Index: stable/10/sys/kern/kern_timeout.c =================================================================== --- stable/10/sys/kern/kern_timeout.c (revision 281656) +++ stable/10/sys/kern/kern_timeout.c (revision 281657) @@ -1,1526 +1,1569 @@ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_callout_profiling.h" #include "opt_kdtrace.h" #if defined(__arm__) #include "opt_timer.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifndef NO_EVENTTIMERS DPCPU_DECLARE(sbintime_t, hardclocktime); #endif SDT_PROVIDER_DEFINE(callout_execute); SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__start, "struct callout *"); SDT_PROBE_DEFINE1(callout_execute, kernel, , callout__end, "struct callout *"); #ifdef CALLOUT_PROFILING static int avg_depth; SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0, "Average number of items examined per softclock call. Units = 1/1000"); static int avg_gcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0, "Average number of Giant callouts made per softclock call. Units = 1/1000"); static int avg_lockcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0, "Average number of lock callouts made per softclock call. Units = 1/1000"); static int avg_mpcalls; SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0, "Average number of MP callouts made per softclock call. Units = 1/1000"); static int avg_depth_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0, "Average number of direct callouts examined per callout_process call. " "Units = 1/1000"); static int avg_lockcalls_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD, &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per " "callout_process call. Units = 1/1000"); static int avg_mpcalls_dir; SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir, 0, "Average number of MP direct callouts made per callout_process call. " "Units = 1/1000"); #endif static int ncallout; SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN, &ncallout, 0, "Number of entries in callwheel and size of timeout() preallocation"); /* * TODO: * allocate more timeout table slots when table overflows. */ u_int callwheelsize, callwheelmask; /* * The callout cpu exec entities represent informations necessary for * describing the state of callouts currently running on the CPU and the ones * necessary for migrating callouts to the new callout cpu. In particular, * the first entry of the array cc_exec_entity holds informations for callout * running in SWI thread context, while the second one holds informations * for callout running directly from hardware interrupt context. * The cached informations are very important for deferring migration when * the migrating callout is already running. */ struct cc_exec { struct callout *cc_curr; #ifdef SMP void (*ce_migration_func)(void *); void *ce_migration_arg; int ce_migration_cpu; sbintime_t ce_migration_time; sbintime_t ce_migration_prec; #endif bool cc_cancel; bool cc_waiting; }; /* * There is one struct callout_cpu per cpu, holding all relevant * state for the callout processing thread on the individual CPU. */ struct callout_cpu { struct mtx_padalign cc_lock; struct cc_exec cc_exec_entity[2]; struct callout *cc_next; struct callout *cc_callout; struct callout_list *cc_callwheel; struct callout_tailq cc_expireq; struct callout_slist cc_callfree; sbintime_t cc_firstevent; sbintime_t cc_lastscan; void *cc_cookie; u_int cc_bucket; + u_int cc_inited; char cc_ktr_event_name[20]; }; +#define callout_migrating(c) ((c)->c_iflags & CALLOUT_DFRMIGRATION) + #define cc_exec_curr(cc, dir) cc->cc_exec_entity[dir].cc_curr #define cc_exec_next(cc) cc->cc_next #define cc_exec_cancel(cc, dir) cc->cc_exec_entity[dir].cc_cancel #define cc_exec_waiting(cc, dir) cc->cc_exec_entity[dir].cc_waiting #ifdef SMP #define cc_migration_func(cc, dir) cc->cc_exec_entity[dir].ce_migration_func #define cc_migration_arg(cc, dir) cc->cc_exec_entity[dir].ce_migration_arg #define cc_migration_cpu(cc, dir) cc->cc_exec_entity[dir].ce_migration_cpu #define cc_migration_time(cc, dir) cc->cc_exec_entity[dir].ce_migration_time #define cc_migration_prec(cc, dir) cc->cc_exec_entity[dir].ce_migration_prec struct callout_cpu cc_cpu[MAXCPU]; #define CPUBLOCK MAXCPU #define CC_CPU(cpu) (&cc_cpu[(cpu)]) #define CC_SELF() CC_CPU(PCPU_GET(cpuid)) #else struct callout_cpu cc_cpu; #define CC_CPU(cpu) &cc_cpu #define CC_SELF() &cc_cpu #endif #define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock) #define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock) #define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED) static int timeout_cpu; static void callout_cpu_init(struct callout_cpu *cc, int cpu); static void softclock_call_cc(struct callout *c, struct callout_cpu *cc, #ifdef CALLOUT_PROFILING int *mpcalls, int *lockcalls, int *gcalls, #endif int direct); static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures"); /** * Locked by cc_lock: * cc_curr - If a callout is in progress, it is cc_curr. * If cc_curr is non-NULL, threads waiting in * callout_drain() will be woken up as soon as the * relevant callout completes. * cc_cancel - Changing to 1 with both callout_lock and cc_lock held * guarantees that the current callout will not run. * The softclock() function sets this to 0 before it * drops callout_lock to acquire c_lock, and it calls * the handler only if curr_cancelled is still 0 after * cc_lock is successfully acquired. * cc_waiting - If a thread is waiting in callout_drain(), then * callout_wait is nonzero. Set only when * cc_curr is non-NULL. */ /* * Resets the execution entity tied to a specific callout cpu. */ static void cc_cce_cleanup(struct callout_cpu *cc, int direct) { cc_exec_curr(cc, direct) = NULL; cc_exec_cancel(cc, direct) = false; cc_exec_waiting(cc, direct) = false; #ifdef SMP cc_migration_cpu(cc, direct) = CPUBLOCK; cc_migration_time(cc, direct) = 0; cc_migration_prec(cc, direct) = 0; cc_migration_func(cc, direct) = NULL; cc_migration_arg(cc, direct) = NULL; #endif } /* * Checks if migration is requested by a specific callout cpu. */ static int cc_cce_migrating(struct callout_cpu *cc, int direct) { #ifdef SMP return (cc_migration_cpu(cc, direct) != CPUBLOCK); #else return (0); #endif } /* * Kernel low level callwheel initialization * called on cpu0 during kernel startup. */ static void callout_callwheel_init(void *dummy) { struct callout_cpu *cc; /* * Calculate the size of the callout wheel and the preallocated * timeout() structures. * XXX: Clip callout to result of previous function of maxusers * maximum 384. This is still huge, but acceptable. */ + memset(cc_cpu, 0, sizeof(cc_cpu)); ncallout = imin(16 + maxproc + maxfiles, 18508); TUNABLE_INT_FETCH("kern.ncallout", &ncallout); /* * Calculate callout wheel size, should be next power of two higher * than 'ncallout'. */ callwheelsize = 1 << fls(ncallout); callwheelmask = callwheelsize - 1; /* * Only cpu0 handles timeout(9) and receives a preallocation. * * XXX: Once all timeout(9) consumers are converted this can * be removed. */ timeout_cpu = PCPU_GET(cpuid); cc = CC_CPU(timeout_cpu); cc->cc_callout = malloc(ncallout * sizeof(struct callout), M_CALLOUT, M_WAITOK); callout_cpu_init(cc, timeout_cpu); } SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL); /* * Initialize the per-cpu callout structures. */ static void callout_cpu_init(struct callout_cpu *cc, int cpu) { struct callout *c; int i; mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE); SLIST_INIT(&cc->cc_callfree); + cc->cc_inited = 1; cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize, M_CALLOUT, M_WAITOK); for (i = 0; i < callwheelsize; i++) LIST_INIT(&cc->cc_callwheel[i]); TAILQ_INIT(&cc->cc_expireq); cc->cc_firstevent = INT64_MAX; for (i = 0; i < 2; i++) cc_cce_cleanup(cc, i); snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name), "callwheel cpu %d", cpu); if (cc->cc_callout == NULL) /* Only cpu0 handles timeout(9) */ return; for (i = 0; i < ncallout; i++) { c = &cc->cc_callout[i]; callout_init(c, 0); - c->c_flags = CALLOUT_LOCAL_ALLOC; + c->c_iflags = CALLOUT_LOCAL_ALLOC; SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); } } #ifdef SMP /* * Switches the cpu tied to a specific callout. * The function expects a locked incoming callout cpu and returns with * locked outcoming callout cpu. */ static struct callout_cpu * callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu) { struct callout_cpu *new_cc; MPASS(c != NULL && cc != NULL); CC_LOCK_ASSERT(cc); /* * Avoid interrupts and preemption firing after the callout cpu * is blocked in order to avoid deadlocks as the new thread * may be willing to acquire the callout cpu lock. */ c->c_cpu = CPUBLOCK; spinlock_enter(); CC_UNLOCK(cc); new_cc = CC_CPU(new_cpu); CC_LOCK(new_cc); spinlock_exit(); c->c_cpu = new_cpu; return (new_cc); } #endif /* * Start standard softclock thread. */ static void start_softclock(void *dummy) { struct callout_cpu *cc; #ifdef SMP int cpu; #endif cc = CC_CPU(timeout_cpu); if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK, INTR_MPSAFE, &cc->cc_cookie)) panic("died while creating standard software ithreads"); #ifdef SMP CPU_FOREACH(cpu) { if (cpu == timeout_cpu) continue; cc = CC_CPU(cpu); cc->cc_callout = NULL; /* Only cpu0 handles timeout(9). */ callout_cpu_init(cc, cpu); if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK, INTR_MPSAFE, &cc->cc_cookie)) panic("died while creating standard software ithreads"); } #endif } SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL); #define CC_HASH_SHIFT 8 static inline u_int callout_hash(sbintime_t sbt) { return (sbt >> (32 - CC_HASH_SHIFT)); } static inline u_int callout_get_bucket(sbintime_t sbt) { return (callout_hash(sbt) & callwheelmask); } void callout_process(sbintime_t now) { struct callout *tmp, *tmpn; struct callout_cpu *cc; struct callout_list *sc; sbintime_t first, last, max, tmp_max; uint32_t lookahead; u_int firstb, lastb, nowb; #ifdef CALLOUT_PROFILING int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0; #endif cc = CC_SELF(); mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); /* Compute the buckets of the last scan and present times. */ firstb = callout_hash(cc->cc_lastscan); cc->cc_lastscan = now; nowb = callout_hash(now); /* Compute the last bucket and minimum time of the bucket after it. */ if (nowb == firstb) lookahead = (SBT_1S / 16); else if (nowb - firstb == 1) lookahead = (SBT_1S / 8); else lookahead = (SBT_1S / 2); first = last = now; first += (lookahead / 2); last += lookahead; last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT)); lastb = callout_hash(last) - 1; max = last; /* * Check if we wrapped around the entire wheel from the last scan. * In case, we need to scan entirely the wheel for pending callouts. */ if (lastb - firstb >= callwheelsize) { lastb = firstb + callwheelsize - 1; if (nowb - firstb >= callwheelsize) nowb = lastb; } /* Iterate callwheel from firstb to nowb and then up to lastb. */ do { sc = &cc->cc_callwheel[firstb & callwheelmask]; tmp = LIST_FIRST(sc); while (tmp != NULL) { /* Run the callout if present time within allowed. */ if (tmp->c_time <= now) { /* * Consumer told us the callout may be run * directly from hardware interrupt context. */ - if (tmp->c_flags & CALLOUT_DIRECT) { + if (tmp->c_iflags & CALLOUT_DIRECT) { #ifdef CALLOUT_PROFILING ++depth_dir; #endif cc_exec_next(cc) = LIST_NEXT(tmp, c_links.le); cc->cc_bucket = firstb & callwheelmask; LIST_REMOVE(tmp, c_links.le); softclock_call_cc(tmp, cc, #ifdef CALLOUT_PROFILING &mpcalls_dir, &lockcalls_dir, NULL, #endif 1); tmp = cc_exec_next(cc); cc_exec_next(cc) = NULL; } else { tmpn = LIST_NEXT(tmp, c_links.le); LIST_REMOVE(tmp, c_links.le); TAILQ_INSERT_TAIL(&cc->cc_expireq, tmp, c_links.tqe); - tmp->c_flags |= CALLOUT_PROCESSED; + tmp->c_iflags |= CALLOUT_PROCESSED; tmp = tmpn; } continue; } /* Skip events from distant future. */ if (tmp->c_time >= max) goto next; /* * Event minimal time is bigger than present maximal * time, so it cannot be aggregated. */ if (tmp->c_time > last) { lastb = nowb; goto next; } /* Update first and last time, respecting this event. */ if (tmp->c_time < first) first = tmp->c_time; tmp_max = tmp->c_time + tmp->c_precision; if (tmp_max < last) last = tmp_max; next: tmp = LIST_NEXT(tmp, c_links.le); } /* Proceed with the next bucket. */ firstb++; /* * Stop if we looked after present time and found * some event we can't execute at now. * Stop if we looked far enough into the future. */ } while (((int)(firstb - lastb)) <= 0); cc->cc_firstevent = last; #ifndef NO_EVENTTIMERS cpu_new_callout(curcpu, last, first); #endif #ifdef CALLOUT_PROFILING avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8; avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8; avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8; #endif mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); /* * swi_sched acquires the thread lock, so we don't want to call it * with cc_lock held; incorrect locking order. */ if (!TAILQ_EMPTY(&cc->cc_expireq)) swi_sched(cc->cc_cookie, 0); } static struct callout_cpu * callout_lock(struct callout *c) { struct callout_cpu *cc; int cpu; for (;;) { cpu = c->c_cpu; #ifdef SMP if (cpu == CPUBLOCK) { while (c->c_cpu == CPUBLOCK) cpu_spinwait(); continue; } #endif cc = CC_CPU(cpu); CC_LOCK(cc); if (cpu == c->c_cpu) break; CC_UNLOCK(cc); } return (cc); } static void callout_cc_add(struct callout *c, struct callout_cpu *cc, sbintime_t sbt, sbintime_t precision, void (*func)(void *), void *arg, int cpu, int flags) { int bucket; CC_LOCK_ASSERT(cc); if (sbt < cc->cc_lastscan) sbt = cc->cc_lastscan; c->c_arg = arg; - c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING); - c->c_flags &= ~CALLOUT_PROCESSED; + c->c_iflags |= CALLOUT_PENDING; + c->c_iflags &= ~CALLOUT_PROCESSED; + c->c_flags |= CALLOUT_ACTIVE; + if (flags & C_DIRECT_EXEC) + c->c_iflags |= CALLOUT_DIRECT; c->c_func = func; c->c_time = sbt; c->c_precision = precision; bucket = callout_get_bucket(c->c_time); CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x", c, (int)(c->c_precision >> 32), (u_int)(c->c_precision & 0xffffffff)); LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le); if (cc->cc_bucket == bucket) cc_exec_next(cc) = c; #ifndef NO_EVENTTIMERS /* * Inform the eventtimers(4) subsystem there's a new callout * that has been inserted, but only if really required. */ if (INT64_MAX - c->c_time < c->c_precision) c->c_precision = INT64_MAX - c->c_time; sbt = c->c_time + c->c_precision; if (sbt < cc->cc_firstevent) { cc->cc_firstevent = sbt; cpu_new_callout(cpu, sbt, c->c_time); } #endif } static void callout_cc_del(struct callout *c, struct callout_cpu *cc) { - if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0) + if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0) return; c->c_func = NULL; SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); } static void softclock_call_cc(struct callout *c, struct callout_cpu *cc, #ifdef CALLOUT_PROFILING int *mpcalls, int *lockcalls, int *gcalls, #endif int direct) { struct rm_priotracker tracker; void (*c_func)(void *); void *c_arg; struct lock_class *class; struct lock_object *c_lock; uintptr_t lock_status; - int c_flags; + int c_iflags; #ifdef SMP struct callout_cpu *new_cc; void (*new_func)(void *); void *new_arg; int flags, new_cpu; sbintime_t new_prec, new_time; #endif #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbintime_t sbt1, sbt2; struct timespec ts2; static sbintime_t maxdt = 2 * SBT_1MS; /* 2 msec */ static timeout_t *lastfunc; #endif - KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) == - (CALLOUT_PENDING | CALLOUT_ACTIVE), - ("softclock_call_cc: pend|act %p %x", c, c->c_flags)); + KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING, + ("softclock_call_cc: pend %p %x", c, c->c_iflags)); + KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE, + ("softclock_call_cc: act %p %x", c, c->c_flags)); class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL; lock_status = 0; if (c->c_flags & CALLOUT_SHAREDLOCK) { if (class == &lock_class_rm) lock_status = (uintptr_t)&tracker; else lock_status = 1; } c_lock = c->c_lock; c_func = c->c_func; c_arg = c->c_arg; - c_flags = c->c_flags; - if (c->c_flags & CALLOUT_LOCAL_ALLOC) - c->c_flags = CALLOUT_LOCAL_ALLOC; + c_iflags = c->c_iflags; + if (c->c_iflags & CALLOUT_LOCAL_ALLOC) + c->c_iflags = CALLOUT_LOCAL_ALLOC; else - c->c_flags &= ~CALLOUT_PENDING; + c->c_iflags &= ~CALLOUT_PENDING; cc_exec_curr(cc, direct) = c; cc_exec_cancel(cc, direct) = false; CC_UNLOCK(cc); if (c_lock != NULL) { class->lc_lock(c_lock, lock_status); /* * The callout may have been cancelled * while we switched locks. */ if (cc_exec_cancel(cc, direct)) { class->lc_unlock(c_lock); goto skip; } /* The callout cannot be stopped now. */ cc_exec_cancel(cc, direct) = true; if (c_lock == &Giant.lock_object) { #ifdef CALLOUT_PROFILING (*gcalls)++; #endif CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p", c, c_func, c_arg); } else { #ifdef CALLOUT_PROFILING (*lockcalls)++; #endif CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p", c, c_func, c_arg); } } else { #ifdef CALLOUT_PROFILING (*mpcalls)++; #endif CTR3(KTR_CALLOUT, "callout %p func %p arg %p", c, c_func, c_arg); } KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running", "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct); #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbt1 = sbinuptime(); #endif THREAD_NO_SLEEPING(); SDT_PROBE(callout_execute, kernel, , callout__start, c, 0, 0, 0, 0); c_func(c_arg); SDT_PROBE(callout_execute, kernel, , callout__end, c, 0, 0, 0, 0); THREAD_SLEEPING_OK(); #if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING) sbt2 = sbinuptime(); sbt2 -= sbt1; if (sbt2 > maxdt) { if (lastfunc != c_func || sbt2 > maxdt * 2) { ts2 = sbttots(sbt2); printf( "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n", c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec); } maxdt = sbt2; lastfunc = c_func; } #endif KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle"); CTR1(KTR_CALLOUT, "callout %p finished", c); - if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0) + if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0) class->lc_unlock(c_lock); skip: CC_LOCK(cc); KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr")); cc_exec_curr(cc, direct) = NULL; if (cc_exec_waiting(cc, direct)) { /* * There is someone waiting for the * callout to complete. * If the callout was scheduled for * migration just cancel it. */ if (cc_cce_migrating(cc, direct)) { cc_cce_cleanup(cc, direct); /* * It should be assert here that the callout is not * destroyed but that is not easy. */ - c->c_flags &= ~CALLOUT_DFRMIGRATION; + c->c_iflags &= ~CALLOUT_DFRMIGRATION; } cc_exec_waiting(cc, direct) = false; CC_UNLOCK(cc); wakeup(&cc_exec_waiting(cc, direct)); CC_LOCK(cc); } else if (cc_cce_migrating(cc, direct)) { - KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0, + KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0, ("Migrating legacy callout %p", c)); #ifdef SMP /* * If the callout was scheduled for * migration just perform it now. */ new_cpu = cc_migration_cpu(cc, direct); new_time = cc_migration_time(cc, direct); new_prec = cc_migration_prec(cc, direct); new_func = cc_migration_func(cc, direct); new_arg = cc_migration_arg(cc, direct); cc_cce_cleanup(cc, direct); /* * It should be assert here that the callout is not destroyed * but that is not easy. * * As first thing, handle deferred callout stops. */ if (!callout_migrating(c)) { CTR3(KTR_CALLOUT, "deferred cancelled %p func %p arg %p", c, new_func, new_arg); callout_cc_del(c, cc); return; } - c->c_flags &= ~CALLOUT_DFRMIGRATION; + c->c_iflags &= ~CALLOUT_DFRMIGRATION; new_cc = callout_cpu_switch(c, cc, new_cpu); flags = (direct) ? C_DIRECT_EXEC : 0; callout_cc_add(c, new_cc, new_time, new_prec, new_func, new_arg, new_cpu, flags); CC_UNLOCK(new_cc); CC_LOCK(cc); #else panic("migration should not happen"); #endif } /* * If the current callout is locally allocated (from * timeout(9)) then put it on the freelist. * - * Note: we need to check the cached copy of c_flags because + * Note: we need to check the cached copy of c_iflags because * if it was not local, then it's not safe to deref the * callout pointer. */ - KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 || - c->c_flags == CALLOUT_LOCAL_ALLOC, + KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 || + c->c_iflags == CALLOUT_LOCAL_ALLOC, ("corrupted callout")); - if (c_flags & CALLOUT_LOCAL_ALLOC) + if (c_iflags & CALLOUT_LOCAL_ALLOC) callout_cc_del(c, cc); } /* * The callout mechanism is based on the work of Adam M. Costello and * George Varghese, published in a technical report entitled "Redesigning * the BSD Callout and Timer Facilities" and modified slightly for inclusion * in FreeBSD by Justin T. Gibbs. The original work on the data structures * used in this implementation was published by G. Varghese and T. Lauck in * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for * the Efficient Implementation of a Timer Facility" in the Proceedings of * the 11th ACM Annual Symposium on Operating Systems Principles, * Austin, Texas Nov 1987. */ /* * Software (low priority) clock interrupt. * Run periodic events from timeout queue. */ void softclock(void *arg) { struct callout_cpu *cc; struct callout *c; #ifdef CALLOUT_PROFILING int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0; #endif cc = (struct callout_cpu *)arg; CC_LOCK(cc); while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) { TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); softclock_call_cc(c, cc, #ifdef CALLOUT_PROFILING &mpcalls, &lockcalls, &gcalls, #endif 0); #ifdef CALLOUT_PROFILING ++depth; #endif } #ifdef CALLOUT_PROFILING avg_depth += (depth * 1000 - avg_depth) >> 8; avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8; avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8; avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8; #endif CC_UNLOCK(cc); } /* * timeout -- * Execute a function after a specified length of time. * * untimeout -- * Cancel previous timeout function call. * * callout_handle_init -- * Initialize a handle so that using it with untimeout is benign. * * See AT&T BCI Driver Reference Manual for specification. This * implementation differs from that one in that although an * identification value is returned from timeout, the original * arguments to timeout as well as the identifier are used to * identify entries for untimeout. */ struct callout_handle timeout(ftn, arg, to_ticks) timeout_t *ftn; void *arg; int to_ticks; { struct callout_cpu *cc; struct callout *new; struct callout_handle handle; cc = CC_CPU(timeout_cpu); CC_LOCK(cc); /* Fill in the next free callout structure. */ new = SLIST_FIRST(&cc->cc_callfree); if (new == NULL) /* XXX Attempt to malloc first */ panic("timeout table full"); SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle); callout_reset(new, to_ticks, ftn, arg); handle.callout = new; CC_UNLOCK(cc); return (handle); } void untimeout(ftn, arg, handle) timeout_t *ftn; void *arg; struct callout_handle handle; { struct callout_cpu *cc; /* * Check for a handle that was initialized * by callout_handle_init, but never used * for a real timeout. */ if (handle.callout == NULL) return; cc = callout_lock(handle.callout); if (handle.callout->c_func == ftn && handle.callout->c_arg == arg) callout_stop(handle.callout); CC_UNLOCK(cc); } void callout_handle_init(struct callout_handle *handle) { handle->callout = NULL; } /* * New interface; clients allocate their own callout structures. * * callout_reset() - establish or change a timeout * callout_stop() - disestablish a timeout * callout_init() - initialize a callout structure so that it can * safely be passed to callout_reset() and callout_stop() * * defines three convenience macros: * * callout_active() - returns truth if callout has not been stopped, * drained, or deactivated since the last time the callout was * reset. * callout_pending() - returns truth if callout is still waiting for timeout * callout_deactivate() - marks the callout as having been serviced */ int callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t precision, void (*ftn)(void *), void *arg, int cpu, int flags) { sbintime_t to_sbt, pr; struct callout_cpu *cc; int cancelled, direct; + int ignore_cpu=0; cancelled = 0; + if (cpu == -1) { + ignore_cpu = 1; + } else if ((cpu >= MAXCPU) || + (cc_cpu[cpu].cc_inited == 0)) { + /* Invalid CPU spec */ + panic("Invalid CPU in callout %d", cpu); + } if (flags & C_ABSOLUTE) { to_sbt = sbt; } else { if ((flags & C_HARDCLOCK) && (sbt < tick_sbt)) sbt = tick_sbt; if ((flags & C_HARDCLOCK) || #ifdef NO_EVENTTIMERS sbt >= sbt_timethreshold) { to_sbt = getsbinuptime(); /* Add safety belt for the case of hz > 1000. */ to_sbt += tc_tick_sbt - tick_sbt; #else sbt >= sbt_tickthreshold) { /* * Obtain the time of the last hardclock() call on * this CPU directly from the kern_clocksource.c. * This value is per-CPU, but it is equal for all * active ones. */ #ifdef __LP64__ to_sbt = DPCPU_GET(hardclocktime); #else spinlock_enter(); to_sbt = DPCPU_GET(hardclocktime); spinlock_exit(); #endif #endif if ((flags & C_HARDCLOCK) == 0) to_sbt += tick_sbt; } else to_sbt = sbinuptime(); if (INT64_MAX - to_sbt < sbt) to_sbt = INT64_MAX; else to_sbt += sbt; pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp : sbt >> C_PRELGET(flags)); if (pr > precision) precision = pr; } - /* - * Don't allow migration of pre-allocated callouts lest they - * become unbalanced. - */ - if (c->c_flags & CALLOUT_LOCAL_ALLOC) - cpu = c->c_cpu; /* * This flag used to be added by callout_cc_add, but the * first time you call this we could end up with the * wrong direct flag if we don't do it before we add. */ if (flags & C_DIRECT_EXEC) { - c->c_flags |= CALLOUT_DIRECT; + direct = 1; + } else { + direct = 0; } - direct = (c->c_flags & CALLOUT_DIRECT) != 0; KASSERT(!direct || c->c_lock == NULL, ("%s: direct callout %p has lock", __func__, c)); cc = callout_lock(c); + /* + * Don't allow migration of pre-allocated callouts lest they + * become unbalanced or handle the case where the user does + * not care. + */ + if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) || + ignore_cpu) { + cpu = c->c_cpu; + } + if (cc_exec_curr(cc, direct) == c) { /* * We're being asked to reschedule a callout which is * currently in progress. If there is a lock then we * can cancel the callout if it has not really started. */ if (c->c_lock != NULL && cc_exec_cancel(cc, direct)) cancelled = cc_exec_cancel(cc, direct) = true; if (cc_exec_waiting(cc, direct)) { /* * Someone has called callout_drain to kill this * callout. Don't reschedule. */ CTR4(KTR_CALLOUT, "%s %p func %p arg %p", cancelled ? "cancelled" : "failed to cancel", c, c->c_func, c->c_arg); CC_UNLOCK(cc); return (cancelled); } #ifdef SMP if (callout_migrating(c)) { /* * This only occurs when a second callout_reset_sbt_on * is made after a previous one moved it into * deferred migration (below). Note we do *not* change * the prev_cpu even though the previous target may * be different. */ cc_migration_cpu(cc, direct) = cpu; cc_migration_time(cc, direct) = to_sbt; cc_migration_prec(cc, direct) = precision; cc_migration_func(cc, direct) = ftn; cc_migration_arg(cc, direct) = arg; cancelled = 1; CC_UNLOCK(cc); return (cancelled); } #endif } - if (c->c_flags & CALLOUT_PENDING) { - if ((c->c_flags & CALLOUT_PROCESSED) == 0) { + if (c->c_iflags & CALLOUT_PENDING) { + if ((c->c_iflags & CALLOUT_PROCESSED) == 0) { if (cc_exec_next(cc) == c) cc_exec_next(cc) = LIST_NEXT(c, c_links.le); LIST_REMOVE(c, c_links.le); - } else + } else { TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); + } cancelled = 1; - c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); + c->c_iflags &= ~ CALLOUT_PENDING; + c->c_flags &= ~ CALLOUT_ACTIVE; } #ifdef SMP /* * If the callout must migrate try to perform it immediately. * If the callout is currently running, just defer the migration * to a more appropriate moment. */ if (c->c_cpu != cpu) { if (cc_exec_curr(cc, direct) == c) { /* * Pending will have been removed since we are * actually executing the callout on another * CPU. That callout should be waiting on the * lock the caller holds. If we set both * active/and/pending after we return and the * lock on the executing callout proceeds, it * will then see pending is true and return. * At the return from the actual callout execution * the migration will occur in softclock_call_cc * and this new callout will be placed on the * new CPU via a call to callout_cpu_switch() which * will get the lock on the right CPU followed * by a call callout_cc_add() which will add it there. * (see above in softclock_call_cc()). */ cc_migration_cpu(cc, direct) = cpu; cc_migration_time(cc, direct) = to_sbt; cc_migration_prec(cc, direct) = precision; cc_migration_func(cc, direct) = ftn; cc_migration_arg(cc, direct) = arg; - c->c_flags |= (CALLOUT_DFRMIGRATION | CALLOUT_ACTIVE | CALLOUT_PENDING); + c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING); + c->c_flags |= CALLOUT_ACTIVE; CTR6(KTR_CALLOUT, "migration of %p func %p arg %p in %d.%08x to %u deferred", c, c->c_func, c->c_arg, (int)(to_sbt >> 32), (u_int)(to_sbt & 0xffffffff), cpu); CC_UNLOCK(cc); return (cancelled); } cc = callout_cpu_switch(c, cc, cpu); } #endif callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags); CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x", cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32), (u_int)(to_sbt & 0xffffffff)); CC_UNLOCK(cc); return (cancelled); } /* * Common idioms that can be optimized in the future. */ int callout_schedule_on(struct callout *c, int to_ticks, int cpu) { return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu); } int callout_schedule(struct callout *c, int to_ticks) { return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu); } int _callout_stop_safe(c, safe) struct callout *c; int safe; { struct callout_cpu *cc, *old_cc; struct lock_class *class; int direct, sq_locked, use_lock; int not_on_a_list; /* * Some old subsystems don't hold Giant while running a callout_stop(), * so just discard this check for the moment. */ if (!safe && c->c_lock != NULL) { if (c->c_lock == &Giant.lock_object) use_lock = mtx_owned(&Giant); else { use_lock = 1; class = LOCK_CLASS(c->c_lock); class->lc_assert(c->c_lock, LA_XLOCKED); } } else use_lock = 0; - direct = (c->c_flags & CALLOUT_DIRECT) != 0; + if (c->c_iflags & CALLOUT_DIRECT) { + direct = 1; + } else { + direct = 0; + } sq_locked = 0; old_cc = NULL; again: cc = callout_lock(c); - if ((c->c_flags & (CALLOUT_DFRMIGRATION | CALLOUT_ACTIVE | CALLOUT_PENDING)) == - (CALLOUT_DFRMIGRATION | CALLOUT_ACTIVE | CALLOUT_PENDING)) { + if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) == + (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) && + ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) { /* * Special case where this slipped in while we * were migrating *as* the callout is about to * execute. The caller probably holds the lock * the callout wants. * * Get rid of the migration first. Then set * the flag that tells this code *not* to * try to remove it from any lists (its not * on one yet). When the callout wheel runs, * it will ignore this callout. */ - c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_ACTIVE); + c->c_iflags &= ~CALLOUT_PENDING; + c->c_flags &= ~CALLOUT_ACTIVE; not_on_a_list = 1; } else { not_on_a_list = 0; } /* * If the callout was migrating while the callout cpu lock was * dropped, just drop the sleepqueue lock and check the states * again. */ if (sq_locked != 0 && cc != old_cc) { #ifdef SMP CC_UNLOCK(cc); sleepq_release(&cc_exec_waiting(old_cc, direct)); sq_locked = 0; old_cc = NULL; goto again; #else panic("migration should not happen"); #endif } /* * If the callout isn't pending, it's not on the queue, so * don't attempt to remove it from the queue. We can try to * stop it by other means however. */ - if (!(c->c_flags & CALLOUT_PENDING)) { + if (!(c->c_iflags & CALLOUT_PENDING)) { c->c_flags &= ~CALLOUT_ACTIVE; /* * If it wasn't on the queue and it isn't the current * callout, then we can't stop it, so just bail. */ if (cc_exec_curr(cc, direct) != c) { CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); if (sq_locked) sleepq_release(&cc_exec_waiting(cc, direct)); return (0); } if (safe) { /* * The current callout is running (or just * about to run) and blocking is allowed, so * just wait for the current invocation to * finish. */ while (cc_exec_curr(cc, direct) == c) { /* * Use direct calls to sleepqueue interface * instead of cv/msleep in order to avoid * a LOR between cc_lock and sleepqueue * chain spinlocks. This piece of code * emulates a msleep_spin() call actually. * * If we already have the sleepqueue chain * locked, then we can safely block. If we * don't already have it locked, however, * we have to drop the cc_lock to lock * it. This opens several races, so we * restart at the beginning once we have * both locks. If nothing has changed, then * we will end up back here with sq_locked * set. */ if (!sq_locked) { CC_UNLOCK(cc); sleepq_lock( &cc_exec_waiting(cc, direct)); sq_locked = 1; old_cc = cc; goto again; } /* * Migration could be cancelled here, but * as long as it is still not sure when it * will be packed up, just let softclock() * take care of it. */ cc_exec_waiting(cc, direct) = true; DROP_GIANT(); CC_UNLOCK(cc); sleepq_add( &cc_exec_waiting(cc, direct), &cc->cc_lock.lock_object, "codrain", SLEEPQ_SLEEP, 0); sleepq_wait( &cc_exec_waiting(cc, direct), 0); sq_locked = 0; old_cc = NULL; /* Reacquire locks previously released. */ PICKUP_GIANT(); CC_LOCK(cc); } } else if (use_lock && !cc_exec_cancel(cc, direct)) { /* * The current callout is waiting for its * lock which we hold. Cancel the callout * and return. After our caller drops the * lock, the callout will be skipped in * softclock(). */ cc_exec_cancel(cc, direct) = true; CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", c, c->c_func, c->c_arg); KASSERT(!cc_cce_migrating(cc, direct), ("callout wrongly scheduled for migration")); + if (callout_migrating(c)) { + c->c_iflags &= ~CALLOUT_DFRMIGRATION; +#ifdef SMP + cc_migration_cpu(cc, direct) = CPUBLOCK; + cc_migration_time(cc, direct) = 0; + cc_migration_prec(cc, direct) = 0; + cc_migration_func(cc, direct) = NULL; + cc_migration_arg(cc, direct) = NULL; +#endif + } CC_UNLOCK(cc); KASSERT(!sq_locked, ("sleepqueue chain locked")); return (1); } else if (callout_migrating(c)) { /* * The callout is currently being serviced * and the "next" callout is scheduled at * its completion with a migration. We remove * the migration flag so it *won't* get rescheduled, * but we can't stop the one thats running so * we return 0. */ - c->c_flags &= ~CALLOUT_DFRMIGRATION; + c->c_iflags &= ~CALLOUT_DFRMIGRATION; #ifdef SMP /* * We can't call cc_cce_cleanup here since * if we do it will remove .ce_curr and * its still running. This will prevent a * reschedule of the callout when the * execution completes. */ cc_migration_cpu(cc, direct) = CPUBLOCK; cc_migration_time(cc, direct) = 0; cc_migration_prec(cc, direct) = 0; cc_migration_func(cc, direct) = NULL; cc_migration_arg(cc, direct) = NULL; #endif CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); return (0); } CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", c, c->c_func, c->c_arg); CC_UNLOCK(cc); KASSERT(!sq_locked, ("sleepqueue chain still locked")); return (0); } if (sq_locked) sleepq_release(&cc_exec_waiting(cc, direct)); - c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); + c->c_iflags &= ~CALLOUT_PENDING; + c->c_flags &= ~CALLOUT_ACTIVE; CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", c, c->c_func, c->c_arg); if (not_on_a_list == 0) { - if ((c->c_flags & CALLOUT_PROCESSED) == 0) { + if ((c->c_iflags & CALLOUT_PROCESSED) == 0) { if (cc_exec_next(cc) == c) cc_exec_next(cc) = LIST_NEXT(c, c_links.le); LIST_REMOVE(c, c_links.le); - } else + } else { TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe); + } } callout_cc_del(c, cc); CC_UNLOCK(cc); return (1); } void callout_init(c, mpsafe) struct callout *c; int mpsafe; { bzero(c, sizeof *c); if (mpsafe) { c->c_lock = NULL; - c->c_flags = CALLOUT_RETURNUNLOCKED; + c->c_iflags = CALLOUT_RETURNUNLOCKED; } else { c->c_lock = &Giant.lock_object; - c->c_flags = 0; + c->c_iflags = 0; } c->c_cpu = timeout_cpu; } void _callout_init_lock(c, lock, flags) struct callout *c; struct lock_object *lock; int flags; { bzero(c, sizeof *c); c->c_lock = lock; KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0, ("callout_init_lock: bad flags %d", flags)); KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0, ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock")); KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class", __func__)); - c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK); + c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK); c->c_cpu = timeout_cpu; } #ifdef APM_FIXUP_CALLTODO /* * Adjust the kernel calltodo timeout list. This routine is used after * an APM resume to recalculate the calltodo timer list values with the * number of hz's we have been sleeping. The next hardclock() will detect * that there are fired timers and run softclock() to execute them. * * Please note, I have not done an exhaustive analysis of what code this * might break. I am motivated to have my select()'s and alarm()'s that * have expired during suspend firing upon resume so that the applications * which set the timer can do the maintanence the timer was for as close * as possible to the originally intended time. Testing this code for a * week showed that resuming from a suspend resulted in 22 to 25 timers * firing, which seemed independant on whether the suspend was 2 hours or * 2 days. Your milage may vary. - Ken Key */ void adjust_timeout_calltodo(time_change) struct timeval *time_change; { register struct callout *p; unsigned long delta_ticks; /* * How many ticks were we asleep? * (stolen from tvtohz()). */ /* Don't do anything */ if (time_change->tv_sec < 0) return; else if (time_change->tv_sec <= LONG_MAX / 1000000) delta_ticks = (time_change->tv_sec * 1000000 + time_change->tv_usec + (tick - 1)) / tick + 1; else if (time_change->tv_sec <= LONG_MAX / hz) delta_ticks = time_change->tv_sec * hz + (time_change->tv_usec + (tick - 1)) / tick + 1; else delta_ticks = LONG_MAX; if (delta_ticks > INT_MAX) delta_ticks = INT_MAX; /* * Now rip through the timer calltodo list looking for timers * to expire. */ /* don't collide with softclock() */ CC_LOCK(cc); for (p = calltodo.c_next; p != NULL; p = p->c_next) { p->c_time -= delta_ticks; /* Break if the timer had more time on it than delta_ticks */ if (p->c_time > 0) break; /* take back the ticks the timer didn't use (p->c_time <= 0) */ delta_ticks = -p->c_time; } CC_UNLOCK(cc); return; } #endif /* APM_FIXUP_CALLTODO */ static int flssbt(sbintime_t sbt) { sbt += (uint64_t)sbt >> 1; if (sizeof(long) >= sizeof(sbintime_t)) return (flsl(sbt)); if (sbt >= SBT_1S) return (flsl(((uint64_t)sbt) >> 32) + 32); return (flsl(sbt)); } /* * Dump immediate statistic snapshot of the scheduled callouts. */ static int sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS) { struct callout *tmp; struct callout_cpu *cc; struct callout_list *sc; sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t; int ct[64], cpr[64], ccpbk[32]; int error, val, i, count, tcum, pcum, maxc, c, medc; #ifdef SMP int cpu; #endif val = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); count = maxc = 0; st = spr = maxt = maxpr = 0; bzero(ccpbk, sizeof(ccpbk)); bzero(ct, sizeof(ct)); bzero(cpr, sizeof(cpr)); now = sbinuptime(); #ifdef SMP CPU_FOREACH(cpu) { cc = CC_CPU(cpu); #else cc = CC_CPU(timeout_cpu); #endif CC_LOCK(cc); for (i = 0; i < callwheelsize; i++) { sc = &cc->cc_callwheel[i]; c = 0; LIST_FOREACH(tmp, sc, c_links.le) { c++; t = tmp->c_time - now; if (t < 0) t = 0; st += t / SBT_1US; spr += tmp->c_precision / SBT_1US; if (t > maxt) maxt = t; if (tmp->c_precision > maxpr) maxpr = tmp->c_precision; ct[flssbt(t)]++; cpr[flssbt(tmp->c_precision)]++; } if (c > maxc) maxc = c; ccpbk[fls(c + c / 2)]++; count += c; } CC_UNLOCK(cc); #ifdef SMP } #endif for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++) tcum += ct[i]; medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0; for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++) pcum += cpr[i]; medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0; for (i = 0, c = 0; i < 32 && c < count / 2; i++) c += ccpbk[i]; medc = (i >= 2) ? (1 << (i - 2)) : 0; printf("Scheduled callouts statistic snapshot:\n"); printf(" Callouts: %6d Buckets: %6d*%-3d Bucket size: 0.%06ds\n", count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT); printf(" C/Bk: med %5d avg %6d.%06jd max %6d\n", medc, count / callwheelsize / mp_ncpus, (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000, maxc); printf(" Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n", medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32, (st / count) / 1000000, (st / count) % 1000000, maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32); printf(" Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n", medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32, (spr / count) / 1000000, (spr / count) % 1000000, maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32); printf(" Distribution: \tbuckets\t time\t tcum\t" " prec\t pcum\n"); for (i = 0, tcum = pcum = 0; i < 64; i++) { if (ct[i] == 0 && cpr[i] == 0) continue; t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0; tcum += ct[i]; pcum += cpr[i]; printf(" %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n", t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32, i - 1 - (32 - CC_HASH_SHIFT), ct[i], tcum, cpr[i], pcum); } return (error); } SYSCTL_PROC(_kern, OID_AUTO, callout_stat, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_callout_stat, "I", "Dump immediate statistic snapshot of the scheduled callouts"); Index: stable/10/sys/netgraph/atm/sscop/ng_sscop_cust.h =================================================================== --- stable/10/sys/netgraph/atm/sscop/ng_sscop_cust.h (revision 281656) +++ stable/10/sys/netgraph/atm/sscop/ng_sscop_cust.h (revision 281657) @@ -1,344 +1,344 @@ /*- * Copyright (c) 2001-2003 * Fraunhofer Institute for Open Communication Systems (FhG Fokus). * All rights reserved. * * Author: Harti Brandt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * * Customisation of the SSCOP code to ng_sscop. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Allocate zeroed or non-zeroed memory of some size and cast it. * Return NULL on failure. */ #ifndef SSCOP_DEBUG #define MEMINIT() \ MALLOC_DECLARE(M_NG_SSCOP); \ DECL_MSGQ_GET \ DECL_SIGQ_GET \ DECL_MBUF_ALLOC #define MEMZALLOC(PTR, CAST, SIZE) \ ((PTR) = (CAST)malloc((SIZE), M_NG_SSCOP, M_NOWAIT | M_ZERO)) #define MEMFREE(PTR) \ free((PTR), M_NG_SSCOP) #define MSG_ALLOC(PTR) \ MEMZALLOC(PTR, struct sscop_msg *, sizeof(struct sscop_msg)) #define MSG_FREE(PTR) \ MEMFREE(PTR) #define SIG_ALLOC(PTR) \ MEMZALLOC(PTR, struct sscop_sig *, sizeof(struct sscop_sig)) #define SIG_FREE(PTR) \ MEMFREE(PTR) #else #define MEMINIT() \ MALLOC_DEFINE(M_NG_SSCOP_INS, "sscop_ins", "SSCOP instances"); \ MALLOC_DEFINE(M_NG_SSCOP_MSG, "sscop_msg", "SSCOP buffers"); \ MALLOC_DEFINE(M_NG_SSCOP_SIG, "sscop_sig", "SSCOP signals"); \ DECL_MSGQ_GET \ DECL_SIGQ_GET \ DECL_MBUF_ALLOC #define MEMZALLOC(PTR, CAST, SIZE) \ ((PTR) = (CAST)malloc((SIZE), M_NG_SSCOP_INS, M_NOWAIT | M_ZERO)) #define MEMFREE(PTR) \ free((PTR), M_NG_SSCOP_INS) #define MSG_ALLOC(PTR) \ ((PTR) = malloc(sizeof(struct sscop_msg), \ M_NG_SSCOP_MSG, M_NOWAIT | M_ZERO)) #define MSG_FREE(PTR) \ free((PTR), M_NG_SSCOP_MSG) #define SIG_ALLOC(PTR) \ ((PTR) = malloc(sizeof(struct sscop_sig), \ M_NG_SSCOP_SIG, M_NOWAIT | M_ZERO)) #define SIG_FREE(PTR) \ free((PTR), M_NG_SSCOP_SIG) #endif /* * Timer support. */ typedef struct callout sscop_timer_t; #define TIMER_INIT(S, T) ng_callout_init(&(S)->t_##T) #define TIMER_STOP(S,T) do { \ ng_uncallout(&(S)->t_##T, (S)->aarg); \ } while (0) #define TIMER_RESTART(S, T) do { \ TIMER_STOP(S, T); \ ng_callout(&(S)->t_##T, (S)->aarg, NULL, \ hz * (S)->timer##T / 1000, T##_func, (S), 0); \ } while (0) -#define TIMER_ISACT(S, T) ((S)->t_##T.c_flags & (CALLOUT_PENDING)) +#define TIMER_ISACT(S, T) (callout_pending(&(S)->t_##T)) /* * This assumes, that the user argument is the node pointer. */ #define TIMER_FUNC(T,N) \ static void \ T##_func(node_p node, hook_p hook, void *arg1, int arg2) \ { \ struct sscop *sscop = arg1; \ \ VERBOSE(sscop, SSCOP_DBG_TIMER, (sscop, sscop->aarg, \ "timer_" #T " expired")); \ sscop_signal(sscop, SIG_T_##N, NULL); \ } /* * Message queues */ typedef TAILQ_ENTRY(sscop_msg) sscop_msgq_link_t; typedef TAILQ_HEAD(sscop_msgq, sscop_msg) sscop_msgq_head_t; #define MSGQ_EMPTY(Q) TAILQ_EMPTY(Q) #define MSGQ_INIT(Q) TAILQ_INIT(Q) #define MSGQ_FOREACH(P, Q) TAILQ_FOREACH(P, Q, link) #define MSGQ_REMOVE(Q, M) TAILQ_REMOVE(Q, M, link) #define MSGQ_INSERT_BEFORE(B, M) TAILQ_INSERT_BEFORE(B, M, link) #define MSGQ_APPEND(Q, M) TAILQ_INSERT_TAIL(Q, M, link) #define MSGQ_PEEK(Q) TAILQ_FIRST((Q)) #define MSGQ_GET(Q) ng_sscop_msgq_get((Q)) #define DECL_MSGQ_GET \ static __inline struct sscop_msg * \ ng_sscop_msgq_get(struct sscop_msgq *q) \ { \ struct sscop_msg *m; \ \ m = TAILQ_FIRST(q); \ if (m != NULL) \ TAILQ_REMOVE(q, m, link); \ return (m); \ } #define MSGQ_CLEAR(Q) \ do { \ struct sscop_msg *_m1, *_m2; \ \ _m1 = TAILQ_FIRST(Q); \ while (_m1 != NULL) { \ _m2 = TAILQ_NEXT(_m1, link); \ SSCOP_MSG_FREE(_m1); \ _m1 = _m2; \ } \ TAILQ_INIT((Q)); \ } while (0) /* * Signal queues */ typedef TAILQ_ENTRY(sscop_sig) sscop_sigq_link_t; typedef TAILQ_HEAD(sscop_sigq, sscop_sig) sscop_sigq_head_t; #define SIGQ_INIT(Q) TAILQ_INIT(Q) #define SIGQ_APPEND(Q, S) TAILQ_INSERT_TAIL(Q, S, link) #define SIGQ_EMPTY(Q) TAILQ_EMPTY(Q) #define SIGQ_GET(Q) ng_sscop_sigq_get((Q)) #define DECL_SIGQ_GET \ static __inline struct sscop_sig * \ ng_sscop_sigq_get(struct sscop_sigq *q) \ { \ struct sscop_sig *s; \ \ s = TAILQ_FIRST(q); \ if (s != NULL) \ TAILQ_REMOVE(q, s, link); \ return (s); \ } #define SIGQ_MOVE(F, T) \ do { \ struct sscop_sig *_s; \ \ while (!TAILQ_EMPTY(F)) { \ _s = TAILQ_FIRST(F); \ TAILQ_REMOVE(F, _s, link); \ TAILQ_INSERT_TAIL(T, _s, link); \ } \ } while (0) #define SIGQ_PREPEND(F, T) \ do { \ struct sscop_sig *_s; \ \ while (!TAILQ_EMPTY(F)) { \ _s = TAILQ_LAST(F, sscop_sigq); \ TAILQ_REMOVE(F, _s, link); \ TAILQ_INSERT_HEAD(T, _s, link); \ } \ } while (0) #define SIGQ_CLEAR(Q) \ do { \ struct sscop_sig *_s1, *_s2; \ \ _s1 = TAILQ_FIRST(Q); \ while (_s1 != NULL) { \ _s2 = TAILQ_NEXT(_s1, link); \ SSCOP_MSG_FREE(_s1->msg); \ SIG_FREE(_s1); \ _s1 = _s2; \ } \ TAILQ_INIT(Q); \ } while (0) /* * Message buffers */ #define MBUF_FREE(M) do { if ((M)) m_freem((M)); } while(0) #define MBUF_DUP(M) m_copypacket((M), M_NOWAIT) #define MBUF_LEN(M) ((size_t)(M)->m_pkthdr.len) /* * Return the i-th word counted from the end of the buffer. * i=-1 will return the last 32bit word, i=-2 the 2nd last. * Assumes that there is enough space. */ #define MBUF_TRAIL32(M ,I) ng_sscop_mbuf_trail32((M), (I)) static uint32_t __inline ng_sscop_mbuf_trail32(const struct mbuf *m, int i) { uint32_t w; m_copydata(m, m->m_pkthdr.len + 4 * i, 4, (caddr_t)&w); return (ntohl(w)); } /* * Strip 32bit value from the end */ #define MBUF_STRIP32(M) ng_sscop_mbuf_strip32((M)) static uint32_t __inline ng_sscop_mbuf_strip32(struct mbuf *m) { uint32_t w; m_copydata(m, m->m_pkthdr.len - 4, 4, (caddr_t)&w); m_adj(m, -4); return (ntohl(w)); } #define MBUF_GET32(M) ng_sscop_mbuf_get32((M)) static uint32_t __inline ng_sscop_mbuf_get32(struct mbuf *m) { uint32_t w; m_copydata(m, 0, 4, (caddr_t)&w); m_adj(m, 4); return (ntohl(w)); } /* * Append a 32bit value to an mbuf. Failures are ignored. */ #define MBUF_APPEND32(M, W) \ do { \ uint32_t _w = (W); \ \ _w = htonl(_w); \ m_copyback((M), (M)->m_pkthdr.len, 4, (caddr_t)&_w); \ } while (0) /* * Pad a message to a multiple of four byte and return the amount of padding * Failures are ignored. */ #define MBUF_PAD4(M) ng_sscop_mbuf_pad4((M)) static u_int __inline ng_sscop_mbuf_pad4(struct mbuf *m) { static u_char pad[4] = { 0, 0, 0, 0 }; int len = m->m_pkthdr.len; int npad = 3 - ((len + 3) & 3); if (npad != 0) m_copyback(m, len, npad, (caddr_t)pad); return (npad); } #define MBUF_UNPAD(M, P) do { if( (P) > 0) m_adj((M), -(P)); } while (0) /* * Allocate a message that will probably hold N bytes. */ #define MBUF_ALLOC(N) ng_sscop_mbuf_alloc((N)) #define DECL_MBUF_ALLOC \ static __inline struct mbuf * \ ng_sscop_mbuf_alloc(size_t n) \ { \ struct mbuf *m; \ \ MGETHDR(m, M_NOWAIT, MT_DATA); \ if (m != NULL) { \ m->m_len = 0; \ m->m_pkthdr.len = 0; \ if (n > MHLEN) { \ MCLGET(m, M_NOWAIT); \ if (!(m->m_flags & M_EXT)){ \ m_free(m); \ m = NULL; \ } \ } \ } \ return (m); \ } #ifdef SSCOP_DEBUG #define ASSERT(X) KASSERT(X, (#X)) #else #define ASSERT(X) #endif Index: stable/10/sys/netgraph/atm/uni/ng_uni_cust.h =================================================================== --- stable/10/sys/netgraph/atm/uni/ng_uni_cust.h (revision 281656) +++ stable/10/sys/netgraph/atm/uni/ng_uni_cust.h (revision 281657) @@ -1,148 +1,148 @@ /*- * Copyright (c) 2001-2003 * Fraunhofer Institute for Open Communication Systems (FhG Fokus). * All rights reserved. * * Author: Hartmut Brandt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Customisation of signalling source to the NG environment. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #define ASSERT(E, M) KASSERT(E,M) /* * Memory */ enum unimem { UNIMEM_INS = 0, UNIMEM_ALL, UNIMEM_SIG, UNIMEM_CALL, UNIMEM_PARTY, }; #define UNIMEM_TYPES 5 void *ng_uni_malloc(enum unimem, const char *, u_int); void ng_uni_free(enum unimem, void *, const char *, u_int); #define INS_ALLOC() ng_uni_malloc(UNIMEM_INS, __FILE__, __LINE__) #define INS_FREE(P) ng_uni_free(UNIMEM_INS, P, __FILE__, __LINE__) #define UNI_ALLOC() ng_uni_malloc(UNIMEM_ALL, __FILE__, __LINE__) #define UNI_FREE(P) ng_uni_free(UNIMEM_ALL, P, __FILE__, __LINE__) #define SIG_ALLOC() ng_uni_malloc(UNIMEM_SIG, __FILE__, __LINE__) #define SIG_FREE(P) ng_uni_free(UNIMEM_SIG, P, __FILE__, __LINE__) #define CALL_ALLOC() ng_uni_malloc(UNIMEM_CALL, __FILE__, __LINE__) #define CALL_FREE(P) ng_uni_free(UNIMEM_CALL, P, __FILE__, __LINE__) #define PARTY_ALLOC() ng_uni_malloc(UNIMEM_PARTY, __FILE__, __LINE__) #define PARTY_FREE(P) ng_uni_free(UNIMEM_PARTY, P, __FILE__, __LINE__) /* * Timers */ struct uni_timer { struct callout c; }; #define _TIMER_INIT(X,T) ng_callout_init(&(X)->T.c) #define _TIMER_DESTROY(UNI,FIELD) _TIMER_STOP(UNI,FIELD) #define _TIMER_STOP(UNI,FIELD) do { \ ng_uncallout(&FIELD.c, (UNI)->arg); \ } while (0) -#define TIMER_ISACT(UNI,T) ((UNI)->T.c.c_flags & (CALLOUT_ACTIVE | \ - CALLOUT_PENDING)) +#define TIMER_ISACT(UNI,T) (callout_active(&(UNI)->T.c) || \ + callout_pending(&(UNI)->T.c)) #define _TIMER_START(UNI,ARG,FIELD,DUE,FUNC) do { \ _TIMER_STOP(UNI, FIELD); \ ng_callout(&FIELD.c, (UNI)->arg, NULL, \ hz * (DUE) / 1000, FUNC, (ARG), 0); \ } while (0) #define TIMER_FUNC_UNI(T,F) \ static void F(struct uni *); \ static void \ _##T##_func(node_p node, hook_p hook, void *arg1, int arg2) \ { \ struct uni *uni = (struct uni *)arg1; \ \ (F)(uni); \ uni_work(uni); \ } /* * Be careful: call may be invalid after the call to F */ #define TIMER_FUNC_CALL(T,F) \ static void F(struct call *); \ static void \ _##T##_func(node_p node, hook_p hook, void *arg1, int arg2) \ { \ struct call *call = (struct call *)arg1; \ struct uni *uni = call->uni; \ \ (F)(call); \ uni_work(uni); \ } /* * Be careful: call/party may be invalid after the call to F */ #define TIMER_FUNC_PARTY(T,F) \ static void F(struct party *); \ static void \ _##T##_func(node_p node, hook_p hook, void *arg1, int arg2) \ { \ struct party *party = (struct party *)arg1; \ struct uni *uni = party->call->uni; \ \ (F)(party); \ uni_work(uni); \ } extern size_t unimem_sizes[UNIMEM_TYPES]; #define UNICORE \ size_t unimem_sizes[UNIMEM_TYPES] = { \ [UNIMEM_INS] = sizeof(struct uni), \ [UNIMEM_ALL] = sizeof(struct uni_all), \ [UNIMEM_SIG] = sizeof(struct sig), \ [UNIMEM_CALL] = sizeof(struct call), \ [UNIMEM_PARTY] = sizeof(struct party) \ }; Index: stable/10/sys/sys/_callout.h =================================================================== --- stable/10/sys/sys/_callout.h (revision 281656) +++ stable/10/sys/sys/_callout.h (revision 281657) @@ -1,64 +1,65 @@ /*- * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)callout.h 8.2 (Berkeley) 1/21/94 * $FreeBSD$ */ #ifndef _SYS__CALLOUT_H #define _SYS__CALLOUT_H #include struct lock_object; LIST_HEAD(callout_list, callout); SLIST_HEAD(callout_slist, callout); TAILQ_HEAD(callout_tailq, callout); struct callout { union { LIST_ENTRY(callout) le; SLIST_ENTRY(callout) sle; TAILQ_ENTRY(callout) tqe; } c_links; sbintime_t c_time; /* ticks to the event */ sbintime_t c_precision; /* delta allowed wrt opt */ void *c_arg; /* function argument */ void (*c_func)(void *); /* function to call */ struct lock_object *c_lock; /* lock to handle */ - int c_flags; /* state of this entry */ + short c_flags; /* User State */ + short c_iflags; /* Internal State */ volatile int c_cpu; /* CPU we're scheduled on */ }; #endif Index: stable/10/sys/sys/callout.h =================================================================== --- stable/10/sys/sys/callout.h (revision 281656) +++ stable/10/sys/sys/callout.h (revision 281657) @@ -1,113 +1,128 @@ /*- * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)callout.h 8.2 (Berkeley) 1/21/94 * $FreeBSD$ */ #ifndef _SYS_CALLOUT_H_ #define _SYS_CALLOUT_H_ #include #define CALLOUT_LOCAL_ALLOC 0x0001 /* was allocated from callfree */ #define CALLOUT_ACTIVE 0x0002 /* callout is currently active */ #define CALLOUT_PENDING 0x0004 /* callout is waiting for timeout */ #define CALLOUT_MPSAFE 0x0008 /* callout handler is mp safe */ #define CALLOUT_RETURNUNLOCKED 0x0010 /* handler returns with mtx unlocked */ #define CALLOUT_SHAREDLOCK 0x0020 /* callout lock held in shared mode */ #define CALLOUT_DFRMIGRATION 0x0040 /* callout in deferred migration mode */ #define CALLOUT_PROCESSED 0x0080 /* callout in wheel or processing list? */ #define CALLOUT_DIRECT 0x0100 /* allow exec from hw int context */ #define C_DIRECT_EXEC 0x0001 /* direct execution of callout */ #define C_PRELBITS 7 #define C_PRELRANGE ((1 << C_PRELBITS) - 1) #define C_PREL(x) (((x) + 1) << 1) #define C_PRELGET(x) (int)((((x) >> 1) & C_PRELRANGE) - 1) #define C_HARDCLOCK 0x0100 /* align to hardclock() calls */ #define C_ABSOLUTE 0x0200 /* event time is absolute. */ struct callout_handle { struct callout *callout; }; #ifdef _KERNEL +/* + * Note the flags field is actually *two* fields. The c_flags + * field is the one that caller operations that may, or may not have + * a lock touches i.e. callout_deactivate(). The other, the c_iflags, + * is the internal flags that *must* be kept correct on which the + * callout system depend on e.g. callout_pending(). + * The c_iflag is used internally by the callout system to determine which + * list the callout is on and track internal state. Callers *should not* + * use the c_flags field directly but should use the macros provided. + * + * The c_iflags field holds internal flags that are protected by internal + * locks of the callout subsystem. The c_flags field holds external flags. + * The caller must hold its own lock while manipulating or reading external + * flags via callout_active(), callout_deactivate(), callout_reset*(), or + * callout_stop() to avoid races. + */ #define callout_active(c) ((c)->c_flags & CALLOUT_ACTIVE) -#define callout_migrating(c) ((c)->c_flags & CALLOUT_DFRMIGRATION) #define callout_deactivate(c) ((c)->c_flags &= ~CALLOUT_ACTIVE) #define callout_drain(c) _callout_stop_safe(c, 1) void callout_init(struct callout *, int); void _callout_init_lock(struct callout *, struct lock_object *, int); #define callout_init_mtx(c, mtx, flags) \ _callout_init_lock((c), ((mtx) != NULL) ? &(mtx)->lock_object : \ NULL, (flags)) #define callout_init_rm(c, rm, flags) \ _callout_init_lock((c), ((rm) != NULL) ? &(rm)->lock_object : \ NULL, (flags)) #define callout_init_rw(c, rw, flags) \ _callout_init_lock((c), ((rw) != NULL) ? &(rw)->lock_object : \ NULL, (flags)) -#define callout_pending(c) ((c)->c_flags & CALLOUT_PENDING) +#define callout_pending(c) ((c)->c_iflags & CALLOUT_PENDING) int callout_reset_sbt_on(struct callout *, sbintime_t, sbintime_t, void (*)(void *), void *, int, int); #define callout_reset_sbt(c, sbt, pr, fn, arg, flags) \ - callout_reset_sbt_on((c), (sbt), (pr), (fn), (arg), (c)->c_cpu, (flags)) + callout_reset_sbt_on((c), (sbt), (pr), (fn), (arg), -1, (flags)) #define callout_reset_sbt_curcpu(c, sbt, pr, fn, arg, flags) \ callout_reset_sbt_on((c), (sbt), (pr), (fn), (arg), PCPU_GET(cpuid),\ (flags)) #define callout_reset_on(c, to_ticks, fn, arg, cpu) \ callout_reset_sbt_on((c), tick_sbt * (to_ticks), 0, (fn), (arg), \ (cpu), C_HARDCLOCK) #define callout_reset(c, on_tick, fn, arg) \ - callout_reset_on((c), (on_tick), (fn), (arg), (c)->c_cpu) + callout_reset_on((c), (on_tick), (fn), (arg), -1) #define callout_reset_curcpu(c, on_tick, fn, arg) \ callout_reset_on((c), (on_tick), (fn), (arg), PCPU_GET(cpuid)) #define callout_schedule_sbt_on(c, sbt, pr, cpu, flags) \ callout_reset_sbt_on((c), (sbt), (pr), (c)->c_func, (c)->c_arg, \ (cpu), (flags)) #define callout_schedule_sbt(c, sbt, pr, flags) \ - callout_schedule_sbt_on((c), (sbt), (pr), (c)->c_cpu, (flags)) + callout_schedule_sbt_on((c), (sbt), (pr), -1, (flags)) #define callout_schedule_sbt_curcpu(c, sbt, pr, flags) \ callout_schedule_sbt_on((c), (sbt), (pr), PCPU_GET(cpuid), (flags)) int callout_schedule(struct callout *, int); int callout_schedule_on(struct callout *, int, int); #define callout_schedule_curcpu(c, on_tick) \ callout_schedule_on((c), (on_tick), PCPU_GET(cpuid)) #define callout_stop(c) _callout_stop_safe(c, 0) int _callout_stop_safe(struct callout *, int); void callout_process(sbintime_t now); #endif #endif /* _SYS_CALLOUT_H_ */