Index: head/sys/powerpc/ofw/ofw_machdep.c =================================================================== --- head/sys/powerpc/ofw/ofw_machdep.c (revision 282266) +++ head/sys/powerpc/ofw/ofw_machdep.c (revision 282267) @@ -1,688 +1,697 @@ /*- * Copyright (C) 1996 Wolfgang Solfrank. * Copyright (C) 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +static void *fdt; +int ofw_real_mode; + #ifdef AIM extern register_t ofmsr[5]; extern void *openfirmware_entry; -static void *fdt; -int ofw_real_mode; char save_trap_init[0x2f00]; /* EXC_LAST */ char save_trap_of[0x2f00]; /* EXC_LAST */ int ofwcall(void *); static int openfirmware(void *args); __inline void ofw_save_trap_vec(char *save_trap_vec) { if (!ofw_real_mode) return; bcopy((void *)EXC_RST, save_trap_vec, EXC_LAST - EXC_RST); } static __inline void ofw_restore_trap_vec(char *restore_trap_vec) { if (!ofw_real_mode) return; bcopy(restore_trap_vec, (void *)EXC_RST, EXC_LAST - EXC_RST); __syncicache(EXC_RSVD, EXC_LAST - EXC_RSVD); } /* * Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback. */ register_t ofw_sprg0_save; static __inline void ofw_sprg_prepare(void) { if (ofw_real_mode) return; /* * Assume that interrupt are disabled at this point, or * SPRG1-3 could be trashed */ __asm __volatile("mfsprg0 %0\n\t" "mtsprg0 %1\n\t" "mtsprg1 %2\n\t" "mtsprg2 %3\n\t" "mtsprg3 %4\n\t" : "=&r"(ofw_sprg0_save) : "r"(ofmsr[1]), "r"(ofmsr[2]), "r"(ofmsr[3]), "r"(ofmsr[4])); } static __inline void ofw_sprg_restore(void) { if (ofw_real_mode) return; /* * Note that SPRG1-3 contents are irrelevant. They are scratch * registers used in the early portion of trap handling when * interrupts are disabled. * * PCPU data cannot be used until this routine is called ! */ __asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save)); } #endif static int parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output) { cell_t address_cells, size_cells; cell_t OFmem[4 * PHYS_AVAIL_SZ]; int sz, i, j; phandle_t phandle; sz = 0; /* * Get #address-cells from root node, defaulting to 1 if it cannot * be found. */ phandle = OF_finddevice("/"); if (OF_getprop(phandle, "#address-cells", &address_cells, sizeof(address_cells)) < (ssize_t)sizeof(address_cells)) address_cells = 1; if (OF_getprop(phandle, "#size-cells", &size_cells, sizeof(size_cells)) < (ssize_t)sizeof(size_cells)) size_cells = 1; /* * Get memory. */ if (node == -1 || (sz = OF_getprop(node, prop, OFmem, sizeof(OFmem))) <= 0) panic("Physical memory map not found"); i = 0; j = 0; while (i < sz/sizeof(cell_t)) { #ifndef __powerpc64__ /* On 32-bit PPC, ignore regions starting above 4 GB */ if (address_cells > 1 && OFmem[i] > 0) { i += address_cells + size_cells; continue; } #endif output[j].mr_start = OFmem[i++]; if (address_cells == 2) { #ifdef __powerpc64__ output[j].mr_start <<= 32; #endif output[j].mr_start += OFmem[i++]; } output[j].mr_size = OFmem[i++]; if (size_cells == 2) { #ifdef __powerpc64__ output[j].mr_size <<= 32; #endif output[j].mr_size += OFmem[i++]; } #ifndef __powerpc64__ /* * Check for memory regions extending above 32-bit * memory space, and restrict them to stay there. */ if (((uint64_t)output[j].mr_start + (uint64_t)output[j].mr_size) > BUS_SPACE_MAXADDR_32BIT) { output[j].mr_size = BUS_SPACE_MAXADDR_32BIT - output[j].mr_start; } #endif j++; } sz = j*sizeof(output[0]); return (sz); } static int excise_fdt_reserved(struct mem_region *avail, int asz) { struct { uint64_t address; uint64_t size; } fdtmap[16]; ssize_t fdtmapsize; phandle_t chosen; int i, j, k; chosen = OF_finddevice("/chosen"); fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap)); for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) { fdtmap[j].address = be64toh(fdtmap[j].address); fdtmap[j].size = be64toh(fdtmap[j].size); } for (i = 0; i < asz; i++) { for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) { /* * Case 1: Exclusion region encloses complete * available entry. Drop it and move on. */ if (fdtmap[j].address <= avail[i].mr_start && fdtmap[j].address + fdtmap[j].size >= avail[i].mr_start + avail[i].mr_size) { for (k = i+1; k < asz; k++) avail[k-1] = avail[k]; asz--; i--; /* Repeat some entries */ continue; } /* * Case 2: Exclusion region starts in available entry. * Trim it to where the entry begins and append * a new available entry with the region after * the excluded region, if any. */ if (fdtmap[j].address >= avail[i].mr_start && fdtmap[j].address < avail[i].mr_start + avail[i].mr_size) { if (fdtmap[j].address + fdtmap[j].size < avail[i].mr_start + avail[i].mr_size) { avail[asz].mr_start = fdtmap[j].address + fdtmap[j].size; avail[asz].mr_size = avail[i].mr_start + avail[i].mr_size - avail[asz].mr_start; asz++; } avail[i].mr_size = fdtmap[j].address - avail[i].mr_start; } /* * Case 3: Exclusion region ends in available entry. * Move start point to where the exclusion zone ends. * The case of a contained exclusion zone has already * been caught in case 2. */ if (fdtmap[j].address + fdtmap[j].size >= avail[i].mr_start && fdtmap[j].address + fdtmap[j].size < avail[i].mr_start + avail[i].mr_size) { avail[i].mr_size += avail[i].mr_start; avail[i].mr_start = fdtmap[j].address + fdtmap[j].size; avail[i].mr_size -= avail[i].mr_start; } } } return (asz); } /* * This is called during powerpc_init, before the system is really initialized. * It shall provide the total and the available regions of RAM. * The available regions need not take the kernel into account. */ void ofw_mem_regions(struct mem_region *memp, int *memsz, struct mem_region *availp, int *availsz) { phandle_t phandle; int asz, msz; int res; char name[31]; asz = msz = 0; /* * Get memory from all the /memory nodes. */ for (phandle = OF_child(OF_peer(0)); phandle != 0; phandle = OF_peer(phandle)) { if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0) continue; if (strncmp(name, "memory", sizeof(name)) != 0 && strncmp(name, "memory@", strlen("memory@")) != 0) continue; res = parse_ofw_memory(phandle, "reg", &memp[msz]); msz += res/sizeof(struct mem_region); if (OF_getproplen(phandle, "available") >= 0) res = parse_ofw_memory(phandle, "available", &availp[asz]); else res = parse_ofw_memory(phandle, "reg", &availp[asz]); asz += res/sizeof(struct mem_region); } phandle = OF_finddevice("/chosen"); if (OF_hasprop(phandle, "fdtmemreserv")) asz = excise_fdt_reserved(availp, asz); *memsz = msz; *availsz = asz; } -#ifdef AIM void OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *)) { +#ifdef AIM ofmsr[0] = mfmsr(); #ifdef __powerpc64__ ofmsr[0] &= ~PSL_SF; #endif __asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1])); __asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2])); __asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3])); __asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4])); + openfirmware_entry = openfirm; if (ofmsr[0] & PSL_DR) ofw_real_mode = 0; else ofw_real_mode = 1; + ofw_save_trap_vec(save_trap_init); +#else + ofw_real_mode = 1; +#endif + fdt = fdt_ptr; - openfirmware_entry = openfirm; #ifdef FDT_DTB_STATIC /* Check for a statically included blob */ if (fdt == NULL) fdt = &fdt_static_dtb; #endif - - ofw_save_trap_vec(save_trap_init); } boolean_t OF_bootstrap() { boolean_t status = FALSE; +#ifdef AIM if (openfirmware_entry != NULL) { if (ofw_real_mode) { status = OF_install(OFW_STD_REAL, 0); } else { #ifdef __powerpc64__ status = OF_install(OFW_STD_32BIT, 0); #else status = OF_install(OFW_STD_DIRECT, 0); #endif } if (status != TRUE) return status; OF_init(openfirmware); - } else if (fdt != NULL) { + } else +#endif + if (fdt != NULL) { status = OF_install(OFW_FDT, 0); if (status != TRUE) return status; OF_init(fdt); + OF_interpret("perform-fixup", 0); } return (status); } +#ifdef AIM void ofw_quiesce(void) { struct { cell_t name; cell_t nargs; cell_t nreturns; } args; KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up")); args.name = (cell_t)(uintptr_t)"quiesce"; args.nargs = 0; args.nreturns = 0; openfirmware(&args); } static int openfirmware_core(void *args) { int result; register_t oldmsr; if (openfirmware_entry == NULL) return (-1); /* * Turn off exceptions - we really don't want to end up * anywhere unexpected with PCPU set to something strange * or the stack pointer wrong. */ oldmsr = intr_disable(); ofw_sprg_prepare(); /* Save trap vectors */ ofw_save_trap_vec(save_trap_of); /* Restore initially saved trap vectors */ ofw_restore_trap_vec(save_trap_init); #if defined(AIM) && !defined(__powerpc64__) /* * Clear battable[] translations */ if (!(cpu_features & PPC_FEATURE_64)) __asm __volatile("mtdbatu 2, %0\n" "mtdbatu 3, %0" : : "r" (0)); isync(); #endif result = ofwcall(args); /* Restore trap vecotrs */ ofw_restore_trap_vec(save_trap_of); ofw_sprg_restore(); intr_restore(oldmsr); return (result); } #ifdef SMP struct ofw_rv_args { void *args; int retval; volatile int in_progress; }; static void ofw_rendezvous_dispatch(void *xargs) { struct ofw_rv_args *rv_args = xargs; /* NOTE: Interrupts are disabled here */ if (PCPU_GET(cpuid) == 0) { /* * Execute all OF calls on CPU 0 */ rv_args->retval = openfirmware_core(rv_args->args); rv_args->in_progress = 0; } else { /* * Spin with interrupts off on other CPUs while OF has * control of the machine. */ while (rv_args->in_progress) cpu_spinwait(); } } #endif static int openfirmware(void *args) { int result; #ifdef SMP struct ofw_rv_args rv_args; #endif if (openfirmware_entry == NULL) return (-1); #ifdef SMP rv_args.args = args; rv_args.in_progress = 1; smp_rendezvous(smp_no_rendevous_barrier, ofw_rendezvous_dispatch, smp_no_rendevous_barrier, &rv_args); result = rv_args.retval; #else result = openfirmware_core(args); #endif return (result); } void OF_reboot() { struct { cell_t name; cell_t nargs; cell_t nreturns; cell_t arg; } args; args.name = (cell_t)(uintptr_t)"interpret"; args.nargs = 1; args.nreturns = 0; args.arg = (cell_t)(uintptr_t)"reset-all"; openfirmware_core(&args); /* Don't do rendezvous! */ for (;;); /* just in case */ } #endif /* AIM */ void OF_getetheraddr(device_t dev, u_char *addr) { phandle_t node; node = ofw_bus_get_node(dev); OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN); } /* * Return a bus handle and bus tag that corresponds to the register * numbered regno for the device referenced by the package handle * dev. This function is intended to be used by console drivers in * early boot only. It works by mapping the address of the device's * register in the address space of its parent and recursively walk * the device tree upward this way. */ static void OF_get_addr_props(phandle_t node, uint32_t *addrp, uint32_t *sizep, int *pcip) { char type[64]; uint32_t addr, size; int pci, res; res = OF_getprop(node, "#address-cells", &addr, sizeof(addr)); if (res == -1) addr = 2; res = OF_getprop(node, "#size-cells", &size, sizeof(size)); if (res == -1) size = 1; pci = 0; if (addr == 3 && size == 2) { res = OF_getprop(node, "device_type", type, sizeof(type)); if (res != -1) { type[sizeof(type) - 1] = '\0'; pci = (strcmp(type, "pci") == 0) ? 1 : 0; } } if (addrp != NULL) *addrp = addr; if (sizep != NULL) *sizep = size; if (pcip != NULL) *pcip = pci; } int OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag, bus_space_handle_t *handle) { uint32_t cell[32]; bus_addr_t addr, raddr, baddr; bus_size_t size, rsize; uint32_t c, nbridge, naddr, nsize; phandle_t bridge, parent; u_int spc, rspc, prefetch; int pci, pcib, res; /* Sanity checking. */ if (dev == 0) return (EINVAL); bridge = OF_parent(dev); if (bridge == 0) return (EINVAL); if (regno < 0) return (EINVAL); if (tag == NULL || handle == NULL) return (EINVAL); /* Assume big-endian unless we find a PCI device */ *tag = &bs_be_tag; /* Get the requested register. */ OF_get_addr_props(bridge, &naddr, &nsize, &pci); if (pci) *tag = &bs_le_tag; res = OF_getprop(dev, (pci) ? "assigned-addresses" : "reg", cell, sizeof(cell)); if (res == -1) return (ENXIO); if (res % sizeof(cell[0])) return (ENXIO); res /= sizeof(cell[0]); regno *= naddr + nsize; if (regno + naddr + nsize > res) return (EINVAL); spc = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0; prefetch = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_PREFETCHABLE : 0; addr = 0; for (c = 0; c < naddr; c++) addr = ((uint64_t)addr << 32) | cell[regno++]; size = 0; for (c = 0; c < nsize; c++) size = ((uint64_t)size << 32) | cell[regno++]; /* * Map the address range in the bridge's decoding window as given * by the "ranges" property. If a node doesn't have such property * then no mapping is done. */ parent = OF_parent(bridge); while (parent != 0) { OF_get_addr_props(parent, &nbridge, NULL, &pcib); if (pcib) *tag = &bs_le_tag; res = OF_getprop(bridge, "ranges", cell, sizeof(cell)); if (res == -1) goto next; if (res % sizeof(cell[0])) return (ENXIO); res /= sizeof(cell[0]); regno = 0; while (regno < res) { rspc = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0; if (rspc != spc) { regno += naddr + nbridge + nsize; continue; } raddr = 0; for (c = 0; c < naddr; c++) raddr = ((uint64_t)raddr << 32) | cell[regno++]; rspc = (pcib) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0; baddr = 0; for (c = 0; c < nbridge; c++) baddr = ((uint64_t)baddr << 32) | cell[regno++]; rsize = 0; for (c = 0; c < nsize; c++) rsize = ((uint64_t)rsize << 32) | cell[regno++]; if (addr < raddr || addr >= raddr + rsize) continue; addr = addr - raddr + baddr; if (rspc != ~0) spc = rspc; } next: bridge = parent; parent = OF_parent(bridge); OF_get_addr_props(bridge, &naddr, &nsize, &pci); } return (bus_space_map(*tag, addr, size, prefetch ? BUS_SPACE_MAP_PREFETCHABLE : 0, handle)); }