (1 << i.IType.rt))
 					break;
 				mask |= (1 << i.IType.rt);
 				if (i.IType.rt == 31)
 					*ra = fuword32((void *)(*sp + (short)i.IType.imm));
 				break;
 
 #if defined(__mips_n64)
 			case OP_SD:
 				/* look for saved registers on the stack */
 				if (i.IType.rs != 29)
 					break;
 				/* only restore the first one */
 				if (mask & (1 << i.IType.rt))
 					break;
 				mask |= (1 << i.IType.rt);
 				/* ra */
 				if (i.IType.rt == 31)
 					*ra = fuword64((void *)(*sp + (short)i.IType.imm));
 			break;
 #endif
 
 			case OP_ADDI:
 			case OP_ADDIU:
 			case OP_DADDI:
 			case OP_DADDIU:
 				/* look for stack pointer adjustment */
 				if (i.IType.rs != 29 || i.IType.rt != 29)
 					break;
 				stksize = -((short)i.IType.imm);
 			}
 
 			offset += sizeof(int);
 		}
 	}
 
 	/*
 	 * We reached the end of backtrace
 	 */
 	if (*pc == *ra)
 		return (-1);
 
 	*pc = *ra;
 	*sp += stksize;
 
 	return (0);
 }
 
 #endif /* HWPMC_MIPS_BACKTRACE */
 
 struct pmc_mdep *
 pmc_md_initialize()
 {
 	return pmc_mips_initialize();
 }
 
 void
 pmc_md_finalize(struct pmc_mdep *md)
 {
 	return pmc_mips_finalize(md);
 }
 
 int
 pmc_save_kernel_callchain(uintptr_t *cc, int nframes,
     struct trapframe *tf)
 {
 	register_t pc, ra, sp;
 	int frames = 0;
 
 	pc = tf->pc;
 	sp = tf->sp;
 	ra = tf->ra;
 
 	cc[frames++] = pc;
 
 #ifdef	HWPMC_MIPS_BACKTRACE
 	/*
 	 * Unwind, and unwind, and unwind
 	 */
 	while (1) {
 		if (frames >= nframes)
 			break;
 
 		if (pmc_next_frame(&pc, &sp) < 0)
 			break;
 
 		cc[frames++] = pc;
 	}
 #endif
 
 	return (frames);
 }
 
 int
 pmc_save_user_callchain(uintptr_t *cc, int nframes,
     struct trapframe *tf)
 {
 	register_t pc, ra, sp;
 	int frames = 0;
 
 	pc = tf->pc;
 	sp = tf->sp;
 	ra = tf->ra;
 
 	cc[frames++] = pc;
 
 #ifdef	HWPMC_MIPS_BACKTRACE
 
 	/*
 	 * Unwind, and unwind, and unwind
 	 */
 	while (1) {
 		if (frames >= nframes)
 			break;
 
 		if (pmc_next_uframe(&pc, &sp, &ra) < 0)
 			break;
 
 		cc[frames++] = pc;
 	}
 #endif
 
 	return (frames);
 }
Index: head/sys/dev/hwpmc/hwpmc_mips24k.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_mips24k.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_mips24k.c	(revision 282658)
@@ -1,229 +1,229 @@
 /*-
  * Copyright (c) 2010 George V. Neville-Neil <gnn@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/pmc_mdep.h>
 
 #define	MIPS24K_PMC_CAPS	(PMC_CAP_INTERRUPT | PMC_CAP_USER |     \
 				 PMC_CAP_SYSTEM | PMC_CAP_EDGE |	\
 				 PMC_CAP_THRESHOLD | PMC_CAP_READ |	\
 				 PMC_CAP_WRITE | PMC_CAP_INVERT |	\
 				 PMC_CAP_QUALIFIER)
 
 #define MIPS24K_PMC_INTERRUPT_ENABLE      0x10 /* Enable interrupts */
 #define MIPS24K_PMC_USER_ENABLE           0x08 /* Count in USER mode */
 #define MIPS24K_PMC_SUPER_ENABLE          0x04 /* Count in SUPERVISOR mode */
 #define MIPS24K_PMC_KERNEL_ENABLE         0x02 /* Count in KERNEL mode */
 #define MIPS24K_PMC_ENABLE (MIPS24K_PMC_USER_ENABLE |	   \
 			    MIPS24K_PMC_SUPER_ENABLE |	   \
 			    MIPS24K_PMC_KERNEL_ENABLE)
 
 #define MIPS24K_PMC_SELECT 5 /* Which bit position the event starts at. */
 
 const struct mips_event_code_map mips_event_codes[] = {
 	{ PMC_EV_MIPS24K_CYCLE, MIPS_CTR_ALL, 0},
 	{ PMC_EV_MIPS24K_INSTR_EXECUTED, MIPS_CTR_ALL, 1},
 	{ PMC_EV_MIPS24K_BRANCH_COMPLETED, MIPS_CTR_0, 2},
 	{ PMC_EV_MIPS24K_BRANCH_MISPRED, MIPS_CTR_1, 2},
 	{ PMC_EV_MIPS24K_RETURN, MIPS_CTR_0, 3},
 	{ PMC_EV_MIPS24K_RETURN_MISPRED, MIPS_CTR_1, 3},
 	{ PMC_EV_MIPS24K_RETURN_NOT_31, MIPS_CTR_0, 4},
 	{ PMC_EV_MIPS24K_RETURN_NOTPRED, MIPS_CTR_1, 4},
 	{ PMC_EV_MIPS24K_ITLB_ACCESS, MIPS_CTR_0, 5},
 	{ PMC_EV_MIPS24K_ITLB_MISS, MIPS_CTR_1, 5},
 	{ PMC_EV_MIPS24K_DTLB_ACCESS, MIPS_CTR_0, 6},
 	{ PMC_EV_MIPS24K_DTLB_MISS, MIPS_CTR_1, 6},
 	{ PMC_EV_MIPS24K_JTLB_IACCESS, MIPS_CTR_0, 7},
 	{ PMC_EV_MIPS24K_JTLB_IMISS, MIPS_CTR_1, 7},
 	{ PMC_EV_MIPS24K_JTLB_DACCESS, MIPS_CTR_0, 8},
 	{ PMC_EV_MIPS24K_JTLB_DMISS, MIPS_CTR_1, 8},
 	{ PMC_EV_MIPS24K_IC_FETCH, MIPS_CTR_0, 9},
 	{ PMC_EV_MIPS24K_IC_MISS, MIPS_CTR_1, 9},
 	{ PMC_EV_MIPS24K_DC_LOADSTORE, MIPS_CTR_0, 10},
 	{ PMC_EV_MIPS24K_DC_WRITEBACK, MIPS_CTR_1, 10},
 	{ PMC_EV_MIPS24K_DC_MISS, MIPS_CTR_ALL, 11},
 	/* 12 reserved */
 	{ PMC_EV_MIPS24K_STORE_MISS, MIPS_CTR_0, 13},
 	{ PMC_EV_MIPS24K_LOAD_MISS, MIPS_CTR_1, 13},
 	{ PMC_EV_MIPS24K_INTEGER_COMPLETED, MIPS_CTR_0, 14},
 	{ PMC_EV_MIPS24K_FP_COMPLETED, MIPS_CTR_1, 14},
 	{ PMC_EV_MIPS24K_LOAD_COMPLETED, MIPS_CTR_0, 15},
 	{ PMC_EV_MIPS24K_STORE_COMPLETED, MIPS_CTR_1, 15},
 	{ PMC_EV_MIPS24K_BARRIER_COMPLETED, MIPS_CTR_0, 16},
 	{ PMC_EV_MIPS24K_MIPS16_COMPLETED, MIPS_CTR_1, 16},
 	{ PMC_EV_MIPS24K_NOP_COMPLETED, MIPS_CTR_0, 17},
 	{ PMC_EV_MIPS24K_INTEGER_MULDIV_COMPLETED, MIPS_CTR_1, 17},
 	{ PMC_EV_MIPS24K_RF_STALL, MIPS_CTR_0, 18},
 	{ PMC_EV_MIPS24K_INSTR_REFETCH, MIPS_CTR_1, 18},
 	{ PMC_EV_MIPS24K_STORE_COND_COMPLETED, MIPS_CTR_0, 19},
 	{ PMC_EV_MIPS24K_STORE_COND_FAILED, MIPS_CTR_1, 19},
 	{ PMC_EV_MIPS24K_ICACHE_REQUESTS, MIPS_CTR_0, 20},
 	{ PMC_EV_MIPS24K_ICACHE_HIT, MIPS_CTR_1, 20},
 	{ PMC_EV_MIPS24K_L2_WRITEBACK, MIPS_CTR_0, 21},
 	{ PMC_EV_MIPS24K_L2_ACCESS, MIPS_CTR_1, 21},
 	{ PMC_EV_MIPS24K_L2_MISS, MIPS_CTR_0, 22},
 	{ PMC_EV_MIPS24K_L2_ERR_CORRECTED, MIPS_CTR_1, 22},
 	{ PMC_EV_MIPS24K_EXCEPTIONS, MIPS_CTR_0, 23},
 	/* Event 23 on COP0 1/3 is undefined */
 	{ PMC_EV_MIPS24K_RF_CYCLES_STALLED, MIPS_CTR_0, 24},
 	{ PMC_EV_MIPS24K_IFU_CYCLES_STALLED, MIPS_CTR_0, 25},
 	{ PMC_EV_MIPS24K_ALU_CYCLES_STALLED, MIPS_CTR_1, 25},
 	/* Events 26 through 32 undefined or reserved to customers */
 	{ PMC_EV_MIPS24K_UNCACHED_LOAD, MIPS_CTR_0, 33},
 	{ PMC_EV_MIPS24K_UNCACHED_STORE, MIPS_CTR_1, 33},
 	{ PMC_EV_MIPS24K_CP2_REG_TO_REG_COMPLETED, MIPS_CTR_0, 35},
 	{ PMC_EV_MIPS24K_MFTC_COMPLETED, MIPS_CTR_1, 35},
 	/* Event 36 reserved */
 	{ PMC_EV_MIPS24K_IC_BLOCKED_CYCLES, MIPS_CTR_0, 37},
 	{ PMC_EV_MIPS24K_DC_BLOCKED_CYCLES, MIPS_CTR_1, 37},
 	{ PMC_EV_MIPS24K_L2_IMISS_STALL_CYCLES, MIPS_CTR_0, 38},
 	{ PMC_EV_MIPS24K_L2_DMISS_STALL_CYCLES, MIPS_CTR_1, 38},
 	{ PMC_EV_MIPS24K_DMISS_CYCLES, MIPS_CTR_0, 39},
 	{ PMC_EV_MIPS24K_L2_MISS_CYCLES, MIPS_CTR_1, 39},
 	{ PMC_EV_MIPS24K_UNCACHED_BLOCK_CYCLES, MIPS_CTR_0, 40},
 	{ PMC_EV_MIPS24K_MDU_STALL_CYCLES, MIPS_CTR_0, 41},
 	{ PMC_EV_MIPS24K_FPU_STALL_CYCLES, MIPS_CTR_1, 41},
 	{ PMC_EV_MIPS24K_CP2_STALL_CYCLES, MIPS_CTR_0, 42},
 	{ PMC_EV_MIPS24K_COREXTEND_STALL_CYCLES, MIPS_CTR_1, 42},
 	{ PMC_EV_MIPS24K_ISPRAM_STALL_CYCLES, MIPS_CTR_0, 43},
 	{ PMC_EV_MIPS24K_DSPRAM_STALL_CYCLES, MIPS_CTR_1, 43},
 	{ PMC_EV_MIPS24K_CACHE_STALL_CYCLES, MIPS_CTR_0, 44},
 	/* Event 44 undefined on 1/3 */
 	{ PMC_EV_MIPS24K_LOAD_TO_USE_STALLS, MIPS_CTR_0, 45},
 	{ PMC_EV_MIPS24K_BASE_MISPRED_STALLS, MIPS_CTR_1, 45},
 	{ PMC_EV_MIPS24K_CPO_READ_STALLS, MIPS_CTR_0, 46},
 	{ PMC_EV_MIPS24K_BRANCH_MISPRED_CYCLES, MIPS_CTR_1, 46},
 	/* Event 47 reserved */
 	{ PMC_EV_MIPS24K_IFETCH_BUFFER_FULL, MIPS_CTR_0, 48},
 	{ PMC_EV_MIPS24K_FETCH_BUFFER_ALLOCATED, MIPS_CTR_1, 48},
 	{ PMC_EV_MIPS24K_EJTAG_ITRIGGER, MIPS_CTR_0, 49},
 	{ PMC_EV_MIPS24K_EJTAG_DTRIGGER, MIPS_CTR_1, 49},
 	{ PMC_EV_MIPS24K_FSB_LT_QUARTER, MIPS_CTR_0, 50},
 	{ PMC_EV_MIPS24K_FSB_QUARTER_TO_HALF, MIPS_CTR_1, 50},
 	{ PMC_EV_MIPS24K_FSB_GT_HALF, MIPS_CTR_0, 51},
 	{ PMC_EV_MIPS24K_FSB_FULL_PIPELINE_STALLS, MIPS_CTR_1, 51},
 	{ PMC_EV_MIPS24K_LDQ_LT_QUARTER, MIPS_CTR_0, 52},
 	{ PMC_EV_MIPS24K_LDQ_QUARTER_TO_HALF, MIPS_CTR_1, 52},
 	{ PMC_EV_MIPS24K_LDQ_GT_HALF, MIPS_CTR_0, 53},
 	{ PMC_EV_MIPS24K_LDQ_FULL_PIPELINE_STALLS, MIPS_CTR_1, 53},
 	{ PMC_EV_MIPS24K_WBB_LT_QUARTER, MIPS_CTR_0, 54},
 	{ PMC_EV_MIPS24K_WBB_QUARTER_TO_HALF, MIPS_CTR_1, 54},
 	{ PMC_EV_MIPS24K_WBB_GT_HALF, MIPS_CTR_0, 55},
 	{ PMC_EV_MIPS24K_WBB_FULL_PIPELINE_STALLS, MIPS_CTR_1, 55},
 	/* Events 56-63 reserved */
 	{ PMC_EV_MIPS24K_REQUEST_LATENCY, MIPS_CTR_0, 61},
 	{ PMC_EV_MIPS24K_REQUEST_COUNT, MIPS_CTR_1, 61}
 
 };
 
 const int mips_event_codes_size =
 	sizeof(mips_event_codes) / sizeof(mips_event_codes[0]);
 
 struct mips_pmc_spec mips_pmc_spec = {
 	.ps_cpuclass = PMC_CLASS_MIPS24K,
 	.ps_cputype = PMC_CPU_MIPS_24K,
 	.ps_capabilities = MIPS24K_PMC_CAPS,
 	.ps_counter_width = 32
 };
 
 /*
  * Performance Count Register N
  */
 uint64_t
 mips_pmcn_read(unsigned int pmc)
 {
 	uint32_t reg = 0;
 
 	KASSERT(pmc < mips_npmcs, ("[mips24k,%d] illegal PMC number %d",
 				   __LINE__, pmc));
 
 	/* The counter value is the next value after the control register. */
 	switch (pmc) {
 	case 0:
 		reg = mips_rd_perfcnt1();
 		break;
 	case 1:
 		reg = mips_rd_perfcnt3();
 		break;
 	default:
 		return 0;
 	}
 	return (reg);
 }
 
 uint64_t
 mips_pmcn_write(unsigned int pmc, uint64_t reg)
 {
 
 	KASSERT(pmc < mips_npmcs, ("[mips24k,%d] illegal PMC number %d",
 				   __LINE__, pmc));
 
 	switch (pmc) {
 	case 0:
 		mips_wr_perfcnt1(reg);
 		break;
 	case 1:
 		mips_wr_perfcnt3(reg);
 		break;
 	default:
 		return 0;
 	}
 	return (reg);
 }
 
 uint32_t
 mips_get_perfctl(int cpu, int ri, uint32_t event, uint32_t caps)
 {
 	uint32_t config;
 
 	config = event;
 
 	config <<= MIPS24K_PMC_SELECT;
 
 	if (caps & PMC_CAP_SYSTEM)
 		config |= (MIPS24K_PMC_SUPER_ENABLE |
 			   MIPS24K_PMC_KERNEL_ENABLE);
 	if (caps & PMC_CAP_USER)
 		config |= MIPS24K_PMC_USER_ENABLE;
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
 		config |= MIPS24K_PMC_ENABLE;
 	if (caps & PMC_CAP_INTERRUPT)
 		config |= MIPS24K_PMC_INTERRUPT_ENABLE;
 
-	PMCDBG(MDP,ALL,2,"mips24k-get_perfctl ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"mips24k-get_perfctl ri=%d -> config=0x%x", ri, config);
 
 	return (config);
 }
Index: head/sys/dev/hwpmc/hwpmc_mod.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_mod.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_mod.c	(revision 282658)
@@ -1,5117 +1,5117 @@
 /*-
  * Copyright (c) 2003-2008 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/eventhandler.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/pmclog.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/queue.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/signalvar.h>
 #include <sys/smp.h>
 #include <sys/sx.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/systm.h>
 #include <sys/vnode.h>
 
 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
 
 #include <machine/atomic.h>
 #include <machine/md_var.h>
 
 #include <vm/vm.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 
 #include "hwpmc_soft.h"
 
 /*
  * Types
  */
 
 enum pmc_flags {
 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
 };
 
 /*
  * The offset in sysent where the syscall is allocated.
  */
 
 static int pmc_syscall_num = NO_SYSCALL;
 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
 
 #define	PMC_PCPU_SAVED(C,R)	pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
 
 struct mtx_pool		*pmc_mtxpool;
 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
 
 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
 
 #define	PMC_MARK_ROW_FREE(R) do {					  \
 	pmc_pmcdisp[(R)] = 0;						  \
 } while (0)
 
 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
 		("[pmc,%d] row disposition error", __LINE__));		  \
 } while (0)
 
 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 } while (0)
 
 #define	PMC_MARK_ROW_THREAD(R) do {					  \
 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
 } while (0)
 
 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 } while (0)
 
 
 /* various event handlers */
 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
     pmc_kld_unload_tag;
 
 /* Module statistics */
 struct pmc_op_getdriverstats pmc_stats;
 
 /* Machine/processor dependent operations */
 static struct pmc_mdep  *md;
 
 /*
  * Hash tables mapping owner processes and target threads to PMCs.
  */
 
 struct mtx pmc_processhash_mtx;		/* spin mutex */
 static u_long pmc_processhashmask;
 static LIST_HEAD(pmc_processhash, pmc_process)	*pmc_processhash;
 
 /*
  * Hash table of PMC owner descriptors.  This table is protected by
  * the shared PMC "sx" lock.
  */
 
 static u_long pmc_ownerhashmask;
 static LIST_HEAD(pmc_ownerhash, pmc_owner)	*pmc_ownerhash;
 
 /*
  * List of PMC owners with system-wide sampling PMCs.
  */
 
 static LIST_HEAD(, pmc_owner)			pmc_ss_owners;
 
 
 /*
  * A map of row indices to classdep structures.
  */
 static struct pmc_classdep **pmc_rowindex_to_classdep;
 
 /*
  * Prototypes
  */
 
 #ifdef	HWPMC_DEBUG
 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
 static int	pmc_debugflags_parse(char *newstr, char *fence);
 #endif
 
 static int	load(struct module *module, int cmd, void *arg);
 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
 static struct pmc *pmc_allocate_pmc_descriptor(void);
 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
 static int	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
     int cpu);
 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
 static void	pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
 static void	pmc_cleanup(void);
 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
     int flags);
 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
 static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
     pmc_id_t pmc);
 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
     uint32_t mode);
 static void	pmc_force_context_switch(void);
 static void	pmc_link_target_process(struct pmc *pm,
     struct pmc_process *pp);
 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
 static void	pmc_log_kernel_mappings(struct pmc *pm);
 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
 static void	pmc_process_csw_in(struct thread *td);
 static void	pmc_process_csw_out(struct thread *td);
 static void	pmc_process_exit(void *arg, struct proc *p);
 static void	pmc_process_fork(void *arg, struct proc *p1,
     struct proc *p2, int n);
 static void	pmc_process_samples(int cpu, int soft);
 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
 static void	pmc_remove_owner(struct pmc_owner *po);
 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
 static void	pmc_restore_cpu_binding(struct pmc_binding *pb);
 static void	pmc_save_cpu_binding(struct pmc_binding *pb);
 static void	pmc_select_cpu(int cpu);
 static int	pmc_start(struct pmc *pm);
 static int	pmc_stop(struct pmc *pm);
 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
 static void	pmc_unlink_target_process(struct pmc *pmc,
     struct pmc_process *pp);
 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
 
 /*
  * Kernel tunables and sysctl(8) interface.
  */
 
 SYSCTL_DECL(_kern_hwpmc);
 
 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
     &pmc_callchaindepth, 0, "depth of call chain records");
 
 #ifdef	HWPMC_DEBUG
 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
     sizeof(pmc_debugstr));
 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
 #endif
 
 /*
  * kern.hwpmc.hashrows -- determines the number of rows in the
  * of the hash table used to look up threads
  */
 
 static int pmc_hashsize = PMC_HASH_SIZE;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
     &pmc_hashsize, 0, "rows in hash tables");
 
 /*
  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
  */
 
 static int pmc_nsamples = PMC_NSAMPLES;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
     &pmc_nsamples, 0, "number of PC samples per CPU");
 
 
 /*
  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
  */
 
 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
     &pmc_mtxpool_size, 0, "size of spin mutex pool");
 
 
 /*
  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
  * allocate system-wide PMCs.
  *
  * Allowing unprivileged processes to allocate system PMCs is convenient
  * if system-wide measurements need to be taken concurrently with other
  * per-process measurements.  This feature is turned off by default.
  */
 
 static int pmc_unprivileged_syspmcs = 0;
 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
     &pmc_unprivileged_syspmcs, 0,
     "allow unprivileged process to allocate system PMCs");
 
 /*
  * Hash function.  Discard the lower 2 bits of the pointer since
  * these are always zero for our uses.  The hash multiplier is
  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
  */
 
 #if	LONG_BIT == 64
 #define	_PMC_HM		11400714819323198486u
 #elif	LONG_BIT == 32
 #define	_PMC_HM		2654435769u
 #else
 #error 	Must know the size of 'long' to compile
 #endif
 
 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
 
 /*
  * Syscall structures
  */
 
 /* The `sysent' for the new syscall */
 static struct sysent pmc_sysent = {
 	2,			/* sy_narg */
 	pmc_syscall_handler	/* sy_call */
 };
 
 static struct syscall_module_data pmc_syscall_mod = {
 	load,
 	NULL,
 	&pmc_syscall_num,
 	&pmc_sysent,
 #if (__FreeBSD_version >= 1100000)
 	{ 0, NULL },
 	SY_THR_STATIC_KLD,
 #else
 	{ 0, NULL }
 #endif
 };
 
 static moduledata_t pmc_mod = {
 	PMC_MODULE_NAME,
 	syscall_module_handler,
 	&pmc_syscall_mod
 };
 
 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
 MODULE_VERSION(pmc, PMC_VERSION);
 
 #ifdef	HWPMC_DEBUG
 enum pmc_dbgparse_state {
 	PMCDS_WS,		/* in whitespace */
 	PMCDS_MAJOR,		/* seen a major keyword */
 	PMCDS_MINOR
 };
 
 static int
 pmc_debugflags_parse(char *newstr, char *fence)
 {
 	char c, *p, *q;
 	struct pmc_debugflags *tmpflags;
 	int error, found, *newbits, tmp;
 	size_t kwlen;
 
 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
 
 	p = newstr;
 	error = 0;
 
 	for (; p < fence && (c = *p); p++) {
 
 		/* skip white space */
 		if (c == ' ' || c == '\t')
 			continue;
 
 		/* look for a keyword followed by "=" */
 		for (q = p; p < fence && (c = *p) && c != '='; p++)
 			;
 		if (c != '=') {
 			error = EINVAL;
 			goto done;
 		}
 
 		kwlen = p - q;
 		newbits = NULL;
 
 		/* lookup flag group name */
 #define	DBG_SET_FLAG_MAJ(S,F)						\
 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
 			newbits = &tmpflags->pdb_ ## F;
 
 		DBG_SET_FLAG_MAJ("cpu",		CPU);
 		DBG_SET_FLAG_MAJ("csw",		CSW);
 		DBG_SET_FLAG_MAJ("logging",	LOG);
 		DBG_SET_FLAG_MAJ("module",	MOD);
 		DBG_SET_FLAG_MAJ("md", 		MDP);
 		DBG_SET_FLAG_MAJ("owner",	OWN);
 		DBG_SET_FLAG_MAJ("pmc",		PMC);
 		DBG_SET_FLAG_MAJ("process",	PRC);
 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
 
 		if (newbits == NULL) {
 			error = EINVAL;
 			goto done;
 		}
 
 		p++;		/* skip the '=' */
 
 		/* Now parse the individual flags */
 		tmp = 0;
 	newflag:
 		for (q = p; p < fence && (c = *p); p++)
 			if (c == ' ' || c == '\t' || c == ',')
 				break;
 
 		/* p == fence or c == ws or c == "," or c == 0 */
 
 		if ((kwlen = p - q) == 0) {
 			*newbits = tmp;
 			continue;
 		}
 
 		found = 0;
 #define	DBG_SET_FLAG_MIN(S,F)						\
 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
 
 		/* a '*' denotes all possible flags in the group */
 		if (kwlen == 1 && *q == '*')
 			tmp = found = ~0;
 		/* look for individual flag names */
 		DBG_SET_FLAG_MIN("allocaterow", ALR);
 		DBG_SET_FLAG_MIN("allocate",	ALL);
 		DBG_SET_FLAG_MIN("attach",	ATT);
 		DBG_SET_FLAG_MIN("bind",	BND);
 		DBG_SET_FLAG_MIN("config",	CFG);
 		DBG_SET_FLAG_MIN("exec",	EXC);
 		DBG_SET_FLAG_MIN("exit",	EXT);
 		DBG_SET_FLAG_MIN("find",	FND);
 		DBG_SET_FLAG_MIN("flush",	FLS);
 		DBG_SET_FLAG_MIN("fork",	FRK);
 		DBG_SET_FLAG_MIN("getbuf",	GTB);
 		DBG_SET_FLAG_MIN("hook",	PMH);
 		DBG_SET_FLAG_MIN("init",	INI);
 		DBG_SET_FLAG_MIN("intr",	INT);
 		DBG_SET_FLAG_MIN("linktarget",	TLK);
 		DBG_SET_FLAG_MIN("mayberemove", OMR);
 		DBG_SET_FLAG_MIN("ops",		OPS);
 		DBG_SET_FLAG_MIN("read",	REA);
 		DBG_SET_FLAG_MIN("register",	REG);
 		DBG_SET_FLAG_MIN("release",	REL);
 		DBG_SET_FLAG_MIN("remove",	ORM);
 		DBG_SET_FLAG_MIN("sample",	SAM);
 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
 		DBG_SET_FLAG_MIN("select",	SEL);
 		DBG_SET_FLAG_MIN("signal",	SIG);
 		DBG_SET_FLAG_MIN("swi",		SWI);
 		DBG_SET_FLAG_MIN("swo",		SWO);
 		DBG_SET_FLAG_MIN("start",	STA);
 		DBG_SET_FLAG_MIN("stop",	STO);
 		DBG_SET_FLAG_MIN("syscall",	PMS);
 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
 		DBG_SET_FLAG_MIN("write",	WRI);
 		if (found == 0) {
 			/* unrecognized flag name */
 			error = EINVAL;
 			goto done;
 		}
 
 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
 			*newbits = tmp;
 			continue;
 		}
 
 		p++;
 		goto newflag;
 	}
 
 	/* save the new flag set */
 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
 
  done:
 	free(tmpflags, M_PMC);
 	return error;
 }
 
 static int
 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
 {
 	char *fence, *newstr;
 	int error;
 	unsigned int n;
 
 	(void) arg1; (void) arg2; /* unused parameters */
 
 	n = sizeof(pmc_debugstr);
 	newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
 	(void) strlcpy(newstr, pmc_debugstr, n);
 
 	error = sysctl_handle_string(oidp, newstr, n, req);
 
 	/* if there is a new string, parse and copy it */
 	if (error == 0 && req->newptr != NULL) {
 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
 		if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
 			(void) strlcpy(pmc_debugstr, newstr,
 			    sizeof(pmc_debugstr));
 	}
 
 	free(newstr, M_PMC);
 
 	return error;
 }
 #endif
 
 /*
  * Map a row index to a classdep structure and return the adjusted row
  * index for the PMC class index.
  */
 static struct pmc_classdep *
 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
 {
 	struct pmc_classdep *pcd;
 
 	(void) md;
 
 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
 
 	pcd = pmc_rowindex_to_classdep[ri];
 
 	KASSERT(pcd != NULL,
 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
 
 	*adjri = ri - pcd->pcd_ri;
 
 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
 
 	return (pcd);
 }
 
 /*
  * Concurrency Control
  *
  * The driver manages the following data structures:
  *
  *   - target process descriptors, one per target process
  *   - owner process descriptors (and attached lists), one per owner process
  *   - lookup hash tables for owner and target processes
  *   - PMC descriptors (and attached lists)
  *   - per-cpu hardware state
  *   - the 'hook' variable through which the kernel calls into
  *     this module
  *   - the machine hardware state (managed by the MD layer)
  *
  * These data structures are accessed from:
  *
  * - thread context-switch code
  * - interrupt handlers (possibly on multiple cpus)
  * - kernel threads on multiple cpus running on behalf of user
  *   processes doing system calls
  * - this driver's private kernel threads
  *
  * = Locks and Locking strategy =
  *
  * The driver uses four locking strategies for its operation:
  *
  * - The global SX lock "pmc_sx" is used to protect internal
  *   data structures.
  *
  *   Calls into the module by syscall() start with this lock being
  *   held in exclusive mode.  Depending on the requested operation,
  *   the lock may be downgraded to 'shared' mode to allow more
  *   concurrent readers into the module.  Calls into the module from
  *   other parts of the kernel acquire the lock in shared mode.
  *
  *   This SX lock is held in exclusive mode for any operations that
  *   modify the linkages between the driver's internal data structures.
  *
  *   The 'pmc_hook' function pointer is also protected by this lock.
  *   It is only examined with the sx lock held in exclusive mode.  The
  *   kernel module is allowed to be unloaded only with the sx lock held
  *   in exclusive mode.  In normal syscall handling, after acquiring the
  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
  *   proceeding.  This prevents races between the thread unloading the module
  *   and other threads seeking to use the module.
  *
  * - Lookups of target process structures and owner process structures
  *   cannot use the global "pmc_sx" SX lock because these lookups need
  *   to happen during context switches and in other critical sections
  *   where sleeping is not allowed.  We protect these lookup tables
  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
  *   "pmc_ownerhash_mtx".
  *
  * - Interrupt handlers work in a lock free manner.  At interrupt
  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
  *   when the PMC was started.  If this pointer is NULL, the interrupt
  *   is ignored after updating driver statistics.  We ensure that this
  *   pointer is set (using an atomic operation if necessary) before the
  *   PMC hardware is started.  Conversely, this pointer is unset atomically
  *   only after the PMC hardware is stopped.
  *
  *   We ensure that everything needed for the operation of an
  *   interrupt handler is available without it needing to acquire any
  *   locks.  We also ensure that a PMC's software state is destroyed only
  *   after the PMC is taken off hardware (on all CPUs).
  *
  * - Context-switch handling with process-private PMCs needs more
  *   care.
  *
  *   A given process may be the target of multiple PMCs.  For example,
  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
  *   while the target process is running on another.  A PMC could also
  *   be getting released because its owner is exiting.  We tackle
  *   these situations in the following manner:
  *
  *   - each target process structure 'pmc_process' has an array
  *     of 'struct pmc *' pointers, one for each hardware PMC.
  *
  *   - At context switch IN time, each "target" PMC in RUNNING state
  *     gets started on hardware and a pointer to each PMC is copied into
  *     the per-cpu phw array.  The 'runcount' for the PMC is
  *     incremented.
  *
  *   - At context switch OUT time, all process-virtual PMCs are stopped
  *     on hardware.  The saved value is added to the PMCs value field
  *     only if the PMC is in a non-deleted state (the PMCs state could
  *     have changed during the current time slice).
  *
  *     Note that since in-between a switch IN on a processor and a switch
  *     OUT, the PMC could have been released on another CPU.  Therefore
  *     context switch OUT always looks at the hardware state to turn
  *     OFF PMCs and will update a PMC's saved value only if reachable
  *     from the target process record.
  *
  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
  *     be attached to many processes at the time of the call and could
  *     be active on multiple CPUs).
  *
  *     We prevent further scheduling of the PMC by marking it as in
  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
  *     this PMC is currently running on a CPU somewhere.  The thread
  *     doing the PMCRELEASE operation waits by repeatedly doing a
  *     pause() till the runcount comes to zero.
  *
  * The contents of a PMC descriptor (struct pmc) are protected using
  * a spin-mutex.  In order to save space, we use a mutex pool.
  *
  * In terms of lock types used by witness(4), we use:
  * - Type "pmc-sx", used by the global SX lock.
  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
  * - Type "pmc-leaf", used for all other spin mutexes.
  */
 
 /*
  * save the cpu binding of the current kthread
  */
 
 static void
 pmc_save_cpu_binding(struct pmc_binding *pb)
 {
-	PMCDBG(CPU,BND,2, "%s", "save-cpu");
+	PMCDBG0(CPU,BND,2, "save-cpu");
 	thread_lock(curthread);
 	pb->pb_bound = sched_is_bound(curthread);
 	pb->pb_cpu   = curthread->td_oncpu;
 	thread_unlock(curthread);
-	PMCDBG(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
+	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
 }
 
 /*
  * restore the cpu binding of the current thread
  */
 
 static void
 pmc_restore_cpu_binding(struct pmc_binding *pb)
 {
-	PMCDBG(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
+	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
 	    curthread->td_oncpu, pb->pb_cpu);
 	thread_lock(curthread);
 	if (pb->pb_bound)
 		sched_bind(curthread, pb->pb_cpu);
 	else
 		sched_unbind(curthread);
 	thread_unlock(curthread);
-	PMCDBG(CPU,BND,2, "%s", "restore-cpu done");
+	PMCDBG0(CPU,BND,2, "restore-cpu done");
 }
 
 /*
  * move execution over the specified cpu and bind it there.
  */
 
 static void
 pmc_select_cpu(int cpu)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
 
 	/* Never move to an inactive CPU. */
 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
 	    "CPU %d", __LINE__, cpu));
 
-	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d", cpu);
+	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
 	thread_lock(curthread);
 	sched_bind(curthread, cpu);
 	thread_unlock(curthread);
 
 	KASSERT(curthread->td_oncpu == cpu,
 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
 		cpu, curthread->td_oncpu));
 
-	PMCDBG(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
+	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
 }
 
 /*
  * Force a context switch.
  *
  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
  * guaranteed to force a context switch.
  */
 
 static void
 pmc_force_context_switch(void)
 {
 
 	pause("pmcctx", 1);
 }
 
 /*
  * Get the file name for an executable.  This is a simple wrapper
  * around vn_fullpath(9).
  */
 
 static void
 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
 {
 
 	*fullpath = "unknown";
 	*freepath = NULL;
 	vn_fullpath(curthread, v, fullpath, freepath);
 }
 
 /*
  * remove an process owning PMCs
  */
 
 void
 pmc_remove_owner(struct pmc_owner *po)
 {
 	struct pmc *pm, *tmp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
-	PMCDBG(OWN,ORM,1, "remove-owner po=%p", po);
+	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
 
 	/* Remove descriptor from the owner hash table */
 	LIST_REMOVE(po, po_next);
 
 	/* release all owned PMC descriptors */
 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
-		PMCDBG(OWN,ORM,2, "pmc=%p", pm);
+		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
 		KASSERT(pm->pm_owner == po,
 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
 
 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
 		pmc_destroy_pmc_descriptor(pm);
 	}
 
 	KASSERT(po->po_sscount == 0,
 	    ("[pmc,%d] SS count not zero", __LINE__));
 	KASSERT(LIST_EMPTY(&po->po_pmcs),
 	    ("[pmc,%d] PMC list not empty", __LINE__));
 
 	/* de-configure the log file if present */
 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_deconfigure_log(po);
 }
 
 /*
  * remove an owner process record if all conditions are met.
  */
 
 static void
 pmc_maybe_remove_owner(struct pmc_owner *po)
 {
 
-	PMCDBG(OWN,OMR,1, "maybe-remove-owner po=%p", po);
+	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
 
 	/*
 	 * Remove owner record if
 	 * - this process does not own any PMCs
 	 * - this process has not allocated a system-wide sampling buffer
 	 */
 
 	if (LIST_EMPTY(&po->po_pmcs) &&
 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
 		pmc_remove_owner(po);
 		pmc_destroy_owner_descriptor(po);
 	}
 }
 
 /*
  * Add an association between a target process and a PMC.
  */
 
 static void
 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
 {
 	int ri;
 	struct pmc_target *pt;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm != NULL && pp != NULL,
 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
 		__LINE__, pm, pp->pp_proc->p_pid));
 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
 	    ("[pmc,%d] Illegal reference count %d for process record %p",
 		__LINE__, pp->pp_refcnt, (void *) pp));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
-	PMCDBG(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
+	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
 	    pm, ri, pp);
 
 #ifdef	HWPMC_DEBUG
 	LIST_FOREACH(pt, &pm->pm_targets, pt_next)
 	    if (pt->pt_process == pp)
 		    KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
 				__LINE__, pp, pm));
 #endif
 
 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
 	pt->pt_process = pp;
 
 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
 
 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
 	    (uintptr_t)pm);
 
 	if (pm->pm_owner->po_owner == pp->pp_proc)
 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
 
 	/*
 	 * Initialize the per-process values at this row index.
 	 */
 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
 	    pm->pm_sc.pm_reloadcount : 0;
 
 	pp->pp_refcnt++;
 
 }
 
 /*
  * Removes the association between a target process and a PMC.
  */
 
 static void
 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
 {
 	int ri;
 	struct proc *p;
 	struct pmc_target *ptgt;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm != NULL && pp != NULL,
 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
 
 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
 	    ("[pmc,%d] Illegal ref count %d on process record %p",
 		__LINE__, pp->pp_refcnt, (void *) pp));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
-	PMCDBG(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
+	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
 	    pm, ri, pp);
 
 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
 
 	pp->pp_pmcs[ri].pp_pmc = NULL;
 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
 
 	/* Remove owner-specific flags */
 	if (pm->pm_owner->po_owner == pp->pp_proc) {
 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
 	}
 
 	pp->pp_refcnt--;
 
 	/* Remove the target process from the PMC structure */
 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
 		if (ptgt->pt_process == pp)
 			break;
 
 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
 
 	LIST_REMOVE(ptgt, pt_next);
 	free(ptgt, M_PMC);
 
 	/* if the PMC now lacks targets, send the owner a SIGIO */
 	if (LIST_EMPTY(&pm->pm_targets)) {
 		p = pm->pm_owner->po_owner;
 		PROC_LOCK(p);
 		kern_psignal(p, SIGIO);
 		PROC_UNLOCK(p);
 
-		PMCDBG(PRC,SIG,2, "signalling proc=%p signal=%d", p,
+		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
 		    SIGIO);
 	}
 }
 
 /*
  * Check if PMC 'pm' may be attached to target process 't'.
  */
 
 static int
 pmc_can_attach(struct pmc *pm, struct proc *t)
 {
 	struct proc *o;		/* pmc owner */
 	struct ucred *oc, *tc;	/* owner, target credentials */
 	int decline_attach, i;
 
 	/*
 	 * A PMC's owner can always attach that PMC to itself.
 	 */
 
 	if ((o = pm->pm_owner->po_owner) == t)
 		return 0;
 
 	PROC_LOCK(o);
 	oc = o->p_ucred;
 	crhold(oc);
 	PROC_UNLOCK(o);
 
 	PROC_LOCK(t);
 	tc = t->p_ucred;
 	crhold(tc);
 	PROC_UNLOCK(t);
 
 	/*
 	 * The effective uid of the PMC owner should match at least one
 	 * of the {effective,real,saved} uids of the target process.
 	 */
 
 	decline_attach = oc->cr_uid != tc->cr_uid &&
 	    oc->cr_uid != tc->cr_svuid &&
 	    oc->cr_uid != tc->cr_ruid;
 
 	/*
 	 * Every one of the target's group ids, must be in the owner's
 	 * group list.
 	 */
 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
 		decline_attach = !groupmember(tc->cr_groups[i], oc);
 
 	/* check the read and saved gids too */
 	if (decline_attach == 0)
 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
 		    !groupmember(tc->cr_svgid, oc);
 
 	crfree(tc);
 	crfree(oc);
 
 	return !decline_attach;
 }
 
 /*
  * Attach a process to a PMC.
  */
 
 static int
 pmc_attach_one_process(struct proc *p, struct pmc *pm)
 {
 	int ri;
 	char *fullpath, *freepath;
 	struct pmc_process	*pp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
-	PMCDBG(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
+	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 	/*
 	 * Locate the process descriptor corresponding to process 'p',
 	 * allocating space as needed.
 	 *
 	 * Verify that rowindex 'pm_rowindex' is free in the process
 	 * descriptor.
 	 *
 	 * If not, allocate space for a descriptor and link the
 	 * process descriptor and PMC.
 	 */
 	ri = PMC_TO_ROWINDEX(pm);
 
 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
 		return ENOMEM;
 
 	if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
 		return EEXIST;
 
 	if (pp->pp_pmcs[ri].pp_pmc != NULL)
 		return EBUSY;
 
 	pmc_link_target_process(pm, pp);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
 
 	/* issue an attach event to a configured log file */
 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
 		if (p->p_flag & P_KTHREAD) {
 			fullpath = kernelname;
 			freepath = NULL;
 		} else
 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
 		if (freepath)
 			free(freepath, M_TEMP);
 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			pmc_log_process_mappings(pm->pm_owner, p);
 	}
 	/* mark process as using HWPMCs */
 	PROC_LOCK(p);
 	p->p_flag |= P_HWPMC;
 	PROC_UNLOCK(p);
 
 	return 0;
 }
 
 /*
  * Attach a process and optionally its children
  */
 
 static int
 pmc_attach_process(struct proc *p, struct pmc *pm)
 {
 	int error;
 	struct proc *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
-	PMCDBG(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
+	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 
 	/*
 	 * If this PMC successfully allowed a GETMSR operation
 	 * in the past, disallow further ATTACHes.
 	 */
 
 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
 		return EPERM;
 
 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
 		return pmc_attach_one_process(p, pm);
 
 	/*
 	 * Traverse all child processes, attaching them to
 	 * this PMC.
 	 */
 
 	sx_slock(&proctree_lock);
 
 	top = p;
 
 	for (;;) {
 		if ((error = pmc_attach_one_process(p, pm)) != 0)
 			break;
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				goto done;
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 	}
 
 	if (error)
 		(void) pmc_detach_process(top, pm);
 
  done:
 	sx_sunlock(&proctree_lock);
 	return error;
 }
 
 /*
  * Detach a process from a PMC.  If there are no other PMCs tracking
  * this process, remove the process structure from its hash table.  If
  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
  */
 
 static int
 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
 {
 	int ri;
 	struct pmc_process *pp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm != NULL,
 	    ("[pmc,%d] null pm pointer", __LINE__));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
-	PMCDBG(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
+	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
 	    pm, ri, p, p->p_pid, p->p_comm, flags);
 
 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
 		return ESRCH;
 
 	if (pp->pp_pmcs[ri].pp_pmc != pm)
 		return EINVAL;
 
 	pmc_unlink_target_process(pm, pp);
 
 	/* Issue a detach entry if a log file is configured */
 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_process_pmcdetach(pm, p->p_pid);
 
 	/*
 	 * If there are no PMCs targetting this process, we remove its
 	 * descriptor from the target hash table and unset the P_HWPMC
 	 * flag in the struct proc.
 	 */
 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
 		__LINE__, pp->pp_refcnt, pp));
 
 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
 		return 0;
 
 	pmc_remove_process_descriptor(pp);
 
 	if (flags & PMC_FLAG_REMOVE)
 		free(pp, M_PMC);
 
 	PROC_LOCK(p);
 	p->p_flag &= ~P_HWPMC;
 	PROC_UNLOCK(p);
 
 	return 0;
 }
 
 /*
  * Detach a process and optionally its descendants from a PMC.
  */
 
 static int
 pmc_detach_process(struct proc *p, struct pmc *pm)
 {
 	struct proc *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
-	PMCDBG(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
+	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
 		return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
 
 	/*
 	 * Traverse all children, detaching them from this PMC.  We
 	 * ignore errors since we could be detaching a PMC from a
 	 * partially attached proc tree.
 	 */
 
 	sx_slock(&proctree_lock);
 
 	top = p;
 
 	for (;;) {
 		(void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
 
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				goto done;
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 	}
 
  done:
 	sx_sunlock(&proctree_lock);
 
 	if (LIST_EMPTY(&pm->pm_targets))
 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
 
 	return 0;
 }
 
 
 /*
  * Thread context switch IN
  */
 
 static void
 pmc_process_csw_in(struct thread *td)
 {
 	int cpu;
 	unsigned int adjri, ri;
 	struct pmc *pm;
 	struct proc *p;
 	struct pmc_cpu *pc;
 	struct pmc_hw *phw;
 	pmc_value_t newvalue;
 	struct pmc_process *pp;
 	struct pmc_classdep *pcd;
 
 	p = td->td_proc;
 
 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
 		return;
 
 	KASSERT(pp->pp_proc == td->td_proc,
 	    ("[pmc,%d] not my thread state", __LINE__));
 
 	critical_enter(); /* no preemption from this point */
 
 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
 
-	PMCDBG(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
+	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
 	    p->p_pid, p->p_comm, pp);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] wierd CPU id %d", __LINE__, cpu));
 
 	pc = pmc_pcpu[cpu];
 
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
 			continue;
 
 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
 			__LINE__, PMC_TO_MODE(pm)));
 
 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
 
 		/*
 		 * Only PMCs that are marked as 'RUNNING' need
 		 * be placed on hardware.
 		 */
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		/* increment PMC runcount */
 		atomic_add_rel_int(&pm->pm_runcount, 1);
 
 		/* configure the HWPMC we are going to use. */
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 		pcd->pcd_config_pmc(cpu, adjri, pm);
 
 		phw = pc->pc_hwpmcs[ri];
 
 		KASSERT(phw != NULL,
 		    ("[pmc,%d] null hw pointer", __LINE__));
 
 		KASSERT(phw->phw_pmc == pm,
 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
 			phw->phw_pmc, pm));
 
 		/*
 		 * Write out saved value and start the PMC.
 		 *
 		 * Sampling PMCs use a per-process value, while
 		 * counting mode PMCs use a per-pmc value that is
 		 * inherited across descendants.
 		 */
 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 			newvalue = PMC_PCPU_SAVED(cpu,ri) =
 			    pp->pp_pmcs[ri].pp_pmcval;
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 		} else {
 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
 			    ("[pmc,%d] illegal mode=%d", __LINE__,
 			    PMC_TO_MODE(pm)));
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
 			    pm->pm_gv.pm_savedvalue;
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 		}
 
-		PMCDBG(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
+		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
 
 		pcd->pcd_write_pmc(cpu, adjri, newvalue);
 		pcd->pcd_start_pmc(cpu, adjri);
 	}
 
 	/*
 	 * perform any other architecture/cpu dependent thread
 	 * switch-in actions.
 	 */
 
 	(void) (*md->pmd_switch_in)(pc, pp);
 
 	critical_exit();
 
 }
 
 /*
  * Thread context switch OUT.
  */
 
 static void
 pmc_process_csw_out(struct thread *td)
 {
 	int cpu;
 	int64_t tmp;
 	struct pmc *pm;
 	struct proc *p;
 	enum pmc_mode mode;
 	struct pmc_cpu *pc;
 	pmc_value_t newvalue;
 	unsigned int adjri, ri;
 	struct pmc_process *pp;
 	struct pmc_classdep *pcd;
 
 
 	/*
 	 * Locate our process descriptor; this may be NULL if
 	 * this process is exiting and we have already removed
 	 * the process from the target process table.
 	 *
 	 * Note that due to kernel preemption, multiple
 	 * context switches may happen while the process is
 	 * exiting.
 	 *
 	 * Note also that if the target process cannot be
 	 * found we still need to deconfigure any PMCs that
 	 * are currently running on hardware.
 	 */
 
 	p = td->td_proc;
 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
 
 	/*
 	 * save PMCs
 	 */
 
 	critical_enter();
 
 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
 
-	PMCDBG(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
+	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
 	    p->p_pid, p->p_comm, pp);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d wierd CPU id %d", __LINE__, cpu));
 
 	pc = pmc_pcpu[cpu];
 
 	/*
 	 * When a PMC gets unlinked from a target PMC, it will
 	 * be removed from the target's pp_pmc[] array.
 	 *
 	 * However, on a MP system, the target could have been
 	 * executing on another CPU at the time of the unlink.
 	 * So, at context switch OUT time, we need to look at
 	 * the hardware to determine if a PMC is scheduled on
 	 * it.
 	 */
 
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 		pm  = NULL;
 		(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
 
 		if (pm == NULL)	/* nothing at this row index */
 			continue;
 
 		mode = PMC_TO_MODE(pm);
 		if (!PMC_IS_VIRTUAL_MODE(mode))
 			continue; /* not a process virtual PMC */
 
 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
 
 		/* Stop hardware if not already stopped */
 		if (pm->pm_stalled == 0)
 			pcd->pcd_stop_pmc(cpu, adjri);
 
 		/* reduce this PMC's runcount */
 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
 
 		/*
 		 * If this PMC is associated with this process,
 		 * save the reading.
 		 */
 
 		if (pp != NULL && pp->pp_pmcs[ri].pp_pmc != NULL) {
 
 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
 
 			KASSERT(pp->pp_refcnt > 0,
 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
 				pp->pp_refcnt));
 
 			pcd->pcd_read_pmc(cpu, adjri, &newvalue);
 
 			tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
 
-			PMCDBG(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
+			PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd", cpu, ri,
 			    tmp);
 
 			if (mode == PMC_MODE_TS) {
 
 				/*
 				 * For sampling process-virtual PMCs,
 				 * we expect the count to be
 				 * decreasing as the 'value'
 				 * programmed into the PMC is the
 				 * number of events to be seen till
 				 * the next sampling interrupt.
 				 */
 				if (tmp < 0)
 					tmp += pm->pm_sc.pm_reloadcount;
 				mtx_pool_lock_spin(pmc_mtxpool, pm);
 				pp->pp_pmcs[ri].pp_pmcval -= tmp;
 				if ((int64_t) pp->pp_pmcs[ri].pp_pmcval < 0)
 					pp->pp_pmcs[ri].pp_pmcval +=
 					    pm->pm_sc.pm_reloadcount;
 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
 
 			} else {
 
 				/*
 				 * For counting process-virtual PMCs,
 				 * we expect the count to be
 				 * increasing monotonically, modulo a 64
 				 * bit wraparound.
 				 */
 				KASSERT((int64_t) tmp >= 0,
 				    ("[pmc,%d] negative increment cpu=%d "
 				     "ri=%d newvalue=%jx saved=%jx "
 				     "incr=%jx", __LINE__, cpu, ri,
 				     newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
 
 				mtx_pool_lock_spin(pmc_mtxpool, pm);
 				pm->pm_gv.pm_savedvalue += tmp;
 				pp->pp_pmcs[ri].pp_pmcval += tmp;
 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
 
 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
 					pmclog_process_proccsw(pm, pp, tmp);
 			}
 		}
 
 		/* mark hardware as free */
 		pcd->pcd_config_pmc(cpu, adjri, NULL);
 	}
 
 	/*
 	 * perform any other architecture/cpu dependent thread
 	 * switch out functions.
 	 */
 
 	(void) (*md->pmd_switch_out)(pc, pp);
 
 	critical_exit();
 }
 
 /*
  * A mapping change for a process.
  */
 
 static void
 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
 {
 	int ri;
 	pid_t pid;
 	char *fullpath, *freepath;
 	const struct pmc *pm;
 	struct pmc_owner *po;
 	const struct pmc_process *pp;
 
 	freepath = fullpath = NULL;
 	pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
 
 	pid = td->td_proc->p_pid;
 
 	/* Inform owners of all system-wide sampling PMCs. */
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
 
 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
 		goto done;
 
 	/*
 	 * Inform sampling PMC owners tracking this process.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++)
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			pmclog_process_map_in(pm->pm_owner,
 			    pid, pkm->pm_address, fullpath);
 
   done:
 	if (freepath)
 		free(freepath, M_TEMP);
 }
 
 
 /*
  * Log an munmap request.
  */
 
 static void
 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
 {
 	int ri;
 	pid_t pid;
 	struct pmc_owner *po;
 	const struct pmc *pm;
 	const struct pmc_process *pp;
 
 	pid = td->td_proc->p_pid;
 
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_process_map_out(po, pid, pkm->pm_address,
 		    pkm->pm_address + pkm->pm_size);
 
 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
 		return;
 
 	for (ri = 0; ri < md->pmd_npmc; ri++)
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			pmclog_process_map_out(pm->pm_owner, pid,
 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
 }
 
 /*
  * Log mapping information about the kernel.
  */
 
 static void
 pmc_log_kernel_mappings(struct pmc *pm)
 {
 	struct pmc_owner *po;
 	struct pmckern_map_in *km, *kmbase;
 
 	sx_assert(&pmc_sx, SX_LOCKED);
 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
 		__LINE__, (void *) pm));
 
 	po = pm->pm_owner;
 
 	if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
 		return;
 
 	/*
 	 * Log the current set of kernel modules.
 	 */
 	kmbase = linker_hwpmc_list_objects();
 	for (km = kmbase; km->pm_file != NULL; km++) {
-		PMCDBG(LOG,REG,1,"%s %p", (char *) km->pm_file,
+		PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
 		    (void *) km->pm_address);
 		pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
 		    km->pm_file);
 	}
 	free(kmbase, M_LINKER);
 
 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
 }
 
 /*
  * Log the mappings for a single process.
  */
 
 static void
 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
 {
 	vm_map_t map;
 	struct vnode *vp;
 	struct vmspace *vm;
 	vm_map_entry_t entry;
 	vm_offset_t last_end;
 	u_int last_timestamp;
 	struct vnode *last_vp;
 	vm_offset_t start_addr;
 	vm_object_t obj, lobj, tobj;
 	char *fullpath, *freepath;
 
 	last_vp = NULL;
 	last_end = (vm_offset_t) 0;
 	fullpath = freepath = NULL;
 
 	if ((vm = vmspace_acquire_ref(p)) == NULL)
 		return;
 
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 
 	for (entry = map->header.next; entry != &map->header; entry = entry->next) {
 
 		if (entry == NULL) {
-			PMCDBG(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
+			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
 			break;
 		}
 
 		/*
 		 * We only care about executable map entries.
 		 */
 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
 		    !(entry->protection & VM_PROT_EXECUTE) ||
 		    (entry->object.vm_object == NULL)) {
 			continue;
 		}
 
 		obj = entry->object.vm_object;
 		VM_OBJECT_RLOCK(obj);
 
 		/* 
 		 * Walk the backing_object list to find the base
 		 * (non-shadowed) vm_object.
 		 */
 		for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
 			if (tobj != obj)
 				VM_OBJECT_RLOCK(tobj);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			lobj = tobj;
 		}
 
 		/*
 		 * At this point lobj is the base vm_object and it is locked.
 		 */
 		if (lobj == NULL) {
-			PMCDBG(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
+			PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		if (lobj->type != OBJT_VNODE || lobj->handle == NULL) {
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		/*
 		 * Skip contiguous regions that point to the same
 		 * vnode, so we don't emit redundant MAP-IN
 		 * directives.
 		 */
 		if (entry->start == last_end && lobj->handle == last_vp) {
 			last_end = entry->end;
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		/* 
 		 * We don't want to keep the proc's vm_map or this
 		 * vm_object locked while we walk the pathname, since
 		 * vn_fullpath() can sleep.  However, if we drop the
 		 * lock, it's possible for concurrent activity to
 		 * modify the vm_map list.  To protect against this,
 		 * we save the vm_map timestamp before we release the
 		 * lock, and check it after we reacquire the lock
 		 * below.
 		 */
 		start_addr = entry->start;
 		last_end = entry->end;
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		vp = lobj->handle;
 		vref(vp);
 		if (lobj != obj)
 			VM_OBJECT_RUNLOCK(lobj);
 
 		VM_OBJECT_RUNLOCK(obj);
 
 		freepath = NULL;
 		pmc_getfilename(vp, &fullpath, &freepath);
 		last_vp = vp;
 
 		vrele(vp);
 
 		vp = NULL;
 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
 		if (freepath)
 			free(freepath, M_TEMP);
 
 		vm_map_lock_read(map);
 
 		/*
 		 * If our saved timestamp doesn't match, this means
 		 * that the vm_map was modified out from under us and
 		 * we can't trust our current "entry" pointer.  Do a
 		 * new lookup for this entry.  If there is no entry
 		 * for this address range, vm_map_lookup_entry() will
 		 * return the previous one, so we always want to go to
 		 * entry->next on the next loop iteration.
 		 * 
 		 * There is an edge condition here that can occur if
 		 * there is no entry at or before this address.  In
 		 * this situation, vm_map_lookup_entry returns
 		 * &map->header, which would cause our loop to abort
 		 * without processing the rest of the map.  However,
 		 * in practice this will never happen for process
 		 * vm_map.  This is because the executable's text
 		 * segment is the first mapping in the proc's address
 		 * space, and this mapping is never removed until the
 		 * process exits, so there will always be a non-header
 		 * entry at or before the requested address for
 		 * vm_map_lookup_entry to return.
 		 */
 		if (map->timestamp != last_timestamp)
 			vm_map_lookup_entry(map, last_end - 1, &entry);
 	}
 
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	return;
 }
 
 /*
  * Log mappings for all processes in the system.
  */
 
 static void
 pmc_log_all_process_mappings(struct pmc_owner *po)
 {
 	struct proc *p, *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	if ((p = pfind(1)) == NULL)
 		panic("[pmc,%d] Cannot find init", __LINE__);
 
 	PROC_UNLOCK(p);
 
 	sx_slock(&proctree_lock);
 
 	top = p;
 
 	for (;;) {
 		pmc_log_process_mappings(po, p);
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				goto done;
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 	}
  done:
 	sx_sunlock(&proctree_lock);
 }
 
 /*
  * The 'hook' invoked from the kernel proper
  */
 
 
 #ifdef	HWPMC_DEBUG
 const char *pmc_hooknames[] = {
 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
 	"",
 	"EXEC",
 	"CSW-IN",
 	"CSW-OUT",
 	"SAMPLE",
 	"UNUSED1",
 	"UNUSED2",
 	"MMAP",
 	"MUNMAP",
 	"CALLCHAIN-NMI",
 	"CALLCHAIN-SOFT",
 	"SOFTSAMPLING"
 };
 #endif
 
 static int
 pmc_hook_handler(struct thread *td, int function, void *arg)
 {
 
-	PMCDBG(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
+	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
 	    pmc_hooknames[function], arg);
 
 	switch (function)
 	{
 
 	/*
 	 * Process exec()
 	 */
 
 	case PMC_FN_PROCESS_EXEC:
 	{
 		char *fullpath, *freepath;
 		unsigned int ri;
 		int is_using_hwpmcs;
 		struct pmc *pm;
 		struct proc *p;
 		struct pmc_owner *po;
 		struct pmc_process *pp;
 		struct pmckern_procexec *pk;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		p = td->td_proc;
 		pmc_getfilename(p->p_textvp, &fullpath, &freepath);
 
 		pk = (struct pmckern_procexec *) arg;
 
 		/* Inform owners of SS mode PMCs of the exec event. */
 		LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 		    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			    pmclog_process_procexec(po, PMC_ID_INVALID,
 				p->p_pid, pk->pm_entryaddr, fullpath);
 
 		PROC_LOCK(p);
 		is_using_hwpmcs = p->p_flag & P_HWPMC;
 		PROC_UNLOCK(p);
 
 		if (!is_using_hwpmcs) {
 			if (freepath)
 				free(freepath, M_TEMP);
 			break;
 		}
 
 		/*
 		 * PMCs are not inherited across an exec():  remove any
 		 * PMCs that this process is the owner of.
 		 */
 
 		if ((po = pmc_find_owner_descriptor(p)) != NULL) {
 			pmc_remove_owner(po);
 			pmc_destroy_owner_descriptor(po);
 		}
 
 		/*
 		 * If the process being exec'ed is not the target of any
 		 * PMC, we are done.
 		 */
 		if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
 			if (freepath)
 				free(freepath, M_TEMP);
 			break;
 		}
 
 		/*
 		 * Log the exec event to all monitoring owners.  Skip
 		 * owners who have already recieved the event because
 		 * they had system sampling PMCs active.
 		 */
 		for (ri = 0; ri < md->pmd_npmc; ri++)
 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
 				po = pm->pm_owner;
 				if (po->po_sscount == 0 &&
 				    po->po_flags & PMC_PO_OWNS_LOGFILE)
 					pmclog_process_procexec(po, pm->pm_id,
 					    p->p_pid, pk->pm_entryaddr,
 					    fullpath);
 			}
 
 		if (freepath)
 			free(freepath, M_TEMP);
 
 
-		PMCDBG(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
+		PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
 		    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
 
 		if (pk->pm_credentialschanged == 0) /* no change */
 			break;
 
 		/*
 		 * If the newly exec()'ed process has a different credential
 		 * than before, allow it to be the target of a PMC only if
 		 * the PMC's owner has sufficient priviledge.
 		 */
 
 		for (ri = 0; ri < md->pmd_npmc; ri++)
 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
 				if (pmc_can_attach(pm, td->td_proc) != 0)
 					pmc_detach_one_process(td->td_proc,
 					    pm, PMC_FLAG_NONE);
 
 		KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
 		    ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
 			pp->pp_refcnt, pp));
 
 		/*
 		 * If this process is no longer the target of any
 		 * PMCs, we can remove the process entry and free
 		 * up space.
 		 */
 
 		if (pp->pp_refcnt == 0) {
 			pmc_remove_process_descriptor(pp);
 			free(pp, M_PMC);
 			break;
 		}
 
 	}
 	break;
 
 	case PMC_FN_CSW_IN:
 		pmc_process_csw_in(td);
 		break;
 
 	case PMC_FN_CSW_OUT:
 		pmc_process_csw_out(td);
 		break;
 
 	/*
 	 * Process accumulated PC samples.
 	 *
 	 * This function is expected to be called by hardclock() for
 	 * each CPU that has accumulated PC samples.
 	 *
 	 * This function is to be executed on the CPU whose samples
 	 * are being processed.
 	 */
 	case PMC_FN_DO_SAMPLES:
 
 		/*
 		 * Clear the cpu specific bit in the CPU mask before
 		 * do the rest of the processing.  If the NMI handler
 		 * gets invoked after the "atomic_clear_int()" call
 		 * below but before "pmc_process_samples()" gets
 		 * around to processing the interrupt, then we will
 		 * come back here at the next hardclock() tick (and
 		 * may find nothing to do if "pmc_process_samples()"
 		 * had already processed the interrupt).  We don't
 		 * lose the interrupt sample.
 		 */
 		CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
 		pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
 		pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
 		break;
 
 	case PMC_FN_MMAP:
 		sx_assert(&pmc_sx, SX_LOCKED);
 		pmc_process_mmap(td, (struct pmckern_map_in *) arg);
 		break;
 
 	case PMC_FN_MUNMAP:
 		sx_assert(&pmc_sx, SX_LOCKED);
 		pmc_process_munmap(td, (struct pmckern_map_out *) arg);
 		break;
 
 	case PMC_FN_USER_CALLCHAIN:
 		/*
 		 * Record a call chain.
 		 */
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 
 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
 		    (struct trapframe *) arg);
 		td->td_pflags &= ~TDP_CALLCHAIN;
 		break;
 
 	case PMC_FN_USER_CALLCHAIN_SOFT:
 		/*
 		 * Record a call chain.
 		 */
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
 		    (struct trapframe *) arg);
 		td->td_pflags &= ~TDP_CALLCHAIN;
 		break;
 
 	case PMC_FN_SOFT_SAMPLING:
 		/*
 		 * Call soft PMC sampling intr.
 		 */
 		pmc_soft_intr((struct pmckern_soft *) arg);
 		break;
 
 	default:
 #ifdef	HWPMC_DEBUG
 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
 #endif
 		break;
 
 	}
 
 	return 0;
 }
 
 /*
  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
  */
 
 static struct pmc_owner *
 pmc_allocate_owner_descriptor(struct proc *p)
 {
 	uint32_t hindex;
 	struct pmc_owner *po;
 	struct pmc_ownerhash *poh;
 
 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
 	poh = &pmc_ownerhash[hindex];
 
 	/* allocate space for N pointers and one descriptor struct */
 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
 	po->po_owner = p;
 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
 
 	TAILQ_INIT(&po->po_logbuffers);
 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
 
-	PMCDBG(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
+	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
 	    p, p->p_pid, p->p_comm, po);
 
 	return po;
 }
 
 static void
 pmc_destroy_owner_descriptor(struct pmc_owner *po)
 {
 
-	PMCDBG(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
+	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
 
 	mtx_destroy(&po->po_mtx);
 	free(po, M_PMC);
 }
 
 /*
  * find the descriptor corresponding to process 'p', adding or removing it
  * as specified by 'mode'.
  */
 
 static struct pmc_process *
 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
 {
 	uint32_t hindex;
 	struct pmc_process *pp, *ppnew;
 	struct pmc_processhash *pph;
 
 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
 	pph = &pmc_processhash[hindex];
 
 	ppnew = NULL;
 
 	/*
 	 * Pre-allocate memory in the FIND_ALLOCATE case since we
 	 * cannot call malloc(9) once we hold a spin lock.
 	 */
 	if (mode & PMC_FLAG_ALLOCATE)
 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
 
 	mtx_lock_spin(&pmc_processhash_mtx);
 	LIST_FOREACH(pp, pph, pp_next)
 	    if (pp->pp_proc == p)
 		    break;
 
 	if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
 		LIST_REMOVE(pp, pp_next);
 
 	if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
 	    ppnew != NULL) {
 		ppnew->pp_proc = p;
 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
 		pp = ppnew;
 		ppnew = NULL;
 	}
 	mtx_unlock_spin(&pmc_processhash_mtx);
 
 	if (pp != NULL && ppnew != NULL)
 		free(ppnew, M_PMC);
 
 	return pp;
 }
 
 /*
  * remove a process descriptor from the process hash table.
  */
 
 static void
 pmc_remove_process_descriptor(struct pmc_process *pp)
 {
 	KASSERT(pp->pp_refcnt == 0,
 	    ("[pmc,%d] Removing process descriptor %p with count %d",
 		__LINE__, pp, pp->pp_refcnt));
 
 	mtx_lock_spin(&pmc_processhash_mtx);
 	LIST_REMOVE(pp, pp_next);
 	mtx_unlock_spin(&pmc_processhash_mtx);
 }
 
 
 /*
  * find an owner descriptor corresponding to proc 'p'
  */
 
 static struct pmc_owner *
 pmc_find_owner_descriptor(struct proc *p)
 {
 	uint32_t hindex;
 	struct pmc_owner *po;
 	struct pmc_ownerhash *poh;
 
 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
 	poh = &pmc_ownerhash[hindex];
 
 	po = NULL;
 	LIST_FOREACH(po, poh, po_next)
 	    if (po->po_owner == p)
 		    break;
 
-	PMCDBG(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
+	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
 
 	return po;
 }
 
 /*
  * pmc_allocate_pmc_descriptor
  *
  * Allocate a pmc descriptor and initialize its
  * fields.
  */
 
 static struct pmc *
 pmc_allocate_pmc_descriptor(void)
 {
 	struct pmc *pmc;
 
 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
 
-	PMCDBG(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
+	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
 
 	return pmc;
 }
 
 /*
  * Destroy a pmc descriptor.
  */
 
 static void
 pmc_destroy_pmc_descriptor(struct pmc *pm)
 {
 
 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
 	    pm->pm_state == PMC_STATE_FREE,
 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
 	KASSERT(LIST_EMPTY(&pm->pm_targets),
 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
 	KASSERT(pm->pm_owner == NULL,
 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
 	KASSERT(pm->pm_runcount == 0,
 	    ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
 		pm->pm_runcount));
 
 	free(pm, M_PMC);
 }
 
 static void
 pmc_wait_for_pmc_idle(struct pmc *pm)
 {
 #ifdef HWPMC_DEBUG
 	volatile int maxloop;
 
 	maxloop = 100 * pmc_cpu_max();
 #endif
 	/*
 	 * Loop (with a forced context switch) till the PMC's runcount
 	 * comes down to zero.
 	 */
 	while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
 #ifdef HWPMC_DEBUG
 		maxloop--;
 		KASSERT(maxloop > 0,
 		    ("[pmc,%d] (ri%d, rc%d) waiting too long for "
 			"pmc to be free", __LINE__,
 			PMC_TO_ROWINDEX(pm), pm->pm_runcount));
 #endif
 		pmc_force_context_switch();
 	}
 }
 
 /*
  * This function does the following things:
  *
  *  - detaches the PMC from hardware
  *  - unlinks all target threads that were attached to it
  *  - removes the PMC from its owner's list
  *  - destroys the PMC private mutex
  *
  * Once this function completes, the given pmc pointer can be freed by
  * calling pmc_destroy_pmc_descriptor().
  */
 
 static void
 pmc_release_pmc_descriptor(struct pmc *pm)
 {
 	enum pmc_mode mode;
 	struct pmc_hw *phw;
 	u_int adjri, ri, cpu;
 	struct pmc_owner *po;
 	struct pmc_binding pb;
 	struct pmc_process *pp;
 	struct pmc_classdep *pcd;
 	struct pmc_target *ptgt, *tmp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
 
 	ri   = PMC_TO_ROWINDEX(pm);
 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
 	mode = PMC_TO_MODE(pm);
 
-	PMCDBG(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
+	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
 	    mode);
 
 	/*
 	 * First, we take the PMC off hardware.
 	 */
 	cpu = 0;
 	if (PMC_IS_SYSTEM_MODE(mode)) {
 
 		/*
 		 * A system mode PMC runs on a specific CPU.  Switch
 		 * to this CPU and turn hardware off.
 		 */
 		pmc_save_cpu_binding(&pb);
 
 		cpu = PMC_TO_CPU(pm);
 
 		pmc_select_cpu(cpu);
 
 		/* switch off non-stalled CPUs */
 		if (pm->pm_state == PMC_STATE_RUNNING &&
 		    pm->pm_stalled == 0) {
 
 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
 
 			KASSERT(phw->phw_pmc == pm,
 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
 				__LINE__, ri, phw->phw_pmc, pm));
-			PMCDBG(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
+			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
 
 			critical_enter();
 			pcd->pcd_stop_pmc(cpu, adjri);
 			critical_exit();
 		}
 
-		PMCDBG(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
+		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
 
 		critical_enter();
 		pcd->pcd_config_pmc(cpu, adjri, NULL);
 		critical_exit();
 
 		/* adjust the global and process count of SS mode PMCs */
 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
 			po = pm->pm_owner;
 			po->po_sscount--;
 			if (po->po_sscount == 0) {
 				atomic_subtract_rel_int(&pmc_ss_count, 1);
 				LIST_REMOVE(po, po_ssnext);
 			}
 		}
 
 		pm->pm_state = PMC_STATE_DELETED;
 
 		pmc_restore_cpu_binding(&pb);
 
 		/*
 		 * We could have references to this PMC structure in
 		 * the per-cpu sample queues.  Wait for the queue to
 		 * drain.
 		 */
 		pmc_wait_for_pmc_idle(pm);
 
 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
 
 		/*
 		 * A virtual PMC could be running on multiple CPUs at
 		 * a given instant.
 		 *
 		 * By marking its state as DELETED, we ensure that
 		 * this PMC is never further scheduled on hardware.
 		 *
 		 * Then we wait till all CPUs are done with this PMC.
 		 */
 		pm->pm_state = PMC_STATE_DELETED;
 
 
 		/* Wait for the PMCs runcount to come to zero. */
 		pmc_wait_for_pmc_idle(pm);
 
 		/*
 		 * At this point the PMC is off all CPUs and cannot be
 		 * freshly scheduled onto a CPU.  It is now safe to
 		 * unlink all targets from this PMC.  If a
 		 * process-record's refcount falls to zero, we remove
 		 * it from the hash table.  The module-wide SX lock
 		 * protects us from races.
 		 */
 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
 			pp = ptgt->pt_process;
 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
 
-			PMCDBG(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
+			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
 
 			/*
 			 * If the target process record shows that no
 			 * PMCs are attached to it, reclaim its space.
 			 */
 
 			if (pp->pp_refcnt == 0) {
 				pmc_remove_process_descriptor(pp);
 				free(pp, M_PMC);
 			}
 		}
 
 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
 
 	}
 
 	/*
 	 * Release any MD resources
 	 */
 	(void) pcd->pcd_release_pmc(cpu, adjri, pm);
 
 	/*
 	 * Update row disposition
 	 */
 
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
 		PMC_UNMARK_ROW_STANDALONE(ri);
 	else
 		PMC_UNMARK_ROW_THREAD(ri);
 
 	/* unlink from the owner's list */
 	if (pm->pm_owner) {
 		LIST_REMOVE(pm, pm_next);
 		pm->pm_owner = NULL;
 	}
 }
 
 /*
  * Register an owner and a pmc.
  */
 
 static int
 pmc_register_owner(struct proc *p, struct pmc *pmc)
 {
 	struct pmc_owner *po;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	if ((po = pmc_find_owner_descriptor(p)) == NULL)
 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
 			return ENOMEM;
 
 	KASSERT(pmc->pm_owner == NULL,
 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
 	pmc->pm_owner  = po;
 
 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
 
 	PROC_LOCK(p);
 	p->p_flag |= P_HWPMC;
 	PROC_UNLOCK(p);
 
 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_process_pmcallocate(pmc);
 
-	PMCDBG(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
+	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
 	    po, pmc);
 
 	return 0;
 }
 
 /*
  * Return the current row disposition:
  * == 0 => FREE
  *  > 0 => PROCESS MODE
  *  < 0 => SYSTEM MODE
  */
 
 int
 pmc_getrowdisp(int ri)
 {
 	return pmc_pmcdisp[ri];
 }
 
 /*
  * Check if a PMC at row index 'ri' can be allocated to the current
  * process.
  *
  * Allocation can fail if:
  *   - the current process is already being profiled by a PMC at index 'ri',
  *     attached to it via OP_PMCATTACH.
  *   - the current process has already allocated a PMC at index 'ri'
  *     via OP_ALLOCATE.
  */
 
 static int
 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
 {
 	enum pmc_mode mode;
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 
-	PMCDBG(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
+	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
 
 	/*
 	 * We shouldn't have already allocated a process-mode PMC at
 	 * row index 'ri'.
 	 *
 	 * We shouldn't have allocated a system-wide PMC on the same
 	 * CPU and same RI.
 	 */
 	if ((po = pmc_find_owner_descriptor(p)) != NULL)
 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
 		    if (PMC_TO_ROWINDEX(pm) == ri) {
 			    mode = PMC_TO_MODE(pm);
 			    if (PMC_IS_VIRTUAL_MODE(mode))
 				    return EEXIST;
 			    if (PMC_IS_SYSTEM_MODE(mode) &&
 				(int) PMC_TO_CPU(pm) == cpu)
 				    return EEXIST;
 		    }
 	        }
 
 	/*
 	 * We also shouldn't be the target of any PMC at this index
 	 * since otherwise a PMC_ATTACH to ourselves will fail.
 	 */
 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
 		if (pp->pp_pmcs[ri].pp_pmc)
 			return EEXIST;
 
-	PMCDBG(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
+	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
 	    p, p->p_pid, p->p_comm, ri);
 
 	return 0;
 }
 
 /*
  * Check if a given PMC at row index 'ri' can be currently used in
  * mode 'mode'.
  */
 
 static int
 pmc_can_allocate_row(int ri, enum pmc_mode mode)
 {
 	enum pmc_disp	disp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
-	PMCDBG(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
+	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
 
 	if (PMC_IS_SYSTEM_MODE(mode))
 		disp = PMC_DISP_STANDALONE;
 	else
 		disp = PMC_DISP_THREAD;
 
 	/*
 	 * check disposition for PMC row 'ri':
 	 *
 	 * Expected disposition		Row-disposition		Result
 	 *
 	 * STANDALONE			STANDALONE or FREE	proceed
 	 * STANDALONE			THREAD			fail
 	 * THREAD			THREAD or FREE		proceed
 	 * THREAD			STANDALONE		fail
 	 */
 
 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
 		return EBUSY;
 
 	/*
 	 * All OK
 	 */
 
-	PMCDBG(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
+	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
 
 	return 0;
 
 }
 
 /*
  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
  */
 
 static struct pmc *
 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
 {
 	struct pmc *pm;
 
 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
 		PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
 
 	LIST_FOREACH(pm, &po->po_pmcs, pm_next)
 	    if (pm->pm_id == pmcid)
 		    return pm;
 
 	return NULL;
 }
 
 static int
 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
 {
 
 	struct pmc *pm;
 	struct pmc_owner *po;
 
-	PMCDBG(PMC,FND,1, "find-pmc id=%d", pmcid);
+	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
 
 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL)
 		return ESRCH;
 
 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
 		return EINVAL;
 
-	PMCDBG(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
+	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
 
 	*pmc = pm;
 	return 0;
 }
 
 /*
  * Start a PMC.
  */
 
 static int
 pmc_start(struct pmc *pm)
 {
 	enum pmc_mode mode;
 	struct pmc_owner *po;
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	int adjri, error, cpu, ri;
 
 	KASSERT(pm != NULL,
 	    ("[pmc,%d] null pm", __LINE__));
 
 	mode = PMC_TO_MODE(pm);
 	ri   = PMC_TO_ROWINDEX(pm);
 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
 
 	error = 0;
 
-	PMCDBG(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
+	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
 
 	po = pm->pm_owner;
 
 	/*
 	 * Disallow PMCSTART if a logfile is required but has not been
 	 * configured yet.
 	 */
 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
 		return (EDOOFUS);	/* programming error */
 
 	/*
 	 * If this is a sampling mode PMC, log mapping information for
 	 * the kernel modules that are currently loaded.
 	 */
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 	    pmc_log_kernel_mappings(pm);
 
 	if (PMC_IS_VIRTUAL_MODE(mode)) {
 
 		/*
 		 * If a PMCATTACH has never been done on this PMC,
 		 * attach it to its owner process.
 		 */
 
 		if (LIST_EMPTY(&pm->pm_targets))
 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
 			    pmc_attach_process(po->po_owner, pm);
 
 		/*
 		 * If the PMC is attached to its owner, then force a context
 		 * switch to ensure that the MD state gets set correctly.
 		 */
 
 		if (error == 0) {
 			pm->pm_state = PMC_STATE_RUNNING;
 			if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
 				pmc_force_context_switch();
 		}
 
 		return (error);
 	}
 
 
 	/*
 	 * A system-wide PMC.
 	 *
 	 * Add the owner to the global list if this is a system-wide
 	 * sampling PMC.
 	 */
 
 	if (mode == PMC_MODE_SS) {
 		if (po->po_sscount == 0) {
 			LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
 			atomic_add_rel_int(&pmc_ss_count, 1);
-			PMCDBG(PMC,OPS,1, "po=%p in global list", po);
+			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
 		}
 		po->po_sscount++;
 
 		/*
 		 * Log mapping information for all existing processes in the
 		 * system.  Subsequent mappings are logged as they happen;
 		 * see pmc_process_mmap().
 		 */
 		if (po->po_logprocmaps == 0) {
 			pmc_log_all_process_mappings(po);
 			po->po_logprocmaps = 1;
 		}
 	}
 
 	/*
 	 * Move to the CPU associated with this
 	 * PMC, and start the hardware.
 	 */
 
 	pmc_save_cpu_binding(&pb);
 
 	cpu = PMC_TO_CPU(pm);
 
 	if (!pmc_cpu_is_active(cpu))
 		return (ENXIO);
 
 	pmc_select_cpu(cpu);
 
 	/*
 	 * global PMCs are configured at allocation time
 	 * so write out the initial value and start the PMC.
 	 */
 
 	pm->pm_state = PMC_STATE_RUNNING;
 
 	critical_enter();
 	if ((error = pcd->pcd_write_pmc(cpu, adjri,
 		 PMC_IS_SAMPLING_MODE(mode) ?
 		 pm->pm_sc.pm_reloadcount :
 		 pm->pm_sc.pm_initial)) == 0)
 		error = pcd->pcd_start_pmc(cpu, adjri);
 	critical_exit();
 
 	pmc_restore_cpu_binding(&pb);
 
 	return (error);
 }
 
 /*
  * Stop a PMC.
  */
 
 static int
 pmc_stop(struct pmc *pm)
 {
 	struct pmc_owner *po;
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	int adjri, cpu, error, ri;
 
 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
 
-	PMCDBG(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
+	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
 	    PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
 
 	pm->pm_state = PMC_STATE_STOPPED;
 
 	/*
 	 * If the PMC is a virtual mode one, changing the state to
 	 * non-RUNNING is enough to ensure that the PMC never gets
 	 * scheduled.
 	 *
 	 * If this PMC is current running on a CPU, then it will
 	 * handled correctly at the time its target process is context
 	 * switched out.
 	 */
 
 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
 		return 0;
 
 	/*
 	 * A system-mode PMC.  Move to the CPU associated with
 	 * this PMC, and stop the hardware.  We update the
 	 * 'initial count' so that a subsequent PMCSTART will
 	 * resume counting from the current hardware count.
 	 */
 
 	pmc_save_cpu_binding(&pb);
 
 	cpu = PMC_TO_CPU(pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
 
 	if (!pmc_cpu_is_active(cpu))
 		return ENXIO;
 
 	pmc_select_cpu(cpu);
 
 	ri = PMC_TO_ROWINDEX(pm);
 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 	critical_enter();
 	if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
 		error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
 	critical_exit();
 
 	pmc_restore_cpu_binding(&pb);
 
 	po = pm->pm_owner;
 
 	/* remove this owner from the global list of SS PMC owners */
 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
 		po->po_sscount--;
 		if (po->po_sscount == 0) {
 			atomic_subtract_rel_int(&pmc_ss_count, 1);
 			LIST_REMOVE(po, po_ssnext);
-			PMCDBG(PMC,OPS,2,"po=%p removed from global list", po);
+			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
 		}
 	}
 
 	return (error);
 }
 
 
 #ifdef	HWPMC_DEBUG
 static const char *pmc_op_to_name[] = {
 #undef	__PMC_OP
 #define	__PMC_OP(N, D)	#N ,
 	__PMC_OPS()
 	NULL
 };
 #endif
 
 /*
  * The syscall interface
  */
 
 #define	PMC_GET_SX_XLOCK(...) do {		\
 	sx_xlock(&pmc_sx);			\
 	if (pmc_hook == NULL) {			\
 		sx_xunlock(&pmc_sx);		\
 		return __VA_ARGS__;		\
 	}					\
 } while (0)
 
 #define	PMC_DOWNGRADE_SX() do {			\
 	sx_downgrade(&pmc_sx);			\
 	is_sx_downgraded = 1;			\
 } while (0)
 
 static int
 pmc_syscall_handler(struct thread *td, void *syscall_args)
 {
 	int error, is_sx_downgraded, is_sx_locked, op;
 	struct pmc_syscall_args *c;
 	void *arg;
 
 	PMC_GET_SX_XLOCK(ENOSYS);
 
 	DROP_GIANT();
 
 	is_sx_downgraded = 0;
 	is_sx_locked = 1;
 
 	c = (struct pmc_syscall_args *) syscall_args;
 
 	op = c->pmop_code;
 	arg = c->pmop_data;
 
-	PMCDBG(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
+	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
 	    pmc_op_to_name[op], arg);
 
 	error = 0;
 	atomic_add_int(&pmc_stats.pm_syscalls, 1);
 
 	switch(op)
 	{
 
 
 	/*
 	 * Configure a log file.
 	 *
 	 * XXX This OP will be reworked.
 	 */
 
 	case PMC_OP_CONFIGURELOG:
 	{
 		struct proc *p;
 		struct pmc *pm;
 		struct pmc_owner *po;
 		struct pmc_op_configurelog cl;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0)
 			break;
 
 		/* mark this process as owning a log file */
 		p = td->td_proc;
 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
 				error = ENOMEM;
 				break;
 			}
 
 		/*
 		 * If a valid fd was passed in, try to configure that,
 		 * otherwise if 'fd' was less than zero and there was
 		 * a log file configured, flush its buffers and
 		 * de-configure it.
 		 */
 		if (cl.pm_logfd >= 0) {
 			sx_xunlock(&pmc_sx);
 			is_sx_locked = 0;
 			error = pmclog_configure_log(md, po, cl.pm_logfd);
 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
 			pmclog_process_closelog(po);
 			error = pmclog_close(po);
 			if (error == 0) {
 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
 					pm->pm_state == PMC_STATE_RUNNING)
 					    pmc_stop(pm);
 				error = pmclog_deconfigure_log(po);
 			}
 		} else
 			error = EINVAL;
 
 		if (error)
 			break;
 	}
 	break;
 
 	/*
 	 * Flush a log file.
 	 */
 
 	case PMC_OP_FLUSHLOG:
 	{
 		struct pmc_owner *po;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_flush(po);
 	}
 	break;
 
 	/*
 	 * Close a log file.
 	 */
 
 	case PMC_OP_CLOSELOG:
 	{
 		struct pmc_owner *po;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_close(po);
 	}
 	break;
 
 	/*
 	 * Retrieve hardware configuration.
 	 */
 
 	case PMC_OP_GETCPUINFO:	/* CPU information */
 	{
 		struct pmc_op_getcpuinfo gci;
 		struct pmc_classinfo *pci;
 		struct pmc_classdep *pcd;
 		int cl;
 
 		gci.pm_cputype = md->pmd_cputype;
 		gci.pm_ncpu    = pmc_cpu_max();
 		gci.pm_npmc    = md->pmd_npmc;
 		gci.pm_nclass  = md->pmd_nclass;
 		pci = gci.pm_classes;
 		pcd = md->pmd_classdep;
 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
 			pci->pm_caps  = pcd->pcd_caps;
 			pci->pm_class = pcd->pcd_class;
 			pci->pm_width = pcd->pcd_width;
 			pci->pm_num   = pcd->pcd_num;
 		}
 		error = copyout(&gci, arg, sizeof(gci));
 	}
 	break;
 
 	/*
 	 * Retrieve soft events list.
 	 */
 	case PMC_OP_GETDYNEVENTINFO:
 	{
 		enum pmc_class			cl;
 		enum pmc_event			ev;
 		struct pmc_op_getdyneventinfo	*gei;
 		struct pmc_dyn_event_descr	dev;
 		struct pmc_soft			*ps;
 		uint32_t			nevent;
 
 		sx_assert(&pmc_sx, SX_LOCKED);
 
 		gei = (struct pmc_op_getdyneventinfo *) arg;
 
 		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
 			break;
 
 		/* Only SOFT class is dynamic. */
 		if (cl != PMC_CLASS_SOFT) {
 			error = EINVAL;
 			break;
 		}
 
 		nevent = 0;
 		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
 			ps = pmc_soft_ev_acquire(ev);
 			if (ps == NULL)
 				continue;
 			bcopy(&ps->ps_ev, &dev, sizeof(dev));
 			pmc_soft_ev_release(ps);
 
 			error = copyout(&dev,
 			    &gei->pm_events[nevent],
 			    sizeof(struct pmc_dyn_event_descr));
 			if (error != 0)
 				break;
 			nevent++;
 		}
 		if (error != 0)
 			break;
 
 		error = copyout(&nevent, &gei->pm_nevent,
 		    sizeof(nevent));
 	}
 	break;
 
 	/*
 	 * Get module statistics
 	 */
 
 	case PMC_OP_GETDRIVERSTATS:
 	{
 		struct pmc_op_getdriverstats gms;
 
 		bcopy(&pmc_stats, &gms, sizeof(gms));
 		error = copyout(&gms, arg, sizeof(gms));
 	}
 	break;
 
 
 	/*
 	 * Retrieve module version number
 	 */
 
 	case PMC_OP_GETMODULEVERSION:
 	{
 		uint32_t cv, modv;
 
 		/* retrieve the client's idea of the ABI version */
 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
 			break;
 		/* don't service clients newer than our driver */
 		modv = PMC_VERSION;
 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
 			error = EPROGMISMATCH;
 			break;
 		}
 		error = copyout(&modv, arg, sizeof(int));
 	}
 	break;
 
 
 	/*
 	 * Retrieve the state of all the PMCs on a given
 	 * CPU.
 	 */
 
 	case PMC_OP_GETPMCINFO:
 	{
 		int ari;
 		struct pmc *pm;
 		size_t pmcinfo_size;
 		uint32_t cpu, n, npmc;
 		struct pmc_owner *po;
 		struct pmc_binding pb;
 		struct pmc_classdep *pcd;
 		struct pmc_info *p, *pmcinfo;
 		struct pmc_op_getpmcinfo *gpi;
 
 		PMC_DOWNGRADE_SX();
 
 		gpi = (struct pmc_op_getpmcinfo *) arg;
 
 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
 			break;
 
 		if (cpu >= pmc_cpu_max()) {
 			error = EINVAL;
 			break;
 		}
 
 		if (!pmc_cpu_is_active(cpu)) {
 			error = ENXIO;
 			break;
 		}
 
 		/* switch to CPU 'cpu' */
 		pmc_save_cpu_binding(&pb);
 		pmc_select_cpu(cpu);
 
 		npmc = md->pmd_npmc;
 
 		pmcinfo_size = npmc * sizeof(struct pmc_info);
 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
 
 		p = pmcinfo;
 
 		for (n = 0; n < md->pmd_npmc; n++, p++) {
 
 			pcd = pmc_ri_to_classdep(md, n, &ari);
 
 			KASSERT(pcd != NULL,
 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
 
 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
 				break;
 
 			if (PMC_ROW_DISP_IS_STANDALONE(n))
 				p->pm_rowdisp = PMC_DISP_STANDALONE;
 			else if (PMC_ROW_DISP_IS_THREAD(n))
 				p->pm_rowdisp = PMC_DISP_THREAD;
 			else
 				p->pm_rowdisp = PMC_DISP_FREE;
 
 			p->pm_ownerpid = -1;
 
 			if (pm == NULL)	/* no PMC associated */
 				continue;
 
 			po = pm->pm_owner;
 
 			KASSERT(po->po_owner != NULL,
 			    ("[pmc,%d] pmc_owner had a null proc pointer",
 				__LINE__));
 
 			p->pm_ownerpid = po->po_owner->p_pid;
 			p->pm_mode     = PMC_TO_MODE(pm);
 			p->pm_event    = pm->pm_event;
 			p->pm_flags    = pm->pm_flags;
 
 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 				p->pm_reloadcount =
 				    pm->pm_sc.pm_reloadcount;
 		}
 
 		pmc_restore_cpu_binding(&pb);
 
 		/* now copy out the PMC info collected */
 		if (error == 0)
 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
 
 		free(pmcinfo, M_PMC);
 	}
 	break;
 
 
 	/*
 	 * Set the administrative state of a PMC.  I.e. whether
 	 * the PMC is to be used or not.
 	 */
 
 	case PMC_OP_PMCADMIN:
 	{
 		int cpu, ri;
 		enum pmc_state request;
 		struct pmc_cpu *pc;
 		struct pmc_hw *phw;
 		struct pmc_op_pmcadmin pma;
 		struct pmc_binding pb;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		KASSERT(td == curthread,
 		    ("[pmc,%d] td != curthread", __LINE__));
 
 		error = priv_check(td, PRIV_PMC_MANAGE);
 		if (error)
 			break;
 
 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
 			break;
 
 		cpu = pma.pm_cpu;
 
 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
 			error = EINVAL;
 			break;
 		}
 
 		if (!pmc_cpu_is_active(cpu)) {
 			error = ENXIO;
 			break;
 		}
 
 		request = pma.pm_state;
 
 		if (request != PMC_STATE_DISABLED &&
 		    request != PMC_STATE_FREE) {
 			error = EINVAL;
 			break;
 		}
 
 		ri = pma.pm_pmc; /* pmc id == row index */
 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * We can't disable a PMC with a row-index allocated
 		 * for process virtual PMCs.
 		 */
 
 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
 		    request == PMC_STATE_DISABLED) {
 			error = EBUSY;
 			break;
 		}
 
 		/*
 		 * otherwise, this PMC on this CPU is either free or
 		 * in system-wide mode.
 		 */
 
 		pmc_save_cpu_binding(&pb);
 		pmc_select_cpu(cpu);
 
 		pc  = pmc_pcpu[cpu];
 		phw = pc->pc_hwpmcs[ri];
 
 		/*
 		 * XXX do we need some kind of 'forced' disable?
 		 */
 
 		if (phw->phw_pmc == NULL) {
 			if (request == PMC_STATE_DISABLED &&
 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
 				PMC_MARK_ROW_STANDALONE(ri);
 			} else if (request == PMC_STATE_FREE &&
 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
 				PMC_UNMARK_ROW_STANDALONE(ri);
 			}
 			/* other cases are a no-op */
 		} else
 			error = EBUSY;
 
 		pmc_restore_cpu_binding(&pb);
 	}
 	break;
 
 
 	/*
 	 * Allocate a PMC.
 	 */
 
 	case PMC_OP_PMCALLOCATE:
 	{
 		int adjri, n;
 		u_int cpu;
 		uint32_t caps;
 		struct pmc *pmc;
 		enum pmc_mode mode;
 		struct pmc_hw *phw;
 		struct pmc_binding pb;
 		struct pmc_classdep *pcd;
 		struct pmc_op_pmcallocate pa;
 
 		if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
 			break;
 
 		caps = pa.pm_caps;
 		mode = pa.pm_mode;
 		cpu  = pa.pm_cpu;
 
 		if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
 		     mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
 		    (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * Virtual PMCs should only ask for a default CPU.
 		 * System mode PMCs need to specify a non-default CPU.
 		 */
 
 		if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
 		    (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * Check that an inactive CPU is not being asked for.
 		 */
 
 		if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
 			error = ENXIO;
 			break;
 		}
 
 		/*
 		 * Refuse an allocation for a system-wide PMC if this
 		 * process has been jailed, or if this process lacks
 		 * super-user credentials and the sysctl tunable
 		 * 'security.bsd.unprivileged_syspmcs' is zero.
 		 */
 
 		if (PMC_IS_SYSTEM_MODE(mode)) {
 			if (jailed(curthread->td_ucred)) {
 				error = EPERM;
 				break;
 			}
 			if (!pmc_unprivileged_syspmcs) {
 				error = priv_check(curthread,
 				    PRIV_PMC_SYSTEM);
 				if (error)
 					break;
 			}
 		}
 
 		/*
 		 * Look for valid values for 'pm_flags'
 		 */
 
 		if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
 		    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
 			error = EINVAL;
 			break;
 		}
 
 		/* process logging options are not allowed for system PMCs */
 		if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
 		    (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * All sampling mode PMCs need to be able to interrupt the
 		 * CPU.
 		 */
 		if (PMC_IS_SAMPLING_MODE(mode))
 			caps |= PMC_CAP_INTERRUPT;
 
 		/* A valid class specifier should have been passed in. */
 		for (n = 0; n < md->pmd_nclass; n++)
 			if (md->pmd_classdep[n].pcd_class == pa.pm_class)
 				break;
 		if (n == md->pmd_nclass) {
 			error = EINVAL;
 			break;
 		}
 
 		/* The requested PMC capabilities should be feasible. */
 		if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
 			error = EOPNOTSUPP;
 			break;
 		}
 
-		PMCDBG(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
+		PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
 		    pa.pm_ev, caps, mode, cpu);
 
 		pmc = pmc_allocate_pmc_descriptor();
 		pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
 		    PMC_ID_INVALID);
 		pmc->pm_event = pa.pm_ev;
 		pmc->pm_state = PMC_STATE_FREE;
 		pmc->pm_caps  = caps;
 		pmc->pm_flags = pa.pm_flags;
 
 		/* switch thread to CPU 'cpu' */
 		pmc_save_cpu_binding(&pb);
 
 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
 	 PMC_PHW_FLAG_IS_SHAREABLE)
 #define	PMC_IS_UNALLOCATED(cpu, n)				\
 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
 
 		if (PMC_IS_SYSTEM_MODE(mode)) {
 			pmc_select_cpu(cpu);
 			for (n = 0; n < (int) md->pmd_npmc; n++) {
 				pcd = pmc_ri_to_classdep(md, n, &adjri);
 				if (pmc_can_allocate_row(n, mode) == 0 &&
 				    pmc_can_allocate_rowindex(
 					    curthread->td_proc, n, cpu) == 0 &&
 				    (PMC_IS_UNALLOCATED(cpu, n) ||
 				     PMC_IS_SHAREABLE_PMC(cpu, n)) &&
 				    pcd->pcd_allocate_pmc(cpu, adjri, pmc,
 					&pa) == 0)
 					break;
 			}
 		} else {
 			/* Process virtual mode */
 			for (n = 0; n < (int) md->pmd_npmc; n++) {
 				pcd = pmc_ri_to_classdep(md, n, &adjri);
 				if (pmc_can_allocate_row(n, mode) == 0 &&
 				    pmc_can_allocate_rowindex(
 					    curthread->td_proc, n,
 					    PMC_CPU_ANY) == 0 &&
 				    pcd->pcd_allocate_pmc(curthread->td_oncpu,
 					adjri, pmc, &pa) == 0)
 					break;
 			}
 		}
 
 #undef	PMC_IS_UNALLOCATED
 #undef	PMC_IS_SHAREABLE_PMC
 
 		pmc_restore_cpu_binding(&pb);
 
 		if (n == (int) md->pmd_npmc) {
 			pmc_destroy_pmc_descriptor(pmc);
 			pmc = NULL;
 			error = EINVAL;
 			break;
 		}
 
 		/* Fill in the correct value in the ID field */
 		pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
 
-		PMCDBG(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
+		PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
 		    pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
 
 		/* Process mode PMCs with logging enabled need log files */
 		if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 		/* All system mode sampling PMCs require a log file */
 		if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
 			pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 		/*
 		 * Configure global pmc's immediately
 		 */
 
 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
 
 			pmc_save_cpu_binding(&pb);
 			pmc_select_cpu(cpu);
 
 			phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
 			pcd = pmc_ri_to_classdep(md, n, &adjri);
 
 			if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
 			    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
 				(void) pcd->pcd_release_pmc(cpu, adjri, pmc);
 				pmc_destroy_pmc_descriptor(pmc);
 				pmc = NULL;
 				pmc_restore_cpu_binding(&pb);
 				error = EPERM;
 				break;
 			}
 
 			pmc_restore_cpu_binding(&pb);
 		}
 
 		pmc->pm_state    = PMC_STATE_ALLOCATED;
 
 		/*
 		 * mark row disposition
 		 */
 
 		if (PMC_IS_SYSTEM_MODE(mode))
 			PMC_MARK_ROW_STANDALONE(n);
 		else
 			PMC_MARK_ROW_THREAD(n);
 
 		/*
 		 * Register this PMC with the current thread as its owner.
 		 */
 
 		if ((error =
 		    pmc_register_owner(curthread->td_proc, pmc)) != 0) {
 			pmc_release_pmc_descriptor(pmc);
 			pmc_destroy_pmc_descriptor(pmc);
 			pmc = NULL;
 			break;
 		}
 
 		/*
 		 * Return the allocated index.
 		 */
 
 		pa.pm_pmcid = pmc->pm_id;
 
 		error = copyout(&pa, arg, sizeof(pa));
 	}
 	break;
 
 
 	/*
 	 * Attach a PMC to a process.
 	 */
 
 	case PMC_OP_PMCATTACH:
 	{
 		struct pmc *pm;
 		struct proc *p;
 		struct pmc_op_pmcattach a;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
 			break;
 
 		if (a.pm_pid < 0) {
 			error = EINVAL;
 			break;
 		} else if (a.pm_pid == 0)
 			a.pm_pid = td->td_proc->p_pid;
 
 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
 			break;
 
 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 			error = EINVAL;
 			break;
 		}
 
 		/* PMCs may be (re)attached only when allocated or stopped */
 		if (pm->pm_state == PMC_STATE_RUNNING) {
 			error = EBUSY;
 			break;
 		} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
 		    pm->pm_state != PMC_STATE_STOPPED) {
 			error = EINVAL;
 			break;
 		}
 
 		/* lookup pid */
 		if ((p = pfind(a.pm_pid)) == NULL) {
 			error = ESRCH;
 			break;
 		}
 
 		/*
 		 * Ignore processes that are working on exiting.
 		 */
 		if (p->p_flag & P_WEXIT) {
 			error = ESRCH;
 			PROC_UNLOCK(p);	/* pfind() returns a locked process */
 			break;
 		}
 
 		/*
 		 * we are allowed to attach a PMC to a process if
 		 * we can debug it.
 		 */
 		error = p_candebug(curthread, p);
 
 		PROC_UNLOCK(p);
 
 		if (error == 0)
 			error = pmc_attach_process(p, pm);
 	}
 	break;
 
 
 	/*
 	 * Detach an attached PMC from a process.
 	 */
 
 	case PMC_OP_PMCDETACH:
 	{
 		struct pmc *pm;
 		struct proc *p;
 		struct pmc_op_pmcattach a;
 
 		if ((error = copyin(arg, &a, sizeof(a))) != 0)
 			break;
 
 		if (a.pm_pid < 0) {
 			error = EINVAL;
 			break;
 		} else if (a.pm_pid == 0)
 			a.pm_pid = td->td_proc->p_pid;
 
 		if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
 			break;
 
 		if ((p = pfind(a.pm_pid)) == NULL) {
 			error = ESRCH;
 			break;
 		}
 
 		/*
 		 * Treat processes that are in the process of exiting
 		 * as if they were not present.
 		 */
 
 		if (p->p_flag & P_WEXIT)
 			error = ESRCH;
 
 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
 
 		if (error == 0)
 			error = pmc_detach_process(p, pm);
 	}
 	break;
 
 
 	/*
 	 * Retrieve the MSR number associated with the counter
 	 * 'pmc_id'.  This allows processes to directly use RDPMC
 	 * instructions to read their PMCs, without the overhead of a
 	 * system call.
 	 */
 
 	case PMC_OP_PMCGETMSR:
 	{
 		int adjri, ri;
 		struct pmc *pm;
 		struct pmc_target *pt;
 		struct pmc_op_getmsr gm;
 		struct pmc_classdep *pcd;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
 			break;
 
 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
 			break;
 
 		/*
 		 * The allocated PMC has to be a process virtual PMC,
 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
 		 * read using the PMCREAD operation since they may be
 		 * allocated on a different CPU than the one we could
 		 * be running on at the time of the RDPMC instruction.
 		 *
 		 * The GETMSR operation is not allowed for PMCs that
 		 * are inherited across processes.
 		 */
 
 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * It only makes sense to use a RDPMC (or its
 		 * equivalent instruction on non-x86 architectures) on
 		 * a process that has allocated and attached a PMC to
 		 * itself.  Conversely the PMC is only allowed to have
 		 * one process attached to it -- its owner.
 		 */
 
 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
 		    LIST_NEXT(pt, pt_next) != NULL ||
 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
 			error = EINVAL;
 			break;
 		}
 
 		ri = PMC_TO_ROWINDEX(pm);
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 		/* PMC class has no 'GETMSR' support */
 		if (pcd->pcd_get_msr == NULL) {
 			error = ENOSYS;
 			break;
 		}
 
 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
 			break;
 
 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
 			break;
 
 		/*
 		 * Mark our process as using MSRs.  Update machine
 		 * state using a forced context switch.
 		 */
 
 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
 		pmc_force_context_switch();
 
 	}
 	break;
 
 	/*
 	 * Release an allocated PMC
 	 */
 
 	case PMC_OP_PMCRELEASE:
 	{
 		pmc_id_t pmcid;
 		struct pmc *pm;
 		struct pmc_owner *po;
 		struct pmc_op_simple sp;
 
 		/*
 		 * Find PMC pointer for the named PMC.
 		 *
 		 * Use pmc_release_pmc_descriptor() to switch off the
 		 * PMC, remove all its target threads, and remove the
 		 * PMC from its owner's list.
 		 *
 		 * Remove the owner record if this is the last PMC
 		 * owned.
 		 *
 		 * Free up space.
 		 */
 
 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
 			break;
 
 		pmcid = sp.pm_pmcid;
 
 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
 			break;
 
 		po = pm->pm_owner;
 		pmc_release_pmc_descriptor(pm);
 		pmc_maybe_remove_owner(po);
 		pmc_destroy_pmc_descriptor(pm);
 	}
 	break;
 
 
 	/*
 	 * Read and/or write a PMC.
 	 */
 
 	case PMC_OP_PMCRW:
 	{
 		int adjri;
 		struct pmc *pm;
 		uint32_t cpu, ri;
 		pmc_value_t oldvalue;
 		struct pmc_binding pb;
 		struct pmc_op_pmcrw prw;
 		struct pmc_classdep *pcd;
 		struct pmc_op_pmcrw *pprw;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
 			break;
 
 		ri = 0;
-		PMCDBG(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
+		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
 		    prw.pm_flags);
 
 		/* must have at least one flag set */
 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		/* locate pmc descriptor */
 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
 			break;
 
 		/* Can't read a PMC that hasn't been started. */
 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
 		    pm->pm_state != PMC_STATE_STOPPED &&
 		    pm->pm_state != PMC_STATE_RUNNING) {
 			error = EINVAL;
 			break;
 		}
 
 		/* writing a new value is allowed only for 'STOPPED' pmcs */
 		if (pm->pm_state == PMC_STATE_RUNNING &&
 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
 			error = EBUSY;
 			break;
 		}
 
 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
 
 			/*
 			 * If this PMC is attached to its owner (i.e.,
 			 * the process requesting this operation) and
 			 * is running, then attempt to get an
 			 * upto-date reading from hardware for a READ.
 			 * Writes are only allowed when the PMC is
 			 * stopped, so only update the saved value
 			 * field.
 			 *
 			 * If the PMC is not running, or is not
 			 * attached to its owner, read/write to the
 			 * savedvalue field.
 			 */
 
 			ri = PMC_TO_ROWINDEX(pm);
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 			cpu = curthread->td_oncpu;
 
 			if (prw.pm_flags & PMC_F_OLDVALUE) {
 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
 				    (pm->pm_state == PMC_STATE_RUNNING))
 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
 					    &oldvalue);
 				else
 					oldvalue = pm->pm_gv.pm_savedvalue;
 			}
 			if (prw.pm_flags & PMC_F_NEWVALUE)
 				pm->pm_gv.pm_savedvalue = prw.pm_value;
 
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 
 		} else { /* System mode PMCs */
 			cpu = PMC_TO_CPU(pm);
 			ri  = PMC_TO_ROWINDEX(pm);
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			if (!pmc_cpu_is_active(cpu)) {
 				error = ENXIO;
 				break;
 			}
 
 			/* move this thread to CPU 'cpu' */
 			pmc_save_cpu_binding(&pb);
 			pmc_select_cpu(cpu);
 
 			critical_enter();
 			/* save old value */
 			if (prw.pm_flags & PMC_F_OLDVALUE)
 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
 					 &oldvalue)))
 					goto error;
 			/* write out new value */
 			if (prw.pm_flags & PMC_F_NEWVALUE)
 				error = (*pcd->pcd_write_pmc)(cpu, adjri,
 				    prw.pm_value);
 		error:
 			critical_exit();
 			pmc_restore_cpu_binding(&pb);
 			if (error)
 				break;
 		}
 
 		pprw = (struct pmc_op_pmcrw *) arg;
 
 #ifdef	HWPMC_DEBUG
 		if (prw.pm_flags & PMC_F_NEWVALUE)
-			PMCDBG(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
+			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
 			    ri, prw.pm_value, oldvalue);
 		else if (prw.pm_flags & PMC_F_OLDVALUE)
-			PMCDBG(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
+			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
 #endif
 
 		/* return old value if requested */
 		if (prw.pm_flags & PMC_F_OLDVALUE)
 			if ((error = copyout(&oldvalue, &pprw->pm_value,
 				 sizeof(prw.pm_value))))
 				break;
 
 	}
 	break;
 
 
 	/*
 	 * Set the sampling rate for a sampling mode PMC and the
 	 * initial count for a counting mode PMC.
 	 */
 
 	case PMC_OP_PMCSETCOUNT:
 	{
 		struct pmc *pm;
 		struct pmc_op_pmcsetcount sc;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
 			break;
 
 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
 			break;
 
 		if (pm->pm_state == PMC_STATE_RUNNING) {
 			error = EBUSY;
 			break;
 		}
 
 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			pm->pm_sc.pm_reloadcount = sc.pm_count;
 		else
 			pm->pm_sc.pm_initial = sc.pm_count;
 	}
 	break;
 
 
 	/*
 	 * Start a PMC.
 	 */
 
 	case PMC_OP_PMCSTART:
 	{
 		pmc_id_t pmcid;
 		struct pmc *pm;
 		struct pmc_op_simple sp;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
 			break;
 
 		pmcid = sp.pm_pmcid;
 
 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
 			break;
 
 		KASSERT(pmcid == pm->pm_id,
 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
 			pm->pm_id, pmcid));
 
 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
 			break;
 		else if (pm->pm_state != PMC_STATE_STOPPED &&
 		    pm->pm_state != PMC_STATE_ALLOCATED) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmc_start(pm);
 	}
 	break;
 
 
 	/*
 	 * Stop a PMC.
 	 */
 
 	case PMC_OP_PMCSTOP:
 	{
 		pmc_id_t pmcid;
 		struct pmc *pm;
 		struct pmc_op_simple sp;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
 			break;
 
 		pmcid = sp.pm_pmcid;
 
 		/*
 		 * Mark the PMC as inactive and invoke the MD stop
 		 * routines if needed.
 		 */
 
 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
 			break;
 
 		KASSERT(pmcid == pm->pm_id,
 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
 			pm->pm_id, pmcid));
 
 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
 			break;
 		else if (pm->pm_state != PMC_STATE_RUNNING) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmc_stop(pm);
 	}
 	break;
 
 
 	/*
 	 * Write a user supplied value to the log file.
 	 */
 
 	case PMC_OP_WRITELOG:
 	{
 		struct pmc_op_writelog wl;
 		struct pmc_owner *po;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
 			break;
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_process_userlog(po, &wl);
 	}
 	break;
 
 
 	default:
 		error = EINVAL;
 		break;
 	}
 
 	if (is_sx_locked != 0) {
 		if (is_sx_downgraded)
 			sx_sunlock(&pmc_sx);
 		else
 			sx_xunlock(&pmc_sx);
 	}
 
 	if (error)
 		atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
 
 	PICKUP_GIANT();
 
 	return error;
 }
 
 /*
  * Helper functions
  */
 
 
 /*
  * Mark the thread as needing callchain capture and post an AST.  The
  * actual callchain capture will be done in a context where it is safe
  * to take page faults.
  */
 
 static void
 pmc_post_callchain_callback(void)
 {
 	struct thread *td;
 
 	td = curthread;
 
 	/*
 	 * If there is multiple PMCs for the same interrupt ignore new post
 	 */
 	if (td->td_pflags & TDP_CALLCHAIN)
 		return;
 
 	/*
 	 * Mark this thread as needing callchain capture.
 	 * `td->td_pflags' will be safe to touch because this thread
 	 * was in user space when it was interrupted.
 	 */
 	td->td_pflags |= TDP_CALLCHAIN;
 
 	/*
 	 * Don't let this thread migrate between CPUs until callchain
 	 * capture completes.
 	 */
 	sched_pin();
 
 	return;
 }
 
 /*
  * Interrupt processing.
  *
  * Find a free slot in the per-cpu array of samples and capture the
  * current callchain there.  If a sample was successfully added, a bit
  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
  * needs to be invoked from the clock handler.
  *
  * This function is meant to be called from an NMI handler.  It cannot
  * use any of the locking primitives supplied by the OS.
  */
 
 int
 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
     int inuserspace)
 {
 	int error, callchaindepth;
 	struct thread *td;
 	struct pmc_sample *ps;
 	struct pmc_samplebuffer *psb;
 
 	error = 0;
 
 	/*
 	 * Allocate space for a sample buffer.
 	 */
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 
 	ps = psb->ps_write;
 	if (ps->ps_nsamples) {	/* in use, reader hasn't caught up */
 		pm->pm_stalled = 1;
 		atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
-		PMCDBG(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
+		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
 		    cpu, pm, (void *) tf, inuserspace,
 		    (int) (psb->ps_write - psb->ps_samples),
 		    (int) (psb->ps_read - psb->ps_samples));
 		error = ENOMEM;
 		goto done;
 	}
 
 
 	/* Fill in entry. */
-	PMCDBG(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
+	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
 	    (void *) tf, inuserspace,
 	    (int) (psb->ps_write - psb->ps_samples),
 	    (int) (psb->ps_read - psb->ps_samples));
 
 	KASSERT(pm->pm_runcount >= 0,
 	    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
 		pm->pm_runcount));
 
 	atomic_add_rel_int(&pm->pm_runcount, 1);	/* hold onto PMC */
 
 	ps->ps_pmc = pm;
 	if ((td = curthread) && td->td_proc)
 		ps->ps_pid = td->td_proc->p_pid;
 	else
 		ps->ps_pid = -1;
 	ps->ps_cpu = cpu;
 	ps->ps_td = td;
 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
 
 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
 	    pmc_callchaindepth : 1;
 
 	if (callchaindepth == 1)
 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
 	else {
 		/*
 		 * Kernel stack traversals can be done immediately,
 		 * while we defer to an AST for user space traversals.
 		 */
 		if (!inuserspace) {
 			callchaindepth =
 			    pmc_save_kernel_callchain(ps->ps_pc,
 				callchaindepth, tf);
 		} else {
 			pmc_post_callchain_callback();
 			callchaindepth = PMC_SAMPLE_INUSE;
 		}
 	}
 
 	ps->ps_nsamples = callchaindepth;	/* mark entry as in use */
 
 	/* increment write pointer, modulo ring buffer size */
 	ps++;
 	if (ps == psb->ps_fence)
 		psb->ps_write = psb->ps_samples;
 	else
 		psb->ps_write = ps;
 
  done:
 	/* mark CPU as needing processing */
 	CPU_SET_ATOMIC(cpu, &pmc_cpumask);
 
 	return (error);
 }
 
 /*
  * Capture a user call chain.  This function will be called from ast()
  * before control returns to userland and before the process gets
  * rescheduled.
  */
 
 static void
 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
 {
 	int i;
 	struct pmc *pm;
 	struct thread *td;
 	struct pmc_sample *ps;
 	struct pmc_samplebuffer *psb;
 #ifdef	INVARIANTS
 	int ncallchains;
 #endif
 
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 	td = curthread;
 
 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
 		__LINE__));
 
 #ifdef	INVARIANTS
 	ncallchains = 0;
 #endif
 
 	/*
 	 * Iterate through all deferred callchain requests.
 	 */
 
 	ps = psb->ps_samples;
 	for (i = 0; i < pmc_nsamples; i++, ps++) {
 
 		if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
 			continue;
 		if (ps->ps_td != td)
 			continue;
 
 		KASSERT(ps->ps_cpu == cpu,
 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
 			ps->ps_cpu, PCPU_GET(cpuid)));
 
 		pm = ps->ps_pmc;
 
 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
 			"want it", __LINE__));
 
 		KASSERT(pm->pm_runcount > 0,
 		    ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
 
 		/*
 		 * Retrieve the callchain and mark the sample buffer
 		 * as 'processable' by the timer tick sweep code.
 		 */
 		ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
 		    pmc_callchaindepth, tf);
 
 #ifdef	INVARIANTS
 		ncallchains++;
 #endif
 	}
 
 	KASSERT(ncallchains > 0,
 	    ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
 		cpu));
 
 	KASSERT(td->td_pinned == 1,
 	    ("[pmc,%d] invalid td_pinned value", __LINE__));
 	sched_unpin();	/* Can migrate safely now. */
 
 	return;
 }
 
 /*
  * Process saved PC samples.
  */
 
 static void
 pmc_process_samples(int cpu, int ring)
 {
 	struct pmc *pm;
 	int adjri, n;
 	struct thread *td;
 	struct pmc_owner *po;
 	struct pmc_sample *ps;
 	struct pmc_classdep *pcd;
 	struct pmc_samplebuffer *psb;
 
 	KASSERT(PCPU_GET(cpuid) == cpu,
 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
 		PCPU_GET(cpuid), cpu));
 
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 
 	for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
 
 		ps = psb->ps_read;
 		if (ps->ps_nsamples == PMC_SAMPLE_FREE)
 			break;
 
 		pm = ps->ps_pmc;
 
 		KASSERT(pm->pm_runcount > 0,
 		    ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
 			pm->pm_runcount));
 
 		po = pm->pm_owner;
 
 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
 			pm, PMC_TO_MODE(pm)));
 
 		/* Ignore PMCs that have been switched off */
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			goto entrydone;
 
 		/* If there is a pending AST wait for completion */
 		if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
 			/* Need a rescan at a later time. */
 			CPU_SET_ATOMIC(cpu, &pmc_cpumask);
 			break;
 		}
 
-		PMCDBG(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
+		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
 		    pm, ps->ps_nsamples, ps->ps_flags,
 		    (int) (psb->ps_write - psb->ps_samples),
 		    (int) (psb->ps_read - psb->ps_samples));
 
 		/*
 		 * If this is a process-mode PMC that is attached to
 		 * its owner, and if the PC is in user mode, update
 		 * profiling statistics like timer-based profiling
 		 * would have done.
 		 */
 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
 				td = FIRST_THREAD_IN_PROC(po->po_owner);
 				addupc_intr(td, ps->ps_pc[0], 1);
 			}
 			goto entrydone;
 		}
 
 		/*
 		 * Otherwise, this is either a sampling mode PMC that
 		 * is attached to a different process than its owner,
 		 * or a system-wide sampling PMC.  Dispatch a log
 		 * entry to the PMC's owner process.
 		 */
 		pmclog_process_callchain(pm, ps);
 
 	entrydone:
 		ps->ps_nsamples = 0; /* mark entry as free */
 		atomic_subtract_rel_int(&pm->pm_runcount, 1);
 
 		/* increment read pointer, modulo sample size */
 		if (++ps == psb->ps_fence)
 			psb->ps_read = psb->ps_samples;
 		else
 			psb->ps_read = ps;
 	}
 
 	atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
 
 	/* Do not re-enable stalled PMCs if we failed to process any samples */
 	if (n == 0)
 		return;
 
 	/*
 	 * Restart any stalled sampling PMCs on this CPU.
 	 *
 	 * If the NMI handler sets the pm_stalled field of a PMC after
 	 * the check below, we'll end up processing the stalled PMC at
 	 * the next hardclock tick.
 	 */
 	for (n = 0; n < md->pmd_npmc; n++) {
 		pcd = pmc_ri_to_classdep(md, n, &adjri);
 		KASSERT(pcd != NULL,
 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
 		(void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
 
 		if (pm == NULL ||			 /* !cfg'ed */
 		    pm->pm_state != PMC_STATE_RUNNING || /* !active */
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
 		    pm->pm_stalled == 0) /* !stalled */
 			continue;
 
 		pm->pm_stalled = 0;
 		(*pcd->pcd_start_pmc)(cpu, adjri);
 	}
 }
 
 /*
  * Event handlers.
  */
 
 /*
  * Handle a process exit.
  *
  * Remove this process from all hash tables.  If this process
  * owned any PMCs, turn off those PMCs and deallocate them,
  * removing any associations with target processes.
  *
  * This function will be called by the last 'thread' of a
  * process.
  *
  * XXX This eventhandler gets called early in the exit process.
  * Consider using a 'hook' invocation from thread_exit() or equivalent
  * spot.  Another negative is that kse_exit doesn't seem to call
  * exit1() [??].
  *
  */
 
 static void
 pmc_process_exit(void *arg __unused, struct proc *p)
 {
 	struct pmc *pm;
 	int adjri, cpu;
 	unsigned int ri;
 	int is_using_hwpmcs;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 	struct pmc_classdep *pcd;
 	pmc_value_t newvalue, tmp;
 
 	PROC_LOCK(p);
 	is_using_hwpmcs = p->p_flag & P_HWPMC;
 	PROC_UNLOCK(p);
 
 	/*
 	 * Log a sysexit event to all SS PMC owners.
 	 */
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		    pmclog_process_sysexit(po, p->p_pid);
 
 	if (!is_using_hwpmcs)
 		return;
 
 	PMC_GET_SX_XLOCK();
-	PMCDBG(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
+	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
 	    p->p_comm);
 
 	/*
 	 * Since this code is invoked by the last thread in an exiting
 	 * process, we would have context switched IN at some prior
 	 * point.  However, with PREEMPTION, kernel mode context
 	 * switches may happen any time, so we want to disable a
 	 * context switch OUT till we get any PMCs targetting this
 	 * process off the hardware.
 	 *
 	 * We also need to atomically remove this process'
 	 * entry from our target process hash table, using
 	 * PMC_FLAG_REMOVE.
 	 */
-	PMCDBG(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
+	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
 	    p->p_comm);
 
 	critical_enter(); /* no preemption */
 
 	cpu = curthread->td_oncpu;
 
 	if ((pp = pmc_find_process_descriptor(p,
 		 PMC_FLAG_REMOVE)) != NULL) {
 
-		PMCDBG(PRC,EXT,2,
+		PMCDBG2(PRC,EXT,2,
 		    "process-exit proc=%p pmc-process=%p", p, pp);
 
 		/*
 		 * The exiting process could the target of
 		 * some PMCs which will be running on
 		 * currently executing CPU.
 		 *
 		 * We need to turn these PMCs off like we
 		 * would do at context switch OUT time.
 		 */
 		for (ri = 0; ri < md->pmd_npmc; ri++) {
 
 			/*
 			 * Pick up the pmc pointer from hardware
 			 * state similar to the CSW_OUT code.
 			 */
 			pm = NULL;
 
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			(void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
 
-			PMCDBG(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
+			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
 
 			if (pm == NULL ||
 			    !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
 				continue;
 
-			PMCDBG(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
+			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
 			    pm, pm->pm_state);
 
 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
 				__LINE__, PMC_TO_ROWINDEX(pm), ri));
 
 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
 				__LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
 
 			(void) pcd->pcd_stop_pmc(cpu, adjri);
 
 			KASSERT(pm->pm_runcount > 0,
 			    ("[pmc,%d] bad runcount ri %d rc %d",
 				__LINE__, ri, pm->pm_runcount));
 
 			/* Stop hardware only if it is actually running */
 			if (pm->pm_state == PMC_STATE_RUNNING &&
 			    pm->pm_stalled == 0) {
 				pcd->pcd_read_pmc(cpu, adjri, &newvalue);
 				tmp = newvalue -
 				    PMC_PCPU_SAVED(cpu,ri);
 
 				mtx_pool_lock_spin(pmc_mtxpool, pm);
 				pm->pm_gv.pm_savedvalue += tmp;
 				pp->pp_pmcs[ri].pp_pmcval += tmp;
 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
 			}
 
 			atomic_subtract_rel_int(&pm->pm_runcount,1);
 
 			KASSERT((int) pm->pm_runcount >= 0,
 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
 
 			(void) pcd->pcd_config_pmc(cpu, adjri, NULL);
 		}
 
 		/*
 		 * Inform the MD layer of this pseudo "context switch
 		 * out"
 		 */
 		(void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
 
 		critical_exit(); /* ok to be pre-empted now */
 
 		/*
 		 * Unlink this process from the PMCs that are
 		 * targetting it.  This will send a signal to
 		 * all PMC owner's whose PMCs are orphaned.
 		 *
 		 * Log PMC value at exit time if requested.
 		 */
 		for (ri = 0; ri < md->pmd_npmc; ri++)
 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
 				if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
 					pmclog_process_procexit(pm, pp);
 				pmc_unlink_target_process(pm, pp);
 			}
 		free(pp, M_PMC);
 
 	} else
 		critical_exit(); /* pp == NULL */
 
 
 	/*
 	 * If the process owned PMCs, free them up and free up
 	 * memory.
 	 */
 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
 		pmc_remove_owner(po);
 		pmc_destroy_owner_descriptor(po);
 	}
 
 	sx_xunlock(&pmc_sx);
 }
 
 /*
  * Handle a process fork.
  *
  * If the parent process 'p1' is under HWPMC monitoring, then copy
  * over any attached PMCs that have 'do_descendants' semantics.
  */
 
 static void
 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
     int flags)
 {
 	int is_using_hwpmcs;
 	unsigned int ri;
 	uint32_t do_descendants;
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *ppnew, *ppold;
 
 	(void) flags;		/* unused parameter */
 
 	PROC_LOCK(p1);
 	is_using_hwpmcs = p1->p_flag & P_HWPMC;
 	PROC_UNLOCK(p1);
 
 	/*
 	 * If there are system-wide sampling PMCs active, we need to
 	 * log all fork events to their owner's logs.
 	 */
 
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 	    if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		    pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
 
 	if (!is_using_hwpmcs)
 		return;
 
 	PMC_GET_SX_XLOCK();
-	PMCDBG(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
+	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
 	    p1->p_pid, p1->p_comm, newproc);
 
 	/*
 	 * If the parent process (curthread->td_proc) is a
 	 * target of any PMCs, look for PMCs that are to be
 	 * inherited, and link these into the new process
 	 * descriptor.
 	 */
 	if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
 		 PMC_FLAG_NONE)) == NULL)
 		goto done;		/* nothing to do */
 
 	do_descendants = 0;
 	for (ri = 0; ri < md->pmd_npmc; ri++)
 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
 			do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
 	if (do_descendants == 0) /* nothing to do */
 		goto done;
 
 	/* allocate a descriptor for the new process  */
 	if ((ppnew = pmc_find_process_descriptor(newproc,
 		 PMC_FLAG_ALLOCATE)) == NULL)
 		goto done;
 
 	/*
 	 * Run through all PMCs that were targeting the old process
 	 * and which specified F_DESCENDANTS and attach them to the
 	 * new process.
 	 *
 	 * Log the fork event to all owners of PMCs attached to this
 	 * process, if not already logged.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++)
 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
 			pmc_link_target_process(pm, ppnew);
 			po = pm->pm_owner;
 			if (po->po_sscount == 0 &&
 			    po->po_flags & PMC_PO_OWNS_LOGFILE)
 				pmclog_process_procfork(po, p1->p_pid,
 				    newproc->p_pid);
 		}
 
 	/*
 	 * Now mark the new process as being tracked by this driver.
 	 */
 	PROC_LOCK(newproc);
 	newproc->p_flag |= P_HWPMC;
 	PROC_UNLOCK(newproc);
 
  done:
 	sx_xunlock(&pmc_sx);
 }
 
 static void
 pmc_kld_load(void *arg __unused, linker_file_t lf)
 {
 	struct pmc_owner *po;
 
 	sx_slock(&pmc_sx);
 
 	/*
 	 * Notify owners of system sampling PMCs about KLD operations.
 	 */
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			pmclog_process_map_in(po, (pid_t) -1,
 			    (uintfptr_t) lf->address, lf->filename);
 
 	/*
 	 * TODO: Notify owners of (all) process-sampling PMCs too.
 	 */
 
 	sx_sunlock(&pmc_sx);
 }
 
 static void
 pmc_kld_unload(void *arg __unused, const char *filename __unused,
     caddr_t address, size_t size)
 {
 	struct pmc_owner *po;
 
 	sx_slock(&pmc_sx);
 
 	LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			pmclog_process_map_out(po, (pid_t) -1,
 			    (uintfptr_t) address, (uintfptr_t) address + size);
 
 	/*
 	 * TODO: Notify owners of process-sampling PMCs.
 	 */
 
 	sx_sunlock(&pmc_sx);
 }
 
 /*
  * initialization
  */
 
 static const char *pmc_name_of_pmcclass[] = {
 #undef	__PMC_CLASS
 #define	__PMC_CLASS(N) #N ,
 	__PMC_CLASSES()
 };
 
 /*
  * Base class initializer: allocate structure and set default classes.
  */
 struct pmc_mdep *
 pmc_mdep_alloc(int nclasses)
 {
 	struct pmc_mdep *md;
 	int	n;
 
 	/* SOFT + md classes */
 	n = 1 + nclasses;
 	md = malloc(sizeof(struct pmc_mdep) + n *
 	    sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
 	md->pmd_nclass = n;
 
 	/* Add base class. */
 	pmc_soft_initialize(md);
 	return md;
 }
 
 void
 pmc_mdep_free(struct pmc_mdep *md)
 {
 	pmc_soft_finalize(md);
 	free(md, M_PMC);
 }
 
 static int
 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc; (void) pp;
 
 	return (0);
 }
 
 static int
 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	(void) pc; (void) pp;
 
 	return (0);
 }
 
 static struct pmc_mdep *
 pmc_generic_cpu_initialize(void)
 {
 	struct pmc_mdep *md;
 
 	md = pmc_mdep_alloc(0);
 
 	md->pmd_cputype    = PMC_CPU_GENERIC;
 
 	md->pmd_pcpu_init  = NULL;
 	md->pmd_pcpu_fini  = NULL;
 	md->pmd_switch_in  = generic_switch_in;
 	md->pmd_switch_out = generic_switch_out;
 
 	return (md);
 }
 
 static void
 pmc_generic_cpu_finalize(struct pmc_mdep *md)
 {
 	(void) md;
 }
 
 
 static int
 pmc_initialize(void)
 {
 	int c, cpu, error, n, ri;
 	unsigned int maxcpu;
 	struct pmc_binding pb;
 	struct pmc_sample *ps;
 	struct pmc_classdep *pcd;
 	struct pmc_samplebuffer *sb;
 
 	md = NULL;
 	error = 0;
 
 #ifdef	HWPMC_DEBUG
 	/* parse debug flags first */
 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
 		pmc_debugstr, sizeof(pmc_debugstr)))
 		pmc_debugflags_parse(pmc_debugstr,
 		    pmc_debugstr+strlen(pmc_debugstr));
 #endif
 
-	PMCDBG(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
+	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
 
 	/* check kernel version */
 	if (pmc_kernel_version != PMC_VERSION) {
 		if (pmc_kernel_version == 0)
 			printf("hwpmc: this kernel has not been compiled with "
 			    "'options HWPMC_HOOKS'.\n");
 		else
 			printf("hwpmc: kernel version (0x%x) does not match "
 			    "module version (0x%x).\n", pmc_kernel_version,
 			    PMC_VERSION);
 		return EPROGMISMATCH;
 	}
 
 	/*
 	 * check sysctl parameters
 	 */
 
 	if (pmc_hashsize <= 0) {
 		(void) printf("hwpmc: tunable \"hashsize\"=%d must be "
 		    "greater than zero.\n", pmc_hashsize);
 		pmc_hashsize = PMC_HASH_SIZE;
 	}
 
 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
 		(void) printf("hwpmc: tunable \"nsamples\"=%d out of "
 		    "range.\n", pmc_nsamples);
 		pmc_nsamples = PMC_NSAMPLES;
 	}
 
 	if (pmc_callchaindepth <= 0 ||
 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
 		(void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
 		    "range - using %d.\n", pmc_callchaindepth,
 		    PMC_CALLCHAIN_DEPTH_MAX);
 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
 	}
 
 	md = pmc_md_initialize();
 	if (md == NULL) {
 		/* Default to generic CPU. */
 		md = pmc_generic_cpu_initialize();
 		if (md == NULL)
 			return (ENOSYS);
         }
 
 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
 	    ("[pmc,%d] no classes or pmcs", __LINE__));
 
 	/* Compute the map from row-indices to classdep pointers. */
 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
 	    md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
 
 	for (n = 0; n < md->pmd_npmc; n++)
 		pmc_rowindex_to_classdep[n] = NULL;
 	for (ri = c = 0; c < md->pmd_nclass; c++) {
 		pcd = &md->pmd_classdep[c];
 		for (n = 0; n < pcd->pcd_num; n++, ri++)
 			pmc_rowindex_to_classdep[ri] = pcd;
 	}
 
 	KASSERT(ri == md->pmd_npmc,
 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
 	    ri, md->pmd_npmc));
 
 	maxcpu = pmc_cpu_max();
 
 	/* allocate space for the per-cpu array */
 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
 	    M_WAITOK|M_ZERO);
 
 	/* per-cpu 'saved values' for managing process-mode PMCs */
 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
 	    M_PMC, M_WAITOK);
 
 	/* Perform CPU-dependent initialization. */
 	pmc_save_cpu_binding(&pb);
 	error = 0;
 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 		pmc_select_cpu(cpu);
 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
 		    M_WAITOK|M_ZERO);
 		if (md->pmd_pcpu_init)
 			error = md->pmd_pcpu_init(md, cpu);
 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
 			error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
 	}
 	pmc_restore_cpu_binding(&pb);
 
 	if (error)
 		return (error);
 
 	/* allocate space for the sample array */
 	for (cpu = 0; cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 
 		sb = malloc(sizeof(struct pmc_samplebuffer) +
 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
 		    M_WAITOK|M_ZERO);
 		sb->ps_read = sb->ps_write = sb->ps_samples;
 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
 
 		KASSERT(pmc_pcpu[cpu] != NULL,
 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
 
 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
 
 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
 			ps->ps_pc = sb->ps_callchains +
 			    (n * pmc_callchaindepth);
 
 		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
 
 		sb = malloc(sizeof(struct pmc_samplebuffer) +
 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
 		    M_WAITOK|M_ZERO);
 		sb->ps_read = sb->ps_write = sb->ps_samples;
 		sb->ps_fence = sb->ps_samples + pmc_nsamples;
 
 		KASSERT(pmc_pcpu[cpu] != NULL,
 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
 
 		sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
 		    sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
 
 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
 			ps->ps_pc = sb->ps_callchains +
 			    (n * pmc_callchaindepth);
 
 		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
 	}
 
 	/* allocate space for the row disposition array */
 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
 	    M_PMC, M_WAITOK|M_ZERO);
 
 	/* mark all PMCs as available */
 	for (n = 0; n < (int) md->pmd_npmc; n++)
 		PMC_MARK_ROW_FREE(n);
 
 	/* allocate thread hash tables */
 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
 	    &pmc_ownerhashmask);
 
 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
 	    &pmc_processhashmask);
 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
 	    MTX_SPIN);
 
 	LIST_INIT(&pmc_ss_owners);
 	pmc_ss_count = 0;
 
 	/* allocate a pool of spin mutexes */
 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
 	    MTX_SPIN);
 
-	PMCDBG(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
+	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
 	    pmc_processhash, pmc_processhashmask);
 
 	/* register process {exit,fork,exec} handlers */
 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
 
 	/* register kld event handlers */
 	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
 	    NULL, EVENTHANDLER_PRI_ANY);
 	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
 	    NULL, EVENTHANDLER_PRI_ANY);
 
 	/* initialize logging */
 	pmclog_initialize();
 
 	/* set hook functions */
 	pmc_intr = md->pmd_intr;
 	pmc_hook = pmc_hook_handler;
 
 	if (error == 0) {
 		printf(PMC_MODULE_NAME ":");
 		for (n = 0; n < (int) md->pmd_nclass; n++) {
 			pcd = &md->pmd_classdep[n];
 			printf(" %s/%d/%d/0x%b",
 			    pmc_name_of_pmcclass[pcd->pcd_class],
 			    pcd->pcd_num,
 			    pcd->pcd_width,
 			    pcd->pcd_caps,
 			    "\20"
 			    "\1INT\2USR\3SYS\4EDG\5THR"
 			    "\6REA\7WRI\10INV\11QUA\12PRC"
 			    "\13TAG\14CSC");
 		}
 		printf("\n");
 	}
 
 	return (error);
 }
 
 /* prepare to be unloaded */
 static void
 pmc_cleanup(void)
 {
 	int c, cpu;
 	unsigned int maxcpu;
 	struct pmc_ownerhash *ph;
 	struct pmc_owner *po, *tmp;
 	struct pmc_binding pb;
 #ifdef	HWPMC_DEBUG
 	struct pmc_processhash *prh;
 #endif
 
-	PMCDBG(MOD,INI,0, "%s", "cleanup");
+	PMCDBG0(MOD,INI,0, "cleanup");
 
 	/* switch off sampling */
 	CPU_ZERO(&pmc_cpumask);
 	pmc_intr = NULL;
 
 	sx_xlock(&pmc_sx);
 	if (pmc_hook == NULL) {	/* being unloaded already */
 		sx_xunlock(&pmc_sx);
 		return;
 	}
 
 	pmc_hook = NULL; /* prevent new threads from entering module */
 
 	/* deregister event handlers */
 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
 	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
 	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
 
 	/* send SIGBUS to all owner threads, free up allocations */
 	if (pmc_ownerhash)
 		for (ph = pmc_ownerhash;
 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
 		     ph++) {
 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
 				pmc_remove_owner(po);
 
 				/* send SIGBUS to owner processes */
-				PMCDBG(MOD,INI,2, "cleanup signal proc=%p "
+				PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
 				    "(%d, %s)", po->po_owner,
 				    po->po_owner->p_pid,
 				    po->po_owner->p_comm);
 
 				PROC_LOCK(po->po_owner);
 				kern_psignal(po->po_owner, SIGBUS);
 				PROC_UNLOCK(po->po_owner);
 
 				pmc_destroy_owner_descriptor(po);
 			}
 		}
 
 	/* reclaim allocated data structures */
 	if (pmc_mtxpool)
 		mtx_pool_destroy(&pmc_mtxpool);
 
 	mtx_destroy(&pmc_processhash_mtx);
 	if (pmc_processhash) {
 #ifdef	HWPMC_DEBUG
 		struct pmc_process *pp;
 
-		PMCDBG(MOD,INI,3, "%s", "destroy process hash");
+		PMCDBG0(MOD,INI,3, "destroy process hash");
 		for (prh = pmc_processhash;
 		     prh <= &pmc_processhash[pmc_processhashmask];
 		     prh++)
 			LIST_FOREACH(pp, prh, pp_next)
-			    PMCDBG(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
+			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
 #endif
 
 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
 		pmc_processhash = NULL;
 	}
 
 	if (pmc_ownerhash) {
-		PMCDBG(MOD,INI,3, "%s", "destroy owner hash");
+		PMCDBG0(MOD,INI,3, "destroy owner hash");
 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
 		pmc_ownerhash = NULL;
 	}
 
 	KASSERT(LIST_EMPTY(&pmc_ss_owners),
 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
 	KASSERT(pmc_ss_count == 0,
 	    ("[pmc,%d] Global SS count not empty", __LINE__));
 
  	/* do processor and pmc-class dependent cleanup */
 	maxcpu = pmc_cpu_max();
 
-	PMCDBG(MOD,INI,3, "%s", "md cleanup");
+	PMCDBG0(MOD,INI,3, "md cleanup");
 	if (md) {
 		pmc_save_cpu_binding(&pb);
 		for (cpu = 0; cpu < maxcpu; cpu++) {
-			PMCDBG(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
+			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
 			    cpu, pmc_pcpu[cpu]);
 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
 				continue;
 			pmc_select_cpu(cpu);
 			for (c = 0; c < md->pmd_nclass; c++)
 				md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
 			if (md->pmd_pcpu_fini)
 				md->pmd_pcpu_fini(md, cpu);
 		}
 
 		if (md->pmd_cputype == PMC_CPU_GENERIC)
 			pmc_generic_cpu_finalize(md);
 		else
 			pmc_md_finalize(md);
 
 		pmc_mdep_free(md);
 		md = NULL;
 		pmc_restore_cpu_binding(&pb);
 	}
 
 	/* Free per-cpu descriptors. */
 	for (cpu = 0; cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
 		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
 			cpu));
 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
 		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
 			cpu));
 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
 		free(pmc_pcpu[cpu], M_PMC);
 	}
 
 	free(pmc_pcpu, M_PMC);
 	pmc_pcpu = NULL;
 
 	free(pmc_pcpu_saved, M_PMC);
 	pmc_pcpu_saved = NULL;
 
 	if (pmc_pmcdisp) {
 		free(pmc_pmcdisp, M_PMC);
 		pmc_pmcdisp = NULL;
 	}
 
 	if (pmc_rowindex_to_classdep) {
 		free(pmc_rowindex_to_classdep, M_PMC);
 		pmc_rowindex_to_classdep = NULL;
 	}
 
 	pmclog_shutdown();
 
 	sx_xunlock(&pmc_sx); 	/* we are done */
 }
 
 /*
  * The function called at load/unload.
  */
 
 static int
 load (struct module *module __unused, int cmd, void *arg __unused)
 {
 	int error;
 
 	error = 0;
 
 	switch (cmd) {
 	case MOD_LOAD :
 		/* initialize the subsystem */
 		error = pmc_initialize();
 		if (error != 0)
 			break;
-		PMCDBG(MOD,INI,1, "syscall=%d maxcpu=%d",
+		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
 		    pmc_syscall_num, pmc_cpu_max());
 		break;
 
 
 	case MOD_UNLOAD :
 	case MOD_SHUTDOWN:
 		pmc_cleanup();
-		PMCDBG(MOD,INI,1, "%s", "unloaded");
+		PMCDBG0(MOD,INI,1, "unloaded");
 		break;
 
 	default :
 		error = EINVAL;	/* XXX should panic(9) */
 		break;
 	}
 
 	return error;
 }
 
 /* memory pool */
 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");
Index: head/sys/dev/hwpmc/hwpmc_mpc7xxx.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_mpc7xxx.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_mpc7xxx.c	(revision 282658)
@@ -1,755 +1,755 @@
 /*-
  * Copyright (c) 2011 Justin Hibbits
  * Copyright (c) 2005, Joseph Koshy
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/pmc_mdep.h>
 #include <machine/spr.h>
 #include <machine/cpu.h>
 
 #include "hwpmc_powerpc.h"
 
 #define	POWERPC_PMC_CAPS	(PMC_CAP_INTERRUPT | PMC_CAP_USER |     \
 				 PMC_CAP_SYSTEM | PMC_CAP_EDGE |	\
 				 PMC_CAP_THRESHOLD | PMC_CAP_READ |	\
 				 PMC_CAP_WRITE | PMC_CAP_INVERT |	\
 				 PMC_CAP_QUALIFIER)
 
 #define PPC_SET_PMC1SEL(r, x)	((r & ~(SPR_MMCR0_PMC1SEL(0x3f))) | SPR_MMCR0_PMC1SEL(x))
 #define PPC_SET_PMC2SEL(r, x)	((r & ~(SPR_MMCR0_PMC2SEL(0x3f))) | SPR_MMCR0_PMC2SEL(x))
 #define PPC_SET_PMC3SEL(r, x)	((r & ~(SPR_MMCR1_PMC3SEL(0x1f))) | SPR_MMCR1_PMC3SEL(x))
 #define PPC_SET_PMC4SEL(r, x)	((r & ~(SPR_MMCR1_PMC4SEL(0x1f))) | SPR_MMCR1_PMC4SEL(x))
 #define PPC_SET_PMC5SEL(r, x)	((r & ~(SPR_MMCR1_PMC5SEL(0x1f))) | SPR_MMCR1_PMC5SEL(x))
 #define PPC_SET_PMC6SEL(r, x)	((r & ~(SPR_MMCR1_PMC6SEL(0x3f))) | SPR_MMCR1_PMC6SEL(x))
 
 /* Change this when we support more than just the 7450. */
 #define MPC7XXX_MAX_PMCS	6
 
 #define MPC7XXX_PMC_HAS_OVERFLOWED(x) (mpc7xxx_pmcn_read(x) & (0x1 << 31))
 
 /*
  * Things to improve on this:
  * - It stops (clears to 0) the PMC and resets it at every context switch
  *   currently.
  */
 
 /*
  * This should work for every 32-bit PowerPC implementation I know of (G3 and G4
  * specifically).
  */
 
 struct mpc7xxx_event_code_map {
 	enum pmc_event	pe_ev;       /* enum value */
 	uint8_t         pe_counter_mask;  /* Which counter this can be counted in. */
 	uint8_t		pe_code;     /* numeric code */
 };
 
 #define PPC_PMC_MASK1	0
 #define PPC_PMC_MASK2	1
 #define PPC_PMC_MASK3	2
 #define PPC_PMC_MASK4	3
 #define PPC_PMC_MASK5	4
 #define PPC_PMC_MASK6	5
 #define PPC_PMC_MASK_ALL	0x3f
 #define PMC_POWERPC_EVENT(id, mask, number) \
 	{ .pe_ev = PMC_EV_PPC7450_##id, .pe_counter_mask = mask, .pe_code = number }
 
 static struct mpc7xxx_event_code_map mpc7xxx_event_codes[] = {
 	PMC_POWERPC_EVENT(CYCLE,PPC_PMC_MASK_ALL, 1),
 	PMC_POWERPC_EVENT(INSTR_COMPLETED, 0x0f, 2),
 	PMC_POWERPC_EVENT(TLB_BIT_TRANSITIONS, 0x0f, 3),
 	PMC_POWERPC_EVENT(INSTR_DISPATCHED, 0x0f, 4),
 	PMC_POWERPC_EVENT(PMON_EXCEPT, 0x0f, 5),
 	PMC_POWERPC_EVENT(PMON_SIG, 0x0f, 7),
 	PMC_POWERPC_EVENT(VPU_INSTR_COMPLETED, 0x03, 8),
 	PMC_POWERPC_EVENT(VFPU_INSTR_COMPLETED, 0x03, 9),
 	PMC_POWERPC_EVENT(VIU1_INSTR_COMPLETED, 0x03, 10),
 	PMC_POWERPC_EVENT(VIU2_INSTR_COMPLETED, 0x03, 11),
 	PMC_POWERPC_EVENT(MTVSCR_INSTR_COMPLETED, 0x03, 12),
 	PMC_POWERPC_EVENT(MTVRSAVE_INSTR_COMPLETED, 0x03, 13),
 	PMC_POWERPC_EVENT(VPU_INSTR_WAIT_CYCLES, 0x03, 14),
 	PMC_POWERPC_EVENT(VFPU_INSTR_WAIT_CYCLES, 0x03, 15),
 	PMC_POWERPC_EVENT(VIU1_INSTR_WAIT_CYCLES, 0x03, 16),
 	PMC_POWERPC_EVENT(VIU2_INSTR_WAIT_CYCLES, 0x03, 17),
 	PMC_POWERPC_EVENT(MFVSCR_SYNC_CYCLES, 0x03, 18),
 	PMC_POWERPC_EVENT(VSCR_SAT_SET, 0x03, 19),
 	PMC_POWERPC_EVENT(STORE_INSTR_COMPLETED, 0x03, 20),
 	PMC_POWERPC_EVENT(L1_INSTR_CACHE_MISSES, 0x03, 21),
 	PMC_POWERPC_EVENT(L1_DATA_SNOOPS, 0x03, 22),
 	PMC_POWERPC_EVENT(UNRESOLVED_BRANCHES, 0x01, 23),
 	PMC_POWERPC_EVENT(SPEC_BUFFER_CYCLES, 0x01, 24),
 	PMC_POWERPC_EVENT(BRANCH_UNIT_STALL_CYCLES, 0x01, 25),
 	PMC_POWERPC_EVENT(TRUE_BRANCH_TARGET_HITS, 0x01, 26),
 	PMC_POWERPC_EVENT(BRANCH_LINK_STAC_PREDICTED, 0x01, 27),
 	PMC_POWERPC_EVENT(GPR_ISSUE_QUEUE_DISPATCHES, 0x01, 28),
 	PMC_POWERPC_EVENT(CYCLES_THREE_INSTR_DISPATCHED, 0x01, 29),
 	PMC_POWERPC_EVENT(THRESHOLD_INSTR_QUEUE_ENTRIES_CYCLES, 0x01, 30),
 	PMC_POWERPC_EVENT(THRESHOLD_VEC_INSTR_QUEUE_ENTRIES_CYCLES, 0x01, 31),
 	PMC_POWERPC_EVENT(CYCLES_NO_COMPLETED_INSTRS, 0x01, 32),
 	PMC_POWERPC_EVENT(IU2_INSTR_COMPLETED, 0x01, 33),
 	PMC_POWERPC_EVENT(BRANCHES_COMPLETED, 0x01, 34),
 	PMC_POWERPC_EVENT(EIEIO_INSTR_COMPLETED, 0x01, 35),
 	PMC_POWERPC_EVENT(MTSPR_INSTR_COMPLETED, 0x01, 36),
 	PMC_POWERPC_EVENT(SC_INSTR_COMPLETED, 0x01, 37),
 	PMC_POWERPC_EVENT(LS_LM_COMPLETED, 0x01, 38),
 	PMC_POWERPC_EVENT(ITLB_HW_TABLE_SEARCH_CYCLES, 0x01, 39),
 	PMC_POWERPC_EVENT(DTLB_HW_SEARCH_CYCLES_OVER_THRESHOLD, 0x01, 40),
 	PMC_POWERPC_EVENT(L1_INSTR_CACHE_ACCESSES, 0x01, 41),
 	PMC_POWERPC_EVENT(INSTR_BKPT_MATCHES, 0x01, 42),
 	PMC_POWERPC_EVENT(L1_DATA_CACHE_LOAD_MISS_CYCLES_OVER_THRESHOLD, 0x01, 43),
 	PMC_POWERPC_EVENT(L1_DATA_SNOOP_HIT_ON_MODIFIED, 0x01, 44),
 	PMC_POWERPC_EVENT(LOAD_MISS_ALIAS, 0x01, 45),
 	PMC_POWERPC_EVENT(LOAD_MISS_ALIAS_ON_TOUCH, 0x01, 46),
 	PMC_POWERPC_EVENT(TOUCH_ALIAS, 0x01, 47),
 	PMC_POWERPC_EVENT(L1_DATA_SNOOP_HIT_CASTOUT_QUEUE, 0x01, 48),
 	PMC_POWERPC_EVENT(L1_DATA_SNOOP_HIT_CASTOUT, 0x01, 49),
 	PMC_POWERPC_EVENT(L1_DATA_SNOOP_HITS, 0x01, 50),
 	PMC_POWERPC_EVENT(WRITE_THROUGH_STORES, 0x01, 51),
 	PMC_POWERPC_EVENT(CACHE_INHIBITED_STORES, 0x01, 52),
 	PMC_POWERPC_EVENT(L1_DATA_LOAD_HIT, 0x01, 53),
 	PMC_POWERPC_EVENT(L1_DATA_TOUCH_HIT, 0x01, 54),
 	PMC_POWERPC_EVENT(L1_DATA_STORE_HIT, 0x01, 55),
 	PMC_POWERPC_EVENT(L1_DATA_TOTAL_HITS, 0x01, 56),
 	PMC_POWERPC_EVENT(DST_INSTR_DISPATCHED, 0x01, 57),
 	PMC_POWERPC_EVENT(REFRESHED_DSTS, 0x01, 58),
 	PMC_POWERPC_EVENT(SUCCESSFUL_DST_TABLE_SEARCHES, 0x01, 59),
 	PMC_POWERPC_EVENT(DSS_INSTR_COMPLETED, 0x01, 60),
 	PMC_POWERPC_EVENT(DST_STREAM_0_CACHE_LINE_FETCHES, 0x01, 61),
 	PMC_POWERPC_EVENT(VTQ_SUSPENDS_DUE_TO_CTX_CHANGE, 0x01, 62),
 	PMC_POWERPC_EVENT(VTQ_LINE_FETCH_HIT, 0x01, 63),
 	PMC_POWERPC_EVENT(VEC_LOAD_INSTR_COMPLETED, 0x01, 64),
 	PMC_POWERPC_EVENT(FP_STORE_INSTR_COMPLETED_IN_LSU, 0x01, 65),
 	PMC_POWERPC_EVENT(FPU_RENORMALIZATION, 0x01, 66),
 	PMC_POWERPC_EVENT(FPU_DENORMALIZATION, 0x01, 67),
 	PMC_POWERPC_EVENT(FP_STORE_CAUSES_STALL_IN_LSU, 0x01, 68),
 	PMC_POWERPC_EVENT(LD_ST_TRUE_ALIAS_STALL, 0x01, 70),
 	PMC_POWERPC_EVENT(LSU_INDEXED_ALIAS_STALL, 0x01, 71),
 	PMC_POWERPC_EVENT(LSU_ALIAS_VS_FSQ_WB0_WB1, 0x01, 72),
 	PMC_POWERPC_EVENT(LSU_ALIAS_VS_CSQ, 0x01, 73),
 	PMC_POWERPC_EVENT(LSU_LOAD_HIT_LINE_ALIAS_VS_CSQ0, 0x01, 74),
 	PMC_POWERPC_EVENT(LSU_LOAD_MISS_LINE_ALIAS_VS_CSQ0, 0x01, 75),
 	PMC_POWERPC_EVENT(LSU_TOUCH_LINE_ALIAS_VS_FSQ_WB0_WB1, 0x01, 76),
 	PMC_POWERPC_EVENT(LSU_TOUCH_ALIAS_VS_CSQ, 0x01, 77),
 	PMC_POWERPC_EVENT(LSU_LMQ_FULL_STALL, 0x01, 78),
 	PMC_POWERPC_EVENT(FP_LOAD_INSTR_COMPLETED_IN_LSU, 0x01, 79),
 	PMC_POWERPC_EVENT(FP_LOAD_SINGLE_INSTR_COMPLETED_IN_LSU, 0x01, 80),
 	PMC_POWERPC_EVENT(FP_LOAD_DOUBLE_COMPLETED_IN_LSU, 0x01, 81),
 	PMC_POWERPC_EVENT(LSU_RA_LATCH_STALL, 0x01, 82),
 	PMC_POWERPC_EVENT(LSU_LOAD_VS_STORE_QUEUE_ALIAS_STALL, 0x01, 83),
 	PMC_POWERPC_EVENT(LSU_LMQ_INDEX_ALIAS, 0x01, 84),
 	PMC_POWERPC_EVENT(LSU_STORE_QUEUE_INDEX_ALIAS, 0x01, 85),
 	PMC_POWERPC_EVENT(LSU_CSQ_FORWARDING, 0x01, 86),
 	PMC_POWERPC_EVENT(LSU_MISALIGNED_LOAD_FINISH, 0x01, 87),
 	PMC_POWERPC_EVENT(LSU_MISALIGN_STORE_COMPLETED, 0x01, 88),
 	PMC_POWERPC_EVENT(LSU_MISALIGN_STALL, 0x01, 89),
 	PMC_POWERPC_EVENT(FP_ONE_QUARTER_FPSCR_RENAMES_BUSY, 0x01, 90),
 	PMC_POWERPC_EVENT(FP_ONE_HALF_FPSCR_RENAMES_BUSY, 0x01, 91),
 	PMC_POWERPC_EVENT(FP_THREE_QUARTERS_FPSCR_RENAMES_BUSY, 0x01, 92),
 	PMC_POWERPC_EVENT(FP_ALL_FPSCR_RENAMES_BUSY, 0x01, 93),
 	PMC_POWERPC_EVENT(FP_DENORMALIZED_RESULT, 0x01, 94),
 	PMC_POWERPC_EVENT(L1_DATA_TOTAL_MISSES, 0x02, 23),
 	PMC_POWERPC_EVENT(DISPATCHES_TO_FPR_ISSUE_QUEUE, 0x02, 24),
 	PMC_POWERPC_EVENT(LSU_INSTR_COMPLETED, 0x02, 25),
 	PMC_POWERPC_EVENT(LOAD_INSTR_COMPLETED, 0x02, 26),
 	PMC_POWERPC_EVENT(SS_SM_INSTR_COMPLETED, 0x02, 27),
 	PMC_POWERPC_EVENT(TLBIE_INSTR_COMPLETED, 0x02, 28),
 	PMC_POWERPC_EVENT(LWARX_INSTR_COMPLETED, 0x02, 29),
 	PMC_POWERPC_EVENT(MFSPR_INSTR_COMPLETED, 0x02, 30),
 	PMC_POWERPC_EVENT(REFETCH_SERIALIZATION, 0x02, 31),
 	PMC_POWERPC_EVENT(COMPLETION_QUEUE_ENTRIES_OVER_THRESHOLD, 0x02, 32),
 	PMC_POWERPC_EVENT(CYCLES_ONE_INSTR_DISPATCHED, 0x02, 33),
 	PMC_POWERPC_EVENT(CYCLES_TWO_INSTR_COMPLETED, 0x02, 34),
 	PMC_POWERPC_EVENT(ITLB_NON_SPECULATIVE_MISSES, 0x02, 35),
 	PMC_POWERPC_EVENT(CYCLES_WAITING_FROM_L1_INSTR_CACHE_MISS, 0x02, 36),
 	PMC_POWERPC_EVENT(L1_DATA_LOAD_ACCESS_MISS, 0x02, 37),
 	PMC_POWERPC_EVENT(L1_DATA_TOUCH_MISS, 0x02, 38),
 	PMC_POWERPC_EVENT(L1_DATA_STORE_MISS, 0x02, 39),
 	PMC_POWERPC_EVENT(L1_DATA_TOUCH_MISS_CYCLES, 0x02, 40),
 	PMC_POWERPC_EVENT(L1_DATA_CYCLES_USED, 0x02, 41),
 	PMC_POWERPC_EVENT(DST_STREAM_1_CACHE_LINE_FETCHES, 0x02, 42),
 	PMC_POWERPC_EVENT(VTQ_STREAM_CANCELED_PREMATURELY, 0x02, 43),
 	PMC_POWERPC_EVENT(VTQ_RESUMES_DUE_TO_CTX_CHANGE, 0x02, 44),
 	PMC_POWERPC_EVENT(VTQ_LINE_FETCH_MISS, 0x02, 45),
 	PMC_POWERPC_EVENT(VTQ_LINE_FETCH, 0x02, 46),
 	PMC_POWERPC_EVENT(TLBIE_SNOOPS, 0x02, 47),
 	PMC_POWERPC_EVENT(L1_INSTR_CACHE_RELOADS, 0x02, 48),
 	PMC_POWERPC_EVENT(L1_DATA_CACHE_RELOADS, 0x02, 49),
 	PMC_POWERPC_EVENT(L1_DATA_CACHE_CASTOUTS_TO_L2, 0x02, 50),
 	PMC_POWERPC_EVENT(STORE_MERGE_GATHER, 0x02, 51),
 	PMC_POWERPC_EVENT(CACHEABLE_STORE_MERGE_TO_32_BYTES, 0x02, 52),
 	PMC_POWERPC_EVENT(DATA_BKPT_MATCHES, 0x02, 53),
 	PMC_POWERPC_EVENT(FALL_THROUGH_BRANCHES_PROCESSED, 0x02, 54),
 	PMC_POWERPC_EVENT(FIRST_SPECULATIVE_BRANCH_BUFFER_RESOLVED_CORRECTLY, 0x02, 55),
 	PMC_POWERPC_EVENT(SECOND_SPECULATION_BUFFER_ACTIVE, 0x02, 56),
 	PMC_POWERPC_EVENT(BPU_STALL_ON_LR_DEPENDENCY, 0x02, 57),
 	PMC_POWERPC_EVENT(BTIC_MISS, 0x02, 58),
 	PMC_POWERPC_EVENT(BRANCH_LINK_STACK_CORRECTLY_RESOLVED, 0x02, 59),
 	PMC_POWERPC_EVENT(FPR_ISSUE_STALLED, 0x02, 60),
 	PMC_POWERPC_EVENT(SWITCHES_BETWEEN_PRIV_USER, 0x02, 61),
 	PMC_POWERPC_EVENT(LSU_COMPLETES_FP_STORE_SINGLE, 0x02, 62),
 	PMC_POWERPC_EVENT(CYCLES_TWO_INSTR_COMPLETED, 0x04, 8),
 	PMC_POWERPC_EVENT(CYCLES_ONE_INSTR_DISPATCHED, 0x04, 9),
 	PMC_POWERPC_EVENT(VR_ISSUE_QUEUE_DISPATCHES, 0x04, 10),
 	PMC_POWERPC_EVENT(VR_STALLS, 0x04, 11),
 	PMC_POWERPC_EVENT(GPR_RENAME_BUFFER_ENTRIES_OVER_THRESHOLD, 0x04, 12),
 	PMC_POWERPC_EVENT(FPR_ISSUE_QUEUE_ENTRIES, 0x04, 13),
 	PMC_POWERPC_EVENT(FPU_INSTR_COMPLETED, 0x04, 14),
 	PMC_POWERPC_EVENT(STWCX_INSTR_COMPLETED, 0x04, 15),
 	PMC_POWERPC_EVENT(LS_LM_INSTR_PIECES, 0x04, 16),
 	PMC_POWERPC_EVENT(ITLB_HW_SEARCH_CYCLES_OVER_THRESHOLD, 0x04, 17),
 	PMC_POWERPC_EVENT(DTLB_MISSES, 0x04, 18),
 	PMC_POWERPC_EVENT(CANCELLED_L1_INSTR_CACHE_MISSES, 0x04, 19),
 	PMC_POWERPC_EVENT(L1_DATA_CACHE_OP_HIT, 0x04, 20),
 	PMC_POWERPC_EVENT(L1_DATA_LOAD_MISS_CYCLES, 0x04, 21),
 	PMC_POWERPC_EVENT(L1_DATA_PUSHES, 0x04, 22),
 	PMC_POWERPC_EVENT(L1_DATA_TOTAL_MISS, 0x04, 23),
 	PMC_POWERPC_EVENT(VT2_FETCHES, 0x04, 24),
 	PMC_POWERPC_EVENT(TAKEN_BRANCHES_PROCESSED, 0x04, 25),
 	PMC_POWERPC_EVENT(BRANCH_FLUSHES, 0x04, 26),
 	PMC_POWERPC_EVENT(SECOND_SPECULATIVE_BRANCH_BUFFER_RESOLVED_CORRECTLY, 0x04, 27),
 	PMC_POWERPC_EVENT(THIRD_SPECULATION_BUFFER_ACTIVE, 0x04, 28),
 	PMC_POWERPC_EVENT(BRANCH_UNIT_STALL_ON_CTR_DEPENDENCY, 0x04, 29),
 	PMC_POWERPC_EVENT(FAST_BTIC_HIT, 0x04, 30),
 	PMC_POWERPC_EVENT(BRANCH_LINK_STACK_MISPREDICTED, 0x04, 31),
 	PMC_POWERPC_EVENT(CYCLES_THREE_INSTR_COMPLETED, 0x08, 14),
 	PMC_POWERPC_EVENT(CYCLES_NO_INSTR_DISPATCHED, 0x08, 15),
 	PMC_POWERPC_EVENT(GPR_ISSUE_QUEUE_ENTRIES_OVER_THRESHOLD, 0x08, 16),
 	PMC_POWERPC_EVENT(GPR_ISSUE_QUEUE_STALLED, 0x08, 17),
 	PMC_POWERPC_EVENT(IU1_INSTR_COMPLETED, 0x08, 18),
 	PMC_POWERPC_EVENT(DSSALL_INSTR_COMPLETED, 0x08, 19),
 	PMC_POWERPC_EVENT(TLBSYNC_INSTR_COMPLETED, 0x08, 20),
 	PMC_POWERPC_EVENT(SYNC_INSTR_COMPLETED, 0x08, 21),
 	PMC_POWERPC_EVENT(SS_SM_INSTR_PIECES, 0x08, 22),
 	PMC_POWERPC_EVENT(DTLB_HW_SEARCH_CYCLES, 0x08, 23),
 	PMC_POWERPC_EVENT(SNOOP_RETRIES, 0x08, 24),
 	PMC_POWERPC_EVENT(SUCCESSFUL_STWCX, 0x08, 25),
 	PMC_POWERPC_EVENT(DST_STREAM_3_CACHE_LINE_FETCHES, 0x08, 26),
 	PMC_POWERPC_EVENT(THIRD_SPECULATIVE_BRANCH_BUFFER_RESOLVED_CORRECTLY, 0x08, 27),
 	PMC_POWERPC_EVENT(MISPREDICTED_BRANCHES, 0x08, 28),
 	PMC_POWERPC_EVENT(FOLDED_BRANCHES, 0x08, 29),
 	PMC_POWERPC_EVENT(FP_STORE_DOUBLE_COMPLETES_IN_LSU, 0x08, 30),
 	PMC_POWERPC_EVENT(L2_CACHE_HITS, 0x30, 2),
 	PMC_POWERPC_EVENT(L3_CACHE_HITS, 0x30, 3),
 	PMC_POWERPC_EVENT(L2_INSTR_CACHE_MISSES, 0x30, 4),
 	PMC_POWERPC_EVENT(L3_INSTR_CACHE_MISSES, 0x30, 5),
 	PMC_POWERPC_EVENT(L2_DATA_CACHE_MISSES, 0x30, 6),
 	PMC_POWERPC_EVENT(L3_DATA_CACHE_MISSES, 0x30, 7),
 	PMC_POWERPC_EVENT(L2_LOAD_HITS, 0x10, 8),
 	PMC_POWERPC_EVENT(L2_STORE_HITS, 0x10, 9),
 	PMC_POWERPC_EVENT(L3_LOAD_HITS, 0x10, 10),
 	PMC_POWERPC_EVENT(L3_STORE_HITS, 0x10, 11),
 	PMC_POWERPC_EVENT(L2_TOUCH_HITS, 0x30, 13),
 	PMC_POWERPC_EVENT(L3_TOUCH_HITS, 0x30, 14),
 	PMC_POWERPC_EVENT(SNOOP_RETRIES, 0x30, 15),
 	PMC_POWERPC_EVENT(SNOOP_MODIFIED, 0x10, 16),
 	PMC_POWERPC_EVENT(SNOOP_VALID, 0x10, 17),
 	PMC_POWERPC_EVENT(INTERVENTION, 0x30, 18),
 	PMC_POWERPC_EVENT(L2_CACHE_MISSES, 0x10, 19),
 	PMC_POWERPC_EVENT(L3_CACHE_MISSES, 0x10, 20),
 	PMC_POWERPC_EVENT(L2_CACHE_CASTOUTS, 0x20, 8),
 	PMC_POWERPC_EVENT(L3_CACHE_CASTOUTS, 0x20, 9),
 	PMC_POWERPC_EVENT(L2SQ_FULL_CYCLES, 0x20, 10),
 	PMC_POWERPC_EVENT(L3SQ_FULL_CYCLES, 0x20, 11),
 	PMC_POWERPC_EVENT(RAQ_FULL_CYCLES, 0x20, 16),
 	PMC_POWERPC_EVENT(WAQ_FULL_CYCLES, 0x20, 17),
 	PMC_POWERPC_EVENT(L1_EXTERNAL_INTERVENTIONS, 0x20, 19),
 	PMC_POWERPC_EVENT(L2_EXTERNAL_INTERVENTIONS, 0x20, 20),
 	PMC_POWERPC_EVENT(L3_EXTERNAL_INTERVENTIONS, 0x20, 21),
 	PMC_POWERPC_EVENT(EXTERNAL_INTERVENTIONS, 0x20, 22),
 	PMC_POWERPC_EVENT(EXTERNAL_PUSHES, 0x20, 23),
 	PMC_POWERPC_EVENT(EXTERNAL_SNOOP_RETRY, 0x20, 24),
 	PMC_POWERPC_EVENT(DTQ_FULL_CYCLES, 0x20, 25),
 	PMC_POWERPC_EVENT(BUS_RETRY, 0x20, 26),
 	PMC_POWERPC_EVENT(L2_VALID_REQUEST, 0x20, 27),
 	PMC_POWERPC_EVENT(BORDQ_FULL, 0x20, 28),
 	PMC_POWERPC_EVENT(BUS_TAS_FOR_READS, 0x20, 42),
 	PMC_POWERPC_EVENT(BUS_TAS_FOR_WRITES, 0x20, 43),
 	PMC_POWERPC_EVENT(BUS_READS_NOT_RETRIED, 0x20, 44),
 	PMC_POWERPC_EVENT(BUS_WRITES_NOT_RETRIED, 0x20, 45),
 	PMC_POWERPC_EVENT(BUS_READS_WRITES_NOT_RETRIED, 0x20, 46),
 	PMC_POWERPC_EVENT(BUS_RETRY_DUE_TO_L1_RETRY, 0x20, 47),
 	PMC_POWERPC_EVENT(BUS_RETRY_DUE_TO_PREVIOUS_ADJACENT, 0x20, 48),
 	PMC_POWERPC_EVENT(BUS_RETRY_DUE_TO_COLLISION, 0x20, 49),
 	PMC_POWERPC_EVENT(BUS_RETRY_DUE_TO_INTERVENTION_ORDERING, 0x20, 50),
 	PMC_POWERPC_EVENT(SNOOP_REQUESTS, 0x20, 51),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_REQUEST, 0x20, 52),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_COLLISION_VS_LOAD, 0x20, 53),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_COLLISION_VS_STORE, 0x20, 54),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_COLLISION_VS_INSTR_FETCH, 0x20, 55),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_COLLISION_VS_LOAD_STORE_INSTR_FETCH, 0x20, 56),
 	PMC_POWERPC_EVENT(PREFETCH_ENGINE_FULL, 0x20, 57)
 };
 
 const size_t mpc7xxx_event_codes_size = 
 	sizeof(mpc7xxx_event_codes) / sizeof(mpc7xxx_event_codes[0]);
 
 static pmc_value_t
 mpc7xxx_pmcn_read(unsigned int pmc)
 {
 	switch (pmc) {
 		case 0:
 			return mfspr(SPR_PMC1);
 			break;
 		case 1:
 			return mfspr(SPR_PMC2);
 			break;
 		case 2:
 			return mfspr(SPR_PMC3);
 			break;
 		case 3:
 			return mfspr(SPR_PMC4);
 			break;
 		case 4:
 			return mfspr(SPR_PMC5);
 			break;
 		case 5:
 			return mfspr(SPR_PMC6);
 		default:
 			panic("Invalid PMC number: %d\n", pmc);
 	}
 }
 
 static void
 mpc7xxx_pmcn_write(unsigned int pmc, uint32_t val)
 {
 	switch (pmc) {
 		case 0:
 			mtspr(SPR_PMC1, val);
 			break;
 		case 1:
 			mtspr(SPR_PMC2, val);
 			break;
 		case 2:
 			mtspr(SPR_PMC3, val);
 			break;
 		case 3:
 			mtspr(SPR_PMC4, val);
 			break;
 		case 4:
 			mtspr(SPR_PMC5, val);
 			break;
 		case 5:
 			mtspr(SPR_PMC6, val);
 			break;
 		default:
 			panic("Invalid PMC number: %d\n", pmc);
 	}
 }
 
 static int
 mpc7xxx_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < MPC7XXX_MAX_PMCS,
 	    ("[powerpc,%d] illegal row index %d", __LINE__, ri));
 
 	pm  = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
 	KASSERT(pm,
 	    ("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
 		ri));
 
 	tmp = mpc7xxx_pmcn_read(ri);
-	PMCDBG(MDP,REA,2,"ppc-read id=%d -> %jd", ri, tmp);
+	PMCDBG2(MDP,REA,2,"ppc-read id=%d -> %jd", ri, tmp);
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = POWERPC_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	else
 		*v = tmp;
 
 	return 0;
 }
 
 static int
 mpc7xxx_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < MPC7XXX_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	pm  = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = POWERPC_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 	
-	PMCDBG(MDP,WRI,1,"powerpc-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1,"powerpc-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	mpc7xxx_pmcn_write(ri, v);
 
 	return 0;
 }
 
 static int
 mpc7xxx_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < MPC7XXX_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[powerpc,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
 	    __LINE__, pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return 0;
 }
 
 static int
 mpc7xxx_start_pmc(int cpu, int ri)
 {
 	uint32_t config;
         struct pmc *pm;
         struct pmc_hw *phw;
 	register_t pmc_mmcr;
 
 	phw    = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	pm     = phw->phw_pmc;
 	config = pm->pm_md.pm_powerpc.pm_powerpc_evsel & ~POWERPC_PMC_ENABLE;
 
 	/* Enable the PMC. */
 	switch (ri) {
 	case 0:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC1SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 1:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC2SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 2:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC3SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	case 3:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC4SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 4:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC5SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	case 5:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC6SEL(pmc_mmcr, config);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	default:
 		break;
 	}
 	
 	/* The mask is inverted (enable is 1) compared to the flags in MMCR0, which
 	 * are Freeze flags.
 	 */
 	config = ~pm->pm_md.pm_powerpc.pm_powerpc_evsel & POWERPC_PMC_ENABLE;
 
 	pmc_mmcr = mfspr(SPR_MMCR0);
 	pmc_mmcr &= ~SPR_MMCR0_FC;
 	pmc_mmcr |= config;
 	mtspr(SPR_MMCR0, pmc_mmcr);
 
 	return 0;
 }
 
 static int
 mpc7xxx_stop_pmc(int cpu, int ri)
 {
         struct pmc *pm;
         struct pmc_hw *phw;
         register_t pmc_mmcr;
 
 	phw    = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	pm     = phw->phw_pmc;
 
 	/*
 	 * Disable the PMCs.
 	 */
 	switch (ri) {
 	case 0:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC1SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 1:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC2SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 2:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC3SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	case 3:
 		pmc_mmcr = mfspr(SPR_MMCR0);
 		pmc_mmcr = PPC_SET_PMC4SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR0, pmc_mmcr);
 		break;
 	case 4:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC5SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	case 5:
 		pmc_mmcr = mfspr(SPR_MMCR1);
 		pmc_mmcr = PPC_SET_PMC6SEL(pmc_mmcr, 0);
 		mtspr(SPR_MMCR1, pmc_mmcr);
 		break;
 	default:
 		break;
 	}
 	return 0;
 }
 
 static int
 mpc7xxx_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, i;
 	struct pmc_cpu *pc;
 	struct powerpc_cpu *pac;
 	struct pmc_hw  *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] wrong cpu number %d", __LINE__, cpu));
-	PMCDBG(MDP,INI,1,"powerpc-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"powerpc-init cpu=%d", cpu);
 
 	powerpc_pcpu[cpu] = pac = malloc(sizeof(struct powerpc_cpu), M_PMC,
 	    M_WAITOK|M_ZERO);
 	pac->pc_ppcpmcs = malloc(sizeof(struct pmc_hw) * MPC7XXX_MAX_PMCS,
 	    M_PMC, M_WAITOK|M_ZERO);
 	pac->pc_class = PMC_CLASS_PPC7450;
 	pc = pmc_pcpu[cpu];
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_ri;
 	KASSERT(pc != NULL, ("[powerpc,%d] NULL per-cpu pointer", __LINE__));
 
 	for (i = 0, phw = pac->pc_ppcpmcs; i < MPC7XXX_MAX_PMCS; i++, phw++) {
 		phw->phw_state    = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
 		phw->phw_pmc      = NULL;
 		pc->pc_hwpmcs[i + first_ri] = phw;
 	}
 
 	/* Clear the MMCRs, and set FC, to disable all PMCs. */
 	mtspr(SPR_MMCR0, SPR_MMCR0_FC | SPR_MMCR0_PMXE |
 	    SPR_MMCR0_FCECE | SPR_MMCR0_PMC1CE | SPR_MMCR0_PMCNCE);
 	mtspr(SPR_MMCR1, 0);
 
 	return 0;
 }
 
 static int
 mpc7xxx_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	uint32_t mmcr0 = mfspr(SPR_MMCR0);
 
 	mtmsr(mfmsr() & ~PSL_PMM);
 	mmcr0 |= SPR_MMCR0_FC;
 	mtspr(SPR_MMCR0, mmcr0);
 
 	free(powerpc_pcpu[cpu]->pc_ppcpmcs, M_PMC);
 	free(powerpc_pcpu[cpu], M_PMC);
 
 	return 0;
 }
 
 static int
 mpc7xxx_allocate_pmc(int cpu, int ri, struct pmc *pm,
   const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event pe;
 	uint32_t caps, config, counter;
 	int i;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < MPC7XXX_MAX_PMCS,
 	    ("[powerpc,%d] illegal row index %d", __LINE__, ri));
 
 	caps = a->pm_caps;
 
 	pe = a->pm_ev;
 	for (i = 0; i < mpc7xxx_event_codes_size; i++) {
 		if (mpc7xxx_event_codes[i].pe_ev == pe) {
 			config = mpc7xxx_event_codes[i].pe_code;
 			counter =  mpc7xxx_event_codes[i].pe_counter_mask;
 			break;
 		}
 	}
 	if (i == mpc7xxx_event_codes_size)
 		return (EINVAL);
 
 	if ((counter & (1 << ri)) == 0)
 		return (EINVAL);
 
 	if (caps & PMC_CAP_SYSTEM)
 		config |= POWERPC_PMC_KERNEL_ENABLE;
 	if (caps & PMC_CAP_USER)
 		config |= POWERPC_PMC_USER_ENABLE;
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
 		config |= POWERPC_PMC_ENABLE;
 
 	pm->pm_md.pm_powerpc.pm_powerpc_evsel = config;
 
-	PMCDBG(MDP,ALL,2,"powerpc-allocate ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"powerpc-allocate ri=%d -> config=0x%x", ri, config);
 
 	return 0;
 }
 
 static int
 mpc7xxx_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < MPC7XXX_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[powerpc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	return 0;
 }
 
 static int
 mpc7xxx_intr(int cpu, struct trapframe *tf)
 {
 	int i, error, retval;
 	uint32_t config;
 	struct pmc *pm;
 	struct powerpc_cpu *pac;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] out of range CPU %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	retval = 0;
 
 	pac = powerpc_pcpu[cpu];
 
 	config  = mfspr(SPR_MMCR0) & ~SPR_MMCR0_FC;
 
 	/*
 	 * look for all PMCs that have interrupted:
 	 * - look for a running, sampling PMC which has overflowed
 	 *   and which has a valid 'struct pmc' association
 	 *
 	 * If found, we call a helper to process the interrupt.
 	 */
 
 	for (i = 0; i < MPC7XXX_MAX_PMCS; i++) {
 		if ((pm = pac->pc_ppcpmcs[i].phw_pmc) == NULL ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			continue;
 		}
 
 		if (!MPC7XXX_PMC_HAS_OVERFLOWED(i))
 			continue;
 
 		retval = 1;	/* Found an interrupting PMC. */
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		/* Stop the counter if logging fails. */
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error != 0)
 			mpc7xxx_stop_pmc(cpu, i);
 
 		/* reload count. */
 		mpc7xxx_write_pmc(cpu, i, pm->pm_sc.pm_reloadcount);
 	}
 
 	atomic_add_int(retval ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	/* Re-enable PERF exceptions. */
 	if (retval)
 		mtspr(SPR_MMCR0, config | SPR_MMCR0_PMXE);
 
 	return (retval);
 }
 
 int
 pmc_mpc7xxx_initialize(struct pmc_mdep *pmc_mdep)
 {
 	struct pmc_classdep *pcd;
 
 	pmc_mdep->pmd_cputype = PMC_CPU_PPC_7450;
 
 	pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC];
 	pcd->pcd_caps  = POWERPC_PMC_CAPS;
 	pcd->pcd_class = PMC_CLASS_PPC7450;
 	pcd->pcd_num   = MPC7XXX_MAX_PMCS;
 	pcd->pcd_ri    = pmc_mdep->pmd_npmc;
 	pcd->pcd_width = 32;	/* All PMCs, even in ppc970, are 32-bit */
 
 	pcd->pcd_allocate_pmc   = mpc7xxx_allocate_pmc;
 	pcd->pcd_config_pmc     = mpc7xxx_config_pmc;
 	pcd->pcd_pcpu_fini      = mpc7xxx_pcpu_fini;
 	pcd->pcd_pcpu_init      = mpc7xxx_pcpu_init;
 	pcd->pcd_describe       = powerpc_describe;
 	pcd->pcd_get_config     = powerpc_get_config;
 	pcd->pcd_read_pmc       = mpc7xxx_read_pmc;
 	pcd->pcd_release_pmc    = mpc7xxx_release_pmc;
 	pcd->pcd_start_pmc      = mpc7xxx_start_pmc;
 	pcd->pcd_stop_pmc       = mpc7xxx_stop_pmc;
  	pcd->pcd_write_pmc      = mpc7xxx_write_pmc;
 
 	pmc_mdep->pmd_npmc   += MPC7XXX_MAX_PMCS;
 	pmc_mdep->pmd_intr   =  mpc7xxx_intr;
 
 	return (0);
 }
Index: head/sys/dev/hwpmc/hwpmc_octeon.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_octeon.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_octeon.c	(revision 282658)
@@ -1,195 +1,196 @@
 /*-
  * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/pmc_mdep.h>
 
 #include <contrib/octeon-sdk/cvmx.h>
 #include <contrib/octeon-sdk/cvmx-core.h>
 
 #define	OCTEON_PMC_CAPS	(PMC_CAP_INTERRUPT | PMC_CAP_USER |     \
 				 PMC_CAP_SYSTEM | PMC_CAP_EDGE |	\
 				 PMC_CAP_THRESHOLD | PMC_CAP_READ |	\
 				 PMC_CAP_WRITE | PMC_CAP_INVERT |	\
 				 PMC_CAP_QUALIFIER)
 
 const struct mips_event_code_map mips_event_codes[] =
 {
     { PMC_EV_OCTEON_CLK, MIPS_CTR_ALL, CVMX_CORE_PERF_CLK },
     { PMC_EV_OCTEON_ISSUE, MIPS_CTR_ALL, CVMX_CORE_PERF_ISSUE },
     { PMC_EV_OCTEON_RET, MIPS_CTR_ALL, CVMX_CORE_PERF_RET },
     { PMC_EV_OCTEON_NISSUE, MIPS_CTR_ALL, CVMX_CORE_PERF_NISSUE },
     { PMC_EV_OCTEON_SISSUE, MIPS_CTR_ALL, CVMX_CORE_PERF_SISSUE },
     { PMC_EV_OCTEON_DISSUE, MIPS_CTR_ALL, CVMX_CORE_PERF_DISSUE },
     { PMC_EV_OCTEON_IFI, MIPS_CTR_ALL, CVMX_CORE_PERF_IFI },
     { PMC_EV_OCTEON_BR, MIPS_CTR_ALL, CVMX_CORE_PERF_BR },
     { PMC_EV_OCTEON_BRMIS, MIPS_CTR_ALL, CVMX_CORE_PERF_BRMIS },
     { PMC_EV_OCTEON_J, MIPS_CTR_ALL, CVMX_CORE_PERF_J },
     { PMC_EV_OCTEON_JMIS, MIPS_CTR_ALL, CVMX_CORE_PERF_JMIS },
     { PMC_EV_OCTEON_REPLAY, MIPS_CTR_ALL, CVMX_CORE_PERF_REPLAY },
     { PMC_EV_OCTEON_IUNA, MIPS_CTR_ALL, CVMX_CORE_PERF_IUNA },
     { PMC_EV_OCTEON_TRAP, MIPS_CTR_ALL, CVMX_CORE_PERF_TRAP },
     { PMC_EV_OCTEON_UULOAD, MIPS_CTR_ALL, CVMX_CORE_PERF_UULOAD },
     { PMC_EV_OCTEON_UUSTORE, MIPS_CTR_ALL, CVMX_CORE_PERF_UUSTORE },
     { PMC_EV_OCTEON_ULOAD, MIPS_CTR_ALL, CVMX_CORE_PERF_ULOAD },
     { PMC_EV_OCTEON_USTORE, MIPS_CTR_ALL, CVMX_CORE_PERF_USTORE },
     { PMC_EV_OCTEON_EC, MIPS_CTR_ALL, CVMX_CORE_PERF_EC },
     { PMC_EV_OCTEON_MC, MIPS_CTR_ALL, CVMX_CORE_PERF_MC },
     { PMC_EV_OCTEON_CC, MIPS_CTR_ALL, CVMX_CORE_PERF_CC },
     { PMC_EV_OCTEON_CSRC, MIPS_CTR_ALL, CVMX_CORE_PERF_CSRC },
     { PMC_EV_OCTEON_CFETCH, MIPS_CTR_ALL, CVMX_CORE_PERF_CFETCH },
     { PMC_EV_OCTEON_CPREF, MIPS_CTR_ALL, CVMX_CORE_PERF_CPREF },
     { PMC_EV_OCTEON_ICA, MIPS_CTR_ALL, CVMX_CORE_PERF_ICA },
     { PMC_EV_OCTEON_II, MIPS_CTR_ALL, CVMX_CORE_PERF_II },
     { PMC_EV_OCTEON_IP, MIPS_CTR_ALL, CVMX_CORE_PERF_IP },
     { PMC_EV_OCTEON_CIMISS, MIPS_CTR_ALL, CVMX_CORE_PERF_CIMISS },
     { PMC_EV_OCTEON_WBUF, MIPS_CTR_ALL, CVMX_CORE_PERF_WBUF },
     { PMC_EV_OCTEON_WDAT, MIPS_CTR_ALL, CVMX_CORE_PERF_WDAT },
     { PMC_EV_OCTEON_WBUFLD, MIPS_CTR_ALL, CVMX_CORE_PERF_WBUFLD },
     { PMC_EV_OCTEON_WBUFFL, MIPS_CTR_ALL, CVMX_CORE_PERF_WBUFFL },
     { PMC_EV_OCTEON_WBUFTR, MIPS_CTR_ALL, CVMX_CORE_PERF_WBUFTR },
     { PMC_EV_OCTEON_BADD, MIPS_CTR_ALL, CVMX_CORE_PERF_BADD },
     { PMC_EV_OCTEON_BADDL2, MIPS_CTR_ALL, CVMX_CORE_PERF_BADDL2 },
     { PMC_EV_OCTEON_BFILL, MIPS_CTR_ALL, CVMX_CORE_PERF_BFILL },
     { PMC_EV_OCTEON_DDIDS, MIPS_CTR_ALL, CVMX_CORE_PERF_DDIDS },
     { PMC_EV_OCTEON_IDIDS, MIPS_CTR_ALL, CVMX_CORE_PERF_IDIDS },
     { PMC_EV_OCTEON_DIDNA, MIPS_CTR_ALL, CVMX_CORE_PERF_DIDNA },
     { PMC_EV_OCTEON_LDS, MIPS_CTR_ALL, CVMX_CORE_PERF_LDS },
     { PMC_EV_OCTEON_LMLDS, MIPS_CTR_ALL, CVMX_CORE_PERF_LMLDS },
     { PMC_EV_OCTEON_IOLDS, MIPS_CTR_ALL, CVMX_CORE_PERF_IOLDS },
     { PMC_EV_OCTEON_DMLDS, MIPS_CTR_ALL, CVMX_CORE_PERF_DMLDS },
     { PMC_EV_OCTEON_STS, MIPS_CTR_ALL, CVMX_CORE_PERF_STS },
     { PMC_EV_OCTEON_LMSTS, MIPS_CTR_ALL, CVMX_CORE_PERF_LMSTS },
     { PMC_EV_OCTEON_IOSTS, MIPS_CTR_ALL, CVMX_CORE_PERF_IOSTS },
     { PMC_EV_OCTEON_IOBDMA, MIPS_CTR_ALL, CVMX_CORE_PERF_IOBDMA },
     { PMC_EV_OCTEON_DTLB, MIPS_CTR_ALL, CVMX_CORE_PERF_DTLB },
     { PMC_EV_OCTEON_DTLBAD, MIPS_CTR_ALL, CVMX_CORE_PERF_DTLBAD },
     { PMC_EV_OCTEON_ITLB, MIPS_CTR_ALL, CVMX_CORE_PERF_ITLB },
     { PMC_EV_OCTEON_SYNC, MIPS_CTR_ALL, CVMX_CORE_PERF_SYNC },
     { PMC_EV_OCTEON_SYNCIOB, MIPS_CTR_ALL, CVMX_CORE_PERF_SYNCIOB },
     { PMC_EV_OCTEON_SYNCW, MIPS_CTR_ALL, CVMX_CORE_PERF_SYNCW },
 };
 
 const int mips_event_codes_size =
 	sizeof(mips_event_codes) / sizeof(mips_event_codes[0]);
 
 struct mips_pmc_spec mips_pmc_spec = {
 	.ps_cpuclass = PMC_CLASS_OCTEON,
 	.ps_cputype = PMC_CPU_MIPS_OCTEON,
 	.ps_capabilities = OCTEON_PMC_CAPS,
 	.ps_counter_width = 64
 };
 
 /*
  * Performance Count Register N
  */
 uint64_t
 mips_pmcn_read(unsigned int pmc)
 {
 	uint64_t reg = 0;
 
 	KASSERT(pmc < mips_npmcs, ("[mips,%d] illegal PMC number %d",
 				   __LINE__, pmc));
 
 	/* The counter value is the next value after the control register. */
 	switch (pmc) {
 	case 0:
 		CVMX_MF_COP0(reg, COP0_PERFVALUE0);
 		break;
 	case 1:
 		CVMX_MF_COP0(reg, COP0_PERFVALUE1);
 		break;
 	default:
 		return 0;
 	}
 	return (reg);
 }
 
 uint64_t
 mips_pmcn_write(unsigned int pmc, uint64_t reg)
 {
 
 	KASSERT(pmc < mips_npmcs, ("[mips,%d] illegal PMC number %d",
 				   __LINE__, pmc));
 
 	switch (pmc) {
 	case 0:
 		CVMX_MT_COP0(reg, COP0_PERFVALUE0);
 		break;
 	case 1:
 		CVMX_MT_COP0(reg, COP0_PERFVALUE1);
 		break;
 	default:
 		return 0;
 	}
 	return (reg);
 }
 
 uint32_t
 mips_get_perfctl(int cpu, int ri, uint32_t event, uint32_t caps)
 {
 	cvmx_core_perf_control_t control;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[mips,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < mips_npmcs,
 	    ("[mips,%d] illegal row index %d", __LINE__, ri));
 
 	control.s.event = event;
 
 	if (caps & PMC_CAP_SYSTEM) {
 		control.s.k = 1;
 		control.s.s = 1;
 		control.s.ex = 1;
 	}
 
 	if (caps & PMC_CAP_USER)
 		control.s.u = 1;
 
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0) {
 		control.s.k = 1;
 		control.s.s = 1;
 		control.s.u = 1;
 		control.s.ex = 1;
 	}
 
 	if (caps & PMC_CAP_INTERRUPT)
 		control.s.ie = 1;
 
-	PMCDBG(MDP,ALL,2,"mips-allocate ri=%d -> config=0x%x", ri, control.u32);
+	PMCDBG2(MDP,ALL,2,"mips-allocate ri=%d -> config=0x%x", ri,
+	    control.u32);
 
 	return (control.u32);
 }
Index: head/sys/dev/hwpmc/hwpmc_piv.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_piv.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_piv.c	(revision 282658)
@@ -1,1700 +1,1701 @@
 /*-
  * Copyright (c) 2003-2007 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/smp.h>
 #include <sys/systm.h>
 #include <machine/intr_machdep.h>
 #if (__FreeBSD_version >= 1100000)
 #include <x86/apicvar.h>
 #else
 #include <machine/apicvar.h>
 #endif
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 
 /*
  * PENTIUM 4 SUPPORT
  *
  * The P4 has 18 PMCs, divided into 4 groups with 4,4,4 and 6 PMCs
  * respectively.  Each PMC comprises of two model specific registers:
  * a counter configuration control register (CCCR) and a counter
  * register that holds the actual event counts.
  *
  * Configuring an event requires the use of one of 45 event selection
  * control registers (ESCR).  Events are associated with specific
  * ESCRs.  Each PMC group has a set of ESCRs it can use.
  *
  * - The BPU counter group (4 PMCs) can use the 16 ESCRs:
  *   BPU_ESCR{0,1}, IS_ESCR{0,1}, MOB_ESCR{0,1}, ITLB_ESCR{0,1},
  *   PMH_ESCR{0,1}, IX_ESCR{0,1}, FSB_ESCR{0,}, BSU_ESCR{0,1}.
  *
  * - The MS counter group (4 PMCs) can use the 6 ESCRs: MS_ESCR{0,1},
  *   TC_ESCR{0,1}, TBPU_ESCR{0,1}.
  *
  * - The FLAME counter group (4 PMCs) can use the 10 ESCRs:
  *   FLAME_ESCR{0,1}, FIRM_ESCR{0,1}, SAAT_ESCR{0,1}, U2L_ESCR{0,1},
  *   DAC_ESCR{0,1}.
  *
  * - The IQ counter group (6 PMCs) can use the 13 ESCRs: IQ_ESCR{0,1},
  *   ALF_ESCR{0,1}, RAT_ESCR{0,1}, SSU_ESCR0, CRU_ESCR{0,1,2,3,4,5}.
  *
  * Even-numbered ESCRs can be used with counters 0, 1 and 4 (if
  * present) of a counter group.  Odd-numbers ESCRs can be used with
  * counters 2, 3 and 5 (if present) of a counter group.  The
  * 'p4_escrs[]' table describes these restrictions in a form that
  * function 'p4_allocate()' uses for making allocation decisions.
  *
  * SYSTEM-MODE AND THREAD-MODE ALLOCATION
  *
  * In addition to remembering the state of PMC rows
  * ('FREE','STANDALONE', or 'THREAD'), we similar need to track the
  * state of ESCR rows.  If an ESCR is allocated to a system-mode PMC
  * on a CPU we cannot allocate this to a thread-mode PMC.  On a
  * multi-cpu (multiple physical CPUs) system, ESCR allocation on each
  * CPU is tracked by the pc_escrs[] array.
  *
  * Each system-mode PMC that is using an ESCR records its row-index in
  * the appropriate entry and system-mode allocation attempts check
  * that an ESCR is available using this array.  Process-mode PMCs do
  * not use the pc_escrs[] array, since ESCR row itself would have been
  * marked as in 'THREAD' mode.
  *
  * HYPERTHREADING SUPPORT
  *
  * When HTT is enabled, the FreeBSD kernel treats the two 'logical'
  * cpus as independent CPUs and can schedule kernel threads on them
  * independently.  However, the two logical CPUs share the same set of
  * PMC resources.  We need to ensure that:
  * - PMCs that use the PMC_F_DESCENDANTS semantics are handled correctly,
  *   and,
  * - Threads of multi-threaded processes that get scheduled on the same
  *   physical CPU are handled correctly.
  *
  * HTT Detection
  *
  * Not all HTT capable systems will have HTT enabled.  We detect the
  * presence of HTT by detecting if 'p4_init()' was called for a secondary
  * CPU in a HTT pair.
  *
  * Note that hwpmc(4) cannot currently deal with a change in HTT status once
  * loaded.
  *
  * Handling HTT READ / WRITE / START / STOP
  *
  * PMC resources are shared across the CPUs in an HTT pair.  We
  * designate the lower numbered CPU in a HTT pair as the 'primary'
  * CPU.  In each primary CPU's state we keep track of a 'runcount'
  * which reflects the number of PMC-using processes that have been
  * scheduled on its secondary CPU.  Process-mode PMC operations will
  * actually 'start' or 'stop' hardware only if these are the first or
  * last processes respectively to use the hardware.  PMC values
  * written by a 'write' operation are saved and are transferred to
  * hardware at PMC 'start' time if the runcount is 0.  If the runcount
  * is greater than 0 at the time of a 'start' operation, we keep track
  * of the actual hardware value at the time of the 'start' operation
  * and use this to adjust the final readings at PMC 'stop' or 'read'
  * time.
  *
  * Execution sequences:
  *
  * Case 1:   CPUx   +...-		(no overlap)
  *	     CPUy         +...-
  *           RC   0 1   0 1   0
  *
  * Case 2:   CPUx   +........-		(partial overlap)
  * 	     CPUy       +........-
  *           RC   0 1   2    1   0
  *
  * Case 3:   CPUx   +..............-	(fully overlapped)
  *	     CPUy       +.....-
  *	     RC   0 1   2     1    0
  *
  *     Key:
  *     'CPU[xy]' : one of the two logical processors on a HTT CPU.
  *     'RC'      : run count (#threads per physical core).
  *     '+'       : point in time when a thread is put on a CPU.
  *     '-'       : point in time where a thread is taken off a CPU.
  *
  * Handling HTT CONFIG
  *
  * Different processes attached to the same PMC may get scheduled on
  * the two logical processors in the package.  We keep track of config
  * and de-config operations using the CFGFLAGS fields of the per-physical
  * cpu state.
  */
 
 #define	P4_PMCS()				\
 	P4_PMC(BPU_COUNTER0)			\
 	P4_PMC(BPU_COUNTER1)			\
 	P4_PMC(BPU_COUNTER2)			\
 	P4_PMC(BPU_COUNTER3)			\
 	P4_PMC(MS_COUNTER0)			\
 	P4_PMC(MS_COUNTER1)			\
 	P4_PMC(MS_COUNTER2)			\
 	P4_PMC(MS_COUNTER3)			\
 	P4_PMC(FLAME_COUNTER0)			\
 	P4_PMC(FLAME_COUNTER1)			\
 	P4_PMC(FLAME_COUNTER2)			\
 	P4_PMC(FLAME_COUNTER3)			\
 	P4_PMC(IQ_COUNTER0)			\
 	P4_PMC(IQ_COUNTER1)			\
 	P4_PMC(IQ_COUNTER2)			\
 	P4_PMC(IQ_COUNTER3)			\
 	P4_PMC(IQ_COUNTER4)			\
 	P4_PMC(IQ_COUNTER5)			\
 	P4_PMC(NONE)
 
 enum pmc_p4pmc {
 #undef	P4_PMC
 #define	P4_PMC(N)	P4_PMC_##N ,
 	P4_PMCS()
 };
 
 /*
  * P4 ESCR descriptors
  */
 
 #define	P4_ESCRS()							\
     P4_ESCR(BSU_ESCR0,	0x3A0, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(BSU_ESCR1,	0x3A1, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(FSB_ESCR0,	0x3A2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(FSB_ESCR1,	0x3A3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(FIRM_ESCR0,	0x3A4, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
     P4_ESCR(FIRM_ESCR1,	0x3A5, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
     P4_ESCR(FLAME_ESCR0, 0x3A6, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
     P4_ESCR(FLAME_ESCR1, 0x3A7, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
     P4_ESCR(DAC_ESCR0,	0x3A8, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
     P4_ESCR(DAC_ESCR1,	0x3A9, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
     P4_ESCR(MOB_ESCR0,	0x3AA, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(MOB_ESCR1,	0x3AB, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(PMH_ESCR0,	0x3AC, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(PMH_ESCR1,	0x3AD, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(SAAT_ESCR0,	0x3AE, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
     P4_ESCR(SAAT_ESCR1,	0x3AF, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
     P4_ESCR(U2L_ESCR0,	0x3B0, FLAME_COUNTER0, FLAME_COUNTER1, NONE)	\
     P4_ESCR(U2L_ESCR1,	0x3B1, FLAME_COUNTER2, FLAME_COUNTER3, NONE)	\
     P4_ESCR(BPU_ESCR0,	0x3B2, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(BPU_ESCR1,	0x3B3, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(IS_ESCR0,	0x3B4, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(IS_ESCR1,	0x3B5, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(ITLB_ESCR0,	0x3B6, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(ITLB_ESCR1,	0x3B7, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(CRU_ESCR0,	0x3B8, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(CRU_ESCR1,	0x3B9, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(IQ_ESCR0,	0x3BA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(IQ_ESCR1,	0x3BB, IQ_COUNTER1, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(RAT_ESCR0,	0x3BC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(RAT_ESCR1,	0x3BD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(SSU_ESCR0,	0x3BE, IQ_COUNTER0, IQ_COUNTER2, IQ_COUNTER4)	\
     P4_ESCR(MS_ESCR0,	0x3C0, MS_COUNTER0, MS_COUNTER1, NONE)		\
     P4_ESCR(MS_ESCR1,	0x3C1, MS_COUNTER2, MS_COUNTER3, NONE)		\
     P4_ESCR(TBPU_ESCR0,	0x3C2, MS_COUNTER0, MS_COUNTER1, NONE)		\
     P4_ESCR(TBPU_ESCR1,	0x3C3, MS_COUNTER2, MS_COUNTER3, NONE)		\
     P4_ESCR(TC_ESCR0,	0x3C4, MS_COUNTER0, MS_COUNTER1, NONE)		\
     P4_ESCR(TC_ESCR1,	0x3C5, MS_COUNTER2, MS_COUNTER3, NONE)		\
     P4_ESCR(IX_ESCR0,	0x3C8, BPU_COUNTER0, BPU_COUNTER1, NONE)	\
     P4_ESCR(IX_ESCR1,	0x3C9, BPU_COUNTER2, BPU_COUNTER3, NONE)	\
     P4_ESCR(ALF_ESCR0,	0x3CA, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(ALF_ESCR1,	0x3CB, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(CRU_ESCR2,	0x3CC, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(CRU_ESCR3,	0x3CD, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(CRU_ESCR4,	0x3E0, IQ_COUNTER0, IQ_COUNTER1, IQ_COUNTER4)	\
     P4_ESCR(CRU_ESCR5,	0x3E1, IQ_COUNTER2, IQ_COUNTER3, IQ_COUNTER5)	\
     P4_ESCR(NONE,		~0,    NONE, NONE, NONE)
 
 enum pmc_p4escr {
 #define	P4_ESCR(N, MSR, P1, P2, P3)	P4_ESCR_##N ,
 	P4_ESCRS()
 #undef	P4_ESCR
 };
 
 struct pmc_p4escr_descr {
 	const char	pm_escrname[PMC_NAME_MAX];
 	u_short		pm_escr_msr;
 	const enum pmc_p4pmc pm_pmcs[P4_MAX_PMC_PER_ESCR];
 };
 
 static struct pmc_p4escr_descr p4_escrs[] =
 {
 #define	P4_ESCR(N, MSR, P1, P2, P3)		\
 	{					\
 		.pm_escrname = #N,		\
 		.pm_escr_msr = (MSR),		\
 		.pm_pmcs =			\
 		{				\
 			P4_PMC_##P1,		\
 			P4_PMC_##P2,		\
 			P4_PMC_##P3		\
 		}				\
 	} ,
 
 	P4_ESCRS()
 
 #undef	P4_ESCR
 };
 
 /*
  * P4 Event descriptor
  */
 
 struct p4_event_descr {
 	const enum pmc_event pm_event;
 	const uint32_t	pm_escr_eventselect;
 	const uint32_t	pm_cccr_select;
 	const char	pm_is_ti_event;
 	enum pmc_p4escr	pm_escrs[P4_MAX_ESCR_PER_EVENT];
 };
 
 static struct p4_event_descr p4_events[] = {
 
 #define	P4_EVDESCR(NAME, ESCREVENTSEL, CCCRSEL, TI_EVENT, ESCR0, ESCR1)	\
 	{								\
 		.pm_event            = PMC_EV_P4_##NAME,		\
 		.pm_escr_eventselect = (ESCREVENTSEL),			\
 		.pm_cccr_select      = (CCCRSEL),			\
 		.pm_is_ti_event	     = (TI_EVENT),			\
 		.pm_escrs            =					\
 		{							\
 			P4_ESCR_##ESCR0,				\
 			P4_ESCR_##ESCR1					\
 		}							\
 	}
 
 P4_EVDESCR(TC_DELIVER_MODE,	0x01, 0x01, TRUE,  TC_ESCR0,	TC_ESCR1),
 P4_EVDESCR(BPU_FETCH_REQUEST,	0x03, 0x00, FALSE, BPU_ESCR0,	BPU_ESCR1),
 P4_EVDESCR(ITLB_REFERENCE,	0x18, 0x03, FALSE, ITLB_ESCR0,	ITLB_ESCR1),
 P4_EVDESCR(MEMORY_CANCEL,	0x02, 0x05, FALSE, DAC_ESCR0,	DAC_ESCR1),
 P4_EVDESCR(MEMORY_COMPLETE,	0x08, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
 P4_EVDESCR(LOAD_PORT_REPLAY,	0x04, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
 P4_EVDESCR(STORE_PORT_REPLAY,	0x05, 0x02, FALSE, SAAT_ESCR0,	SAAT_ESCR1),
 P4_EVDESCR(MOB_LOAD_REPLAY,	0x03, 0x02, FALSE, MOB_ESCR0,	MOB_ESCR1),
 P4_EVDESCR(PAGE_WALK_TYPE,	0x01, 0x04, TRUE,  PMH_ESCR0,	PMH_ESCR1),
 P4_EVDESCR(BSQ_CACHE_REFERENCE,	0x0C, 0x07, FALSE, BSU_ESCR0,	BSU_ESCR1),
 P4_EVDESCR(IOQ_ALLOCATION,	0x03, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(IOQ_ACTIVE_ENTRIES,	0x1A, 0x06, FALSE, FSB_ESCR1,	NONE),
 P4_EVDESCR(FSB_DATA_ACTIVITY,	0x17, 0x06, TRUE,  FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(BSQ_ALLOCATION,	0x05, 0x07, FALSE, BSU_ESCR0,	NONE),
 P4_EVDESCR(BSQ_ACTIVE_ENTRIES,	0x06, 0x07, FALSE, BSU_ESCR1,	NONE),
 	/* BSQ_ACTIVE_ENTRIES inherits CPU specificity from BSQ_ALLOCATION */
 P4_EVDESCR(SSE_INPUT_ASSIST,	0x34, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(PACKED_SP_UOP,	0x08, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(PACKED_DP_UOP,	0x0C, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(SCALAR_SP_UOP,	0x0A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(SCALAR_DP_UOP,	0x0E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(64BIT_MMX_UOP,	0x02, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(128BIT_MMX_UOP,	0x1A, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(X87_FP_UOP,		0x04, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(X87_SIMD_MOVES_UOP,	0x2E, 0x01, TRUE,  FIRM_ESCR0,	FIRM_ESCR1),
 P4_EVDESCR(GLOBAL_POWER_EVENTS,	0x13, 0x06, FALSE, FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(TC_MS_XFER,		0x05, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
 P4_EVDESCR(UOP_QUEUE_WRITES,	0x09, 0x00, FALSE, MS_ESCR0,	MS_ESCR1),
 P4_EVDESCR(RETIRED_MISPRED_BRANCH_TYPE,
     				0x05, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
 P4_EVDESCR(RETIRED_BRANCH_TYPE,	0x04, 0x02, FALSE, TBPU_ESCR0,	TBPU_ESCR1),
 P4_EVDESCR(RESOURCE_STALL,	0x01, 0x01, FALSE, ALF_ESCR0,	ALF_ESCR1),
 P4_EVDESCR(WC_BUFFER,		0x05, 0x05, TRUE,  DAC_ESCR0,	DAC_ESCR1),
 P4_EVDESCR(B2B_CYCLES,		0x16, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(BNR,			0x08, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(SNOOP,		0x06, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(RESPONSE,		0x04, 0x03, TRUE,  FSB_ESCR0,	FSB_ESCR1),
 P4_EVDESCR(FRONT_END_EVENT,	0x08, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
 P4_EVDESCR(EXECUTION_EVENT,	0x0C, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
 P4_EVDESCR(REPLAY_EVENT, 	0x09, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
 P4_EVDESCR(INSTR_RETIRED,	0x02, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
 P4_EVDESCR(UOPS_RETIRED,	0x01, 0x04, FALSE, CRU_ESCR0,	CRU_ESCR1),
 P4_EVDESCR(UOP_TYPE,		0x02, 0x02, FALSE, RAT_ESCR0,	RAT_ESCR1),
 P4_EVDESCR(BRANCH_RETIRED,	0x06, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
 P4_EVDESCR(MISPRED_BRANCH_RETIRED, 0x03, 0x04, FALSE, CRU_ESCR0, CRU_ESCR1),
 P4_EVDESCR(X87_ASSIST,		0x03, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3),
 P4_EVDESCR(MACHINE_CLEAR,	0x02, 0x05, FALSE, CRU_ESCR2,	CRU_ESCR3)
 
 #undef	P4_EVDESCR
 };
 
 #define	P4_EVENT_IS_TI(E) ((E)->pm_is_ti_event == TRUE)
 
 #define	P4_NEVENTS	(PMC_EV_P4_LAST - PMC_EV_P4_FIRST + 1)
 
 /*
  * P4 PMC descriptors
  */
 
 struct p4pmc_descr {
 	struct pmc_descr pm_descr; 	/* common information */
 	enum pmc_p4pmc	pm_pmcnum;	/* PMC number */
 	uint32_t	pm_pmc_msr; 	/* PERFCTR MSR address */
 	uint32_t	pm_cccr_msr;  	/* CCCR MSR address */
 };
 
 static struct p4pmc_descr p4_pmcdesc[P4_NPMCS] = {
 #define	P4_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM |  \
 	PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
 	PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE |            \
 	PMC_CAP_TAGGING | PMC_CAP_CASCADE)
 
 #define	P4_PMCDESCR(N, PMC, CCCR)			\
 	{						\
 		.pm_descr =				\
 		{					\
 			.pd_name = #N,			\
 			.pd_class = PMC_CLASS_P4,	\
 			.pd_caps = P4_PMC_CAPS,		\
 			.pd_width = 40			\
 		},					\
 		.pm_pmcnum      = P4_PMC_##N,		\
 		.pm_cccr_msr 	= (CCCR),		\
 		.pm_pmc_msr	= (PMC)			\
 	}
 
 	P4_PMCDESCR(BPU_COUNTER0,	0x300,	0x360),
 	P4_PMCDESCR(BPU_COUNTER1,	0x301,	0x361),
 	P4_PMCDESCR(BPU_COUNTER2,	0x302,	0x362),
 	P4_PMCDESCR(BPU_COUNTER3,	0x303,	0x363),
 	P4_PMCDESCR(MS_COUNTER0,	0x304,	0x364),
 	P4_PMCDESCR(MS_COUNTER1,	0x305,	0x365),
 	P4_PMCDESCR(MS_COUNTER2,	0x306,	0x366),
 	P4_PMCDESCR(MS_COUNTER3,	0x307,	0x367),
 	P4_PMCDESCR(FLAME_COUNTER0,	0x308,	0x368),
 	P4_PMCDESCR(FLAME_COUNTER1,	0x309,	0x369),
 	P4_PMCDESCR(FLAME_COUNTER2,	0x30A,	0x36A),
 	P4_PMCDESCR(FLAME_COUNTER3,	0x30B,	0x36B),
 	P4_PMCDESCR(IQ_COUNTER0,	0x30C,	0x36C),
 	P4_PMCDESCR(IQ_COUNTER1,	0x30D,	0x36D),
 	P4_PMCDESCR(IQ_COUNTER2,	0x30E,	0x36E),
 	P4_PMCDESCR(IQ_COUNTER3,	0x30F,	0x36F),
 	P4_PMCDESCR(IQ_COUNTER4,	0x310,	0x370),
 	P4_PMCDESCR(IQ_COUNTER5,	0x311,	0x371),
 
 #undef	P4_PMCDESCR
 };
 
 /* HTT support */
 #define	P4_NHTT					2 /* logical processors/chip */
 
 static int p4_system_has_htt;
 
 /*
  * Per-CPU data structure for P4 class CPUs
  *
  * [19 struct pmc_hw structures]
  * [45 ESCRs status bytes]
  * [per-cpu spin mutex]
  * [19 flag fields for holding config flags and a runcount]
  * [19*2 hw value fields]	(Thread mode PMC support)
  *    or
  * [19*2 EIP values]		(Sampling mode PMCs)
  * [19*2 pmc value fields]	(Thread mode PMC support))
  */
 
 struct p4_cpu {
 	struct pmc_hw	pc_p4pmcs[P4_NPMCS];
 	char		pc_escrs[P4_NESCR];
 	struct mtx	pc_mtx;		/* spin lock */
 	uint32_t	pc_intrflag;	/* NMI handler flags */
 	unsigned int	pc_intrlock;	/* NMI handler spin lock */
 	unsigned char	pc_flags[P4_NPMCS]; /* 4 bits each: {cfg,run}count */
 	union {
 		pmc_value_t pc_hw[P4_NPMCS * P4_NHTT];
 		uintptr_t   pc_ip[P4_NPMCS * P4_NHTT];
 	}		pc_si;
 	pmc_value_t	pc_pmc_values[P4_NPMCS * P4_NHTT];
 };
 
 static struct p4_cpu **p4_pcpu;
 
 #define	P4_PCPU_PMC_VALUE(PC,RI,CPU) 	(PC)->pc_pmc_values[(RI)*((CPU) & 1)]
 #define	P4_PCPU_HW_VALUE(PC,RI,CPU)	(PC)->pc_si.pc_hw[(RI)*((CPU) & 1)]
 #define	P4_PCPU_SAVED_IP(PC,RI,CPU)	(PC)->pc_si.pc_ip[(RI)*((CPU) & 1)]
 
 #define	P4_PCPU_GET_FLAGS(PC,RI,MASK)	((PC)->pc_flags[(RI)] & (MASK))
 #define	P4_PCPU_SET_FLAGS(PC,RI,MASK,VAL)	do {	\
 	char _tmp;					\
 	_tmp = (PC)->pc_flags[(RI)];			\
 	_tmp &= ~(MASK);				\
 	_tmp |= (VAL) & (MASK);				\
 	(PC)->pc_flags[(RI)] = _tmp;			\
 } while (0)
 
 #define	P4_PCPU_GET_RUNCOUNT(PC,RI)	P4_PCPU_GET_FLAGS(PC,RI,0x0F)
 #define	P4_PCPU_SET_RUNCOUNT(PC,RI,V)	P4_PCPU_SET_FLAGS(PC,RI,0x0F,V)
 
 #define	P4_PCPU_GET_CFGFLAGS(PC,RI)	(P4_PCPU_GET_FLAGS(PC,RI,0xF0) >> 4)
 #define	P4_PCPU_SET_CFGFLAGS(PC,RI,C)	P4_PCPU_SET_FLAGS(PC,RI,0xF0,((C) <<4))
 
 #define	P4_CPU_TO_FLAG(C)		(P4_CPU_IS_HTT_SECONDARY(cpu) ? 0x2 : 0x1)
 
 #define	P4_PCPU_GET_INTRFLAG(PC,I)	((PC)->pc_intrflag & (1 << (I)))
 #define	P4_PCPU_SET_INTRFLAG(PC,I,V)	do {		\
 		uint32_t __mask;			\
 		__mask = 1 << (I);			\
 		if ((V))				\
 			(PC)->pc_intrflag |= __mask;	\
 		else					\
 			(PC)->pc_intrflag &= ~__mask;	\
 	} while (0)
 
 /*
  * A minimal spin lock implementation for use inside the NMI handler.
  *
  * We don't want to use a regular spin lock here, because curthread
  * may not be consistent at the time the handler is invoked.
  */
 #define	P4_PCPU_ACQ_INTR_SPINLOCK(PC) do {				\
 		while (!atomic_cmpset_acq_int(&pc->pc_intrlock, 0, 1))	\
 			ia32_pause();					\
 	} while (0)
 #define	P4_PCPU_REL_INTR_SPINLOCK(PC) 					\
 	atomic_store_rel_int(&pc->pc_intrlock, 0);
 
 /* ESCR row disposition */
 static int p4_escrdisp[P4_NESCR];
 
 #define	P4_ESCR_ROW_DISP_IS_THREAD(E)		(p4_escrdisp[(E)] > 0)
 #define	P4_ESCR_ROW_DISP_IS_STANDALONE(E)	(p4_escrdisp[(E)] < 0)
 #define	P4_ESCR_ROW_DISP_IS_FREE(E)		(p4_escrdisp[(E)] == 0)
 
 #define	P4_ESCR_MARK_ROW_STANDALONE(E) do {				\
 	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
 		    __LINE__));						\
 	atomic_add_int(&p4_escrdisp[(E)], -1);				\
 	KASSERT(p4_escrdisp[(E)] >= (-pmc_cpu_max_active()), 		\
 		("[p4,%d] row disposition error", __LINE__));		\
 } while (0)
 
 #define	P4_ESCR_UNMARK_ROW_STANDALONE(E) do {				\
 	atomic_add_int(&p4_escrdisp[(E)], 1);				\
 	KASSERT(p4_escrdisp[(E)] <= 0, ("[p4,%d] row disposition error",\
 		    __LINE__));						\
 } while (0)
 
 #define	P4_ESCR_MARK_ROW_THREAD(E) do {					 \
 	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
 		    __LINE__));						 \
 	atomic_add_int(&p4_escrdisp[(E)], 1);				 \
 } while (0)
 
 #define	P4_ESCR_UNMARK_ROW_THREAD(E) do {				 \
 	atomic_add_int(&p4_escrdisp[(E)], -1);				 \
 	KASSERT(p4_escrdisp[(E)] >= 0, ("[p4,%d] row disposition error", \
 		    __LINE__));						 \
 } while (0)
 
 #define	P4_PMC_IS_STOPPED(cccr)	((rdmsr(cccr) & P4_CCCR_ENABLE) == 0)
 
 #define	P4_CPU_IS_HTT_SECONDARY(cpu)					\
 	(p4_system_has_htt ? ((cpu) & 1) : 0)
 #define	P4_TO_HTT_PRIMARY(cpu) 						\
 	(p4_system_has_htt ? ((cpu) & ~1) : (cpu))
 
 #define	P4_CCCR_Tx_MASK	(~(P4_CCCR_OVF_PMI_T0|P4_CCCR_OVF_PMI_T1|	\
 			     P4_CCCR_ENABLE|P4_CCCR_OVF))
 #define	P4_ESCR_Tx_MASK	(~(P4_ESCR_T0_OS|P4_ESCR_T0_USR|P4_ESCR_T1_OS|	\
 			     P4_ESCR_T1_USR))
 
 /*
  * support routines
  */
 
 static struct p4_event_descr *
 p4_find_event(enum pmc_event ev)
 {
 	int n;
 
 	for (n = 0; n < P4_NEVENTS; n++)
 		if (p4_events[n].pm_event == ev)
 			break;
 	if (n == P4_NEVENTS)
 		return (NULL);
 	return (&p4_events[n]);
 }
 
 /*
  * Initialize per-cpu state
  */
 
 static int
 p4_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	char *pescr;
 	int n, first_ri, phycpu;
 	struct pmc_hw *phw;
 	struct p4_cpu *p4c;
 	struct pmc_cpu *pc, *plc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] insane cpu number %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,0, "p4-init cpu=%d is-primary=%d", cpu,
+	PMCDBG2(MDP,INI,0, "p4-init cpu=%d is-primary=%d", cpu,
 	    pmc_cpu_is_primary(cpu) != 0);
 
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
 
 	/*
 	 * The two CPUs in an HT pair share their per-cpu state.
 	 *
 	 * For HT capable CPUs, we assume that the two logical
 	 * processors in the HT pair get two consecutive CPU ids
 	 * starting with an even id #.
 	 *
 	 * The primary CPU (the even numbered CPU of the pair) would
 	 * have been initialized prior to the initialization for the
 	 * secondary.
 	 */
 
 	if (!pmc_cpu_is_primary(cpu) && (cpu & 1)) {
 
 		p4_system_has_htt = 1;
 
 		phycpu = P4_TO_HTT_PRIMARY(cpu);
 		pc = pmc_pcpu[phycpu];
 		plc = pmc_pcpu[cpu];
 
 		KASSERT(plc != pc, ("[p4,%d] per-cpu config error", __LINE__));
 
-		PMCDBG(MDP,INI,1, "p4-init cpu=%d phycpu=%d pc=%p", cpu,
+		PMCDBG3(MDP,INI,1, "p4-init cpu=%d phycpu=%d pc=%p", cpu,
 		    phycpu, pc);
 		KASSERT(pc, ("[p4,%d] Null Per-Cpu state cpu=%d phycpu=%d",
 		    __LINE__, cpu, phycpu));
 
 		/* PMCs are shared with the physical CPU. */
 		for (n = 0; n < P4_NPMCS; n++)
 			plc->pc_hwpmcs[n + first_ri] =
 			    pc->pc_hwpmcs[n + first_ri];
 
 		return (0);
 	}
 
 	p4c = malloc(sizeof(struct p4_cpu), M_PMC, M_WAITOK|M_ZERO);
 
 	if (p4c == NULL)
 		return (ENOMEM);
 
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL, ("[p4,%d] cpu %d null per-cpu", __LINE__, cpu));
 
 	p4_pcpu[cpu] = p4c;
 	phw = p4c->pc_p4pmcs;
 
 	for (n = 0; n < P4_NPMCS; n++, phw++) {
 		phw->phw_state   = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
 		phw->phw_pmc     = NULL;
 		pc->pc_hwpmcs[n + first_ri] = phw;
 	}
 
 	pescr = p4c->pc_escrs;
 	for (n = 0; n < P4_NESCR; n++)
 		*pescr++ = P4_INVALID_PMC_INDEX;
 
 	mtx_init(&p4c->pc_mtx, "p4-pcpu", "pmc-leaf", MTX_SPIN);
 
 	return (0);
 }
 
 /*
  * Destroy per-cpu state.
  */
 
 static int
 p4_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, i;
 	struct p4_cpu *p4c;
 	struct pmc_cpu *pc;
 
-	PMCDBG(MDP,INI,0, "p4-cleanup cpu=%d", cpu);
+	PMCDBG1(MDP,INI,0, "p4-cleanup cpu=%d", cpu);
 
 	pc = pmc_pcpu[cpu];
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4].pcd_ri;
 
 	for (i = 0; i < P4_NPMCS; i++)
 		pc->pc_hwpmcs[i + first_ri] = NULL;
 
 	if (!pmc_cpu_is_primary(cpu) && (cpu & 1))
 		return (0);
 
 	p4c = p4_pcpu[cpu];
 
 	KASSERT(p4c != NULL, ("[p4,%d] NULL pcpu", __LINE__));
 
 	/* Turn off all PMCs on this CPU */
 	for (i = 0; i < P4_NPMCS - 1; i++)
 		wrmsr(P4_CCCR_MSR_FIRST + i,
 		    rdmsr(P4_CCCR_MSR_FIRST + i) & ~P4_CCCR_ENABLE);
 
 	mtx_destroy(&p4c->pc_mtx);
 
 	free(p4c, M_PMC);
 
 	p4_pcpu[cpu] = NULL;
 
 	return (0);
 }
 
 /*
  * Read a PMC
  */
 
 static int
 p4_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 	struct p4_cpu *pc;
 	enum pmc_mode mode;
 	struct p4pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 	pm = pc->pc_p4pmcs[ri].phw_pmc;
 	pd = &p4_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__, cpu, ri));
 
 	KASSERT(pd->pm_descr.pd_class == PMC_TO_CLASS(pm),
 	    ("[p4,%d] class mismatch pd %d != id class %d", __LINE__,
 	    pd->pm_descr.pd_class, PMC_TO_CLASS(pm)));
 
 	mode = PMC_TO_MODE(pm);
 
-	PMCDBG(MDP,REA,1, "p4-read cpu=%d ri=%d mode=%d", cpu, ri, mode);
+	PMCDBG3(MDP,REA,1, "p4-read cpu=%d ri=%d mode=%d", cpu, ri, mode);
 
 	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
 	    ("[p4,%d] unknown PMC class %d", __LINE__, pd->pm_descr.pd_class));
 
 	tmp = rdmsr(p4_pmcdesc[ri].pm_pmc_msr);
 
 	if (PMC_IS_VIRTUAL_MODE(mode)) {
 		if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit overflow */
 			tmp += (P4_PERFCTR_MASK + 1) -
 			    P4_PCPU_HW_VALUE(pc,ri,cpu);
 		else
 			tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
 		tmp += P4_PCPU_PMC_VALUE(pc,ri,cpu);
 	}
 
 	if (PMC_IS_SAMPLING_MODE(mode)) /* undo transformation */
 		*v = P4_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	else
 		*v = tmp;
 
-	PMCDBG(MDP,REA,2, "p4-read -> %jx", *v);
+	PMCDBG1(MDP,REA,2, "p4-read -> %jx", *v);
 
 	return (0);
 }
 
 /*
  * Write a PMC
  */
 
 static int
 p4_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	enum pmc_mode mode;
 	struct pmc *pm;
 	struct p4_cpu *pc;
 	const struct pmc_hw *phw;
 	const struct p4pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[amd,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[amd,%d] illegal row-index %d", __LINE__, ri));
 
 	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 	phw = &pc->pc_p4pmcs[ri];
 	pm  = phw->phw_pmc;
 	pd  = &p4_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[p4,%d] No owner for HWPMC [cpu%d,pmc%d]", __LINE__,
 		cpu, ri));
 
 	mode = PMC_TO_MODE(pm);
 
-	PMCDBG(MDP,WRI,1, "p4-write cpu=%d ri=%d mode=%d v=%jx", cpu, ri,
+	PMCDBG4(MDP,WRI,1, "p4-write cpu=%d ri=%d mode=%d v=%jx", cpu, ri,
 	    mode, v);
 
 	/*
 	 * write the PMC value to the register/saved value: for
 	 * sampling mode PMCs, the value to be programmed into the PMC
 	 * counter is -(C+1) where 'C' is the requested sample rate.
 	 */
 	if (PMC_IS_SAMPLING_MODE(mode))
 		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 
 	if (PMC_IS_SYSTEM_MODE(mode))
 		wrmsr(pd->pm_pmc_msr, v);
 	else
 		P4_PCPU_PMC_VALUE(pc,ri,cpu) = v;
 
 	return (0);
 }
 
 /*
  * Configure a PMC 'pm' on the given CPU and row-index.
  *
  * 'pm' may be NULL to indicate de-configuration.
  *
  * On HTT systems, a PMC may get configured twice, once for each
  * "logical" CPU.  We track this using the CFGFLAGS field of the
  * per-cpu state; this field is a bit mask with one bit each for
  * logical CPUs 0 & 1.
  */
 
 static int
 p4_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 	struct p4_cpu *pc;
 	int cfgflags, cpuflag;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 	phw = &pc->pc_p4pmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL ||
 	    (p4_system_has_htt && phw->phw_pmc == pm),
 	    ("[p4,%d] hwpmc not unconfigured before re-config", __LINE__));
 
 	mtx_lock_spin(&pc->pc_mtx);
 	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
 
 	KASSERT(cfgflags >= 0 || cfgflags <= 3,
 	    ("[p4,%d] illegal cfgflags cfg=%d on cpu=%d ri=%d", __LINE__,
 		cfgflags, cpu, ri));
 
 	KASSERT(cfgflags == 0 || phw->phw_pmc,
 	    ("[p4,%d] cpu=%d ri=%d pmc configured with zero cfg count",
 		__LINE__, cpu, ri));
 
 	cpuflag = P4_CPU_TO_FLAG(cpu);
 
 	if (pm) {		/* config */
 		if (cfgflags == 0)
 			phw->phw_pmc = pm;
 
 		KASSERT(phw->phw_pmc == pm,
 		    ("[p4,%d] cpu=%d ri=%d config %p != hw %p",
 			__LINE__, cpu, ri, pm, phw->phw_pmc));
 
 		cfgflags |= cpuflag;
 	} else {		/* unconfig */
 		cfgflags &= ~cpuflag;
 
 		if (cfgflags == 0)
 			phw->phw_pmc = NULL;
 	}
 
 	KASSERT(cfgflags >= 0 || cfgflags <= 3,
 	    ("[p4,%d] illegal runcount cfg=%d on cpu=%d ri=%d", __LINE__,
 		cfgflags, cpu, ri));
 
 	P4_PCPU_SET_CFGFLAGS(pc,ri,cfgflags);
 
 	mtx_unlock_spin(&pc->pc_mtx);
 
 	return (0);
 }
 
 /*
  * Retrieve a configured PMC pointer from hardware state.
  */
 
 static int
 p4_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	int cfgflags;
 	struct p4_cpu *pc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 
 	mtx_lock_spin(&pc->pc_mtx);
 	cfgflags = P4_PCPU_GET_CFGFLAGS(pc,ri);
 	mtx_unlock_spin(&pc->pc_mtx);
 
 	if (cfgflags & P4_CPU_TO_FLAG(cpu))
 		*ppm = pc->pc_p4pmcs[ri].phw_pmc; /* PMC config'ed on this CPU */
 	else
 		*ppm = NULL;
 
 	return 0;
 }
 
 /*
  * Allocate a PMC.
  *
  * The allocation strategy differs between HTT and non-HTT systems.
  *
  * The non-HTT case:
  *   - Given the desired event and the PMC row-index, lookup the
  *   list of valid ESCRs for the event.
  *   - For each valid ESCR:
  *     - Check if the ESCR is free and the ESCR row is in a compatible
  *       mode (i.e., system or process))
  *     - Check if the ESCR is usable with a P4 PMC at the desired row-index.
  *   If everything matches, we determine the appropriate bit values for the
  *   ESCR and CCCR registers.
  *
  * The HTT case:
  *
  * - Process mode PMCs require special care.  The FreeBSD scheduler could
  *   schedule any two processes on the same physical CPU.  We need to ensure
  *   that a given PMC row-index is never allocated to two different
  *   PMCs owned by different user-processes.
  *   This is ensured by always allocating a PMC from a 'FREE' PMC row
  *   if the system has HTT active.
  * - A similar check needs to be done for ESCRs; we do not want two PMCs
  *   using the same ESCR to be scheduled at the same time.  Thus ESCR
  *   allocation is also restricted to FREE rows if the system has HTT
  *   enabled.
  * - Thirdly, some events are 'thread-independent' terminology, i.e.,
  *   the PMC hardware cannot distinguish between events caused by
  *   different logical CPUs.  This makes it impossible to assign events
  *   to a given thread of execution.  If the system has HTT enabled,
  *   these events are not allowed for process-mode PMCs.
  */
 
 static int
 p4_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	int found, n, m;
 	uint32_t caps, cccrvalue, escrvalue, tflags;
 	enum pmc_p4escr escr;
 	struct p4_cpu *pc;
 	struct p4_event_descr *pevent;
 	const struct p4pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index value %d", __LINE__, ri));
 
 	pd = &p4_pmcdesc[ri];
 
-	PMCDBG(MDP,ALL,1, "p4-allocate ri=%d class=%d pmccaps=0x%x "
+	PMCDBG4(MDP,ALL,1, "p4-allocate ri=%d class=%d pmccaps=0x%x "
 	    "reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
 	    pm->pm_caps);
 
 	/* check class */
 	if (pd->pm_descr.pd_class != a->pm_class)
 		return (EINVAL);
 
 	/* check requested capabilities */
 	caps = a->pm_caps;
 	if ((pd->pm_descr.pd_caps & caps) != caps)
 		return (EPERM);
 
 	/*
 	 * If the system has HTT enabled, and the desired allocation
 	 * mode is process-private, and the PMC row disposition is not
 	 * FREE (0), decline the allocation.
 	 */
 
 	if (p4_system_has_htt &&
 	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
 	    pmc_getrowdisp(ri) != 0)
 		return (EBUSY);
 
 	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
 	    ("[p4,%d] unknown PMC class %d", __LINE__,
 		pd->pm_descr.pd_class));
 
 	if (pm->pm_event < PMC_EV_P4_FIRST ||
 	    pm->pm_event > PMC_EV_P4_LAST)
 		return (EINVAL);
 
 	if ((pevent = p4_find_event(pm->pm_event)) == NULL)
 		return (ESRCH);
 
-	PMCDBG(MDP,ALL,2, "pevent={ev=%d,escrsel=0x%x,cccrsel=0x%x,isti=%d}",
+	PMCDBG4(MDP,ALL,2, "pevent={ev=%d,escrsel=0x%x,cccrsel=0x%x,isti=%d}",
 	    pevent->pm_event, pevent->pm_escr_eventselect,
 	    pevent->pm_cccr_select, pevent->pm_is_ti_event);
 
 	/*
 	 * Some PMC events are 'thread independent'and therefore
 	 * cannot be used for process-private modes if HTT is being
 	 * used.
 	 */
 
 	if (P4_EVENT_IS_TI(pevent) &&
 	    PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) &&
 	    p4_system_has_htt)
 		return (EINVAL);
 
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 
 	found   = 0;
 
 	/* look for a suitable ESCR for this event */
 	for (n = 0; n < P4_MAX_ESCR_PER_EVENT && !found; n++) {
 		if ((escr = pevent->pm_escrs[n]) == P4_ESCR_NONE)
 			break;	/* out of ESCRs */
 		/*
 		 * Check ESCR row disposition.
 		 *
 		 * If the request is for a system-mode PMC, then the
 		 * ESCR row should not be in process-virtual mode, and
 		 * should also be free on the current CPU.
 		 */
 
 		if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 		    if (P4_ESCR_ROW_DISP_IS_THREAD(escr) ||
 			pc->pc_escrs[escr] != P4_INVALID_PMC_INDEX)
 			    continue;
 		}
 
 		/*
 		 * If the request is for a process-virtual PMC, and if
 		 * HTT is not enabled, we can use an ESCR row that is
 		 * either FREE or already in process mode.
 		 *
 		 * If HTT is enabled, then we need to ensure that a
 		 * given ESCR is never allocated to two PMCS that
 		 * could run simultaneously on the two logical CPUs of
 		 * a CPU package.  We ensure this be only allocating
 		 * ESCRs from rows marked as 'FREE'.
 		 */
 
 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
 			if (p4_system_has_htt) {
 				if (!P4_ESCR_ROW_DISP_IS_FREE(escr))
 					continue;
 			} else
 				if (P4_ESCR_ROW_DISP_IS_STANDALONE(escr))
 					continue;
 		}
 
 		/*
 		 * We found a suitable ESCR for this event.  Now check if
 		 * this escr can work with the PMC at row-index 'ri'.
 		 */
 
 		for (m = 0; m < P4_MAX_PMC_PER_ESCR; m++)
 			if (p4_escrs[escr].pm_pmcs[m] == pd->pm_pmcnum) {
 				found = 1;
 				break;
 			}
 	}
 
 	if (found == 0)
 		return (ESRCH);
 
 	KASSERT((int) escr >= 0 && escr < P4_NESCR,
 	    ("[p4,%d] illegal ESCR value %d", __LINE__, escr));
 
 	/* mark ESCR row mode */
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 		pc->pc_escrs[escr] = ri; /* mark ESCR as in use on this cpu */
 		P4_ESCR_MARK_ROW_STANDALONE(escr);
 	} else {
 		KASSERT(pc->pc_escrs[escr] == P4_INVALID_PMC_INDEX,
 		    ("[p4,%d] escr[%d] already in use", __LINE__, escr));
 		P4_ESCR_MARK_ROW_THREAD(escr);
 	}
 
 	pm->pm_md.pm_p4.pm_p4_escrmsr   = p4_escrs[escr].pm_escr_msr;
 	pm->pm_md.pm_p4.pm_p4_escr      = escr;
 
 	cccrvalue = P4_CCCR_TO_ESCR_SELECT(pevent->pm_cccr_select);
 	escrvalue = P4_ESCR_TO_EVENT_SELECT(pevent->pm_escr_eventselect);
 
 	/* CCCR fields */
 	if (caps & PMC_CAP_THRESHOLD)
 		cccrvalue |= (a->pm_md.pm_p4.pm_p4_cccrconfig &
 		    P4_CCCR_THRESHOLD_MASK) | P4_CCCR_COMPARE;
 
 	if (caps & PMC_CAP_EDGE)
 		cccrvalue |= P4_CCCR_EDGE;
 
 	if (caps & PMC_CAP_INVERT)
 		cccrvalue |= P4_CCCR_COMPLEMENT;
 
 	if (p4_system_has_htt)
 		cccrvalue |= a->pm_md.pm_p4.pm_p4_cccrconfig &
 		    P4_CCCR_ACTIVE_THREAD_MASK;
 	else			/* no HTT; thread field should be '11b' */
 		cccrvalue |= P4_CCCR_TO_ACTIVE_THREAD(0x3);
 
 	if (caps & PMC_CAP_CASCADE)
 		cccrvalue |= P4_CCCR_CASCADE;
 
 	/* On HTT systems the PMI T0 field may get moved to T1 at pmc start */
 	if (caps & PMC_CAP_INTERRUPT)
 		cccrvalue |= P4_CCCR_OVF_PMI_T0;
 
 	/* ESCR fields */
 	if (caps & PMC_CAP_QUALIFIER)
 		escrvalue |= a->pm_md.pm_p4.pm_p4_escrconfig &
 		    P4_ESCR_EVENT_MASK_MASK;
 	if (caps & PMC_CAP_TAGGING)
 		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
 		    P4_ESCR_TAG_VALUE_MASK) | P4_ESCR_TAG_ENABLE;
 	if (caps & PMC_CAP_QUALIFIER)
 		escrvalue |= (a->pm_md.pm_p4.pm_p4_escrconfig &
 		    P4_ESCR_EVENT_MASK_MASK);
 
 	/* HTT: T0_{OS,USR} bits may get moved to T1 at pmc start */
 	tflags = 0;
 	if (caps & PMC_CAP_SYSTEM)
 		tflags |= P4_ESCR_T0_OS;
 	if (caps & PMC_CAP_USER)
 		tflags |= P4_ESCR_T0_USR;
 	if (tflags == 0)
 		tflags = (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
 	escrvalue |= tflags;
 
 	pm->pm_md.pm_p4.pm_p4_cccrvalue = cccrvalue;
 	pm->pm_md.pm_p4.pm_p4_escrvalue = escrvalue;
 
-	PMCDBG(MDP,ALL,2, "p4-allocate cccrsel=0x%x cccrval=0x%x "
+	PMCDBG5(MDP,ALL,2, "p4-allocate cccrsel=0x%x cccrval=0x%x "
 	    "escr=%d escrmsr=0x%x escrval=0x%x", pevent->pm_cccr_select,
 	    cccrvalue, escr, pm->pm_md.pm_p4.pm_p4_escrmsr, escrvalue);
 
 	return (0);
 }
 
 /*
  * release a PMC.
  */
 
 static int
 p4_release_pmc(int cpu, int ri, struct pmc *pm)
 {
 	enum pmc_p4escr escr;
 	struct p4_cpu *pc;
 
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
 
 	escr = pm->pm_md.pm_p4.pm_p4_escr;
 
-	PMCDBG(MDP,REL,1, "p4-release cpu=%d ri=%d escr=%d", cpu, ri, escr);
+	PMCDBG3(MDP,REL,1, "p4-release cpu=%d ri=%d escr=%d", cpu, ri, escr);
 
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 		pc  = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 
 		KASSERT(pc->pc_p4pmcs[ri].phw_pmc == NULL,
 		    ("[p4,%d] releasing configured PMC ri=%d", __LINE__, ri));
 
 		P4_ESCR_UNMARK_ROW_STANDALONE(escr);
 		KASSERT(pc->pc_escrs[escr] == ri,
 		    ("[p4,%d] escr[%d] not allocated to ri %d", __LINE__,
 			escr, ri));
 	        pc->pc_escrs[escr] = P4_INVALID_PMC_INDEX; /* mark as free */
 	} else
 		P4_ESCR_UNMARK_ROW_THREAD(escr);
 
 	return (0);
 }
 
 /*
  * Start a PMC
  */
 
 static int
 p4_start_pmc(int cpu, int ri)
 {
 	int rc;
 	struct pmc *pm;
 	struct p4_cpu *pc;
 	struct p4pmc_descr *pd;
 	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 	pm = pc->pc_p4pmcs[ri].phw_pmc;
 	pd = &p4_pmcdesc[ri];
 
 	KASSERT(pm != NULL,
 	    ("[p4,%d] starting cpu%d,pmc%d with null pmc", __LINE__, cpu, ri));
 
-	PMCDBG(MDP,STA,1, "p4-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1, "p4-start cpu=%d ri=%d", cpu, ri);
 
 	KASSERT(pd->pm_descr.pd_class == PMC_CLASS_P4,
 	    ("[p4,%d] wrong PMC class %d", __LINE__,
 		pd->pm_descr.pd_class));
 
 	/* retrieve the desired CCCR/ESCR values from the PMC */
 	cccrvalue = pm->pm_md.pm_p4.pm_p4_cccrvalue;
 	escrvalue = pm->pm_md.pm_p4.pm_p4_escrvalue;
 	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
 
 	/* extract and zero the logical processor selection bits */
 	cccrtbits = cccrvalue & P4_CCCR_OVF_PMI_T0;
 	escrtbits = escrvalue & (P4_ESCR_T0_OS|P4_ESCR_T0_USR);
 	cccrvalue &= ~P4_CCCR_OVF_PMI_T0;
 	escrvalue &= ~(P4_ESCR_T0_OS|P4_ESCR_T0_USR);
 
 	if (P4_CPU_IS_HTT_SECONDARY(cpu)) { /* shift T0 bits to T1 position */
 		cccrtbits <<= 1;
 		escrtbits >>= 2;
 	}
 
 	/* start system mode PMCs directly */
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 		wrmsr(escrmsr, escrvalue | escrtbits);
 		wrmsr(pd->pm_cccr_msr, cccrvalue | cccrtbits | P4_CCCR_ENABLE);
 		return 0;
 	}
 
 	/*
 	 * Thread mode PMCs
 	 *
 	 * On HTT machines, the same PMC could be scheduled on the
 	 * same physical CPU twice (once for each logical CPU), for
 	 * example, if two threads of a multi-threaded process get
 	 * scheduled on the same CPU.
 	 *
 	 */
 
 	mtx_lock_spin(&pc->pc_mtx);
 
 	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
 	KASSERT(rc == 0 || rc == 1,
 	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
 		rc));
 
 	if (rc == 0) {		/* 1st CPU and the non-HTT case */
 
 		KASSERT(P4_PMC_IS_STOPPED(pd->pm_cccr_msr),
 		    ("[p4,%d] cpu=%d ri=%d cccr=0x%x not stopped", __LINE__,
 			cpu, ri, pd->pm_cccr_msr));
 
 		/* write out the low 40 bits of the saved value to hardware */
 		wrmsr(pd->pm_pmc_msr,
 		    P4_PCPU_PMC_VALUE(pc,ri,cpu) & P4_PERFCTR_MASK);
 
 	} else if (rc == 1) {		/* 2nd CPU */
 
 		/*
 		 * Stop the PMC and retrieve the CCCR and ESCR values
 		 * from their MSRs, and turn on the additional T[0/1]
 		 * bits for the 2nd CPU.
 		 */
 
 		cccrvalue = rdmsr(pd->pm_cccr_msr);
 		wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
 
 		/* check that the configuration bits read back match the PMC */
 		KASSERT((cccrvalue & P4_CCCR_Tx_MASK) ==
 		    (pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK),
 		    ("[p4,%d] Extra CCCR bits cpu=%d rc=%d ri=%d "
 			"cccr=0x%x PMC=0x%x", __LINE__, cpu, rc, ri,
 			cccrvalue & P4_CCCR_Tx_MASK,
 			pm->pm_md.pm_p4.pm_p4_cccrvalue & P4_CCCR_Tx_MASK));
 		KASSERT(cccrvalue & P4_CCCR_ENABLE,
 		    ("[p4,%d] 2nd cpu rc=%d cpu=%d ri=%d not running",
 			__LINE__, rc, cpu, ri));
 		KASSERT((cccrvalue & cccrtbits) == 0,
 		    ("[p4,%d] CCCR T0/T1 mismatch rc=%d cpu=%d ri=%d"
 		     "cccrvalue=0x%x tbits=0x%x", __LINE__, rc, cpu, ri,
 			cccrvalue, cccrtbits));
 
 		escrvalue = rdmsr(escrmsr);
 
 		KASSERT((escrvalue & P4_ESCR_Tx_MASK) ==
 		    (pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK),
 		    ("[p4,%d] Extra ESCR bits cpu=%d rc=%d ri=%d "
 			"escr=0x%x pm=0x%x", __LINE__, cpu, rc, ri,
 			escrvalue & P4_ESCR_Tx_MASK,
 			pm->pm_md.pm_p4.pm_p4_escrvalue & P4_ESCR_Tx_MASK));
 		KASSERT((escrvalue & escrtbits) == 0,
 		    ("[p4,%d] ESCR T0/T1 mismatch rc=%d cpu=%d ri=%d "
 		     "escrmsr=0x%x escrvalue=0x%x tbits=0x%x", __LINE__,
 			rc, cpu, ri, escrmsr, escrvalue, escrtbits));
 	}
 
 	/* Enable the correct bits for this CPU. */
 	escrvalue |= escrtbits;
 	cccrvalue |= cccrtbits | P4_CCCR_ENABLE;
 
 	/* Save HW value at the time of starting hardware */
 	P4_PCPU_HW_VALUE(pc,ri,cpu) = rdmsr(pd->pm_pmc_msr);
 
 	/* Program the ESCR and CCCR and start the PMC */
 	wrmsr(escrmsr, escrvalue);
 	wrmsr(pd->pm_cccr_msr, cccrvalue);
 
 	++rc;
 	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
 
 	mtx_unlock_spin(&pc->pc_mtx);
 
-	PMCDBG(MDP,STA,2,"p4-start cpu=%d rc=%d ri=%d escr=%d "
-	    "escrmsr=0x%x escrvalue=0x%x cccr_config=0x%x v=%jx", cpu, rc,
-	    ri, pm->pm_md.pm_p4.pm_p4_escr, escrmsr, escrvalue,
+	PMCDBG6(MDP,STA,2,"p4-start cpu=%d rc=%d ri=%d escr=%d "
+	    "escrmsr=0x%x escrvalue=0x%x", cpu, rc,
+	    ri, pm->pm_md.pm_p4.pm_p4_escr, escrmsr, escrvalue);
+	PMCDBG2(MDP,STA,2,"cccr_config=0x%x v=%jx",
 	    cccrvalue, P4_PCPU_HW_VALUE(pc,ri,cpu));
 
 	return (0);
 }
 
 /*
  * Stop a PMC.
  */
 
 static int
 p4_stop_pmc(int cpu, int ri)
 {
 	int rc;
 	uint32_t cccrvalue, cccrtbits, escrvalue, escrmsr, escrtbits;
 	struct pmc *pm;
 	struct p4_cpu *pc;
 	struct p4pmc_descr *pd;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] illegal row index %d", __LINE__, ri));
 
 	pd = &p4_pmcdesc[ri];
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 	pm = pc->pc_p4pmcs[ri].phw_pmc;
 
 	KASSERT(pm != NULL,
 	    ("[p4,%d] null pmc for cpu%d, ri%d", __LINE__, cpu, ri));
 
-	PMCDBG(MDP,STO,1, "p4-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1, "p4-stop cpu=%d ri=%d", cpu, ri);
 
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
 		wrmsr(pd->pm_cccr_msr,
 		    pm->pm_md.pm_p4.pm_p4_cccrvalue & ~P4_CCCR_ENABLE);
 		return (0);
 	}
 
 	/*
 	 * Thread mode PMCs.
 	 *
 	 * On HTT machines, this PMC may be in use by two threads
 	 * running on two logical CPUS.  Thus we look at the
 	 * 'runcount' field and only turn off the appropriate TO/T1
 	 * bits (and keep the PMC running) if two logical CPUs were
 	 * using the PMC.
 	 *
 	 */
 
 	/* bits to mask */
 	cccrtbits = P4_CCCR_OVF_PMI_T0;
 	escrtbits = P4_ESCR_T0_OS | P4_ESCR_T0_USR;
 	if (P4_CPU_IS_HTT_SECONDARY(cpu)) {
 		cccrtbits <<= 1;
 		escrtbits >>= 2;
 	}
 
 	mtx_lock_spin(&pc->pc_mtx);
 
 	rc = P4_PCPU_GET_RUNCOUNT(pc,ri);
 
 	KASSERT(rc == 2 || rc == 1,
 	    ("[p4,%d] illegal runcount cpu=%d ri=%d rc=%d", __LINE__, cpu, ri,
 		rc));
 
 	--rc;
 
 	P4_PCPU_SET_RUNCOUNT(pc,ri,rc);
 
 	/* Stop this PMC */
 	cccrvalue = rdmsr(pd->pm_cccr_msr);
 	wrmsr(pd->pm_cccr_msr, cccrvalue & ~P4_CCCR_ENABLE);
 
 	escrmsr   = pm->pm_md.pm_p4.pm_p4_escrmsr;
 	escrvalue = rdmsr(escrmsr);
 
 	/* The current CPU should be running on this PMC */
 	KASSERT(escrvalue & escrtbits,
 	    ("[p4,%d] ESCR T0/T1 mismatch cpu=%d rc=%d ri=%d escrmsr=0x%x "
 		"escrvalue=0x%x tbits=0x%x", __LINE__, cpu, rc, ri, escrmsr,
 		escrvalue, escrtbits));
 	KASSERT(PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)) ||
 	    (cccrvalue & cccrtbits),
 	    ("[p4,%d] CCCR T0/T1 mismatch cpu=%d ri=%d cccrvalue=0x%x "
 		"tbits=0x%x", __LINE__, cpu, ri, cccrvalue, cccrtbits));
 
 	/* get the current hardware reading */
 	tmp = rdmsr(pd->pm_pmc_msr);
 
 	if (rc == 1) {		/* need to keep the PMC running */
 		escrvalue &= ~escrtbits;
 		cccrvalue &= ~cccrtbits;
 		wrmsr(escrmsr, escrvalue);
 		wrmsr(pd->pm_cccr_msr, cccrvalue);
 	}
 
 	mtx_unlock_spin(&pc->pc_mtx);
 
-	PMCDBG(MDP,STO,2, "p4-stop cpu=%d rc=%d ri=%d escrmsr=0x%x "
-	    "escrval=0x%x cccrval=0x%x v=%jx", cpu, rc, ri, escrmsr,
-	    escrvalue, cccrvalue, tmp);
+	PMCDBG5(MDP,STO,2, "p4-stop cpu=%d rc=%d ri=%d escrmsr=0x%x "
+	    "escrval=0x%x", cpu, rc, ri, escrmsr, escrvalue);
+	PMCDBG2(MDP,STO,2, "cccrval=0x%x v=%jx", cccrvalue, tmp);
 
 	if (tmp < P4_PCPU_HW_VALUE(pc,ri,cpu)) /* 40 bit counter overflow */
 		tmp += (P4_PERFCTR_MASK + 1) - P4_PCPU_HW_VALUE(pc,ri,cpu);
 	else
 		tmp -= P4_PCPU_HW_VALUE(pc,ri,cpu);
 
 	P4_PCPU_PMC_VALUE(pc,ri,cpu) += tmp;
 
 	return 0;
 }
 
 /*
  * Handle an interrupt.
  *
  * The hardware sets the CCCR_OVF whenever a counter overflow occurs,
  * so the handler examines all the 18 CCCR registers, processing the
  * counters that have overflowed.
  *
  * On HTT machines, the CCCR register is shared and will interrupt
  * both logical processors if so configured.  Thus multiple logical
  * CPUs could enter the NMI service routine at the same time.  These
  * will get serialized using a per-cpu spinlock dedicated for use in
  * the NMI handler.
  */
 
 static int
 p4_intr(int cpu, struct trapframe *tf)
 {
 	uint32_t cccrval, ovf_mask, ovf_partner;
 	int did_interrupt, error, ri;
 	struct p4_cpu *pc;
 	struct pmc *pm;
 	pmc_value_t v;
 
-	PMCDBG(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT, 1, "cpu=%d tf=0x%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	pc = p4_pcpu[P4_TO_HTT_PRIMARY(cpu)];
 
 	ovf_mask = P4_CPU_IS_HTT_SECONDARY(cpu) ?
 	    P4_CCCR_OVF_PMI_T1 : P4_CCCR_OVF_PMI_T0;
 	ovf_mask |= P4_CCCR_OVF;
 	if (p4_system_has_htt)
 		ovf_partner = P4_CPU_IS_HTT_SECONDARY(cpu) ?
 		    P4_CCCR_OVF_PMI_T0 : P4_CCCR_OVF_PMI_T1;
 	else
 		ovf_partner = 0;
 	did_interrupt = 0;
 
 	if (p4_system_has_htt)
 		P4_PCPU_ACQ_INTR_SPINLOCK(pc);
 
 	/*
 	 * Loop through all CCCRs, looking for ones that have
 	 * interrupted this CPU.
 	 */
 	for (ri = 0; ri < P4_NPMCS; ri++) {
 
 		/*
 		 * Check if our partner logical CPU has already marked
 		 * this PMC has having interrupted it.  If so, reset
 		 * the flag and process the interrupt, but leave the
 		 * hardware alone.
 		 */
 		if (p4_system_has_htt && P4_PCPU_GET_INTRFLAG(pc,ri)) {
 			P4_PCPU_SET_INTRFLAG(pc,ri,0);
 			did_interrupt = 1;
 
 			/*
 			 * Ignore de-configured or stopped PMCs.
 			 * Ignore PMCs not in sampling mode.
 			 */
 			pm = pc->pc_p4pmcs[ri].phw_pmc;
 			if (pm == NULL ||
 			    pm->pm_state != PMC_STATE_RUNNING ||
 			    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 				continue;
 			}
 			(void) pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 			    TRAPF_USERMODE(tf));
 			continue;
 		}
 
 		/*
 		 * Fresh interrupt.  Look for the CCCR_OVF bit
 		 * and the OVF_Tx bit for this logical
 		 * processor being set.
 		 */
 		cccrval = rdmsr(P4_CCCR_MSR_FIRST + ri);
 
 		if ((cccrval & ovf_mask) != ovf_mask)
 			continue;
 
 		/*
 		 * If the other logical CPU would also have been
 		 * interrupted due to the PMC being shared, record
 		 * this fact in the per-cpu saved interrupt flag
 		 * bitmask.
 		 */
 		if (p4_system_has_htt && (cccrval & ovf_partner))
 			P4_PCPU_SET_INTRFLAG(pc, ri, 1);
 
 		v = rdmsr(P4_PERFCTR_MSR_FIRST + ri);
 
-		PMCDBG(MDP,INT, 2, "ri=%d v=%jx", ri, v);
+		PMCDBG2(MDP,INT, 2, "ri=%d v=%jx", ri, v);
 
 		/* Stop the counter, and reset the overflow  bit */
 		cccrval &= ~(P4_CCCR_OVF | P4_CCCR_ENABLE);
 		wrmsr(P4_CCCR_MSR_FIRST + ri, cccrval);
 
 		did_interrupt = 1;
 
 		/*
 		 * Ignore de-configured or stopped PMCs.  Ignore PMCs
 		 * not in sampling mode.
 		 */
 		pm = pc->pc_p4pmcs[ri].phw_pmc;
 
 		if (pm == NULL ||
 		    pm->pm_state != PMC_STATE_RUNNING ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			continue;
 		}
 
 		/*
 		 * Process the interrupt.  Re-enable the PMC if
 		 * processing was successful.
 		 */
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 
 		/*
 		 * Only the first processor executing the NMI handler
 		 * in a HTT pair will restart a PMC, and that too
 		 * only if there were no errors.
 		 */
 		v = P4_RELOAD_COUNT_TO_PERFCTR_VALUE(
 			pm->pm_sc.pm_reloadcount);
 		wrmsr(P4_PERFCTR_MSR_FIRST + ri, v);
 		if (error == 0)
 			wrmsr(P4_CCCR_MSR_FIRST + ri,
 			    cccrval | P4_CCCR_ENABLE);
 	}
 
 	/* allow the other CPU to proceed */
 	if (p4_system_has_htt)
 		P4_PCPU_REL_INTR_SPINLOCK(pc);
 
 	/*
 	 * On Intel P4 CPUs, the PMC 'pcint' entry in the LAPIC gets
 	 * masked when a PMC interrupts the CPU.  We need to unmask
 	 * the interrupt source explicitly.
 	 */
 
 	if (did_interrupt)
 		lapic_reenable_pmc();
 
 	atomic_add_int(did_interrupt ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	return (did_interrupt);
 }
 
 /*
  * Describe a CPU's PMC state.
  */
 
 static int
 p4_describe(int cpu, int ri, struct pmc_info *pi,
     struct pmc **ppmc)
 {
 	int error;
 	size_t copied;
 	const struct p4pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p4,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] row-index %d out of range", __LINE__, ri));
 
-	PMCDBG(MDP,OPS,1,"p4-describe cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,OPS,1,"p4-describe cpu=%d ri=%d", cpu, ri);
 
 	if (P4_CPU_IS_HTT_SECONDARY(cpu))
 		return (EINVAL);
 
 	pd  = &p4_pmcdesc[ri];
 
 	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
 	    PMC_NAME_MAX, &copied)) != 0)
 		return (error);
 
 	pi->pm_class = pd->pm_descr.pd_class;
 
 	if (p4_pcpu[cpu]->pc_p4pmcs[ri].phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = p4_pcpu[cpu]->pc_p4pmcs[ri].phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 /*
  * Get MSR# for use with RDPMC.
  */
 
 static int
 p4_get_msr(int ri, uint32_t *msr)
 {
 	KASSERT(ri >= 0 && ri < P4_NPMCS,
 	    ("[p4,%d] ri %d out of range", __LINE__, ri));
 
 	*msr = p4_pmcdesc[ri].pm_pmc_msr - P4_PERFCTR_MSR_FIRST;
 
-	PMCDBG(MDP,OPS, 1, "ri=%d getmsr=0x%x", ri, *msr);
+	PMCDBG2(MDP,OPS, 1, "ri=%d getmsr=0x%x", ri, *msr);
 
 	return 0;
 }
 
 
 int
 pmc_p4_initialize(struct pmc_mdep *md, int ncpus)
 {
 	struct pmc_classdep *pcd;
 	struct p4_event_descr *pe;
 
 	KASSERT(md != NULL, ("[p4,%d] md is NULL", __LINE__));
 	KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
 	    ("[p4,%d] Initializing non-intel processor", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "p4-initialize");
+	PMCDBG0(MDP,INI,1, "p4-initialize");
 
 	/* Allocate space for pointers to per-cpu descriptors. */
 	p4_pcpu = malloc(sizeof(*p4_pcpu) * ncpus, M_PMC, M_ZERO | M_WAITOK);
 
 	/* Fill in the class dependent descriptor. */
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P4];
 
 	switch (md->pmd_cputype) {
 	case PMC_CPU_INTEL_PIV:
 
 		pcd->pcd_caps		= P4_PMC_CAPS;
 		pcd->pcd_class		= PMC_CLASS_P4;
 		pcd->pcd_num		= P4_NPMCS;
 		pcd->pcd_ri		= md->pmd_npmc;
 		pcd->pcd_width		= 40;
 
 		pcd->pcd_allocate_pmc	= p4_allocate_pmc;
 		pcd->pcd_config_pmc	= p4_config_pmc;
 		pcd->pcd_describe	= p4_describe;
 		pcd->pcd_get_config	= p4_get_config;
 		pcd->pcd_get_msr	= p4_get_msr;
 		pcd->pcd_pcpu_fini 	= p4_pcpu_fini;
 		pcd->pcd_pcpu_init    	= p4_pcpu_init;
 		pcd->pcd_read_pmc	= p4_read_pmc;
 		pcd->pcd_release_pmc	= p4_release_pmc;
 		pcd->pcd_start_pmc	= p4_start_pmc;
 		pcd->pcd_stop_pmc	= p4_stop_pmc;
 		pcd->pcd_write_pmc	= p4_write_pmc;
 
 		md->pmd_pcpu_fini	= NULL;
 		md->pmd_pcpu_init	= NULL;
 		md->pmd_intr	    	= p4_intr;
 		md->pmd_npmc	       += P4_NPMCS;
 
 		/* model specific configuration */
 		if ((cpu_id & 0xFFF) < 0xF27) {
 
 			/*
 			 * On P4 and Xeon with CPUID < (Family 15,
 			 * Model 2, Stepping 7), only one ESCR is
 			 * available for the IOQ_ALLOCATION event.
 			 */
 
 			pe = p4_find_event(PMC_EV_P4_IOQ_ALLOCATION);
 			pe->pm_escrs[1] = P4_ESCR_NONE;
 		}
 
 		break;
 
 	default:
 		KASSERT(0,("[p4,%d] Unknown CPU type", __LINE__));
 		return ENOSYS;
 	}
 
 	return (0);
 }
 
 void
 pmc_p4_finalize(struct pmc_mdep *md)
 {
 #if	defined(INVARIANTS)
 	int i, ncpus;
 #endif
 
 	KASSERT(p4_pcpu != NULL,
 	    ("[p4,%d] NULL p4_pcpu", __LINE__));
 
 #if	defined(INVARIANTS)
 	ncpus = pmc_cpu_max();
 	for (i = 0; i < ncpus; i++)
 		KASSERT(p4_pcpu[i] == NULL, ("[p4,%d] non-null pcpu %d",
 		    __LINE__, i));
 #endif
 
 	free(p4_pcpu, M_PMC);
 	p4_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_ppc970.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_ppc970.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_ppc970.c	(revision 282658)
@@ -1,687 +1,687 @@
 /*-
  * Copyright (c) 2013 Justin Hibbits
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/pmc_mdep.h>
 #include <machine/spr.h>
 #include <machine/cpu.h>
 
 #include "hwpmc_powerpc.h"
 
 #define PPC970_MAX_PMCS	8
 
 /* MMCR0, PMC1 is 8 bytes in, PMC2 is 1 byte in. */
 #define PPC970_SET_MMCR0_PMCSEL(r, x, i) \
 	((r & ~(0x1f << (7 * (1 - i) + 1))) | (x << (7 * (1 - i) + 1)))
 /* MMCR1 has 6 PMC*SEL items (PMC3->PMC8), in sequence. */
 #define PPC970_SET_MMCR1_PMCSEL(r, x, i) \
 	((r & ~(0x1f << (5 * (7 - i) + 2))) | (x << (5 * (7 - i) + 2)))
 
 #define PPC970_PMC_HAS_OVERFLOWED(x) (ppc970_pmcn_read(x) & (0x1 << 31))
 
 /* How PMC works on PPC970:
  *
  * Any PMC can count a direct event.  Indirect events are handled specially.
  * Direct events: As published.
  *
  * Encoding 00 000 -- Add byte lane bit counters
  *   MMCR1[24:31] -- select bit matching PMC being an adder.
  * Bus events:
  * PMCxSEL: 1x -- select from byte lane: 10 == lower lane (0/1), 11 == upper
  * lane (2/3).
  * PMCxSEL[2:4] -- bit in the byte lane selected.
  *
  * PMC[1,2,5,6] == lane 0/lane 2
  * PMC[3,4,7,8] == lane 1,3
  *
  *
  * Lanes:
  * Lane 0 -- TTM0(FPU,ISU,IFU,VPU)
  *           TTM1(IDU,ISU,STS)
  *           LSU0 byte 0
  *           LSU1 byte 0
  * Lane 1 -- TTM0
  *           TTM1
  *           LSU0 byte 1
  *           LSU1 byte 1
  * Lane 2 -- TTM0
  *           TTM1
  *           LSU0 byte 2
  *           LSU1 byte 2 or byte 6
  * Lane 3 -- TTM0
  *           TTM1
  *           LSU0 byte 3
  *           LSU1 byte 3 or byte 7
  *
  * Adders:
  *  Add byte lane for PMC (above), bit 0+4, 1+5, 2+6, 3+7
  */
 
 struct pmc_ppc970_event {
 	enum pmc_event pe_event;
 	uint32_t pe_flags;
 #define PMC_PPC970_FLAG_PMCS	0x000000ff
 #define  PMC_PPC970_FLAG_PMC1	0x01
 #define  PMC_PPC970_FLAG_PMC2	0x02
 #define  PMC_PPC970_FLAG_PMC3	0x04
 #define  PMC_PPC970_FLAG_PMC4	0x08
 #define  PMC_PPC970_FLAG_PMC5	0x10
 #define  PMC_PPC970_FLAG_PMC6	0x20
 #define  PMC_PPC970_FLAG_PMC7	0x40
 #define  PMC_PPC970_FLAG_PMC8	0x80
 	uint32_t pe_code;
 };
 
 static struct pmc_ppc970_event ppc970_event_codes[] = {
 	{PMC_EV_PPC970_INSTR_COMPLETED,
 	    .pe_flags = PMC_PPC970_FLAG_PMCS,
 	    .pe_code = 0x09
 	},
 	{PMC_EV_PPC970_MARKED_GROUP_DISPATCH,
 		.pe_flags = PMC_PPC970_FLAG_PMC1,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_MARKED_STORE_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC1,
 		.pe_code = 0x03
 	},
 	{PMC_EV_PPC970_GCT_EMPTY,
 		.pe_flags = PMC_PPC970_FLAG_PMC1,
 		.pe_code = 0x04
 	},
 	{PMC_EV_PPC970_RUN_CYCLES,
 		.pe_flags = PMC_PPC970_FLAG_PMC1,
 		.pe_code = 0x05
 	},
 	{PMC_EV_PPC970_OVERFLOW,
 		.pe_flags = PMC_PPC970_FLAG_PMCS,
 		.pe_code = 0x0a
 	},
 	{PMC_EV_PPC970_CYCLES,
 		.pe_flags = PMC_PPC970_FLAG_PMCS,
 		.pe_code = 0x0f
 	},
 	{PMC_EV_PPC970_THRESHOLD_TIMEOUT,
 		.pe_flags = PMC_PPC970_FLAG_PMC2,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_GROUP_DISPATCH,
 		.pe_flags = PMC_PPC970_FLAG_PMC2,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_BR_MARKED_INSTR_FINISH,
 		.pe_flags = PMC_PPC970_FLAG_PMC2,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_GCT_EMPTY_BY_SRQ_FULL,
 		.pe_flags = PMC_PPC970_FLAG_PMC2,
 		.pe_code = 0xb
 	},
 	{PMC_EV_PPC970_STOP_COMPLETION,
 		.pe_flags = PMC_PPC970_FLAG_PMC3,
 		.pe_code = 0x1
 	},
 	{PMC_EV_PPC970_LSU_EMPTY,
 		.pe_flags = PMC_PPC970_FLAG_PMC3,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_MARKED_STORE_WITH_INTR,
 		.pe_flags = PMC_PPC970_FLAG_PMC3,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_CYCLES_IN_SUPER,
 		.pe_flags = PMC_PPC970_FLAG_PMC3,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_VPU_MARKED_INSTR_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC3,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_FXU0_IDLE_FXU1_BUSY,
 		.pe_flags = PMC_PPC970_FLAG_PMC4,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_SRQ_EMPTY,
 		.pe_flags = PMC_PPC970_FLAG_PMC4,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_MARKED_GROUP_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC4,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_CR_MARKED_INSTR_FINISH,
 		.pe_flags = PMC_PPC970_FLAG_PMC4,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_DISPATCH_SUCCESS,
 		.pe_flags = PMC_PPC970_FLAG_PMC5,
 		.pe_code = 0x1
 	},
 	{PMC_EV_PPC970_FXU0_IDLE_FXU1_IDLE,
 		.pe_flags = PMC_PPC970_FLAG_PMC5,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_ONE_PLUS_INSTR_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC5,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_GROUP_MARKED_IDU,
 		.pe_flags = PMC_PPC970_FLAG_PMC5,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_MARKED_GROUP_COMPLETE_TIMEOUT,
 		.pe_flags = PMC_PPC970_FLAG_PMC5,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_FXU0_BUSY_FXU1_BUSY,
 		.pe_flags = PMC_PPC970_FLAG_PMC6,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_MARKED_STORE_SENT_TO_STS,
 		.pe_flags = PMC_PPC970_FLAG_PMC6,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_FXU_MARKED_INSTR_FINISHED,
 		.pe_flags = PMC_PPC970_FLAG_PMC6,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_MARKED_GROUP_ISSUED,
 		.pe_flags = PMC_PPC970_FLAG_PMC6,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_FXU0_BUSY_FXU1_IDLE,
 		.pe_flags = PMC_PPC970_FLAG_PMC7,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_GROUP_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC7,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_FPU_MARKED_INSTR_COMPLETED,
 		.pe_flags = PMC_PPC970_FLAG_PMC7,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_MARKED_INSTR_FINISH_ANY_UNIT,
 		.pe_flags = PMC_PPC970_FLAG_PMC7,
 		.pe_code = 0x5
 	},
 	{PMC_EV_PPC970_EXTERNAL_INTERRUPT,
 		.pe_flags = PMC_PPC970_FLAG_PMC8,
 		.pe_code = 0x2
 	},
 	{PMC_EV_PPC970_GROUP_DISPATCH_REJECT,
 		.pe_flags = PMC_PPC970_FLAG_PMC8,
 		.pe_code = 0x3
 	},
 	{PMC_EV_PPC970_LSU_MARKED_INSTR_FINISH,
 		.pe_flags = PMC_PPC970_FLAG_PMC8,
 		.pe_code = 0x4
 	},
 	{PMC_EV_PPC970_TIMEBASE_EVENT,
 		.pe_flags = PMC_PPC970_FLAG_PMC8,
 		.pe_code = 0x5
 	},
 #if 0
 	{PMC_EV_PPC970_LSU_COMPLETION_STALL, },
 	{PMC_EV_PPC970_FXU_COMPLETION_STALL, },
 	{PMC_EV_PPC970_DCACHE_MISS_COMPLETION_STALL, },
 	{PMC_EV_PPC970_FPU_COMPLETION_STALL, },
 	{PMC_EV_PPC970_FXU_LONG_INSTR_COMPLETION_STALL, },
 	{PMC_EV_PPC970_REJECT_COMPLETION_STALL, },
 	{PMC_EV_PPC970_FPU_LONG_INSTR_COMPLETION_STALL, },
 	{PMC_EV_PPC970_GCT_EMPTY_BY_ICACHE_MISS, },
 	{PMC_EV_PPC970_REJECT_COMPLETION_STALL_ERAT_MISS, },
 	{PMC_EV_PPC970_GCT_EMPTY_BY_BRANCH_MISS_PREDICT, },
 #endif
 };
 static size_t ppc970_event_codes_size = nitems(ppc970_event_codes);
 
 static pmc_value_t
 ppc970_pmcn_read(unsigned int pmc)
 {
 	pmc_value_t val;
 
 	switch (pmc) {
 		case 0:
 			val = mfspr(SPR_970PMC1);
 			break;
 		case 1:
 			val = mfspr(SPR_970PMC2);
 			break;
 		case 2:
 			val = mfspr(SPR_970PMC3);
 			break;
 		case 3:
 			val = mfspr(SPR_970PMC4);
 			break;
 		case 4:
 			val = mfspr(SPR_970PMC5);
 			break;
 		case 5:
 			val = mfspr(SPR_970PMC6);
 			break;
 		case 6:
 			val = mfspr(SPR_970PMC7);
 			break;
 		case 7:
 			val = mfspr(SPR_970PMC8);
 			break;
 		default:
 			panic("Invalid PMC number: %d\n", pmc);
 	}
 
 	return (val);
 }
 
 static void
 ppc970_pmcn_write(unsigned int pmc, uint32_t val)
 {
 	switch (pmc) {
 		case 0:
 			mtspr(SPR_970PMC1, val);
 			break;
 		case 1:
 			mtspr(SPR_970PMC2, val);
 			break;
 		case 2:
 			mtspr(SPR_970PMC3, val);
 			break;
 		case 3:
 			mtspr(SPR_970PMC4, val);
 			break;
 		case 4:
 			mtspr(SPR_970PMC5, val);
 			break;
 		case 5:
 			mtspr(SPR_970PMC6, val);
 			break;
 		case 6:
 			mtspr(SPR_970PMC7, val);
 			break;
 		case 7:
 			mtspr(SPR_970PMC8, val);
 			break;
 		default:
 			panic("Invalid PMC number: %d\n", pmc);
 	}
 }
 
 static int
 ppc970_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < PPC970_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[powerpc,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
 	    __LINE__, pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return 0;
 }
 
 static int
 ppc970_set_pmc(int cpu, int ri, int config)
 {
 	struct pmc *pm;
 	struct pmc_hw *phw;
 	register_t pmc_mmcr;
 
 	phw    = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	pm     = phw->phw_pmc;
 
 	/*
 	 * Disable the PMCs.
 	 */
 	switch (ri) {
 	case 0:
 	case 1:
 		pmc_mmcr = mfspr(SPR_970MMCR0);
 		pmc_mmcr = PPC970_SET_MMCR0_PMCSEL(pmc_mmcr, config, ri);
 		mtspr(SPR_970MMCR0, pmc_mmcr);
 		break;
 	case 2:
 	case 3:
 	case 4:
 	case 5:
 	case 6:
 	case 7:
 		pmc_mmcr = mfspr(SPR_970MMCR1);
 		pmc_mmcr = PPC970_SET_MMCR1_PMCSEL(pmc_mmcr, config, ri);
 		mtspr(SPR_970MMCR1, pmc_mmcr);
 		break;
 	}
 	return 0;
 }
 
 static int
 ppc970_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct pmc_hw *phw;
 	register_t pmc_mmcr;
 	uint32_t config;
 	int error;
 
 	phw    = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	pm     = phw->phw_pmc;
 	config = pm->pm_md.pm_powerpc.pm_powerpc_evsel & ~POWERPC_PMC_ENABLE;
 
 	error = ppc970_set_pmc(cpu, ri, config);
 	
 	/* The mask is inverted (enable is 1) compared to the flags in MMCR0, which
 	 * are Freeze flags.
 	 */
 	config = ~pm->pm_md.pm_powerpc.pm_powerpc_evsel & POWERPC_PMC_ENABLE;
 
 	pmc_mmcr = mfspr(SPR_970MMCR0);
 	pmc_mmcr &= ~SPR_MMCR0_FC;
 	pmc_mmcr |= config;
 	mtspr(SPR_970MMCR0, pmc_mmcr);
 
 	return 0;
 }
 
 static int
 ppc970_stop_pmc(int cpu, int ri)
 {
 	return ppc970_set_pmc(cpu, ri, PMC970N_NONE);
 }
 
 static int
 ppc970_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < PPC970_MAX_PMCS,
 	    ("[powerpc,%d] illegal row index %d", __LINE__, ri));
 
 	pm  = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
 	KASSERT(pm,
 	    ("[core,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
 		ri));
 
 	tmp = ppc970_pmcn_read(ri);
-	PMCDBG(MDP,REA,2,"ppc-read id=%d -> %jd", ri, tmp);
+	PMCDBG2(MDP,REA,2,"ppc-read id=%d -> %jd", ri, tmp);
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = POWERPC_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	else
 		*v = tmp;
 
 	return 0;
 }
 
 static int
 ppc970_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < PPC970_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	pm  = powerpc_pcpu[cpu]->pc_ppcpmcs[ri].phw_pmc;
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = POWERPC_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 	
-	PMCDBG(MDP,WRI,1,"powerpc-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1,"powerpc-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	ppc970_pmcn_write(ri, v);
 
 	return 0;
 }
 
 static int
 ppc970_intr(int cpu, struct trapframe *tf)
 {
 	struct pmc *pm;
 	struct powerpc_cpu *pac;
 	uint32_t config;
 	int i, error, retval;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] out of range CPU %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
+	PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *) tf,
 	    TRAPF_USERMODE(tf));
 
 	retval = 0;
 
 	pac = powerpc_pcpu[cpu];
 
 	/*
 	 * look for all PMCs that have interrupted:
 	 * - look for a running, sampling PMC which has overflowed
 	 *   and which has a valid 'struct pmc' association
 	 *
 	 * If found, we call a helper to process the interrupt.
 	 */
 
 	config  = mfspr(SPR_970MMCR0) & ~SPR_MMCR0_FC;
 	for (i = 0; i < PPC970_MAX_PMCS; i++) {
 		if ((pm = pac->pc_ppcpmcs[i].phw_pmc) == NULL ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			continue;
 		}
 
 		if (!PPC970_PMC_HAS_OVERFLOWED(i))
 			continue;
 
 		retval = 1;	/* Found an interrupting PMC. */
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error != 0)
 			ppc970_stop_pmc(cpu, i);
 
 		/* reload sampling count. */
 		ppc970_write_pmc(cpu, i, pm->pm_sc.pm_reloadcount);
 	}
 
 	atomic_add_int(retval ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	/* Re-enable PERF exceptions. */
 	if (retval)
 		mtspr(SPR_970MMCR0, config | SPR_MMCR0_PMXE);
 
 	return (retval);
 }
 
 static int
 ppc970_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	struct pmc_cpu *pc;
 	struct powerpc_cpu *pac;
 	struct pmc_hw  *phw;
 	int first_ri, i;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] wrong cpu number %d", __LINE__, cpu));
-	PMCDBG(MDP,INI,1,"powerpc-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"powerpc-init cpu=%d", cpu);
 
 	powerpc_pcpu[cpu] = pac = malloc(sizeof(struct powerpc_cpu), M_PMC,
 	    M_WAITOK|M_ZERO);
 	pac->pc_ppcpmcs = malloc(sizeof(struct pmc_hw) * PPC970_MAX_PMCS,
 	    M_PMC, M_WAITOK|M_ZERO);
 	pac->pc_class = PMC_CLASS_PPC970;
 
 	pc = pmc_pcpu[cpu];
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC].pcd_ri;
 	KASSERT(pc != NULL, ("[powerpc,%d] NULL per-cpu pointer", __LINE__));
 
 	for (i = 0, phw = pac->pc_ppcpmcs; i < PPC970_MAX_PMCS; i++, phw++) {
 		phw->phw_state    = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
 		phw->phw_pmc      = NULL;
 		pc->pc_hwpmcs[i + first_ri] = phw;
 	}
 
 	/* Clear the MMCRs, and set FC, to disable all PMCs. */
 	/* 970 PMC is not counted when set to 0x08 */
 	mtspr(SPR_970MMCR0, SPR_MMCR0_FC | SPR_MMCR0_PMXE |
 	    SPR_MMCR0_FCECE | SPR_MMCR0_PMC1CE | SPR_MMCR0_PMCNCE |
 	    SPR_970MMCR0_PMC1SEL(0x8) | SPR_970MMCR0_PMC2SEL(0x8));
 	mtspr(SPR_970MMCR1, 0x4218420);
 
 	return 0;
 }
 
 static int
 ppc970_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	register_t mmcr0 = mfspr(SPR_MMCR0);
 
 	mmcr0 |= SPR_MMCR0_FC;
 	mmcr0 &= ~SPR_MMCR0_PMXE;
 	mtspr(SPR_MMCR0, mmcr0);
 
 	free(powerpc_pcpu[cpu]->pc_ppcpmcs, M_PMC);
 	free(powerpc_pcpu[cpu], M_PMC);
 
 	return 0;
 }
 
 static int
 ppc970_allocate_pmc(int cpu, int ri, struct pmc *pm,
   const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event pe;
 	uint32_t caps, config = 0, counter = 0;
 	int i;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < PPC970_MAX_PMCS,
 	    ("[powerpc,%d] illegal row index %d", __LINE__, ri));
 
 	caps = a->pm_caps;
 
 	pe = a->pm_ev;
 
 	if (pe < PMC_EV_PPC970_FIRST || pe > PMC_EV_PPC970_LAST)
 		return (EINVAL);
 
 	for (i = 0; i < ppc970_event_codes_size; i++) {
 		if (ppc970_event_codes[i].pe_event == pe) {
 			config = ppc970_event_codes[i].pe_code;
 			counter =  ppc970_event_codes[i].pe_flags;
 			break;
 		}
 	}
 	if (i == ppc970_event_codes_size)
 		return (EINVAL);
 
 	if ((counter & (1 << ri)) == 0)
 		return (EINVAL);
 
 	if (caps & PMC_CAP_SYSTEM)
 		config |= POWERPC_PMC_KERNEL_ENABLE;
 	if (caps & PMC_CAP_USER)
 		config |= POWERPC_PMC_USER_ENABLE;
 	if ((caps & (PMC_CAP_USER | PMC_CAP_SYSTEM)) == 0)
 		config |= POWERPC_PMC_ENABLE;
 
 	pm->pm_md.pm_powerpc.pm_powerpc_evsel = config;
 
-	PMCDBG(MDP,ALL,2,"powerpc-allocate ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"powerpc-allocate ri=%d -> config=0x%x", ri, config);
 
 	return 0;
 }
 
 static int
 ppc970_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[powerpc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < PPC970_MAX_PMCS,
 	    ("[powerpc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &powerpc_pcpu[cpu]->pc_ppcpmcs[ri];
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[powerpc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	return 0;
 }
 
 int
 pmc_ppc970_initialize(struct pmc_mdep *pmc_mdep)
 {
 	struct pmc_classdep *pcd;
 	
 	pmc_mdep->pmd_cputype = PMC_CPU_PPC_970;
 
 	pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_POWERPC];
 	pcd->pcd_caps  = POWERPC_PMC_CAPS;
 	pcd->pcd_class = PMC_CLASS_PPC970;
 	pcd->pcd_num   = PPC970_MAX_PMCS;
 	pcd->pcd_ri    = pmc_mdep->pmd_npmc;
 	pcd->pcd_width = 32;
 
 	pcd->pcd_allocate_pmc   = ppc970_allocate_pmc;
 	pcd->pcd_config_pmc     = ppc970_config_pmc;
 	pcd->pcd_pcpu_fini      = ppc970_pcpu_fini;
 	pcd->pcd_pcpu_init      = ppc970_pcpu_init;
 	pcd->pcd_describe       = powerpc_describe;
 	pcd->pcd_get_config     = powerpc_get_config;
 	pcd->pcd_read_pmc       = ppc970_read_pmc;
 	pcd->pcd_release_pmc    = ppc970_release_pmc;
 	pcd->pcd_start_pmc      = ppc970_start_pmc;
 	pcd->pcd_stop_pmc       = ppc970_stop_pmc;
  	pcd->pcd_write_pmc      = ppc970_write_pmc;
 
 	pmc_mdep->pmd_npmc     += PPC970_MAX_PMCS;
 	pmc_mdep->pmd_intr      = ppc970_intr;
 
 	return (0);
 }
Index: head/sys/dev/hwpmc/hwpmc_ppro.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_ppro.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_ppro.c	(revision 282658)
@@ -1,866 +1,866 @@
 /*-
  * Copyright (c) 2003-2005,2008 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/smp.h>
 #include <sys/systm.h>
 
 #include <machine/intr_machdep.h>
 #include <x86/apicvar.h>
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/pmc_mdep.h>
 #include <machine/specialreg.h>
 
 /*
  * PENTIUM PRO SUPPORT
  *
  * Quirks:
  *
  * - Both PMCs are enabled by a single bit P6_EVSEL_EN in performance
  *   counter '0'.  This bit needs to be '1' if any of the two
  *   performance counters are in use.  Perf counters can also be
  *   switched off by writing zeros to their EVSEL register.
  *
  * - While the width of these counters is 40 bits, we do not appear to
  *   have a way of writing 40 bits to the counter MSRs.  A WRMSR
  *   instruction will sign extend bit 31 of the value being written to
  *   the perf counter -- a value of 0x80000000 written to an perf
  *   counter register will be sign extended to 0xFF80000000.
  *
  *   This quirk primarily affects thread-mode PMCs in counting mode, as
  *   these PMCs read and write PMC registers at every context switch.
  */
 
 struct p6pmc_descr {
 	struct pmc_descr pm_descr; /* common information */
 	uint32_t	pm_pmc_msr;
 	uint32_t	pm_evsel_msr;
 };
 
 static struct p6pmc_descr p6_pmcdesc[P6_NPMCS] = {
 
 #define	P6_PMC_CAPS (PMC_CAP_INTERRUPT | PMC_CAP_USER | PMC_CAP_SYSTEM | \
     PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE |	 \
     PMC_CAP_INVERT | PMC_CAP_QUALIFIER)
 
 	/* PMC 0 */
 	{
 		.pm_descr =
 		{
 			.pd_name  ="P6-0",
 			.pd_class = PMC_CLASS_P6,
 			.pd_caps  = P6_PMC_CAPS,
 			.pd_width = 40
 		},
 		.pm_pmc_msr   = P6_MSR_PERFCTR0,
 		.pm_evsel_msr = P6_MSR_EVSEL0
 	},
 
 	/* PMC 1 */
 	{
 		.pm_descr =
 		{
 			.pd_name  ="P6-1",
 			.pd_class = PMC_CLASS_P6,
 			.pd_caps  = P6_PMC_CAPS,
 			.pd_width = 40
 		},
 		.pm_pmc_msr   = P6_MSR_PERFCTR1,
 		.pm_evsel_msr = P6_MSR_EVSEL1
 	}
 };
 
 static enum pmc_cputype p6_cputype;
 
 /*
  * P6 Event descriptor
  *
  * The 'pm_flags' field has the following structure:
  * - The upper 4 bits are used to track which counter an event is valid on.
  * - The lower bits form a bitmask of flags indicating support for the event
  *   on a given CPU.
  */
 
 struct p6_event_descr {
 	const enum pmc_event pm_event;
 	uint32_t	     pm_evsel;
 	uint32_t	     pm_flags;
 	uint32_t	     pm_unitmask;
 };
 
 #define	P6F_CTR(C)	(1 << (28 + (C)))
 #define	P6F_CTR0	P6F_CTR(0)
 #define	P6F_CTR1	P6F_CTR(1)
 #define	P6F(CPU)	(1 << ((CPU) - PMC_CPU_INTEL_P6))
 #define	_P6F(C)		P6F(PMC_CPU_INTEL_##C)
 #define	P6F_P6		_P6F(P6)
 #define	P6F_CL		_P6F(CL)
 #define	P6F_PII		_P6F(PII)
 #define	P6F_PIII	_P6F(PIII)
 #define	P6F_PM		_P6F(PM)
 #define	P6F_ALL_CPUS	(P6F_P6 | P6F_PII | P6F_CL | P6F_PIII | P6F_PM)
 #define	P6F_ALL_CTRS	(P6F_CTR0 | P6F_CTR1)
 #define	P6F_ALL		(P6F_ALL_CPUS | P6F_ALL_CTRS)
 
 #define	P6_EVENT_VALID_FOR_CPU(P,CPU)	((P)->pm_flags & P6F(CPU))
 #define	P6_EVENT_VALID_FOR_CTR(P,CTR)	((P)->pm_flags & P6F_CTR(CTR))
 
 static const struct p6_event_descr p6_events[] = {
 
 #define	P6_EVDESCR(NAME, EVSEL, FLAGS, UMASK)	\
 	{					\
 		.pm_event = PMC_EV_P6_##NAME,	\
 		.pm_evsel = (EVSEL),		\
 		.pm_flags = (FLAGS),		\
 		.pm_unitmask = (UMASK)		\
 	}
 
 P6_EVDESCR(DATA_MEM_REFS,		0x43, P6F_ALL, 0x00),
 P6_EVDESCR(DCU_LINES_IN,		0x45, P6F_ALL, 0x00),
 P6_EVDESCR(DCU_M_LINES_IN,		0x46, P6F_ALL, 0x00),
 P6_EVDESCR(DCU_M_LINES_OUT,		0x47, P6F_ALL, 0x00),
 P6_EVDESCR(DCU_MISS_OUTSTANDING,	0x47, P6F_ALL, 0x00),
 P6_EVDESCR(IFU_FETCH,			0x80, P6F_ALL, 0x00),
 P6_EVDESCR(IFU_FETCH_MISS,		0x81, P6F_ALL, 0x00),
 P6_EVDESCR(ITLB_MISS,			0x85, P6F_ALL, 0x00),
 P6_EVDESCR(IFU_MEM_STALL,		0x86, P6F_ALL, 0x00),
 P6_EVDESCR(ILD_STALL,			0x87, P6F_ALL, 0x00),
 P6_EVDESCR(L2_IFETCH,			0x28, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_LD,			0x29, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_ST,			0x2A, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_LINES_IN,			0x24, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_LINES_OUT,		0x26, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_M_LINES_INM,		0x25, P6F_ALL, 0x00),
 P6_EVDESCR(L2_M_LINES_OUTM,		0x27, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_RQSTS,			0x2E, P6F_ALL, 0x0F),
 P6_EVDESCR(L2_ADS,			0x21, P6F_ALL, 0x00),
 P6_EVDESCR(L2_DBUS_BUSY,		0x22, P6F_ALL, 0x00),
 P6_EVDESCR(L2_DBUS_BUSY_RD,		0x23, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_DRDY_CLOCKS,		0x62, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_LOCK_CLOCKS,		0x63, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_REQ_OUTSTANDING,		0x60, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_TRAN_BRD,		0x65, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_RFO,		0x66, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRANS_WB,		0x67, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_IFETCH,		0x68, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_INVAL,		0x69, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_PWR,		0x6A, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRANS_P,			0x6B, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRANS_IO,		0x6C, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_DEF,		0x6D, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_BURST,		0x6E, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_ANY,		0x70, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_TRAN_MEM,		0x6F, P6F_ALL, 0x20),
 P6_EVDESCR(BUS_DATA_RCV,		0x64, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_BNR_DRV,			0x61, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_HIT_DRV,			0x7A, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_HITM_DRV,		0x7B, P6F_ALL, 0x00),
 P6_EVDESCR(BUS_SNOOP_STALL,		0x7E, P6F_ALL, 0x00),
 P6_EVDESCR(FLOPS,			0xC1, P6F_ALL_CPUS | P6F_CTR0, 0x00),
 P6_EVDESCR(FP_COMPS_OPS_EXE,		0x10, P6F_ALL_CPUS | P6F_CTR0, 0x00),
 P6_EVDESCR(FP_ASSIST,			0x11, P6F_ALL_CPUS | P6F_CTR1, 0x00),
 P6_EVDESCR(MUL,				0x12, P6F_ALL_CPUS | P6F_CTR1, 0x00),
 P6_EVDESCR(DIV,				0x13, P6F_ALL_CPUS | P6F_CTR1, 0x00),
 P6_EVDESCR(CYCLES_DIV_BUSY,		0x14, P6F_ALL_CPUS | P6F_CTR0, 0x00),
 P6_EVDESCR(LD_BLOCKS,			0x03, P6F_ALL, 0x00),
 P6_EVDESCR(SB_DRAINS,			0x04, P6F_ALL, 0x00),
 P6_EVDESCR(MISALIGN_MEM_REF,		0x05, P6F_ALL, 0x00),
 P6_EVDESCR(EMON_KNI_PREF_DISPATCHED,	0x07, P6F_PIII | P6F_ALL_CTRS, 0x03),
 P6_EVDESCR(EMON_KNI_PREF_MISS,		0x4B, P6F_PIII | P6F_ALL_CTRS, 0x03),
 P6_EVDESCR(INST_RETIRED,		0xC0, P6F_ALL, 0x00),
 P6_EVDESCR(UOPS_RETIRED,		0xC2, P6F_ALL, 0x00),
 P6_EVDESCR(INST_DECODED,		0xD0, P6F_ALL, 0x00),
 P6_EVDESCR(EMON_KNI_INST_RETIRED,	0xD8, P6F_PIII | P6F_ALL_CTRS, 0x01),
 P6_EVDESCR(EMON_KNI_COMP_INST_RET,	0xD9, P6F_PIII | P6F_ALL_CTRS, 0x01),
 P6_EVDESCR(HW_INT_RX,			0xC8, P6F_ALL, 0x00),
 P6_EVDESCR(CYCLES_INT_MASKED,		0xC6, P6F_ALL, 0x00),
 P6_EVDESCR(CYCLES_INT_PENDING_AND_MASKED, 0xC7, P6F_ALL, 0x00),
 P6_EVDESCR(BR_INST_RETIRED,		0xC4, P6F_ALL, 0x00),
 P6_EVDESCR(BR_MISS_PRED_RETIRED,	0xC5, P6F_ALL, 0x00),
 P6_EVDESCR(BR_TAKEN_RETIRED,		0xC9, P6F_ALL, 0x00),
 P6_EVDESCR(BR_MISS_PRED_TAKEN_RET, 	0xCA, P6F_ALL, 0x00),
 P6_EVDESCR(BR_INST_DECODED,		0xE0, P6F_ALL, 0x00),
 P6_EVDESCR(BTB_MISSES,			0xE2, P6F_ALL, 0x00),
 P6_EVDESCR(BR_BOGUS,			0xE4, P6F_ALL, 0x00),
 P6_EVDESCR(BACLEARS,			0xE6, P6F_ALL, 0x00),
 P6_EVDESCR(RESOURCE_STALLS,		0xA2, P6F_ALL, 0x00),
 P6_EVDESCR(PARTIAL_RAT_STALLS,		0xD2, P6F_ALL, 0x00),
 P6_EVDESCR(SEGMENT_REG_LOADS,		0x06, P6F_ALL, 0x00),
 P6_EVDESCR(CPU_CLK_UNHALTED,		0x79, P6F_ALL, 0x00),
 P6_EVDESCR(MMX_INSTR_EXEC,		0xB0,
 			P6F_ALL_CTRS | P6F_CL | P6F_PII, 0x00),
 P6_EVDESCR(MMX_SAT_INSTR_EXEC,		0xB1,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
 P6_EVDESCR(MMX_UOPS_EXEC,		0xB2,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
 P6_EVDESCR(MMX_INSTR_TYPE_EXEC,		0xB3,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x3F),
 P6_EVDESCR(FP_MMX_TRANS,		0xCC,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x01),
 P6_EVDESCR(MMX_ASSIST,			0xCD,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
 P6_EVDESCR(MMX_INSTR_RET,		0xCE, P6F_ALL_CTRS | P6F_PII, 0x00),
 P6_EVDESCR(SEG_RENAME_STALLS,		0xD4,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
 P6_EVDESCR(SEG_REG_RENAMES,		0xD5,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x0F),
 P6_EVDESCR(RET_SEG_RENAMES,		0xD6,
 			P6F_ALL_CTRS | P6F_PII | P6F_PIII, 0x00),
 P6_EVDESCR(EMON_EST_TRANS,		0x58, P6F_ALL_CTRS | P6F_PM, 0x02),
 P6_EVDESCR(EMON_THERMAL_TRIP,		0x59, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_INST_EXEC,		0x88, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_MISSP_EXEC,		0x89, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_BAC_MISSP_EXEC,		0x8A, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_CND_EXEC,			0x8B, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_CND_MISSP_EXEC,		0x8C, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_IND_EXEC,			0x8D, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_IND_MISSP_EXEC,		0x8E, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_RET_EXEC,			0x8F, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_RET_MISSP_EXEC,		0x90, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_RET_BAC_MISSP_EXEC,	0x91, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_CALL_EXEC,		0x92, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_CALL_MISSP_EXEC,		0x93, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(BR_IND_CALL_EXEC,		0x94, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_SIMD_INSTR_RETIRED,	0xCE, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_SYNCH_UOPS,		0xD3, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_ESP_UOPS,		0xD7, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_FUSED_UOPS_RET,		0xDA, P6F_ALL_CTRS | P6F_PM, 0x03),
 P6_EVDESCR(EMON_UNFUSION,		0xDB, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_PREF_RQSTS_UP,		0xF0, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_PREF_RQSTS_DN,		0xD8, P6F_ALL_CTRS | P6F_PM, 0x00),
 P6_EVDESCR(EMON_SSE_SSE2_INST_RETIRED,	0xD8, P6F_ALL_CTRS | P6F_PM, 0x03),
 P6_EVDESCR(EMON_SSE_SSE2_COMP_INST_RETIRED, 0xD9, P6F_ALL_CTRS | P6F_PM, 0x03)
 
 #undef	P6_EVDESCR
 };
 
 #define	P6_NEVENTS	(PMC_EV_P6_LAST - PMC_EV_P6_FIRST + 1)
 
 static const struct p6_event_descr *
 p6_find_event(enum pmc_event ev)
 {
 	int n;
 
 	for (n = 0; n < P6_NEVENTS; n++)
 		if (p6_events[n].pm_event == ev)
 			break;
 	if (n == P6_NEVENTS)
 		return NULL;
 	return &p6_events[n];
 }
 
 /*
  * Per-CPU data structure for P6 class CPUs
  *
  * [common stuff]
  * [flags for maintaining PMC start/stop state]
  * [3 struct pmc_hw pointers]
  * [3 struct pmc_hw structures]
  */
 
 struct p6_cpu {
 	struct pmc_hw	pc_p6pmcs[P6_NPMCS];
 	uint32_t	pc_state;
 };
 
 static struct p6_cpu **p6_pcpu;
 
 /*
  * If CTR1 is active, we need to keep the 'EN' bit if CTR0 set,
  * with the rest of CTR0 being zero'ed out.
  */
 #define	P6_SYNC_CTR_STATE(PC) do {				\
 		uint32_t _config, _enable;			\
 		_enable = 0;					\
 		if ((PC)->pc_state & 0x02)			\
 			_enable |= P6_EVSEL_EN;			\
 		if ((PC)->pc_state & 0x01)			\
 			_config = rdmsr(P6_MSR_EVSEL0) | 	\
 			    P6_EVSEL_EN;			\
 		else						\
 			_config = 0;				\
 		wrmsr(P6_MSR_EVSEL0, _config | _enable);	\
 	} while (0)
 
 #define	P6_MARK_STARTED(PC,RI) do {				\
 		(PC)->pc_state |= (1 << ((RI)-1));		\
 	} while (0)
 
 #define	P6_MARK_STOPPED(PC,RI) do {				\
 		(PC)->pc_state &= ~(1<< ((RI)-1));		\
 	} while (0)
 
 static int
 p6_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, n;
 	struct p6_cpu *p6c;
 	struct pmc_cpu *pc;
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] bad cpu %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,0,"p6-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,0,"p6-init cpu=%d", cpu);
 
 	p6c = malloc(sizeof (struct p6_cpu), M_PMC, M_WAITOK|M_ZERO);
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL, ("[p6,%d] cpu %d null per-cpu", __LINE__, cpu));
 
 	phw = p6c->pc_p6pmcs;
 	p6_pcpu[cpu] = p6c;
 
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri;
 
 	for (n = 0; n < P6_NPMCS; n++, phw++) {
 		phw->phw_state   = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
 		phw->phw_pmc     = NULL;
 		pc->pc_hwpmcs[n + first_ri] = phw;
 	}
 
 	return (0);
 }
 
 static int
 p6_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, n;
 	struct p6_cpu *p6c;
 	struct pmc_cpu *pc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] bad cpu %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,0,"p6-cleanup cpu=%d", cpu);
+	PMCDBG1(MDP,INI,0,"p6-cleanup cpu=%d", cpu);
 
 	p6c = p6_pcpu[cpu];
 	p6_pcpu[cpu] = NULL;
 
 	KASSERT(p6c != NULL, ("[p6,%d] null pcpu", __LINE__));
 
 	free(p6c, M_PMC);
 
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6].pcd_ri;
 	pc = pmc_pcpu[cpu];
 	for (n = 0; n < P6_NPMCS; n++)
 		pc->pc_hwpmcs[n + first_ri] = NULL;
 
 	return (0);
 }
 
 static int
 p6_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	struct p6pmc_descr *pd;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
 	pd = &p6_pmcdesc[ri];
 
 	KASSERT(pm,
 	    ("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
 	tmp = rdmsr(pd->pm_pmc_msr) & P6_PERFCTR_READ_MASK;
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = P6_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	else
 		*v = tmp;
 
-	PMCDBG(MDP,REA,1, "p6-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
+	PMCDBG4(MDP,REA,1, "p6-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
 	    pd->pm_pmc_msr, *v);
 
 	return (0);
 }
 
 static int
 p6_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 	struct p6pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
 	pd = &p6_pmcdesc[ri];
 
 	KASSERT(pm,
 	    ("[p6,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
-	PMCDBG(MDP,WRI,1, "p6-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
+	PMCDBG4(MDP,WRI,1, "p6-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
 	    pd->pm_pmc_msr, v);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 
 	wrmsr(pd->pm_pmc_msr, v & P6_PERFCTR_WRITE_MASK);
 
 	return (0);
 }
 
 static int
 p6_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "p6-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "p6-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(p6_pcpu[cpu] != NULL, ("[p6,%d] null per-cpu %d", __LINE__,
 	    cpu));
 
 	p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc = pm;
 
 	return (0);
 }
 
 /*
  * Retrieve a configured PMC pointer from hardware state.
  */
 
 static int
 p6_get_config(int cpu, int ri, struct pmc **ppm)
 {
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
 	*ppm = p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc;
 
 	return (0);
 }
 
 
 /*
  * A pmc may be allocated to a given row index if:
  * - the event is valid for this CPU
  * - the event is valid for this counter index
  */
 
 static int
 p6_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	uint32_t allowed_unitmask, caps, config, unitmask;
 	const struct p6pmc_descr *pd;
 	const struct p6_event_descr *pevent;
 	enum pmc_event ev;
 
 	(void) cpu;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index value %d", __LINE__, ri));
 
 	pd = &p6_pmcdesc[ri];
 
-	PMCDBG(MDP,ALL,1, "p6-allocate ri=%d class=%d pmccaps=0x%x "
+	PMCDBG4(MDP,ALL,1, "p6-allocate ri=%d class=%d pmccaps=0x%x "
 	    "reqcaps=0x%x", ri, pd->pm_descr.pd_class, pd->pm_descr.pd_caps,
 	    pm->pm_caps);
 
 	/* check class */
 	if (pd->pm_descr.pd_class != a->pm_class)
 		return (EINVAL);
 
 	/* check requested capabilities */
 	caps = a->pm_caps;
 	if ((pd->pm_descr.pd_caps & caps) != caps)
 		return (EPERM);
 
 	ev = pm->pm_event;
 
 	if (ev < PMC_EV_P6_FIRST || ev > PMC_EV_P6_LAST)
 		return (EINVAL);
 
 	if ((pevent = p6_find_event(ev)) == NULL)
 		return (ESRCH);
 
 	if (!P6_EVENT_VALID_FOR_CPU(pevent, p6_cputype) ||
 	    !P6_EVENT_VALID_FOR_CTR(pevent, (ri-1)))
 		return (EINVAL);
 
 	/* For certain events, Pentium M differs from the stock P6 */
 	allowed_unitmask = 0;
 	if (p6_cputype == PMC_CPU_INTEL_PM) {
 		if (ev == PMC_EV_P6_L2_LD || ev == PMC_EV_P6_L2_LINES_IN ||
 		    ev == PMC_EV_P6_L2_LINES_OUT)
 			allowed_unitmask = P6_EVSEL_TO_UMASK(0x3F);
 		else if (ev == PMC_EV_P6_L2_M_LINES_OUTM)
 			allowed_unitmask = P6_EVSEL_TO_UMASK(0x30);
 	} else
 		allowed_unitmask = P6_EVSEL_TO_UMASK(pevent->pm_unitmask);
 
 	unitmask = a->pm_md.pm_ppro.pm_ppro_config & P6_EVSEL_UMASK_MASK;
 	if (unitmask & ~allowed_unitmask) /* disallow reserved bits */
 		return (EINVAL);
 
 	if (ev == PMC_EV_P6_MMX_UOPS_EXEC) /* hardcoded mask */
 		unitmask = P6_EVSEL_TO_UMASK(0x0F);
 
 	config = 0;
 
 	config |= P6_EVSEL_EVENT_SELECT(pevent->pm_evsel);
 
 	if (unitmask & (caps & PMC_CAP_QUALIFIER))
 		config |= unitmask;
 
 	if (caps & PMC_CAP_THRESHOLD)
 		config |= a->pm_md.pm_ppro.pm_ppro_config &
 		    P6_EVSEL_CMASK_MASK;
 
 	/* set at least one of the 'usr' or 'os' caps */
 	if (caps & PMC_CAP_USER)
 		config |= P6_EVSEL_USR;
 	if (caps & PMC_CAP_SYSTEM)
 		config |= P6_EVSEL_OS;
 	if ((caps & (PMC_CAP_USER|PMC_CAP_SYSTEM)) == 0)
 		config |= (P6_EVSEL_USR|P6_EVSEL_OS);
 
 	if (caps & PMC_CAP_EDGE)
 		config |= P6_EVSEL_E;
 	if (caps & PMC_CAP_INVERT)
 		config |= P6_EVSEL_INV;
 	if (caps & PMC_CAP_INTERRUPT)
 		config |= P6_EVSEL_INT;
 
 	pm->pm_md.pm_ppro.pm_ppro_evsel = config;
 
-	PMCDBG(MDP,ALL,2, "p6-allocate config=0x%x", config);
+	PMCDBG1(MDP,ALL,2, "p6-allocate config=0x%x", config);
 
 	return (0);
 }
 
 static int
 p6_release_pmc(int cpu, int ri, struct pmc *pm)
 {
 	(void) pm;
 
-	PMCDBG(MDP,REL,1, "p6-release cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,REL,1, "p6-release cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
 	KASSERT(p6_pcpu[cpu]->pc_p6pmcs[ri].phw_pmc == NULL,
 	    ("[p6,%d] PHW pmc non-NULL", __LINE__));
 
 	return (0);
 }
 
 static int
 p6_start_pmc(int cpu, int ri)
 {
 	uint32_t config;
 	struct pmc *pm;
 	struct p6_cpu *pc;
 	const struct p6pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = p6_pcpu[cpu];
 	pm = pc->pc_p6pmcs[ri].phw_pmc;
 	pd = &p6_pmcdesc[ri];
 
 	KASSERT(pm,
 	    ("[p6,%d] starting cpu%d,ri%d with no pmc configured",
 		__LINE__, cpu, ri));
 
-	PMCDBG(MDP,STA,1, "p6-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1, "p6-start cpu=%d ri=%d", cpu, ri);
 
 	config = pm->pm_md.pm_ppro.pm_ppro_evsel;
 
-	PMCDBG(MDP,STA,2, "p6-start/2 cpu=%d ri=%d evselmsr=0x%x config=0x%x",
+	PMCDBG4(MDP,STA,2, "p6-start/2 cpu=%d ri=%d evselmsr=0x%x config=0x%x",
 	    cpu, ri, pd->pm_evsel_msr, config);
 
 	P6_MARK_STARTED(pc, ri);
 	wrmsr(pd->pm_evsel_msr, config);
 
 	P6_SYNC_CTR_STATE(pc);
 
 	return (0);
 }
 
 static int
 p6_stop_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct p6_cpu *pc;
 	struct p6pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] illegal row index %d", __LINE__, ri));
 
 	pc = p6_pcpu[cpu];
 	pm = pc->pc_p6pmcs[ri].phw_pmc;
 	pd = &p6_pmcdesc[ri];
 
 	KASSERT(pm,
 	    ("[p6,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,STO,1, "p6-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1, "p6-stop cpu=%d ri=%d", cpu, ri);
 
 	wrmsr(pd->pm_evsel_msr, 0);	/* stop hw */
 	P6_MARK_STOPPED(pc, ri);	/* update software state */
 
 	P6_SYNC_CTR_STATE(pc);		/* restart CTR1 if need be */
 
-	PMCDBG(MDP,STO,2, "p6-stop/2 cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,2, "p6-stop/2 cpu=%d ri=%d", cpu, ri);
 
 	return (0);
 }
 
 static int
 p6_intr(int cpu, struct trapframe *tf)
 {
 	int error, retval, ri;
 	uint32_t perf0cfg;
 	struct pmc *pm;
 	struct p6_cpu *pc;
 	pmc_value_t v;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] CPU %d out of range", __LINE__, cpu));
 
 	retval = 0;
 	pc = p6_pcpu[cpu];
 
 	/* stop both PMCs */
 	perf0cfg = rdmsr(P6_MSR_EVSEL0);
 	wrmsr(P6_MSR_EVSEL0, perf0cfg & ~P6_EVSEL_EN);
 
 	for (ri = 0; ri < P6_NPMCS; ri++) {
 
 		if ((pm = pc->pc_p6pmcs[ri].phw_pmc) == NULL ||
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			continue;
 		}
 
 		if (!P6_PMC_HAS_OVERFLOWED(ri))
 			continue;
 
 		retval = 1;
 
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		error = pmc_process_interrupt(cpu, PMC_HR, pm, tf,
 		    TRAPF_USERMODE(tf));
 		if (error)
 			P6_MARK_STOPPED(pc,ri);
 
 		/* reload sampling count */
 		v = pm->pm_sc.pm_reloadcount;
 		wrmsr(P6_MSR_PERFCTR0 + ri,
 		    P6_RELOAD_COUNT_TO_PERFCTR_VALUE(v));
 
 	}
 
 	/*
 	 * On P6 processors, the LAPIC needs to have its PMC interrupt
 	 * unmasked after a PMC interrupt.
 	 */
 	if (retval)
 		lapic_reenable_pmc();
 
 	atomic_add_int(retval ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	/* restart counters that can be restarted */
 	P6_SYNC_CTR_STATE(pc);
 
 	return (retval);
 }
 
 static int
 p6_describe(int cpu, int ri, struct pmc_info *pi,
     struct pmc **ppmc)
 {
 	int error;
 	size_t copied;
 	struct pmc_hw *phw;
 	struct p6pmc_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[p6,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d] row-index %d out of range", __LINE__, ri));
 
 	phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
 	pd  = &p6_pmcdesc[ri];
 
 	KASSERT(phw == &p6_pcpu[cpu]->pc_p6pmcs[ri],
 	    ("[p6,%d] phw mismatch", __LINE__));
 
 	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
 		 PMC_NAME_MAX, &copied)) != 0)
 		return (error);
 
 	pi->pm_class = pd->pm_descr.pd_class;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 p6_get_msr(int ri, uint32_t *msr)
 {
 	KASSERT(ri >= 0 && ri < P6_NPMCS,
 	    ("[p6,%d ri %d out of range", __LINE__, ri));
 
 	*msr = p6_pmcdesc[ri].pm_pmc_msr - P6_MSR_PERFCTR0;
 
 	return (0);
 }
 
 int
 pmc_p6_initialize(struct pmc_mdep *md, int ncpus)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(cpu_vendor_id == CPU_VENDOR_INTEL,
 	    ("[p6,%d] Initializing non-intel processor", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "p6-initialize");
+	PMCDBG0(MDP,INI,1, "p6-initialize");
 
 	/* Allocate space for pointers to per-cpu descriptors. */
 	p6_pcpu = malloc(sizeof(struct p6_cpu **) * ncpus, M_PMC,
 	    M_ZERO|M_WAITOK);
 
 	/* Fill in the class dependent descriptor. */
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_P6];
 
 	switch (md->pmd_cputype) {
 
 		/*
 		 * P6 Family Processors
 		 */
 	case PMC_CPU_INTEL_P6:
 	case PMC_CPU_INTEL_CL:
 	case PMC_CPU_INTEL_PII:
 	case PMC_CPU_INTEL_PIII:
 	case PMC_CPU_INTEL_PM:
 
 		p6_cputype = md->pmd_cputype;
 
 		pcd->pcd_caps		= P6_PMC_CAPS;
 		pcd->pcd_class		= PMC_CLASS_P6;
 		pcd->pcd_num		= P6_NPMCS;
 		pcd->pcd_ri		= md->pmd_npmc;
 		pcd->pcd_width		= 40;
 
 		pcd->pcd_allocate_pmc	= p6_allocate_pmc;
 		pcd->pcd_config_pmc	= p6_config_pmc;
 		pcd->pcd_describe	= p6_describe;
 		pcd->pcd_get_config	= p6_get_config;
 		pcd->pcd_get_msr	= p6_get_msr;
 		pcd->pcd_pcpu_fini	= p6_pcpu_fini;
 		pcd->pcd_pcpu_init	= p6_pcpu_init;
 		pcd->pcd_read_pmc	= p6_read_pmc;
 		pcd->pcd_release_pmc	= p6_release_pmc;
 		pcd->pcd_start_pmc	= p6_start_pmc;
 		pcd->pcd_stop_pmc	= p6_stop_pmc;
 		pcd->pcd_write_pmc	= p6_write_pmc;
 
 		md->pmd_pcpu_fini	= NULL;
 		md->pmd_pcpu_init	= NULL;
 		md->pmd_intr		= p6_intr;
 
 		md->pmd_npmc	       += P6_NPMCS;
 
 		break;
 
 	default:
 		KASSERT(0,("[p6,%d] Unknown CPU type", __LINE__));
 		return ENOSYS;
 	}
 
 	return (0);
 }
 
 void
 pmc_p6_finalize(struct pmc_mdep *md)
 {
 #if	defined(INVARIANTS)
 	int i, ncpus;
 #endif
 
 	KASSERT(p6_pcpu != NULL, ("[p6,%d] NULL p6_pcpu", __LINE__));
 
 #if	defined(INVARIANTS)
 	ncpus = pmc_cpu_max();
 	for (i = 0; i < ncpus; i++)
 		KASSERT(p6_pcpu[i] == NULL, ("[p6,%d] non-null pcpu %d",
 		    __LINE__, i));
 #endif
 
 	free(p6_pcpu, M_PMC);
 	p6_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_soft.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_soft.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_soft.c	(revision 282658)
@@ -1,498 +1,498 @@
 /*-
  * Copyright (c) 2012 Fabien Thomas
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 #include <sys/mutex.h>
 
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 
 #include "hwpmc_soft.h"
 
 /*
  * Software PMC support.
  */
 
 #define	SOFT_CAPS (PMC_CAP_READ | PMC_CAP_WRITE | PMC_CAP_INTERRUPT | \
     PMC_CAP_USER | PMC_CAP_SYSTEM)
 
 struct soft_descr {
 	struct pmc_descr pm_descr;  /* "base class" */
 };
 
 static struct soft_descr soft_pmcdesc[SOFT_NPMCS] =
 {
 #define	SOFT_PMCDESCR(N)				\
 	{						\
 		.pm_descr =				\
 		{					\
 			.pd_name = #N,			\
 			.pd_class = PMC_CLASS_SOFT,	\
 			.pd_caps = SOFT_CAPS,		\
 			.pd_width = 64			\
 		},					\
 	}
 
 	SOFT_PMCDESCR(SOFT0),
 	SOFT_PMCDESCR(SOFT1),
 	SOFT_PMCDESCR(SOFT2),
 	SOFT_PMCDESCR(SOFT3),
 	SOFT_PMCDESCR(SOFT4),
 	SOFT_PMCDESCR(SOFT5),
 	SOFT_PMCDESCR(SOFT6),
 	SOFT_PMCDESCR(SOFT7),
 	SOFT_PMCDESCR(SOFT8),
 	SOFT_PMCDESCR(SOFT9),
 	SOFT_PMCDESCR(SOFT10),
 	SOFT_PMCDESCR(SOFT11),
 	SOFT_PMCDESCR(SOFT12),
 	SOFT_PMCDESCR(SOFT13),
 	SOFT_PMCDESCR(SOFT14),
 	SOFT_PMCDESCR(SOFT15)
 };
 
 /*
  * Per-CPU data structure.
  */
 
 struct soft_cpu {
 	struct pmc_hw	soft_hw[SOFT_NPMCS];
 	pmc_value_t	soft_values[SOFT_NPMCS];
 };
 
 
 static struct soft_cpu **soft_pcpu;
 
 static int
 soft_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event ev;
 	struct pmc_soft *ps;
 
 	(void) cpu;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	if (a->pm_class != PMC_CLASS_SOFT)
 		return (EINVAL);
 
 	if ((pm->pm_caps & SOFT_CAPS) == 0)
 		return (EINVAL);
 
 	if ((pm->pm_caps & ~SOFT_CAPS) != 0)
 		return (EPERM);
 
 	ev = pm->pm_event;
 	if ((int)ev < PMC_EV_SOFT_FIRST || (int)ev > PMC_EV_SOFT_LAST)
 		return (EINVAL);
 
 	/* Check if event is registered. */
 	ps = pmc_soft_ev_acquire(ev);
 	if (ps == NULL)
 		return (EINVAL);
 	pmc_soft_ev_release(ps);
 	/* Module unload is protected by pmc SX lock. */
 	if (ps->ps_alloc != NULL)
 		ps->ps_alloc();
 
 	return (0);
 }
 
 static int
 soft_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &soft_pcpu[cpu]->soft_hw[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[soft,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__,
 	    pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 soft_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	size_t copied;
 	const struct soft_descr *pd;
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &soft_pcpu[cpu]->soft_hw[ri];
 	pd  = &soft_pmcdesc[ri];
 
 	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
 	    PMC_NAME_MAX, &copied)) != 0)
 		return (error);
 
 	pi->pm_class = pd->pm_descr.pd_class;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 soft_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	(void) ri;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	*ppm = soft_pcpu[cpu]->soft_hw[ri].phw_pmc;
 	return (0);
 }
 
 static int
 soft_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int ri;
 	struct pmc_cpu *pc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal cpu %d", __LINE__, cpu));
 	KASSERT(soft_pcpu[cpu] != NULL, ("[soft,%d] null pcpu", __LINE__));
 
 	free(soft_pcpu[cpu], M_PMC);
 	soft_pcpu[cpu] = NULL;
 
 	ri = md->pmd_classdep[PMC_CLASS_INDEX_SOFT].pcd_ri;
 
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] ri=%d", __LINE__, ri));
 
 	pc = pmc_pcpu[cpu];
 	pc->pc_hwpmcs[ri] = NULL;
 
 	return (0);
 }
 
 static int
 soft_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, n;
 	struct pmc_cpu *pc;
 	struct soft_cpu *soft_pc;
 	struct pmc_hw *phw;
 
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal cpu %d", __LINE__, cpu));
 	KASSERT(soft_pcpu, ("[soft,%d] null pcpu", __LINE__));
 	KASSERT(soft_pcpu[cpu] == NULL, ("[soft,%d] non-null per-cpu",
 	    __LINE__));
 
 	soft_pc = malloc(sizeof(struct soft_cpu), M_PMC, M_WAITOK|M_ZERO);
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL, ("[soft,%d] cpu %d null per-cpu", __LINE__, cpu));
 
 	soft_pcpu[cpu] = soft_pc;
 	phw = soft_pc->soft_hw;
 	first_ri = md->pmd_classdep[PMC_CLASS_INDEX_SOFT].pcd_ri;
 
 	for (n = 0; n < SOFT_NPMCS; n++, phw++) {
 		phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(n);
 		phw->phw_pmc = NULL;
 		pc->pc_hwpmcs[n + first_ri] = phw;
 	}
 
 	return (0);
 }
 
 static int
 soft_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	const struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &soft_pcpu[cpu]->soft_hw[ri];
 	pm  = phw->phw_pmc;
 
 	KASSERT(pm != NULL,
 	    ("[soft,%d] no owner for PHW [cpu%d,pmc%d]", __LINE__, cpu, ri));
 
-	PMCDBG(MDP,REA,1,"soft-read id=%d", ri);
+	PMCDBG1(MDP,REA,1,"soft-read id=%d", ri);
 
 	*v = soft_pcpu[cpu]->soft_values[ri];
 
 	return (0);
 }
 
 static int
 soft_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 	const struct soft_descr *pd;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = soft_pcpu[cpu]->soft_hw[ri].phw_pmc;
 	pd = &soft_pmcdesc[ri];
 
 	KASSERT(pm,
 	    ("[soft,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
-	PMCDBG(MDP,WRI,1, "soft-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1, "soft-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	soft_pcpu[cpu]->soft_values[ri] = v;
 
 	return (0);
 }
 
 static int
 soft_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 	enum pmc_event ev;
 	struct pmc_soft *ps;
 
 	(void) pmc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &soft_pcpu[cpu]->soft_hw[ri];
 
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[soft,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	ev = pmc->pm_event;
 
 	/* Check if event is registered. */
 	ps = pmc_soft_ev_acquire(ev);
 	KASSERT(ps != NULL,
 	    ("[soft,%d] unregistered event %d", __LINE__, ev));
 	pmc_soft_ev_release(ps);
 	/* Module unload is protected by pmc SX lock. */
 	if (ps->ps_release != NULL)
 		ps->ps_release();
 	return (0);
 }
 
 static int
 soft_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct soft_cpu *pc;
 	struct pmc_soft *ps;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = soft_pcpu[cpu];
 	pm = pc->soft_hw[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[soft,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
 	ps = pmc_soft_ev_acquire(pm->pm_event);
 	if (ps == NULL)
 		return (EINVAL);
 	atomic_add_int(&ps->ps_running, 1);
 	pmc_soft_ev_release(ps);
 
 	return (0);
 }
 
 static int
 soft_stop_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct soft_cpu *pc;
 	struct pmc_soft *ps;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[soft,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < SOFT_NPMCS,
 	    ("[soft,%d] illegal row-index %d", __LINE__, ri));
 
 	pc = soft_pcpu[cpu];
 	pm = pc->soft_hw[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[soft,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
 	ps = pmc_soft_ev_acquire(pm->pm_event);
 	/* event unregistered ? */
 	if (ps != NULL) {
 		atomic_subtract_int(&ps->ps_running, 1);
 		pmc_soft_ev_release(ps);
 	}
 
 	return (0);
 }
 
 int
 pmc_soft_intr(struct pmckern_soft *ks)
 {
 	struct pmc *pm;
 	struct soft_cpu *pc;
 	int ri, processed, error, user_mode;
 
 	KASSERT(ks->pm_cpu >= 0 && ks->pm_cpu < pmc_cpu_max(),
 	    ("[soft,%d] CPU %d out of range", __LINE__, ks->pm_cpu));
 
 	processed = 0;
 	pc = soft_pcpu[ks->pm_cpu];
 
 	for (ri = 0; ri < SOFT_NPMCS; ri++) {
 
 		pm = pc->soft_hw[ri].phw_pmc;
 		if (pm == NULL ||
 		    pm->pm_state != PMC_STATE_RUNNING ||
 		    pm->pm_event != ks->pm_ev) {
 				continue;
 		}
 
 		processed = 1;
 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			if ((pc->soft_values[ri]--) <= 0)
 				pc->soft_values[ri] += pm->pm_sc.pm_reloadcount;
 			else
 				continue;
 			user_mode = TRAPF_USERMODE(ks->pm_tf);
 			error = pmc_process_interrupt(ks->pm_cpu, PMC_SR, pm,
 			    ks->pm_tf, user_mode);
 			if (error) {
 				soft_stop_pmc(ks->pm_cpu, ri);
 				continue;
 			}
 
 			if (user_mode) {
 				/* If in user mode setup AST to process
 				 * callchain out of interrupt context.
 				 */
 				curthread->td_flags |= TDF_ASTPENDING;
 			}
 		} else
 			pc->soft_values[ri]++;
 	}
 
 	atomic_add_int(processed ? &pmc_stats.pm_intr_processed :
 	    &pmc_stats.pm_intr_ignored, 1);
 
 	return (processed);
 }
 
 void
 pmc_soft_initialize(struct pmc_mdep *md)
 {
 	struct pmc_classdep *pcd;
 
 	/* Add SOFT PMCs. */
 	soft_pcpu = malloc(sizeof(struct soft_cpu *) * pmc_cpu_max(), M_PMC,
 	    M_ZERO|M_WAITOK);
 
 	pcd = &md->pmd_classdep[PMC_CLASS_INDEX_SOFT];
 
 	pcd->pcd_caps	= SOFT_CAPS;
 	pcd->pcd_class	= PMC_CLASS_SOFT;
 	pcd->pcd_num	= SOFT_NPMCS;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= 64;
 
 	pcd->pcd_allocate_pmc = soft_allocate_pmc;
 	pcd->pcd_config_pmc   = soft_config_pmc;
 	pcd->pcd_describe     = soft_describe;
 	pcd->pcd_get_config   = soft_get_config;
 	pcd->pcd_get_msr      = NULL;
 	pcd->pcd_pcpu_init    = soft_pcpu_init;
 	pcd->pcd_pcpu_fini    = soft_pcpu_fini;
 	pcd->pcd_read_pmc     = soft_read_pmc;
 	pcd->pcd_write_pmc    = soft_write_pmc;
 	pcd->pcd_release_pmc  = soft_release_pmc;
 	pcd->pcd_start_pmc    = soft_start_pmc;
 	pcd->pcd_stop_pmc     = soft_stop_pmc;
 
 	md->pmd_npmc += SOFT_NPMCS;
 }
 
 void
 pmc_soft_finalize(struct pmc_mdep *md)
 {
 #ifdef	INVARIANTS
 	int i, ncpus;
 
 	ncpus = pmc_cpu_max();
 	for (i = 0; i < ncpus; i++)
 		KASSERT(soft_pcpu[i] == NULL, ("[soft,%d] non-null pcpu cpu %d",
 		    __LINE__, i));
 
 	KASSERT(md->pmd_classdep[PMC_CLASS_INDEX_SOFT].pcd_class ==
 	    PMC_CLASS_SOFT, ("[soft,%d] class mismatch", __LINE__));
 #endif
 	free(soft_pcpu, M_PMC);
 	soft_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_tsc.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_tsc.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_tsc.c	(revision 282658)
@@ -1,385 +1,385 @@
 /*-
  * Copyright (c) 2008 Joseph Koshy
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/specialreg.h>
 
 /*
  * TSC support.
  */
 
 #define	TSC_CAPS	PMC_CAP_READ
 
 struct tsc_descr {
 	struct pmc_descr pm_descr;  /* "base class" */
 };
 
 static struct tsc_descr tsc_pmcdesc[TSC_NPMCS] =
 {
     {
 	.pm_descr =
 	{
 		.pd_name  = "TSC",
 		.pd_class = PMC_CLASS_TSC,
 		.pd_caps  = TSC_CAPS,
 		.pd_width = 64
 	}
     }
 };
 
 /*
  * Per-CPU data structure for TSCs.
  */
 
 struct tsc_cpu {
 	struct pmc_hw	tc_hw;
 };
 
 static struct tsc_cpu **tsc_pcpu;
 
 static int
 tsc_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	(void) cpu;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < TSC_NPMCS,
 	    ("[tsc,%d] illegal row index %d", __LINE__, ri));
 
 	if (a->pm_class != PMC_CLASS_TSC)
 		return (EINVAL);
 
 	if ((pm->pm_caps & TSC_CAPS) == 0)
 		return (EINVAL);
 
 	if ((pm->pm_caps & ~TSC_CAPS) != 0)
 		return (EPERM);
 
 	if (a->pm_ev != PMC_EV_TSC_TSC ||
 	    a->pm_mode != PMC_MODE_SC)
 		return (EINVAL);
 
 	return (0);
 }
 
 static int
 tsc_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &tsc_pcpu[cpu]->tc_hw;
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[tsc,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__,
 	    pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 tsc_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	size_t copied;
 	const struct tsc_descr *pd;
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &tsc_pcpu[cpu]->tc_hw;
 	pd  = &tsc_pmcdesc[ri];
 
 	if ((error = copystr(pd->pm_descr.pd_name, pi->pm_name,
 	    PMC_NAME_MAX, &copied)) != 0)
 		return (error);
 
 	pi->pm_class = pd->pm_descr.pd_class;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 tsc_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	(void) ri;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	*ppm = tsc_pcpu[cpu]->tc_hw.phw_pmc;
 
 	return (0);
 }
 
 static int
 tsc_get_msr(int ri, uint32_t *msr)
 {
 	(void) ri;
 
 	KASSERT(ri >= 0 && ri < TSC_NPMCS,
 	    ("[tsc,%d] ri %d out of range", __LINE__, ri));
 
 	*msr = MSR_TSC;
 
 	return (0);
 }
 
 static int
 tsc_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int ri;
 	struct pmc_cpu *pc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal cpu %d", __LINE__, cpu));
 	KASSERT(tsc_pcpu[cpu] != NULL, ("[tsc,%d] null pcpu", __LINE__));
 
 	free(tsc_pcpu[cpu], M_PMC);
 	tsc_pcpu[cpu] = NULL;
 
 	ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_TSC].pcd_ri;
 
 	pc = pmc_pcpu[cpu];
 	pc->pc_hwpmcs[ri] = NULL;
 
 	return (0);
 }
 
 static int
 tsc_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int ri;
 	struct pmc_cpu *pc;
 	struct tsc_cpu *tsc_pc;
 
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal cpu %d", __LINE__, cpu));
 	KASSERT(tsc_pcpu, ("[tsc,%d] null pcpu", __LINE__));
 	KASSERT(tsc_pcpu[cpu] == NULL, ("[tsc,%d] non-null per-cpu",
 	    __LINE__));
 
 	tsc_pc = malloc(sizeof(struct tsc_cpu), M_PMC, M_WAITOK|M_ZERO);
 
 	tsc_pc->tc_hw.phw_state = PMC_PHW_FLAG_IS_ENABLED |
 	    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(0) |
 	    PMC_PHW_FLAG_IS_SHAREABLE;
 
 	tsc_pcpu[cpu] = tsc_pc;
 
 	ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_TSC].pcd_ri;
 
 	KASSERT(pmc_pcpu, ("[tsc,%d] null generic pcpu", __LINE__));
 
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc, ("[tsc,%d] null generic per-cpu", __LINE__));
 
 	pc->pc_hwpmcs[ri] = &tsc_pc->tc_hw;
 
 	return (0);
 }
 
 static int
 tsc_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	enum pmc_mode mode;
 	const struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal ri %d", __LINE__, ri));
 
 	phw = &tsc_pcpu[cpu]->tc_hw;
 	pm  = phw->phw_pmc;
 
 	KASSERT(pm != NULL,
 	    ("[tsc,%d] no owner for PHW [cpu%d,pmc%d]", __LINE__, cpu, ri));
 
 	mode = PMC_TO_MODE(pm);
 
 	KASSERT(mode == PMC_MODE_SC,
 	    ("[tsc,%d] illegal pmc mode %d", __LINE__, mode));
 
-	PMCDBG(MDP,REA,1,"tsc-read id=%d", ri);
+	PMCDBG1(MDP,REA,1,"tsc-read id=%d", ri);
 
 	*v = rdtsc();
 
 	return (0);
 }
 
 static int
 tsc_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 
 	(void) pmc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0,
 	    ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &tsc_pcpu[cpu]->tc_hw;
 
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[tsc,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	/*
 	 * Nothing to do.
 	 */
 	return (0);
 }
 
 static int
 tsc_start_pmc(int cpu, int ri)
 {
 	(void) cpu;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	return (0);	/* TSCs are always running. */
 }
 
 static int
 tsc_stop_pmc(int cpu, int ri)
 {
 	(void) cpu; (void) ri;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	return (0);	/* Cannot actually stop a TSC. */
 }
 
 static int
 tsc_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	(void) cpu; (void) ri; (void) v;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[tsc,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri == 0, ("[tsc,%d] illegal row-index %d", __LINE__, ri));
 
 	/*
 	 * The TSCs are used as timecounters by the kernel, so even
 	 * though some i386 CPUs support writeable TSCs, we don't
 	 * support writing changing TSC values through the HWPMC API.
 	 */
 	return (0);
 }
 
 int
 pmc_tsc_initialize(struct pmc_mdep *md, int maxcpu)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(md != NULL, ("[tsc,%d] md is NULL", __LINE__));
 	KASSERT(md->pmd_nclass >= 1, ("[tsc,%d] dubious md->nclass %d",
 	    __LINE__, md->pmd_nclass));
 
 	tsc_pcpu = malloc(sizeof(struct tsc_cpu *) * maxcpu, M_PMC,
 	    M_ZERO|M_WAITOK);
 
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_TSC];
 
 	pcd->pcd_caps	= PMC_CAP_READ;
 	pcd->pcd_class	= PMC_CLASS_TSC;
 	pcd->pcd_num	= TSC_NPMCS;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= 64;
 
 	pcd->pcd_allocate_pmc = tsc_allocate_pmc;
 	pcd->pcd_config_pmc   = tsc_config_pmc;
 	pcd->pcd_describe     = tsc_describe;
 	pcd->pcd_get_config   = tsc_get_config;
 	pcd->pcd_get_msr      = tsc_get_msr;
 	pcd->pcd_pcpu_init    = tsc_pcpu_init;
 	pcd->pcd_pcpu_fini    = tsc_pcpu_fini;
 	pcd->pcd_read_pmc     = tsc_read_pmc;
 	pcd->pcd_release_pmc  = tsc_release_pmc;
 	pcd->pcd_start_pmc    = tsc_start_pmc;
 	pcd->pcd_stop_pmc     = tsc_stop_pmc;
 	pcd->pcd_write_pmc    = tsc_write_pmc;
 
 	md->pmd_npmc += TSC_NPMCS;
 
 	return (0);
 }
 
 void
 pmc_tsc_finalize(struct pmc_mdep *md)
 {
 #ifdef	INVARIANTS
 	int i, ncpus;
 
 	ncpus = pmc_cpu_max();
 	for (i = 0; i < ncpus; i++)
 		KASSERT(tsc_pcpu[i] == NULL, ("[tsc,%d] non-null pcpu cpu %d",
 		    __LINE__, i));
 
 	KASSERT(md->pmd_classdep[PMC_MDEP_CLASS_INDEX_TSC].pcd_class ==
 	    PMC_CLASS_TSC, ("[tsc,%d] class mismatch", __LINE__));
 
 #else
 	(void) md;
 #endif
 
 	free(tsc_pcpu, M_PMC);
 	tsc_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_uncore.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_uncore.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_uncore.c	(revision 282658)
@@ -1,1232 +1,1232 @@
 /*-
  * Copyright (c) 2010 Fabien Thomas
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Intel Uncore PMCs.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/systm.h>
 
 #include <machine/intr_machdep.h>
 #if (__FreeBSD_version >= 1100000)
 #include <x86/apicvar.h>
 #else
 #include <machine/apicvar.h>
 #endif
 #include <machine/cpu.h>
 #include <machine/cpufunc.h>
 #include <machine/specialreg.h>
 
 #define	UCF_PMC_CAPS \
 	(PMC_CAP_READ | PMC_CAP_WRITE)
 
 #define	UCP_PMC_CAPS \
     (PMC_CAP_EDGE | PMC_CAP_THRESHOLD | PMC_CAP_READ | PMC_CAP_WRITE | \
     PMC_CAP_INVERT | PMC_CAP_QUALIFIER | PMC_CAP_PRECISE)
 
 #define	SELECTSEL(x) \
 	(((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \
 	UCP_CB0_EVSEL0 : UCP_EVSEL0)
 
 #define SELECTOFF(x) \
 	(((x) == PMC_CPU_INTEL_SANDYBRIDGE || (x) == PMC_CPU_INTEL_HASWELL) ? \
 	UCF_OFFSET_SB : UCF_OFFSET)
 
 static enum pmc_cputype	uncore_cputype;
 
 struct uncore_cpu {
 	volatile uint32_t	pc_resync;
 	volatile uint32_t	pc_ucfctrl;	/* Fixed function control. */
 	volatile uint64_t	pc_globalctrl;	/* Global control register. */
 	struct pmc_hw		pc_uncorepmcs[];
 };
 
 static struct uncore_cpu **uncore_pcpu;
 
 static uint64_t uncore_pmcmask;
 
 static int uncore_ucf_ri;		/* relative index of fixed counters */
 static int uncore_ucf_width;
 static int uncore_ucf_npmc;
 
 static int uncore_ucp_width;
 static int uncore_ucp_npmc;
 
 static int
 uncore_pcpu_noop(struct pmc_mdep *md, int cpu)
 {
 	(void) md;
 	(void) cpu;
 	return (0);
 }
 
 static int
 uncore_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	struct pmc_cpu *pc;
 	struct uncore_cpu *cc;
 	struct pmc_hw *phw;
 	int uncore_ri, n, npmc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[ucf,%d] insane cpu number %d", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"uncore-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"uncore-init cpu=%d", cpu);
 
 	uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri;
 	npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num;
 	npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num;
 
 	cc = malloc(sizeof(struct uncore_cpu) + npmc * sizeof(struct pmc_hw),
 	    M_PMC, M_WAITOK | M_ZERO);
 
 	uncore_pcpu[cpu] = cc;
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL && cc != NULL,
 	    ("[uncore,%d] NULL per-cpu structures cpu=%d", __LINE__, cpu));
 
 	for (n = 0, phw = cc->pc_uncorepmcs; n < npmc; n++, phw++) {
 		phw->phw_state 	  = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) |
 		    PMC_PHW_INDEX_TO_STATE(n + uncore_ri);
 		phw->phw_pmc	  = NULL;
 		pc->pc_hwpmcs[n + uncore_ri]  = phw;
 	}
 
 	return (0);
 }
 
 static int
 uncore_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	int uncore_ri, n, npmc;
 	struct pmc_cpu *pc;
 	struct uncore_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] insane cpu number (%d)", __LINE__, cpu));
 
-	PMCDBG(MDP,INI,1,"uncore-pcpu-fini cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"uncore-pcpu-fini cpu=%d", cpu);
 
 	if ((cc = uncore_pcpu[cpu]) == NULL)
 		return (0);
 
 	uncore_pcpu[cpu] = NULL;
 
 	pc = pmc_pcpu[cpu];
 
 	KASSERT(pc != NULL, ("[uncore,%d] NULL per-cpu %d state", __LINE__,
 		cpu));
 
 	npmc = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_num;
 	uncore_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP].pcd_ri;
 
 	for (n = 0; n < npmc; n++) 
 		wrmsr(SELECTSEL(uncore_cputype) + n, 0);
 
 	wrmsr(UCF_CTRL, 0);
 	npmc += md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF].pcd_num;
 
 	for (n = 0; n < npmc; n++)
 		pc->pc_hwpmcs[n + uncore_ri] = NULL;
 
 	free(cc, M_PMC);
 
 	return (0);
 }
 
 /*
  * Fixed function counters.
  */
 
 static pmc_value_t
 ucf_perfctr_value_to_reload_count(pmc_value_t v)
 {
 	v &= (1ULL << uncore_ucf_width) - 1;
 	return (1ULL << uncore_ucf_width) - v;
 }
 
 static pmc_value_t
 ucf_reload_count_to_perfctr_value(pmc_value_t rlc)
 {
 	return (1ULL << uncore_ucf_width) - rlc;
 }
 
 static int
 ucf_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event ev;
 	uint32_t caps, flags;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU %d", __LINE__, cpu));
 
-	PMCDBG(MDP,ALL,1, "ucf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps);
+	PMCDBG2(MDP,ALL,1, "ucf-allocate ri=%d reqcaps=0x%x", ri, pm->pm_caps);
 
 	if (ri < 0 || ri > uncore_ucf_npmc)
 		return (EINVAL);
 
 	caps = a->pm_caps;
 
 	if (a->pm_class != PMC_CLASS_UCF ||
 	    (caps & UCF_PMC_CAPS) != caps)
 		return (EINVAL);
 
 	ev = pm->pm_event;
 	if (ev < PMC_EV_UCF_FIRST || ev > PMC_EV_UCF_LAST)
 		return (EINVAL);
 
 	flags = UCF_EN;
 
 	pm->pm_md.pm_ucf.pm_ucf_ctrl = (flags << (ri * 4));
 
-	PMCDBG(MDP,ALL,2, "ucf-allocate config=0x%jx",
+	PMCDBG1(MDP,ALL,2, "ucf-allocate config=0x%jx",
 	    (uintmax_t) pm->pm_md.pm_ucf.pm_ucf_ctrl);
 
 	return (0);
 }
 
 static int
 ucf_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "ucf-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "ucf-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__,
 	    cpu));
 
 	uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 ucf_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char ucf_name[PMC_NAME_MAX];
 
 	phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri];
 
 	(void) snprintf(ucf_name, sizeof(ucf_name), "UCF-%d", ri);
 	if ((error = copystr(ucf_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return (error);
 
 	pi->pm_class = PMC_CLASS_UCF;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 ucf_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc;
 
 	return (0);
 }
 
 static int
 ucf_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] cpu %d ri %d(%d) pmc not configured", __LINE__, cpu,
 		ri, ri + uncore_ucf_ri));
 
 	tmp = rdmsr(UCF_CTR0 + ri);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = ucf_perfctr_value_to_reload_count(tmp);
 	else
 		*v = tmp;
 
-	PMCDBG(MDP,REA,1, "ucf-read cpu=%d ri=%d -> v=%jx", cpu, ri, *v);
+	PMCDBG3(MDP,REA,1, "ucf-read cpu=%d ri=%d -> v=%jx", cpu, ri, *v);
 
 	return (0);
 }
 
 static int
 ucf_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
-	PMCDBG(MDP,REL,1, "ucf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc);
+	PMCDBG3(MDP,REL,1, "ucf-release cpu=%d ri=%d pm=%p", cpu, ri, pmc);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc == NULL,
 	    ("[uncore,%d] PHW pmc non-NULL", __LINE__));
 
 	return (0);
 }
 
 static int
 ucf_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct uncore_cpu *ucfc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,STA,1,"ucf-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1,"ucf-start cpu=%d ri=%d", cpu, ri);
 
 	ucfc = uncore_pcpu[cpu];
 	pm = ucfc->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc;
 
 	ucfc->pc_ucfctrl |= pm->pm_md.pm_ucf.pm_ucf_ctrl;
 
 	wrmsr(UCF_CTRL, ucfc->pc_ucfctrl);
 
 	do {
 		ucfc->pc_resync = 0;
 		ucfc->pc_globalctrl |= (1ULL << (ri + SELECTOFF(uncore_cputype)));
 		wrmsr(UC_GLOBAL_CTRL, ucfc->pc_globalctrl);
 	} while (ucfc->pc_resync != 0);
 
-	PMCDBG(MDP,STA,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
+	PMCDBG4(MDP,STA,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
 	    ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL),
 	    ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL));
 
 	return (0);
 }
 
 static int
 ucf_stop_pmc(int cpu, int ri)
 {
 	uint32_t fc;
 	struct uncore_cpu *ucfc;
 
-	PMCDBG(MDP,STO,1,"ucf-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1,"ucf-stop cpu=%d ri=%d", cpu, ri);
 
 	ucfc = uncore_pcpu[cpu];
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	fc = (UCF_MASK << (ri * 4));
 
 	ucfc->pc_ucfctrl &= ~fc;
 
-	PMCDBG(MDP,STO,1,"ucf-stop ucfctrl=%x", ucfc->pc_ucfctrl);
+	PMCDBG1(MDP,STO,1,"ucf-stop ucfctrl=%x", ucfc->pc_ucfctrl);
 	wrmsr(UCF_CTRL, ucfc->pc_ucfctrl);
 
 	do {
 		ucfc->pc_resync = 0;
 		ucfc->pc_globalctrl &= ~(1ULL << (ri + SELECTOFF(uncore_cputype)));
 		wrmsr(UC_GLOBAL_CTRL, ucfc->pc_globalctrl);
 	} while (ucfc->pc_resync != 0);
 
-	PMCDBG(MDP,STO,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
+	PMCDBG4(MDP,STO,1,"ucfctrl=%x(%x) globalctrl=%jx(%jx)",
 	    ucfc->pc_ucfctrl, (uint32_t) rdmsr(UCF_CTRL),
 	    ucfc->pc_globalctrl, rdmsr(UC_GLOBAL_CTRL));
 
 	return (0);
 }
 
 static int
 ucf_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct uncore_cpu *cc;
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucf_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	cc = uncore_pcpu[cpu];
 	pm = cc->pc_uncorepmcs[ri + uncore_ucf_ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] cpu %d ri %d pmc not configured", __LINE__, cpu, ri));
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = ucf_reload_count_to_perfctr_value(v);
 
 	wrmsr(UCF_CTRL, 0);	/* Turn off fixed counters */
 	wrmsr(UCF_CTR0 + ri, v);
 	wrmsr(UCF_CTRL, cc->pc_ucfctrl);
 
-	PMCDBG(MDP,WRI,1, "ucf-write cpu=%d ri=%d v=%jx ucfctrl=%jx ",
+	PMCDBG4(MDP,WRI,1, "ucf-write cpu=%d ri=%d v=%jx ucfctrl=%jx ",
 	    cpu, ri, v, (uintmax_t) rdmsr(UCF_CTRL));
 
 	return (0);
 }
 
 
 static void
 ucf_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(md != NULL, ("[ucf,%d] md is NULL", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "ucf-initialize");
+	PMCDBG0(MDP,INI,1, "ucf-initialize");
 
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCF];
 
 	pcd->pcd_caps	= UCF_PMC_CAPS;
 	pcd->pcd_class	= PMC_CLASS_UCF;
 	pcd->pcd_num	= npmc;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= pmcwidth;
 
 	pcd->pcd_allocate_pmc	= ucf_allocate_pmc;
 	pcd->pcd_config_pmc	= ucf_config_pmc;
 	pcd->pcd_describe	= ucf_describe;
 	pcd->pcd_get_config	= ucf_get_config;
 	pcd->pcd_get_msr	= NULL;
 	pcd->pcd_pcpu_fini	= uncore_pcpu_noop;
 	pcd->pcd_pcpu_init	= uncore_pcpu_noop;
 	pcd->pcd_read_pmc	= ucf_read_pmc;
 	pcd->pcd_release_pmc	= ucf_release_pmc;
 	pcd->pcd_start_pmc	= ucf_start_pmc;
 	pcd->pcd_stop_pmc	= ucf_stop_pmc;
 	pcd->pcd_write_pmc	= ucf_write_pmc;
 
 	md->pmd_npmc	       += npmc;
 }
 
 /*
  * Intel programmable PMCs.
  */
 
 /*
  * Event descriptor tables.
  *
  * For each event id, we track:
  *
  * 1. The CPUs that the event is valid for.
  *
  * 2. If the event uses a fixed UMASK, the value of the umask field.
  *    If the event doesn't use a fixed UMASK, a mask of legal bits
  *    to check against.
  */
 
 struct ucp_event_descr {
 	enum pmc_event	ucp_ev;
 	unsigned char	ucp_evcode;
 	unsigned char	ucp_umask;
 	unsigned char	ucp_flags;
 };
 
 #define	UCP_F_I7	(1 << 0)	/* CPU: Core i7 */
 #define	UCP_F_WM	(1 << 1)	/* CPU: Westmere */
 #define	UCP_F_SB	(1 << 2)	/* CPU: Sandy Bridge */
 #define	UCP_F_HW	(1 << 3)	/* CPU: Haswell */
 #define	UCP_F_FM	(1 << 4)	/* Fixed mask */
 
 #define	UCP_F_ALLCPUS					\
     (UCP_F_I7 | UCP_F_WM)
 
 #define	UCP_F_CMASK		0xFF000000
 
 static struct ucp_event_descr ucp_events[] = {
 #undef UCPDESCR
 #define	UCPDESCR(N,EV,UM,FLAGS) {					\
 	.ucp_ev = PMC_EV_UCP_EVENT_##N,					\
 	.ucp_evcode = (EV),						\
 	.ucp_umask = (UM),						\
 	.ucp_flags = (FLAGS)						\
 	}
 
     UCPDESCR(00H_01H, 0x00, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(00H_02H, 0x00, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(00H_04H, 0x00, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(01H_01H, 0x01, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(01H_02H, 0x01, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(01H_04H, 0x01, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(02H_01H, 0x02, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_01H, 0x03, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_02H, 0x03, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_04H, 0x03, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_08H, 0x03, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_10H, 0x03, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_20H, 0x03, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(03H_40H, 0x03, 0x40, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(04H_01H, 0x04, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(04H_02H, 0x04, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(04H_04H, 0x04, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(04H_08H, 0x04, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(04H_10H, 0x04, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(05H_01H, 0x05, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(05H_02H, 0x05, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(05H_04H, 0x05, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(06H_01H, 0x06, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(06H_02H, 0x06, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(06H_04H, 0x06, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(06H_08H, 0x06, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(06H_10H, 0x06, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(06H_20H, 0x06, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(07H_01H, 0x07, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_02H, 0x07, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_04H, 0x07, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_08H, 0x07, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_10H, 0x07, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_20H, 0x07, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(07H_24H, 0x07, 0x24, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(08H_01H, 0x08, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(08H_02H, 0x08, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(08H_04H, 0x08, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(08H_03H, 0x08, 0x03, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(09H_01H, 0x09, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(09H_02H, 0x09, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(09H_04H, 0x09, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(09H_03H, 0x09, 0x03, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(0AH_01H, 0x0A, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0AH_02H, 0x0A, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0AH_04H, 0x0A, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0AH_08H, 0x0A, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0AH_0FH, 0x0A, 0x0F, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(0BH_01H, 0x0B, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0BH_02H, 0x0B, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0BH_04H, 0x0B, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0BH_08H, 0x0B, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0BH_10H, 0x0B, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(0BH_1FH, 0x0B, 0x1F, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(0CH_01H, 0x0C, 0x01, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_02H, 0x0C, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_04H_E, 0x0C, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_04H_F, 0x0C, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_04H_M, 0x0C, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_04H_S, 0x0C, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_08H_E, 0x0C, 0x08, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_08H_F, 0x0C, 0x08, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_08H_M, 0x0C, 0x08, UCP_F_FM | UCP_F_WM),
     UCPDESCR(0CH_08H_S, 0x0C, 0x08, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(20H_01H, 0x20, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(20H_02H, 0x20, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(20H_04H, 0x20, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(20H_08H, 0x20, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(20H_10H, 0x20, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(20H_20H, 0x20, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(21H_01H, 0x21, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(21H_02H, 0x21, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(21H_04H, 0x21, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(22H_01H, 0x22, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM |
 	UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_02H, 0x22, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM |
 	UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_04H, 0x22, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM |
 	UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_08H, 0x22, 0x08, UCP_F_FM | UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_10H, 0x22, 0x10, UCP_F_FM | UCP_F_HW),
     UCPDESCR(22H_20H, 0x22, 0x20, UCP_F_FM | UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_40H, 0x22, 0x40, UCP_F_FM | UCP_F_SB | UCP_F_HW),
     UCPDESCR(22H_80H, 0x22, 0x80, UCP_F_FM | UCP_F_SB | UCP_F_HW),
 
     UCPDESCR(23H_01H, 0x23, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(23H_02H, 0x23, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(23H_04H, 0x23, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(24H_02H, 0x24, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(24H_04H, 0x24, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(25H_01H, 0x25, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(25H_02H, 0x25, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(25H_04H, 0x25, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(26H_01H, 0x26, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(27H_01H, 0x27, 0x01, UCP_F_FM | UCP_F_I7),
     UCPDESCR(27H_02H, 0x27, 0x02, UCP_F_FM | UCP_F_I7),
     UCPDESCR(27H_04H, 0x27, 0x04, UCP_F_FM | UCP_F_I7),
     UCPDESCR(27H_08H, 0x27, 0x08, UCP_F_FM | UCP_F_I7),
     UCPDESCR(27H_10H, 0x27, 0x10, UCP_F_FM | UCP_F_I7),
     UCPDESCR(27H_20H, 0x27, 0x20, UCP_F_FM | UCP_F_I7),
 
     UCPDESCR(28H_01H, 0x28, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(28H_02H, 0x28, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(28H_04H, 0x28, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(28H_08H, 0x28, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(28H_10H, 0x28, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(28H_20H, 0x28, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(29H_01H, 0x29, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(29H_02H, 0x29, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(29H_04H, 0x29, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(29H_08H, 0x29, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(29H_10H, 0x29, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(29H_20H, 0x29, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(2AH_01H, 0x2A, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2AH_02H, 0x2A, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2AH_04H, 0x2A, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2AH_07H, 0x2A, 0x07, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(2BH_01H, 0x2B, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2BH_02H, 0x2B, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2BH_04H, 0x2B, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2BH_07H, 0x2B, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(2CH_01H, 0x2C, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2CH_02H, 0x2C, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2CH_04H, 0x2C, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2CH_07H, 0x2C, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(2DH_01H, 0x2D, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2DH_02H, 0x2D, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2DH_04H, 0x2D, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2DH_07H, 0x2D, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(2EH_01H, 0x2E, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2EH_02H, 0x2E, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2EH_04H, 0x2E, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2EH_07H, 0x2E, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(2FH_01H, 0x2F, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_02H, 0x2F, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_04H, 0x2F, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_07H, 0x2F, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_08H, 0x2F, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_10H, 0x2F, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_20H, 0x2F, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(2FH_38H, 0x2F, 0x38, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(30H_01H, 0x30, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(30H_02H, 0x30, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(30H_04H, 0x30, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(30H_07H, 0x30, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(31H_01H, 0x31, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(31H_02H, 0x31, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(31H_04H, 0x31, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(31H_07H, 0x31, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(32H_01H, 0x32, 0x01, UCP_F_FM | UCP_F_WM),
     UCPDESCR(32H_02H, 0x32, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(32H_04H, 0x32, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(32H_07H, 0x32, 0x07, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(33H_01H, 0x33, 0x01, UCP_F_FM | UCP_F_WM),
     UCPDESCR(33H_02H, 0x33, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(33H_04H, 0x33, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(33H_07H, 0x33, 0x07, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(34H_01H, 0x34, 0x01, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(34H_02H, 0x34, 0x02, UCP_F_FM | UCP_F_WM | UCP_F_SB),
     UCPDESCR(34H_04H, 0x34, 0x04, UCP_F_FM | UCP_F_WM | UCP_F_SB),
     UCPDESCR(34H_06H, 0x34, 0x06, UCP_F_FM | UCP_F_HW),
     UCPDESCR(34H_08H, 0x34, 0x08, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(34H_10H, 0x34, 0x10, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(34H_20H, 0x34, 0x20, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(34H_40H, 0x34, 0x40, UCP_F_FM | UCP_F_SB | UCP_F_HW),
     UCPDESCR(34H_80H, 0x34, 0x80, UCP_F_FM | UCP_F_SB | UCP_F_HW),
 
     UCPDESCR(35H_01H, 0x35, 0x01, UCP_F_FM | UCP_F_WM),
     UCPDESCR(35H_02H, 0x35, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(35H_04H, 0x35, 0x04, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(40H_01H, 0x40, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_02H, 0x40, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_04H, 0x40, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_08H, 0x40, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_10H, 0x40, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_20H, 0x40, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_07H, 0x40, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(40H_38H, 0x40, 0x38, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(41H_01H, 0x41, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_02H, 0x41, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_04H, 0x41, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_08H, 0x41, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_10H, 0x41, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_20H, 0x41, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_07H, 0x41, 0x07, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(41H_38H, 0x41, 0x38, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(42H_01H, 0x42, 0x01, UCP_F_FM | UCP_F_WM),
     UCPDESCR(42H_02H, 0x42, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(42H_04H, 0x42, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(42H_08H, 0x42, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(43H_01H, 0x43, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(43H_02H, 0x43, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(60H_01H, 0x60, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(60H_02H, 0x60, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(60H_04H, 0x60, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(61H_01H, 0x61, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(61H_02H, 0x61, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(61H_04H, 0x61, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(62H_01H, 0x62, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(62H_02H, 0x62, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(62H_04H, 0x62, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(63H_01H, 0x63, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(63H_02H, 0x63, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(63H_04H, 0x63, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(63H_08H, 0x63, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(63H_10H, 0x63, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(63H_20H, 0x63, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(64H_01H, 0x64, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(64H_02H, 0x64, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(64H_04H, 0x64, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(64H_08H, 0x64, 0x08, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(64H_10H, 0x64, 0x10, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(64H_20H, 0x64, 0x20, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(65H_01H, 0x65, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(65H_02H, 0x65, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(65H_04H, 0x65, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(66H_01H, 0x66, 0x01, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(66H_02H, 0x66, 0x02, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
     UCPDESCR(66H_04H, 0x66, 0x04, UCP_F_FM | UCP_F_I7 | UCP_F_WM),
 
     UCPDESCR(67H_01H, 0x67, 0x01, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(80H_01H, 0x80, 0x01, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(80H_02H, 0x80, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(80H_04H, 0x80, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(80H_08H, 0x80, 0x08, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(81H_01H, 0x81, 0x01, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(81H_02H, 0x81, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(81H_04H, 0x81, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(81H_08H, 0x81, 0x08, UCP_F_FM | UCP_F_WM),
     UCPDESCR(81H_20H, 0x81, 0x20, UCP_F_FM | UCP_F_SB | UCP_F_HW),
     UCPDESCR(81H_80H, 0x81, 0x80, UCP_F_FM | UCP_F_SB | UCP_F_HW),
 
     UCPDESCR(82H_01H, 0x82, 0x01, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(83H_01H, 0x83, 0x01, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(83H_02H, 0x83, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(83H_04H, 0x83, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(83H_08H, 0x83, 0x08, UCP_F_FM | UCP_F_WM),
 
     UCPDESCR(84H_01H, 0x84, 0x01, UCP_F_FM | UCP_F_WM | UCP_F_SB |
 	UCP_F_HW),
     UCPDESCR(84H_02H, 0x84, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(84H_04H, 0x84, 0x04, UCP_F_FM | UCP_F_WM),
     UCPDESCR(84H_08H, 0x84, 0x08, UCP_F_FM | UCP_F_WM),
     UCPDESCR(85H_02H, 0x85, 0x02, UCP_F_FM | UCP_F_WM),
     UCPDESCR(86H_01H, 0x86, 0x01, UCP_F_FM | UCP_F_WM)
 };
 
 static const int nucp_events = sizeof(ucp_events) / sizeof(ucp_events[0]);
 
 static pmc_value_t
 ucp_perfctr_value_to_reload_count(pmc_value_t v)
 {
 	v &= (1ULL << uncore_ucp_width) - 1;
 	return (1ULL << uncore_ucp_width) - v;
 }
 
 static pmc_value_t
 ucp_reload_count_to_perfctr_value(pmc_value_t rlc)
 {
 	return (1ULL << uncore_ucp_width) - rlc;
 }
 
 /*
  * Counter specific event information for Sandybridge and Haswell
  */
 static int
 ucp_event_sb_hw_ok_on_counter(enum pmc_event pe, int ri)
 {
 	uint32_t mask;
 
 	switch (pe) {
 		/*
 		 * Events valid only on counter 0.
 		 */
 	case PMC_EV_UCP_EVENT_80H_01H:
 	case PMC_EV_UCP_EVENT_83H_01H:
 		mask = (1 << 0);
 		break;
 
 	default:
 		mask = ~0;	/* Any row index is ok. */
 	}
 
 	return (mask & (1 << ri));
 }
 
 static int
 ucp_allocate_pmc(int cpu, int ri, struct pmc *pm,
     const struct pmc_op_pmcallocate *a)
 {
 	int n;
 	enum pmc_event ev;
 	struct ucp_event_descr *ie;
 	uint32_t caps, config, cpuflag, evsel;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row-index value %d", __LINE__, ri));
 
 	/* check requested capabilities */
 	caps = a->pm_caps;
 	if ((UCP_PMC_CAPS & caps) != caps)
 		return (EPERM);
 
 	ev = pm->pm_event;
 
 	switch (uncore_cputype) {
 	case PMC_CPU_INTEL_HASWELL:
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 		if (ucp_event_sb_hw_ok_on_counter(ev, ri) == 0)
 			return (EINVAL);
 		break;
 	default:
 		break;
 	}
 
 
 	/*
 	 * Look for an event descriptor with matching CPU and event id
 	 * fields.
 	 */
 
 	switch (uncore_cputype) {
 	case PMC_CPU_INTEL_COREI7:
 		cpuflag = UCP_F_I7;
 		break;
 	case PMC_CPU_INTEL_HASWELL:
 		cpuflag = UCP_F_HW;
 		break;
 	case PMC_CPU_INTEL_SANDYBRIDGE:
 		cpuflag = UCP_F_SB;
 		break;
 	case PMC_CPU_INTEL_WESTMERE:
 		cpuflag = UCP_F_WM;
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	for (n = 0, ie = ucp_events; n < nucp_events; n++, ie++)
 		if (ie->ucp_ev == ev && ie->ucp_flags & cpuflag)
 			break;
 
 	if (n == nucp_events)
 		return (EINVAL);
 
 	/*
 	 * A matching event descriptor has been found, so start
 	 * assembling the contents of the event select register.
 	 */
 	evsel = ie->ucp_evcode | UCP_EN;
 
 	config = a->pm_md.pm_ucp.pm_ucp_config & ~UCP_F_CMASK;
 
 	/*
 	 * If the event uses a fixed umask value, reject any umask
 	 * bits set by the user.
 	 */
 	if (ie->ucp_flags & UCP_F_FM) {
 
 		if (UCP_UMASK(config) != 0)
 			return (EINVAL);
 
 		evsel |= (ie->ucp_umask << 8);
 
 	} else
 		return (EINVAL);
 
 	if (caps & PMC_CAP_THRESHOLD)
 		evsel |= (a->pm_md.pm_ucp.pm_ucp_config & UCP_F_CMASK);
 	if (caps & PMC_CAP_EDGE)
 		evsel |= UCP_EDGE;
 	if (caps & PMC_CAP_INVERT)
 		evsel |= UCP_INV;
 
 	pm->pm_md.pm_ucp.pm_ucp_evsel = evsel;
 
 	return (0);
 }
 
 static int
 ucp_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU %d", __LINE__, cpu));
 
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
-	PMCDBG(MDP,CFG,1, "ucp-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "ucp-config cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(uncore_pcpu[cpu] != NULL, ("[uncore,%d] null per-cpu %d", __LINE__,
 	    cpu));
 
 	uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc = pm;
 
 	return (0);
 }
 
 static int
 ucp_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char ucp_name[PMC_NAME_MAX];
 
 	phw = &uncore_pcpu[cpu]->pc_uncorepmcs[ri];
 
 	(void) snprintf(ucp_name, sizeof(ucp_name), "UCP-%d", ri);
 	if ((error = copystr(ucp_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return (error);
 
 	pi->pm_class = PMC_CLASS_UCP;
 
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc          = NULL;
 	}
 
 	return (0);
 }
 
 static int
 ucp_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc;
 
 	return (0);
 }
 
 static int
 ucp_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	pm = uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] cpu %d ri %d pmc not configured", __LINE__, cpu,
 		ri));
 
 	tmp = rdmsr(UCP_PMC0 + ri);
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = ucp_perfctr_value_to_reload_count(tmp);
 	else
 		*v = tmp;
 
-	PMCDBG(MDP,REA,1, "ucp-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
+	PMCDBG4(MDP,REA,1, "ucp-read cpu=%d ri=%d msr=0x%x -> v=%jx", cpu, ri,
 	    ri, *v);
 
 	return (0);
 }
 
 static int
 ucp_release_pmc(int cpu, int ri, struct pmc *pm)
 {
 	(void) pm;
 
-	PMCDBG(MDP,REL,1, "ucp-release cpu=%d ri=%d pm=%p", cpu, ri,
+	PMCDBG3(MDP,REL,1, "ucp-release cpu=%d ri=%d pm=%p", cpu, ri,
 	    pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	KASSERT(uncore_pcpu[cpu]->pc_uncorepmcs[ri].phw_pmc
 	    == NULL, ("[uncore,%d] PHW pmc non-NULL", __LINE__));
 
 	return (0);
 }
 
 static int
 ucp_start_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	uint32_t evsel;
 	struct uncore_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row-index %d", __LINE__, ri));
 
 	cc = uncore_pcpu[cpu];
 	pm = cc->pc_uncorepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] starting cpu%d,ri%d with no pmc configured",
 		__LINE__, cpu, ri));
 
-	PMCDBG(MDP,STA,1, "ucp-start cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STA,1, "ucp-start cpu=%d ri=%d", cpu, ri);
 
 	evsel = pm->pm_md.pm_ucp.pm_ucp_evsel;
 
-	PMCDBG(MDP,STA,2,
+	PMCDBG4(MDP,STA,2,
 	    "ucp-start/2 cpu=%d ri=%d evselmsr=0x%x evsel=0x%x",
 	    cpu, ri, SELECTSEL(uncore_cputype) + ri, evsel);
 
 	/* Event specific configuration. */
 	switch (pm->pm_event) {
 	case PMC_EV_UCP_EVENT_0CH_04H_E:
 	case PMC_EV_UCP_EVENT_0CH_08H_E:
 		wrmsr(MSR_GQ_SNOOP_MESF,0x2);
 		break;
 	case PMC_EV_UCP_EVENT_0CH_04H_F:
 	case PMC_EV_UCP_EVENT_0CH_08H_F:
 		wrmsr(MSR_GQ_SNOOP_MESF,0x8);
 		break;
 	case PMC_EV_UCP_EVENT_0CH_04H_M:
 	case PMC_EV_UCP_EVENT_0CH_08H_M:
 		wrmsr(MSR_GQ_SNOOP_MESF,0x1);
 		break;
 	case PMC_EV_UCP_EVENT_0CH_04H_S:
 	case PMC_EV_UCP_EVENT_0CH_08H_S:
 		wrmsr(MSR_GQ_SNOOP_MESF,0x4);
 		break;
 	default:
 		break;
 	}
 
 	wrmsr(SELECTSEL(uncore_cputype) + ri, evsel);
 
 	do {
 		cc->pc_resync = 0;
 		cc->pc_globalctrl |= (1ULL << ri);
 		wrmsr(UC_GLOBAL_CTRL, cc->pc_globalctrl);
 	} while (cc->pc_resync != 0);
 
 	return (0);
 }
 
 static int
 ucp_stop_pmc(int cpu, int ri)
 {
 	struct pmc *pm;
 	struct uncore_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row index %d", __LINE__, ri));
 
 	cc = uncore_pcpu[cpu];
 	pm = cc->pc_uncorepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,STO,1, "ucp-stop cpu=%d ri=%d", cpu, ri);
+	PMCDBG2(MDP,STO,1, "ucp-stop cpu=%d ri=%d", cpu, ri);
 
 	/* stop hw. */
 	wrmsr(SELECTSEL(uncore_cputype) + ri, 0);
 
 	do {
 		cc->pc_resync = 0;
 		cc->pc_globalctrl &= ~(1ULL << ri);
 		wrmsr(UC_GLOBAL_CTRL, cc->pc_globalctrl);
 	} while (cc->pc_resync != 0);
 
 	return (0);
 }
 
 static int
 ucp_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 	struct uncore_cpu *cc;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[uncore,%d] illegal cpu value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < uncore_ucp_npmc,
 	    ("[uncore,%d] illegal row index %d", __LINE__, ri));
 
 	cc = uncore_pcpu[cpu];
 	pm = cc->pc_uncorepmcs[ri].phw_pmc;
 
 	KASSERT(pm,
 	    ("[uncore,%d] cpu%d ri%d no configured PMC to stop", __LINE__,
 		cpu, ri));
 
-	PMCDBG(MDP,WRI,1, "ucp-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
+	PMCDBG4(MDP,WRI,1, "ucp-write cpu=%d ri=%d msr=0x%x v=%jx", cpu, ri,
 	    UCP_PMC0 + ri, v);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = ucp_reload_count_to_perfctr_value(v);
 
 	/*
 	 * Write the new value to the counter.  The counter will be in
 	 * a stopped state when the pcd_write() entry point is called.
 	 */
 
 	wrmsr(UCP_PMC0 + ri, v);
 
 	return (0);
 }
 
 
 static void
 ucp_initialize(struct pmc_mdep *md, int maxcpu, int npmc, int pmcwidth)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(md != NULL, ("[ucp,%d] md is NULL", __LINE__));
 
-	PMCDBG(MDP,INI,1, "%s", "ucp-initialize");
+	PMCDBG0(MDP,INI,1, "ucp-initialize");
 
 	pcd = &md->pmd_classdep[PMC_MDEP_CLASS_INDEX_UCP];
 
 	pcd->pcd_caps	= UCP_PMC_CAPS;
 	pcd->pcd_class	= PMC_CLASS_UCP;
 	pcd->pcd_num	= npmc;
 	pcd->pcd_ri	= md->pmd_npmc;
 	pcd->pcd_width	= pmcwidth;
 
 	pcd->pcd_allocate_pmc	= ucp_allocate_pmc;
 	pcd->pcd_config_pmc	= ucp_config_pmc;
 	pcd->pcd_describe	= ucp_describe;
 	pcd->pcd_get_config	= ucp_get_config;
 	pcd->pcd_get_msr	= NULL;
 	pcd->pcd_pcpu_fini	= uncore_pcpu_fini;
 	pcd->pcd_pcpu_init	= uncore_pcpu_init;
 	pcd->pcd_read_pmc	= ucp_read_pmc;
 	pcd->pcd_release_pmc	= ucp_release_pmc;
 	pcd->pcd_start_pmc	= ucp_start_pmc;
 	pcd->pcd_stop_pmc	= ucp_stop_pmc;
 	pcd->pcd_write_pmc	= ucp_write_pmc;
 
 	md->pmd_npmc	       += npmc;
 }
 
 int
 pmc_uncore_initialize(struct pmc_mdep *md, int maxcpu)
 {
 	uncore_cputype = md->pmd_cputype;
 	uncore_pmcmask = 0;
 
 	/*
 	 * Initialize programmable counters.
 	 */
 
 	uncore_ucp_npmc  = 8;
 	uncore_ucp_width = 48;
 
 	uncore_pmcmask |= ((1ULL << uncore_ucp_npmc) - 1);
 
 	ucp_initialize(md, maxcpu, uncore_ucp_npmc, uncore_ucp_width);
 
 	/*
 	 * Initialize fixed function counters, if present.
 	 */
 	uncore_ucf_ri = uncore_ucp_npmc;
 	uncore_ucf_npmc  = 1;
 	uncore_ucf_width = 48;
 
 	ucf_initialize(md, maxcpu, uncore_ucf_npmc, uncore_ucf_width);
 	uncore_pmcmask |= ((1ULL << uncore_ucf_npmc) - 1) << SELECTOFF(uncore_cputype);
 
-	PMCDBG(MDP,INI,1,"uncore-init pmcmask=0x%jx ucfri=%d", uncore_pmcmask,
+	PMCDBG2(MDP,INI,1,"uncore-init pmcmask=0x%jx ucfri=%d", uncore_pmcmask,
 	    uncore_ucf_ri);
 
 	uncore_pcpu = malloc(sizeof(*uncore_pcpu) * maxcpu, M_PMC,
 	    M_ZERO | M_WAITOK);
 
 	return (0);
 }
 
 void
 pmc_uncore_finalize(struct pmc_mdep *md)
 {
-	PMCDBG(MDP,INI,1, "%s", "uncore-finalize");
+	PMCDBG0(MDP,INI,1, "uncore-finalize");
 
 	free(uncore_pcpu, M_PMC);
 	uncore_pcpu = NULL;
 }
Index: head/sys/dev/hwpmc/hwpmc_xscale.c
===================================================================
--- head/sys/dev/hwpmc/hwpmc_xscale.c	(revision 282657)
+++ head/sys/dev/hwpmc/hwpmc_xscale.c	(revision 282658)
@@ -1,676 +1,676 @@
 /*-
  * Copyright (c) 2009 Rui Paulo <rpaulo@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 
 #include <machine/pmc_mdep.h>
 /*
  * Support for the Intel XScale network processors
  *
  * XScale processors have up to now three generations.
  *
  * The first generation has two PMC; the event selection, interrupt config
  * and overflow flag setup are done by writing to the PMNC register.
  * It also has less monitoring events than the latter generations.
  *
  * The second and third generatiosn have four PMCs, one register for the event
  * selection, one register for the interrupt config and one register for
  * the overflow flags.
  */
 static int xscale_npmcs;
 static int xscale_gen;	/* XScale Core generation */
 
 struct xscale_event_code_map {
 	enum pmc_event	pe_ev;
 	uint8_t		pe_code;
 };
 
 const struct xscale_event_code_map xscale_event_codes[] = {
 	/* 1st and 2nd Generation XScale cores */
 	{ PMC_EV_XSCALE_IC_FETCH,		0x00 },
 	{ PMC_EV_XSCALE_IC_MISS,		0x01 },
 	{ PMC_EV_XSCALE_DATA_DEPENDENCY_STALLED,0x02 },
 	{ PMC_EV_XSCALE_ITLB_MISS,		0x03 },
 	{ PMC_EV_XSCALE_DTLB_MISS,		0x04 },
 	{ PMC_EV_XSCALE_BRANCH_RETIRED,		0x05 },
 	{ PMC_EV_XSCALE_BRANCH_MISPRED,		0x06 },
 	{ PMC_EV_XSCALE_INSTR_RETIRED,		0x07 },
 	{ PMC_EV_XSCALE_DC_FULL_CYCLE,		0x08 },
 	{ PMC_EV_XSCALE_DC_FULL_CONTIG, 	0x09 },
 	{ PMC_EV_XSCALE_DC_ACCESS,		0x0a },
 	{ PMC_EV_XSCALE_DC_MISS,		0x0b },
 	{ PMC_EV_XSCALE_DC_WRITEBACK,		0x0c },
 	{ PMC_EV_XSCALE_PC_CHANGE,		0x0d },
 	/* 3rd Generation XScale cores */
 	{ PMC_EV_XSCALE_BRANCH_RETIRED_ALL,	0x0e },
 	{ PMC_EV_XSCALE_INSTR_CYCLE,		0x0f },
 	{ PMC_EV_XSCALE_CP_STALL,		0x17 },
 	{ PMC_EV_XSCALE_PC_CHANGE_ALL,		0x18 },
 	{ PMC_EV_XSCALE_PIPELINE_FLUSH,		0x19 },
 	{ PMC_EV_XSCALE_BACKEND_STALL,		0x1a },
 	{ PMC_EV_XSCALE_MULTIPLIER_USE,		0x1b },
 	{ PMC_EV_XSCALE_MULTIPLIER_STALLED,	0x1c },
 	{ PMC_EV_XSCALE_DATA_CACHE_STALLED,	0x1e },
 	{ PMC_EV_XSCALE_L2_CACHE_REQ,		0x20 },
 	{ PMC_EV_XSCALE_L2_CACHE_MISS,		0x23 },
 	{ PMC_EV_XSCALE_ADDRESS_BUS_TRANS,	0x40 },
 	{ PMC_EV_XSCALE_SELF_ADDRESS_BUS_TRANS,	0x41 },
 	{ PMC_EV_XSCALE_DATA_BUS_TRANS,		0x48 },
 };
 
 const int xscale_event_codes_size =
 	sizeof(xscale_event_codes) / sizeof(xscale_event_codes[0]);
 
 /*
  * Per-processor information.
  */
 struct xscale_cpu {
 	struct pmc_hw   *pc_xscalepmcs;
 };
 
 static struct xscale_cpu **xscale_pcpu;
 
 /*
  * Performance Monitor Control Register
  */
 static __inline uint32_t
 xscale_pmnc_read(void)
 {
 	uint32_t reg;
 
 	__asm __volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (reg));
 
 	return (reg);
 }
 
 static __inline void
 xscale_pmnc_write(uint32_t reg)
 {
 	__asm __volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (reg));
 }
 
 /*
  * Clock Counter Register
  */
 static __inline uint32_t
 xscale_ccnt_read(void)
 {
 	uint32_t reg;
 
 	__asm __volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (reg));
 	
 	return (reg);
 }
 
 static __inline void
 xscale_ccnt_write(uint32_t reg)
 {
 	__asm __volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (reg));
 }
 
 /*
  * Interrupt Enable Register
  */
 static __inline uint32_t
 xscale_inten_read(void)
 {
 	uint32_t reg;
 
 	__asm __volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (reg));
 
 	return (reg);
 }
 
 static __inline void
 xscale_inten_write(uint32_t reg)
 {
 	__asm __volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (reg));
 }
 
 /*
  * Overflow Flag Register
  */
 static __inline uint32_t
 xscale_flag_read(void)
 {
 	uint32_t reg;
 
 	__asm __volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (reg));
 
 	return (reg);
 }
 
 static __inline void
 xscale_flag_write(uint32_t reg)
 {
 	__asm __volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (reg));
 }
 
 /*
  * Event Selection Register
  */
 static __inline uint32_t
 xscale_evtsel_read(void)
 {
 	uint32_t reg;
 
 	__asm __volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (reg));
 
 	return (reg);
 }
 
 static __inline void
 xscale_evtsel_write(uint32_t reg)
 {
 	__asm __volatile("mcr p14, 0, %0, c8, c1, 0" : : "r" (reg));
 }
 
 /*
  * Performance Count Register N
  */
 static uint32_t
 xscale_pmcn_read(unsigned int pmc)
 {
 	uint32_t reg = 0;
 
 	KASSERT(pmc < 4, ("[xscale,%d] illegal PMC number %d", __LINE__, pmc));
 
 	switch (pmc) {
 	case 0:
 		__asm __volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (reg));
 		break;
 	case 1:
 		__asm __volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (reg));
 		break;
 	case 2:
 		__asm __volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (reg));
 		break;
 	case 3:
 		__asm __volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (reg));
 		break;
 	}
 
 	return (reg);
 }
 
 static uint32_t
 xscale_pmcn_write(unsigned int pmc, uint32_t reg)
 {
 
 	KASSERT(pmc < 4, ("[xscale,%d] illegal PMC number %d", __LINE__, pmc));
 
 	switch (pmc) {
 	case 0:
 		__asm __volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (reg));
 		break;
 	case 1:
 		__asm __volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (reg));
 		break;
 	case 2:
 		__asm __volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (reg));
 		break;
 	case 3:
 		__asm __volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (reg));
 		break;
 	}
 
 	return (reg);
 }
 
 static int
 xscale_allocate_pmc(int cpu, int ri, struct pmc *pm,
   const struct pmc_op_pmcallocate *a)
 {
 	enum pmc_event pe;
 	uint32_t caps, config;
 	int i;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] illegal row index %d", __LINE__, ri));
 
 	caps = a->pm_caps;
 	if (a->pm_class != PMC_CLASS_XSCALE)
 		return (EINVAL);
 	pe = a->pm_ev;
 	for (i = 0; i < xscale_event_codes_size; i++) {
 		if (xscale_event_codes[i].pe_ev == pe) {
 			config = xscale_event_codes[i].pe_code;
 			break;
 		}
 	}
 	if (i == xscale_event_codes_size)
 		return EINVAL;
 	/* Generation 1 has fewer events */
 	if (xscale_gen == 1 && i > PMC_EV_XSCALE_PC_CHANGE)
 		return EINVAL;
 	pm->pm_md.pm_xscale.pm_xscale_evsel = config;
 
-	PMCDBG(MDP,ALL,2,"xscale-allocate ri=%d -> config=0x%x", ri, config);
+	PMCDBG2(MDP,ALL,2,"xscale-allocate ri=%d -> config=0x%x", ri, config);
 
 	return 0;
 }
 
 
 static int
 xscale_read_pmc(int cpu, int ri, pmc_value_t *v)
 {
 	struct pmc *pm;
 	pmc_value_t tmp;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] illegal row index %d", __LINE__, ri));
 
 	pm  = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc;
 	tmp = xscale_pmcn_read(ri);
-	PMCDBG(MDP,REA,2,"xscale-read id=%d -> %jd", ri, tmp);
+	PMCDBG2(MDP,REA,2,"xscale-read id=%d -> %jd", ri, tmp);
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		*v = XSCALE_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
 	else
 		*v = tmp;
 
 	return 0;
 }
 
 static int
 xscale_write_pmc(int cpu, int ri, pmc_value_t v)
 {
 	struct pmc *pm;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] illegal row-index %d", __LINE__, ri));
 
 	pm  = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc;
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		v = XSCALE_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
 	
-	PMCDBG(MDP,WRI,1,"xscale-write cpu=%d ri=%d v=%jx", cpu, ri, v);
+	PMCDBG3(MDP,WRI,1,"xscale-write cpu=%d ri=%d v=%jx", cpu, ri, v);
 
 	xscale_pmcn_write(ri, v);
 
 	return 0;
 }
 
 static int
 xscale_config_pmc(int cpu, int ri, struct pmc *pm)
 {
 	struct pmc_hw *phw;
 
-	PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
+	PMCDBG3(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri];
 
 	KASSERT(pm == NULL || phw->phw_pmc == NULL,
 	    ("[xscale,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
 	    __LINE__, pm, phw->phw_pmc));
 
 	phw->phw_pmc = pm;
 
 	return 0;
 }
 
 static int
 xscale_start_pmc(int cpu, int ri)
 {
 	uint32_t pmnc, config, evtsel;
         struct pmc *pm;
         struct pmc_hw *phw;
 
 	phw    = &xscale_pcpu[cpu]->pc_xscalepmcs[ri];
 	pm     = phw->phw_pmc;
 	config = pm->pm_md.pm_xscale.pm_xscale_evsel;
 
 	/*
 	 * Configure the event selection.
 	 *
 	 * On the XScale 2nd Generation there's no EVTSEL register.
 	 */
 	if (xscale_npmcs == 2) {
 		pmnc = xscale_pmnc_read();
 		switch (ri) {
 		case 0:
 			pmnc &= ~XSCALE_PMNC_EVT0_MASK;
 			pmnc |= (config << 12) & XSCALE_PMNC_EVT0_MASK;
 			break;
 		case 1:
 			pmnc &= ~XSCALE_PMNC_EVT1_MASK;
 			pmnc |= (config << 20) & XSCALE_PMNC_EVT1_MASK;
 			break;
 		default:
 			/* XXX */
 			break;
 		}
 		xscale_pmnc_write(pmnc);
 	} else {
 		evtsel = xscale_evtsel_read();
 		switch (ri) {
 		case 0:
 			evtsel &= ~XSCALE_EVTSEL_EVT0_MASK;
 			evtsel |= config & XSCALE_EVTSEL_EVT0_MASK;
 			break;
 		case 1:
 			evtsel &= ~XSCALE_EVTSEL_EVT1_MASK;
 			evtsel |= (config << 8) & XSCALE_EVTSEL_EVT1_MASK;
 			break;
 		case 2:
 			evtsel &= ~XSCALE_EVTSEL_EVT2_MASK;
 			evtsel |= (config << 16) & XSCALE_EVTSEL_EVT2_MASK;
 			break;
 		case 3:
 			evtsel &= ~XSCALE_EVTSEL_EVT3_MASK;
 			evtsel |= (config << 24) & XSCALE_EVTSEL_EVT3_MASK;
 			break;
 		default:
 			/* XXX */
 			break;
 		}
 		xscale_evtsel_write(evtsel);
 	}
 	/*
 	 * Enable the PMC.
 	 *
 	 * Note that XScale provides only one bit to enable/disable _all_
 	 * performance monitoring units.
 	 */
 	pmnc = xscale_pmnc_read();
 	pmnc |= XSCALE_PMNC_ENABLE;
 	xscale_pmnc_write(pmnc);
 
 	return 0;
 }
 
 static int
 xscale_stop_pmc(int cpu, int ri)
 {
 	uint32_t pmnc, evtsel;
         struct pmc *pm;
         struct pmc_hw *phw;
 
 	phw    = &xscale_pcpu[cpu]->pc_xscalepmcs[ri];
 	pm     = phw->phw_pmc;
 
 	/*
 	 * Disable the PMCs.
 	 *
 	 * Note that XScale provides only one bit to enable/disable _all_
 	 * performance monitoring units.
 	 */
 	pmnc = xscale_pmnc_read();
 	pmnc &= ~XSCALE_PMNC_ENABLE;
 	xscale_pmnc_write(pmnc);
 	/*
 	 * A value of 0xff makes the corresponding PMU go into
 	 * power saving mode.
 	 */
 	if (xscale_npmcs == 2) {
 		pmnc = xscale_pmnc_read();
 		switch (ri) {
 		case 0:
 			pmnc |= XSCALE_PMNC_EVT0_MASK;
 			break;
 		case 1:
 			pmnc |= XSCALE_PMNC_EVT1_MASK;
 			break;
 		default:
 			/* XXX */
 			break;
 		}
 		xscale_pmnc_write(pmnc);
 	} else {
 		evtsel = xscale_evtsel_read();
 		switch (ri) {
 		case 0:
 			evtsel |= XSCALE_EVTSEL_EVT0_MASK;
 			break;
 		case 1:
 			evtsel |= XSCALE_EVTSEL_EVT1_MASK;
 			break;
 		case 2:
 			evtsel |= XSCALE_EVTSEL_EVT2_MASK;
 			break;
 		case 3:
 			evtsel |= XSCALE_EVTSEL_EVT3_MASK;
 			break;
 		default:
 			/* XXX */
 			break;
 		}
 		xscale_evtsel_write(evtsel);
 	}
 
 	return 0;
 }
 
 static int
 xscale_release_pmc(int cpu, int ri, struct pmc *pmc)
 {
 	struct pmc_hw *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] illegal CPU value %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] illegal row-index %d", __LINE__, ri));
 
 	phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri];
 	KASSERT(phw->phw_pmc == NULL,
 	    ("[xscale,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
 
 	return 0;
 }
 
 static int
 xscale_intr(int cpu, struct trapframe *tf)
 {
 	printf("intr\n");
 	return 0;
 }
 
 static int
 xscale_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
 {
 	int error;
 	struct pmc_hw *phw;
 	char xscale_name[PMC_NAME_MAX];
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d], illegal CPU %d", __LINE__, cpu));
 	KASSERT(ri >= 0 && ri < xscale_npmcs,
 	    ("[xscale,%d] row-index %d out of range", __LINE__, ri));
 
 	phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri];
 	snprintf(xscale_name, sizeof(xscale_name), "XSCALE-%d", ri);
 	if ((error = copystr(xscale_name, pi->pm_name, PMC_NAME_MAX,
 	    NULL)) != 0)
 		return error;
 	pi->pm_class = PMC_CLASS_XSCALE;
 	if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
 		pi->pm_enabled = TRUE;
 		*ppmc          = phw->phw_pmc;
 	} else {
 		pi->pm_enabled = FALSE;
 		*ppmc	       = NULL;
 	}
 
 	return (0);
 }
 
 static int
 xscale_get_config(int cpu, int ri, struct pmc **ppm)
 {
 	*ppm = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc;
 
 	return 0;
 }
 
 /*
  * XXX don't know what we should do here.
  */
 static int
 xscale_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	return 0;
 }
 
 static int
 xscale_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
 {
 	return 0;
 }
 
 static int
 xscale_pcpu_init(struct pmc_mdep *md, int cpu)
 {
 	int first_ri, i;
 	struct pmc_cpu *pc;
 	struct xscale_cpu *pac;
 	struct pmc_hw  *phw;
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[xscale,%d] wrong cpu number %d", __LINE__, cpu));
-	PMCDBG(MDP,INI,1,"xscale-init cpu=%d", cpu);
+	PMCDBG1(MDP,INI,1,"xscale-init cpu=%d", cpu);
 
 	xscale_pcpu[cpu] = pac = malloc(sizeof(struct xscale_cpu), M_PMC,
 	    M_WAITOK|M_ZERO);
 	pac->pc_xscalepmcs = malloc(sizeof(struct pmc_hw) * xscale_npmcs,
 	    M_PMC, M_WAITOK|M_ZERO);
 	pc = pmc_pcpu[cpu];
 	first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_XSCALE].pcd_ri;
 	KASSERT(pc != NULL, ("[xscale,%d] NULL per-cpu pointer", __LINE__));
 
 	for (i = 0, phw = pac->pc_xscalepmcs; i < xscale_npmcs; i++, phw++) {
 		phw->phw_state    = PMC_PHW_FLAG_IS_ENABLED |
 		    PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
 		phw->phw_pmc      = NULL;
 		pc->pc_hwpmcs[i + first_ri] = phw;
 	}
 
 	/*
 	 * Disable and put the PMUs into power save mode.
 	 */
 	if (xscale_npmcs == 2) {
 		xscale_pmnc_write(XSCALE_PMNC_EVT1_MASK |
 		    XSCALE_PMNC_EVT0_MASK);
 	} else {
 		xscale_evtsel_write(XSCALE_EVTSEL_EVT3_MASK |
 		    XSCALE_EVTSEL_EVT2_MASK | XSCALE_EVTSEL_EVT1_MASK |
 		    XSCALE_EVTSEL_EVT0_MASK);
 	}
 
 	return 0;
 }
 
 static int
 xscale_pcpu_fini(struct pmc_mdep *md, int cpu)
 {
 	return 0;
 }
 
 struct pmc_mdep *
 pmc_xscale_initialize()
 {
 	struct pmc_mdep *pmc_mdep;
 	struct pmc_classdep *pcd;
 	uint32_t idreg;
 
 	/* Get the Core Generation from CP15 */
 	__asm __volatile("mrc p15, 0, %0, c0, c0, 0" : "=r" (idreg));
 	xscale_gen = (idreg >> 13) & 0x3;
 	switch (xscale_gen) {
 	case 1:
 		xscale_npmcs = 2;
 		break;
 	case 2:
 	case 3:
 		xscale_npmcs = 4;
 		break;
 	default:
 		printf("%s: unknown XScale core generation\n", __func__);
 		return (NULL);
 	}
-	PMCDBG(MDP,INI,1,"xscale-init npmcs=%d", xscale_npmcs);
+	PMCDBG1(MDP,INI,1,"xscale-init npmcs=%d", xscale_npmcs);
 	
 	/*
 	 * Allocate space for pointers to PMC HW descriptors and for
 	 * the MDEP structure used by MI code.
 	 */
 	xscale_pcpu = malloc(sizeof(struct xscale_cpu *) * pmc_cpu_max(), M_PMC,
             M_WAITOK|M_ZERO);
 
 	/* Just one class */
 	pmc_mdep = pmc_mdep_alloc(1);
 
 	pmc_mdep->pmd_cputype = PMC_CPU_INTEL_XSCALE;
 
 	pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_XSCALE];
 	pcd->pcd_caps  = XSCALE_PMC_CAPS;
 	pcd->pcd_class = PMC_CLASS_XSCALE;
 	pcd->pcd_num   = xscale_npmcs;
 	pcd->pcd_ri    = pmc_mdep->pmd_npmc;
 	pcd->pcd_width = 32;
 
 	pcd->pcd_allocate_pmc   = xscale_allocate_pmc;
 	pcd->pcd_config_pmc     = xscale_config_pmc;
 	pcd->pcd_pcpu_fini      = xscale_pcpu_fini;
 	pcd->pcd_pcpu_init      = xscale_pcpu_init;
 	pcd->pcd_describe       = xscale_describe;
 	pcd->pcd_get_config	= xscale_get_config;
 	pcd->pcd_read_pmc       = xscale_read_pmc;
 	pcd->pcd_release_pmc    = xscale_release_pmc;
 	pcd->pcd_start_pmc      = xscale_start_pmc;
 	pcd->pcd_stop_pmc       = xscale_stop_pmc;
 	pcd->pcd_write_pmc      = xscale_write_pmc;
 
 	pmc_mdep->pmd_intr       = xscale_intr;
 	pmc_mdep->pmd_switch_in  = xscale_switch_in;
 	pmc_mdep->pmd_switch_out = xscale_switch_out;
 	
 	pmc_mdep->pmd_npmc   += xscale_npmcs;
 
 	return (pmc_mdep);
 }
 
 void
 pmc_xscale_finalize(struct pmc_mdep *md)
 {
 }
Index: head/sys/sys/pmc.h
===================================================================
--- head/sys/sys/pmc.h	(revision 282657)
+++ head/sys/sys/pmc.h	(revision 282658)
@@ -1,1113 +1,1148 @@
 /*-
  * Copyright (c) 2003-2008, Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef _SYS_PMC_H_
 #define	_SYS_PMC_H_
 
 #include <dev/hwpmc/pmc_events.h>
 
 #include <machine/pmc_mdep.h>
 #include <machine/profile.h>
 
 #define	PMC_MODULE_NAME		"hwpmc"
 #define	PMC_NAME_MAX		64 /* HW counter name size */
 #define	PMC_CLASS_MAX		8  /* max #classes of PMCs per-system */
 
 /*
  * Kernel<->userland API version number [MMmmpppp]
  *
  * Major numbers are to be incremented when an incompatible change to
  * the ABI occurs that older clients will not be able to handle.
  *
  * Minor numbers are incremented when a backwards compatible change
  * occurs that allows older correct programs to run unchanged.  For
  * example, when support for a new PMC type is added.
  *
  * The patch version is incremented for every bug fix.
  */
 #define	PMC_VERSION_MAJOR	0x03
 #define	PMC_VERSION_MINOR	0x01
 #define	PMC_VERSION_PATCH	0x0000
 
 #define	PMC_VERSION		(PMC_VERSION_MAJOR << 24 |		\
 	PMC_VERSION_MINOR << 16 | PMC_VERSION_PATCH)
 
 /*
  * Kinds of CPUs known.
  *
  * We keep track of CPU variants that need to be distinguished in
  * some way for PMC operations.  CPU names are grouped by manufacturer
  * and numbered sparsely in order to minimize changes to the ABI involved
  * when new CPUs are added.
  */
 
 #define	__PMC_CPUS()						\
 	__PMC_CPU(AMD_K7,	0x00,	"AMD K7")		\
 	__PMC_CPU(AMD_K8,	0x01,	"AMD K8")		\
 	__PMC_CPU(ARMV7,	0x500,	"ARMv7")		\
 	__PMC_CPU(INTEL_P5,	0x80,	"Intel Pentium")	\
 	__PMC_CPU(INTEL_P6,	0x81,	"Intel Pentium Pro")	\
 	__PMC_CPU(INTEL_CL,	0x82,	"Intel Celeron")	\
 	__PMC_CPU(INTEL_PII,	0x83,	"Intel Pentium II")	\
 	__PMC_CPU(INTEL_PIII,	0x84,	"Intel Pentium III")	\
 	__PMC_CPU(INTEL_PM,	0x85,	"Intel Pentium M")	\
 	__PMC_CPU(INTEL_PIV,	0x86,	"Intel Pentium IV")	\
 	__PMC_CPU(INTEL_CORE,	0x87,	"Intel Core Solo/Duo")	\
 	__PMC_CPU(INTEL_CORE2,	0x88,	"Intel Core2")		\
 	__PMC_CPU(INTEL_CORE2EXTREME,	0x89,	"Intel Core2 Extreme")	\
 	__PMC_CPU(INTEL_ATOM,	0x8A,	"Intel Atom")		\
 	__PMC_CPU(INTEL_COREI7, 0x8B,   "Intel Core i7")	\
 	__PMC_CPU(INTEL_WESTMERE, 0x8C,   "Intel Westmere")	\
 	__PMC_CPU(INTEL_SANDYBRIDGE, 0x8D,   "Intel Sandy Bridge")	\
 	__PMC_CPU(INTEL_IVYBRIDGE, 0x8E,   "Intel Ivy Bridge")	\
 	__PMC_CPU(INTEL_SANDYBRIDGE_XEON, 0x8F,   "Intel Sandy Bridge Xeon")	\
 	__PMC_CPU(INTEL_IVYBRIDGE_XEON, 0x90,   "Intel Ivy Bridge Xeon")	\
 	__PMC_CPU(INTEL_HASWELL, 0x91,   "Intel Haswell")	\
 	__PMC_CPU(INTEL_ATOM_SILVERMONT, 0x92,	"Intel Atom Silvermont")    \
 	__PMC_CPU(INTEL_NEHALEM_EX, 0x93,   "Intel Nehalem Xeon 7500")	\
 	__PMC_CPU(INTEL_WESTMERE_EX, 0x94,   "Intel Westmere Xeon E7")	\
 	__PMC_CPU(INTEL_HASWELL_XEON, 0x95,   "Intel Haswell Xeon E5 v3") \
 	__PMC_CPU(INTEL_BROADWELL, 0x96,   "Intel Broadwell") \
 	__PMC_CPU(INTEL_XSCALE,	0x100,	"Intel XScale")		\
 	__PMC_CPU(MIPS_24K,     0x200,  "MIPS 24K")		\
 	__PMC_CPU(MIPS_OCTEON,  0x201,  "Cavium Octeon")	\
 	__PMC_CPU(MIPS_74K,     0x202,  "MIPS 74K")		\
 	__PMC_CPU(PPC_7450,     0x300,  "PowerPC MPC7450")	\
 	__PMC_CPU(PPC_E500,     0x340,  "PowerPC e500 Core")	\
 	__PMC_CPU(PPC_MPC85XX,  0x340,  "Freescale PowerPC MPC85XX")	\
 	__PMC_CPU(PPC_970,      0x380,  "IBM PowerPC 970")	\
 	__PMC_CPU(GENERIC, 	0x400,  "Generic")
 
 enum pmc_cputype {
 #undef	__PMC_CPU
 #define	__PMC_CPU(S,V,D)	PMC_CPU_##S = V,
 	__PMC_CPUS()
 };
 
 #define	PMC_CPU_FIRST	PMC_CPU_AMD_K7
 #define	PMC_CPU_LAST	PMC_CPU_GENERIC
 
 /*
  * Classes of PMCs
  */
 
 #define	__PMC_CLASSES()							\
 	__PMC_CLASS(TSC)	/* CPU Timestamp counter */		\
 	__PMC_CLASS(K7)		/* AMD K7 performance counters */	\
 	__PMC_CLASS(K8)		/* AMD K8 performance counters */	\
 	__PMC_CLASS(P5)		/* Intel Pentium counters */		\
 	__PMC_CLASS(P6)		/* Intel Pentium Pro counters */	\
 	__PMC_CLASS(P4)		/* Intel Pentium-IV counters */		\
 	__PMC_CLASS(IAF)	/* Intel Core2/Atom, fixed function */	\
 	__PMC_CLASS(IAP)	/* Intel Core...Atom, programmable */	\
 	__PMC_CLASS(UCF)	/* Intel Uncore fixed function */	\
 	__PMC_CLASS(UCP)	/* Intel Uncore programmable */		\
 	__PMC_CLASS(XSCALE)	/* Intel XScale counters */		\
 	__PMC_CLASS(ARMV7)	/* ARMv7 */				\
 	__PMC_CLASS(MIPS24K)	/* MIPS 24K */				\
 	__PMC_CLASS(OCTEON)	/* Cavium Octeon */			\
 	__PMC_CLASS(MIPS74K)	/* MIPS 74K */				\
 	__PMC_CLASS(PPC7450)	/* Motorola MPC7450 class */		\
 	__PMC_CLASS(PPC970)	/* IBM PowerPC 970 class */		\
 	__PMC_CLASS(E500)	/* Freescale e500 class */		\
 	__PMC_CLASS(SOFT)	/* Software events */
 
 enum pmc_class {
 #undef  __PMC_CLASS
 #define	__PMC_CLASS(N)	PMC_CLASS_##N ,
 	__PMC_CLASSES()
 };
 
 #define	PMC_CLASS_FIRST	PMC_CLASS_TSC
 #define	PMC_CLASS_LAST	PMC_CLASS_SOFT
 
 /*
  * A PMC can be in the following states:
  *
  * Hardware states:
  *   DISABLED   -- administratively prohibited from being used.
  *   FREE       -- HW available for use
  * Software states:
  *   ALLOCATED  -- allocated
  *   STOPPED    -- allocated, but not counting events
  *   RUNNING    -- allocated, and in operation; 'pm_runcount'
  *                 holds the number of CPUs using this PMC at
  *                 a given instant
  *   DELETED    -- being destroyed
  */
 
 #define	__PMC_HWSTATES()			\
 	__PMC_STATE(DISABLED)			\
 	__PMC_STATE(FREE)
 
 #define	__PMC_SWSTATES()			\
 	__PMC_STATE(ALLOCATED)			\
 	__PMC_STATE(STOPPED)			\
 	__PMC_STATE(RUNNING)			\
 	__PMC_STATE(DELETED)
 
 #define	__PMC_STATES()				\
 	__PMC_HWSTATES()			\
 	__PMC_SWSTATES()
 
 enum pmc_state {
 #undef	__PMC_STATE
 #define	__PMC_STATE(S)	PMC_STATE_##S,
 	__PMC_STATES()
 	__PMC_STATE(MAX)
 };
 
 #define	PMC_STATE_FIRST	PMC_STATE_DISABLED
 #define	PMC_STATE_LAST	PMC_STATE_DELETED
 
 /*
  * An allocated PMC may used as a 'global' counter or as a
  * 'thread-private' one.  Each such mode of use can be in either
  * statistical sampling mode or in counting mode.  Thus a PMC in use
  *
  * SS i.e., SYSTEM STATISTICAL  -- system-wide statistical profiling
  * SC i.e., SYSTEM COUNTER      -- system-wide counting mode
  * TS i.e., THREAD STATISTICAL  -- thread virtual, statistical profiling
  * TC i.e., THREAD COUNTER      -- thread virtual, counting mode
  *
  * Statistical profiling modes rely on the PMC periodically delivering
  * a interrupt to the CPU (when the configured number of events have
  * been measured), so the PMC must have the ability to generate
  * interrupts.
  *
  * In counting modes, the PMC counts its configured events, with the
  * value of the PMC being read whenever needed by its owner process.
  *
  * The thread specific modes "virtualize" the PMCs -- the PMCs appear
  * to be thread private and count events only when the profiled thread
  * actually executes on the CPU.
  *
  * The system-wide "global" modes keep the PMCs running all the time
  * and are used to measure the behaviour of the whole system.
  */
 
 #define	__PMC_MODES()				\
 	__PMC_MODE(SS,	0)			\
 	__PMC_MODE(SC,	1)			\
 	__PMC_MODE(TS,	2)			\
 	__PMC_MODE(TC,	3)
 
 enum pmc_mode {
 #undef	__PMC_MODE
 #define	__PMC_MODE(M,N)	PMC_MODE_##M = N,
 	__PMC_MODES()
 };
 
 #define	PMC_MODE_FIRST	PMC_MODE_SS
 #define	PMC_MODE_LAST	PMC_MODE_TC
 
 #define	PMC_IS_COUNTING_MODE(mode)				\
 	((mode) == PMC_MODE_SC || (mode) == PMC_MODE_TC)
 #define	PMC_IS_SYSTEM_MODE(mode)				\
 	((mode) == PMC_MODE_SS || (mode) == PMC_MODE_SC)
 #define	PMC_IS_SAMPLING_MODE(mode)				\
 	((mode) == PMC_MODE_SS || (mode) == PMC_MODE_TS)
 #define	PMC_IS_VIRTUAL_MODE(mode)				\
 	((mode) == PMC_MODE_TS || (mode) == PMC_MODE_TC)
 
 /*
  * PMC row disposition
  */
 
 #define	__PMC_DISPOSITIONS(N)					\
 	__PMC_DISP(STANDALONE)	/* global/disabled counters */	\
 	__PMC_DISP(FREE)	/* free/available */		\
 	__PMC_DISP(THREAD)	/* thread-virtual PMCs */	\
 	__PMC_DISP(UNKNOWN)	/* sentinel */
 
 enum pmc_disp {
 #undef	__PMC_DISP
 #define	__PMC_DISP(D)	PMC_DISP_##D ,
 	__PMC_DISPOSITIONS()
 };
 
 #define	PMC_DISP_FIRST	PMC_DISP_STANDALONE
 #define	PMC_DISP_LAST	PMC_DISP_THREAD
 
 /*
  * Counter capabilities
  *
  * __PMC_CAPS(NAME, VALUE, DESCRIPTION)
  */
 
 #define	__PMC_CAPS()							\
 	__PMC_CAP(INTERRUPT,	0, "generate interrupts")		\
 	__PMC_CAP(USER,		1, "count user-mode events")		\
 	__PMC_CAP(SYSTEM,	2, "count system-mode events")		\
 	__PMC_CAP(EDGE,		3, "do edge detection of events")	\
 	__PMC_CAP(THRESHOLD,	4, "ignore events below a threshold")	\
 	__PMC_CAP(READ,		5, "read PMC counter")			\
 	__PMC_CAP(WRITE,	6, "reprogram PMC counter")		\
 	__PMC_CAP(INVERT,	7, "invert comparision sense")		\
 	__PMC_CAP(QUALIFIER,	8, "further qualify monitored events")	\
 	__PMC_CAP(PRECISE,	9, "perform precise sampling")		\
 	__PMC_CAP(TAGGING,	10, "tag upstream events")		\
 	__PMC_CAP(CASCADE,	11, "cascade counters")
 
 enum pmc_caps
 {
 #undef	__PMC_CAP
 #define	__PMC_CAP(NAME, VALUE, DESCR)	PMC_CAP_##NAME = (1 << VALUE) ,
 	__PMC_CAPS()
 };
 
 #define	PMC_CAP_FIRST		PMC_CAP_INTERRUPT
 #define	PMC_CAP_LAST		PMC_CAP_CASCADE
 
 /*
  * PMC Event Numbers
  *
  * These are generated from the definitions in "dev/hwpmc/pmc_events.h".
  */
 
 enum pmc_event {
 #undef	__PMC_EV
 #undef	__PMC_EV_BLOCK
 #define	__PMC_EV_BLOCK(C,V)	PMC_EV_ ## C ## __BLOCK_START = (V) - 1 ,
 #define	__PMC_EV(C,N)		PMC_EV_ ## C ## _ ## N ,
 	__PMC_EVENTS()
 };
 
 /*
  * PMC SYSCALL INTERFACE
  */
 
 /*
  * "PMC_OPS" -- these are the commands recognized by the kernel
  * module, and are used when performing a system call from userland.
  */
 #define	__PMC_OPS()							\
 	__PMC_OP(CONFIGURELOG, "Set log file")				\
 	__PMC_OP(FLUSHLOG, "Flush log file")				\
 	__PMC_OP(GETCPUINFO, "Get system CPU information")		\
 	__PMC_OP(GETDRIVERSTATS, "Get driver statistics")		\
 	__PMC_OP(GETMODULEVERSION, "Get module version")		\
 	__PMC_OP(GETPMCINFO, "Get per-cpu PMC information")		\
 	__PMC_OP(PMCADMIN, "Set PMC state")				\
 	__PMC_OP(PMCALLOCATE, "Allocate and configure a PMC")		\
 	__PMC_OP(PMCATTACH, "Attach a PMC to a process")		\
 	__PMC_OP(PMCDETACH, "Detach a PMC from a process")		\
 	__PMC_OP(PMCGETMSR, "Get a PMC's hardware address")		\
 	__PMC_OP(PMCRELEASE, "Release a PMC")				\
 	__PMC_OP(PMCRW, "Read/Set a PMC")				\
 	__PMC_OP(PMCSETCOUNT, "Set initial count/sampling rate")	\
 	__PMC_OP(PMCSTART, "Start a PMC")				\
 	__PMC_OP(PMCSTOP, "Stop a PMC")					\
 	__PMC_OP(WRITELOG, "Write a cookie to the log file")		\
 	__PMC_OP(CLOSELOG, "Close log file")				\
 	__PMC_OP(GETDYNEVENTINFO, "Get dynamic events list")
 
 
 enum pmc_ops {
 #undef	__PMC_OP
 #define	__PMC_OP(N, D)	PMC_OP_##N,
 	__PMC_OPS()
 };
 
 
 /*
  * Flags used in operations on PMCs.
  */
 
 #define	PMC_F_FORCE		0x00000001 /*OP ADMIN force operation */
 #define	PMC_F_DESCENDANTS	0x00000002 /*OP ALLOCATE track descendants */
 #define	PMC_F_LOG_PROCCSW	0x00000004 /*OP ALLOCATE track ctx switches */
 #define	PMC_F_LOG_PROCEXIT	0x00000008 /*OP ALLOCATE log proc exits */
 #define	PMC_F_NEWVALUE		0x00000010 /*OP RW write new value */
 #define	PMC_F_OLDVALUE		0x00000020 /*OP RW get old value */
 #define	PMC_F_KGMON		0x00000040 /*OP ALLOCATE kgmon(8) profiling */
 /* V2 API */
 #define	PMC_F_CALLCHAIN		0x00000080 /*OP ALLOCATE capture callchains */
 
 /* internal flags */
 #define	PMC_F_ATTACHED_TO_OWNER	0x00010000 /*attached to owner*/
 #define	PMC_F_NEEDS_LOGFILE	0x00020000 /*needs log file */
 #define	PMC_F_ATTACH_DONE	0x00040000 /*attached at least once */
 
 #define	PMC_CALLCHAIN_DEPTH_MAX	128
 
 #define	PMC_CC_F_USERSPACE	0x01	   /*userspace callchain*/
 
 /*
  * Cookies used to denote allocated PMCs, and the values of PMCs.
  */
 
 typedef uint32_t	pmc_id_t;
 typedef uint64_t	pmc_value_t;
 
 #define	PMC_ID_INVALID		(~ (pmc_id_t) 0)
 
 /*
  * PMC IDs have the following format:
  *
  * +--------+----------+-----------+-----------+
  * |   CPU  | PMC MODE | PMC CLASS | ROW INDEX |
  * +--------+----------+-----------+-----------+
  *
  * where each field is 8 bits wide.  Field 'CPU' is set to the
  * requested CPU for system-wide PMCs or PMC_CPU_ANY for process-mode
  * PMCs.  Field 'PMC MODE' is the allocated PMC mode.  Field 'PMC
  * CLASS' is the class of the PMC.  Field 'ROW INDEX' is the row index
  * for the PMC.
  *
  * The 'ROW INDEX' ranges over 0..NWPMCS where NHWPMCS is the total
  * number of hardware PMCs on this cpu.
  */
 
 
 #define	PMC_ID_TO_ROWINDEX(ID)	((ID) & 0xFF)
 #define	PMC_ID_TO_CLASS(ID)	(((ID) & 0xFF00) >> 8)
 #define	PMC_ID_TO_MODE(ID)	(((ID) & 0xFF0000) >> 16)
 #define	PMC_ID_TO_CPU(ID)	(((ID) & 0xFF000000) >> 24)
 #define	PMC_ID_MAKE_ID(CPU,MODE,CLASS,ROWINDEX)			\
 	((((CPU) & 0xFF) << 24) | (((MODE) & 0xFF) << 16) |	\
 	(((CLASS) & 0xFF) << 8) | ((ROWINDEX) & 0xFF))
 
 /*
  * Data structures for system calls supported by the pmc driver.
  */
 
 /*
  * OP PMCALLOCATE
  *
  * Allocate a PMC on the named CPU.
  */
 
 #define	PMC_CPU_ANY	~0
 
 struct pmc_op_pmcallocate {
 	uint32_t	pm_caps;	/* PMC_CAP_* */
 	uint32_t	pm_cpu;		/* CPU number or PMC_CPU_ANY */
 	enum pmc_class	pm_class;	/* class of PMC desired */
 	enum pmc_event	pm_ev;		/* [enum pmc_event] desired */
 	uint32_t	pm_flags;	/* additional modifiers PMC_F_* */
 	enum pmc_mode	pm_mode;	/* desired mode */
 	pmc_id_t	pm_pmcid;	/* [return] process pmc id */
 
 	union pmc_md_op_pmcallocate pm_md; /* MD layer extensions */
 };
 
 /*
  * OP PMCADMIN
  *
  * Set the administrative state (i.e., whether enabled or disabled) of
  * a PMC 'pm_pmc' on CPU 'pm_cpu'.  Note that 'pm_pmc' specifies an
  * absolute PMC number and need not have been first allocated by the
  * calling process.
  */
 
 struct pmc_op_pmcadmin {
 	int		pm_cpu;		/* CPU# */
 	uint32_t	pm_flags;	/* flags */
 	int		pm_pmc;         /* PMC# */
 	enum pmc_state  pm_state;	/* desired state */
 };
 
 /*
  * OP PMCATTACH / OP PMCDETACH
  *
  * Attach/detach a PMC and a process.
  */
 
 struct pmc_op_pmcattach {
 	pmc_id_t	pm_pmc;		/* PMC to attach to */
 	pid_t		pm_pid;		/* target process */
 };
 
 /*
  * OP PMCSETCOUNT
  *
  * Set the sampling rate (i.e., the reload count) for statistical counters.
  * 'pm_pmcid' need to have been previously allocated using PMCALLOCATE.
  */
 
 struct pmc_op_pmcsetcount {
 	pmc_value_t	pm_count;	/* initial/sample count */
 	pmc_id_t	pm_pmcid;	/* PMC id to set */
 };
 
 
 /*
  * OP PMCRW
  *
  * Read the value of a PMC named by 'pm_pmcid'.  'pm_pmcid' needs
  * to have been previously allocated using PMCALLOCATE.
  */
 
 
 struct pmc_op_pmcrw {
 	uint32_t	pm_flags;	/* PMC_F_{OLD,NEW}VALUE*/
 	pmc_id_t	pm_pmcid;	/* pmc id */
 	pmc_value_t	pm_value;	/* new&returned value */
 };
 
 
 /*
  * OP GETPMCINFO
  *
  * retrieve PMC state for a named CPU.  The caller is expected to
  * allocate 'npmc' * 'struct pmc_info' bytes of space for the return
  * values.
  */
 
 struct pmc_info {
 	char		pm_name[PMC_NAME_MAX]; /* pmc name */
 	enum pmc_class	pm_class;	/* enum pmc_class */
 	int		pm_enabled;	/* whether enabled */
 	enum pmc_disp	pm_rowdisp;	/* FREE, THREAD or STANDLONE */
 	pid_t		pm_ownerpid;	/* owner, or -1 */
 	enum pmc_mode	pm_mode;	/* current mode [enum pmc_mode] */
 	enum pmc_event	pm_event;	/* current event */
 	uint32_t	pm_flags;	/* current flags */
 	pmc_value_t	pm_reloadcount;	/* sampling counters only */
 };
 
 struct pmc_op_getpmcinfo {
 	int32_t		pm_cpu;		/* 0 <= cpu < mp_maxid */
 	struct pmc_info	pm_pmcs[];	/* space for 'npmc' structures */
 };
 
 
 /*
  * OP GETCPUINFO
  *
  * Retrieve system CPU information.
  */
 
 
 struct pmc_classinfo {
 	enum pmc_class	pm_class;	/* class id */
 	uint32_t	pm_caps;	/* counter capabilities */
 	uint32_t	pm_width;	/* width of the PMC */
 	uint32_t	pm_num;		/* number of PMCs in class */
 };
 
 struct pmc_op_getcpuinfo {
 	enum pmc_cputype pm_cputype; /* what kind of CPU */
 	uint32_t	pm_ncpu;    /* max CPU number */
 	uint32_t	pm_npmc;    /* #PMCs per CPU */
 	uint32_t	pm_nclass;  /* #classes of PMCs */
 	struct pmc_classinfo  pm_classes[PMC_CLASS_MAX];
 };
 
 /*
  * OP CONFIGURELOG
  *
  * Configure a log file for writing system-wide statistics to.
  */
 
 struct pmc_op_configurelog {
 	int		pm_flags;
 	int		pm_logfd;   /* logfile fd (or -1) */
 };
 
 /*
  * OP GETDRIVERSTATS
  *
  * Retrieve pmc(4) driver-wide statistics.
  */
 
 struct pmc_op_getdriverstats {
 	int	pm_intr_ignored;	/* #interrupts ignored */
 	int	pm_intr_processed;	/* #interrupts processed */
 	int	pm_intr_bufferfull;	/* #interrupts with ENOSPC */
 	int	pm_syscalls;		/* #syscalls */
 	int	pm_syscall_errors;	/* #syscalls with errors */
 	int	pm_buffer_requests;	/* #buffer requests */
 	int	pm_buffer_requests_failed; /* #failed buffer requests */
 	int	pm_log_sweeps;		/* #sample buffer processing passes */
 };
 
 /*
  * OP RELEASE / OP START / OP STOP
  *
  * Simple operations on a PMC id.
  */
 
 struct pmc_op_simple {
 	pmc_id_t	pm_pmcid;
 };
 
 /*
  * OP WRITELOG
  *
  * Flush the current log buffer and write 4 bytes of user data to it.
  */
 
 struct pmc_op_writelog {
 	uint32_t	pm_userdata;
 };
 
 /*
  * OP GETMSR
  *
  * Retrieve the machine specific address assoicated with the allocated
  * PMC.  This number can be used subsequently with a read-performance-counter
  * instruction.
  */
 
 struct pmc_op_getmsr {
 	uint32_t	pm_msr;		/* machine specific address */
 	pmc_id_t	pm_pmcid;	/* allocated pmc id */
 };
 
 /*
  * OP GETDYNEVENTINFO
  *
  * Retrieve a PMC dynamic class events list.
  */
 
 struct pmc_dyn_event_descr {
 	char		pm_ev_name[PMC_NAME_MAX];
 	enum pmc_event	pm_ev_code;
 };
 
 struct pmc_op_getdyneventinfo {
 	enum pmc_class			pm_class;
 	unsigned int			pm_nevent;
 	struct pmc_dyn_event_descr	pm_events[PMC_EV_DYN_COUNT];
 };
 
 #ifdef _KERNEL
 
 #include <sys/malloc.h>
 #include <sys/sysctl.h>
 
 #include <machine/frame.h>
 
 #define	PMC_HASH_SIZE				1024
 #define	PMC_MTXPOOL_SIZE			2048
 #define	PMC_LOG_BUFFER_SIZE			4
 #define	PMC_NLOGBUFFERS				1024
 #define	PMC_NSAMPLES				1024
 #define	PMC_CALLCHAIN_DEPTH			32
 
 #define PMC_SYSCTL_NAME_PREFIX "kern." PMC_MODULE_NAME "."
 
 /*
  * Locking keys
  *
  * (b) - pmc_bufferlist_mtx (spin lock)
  * (k) - pmc_kthread_mtx (sleep lock)
  * (o) - po->po_mtx (spin lock)
  */
 
 /*
  * PMC commands
  */
 
 struct pmc_syscall_args {
 	register_t	pmop_code;	/* one of PMC_OP_* */
 	void		*pmop_data;	/* syscall parameter */
 };
 
 /*
  * Interface to processor specific s1tuff
  */
 
 /*
  * struct pmc_descr
  *
  * Machine independent (i.e., the common parts) of a human readable
  * PMC description.
  */
 
 struct pmc_descr {
 	char		pd_name[PMC_NAME_MAX]; /* name */
 	uint32_t	pd_caps;	/* capabilities */
 	enum pmc_class	pd_class;	/* class of the PMC */
 	uint32_t	pd_width;	/* width in bits */
 };
 
 /*
  * struct pmc_target
  *
  * This structure records all the target processes associated with a
  * PMC.
  */
 
 struct pmc_target {
 	LIST_ENTRY(pmc_target)	pt_next;
 	struct pmc_process	*pt_process; /* target descriptor */
 };
 
 /*
  * struct pmc
  *
  * Describes each allocated PMC.
  *
  * Each PMC has precisely one owner, namely the process that allocated
  * the PMC.
  *
  * A PMC may be attached to multiple target processes.  The
  * 'pm_targets' field links all the target processes being monitored
  * by this PMC.
  *
  * The 'pm_savedvalue' field is protected by a mutex.
  *
  * On a multi-cpu machine, multiple target threads associated with a
  * process-virtual PMC could be concurrently executing on different
  * CPUs.  The 'pm_runcount' field is atomically incremented every time
  * the PMC gets scheduled on a CPU and atomically decremented when it
  * get descheduled.  Deletion of a PMC is only permitted when this
  * field is '0'.
  *
  */
 
 struct pmc {
 	LIST_HEAD(,pmc_target)	pm_targets;	/* list of target processes */
 	LIST_ENTRY(pmc)		pm_next;	/* owner's list */
 
 	/*
 	 * System-wide PMCs are allocated on a CPU and are not moved
 	 * around.  For system-wide PMCs we record the CPU the PMC was
 	 * allocated on in the 'CPU' field of the pmc ID.
 	 *
 	 * Virtual PMCs run on whichever CPU is currently executing
 	 * their targets' threads.  For these PMCs we need to save
 	 * their current PMC counter values when they are taken off
 	 * CPU.
 	 */
 
 	union {
 		pmc_value_t	pm_savedvalue;	/* Virtual PMCS */
 	} pm_gv;
 
 	/*
 	 * For sampling mode PMCs, we keep track of the PMC's "reload
 	 * count", which is the counter value to be loaded in when
 	 * arming the PMC for the next counting session.  For counting
 	 * modes on PMCs that are read-only (e.g., the x86 TSC), we
 	 * keep track of the initial value at the start of
 	 * counting-mode operation.
 	 */
 
 	union {
 		pmc_value_t	pm_reloadcount;	/* sampling PMC modes */
 		pmc_value_t	pm_initial;	/* counting PMC modes */
 	} pm_sc;
 
 	uint32_t	pm_stalled;	/* marks stalled sampling PMCs */
 	uint32_t	pm_caps;	/* PMC capabilities */
 	enum pmc_event	pm_event;	/* event being measured */
 	uint32_t	pm_flags;	/* additional flags PMC_F_... */
 	struct pmc_owner *pm_owner;	/* owner thread state */
 	int		pm_runcount;	/* #cpus currently on */
 	enum pmc_state	pm_state;	/* current PMC state */
 
 	/*
 	 * The PMC ID field encodes the row-index for the PMC, its
 	 * mode, class and the CPU# associated with the PMC.
 	 */
 
 	pmc_id_t	pm_id;		/* allocated PMC id */
 
 	/* md extensions */
 	union pmc_md_pmc	pm_md;
 };
 
 /*
  * Accessor macros for 'struct pmc'
  */
 
 #define	PMC_TO_MODE(P)		PMC_ID_TO_MODE((P)->pm_id)
 #define	PMC_TO_CLASS(P)		PMC_ID_TO_CLASS((P)->pm_id)
 #define	PMC_TO_ROWINDEX(P)	PMC_ID_TO_ROWINDEX((P)->pm_id)
 #define	PMC_TO_CPU(P)		PMC_ID_TO_CPU((P)->pm_id)
 
 
 /*
  * struct pmc_process
  *
  * Record a 'target' process being profiled.
  *
  * The target process being profiled could be different from the owner
  * process which allocated the PMCs.  Each target process descriptor
  * is associated with NHWPMC 'struct pmc *' pointers.  Each PMC at a
  * given hardware row-index 'n' will use slot 'n' of the 'pp_pmcs[]'
  * array.  The size of this structure is thus PMC architecture
  * dependent.
  *
  */
 
 struct pmc_targetstate {
 	struct pmc	*pp_pmc;   /* target PMC */
 	pmc_value_t	pp_pmcval; /* per-process value */
 };
 
 struct pmc_process {
 	LIST_ENTRY(pmc_process) pp_next;	/* hash chain */
 	int		pp_refcnt;		/* reference count */
 	uint32_t	pp_flags;		/* flags PMC_PP_* */
 	struct proc	*pp_proc;		/* target thread */
 	struct pmc_targetstate pp_pmcs[];       /* NHWPMCs */
 };
 
 #define	PMC_PP_ENABLE_MSR_ACCESS	0x00000001
 
 /*
  * struct pmc_owner
  *
  * We associate a PMC with an 'owner' process.
  *
  * A process can be associated with 0..NCPUS*NHWPMC PMCs during its
  * lifetime, where NCPUS is the numbers of CPUS in the system and
  * NHWPMC is the number of hardware PMCs per CPU.  These are
  * maintained in the list headed by the 'po_pmcs' to save on space.
  *
  */
 
 struct pmc_owner  {
 	LIST_ENTRY(pmc_owner)	po_next;	/* hash chain */
 	LIST_ENTRY(pmc_owner)	po_ssnext;	/* list of SS PMC owners */
 	LIST_HEAD(, pmc)	po_pmcs;	/* owned PMC list */
 	TAILQ_HEAD(, pmclog_buffer) po_logbuffers; /* (o) logbuffer list */
 	struct mtx		po_mtx;		/* spin lock for (o) */
 	struct proc		*po_owner;	/* owner proc */
 	uint32_t		po_flags;	/* (k) flags PMC_PO_* */
 	struct proc		*po_kthread;	/* (k) helper kthread */
 	struct pmclog_buffer	*po_curbuf;	/* current log buffer */
 	struct file		*po_file;	/* file reference */
 	int			po_error;	/* recorded error */
 	short			po_sscount;	/* # SS PMCs owned */
 	short			po_logprocmaps;	/* global mappings done */
 };
 
 #define	PMC_PO_OWNS_LOGFILE		0x00000001 /* has a log file */
 #define	PMC_PO_SHUTDOWN			0x00000010 /* in the process of shutdown */
 #define	PMC_PO_INITIAL_MAPPINGS_DONE	0x00000020
 
 /*
  * struct pmc_hw -- describe the state of the PMC hardware
  *
  * When in use, a HW PMC is associated with one allocated 'struct pmc'
  * pointed to by field 'phw_pmc'.  When inactive, this field is NULL.
  *
  * On an SMP box, one or more HW PMC's in process virtual mode with
  * the same 'phw_pmc' could be executing on different CPUs.  In order
  * to handle this case correctly, we need to ensure that only
  * incremental counts get added to the saved value in the associated
  * 'struct pmc'.  The 'phw_save' field is used to keep the saved PMC
  * value at the time the hardware is started during this context
  * switch (i.e., the difference between the new (hardware) count and
  * the saved count is atomically added to the count field in 'struct
  * pmc' at context switch time).
  *
  */
 
 struct pmc_hw {
 	uint32_t	phw_state;	/* see PHW_* macros below */
 	struct pmc	*phw_pmc;	/* current thread PMC */
 };
 
 #define	PMC_PHW_RI_MASK		0x000000FF
 #define	PMC_PHW_CPU_SHIFT	8
 #define	PMC_PHW_CPU_MASK	0x0000FF00
 #define	PMC_PHW_FLAGS_SHIFT	16
 #define	PMC_PHW_FLAGS_MASK	0xFFFF0000
 
 #define	PMC_PHW_INDEX_TO_STATE(ri)	((ri) & PMC_PHW_RI_MASK)
 #define	PMC_PHW_STATE_TO_INDEX(state)	((state) & PMC_PHW_RI_MASK)
 #define	PMC_PHW_CPU_TO_STATE(cpu)	(((cpu) << PMC_PHW_CPU_SHIFT) & \
 	PMC_PHW_CPU_MASK)
 #define	PMC_PHW_STATE_TO_CPU(state)	(((state) & PMC_PHW_CPU_MASK) >> \
 	PMC_PHW_CPU_SHIFT)
 #define	PMC_PHW_FLAGS_TO_STATE(flags)	(((flags) << PMC_PHW_FLAGS_SHIFT) & \
 	PMC_PHW_FLAGS_MASK)
 #define	PMC_PHW_STATE_TO_FLAGS(state)	(((state) & PMC_PHW_FLAGS_MASK) >> \
 	PMC_PHW_FLAGS_SHIFT)
 #define	PMC_PHW_FLAG_IS_ENABLED		(PMC_PHW_FLAGS_TO_STATE(0x01))
 #define	PMC_PHW_FLAG_IS_SHAREABLE	(PMC_PHW_FLAGS_TO_STATE(0x02))
 
 /*
  * struct pmc_sample
  *
  * Space for N (tunable) PC samples and associated control data.
  */
 
 struct pmc_sample {
 	uint16_t		ps_nsamples;	/* callchain depth */
 	uint8_t			ps_cpu;		/* cpu number */
 	uint8_t			ps_flags;	/* other flags */
 	pid_t			ps_pid;		/* process PID or -1 */
 	struct thread		*ps_td;		/* which thread */
 	struct pmc		*ps_pmc;	/* interrupting PMC */
 	uintptr_t		*ps_pc;		/* (const) callchain start */
 };
 
 #define 	PMC_SAMPLE_FREE		((uint16_t) 0)
 #define 	PMC_SAMPLE_INUSE	((uint16_t) 0xFFFF)
 
 struct pmc_samplebuffer {
 	struct pmc_sample * volatile ps_read;	/* read pointer */
 	struct pmc_sample * volatile ps_write;	/* write pointer */
 	uintptr_t		*ps_callchains;	/* all saved call chains */
 	struct pmc_sample	*ps_fence;	/* one beyond ps_samples[] */
 	struct pmc_sample	ps_samples[];	/* array of sample entries */
 };
 
 
 /*
  * struct pmc_cpustate
  *
  * A CPU is modelled as a collection of HW PMCs with space for additional
  * flags.
  */
 
 struct pmc_cpu {
 	uint32_t	pc_state;	/* physical cpu number + flags */
 	struct pmc_samplebuffer *pc_sb[2]; /* space for samples */
 	struct pmc_hw	*pc_hwpmcs[];	/* 'npmc' pointers */
 };
 
 #define	PMC_PCPU_CPU_MASK		0x000000FF
 #define	PMC_PCPU_FLAGS_MASK		0xFFFFFF00
 #define	PMC_PCPU_FLAGS_SHIFT		8
 #define	PMC_PCPU_STATE_TO_CPU(S)	((S) & PMC_PCPU_CPU_MASK)
 #define	PMC_PCPU_STATE_TO_FLAGS(S)	(((S) & PMC_PCPU_FLAGS_MASK) >> PMC_PCPU_FLAGS_SHIFT)
 #define	PMC_PCPU_FLAGS_TO_STATE(F)	(((F) << PMC_PCPU_FLAGS_SHIFT) & PMC_PCPU_FLAGS_MASK)
 #define	PMC_PCPU_CPU_TO_STATE(C)	((C) & PMC_PCPU_CPU_MASK)
 #define	PMC_PCPU_FLAG_HTT		(PMC_PCPU_FLAGS_TO_STATE(0x1))
 
 /*
  * struct pmc_binding
  *
  * CPU binding information.
  */
 
 struct pmc_binding {
 	int	pb_bound;	/* is bound? */
 	int	pb_cpu;		/* if so, to which CPU */
 };
 
 
 struct pmc_mdep;
 
 /*
  * struct pmc_classdep
  *
  * PMC class-dependent operations.
  */
 struct pmc_classdep {
 	uint32_t	pcd_caps;	/* class capabilities */
 	enum pmc_class	pcd_class;	/* class id */
 	int		pcd_num;	/* number of PMCs */
 	int		pcd_ri;		/* row index of the first PMC in class */
 	int		pcd_width;	/* width of the PMC */
 
 	/* configuring/reading/writing the hardware PMCs */
 	int (*pcd_config_pmc)(int _cpu, int _ri, struct pmc *_pm);
 	int (*pcd_get_config)(int _cpu, int _ri, struct pmc **_ppm);
 	int (*pcd_read_pmc)(int _cpu, int _ri, pmc_value_t *_value);
 	int (*pcd_write_pmc)(int _cpu, int _ri, pmc_value_t _value);
 
 	/* pmc allocation/release */
 	int (*pcd_allocate_pmc)(int _cpu, int _ri, struct pmc *_t,
 		const struct pmc_op_pmcallocate *_a);
 	int (*pcd_release_pmc)(int _cpu, int _ri, struct pmc *_pm);
 
 	/* starting and stopping PMCs */
 	int (*pcd_start_pmc)(int _cpu, int _ri);
 	int (*pcd_stop_pmc)(int _cpu, int _ri);
 
 	/* description */
 	int (*pcd_describe)(int _cpu, int _ri, struct pmc_info *_pi,
 		struct pmc **_ppmc);
 
 	/* class-dependent initialization & finalization */
 	int (*pcd_pcpu_init)(struct pmc_mdep *_md, int _cpu);
 	int (*pcd_pcpu_fini)(struct pmc_mdep *_md, int _cpu);
 
 	/* machine-specific interface */
 	int (*pcd_get_msr)(int _ri, uint32_t *_msr);
 };
 
 /*
  * struct pmc_mdep
  *
  * Machine dependent bits needed per CPU type.
  */
 
 struct pmc_mdep  {
 	uint32_t	pmd_cputype;    /* from enum pmc_cputype */
 	uint32_t	pmd_npmc;	/* number of PMCs per CPU */
 	uint32_t	pmd_nclass;	/* number of PMC classes present */
 
 	/*
 	 * Machine dependent methods.
 	 */
 
 	/* per-cpu initialization and finalization */
 	int (*pmd_pcpu_init)(struct pmc_mdep *_md, int _cpu);
 	int (*pmd_pcpu_fini)(struct pmc_mdep *_md, int _cpu);
 
 	/* thread context switch in/out */
 	int (*pmd_switch_in)(struct pmc_cpu *_p, struct pmc_process *_pp);
 	int (*pmd_switch_out)(struct pmc_cpu *_p, struct pmc_process *_pp);
 
 	/* handle a PMC interrupt */
 	int (*pmd_intr)(int _cpu, struct trapframe *_tf);
 
 	/*
 	 * PMC class dependent information.
 	 */
 	struct pmc_classdep pmd_classdep[];
 };
 
 /*
  * Per-CPU state.  This is an array of 'mp_ncpu' pointers
  * to struct pmc_cpu descriptors.
  */
 
 extern struct pmc_cpu **pmc_pcpu;
 
 /* driver statistics */
 extern struct pmc_op_getdriverstats pmc_stats;
 
 #if	defined(HWPMC_DEBUG)
+#include <sys/ktr.h>
 
 /* debug flags, major flag groups */
 struct pmc_debugflags {
 	int	pdb_CPU;
 	int	pdb_CSW;
 	int	pdb_LOG;
 	int	pdb_MDP;
 	int	pdb_MOD;
 	int	pdb_OWN;
 	int	pdb_PMC;
 	int	pdb_PRC;
 	int	pdb_SAM;
 };
 
 extern struct pmc_debugflags pmc_debugflags;
 
+#define	KTR_PMC			KTR_SUBSYS
+
 #define	PMC_DEBUG_STRSIZE		128
 #define	PMC_DEBUG_DEFAULT_FLAGS		{ 0, 0, 0, 0, 0, 0, 0, 0 }
 
-#define	PMCDBG(M,N,L,F,...) do {					\
+#define	PMCDBG0(M, N, L, F) do {					\
 	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
-		printf(#M ":" #N ":" #L  ": " F "\n", __VA_ARGS__);	\
+		CTR0(KTR_PMC, #M ":" #N ":" #L  ": " F);		\
 } while (0)
-
+#define	PMCDBG1(M, N, L, F, p1) do {					\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR1(KTR_PMC, #M ":" #N ":" #L  ": " F, p1);		\
+} while (0)
+#define	PMCDBG2(M, N, L, F, p1, p2) do {				\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR2(KTR_PMC, #M ":" #N ":" #L  ": " F, p1, p2);	\
+} while (0)
+#define	PMCDBG3(M, N, L, F, p1, p2, p3) do {				\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR3(KTR_PMC, #M ":" #N ":" #L  ": " F, p1, p2, p3);	\
+} while (0)
+#define	PMCDBG4(M, N, L, F, p1, p2, p3, p4) do {			\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR4(KTR_PMC, #M ":" #N ":" #L  ": " F, p1, p2, p3, p4);\
+} while (0)
+#define	PMCDBG5(M, N, L, F, p1, p2, p3, p4, p5) do {			\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR5(KTR_PMC, #M ":" #N ":" #L  ": " F, p1, p2, p3, p4,	\
+		    p5);						\
+} while (0)
+#define	PMCDBG6(M, N, L, F, p1, p2, p3, p4, p5, p6) do {		\
+	if (pmc_debugflags.pdb_ ## M & (1 << PMC_DEBUG_MIN_ ## N))	\
+		CTR6(KTR_PMC, #M ":" #N ":" #L  ": " F, p1, p2, p3, p4,	\
+		    p5, p6);						\
+} while (0)
+	
 /* Major numbers */
 #define	PMC_DEBUG_MAJ_CPU		0 /* cpu switches */
 #define	PMC_DEBUG_MAJ_CSW		1 /* context switches */
 #define	PMC_DEBUG_MAJ_LOG		2 /* logging */
 #define	PMC_DEBUG_MAJ_MDP		3 /* machine dependent */
 #define	PMC_DEBUG_MAJ_MOD		4 /* misc module infrastructure */
 #define	PMC_DEBUG_MAJ_OWN		5 /* owner */
 #define	PMC_DEBUG_MAJ_PMC		6 /* pmc management */
 #define	PMC_DEBUG_MAJ_PRC		7 /* processes */
 #define	PMC_DEBUG_MAJ_SAM		8 /* sampling */
 
 /* Minor numbers */
 
 /* Common (8 bits) */
 #define	PMC_DEBUG_MIN_ALL		0 /* allocation */
 #define	PMC_DEBUG_MIN_REL		1 /* release */
 #define	PMC_DEBUG_MIN_OPS		2 /* ops: start, stop, ... */
 #define	PMC_DEBUG_MIN_INI		3 /* init */
 #define	PMC_DEBUG_MIN_FND		4 /* find */
 
 /* MODULE */
 #define	PMC_DEBUG_MIN_PMH	       14 /* pmc_hook */
 #define	PMC_DEBUG_MIN_PMS	       15 /* pmc_syscall */
 
 /* OWN */
 #define	PMC_DEBUG_MIN_ORM		8 /* owner remove */
 #define	PMC_DEBUG_MIN_OMR		9 /* owner maybe remove */
 
 /* PROCESSES */
 #define	PMC_DEBUG_MIN_TLK		8 /* link target */
 #define	PMC_DEBUG_MIN_TUL		9 /* unlink target */
 #define	PMC_DEBUG_MIN_EXT	       10 /* process exit */
 #define	PMC_DEBUG_MIN_EXC	       11 /* process exec */
 #define	PMC_DEBUG_MIN_FRK	       12 /* process fork */
 #define	PMC_DEBUG_MIN_ATT	       13 /* attach/detach */
 #define	PMC_DEBUG_MIN_SIG	       14 /* signalling */
 
 /* CONTEXT SWITCHES */
 #define	PMC_DEBUG_MIN_SWI		8 /* switch in */
 #define	PMC_DEBUG_MIN_SWO		9 /* switch out */
 
 /* PMC */
 #define	PMC_DEBUG_MIN_REG		8 /* pmc register */
 #define	PMC_DEBUG_MIN_ALR		9 /* allocate row */
 
 /* MACHINE DEPENDENT LAYER */
 #define	PMC_DEBUG_MIN_REA		8 /* read */
 #define	PMC_DEBUG_MIN_WRI		9 /* write */
 #define	PMC_DEBUG_MIN_CFG	       10 /* config */
 #define	PMC_DEBUG_MIN_STA	       11 /* start */
 #define	PMC_DEBUG_MIN_STO	       12 /* stop */
 #define	PMC_DEBUG_MIN_INT	       13 /* interrupts */
 
 /* CPU */
 #define	PMC_DEBUG_MIN_BND		8 /* bind */
 #define	PMC_DEBUG_MIN_SEL		9 /* select */
 
 /* LOG */
 #define	PMC_DEBUG_MIN_GTB		8 /* get buf */
 #define	PMC_DEBUG_MIN_SIO		9 /* schedule i/o */
 #define	PMC_DEBUG_MIN_FLS	       10 /* flush */
 #define	PMC_DEBUG_MIN_SAM	       11 /* sample */
 #define	PMC_DEBUG_MIN_CLO	       12 /* close */
 
 #else
-#define	PMCDBG(M,N,L,F,...)		/* nothing */
+#define	PMCDBG0(M, N, L, F)		/* nothing */
+#define	PMCDBG1(M, N, L, F, p1)
+#define	PMCDBG2(M, N, L, F, p1, p2)
+#define	PMCDBG3(M, N, L, F, p1, p2, p3)
+#define	PMCDBG4(M, N, L, F, p1, p2, p3, p4)
+#define	PMCDBG5(M, N, L, F, p1, p2, p3, p4, p5)
+#define	PMCDBG6(M, N, L, F, p1, p2, p3, p4, p5, p6)
 #endif
 
 /* declare a dedicated memory pool */
 MALLOC_DECLARE(M_PMC);
 
 /*
  * Functions
  */
 
 struct pmc_mdep *pmc_md_initialize(void);	/* MD init function */
 void	pmc_md_finalize(struct pmc_mdep *_md);	/* MD fini function */
 int	pmc_getrowdisp(int _ri);
 int	pmc_process_interrupt(int _cpu, int _soft, struct pmc *_pm,
     struct trapframe *_tf, int _inuserspace);
 int	pmc_save_kernel_callchain(uintptr_t *_cc, int _maxsamples,
     struct trapframe *_tf);
 int	pmc_save_user_callchain(uintptr_t *_cc, int _maxsamples,
     struct trapframe *_tf);
 struct pmc_mdep *pmc_mdep_alloc(int nclasses);
 void pmc_mdep_free(struct pmc_mdep *md);
 #endif /* _KERNEL */
 #endif /* _SYS_PMC_H_ */