Index: head/sys/dev/pccbb/pccbb_pci.c =================================================================== --- head/sys/dev/pccbb/pccbb_pci.c (revision 281873) +++ head/sys/dev/pccbb/pccbb_pci.c (revision 281874) @@ -1,987 +1,951 @@ /*- * Copyright (c) 2002-2004 M. Warner Losh. * Copyright (c) 2000-2001 Jonathan Chen. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /*- * Copyright (c) 1998, 1999 and 2000 * HAYAKAWA Koichi. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by HAYAKAWA Koichi. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for PCI to CardBus Bridge chips * * References: * TI Datasheets: * http://www-s.ti.com/cgi-bin/sc/generic2.cgi?family=PCI+CARDBUS+CONTROLLERS * * Written by Jonathan Chen * The author would like to acknowledge: * * HAYAKAWA Koichi: Author of the NetBSD code for the same thing * * Warner Losh: Newbus/newcard guru and author of the pccard side of things * * YAMAMOTO Shigeru: Author of another FreeBSD cardbus driver * * David Cross: Author of the initial ugly hack for a specific cardbus card */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "power_if.h" #include "card_if.h" #include "pcib_if.h" #define DPRINTF(x) do { if (cbb_debug) printf x; } while (0) #define DEVPRINTF(x) do { if (cbb_debug) device_printf x; } while (0) #define PCI_MASK_CONFIG(DEV,REG,MASK,SIZE) \ pci_write_config(DEV, REG, pci_read_config(DEV, REG, SIZE) MASK, SIZE) #define PCI_MASK2_CONFIG(DEV,REG,MASK1,MASK2,SIZE) \ pci_write_config(DEV, REG, ( \ pci_read_config(DEV, REG, SIZE) MASK1) MASK2, SIZE) static void cbb_chipinit(struct cbb_softc *sc); static int cbb_pci_filt(void *arg); static struct yenta_chipinfo { uint32_t yc_id; const char *yc_name; int yc_chiptype; } yc_chipsets[] = { /* Texas Instruments chips */ {PCIC_ID_TI1031, "TI1031 PCI-PC Card Bridge", CB_TI113X}, {PCIC_ID_TI1130, "TI1130 PCI-CardBus Bridge", CB_TI113X}, {PCIC_ID_TI1131, "TI1131 PCI-CardBus Bridge", CB_TI113X}, {PCIC_ID_TI1210, "TI1210 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1211, "TI1211 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1220, "TI1220 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1221, "TI1221 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1225, "TI1225 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1250, "TI1250 PCI-CardBus Bridge", CB_TI125X}, {PCIC_ID_TI1251, "TI1251 PCI-CardBus Bridge", CB_TI125X}, {PCIC_ID_TI1251B,"TI1251B PCI-CardBus Bridge",CB_TI125X}, {PCIC_ID_TI1260, "TI1260 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1260B,"TI1260B PCI-CardBus Bridge",CB_TI12XX}, {PCIC_ID_TI1410, "TI1410 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1420, "TI1420 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1421, "TI1421 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1450, "TI1450 PCI-CardBus Bridge", CB_TI125X}, /*SIC!*/ {PCIC_ID_TI1451, "TI1451 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1510, "TI1510 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI1520, "TI1520 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI4410, "TI4410 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI4450, "TI4450 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI4451, "TI4451 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI4510, "TI4510 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI6411, "TI6411 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI6420, "TI6420 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI6420SC, "TI6420 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7410, "TI7410 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7510, "TI7510 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7610, "TI7610 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7610M, "TI7610 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7610SD, "TI7610 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_TI7610MS, "TI7610 PCI-CardBus Bridge", CB_TI12XX}, /* ENE */ {PCIC_ID_ENE_CB710, "ENE CB710 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_ENE_CB720, "ENE CB720 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_ENE_CB1211, "ENE CB1211 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_ENE_CB1225, "ENE CB1225 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_ENE_CB1410, "ENE CB1410 PCI-CardBus Bridge", CB_TI12XX}, {PCIC_ID_ENE_CB1420, "ENE CB1420 PCI-CardBus Bridge", CB_TI12XX}, /* Ricoh chips */ {PCIC_ID_RICOH_RL5C465, "RF5C465 PCI-CardBus Bridge", CB_RF5C46X}, {PCIC_ID_RICOH_RL5C466, "RF5C466 PCI-CardBus Bridge", CB_RF5C46X}, {PCIC_ID_RICOH_RL5C475, "RF5C475 PCI-CardBus Bridge", CB_RF5C47X}, {PCIC_ID_RICOH_RL5C476, "RF5C476 PCI-CardBus Bridge", CB_RF5C47X}, {PCIC_ID_RICOH_RL5C477, "RF5C477 PCI-CardBus Bridge", CB_RF5C47X}, {PCIC_ID_RICOH_RL5C478, "RF5C478 PCI-CardBus Bridge", CB_RF5C47X}, /* Toshiba products */ {PCIC_ID_TOPIC95, "ToPIC95 PCI-CardBus Bridge", CB_TOPIC95}, {PCIC_ID_TOPIC95B, "ToPIC95B PCI-CardBus Bridge", CB_TOPIC95}, {PCIC_ID_TOPIC97, "ToPIC97 PCI-CardBus Bridge", CB_TOPIC97}, {PCIC_ID_TOPIC100, "ToPIC100 PCI-CardBus Bridge", CB_TOPIC97}, /* Cirrus Logic */ {PCIC_ID_CLPD6832, "CLPD6832 PCI-CardBus Bridge", CB_CIRRUS}, {PCIC_ID_CLPD6833, "CLPD6833 PCI-CardBus Bridge", CB_CIRRUS}, {PCIC_ID_CLPD6834, "CLPD6834 PCI-CardBus Bridge", CB_CIRRUS}, /* 02Micro */ {PCIC_ID_OZ6832, "O2Micro OZ6832/6833 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ6860, "O2Micro OZ6836/6860 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ6872, "O2Micro OZ6812/6872 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ6912, "O2Micro OZ6912/6972 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ6922, "O2Micro OZ6922 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ6933, "O2Micro OZ6933 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711E1, "O2Micro OZ711E1 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711EC1, "O2Micro OZ711EC1/M1 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711E2, "O2Micro OZ711E2 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711M1, "O2Micro OZ711M1 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711M2, "O2Micro OZ711M2 PCI-CardBus Bridge", CB_O2MICRO}, {PCIC_ID_OZ711M3, "O2Micro OZ711M3 PCI-CardBus Bridge", CB_O2MICRO}, /* SMC */ {PCIC_ID_SMC_34C90, "SMC 34C90 PCI-CardBus Bridge", CB_CIRRUS}, /* sentinel */ {0 /* null id */, "unknown", CB_UNKNOWN}, }; /************************************************************************/ /* Probe/Attach */ /************************************************************************/ static int cbb_chipset(uint32_t pci_id, const char **namep) { struct yenta_chipinfo *ycp; for (ycp = yc_chipsets; ycp->yc_id != 0 && pci_id != ycp->yc_id; ++ycp) continue; if (namep != NULL) *namep = ycp->yc_name; return (ycp->yc_chiptype); } static int cbb_pci_probe(device_t brdev) { const char *name; uint32_t progif; uint32_t baseclass; uint32_t subclass; /* * Do we know that we support the chipset? If so, then we * accept the device. */ if (cbb_chipset(pci_get_devid(brdev), &name) != CB_UNKNOWN) { device_set_desc(brdev, name); return (BUS_PROBE_DEFAULT); } /* * We do support generic CardBus bridges. All that we've seen * to date have progif 0 (the Yenta spec, and successors mandate * this). */ baseclass = pci_get_class(brdev); subclass = pci_get_subclass(brdev); progif = pci_get_progif(brdev); if (baseclass == PCIC_BRIDGE && subclass == PCIS_BRIDGE_CARDBUS && progif == 0) { device_set_desc(brdev, "PCI-CardBus Bridge"); return (BUS_PROBE_GENERIC); } return (ENXIO); } /* - * Still need this because the pci code only does power for type 0 - * header devices. - */ -static void -cbb_powerstate_d0(device_t dev) -{ - u_int32_t membase, irq; - - if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { - /* Save important PCI config data. */ - membase = pci_read_config(dev, CBBR_SOCKBASE, 4); - irq = pci_read_config(dev, PCIR_INTLINE, 4); - - /* Reset the power state. */ - device_printf(dev, "chip is in D%d power mode " - "-- setting to D0\n", pci_get_powerstate(dev)); - - pci_set_powerstate(dev, PCI_POWERSTATE_D0); - - /* Restore PCI config data. */ - pci_write_config(dev, CBBR_SOCKBASE, membase, 4); - pci_write_config(dev, PCIR_INTLINE, irq, 4); - } -} - -/* * Print out the config space */ static void cbb_print_config(device_t dev) { int i; device_printf(dev, "PCI Configuration space:"); for (i = 0; i < 256; i += 4) { if (i % 16 == 0) printf("\n 0x%02x: ", i); printf("0x%08x ", pci_read_config(dev, i, 4)); } printf("\n"); } static int cbb_pci_attach(device_t brdev) { #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) static int curr_bus_number = 2; /* XXX EVILE BAD (see below) */ uint32_t pribus; #endif struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(brdev); struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; int rid; device_t parent; parent = device_get_parent(brdev); mtx_init(&sc->mtx, device_get_nameunit(brdev), "cbb", MTX_DEF); sc->chipset = cbb_chipset(pci_get_devid(brdev), NULL); sc->dev = brdev; sc->cbdev = NULL; sc->exca[0].pccarddev = NULL; sc->domain = pci_get_domain(brdev); - sc->bus.sec = pci_read_config(brdev, PCIR_SECBUS_2, 1); - sc->bus.sub = pci_read_config(brdev, PCIR_SUBBUS_2, 1); sc->pribus = pcib_get_bus(parent); #if defined(NEW_PCIB) && defined(PCI_RES_BUS) pci_write_config(brdev, PCIR_PRIBUS_2, sc->pribus, 1); pcib_setup_secbus(brdev, &sc->bus, 1); +#else + sc->bus.sec = pci_read_config(brdev, PCIR_SECBUS_2, 1); + sc->bus.sub = pci_read_config(brdev, PCIR_SUBBUS_2, 1); #endif SLIST_INIT(&sc->rl); - cbb_powerstate_d0(brdev); rid = CBBR_SOCKBASE; sc->base_res = bus_alloc_resource_any(brdev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->base_res) { device_printf(brdev, "Could not map register memory\n"); mtx_destroy(&sc->mtx); return (ENOMEM); } else { DEVPRINTF((brdev, "Found memory at %08lx\n", rman_get_start(sc->base_res))); } sc->bst = rman_get_bustag(sc->base_res); sc->bsh = rman_get_bushandle(sc->base_res); exca_init(&sc->exca[0], brdev, sc->bst, sc->bsh, CBB_EXCA_OFFSET); sc->exca[0].flags |= EXCA_HAS_MEMREG_WIN; sc->exca[0].chipset = EXCA_CARDBUS; sc->chipinit = cbb_chipinit; sc->chipinit(sc); /*Sysctls*/ sctx = device_get_sysctl_ctx(brdev); soid = device_get_sysctl_tree(brdev); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "domain", CTLFLAG_RD, &sc->domain, 0, "Domain number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "pribus", CTLFLAG_RD, &sc->pribus, 0, "Primary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "secbus", CTLFLAG_RD, &sc->bus.sec, 0, "Secondary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "subbus", CTLFLAG_RD, &sc->bus.sub, 0, "Subordinate bus number"); #if 0 SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "memory", CTLFLAG_RD, &sc->subbus, 0, "Memory window open"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "premem", CTLFLAG_RD, &sc->subbus, 0, "Prefetch memroy window open"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "io1", CTLFLAG_RD, &sc->subbus, 0, "io range 1 open"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "io2", CTLFLAG_RD, &sc->subbus, 0, "io range 2 open"); #endif #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) /* * This is a gross hack. We should be scanning the entire pci * tree, assigning bus numbers in a way such that we (1) can * reserve 1 extra bus just in case and (2) all sub busses * are in an appropriate range. */ DEVPRINTF((brdev, "Secondary bus is %d\n", sc->bus.sec)); pribus = pci_read_config(brdev, PCIR_PRIBUS_2, 1); if (sc->bus.sec == 0 || sc->pribus != pribus) { if (curr_bus_number <= sc->pribus) curr_bus_number = sc->pribus + 1; if (pribus != sc->pribus) { DEVPRINTF((brdev, "Setting primary bus to %d\n", sc->pribus)); pci_write_config(brdev, PCIR_PRIBUS_2, sc->pribus, 1); } sc->bus.sec = curr_bus_number++; sc->bus.sub = curr_bus_number++; DEVPRINTF((brdev, "Secondary bus set to %d subbus %d\n", sc->bus.sec, sc->bus.sub)); pci_write_config(brdev, PCIR_SECBUS_2, sc->bus.sec, 1); pci_write_config(brdev, PCIR_SUBBUS_2, sc->bus.sub, 1); } #endif /* attach children */ sc->cbdev = device_add_child(brdev, "cardbus", -1); if (sc->cbdev == NULL) DEVPRINTF((brdev, "WARNING: cannot add cardbus bus.\n")); else if (device_probe_and_attach(sc->cbdev) != 0) DEVPRINTF((brdev, "WARNING: cannot attach cardbus bus!\n")); sc->exca[0].pccarddev = device_add_child(brdev, "pccard", -1); if (sc->exca[0].pccarddev == NULL) DEVPRINTF((brdev, "WARNING: cannot add pccard bus.\n")); else if (device_probe_and_attach(sc->exca[0].pccarddev) != 0) DEVPRINTF((brdev, "WARNING: cannot attach pccard bus.\n")); /* Map and establish the interrupt. */ rid = 0; sc->irq_res = bus_alloc_resource_any(brdev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->irq_res == NULL) { device_printf(brdev, "Unable to map IRQ...\n"); goto err; } if (bus_setup_intr(brdev, sc->irq_res, INTR_TYPE_AV | INTR_MPSAFE, cbb_pci_filt, NULL, sc, &sc->intrhand)) { device_printf(brdev, "couldn't establish interrupt\n"); goto err; } /* reset 16-bit pcmcia bus */ exca_clrb(&sc->exca[0], EXCA_INTR, EXCA_INTR_RESET); /* turn off power */ cbb_power(brdev, CARD_OFF); /* CSC Interrupt: Card detect interrupt on */ cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD); /* reset interrupt */ cbb_set(sc, CBB_SOCKET_EVENT, cbb_get(sc, CBB_SOCKET_EVENT)); if (bootverbose) cbb_print_config(brdev); /* Start the thread */ if (kproc_create(cbb_event_thread, sc, &sc->event_thread, 0, 0, "%s event thread", device_get_nameunit(brdev))) { device_printf(brdev, "unable to create event thread.\n"); panic("cbb_create_event_thread"); } sc->sc_root_token = root_mount_hold(device_get_nameunit(sc->dev)); return (0); err: if (sc->irq_res) bus_release_resource(brdev, SYS_RES_IRQ, 0, sc->irq_res); if (sc->base_res) { bus_release_resource(brdev, SYS_RES_MEMORY, CBBR_SOCKBASE, sc->base_res); } mtx_destroy(&sc->mtx); return (ENOMEM); } static void cbb_chipinit(struct cbb_softc *sc) { uint32_t mux, sysctrl, reg; /* Set CardBus latency timer */ if (pci_read_config(sc->dev, PCIR_SECLAT_2, 1) < 0x20) pci_write_config(sc->dev, PCIR_SECLAT_2, 0x20, 1); /* Set PCI latency timer */ if (pci_read_config(sc->dev, PCIR_LATTIMER, 1) < 0x20) pci_write_config(sc->dev, PCIR_LATTIMER, 0x20, 1); - /* Restore bus configuration */ - pci_write_config(sc->dev, PCIR_PRIBUS_2, sc->pribus, 1); - pci_write_config(sc->dev, PCIR_SECBUS_2, sc->bus.sec, 1); - pci_write_config(sc->dev, PCIR_SUBBUS_2, sc->bus.sub, 1); - /* Enable DMA, memory access for this card and I/O acces for children */ pci_enable_busmaster(sc->dev); pci_enable_io(sc->dev, SYS_RES_IOPORT); pci_enable_io(sc->dev, SYS_RES_MEMORY); /* disable Legacy IO */ switch (sc->chipset) { case CB_RF5C46X: PCI_MASK_CONFIG(sc->dev, CBBR_BRIDGECTRL, & ~(CBBM_BRIDGECTRL_RL_3E0_EN | CBBM_BRIDGECTRL_RL_3E2_EN), 2); break; default: pci_write_config(sc->dev, CBBR_LEGACY, 0x0, 4); break; } /* Use PCI interrupt for interrupt routing */ PCI_MASK2_CONFIG(sc->dev, CBBR_BRIDGECTRL, & ~(CBBM_BRIDGECTRL_MASTER_ABORT | CBBM_BRIDGECTRL_INTR_IREQ_ISA_EN), | CBBM_BRIDGECTRL_WRITE_POST_EN, 2); /* * XXX this should be a function table, ala OLDCARD. This means * that we could more easily support ISA interrupts for pccard * cards if we had to. */ switch (sc->chipset) { case CB_TI113X: /* * The TI 1031, TI 1130 and TI 1131 all require another bit * be set to enable PCI routing of interrupts, and then * a bit for each of the CSC and Function interrupts we * want routed. */ PCI_MASK_CONFIG(sc->dev, CBBR_CBCTRL, | CBBM_CBCTRL_113X_PCI_INTR | CBBM_CBCTRL_113X_PCI_CSC | CBBM_CBCTRL_113X_PCI_IRQ_EN, 1); PCI_MASK_CONFIG(sc->dev, CBBR_DEVCTRL, & ~(CBBM_DEVCTRL_INT_SERIAL | CBBM_DEVCTRL_INT_PCI), 1); break; case CB_TI12XX: /* * Some TI 12xx (and [14][45]xx) based pci cards * sometimes have issues with the MFUNC register not * being initialized due to a bad EEPROM on board. * Laptops that this matters on have this register * properly initialized. * * The TI125X parts have a different register. */ mux = pci_read_config(sc->dev, CBBR_MFUNC, 4); sysctrl = pci_read_config(sc->dev, CBBR_SYSCTRL, 4); if (mux == 0) { mux = (mux & ~CBBM_MFUNC_PIN0) | CBBM_MFUNC_PIN0_INTA; if ((sysctrl & CBBM_SYSCTRL_INTRTIE) == 0) mux = (mux & ~CBBM_MFUNC_PIN1) | CBBM_MFUNC_PIN1_INTB; pci_write_config(sc->dev, CBBR_MFUNC, mux, 4); } /*FALLTHROUGH*/ case CB_TI125X: /* * Disable zoom video. Some machines initialize this * improperly and exerpience has shown that this helps * prevent strange behavior. */ pci_write_config(sc->dev, CBBR_MMCTRL, 0, 4); break; case CB_O2MICRO: /* * Issue #1: INT# generated at the same time as * selected ISA IRQ. When IREQ# or STSCHG# is active, * in addition to the ISA IRQ being generated, INT# * will also be generated at the same time. * * Some of the older controllers have an issue in * which the slot's PCI INT# will be asserted whenever * IREQ# or STSCGH# is asserted even if ExCA registers * 03h or 05h have an ISA IRQ selected. * * The fix for this issue, which will work for any * controller (old or new), is to set ExCA registers * 3Ah (slot 0) & 7Ah (slot 1) bits 7:4 = 1010b. * These bits are undocumented. By setting this * register (of each slot) to '1010xxxxb' a routing of * IREQ# to INTC# and STSCHG# to INTC# is selected. * Since INTC# isn't connected there will be no * unexpected PCI INT when IREQ# or STSCHG# is active. * However, INTA# (slot 0) or INTB# (slot 1) will * still be correctly generated if NO ISA IRQ is * selected (ExCA regs 03h or 05h are cleared). */ reg = exca_getb(&sc->exca[0], EXCA_O2MICRO_CTRL_C); reg = (reg & 0x0f) | EXCA_O2CC_IREQ_INTC | EXCA_O2CC_STSCHG_INTC; exca_putb(&sc->exca[0], EXCA_O2MICRO_CTRL_C, reg); break; case CB_TOPIC97: /* * Disable Zoom Video, ToPIC 97, 100. */ pci_write_config(sc->dev, TOPIC97_ZV_CONTROL, 0, 1); /* * ToPIC 97, 100 * At offset 0xa1: INTERRUPT CONTROL register * 0x1: Turn on INT interrupts. */ PCI_MASK_CONFIG(sc->dev, TOPIC_INTCTRL, | TOPIC97_INTCTRL_INTIRQSEL, 1); /* * ToPIC97, 100 * Need to assert support for low voltage cards */ exca_setb(&sc->exca[0], EXCA_TOPIC97_CTRL, EXCA_TOPIC97_CTRL_LV_MASK); goto topic_common; case CB_TOPIC95: /* * SOCKETCTRL appears to be TOPIC 95/B specific */ PCI_MASK_CONFIG(sc->dev, TOPIC95_SOCKETCTRL, | TOPIC95_SOCKETCTRL_SCR_IRQSEL, 4); topic_common:; /* * At offset 0xa0: SLOT CONTROL * 0x80 Enable CardBus Functionality * 0x40 Enable CardBus and PC Card registers * 0x20 Lock ID in exca regs * 0x10 Write protect ID in config regs * Clear the rest of the bits, which defaults the slot * in legacy mode to 0x3e0 and offset 0. (legacy * mode is determined elsewhere) */ pci_write_config(sc->dev, TOPIC_SLOTCTRL, TOPIC_SLOTCTRL_SLOTON | TOPIC_SLOTCTRL_SLOTEN | TOPIC_SLOTCTRL_ID_LOCK | TOPIC_SLOTCTRL_ID_WP, 1); /* * At offset 0xa3 Card Detect Control Register * 0x80 CARDBUS enbale * 0x01 Cleared for hardware change detect */ PCI_MASK2_CONFIG(sc->dev, TOPIC_CDC, | TOPIC_CDC_CARDBUS, & ~TOPIC_CDC_SWDETECT, 4); break; } /* * Need to tell ExCA registers to CSC interrupts route via PCI * interrupts. There are two ways to do this. One is to set * INTR_ENABLE and the other is to set CSC to 0. Since both * methods are mutually compatible, we do both. */ exca_putb(&sc->exca[0], EXCA_INTR, EXCA_INTR_ENABLE); exca_putb(&sc->exca[0], EXCA_CSC_INTR, 0); cbb_disable_func_intr(sc); /* close all memory and io windows */ pci_write_config(sc->dev, CBBR_MEMBASE0, 0xffffffff, 4); pci_write_config(sc->dev, CBBR_MEMLIMIT0, 0, 4); pci_write_config(sc->dev, CBBR_MEMBASE1, 0xffffffff, 4); pci_write_config(sc->dev, CBBR_MEMLIMIT1, 0, 4); pci_write_config(sc->dev, CBBR_IOBASE0, 0xffffffff, 4); pci_write_config(sc->dev, CBBR_IOLIMIT0, 0, 4); pci_write_config(sc->dev, CBBR_IOBASE1, 0xffffffff, 4); pci_write_config(sc->dev, CBBR_IOLIMIT1, 0, 4); } static int cbb_route_interrupt(device_t pcib, device_t dev, int pin) { struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(pcib); return (rman_get_start(sc->irq_res)); } static int cbb_pci_shutdown(device_t brdev) { struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(brdev); /* * We're about to pull the rug out from the card, so mark it as * gone to prevent harm. */ sc->cardok = 0; /* * Place the cards in reset, turn off the interrupts and power * down the socket. */ PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, |CBBM_BRIDGECTRL_RESET, 2); exca_clrb(&sc->exca[0], EXCA_INTR, EXCA_INTR_RESET); cbb_set(sc, CBB_SOCKET_MASK, 0); cbb_set(sc, CBB_SOCKET_EVENT, 0xffffffff); cbb_power(brdev, CARD_OFF); /* * For paranoia, turn off all address decoding. Really not needed, * it seems, but it can't hurt */ exca_putb(&sc->exca[0], EXCA_ADDRWIN_ENABLE, 0); pci_write_config(brdev, CBBR_MEMBASE0, 0, 4); pci_write_config(brdev, CBBR_MEMLIMIT0, 0, 4); pci_write_config(brdev, CBBR_MEMBASE1, 0, 4); pci_write_config(brdev, CBBR_MEMLIMIT1, 0, 4); pci_write_config(brdev, CBBR_IOBASE0, 0, 4); pci_write_config(brdev, CBBR_IOLIMIT0, 0, 4); pci_write_config(brdev, CBBR_IOBASE1, 0, 4); pci_write_config(brdev, CBBR_IOLIMIT1, 0, 4); return (0); } static int cbb_pci_filt(void *arg) { struct cbb_softc *sc = arg; uint32_t sockevent; uint8_t csc; int retval = FILTER_STRAY; /* * Some chips also require us to read the old ExCA registe for card * status change when we route CSC vis PCI. This isn't supposed to be * required, but it clears the interrupt state on some chipsets. * Maybe there's a setting that would obviate its need. Maybe we * should test the status bits and deal with them, but so far we've * not found any machines that don't also give us the socket status * indication above. * * This call used to be unconditional. However, further research * suggests that we hit this condition when the card READY interrupt * fired. So now we only read it for 16-bit cards, and we only claim * the interrupt if READY is set. If this still causes problems, then * the next step would be to read this if we have a 16-bit card *OR* * we have no card. We treat the READY signal as if it were the power * completion signal. Some bridges may double signal things here, bit * signalling twice should be OK since we only sleep on the powerintr * in one place and a double wakeup would be benign there. */ if (sc->flags & CBB_16BIT_CARD) { csc = exca_getb(&sc->exca[0], EXCA_CSC); if (csc & EXCA_CSC_READY) { atomic_add_int(&sc->powerintr, 1); wakeup((void *)&sc->powerintr); retval = FILTER_HANDLED; } } /* * Read the socket event. Sometimes, the theory goes, the PCI bus is * so loaded that it cannot satisfy the read request, so we get * garbage back from the following read. We have to filter out the * garbage so that we don't spontaneously reset the card under high * load. PCI isn't supposed to act like this. No doubt this is a bug * in the PCI bridge chipset (or cbb brige) that's being used in * certain amd64 laptops today. Work around the issue by assuming * that any bits we don't know about being set means that we got * garbage. */ sockevent = cbb_get(sc, CBB_SOCKET_EVENT); if (sockevent != 0 && (sockevent & ~CBB_SOCKET_EVENT_VALID_MASK) == 0) { /* * If anything has happened to the socket, we assume that the * card is no longer OK, and we shouldn't call its ISR. We * set cardok as soon as we've attached the card. This helps * in a noisy eject, which happens all too often when users * are ejecting their PC Cards. * * We use this method in preference to checking to see if the * card is still there because the check suffers from a race * condition in the bouncing case. */ #define DELTA (CBB_SOCKET_MASK_CD) if (sockevent & DELTA) { cbb_clrb(sc, CBB_SOCKET_MASK, DELTA); cbb_set(sc, CBB_SOCKET_EVENT, DELTA); sc->cardok = 0; cbb_disable_func_intr(sc); wakeup(&sc->intrhand); } #undef DELTA /* * Wakeup anybody waiting for a power interrupt. We have to * use atomic_add_int for wakups on other cores. */ if (sockevent & CBB_SOCKET_EVENT_POWER) { cbb_clrb(sc, CBB_SOCKET_MASK, CBB_SOCKET_EVENT_POWER); cbb_set(sc, CBB_SOCKET_EVENT, CBB_SOCKET_EVENT_POWER); atomic_add_int(&sc->powerintr, 1); wakeup((void *)&sc->powerintr); } /* * Status change interrupts aren't presently used in the * rest of the driver. For now, just ACK them. */ if (sockevent & CBB_SOCKET_EVENT_CSTS) cbb_set(sc, CBB_SOCKET_EVENT, CBB_SOCKET_EVENT_CSTS); retval = FILTER_HANDLED; } return retval; } #if defined(NEW_PCIB) && defined(PCI_RES_BUS) static struct resource * cbb_pci_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct cbb_softc *sc; sc = device_get_softc(bus); if (type == PCI_RES_BUS) return (pcib_alloc_subbus(&sc->bus, child, rid, start, end, count, flags)); return (cbb_alloc_resource(bus, child, type, rid, start, end, count, flags)); } static int cbb_pci_adjust_resource(device_t bus, device_t child, int type, struct resource *r, u_long start, u_long end) { struct cbb_softc *sc; sc = device_get_softc(bus); if (type == PCI_RES_BUS) { if (!rman_is_region_manager(r, &sc->bus.rman)) return (EINVAL); return (rman_adjust_resource(r, start, end)); } return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } static int cbb_pci_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { struct cbb_softc *sc; int error; sc = device_get_softc(bus); if (type == PCI_RES_BUS) { if (!rman_is_region_manager(r, &sc->bus.rman)) return (EINVAL); if (rman_get_flags(r) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, r); if (error) return (error); } return (rman_release_resource(r)); } return (cbb_release_resource(bus, child, type, rid, r)); } #endif /************************************************************************/ /* PCI compat methods */ /************************************************************************/ static int cbb_maxslots(device_t brdev) { return (0); } static uint32_t cbb_read_config(device_t brdev, u_int b, u_int s, u_int f, u_int reg, int width) { /* * Pass through to the next ppb up the chain (i.e. our grandparent). */ return (PCIB_READ_CONFIG(device_get_parent(device_get_parent(brdev)), b, s, f, reg, width)); } static void cbb_write_config(device_t brdev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width) { /* * Pass through to the next ppb up the chain (i.e. our grandparent). */ PCIB_WRITE_CONFIG(device_get_parent(device_get_parent(brdev)), b, s, f, reg, val, width); } static int cbb_pci_suspend(device_t brdev) { int error = 0; struct cbb_softc *sc = device_get_softc(brdev); error = bus_generic_suspend(brdev); if (error != 0) return (error); cbb_set(sc, CBB_SOCKET_MASK, 0); /* Quiet hardware */ sc->cardok = 0; /* Card is bogus now */ return (0); } static int cbb_pci_resume(device_t brdev) { int error = 0; struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(brdev); uint32_t tmp; /* * In the APM and early ACPI era, BIOSes saved the PCI config * registers. As chips became more complicated, that functionality moved * into the ACPI code / tables. We must therefore, restore the settings * we made here to make sure the device come back. Transitions to Dx * from D0 and back to D0 cause the bridge to lose its config space, so * all the bus mappings and such are preserved. * - * For most drivers, the PCI layer handles this saving. However, since - * there's much black magic and arcane art hidden in these few lines of - * code that would be difficult to transition into the PCI - * layer. chipinit was several years of trial and error to write. + * The PCI layer handles standard PCI registers like the + * command register and BARs, but cbb-specific registers are + * handled here. */ - pci_write_config(brdev, CBBR_SOCKBASE, rman_get_start(sc->base_res), 4); - DEVPRINTF((brdev, "PCI Memory allocated: %08lx\n", - rman_get_start(sc->base_res))); - sc->chipinit(sc); /* reset interrupt -- Do we really need to do this? */ tmp = cbb_get(sc, CBB_SOCKET_EVENT); cbb_set(sc, CBB_SOCKET_EVENT, tmp); /* CSC Interrupt: Card detect interrupt on */ cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD); /* Signal the thread to wakeup. */ wakeup(&sc->intrhand); error = bus_generic_resume(brdev); return (error); } static device_method_t cbb_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cbb_pci_probe), DEVMETHOD(device_attach, cbb_pci_attach), DEVMETHOD(device_detach, cbb_detach), DEVMETHOD(device_shutdown, cbb_pci_shutdown), DEVMETHOD(device_suspend, cbb_pci_suspend), DEVMETHOD(device_resume, cbb_pci_resume), /* bus methods */ DEVMETHOD(bus_read_ivar, cbb_read_ivar), DEVMETHOD(bus_write_ivar, cbb_write_ivar), #if defined(NEW_PCIB) && defined(PCI_RES_BUS) DEVMETHOD(bus_alloc_resource, cbb_pci_alloc_resource), DEVMETHOD(bus_adjust_resource, cbb_pci_adjust_resource), DEVMETHOD(bus_release_resource, cbb_pci_release_resource), #else DEVMETHOD(bus_alloc_resource, cbb_alloc_resource), DEVMETHOD(bus_release_resource, cbb_release_resource), #endif DEVMETHOD(bus_activate_resource, cbb_activate_resource), DEVMETHOD(bus_deactivate_resource, cbb_deactivate_resource), DEVMETHOD(bus_driver_added, cbb_driver_added), DEVMETHOD(bus_child_detached, cbb_child_detached), DEVMETHOD(bus_setup_intr, cbb_setup_intr), DEVMETHOD(bus_teardown_intr, cbb_teardown_intr), DEVMETHOD(bus_child_present, cbb_child_present), /* 16-bit card interface */ DEVMETHOD(card_set_res_flags, cbb_pcic_set_res_flags), DEVMETHOD(card_set_memory_offset, cbb_pcic_set_memory_offset), /* power interface */ DEVMETHOD(power_enable_socket, cbb_power_enable_socket), DEVMETHOD(power_disable_socket, cbb_power_disable_socket), /* pcib compatibility interface */ DEVMETHOD(pcib_maxslots, cbb_maxslots), DEVMETHOD(pcib_read_config, cbb_read_config), DEVMETHOD(pcib_write_config, cbb_write_config), DEVMETHOD(pcib_route_interrupt, cbb_route_interrupt), DEVMETHOD_END }; static driver_t cbb_driver = { "cbb", cbb_methods, sizeof(struct cbb_softc) }; DRIVER_MODULE(cbb, pci, cbb_driver, cbb_devclass, 0, 0); MODULE_DEPEND(cbb, exca, 1, 1, 1); Index: head/sys/dev/pci/pci.c =================================================================== --- head/sys/dev/pci/pci.c (revision 281873) +++ head/sys/dev/pci/pci.c (revision 281874) @@ -1,5335 +1,5380 @@ /*- * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2000, BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bus.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) #include #endif #include #include #include #include #include #include #include #include #include "pcib_if.h" #include "pci_if.h" #define PCIR_IS_BIOS(cfg, reg) \ (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) static int pci_has_quirk(uint32_t devid, int quirk); static pci_addr_t pci_mapbase(uint64_t mapreg); static const char *pci_maptype(uint64_t mapreg); static int pci_maprange(uint64_t mapreg); static pci_addr_t pci_rombase(uint64_t mapreg); static int pci_romsize(uint64_t testval); static void pci_fixancient(pcicfgregs *cfg); static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); static int pci_porten(device_t dev); static int pci_memen(device_t dev); static void pci_assign_interrupt(device_t bus, device_t dev, int force_route); static int pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, int force, int prefetch); static int pci_probe(device_t dev); static int pci_attach(device_t dev); #ifdef PCI_RES_BUS static int pci_detach(device_t dev); #endif static void pci_load_vendor_data(void); static int pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc); static char *pci_describe_device(device_t dev); static int pci_modevent(module_t mod, int what, void *arg); static void pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg); static void pci_read_cap(device_t pcib, pcicfgregs *cfg); static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data); #if 0 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data); #endif static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); static void pci_mask_msix(device_t dev, u_int index); static void pci_unmask_msix(device_t dev, u_int index); static int pci_msi_blacklisted(void); static int pci_msix_blacklisted(void); static void pci_resume_msi(device_t dev); static void pci_resume_msix(device_t dev); static int pci_remap_intr_method(device_t bus, device_t dev, u_int irq); static uint16_t pci_get_rid_method(device_t dev, device_t child); static struct pci_devinfo * pci_fill_devinfo(device_t pcib, int d, int b, int s, int f, uint16_t vid, uint16_t did, size_t size); static device_method_t pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pci_probe), DEVMETHOD(device_attach, pci_attach), #ifdef PCI_RES_BUS DEVMETHOD(device_detach, pci_detach), #else DEVMETHOD(device_detach, bus_generic_detach), #endif DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, pci_resume), /* Bus interface */ DEVMETHOD(bus_print_child, pci_print_child), DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), DEVMETHOD(bus_read_ivar, pci_read_ivar), DEVMETHOD(bus_write_ivar, pci_write_ivar), DEVMETHOD(bus_driver_added, pci_driver_added), DEVMETHOD(bus_setup_intr, pci_setup_intr), DEVMETHOD(bus_teardown_intr, pci_teardown_intr), DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), DEVMETHOD(bus_get_resource_list,pci_get_resource_list), DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_delete_resource, pci_delete_resource), DEVMETHOD(bus_alloc_resource, pci_alloc_resource), DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), DEVMETHOD(bus_release_resource, pci_release_resource), DEVMETHOD(bus_activate_resource, pci_activate_resource), DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), DEVMETHOD(bus_child_detached, pci_child_detached), DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method), DEVMETHOD(bus_child_location_str, pci_child_location_str_method), DEVMETHOD(bus_remap_intr, pci_remap_intr_method), DEVMETHOD(bus_suspend_child, pci_suspend_child), DEVMETHOD(bus_resume_child, pci_resume_child), /* PCI interface */ DEVMETHOD(pci_read_config, pci_read_config_method), DEVMETHOD(pci_write_config, pci_write_config_method), DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), DEVMETHOD(pci_enable_io, pci_enable_io_method), DEVMETHOD(pci_disable_io, pci_disable_io_method), DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), DEVMETHOD(pci_find_cap, pci_find_cap_method), DEVMETHOD(pci_find_extcap, pci_find_extcap_method), DEVMETHOD(pci_find_htcap, pci_find_htcap_method), DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), DEVMETHOD(pci_enable_msi, pci_enable_msi_method), DEVMETHOD(pci_enable_msix, pci_enable_msix_method), DEVMETHOD(pci_disable_msi, pci_disable_msi_method), DEVMETHOD(pci_remap_msix, pci_remap_msix_method), DEVMETHOD(pci_release_msi, pci_release_msi_method), DEVMETHOD(pci_msi_count, pci_msi_count_method), DEVMETHOD(pci_msix_count, pci_msix_count_method), DEVMETHOD(pci_get_rid, pci_get_rid_method), DEVMETHOD(pci_child_added, pci_child_added_method), #ifdef PCI_IOV DEVMETHOD(pci_iov_attach, pci_iov_attach_method), DEVMETHOD(pci_iov_detach, pci_iov_detach_method), DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), #endif DEVMETHOD_END }; DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); static devclass_t pci_devclass; DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL); MODULE_VERSION(pci, 1); static char *pci_vendordata; static size_t pci_vendordata_size; struct pci_quirk { uint32_t devid; /* Vendor/device of the card */ int type; #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ int arg1; int arg2; }; static const struct pci_quirk pci_quirks[] = { /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, /* As does the Serverworks OSB4 (the SMBus mapping register) */ { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, /* * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge * or the CMIC-SL (AKA ServerWorks GC_LE). */ { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI doesn't work on earlier Intel chipsets including * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. */ { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI doesn't work with devices behind the AMD 8131 HT-PCIX * bridge. */ { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI-X allocation doesn't work properly for devices passed through * by VMware up to at least ESXi 5.1. */ { 0x079015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCI/PCI-X */ { 0x07a015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCIe */ /* * Some virtualization environments emulate an older chipset * but support MSI just fine. QEMU uses the Intel 82440. */ { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, /* * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus * controller depending on SoftPciRst register (PM_IO 0x55 [7]). * It prevents us from attaching hpet(4) when the bit is unset. * Note this quirk only affects SB600 revision A13 and earlier. * For SB600 A21 and later, firmware must set the bit to hide it. * For SB700 and later, it is unused and hardcoded to zero. */ { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, /* * Atheros AR8161/AR8162/E2200 Ethernet controllers have a bug that * MSI interrupt does not assert if PCIM_CMD_INTxDIS bit of the * command register is set. */ { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't * issue MSI interrupts with PCIM_CMD_INTxDIS set either. */ { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ { 0 } }; /* map register information */ #define PCI_MAPMEM 0x01 /* memory map */ #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ #define PCI_MAPPORT 0x04 /* port map */ struct devlist pci_devq; uint32_t pci_generation; uint32_t pci_numdevs = 0; static int pcie_chipset, pcix_chipset; /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters"); static int pci_enable_io_modes = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, &pci_enable_io_modes, 1, "Enable I/O and memory bits in the config register. Some BIOSes do not\n\ enable these bits correctly. We'd like to do this all the time, but there\n\ are some peripherals that this causes problems with."); static int pci_do_realloc_bars = 0; SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, &pci_do_realloc_bars, 0, "Attempt to allocate a new range for any BARs whose original " "firmware-assigned ranges fail to allocate during the initial device scan."); static int pci_do_power_nodriver = 0; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, &pci_do_power_nodriver, 0, "Place a function into D3 state when no driver attaches to it. 0 means\n\ disable. 1 means conservatively place devices into D3 state. 2 means\n\ agressively place devices into D3 state. 3 means put absolutely everything\n\ in D3 state."); int pci_do_power_resume = 1; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, &pci_do_power_resume, 1, "Transition from D3 -> D0 on resume."); int pci_do_power_suspend = 1; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, &pci_do_power_suspend, 1, "Transition from D0 -> D3 on suspend."); static int pci_do_msi = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, "Enable support for MSI interrupts"); static int pci_do_msix = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, "Enable support for MSI-X interrupts"); static int pci_honor_msi_blacklist = 1; SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); #if defined(__i386__) || defined(__amd64__) static int pci_usb_takeover = 1; #else static int pci_usb_takeover = 0; #endif SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, &pci_usb_takeover, 1, "Enable early takeover of USB controllers.\n\ Disable this if you depend on BIOS emulation of USB devices, that is\n\ you use USB devices (like keyboard or mouse) but do not load USB drivers"); static int pci_clear_bars; SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, "Ignore firmware-assigned resources for BARs."); #if defined(NEW_PCIB) && defined(PCI_RES_BUS) static int pci_clear_buses; SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, "Ignore firmware-assigned bus numbers."); #endif static int pci_enable_ari = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 0, "Enable support for PCIe Alternative RID Interpretation"); static int pci_has_quirk(uint32_t devid, int quirk) { const struct pci_quirk *q; for (q = &pci_quirks[0]; q->devid; q++) { if (q->devid == devid && q->type == quirk) return (1); } return (0); } /* Find a device_t by bus/slot/function in domain 0 */ device_t pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) { return (pci_find_dbsf(0, bus, slot, func)); } /* Find a device_t by domain/bus/slot/function */ device_t pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if ((dinfo->cfg.domain == domain) && (dinfo->cfg.bus == bus) && (dinfo->cfg.slot == slot) && (dinfo->cfg.func == func)) { return (dinfo->cfg.dev); } } return (NULL); } /* Find a device_t by vendor/device ID */ device_t pci_find_device(uint16_t vendor, uint16_t device) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if ((dinfo->cfg.vendor == vendor) && (dinfo->cfg.device == device)) { return (dinfo->cfg.dev); } } return (NULL); } device_t pci_find_class(uint8_t class, uint8_t subclass) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if (dinfo->cfg.baseclass == class && dinfo->cfg.subclass == subclass) { return (dinfo->cfg.dev); } } return (NULL); } static int pci_printf(pcicfgregs *cfg, const char *fmt, ...) { va_list ap; int retval; retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, cfg->func); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } /* return base address of memory or port map */ static pci_addr_t pci_mapbase(uint64_t mapreg) { if (PCI_BAR_MEM(mapreg)) return (mapreg & PCIM_BAR_MEM_BASE); else return (mapreg & PCIM_BAR_IO_BASE); } /* return map type of memory or port map */ static const char * pci_maptype(uint64_t mapreg) { if (PCI_BAR_IO(mapreg)) return ("I/O Port"); if (mapreg & PCIM_BAR_MEM_PREFETCH) return ("Prefetchable Memory"); return ("Memory"); } /* return log2 of map size decoded for memory or port map */ int pci_mapsize(uint64_t testval) { int ln2size; testval = pci_mapbase(testval); ln2size = 0; if (testval != 0) { while ((testval & 1) == 0) { ln2size++; testval >>= 1; } } return (ln2size); } /* return base address of device ROM */ static pci_addr_t pci_rombase(uint64_t mapreg) { return (mapreg & PCIM_BIOS_ADDR_MASK); } /* return log2 of map size decided for device ROM */ static int pci_romsize(uint64_t testval) { int ln2size; testval = pci_rombase(testval); ln2size = 0; if (testval != 0) { while ((testval & 1) == 0) { ln2size++; testval >>= 1; } } return (ln2size); } /* return log2 of address range supported by map register */ static int pci_maprange(uint64_t mapreg) { int ln2range = 0; if (PCI_BAR_IO(mapreg)) ln2range = 32; else switch (mapreg & PCIM_BAR_MEM_TYPE) { case PCIM_BAR_MEM_32: ln2range = 32; break; case PCIM_BAR_MEM_1MB: ln2range = 20; break; case PCIM_BAR_MEM_64: ln2range = 64; break; } return (ln2range); } /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ static void pci_fixancient(pcicfgregs *cfg) { if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) return; /* PCI to PCI bridges use header type 1 */ if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; } /* extract header type specific config data */ static void pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) { #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: cfg->subvendor = REG(PCIR_SUBVEND_0, 2); cfg->subdevice = REG(PCIR_SUBDEV_0, 2); cfg->mingnt = REG(PCIR_MINGNT, 1); cfg->maxlat = REG(PCIR_MAXLAT, 1); cfg->nummaps = PCI_MAXMAPS_0; break; case PCIM_HDRTYPE_BRIDGE: + cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); + cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); + cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); + cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); + cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); cfg->nummaps = PCI_MAXMAPS_1; break; case PCIM_HDRTYPE_CARDBUS: + cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); + cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); + cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); + cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); + cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); cfg->subvendor = REG(PCIR_SUBVEND_2, 2); cfg->subdevice = REG(PCIR_SUBDEV_2, 2); cfg->nummaps = PCI_MAXMAPS_2; break; } #undef REG } /* read configuration header into pcicfgregs structure */ struct pci_devinfo * pci_read_device(device_t pcib, int d, int b, int s, int f, size_t size) { #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) uint16_t vid, did; vid = REG(PCIR_VENDOR, 2); did = REG(PCIR_DEVICE, 2); if (vid != 0xffff) return (pci_fill_devinfo(pcib, d, b, s, f, vid, did, size)); return (NULL); } static struct pci_devinfo * pci_fill_devinfo(device_t pcib, int d, int b, int s, int f, uint16_t vid, uint16_t did, size_t size) { struct pci_devinfo *devlist_entry; pcicfgregs *cfg; devlist_entry = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); cfg = &devlist_entry->cfg; cfg->domain = d; cfg->bus = b; cfg->slot = s; cfg->func = f; cfg->vendor = vid; cfg->device = did; cfg->cmdreg = REG(PCIR_COMMAND, 2); cfg->statreg = REG(PCIR_STATUS, 2); cfg->baseclass = REG(PCIR_CLASS, 1); cfg->subclass = REG(PCIR_SUBCLASS, 1); cfg->progif = REG(PCIR_PROGIF, 1); cfg->revid = REG(PCIR_REVID, 1); cfg->hdrtype = REG(PCIR_HDRTYPE, 1); cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); cfg->lattimer = REG(PCIR_LATTIMER, 1); cfg->intpin = REG(PCIR_INTPIN, 1); cfg->intline = REG(PCIR_INTLINE, 1); cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; cfg->hdrtype &= ~PCIM_MFDEV; STAILQ_INIT(&cfg->maps); cfg->devinfo_size = size; cfg->iov = NULL; pci_fixancient(cfg); pci_hdrtypedata(pcib, b, s, f, cfg); if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) pci_read_cap(pcib, cfg); STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); devlist_entry->conf.pc_sel.pc_domain = cfg->domain; devlist_entry->conf.pc_sel.pc_bus = cfg->bus; devlist_entry->conf.pc_sel.pc_dev = cfg->slot; devlist_entry->conf.pc_sel.pc_func = cfg->func; devlist_entry->conf.pc_hdr = cfg->hdrtype; devlist_entry->conf.pc_subvendor = cfg->subvendor; devlist_entry->conf.pc_subdevice = cfg->subdevice; devlist_entry->conf.pc_vendor = cfg->vendor; devlist_entry->conf.pc_device = cfg->device; devlist_entry->conf.pc_class = cfg->baseclass; devlist_entry->conf.pc_subclass = cfg->subclass; devlist_entry->conf.pc_progif = cfg->progif; devlist_entry->conf.pc_revid = cfg->revid; pci_numdevs++; pci_generation++; return (devlist_entry); } #undef REG static void pci_read_cap(device_t pcib, pcicfgregs *cfg) { #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) uint64_t addr; #endif uint32_t val; int ptr, nextptr, ptrptr; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptrptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ break; default: return; /* no extended capabilities support */ } nextptr = REG(ptrptr, 1); /* sanity check? */ /* * Read capability entries. */ while (nextptr != 0) { /* Sanity check */ if (nextptr > 255) { printf("illegal PCI extended capability offset %d\n", nextptr); return; } /* Find the next entry */ ptr = nextptr; nextptr = REG(ptr + PCICAP_NEXTPTR, 1); /* Process this entry */ switch (REG(ptr + PCICAP_ID, 1)) { case PCIY_PMG: /* PCI power management */ if (cfg->pp.pp_cap == 0) { cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; if ((nextptr - ptr) > PCIR_POWER_DATA) cfg->pp.pp_data = ptr + PCIR_POWER_DATA; } break; case PCIY_HT: /* HyperTransport */ /* Determine HT-specific capability type. */ val = REG(ptr + PCIR_HT_COMMAND, 2); if ((val & 0xe000) == PCIM_HTCAP_SLAVE) cfg->ht.ht_slave = ptr; #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) switch (val & PCIM_HTCMD_CAP_MASK) { case PCIM_HTCAP_MSI_MAPPING: if (!(val & PCIM_HTCMD_MSI_FIXED)) { /* Sanity check the mapping window. */ addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 4); addr <<= 32; addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 4); if (addr != MSI_INTEL_ADDR_BASE) device_printf(pcib, "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", cfg->domain, cfg->bus, cfg->slot, cfg->func, (long long)addr); } else addr = MSI_INTEL_ADDR_BASE; cfg->ht.ht_msimap = ptr; cfg->ht.ht_msictrl = val; cfg->ht.ht_msiaddr = addr; break; } #endif break; case PCIY_MSI: /* PCI MSI */ cfg->msi.msi_location = ptr; cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & PCIM_MSICTRL_MMC_MASK)>>1); break; case PCIY_MSIX: /* PCI MSI-X */ cfg->msix.msix_location = ptr; cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1; val = REG(ptr + PCIR_MSIX_TABLE, 4); cfg->msix.msix_table_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; val = REG(ptr + PCIR_MSIX_PBA, 4); cfg->msix.msix_pba_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; break; case PCIY_VPD: /* PCI Vital Product Data */ cfg->vpd.vpd_reg = ptr; break; case PCIY_SUBVENDOR: /* Should always be true. */ if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) { val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); cfg->subvendor = val & 0xffff; cfg->subdevice = val >> 16; } break; case PCIY_PCIX: /* PCI-X */ /* * Assume we have a PCI-X chipset if we have * at least one PCI-PCI bridge with a PCI-X * capability. Note that some systems with * PCI-express or HT chipsets might match on * this check as well. */ if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) pcix_chipset = 1; cfg->pcix.pcix_location = ptr; break; case PCIY_EXPRESS: /* PCI-express */ /* * Assume we have a PCI-express chipset if we have * at least one PCI-express device. */ pcie_chipset = 1; cfg->pcie.pcie_location = ptr; val = REG(ptr + PCIER_FLAGS, 2); cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; break; default: break; } } #if defined(__powerpc__) /* * Enable the MSI mapping window for all HyperTransport * slaves. PCI-PCI bridges have their windows enabled via * PCIB_MAP_MSI(). */ if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { device_printf(pcib, "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", cfg->domain, cfg->bus, cfg->slot, cfg->func); cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 2); } #endif /* REG and WREG use carry through to next functions */ } /* * PCI Vital Product Data */ #define PCI_VPD_TIMEOUT 1000000 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) { int count = PCI_VPD_TIMEOUT; KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { if (--count < 0) return (ENXIO); DELAY(1); /* limit looping */ } *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); return (0); } #if 0 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) { int count = PCI_VPD_TIMEOUT; KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { if (--count < 0) return (ENXIO); DELAY(1); /* limit looping */ } return (0); } #endif #undef PCI_VPD_TIMEOUT struct vpd_readstate { device_t pcib; pcicfgregs *cfg; uint32_t val; int bytesinval; int off; uint8_t cksum; }; static int vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) { uint32_t reg; uint8_t byte; if (vrs->bytesinval == 0) { if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) return (ENXIO); vrs->val = le32toh(reg); vrs->off += 4; byte = vrs->val & 0xff; vrs->bytesinval = 3; } else { vrs->val = vrs->val >> 8; byte = vrs->val & 0xff; vrs->bytesinval--; } vrs->cksum += byte; *data = byte; return (0); } static void pci_read_vpd(device_t pcib, pcicfgregs *cfg) { struct vpd_readstate vrs; int state; int name; int remain; int i; int alloc, off; /* alloc/off for RO/W arrays */ int cksumvalid; int dflen; uint8_t byte; uint8_t byte2; /* init vpd reader */ vrs.bytesinval = 0; vrs.off = 0; vrs.pcib = pcib; vrs.cfg = cfg; vrs.cksum = 0; state = 0; name = remain = i = 0; /* shut up stupid gcc */ alloc = off = 0; /* shut up stupid gcc */ dflen = 0; /* shut up stupid gcc */ cksumvalid = -1; while (state >= 0) { if (vpd_nextbyte(&vrs, &byte)) { state = -2; break; } #if 0 printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \ "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, vrs.off, vrs.bytesinval, byte, state, remain, name, i); #endif switch (state) { case 0: /* item name */ if (byte & 0x80) { if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } remain = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } remain |= byte2 << 8; if (remain > (0x7f*4 - vrs.off)) { state = -1; pci_printf(cfg, "invalid VPD data, remain %#x\n", remain); } name = byte & 0x7f; } else { remain = byte & 0x7; name = (byte >> 3) & 0xf; } switch (name) { case 0x2: /* String */ cfg->vpd.vpd_ident = malloc(remain + 1, M_DEVBUF, M_WAITOK); i = 0; state = 1; break; case 0xf: /* End */ state = -1; break; case 0x10: /* VPD-R */ alloc = 8; off = 0; cfg->vpd.vpd_ros = malloc(alloc * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); state = 2; break; case 0x11: /* VPD-W */ alloc = 8; off = 0; cfg->vpd.vpd_w = malloc(alloc * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); state = 5; break; default: /* Invalid data, abort */ state = -1; break; } break; case 1: /* Identifier String */ cfg->vpd.vpd_ident[i++] = byte; remain--; if (remain == 0) { cfg->vpd.vpd_ident[i] = '\0'; state = 0; } break; case 2: /* VPD-R Keyword Header */ if (off == alloc) { cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); } cfg->vpd.vpd_ros[off].keyword[0] = byte; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_ros[off].keyword[1] = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_ros[off].len = dflen = byte2; if (dflen == 0 && strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 2) == 0) { /* * if this happens, we can't trust the rest * of the VPD. */ pci_printf(cfg, "bad keyword length: %d\n", dflen); cksumvalid = 0; state = -1; break; } else if (dflen == 0) { cfg->vpd.vpd_ros[off].value = malloc(1 * sizeof(*cfg->vpd.vpd_ros[off].value), M_DEVBUF, M_WAITOK); cfg->vpd.vpd_ros[off].value[0] = '\x00'; } else cfg->vpd.vpd_ros[off].value = malloc( (dflen + 1) * sizeof(*cfg->vpd.vpd_ros[off].value), M_DEVBUF, M_WAITOK); remain -= 3; i = 0; /* keep in sync w/ state 3's transistions */ if (dflen == 0 && remain == 0) state = 0; else if (dflen == 0) state = 2; else state = 3; break; case 3: /* VPD-R Keyword Value */ cfg->vpd.vpd_ros[off].value[i++] = byte; if (strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 2) == 0 && cksumvalid == -1) { if (vrs.cksum == 0) cksumvalid = 1; else { if (bootverbose) pci_printf(cfg, "bad VPD cksum, remain %hhu\n", vrs.cksum); cksumvalid = 0; state = -1; break; } } dflen--; remain--; /* keep in sync w/ state 2's transistions */ if (dflen == 0) cfg->vpd.vpd_ros[off++].value[i++] = '\0'; if (dflen == 0 && remain == 0) { cfg->vpd.vpd_rocnt = off; cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, off * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); state = 0; } else if (dflen == 0) state = 2; break; case 4: remain--; if (remain == 0) state = 0; break; case 5: /* VPD-W Keyword Header */ if (off == alloc) { cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); } cfg->vpd.vpd_w[off].keyword[0] = byte; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_w[off].keyword[1] = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_w[off].len = dflen = byte2; cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * sizeof(*cfg->vpd.vpd_w[off].value), M_DEVBUF, M_WAITOK); remain -= 3; i = 0; /* keep in sync w/ state 6's transistions */ if (dflen == 0 && remain == 0) state = 0; else if (dflen == 0) state = 5; else state = 6; break; case 6: /* VPD-W Keyword Value */ cfg->vpd.vpd_w[off].value[i++] = byte; dflen--; remain--; /* keep in sync w/ state 5's transistions */ if (dflen == 0) cfg->vpd.vpd_w[off++].value[i++] = '\0'; if (dflen == 0 && remain == 0) { cfg->vpd.vpd_wcnt = off; cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, off * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); state = 0; } else if (dflen == 0) state = 5; break; default: pci_printf(cfg, "invalid state: %d\n", state); state = -1; break; } } if (cksumvalid == 0 || state < -1) { /* read-only data bad, clean up */ if (cfg->vpd.vpd_ros != NULL) { for (off = 0; cfg->vpd.vpd_ros[off].value; off++) free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); free(cfg->vpd.vpd_ros, M_DEVBUF); cfg->vpd.vpd_ros = NULL; } } if (state < -1) { /* I/O error, clean up */ pci_printf(cfg, "failed to read VPD data.\n"); if (cfg->vpd.vpd_ident != NULL) { free(cfg->vpd.vpd_ident, M_DEVBUF); cfg->vpd.vpd_ident = NULL; } if (cfg->vpd.vpd_w != NULL) { for (off = 0; cfg->vpd.vpd_w[off].value; off++) free(cfg->vpd.vpd_w[off].value, M_DEVBUF); free(cfg->vpd.vpd_w, M_DEVBUF); cfg->vpd.vpd_w = NULL; } } cfg->vpd.vpd_cached = 1; #undef REG #undef WREG } int pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(dev), cfg); *identptr = cfg->vpd.vpd_ident; if (*identptr == NULL) return (ENXIO); return (0); } int pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, const char **vptr) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; int i; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(dev), cfg); for (i = 0; i < cfg->vpd.vpd_rocnt; i++) if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { *vptr = cfg->vpd.vpd_ros[i].value; return (0); } *vptr = NULL; return (ENXIO); } struct pcicfg_vpd * pci_fetch_vpd_list(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); return (&cfg->vpd); } /* * Find the requested HyperTransport capability and return the offset * in configuration space via the pointer provided. The function * returns 0 on success and an error code otherwise. */ int pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) { int ptr, error; uint16_t val; error = pci_find_cap(child, PCIY_HT, &ptr); if (error) return (error); /* * Traverse the capabilities list checking each HT capability * to see if it matches the requested HT capability. */ while (ptr != 0) { val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); if (capability == PCIM_HTCAP_SLAVE || capability == PCIM_HTCAP_HOST) val &= 0xe000; else val &= PCIM_HTCMD_CAP_MASK; if (val == capability) { if (capreg != NULL) *capreg = ptr; return (0); } /* Skip to the next HT capability. */ while (ptr != 0) { ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); if (pci_read_config(child, ptr + PCICAP_ID, 1) == PCIY_HT) break; } } return (ENOENT); } /* * Find the requested capability and return the offset in * configuration space via the pointer provided. The function returns * 0 on success and an error code otherwise. */ int pci_find_cap_method(device_t dev, device_t child, int capability, int *capreg) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; u_int32_t status; u_int8_t ptr; /* * Check the CAP_LIST bit of the PCI status register first. */ status = pci_read_config(child, PCIR_STATUS, 2); if (!(status & PCIM_STATUS_CAPPRESENT)) return (ENXIO); /* * Determine the start pointer of the capabilities list. */ switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptr = PCIR_CAP_PTR_2; break; default: /* XXX: panic? */ return (ENXIO); /* no extended capabilities support */ } ptr = pci_read_config(child, ptr, 1); /* * Traverse the capabilities list. */ while (ptr != 0) { if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); } return (ENOENT); } /* * Find the requested extended capability and return the offset in * configuration space via the pointer provided. The function returns * 0 on success and an error code otherwise. */ int pci_find_extcap_method(device_t dev, device_t child, int capability, int *capreg) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint32_t ecap; uint16_t ptr; /* Only supported for PCI-express devices. */ if (cfg->pcie.pcie_location == 0) return (ENXIO); ptr = PCIR_EXTCAP; ecap = pci_read_config(child, ptr, 4); if (ecap == 0xffffffff || ecap == 0) return (ENOENT); for (;;) { if (PCI_EXTCAP_ID(ecap) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = PCI_EXTCAP_NEXTPTR(ecap); if (ptr == 0) break; ecap = pci_read_config(child, ptr, 4); } return (ENOENT); } /* * Support for MSI-X message interrupts. */ void pci_enable_msix_method(device_t dev, device_t child, u_int index, uint64_t address, uint32_t data) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_table_offset + index * 16; bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); bus_write_4(msix->msix_table_res, offset + 4, address >> 32); bus_write_4(msix->msix_table_res, offset + 8, data); /* Enable MSI -> HT mapping. */ pci_ht_map_msi(child, address); } void pci_mask_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, val; KASSERT(msix->msix_msgnum > index, ("bogus index")); offset = msix->msix_table_offset + index * 16 + 12; val = bus_read_4(msix->msix_table_res, offset); if (!(val & PCIM_MSIX_VCTRL_MASK)) { val |= PCIM_MSIX_VCTRL_MASK; bus_write_4(msix->msix_table_res, offset, val); } } void pci_unmask_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, val; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_table_offset + index * 16 + 12; val = bus_read_4(msix->msix_table_res, offset); if (val & PCIM_MSIX_VCTRL_MASK) { val &= ~PCIM_MSIX_VCTRL_MASK; bus_write_4(msix->msix_table_res, offset, val); } } int pci_pending_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, bit; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_pba_offset + (index / 32) * 4; bit = 1 << index % 32; return (bus_read_4(msix->msix_pba_res, offset) & bit); } /* * Restore MSI-X registers and table during resume. If MSI-X is * enabled then walk the virtual table to restore the actual MSI-X * table. */ static void pci_resume_msix(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct msix_table_entry *mte; struct msix_vector *mv; int i; if (msix->msix_alloc > 0) { /* First, mask all vectors. */ for (i = 0; i < msix->msix_msgnum; i++) pci_mask_msix(dev, i); /* Second, program any messages with at least one handler. */ for (i = 0; i < msix->msix_table_len; i++) { mte = &msix->msix_table[i]; if (mte->mte_vector == 0 || mte->mte_handlers == 0) continue; mv = &msix->msix_vectors[mte->mte_vector - 1]; pci_enable_msix(dev, i, mv->mv_address, mv->mv_data); pci_unmask_msix(dev, i); } } pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, msix->msix_ctrl, 2); } /* * Attempt to allocate *count MSI-X messages. The actual number allocated is * returned in *count. After this function returns, each message will be * available to the driver as SYS_RES_IRQ resources starting at rid 1. */ int pci_alloc_msix_method(device_t dev, device_t child, int *count) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; int actual, error, i, irq, max; /* Don't let count == 0 get us into trouble. */ if (*count == 0) return (EINVAL); /* If rid 0 is allocated, then fail. */ rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); if (rle != NULL && rle->res != NULL) return (ENXIO); /* Already have allocated messages? */ if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) return (ENXIO); /* If MSI-X is blacklisted for this system, fail. */ if (pci_msix_blacklisted()) return (ENXIO); /* MSI-X capability present? */ if (cfg->msix.msix_location == 0 || !pci_do_msix) return (ENODEV); /* Make sure the appropriate BARs are mapped. */ rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, cfg->msix.msix_table_bar); if (rle == NULL || rle->res == NULL || !(rman_get_flags(rle->res) & RF_ACTIVE)) return (ENXIO); cfg->msix.msix_table_res = rle->res; if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, cfg->msix.msix_pba_bar); if (rle == NULL || rle->res == NULL || !(rman_get_flags(rle->res) & RF_ACTIVE)) return (ENXIO); } cfg->msix.msix_pba_res = rle->res; if (bootverbose) device_printf(child, "attempting to allocate %d MSI-X vectors (%d supported)\n", *count, cfg->msix.msix_msgnum); max = min(*count, cfg->msix.msix_msgnum); for (i = 0; i < max; i++) { /* Allocate a message. */ error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); if (error) { if (i == 0) return (error); break; } resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, irq, 1); } actual = i; if (bootverbose) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); if (actual == 1) device_printf(child, "using IRQ %lu for MSI-X\n", rle->start); else { int run; /* * Be fancy and try to print contiguous runs of * IRQ values as ranges. 'irq' is the previous IRQ. * 'run' is true if we are in a range. */ device_printf(child, "using IRQs %lu", rle->start); irq = rle->start; run = 0; for (i = 1; i < actual; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); /* Still in a run? */ if (rle->start == irq + 1) { run = 1; irq++; continue; } /* Finish previous range. */ if (run) { printf("-%d", irq); run = 0; } /* Start new range. */ printf(",%lu", rle->start); irq = rle->start; } /* Unfinished range? */ if (run) printf("-%d", irq); printf(" for MSI-X\n"); } } /* Mask all vectors. */ for (i = 0; i < cfg->msix.msix_msgnum; i++) pci_mask_msix(child, i); /* Allocate and initialize vector data and virtual table. */ cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, M_DEVBUF, M_WAITOK | M_ZERO); cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < actual; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); cfg->msix.msix_vectors[i].mv_irq = rle->start; cfg->msix.msix_table[i].mte_vector = i + 1; } /* Update control register to enable MSI-X. */ cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, cfg->msix.msix_ctrl, 2); /* Update counts of alloc'd messages. */ cfg->msix.msix_alloc = actual; cfg->msix.msix_table_len = actual; *count = actual; return (0); } /* * By default, pci_alloc_msix() will assign the allocated IRQ * resources consecutively to the first N messages in the MSI-X table. * However, device drivers may want to use different layouts if they * either receive fewer messages than they asked for, or they wish to * populate the MSI-X table sparsely. This method allows the driver * to specify what layout it wants. It must be called after a * successful pci_alloc_msix() but before any of the associated * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). * * The 'vectors' array contains 'count' message vectors. The array * maps directly to the MSI-X table in that index 0 in the array * specifies the vector for the first message in the MSI-X table, etc. * The vector value in each array index can either be 0 to indicate * that no vector should be assigned to a message slot, or it can be a * number from 1 to N (where N is the count returned from a * succcessful call to pci_alloc_msix()) to indicate which message * vector (IRQ) to be used for the corresponding message. * * On successful return, each message with a non-zero vector will have * an associated SYS_RES_IRQ whose rid is equal to the array index + * 1. Additionally, if any of the IRQs allocated via the previous * call to pci_alloc_msix() are not used in the mapping, those IRQs * will be freed back to the system automatically. * * For example, suppose a driver has a MSI-X table with 6 messages and * asks for 6 messages, but pci_alloc_msix() only returns a count of * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and * C. After the call to pci_alloc_msix(), the device will be setup to * have an MSI-X table of ABC--- (where - means no vector assigned). * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, * then the MSI-X table will look like A-AB-B, and the 'C' vector will * be freed back to the system. This device will also have valid * SYS_RES_IRQ rids of 1, 3, 4, and 6. * * In any case, the SYS_RES_IRQ rid X will always map to the message * at MSI-X table index X - 1 and will only be valid if a vector is * assigned to that table entry. */ int pci_remap_msix_method(device_t dev, device_t child, int count, const u_int *vectors) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct resource_list_entry *rle; int i, irq, j, *used; /* * Have to have at least one message in the table but the * table can't be bigger than the actual MSI-X table in the * device. */ if (count == 0 || count > msix->msix_msgnum) return (EINVAL); /* Sanity check the vectors. */ for (i = 0; i < count; i++) if (vectors[i] > msix->msix_alloc) return (EINVAL); /* * Make sure there aren't any holes in the vectors to be used. * It's a big pain to support it, and it doesn't really make * sense anyway. Also, at least one vector must be used. */ used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < count; i++) if (vectors[i] != 0) used[vectors[i] - 1] = 1; for (i = 0; i < msix->msix_alloc - 1; i++) if (used[i] == 0 && used[i + 1] == 1) { free(used, M_DEVBUF); return (EINVAL); } if (used[0] != 1) { free(used, M_DEVBUF); return (EINVAL); } /* Make sure none of the resources are allocated. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; if (msix->msix_table[i].mte_handlers > 0) { free(used, M_DEVBUF); return (EBUSY); } rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing resource")); if (rle->res != NULL) { free(used, M_DEVBUF); return (EBUSY); } } /* Free the existing resource list entries. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); } /* * Build the new virtual table keeping track of which vectors are * used. */ free(msix->msix_table, M_DEVBUF); msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < count; i++) msix->msix_table[i].mte_vector = vectors[i]; msix->msix_table_len = count; /* Free any unused IRQs and resize the vectors array if necessary. */ j = msix->msix_alloc - 1; if (used[j] == 0) { struct msix_vector *vec; while (used[j] == 0) { PCIB_RELEASE_MSIX(device_get_parent(dev), child, msix->msix_vectors[j].mv_irq); j--; } vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, M_WAITOK); bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * (j + 1)); free(msix->msix_vectors, M_DEVBUF); msix->msix_vectors = vec; msix->msix_alloc = j + 1; } free(used, M_DEVBUF); /* Map the IRQs onto the rids. */ for (i = 0; i < count; i++) { if (vectors[i] == 0) continue; irq = msix->msix_vectors[vectors[i]].mv_irq; resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, irq, 1); } if (bootverbose) { device_printf(child, "Remapped MSI-X IRQs as: "); for (i = 0; i < count; i++) { if (i != 0) printf(", "); if (vectors[i] == 0) printf("---"); else printf("%d", msix->msix_vectors[vectors[i]].mv_irq); } printf("\n"); } return (0); } static int pci_release_msix(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct resource_list_entry *rle; int i; /* Do we have any messages to release? */ if (msix->msix_alloc == 0) return (ENODEV); /* Make sure none of the resources are allocated. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; if (msix->msix_table[i].mte_handlers > 0) return (EBUSY); rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing resource")); if (rle->res != NULL) return (EBUSY); } /* Update control register to disable MSI-X. */ msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, msix->msix_ctrl, 2); /* Free the resource list entries. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); } free(msix->msix_table, M_DEVBUF); msix->msix_table_len = 0; /* Release the IRQs. */ for (i = 0; i < msix->msix_alloc; i++) PCIB_RELEASE_MSIX(device_get_parent(dev), child, msix->msix_vectors[i].mv_irq); free(msix->msix_vectors, M_DEVBUF); msix->msix_alloc = 0; return (0); } /* * Return the max supported MSI-X messages this device supports. * Basically, assuming the MD code can alloc messages, this function * should return the maximum value that pci_alloc_msix() can return. * Thus, it is subject to the tunables, etc. */ int pci_msix_count_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; if (pci_do_msix && msix->msix_location != 0) return (msix->msix_msgnum); return (0); } /* * HyperTransport MSI mapping control */ void pci_ht_map_msi(device_t dev, uint64_t addr) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_ht *ht = &dinfo->cfg.ht; if (!ht->ht_msimap) return; if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && ht->ht_msiaddr >> 20 == addr >> 20) { /* Enable MSI -> HT mapping. */ ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, ht->ht_msictrl, 2); } if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { /* Disable MSI -> HT mapping. */ ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, ht->ht_msictrl, 2); } } int pci_get_max_read_req(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; uint16_t val; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); val &= PCIEM_CTL_MAX_READ_REQUEST; val >>= 12; return (1 << (val + 7)); } int pci_set_max_read_req(device_t dev, int size) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; uint16_t val; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); if (size < 128) size = 128; if (size > 4096) size = 4096; size = (1 << (fls(size) - 1)); val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); val &= ~PCIEM_CTL_MAX_READ_REQUEST; val |= (fls(size) - 8) << 12; pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); return (size); } /* * Support for MSI message signalled interrupts. */ void pci_enable_msi_method(device_t dev, device_t child, uint64_t address, uint16_t data) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; /* Write data and address values. */ pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, address & 0xffffffff, 4); if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, address >> 32, 4); pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, data, 2); } else pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2); /* Enable MSI in the control register. */ msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); /* Enable MSI -> HT mapping. */ pci_ht_map_msi(child, address); } void pci_disable_msi_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; /* Disable MSI -> HT mapping. */ pci_ht_map_msi(child, 0); /* Disable MSI in the control register. */ msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); } /* * Restore MSI registers during resume. If MSI is enabled then * restore the data and address registers in addition to the control * register. */ static void pci_resume_msi(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msi *msi = &dinfo->cfg.msi; uint64_t address; uint16_t data; if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { address = msi->msi_addr; data = msi->msi_data; pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, address & 0xffffffff, 4); if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH, address >> 32, 4); pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT, data, 2); } else pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data, 2); } pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); } static int pci_remap_intr_method(device_t bus, device_t dev, u_int irq) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; struct msix_table_entry *mte; struct msix_vector *mv; uint64_t addr; uint32_t data; int error, i, j; /* * Handle MSI first. We try to find this IRQ among our list * of MSI IRQs. If we find it, we request updated address and * data registers and apply the results. */ if (cfg->msi.msi_alloc > 0) { /* If we don't have any active handlers, nothing to do. */ if (cfg->msi.msi_handlers == 0) return (0); for (i = 0; i < cfg->msi.msi_alloc; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); if (rle->start == irq) { error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, &addr, &data); if (error) return (error); pci_disable_msi(dev); dinfo->cfg.msi.msi_addr = addr; dinfo->cfg.msi.msi_data = data; pci_enable_msi(dev, addr, data); return (0); } } return (ENOENT); } /* * For MSI-X, we check to see if we have this IRQ. If we do, * we request the updated mapping info. If that works, we go * through all the slots that use this IRQ and update them. */ if (cfg->msix.msix_alloc > 0) { for (i = 0; i < cfg->msix.msix_alloc; i++) { mv = &cfg->msix.msix_vectors[i]; if (mv->mv_irq == irq) { error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, &addr, &data); if (error) return (error); mv->mv_address = addr; mv->mv_data = data; for (j = 0; j < cfg->msix.msix_table_len; j++) { mte = &cfg->msix.msix_table[j]; if (mte->mte_vector != i + 1) continue; if (mte->mte_handlers == 0) continue; pci_mask_msix(dev, j); pci_enable_msix(dev, j, addr, data); pci_unmask_msix(dev, j); } } } return (ENOENT); } return (ENOENT); } /* * Returns true if the specified device is blacklisted because MSI * doesn't work. */ int pci_msi_device_blacklisted(device_t dev) { if (!pci_honor_msi_blacklist) return (0); return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); } /* * Determine if MSI is blacklisted globally on this system. Currently, * we just check for blacklisted chipsets as represented by the * host-PCI bridge at device 0:0:0. In the future, it may become * necessary to check other system attributes, such as the kenv values * that give the motherboard manufacturer and model number. */ static int pci_msi_blacklisted(void) { device_t dev; if (!pci_honor_msi_blacklist) return (0); /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ if (!(pcie_chipset || pcix_chipset)) { if (vm_guest != VM_GUEST_NO) { /* * Whitelist older chipsets in virtual * machines known to support MSI. */ dev = pci_find_bsf(0, 0, 0); if (dev != NULL) return (!pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_ENABLE_MSI_VM)); } return (1); } dev = pci_find_bsf(0, 0, 0); if (dev != NULL) return (pci_msi_device_blacklisted(dev)); return (0); } /* * Returns true if the specified device is blacklisted because MSI-X * doesn't work. Note that this assumes that if MSI doesn't work, * MSI-X doesn't either. */ int pci_msix_device_blacklisted(device_t dev) { if (!pci_honor_msi_blacklist) return (0); if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) return (1); return (pci_msi_device_blacklisted(dev)); } /* * Determine if MSI-X is blacklisted globally on this system. If MSI * is blacklisted, assume that MSI-X is as well. Check for additional * chipsets where MSI works but MSI-X does not. */ static int pci_msix_blacklisted(void) { device_t dev; if (!pci_honor_msi_blacklist) return (0); dev = pci_find_bsf(0, 0, 0); if (dev != NULL && pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) return (1); return (pci_msi_blacklisted()); } /* * Attempt to allocate *count MSI messages. The actual number allocated is * returned in *count. After this function returns, each message will be * available to the driver as SYS_RES_IRQ resources starting at a rid 1. */ int pci_alloc_msi_method(device_t dev, device_t child, int *count) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; int actual, error, i, irqs[32]; uint16_t ctrl; /* Don't let count == 0 get us into trouble. */ if (*count == 0) return (EINVAL); /* If rid 0 is allocated, then fail. */ rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); if (rle != NULL && rle->res != NULL) return (ENXIO); /* Already have allocated messages? */ if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) return (ENXIO); /* If MSI is blacklisted for this system, fail. */ if (pci_msi_blacklisted()) return (ENXIO); /* MSI capability present? */ if (cfg->msi.msi_location == 0 || !pci_do_msi) return (ENODEV); if (bootverbose) device_printf(child, "attempting to allocate %d MSI vectors (%d supported)\n", *count, cfg->msi.msi_msgnum); /* Don't ask for more than the device supports. */ actual = min(*count, cfg->msi.msi_msgnum); /* Don't ask for more than 32 messages. */ actual = min(actual, 32); /* MSI requires power of 2 number of messages. */ if (!powerof2(actual)) return (EINVAL); for (;;) { /* Try to allocate N messages. */ error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, actual, irqs); if (error == 0) break; if (actual == 1) return (error); /* Try N / 2. */ actual >>= 1; } /* * We now have N actual messages mapped onto SYS_RES_IRQ * resources in the irqs[] array, so add new resources * starting at rid 1. */ for (i = 0; i < actual; i++) resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irqs[i], irqs[i], 1); if (bootverbose) { if (actual == 1) device_printf(child, "using IRQ %d for MSI\n", irqs[0]); else { int run; /* * Be fancy and try to print contiguous runs * of IRQ values as ranges. 'run' is true if * we are in a range. */ device_printf(child, "using IRQs %d", irqs[0]); run = 0; for (i = 1; i < actual; i++) { /* Still in a run? */ if (irqs[i] == irqs[i - 1] + 1) { run = 1; continue; } /* Finish previous range. */ if (run) { printf("-%d", irqs[i - 1]); run = 0; } /* Start new range. */ printf(",%d", irqs[i]); } /* Unfinished range? */ if (run) printf("-%d", irqs[actual - 1]); printf(" for MSI\n"); } } /* Update control register with actual count. */ ctrl = cfg->msi.msi_ctrl; ctrl &= ~PCIM_MSICTRL_MME_MASK; ctrl |= (ffs(actual) - 1) << 4; cfg->msi.msi_ctrl = ctrl; pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); /* Update counts of alloc'd messages. */ cfg->msi.msi_alloc = actual; cfg->msi.msi_handlers = 0; *count = actual; return (0); } /* Release the MSI messages associated with this device. */ int pci_release_msi_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; struct resource_list_entry *rle; int error, i, irqs[32]; /* Try MSI-X first. */ error = pci_release_msix(dev, child); if (error != ENODEV) return (error); /* Do we have any messages to release? */ if (msi->msi_alloc == 0) return (ENODEV); KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); /* Make sure none of the resources are allocated. */ if (msi->msi_handlers > 0) return (EBUSY); for (i = 0; i < msi->msi_alloc; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing MSI resource")); if (rle->res != NULL) return (EBUSY); irqs[i] = rle->start; } /* Update control register with 0 count. */ KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), ("%s: MSI still enabled", __func__)); msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); /* Release the messages. */ PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); for (i = 0; i < msi->msi_alloc; i++) resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); /* Update alloc count. */ msi->msi_alloc = 0; msi->msi_addr = 0; msi->msi_data = 0; return (0); } /* * Return the max supported MSI messages this device supports. * Basically, assuming the MD code can alloc messages, this function * should return the maximum value that pci_alloc_msi() can return. * Thus, it is subject to the tunables, etc. */ int pci_msi_count_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; if (pci_do_msi && msi->msi_location != 0) return (msi->msi_msgnum); return (0); } /* free pcicfgregs structure and all depending data structures */ int pci_freecfg(struct pci_devinfo *dinfo) { struct devlist *devlist_head; struct pci_map *pm, *next; int i; devlist_head = &pci_devq; if (dinfo->cfg.vpd.vpd_reg) { free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); } STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { free(pm, M_DEVBUF); } STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); free(dinfo, M_DEVBUF); /* increment the generation count */ pci_generation++; /* we're losing one device */ pci_numdevs--; return (0); } /* * PCI power manangement */ int pci_set_powerstate_method(device_t dev, device_t child, int state) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint16_t status; int result, oldstate, highest, delay; if (cfg->pp.pp_cap == 0) return (EOPNOTSUPP); /* * Optimize a no state change request away. While it would be OK to * write to the hardware in theory, some devices have shown odd * behavior when going from D3 -> D3. */ oldstate = pci_get_powerstate(child); if (oldstate == state) return (0); /* * The PCI power management specification states that after a state * transition between PCI power states, system software must * guarantee a minimal delay before the function accesses the device. * Compute the worst case delay that we need to guarantee before we * access the device. Many devices will be responsive much more * quickly than this delay, but there are some that don't respond * instantly to state changes. Transitions to/from D3 state require * 10ms, while D2 requires 200us, and D0/1 require none. The delay * is done below with DELAY rather than a sleeper function because * this function can be called from contexts where we cannot sleep. */ highest = (oldstate > state) ? oldstate : state; if (highest == PCI_POWERSTATE_D3) delay = 10000; else if (highest == PCI_POWERSTATE_D2) delay = 200; else delay = 0; status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) & ~PCIM_PSTAT_DMASK; result = 0; switch (state) { case PCI_POWERSTATE_D0: status |= PCIM_PSTAT_D0; break; case PCI_POWERSTATE_D1: if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) return (EOPNOTSUPP); status |= PCIM_PSTAT_D1; break; case PCI_POWERSTATE_D2: if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) return (EOPNOTSUPP); status |= PCIM_PSTAT_D2; break; case PCI_POWERSTATE_D3: status |= PCIM_PSTAT_D3; break; default: return (EINVAL); } if (bootverbose) pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, state); PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); if (delay) DELAY(delay); return (0); } int pci_get_powerstate_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint16_t status; int result; if (cfg->pp.pp_cap != 0) { status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); switch (status & PCIM_PSTAT_DMASK) { case PCIM_PSTAT_D0: result = PCI_POWERSTATE_D0; break; case PCIM_PSTAT_D1: result = PCI_POWERSTATE_D1; break; case PCIM_PSTAT_D2: result = PCI_POWERSTATE_D2; break; case PCIM_PSTAT_D3: result = PCI_POWERSTATE_D3; break; default: result = PCI_POWERSTATE_UNKNOWN; break; } } else { /* No support, device is always at D0 */ result = PCI_POWERSTATE_D0; } return (result); } /* * Some convenience functions for PCI device drivers. */ static __inline void pci_set_command_bit(device_t dev, device_t child, uint16_t bit) { uint16_t command; command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); command |= bit; PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); } static __inline void pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) { uint16_t command; command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); command &= ~bit; PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); } int pci_enable_busmaster_method(device_t dev, device_t child) { pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); return (0); } int pci_disable_busmaster_method(device_t dev, device_t child) { pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); return (0); } int pci_enable_io_method(device_t dev, device_t child, int space) { uint16_t bit; switch(space) { case SYS_RES_IOPORT: bit = PCIM_CMD_PORTEN; break; case SYS_RES_MEMORY: bit = PCIM_CMD_MEMEN; break; default: return (EINVAL); } pci_set_command_bit(dev, child, bit); return (0); } int pci_disable_io_method(device_t dev, device_t child, int space) { uint16_t bit; switch(space) { case SYS_RES_IOPORT: bit = PCIM_CMD_PORTEN; break; case SYS_RES_MEMORY: bit = PCIM_CMD_MEMEN; break; default: return (EINVAL); } pci_clear_command_bit(dev, child, bit); return (0); } /* * New style pci driver. Parent device is either a pci-host-bridge or a * pci-pci-bridge. Both kinds are represented by instances of pcib. */ void pci_print_verbose(struct pci_devinfo *dinfo) { if (bootverbose) { pcicfgregs *cfg = &dinfo->cfg; printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", cfg->vendor, cfg->device, cfg->revid); printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", cfg->domain, cfg->bus, cfg->slot, cfg->func); printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, cfg->mfdev); printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", cfg->cmdreg, cfg->statreg, cfg->cachelnsz); printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); if (cfg->intpin > 0) printf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline); if (cfg->pp.pp_cap) { uint16_t status; status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", cfg->pp.pp_cap & PCIM_PCAP_SPEC, cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", status & PCIM_PSTAT_DMASK); } if (cfg->msi.msi_location) { int ctrl; ctrl = cfg->msi.msi_ctrl; printf("\tMSI supports %d message%s%s%s\n", cfg->msi.msi_msgnum, (cfg->msi.msi_msgnum == 1) ? "" : "s", (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); } if (cfg->msix.msix_location) { printf("\tMSI-X supports %d message%s ", cfg->msix.msix_msgnum, (cfg->msix.msix_msgnum == 1) ? "" : "s"); if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) printf("in map 0x%x\n", cfg->msix.msix_table_bar); else printf("in maps 0x%x and 0x%x\n", cfg->msix.msix_table_bar, cfg->msix.msix_pba_bar); } } } static int pci_porten(device_t dev) { return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; } static int pci_memen(device_t dev) { return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; } void pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, int *bar64) { struct pci_devinfo *dinfo; pci_addr_t map, testval; int ln2range; uint16_t cmd; /* * The device ROM BAR is special. It is always a 32-bit * memory BAR. Bit 0 is special and should not be set when * sizing the BAR. */ dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { map = pci_read_config(dev, reg, 4); pci_write_config(dev, reg, 0xfffffffe, 4); testval = pci_read_config(dev, reg, 4); pci_write_config(dev, reg, map, 4); *mapp = map; *testvalp = testval; if (bar64 != NULL) *bar64 = 0; return; } map = pci_read_config(dev, reg, 4); ln2range = pci_maprange(map); if (ln2range == 64) map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; /* * Disable decoding via the command register before * determining the BAR's length since we will be placing it in * a weird state. */ cmd = pci_read_config(dev, PCIR_COMMAND, 2); pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); /* * Determine the BAR's length by writing all 1's. The bottom * log_2(size) bits of the BAR will stick as 0 when we read * the value back. */ pci_write_config(dev, reg, 0xffffffff, 4); testval = pci_read_config(dev, reg, 4); if (ln2range == 64) { pci_write_config(dev, reg + 4, 0xffffffff, 4); testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; } /* * Restore the original value of the BAR. We may have reprogrammed * the BAR of the low-level console device and when booting verbose, * we need the console device addressable. */ pci_write_config(dev, reg, map, 4); if (ln2range == 64) pci_write_config(dev, reg + 4, map >> 32, 4); pci_write_config(dev, PCIR_COMMAND, cmd, 2); *mapp = map; *testvalp = testval; if (bar64 != NULL) *bar64 = (ln2range == 64); } static void pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) { struct pci_devinfo *dinfo; int ln2range; /* The device ROM BAR is always a 32-bit memory BAR. */ dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) ln2range = 32; else ln2range = pci_maprange(pm->pm_value); pci_write_config(dev, pm->pm_reg, base, 4); if (ln2range == 64) pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); if (ln2range == 64) pm->pm_value |= (pci_addr_t)pci_read_config(dev, pm->pm_reg + 4, 4) << 32; } struct pci_map * pci_find_bar(device_t dev, int reg) { struct pci_devinfo *dinfo; struct pci_map *pm; dinfo = device_get_ivars(dev); STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { if (pm->pm_reg == reg) return (pm); } return (NULL); } int pci_bar_enabled(device_t dev, struct pci_map *pm) { struct pci_devinfo *dinfo; uint16_t cmd; dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && !(pm->pm_value & PCIM_BIOS_ENABLE)) return (0); cmd = pci_read_config(dev, PCIR_COMMAND, 2); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) return ((cmd & PCIM_CMD_MEMEN) != 0); else return ((cmd & PCIM_CMD_PORTEN) != 0); } struct pci_map * pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) { struct pci_devinfo *dinfo; struct pci_map *pm, *prev; dinfo = device_get_ivars(dev); pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); pm->pm_reg = reg; pm->pm_value = value; pm->pm_size = size; STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", reg)); if (STAILQ_NEXT(prev, pm_link) == NULL || STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) break; } if (prev != NULL) STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); else STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); return (pm); } static void pci_restore_bars(device_t dev) { struct pci_devinfo *dinfo; struct pci_map *pm; int ln2range; dinfo = device_get_ivars(dev); STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) ln2range = 32; else ln2range = pci_maprange(pm->pm_value); pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); if (ln2range == 64) pci_write_config(dev, pm->pm_reg + 4, pm->pm_value >> 32, 4); } } /* * Add a resource based on a pci map register. Return 1 if the map * register is a 32bit map register or 2 if it is a 64bit register. */ static int pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, int force, int prefetch) { struct pci_map *pm; pci_addr_t base, map, testval; pci_addr_t start, end, count; int barlen, basezero, flags, maprange, mapsize, type; uint16_t cmd; struct resource *res; /* * The BAR may already exist if the device is a CardBus card * whose CIS is stored in this BAR. */ pm = pci_find_bar(dev, reg); if (pm != NULL) { maprange = pci_maprange(pm->pm_value); barlen = maprange == 64 ? 2 : 1; return (barlen); } pci_read_bar(dev, reg, &map, &testval, NULL); if (PCI_BAR_MEM(map)) { type = SYS_RES_MEMORY; if (map & PCIM_BAR_MEM_PREFETCH) prefetch = 1; } else type = SYS_RES_IOPORT; mapsize = pci_mapsize(testval); base = pci_mapbase(map); #ifdef __PCI_BAR_ZERO_VALID basezero = 0; #else basezero = base == 0; #endif maprange = pci_maprange(map); barlen = maprange == 64 ? 2 : 1; /* * For I/O registers, if bottom bit is set, and the next bit up * isn't clear, we know we have a BAR that doesn't conform to the * spec, so ignore it. Also, sanity check the size of the data * areas to the type of memory involved. Memory must be at least * 16 bytes in size, while I/O ranges must be at least 4. */ if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) return (barlen); if ((type == SYS_RES_MEMORY && mapsize < 4) || (type == SYS_RES_IOPORT && mapsize < 2)) return (barlen); /* Save a record of this BAR. */ pm = pci_add_bar(dev, reg, map, mapsize); if (bootverbose) { printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); if (type == SYS_RES_IOPORT && !pci_porten(dev)) printf(", port disabled\n"); else if (type == SYS_RES_MEMORY && !pci_memen(dev)) printf(", memory disabled\n"); else printf(", enabled\n"); } /* * If base is 0, then we have problems if this architecture does * not allow that. It is best to ignore such entries for the * moment. These will be allocated later if the driver specifically * requests them. However, some removable busses look better when * all resources are allocated, so allow '0' to be overriden. * * Similarly treat maps whose values is the same as the test value * read back. These maps have had all f's written to them by the * BIOS in an attempt to disable the resources. */ if (!force && (basezero || map == testval)) return (barlen); if ((u_long)base != base) { device_printf(bus, "pci%d:%d:%d:%d bar %#x too many address bits", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), reg); return (barlen); } /* * This code theoretically does the right thing, but has * undesirable side effects in some cases where peripherals * respond oddly to having these bits enabled. Let the user * be able to turn them off (since pci_enable_io_modes is 1 by * default). */ if (pci_enable_io_modes) { /* Turn on resources that have been left off by a lazy BIOS */ if (type == SYS_RES_IOPORT && !pci_porten(dev)) { cmd = pci_read_config(dev, PCIR_COMMAND, 2); cmd |= PCIM_CMD_PORTEN; pci_write_config(dev, PCIR_COMMAND, cmd, 2); } if (type == SYS_RES_MEMORY && !pci_memen(dev)) { cmd = pci_read_config(dev, PCIR_COMMAND, 2); cmd |= PCIM_CMD_MEMEN; pci_write_config(dev, PCIR_COMMAND, cmd, 2); } } else { if (type == SYS_RES_IOPORT && !pci_porten(dev)) return (barlen); if (type == SYS_RES_MEMORY && !pci_memen(dev)) return (barlen); } count = (pci_addr_t)1 << mapsize; flags = RF_ALIGNMENT_LOG2(mapsize); if (prefetch) flags |= RF_PREFETCHABLE; if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { start = 0; /* Let the parent decide. */ end = ~0ul; } else { start = base; end = base + count - 1; } resource_list_add(rl, type, reg, start, end, count); /* * Try to allocate the resource for this BAR from our parent * so that this resource range is already reserved. The * driver for this device will later inherit this resource in * pci_alloc_resource(). */ res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, flags); if (pci_do_realloc_bars && res == NULL && (start != 0 || end != ~0ul)) { /* * If the allocation fails, try to allocate a resource for * this BAR using any available range. The firmware felt * it was important enough to assign a resource, so don't * disable decoding if we can help it. */ resource_list_delete(rl, type, reg); resource_list_add(rl, type, reg, 0, ~0ul, count); res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0ul, count, flags); } if (res == NULL) { /* * If the allocation fails, delete the resource list entry * and disable decoding for this device. * * If the driver requests this resource in the future, * pci_reserve_map() will try to allocate a fresh * resource range. */ resource_list_delete(rl, type, reg); pci_disable_io(dev, type); if (bootverbose) device_printf(bus, "pci%d:%d:%d:%d bar %#x failed to allocate\n", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), reg); } else { start = rman_get_start(res); pci_write_bar(dev, pm, start); } return (barlen); } /* * For ATA devices we need to decide early what addressing mode to use. * Legacy demands that the primary and secondary ATA ports sits on the * same addresses that old ISA hardware did. This dictates that we use * those addresses and ignore the BAR's if we cannot set PCI native * addressing mode. */ static void pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, uint32_t prefetchmask) { struct resource *r; int rid, type, progif; #if 0 /* if this device supports PCI native addressing use it */ progif = pci_read_config(dev, PCIR_PROGIF, 1); if ((progif & 0x8a) == 0x8a) { if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { printf("Trying ATA native PCI addressing mode\n"); pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); } } #endif progif = pci_read_config(dev, PCIR_PROGIF, 1); type = SYS_RES_IOPORT; if (progif & PCIP_STORAGE_IDE_MODEPRIM) { pci_add_map(bus, dev, PCIR_BAR(0), rl, force, prefetchmask & (1 << 0)); pci_add_map(bus, dev, PCIR_BAR(1), rl, force, prefetchmask & (1 << 1)); } else { rid = PCIR_BAR(0); resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); r = resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8, 0); rid = PCIR_BAR(1); resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); r = resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1, 0); } if (progif & PCIP_STORAGE_IDE_MODESEC) { pci_add_map(bus, dev, PCIR_BAR(2), rl, force, prefetchmask & (1 << 2)); pci_add_map(bus, dev, PCIR_BAR(3), rl, force, prefetchmask & (1 << 3)); } else { rid = PCIR_BAR(2); resource_list_add(rl, type, rid, 0x170, 0x177, 8); r = resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 0x177, 8, 0); rid = PCIR_BAR(3); resource_list_add(rl, type, rid, 0x376, 0x376, 1); r = resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 0x376, 1, 0); } pci_add_map(bus, dev, PCIR_BAR(4), rl, force, prefetchmask & (1 << 4)); pci_add_map(bus, dev, PCIR_BAR(5), rl, force, prefetchmask & (1 << 5)); } static void pci_assign_interrupt(device_t bus, device_t dev, int force_route) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; char tunable_name[64]; int irq; /* Has to have an intpin to have an interrupt. */ if (cfg->intpin == 0) return; /* Let the user override the IRQ with a tunable. */ irq = PCI_INVALID_IRQ; snprintf(tunable_name, sizeof(tunable_name), "hw.pci%d.%d.%d.INT%c.irq", cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) irq = PCI_INVALID_IRQ; /* * If we didn't get an IRQ via the tunable, then we either use the * IRQ value in the intline register or we ask the bus to route an * interrupt for us. If force_route is true, then we only use the * value in the intline register if the bus was unable to assign an * IRQ. */ if (!PCI_INTERRUPT_VALID(irq)) { if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) irq = PCI_ASSIGN_INTERRUPT(bus, dev); if (!PCI_INTERRUPT_VALID(irq)) irq = cfg->intline; } /* If after all that we don't have an IRQ, just bail. */ if (!PCI_INTERRUPT_VALID(irq)) return; /* Update the config register if it changed. */ if (irq != cfg->intline) { cfg->intline = irq; pci_write_config(dev, PCIR_INTLINE, irq, 1); } /* Add this IRQ as rid 0 interrupt resource. */ resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); } /* Perform early OHCI takeover from SMM. */ static void ohci_early_takeover(device_t self) { struct resource *res; uint32_t ctl; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; ctl = bus_read_4(res, OHCI_CONTROL); if (ctl & OHCI_IR) { if (bootverbose) printf("ohci early: " "SMM active, request owner change\n"); bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { DELAY(1000); ctl = bus_read_4(res, OHCI_CONTROL); } if (ctl & OHCI_IR) { if (bootverbose) printf("ohci early: " "SMM does not respond, resetting\n"); bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); } /* Disable interrupts */ bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } /* Perform early UHCI takeover from SMM. */ static void uhci_early_takeover(device_t self) { struct resource *res; int rid; /* * Set the PIRQD enable bit and switch off all the others. We don't * want legacy support to interfere with us XXX Does this also mean * that the BIOS won't touch the keyboard anymore if it is connected * to the ports of the root hub? */ pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); /* Disable interrupts */ rid = PCI_UHCI_BASE_REG; res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (res != NULL) { bus_write_2(res, UHCI_INTR, 0); bus_release_resource(self, SYS_RES_IOPORT, rid, res); } } /* Perform early EHCI takeover from SMM. */ static void ehci_early_takeover(device_t self) { struct resource *res; uint32_t cparams; uint32_t eec; uint8_t eecp; uint8_t bios_sem; uint8_t offs; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; cparams = bus_read_4(res, EHCI_HCCPARAMS); /* Synchronise with the BIOS if it owns the controller. */ for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; eecp = EHCI_EECP_NEXT(eec)) { eec = pci_read_config(self, eecp, 4); if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { continue; } bios_sem = pci_read_config(self, eecp + EHCI_LEGSUP_BIOS_SEM, 1); if (bios_sem == 0) { continue; } if (bootverbose) printf("ehci early: " "SMM active, request owner change\n"); pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); for (i = 0; (i < 100) && (bios_sem != 0); i++) { DELAY(1000); bios_sem = pci_read_config(self, eecp + EHCI_LEGSUP_BIOS_SEM, 1); } if (bios_sem != 0) { if (bootverbose) printf("ehci early: " "SMM does not respond\n"); } /* Disable interrupts */ offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); bus_write_4(res, offs + EHCI_USBINTR, 0); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } /* Perform early XHCI takeover from SMM. */ static void xhci_early_takeover(device_t self) { struct resource *res; uint32_t cparams; uint32_t eec; uint8_t eecp; uint8_t bios_sem; uint8_t offs; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; cparams = bus_read_4(res, XHCI_HCSPARAMS0); eec = -1; /* Synchronise with the BIOS if it owns the controller. */ for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); eecp += XHCI_XECP_NEXT(eec) << 2) { eec = bus_read_4(res, eecp); if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) continue; bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); if (bios_sem == 0) continue; if (bootverbose) printf("xhci early: " "SMM active, request owner change\n"); bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); /* wait a maximum of 5 second */ for (i = 0; (i < 5000) && (bios_sem != 0); i++) { DELAY(1000); bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); } if (bios_sem != 0) { if (bootverbose) printf("xhci early: " "SMM does not respond\n"); } /* Disable interrupts */ offs = bus_read_1(res, XHCI_CAPLENGTH); bus_write_4(res, offs + XHCI_USBCMD, 0); bus_read_4(res, offs + XHCI_USBSTS); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } #if defined(NEW_PCIB) && defined(PCI_RES_BUS) static void pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, struct resource_list *rl) { struct resource *res; char *cp; u_long start, end, count; int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: sec_reg = PCIR_SECBUS_1; sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: sec_reg = PCIR_SECBUS_2; sub_reg = PCIR_SUBBUS_2; break; default: return; } /* * If the existing bus range is valid, attempt to reserve it * from our parent. If this fails for any reason, clear the * secbus and subbus registers. * * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? * This would at least preserve the existing sec_bus if it is * valid. */ sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); /* Quirk handling. */ switch (pci_get_devid(dev)) { case 0x12258086: /* Intel 82454KX/GX (Orion) */ sup_bus = pci_read_config(dev, 0x41, 1); if (sup_bus != 0xff) { sec_bus = sup_bus + 1; sub_bus = sup_bus + 1; PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); } break; case 0x00dd10de: /* Compaq R3000 BIOS sets wrong subordinate bus number. */ if ((cp = kern_getenv("smbios.planar.maker")) == NULL) break; if (strncmp(cp, "Compal", 6) != 0) { freeenv(cp); break; } freeenv(cp); if ((cp = kern_getenv("smbios.planar.product")) == NULL) break; if (strncmp(cp, "08A0", 4) != 0) { freeenv(cp); break; } freeenv(cp); if (sub_bus < 0xa) { sub_bus = 0xa; PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); } break; } if (bootverbose) printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); if (sec_bus > 0 && sub_bus >= sec_bus) { start = sec_bus; end = sub_bus; count = end - start + 1; resource_list_add(rl, PCI_RES_BUS, 0, 0ul, ~0ul, count); /* * If requested, clear secondary bus registers in * bridge devices to force a complete renumbering * rather than reserving the existing range. However, * preserve the existing size. */ if (pci_clear_buses) goto clear; rid = 0; res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, start, end, count, 0); if (res != NULL) return; if (bootverbose) device_printf(bus, "pci%d:%d:%d:%d secbus failed to allocate\n", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev)); } clear: PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); } static struct resource * pci_alloc_secbus(device_t dev, device_t child, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct pci_devinfo *dinfo; pcicfgregs *cfg; struct resource_list *rl; struct resource *res; int sec_reg, sub_reg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; rl = &dinfo->resources; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: sec_reg = PCIR_SECBUS_1; sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: sec_reg = PCIR_SECBUS_2; sub_reg = PCIR_SUBBUS_2; break; default: return (NULL); } if (*rid != 0) return (NULL); if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) { resource_list_delete(rl, PCI_RES_BUS, *rid); device_printf(child, "allocating %lu bus%s failed\n", count, count == 1 ? "" : "es"); return (NULL); } if (bootverbose) device_printf(child, "Lazy allocation of %lu bus%s at %lu\n", count, count == 1 ? "" : "es", rman_get_start(res)); PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); } return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, end, count, flags)); } #endif void pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) { struct pci_devinfo *dinfo; pcicfgregs *cfg; struct resource_list *rl; const struct pci_quirk *q; uint32_t devid; int i; dinfo = device_get_ivars(dev); cfg = &dinfo->cfg; rl = &dinfo->resources; devid = (cfg->device << 16) | cfg->vendor; /* ATA devices needs special map treatment */ if ((pci_get_class(dev) == PCIC_STORAGE) && (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || (!pci_read_config(dev, PCIR_BAR(0), 4) && !pci_read_config(dev, PCIR_BAR(2), 4))) ) pci_ata_maps(bus, dev, rl, force, prefetchmask); else for (i = 0; i < cfg->nummaps;) { /* * Skip quirked resources. */ for (q = &pci_quirks[0]; q->devid != 0; q++) if (q->devid == devid && q->type == PCI_QUIRK_UNMAP_REG && q->arg1 == PCIR_BAR(i)) break; if (q->devid != 0) { i++; continue; } i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, prefetchmask & (1 << i)); } /* * Add additional, quirked resources. */ for (q = &pci_quirks[0]; q->devid != 0; q++) if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) pci_add_map(bus, dev, q->arg1, rl, force, 0); if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { #ifdef __PCI_REROUTE_INTERRUPT /* * Try to re-route interrupts. Sometimes the BIOS or * firmware may leave bogus values in these registers. * If the re-route fails, then just stick with what we * have. */ pci_assign_interrupt(bus, dev, 1); #else pci_assign_interrupt(bus, dev, 0); #endif } if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) xhci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) ehci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) ohci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) uhci_early_takeover(dev); } #if defined(NEW_PCIB) && defined(PCI_RES_BUS) /* * Reserve resources for secondary bus ranges behind bridge * devices. */ pci_reserve_secbus(bus, dev, cfg, rl); #endif } static struct pci_devinfo * pci_identify_function(device_t pcib, device_t dev, int domain, int busno, int slot, int func, size_t dinfo_size) { struct pci_devinfo *dinfo; dinfo = pci_read_device(pcib, domain, busno, slot, func, dinfo_size); if (dinfo != NULL) pci_add_child(dev, dinfo); return (dinfo); } void pci_add_children(device_t dev, int domain, int busno, size_t dinfo_size) { #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) device_t pcib = device_get_parent(dev); struct pci_devinfo *dinfo; int maxslots; int s, f, pcifunchigh; uint8_t hdrtype; int first_func; /* * Try to detect a device at slot 0, function 0. If it exists, try to * enable ARI. We must enable ARI before detecting the rest of the * functions on this bus as ARI changes the set of slots and functions * that are legal on this bus. */ dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0, dinfo_size); if (dinfo != NULL && pci_enable_ari) PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); /* * Start looking for new devices on slot 0 at function 1 because we * just identified the device at slot 0, function 0. */ first_func = 1; KASSERT(dinfo_size >= sizeof(struct pci_devinfo), ("dinfo_size too small")); maxslots = PCIB_MAXSLOTS(pcib); for (s = 0; s <= maxslots; s++, first_func = 0) { pcifunchigh = 0; f = 0; DELAY(1); hdrtype = REG(PCIR_HDRTYPE, 1); if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) continue; if (hdrtype & PCIM_MFDEV) pcifunchigh = PCIB_MAXFUNCS(pcib); for (f = first_func; f <= pcifunchigh; f++) pci_identify_function(pcib, dev, domain, busno, s, f, dinfo_size); } #undef REG } #ifdef PCI_IOV device_t pci_add_iov_child(device_t bus, device_t pf, size_t size, uint16_t rid, uint16_t vid, uint16_t did) { struct pci_devinfo *pf_dinfo, *vf_dinfo; device_t pcib; int busno, slot, func; pf_dinfo = device_get_ivars(pf); /* * Do a sanity check that we have been passed the correct size. If this * test fails then likely the pci subclass hasn't implemented the * pci_create_iov_child method like it's supposed it. */ if (size != pf_dinfo->cfg.devinfo_size) { device_printf(pf, "PCI subclass does not properly implement PCI_IOV\n"); return (NULL); } pcib = device_get_parent(bus); PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); vf_dinfo = pci_fill_devinfo(pcib, pci_get_domain(pcib), busno, slot, func, vid, did, size); vf_dinfo->cfg.flags |= PCICFG_VF; pci_add_child(bus, vf_dinfo); return (vf_dinfo->cfg.dev); } device_t pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, uint16_t vid, uint16_t did) { return (pci_add_iov_child(bus, pf, sizeof(struct pci_devinfo), rid, vid, did)); } #endif void pci_add_child(device_t bus, struct pci_devinfo *dinfo) { dinfo->cfg.dev = device_add_child(bus, NULL, -1); device_set_ivars(dinfo->cfg.dev, dinfo); resource_list_init(&dinfo->resources); pci_cfg_save(dinfo->cfg.dev, dinfo, 0); pci_cfg_restore(dinfo->cfg.dev, dinfo); pci_print_verbose(dinfo); pci_add_resources(bus, dinfo->cfg.dev, 0, 0); pci_child_added(dinfo->cfg.dev); } void pci_child_added_method(device_t dev, device_t child) { } static int pci_probe(device_t dev) { device_set_desc(dev, "PCI bus"); /* Allow other subclasses to override this driver. */ return (BUS_PROBE_GENERIC); } int pci_attach_common(device_t dev) { struct pci_softc *sc; int busno, domain; #ifdef PCI_DMA_BOUNDARY int error, tag_valid; #endif #ifdef PCI_RES_BUS int rid; #endif sc = device_get_softc(dev); domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); #ifdef PCI_RES_BUS rid = 0; sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 1, 0); if (sc->sc_bus == NULL) { device_printf(dev, "failed to allocate bus number\n"); return (ENXIO); } #endif if (bootverbose) device_printf(dev, "domain=%d, physical bus=%d\n", domain, busno); #ifdef PCI_DMA_BOUNDARY tag_valid = 0; if (device_get_devclass(device_get_parent(device_get_parent(dev))) != devclass_find("pci")) { error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag); if (error) device_printf(dev, "Failed to create DMA tag: %d\n", error); else tag_valid = 1; } if (!tag_valid) #endif sc->sc_dma_tag = bus_get_dma_tag(dev); return (0); } static int pci_attach(device_t dev) { int busno, domain, error; error = pci_attach_common(dev); if (error) return (error); /* * Since there can be multiple independantly numbered PCI * busses on systems with multiple PCI domains, we can't use * the unit number to decide which bus we are probing. We ask * the parent pcib what our domain and bus numbers are. */ domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); pci_add_children(dev, domain, busno, sizeof(struct pci_devinfo)); return (bus_generic_attach(dev)); } #ifdef PCI_RES_BUS static int pci_detach(device_t dev) { struct pci_softc *sc; int error; error = bus_generic_detach(dev); if (error) return (error); sc = device_get_softc(dev); return (bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus)); } #endif static void pci_set_power_child(device_t dev, device_t child, int state) { struct pci_devinfo *dinfo; device_t pcib; int dstate; /* * Set the device to the given state. If the firmware suggests * a different power state, use it instead. If power management * is not present, the firmware is responsible for managing * device power. Skip children who aren't attached since they * are handled separately. */ pcib = device_get_parent(dev); dinfo = device_get_ivars(child); dstate = state; if (device_is_attached(child) && PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) pci_set_powerstate(child, dstate); } int pci_suspend_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; int error; dinfo = device_get_ivars(child); /* * Save the PCI configuration space for the child and set the * device in the appropriate power state for this sleep state. */ pci_cfg_save(child, dinfo, 0); /* Suspend devices before potentially powering them down. */ error = bus_generic_suspend_child(dev, child); if (error) return (error); if (pci_do_power_suspend) pci_set_power_child(dev, child, PCI_POWERSTATE_D3); return (0); } int pci_resume_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; if (pci_do_power_resume) pci_set_power_child(dev, child, PCI_POWERSTATE_D0); dinfo = device_get_ivars(child); pci_cfg_restore(child, dinfo); if (!device_is_attached(child)) pci_cfg_save(child, dinfo, 1); bus_generic_resume_child(dev, child); return (0); } int pci_resume(device_t dev) { device_t child, *devlist; int error, i, numdevs; if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) return (error); /* * Resume critical devices first, then everything else later. */ for (i = 0; i < numdevs; i++) { child = devlist[i]; switch (pci_get_class(child)) { case PCIC_DISPLAY: case PCIC_MEMORY: case PCIC_BRIDGE: case PCIC_BASEPERIPH: BUS_RESUME_CHILD(dev, child); break; } } for (i = 0; i < numdevs; i++) { child = devlist[i]; switch (pci_get_class(child)) { case PCIC_DISPLAY: case PCIC_MEMORY: case PCIC_BRIDGE: case PCIC_BASEPERIPH: break; default: BUS_RESUME_CHILD(dev, child); } } free(devlist, M_TEMP); return (0); } static void pci_load_vendor_data(void) { caddr_t data; void *ptr; size_t sz; data = preload_search_by_type("pci_vendor_data"); if (data != NULL) { ptr = preload_fetch_addr(data); sz = preload_fetch_size(data); if (ptr != NULL && sz != 0) { pci_vendordata = ptr; pci_vendordata_size = sz; /* terminate the database */ pci_vendordata[pci_vendordata_size] = '\n'; } } } void pci_driver_added(device_t dev, driver_t *driver) { int numdevs; device_t *devlist; device_t child; struct pci_devinfo *dinfo; int i; if (bootverbose) device_printf(dev, "driver added\n"); DEVICE_IDENTIFY(driver, dev); if (device_get_children(dev, &devlist, &numdevs) != 0) return; for (i = 0; i < numdevs; i++) { child = devlist[i]; if (device_get_state(child) != DS_NOTPRESENT) continue; dinfo = device_get_ivars(child); pci_print_verbose(dinfo); if (bootverbose) pci_printf(&dinfo->cfg, "reprobing on driver added\n"); pci_cfg_restore(child, dinfo); if (device_probe_and_attach(child) != 0) pci_child_detached(dev, child); } free(devlist, M_TEMP); } int pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { struct pci_devinfo *dinfo; struct msix_table_entry *mte; struct msix_vector *mv; uint64_t addr; uint32_t data; void *cookie; int error, rid; error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, arg, &cookie); if (error) return (error); /* If this is not a direct child, just bail out. */ if (device_get_parent(child) != dev) { *cookiep = cookie; return(0); } rid = rman_get_rid(irq); if (rid == 0) { /* Make sure that INTx is enabled */ pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); } else { /* * Check to see if the interrupt is MSI or MSI-X. * Ask our parent to map the MSI and give * us the address and data register values. * If we fail for some reason, teardown the * interrupt handler. */ dinfo = device_get_ivars(child); if (dinfo->cfg.msi.msi_alloc > 0) { if (dinfo->cfg.msi.msi_addr == 0) { KASSERT(dinfo->cfg.msi.msi_handlers == 0, ("MSI has handlers, but vectors not mapped")); error = PCIB_MAP_MSI(device_get_parent(dev), child, rman_get_start(irq), &addr, &data); if (error) goto bad; dinfo->cfg.msi.msi_addr = addr; dinfo->cfg.msi.msi_data = data; } if (dinfo->cfg.msi.msi_handlers == 0) pci_enable_msi(child, dinfo->cfg.msi.msi_addr, dinfo->cfg.msi.msi_data); dinfo->cfg.msi.msi_handlers++; } else { KASSERT(dinfo->cfg.msix.msix_alloc > 0, ("No MSI or MSI-X interrupts allocated")); KASSERT(rid <= dinfo->cfg.msix.msix_table_len, ("MSI-X index too high")); mte = &dinfo->cfg.msix.msix_table[rid - 1]; KASSERT(mte->mte_vector != 0, ("no message vector")); mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; KASSERT(mv->mv_irq == rman_get_start(irq), ("IRQ mismatch")); if (mv->mv_address == 0) { KASSERT(mte->mte_handlers == 0, ("MSI-X table entry has handlers, but vector not mapped")); error = PCIB_MAP_MSI(device_get_parent(dev), child, rman_get_start(irq), &addr, &data); if (error) goto bad; mv->mv_address = addr; mv->mv_data = data; } if (mte->mte_handlers == 0) { pci_enable_msix(child, rid - 1, mv->mv_address, mv->mv_data); pci_unmask_msix(child, rid - 1); } mte->mte_handlers++; } /* * Make sure that INTx is disabled if we are using MSI/MSI-X, * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, * in which case we "enable" INTx so MSI/MSI-X actually works. */ if (!pci_has_quirk(pci_get_devid(child), PCI_QUIRK_MSI_INTX_BUG)) pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); else pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); bad: if (error) { (void)bus_generic_teardown_intr(dev, child, irq, cookie); return (error); } } *cookiep = cookie; return (0); } int pci_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { struct msix_table_entry *mte; struct resource_list_entry *rle; struct pci_devinfo *dinfo; int error, rid; if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) return (EINVAL); /* If this isn't a direct child, just bail out */ if (device_get_parent(child) != dev) return(bus_generic_teardown_intr(dev, child, irq, cookie)); rid = rman_get_rid(irq); if (rid == 0) { /* Mask INTx */ pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); } else { /* * Check to see if the interrupt is MSI or MSI-X. If so, * decrement the appropriate handlers count and mask the * MSI-X message, or disable MSI messages if the count * drops to 0. */ dinfo = device_get_ivars(child); rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); if (rle->res != irq) return (EINVAL); if (dinfo->cfg.msi.msi_alloc > 0) { KASSERT(rid <= dinfo->cfg.msi.msi_alloc, ("MSI-X index too high")); if (dinfo->cfg.msi.msi_handlers == 0) return (EINVAL); dinfo->cfg.msi.msi_handlers--; if (dinfo->cfg.msi.msi_handlers == 0) pci_disable_msi(child); } else { KASSERT(dinfo->cfg.msix.msix_alloc > 0, ("No MSI or MSI-X interrupts allocated")); KASSERT(rid <= dinfo->cfg.msix.msix_table_len, ("MSI-X index too high")); mte = &dinfo->cfg.msix.msix_table[rid - 1]; if (mte->mte_handlers == 0) return (EINVAL); mte->mte_handlers--; if (mte->mte_handlers == 0) pci_mask_msix(child, rid - 1); } } error = bus_generic_teardown_intr(dev, child, irq, cookie); if (rid > 0) KASSERT(error == 0, ("%s: generic teardown failed for MSI/MSI-X", __func__)); return (error); } int pci_print_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; struct resource_list *rl; int retval = 0; dinfo = device_get_ivars(child); rl = &dinfo->resources; retval += bus_print_child_header(dev, child); retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx"); retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld"); if (device_get_flags(dev)) retval += printf(" flags %#x", device_get_flags(dev)); retval += printf(" at device %d.%d", pci_get_slot(child), pci_get_function(child)); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } static const struct { int class; int subclass; int report; /* 0 = bootverbose, 1 = always */ const char *desc; } pci_nomatch_tab[] = { {PCIC_OLD, -1, 1, "old"}, {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, {PCIC_STORAGE, -1, 1, "mass storage"}, {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, {PCIC_NETWORK, -1, 1, "network"}, {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, {PCIC_DISPLAY, -1, 1, "display"}, {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, {PCIC_MEMORY, -1, 1, "memory"}, {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, {PCIC_BRIDGE, -1, 1, "bridge"}, {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, {PCIC_INPUTDEV, -1, 1, "input device"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, {PCIC_DOCKING, -1, 1, "docking station"}, {PCIC_PROCESSOR, -1, 1, "processor"}, {PCIC_SERIALBUS, -1, 1, "serial bus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, {PCIC_WIRELESS, -1, 1, "wireless controller"}, {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, {PCIC_SATCOM, -1, 1, "satellite communication"}, {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, {PCIC_DASP, -1, 0, "dasp"}, {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, {0, 0, 0, NULL} }; void pci_probe_nomatch(device_t dev, device_t child) { int i, report; const char *cp, *scp; char *device; /* * Look for a listing for this device in a loaded device database. */ report = 1; if ((device = pci_describe_device(child)) != NULL) { device_printf(dev, "<%s>", device); free(device, M_DEVBUF); } else { /* * Scan the class/subclass descriptions for a general * description. */ cp = "unknown"; scp = NULL; for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { if (pci_nomatch_tab[i].class == pci_get_class(child)) { if (pci_nomatch_tab[i].subclass == -1) { cp = pci_nomatch_tab[i].desc; report = pci_nomatch_tab[i].report; } else if (pci_nomatch_tab[i].subclass == pci_get_subclass(child)) { scp = pci_nomatch_tab[i].desc; report = pci_nomatch_tab[i].report; } } } if (report || bootverbose) { device_printf(dev, "<%s%s%s>", cp ? cp : "", ((cp != NULL) && (scp != NULL)) ? ", " : "", scp ? scp : ""); } } if (report || bootverbose) { printf(" at device %d.%d (no driver attached)\n", pci_get_slot(child), pci_get_function(child)); } pci_cfg_save(child, device_get_ivars(child), 1); } void pci_child_detached(device_t dev, device_t child) { struct pci_devinfo *dinfo; struct resource_list *rl; dinfo = device_get_ivars(child); rl = &dinfo->resources; /* * Have to deallocate IRQs before releasing any MSI messages and * have to release MSI messages before deallocating any memory * BARs. */ if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n"); (void)pci_release_msi(child); } if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); #ifdef PCI_RES_BUS if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); #endif pci_cfg_save(child, dinfo, 1); } /* * Parse the PCI device database, if loaded, and return a pointer to a * description of the device. * * The database is flat text formatted as follows: * * Any line not in a valid format is ignored. * Lines are terminated with newline '\n' characters. * * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then * the vendor name. * * A DEVICE line is entered immediately below the corresponding VENDOR ID. * - devices cannot be listed without a corresponding VENDOR line. * A DEVICE line consists of a TAB, the 4 digit (hex) device code, * another TAB, then the device name. */ /* * Assuming (ptr) points to the beginning of a line in the database, * return the vendor or device and description of the next entry. * The value of (vendor) or (device) inappropriate for the entry type * is set to -1. Returns nonzero at the end of the database. * * Note that this is slightly unrobust in the face of corrupt data; * we attempt to safeguard against this by spamming the end of the * database with a newline when we initialise. */ static int pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) { char *cp = *ptr; int left; *device = -1; *vendor = -1; **desc = '\0'; for (;;) { left = pci_vendordata_size - (cp - pci_vendordata); if (left <= 0) { *ptr = cp; return(1); } /* vendor entry? */ if (*cp != '\t' && sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) break; /* device entry? */ if (*cp == '\t' && sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) break; /* skip to next line */ while (*cp != '\n' && left > 0) { cp++; left--; } if (*cp == '\n') { cp++; left--; } } /* skip to next line */ while (*cp != '\n' && left > 0) { cp++; left--; } if (*cp == '\n' && left > 0) cp++; *ptr = cp; return(0); } static char * pci_describe_device(device_t dev) { int vendor, device; char *desc, *vp, *dp, *line; desc = vp = dp = NULL; /* * If we have no vendor data, we can't do anything. */ if (pci_vendordata == NULL) goto out; /* * Scan the vendor data looking for this device */ line = pci_vendordata; if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) goto out; for (;;) { if (pci_describe_parse_line(&line, &vendor, &device, &vp)) goto out; if (vendor == pci_get_vendor(dev)) break; } if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) goto out; for (;;) { if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { *dp = 0; break; } if (vendor != -1) { *dp = 0; break; } if (device == pci_get_device(dev)) break; } if (dp[0] == '\0') snprintf(dp, 80, "0x%x", pci_get_device(dev)); if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != NULL) sprintf(desc, "%s, %s", vp, dp); out: if (vp != NULL) free(vp, M_DEVBUF); if (dp != NULL) free(dp, M_DEVBUF); return(desc); } int pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct pci_devinfo *dinfo; pcicfgregs *cfg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; switch (which) { case PCI_IVAR_ETHADDR: /* * The generic accessor doesn't deal with failure, so * we set the return value, then return an error. */ *((uint8_t **) result) = NULL; return (EINVAL); case PCI_IVAR_SUBVENDOR: *result = cfg->subvendor; break; case PCI_IVAR_SUBDEVICE: *result = cfg->subdevice; break; case PCI_IVAR_VENDOR: *result = cfg->vendor; break; case PCI_IVAR_DEVICE: *result = cfg->device; break; case PCI_IVAR_DEVID: *result = (cfg->device << 16) | cfg->vendor; break; case PCI_IVAR_CLASS: *result = cfg->baseclass; break; case PCI_IVAR_SUBCLASS: *result = cfg->subclass; break; case PCI_IVAR_PROGIF: *result = cfg->progif; break; case PCI_IVAR_REVID: *result = cfg->revid; break; case PCI_IVAR_INTPIN: *result = cfg->intpin; break; case PCI_IVAR_IRQ: *result = cfg->intline; break; case PCI_IVAR_DOMAIN: *result = cfg->domain; break; case PCI_IVAR_BUS: *result = cfg->bus; break; case PCI_IVAR_SLOT: *result = cfg->slot; break; case PCI_IVAR_FUNCTION: *result = cfg->func; break; case PCI_IVAR_CMDREG: *result = cfg->cmdreg; break; case PCI_IVAR_CACHELNSZ: *result = cfg->cachelnsz; break; case PCI_IVAR_MINGNT: if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { *result = -1; return (EINVAL); } *result = cfg->mingnt; break; case PCI_IVAR_MAXLAT: if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { *result = -1; return (EINVAL); } *result = cfg->maxlat; break; case PCI_IVAR_LATTIMER: *result = cfg->lattimer; break; default: return (ENOENT); } return (0); } int pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(child); switch (which) { case PCI_IVAR_INTPIN: dinfo->cfg.intpin = value; return (0); case PCI_IVAR_ETHADDR: case PCI_IVAR_SUBVENDOR: case PCI_IVAR_SUBDEVICE: case PCI_IVAR_VENDOR: case PCI_IVAR_DEVICE: case PCI_IVAR_DEVID: case PCI_IVAR_CLASS: case PCI_IVAR_SUBCLASS: case PCI_IVAR_PROGIF: case PCI_IVAR_REVID: case PCI_IVAR_IRQ: case PCI_IVAR_DOMAIN: case PCI_IVAR_BUS: case PCI_IVAR_SLOT: case PCI_IVAR_FUNCTION: return (EINVAL); /* disallow for now */ default: return (ENOENT); } } #include "opt_ddb.h" #ifdef DDB #include #include /* * List resources based on pci map registers, used for within ddb */ DB_SHOW_COMMAND(pciregs, db_pci_dump) { struct pci_devinfo *dinfo; struct devlist *devlist_head; struct pci_conf *p; const char *name; int i, error, none_count; none_count = 0; /* get the head of the device queue */ devlist_head = &pci_devq; /* * Go through the list of devices and print out devices */ for (error = 0, i = 0, dinfo = STAILQ_FIRST(devlist_head); (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { /* Populate pd_name and pd_unit */ name = NULL; if (dinfo->cfg.dev) name = device_get_name(dinfo->cfg.dev); p = &dinfo->conf; db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " "chip=0x%08x rev=0x%02x hdr=0x%02x\n", (name && *name) ? name : "none", (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : none_count++, p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, p->pc_sel.pc_func, (p->pc_class << 16) | (p->pc_subclass << 8) | p->pc_progif, (p->pc_subdevice << 16) | p->pc_subvendor, (p->pc_device << 16) | p->pc_vendor, p->pc_revid, p->pc_hdr); } } #endif /* DDB */ static struct resource * pci_reserve_map(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int num, u_int flags) { struct pci_devinfo *dinfo = device_get_ivars(child); struct resource_list *rl = &dinfo->resources; struct resource *res; struct pci_map *pm; pci_addr_t map, testval; int mapsize; res = NULL; pm = pci_find_bar(child, *rid); if (pm != NULL) { /* This is a BAR that we failed to allocate earlier. */ mapsize = pm->pm_size; map = pm->pm_value; } else { /* * Weed out the bogons, and figure out how large the * BAR/map is. BARs that read back 0 here are bogus * and unimplemented. Note: atapci in legacy mode are * special and handled elsewhere in the code. If you * have a atapci device in legacy mode and it fails * here, that other code is broken. */ pci_read_bar(child, *rid, &map, &testval, NULL); /* * Determine the size of the BAR and ignore BARs with a size * of 0. Device ROM BARs use a different mask value. */ if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) mapsize = pci_romsize(testval); else mapsize = pci_mapsize(testval); if (mapsize == 0) goto out; pm = pci_add_bar(child, *rid, map, mapsize); } if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { if (type != SYS_RES_MEMORY) { if (bootverbose) device_printf(dev, "child %s requested type %d for rid %#x," " but the BAR says it is an memio\n", device_get_nameunit(child), type, *rid); goto out; } } else { if (type != SYS_RES_IOPORT) { if (bootverbose) device_printf(dev, "child %s requested type %d for rid %#x," " but the BAR says it is an ioport\n", device_get_nameunit(child), type, *rid); goto out; } } /* * For real BARs, we need to override the size that * the driver requests, because that's what the BAR * actually uses and we would otherwise have a * situation where we might allocate the excess to * another driver, which won't work. */ count = ((pci_addr_t)1 << mapsize) * num; if (RF_ALIGNMENT(flags) < mapsize) flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) flags |= RF_PREFETCHABLE; /* * Allocate enough resource, and then write back the * appropriate BAR for that resource. */ resource_list_add(rl, type, *rid, start, end, count); res = resource_list_reserve(rl, dev, child, type, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) { resource_list_delete(rl, type, *rid); device_printf(child, "%#lx bytes of rid %#x res %d failed (%#lx, %#lx).\n", count, *rid, type, start, end); goto out; } if (bootverbose) device_printf(child, "Lazy allocation of %#lx bytes rid %#x type %d at %#lx\n", count, *rid, type, rman_get_start(res)); map = rman_get_start(res); pci_write_bar(child, pm, map); out: return (res); } struct resource * pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_long num, u_int flags) { struct pci_devinfo *dinfo; struct resource_list *rl; struct resource_list_entry *rle; struct resource *res; pcicfgregs *cfg; /* * Perform lazy resource allocation */ dinfo = device_get_ivars(child); rl = &dinfo->resources; cfg = &dinfo->cfg; switch (type) { #if defined(NEW_PCIB) && defined(PCI_RES_BUS) case PCI_RES_BUS: return (pci_alloc_secbus(dev, child, rid, start, end, count, flags)); #endif case SYS_RES_IRQ: /* * Can't alloc legacy interrupt once MSI messages have * been allocated. */ if (*rid == 0 && (cfg->msi.msi_alloc > 0 || cfg->msix.msix_alloc > 0)) return (NULL); /* * If the child device doesn't have an interrupt * routed and is deserving of an interrupt, try to * assign it one. */ if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && (cfg->intpin != 0)) pci_assign_interrupt(dev, child, 0); break; case SYS_RES_IOPORT: case SYS_RES_MEMORY: #ifdef NEW_PCIB /* * PCI-PCI bridge I/O window resources are not BARs. * For those allocations just pass the request up the * tree. */ if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { switch (*rid) { case PCIR_IOBASEL_1: case PCIR_MEMBASE_1: case PCIR_PMBASEL_1: /* * XXX: Should we bother creating a resource * list entry? */ return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } } #endif /* Reserve resources for this BAR if needed. */ rle = resource_list_find(rl, type, *rid); if (rle == NULL) { res = pci_reserve_map(dev, child, type, rid, start, end, count, num, flags); if (res == NULL) return (NULL); } } return (resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags)); } struct resource * pci_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { #ifdef PCI_IOV struct pci_devinfo *dinfo; #endif if (device_get_parent(child) != dev) return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid, start, end, count, flags)); #ifdef PCI_IOV dinfo = device_get_ivars(child); if (dinfo->cfg.flags & PCICFG_VF) { switch (type) { /* VFs can't have I/O BARs. */ case SYS_RES_IOPORT: return (NULL); case SYS_RES_MEMORY: return (pci_vf_alloc_mem_resource(dev, child, rid, start, end, count, flags)); } /* Fall through for other types of resource allocations. */ } #endif return (pci_alloc_multi_resource(dev, child, type, rid, start, end, count, 1, flags)); } int pci_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; struct resource_list *rl; pcicfgregs *cfg; if (device_get_parent(child) != dev) return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, type, rid, r)); dinfo = device_get_ivars(child); cfg = &dinfo->cfg; #ifdef PCI_IOV if (dinfo->cfg.flags & PCICFG_VF) { switch (type) { /* VFs can't have I/O BARs. */ case SYS_RES_IOPORT: return (EDOOFUS); case SYS_RES_MEMORY: return (pci_vf_release_mem_resource(dev, child, rid, r)); } /* Fall through for other types of resource allocations. */ } #endif #ifdef NEW_PCIB /* * PCI-PCI bridge I/O window resources are not BARs. For * those allocations just pass the request up the tree. */ if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { switch (rid) { case PCIR_IOBASEL_1: case PCIR_MEMBASE_1: case PCIR_PMBASEL_1: return (bus_generic_release_resource(dev, child, type, rid, r)); } } #endif rl = &dinfo->resources; return (resource_list_release(rl, dev, child, type, rid, r)); } int pci_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; int error; error = bus_generic_activate_resource(dev, child, type, rid, r); if (error) return (error); /* Enable decoding in the command register when activating BARs. */ if (device_get_parent(child) == dev) { /* Device ROMs need their decoding explicitly enabled. */ dinfo = device_get_ivars(child); if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) pci_write_bar(child, pci_find_bar(child, rid), rman_get_start(r) | PCIM_BIOS_ENABLE); switch (type) { case SYS_RES_IOPORT: case SYS_RES_MEMORY: error = PCI_ENABLE_IO(dev, child, type); break; } } return (error); } int pci_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; int error; error = bus_generic_deactivate_resource(dev, child, type, rid, r); if (error) return (error); /* Disable decoding for device ROMs. */ if (device_get_parent(child) == dev) { dinfo = device_get_ivars(child); if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) pci_write_bar(child, pci_find_bar(child, rid), rman_get_start(r)); } return (0); } void pci_delete_child(device_t dev, device_t child) { struct resource_list_entry *rle; struct resource_list *rl; struct pci_devinfo *dinfo; dinfo = device_get_ivars(child); rl = &dinfo->resources; if (device_is_attached(child)) device_detach(child); /* Turn off access to resources we're about to free */ pci_write_config(child, PCIR_COMMAND, pci_read_config(child, PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); /* Free all allocated resources */ STAILQ_FOREACH(rle, rl, link) { if (rle->res) { if (rman_get_flags(rle->res) & RF_ACTIVE || resource_list_busy(rl, rle->type, rle->rid)) { pci_printf(&dinfo->cfg, "Resource still owned, oops. " "(type=%d, rid=%d, addr=%lx)\n", rle->type, rle->rid, rman_get_start(rle->res)); bus_release_resource(child, rle->type, rle->rid, rle->res); } resource_list_unreserve(rl, dev, child, rle->type, rle->rid); } } resource_list_free(rl); device_delete_child(dev, child); pci_freecfg(dinfo); } void pci_delete_resource(device_t dev, device_t child, int type, int rid) { struct pci_devinfo *dinfo; struct resource_list *rl; struct resource_list_entry *rle; if (device_get_parent(child) != dev) return; dinfo = device_get_ivars(child); rl = &dinfo->resources; rle = resource_list_find(rl, type, rid); if (rle == NULL) return; if (rle->res) { if (rman_get_flags(rle->res) & RF_ACTIVE || resource_list_busy(rl, type, rid)) { device_printf(dev, "delete_resource: " "Resource still owned by child, oops. " "(type=%d, rid=%d, addr=%lx)\n", type, rid, rman_get_start(rle->res)); return; } resource_list_unreserve(rl, dev, child, type, rid); } resource_list_delete(rl, type, rid); } struct resource_list * pci_get_resource_list (device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); return (&dinfo->resources); } bus_dma_tag_t pci_get_dma_tag(device_t bus, device_t dev) { struct pci_softc *sc = device_get_softc(bus); return (sc->sc_dma_tag); } uint32_t pci_read_config_method(device_t dev, device_t child, int reg, int width) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; #ifdef PCI_IOV /* * SR-IOV VFs don't implement the VID or DID registers, so we have to * emulate them here. */ if (cfg->flags & PCICFG_VF) { if (reg == PCIR_VENDOR) { switch (width) { case 4: return (cfg->device << 16 | cfg->vendor); case 2: return (cfg->vendor); case 1: return (cfg->vendor & 0xff); default: return (0xffffffff); } } else if (reg == PCIR_DEVICE) { switch (width) { /* Note that an unaligned 4-byte read is an error. */ case 2: return (cfg->device); case 1: return (cfg->device & 0xff); default: return (0xffffffff); } } } #endif return (PCIB_READ_CONFIG(device_get_parent(dev), cfg->bus, cfg->slot, cfg->func, reg, width)); } void pci_write_config_method(device_t dev, device_t child, int reg, uint32_t val, int width) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; PCIB_WRITE_CONFIG(device_get_parent(dev), cfg->bus, cfg->slot, cfg->func, reg, val, width); } int pci_child_location_str_method(device_t dev, device_t child, char *buf, size_t buflen) { snprintf(buf, buflen, "pci%d:%d:%d:%d", pci_get_domain(child), pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); return (0); } int pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, size_t buflen) { struct pci_devinfo *dinfo; pcicfgregs *cfg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x " "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, cfg->progif); return (0); } int pci_assign_interrupt_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, cfg->intpin)); } static void pci_lookup(void *arg, const char *name, device_t *dev) { long val; char *end; int domain, bus, slot, func; if (*dev != NULL) return; /* * Accept pciconf-style selectors of either pciD:B:S:F or * pciB:S:F. In the latter case, the domain is assumed to * be zero. */ if (strncmp(name, "pci", 3) != 0) return; val = strtol(name + 3, &end, 10); if (val < 0 || val > INT_MAX || *end != ':') return; domain = val; val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX || *end != ':') return; bus = val; val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX) return; slot = val; if (*end == ':') { val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX || *end != '\0') return; func = val; } else if (*end == '\0') { func = slot; slot = bus; bus = domain; domain = 0; } else return; if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) return; *dev = pci_find_dbsf(domain, bus, slot, func); } static int pci_modevent(module_t mod, int what, void *arg) { static struct cdev *pci_cdev; static eventhandler_tag tag; switch (what) { case MOD_LOAD: STAILQ_INIT(&pci_devq); pci_generation = 0; pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, "pci"); pci_load_vendor_data(); tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 1000); break; case MOD_UNLOAD: if (tag != NULL) EVENTHANDLER_DEREGISTER(dev_lookup, tag); destroy_dev(pci_cdev); break; } return (0); } static void pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) { #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) struct pcicfg_pcie *cfg; int version, pos; cfg = &dinfo->cfg.pcie; pos = cfg->pcie_location; version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ENDPOINT || cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ROOT_EC) WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); if (version > 1) { WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); } #undef WREG } static void pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) { pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, dinfo->cfg.pcix.pcix_command, 2); } void pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) { /* - * Only do header type 0 devices. Type 1 devices are bridges, - * which we know need special treatment. Type 2 devices are - * cardbus bridges which also require special treatment. - * Other types are unknown, and we err on the side of safety - * by ignoring them. - */ - if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) - return; - - /* * Restore the device to full power mode. We must do this * before we restore the registers because moving from D3 to * D0 will cause the chip's BARs and some other registers to * be reset to some unknown power on reset values. Cut down * the noise on boot by doing nothing if we are already in * state D0. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) pci_set_powerstate(dev, PCI_POWERSTATE_D0); - pci_restore_bars(dev); pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); - pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); - pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); + switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { + case PCIM_HDRTYPE_NORMAL: + pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); + pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); + break; + case PCIM_HDRTYPE_BRIDGE: + pci_write_config(dev, PCIR_SECLAT_1, + dinfo->cfg.bridge.br_seclat, 1); + pci_write_config(dev, PCIR_SUBBUS_1, + dinfo->cfg.bridge.br_subbus, 1); + pci_write_config(dev, PCIR_SECBUS_1, + dinfo->cfg.bridge.br_secbus, 1); + pci_write_config(dev, PCIR_PRIBUS_1, + dinfo->cfg.bridge.br_pribus, 1); + pci_write_config(dev, PCIR_BRIDGECTL_1, + dinfo->cfg.bridge.br_control, 2); + break; + case PCIM_HDRTYPE_CARDBUS: + pci_write_config(dev, PCIR_SECLAT_2, + dinfo->cfg.bridge.br_seclat, 1); + pci_write_config(dev, PCIR_SUBBUS_2, + dinfo->cfg.bridge.br_subbus, 1); + pci_write_config(dev, PCIR_SECBUS_2, + dinfo->cfg.bridge.br_secbus, 1); + pci_write_config(dev, PCIR_PRIBUS_2, + dinfo->cfg.bridge.br_pribus, 1); + pci_write_config(dev, PCIR_BRIDGECTL_2, + dinfo->cfg.bridge.br_control, 2); + break; + } + pci_restore_bars(dev); /* * Restore extended capabilities for PCI-Express and PCI-X */ if (dinfo->cfg.pcie.pcie_location != 0) pci_cfg_restore_pcie(dev, dinfo); if (dinfo->cfg.pcix.pcix_location != 0) pci_cfg_restore_pcix(dev, dinfo); /* Restore MSI and MSI-X configurations if they are present. */ if (dinfo->cfg.msi.msi_location != 0) pci_resume_msi(dev); if (dinfo->cfg.msix.msix_location != 0) pci_resume_msix(dev); } static void pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) { #define RREG(n) pci_read_config(dev, pos + (n), 2) struct pcicfg_pcie *cfg; int version, pos; cfg = &dinfo->cfg.pcie; pos = cfg->pcie_location; cfg->pcie_flags = RREG(PCIER_FLAGS); version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ENDPOINT || cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ROOT_EC) cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); if (version > 1) { cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); } #undef RREG } static void pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) { dinfo->cfg.pcix.pcix_command = pci_read_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); } void pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) { uint32_t cls; int ps; /* - * Only do header type 0 devices. Type 1 devices are bridges, which - * we know need special treatment. Type 2 devices are cardbus bridges - * which also require special treatment. Other types are unknown, and - * we err on the side of safety by ignoring them. Powering down - * bridges should not be undertaken lightly. - */ - if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) - return; - - /* * Some drivers apparently write to these registers w/o updating our * cached copy. No harm happens if we update the copy, so do so here * so we can restore them. The COMMAND register is modified by the * bus w/o updating the cache. This should represent the normally - * writable portion of the 'defined' part of type 0 headers. In - * theory we also need to save/restore the PCI capability structures - * we know about, but apart from power we don't know any that are - * writable. + * writable portion of the 'defined' part of type 0/1/2 headers. */ - dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); - dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); - dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); - dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); + switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { + case PCIM_HDRTYPE_NORMAL: + dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); + dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); + dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); + dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); + break; + case PCIM_HDRTYPE_BRIDGE: + dinfo->cfg.bridge.br_seclat = pci_read_config(dev, + PCIR_SECLAT_1, 1); + dinfo->cfg.bridge.br_subbus = pci_read_config(dev, + PCIR_SUBBUS_1, 1); + dinfo->cfg.bridge.br_secbus = pci_read_config(dev, + PCIR_SECBUS_1, 1); + dinfo->cfg.bridge.br_pribus = pci_read_config(dev, + PCIR_PRIBUS_1, 1); + dinfo->cfg.bridge.br_control = pci_read_config(dev, + PCIR_BRIDGECTL_1, 2); + break; + case PCIM_HDRTYPE_CARDBUS: + dinfo->cfg.bridge.br_seclat = pci_read_config(dev, + PCIR_SECLAT_2, 1); + dinfo->cfg.bridge.br_subbus = pci_read_config(dev, + PCIR_SUBBUS_2, 1); + dinfo->cfg.bridge.br_secbus = pci_read_config(dev, + PCIR_SECBUS_2, 1); + dinfo->cfg.bridge.br_pribus = pci_read_config(dev, + PCIR_PRIBUS_2, 1); + dinfo->cfg.bridge.br_control = pci_read_config(dev, + PCIR_BRIDGECTL_2, 2); + dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); + dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); + break; + } if (dinfo->cfg.pcie.pcie_location != 0) pci_cfg_save_pcie(dev, dinfo); if (dinfo->cfg.pcix.pcix_location != 0) pci_cfg_save_pcix(dev, dinfo); /* * don't set the state for display devices, base peripherals and * memory devices since bad things happen when they are powered down. * We should (a) have drivers that can easily detach and (b) use * generic drivers for these devices so that some device actually * attaches. We need to make sure that when we implement (a) we don't * power the device down on a reattach. */ cls = pci_get_class(dev); if (!setstate) return; switch (pci_do_power_nodriver) { case 0: /* NO powerdown at all */ return; case 1: /* Conservative about what to power down */ if (cls == PCIC_STORAGE) return; /*FALLTHROUGH*/ case 2: /* Agressive about what to power down */ if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || cls == PCIC_BASEPERIPH) return; /*FALLTHROUGH*/ case 3: /* Power down everything */ break; } /* * PCI spec says we can only go into D3 state from D0 state. * Transition from D[12] into D0 before going to D3 state. */ ps = pci_get_powerstate(dev); if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) pci_set_powerstate(dev, PCI_POWERSTATE_D0); if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) pci_set_powerstate(dev, PCI_POWERSTATE_D3); } /* Wrapper APIs suitable for device driver use. */ void pci_save_state(device_t dev) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); } void pci_restore_state(device_t dev) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); } static uint16_t pci_get_rid_method(device_t dev, device_t child) { return (PCIB_GET_RID(device_get_parent(dev), child)); } Index: head/sys/dev/pci/pci_pci.c =================================================================== --- head/sys/dev/pci/pci_pci.c (revision 281873) +++ head/sys/dev/pci/pci_pci.c (revision 281874) @@ -1,2111 +1,2112 @@ /*- * Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * PCI:PCI bridge support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "pcib_if.h" static int pcib_probe(device_t dev); static int pcib_suspend(device_t dev); static int pcib_resume(device_t dev); static int pcib_power_for_sleep(device_t pcib, device_t dev, int *pstate); static uint16_t pcib_ari_get_rid(device_t pcib, device_t dev); static uint32_t pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width); static void pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width); static int pcib_ari_maxslots(device_t dev); static int pcib_ari_maxfuncs(device_t dev); static int pcib_try_enable_ari(device_t pcib, device_t dev); static int pcib_ari_enabled(device_t pcib); static void pcib_ari_decode_rid(device_t pcib, uint16_t rid, int *bus, int *slot, int *func); static device_method_t pcib_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pcib_probe), DEVMETHOD(device_attach, pcib_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, pcib_suspend), DEVMETHOD(device_resume, pcib_resume), /* Bus interface */ DEVMETHOD(bus_read_ivar, pcib_read_ivar), DEVMETHOD(bus_write_ivar, pcib_write_ivar), DEVMETHOD(bus_alloc_resource, pcib_alloc_resource), #ifdef NEW_PCIB DEVMETHOD(bus_adjust_resource, pcib_adjust_resource), DEVMETHOD(bus_release_resource, pcib_release_resource), #else DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), DEVMETHOD(bus_release_resource, bus_generic_release_resource), #endif DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, pcib_ari_maxslots), DEVMETHOD(pcib_maxfuncs, pcib_ari_maxfuncs), DEVMETHOD(pcib_read_config, pcib_read_config), DEVMETHOD(pcib_write_config, pcib_write_config), DEVMETHOD(pcib_route_interrupt, pcib_route_interrupt), DEVMETHOD(pcib_alloc_msi, pcib_alloc_msi), DEVMETHOD(pcib_release_msi, pcib_release_msi), DEVMETHOD(pcib_alloc_msix, pcib_alloc_msix), DEVMETHOD(pcib_release_msix, pcib_release_msix), DEVMETHOD(pcib_map_msi, pcib_map_msi), DEVMETHOD(pcib_power_for_sleep, pcib_power_for_sleep), DEVMETHOD(pcib_get_rid, pcib_ari_get_rid), DEVMETHOD(pcib_try_enable_ari, pcib_try_enable_ari), DEVMETHOD(pcib_ari_enabled, pcib_ari_enabled), DEVMETHOD(pcib_decode_rid, pcib_ari_decode_rid), DEVMETHOD_END }; static devclass_t pcib_devclass; DEFINE_CLASS_0(pcib, pcib_driver, pcib_methods, sizeof(struct pcib_softc)); DRIVER_MODULE(pcib, pci, pcib_driver, pcib_devclass, NULL, NULL); #ifdef NEW_PCIB SYSCTL_DECL(_hw_pci); static int pci_clear_pcib; SYSCTL_INT(_hw_pci, OID_AUTO, clear_pcib, CTLFLAG_RDTUN, &pci_clear_pcib, 0, "Clear firmware-assigned resources for PCI-PCI bridge I/O windows."); /* * Is a resource from a child device sub-allocated from one of our * resource managers? */ static int pcib_is_resource_managed(struct pcib_softc *sc, int type, struct resource *r) { switch (type) { #ifdef PCI_RES_BUS case PCI_RES_BUS: return (rman_is_region_manager(r, &sc->bus.rman)); #endif case SYS_RES_IOPORT: return (rman_is_region_manager(r, &sc->io.rman)); case SYS_RES_MEMORY: /* Prefetchable resources may live in either memory rman. */ if (rman_get_flags(r) & RF_PREFETCHABLE && rman_is_region_manager(r, &sc->pmem.rman)) return (1); return (rman_is_region_manager(r, &sc->mem.rman)); } return (0); } static int pcib_is_window_open(struct pcib_window *pw) { return (pw->valid && pw->base < pw->limit); } /* * XXX: If RF_ACTIVE did not also imply allocating a bus space tag and * handle for the resource, we could pass RF_ACTIVE up to the PCI bus * when allocating the resource windows and rely on the PCI bus driver * to do this for us. */ static void pcib_activate_window(struct pcib_softc *sc, int type) { PCI_ENABLE_IO(device_get_parent(sc->dev), sc->dev, type); } static void pcib_write_windows(struct pcib_softc *sc, int mask) { device_t dev; uint32_t val; dev = sc->dev; if (sc->io.valid && mask & WIN_IO) { val = pci_read_config(dev, PCIR_IOBASEL_1, 1); if ((val & PCIM_BRIO_MASK) == PCIM_BRIO_32) { pci_write_config(dev, PCIR_IOBASEH_1, sc->io.base >> 16, 2); pci_write_config(dev, PCIR_IOLIMITH_1, sc->io.limit >> 16, 2); } pci_write_config(dev, PCIR_IOBASEL_1, sc->io.base >> 8, 1); pci_write_config(dev, PCIR_IOLIMITL_1, sc->io.limit >> 8, 1); } if (mask & WIN_MEM) { pci_write_config(dev, PCIR_MEMBASE_1, sc->mem.base >> 16, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, sc->mem.limit >> 16, 2); } if (sc->pmem.valid && mask & WIN_PMEM) { val = pci_read_config(dev, PCIR_PMBASEL_1, 2); if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) { pci_write_config(dev, PCIR_PMBASEH_1, sc->pmem.base >> 32, 4); pci_write_config(dev, PCIR_PMLIMITH_1, sc->pmem.limit >> 32, 4); } pci_write_config(dev, PCIR_PMBASEL_1, sc->pmem.base >> 16, 2); pci_write_config(dev, PCIR_PMLIMITL_1, sc->pmem.limit >> 16, 2); } } /* * This is used to reject I/O port allocations that conflict with an * ISA alias range. */ static int pcib_is_isa_range(struct pcib_softc *sc, u_long start, u_long end, u_long count) { u_long next_alias; if (!(sc->bridgectl & PCIB_BCR_ISA_ENABLE)) return (0); /* Only check fixed ranges for overlap. */ if (start + count - 1 != end) return (0); /* ISA aliases are only in the lower 64KB of I/O space. */ if (start >= 65536) return (0); /* Check for overlap with 0x000 - 0x0ff as a special case. */ if (start < 0x100) goto alias; /* * If the start address is an alias, the range is an alias. * Otherwise, compute the start of the next alias range and * check if it is before the end of the candidate range. */ if ((start & 0x300) != 0) goto alias; next_alias = (start & ~0x3fful) | 0x100; if (next_alias <= end) goto alias; return (0); alias: if (bootverbose) device_printf(sc->dev, "I/O range %#lx-%#lx overlaps with an ISA alias\n", start, end); return (1); } static void pcib_add_window_resources(struct pcib_window *w, struct resource **res, int count) { struct resource **newarray; int error, i; newarray = malloc(sizeof(struct resource *) * (w->count + count), M_DEVBUF, M_WAITOK); if (w->res != NULL) bcopy(w->res, newarray, sizeof(struct resource *) * w->count); bcopy(res, newarray + w->count, sizeof(struct resource *) * count); free(w->res, M_DEVBUF); w->res = newarray; w->count += count; for (i = 0; i < count; i++) { error = rman_manage_region(&w->rman, rman_get_start(res[i]), rman_get_end(res[i])); if (error) panic("Failed to add resource to rman"); } } typedef void (nonisa_callback)(u_long start, u_long end, void *arg); static void pcib_walk_nonisa_ranges(u_long start, u_long end, nonisa_callback *cb, void *arg) { u_long next_end; /* * If start is within an ISA alias range, move up to the start * of the next non-alias range. As a special case, addresses * in the range 0x000 - 0x0ff should also be skipped since * those are used for various system I/O devices in ISA * systems. */ if (start <= 65535) { if (start < 0x100 || (start & 0x300) != 0) { start &= ~0x3ff; start += 0x400; } } /* ISA aliases are only in the lower 64KB of I/O space. */ while (start <= MIN(end, 65535)) { next_end = MIN(start | 0xff, end); cb(start, next_end, arg); start += 0x400; } if (start <= end) cb(start, end, arg); } static void count_ranges(u_long start, u_long end, void *arg) { int *countp; countp = arg; (*countp)++; } struct alloc_state { struct resource **res; struct pcib_softc *sc; int count, error; }; static void alloc_ranges(u_long start, u_long end, void *arg) { struct alloc_state *as; struct pcib_window *w; int rid; as = arg; if (as->error != 0) return; w = &as->sc->io; rid = w->reg; if (bootverbose) device_printf(as->sc->dev, "allocating non-ISA range %#lx-%#lx\n", start, end); as->res[as->count] = bus_alloc_resource(as->sc->dev, SYS_RES_IOPORT, &rid, start, end, end - start + 1, 0); if (as->res[as->count] == NULL) as->error = ENXIO; else as->count++; } static int pcib_alloc_nonisa_ranges(struct pcib_softc *sc, u_long start, u_long end) { struct alloc_state as; int i, new_count; /* First, see how many ranges we need. */ new_count = 0; pcib_walk_nonisa_ranges(start, end, count_ranges, &new_count); /* Second, allocate the ranges. */ as.res = malloc(sizeof(struct resource *) * new_count, M_DEVBUF, M_WAITOK); as.sc = sc; as.count = 0; as.error = 0; pcib_walk_nonisa_ranges(start, end, alloc_ranges, &as); if (as.error != 0) { for (i = 0; i < as.count; i++) bus_release_resource(sc->dev, SYS_RES_IOPORT, sc->io.reg, as.res[i]); free(as.res, M_DEVBUF); return (as.error); } KASSERT(as.count == new_count, ("%s: count mismatch", __func__)); /* Third, add the ranges to the window. */ pcib_add_window_resources(&sc->io, as.res, as.count); free(as.res, M_DEVBUF); return (0); } static void pcib_alloc_window(struct pcib_softc *sc, struct pcib_window *w, int type, int flags, pci_addr_t max_address) { struct resource *res; char buf[64]; int error, rid; if (max_address != (u_long)max_address) max_address = ~0ul; w->rman.rm_start = 0; w->rman.rm_end = max_address; w->rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s %s window", device_get_nameunit(sc->dev), w->name); w->rman.rm_descr = strdup(buf, M_DEVBUF); error = rman_init(&w->rman); if (error) panic("Failed to initialize %s %s rman", device_get_nameunit(sc->dev), w->name); if (!pcib_is_window_open(w)) return; if (w->base > max_address || w->limit > max_address) { device_printf(sc->dev, "initial %s window has too many bits, ignoring\n", w->name); return; } if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE) (void)pcib_alloc_nonisa_ranges(sc, w->base, w->limit); else { rid = w->reg; res = bus_alloc_resource(sc->dev, type, &rid, w->base, w->limit, w->limit - w->base + 1, flags); if (res != NULL) pcib_add_window_resources(w, &res, 1); } if (w->res == NULL) { device_printf(sc->dev, "failed to allocate initial %s window: %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); w->base = max_address; w->limit = 0; pcib_write_windows(sc, w->mask); return; } pcib_activate_window(sc, type); } /* * Initialize I/O windows. */ static void pcib_probe_windows(struct pcib_softc *sc) { pci_addr_t max; device_t dev; uint32_t val; dev = sc->dev; if (pci_clear_pcib) { pci_write_config(dev, PCIR_IOBASEL_1, 0xff, 1); pci_write_config(dev, PCIR_IOBASEH_1, 0xffff, 2); pci_write_config(dev, PCIR_IOLIMITL_1, 0, 1); pci_write_config(dev, PCIR_IOLIMITH_1, 0, 2); pci_write_config(dev, PCIR_MEMBASE_1, 0xffff, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, 0, 2); pci_write_config(dev, PCIR_PMBASEL_1, 0xffff, 2); pci_write_config(dev, PCIR_PMBASEH_1, 0xffffffff, 4); pci_write_config(dev, PCIR_PMLIMITL_1, 0, 2); pci_write_config(dev, PCIR_PMLIMITH_1, 0, 4); } /* Determine if the I/O port window is implemented. */ val = pci_read_config(dev, PCIR_IOBASEL_1, 1); if (val == 0) { /* * If 'val' is zero, then only 16-bits of I/O space * are supported. */ pci_write_config(dev, PCIR_IOBASEL_1, 0xff, 1); if (pci_read_config(dev, PCIR_IOBASEL_1, 1) != 0) { sc->io.valid = 1; pci_write_config(dev, PCIR_IOBASEL_1, 0, 1); } } else sc->io.valid = 1; /* Read the existing I/O port window. */ if (sc->io.valid) { sc->io.reg = PCIR_IOBASEL_1; sc->io.step = 12; sc->io.mask = WIN_IO; sc->io.name = "I/O port"; if ((val & PCIM_BRIO_MASK) == PCIM_BRIO_32) { sc->io.base = PCI_PPBIOBASE( pci_read_config(dev, PCIR_IOBASEH_1, 2), val); sc->io.limit = PCI_PPBIOLIMIT( pci_read_config(dev, PCIR_IOLIMITH_1, 2), pci_read_config(dev, PCIR_IOLIMITL_1, 1)); max = 0xffffffff; } else { sc->io.base = PCI_PPBIOBASE(0, val); sc->io.limit = PCI_PPBIOLIMIT(0, pci_read_config(dev, PCIR_IOLIMITL_1, 1)); max = 0xffff; } pcib_alloc_window(sc, &sc->io, SYS_RES_IOPORT, 0, max); } /* Read the existing memory window. */ sc->mem.valid = 1; sc->mem.reg = PCIR_MEMBASE_1; sc->mem.step = 20; sc->mem.mask = WIN_MEM; sc->mem.name = "memory"; sc->mem.base = PCI_PPBMEMBASE(0, pci_read_config(dev, PCIR_MEMBASE_1, 2)); sc->mem.limit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_MEMLIMIT_1, 2)); pcib_alloc_window(sc, &sc->mem, SYS_RES_MEMORY, 0, 0xffffffff); /* Determine if the prefetchable memory window is implemented. */ val = pci_read_config(dev, PCIR_PMBASEL_1, 2); if (val == 0) { /* * If 'val' is zero, then only 32-bits of memory space * are supported. */ pci_write_config(dev, PCIR_PMBASEL_1, 0xffff, 2); if (pci_read_config(dev, PCIR_PMBASEL_1, 2) != 0) { sc->pmem.valid = 1; pci_write_config(dev, PCIR_PMBASEL_1, 0, 2); } } else sc->pmem.valid = 1; /* Read the existing prefetchable memory window. */ if (sc->pmem.valid) { sc->pmem.reg = PCIR_PMBASEL_1; sc->pmem.step = 20; sc->pmem.mask = WIN_PMEM; sc->pmem.name = "prefetch"; if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) { sc->pmem.base = PCI_PPBMEMBASE( pci_read_config(dev, PCIR_PMBASEH_1, 4), val); sc->pmem.limit = PCI_PPBMEMLIMIT( pci_read_config(dev, PCIR_PMLIMITH_1, 4), pci_read_config(dev, PCIR_PMLIMITL_1, 2)); max = 0xffffffffffffffff; } else { sc->pmem.base = PCI_PPBMEMBASE(0, val); sc->pmem.limit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_PMLIMITL_1, 2)); max = 0xffffffff; } pcib_alloc_window(sc, &sc->pmem, SYS_RES_MEMORY, RF_PREFETCHABLE, max); } } #ifdef PCI_RES_BUS /* * Allocate a suitable secondary bus for this bridge if needed and * initialize the resource manager for the secondary bus range. Note * that the minimum count is a desired value and this may allocate a * smaller range. */ void pcib_setup_secbus(device_t dev, struct pcib_secbus *bus, int min_count) { char buf[64]; - int error, rid; + int error, rid, sec_reg; switch (pci_read_config(dev, PCIR_HDRTYPE, 1) & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: + sec_reg = PCIR_SECBUS_1; bus->sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: + sec_reg = PCIR_SECBUS_2; bus->sub_reg = PCIR_SUBBUS_2; break; default: panic("not a PCI bridge"); } + bus->sec = pci_read_config(dev, sec_reg, 1); + bus->sub = pci_read_config(dev, bus->sub_reg, 1); bus->dev = dev; bus->rman.rm_start = 0; bus->rman.rm_end = PCI_BUSMAX; bus->rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s bus numbers", device_get_nameunit(dev)); bus->rman.rm_descr = strdup(buf, M_DEVBUF); error = rman_init(&bus->rman); if (error) panic("Failed to initialize %s bus number rman", device_get_nameunit(dev)); /* * Allocate a bus range. This will return an existing bus range * if one exists, or a new bus range if one does not. */ rid = 0; bus->res = bus_alloc_resource(dev, PCI_RES_BUS, &rid, 0ul, ~0ul, min_count, 0); if (bus->res == NULL) { /* * Fall back to just allocating a range of a single bus * number. */ bus->res = bus_alloc_resource(dev, PCI_RES_BUS, &rid, 0ul, ~0ul, 1, 0); } else if (rman_get_size(bus->res) < min_count) /* * Attempt to grow the existing range to satisfy the * minimum desired count. */ (void)bus_adjust_resource(dev, PCI_RES_BUS, bus->res, rman_get_start(bus->res), rman_get_start(bus->res) + min_count - 1); /* * Add the initial resource to the rman. */ if (bus->res != NULL) { error = rman_manage_region(&bus->rman, rman_get_start(bus->res), rman_get_end(bus->res)); if (error) panic("Failed to add resource to rman"); bus->sec = rman_get_start(bus->res); bus->sub = rman_get_end(bus->res); } } static struct resource * pcib_suballoc_bus(struct pcib_secbus *bus, device_t child, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource *res; res = rman_reserve_resource(&bus->rman, start, end, count, flags, child); if (res == NULL) return (NULL); if (bootverbose) device_printf(bus->dev, "allocated bus range (%lu-%lu) for rid %d of %s\n", rman_get_start(res), rman_get_end(res), *rid, pcib_child_name(child)); rman_set_rid(res, *rid); return (res); } /* * Attempt to grow the secondary bus range. This is much simpler than * for I/O windows as the range can only be grown by increasing * subbus. */ static int pcib_grow_subbus(struct pcib_secbus *bus, u_long new_end) { u_long old_end; int error; old_end = rman_get_end(bus->res); KASSERT(new_end > old_end, ("attempt to shrink subbus")); error = bus_adjust_resource(bus->dev, PCI_RES_BUS, bus->res, rman_get_start(bus->res), new_end); if (error) return (error); if (bootverbose) device_printf(bus->dev, "grew bus range to %lu-%lu\n", rman_get_start(bus->res), rman_get_end(bus->res)); error = rman_manage_region(&bus->rman, old_end + 1, rman_get_end(bus->res)); if (error) panic("Failed to add resource to rman"); bus->sub = rman_get_end(bus->res); pci_write_config(bus->dev, bus->sub_reg, bus->sub, 1); return (0); } struct resource * pcib_alloc_subbus(struct pcib_secbus *bus, device_t child, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource *res; u_long start_free, end_free, new_end; /* * First, see if the request can be satisified by the existing * bus range. */ res = pcib_suballoc_bus(bus, child, rid, start, end, count, flags); if (res != NULL) return (res); /* * Figure out a range to grow the bus range. First, find the * first bus number after the last allocated bus in the rman and * enforce that as a minimum starting point for the range. */ if (rman_last_free_region(&bus->rman, &start_free, &end_free) != 0 || end_free != bus->sub) start_free = bus->sub + 1; if (start_free < start) start_free = start; new_end = start_free + count - 1; /* * See if this new range would satisfy the request if it * succeeds. */ if (new_end > end) return (NULL); /* Finally, attempt to grow the existing resource. */ if (bootverbose) { device_printf(bus->dev, "attempting to grow bus range for %lu buses\n", count); printf("\tback candidate range: %lu-%lu\n", start_free, new_end); } if (pcib_grow_subbus(bus, new_end) == 0) return (pcib_suballoc_bus(bus, child, rid, start, end, count, flags)); return (NULL); } #endif #else /* * Is the prefetch window open (eg, can we allocate memory in it?) */ static int pcib_is_prefetch_open(struct pcib_softc *sc) { return (sc->pmembase > 0 && sc->pmembase < sc->pmemlimit); } /* * Is the nonprefetch window open (eg, can we allocate memory in it?) */ static int pcib_is_nonprefetch_open(struct pcib_softc *sc) { return (sc->membase > 0 && sc->membase < sc->memlimit); } /* * Is the io window open (eg, can we allocate ports in it?) */ static int pcib_is_io_open(struct pcib_softc *sc) { return (sc->iobase > 0 && sc->iobase < sc->iolimit); } /* * Get current I/O decode. */ static void pcib_get_io_decode(struct pcib_softc *sc) { device_t dev; uint32_t iolow; dev = sc->dev; iolow = pci_read_config(dev, PCIR_IOBASEL_1, 1); if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32) sc->iobase = PCI_PPBIOBASE( pci_read_config(dev, PCIR_IOBASEH_1, 2), iolow); else sc->iobase = PCI_PPBIOBASE(0, iolow); iolow = pci_read_config(dev, PCIR_IOLIMITL_1, 1); if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32) sc->iolimit = PCI_PPBIOLIMIT( pci_read_config(dev, PCIR_IOLIMITH_1, 2), iolow); else sc->iolimit = PCI_PPBIOLIMIT(0, iolow); } /* * Get current memory decode. */ static void pcib_get_mem_decode(struct pcib_softc *sc) { device_t dev; pci_addr_t pmemlow; dev = sc->dev; sc->membase = PCI_PPBMEMBASE(0, pci_read_config(dev, PCIR_MEMBASE_1, 2)); sc->memlimit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_MEMLIMIT_1, 2)); pmemlow = pci_read_config(dev, PCIR_PMBASEL_1, 2); if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64) sc->pmembase = PCI_PPBMEMBASE( pci_read_config(dev, PCIR_PMBASEH_1, 4), pmemlow); else sc->pmembase = PCI_PPBMEMBASE(0, pmemlow); pmemlow = pci_read_config(dev, PCIR_PMLIMITL_1, 2); if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64) sc->pmemlimit = PCI_PPBMEMLIMIT( pci_read_config(dev, PCIR_PMLIMITH_1, 4), pmemlow); else sc->pmemlimit = PCI_PPBMEMLIMIT(0, pmemlow); } /* * Restore previous I/O decode. */ static void pcib_set_io_decode(struct pcib_softc *sc) { device_t dev; uint32_t iohi; dev = sc->dev; iohi = sc->iobase >> 16; if (iohi > 0) pci_write_config(dev, PCIR_IOBASEH_1, iohi, 2); pci_write_config(dev, PCIR_IOBASEL_1, sc->iobase >> 8, 1); iohi = sc->iolimit >> 16; if (iohi > 0) pci_write_config(dev, PCIR_IOLIMITH_1, iohi, 2); pci_write_config(dev, PCIR_IOLIMITL_1, sc->iolimit >> 8, 1); } /* * Restore previous memory decode. */ static void pcib_set_mem_decode(struct pcib_softc *sc) { device_t dev; pci_addr_t pmemhi; dev = sc->dev; pci_write_config(dev, PCIR_MEMBASE_1, sc->membase >> 16, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, sc->memlimit >> 16, 2); pmemhi = sc->pmembase >> 32; if (pmemhi > 0) pci_write_config(dev, PCIR_PMBASEH_1, pmemhi, 4); pci_write_config(dev, PCIR_PMBASEL_1, sc->pmembase >> 16, 2); pmemhi = sc->pmemlimit >> 32; if (pmemhi > 0) pci_write_config(dev, PCIR_PMLIMITH_1, pmemhi, 4); pci_write_config(dev, PCIR_PMLIMITL_1, sc->pmemlimit >> 16, 2); } #endif /* * Get current bridge configuration. */ static void pcib_cfg_save(struct pcib_softc *sc) { +#ifndef NEW_PCIB device_t dev; + uint16_t command; dev = sc->dev; - sc->command = pci_read_config(dev, PCIR_COMMAND, 2); - sc->pribus = pci_read_config(dev, PCIR_PRIBUS_1, 1); - sc->bus.sec = pci_read_config(dev, PCIR_SECBUS_1, 1); - sc->bus.sub = pci_read_config(dev, PCIR_SUBBUS_1, 1); - sc->bridgectl = pci_read_config(dev, PCIR_BRIDGECTL_1, 2); - sc->seclat = pci_read_config(dev, PCIR_SECLAT_1, 1); -#ifndef NEW_PCIB - if (sc->command & PCIM_CMD_PORTEN) + command = pci_read_config(dev, PCIR_COMMAND, 2); + if (command & PCIM_CMD_PORTEN) pcib_get_io_decode(sc); - if (sc->command & PCIM_CMD_MEMEN) + if (command & PCIM_CMD_MEMEN) pcib_get_mem_decode(sc); #endif } /* * Restore previous bridge configuration. */ static void pcib_cfg_restore(struct pcib_softc *sc) { device_t dev; - +#ifndef NEW_PCIB + uint16_t command; +#endif dev = sc->dev; - pci_write_config(dev, PCIR_COMMAND, sc->command, 2); - pci_write_config(dev, PCIR_PRIBUS_1, sc->pribus, 1); - pci_write_config(dev, PCIR_SECBUS_1, sc->bus.sec, 1); - pci_write_config(dev, PCIR_SUBBUS_1, sc->bus.sub, 1); - pci_write_config(dev, PCIR_BRIDGECTL_1, sc->bridgectl, 2); - pci_write_config(dev, PCIR_SECLAT_1, sc->seclat, 1); #ifdef NEW_PCIB pcib_write_windows(sc, WIN_IO | WIN_MEM | WIN_PMEM); #else - if (sc->command & PCIM_CMD_PORTEN) + command = pci_read_config(dev, PCIR_COMMAND, 2); + if (command & PCIM_CMD_PORTEN) pcib_set_io_decode(sc); - if (sc->command & PCIM_CMD_MEMEN) + if (command & PCIM_CMD_MEMEN) pcib_set_mem_decode(sc); #endif } /* * Generic device interface */ static int pcib_probe(device_t dev) { if ((pci_get_class(dev) == PCIC_BRIDGE) && (pci_get_subclass(dev) == PCIS_BRIDGE_PCI)) { device_set_desc(dev, "PCI-PCI bridge"); return(-10000); } return(ENXIO); } void pcib_attach_common(device_t dev) { struct pcib_softc *sc; struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; int comma; sc = device_get_softc(dev); sc->dev = dev; /* * Get current bridge configuration. */ sc->domain = pci_get_domain(dev); - sc->secstat = pci_read_config(dev, PCIR_SECSTAT_1, 2); +#if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) + sc->bus.sec = pci_read_config(dev, PCIR_SECBUS_1, 1); + sc->bus.sub = pci_read_config(dev, PCIR_SUBBUS_1, 1); +#endif + sc->bridgectl = pci_read_config(dev, PCIR_BRIDGECTL_1, 2); pcib_cfg_save(sc); /* * The primary bus register should always be the bus of the * parent. */ sc->pribus = pci_get_bus(dev); pci_write_config(dev, PCIR_PRIBUS_1, sc->pribus, 1); /* * Setup sysctl reporting nodes */ sctx = device_get_sysctl_ctx(dev); soid = device_get_sysctl_tree(dev); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "domain", CTLFLAG_RD, &sc->domain, 0, "Domain number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "pribus", CTLFLAG_RD, &sc->pribus, 0, "Primary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "secbus", CTLFLAG_RD, &sc->bus.sec, 0, "Secondary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "subbus", CTLFLAG_RD, &sc->bus.sub, 0, "Subordinate bus number"); /* * Quirk handling. */ switch (pci_get_devid(dev)) { #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) case 0x12258086: /* Intel 82454KX/GX (Orion) */ { uint8_t supbus; supbus = pci_read_config(dev, 0x41, 1); if (supbus != 0xff) { sc->bus.sec = supbus + 1; sc->bus.sub = supbus + 1; } break; } #endif /* * The i82380FB mobile docking controller is a PCI-PCI bridge, * and it is a subtractive bridge. However, the ProgIf is wrong * so the normal setting of PCIB_SUBTRACTIVE bit doesn't * happen. There's also a Toshiba bridge that behaves this * way. */ case 0x124b8086: /* Intel 82380FB Mobile */ case 0x060513d7: /* Toshiba ???? */ sc->flags |= PCIB_SUBTRACTIVE; break; #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) /* Compaq R3000 BIOS sets wrong subordinate bus number. */ case 0x00dd10de: { char *cp; if ((cp = kern_getenv("smbios.planar.maker")) == NULL) break; if (strncmp(cp, "Compal", 6) != 0) { freeenv(cp); break; } freeenv(cp); if ((cp = kern_getenv("smbios.planar.product")) == NULL) break; if (strncmp(cp, "08A0", 4) != 0) { freeenv(cp); break; } freeenv(cp); if (sc->bus.sub < 0xa) { pci_write_config(dev, PCIR_SUBBUS_1, 0xa, 1); sc->bus.sub = pci_read_config(dev, PCIR_SUBBUS_1, 1); } break; } #endif } if (pci_msi_device_blacklisted(dev)) sc->flags |= PCIB_DISABLE_MSI; if (pci_msix_device_blacklisted(dev)) sc->flags |= PCIB_DISABLE_MSIX; /* * Intel 815, 845 and other chipsets say they are PCI-PCI bridges, * but have a ProgIF of 0x80. The 82801 family (AA, AB, BAM/CAM, * BA/CA/DB and E) PCI bridges are HUB-PCI bridges, in Intelese. * This means they act as if they were subtractively decoding * bridges and pass all transactions. Mark them and real ProgIf 1 * parts as subtractive. */ if ((pci_get_devid(dev) & 0xff00ffff) == 0x24008086 || pci_read_config(dev, PCIR_PROGIF, 1) == PCIP_BRIDGE_PCI_SUBTRACTIVE) sc->flags |= PCIB_SUBTRACTIVE; #ifdef NEW_PCIB #ifdef PCI_RES_BUS pcib_setup_secbus(dev, &sc->bus, 1); #endif pcib_probe_windows(sc); #endif if (bootverbose) { device_printf(dev, " domain %d\n", sc->domain); device_printf(dev, " secondary bus %d\n", sc->bus.sec); device_printf(dev, " subordinate bus %d\n", sc->bus.sub); #ifdef NEW_PCIB if (pcib_is_window_open(&sc->io)) device_printf(dev, " I/O decode 0x%jx-0x%jx\n", (uintmax_t)sc->io.base, (uintmax_t)sc->io.limit); if (pcib_is_window_open(&sc->mem)) device_printf(dev, " memory decode 0x%jx-0x%jx\n", (uintmax_t)sc->mem.base, (uintmax_t)sc->mem.limit); if (pcib_is_window_open(&sc->pmem)) device_printf(dev, " prefetched decode 0x%jx-0x%jx\n", (uintmax_t)sc->pmem.base, (uintmax_t)sc->pmem.limit); #else if (pcib_is_io_open(sc)) device_printf(dev, " I/O decode 0x%x-0x%x\n", sc->iobase, sc->iolimit); if (pcib_is_nonprefetch_open(sc)) device_printf(dev, " memory decode 0x%jx-0x%jx\n", (uintmax_t)sc->membase, (uintmax_t)sc->memlimit); if (pcib_is_prefetch_open(sc)) device_printf(dev, " prefetched decode 0x%jx-0x%jx\n", (uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit); #endif if (sc->bridgectl & (PCIB_BCR_ISA_ENABLE | PCIB_BCR_VGA_ENABLE) || sc->flags & PCIB_SUBTRACTIVE) { device_printf(dev, " special decode "); comma = 0; if (sc->bridgectl & PCIB_BCR_ISA_ENABLE) { printf("ISA"); comma = 1; } if (sc->bridgectl & PCIB_BCR_VGA_ENABLE) { printf("%sVGA", comma ? ", " : ""); comma = 1; } if (sc->flags & PCIB_SUBTRACTIVE) printf("%ssubtractive", comma ? ", " : ""); printf("\n"); } } /* * Always enable busmastering on bridges so that transactions * initiated on the secondary bus are passed through to the * primary bus. */ pci_enable_busmaster(dev); } int pcib_attach(device_t dev) { struct pcib_softc *sc; device_t child; pcib_attach_common(dev); sc = device_get_softc(dev); if (sc->bus.sec != 0) { child = device_add_child(dev, "pci", sc->bus.sec); if (child != NULL) return(bus_generic_attach(dev)); } /* no secondary bus; we should have fixed this */ return(0); } int pcib_suspend(device_t dev) { pcib_cfg_save(device_get_softc(dev)); return (bus_generic_suspend(dev)); } int pcib_resume(device_t dev) { pcib_cfg_restore(device_get_softc(dev)); return (bus_generic_resume(dev)); } int pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct pcib_softc *sc = device_get_softc(dev); switch (which) { case PCIB_IVAR_DOMAIN: *result = sc->domain; return(0); case PCIB_IVAR_BUS: *result = sc->bus.sec; return(0); } return(ENOENT); } int pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { switch (which) { case PCIB_IVAR_DOMAIN: return(EINVAL); case PCIB_IVAR_BUS: return(EINVAL); } return(ENOENT); } #ifdef NEW_PCIB /* * Attempt to allocate a resource from the existing resources assigned * to a window. */ static struct resource * pcib_suballoc_resource(struct pcib_softc *sc, struct pcib_window *w, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct resource *res; if (!pcib_is_window_open(w)) return (NULL); res = rman_reserve_resource(&w->rman, start, end, count, flags & ~RF_ACTIVE, child); if (res == NULL) return (NULL); if (bootverbose) device_printf(sc->dev, "allocated %s range (%#lx-%#lx) for rid %x of %s\n", w->name, rman_get_start(res), rman_get_end(res), *rid, pcib_child_name(child)); rman_set_rid(res, *rid); /* * If the resource should be active, pass that request up the * tree. This assumes the parent drivers can handle * activating sub-allocated resources. */ if (flags & RF_ACTIVE) { if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } } return (res); } /* Allocate a fresh resource range for an unconfigured window. */ static int pcib_alloc_new_window(struct pcib_softc *sc, struct pcib_window *w, int type, u_long start, u_long end, u_long count, u_int flags) { struct resource *res; u_long base, limit, wmask; int rid; /* * If this is an I/O window on a bridge with ISA enable set * and the start address is below 64k, then try to allocate an * initial window of 0x1000 bytes long starting at address * 0xf000 and walking down. Note that if the original request * was larger than the non-aliased range size of 0x100 our * caller would have raised the start address up to 64k * already. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && start < 65536) { for (base = 0xf000; (long)base >= 0; base -= 0x1000) { limit = base + 0xfff; /* * Skip ranges that wouldn't work for the * original request. Note that the actual * window that overlaps are the non-alias * ranges within [base, limit], so this isn't * quite a simple comparison. */ if (start + count > limit - 0x400) continue; if (base == 0) { /* * The first open region for the window at * 0 is 0x400-0x4ff. */ if (end - count + 1 < 0x400) continue; } else { if (end - count + 1 < base) continue; } if (pcib_alloc_nonisa_ranges(sc, base, limit) == 0) { w->base = base; w->limit = limit; return (0); } } return (ENOSPC); } wmask = (1ul << w->step) - 1; if (RF_ALIGNMENT(flags) < w->step) { flags &= ~RF_ALIGNMENT_MASK; flags |= RF_ALIGNMENT_LOG2(w->step); } start &= ~wmask; end |= wmask; count = roundup2(count, 1ul << w->step); rid = w->reg; res = bus_alloc_resource(sc->dev, type, &rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) return (ENOSPC); pcib_add_window_resources(w, &res, 1); pcib_activate_window(sc, type); w->base = rman_get_start(res); w->limit = rman_get_end(res); return (0); } /* Try to expand an existing window to the requested base and limit. */ static int pcib_expand_window(struct pcib_softc *sc, struct pcib_window *w, int type, u_long base, u_long limit) { struct resource *res; int error, i, force_64k_base; KASSERT(base <= w->base && limit >= w->limit, ("attempting to shrink window")); /* * XXX: pcib_grow_window() doesn't try to do this anyway and * the error handling for all the edge cases would be tedious. */ KASSERT(limit == w->limit || base == w->base, ("attempting to grow both ends of a window")); /* * Yet more special handling for requests to expand an I/O * window behind an ISA-enabled bridge. Since I/O windows * have to grow in 0x1000 increments and the end of the 0xffff * range is an alias, growing a window below 64k will always * result in allocating new resources and never adjusting an * existing resource. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && (limit <= 65535 || (base <= 65535 && base != w->base))) { KASSERT(limit == w->limit || limit <= 65535, ("attempting to grow both ends across 64k ISA alias")); if (base != w->base) error = pcib_alloc_nonisa_ranges(sc, base, w->base - 1); else error = pcib_alloc_nonisa_ranges(sc, w->limit + 1, limit); if (error == 0) { w->base = base; w->limit = limit; } return (error); } /* * Find the existing resource to adjust. Usually there is only one, * but for an ISA-enabled bridge we might be growing the I/O window * above 64k and need to find the existing resource that maps all * of the area above 64k. */ for (i = 0; i < w->count; i++) { if (rman_get_end(w->res[i]) == w->limit) break; } KASSERT(i != w->count, ("did not find existing resource")); res = w->res[i]; /* * Usually the resource we found should match the window's * existing range. The one exception is the ISA-enabled case * mentioned above in which case the resource should start at * 64k. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && w->base <= 65535) { KASSERT(rman_get_start(res) == 65536, ("existing resource mismatch")); force_64k_base = 1; } else { KASSERT(w->base == rman_get_start(res), ("existing resource mismatch")); force_64k_base = 0; } error = bus_adjust_resource(sc->dev, type, res, force_64k_base ? rman_get_start(res) : base, limit); if (error) return (error); /* Add the newly allocated region to the resource manager. */ if (w->base != base) { error = rman_manage_region(&w->rman, base, w->base - 1); w->base = base; } else { error = rman_manage_region(&w->rman, w->limit + 1, limit); w->limit = limit; } if (error) { if (bootverbose) device_printf(sc->dev, "failed to expand %s resource manager\n", w->name); (void)bus_adjust_resource(sc->dev, type, res, force_64k_base ? rman_get_start(res) : w->base, w->limit); } return (error); } /* * Attempt to grow a window to make room for a given resource request. */ static int pcib_grow_window(struct pcib_softc *sc, struct pcib_window *w, int type, u_long start, u_long end, u_long count, u_int flags) { u_long align, start_free, end_free, front, back, wmask; int error; /* * Clamp the desired resource range to the maximum address * this window supports. Reject impossible requests. * * For I/O port requests behind a bridge with the ISA enable * bit set, force large allocations to start above 64k. */ if (!w->valid) return (EINVAL); if (sc->bridgectl & PCIB_BCR_ISA_ENABLE && count > 0x100 && start < 65536) start = 65536; if (end > w->rman.rm_end) end = w->rman.rm_end; if (start + count - 1 > end || start + count < start) return (EINVAL); wmask = (1ul << w->step) - 1; /* * If there is no resource at all, just try to allocate enough * aligned space for this resource. */ if (w->res == NULL) { error = pcib_alloc_new_window(sc, w, type, start, end, count, flags); if (error) { if (bootverbose) device_printf(sc->dev, "failed to allocate initial %s window (%#lx-%#lx,%#lx)\n", w->name, start, end, count); return (error); } if (bootverbose) device_printf(sc->dev, "allocated initial %s window of %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); goto updatewin; } /* * See if growing the window would help. Compute the minimum * amount of address space needed on both the front and back * ends of the existing window to satisfy the allocation. * * For each end, build a candidate region adjusting for the * required alignment, etc. If there is a free region at the * edge of the window, grow from the inner edge of the free * region. Otherwise grow from the window boundary. * * Growing an I/O window below 64k for a bridge with the ISA * enable bit doesn't require any special magic as the step * size of an I/O window (1k) always includes multiple * non-alias ranges when it is grown in either direction. * * XXX: Special case: if w->res is completely empty and the * request size is larger than w->res, we should find the * optimal aligned buffer containing w->res and allocate that. */ if (bootverbose) device_printf(sc->dev, "attempting to grow %s window for (%#lx-%#lx,%#lx)\n", w->name, start, end, count); align = 1ul << RF_ALIGNMENT(flags); if (start < w->base) { if (rman_first_free_region(&w->rman, &start_free, &end_free) != 0 || start_free != w->base) end_free = w->base; if (end_free > end) end_free = end + 1; /* Move end_free down until it is properly aligned. */ end_free &= ~(align - 1); end_free--; front = end_free - (count - 1); /* * The resource would now be allocated at (front, * end_free). Ensure that fits in the (start, end) * bounds. end_free is checked above. If 'front' is * ok, ensure it is properly aligned for this window. * Also check for underflow. */ if (front >= start && front <= end_free) { if (bootverbose) printf("\tfront candidate range: %#lx-%#lx\n", front, end_free); front &= ~wmask; front = w->base - front; } else front = 0; } else front = 0; if (end > w->limit) { if (rman_last_free_region(&w->rman, &start_free, &end_free) != 0 || end_free != w->limit) start_free = w->limit + 1; if (start_free < start) start_free = start; /* Move start_free up until it is properly aligned. */ start_free = roundup2(start_free, align); back = start_free + count - 1; /* * The resource would now be allocated at (start_free, * back). Ensure that fits in the (start, end) * bounds. start_free is checked above. If 'back' is * ok, ensure it is properly aligned for this window. * Also check for overflow. */ if (back <= end && start_free <= back) { if (bootverbose) printf("\tback candidate range: %#lx-%#lx\n", start_free, back); back |= wmask; back -= w->limit; } else back = 0; } else back = 0; /* * Try to allocate the smallest needed region first. * If that fails, fall back to the other region. */ error = ENOSPC; while (front != 0 || back != 0) { if (front != 0 && (front <= back || back == 0)) { error = pcib_expand_window(sc, w, type, w->base - front, w->limit); if (error == 0) break; front = 0; } else { error = pcib_expand_window(sc, w, type, w->base, w->limit + back); if (error == 0) break; back = 0; } } if (error) return (error); if (bootverbose) device_printf(sc->dev, "grew %s window to %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); updatewin: /* Write the new window. */ KASSERT((w->base & wmask) == 0, ("start address is not aligned")); KASSERT((w->limit & wmask) == wmask, ("end address is not aligned")); pcib_write_windows(sc, w->mask); return (0); } /* * We have to trap resource allocation requests and ensure that the bridge * is set up to, or capable of handling them. */ struct resource * pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct pcib_softc *sc; struct resource *r; sc = device_get_softc(dev); /* * VGA resources are decoded iff the VGA enable bit is set in * the bridge control register. VGA resources do not fall into * the resource windows and are passed up to the parent. */ if ((type == SYS_RES_IOPORT && pci_is_vga_ioport_range(start, end)) || (type == SYS_RES_MEMORY && pci_is_vga_memory_range(start, end))) { if (sc->bridgectl & PCIB_BCR_VGA_ENABLE) return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); else return (NULL); } switch (type) { #ifdef PCI_RES_BUS case PCI_RES_BUS: return (pcib_alloc_subbus(&sc->bus, child, rid, start, end, count, flags)); #endif case SYS_RES_IOPORT: if (pcib_is_isa_range(sc, start, end, count)) return (NULL); r = pcib_suballoc_resource(sc, &sc->io, child, type, rid, start, end, count, flags); if (r != NULL || (sc->flags & PCIB_SUBTRACTIVE) != 0) break; if (pcib_grow_window(sc, &sc->io, type, start, end, count, flags) == 0) r = pcib_suballoc_resource(sc, &sc->io, child, type, rid, start, end, count, flags); break; case SYS_RES_MEMORY: /* * For prefetchable resources, prefer the prefetchable * memory window, but fall back to the regular memory * window if that fails. Try both windows before * attempting to grow a window in case the firmware * has used a range in the regular memory window to * map a prefetchable BAR. */ if (flags & RF_PREFETCHABLE) { r = pcib_suballoc_resource(sc, &sc->pmem, child, type, rid, start, end, count, flags); if (r != NULL) break; } r = pcib_suballoc_resource(sc, &sc->mem, child, type, rid, start, end, count, flags); if (r != NULL || (sc->flags & PCIB_SUBTRACTIVE) != 0) break; if (flags & RF_PREFETCHABLE) { if (pcib_grow_window(sc, &sc->pmem, type, start, end, count, flags) == 0) { r = pcib_suballoc_resource(sc, &sc->pmem, child, type, rid, start, end, count, flags); if (r != NULL) break; } } if (pcib_grow_window(sc, &sc->mem, type, start, end, count, flags & ~RF_PREFETCHABLE) == 0) r = pcib_suballoc_resource(sc, &sc->mem, child, type, rid, start, end, count, flags); break; default: return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } /* * If attempts to suballocate from the window fail but this is a * subtractive bridge, pass the request up the tree. */ if (sc->flags & PCIB_SUBTRACTIVE && r == NULL) return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); return (r); } int pcib_adjust_resource(device_t bus, device_t child, int type, struct resource *r, u_long start, u_long end) { struct pcib_softc *sc; sc = device_get_softc(bus); if (pcib_is_resource_managed(sc, type, r)) return (rman_adjust_resource(r, start, end)); return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } int pcib_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pcib_softc *sc; int error; sc = device_get_softc(dev); if (pcib_is_resource_managed(sc, type, r)) { if (rman_get_flags(r) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, r); if (error) return (error); } return (rman_release_resource(r)); } return (bus_generic_release_resource(dev, child, type, rid, r)); } #else /* * We have to trap resource allocation requests and ensure that the bridge * is set up to, or capable of handling them. */ struct resource * pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { struct pcib_softc *sc = device_get_softc(dev); const char *name, *suffix; int ok; /* * Fail the allocation for this range if it's not supported. */ name = device_get_nameunit(child); if (name == NULL) { name = ""; suffix = ""; } else suffix = " "; switch (type) { case SYS_RES_IOPORT: ok = 0; if (!pcib_is_io_open(sc)) break; ok = (start >= sc->iobase && end <= sc->iolimit); /* * Make sure we allow access to VGA I/O addresses when the * bridge has the "VGA Enable" bit set. */ if (!ok && pci_is_vga_ioport_range(start, end)) ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0; if ((sc->flags & PCIB_SUBTRACTIVE) == 0) { if (!ok) { if (start < sc->iobase) start = sc->iobase; if (end > sc->iolimit) end = sc->iolimit; if (start < end) ok = 1; } } else { ok = 1; #if 0 /* * If we overlap with the subtractive range, then * pick the upper range to use. */ if (start < sc->iolimit && end > sc->iobase) start = sc->iolimit + 1; #endif } if (end < start) { device_printf(dev, "ioport: end (%lx) < start (%lx)\n", end, start); start = 0; end = 0; ok = 0; } if (!ok) { device_printf(dev, "%s%srequested unsupported I/O " "range 0x%lx-0x%lx (decoding 0x%x-0x%x)\n", name, suffix, start, end, sc->iobase, sc->iolimit); return (NULL); } if (bootverbose) device_printf(dev, "%s%srequested I/O range 0x%lx-0x%lx: in range\n", name, suffix, start, end); break; case SYS_RES_MEMORY: ok = 0; if (pcib_is_nonprefetch_open(sc)) ok = ok || (start >= sc->membase && end <= sc->memlimit); if (pcib_is_prefetch_open(sc)) ok = ok || (start >= sc->pmembase && end <= sc->pmemlimit); /* * Make sure we allow access to VGA memory addresses when the * bridge has the "VGA Enable" bit set. */ if (!ok && pci_is_vga_memory_range(start, end)) ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0; if ((sc->flags & PCIB_SUBTRACTIVE) == 0) { if (!ok) { ok = 1; if (flags & RF_PREFETCHABLE) { if (pcib_is_prefetch_open(sc)) { if (start < sc->pmembase) start = sc->pmembase; if (end > sc->pmemlimit) end = sc->pmemlimit; } else { ok = 0; } } else { /* non-prefetchable */ if (pcib_is_nonprefetch_open(sc)) { if (start < sc->membase) start = sc->membase; if (end > sc->memlimit) end = sc->memlimit; } else { ok = 0; } } } } else if (!ok) { ok = 1; /* subtractive bridge: always ok */ #if 0 if (pcib_is_nonprefetch_open(sc)) { if (start < sc->memlimit && end > sc->membase) start = sc->memlimit + 1; } if (pcib_is_prefetch_open(sc)) { if (start < sc->pmemlimit && end > sc->pmembase) start = sc->pmemlimit + 1; } #endif } if (end < start) { device_printf(dev, "memory: end (%lx) < start (%lx)\n", end, start); start = 0; end = 0; ok = 0; } if (!ok && bootverbose) device_printf(dev, "%s%srequested unsupported memory range %#lx-%#lx " "(decoding %#jx-%#jx, %#jx-%#jx)\n", name, suffix, start, end, (uintmax_t)sc->membase, (uintmax_t)sc->memlimit, (uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit); if (!ok) return (NULL); if (bootverbose) device_printf(dev,"%s%srequested memory range " "0x%lx-0x%lx: good\n", name, suffix, start, end); break; default: break; } /* * Bridge is OK decoding this resource, so pass it up. */ return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } #endif /* * If ARI is enabled on this downstream port, translate the function number * to the non-ARI slot/function. The downstream port will convert it back in * hardware. If ARI is not enabled slot and func are not modified. */ static __inline void pcib_xlate_ari(device_t pcib, int bus, int *slot, int *func) { struct pcib_softc *sc; int ari_func; sc = device_get_softc(pcib); ari_func = *func; if (sc->flags & PCIB_ENABLE_ARI) { KASSERT(*slot == 0, ("Non-zero slot number with ARI enabled!")); *slot = PCIE_ARI_SLOT(ari_func); *func = PCIE_ARI_FUNC(ari_func); } } static void pcib_enable_ari(struct pcib_softc *sc, uint32_t pcie_pos) { uint32_t ctl2; ctl2 = pci_read_config(sc->dev, pcie_pos + PCIER_DEVICE_CTL2, 4); ctl2 |= PCIEM_CTL2_ARI; pci_write_config(sc->dev, pcie_pos + PCIER_DEVICE_CTL2, ctl2, 4); sc->flags |= PCIB_ENABLE_ARI; } /* * PCIB interface. */ int pcib_maxslots(device_t dev) { return (PCI_SLOTMAX); } static int pcib_ari_maxslots(device_t dev) { struct pcib_softc *sc; sc = device_get_softc(dev); if (sc->flags & PCIB_ENABLE_ARI) return (PCIE_ARI_SLOTMAX); else return (PCI_SLOTMAX); } static int pcib_ari_maxfuncs(device_t dev) { struct pcib_softc *sc; sc = device_get_softc(dev); if (sc->flags & PCIB_ENABLE_ARI) return (PCIE_ARI_FUNCMAX); else return (PCI_FUNCMAX); } static void pcib_ari_decode_rid(device_t pcib, uint16_t rid, int *bus, int *slot, int *func) { struct pcib_softc *sc; sc = device_get_softc(pcib); *bus = PCI_RID2BUS(rid); if (sc->flags & PCIB_ENABLE_ARI) { *slot = PCIE_ARI_RID2SLOT(rid); *func = PCIE_ARI_RID2FUNC(rid); } else { *slot = PCI_RID2SLOT(rid); *func = PCI_RID2FUNC(rid); } } /* * Since we are a child of a PCI bus, its parent must support the pcib interface. */ static uint32_t pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width) { pcib_xlate_ari(dev, b, &s, &f); return(PCIB_READ_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, width)); } static void pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width) { pcib_xlate_ari(dev, b, &s, &f); PCIB_WRITE_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, val, width); } /* * Route an interrupt across a PCI bridge. */ int pcib_route_interrupt(device_t pcib, device_t dev, int pin) { device_t bus; int parent_intpin; int intnum; /* * * The PCI standard defines a swizzle of the child-side device/intpin to * the parent-side intpin as follows. * * device = device on child bus * child_intpin = intpin on child bus slot (0-3) * parent_intpin = intpin on parent bus slot (0-3) * * parent_intpin = (device + child_intpin) % 4 */ parent_intpin = (pci_get_slot(dev) + (pin - 1)) % 4; /* * Our parent is a PCI bus. Its parent must export the pcib interface * which includes the ability to route interrupts. */ bus = device_get_parent(pcib); intnum = PCIB_ROUTE_INTERRUPT(device_get_parent(bus), pcib, parent_intpin + 1); if (PCI_INTERRUPT_VALID(intnum) && bootverbose) { device_printf(pcib, "slot %d INT%c is routed to irq %d\n", pci_get_slot(dev), 'A' + pin - 1, intnum); } return(intnum); } /* Pass request to alloc MSI/MSI-X messages up to the parent bridge. */ int pcib_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs) { struct pcib_softc *sc = device_get_softc(pcib); device_t bus; if (sc->flags & PCIB_DISABLE_MSI) return (ENXIO); bus = device_get_parent(pcib); return (PCIB_ALLOC_MSI(device_get_parent(bus), dev, count, maxcount, irqs)); } /* Pass request to release MSI/MSI-X messages up to the parent bridge. */ int pcib_release_msi(device_t pcib, device_t dev, int count, int *irqs) { device_t bus; bus = device_get_parent(pcib); return (PCIB_RELEASE_MSI(device_get_parent(bus), dev, count, irqs)); } /* Pass request to alloc an MSI-X message up to the parent bridge. */ int pcib_alloc_msix(device_t pcib, device_t dev, int *irq) { struct pcib_softc *sc = device_get_softc(pcib); device_t bus; if (sc->flags & PCIB_DISABLE_MSIX) return (ENXIO); bus = device_get_parent(pcib); return (PCIB_ALLOC_MSIX(device_get_parent(bus), dev, irq)); } /* Pass request to release an MSI-X message up to the parent bridge. */ int pcib_release_msix(device_t pcib, device_t dev, int irq) { device_t bus; bus = device_get_parent(pcib); return (PCIB_RELEASE_MSIX(device_get_parent(bus), dev, irq)); } /* Pass request to map MSI/MSI-X message up to parent bridge. */ int pcib_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data) { device_t bus; int error; bus = device_get_parent(pcib); error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, addr, data); if (error) return (error); pci_ht_map_msi(pcib, *addr); return (0); } /* Pass request for device power state up to parent bridge. */ int pcib_power_for_sleep(device_t pcib, device_t dev, int *pstate) { device_t bus; bus = device_get_parent(pcib); return (PCIB_POWER_FOR_SLEEP(bus, dev, pstate)); } static int pcib_ari_enabled(device_t pcib) { struct pcib_softc *sc; sc = device_get_softc(pcib); return ((sc->flags & PCIB_ENABLE_ARI) != 0); } static uint16_t pcib_ari_get_rid(device_t pcib, device_t dev) { struct pcib_softc *sc; uint8_t bus, slot, func; sc = device_get_softc(pcib); if (sc->flags & PCIB_ENABLE_ARI) { bus = pci_get_bus(dev); func = pci_get_function(dev); return (PCI_ARI_RID(bus, func)); } else { bus = pci_get_bus(dev); slot = pci_get_slot(dev); func = pci_get_function(dev); return (PCI_RID(bus, slot, func)); } } /* * Check that the downstream port (pcib) and the endpoint device (dev) both * support ARI. If so, enable it and return 0, otherwise return an error. */ static int pcib_try_enable_ari(device_t pcib, device_t dev) { struct pcib_softc *sc; int error; uint32_t cap2; int ari_cap_off; uint32_t ari_ver; uint32_t pcie_pos; sc = device_get_softc(pcib); /* * ARI is controlled in a register in the PCIe capability structure. * If the downstream port does not have the PCIe capability structure * then it does not support ARI. */ error = pci_find_cap(pcib, PCIY_EXPRESS, &pcie_pos); if (error != 0) return (ENODEV); /* Check that the PCIe port advertises ARI support. */ cap2 = pci_read_config(pcib, pcie_pos + PCIER_DEVICE_CAP2, 4); if (!(cap2 & PCIEM_CAP2_ARI)) return (ENODEV); /* * Check that the endpoint device advertises ARI support via the ARI * extended capability structure. */ error = pci_find_extcap(dev, PCIZ_ARI, &ari_cap_off); if (error != 0) return (ENODEV); /* * Finally, check that the endpoint device supports the same version * of ARI that we do. */ ari_ver = pci_read_config(dev, ari_cap_off, 4); if (PCI_EXTCAP_VER(ari_ver) != PCIB_SUPPORTED_ARI_VER) { if (bootverbose) device_printf(pcib, "Unsupported version of ARI (%d) detected\n", PCI_EXTCAP_VER(ari_ver)); return (ENXIO); } pcib_enable_ari(sc, pcie_pos); return (0); } Index: head/sys/dev/pci/pcib_private.h =================================================================== --- head/sys/dev/pci/pcib_private.h (revision 281873) +++ head/sys/dev/pci/pcib_private.h (revision 281874) @@ -1,176 +1,173 @@ /*- * Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __PCIB_PRIVATE_H__ #define __PCIB_PRIVATE_H__ #ifdef NEW_PCIB /* * Data structure and routines that Host to PCI bridge drivers can use * to restrict allocations for child devices to ranges decoded by the * bridge. */ struct pcib_host_resources { device_t hr_pcib; struct resource_list hr_rl; }; int pcib_host_res_init(device_t pcib, struct pcib_host_resources *hr); int pcib_host_res_free(device_t pcib, struct pcib_host_resources *hr); int pcib_host_res_decodes(struct pcib_host_resources *hr, int type, u_long start, u_long end, u_int flags); struct resource *pcib_host_res_alloc(struct pcib_host_resources *hr, device_t dev, int type, int *rid, u_long start, u_long end, u_long count, u_int flags); int pcib_host_res_adjust(struct pcib_host_resources *hr, device_t dev, int type, struct resource *r, u_long start, u_long end); #endif /* * Export portions of generic PCI:PCI bridge support so that it can be * used by subclasses. */ DECLARE_CLASS(pcib_driver); #ifdef NEW_PCIB #define WIN_IO 0x1 #define WIN_MEM 0x2 #define WIN_PMEM 0x4 struct pcib_window { pci_addr_t base; /* base address */ pci_addr_t limit; /* topmost address */ struct rman rman; struct resource **res; int count; /* size of 'res' array */ int reg; /* resource id from parent */ int valid; int mask; /* WIN_* bitmask of this window */ int step; /* log_2 of window granularity */ const char *name; }; #endif struct pcib_secbus { u_int sec; u_int sub; #if defined(NEW_PCIB) && defined(PCI_RES_BUS) device_t dev; struct rman rman; struct resource *res; const char *name; int sub_reg; #endif }; /* * Bridge-specific data. */ struct pcib_softc { device_t dev; uint32_t flags; /* flags */ #define PCIB_SUBTRACTIVE 0x1 #define PCIB_DISABLE_MSI 0x2 #define PCIB_DISABLE_MSIX 0x4 #define PCIB_ENABLE_ARI 0x8 - uint16_t command; /* command register */ u_int domain; /* domain number */ u_int pribus; /* primary bus number */ struct pcib_secbus bus; /* secondary bus numbers */ #ifdef NEW_PCIB struct pcib_window io; /* I/O port window */ struct pcib_window mem; /* memory window */ struct pcib_window pmem; /* prefetchable memory window */ #else pci_addr_t pmembase; /* base address of prefetchable memory */ pci_addr_t pmemlimit; /* topmost address of prefetchable memory */ pci_addr_t membase; /* base address of memory window */ pci_addr_t memlimit; /* topmost address of memory window */ uint32_t iobase; /* base address of port window */ uint32_t iolimit; /* topmost address of port window */ #endif - uint16_t secstat; /* secondary bus status register */ uint16_t bridgectl; /* bridge control register */ - uint8_t seclat; /* secondary bus latency timer */ }; #define PCIB_SUPPORTED_ARI_VER 1 typedef uint32_t pci_read_config_fn(int b, int s, int f, int reg, int width); int host_pcib_get_busno(pci_read_config_fn read_config, int bus, int slot, int func, uint8_t *busnum); #if defined(NEW_PCIB) && defined(PCI_RES_BUS) struct resource *pci_domain_alloc_bus(int domain, device_t dev, int *rid, u_long start, u_long end, u_long count, u_int flags); int pci_domain_adjust_bus(int domain, device_t dev, struct resource *r, u_long start, u_long end); int pci_domain_release_bus(int domain, device_t dev, int rid, struct resource *r); struct resource *pcib_alloc_subbus(struct pcib_secbus *bus, device_t child, int *rid, u_long start, u_long end, u_long count, u_int flags); void pcib_setup_secbus(device_t dev, struct pcib_secbus *bus, int min_count); #endif int pcib_attach(device_t dev); void pcib_attach_common(device_t dev); #ifdef NEW_PCIB const char *pcib_child_name(device_t child); #endif int pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result); int pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value); struct resource *pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags); #ifdef NEW_PCIB int pcib_adjust_resource(device_t bus, device_t child, int type, struct resource *r, u_long start, u_long end); int pcib_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r); #endif int pcib_maxslots(device_t dev); int pcib_maxfuncs(device_t dev); int pcib_route_interrupt(device_t pcib, device_t dev, int pin); int pcib_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs); int pcib_release_msi(device_t pcib, device_t dev, int count, int *irqs); int pcib_alloc_msix(device_t pcib, device_t dev, int *irq); int pcib_release_msix(device_t pcib, device_t dev, int irq); int pcib_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data); uint16_t pcib_get_rid(device_t pcib, device_t dev); void pcib_decode_rid(device_t pcib, uint16_t rid, int *bus, int *slot, int *func); #endif Index: head/sys/dev/pci/pcivar.h =================================================================== --- head/sys/dev/pci/pcivar.h (revision 281873) +++ head/sys/dev/pci/pcivar.h (revision 281874) @@ -1,596 +1,606 @@ /*- * Copyright (c) 1997, Stefan Esser * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ * */ #ifndef _PCIVAR_H_ #define _PCIVAR_H_ #include /* some PCI bus constants */ #define PCI_MAXMAPS_0 6 /* max. no. of memory/port maps */ #define PCI_MAXMAPS_1 2 /* max. no. of maps for PCI to PCI bridge */ #define PCI_MAXMAPS_2 1 /* max. no. of maps for CardBus bridge */ typedef uint64_t pci_addr_t; struct nvlist; +/* Config registers for PCI-PCI and PCI-Cardbus bridges. */ +struct pcicfg_bridge { + uint8_t br_seclat; + uint8_t br_subbus; + uint8_t br_secbus; + uint8_t br_pribus; + uint16_t br_control; +}; + /* Interesting values for PCI power management */ struct pcicfg_pp { uint16_t pp_cap; /* PCI power management capabilities */ uint8_t pp_status; /* conf. space addr. of PM control/status reg */ uint8_t pp_bse; /* conf. space addr. of PM BSE reg */ uint8_t pp_data; /* conf. space addr. of PM data reg */ }; struct pci_map { pci_addr_t pm_value; /* Raw BAR value */ pci_addr_t pm_size; uint16_t pm_reg; STAILQ_ENTRY(pci_map) pm_link; }; struct vpd_readonly { char keyword[2]; char *value; int len; }; struct vpd_write { char keyword[2]; char *value; int start; int len; }; struct pcicfg_vpd { uint8_t vpd_reg; /* base register, + 2 for addr, + 4 data */ char vpd_cached; char *vpd_ident; /* string identifier */ int vpd_rocnt; struct vpd_readonly *vpd_ros; int vpd_wcnt; struct vpd_write *vpd_w; }; /* Interesting values for PCI MSI */ struct pcicfg_msi { uint16_t msi_ctrl; /* Message Control */ uint8_t msi_location; /* Offset of MSI capability registers. */ uint8_t msi_msgnum; /* Number of messages */ int msi_alloc; /* Number of allocated messages. */ uint64_t msi_addr; /* Contents of address register. */ uint16_t msi_data; /* Contents of data register. */ u_int msi_handlers; }; /* Interesting values for PCI MSI-X */ struct msix_vector { uint64_t mv_address; /* Contents of address register. */ uint32_t mv_data; /* Contents of data register. */ int mv_irq; }; struct msix_table_entry { u_int mte_vector; /* 1-based index into msix_vectors array. */ u_int mte_handlers; }; struct pcicfg_msix { uint16_t msix_ctrl; /* Message Control */ uint16_t msix_msgnum; /* Number of messages */ uint8_t msix_location; /* Offset of MSI-X capability registers. */ uint8_t msix_table_bar; /* BAR containing vector table. */ uint8_t msix_pba_bar; /* BAR containing PBA. */ uint32_t msix_table_offset; uint32_t msix_pba_offset; int msix_alloc; /* Number of allocated vectors. */ int msix_table_len; /* Length of virtual table. */ struct msix_table_entry *msix_table; /* Virtual table. */ struct msix_vector *msix_vectors; /* Array of allocated vectors. */ struct resource *msix_table_res; /* Resource containing vector table. */ struct resource *msix_pba_res; /* Resource containing PBA. */ }; /* Interesting values for HyperTransport */ struct pcicfg_ht { uint8_t ht_slave; /* Non-zero if device is an HT slave. */ uint8_t ht_msimap; /* Offset of MSI mapping cap registers. */ uint16_t ht_msictrl; /* MSI mapping control */ uint64_t ht_msiaddr; /* MSI mapping base address */ }; /* Interesting values for PCI-express */ struct pcicfg_pcie { uint8_t pcie_location; /* Offset of PCI-e capability registers. */ uint8_t pcie_type; /* Device type. */ uint16_t pcie_flags; /* Device capabilities register. */ uint16_t pcie_device_ctl; /* Device control register. */ uint16_t pcie_link_ctl; /* Link control register. */ uint16_t pcie_slot_ctl; /* Slot control register. */ uint16_t pcie_root_ctl; /* Root control register. */ uint16_t pcie_device_ctl2; /* Second device control register. */ uint16_t pcie_link_ctl2; /* Second link control register. */ uint16_t pcie_slot_ctl2; /* Second slot control register. */ }; struct pcicfg_pcix { uint16_t pcix_command; uint8_t pcix_location; /* Offset of PCI-X capability registers. */ }; struct pcicfg_vf { int index; }; #define PCICFG_VF 0x0001 /* Device is an SR-IOV Virtual Function */ /* config header information common to all header types */ typedef struct pcicfg { struct device *dev; /* device which owns this */ STAILQ_HEAD(, pci_map) maps; /* BARs */ uint16_t subvendor; /* card vendor ID */ uint16_t subdevice; /* card device ID, assigned by card vendor */ uint16_t vendor; /* chip vendor ID */ uint16_t device; /* chip device ID, assigned by chip vendor */ uint16_t cmdreg; /* disable/enable chip and PCI options */ uint16_t statreg; /* supported PCI features and error state */ uint8_t baseclass; /* chip PCI class */ uint8_t subclass; /* chip PCI subclass */ uint8_t progif; /* chip PCI programming interface */ uint8_t revid; /* chip revision ID */ uint8_t hdrtype; /* chip config header type */ uint8_t cachelnsz; /* cache line size in 4byte units */ uint8_t intpin; /* PCI interrupt pin */ uint8_t intline; /* interrupt line (IRQ for PC arch) */ uint8_t mingnt; /* min. useful bus grant time in 250ns units */ uint8_t maxlat; /* max. tolerated bus grant latency in 250ns */ uint8_t lattimer; /* latency timer in units of 30ns bus cycles */ uint8_t mfdev; /* multi-function device (from hdrtype reg) */ uint8_t nummaps; /* actual number of PCI maps used */ uint32_t domain; /* PCI domain */ uint8_t bus; /* config space bus address */ uint8_t slot; /* config space slot address */ uint8_t func; /* config space function number */ uint32_t flags; /* flags defined above */ size_t devinfo_size; /* Size of devinfo for this bus type. */ + struct pcicfg_bridge bridge; /* Bridges */ struct pcicfg_pp pp; /* Power management */ struct pcicfg_vpd vpd; /* Vital product data */ struct pcicfg_msi msi; /* PCI MSI */ struct pcicfg_msix msix; /* PCI MSI-X */ struct pcicfg_ht ht; /* HyperTransport */ struct pcicfg_pcie pcie; /* PCI Express */ struct pcicfg_pcix pcix; /* PCI-X */ struct pcicfg_iov *iov; /* SR-IOV */ struct pcicfg_vf vf; /* SR-IOV Virtual Function */ } pcicfgregs; /* additional type 1 device config header information (PCI to PCI bridge) */ #define PCI_PPBMEMBASE(h,l) ((((pci_addr_t)(h) << 32) + ((l)<<16)) & ~0xfffff) #define PCI_PPBMEMLIMIT(h,l) ((((pci_addr_t)(h) << 32) + ((l)<<16)) | 0xfffff) #define PCI_PPBIOBASE(h,l) ((((h)<<16) + ((l)<<8)) & ~0xfff) #define PCI_PPBIOLIMIT(h,l) ((((h)<<16) + ((l)<<8)) | 0xfff) typedef struct { pci_addr_t pmembase; /* base address of prefetchable memory */ pci_addr_t pmemlimit; /* topmost address of prefetchable memory */ uint32_t membase; /* base address of memory window */ uint32_t memlimit; /* topmost address of memory window */ uint32_t iobase; /* base address of port window */ uint32_t iolimit; /* topmost address of port window */ uint16_t secstat; /* secondary bus status register */ uint16_t bridgectl; /* bridge control register */ uint8_t seclat; /* CardBus latency timer */ } pcih1cfgregs; /* additional type 2 device config header information (CardBus bridge) */ typedef struct { uint32_t membase0; /* base address of memory window */ uint32_t memlimit0; /* topmost address of memory window */ uint32_t membase1; /* base address of memory window */ uint32_t memlimit1; /* topmost address of memory window */ uint32_t iobase0; /* base address of port window */ uint32_t iolimit0; /* topmost address of port window */ uint32_t iobase1; /* base address of port window */ uint32_t iolimit1; /* topmost address of port window */ uint32_t pccardif; /* PC Card 16bit IF legacy more base addr. */ uint16_t secstat; /* secondary bus status register */ uint16_t bridgectl; /* bridge control register */ uint8_t seclat; /* CardBus latency timer */ } pcih2cfgregs; extern uint32_t pci_numdevs; /* Only if the prerequisites are present */ #if defined(_SYS_BUS_H_) && defined(_SYS_PCIIO_H_) struct pci_devinfo { STAILQ_ENTRY(pci_devinfo) pci_links; struct resource_list resources; pcicfgregs cfg; struct pci_conf conf; }; #endif #ifdef _SYS_BUS_H_ #include "pci_if.h" enum pci_device_ivars { PCI_IVAR_SUBVENDOR, PCI_IVAR_SUBDEVICE, PCI_IVAR_VENDOR, PCI_IVAR_DEVICE, PCI_IVAR_DEVID, PCI_IVAR_CLASS, PCI_IVAR_SUBCLASS, PCI_IVAR_PROGIF, PCI_IVAR_REVID, PCI_IVAR_INTPIN, PCI_IVAR_IRQ, PCI_IVAR_DOMAIN, PCI_IVAR_BUS, PCI_IVAR_SLOT, PCI_IVAR_FUNCTION, PCI_IVAR_ETHADDR, PCI_IVAR_CMDREG, PCI_IVAR_CACHELNSZ, PCI_IVAR_MINGNT, PCI_IVAR_MAXLAT, PCI_IVAR_LATTIMER }; /* * Simplified accessors for pci devices */ #define PCI_ACCESSOR(var, ivar, type) \ __BUS_ACCESSOR(pci, var, PCI, ivar, type) PCI_ACCESSOR(subvendor, SUBVENDOR, uint16_t) PCI_ACCESSOR(subdevice, SUBDEVICE, uint16_t) PCI_ACCESSOR(vendor, VENDOR, uint16_t) PCI_ACCESSOR(device, DEVICE, uint16_t) PCI_ACCESSOR(devid, DEVID, uint32_t) PCI_ACCESSOR(class, CLASS, uint8_t) PCI_ACCESSOR(subclass, SUBCLASS, uint8_t) PCI_ACCESSOR(progif, PROGIF, uint8_t) PCI_ACCESSOR(revid, REVID, uint8_t) PCI_ACCESSOR(intpin, INTPIN, uint8_t) PCI_ACCESSOR(irq, IRQ, uint8_t) PCI_ACCESSOR(domain, DOMAIN, uint32_t) PCI_ACCESSOR(bus, BUS, uint8_t) PCI_ACCESSOR(slot, SLOT, uint8_t) PCI_ACCESSOR(function, FUNCTION, uint8_t) PCI_ACCESSOR(ether, ETHADDR, uint8_t *) PCI_ACCESSOR(cmdreg, CMDREG, uint8_t) PCI_ACCESSOR(cachelnsz, CACHELNSZ, uint8_t) PCI_ACCESSOR(mingnt, MINGNT, uint8_t) PCI_ACCESSOR(maxlat, MAXLAT, uint8_t) PCI_ACCESSOR(lattimer, LATTIMER, uint8_t) #undef PCI_ACCESSOR /* * Operations on configuration space. */ static __inline uint32_t pci_read_config(device_t dev, int reg, int width) { return PCI_READ_CONFIG(device_get_parent(dev), dev, reg, width); } static __inline void pci_write_config(device_t dev, int reg, uint32_t val, int width) { PCI_WRITE_CONFIG(device_get_parent(dev), dev, reg, val, width); } /* * Ivars for pci bridges. */ /*typedef enum pci_device_ivars pcib_device_ivars;*/ enum pcib_device_ivars { PCIB_IVAR_DOMAIN, PCIB_IVAR_BUS }; #define PCIB_ACCESSOR(var, ivar, type) \ __BUS_ACCESSOR(pcib, var, PCIB, ivar, type) PCIB_ACCESSOR(domain, DOMAIN, uint32_t) PCIB_ACCESSOR(bus, BUS, uint32_t) #undef PCIB_ACCESSOR /* * PCI interrupt validation. Invalid interrupt values such as 0 or 128 * on i386 or other platforms should be mapped out in the MD pcireadconf * code and not here, since the only MI invalid IRQ is 255. */ #define PCI_INVALID_IRQ 255 #define PCI_INTERRUPT_VALID(x) ((x) != PCI_INVALID_IRQ) /* * Convenience functions. * * These should be used in preference to manually manipulating * configuration space. */ static __inline int pci_enable_busmaster(device_t dev) { return(PCI_ENABLE_BUSMASTER(device_get_parent(dev), dev)); } static __inline int pci_disable_busmaster(device_t dev) { return(PCI_DISABLE_BUSMASTER(device_get_parent(dev), dev)); } static __inline int pci_enable_io(device_t dev, int space) { return(PCI_ENABLE_IO(device_get_parent(dev), dev, space)); } static __inline int pci_disable_io(device_t dev, int space) { return(PCI_DISABLE_IO(device_get_parent(dev), dev, space)); } static __inline int pci_get_vpd_ident(device_t dev, const char **identptr) { return(PCI_GET_VPD_IDENT(device_get_parent(dev), dev, identptr)); } static __inline int pci_get_vpd_readonly(device_t dev, const char *kw, const char **vptr) { return(PCI_GET_VPD_READONLY(device_get_parent(dev), dev, kw, vptr)); } /* * Check if the address range falls within the VGA defined address range(s) */ static __inline int pci_is_vga_ioport_range(u_long start, u_long end) { return (((start >= 0x3b0 && end <= 0x3bb) || (start >= 0x3c0 && end <= 0x3df)) ? 1 : 0); } static __inline int pci_is_vga_memory_range(u_long start, u_long end) { return ((start >= 0xa0000 && end <= 0xbffff) ? 1 : 0); } /* * PCI power states are as defined by ACPI: * * D0 State in which device is on and running. It is receiving full * power from the system and delivering full functionality to the user. * D1 Class-specific low-power state in which device context may or may not * be lost. Buses in D1 cannot do anything to the bus that would force * devices on that bus to lose context. * D2 Class-specific low-power state in which device context may or may * not be lost. Attains greater power savings than D1. Buses in D2 * can cause devices on that bus to lose some context. Devices in D2 * must be prepared for the bus to be in D2 or higher. * D3 State in which the device is off and not running. Device context is * lost. Power can be removed from the device. */ #define PCI_POWERSTATE_D0 0 #define PCI_POWERSTATE_D1 1 #define PCI_POWERSTATE_D2 2 #define PCI_POWERSTATE_D3 3 #define PCI_POWERSTATE_UNKNOWN -1 static __inline int pci_set_powerstate(device_t dev, int state) { return PCI_SET_POWERSTATE(device_get_parent(dev), dev, state); } static __inline int pci_get_powerstate(device_t dev) { return PCI_GET_POWERSTATE(device_get_parent(dev), dev); } static __inline int pci_find_cap(device_t dev, int capability, int *capreg) { return (PCI_FIND_CAP(device_get_parent(dev), dev, capability, capreg)); } static __inline int pci_find_extcap(device_t dev, int capability, int *capreg) { return (PCI_FIND_EXTCAP(device_get_parent(dev), dev, capability, capreg)); } static __inline int pci_find_htcap(device_t dev, int capability, int *capreg) { return (PCI_FIND_HTCAP(device_get_parent(dev), dev, capability, capreg)); } static __inline int pci_alloc_msi(device_t dev, int *count) { return (PCI_ALLOC_MSI(device_get_parent(dev), dev, count)); } static __inline int pci_alloc_msix(device_t dev, int *count) { return (PCI_ALLOC_MSIX(device_get_parent(dev), dev, count)); } static __inline void pci_enable_msi(device_t dev, uint64_t address, uint16_t data) { PCI_ENABLE_MSI(device_get_parent(dev), dev, address, data); } static __inline void pci_enable_msix(device_t dev, u_int index, uint64_t address, uint32_t data) { PCI_ENABLE_MSIX(device_get_parent(dev), dev, index, address, data); } static __inline void pci_disable_msi(device_t dev) { PCI_DISABLE_MSI(device_get_parent(dev), dev); } static __inline int pci_remap_msix(device_t dev, int count, const u_int *vectors) { return (PCI_REMAP_MSIX(device_get_parent(dev), dev, count, vectors)); } static __inline int pci_release_msi(device_t dev) { return (PCI_RELEASE_MSI(device_get_parent(dev), dev)); } static __inline int pci_msi_count(device_t dev) { return (PCI_MSI_COUNT(device_get_parent(dev), dev)); } static __inline int pci_msix_count(device_t dev) { return (PCI_MSIX_COUNT(device_get_parent(dev), dev)); } static __inline uint16_t pci_get_rid(device_t dev) { return (PCI_GET_RID(device_get_parent(dev), dev)); } static __inline void pci_child_added(device_t dev) { return (PCI_CHILD_ADDED(device_get_parent(dev), dev)); } static __inline int pci_iov_attach(device_t dev, struct nvlist *pf_schema, struct nvlist *vf_schema) { return (PCI_IOV_ATTACH(device_get_parent(dev), dev, pf_schema, vf_schema)); } static __inline int pci_iov_detach(device_t dev) { return (PCI_IOV_DETACH(device_get_parent(dev), dev)); } device_t pci_find_bsf(uint8_t, uint8_t, uint8_t); device_t pci_find_dbsf(uint32_t, uint8_t, uint8_t, uint8_t); device_t pci_find_device(uint16_t, uint16_t); device_t pci_find_class(uint8_t class, uint8_t subclass); /* Can be used by drivers to manage the MSI-X table. */ int pci_pending_msix(device_t dev, u_int index); int pci_msi_device_blacklisted(device_t dev); int pci_msix_device_blacklisted(device_t dev); void pci_ht_map_msi(device_t dev, uint64_t addr); int pci_get_max_read_req(device_t dev); void pci_restore_state(device_t dev); void pci_save_state(device_t dev); int pci_set_max_read_req(device_t dev, int size); #ifdef BUS_SPACE_MAXADDR #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF) #define PCI_DMA_BOUNDARY 0x100000000 #else #define PCI_DMA_BOUNDARY 0 #endif #endif #endif /* _SYS_BUS_H_ */ /* * cdev switch for control device, initialised in generic PCI code */ extern struct cdevsw pcicdev; /* * List of all PCI devices, generation count for the list. */ STAILQ_HEAD(devlist, pci_devinfo); extern struct devlist pci_devq; extern uint32_t pci_generation; struct pci_map *pci_find_bar(device_t dev, int reg); int pci_bar_enabled(device_t dev, struct pci_map *pm); struct pcicfg_vpd *pci_fetch_vpd_list(device_t dev); #define VGA_PCI_BIOS_SHADOW_ADDR 0xC0000 #define VGA_PCI_BIOS_SHADOW_SIZE 131072 int vga_pci_is_boot_display(device_t dev); void * vga_pci_map_bios(device_t dev, size_t *size); void vga_pci_unmap_bios(device_t dev, void *bios); int vga_pci_repost(device_t dev); #endif /* _PCIVAR_H_ */