Index: projects/ifnet/sys/net/if.c =================================================================== --- projects/ifnet/sys/net/if.c (revision 281154) +++ projects/ifnet/sys/net/if.c (revision 281155) @@ -1,3798 +1,3798 @@ /*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_compat.h" #include "opt_device_polling.h" #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #ifdef INET #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include #ifdef COMPAT_FREEBSD32 #include #include #endif SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); int ifqmaxlen = IFQ_MAXLEN; SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*bridge_linkstate_p)(struct ifnet *ifp); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_freemulti(struct ifmultiaddr *); static void if_grow(void); static int if_setflag(struct ifnet *, int, int, int *, int); static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int if_rtdel(struct radix_node *, void *); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, int, struct if_clone *); static void if_detach_internal(struct ifnet *, int, struct if_clone **); static struct ifqueue * if_snd_alloc(int); static void if_snd_free(struct ifqueue *); static void if_snd_qflush(if_t); #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif VNET_DEFINE(int, if_index); VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); static VNET_DEFINE(int, if_indexlim) = 8; /* Table of ifnet by index. */ VNET_DEFINE(struct ifnet **, ifindex_table); #define V_if_indexlim VNET(if_indexlim) #define V_ifindex_table VNET(ifindex_table) static struct iftsomax default_tsomax = { /* * The TSO defaults need to be such that an NFS mbuf list of 35 * mbufs totalling just below 64K works and that a chain of mbufs * can be defragged into at most 32 segments. */ .tsomax_bytes = MIN(IP_MAXPACKET, (32 * MCLBYTES) - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)), .tsomax_segcount = 35, .tsomax_segsize = 2048, }; /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and * an rwlock. Either may be acquired shared to stablize the list, but both * must be acquired writable to modify the list. This model allows us to * both stablize the interface list during interrupt thread processing, but * also to stablize it over long-running ioctls, without introducing priority * inversions and deadlocks. */ struct rwlock ifnet_rwlock; RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); struct sx ifnet_sxlock; SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); /* * The allocation of network interfaces is a rather non-atomic affair; we * need to select an index before we are ready to expose the interface for * use, so will use this pointer value to indicate reservation. */ #define IFNET_HOLD (void *)(uintptr_t)(-1) static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); static struct ifops ifdead_ops; struct ifnet * ifnet_byindex_locked(u_short idx) { if (idx > V_if_index) return (NULL); if (V_ifindex_table[idx] == IFNET_HOLD) return (NULL); return (V_ifindex_table[idx]); } struct ifnet * ifnet_byindex(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifnet_byindex_ref(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { IFNET_RUNLOCK_NOSLEEP(); return (NULL); } if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Allocate an ifindex array entry. */ static void ifindex_alloc(struct ifnet *ifp) { u_short idx; IFNET_WLOCK(); retry: /* * Try to find an empty slot below V_if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= V_if_index; idx++) { if (V_ifindex_table[idx] == NULL) break; } /* Catch if_index overflow. */ if (idx >= V_if_indexlim) { if_grow(); goto retry; } if (idx > V_if_index) V_if_index = idx; V_ifindex_table[idx] = ifp; ifp->if_index = idx; IFNET_WUNLOCK(); } static void ifindex_free(u_short idx) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx] = NULL; while (V_if_index > 0 && V_ifindex_table[V_if_index] == NULL) V_if_index--; } struct ifaddr * ifaddr_byindex(u_short idx) { struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); ifa = ifnet_byindex_locked(idx)->if_addr; if (ifa != NULL) ifa_ref(ifa); IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void vnet_if_init(const void *unused __unused) { TAILQ_INIT(&V_ifnet); TAILQ_INIT(&V_ifg_head); IFNET_WLOCK(); if_grow(); /* create initial table */ IFNET_WUNLOCK(); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); #ifdef VIMAGE static void vnet_if_uninit(const void *unused __unused) { VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " "not empty", __func__, __LINE__, &V_ifnet)); VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " "not empty", __func__, __LINE__, &V_ifg_head)); free((caddr_t)V_ifindex_table, M_IFNET); } VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_if_uninit, NULL); #endif static void if_grow(void) { int oldlim; u_int n; struct ifnet **e; IFNET_WLOCK_ASSERT(); oldlim = V_if_indexlim; IFNET_WUNLOCK(); n = (oldlim << 1) * sizeof(*e); e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); IFNET_WLOCK(); if (V_if_indexlim != oldlim) { free(e, M_IFNET); return; } if (V_ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); free((caddr_t)V_ifindex_table, M_IFNET); } V_if_indexlim <<= 1; V_ifindex_table = e; } /* * Registration/deregistration of interface types. A type can carry * common methods. Certain drivers depend on types to be loaded. */ static SLIST_HEAD(, iftype) iftypehead = SLIST_HEAD_INITIALIZER(iftypehead); void iftype_register(struct iftype *ift) { IFNET_WLOCK(); SLIST_INSERT_HEAD(&iftypehead, ift, ift_next); IFNET_WUNLOCK(); } void iftype_unregister(struct iftype *ift) { IFNET_WLOCK(); SLIST_REMOVE(&iftypehead, ift, iftype, ift_next); IFNET_WUNLOCK(); } static struct iftype * iftype_find(ifType type) { struct iftype *ift; IFNET_RLOCK(); SLIST_FOREACH(ift, &iftypehead, ift_next) if (ift->ift_type == type) break; IFNET_RUNLOCK(); return (ift); } #define ifdrv_flags __ifdrv_stack_owned #define IFDRV_BLESSED 0x00000001 static void ifdriver_bless(struct ifdriver *ifdrv, struct iftype *ift) { /* * If the driver doesn't define certain op, but its type has * default implementation, then copy it. */ if (ift != NULL) { #define COPYOP(op) if (ifdrv->ifdrv_ops.ifop_ ## op == NULL) \ ifdrv->ifdrv_ops.ifop_ ## op = \ ift->ift_ops.ifop_ ## op COPYOP(input); COPYOP(transmit); COPYOP(output); COPYOP(ioctl); COPYOP(get_counter); COPYOP(qflush); COPYOP(resolvemulti); COPYOP(reassign); #undef COPYOP #define COPY(f) if (ifdrv->ifdrv_ ## f == 0) \ ifdrv->ifdrv_ ## f = ift->ift_ ## f COPY(hdrlen); COPY(addrlen); COPY(dlt); COPY(dlt_hdrlen); #undef COPY } /* * If the driver has ifdrv_maxqlen defined, then opts-in * for * generic software queue, and thus for default * ifop_qflush. */ if (ifdrv->ifdrv_maxqlen > 0) { KASSERT(ifdrv->ifdrv_ops.ifop_qflush == NULL, ("%s: fdrv_maxqlen > 0 and ifop_qflush", ifdrv->ifdrv_name)); ifdrv->ifdrv_ops.ifop_qflush = if_snd_qflush; } /* * If neither driver nor its type has a definitation of an op * that is mandatory, then set it to default implementation. */ #define DEFAULTOP(op) if (ifdrv->ifdrv_ops.ifop_ ## op == NULL) \ ifdrv->ifdrv_ops.ifop_ ## op = \ if_ ## op ## _default DEFAULTOP(get_counter); #undef DEFAULTOP #if defined(INET) || defined(INET6) /* Use defaults for TSO, if nothing is set. */ if (ifdrv->ifdrv_tsomax == NULL) ifdrv->ifdrv_tsomax = &default_tsomax; else KASSERT(ifdrv->ifdrv_tsomax->tsomax_bytes == 0 || ifdrv->ifdrv_tsomax->tsomax_bytes >= (IP_MAXPACKET / 8), ("%s: tsomax_bytes is outside of range", ifdrv->ifdrv_name)); #endif ifdrv->ifdrv_ops.ifop_origin = IFOP_ORIGIN_DRIVER; ifdrv->ifdrv_flags |= IFDRV_BLESSED; } /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. * * The only reason for this function to fail is failure to allocate a * unit number, which is possible only if driver does cloning. */ if_t if_attach(struct if_attach_args *ifat) { struct ifdriver *ifdrv; struct iftype *ift; struct ifnet *ifp; struct ifaddr *ifa; struct sockaddr_dl *sdl; int socksize, ifasize, namelen, masklen; KASSERT(ifat->ifat_version == IF_ATTACH_VERSION, ("%s: version %d, expected %d", __func__, ifat->ifat_version, IF_ATTACH_VERSION)); ifdrv = ifat->ifat_drv; ift = iftype_find(ifdrv->ifdrv_type); if ((ifdrv->ifdrv_flags & IFDRV_BLESSED) == 0) ifdriver_bless(ifdrv, ift); if (ifdrv->ifdrv_clone != NULL) { int error; error = ifc_alloc_unit(ifdrv->ifdrv_clone, &ifat->ifat_dunit); if (error) { log(LOG_WARNING, "%s unit allocation failure: %d\n", ifdrv->ifdrv_name, error); ifat->ifat_error = error; return (NULL); } } ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK | M_ZERO); ifp->if_scstore = malloc(sizeof(struct ifsoftc) * SOFTC_CACHE_SIZE, M_IFNET, M_WAITOK | M_ZERO); ifp->if_nsoftcs = SOFTC_CACHE_SIZE; for (int i = 0; i < IFCOUNTERS; i++) ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); #ifdef MAC mac_ifnet_init(ifp); mac_ifnet_create(ifp); #endif ifp->if_ops = &ifdrv->ifdrv_ops; ifp->if_drv = ifdrv; ifp->if_type = ift; #define COPY(f) ifp->if_ ## f = ifat->ifat_ ## f COPY(softc); COPY(mtu); COPY(flags); COPY(capabilities); COPY(capenable); COPY(hwassist); COPY(baudrate); #undef COPY if (ifat->ifat_tsomax) { /* * Driver wants dynamic tsomax on this interface, we * will allocate one and are responsible for freeing * it on detach. */ KASSERT(ifat->ifat_tsomax->tsomax_bytes == 0 || ifat->ifat_tsomax->tsomax_bytes >= (IP_MAXPACKET / 8), ("%s: tsomax_bytes is outside of range", ifdrv->ifdrv_name)); ifp->if_tsomax = malloc(sizeof(struct iftsomax), M_IFNET, M_WAITOK); bcopy(ifat->ifat_tsomax, ifp->if_tsomax, sizeof(struct iftsomax)); } else ifp->if_tsomax = ifdrv->ifdrv_tsomax; if (ifdrv->ifdrv_maxqlen > 0) ifp->if_snd = if_snd_alloc(ifdrv->ifdrv_maxqlen); rw_init(&ifp->if_lock, "if_lock"); IF_AFDATA_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); TAILQ_INIT(&ifp->if_addrhead); TAILQ_INIT(&ifp->if_multiaddrs); TAILQ_INIT(&ifp->if_groups); /* XXXGL: there is no check that name is unique. */ ifp->if_dunit = ifat->ifat_dunit; if (ifat->ifat_name) strlcpy(ifp->if_xname, ifat->ifat_name, IFNAMSIZ); else if (ifat->ifat_dunit != IFAT_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", ifdrv->ifdrv_name, ifat->ifat_dunit); else strlcpy(ifp->if_xname, ifdrv->ifdrv_name, IFNAMSIZ); ifindex_alloc(ifp); refcount_init(&ifp->if_refcount, 1); /* * Allocate ifaddr to store link level address and name for this * interface. Always save enough space for any possiable name so * we can do a rename in place later. */ namelen = strlen(ifp->if_xname); masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifdrv->ifdrv_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifdrv->ifdrv_type; sdl->sdl_alen = ifdrv->ifdrv_addrlen; if (ifat->ifat_lla != NULL) bcopy(ifat->ifat_lla, LLADDR(sdl), ifdrv->ifdrv_addrlen); ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (char *)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); if (ift) ift->ift_attach(ifp, ifat); bpfattach(ifp, ifdrv->ifdrv_dlt, ifdrv->ifdrv_dlt_hdrlen); if_attach_internal(ifp, 0, NULL); return (ifp); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the last reference to an * interface is released. */ static void if_free_internal(struct ifnet *ifp) { KASSERT((ifp->if_flags & IFF_DYING), ("if_free_internal: interface not dying")); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ if (ifp->if_description != NULL) free(ifp->if_description, M_IFDESCR); IF_AFDATA_DESTROY(ifp); rw_destroy(&ifp->if_lock); if (ifp->if_snd) if_snd_free(ifp->if_snd); for (int i = 0; i < IFCOUNTERS; i++) counter_u64_free(ifp->if_counters[i]); if (ifp->if_tsomax != ifp->if_drv->ifdrv_tsomax) free(ifp->if_tsomax, M_IFNET); free(ifp, M_IFNET); } void if_mtap(if_t ifp, struct mbuf *m, void *data, u_int dlen) { if (!bpf_peers_present(ifp->if_bpf)) return; if (dlen == 0) { if (m->m_flags & M_VLANTAG) ether_vlan_mtap(ifp->if_bpf, m, NULL, 0); else bpf_mtap(ifp->if_bpf, m); } else bpf_mtap2(ifp->if_bpf, data, dlen, m); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { /* We don't assert the ifnet list lock here, but arguably should. */ refcount_acquire(&ifp->if_refcount); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; if_free_internal(ifp); } /* * Compute the least common TSO limit. */ void if_tsomax_common(const struct iftsomax *from, struct iftsomax *to) { /* * 1) If there is no limit currently, take the limit from * the network adapter. * * 2) If the network adapter has a limit below the current * limit, apply it. */ if (to->tsomax_bytes == 0 || (from->tsomax_bytes != 0 && from->tsomax_bytes < to->tsomax_bytes)) { to->tsomax_bytes = from->tsomax_bytes; } if (to->tsomax_segcount == 0 || (from->tsomax_segcount != 0 && from->tsomax_segcount < to->tsomax_segcount)) { to->tsomax_segcount = from->tsomax_segcount; } if (to->tsomax_segsize == 0 || (from->tsomax_segsize != 0 && from->tsomax_segsize < to->tsomax_segsize)) { to->tsomax_segsize = from->tsomax_segsize; } } /* * Update TSO limit of a network adapter. * * Returns zero if no change. Else non-zero. */ int if_tsomax_update(if_t ifp, const struct iftsomax *new) { int retval = 0; KASSERT(ifp->if_tsomax != ifp->if_drv->ifdrv_tsomax, ("%s: interface %s (driver %s) has static if_tsomax", __func__, ifp->if_xname, ifp->if_drv->ifdrv_name)); if (ifp->if_tsomax->tsomax_bytes != new->tsomax_bytes) { ifp->if_tsomax->tsomax_bytes = new->tsomax_bytes; retval++; } if (ifp->if_tsomax->tsomax_segsize != new->tsomax_segsize) { ifp->if_tsomax->tsomax_segsize = new->tsomax_segsize; retval++; } if (ifp->if_tsomax->tsomax_segcount != new->tsomax_segcount) { ifp->if_tsomax->tsomax_segcount = new->tsomax_segcount; retval++; } KASSERT(ifp->if_tsomax->tsomax_bytes == 0 || ifp->if_tsomax->tsomax_bytes >= (IP_MAXPACKET / 8), ("%s: tsomax_bytes is outside of range", ifp->if_xname)); return (retval); } static void if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) { if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) panic ("%s: BUG: if_attach called without if_alloc'd input()\n", ifp->if_xname); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); /* Restore group membership for cloned interfaces. */ if (vmove && ifc != NULL) if_clone_addgroup(ifp, ifc); getmicrotime(&ifp->if_lastchange); ifp->if_epoch = time_uptime; #ifdef VIMAGE /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } #endif IFNET_WLOCK(); TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_attachdomain(void *dummy) { struct ifnet *ifp; TAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ if (IF_AFDATA_TRYLOCK(ifp) == 0) return; if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa, *next; TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 1); IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(if_t ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ bpfdetach(ifp); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) if_poll_deregister(ifp); #endif CURVNET_SET_QUIET(ifp->if_vnet); if_detach_internal(ifp, 0, NULL); IFNET_WLOCK(); KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), ("%s: freeing unallocated ifnet", ifp->if_xname)); ifindex_free(ifp->if_index); IFNET_WUNLOCK(); if (ifp->if_drv->ifdrv_clone != NULL) ifc_free_unit(ifp->if_drv->ifdrv_clone, ifp->if_dunit); if (refcount_release(&ifp->if_refcount)) if_free_internal(ifp); CURVNET_RESTORE(); } static void if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) { struct ifaddr *ifa; struct radix_node_head *rnh; int i, j; struct domain *dp; struct ifnet *iter; int found = 0; IFNET_WLOCK(); TAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { TAILQ_REMOVE(&V_ifnet, ifp, if_link); found = 1; break; } #ifdef VIMAGE if (found) curvnet->vnet_ifcnt--; #endif IFNET_WUNLOCK(); if (!found) { if (vmove) panic("%s: ifp=%p not on the ifnet tailq %p", __func__, ifp, &V_ifnet); else return; /* XXX this should panic as well? */ } /* Check if this is a cloned interface or not. */ if (vmove && ifcp != NULL) *ifcp = if_clone_findifc(ifp); /* * Remove/wait for pending events. */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); /* * Remove routes and flush queues. */ if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if (!vmove) { struct iftype *ift = ifp->if_type; if (ift != NULL && ift->ift_detach != NULL) ift->ift_detach(ifp); /* * Prevent further calls into the device driver via ifnet. */ ifp->if_ops = &ifdead_ops; /* * Remove link ifaddr pointer and maybe decrement if_index. * Clean up all addresses. */ ifp->if_addr = NULL; /* We can now free link ifaddr. */ if (!TAILQ_EMPTY(&ifp->if_addrhead)) { ifa = TAILQ_FIRST(&ifp->if_addrhead); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); ifa_free(ifa); } } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ for (i = 1; i <= AF_MAX; i++) { for (j = 0; j < rt_numfibs; j++) { rnh = rt_tables_get_rnh(j, i); if (rnh == NULL) continue; RADIX_NODE_HEAD_LOCK(rnh); (void) rnh->rnh_walktree(rnh, if_rtdel, ifp); RADIX_NODE_HEAD_UNLOCK(rnh); } } if_delgroups(ifp); /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. * An attempt is made to shrink if_index in current vnet, find an * unused if_index in target vnet and calls if_grow() if necessary, * and finally find an unused if_xname for the target vnet. */ void if_vmove(struct ifnet *ifp, struct vnet *new_vnet) { struct if_clone *ifc; /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. */ if_detach_internal(ifp, 1, &ifc); /* * Unlink the ifnet from ifindex_table[] in current vnet, and shrink * the if_index for that vnet if possible. * * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, * or we'd lock on one vnet and unlock on another. */ IFNET_WLOCK(); ifindex_free(ifp->if_index); IFNET_WUNLOCK(); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); IFNET_WLOCK(); ifp->if_index = ifindex_alloc(); ifnet_setbyindex_locked(ifp->if_index, ifp); IFNET_WUNLOCK(); if_attach_internal(ifp, 1, ifc); CURVNET_RESTORE(); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); CURVNET_RESTORE(); if (difp != NULL) { prison_free(pr); return (EEXIST); } /* Move the interface into the child jail/vnet. */ if_vmove(ifp, pr->pr_vnet); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Get interface back from child jail/vnet. */ if_vmove(ifp, vnet_dst); CURVNET_RESTORE(); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; TAILQ_INIT(&ifg->ifg_members); TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_member *ifgm; IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; struct ifg_member *ifgm; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while (!TAILQ_EMPTY(&ifp->if_groups)) { ifgl = TAILQ_FIRST(&ifp->if_groups); strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } /* * Stores all groups from an interface in memory pointed * to by data */ static int if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; struct ifgroupreq *ifgr = data; if (ifgr->ifgr_len == 0) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); IF_ADDR_RUNLOCK(ifp); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IF_ADDR_RUNLOCK(ifp); return (error); } len -= sizeof(ifgrq); ifgp++; } IF_ADDR_RUNLOCK(ifp); return (0); } /* * Stores all members of a group in memory pointed to by data */ static int if_getgroupmembers(struct ifgroupreq *data) { struct ifgroupreq *ifgr = data; struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rn pointer to node in the routing table * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated * */ static int if_rtdel(struct radix_node *rn, void *arg) { struct rtentry *rt = (struct rtentry *)rn; struct ifnet *ifp = arg; int err; if (rt->rt_ifp == ifp) { /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags|RTF_RNH_LOCKED|RTF_PINNED, (struct rtentry **) NULL, rt->rt_fibnum); if (err) { log(LOG_WARNING, "if_rtdel: error %d\n", err); } } return (0); } /* * Returning different software contexts associated with ifnet. */ void * if_getsoftc(struct ifnet *ifp, ift_feature f) { struct ifsoftc *sc; /* * Some softcs are non-optional either for performance reasons, * since they always exist and are often dereferenced, or for * historical reasons. */ switch (f) { case IF_DRIVER_SOFTC: return (ifp->if_softc); case IF_LLADDR: return (LLADDR((struct sockaddr_dl *)(ifp->if_addr->ifa_addr))); case IF_BPF: return (ifp->if_bpf); case IF_NAME: return (ifp->if_xname); case IF_VLAN: return (ifp->if_vlantrunk); default: /* fall through */ ; }; /* * Rest of softc live in the store and in the cache. * First check the cache. */ sc = ifp->if_sccache[f & (SOFTC_CACHE_SIZE - 1)]; if (sc != NULL && sc->ifsc_desc == f) return (sc->ifsc_ptr); /* * Then check the store. * We can do lookup lockless, since if_nsoftcs only grows. */ for (int i = 0; i < ifp->if_nsoftcs; i++) { sc = &ifp->if_scstore[i]; if (sc->ifsc_desc == f) { ifp->if_sccache[f & (SOFTC_CACHE_SIZE - 1)] = sc; return (sc->ifsc_ptr); } } /* * XXXGL: a negative cache would be not bad. */ return (NULL); } /* * Set arbitrary context identified by ift_feature key. It is responsibility * of the caller to establish race safety against two if_setsoftc()s. The * function may sleep when setting new context. The function will not sleep * when clearing previously set context. May fail only if associated context * is already set. */ int if_setsoftc(struct ifnet *ifp, ift_feature f, void *softc) { int i; IF_WLOCK(ifp); retry: for (i = 0; i < ifp->if_nsoftcs; i++) if (ifp->if_scstore[i].ifsc_desc == f) { IF_WUNLOCK(ifp); return (EEXIST); } for (i = 0; i < ifp->if_nsoftcs; i++) if (ifp->if_scstore[i].ifsc_desc == 0) break; if (i == ifp->if_nsoftcs) { struct ifsoftc *new, *old; u_int size; old = ifp->if_scstore; size = ifp->if_nsoftcs; IF_WUNLOCK(ifp); new = malloc(sizeof(struct ifsoftc) * size * 2, M_IFNET, M_WAITOK | M_ZERO); IF_WLOCK(ifp); if (ifp->if_scstore != old) { free(new, M_IFNET); goto retry; } bcopy(ifp->if_scstore, new, sizeof(struct ifsoftc) * size); ifp->if_scstore = new; ifp->if_nsoftcs = size * 2; /* * XXXGL: of course there is a race here against if_getsoftc(), * which runs lockless. We lack RCU or lightweight reference * counting. */ free(old, M_IFNET); } if (softc != NULL) { ifp->if_scstore[i].ifsc_ptr = softc; ifp->if_scstore[i].ifsc_desc = f; ifp->if_sccache[f & (SOFTC_CACHE_SIZE - 1)] = &ifp->if_scstore[i]; } else { ifp->if_scstore[i].ifsc_desc = 0; ifp->if_scstore[i].ifsc_ptr = NULL; ifp->if_sccache[f & (SOFTC_CACHE_SIZE - 1)] = NULL; } IF_WUNLOCK(ifp); return (0); } /* * Return counter values from counter(9)s stored in ifnet. */ uint64_t if_get_counter_default(struct ifnet *ifp, ift_counter cnt) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); return (counter_u64_fetch(ifp->if_counters[cnt])); } /* * Increase an ifnet counter. Usually used for counters shared * between the stack and a driver, but function supports them all. */ void if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); counter_u64_add(ifp->if_counters[cnt], inc); } /* * Account successful transmission of an mbuf. */ void if_inc_txcounters(struct ifnet *ifp, struct mbuf *m) { counter_u64_add(ifp->if_counters[IFCOUNTER_OBYTES], m->m_pkthdr.len); counter_u64_add(ifp->if_counters[IFCOUNTER_OPACKETS], 1); if (m->m_flags & M_MCAST) counter_u64_add(ifp->if_counters[IFCOUNTER_OMCASTS], 1); } /* * Set the baudrate. */ void if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) { ifp->if_baudrate = baudrate; } /* * Copy data from ifnet to userland API structure if_data. */ void if_data_copy(struct ifnet *ifp, struct if_data *ifd) { ifd->ifi_type = if_type(ifp); ifd->ifi_physical = 0; ifd->ifi_addrlen = if_addrlen(ifp); ifd->ifi_hdrlen = ifp->if_drv->ifdrv_hdrlen; ifd->ifi_link_state = ifp->if_link_state; ifd->ifi_vhid = 0; ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_mtu = ifp->if_mtu; ifd->ifi_metric = ifp->if_metric; ifd->ifi_baudrate = ifp->if_baudrate; ifd->ifi_hwassist = ifp->if_hwassist; ifd->ifi_epoch = ifp->if_epoch; ifd->ifi_lastchange = ifp->if_lastchange; ifd->ifi_ipackets = if_get_counter(ifp, IFCOUNTER_IPACKETS); ifd->ifi_ierrors = if_get_counter(ifp, IFCOUNTER_IERRORS); ifd->ifi_opackets = if_get_counter(ifp, IFCOUNTER_OPACKETS); ifd->ifi_oerrors = if_get_counter(ifp, IFCOUNTER_OERRORS); ifd->ifi_collisions = if_get_counter(ifp, IFCOUNTER_COLLISIONS); ifd->ifi_ibytes = if_get_counter(ifp, IFCOUNTER_IBYTES); ifd->ifi_obytes = if_get_counter(ifp, IFCOUNTER_OBYTES); ifd->ifi_imcasts = if_get_counter(ifp, IFCOUNTER_IMCASTS); ifd->ifi_omcasts = if_get_counter(ifp, IFCOUNTER_OMCASTS); ifd->ifi_iqdrops = if_get_counter(ifp, IFCOUNTER_IQDROPS); ifd->ifi_oqdrops = if_get_counter(ifp, IFCOUNTER_OQDROPS); ifd->ifi_noproto = if_get_counter(ifp, IFCOUNTER_NOPROTO); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { refcount_acquire(&ifa->ifa_refcnt); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) { counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } } int ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { int error = 0; struct rtentry *rt = NULL; struct rt_addrinfo info; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; bzero(&info, sizeof(info)); info.rti_ifp = V_loif; info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; error = rtrequest1_fib(RTM_ADD, &info, &rt, ifa->ifa_ifp->if_fib); if (error == 0 && rt != NULL) { RT_LOCK(rt); ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = if_type(ifa->ifa_ifp); ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = ifa->ifa_ifp->if_index; RT_REMREF(rt); RT_UNLOCK(rt); } else if (error != 0) log(LOG_DEBUG, "%s: insertion failed: %u\n", __func__, error); return (error); } int ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { int error = 0; struct rt_addrinfo info; struct sockaddr_dl null_sdl; bzero(&null_sdl, sizeof(null_sdl)); null_sdl.sdl_len = sizeof(null_sdl); null_sdl.sdl_family = AF_LINK; null_sdl.sdl_type = if_type(ifa->ifa_ifp); null_sdl.sdl_index = ifa->ifa_ifp->if_index; bzero(&info, sizeof(info)); info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; error = rtrequest1_fib(RTM_DELETE, &info, NULL, ifa->ifa_ifp->if_fib); if (error != 0) log(LOG_DEBUG, "%s: deletion failed: %u\n", __func__, error); return (error); } int ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *sa, int fib) { struct rtentry *rt; rt = rtalloc1_fib(sa, 0, 0, fib); if (rt == NULL) { log(LOG_DEBUG, "%s: fail", __func__); return (EHOSTUNREACH); } ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = if_type(ifa->ifa_ifp); ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = ifa->ifa_ifp->if_index; RTFREE_LOCKED(rt); return (0); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_dl_equal(a1, a2) \ ((((struct sockaddr_dl *)(a1))->sdl_len == \ ((struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(LLADDR((struct sockaddr_dl *)(a1)), \ LLADDR((struct sockaddr_dl *)(a2)), \ ((struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ static struct ifaddr * ifa_ifwithaddr_internal(struct sockaddr *addr, int getref) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 1)); } int ifa_ifwithaddr_check(struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 0) != NULL); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(struct sockaddr *addr, int ignore_ptp, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= V_if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have addresses * in this address family and the requested fib. Maintain a reference * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that * kept it stable when we move onto the next interface. */ IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } else { /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { if (ifa_maybe != NULL) ifa_free(ifa_maybe); ifa_maybe = ifa; ifa_ref(ifa_maybe); } } } IF_ADDR_RUNLOCK(ifp); } ifa = ifa_maybe; ifa_maybe = NULL; done: IFNET_RUNLOCK_NOSLEEP(); if (ifa_maybe != NULL) ifa_free(ifa_maybe); return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: if (ifa != NULL) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa, *oifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { oifa = rt->rt_ifa; rt->rt_ifa = ifa; ifa_free(oifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } struct sockaddr_dl * link_alloc_sdl(size_t size, int flags) { return (malloc(size, M_TEMP, flags)); } void link_free_sdl(struct sockaddr *sa) { free(sa, M_TEMP); } /* * Fills in given sdl with interface basic info. * Returns pointer to filled sdl. */ struct sockaddr_dl * link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)paddr; memset(sdl, 0, sizeof(struct sockaddr_dl)); sdl->sdl_len = sizeof(struct sockaddr_dl); sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = iftype; return (sdl); } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp = (struct ifnet *)arg; int link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); /* Notify that the link state has changed. */ rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); /* XXXGL: make ng_ether softc pointer */ if ((if_type(ifp) == IFT_ETHER || if_type(ifp) == IFT_L2VLAN) && ifp->if_l2com != NULL) (*ng_ether_link_state_p)(ifp, link_state); - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) (*bridge_linkstate_p)(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { struct ifaddr *ifa; ifp->if_flags &= ~IFF_UP; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); if_qflush(ifp); - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { struct ifaddr *ifa; ifp->if_flags |= IFF_UP; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) pfctlinput(PRC_IFUP, ifa->ifa_addr); - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifunit(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Hardware specific interface ioctls. */ int if_drvioctl(struct ifnet *ifp, u_long cmd, void *data, struct thread *td) { struct ifreq *ifr; size_t namelen, onamelen; size_t descrlen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; uint32_t flags, oflags; int error = 0; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags & 0xffff; ifr->ifr_flagshigh = ifp->if_flags >> 16; /* * Some software may care about IFF_RUNNING, so make * it happy. */ if (ifp->if_flags & IFF_UP) ifr->ifr_flags |= IFF_RUNNING; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: /* XXXGL: did this ever worked? */ ifr->ifr_phys = 0; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr->ifr_buffer.length < descrlen) ifr->ifr_buffer.buffer = NULL; else error = copyout(ifp->if_description, ifr->ifr_buffer.buffer, descrlen); ifr->ifr_buffer.length = descrlen; } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr->ifr_buffer.length > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr->ifr_buffer.length == 0) descrbuf = NULL; else { descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_buffer.buffer, descrbuf, ifr->ifr_buffer.length - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; (void )if_ioctl(ifp, cmd, data, td); break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Historically if_flags were 16-bit, and thus * they come from userland in two parts, that * we need to swap. Clear IFF_RUNNING that is * no longer used in kernel. */ ifr->ifr_flags &= ~IFF_RUNNING; flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if ((flags & IFF_CANTCHANGE) != (ifp->if_flags & IFF_CANTCHANGE)) return (EINVAL); /* * Pass new flags down to driver and see if it accepts them. */ error = if_ioctl(ifp, cmd, data, td); if (error) return (error); flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); oflags = ifp->if_flags; ifp->if_flags = flags; getmicrotime(&ifp->if_lastchange); /* * Manage IFF_UP flip. */ if (oflags & IFF_UP && (flags & IFF_UP) == 0) if_down(ifp); else if (flags & IFF_UP && (oflags & IFF_UP) == 0) if_up(ifp); /* See if permanently promiscuous mode bit is about to flip. */ if ((oflags ^ flags) & IFF_PPROMISC) { if (flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; log(LOG_INFO, "%s: permanently promiscuous mode %s\n", ifp->if_xname, (flags & IFF_PPROMISC) ? "enabled" : "disabled"); } break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error) return (error); /* * All(?) NICs that do TSO require to perform VLAN tagging * and checksum offloading in hardware, when doing TSO. * Thus, turning TSO on implicitly turns on these features, * and turning these features off implicitly turns off TSO. */ if ((ifr->ifr_reqcap & IFCAP_VLAN_HWTSO) != 0) ifr->ifr_reqcap |= IFCAP_VLAN_HWTAGGING; if ((ifr->ifr_reqcap & IFCAP_VLAN_HWTAGGING) == 0) ifr->ifr_reqcap &= ~IFCAP_VLAN_HWTSO; if ((ifr->ifr_reqcap & IFCAP_TSO4) != 0) ifr->ifr_reqcap |= IFCAP_TXCSUM; if ((ifr->ifr_reqcap & IFCAP_TXCSUM) == 0) ifr->ifr_reqcap &= ~IFCAP_TSO4; if ((ifr->ifr_reqcap & IFCAP_TSO6) != 0) ifr->ifr_reqcap |= IFCAP_TXCSUM_IPV6; if ((ifr->ifr_reqcap & IFCAP_TXCSUM_IPV6) == 0) ifr->ifr_reqcap &= ~IFCAP_TSO6; /* * Now check that requested capabilities match * what interface can actually do, and whether * there is any change in the capenable. */ if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); if (ifr->ifr_reqcap == ifp->if_capenable) return (0); ifr->ifr_curcap = ifp->if_capenable; /* * See if driver accepts ifr_reqcap. It may also * adjust them. Driver also fills in ifr_hwassist. */ error = if_ioctl(ifp, cmd, data, td); if (error != 0) break; #ifdef DEVICE_POLLING if ((ifr->ifr_reqcap ^ ifr->ifr_curcap) & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) if_poll_register(ifp); else if_poll_deregister(ifp); } #endif ifp->if_capenable = ifr->ifr_reqcap; ifp->if_hwassist = ifr->ifr_hwassist; getmicrotime(&ifp->if_lastchange); if (ifp->if_vlantrunk != NULL) (*vlan_trunk_cap_p)(ifp); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); log(LOG_INFO, "%s: changing name to '%s'\n", ifp->if_xname, new_name); IF_ADDR_WLOCK(ifp); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); error = if_ioctl(ifp, cmd, data, td); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifr->ifr_mtu == ifp->if_mtu) return (0); error = if_ioctl(ifp, cmd, data, td); if (error == 0) { ifp->if_mtu = ifr->ifr_mtu; getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ IF_ADDR_RLOCK(ifp); ifma = if_findmulti(ifp, &ifr->ifr_addr); IF_ADDR_RUNLOCK(ifp); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); error = if_ioctl(ifp, cmd, data, td); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFGENERIC: error = if_ioctl(ifp, cmd, data, td); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); EVENTHANDLER_INVOKE(iflladdr_event, ifp); break; case SIOCAIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); break; } case SIOCGIFGROUP: if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) return (error); break; case SIOCDIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; } default: error = ENOIOCTL; break; } return (error); } #ifdef COMPAT_FREEBSD32 struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) #endif /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; CURVNET_SET(so->so_vnet); switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); CURVNET_RESTORE(); return (error); #ifdef COMPAT_FREEBSD32 case SIOCGIFCONF32: { struct ifconf32 *ifc32; struct ifconf ifc; ifc32 = (struct ifconf32 *)data; ifc.ifc_len = ifc32->ifc_len; ifc.ifc_buf = PTRIN(ifc32->ifc_buf); error = ifconf(SIOCGIFCONF, (void *)&ifc); CURVNET_RESTORE(); if (error == 0) ifc32->ifc_len = ifc.ifc_len; return (error); } #endif } ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); CURVNET_RESTORE(); return (error); #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); CURVNET_RESTORE(); return (error); case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) error = if_clone_destroy(ifr->ifr_name); CURVNET_RESTORE(); return (error); case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); CURVNET_RESTORE(); return (error); case SIOCGIFGMEMB: error = if_getgroupmembers((struct ifgroupreq *)data); CURVNET_RESTORE(); return (error); #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); CURVNET_RESTORE(); return (error); #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { CURVNET_RESTORE(); return (ENXIO); } error = if_drvioctl(ifp, cmd, data, td); if (error != ENOIOCTL) { if_rele(ifp); CURVNET_RESTORE(); return (error); } oif_flags = ifp->if_flags; if (so->so_proto == NULL) { if_rele(ifp); CURVNET_RESTORE(); return (EOPNOTSUPP); } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP) error = if_ioctl(ifp, cmd, data, td); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } if_rele(ifp); CURVNET_RESTORE(); return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, curthread); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) log(LOG_INFO, "%s: promiscuous mode %s\n", ifp->if_xname, (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { int addrs; /* * Zero the ifr_name buffer to make sure we don't * disclose the contents of the stack. */ memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } IF_ADDR_RUNLOCK(ifp); if (addrs == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ static void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; struct sockaddr_dl sdl; int error; /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. * Most link layer resolving functions returns address data which * fits inside default sockaddr_dl structure. However callback * can allocate another sockaddr structure, in that case we need to * free it later. */ sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; error = if_resolvemulti(ifp, &llsa, sa); if (error == EOPNOTSUPP) llsa = NULL; else if (error) goto unlock_out; /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if_ioctl(ifp, SIOCADDMULTI, 0, curthread); if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); return (0); free_llsa_out: if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; #ifdef INVARIANTS struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) ifp = NULL; IFNET_RUNLOCK_NOSLEEP(); KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); #endif if (ifp == NULL) return (ENOENT); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref) if_ioctl(ifp, SIOCDELMULTI, 0, curthread); return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma(struct ifmultiaddr *ifma) { struct ifnet *ifp; int lastref; ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) { printf("%s: ifnet %p disappeared\n", __func__, ifp); ifp = NULL; } IFNET_RUNLOCK_NOSLEEP(); } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, 0); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref) if_ioctl(ifp, SIOCDELMULTI, 0, curthread); } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); } if_freemulti(ll_ifma); } } if (ifp != NULL) TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. */ int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; IF_ADDR_RLOCK(ifp); ifa = ifp->if_addr; if (ifa == NULL) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) { ifa_free(ifa); return (EINVAL); } if (len != sdl->sdl_alen) { /* don't allow length to change */ ifa_free(ifa); return (EINVAL); } switch (if_type(ifp)) { case IFT_ETHER: case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_ARCNET: case IFT_IEEE8023ADLAG: case IFT_IEEE80211: bcopy(lladdr, LLADDR(sdl), len); ifa_free(ifa); break; default: ifa_free(ifa); return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; if_ioctl(ifp, SIOCSIFFLAGS, &ifr, curthread); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; if_ioctl(ifp, SIOCSIFFLAGS, &ifr, curthread); #ifdef INET /* * Also send gratuitous ARPs to notify other nodes about * the address change. */ TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } #endif } return (0); } /* * Return address length of the interface. * * For vlan(4) the address length of different instances can be different. * For usual interfaces sdl->sdl_alen == ifdrv_addrlen. */ uint8_t if_addrlen(const if_t ifp) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; return (sdl->sdl_alen); } int if_printf(struct ifnet *ifp, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ifp->if_xname); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } int if_getmtu_family(if_t ifp, int family) { struct domain *dp; for (dp = domains; dp; dp = dp->dom_next) if (dp->dom_family == family && dp->dom_ifmtu != NULL) return (dp->dom_ifmtu(ifp)); return (ifp->if_mtu); } /* * Methods for drivers to access interface unicast and multicast * addresses. Driver do not know 'struct ifaddr' neither 'struct ifmultiaddr'. */ void if_foreach_addr(if_t ifp, ifaddr_cb_t cb, void *cb_arg) { struct ifaddr *ifa; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) (*cb)(cb_arg, ifa->ifa_addr, ifa->ifa_dstaddr, ifa->ifa_netmask); IF_ADDR_RUNLOCK(ifp); } void if_foreach_maddr(if_t ifp, ifmaddr_cb_t cb, void *cb_arg) { struct ifmultiaddr *ifma; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) (*cb)(cb_arg, ifma->ifma_addr); IF_ADDR_RUNLOCK(ifp); } /* * Generic software queue, that many non-high-end drivers use. For now * it is minimalistic version of classic BSD ifqueue, but we can swap it * to any other implementation later. */ struct ifqueue { struct mbufq ifq_mbq; struct mtx ifq_mtx; }; static struct ifqueue * if_snd_alloc(int maxlen) { struct ifqueue *ifq; ifq = malloc(sizeof(struct ifqueue), M_IFNET, M_WAITOK); mbufq_init(&ifq->ifq_mbq, maxlen); mtx_init(&ifq->ifq_mtx, "ifqueue", NULL, MTX_DEF | MTX_NEW); return (ifq); } static void if_snd_free(struct ifqueue *ifq) { mtx_destroy(&ifq->ifq_mtx); free(ifq, M_IFNET); } /* * Flush software interface queue. */ static void if_snd_qflush(if_t ifp) { struct ifqueue *ifq = ifp->if_snd; mtx_lock(&ifq->ifq_mtx); mbufq_drain(&ifq->ifq_mbq); mtx_unlock(&ifq->ifq_mtx); } int if_snd_len(if_t ifp) { struct ifqueue *ifq = ifp->if_snd; return (mbufq_len(&ifq->ifq_mbq)); } int if_snd_enqueue(struct ifnet *ifp, struct mbuf *m) { struct ifqueue *ifq = ifp->if_snd; int error; mtx_lock(&ifq->ifq_mtx); error = mbufq_enqueue(&ifq->ifq_mbq, m); mtx_unlock(&ifq->ifq_mtx); if (error) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); } return (error); } struct mbuf * if_snd_dequeue(if_t ifp) { struct ifqueue *ifq = ifp->if_snd; struct mbuf *m; mtx_lock(&ifq->ifq_mtx); m = mbufq_dequeue(&ifq->ifq_mbq); mtx_unlock(&ifq->ifq_mtx); return (m); } void if_snd_prepend(if_t ifp, struct mbuf *m) { struct ifqueue *ifq = ifp->if_snd; mtx_lock(&ifq->ifq_mtx); mbufq_prepend(&ifq->ifq_mbq, m); mtx_unlock(&ifq->ifq_mtx); } /* * Implementation of if ops, that can be called from drivers. */ void if_input_noinline(if_t ifp, struct mbuf *m) { return (if_input(ifp, m)); } int if_transmit_noinline(if_t ifp, struct mbuf *m) { return (if_transmit(ifp, m)); } Index: projects/ifnet/sys/net/if_ethersubr.c =================================================================== --- projects/ifnet/sys/net/if_ethersubr.c (revision 281154) +++ projects/ifnet/sys/net/if_ethersubr.c (revision 281155) @@ -1,1147 +1,1153 @@ /*- * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_netgraph.h" #include "opt_mbuf_profiling.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET6 #include #endif #include #ifdef CTASSERT CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); #endif VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ /* netgraph node hooks for ng_ether(4) */ void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_attach_p)(struct ifnet *ifp); void (*ng_ether_detach_p)(struct ifnet *ifp); void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* if_bridge(4) support */ struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); int (*bridge_output_p)(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); void (*bridge_dn_p)(struct mbuf *, struct ifnet *); /* if_lagg(4) support */ struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int ether_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); #ifdef VIMAGE static void ether_reassign(struct ifnet *, struct vnet *, char *); #endif #define ETHER_IS_BROADCAST(addr) \ (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) #define senderr(e) do { error = (e); goto bad;} while (0) static void update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) { int csum_flags = 0; if (src->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if (src->m_pkthdr.csum_flags & CSUM_SCTP) csum_flags |= CSUM_SCTP_VALID; dst->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) dst->m_pkthdr.csum_data = 0xffff; } /* * Ethernet output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ static int ether_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { short type; int error = 0, hdrcmplt = 0; u_char edst[ETHER_ADDR_LEN]; struct llentry *lle = NULL; struct rtentry *rt0 = NULL; struct ether_header *eh; struct pf_mtag *t; int loop_copy = 1; int hlen; /* link layer header length */ int is_gw = 0; uint32_t pflags = 0; if (ro != NULL) { if (!(m->m_flags & (M_BCAST | M_MCAST))) { lle = ro->ro_lle; if (lle != NULL) pflags = lle->la_flags; } rt0 = ro->ro_rt; if (rt0 != NULL && (rt0->rt_flags & RTF_GATEWAY) != 0) is_gw = 1; } #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif M_PROFILE(m); if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if ((ifp->if_flags & IFF_UP) == 0) senderr(ENETDOWN); hlen = ETHER_HDR_LEN; switch (dst->sa_family) { #ifdef INET case AF_INET: if (lle != NULL && (pflags & LLE_VALID) != 0) memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); else error = arpresolve(ifp, is_gw, m, dst, edst, &pflags); if (error) return (error == EWOULDBLOCK ? 0 : error); type = htons(ETHERTYPE_IP); break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_ETHER); loop_copy = 0; /* if this is for us, don't do it */ switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: type = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: type = htons(ETHERTYPE_ARP); break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN); else bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN); } break; #endif #ifdef INET6 case AF_INET6: if (lle != NULL && (pflags & LLE_VALID)) memcpy(edst, &lle->ll_addr.mac16, sizeof(edst)); else error = nd6_storelladdr(ifp, m, dst, (u_char *)edst, &pflags); if (error) return error; type = htons(ETHERTYPE_IPV6); break; #endif case pseudo_AF_HDRCMPLT: { const struct ether_header *eh; hdrcmplt = 1; /* FALLTHROUGH */ case AF_UNSPEC: loop_copy = 0; /* if this is for us, don't do it */ eh = (const struct ether_header *)dst->sa_data; (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); type = eh->ether_type; break; } default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); senderr(EAFNOSUPPORT); } if ((pflags & LLE_IFADDR) != 0) { update_mbuf_csumflags(m, m); return (if_simloop(ifp, m, dst->sa_family, 0)); } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); eh = mtod(m, struct ether_header *); if (hdrcmplt == 0) { memcpy(&eh->ether_type, &type, sizeof(eh->ether_type)); memcpy(eh->ether_dhost, edst, sizeof (edst)); memcpy(eh->ether_shost, if_lladdr(ifp), sizeof(eh->ether_shost)); } /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((ifp->if_flags & IFF_SIMPLEX) && loop_copy && ((t = pf_find_mtag(m)) == NULL || !t->routed)) { if (m->m_flags & M_BCAST) { struct mbuf *n; /* * Because if_simloop() modifies the packet, we need a * writable copy through m_dup() instead of a readonly * one as m_copy[m] would give us. The alternative would * be to modify if_simloop() to handle the readonly mbuf, * but performancewise it is mostly equivalent (trading * extra data copying vs. extra locking). * * XXX This is a local workaround. A number of less * often used kernel parts suffer from the same bug. * See PR kern/105943 for a proposed general solution. */ if ((n = m_dup(m, M_NOWAIT)) != NULL) { update_mbuf_csumflags(m, n); (void)if_simloop(ifp, n, dst->sa_family, hlen); } else if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); } else if (bcmp(eh->ether_dhost, eh->ether_shost, ETHER_ADDR_LEN) == 0) { update_mbuf_csumflags(m, m); (void) if_simloop(ifp, m, dst->sa_family, hlen); return (0); /* XXX */ } } /* * Bridges require special output handling. */ if (ifp->if_bridge) { BRIDGE_OUTPUT(ifp, m, error); return (error); } #if defined(INET) || defined(INET6) - if (ifp->if_carp && + /* + * XXXGL: the if_getsoftc() lookup might affect performance, + * but the plan is to improve carp to avoid calling + * carp_output() on every packet. + */ + if (carp_output_p != NULL && if_getsoftc(ifp, IF_CARP) != NULL && (error = (*carp_output_p)(ifp, m, dst))) goto bad; #endif /* Handle ng_ether(4) processing, if any */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_output_p != NULL, ("ng_ether_output_p is NULL")); if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { bad: if (m != NULL) m_freem(m); return (error); } if (m == NULL) return (0); } /* Continue with link-layer output */ return ether_output_frame(ifp, m); } /* * Ethernet link layer output routine to send a raw frame to the device. * * This assumes that the 14 byte Ethernet header is present and contiguous * in the first mbuf (if BRIDGE'ing). */ int ether_output_frame(struct ifnet *ifp, struct mbuf *m) { int i; if (PFIL_HOOKED(&V_link_pfil_hook)) { i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); if (i != 0) return (EACCES); if (m == NULL) return (0); } /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ return (if_transmit(ifp, m)); } #if defined(INET) || defined(INET6) #endif /* * Process a received Ethernet packet; the packet is in the * mbuf chain m with the ethernet header at the front. */ static void ether_input_internal(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; u_short etype; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } /* * Do consistency checks to verify assumptions * made by code past this point. */ if ((m->m_flags & M_PKTHDR) == 0) { if_printf(ifp, "discard frame w/o packet header\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } if (m->m_len < ETHER_HDR_LEN) { /* XXX maybe should pullup? */ if_printf(ifp, "discard frame w/o leading ethernet " "header (len %u pkt len %u)\n", m->m_len, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); if (m->m_pkthdr.rcvif == NULL) { if_printf(ifp, "discard frame w/o interface pointer\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } #ifdef DIAGNOSTIC if (m->m_pkthdr.rcvif != ifp) { if_printf(ifp, "Warning, frame marked as received on %s\n", m->m_pkthdr.rcvif->if_xname); } #endif CURVNET_SET_QUIET(ifp->if_vnet); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (ETHER_IS_BROADCAST(eh->ether_dhost)) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* * Give bpf a chance at the packet. */ ETHER_BPF_MTAP(ifp, m); /* * If the CRC is still on the packet, trim it off. We do this once * and once only in case we are re-entered. Nothing else on the * Ethernet receive path expects to see the FCS. */ if (m->m_flags & M_HASFCS) { m_adj(m, -ETHER_CRC_LEN); m->m_flags &= ~M_HASFCS; } /* Allow monitor mode to claim this frame, after stats are updated. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); CURVNET_RESTORE(); return; } /* Handle input from a lagg(4) port */ /* XXXGL: this should go away, lagg(4) should intercept if_ops. */ if (if_type(ifp) == IFT_IEEE8023ADLAG) { KASSERT(lagg_input_p != NULL, ("%s: if_lagg not loaded!", __func__)); m = (*lagg_input_p)(ifp, m); if (m != NULL) ifp = m->m_pkthdr.rcvif; else { CURVNET_RESTORE(); return; } } /* * If the hardware did not process an 802.1Q tag, do this now, * to allow 802.1P priority frames to be passed to the main input * path correctly. * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { struct ether_vlan_header *evl; if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { #ifdef DIAGNOSTIC if_printf(ifp, "cannot pullup VLAN header\n"); #endif if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); CURVNET_RESTORE(); return; } evl = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); m->m_flags |= M_VLANTAG; bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); eh = mtod(m, struct ether_header *); } M_SETFIB(m, ifp->if_fib); /* Allow ng_ether(4) to claim this frame. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_p != NULL, ("%s: ng_ether_input_p is NULL", __func__)); m->m_flags &= ~M_PROMISC; (*ng_ether_input_p)(ifp, &m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } /* * Allow if_bridge(4) to claim this frame. * The BRIDGE_INPUT() macro will update ifp if the bridge changed it * and the frame should be delivered locally. */ if (ifp->if_bridge != NULL) { m->m_flags &= ~M_PROMISC; BRIDGE_INPUT(ifp, m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } #if defined(INET) || defined(INET6) /* * Clear M_PROMISC on frame so that carp(4) will see it when the * mbuf flows up to Layer 3. * FreeBSD's implementation of carp(4) uses the inprotosw * to dispatch IPPROTO_CARP. carp(4) also allocates its own * Ethernet addresses of the form 00:00:5e:00:01:xx, which * is outside the scope of the M_PROMISC test below. * TODO: Maintain a hash table of ethernet addresses other than * ether_dhost which may be active on this ifp. */ - if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { + if (carp_forus_p != NULL && if_getsoftc(ifp, IF_CARP) != NULL && + (*carp_forus_p)(ifp, eh->ether_dhost)) { m->m_flags &= ~M_PROMISC; } else #endif { /* * If the frame received was not for our MAC address, set the * M_PROMISC flag on the mbuf chain. The frame may need to * be seen by the rest of the Ethernet input path in case of * re-entry (e.g. bridge, vlan, netgraph) but should not be * seen by upper protocol layers. */ if (!ETHER_IS_MULTICAST(eh->ether_dhost) && bcmp(if_lladdr(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) m->m_flags |= M_PROMISC; } random_harvest(&(m->m_data), 12, 2, RANDOM_NET_ETHER); ether_demux(ifp, m); CURVNET_RESTORE(); } /* * Ethernet input dispatch; by default, direct dispatch here regardless of * global configuration. However, if RSS is enabled, hook up RSS affinity * so that when deferred or hybrid dispatch is enabled, we can redistribute * load based on RSS. * * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or * not it had already done work distribution via multi-queue. Then we could * direct dispatch in the event load balancing was already complete and * handle the case of interfaces with different capabilities better. * * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions * at multiple layers? * * XXXRW: For now, enable all this only if RSS is compiled in, although it * works fine without RSS. Need to characterise the performance overhead * of the detour through the netisr code in the event the result is always * direct dispatch. */ static void ether_nh_input(struct mbuf *m) { ether_input_internal(m->m_pkthdr.rcvif, m); } static struct netisr_handler ether_nh = { .nh_name = "ether", .nh_handler = ether_nh_input, .nh_proto = NETISR_ETHER, #ifdef RSS .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_DIRECT, .nh_m2cpuid = rss_m2cpuid, #else .nh_policy = NETISR_POLICY_SOURCE, .nh_dispatch = NETISR_DISPATCH_DIRECT, #endif }; static void vnet_ether_init(__unused void *arg) { int i; /* Initialize packet filter hooks. */ V_link_pfil_hook.ph_type = PFIL_TYPE_AF; V_link_pfil_hook.ph_af = AF_LINK; if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) printf("%s: WARNING: unable to register pfil link hook, " "error %d\n", __func__, i); } VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_init, NULL); static void vnet_ether_destroy(__unused void *arg) { int i; if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) printf("%s: WARNING: unable to unregister pfil link hook, " "error %d\n", __func__, i); } VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_destroy, NULL); static void ether_input(struct ifnet *ifp, struct mbuf *m) { struct mbuf *mn; /* * The drivers are allowed to pass in a chain of packets linked with * m_nextpkt. We split them up into separate packets here and pass * them up. This allows the drivers to amortize the receive lock. */ while (m) { mn = m->m_nextpkt; m->m_nextpkt = NULL; /* * We will rely on rcvif being set properly in the deferred context, * so assert it is correct here. */ KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); netisr_dispatch(NETISR_ETHER, m); m = mn; } } /* * Upper layer processing for a received Ethernet packet. */ void ether_demux(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; int i, isr; u_short ether_type; KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); /* Do not grab PROMISC frames in case we are re-entered. */ if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); if (i != 0 || m == NULL) return; } eh = mtod(m, struct ether_header *); ether_type = ntohs(eh->ether_type); /* * If this frame has a VLAN tag other than 0, call vlan_input() * if its module is loaded. Otherwise, drop. */ if ((m->m_flags & M_VLANTAG) && EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { if (ifp->if_vlantrunk == NULL) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", __func__)); /* Clear before possibly re-entering ether_input(). */ m->m_flags &= ~M_PROMISC; (*vlan_input_p)(ifp, m); return; } /* * Pass promiscuously received frames to the upper layer if the user * requested this by setting IFF_PPROMISC. Otherwise, drop them. */ if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { m_freem(m); return; } /* * Reset layer specific mbuf flags to avoid confusing upper layers. * Strip off Ethernet header. */ m->m_flags &= ~M_VLANTAG; m_clrprotoflags(m); m_adj(m, ETHER_HDR_LEN); /* * Dispatch frame to upper layer. */ switch (ether_type) { #ifdef INET case ETHERTYPE_IP: if ((m = ip_fastforward(m)) == NULL) return; isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } isr = NETISR_ARP; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif default: goto discard; } netisr_dispatch(isr, m); return; discard: /* * Packet is to be discarded. If netgraph is present, * hand the packet to it for last chance processing; * otherwise dispose of it. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_orphan_p != NULL, ("ng_ether_input_orphan_p is NULL")); /* * Put back the ethernet header so netgraph has a * consistent view of inbound packets. */ M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); (*ng_ether_input_orphan_p)(ifp, m); return; } m_freem(m); } /* * Convert Ethernet address to printable (loggable) representation. * This routine is for compatibility; it's better to just use * * printf("%6D", , ":"); * * since there's no static buffer involved. */ char * ether_sprintf(const u_char *ap) { static char etherbuf[18]; snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); return (etherbuf); } /* * Perform common duties while attaching to interface list */ static void ether_ifattach(struct ifnet *ifp, struct if_attach_args *ifat) { int i; if (ifp->if_mtu == 0) ifp->if_mtu = ETHERMTU; if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Mbps(10); /* just a default */ ifp->if_broadcastaddr = etherbroadcastaddr; if (ng_ether_attach_p != NULL) (*ng_ether_attach_p)(ifp); /* Announce Ethernet MAC address if non-zero. */ for (i = 0; i < if_addrlen(ifp); i++) if (ifat->ifat_lla[i] != 0) break; if (i != if_addrlen(ifp)) if_printf(ifp, "Ethernet address: %6D\n", ifat->ifat_lla, ":"); uuid_ether_add(LLADDR((struct sockaddr_dl *)ifp->if_addr->ifa_addr)); } /* * Perform common duties while detaching an Ethernet interface */ static void ether_ifdetach(struct ifnet *ifp) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); uuid_ether_del(LLADDR(sdl)); if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } } #ifdef VIMAGE void ether_reassign(struct ifnet *ifp, struct vnet *new_vnet) { if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } if (ng_ether_attach_p != NULL) { CURVNET_SET_QUIET(new_vnet); (*ng_ether_attach_p)(ifp); CURVNET_RESTORE(); } } #endif SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); #if 0 /* * This is for reference. We have a table-driven version * of the little-endian crc32 generator, which is faster * than the double-loop. */ uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { size_t i; uint32_t crc; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = (crc ^ data) & 1; crc >>= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_LE); } } return (crc); } #else uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { static const uint32_t crctab[] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; size_t i; uint32_t crc; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { crc ^= buf[i]; crc = (crc >> 4) ^ crctab[crc & 0xf]; crc = (crc >> 4) ^ crctab[crc & 0xf]; } return (crc); } #endif uint32_t ether_crc32_be(const uint8_t *buf, size_t len) { size_t i; uint32_t crc, carry; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); crc <<= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_BE) | carry; } } return (crc); } static int ether_ioctl(struct ifnet *ifp, u_long command, void *data, struct thread *td) { struct ifreq *ifr = (struct ifreq *) data; switch (command) { case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(if_lladdr(ifp), (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) return (EINVAL); else ifp->if_mtu = ifr->ifr_mtu; break; default: return (EOPNOTSUPP); } return (0); } static int ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!ETHER_IS_MULTICAST(e_addr)) return EADDRNOTAVAIL; *llsa = 0; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = 0; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } void ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) { struct ether_vlan_header vlan; struct mbuf mv, mb; KASSERT((m->m_flags & M_VLANTAG) != 0, ("%s: vlan information not present", __func__)); KASSERT(m->m_len >= sizeof(struct ether_header), ("%s: mbuf not large enough for header", __func__)); bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); vlan.evl_proto = vlan.evl_encap_proto; vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * If a data link has been supplied by the caller, then we will need to * re-create a stack allocated mbuf chain with the following structure: * * (1) mbuf #1 will contain the supplied data link * (2) mbuf #2 will contain the vlan header * (3) mbuf #3 will contain the original mbuf's packet data * * Otherwise, submit the packet and vlan header via bpf_mtap2(). */ if (data != NULL) { mv.m_next = m; mv.m_data = (caddr_t)&vlan; mv.m_len = sizeof(vlan); mb.m_next = &mv; mb.m_data = data; mb.m_len = dlen; bpf_mtap(bp, &mb); } else bpf_mtap2(bp, &vlan, sizeof(vlan), m); m->m_len += sizeof(struct ether_header); m->m_data -= sizeof(struct ether_header); } struct mbuf * ether_vlanencap(struct mbuf *m, uint16_t tag) { struct ether_vlan_header *evl; M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); if (m == NULL) return (NULL); /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ if (m->m_len < sizeof(*evl)) { m = m_pullup(m, sizeof(*evl)); if (m == NULL) return (NULL); } /* * Transform the Ethernet header into an Ethernet header * with 802.1Q encapsulation. */ evl = mtod(m, struct ether_vlan_header *); bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); evl->evl_encap_proto = htons(ETHERTYPE_VLAN); evl->evl_tag = htons(tag); return (m); } static struct iftype ether_iftype = { .ift_type = IFT_ETHER, .ift_attach = ether_ifattach, .ift_detach = ether_ifdetach, .ift_dlt = DLT_EN10MB, .ift_dlt_hdrlen = ETHER_HDR_LEN, .ift_addrlen = ETHER_ADDR_LEN, .ift_hdrlen = ETHER_HDR_LEN, .ift_ops = { .ifop_origin = IFOP_ORIGIN_IFTYPE, .ifop_output = ether_output, .ifop_input = ether_input, .ifop_resolvemulti = ether_resolvemulti, .ifop_ioctl = ether_ioctl, #ifdef VIMAGE .ifop_reassign = ether_reassign, #endif } }; static int ether_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: iftype_register(ðer_iftype); netisr_register(ðer_nh); break; case MOD_UNLOAD: netisr_unregister(ðer_nh); iftype_unregister(ðer_iftype); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t ether_mod = { .name = "ether", .evhand = ether_modevent, }; DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(ether, 1); Index: projects/ifnet/sys/net/if_var.h =================================================================== --- projects/ifnet/sys/net/if_var.h (revision 281154) +++ projects/ifnet/sys/net/if_var.h (revision 281155) @@ -1,543 +1,541 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)if.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NET_IF_VAR_H_ #define _NET_IF_VAR_H_ struct rtentry; /* ifa_rtrequest */ struct rt_addrinfo; /* ifa_rtrequest */ struct socket; -struct carp_if; struct carp_softc; struct ifvlantrunk; struct ifmedia; struct netmap_adapter; #ifdef _KERNEL #include /* ifqueue only? */ #include #include #endif /* _KERNEL */ #include #include /* XXX */ #include /* struct ifqueue */ #include /* XXX */ #include /* XXX */ #include /* if_link_task */ #include TAILQ_HEAD(ifnethead, ifnet); /* we use TAILQs so that the order of */ TAILQ_HEAD(ifaddrhead, ifaddr); /* instantiation is preserved in the list */ TAILQ_HEAD(ifmultihead, ifmultiaddr); TAILQ_HEAD(ifgrouphead, ifg_group); #ifdef _KERNEL VNET_DECLARE(struct pfil_head, link_pfil_hook); /* packet filter hooks */ #define V_link_pfil_hook VNET(link_pfil_hook) #endif /* _KERNEL */ typedef void (*iftype_attach_t)(if_t ifp, struct if_attach_args *args); typedef void (*iftype_detach_t)(if_t ifp); struct iftype { const ifType ift_type; SLIST_ENTRY(iftype) ift_next; iftype_attach_t ift_attach; iftype_detach_t ift_detach; uint8_t ift_hdrlen; uint8_t ift_addrlen; uint32_t ift_dlt; uint32_t ift_dlt_hdrlen; struct ifops ift_ops; }; /* * Many network stack modules want to store their software context associated * with an interface. We used to give a pointer for everyone, but that yield * to sizeof(struct ifnet) growing and permanent need for new pointers added * to the struct. Now we keep a tiny cache of recently used features and * dynamically allocated store for them. * Note: this could be generalized with kobj(9). */ #define SOFTC_CACHE_SIZE 4 struct ifsoftc { ift_feature ifsc_desc; void *ifsc_ptr; }; /* * Structure defining a network interface. * * (Would like to call this struct ``if'', but C isn't PL/1.) */ struct ifnet { struct ifops *if_ops; /* driver ops (or overridden) */ void *if_softc; /* driver software context */ struct ifdriver *if_drv; /* driver static definition */ struct ifsoftc *if_sccache[SOFTC_CACHE_SIZE]; /* cache of softcs */ struct iftsomax *if_tsomax; /* TSO limits */ struct iftype *if_type; /* if type static def (optional)*/ struct rwlock if_lock; /* lock to protect the ifnet */ struct ifsoftc *if_scstore; /* store of different softcs */ TAILQ_ENTRY(ifnet) if_link; /* on global list */ LIST_ENTRY(ifnet) if_clones; /* on if_cloner list */ TAILQ_HEAD(, ifg_list) if_groups; /* groups of this ifnet */ void *if_llsoftc; /* link layer softc */ void *if_l2com; /* pointer to protocol bits */ uint32_t if_nsoftcs; /* elements in if_scstore */ int if_dunit; /* unit or IF_DUNIT_NONE */ u_short if_index; /* numeric abbreviation for this if */ short if_index_reserved; /* spare space to grow if_index */ char if_xname[IFNAMSIZ]; /* external name (name + unit) */ char *if_description; /* interface description */ /* Variable fields that are touched by the stack . */ uint32_t if_flags; /* up/down, broadcast, etc. */ uint32_t if_capabilities;/* interface features & capabilities */ uint32_t if_capenable; /* enabled features & capabilities */ void *if_linkmib; /* link-type-specific MIB data */ size_t if_linkmiblen; /* length of above data */ u_int if_refcount; /* reference count */ u_int if_fib; /* interface FIB */ uint8_t if_link_state; /* current link state */ uint32_t if_mtu; /* maximum transmission unit */ uint32_t if_metric; /* routing metric (external only) */ uint64_t if_baudrate; /* linespeed */ uint64_t if_hwassist; /* HW offload capabilities, see IFCAP */ time_t if_epoch; /* uptime at attach or stat reset */ struct timeval if_lastchange; /* time of last administrative change */ struct task if_linktask; /* task for link change events */ /* Addresses of different protocol families assigned to this if. */ /* * if_addrhead is the list of all addresses associated to * an interface. * Some code in the kernel assumes that first element * of the list has type AF_LINK, and contains sockaddr_dl * addresses which store the link-level address and the name * of the interface. * However, access to the AF_LINK address through this * field is deprecated. Use if_addr or ifaddr_byindex() instead. */ struct ifaddrhead if_addrhead; /* linked list of addresses per if */ struct ifmultihead if_multiaddrs; /* multicast addresses configured */ int if_amcount; /* number of all-multicast requests */ struct ifaddr *if_addr; /* pointer to link-level address */ const u_int8_t *if_broadcastaddr; /* linklevel broadcast bytestring */ struct rwlock if_afdata_lock; void *if_afdata[AF_MAX]; int if_afdata_initialized; /* Additional features hung off the interface. */ struct ifqueue *if_snd; /* software send queue */ struct vnet *if_vnet; /* pointer to network stack instance */ struct vnet *if_home_vnet; /* where this ifnet originates from */ struct ifvlantrunk *if_vlantrunk; /* pointer to 802.1q data */ struct bpf_if *if_bpf; /* packet filter structure */ int if_pcount; /* number of promiscuous listeners */ void *if_bridge; /* bridge glue */ void *if_lagg; /* lagg glue */ void *if_pf_kif; /* pf glue */ - struct carp_if *if_carp; /* carp interface structure */ struct label *if_label; /* interface MAC label */ struct netmap_adapter *if_netmap; /* netmap(4) softc */ counter_u64_t if_counters[IFCOUNTERS]; /* Statistics */ /* * Spare fields to be added before branching a stable branch, so * that structure can be enhanced without changing the kernel * binary interface. */ }; /* * Modyfing interface requires synchronisation. */ #define IF_WLOCK(ifp) rw_wlock(&(ifp)->if_lock) #define IF_WUNLOCK(if) rw_wunlock(&(ifp)->if_lock) #define IF_RLOCK(ifp) rw_rlock(&(ifp)->if_lock) #define IF_RUNLOCK(ifp) rw_runlock(&(ifp)->if_lock) #define IF_LOCK_ASSERT(ifp) rw_assert(&(ifp)->if_lock, RA_LOCKED) #define IF_WLOCK_ASSERT(ifp) rw_assert(&(ifp)->if_lock, RA_WLOCKED) /* * Originally only address lists were locked, so we keep these macros * for compatibility, until they are cleaned up from kernel. */ #define IF_ADDR_WLOCK(ifp) IF_WLOCK(ifp) #define IF_ADDR_WUNLOCK(ifp) IF_WUNLOCK(ifp) #define IF_ADDR_RLOCK(ifp) IF_RLOCK(ifp) #define IF_ADDR_RUNLOCK(ifp) IF_RUNLOCK(ifp) #define IF_ADDR_LOCK_ASSERT(ifp) IF_LOCK_ASSERT(ifp) #define IF_ADDR_WLOCK_ASSERT(ifp) IF_WLOCK_ASSERT(ifp) #ifdef _KERNEL #ifdef _SYS_EVENTHANDLER_H_ /* interface link layer address change event */ typedef void (*iflladdr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(iflladdr_event, iflladdr_event_handler_t); /* interface address change event */ typedef void (*ifaddr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifaddr_event, ifaddr_event_handler_t); /* new interface arrival event */ typedef void (*ifnet_arrival_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_arrival_event, ifnet_arrival_event_handler_t); /* interface departure event */ typedef void (*ifnet_departure_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_departure_event, ifnet_departure_event_handler_t); /* Interface link state change event */ typedef void (*ifnet_link_event_handler_t)(void *, struct ifnet *, int); EVENTHANDLER_DECLARE(ifnet_link_event, ifnet_link_event_handler_t); #endif /* _SYS_EVENTHANDLER_H_ */ /* * interface groups */ struct ifg_group { char ifg_group[IFNAMSIZ]; u_int ifg_refcnt; void *ifg_pf_kif; TAILQ_HEAD(, ifg_member) ifg_members; TAILQ_ENTRY(ifg_group) ifg_next; }; struct ifg_member { TAILQ_ENTRY(ifg_member) ifgm_next; struct ifnet *ifgm_ifp; }; struct ifg_list { struct ifg_group *ifgl_group; TAILQ_ENTRY(ifg_list) ifgl_next; }; #ifdef _SYS_EVENTHANDLER_H_ /* group attach event */ typedef void (*group_attach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_attach_event, group_attach_event_handler_t); /* group detach event */ typedef void (*group_detach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_detach_event, group_detach_event_handler_t); /* group change event */ typedef void (*group_change_event_handler_t)(void *, const char *); EVENTHANDLER_DECLARE(group_change_event, group_change_event_handler_t); #endif /* _SYS_EVENTHANDLER_H_ */ #define IF_AFDATA_LOCK_INIT(ifp) \ rw_init(&(ifp)->if_afdata_lock, "if_afdata") #define IF_AFDATA_WLOCK(ifp) rw_wlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RLOCK(ifp) rw_rlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_WUNLOCK(ifp) rw_wunlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RUNLOCK(ifp) rw_runlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_LOCK(ifp) IF_AFDATA_WLOCK(ifp) #define IF_AFDATA_UNLOCK(ifp) IF_AFDATA_WUNLOCK(ifp) #define IF_AFDATA_TRYLOCK(ifp) rw_try_wlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_DESTROY(ifp) rw_destroy(&(ifp)->if_afdata_lock) #define IF_AFDATA_LOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_LOCKED) #define IF_AFDATA_RLOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_RLOCKED) #define IF_AFDATA_WLOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_WLOCKED) #define IF_AFDATA_UNLOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_UNLOCKED) /* * 72 was chosen below because it is the size of a TCP/IP * header (40) + the minimum mss (32). */ #define IF_MINMTU 72 #define IF_MAXMTU 65535 #define TOEDEV(ifp) ((ifp)->if_llsoftc) /* * The ifaddr structure contains information about one address * of an interface. They are maintained by the different address families, * are allocated and attached when an address is set, and are linked * together so all addresses for an interface can be located. * * NOTE: a 'struct ifaddr' is always at the beginning of a larger * chunk of malloc'ed memory, where we store the three addresses * (ifa_addr, ifa_dstaddr and ifa_netmask) referenced here. */ struct ifaddr { struct sockaddr *ifa_addr; /* address of interface */ struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */ #define ifa_broadaddr ifa_dstaddr /* broadcast address interface */ struct sockaddr *ifa_netmask; /* used to determine subnet */ struct ifnet *ifa_ifp; /* back-pointer to interface */ struct carp_softc *ifa_carp; /* pointer to CARP data */ TAILQ_ENTRY(ifaddr) ifa_link; /* queue macro glue */ void (*ifa_rtrequest) /* check or clean routes (+ or -)'d */ (int, struct rtentry *, struct rt_addrinfo *); u_short ifa_flags; /* mostly rt_flags for cloning */ #define IFA_ROUTE RTF_UP /* route installed */ #define IFA_RTSELF RTF_HOST /* loopback route to self installed */ u_int ifa_refcnt; /* references to this structure */ counter_u64_t ifa_ipackets; counter_u64_t ifa_opackets; counter_u64_t ifa_ibytes; counter_u64_t ifa_obytes; }; /* For compatibility with other BSDs. SCTP uses it. */ #define ifa_list ifa_link struct ifaddr * ifa_alloc(size_t size, int flags); void ifa_free(struct ifaddr *ifa); void ifa_ref(struct ifaddr *ifa); /* * Multicast address structure. This is analogous to the ifaddr * structure except that it keeps track of multicast addresses. */ struct ifmultiaddr { TAILQ_ENTRY(ifmultiaddr) ifma_link; /* queue macro glue */ struct sockaddr *ifma_addr; /* address this membership is for */ struct sockaddr *ifma_lladdr; /* link-layer translation, if any */ struct ifnet *ifma_ifp; /* back-pointer to interface */ u_int ifma_refcount; /* reference count */ void *ifma_protospec; /* protocol-specific state, if any */ struct ifmultiaddr *ifma_llifma; /* pointer to ifma for ifma_lladdr */ }; extern struct rwlock ifnet_rwlock; extern struct sx ifnet_sxlock; #define IFNET_WLOCK() do { \ sx_xlock(&ifnet_sxlock); \ rw_wlock(&ifnet_rwlock); \ } while (0) #define IFNET_WUNLOCK() do { \ rw_wunlock(&ifnet_rwlock); \ sx_xunlock(&ifnet_sxlock); \ } while (0) /* * To assert the ifnet lock, you must know not only whether it's for read or * write, but also whether it was acquired with sleep support or not. */ #define IFNET_RLOCK_ASSERT() sx_assert(&ifnet_sxlock, SA_SLOCKED) #define IFNET_RLOCK_NOSLEEP_ASSERT() rw_assert(&ifnet_rwlock, RA_RLOCKED) #define IFNET_WLOCK_ASSERT() do { \ sx_assert(&ifnet_sxlock, SA_XLOCKED); \ rw_assert(&ifnet_rwlock, RA_WLOCKED); \ } while (0) #define IFNET_RLOCK() sx_slock(&ifnet_sxlock) #define IFNET_RLOCK_NOSLEEP() rw_rlock(&ifnet_rwlock) #define IFNET_RUNLOCK() sx_sunlock(&ifnet_sxlock) #define IFNET_RUNLOCK_NOSLEEP() rw_runlock(&ifnet_rwlock) /* * Look up an ifnet given its index; the _ref variant also acquires a * reference that must be freed using if_rele(). It is almost always a bug * to call ifnet_byindex() instead if ifnet_byindex_ref(). */ struct ifnet *ifnet_byindex(u_short idx); struct ifnet *ifnet_byindex_locked(u_short idx); struct ifnet *ifnet_byindex_ref(u_short idx); /* * Given the index, ifaddr_byindex() returns the one and only * link-level ifaddr for the interface. You are not supposed to use * it to traverse the list of addresses associated to the interface. */ struct ifaddr *ifaddr_byindex(u_short idx); VNET_DECLARE(struct ifnethead, ifnet); VNET_DECLARE(struct ifgrouphead, ifg_head); VNET_DECLARE(int, if_index); VNET_DECLARE(struct ifnet *, loif); /* first loopback interface */ #define V_ifnet VNET(ifnet) #define V_ifg_head VNET(ifg_head) #define V_if_index VNET(if_index) #define V_loif VNET(loif) int if_addgroup(struct ifnet *, const char *); int if_delgroup(struct ifnet *, const char *); int if_addmulti(struct ifnet *, struct sockaddr *, struct ifmultiaddr **); int if_allmulti(struct ifnet *, int); int if_delmulti(struct ifnet *, struct sockaddr *); void if_delmulti_ifma(struct ifmultiaddr *); void if_vmove(struct ifnet *, struct vnet *); void if_purgeaddrs(struct ifnet *); void if_delallmulti(struct ifnet *); void if_down(struct ifnet *); struct ifmultiaddr * if_findmulti(struct ifnet *, struct sockaddr *); void if_ref(struct ifnet *); void if_rele(struct ifnet *); int if_setlladdr(struct ifnet *, const u_char *, int); void if_up(struct ifnet *); int ifioctl(struct socket *, u_long, caddr_t, struct thread *); int ifpromisc(struct ifnet *, int); struct ifnet *ifunit(const char *); struct ifnet *ifunit_ref(const char *); uint8_t if_addrlen(const if_t); void iftype_register(struct iftype *); void iftype_unregister(struct iftype *); int ifa_add_loopback_route(struct ifaddr *, struct sockaddr *); int ifa_del_loopback_route(struct ifaddr *, struct sockaddr *); int ifa_switch_loopback_route(struct ifaddr *, struct sockaddr *, int fib); struct ifaddr *ifa_ifwithaddr(struct sockaddr *); int ifa_ifwithaddr_check(struct sockaddr *); struct ifaddr *ifa_ifwithbroadaddr(struct sockaddr *, int); struct ifaddr *ifa_ifwithdstaddr(struct sockaddr *, int); struct ifaddr *ifa_ifwithnet(struct sockaddr *, int, int); struct ifaddr *ifa_ifwithroute(int, struct sockaddr *, struct sockaddr *, u_int); struct ifaddr *ifaof_ifpforaddr(struct sockaddr *, struct ifnet *); int ifa_preferred(struct ifaddr *, struct ifaddr *); int if_simloop(struct ifnet *ifp, struct mbuf *m, int af, int hlen); void if_data_copy(struct ifnet *, struct if_data *); int if_getmtu_family(if_t ifp, int family); int if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max); int if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max); int if_multiaddr_count(if_t ifp, int max); /* TSO */ void if_tsomax_common(const struct iftsomax *, struct iftsomax *); int if_tsomax_update(if_t ifp, const struct iftsomax *); #ifdef DEVICE_POLLING void if_poll_register(struct ifnet *ifp); void if_poll_deregister(struct ifnet *ifp); #endif /* * Wrappers around ifops. Some ops are optional and can be NULL, * others are mandatory. Those wrappers that driver can invoke * theirselves are not inlined, but implemented in if.c. */ #undef if_input static inline void if_input(if_t ifp, struct mbuf *m) { return (ifp->if_ops->ifop_input(ifp, m)); } #undef if_transmit static inline int if_transmit(if_t ifp, struct mbuf *m) { return (ifp->if_ops->ifop_transmit(ifp, m)); } static inline void if_qflush(if_t ifp) { if (ifp->if_ops->ifop_qflush != NULL) ifp->if_ops->ifop_qflush(ifp); } static inline int if_output(if_t ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { return (ifp->if_ops->ifop_output(ifp, m, dst, ro)); } static inline int if_ioctl(if_t ifp, u_long cmd, void *data, struct thread *td) { int error = EOPNOTSUPP; if (ifp->if_ops->ifop_ioctl != NULL) error = ifp->if_ops->ifop_ioctl(ifp, cmd, data, td); if (error == EOPNOTSUPP && ifp->if_type != NULL && ifp->if_type->ift_ops.ifop_ioctl != NULL) error = ifp->if_type->ift_ops.ifop_ioctl(ifp, cmd, data, td); return (error); } static inline uint64_t if_get_counter(const if_t ifp, ift_counter cnt) { return (ifp->if_ops->ifop_get_counter(ifp, cnt)); } static inline int if_resolvemulti(if_t ifp, struct sockaddr **llsa, struct sockaddr *sa) { if (ifp->if_ops->ifop_resolvemulti != NULL) return (ifp->if_ops->ifop_resolvemulti(ifp, llsa, sa)); else return (EOPNOTSUPP); } static inline void if_reassign(if_t ifp, struct vnet *new) { return (ifp->if_ops->ifop_reassign(ifp, new)); } #ifdef DEVICE_POLLING static inline int if_poll(if_t ifp, enum poll_cmd cmd, int count) { return (ifp->if_ops->ifop_poll(ifp, cmd, count)); } #endif /* * Inliners to shorten code, and make protocols more ifnet-agnostic. */ static inline ifType if_type(const if_t ifp) { return (ifp->if_drv->ifdrv_type); } #endif /* _KERNEL */ #endif /* !_NET_IF_VAR_H_ */ Index: projects/ifnet/sys/netinet/ip_carp.c =================================================================== --- projects/ifnet/sys/netinet/ip_carp.c (revision 281154) +++ projects/ifnet/sys/netinet/ip_carp.c (revision 281155) @@ -1,2189 +1,2200 @@ /*- * Copyright (c) 2002 Michael Shalayeff. * Copyright (c) 2003 Ryan McBride. * Copyright (c) 2011 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bpf.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #include #include #include #endif #include static MALLOC_DEFINE(M_CARP, "CARP", "CARP addresses"); struct carp_softc { struct ifnet *sc_carpdev; /* Pointer to parent ifnet. */ struct ifaddr **sc_ifas; /* Our ifaddrs. */ struct sockaddr_dl sc_addr; /* Our link level address. */ struct callout sc_ad_tmo; /* Advertising timeout. */ #ifdef INET struct callout sc_md_tmo; /* Master down timeout. */ #endif #ifdef INET6 struct callout sc_md6_tmo; /* XXX: Master down timeout. */ #endif struct mtx sc_mtx; int sc_vhid; int sc_advskew; int sc_advbase; int sc_naddrs; int sc_naddrs6; int sc_ifasiz; enum { INIT = 0, BACKUP, MASTER } sc_state; int sc_suppress; int sc_sendad_errors; #define CARP_SENDAD_MAX_ERRORS 3 int sc_sendad_success; #define CARP_SENDAD_MIN_SUCCESS 3 int sc_init_counter; uint64_t sc_counter; /* authentication */ #define CARP_HMAC_PAD 64 unsigned char sc_key[CARP_KEY_LEN]; unsigned char sc_pad[CARP_HMAC_PAD]; SHA1_CTX sc_sha1; TAILQ_ENTRY(carp_softc) sc_list; /* On the carp_if list. */ LIST_ENTRY(carp_softc) sc_next; /* On the global list. */ }; struct carp_if { #ifdef INET int cif_naddrs; #endif #ifdef INET6 int cif_naddrs6; #endif TAILQ_HEAD(, carp_softc) cif_vrs; #ifdef INET struct ip_moptions cif_imo; #endif #ifdef INET6 struct ip6_moptions cif_im6o; #endif struct ifnet *cif_ifp; struct mtx cif_mtx; uint32_t cif_flags; #define CIF_PROMISC 0x00000001 }; #define CARP_INET 0 #define CARP_INET6 1 static int proto_reg[] = {-1, -1}; /* * Brief design of carp(4). * * Any carp-capable ifnet may have a list of carp softcs hanging off - * its ifp->if_carp pointer. Each softc represents one unique virtual + * its IF_CARP softc pointer. Each softc represents one unique virtual * host id, or vhid. The softc has a back pointer to the ifnet. All * softcs are joined in a global list, which has quite limited use. * * Any interface address that takes part in CARP negotiation has a * pointer to the softc of its vhid, ifa->ifa_carp. That could be either * AF_INET or AF_INET6 address. * * Although, one can get the softc's backpointer to ifnet and traverse * through its ifp->if_addrhead queue to find all interface addresses * involved in CARP, we keep a growable array of ifaddr pointers. This * allows us to avoid grabbing the IF_ADDR_LOCK() in many traversals that * do calls into the network stack, thus avoiding LORs. * * Locking: * * Each softc has a lock sc_mtx. It is used to synchronise carp_input_c(), * callout-driven events and ioctl()s. * * To traverse the list of softcs on an ifnet we use CIF_LOCK(), to * traverse the global list we use the mutex carp_mtx. * * Known issues with locking: * * - Sending ad, we put the pointer to the softc in an mtag, and no reference * counting is done on the softc. * - On module unload we may race (?) with packet processing thread * dereferencing our function pointers. */ /* Accept incoming CARP packets. */ static VNET_DEFINE(int, carp_allow) = 1; #define V_carp_allow VNET(carp_allow) /* Preempt slower nodes. */ static VNET_DEFINE(int, carp_preempt) = 0; #define V_carp_preempt VNET(carp_preempt) /* Log level. */ static VNET_DEFINE(int, carp_log) = 1; #define V_carp_log VNET(carp_log) /* Global advskew demotion. */ static VNET_DEFINE(int, carp_demotion) = 0; #define V_carp_demotion VNET(carp_demotion) /* Send error demotion factor. */ static VNET_DEFINE(int, carp_senderr_adj) = CARP_MAXSKEW; #define V_carp_senderr_adj VNET(carp_senderr_adj) /* Iface down demotion factor. */ static VNET_DEFINE(int, carp_ifdown_adj) = CARP_MAXSKEW; #define V_carp_ifdown_adj VNET(carp_ifdown_adj) static int carp_demote_adj_sysctl(SYSCTL_HANDLER_ARGS); SYSCTL_NODE(_net_inet, IPPROTO_CARP, carp, CTLFLAG_RW, 0, "CARP"); SYSCTL_INT(_net_inet_carp, OID_AUTO, allow, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_allow), 0, "Accept incoming CARP packets"); SYSCTL_INT(_net_inet_carp, OID_AUTO, preempt, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_preempt), 0, "High-priority backup preemption mode"); SYSCTL_INT(_net_inet_carp, OID_AUTO, log, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_log), 0, "CARP log level"); SYSCTL_PROC(_net_inet_carp, OID_AUTO, demotion, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 0, 0, carp_demote_adj_sysctl, "I", "Adjust demotion factor (skew of advskew)"); SYSCTL_INT(_net_inet_carp, OID_AUTO, senderr_demotion_factor, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_senderr_adj), 0, "Send error demotion factor adjustment"); SYSCTL_INT(_net_inet_carp, OID_AUTO, ifdown_demotion_factor, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(carp_ifdown_adj), 0, "Interface down demotion factor adjustment"); VNET_PCPUSTAT_DEFINE(struct carpstats, carpstats); VNET_PCPUSTAT_SYSINIT(carpstats); VNET_PCPUSTAT_SYSUNINIT(carpstats); #define CARPSTATS_ADD(name, val) \ counter_u64_add(VNET(carpstats)[offsetof(struct carpstats, name) / \ sizeof(uint64_t)], (val)) #define CARPSTATS_INC(name) CARPSTATS_ADD(name, 1) SYSCTL_VNET_PCPUSTAT(_net_inet_carp, OID_AUTO, stats, struct carpstats, carpstats, "CARP statistics (struct carpstats, netinet/ip_carp.h)"); #define CARP_LOCK_INIT(sc) mtx_init(&(sc)->sc_mtx, "carp_softc", \ NULL, MTX_DEF) #define CARP_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) #define CARP_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) #define CARP_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define CARP_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define CIF_LOCK_INIT(cif) mtx_init(&(cif)->cif_mtx, "carp_if", \ NULL, MTX_DEF) #define CIF_LOCK_DESTROY(cif) mtx_destroy(&(cif)->cif_mtx) #define CIF_LOCK_ASSERT(cif) mtx_assert(&(cif)->cif_mtx, MA_OWNED) #define CIF_LOCK(cif) mtx_lock(&(cif)->cif_mtx) #define CIF_UNLOCK(cif) mtx_unlock(&(cif)->cif_mtx) #define CIF_FREE(cif) do { \ CIF_LOCK_ASSERT(cif); \ if (TAILQ_EMPTY(&(cif)->cif_vrs)) \ carp_free_if(cif); \ else \ CIF_UNLOCK(cif); \ } while (0) #define CARP_LOG(...) do { \ if (V_carp_log > 0) \ log(LOG_INFO, "carp: " __VA_ARGS__); \ } while (0) #define CARP_DEBUG(...) do { \ if (V_carp_log > 1) \ log(LOG_DEBUG, __VA_ARGS__); \ } while (0) #define IFNET_FOREACH_IFA(ifp, ifa) \ IF_ADDR_LOCK_ASSERT(ifp); \ TAILQ_FOREACH((ifa), &(ifp)->if_addrhead, ifa_link) \ if ((ifa)->ifa_carp != NULL) #define CARP_FOREACH_IFA(sc, ifa) \ CARP_LOCK_ASSERT(sc); \ for (int _i = 0; \ _i < (sc)->sc_naddrs + (sc)->sc_naddrs6 && \ ((ifa) = sc->sc_ifas[_i]) != NULL; \ ++_i) -#define IFNET_FOREACH_CARP(ifp, sc) \ - CIF_LOCK_ASSERT(ifp->if_carp); \ - TAILQ_FOREACH((sc), &(ifp)->if_carp->cif_vrs, sc_list) +#define CIF_FOREACH_CARP(cif, sc) \ + CIF_LOCK_ASSERT(cif); \ + TAILQ_FOREACH((sc), &(cif)->cif_vrs, sc_list) #define DEMOTE_ADVSKEW(sc) \ (((sc)->sc_advskew + V_carp_demotion > CARP_MAXSKEW) ? \ CARP_MAXSKEW : ((sc)->sc_advskew + V_carp_demotion)) static void carp_input_c(struct mbuf *, struct carp_header *, sa_family_t); static struct carp_softc *carp_alloc(struct ifnet *); static void carp_detach_locked(struct ifaddr *); static void carp_destroy(struct carp_softc *); static struct carp_if *carp_alloc_if(struct ifnet *); static void carp_free_if(struct carp_if *); static void carp_set_state(struct carp_softc *, int, const char* reason); static void carp_sc_state(struct carp_softc *); static void carp_setrun(struct carp_softc *, sa_family_t); static void carp_master_down(void *); static void carp_master_down_locked(struct carp_softc *, const char* reason); static void carp_send_ad(void *); static void carp_send_ad_locked(struct carp_softc *); static void carp_addroute(struct carp_softc *); static void carp_ifa_addroute(struct ifaddr *); static void carp_delroute(struct carp_softc *); static void carp_ifa_delroute(struct ifaddr *); static void carp_send_ad_all(void *, int); static void carp_demote_adj(int, char *); static LIST_HEAD(, carp_softc) carp_list; static struct mtx carp_mtx; static struct sx carp_sx; static struct task carp_sendall_task = TASK_INITIALIZER(0, carp_send_ad_all, NULL); static void carp_hmac_prepare(struct carp_softc *sc) { uint8_t version = CARP_VERSION, type = CARP_ADVERTISEMENT; uint8_t vhid = sc->sc_vhid & 0xff; struct ifaddr *ifa; int i, found; #ifdef INET struct in_addr last, cur, in; #endif #ifdef INET6 struct in6_addr last6, cur6, in6; #endif CARP_LOCK_ASSERT(sc); /* Compute ipad from key. */ bzero(sc->sc_pad, sizeof(sc->sc_pad)); bcopy(sc->sc_key, sc->sc_pad, sizeof(sc->sc_key)); for (i = 0; i < sizeof(sc->sc_pad); i++) sc->sc_pad[i] ^= 0x36; /* Precompute first part of inner hash. */ SHA1Init(&sc->sc_sha1); SHA1Update(&sc->sc_sha1, sc->sc_pad, sizeof(sc->sc_pad)); SHA1Update(&sc->sc_sha1, (void *)&version, sizeof(version)); SHA1Update(&sc->sc_sha1, (void *)&type, sizeof(type)); SHA1Update(&sc->sc_sha1, (void *)&vhid, sizeof(vhid)); #ifdef INET cur.s_addr = 0; do { found = 0; last = cur; cur.s_addr = 0xffffffff; CARP_FOREACH_IFA(sc, ifa) { in.s_addr = ifatoia(ifa)->ia_addr.sin_addr.s_addr; if (ifa->ifa_addr->sa_family == AF_INET && ntohl(in.s_addr) > ntohl(last.s_addr) && ntohl(in.s_addr) < ntohl(cur.s_addr)) { cur.s_addr = in.s_addr; found++; } } if (found) SHA1Update(&sc->sc_sha1, (void *)&cur, sizeof(cur)); } while (found); #endif /* INET */ #ifdef INET6 memset(&cur6, 0, sizeof(cur6)); do { found = 0; last6 = cur6; memset(&cur6, 0xff, sizeof(cur6)); CARP_FOREACH_IFA(sc, ifa) { in6 = ifatoia6(ifa)->ia_addr.sin6_addr; if (IN6_IS_SCOPE_EMBED(&in6)) in6.s6_addr16[1] = 0; if (ifa->ifa_addr->sa_family == AF_INET6 && memcmp(&in6, &last6, sizeof(in6)) > 0 && memcmp(&in6, &cur6, sizeof(in6)) < 0) { cur6 = in6; found++; } } if (found) SHA1Update(&sc->sc_sha1, (void *)&cur6, sizeof(cur6)); } while (found); #endif /* INET6 */ /* convert ipad to opad */ for (i = 0; i < sizeof(sc->sc_pad); i++) sc->sc_pad[i] ^= 0x36 ^ 0x5c; } static void carp_hmac_generate(struct carp_softc *sc, uint32_t counter[2], unsigned char md[20]) { SHA1_CTX sha1ctx; CARP_LOCK_ASSERT(sc); /* fetch first half of inner hash */ bcopy(&sc->sc_sha1, &sha1ctx, sizeof(sha1ctx)); SHA1Update(&sha1ctx, (void *)counter, sizeof(sc->sc_counter)); SHA1Final(md, &sha1ctx); /* outer hash */ SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, sc->sc_pad, sizeof(sc->sc_pad)); SHA1Update(&sha1ctx, md, 20); SHA1Final(md, &sha1ctx); } static int carp_hmac_verify(struct carp_softc *sc, uint32_t counter[2], unsigned char md[20]) { unsigned char md2[20]; CARP_LOCK_ASSERT(sc); carp_hmac_generate(sc, counter, md2); return (bcmp(md, md2, sizeof(md2))); } /* * process input packet. * we have rearranged checks order compared to the rfc, * but it seems more efficient this way or not possible otherwise. */ #ifdef INET int carp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct carp_header *ch; int iplen, len; iplen = *offp; *mp = NULL; CARPSTATS_INC(carps_ipackets); if (!V_carp_allow) { m_freem(m); return (IPPROTO_DONE); } /* verify that the IP TTL is 255. */ if (ip->ip_ttl != CARP_DFLTTL) { CARPSTATS_INC(carps_badttl); CARP_DEBUG("%s: received ttl %d != 255 on %s\n", __func__, ip->ip_ttl, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } iplen = ip->ip_hl << 2; if (m->m_pkthdr.len < iplen + sizeof(*ch)) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: received len %zd < sizeof(struct carp_header) " "on %s\n", __func__, m->m_len - sizeof(struct ip), m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } if (iplen + sizeof(*ch) < m->m_len) { if ((m = m_pullup(m, iplen + sizeof(*ch))) == NULL) { CARPSTATS_INC(carps_hdrops); CARP_DEBUG("%s: pullup failed\n", __func__); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); } ch = (struct carp_header *)((char *)ip + iplen); /* * verify that the received packet length is * equal to the CARP header */ len = iplen + sizeof(*ch); if (len > m->m_pkthdr.len) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: packet too short %d on %s\n", __func__, m->m_pkthdr.len, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } if ((m = m_pullup(m, len)) == NULL) { CARPSTATS_INC(carps_hdrops); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); ch = (struct carp_header *)((char *)ip + iplen); /* verify the CARP checksum */ m->m_data += iplen; if (in_cksum(m, len - iplen)) { CARPSTATS_INC(carps_badsum); CARP_DEBUG("%s: checksum failed on %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } m->m_data -= iplen; carp_input_c(m, ch, AF_INET); return (IPPROTO_DONE); } #endif #ifdef INET6 int carp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct carp_header *ch; u_int len; CARPSTATS_INC(carps_ipackets6); if (!V_carp_allow) { m_freem(m); return (IPPROTO_DONE); } /* check if received on a valid carp interface */ - if (m->m_pkthdr.rcvif->if_carp == NULL) { + if (if_getsoftc(m->m_pkthdr.rcvif, IF_CARP) == NULL) { CARPSTATS_INC(carps_badif); CARP_DEBUG("%s: packet received on non-carp interface: %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } /* verify that the IP TTL is 255 */ if (ip6->ip6_hlim != CARP_DFLTTL) { CARPSTATS_INC(carps_badttl); CARP_DEBUG("%s: received ttl %d != 255 on %s\n", __func__, ip6->ip6_hlim, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } /* verify that we have a complete carp packet */ len = m->m_len; IP6_EXTHDR_GET(ch, struct carp_header *, m, *offp, sizeof(*ch)); if (ch == NULL) { CARPSTATS_INC(carps_badlen); CARP_DEBUG("%s: packet size %u too small\n", __func__, len); return (IPPROTO_DONE); } /* verify the CARP checksum */ m->m_data += *offp; if (in_cksum(m, sizeof(*ch))) { CARPSTATS_INC(carps_badsum); CARP_DEBUG("%s: checksum failed, on %s\n", __func__, m->m_pkthdr.rcvif->if_xname); m_freem(m); return (IPPROTO_DONE); } m->m_data -= *offp; carp_input_c(m, ch, AF_INET6); return (IPPROTO_DONE); } #endif /* INET6 */ static void carp_input_c(struct mbuf *m, struct carp_header *ch, sa_family_t af) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ifaddr *ifa; struct carp_softc *sc; uint64_t tmp_counter; struct timeval sc_tv, ch_tv; /* verify that the VHID is valid on the receiving interface */ IF_ADDR_RLOCK(ifp); IFNET_FOREACH_IFA(ifp, ifa) if (ifa->ifa_addr->sa_family == af && ifa->ifa_carp->sc_vhid == ch->carp_vhid) { ifa_ref(ifa); break; } IF_ADDR_RUNLOCK(ifp); if (ifa == NULL) { CARPSTATS_INC(carps_badvhid); m_freem(m); return; } /* verify the CARP version. */ if (ch->carp_version != CARP_VERSION) { CARPSTATS_INC(carps_badver); CARP_DEBUG("%s: invalid version %d\n", ifp->if_xname, ch->carp_version); ifa_free(ifa); m_freem(m); return; } sc = ifa->ifa_carp; CARP_LOCK(sc); ifa_free(ifa); if (carp_hmac_verify(sc, ch->carp_counter, ch->carp_md)) { CARPSTATS_INC(carps_badauth); CARP_DEBUG("%s: incorrect hash for VHID %u@%s\n", __func__, sc->sc_vhid, ifp->if_xname); goto out; } tmp_counter = ntohl(ch->carp_counter[0]); tmp_counter = tmp_counter<<32; tmp_counter += ntohl(ch->carp_counter[1]); /* XXX Replay protection goes here */ sc->sc_init_counter = 0; sc->sc_counter = tmp_counter; sc_tv.tv_sec = sc->sc_advbase; sc_tv.tv_usec = DEMOTE_ADVSKEW(sc) * 1000000 / 256; ch_tv.tv_sec = ch->carp_advbase; ch_tv.tv_usec = ch->carp_advskew * 1000000 / 256; switch (sc->sc_state) { case INIT: break; case MASTER: /* * If we receive an advertisement from a master who's going to * be more frequent than us, go into BACKUP state. */ if (timevalcmp(&sc_tv, &ch_tv, >) || timevalcmp(&sc_tv, &ch_tv, ==)) { callout_stop(&sc->sc_ad_tmo); carp_set_state(sc, BACKUP, "more frequent advertisement received"); carp_setrun(sc, 0); carp_delroute(sc); } break; case BACKUP: /* * If we're pre-empting masters who advertise slower than us, * and this one claims to be slower, treat him as down. */ if (V_carp_preempt && timevalcmp(&sc_tv, &ch_tv, <)) { carp_master_down_locked(sc, "preempting a slower master"); break; } /* * If the master is going to advertise at such a low frequency * that he's guaranteed to time out, we'd might as well just * treat him as timed out now. */ sc_tv.tv_sec = sc->sc_advbase * 3; if (timevalcmp(&sc_tv, &ch_tv, <)) { carp_master_down_locked(sc, "master will time out"); break; } /* * Otherwise, we reset the counter and wait for the next * advertisement. */ carp_setrun(sc, af); break; } out: CARP_UNLOCK(sc); m_freem(m); } static int carp_prepare_ad(struct mbuf *m, struct carp_softc *sc, struct carp_header *ch) { struct m_tag *mtag; if (sc->sc_init_counter) { /* this could also be seconds since unix epoch */ sc->sc_counter = arc4random(); sc->sc_counter = sc->sc_counter << 32; sc->sc_counter += arc4random(); } else sc->sc_counter++; ch->carp_counter[0] = htonl((sc->sc_counter>>32)&0xffffffff); ch->carp_counter[1] = htonl(sc->sc_counter&0xffffffff); carp_hmac_generate(sc, ch->carp_counter, ch->carp_md); /* Tag packet for carp_output */ if ((mtag = m_tag_get(PACKET_TAG_CARP, sizeof(struct carp_softc *), M_NOWAIT)) == NULL) { m_freem(m); CARPSTATS_INC(carps_onomem); return (ENOMEM); } bcopy(&sc, mtag + 1, sizeof(sc)); m_tag_prepend(m, mtag); return (0); } /* * To avoid LORs and possible recursions this function shouldn't * be called directly, but scheduled via taskqueue. */ static void carp_send_ad_all(void *ctx __unused, int pending __unused) { struct carp_softc *sc; mtx_lock(&carp_mtx); LIST_FOREACH(sc, &carp_list, sc_next) if (sc->sc_state == MASTER) { CARP_LOCK(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); carp_send_ad_locked(sc); CURVNET_RESTORE(); CARP_UNLOCK(sc); } mtx_unlock(&carp_mtx); } /* Send a periodic advertisement, executed in callout context. */ static void carp_send_ad(void *v) { struct carp_softc *sc = v; CARP_LOCK_ASSERT(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); carp_send_ad_locked(sc); CURVNET_RESTORE(); CARP_UNLOCK(sc); } static void carp_send_ad_error(struct carp_softc *sc, int error) { if (error) { if (sc->sc_sendad_errors < INT_MAX) sc->sc_sendad_errors++; if (sc->sc_sendad_errors == CARP_SENDAD_MAX_ERRORS) { static const char fmt[] = "send error %d on %s"; char msg[sizeof(fmt) + IFNAMSIZ]; sprintf(msg, fmt, error, sc->sc_carpdev->if_xname); carp_demote_adj(V_carp_senderr_adj, msg); } sc->sc_sendad_success = 0; } else { if (sc->sc_sendad_errors >= CARP_SENDAD_MAX_ERRORS && ++sc->sc_sendad_success >= CARP_SENDAD_MIN_SUCCESS) { static const char fmt[] = "send ok on %s"; char msg[sizeof(fmt) + IFNAMSIZ]; sprintf(msg, fmt, sc->sc_carpdev->if_xname); carp_demote_adj(-V_carp_senderr_adj, msg); sc->sc_sendad_errors = 0; } else sc->sc_sendad_errors = 0; } } static void carp_send_ad_locked(struct carp_softc *sc) { struct carp_header ch; struct timeval tv; struct sockaddr sa; struct ifaddr *ifa; + struct carp_if *cif; struct carp_header *ch_ptr; struct mbuf *m; int len, advskew; CARP_LOCK_ASSERT(sc); advskew = DEMOTE_ADVSKEW(sc); tv.tv_sec = sc->sc_advbase; tv.tv_usec = advskew * 1000000 / 256; ch.carp_version = CARP_VERSION; ch.carp_type = CARP_ADVERTISEMENT; ch.carp_vhid = sc->sc_vhid; ch.carp_advbase = sc->sc_advbase; ch.carp_advskew = advskew; ch.carp_authlen = 7; /* XXX DEFINE */ ch.carp_pad1 = 0; /* must be zero */ ch.carp_cksum = 0; + cif = if_getsoftc(sc->sc_carpdev, IF_CARP); + /* XXXGL: OpenBSD picks first ifaddr with needed family. */ #ifdef INET if (sc->sc_naddrs) { struct ip *ip; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { CARPSTATS_INC(carps_onomem); goto resched; } len = sizeof(*ip) + sizeof(ch); m->m_pkthdr.len = len; m->m_pkthdr.rcvif = NULL; m->m_len = len; M_ALIGN(m, m->m_len); m->m_flags |= M_MCAST; ip = mtod(m, struct ip *); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(*ip) >> 2; ip->ip_tos = IPTOS_LOWDELAY; ip->ip_len = htons(len); ip->ip_off = htons(IP_DF); ip->ip_ttl = CARP_DFLTTL; ip->ip_p = IPPROTO_CARP; ip->ip_sum = 0; ip_fillid(ip); bzero(&sa, sizeof(sa)); sa.sa_family = AF_INET; ifa = ifaof_ifpforaddr(&sa, sc->sc_carpdev); if (ifa != NULL) { ip->ip_src.s_addr = ifatoia(ifa)->ia_addr.sin_addr.s_addr; ifa_free(ifa); } else ip->ip_src.s_addr = 0; ip->ip_dst.s_addr = htonl(INADDR_CARP_GROUP); ch_ptr = (struct carp_header *)(&ip[1]); bcopy(&ch, ch_ptr, sizeof(ch)); if (carp_prepare_ad(m, sc, ch_ptr)) goto resched; m->m_data += sizeof(*ip); ch_ptr->carp_cksum = in_cksum(m, len - sizeof(*ip)); m->m_data -= sizeof(*ip); CARPSTATS_INC(carps_opackets); carp_send_ad_error(sc, ip_output(m, NULL, NULL, IP_RAWOUTPUT, - &sc->sc_carpdev->if_carp->cif_imo, NULL)); + &cif->cif_imo, NULL)); } #endif /* INET */ #ifdef INET6 if (sc->sc_naddrs6) { struct ip6_hdr *ip6; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { CARPSTATS_INC(carps_onomem); goto resched; } len = sizeof(*ip6) + sizeof(ch); m->m_pkthdr.len = len; m->m_pkthdr.rcvif = NULL; m->m_len = len; M_ALIGN(m, m->m_len); m->m_flags |= M_MCAST; ip6 = mtod(m, struct ip6_hdr *); bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_hlim = CARP_DFLTTL; ip6->ip6_nxt = IPPROTO_CARP; bzero(&sa, sizeof(sa)); /* set the source address */ sa.sa_family = AF_INET6; ifa = ifaof_ifpforaddr(&sa, sc->sc_carpdev); if (ifa != NULL) { bcopy(IFA_IN6(ifa), &ip6->ip6_src, sizeof(struct in6_addr)); ifa_free(ifa); } else /* This should never happen with IPv6. */ bzero(&ip6->ip6_src, sizeof(struct in6_addr)); /* Set the multicast destination. */ ip6->ip6_dst.s6_addr16[0] = htons(0xff02); ip6->ip6_dst.s6_addr8[15] = 0x12; if (in6_setscope(&ip6->ip6_dst, sc->sc_carpdev, NULL) != 0) { m_freem(m); CARP_DEBUG("%s: in6_setscope failed\n", __func__); goto resched; } ch_ptr = (struct carp_header *)(&ip6[1]); bcopy(&ch, ch_ptr, sizeof(ch)); if (carp_prepare_ad(m, sc, ch_ptr)) goto resched; m->m_data += sizeof(*ip6); ch_ptr->carp_cksum = in_cksum(m, len - sizeof(*ip6)); m->m_data -= sizeof(*ip6); CARPSTATS_INC(carps_opackets6); carp_send_ad_error(sc, ip6_output(m, NULL, NULL, 0, - &sc->sc_carpdev->if_carp->cif_im6o, NULL, NULL)); + &cif->cif_im6o, NULL, NULL)); } #endif /* INET6 */ resched: callout_reset(&sc->sc_ad_tmo, tvtohz(&tv), carp_send_ad, sc); } static void carp_addroute(struct carp_softc *sc) { struct ifaddr *ifa; CARP_FOREACH_IFA(sc, ifa) carp_ifa_addroute(ifa); } static void carp_ifa_addroute(struct ifaddr *ifa) { switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: in_addprefix(ifatoia(ifa), RTF_UP); ifa_add_loopback_route(ifa, (struct sockaddr *)&ifatoia(ifa)->ia_addr); break; #endif #ifdef INET6 case AF_INET6: ifa_add_loopback_route(ifa, (struct sockaddr *)&ifatoia6(ifa)->ia_addr); nd6_add_ifa_lle(ifatoia6(ifa)); break; #endif } } static void carp_delroute(struct carp_softc *sc) { struct ifaddr *ifa; CARP_FOREACH_IFA(sc, ifa) carp_ifa_delroute(ifa); } static void carp_ifa_delroute(struct ifaddr *ifa) { switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifa_del_loopback_route(ifa, (struct sockaddr *)&ifatoia(ifa)->ia_addr); in_scrubprefix(ifatoia(ifa), LLE_STATIC); break; #endif #ifdef INET6 case AF_INET6: ifa_del_loopback_route(ifa, (struct sockaddr *)&ifatoia6(ifa)->ia_addr); nd6_rem_ifa_lle(ifatoia6(ifa)); break; #endif } } int carp_master(struct ifaddr *ifa) { struct carp_softc *sc = ifa->ifa_carp; return (sc->sc_state == MASTER); } #ifdef INET /* * Broadcast a gratuitous ARP request containing * the virtual router MAC address for each IP address * associated with the virtual router. */ static void carp_send_arp(struct carp_softc *sc) { struct ifaddr *ifa; CARP_FOREACH_IFA(sc, ifa) if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit2(sc->sc_carpdev, ifa, LLADDR(&sc->sc_addr)); } int carp_iamatch(struct ifaddr *ifa, uint8_t **enaddr) { struct carp_softc *sc = ifa->ifa_carp; if (sc->sc_state == MASTER) { *enaddr = LLADDR(&sc->sc_addr); return (1); } return (0); } #endif #ifdef INET6 static void carp_send_na(struct carp_softc *sc) { static struct in6_addr mcast = IN6ADDR_LINKLOCAL_ALLNODES_INIT; struct ifaddr *ifa; struct in6_addr *in6; CARP_FOREACH_IFA(sc, ifa) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6 = IFA_IN6(ifa); nd6_na_output(sc->sc_carpdev, &mcast, in6, ND_NA_FLAG_OVERRIDE, 1, NULL); DELAY(1000); /* XXX */ } } /* * Returns ifa in case it's a carp address and it is MASTER, or if the address * matches and is not a carp address. Returns NULL otherwise. */ struct ifaddr * carp_iamatch6(struct ifnet *ifp, struct in6_addr *taddr) { struct ifaddr *ifa; ifa = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (!IN6_ARE_ADDR_EQUAL(taddr, IFA_IN6(ifa))) continue; if (ifa->ifa_carp && ifa->ifa_carp->sc_state != MASTER) ifa = NULL; else ifa_ref(ifa); break; } IF_ADDR_RUNLOCK(ifp); return (ifa); } caddr_t carp_macmatch6(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr) { struct ifaddr *ifa; IF_ADDR_RLOCK(ifp); IFNET_FOREACH_IFA(ifp, ifa) if (ifa->ifa_addr->sa_family == AF_INET6 && IN6_ARE_ADDR_EQUAL(taddr, IFA_IN6(ifa))) { struct carp_softc *sc = ifa->ifa_carp; struct m_tag *mtag; IF_ADDR_RUNLOCK(ifp); mtag = m_tag_get(PACKET_TAG_CARP, sizeof(struct carp_softc *), M_NOWAIT); if (mtag == NULL) /* Better a bit than nothing. */ return (LLADDR(&sc->sc_addr)); bcopy(&sc, mtag + 1, sizeof(sc)); m_tag_prepend(m, mtag); return (LLADDR(&sc->sc_addr)); } IF_ADDR_RUNLOCK(ifp); return (NULL); } #endif /* INET6 */ int carp_forus(struct ifnet *ifp, u_char *dhost) { struct carp_softc *sc; + struct carp_if *cif; uint8_t *ena = dhost; if (ena[0] || ena[1] || ena[2] != 0x5e || ena[3] || ena[4] != 1) return (0); - CIF_LOCK(ifp->if_carp); - IFNET_FOREACH_CARP(ifp, sc) { + cif = if_getsoftc(ifp, IF_CARP); + CIF_LOCK(cif); + CIF_FOREACH_CARP(cif, sc) { CARP_LOCK(sc); if (sc->sc_state == MASTER && !bcmp(dhost, LLADDR(&sc->sc_addr), ETHER_ADDR_LEN)) { CARP_UNLOCK(sc); - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); return (1); } CARP_UNLOCK(sc); } - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); return (0); } /* Master down timeout event, executed in callout context. */ static void carp_master_down(void *v) { struct carp_softc *sc = v; CARP_LOCK_ASSERT(sc); CURVNET_SET(sc->sc_carpdev->if_vnet); if (sc->sc_state == BACKUP) { carp_master_down_locked(sc, "master timed out"); } CURVNET_RESTORE(); CARP_UNLOCK(sc); } static void carp_master_down_locked(struct carp_softc *sc, const char *reason) { CARP_LOCK_ASSERT(sc); switch (sc->sc_state) { case BACKUP: carp_set_state(sc, MASTER, reason); carp_send_ad_locked(sc); #ifdef INET carp_send_arp(sc); #endif #ifdef INET6 carp_send_na(sc); #endif carp_setrun(sc, 0); carp_addroute(sc); break; case INIT: case MASTER: #ifdef INVARIANTS panic("carp: VHID %u@%s: master_down event in %s state\n", sc->sc_vhid, sc->sc_carpdev->if_xname, sc->sc_state ? "MASTER" : "INIT"); #endif break; } } /* * When in backup state, af indicates whether to reset the master down timer * for v4 or v6. If it's set to zero, reset the ones which are already pending. */ static void carp_setrun(struct carp_softc *sc, sa_family_t af) { struct timeval tv; CARP_LOCK_ASSERT(sc); if ((sc->sc_carpdev->if_flags & IFF_UP) == 0 || sc->sc_carpdev->if_link_state != LINK_STATE_UP || (sc->sc_naddrs == 0 && sc->sc_naddrs6 == 0)) return; switch (sc->sc_state) { case INIT: carp_set_state(sc, BACKUP, "initialization complete"); carp_setrun(sc, 0); break; case BACKUP: callout_stop(&sc->sc_ad_tmo); tv.tv_sec = 3 * sc->sc_advbase; tv.tv_usec = sc->sc_advskew * 1000000 / 256; switch (af) { #ifdef INET case AF_INET: callout_reset(&sc->sc_md_tmo, tvtohz(&tv), carp_master_down, sc); break; #endif #ifdef INET6 case AF_INET6: callout_reset(&sc->sc_md6_tmo, tvtohz(&tv), carp_master_down, sc); break; #endif default: #ifdef INET if (sc->sc_naddrs) callout_reset(&sc->sc_md_tmo, tvtohz(&tv), carp_master_down, sc); #endif #ifdef INET6 if (sc->sc_naddrs6) callout_reset(&sc->sc_md6_tmo, tvtohz(&tv), carp_master_down, sc); #endif break; } break; case MASTER: tv.tv_sec = sc->sc_advbase; tv.tv_usec = sc->sc_advskew * 1000000 / 256; callout_reset(&sc->sc_ad_tmo, tvtohz(&tv), carp_send_ad, sc); break; } } /* * Setup multicast structures. */ static int carp_multicast_setup(struct carp_if *cif, sa_family_t sa) { struct ifnet *ifp = cif->cif_ifp; int error = 0; CIF_LOCK_ASSERT(cif); switch (sa) { #ifdef INET case AF_INET: { struct ip_moptions *imo = &cif->cif_imo; struct in_addr addr; if (imo->imo_membership) return (0); imo->imo_membership = (struct in_multi **)malloc( (sizeof(struct in_multi *) * IP_MIN_MEMBERSHIPS), M_CARP, M_NOWAIT); if (imo->imo_membership == NULL) return (ENOMEM); imo->imo_mfilters = NULL; imo->imo_max_memberships = IP_MIN_MEMBERSHIPS; imo->imo_multicast_vif = -1; addr.s_addr = htonl(INADDR_CARP_GROUP); if ((error = in_joingroup(ifp, &addr, NULL, &imo->imo_membership[0])) != 0) { free(imo->imo_membership, M_CARP); break; } imo->imo_num_memberships++; imo->imo_multicast_ifp = ifp; imo->imo_multicast_ttl = CARP_DFLTTL; imo->imo_multicast_loop = 0; break; } #endif #ifdef INET6 case AF_INET6: { struct ip6_moptions *im6o = &cif->cif_im6o; struct in6_addr in6; struct in6_multi *in6m; if (im6o->im6o_membership) return (0); im6o->im6o_membership = (struct in6_multi **)malloc( (sizeof(struct in6_multi *) * IPV6_MIN_MEMBERSHIPS), M_CARP, M_ZERO | M_NOWAIT); if (im6o->im6o_membership == NULL) return (ENOMEM); im6o->im6o_mfilters = NULL; im6o->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS; im6o->im6o_multicast_hlim = CARP_DFLTTL; im6o->im6o_multicast_ifp = ifp; /* Join IPv6 CARP multicast group. */ bzero(&in6, sizeof(in6)); in6.s6_addr16[0] = htons(0xff02); in6.s6_addr8[15] = 0x12; if ((error = in6_setscope(&in6, ifp, NULL)) != 0) { free(im6o->im6o_membership, M_CARP); break; } in6m = NULL; if ((error = in6_mc_join(ifp, &in6, NULL, &in6m, 0)) != 0) { free(im6o->im6o_membership, M_CARP); break; } im6o->im6o_membership[0] = in6m; im6o->im6o_num_memberships++; /* Join solicited multicast address. */ bzero(&in6, sizeof(in6)); in6.s6_addr16[0] = htons(0xff02); in6.s6_addr32[1] = 0; in6.s6_addr32[2] = htonl(1); in6.s6_addr32[3] = 0; in6.s6_addr8[12] = 0xff; if ((error = in6_setscope(&in6, ifp, NULL)) != 0) { in6_mc_leave(im6o->im6o_membership[0], NULL); free(im6o->im6o_membership, M_CARP); break; } in6m = NULL; if ((error = in6_mc_join(ifp, &in6, NULL, &in6m, 0)) != 0) { in6_mc_leave(im6o->im6o_membership[0], NULL); free(im6o->im6o_membership, M_CARP); break; } im6o->im6o_membership[1] = in6m; im6o->im6o_num_memberships++; break; } #endif } return (error); } /* * Free multicast structures. */ static void carp_multicast_cleanup(struct carp_if *cif, sa_family_t sa) { CIF_LOCK_ASSERT(cif); switch (sa) { #ifdef INET case AF_INET: if (cif->cif_naddrs == 0) { struct ip_moptions *imo = &cif->cif_imo; in_leavegroup(imo->imo_membership[0], NULL); KASSERT(imo->imo_mfilters == NULL, ("%s: imo_mfilters != NULL", __func__)); free(imo->imo_membership, M_CARP); imo->imo_membership = NULL; } break; #endif #ifdef INET6 case AF_INET6: if (cif->cif_naddrs6 == 0) { struct ip6_moptions *im6o = &cif->cif_im6o; in6_mc_leave(im6o->im6o_membership[0], NULL); in6_mc_leave(im6o->im6o_membership[1], NULL); KASSERT(im6o->im6o_mfilters == NULL, ("%s: im6o_mfilters != NULL", __func__)); free(im6o->im6o_membership, M_CARP); im6o->im6o_membership = NULL; } break; #endif } } int carp_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa) { struct m_tag *mtag; struct carp_softc *sc; if (!sa) return (0); switch (sa->sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: return (0); } mtag = m_tag_find(m, PACKET_TAG_CARP, NULL); if (mtag == NULL) return (0); bcopy(mtag + 1, &sc, sizeof(sc)); /* Set the source MAC address to the Virtual Router MAC Address. */ - switch (ifp->if_type) { + switch (if_type(ifp)) { case IFT_ETHER: case IFT_BRIDGE: case IFT_L2VLAN: { struct ether_header *eh; eh = mtod(m, struct ether_header *); eh->ether_shost[0] = 0; eh->ether_shost[1] = 0; eh->ether_shost[2] = 0x5e; eh->ether_shost[3] = 0; eh->ether_shost[4] = 1; eh->ether_shost[5] = sc->sc_vhid; } break; case IFT_FDDI: { struct fddi_header *fh; fh = mtod(m, struct fddi_header *); fh->fddi_shost[0] = 0; fh->fddi_shost[1] = 0; fh->fddi_shost[2] = 0x5e; fh->fddi_shost[3] = 0; fh->fddi_shost[4] = 1; fh->fddi_shost[5] = sc->sc_vhid; } break; case IFT_ISO88025: { struct iso88025_header *th; th = mtod(m, struct iso88025_header *); th->iso88025_shost[0] = 3; th->iso88025_shost[1] = 0; th->iso88025_shost[2] = 0x40 >> (sc->sc_vhid - 1); th->iso88025_shost[3] = 0x40000 >> (sc->sc_vhid - 1); th->iso88025_shost[4] = 0; th->iso88025_shost[5] = 0; } break; default: printf("%s: carp is not supported for the %d interface type\n", - ifp->if_xname, ifp->if_type); + ifp->if_xname, if_type(ifp)); return (EOPNOTSUPP); } return (0); } static struct carp_softc* carp_alloc(struct ifnet *ifp) { struct carp_softc *sc; struct carp_if *cif; - if ((cif = ifp->if_carp) == NULL) + cif = if_getsoftc(ifp, IF_CARP); + if (cif == NULL) cif = carp_alloc_if(ifp); sc = malloc(sizeof(*sc), M_CARP, M_WAITOK|M_ZERO); sc->sc_advbase = CARP_DFLTINTV; sc->sc_vhid = -1; /* required setting */ sc->sc_init_counter = 1; sc->sc_state = INIT; sc->sc_ifasiz = sizeof(struct ifaddr *); sc->sc_ifas = malloc(sc->sc_ifasiz, M_CARP, M_WAITOK|M_ZERO); sc->sc_carpdev = ifp; CARP_LOCK_INIT(sc); #ifdef INET callout_init_mtx(&sc->sc_md_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); #endif #ifdef INET6 callout_init_mtx(&sc->sc_md6_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); #endif callout_init_mtx(&sc->sc_ad_tmo, &sc->sc_mtx, CALLOUT_RETURNUNLOCKED); CIF_LOCK(cif); TAILQ_INSERT_TAIL(&cif->cif_vrs, sc, sc_list); CIF_UNLOCK(cif); mtx_lock(&carp_mtx); LIST_INSERT_HEAD(&carp_list, sc, sc_next); mtx_unlock(&carp_mtx); return (sc); } static int carp_grow_ifas(struct carp_softc *sc) { struct ifaddr **new; CARP_LOCK_ASSERT(sc); new = malloc(sc->sc_ifasiz * 2, M_CARP, M_NOWAIT|M_ZERO); if (new == NULL) return (ENOMEM); bcopy(sc->sc_ifas, new, sc->sc_ifasiz); free(sc->sc_ifas, M_CARP); sc->sc_ifas = new; sc->sc_ifasiz *= 2; return (0); } static void carp_destroy(struct carp_softc *sc) { struct ifnet *ifp = sc->sc_carpdev; - struct carp_if *cif = ifp->if_carp; + struct carp_if *cif; + cif = if_getsoftc(ifp, IF_CARP); CIF_LOCK_ASSERT(cif); TAILQ_REMOVE(&cif->cif_vrs, sc, sc_list); mtx_lock(&carp_mtx); LIST_REMOVE(sc, sc_next); mtx_unlock(&carp_mtx); CARP_LOCK(sc); if (sc->sc_suppress) carp_demote_adj(-V_carp_ifdown_adj, "vhid removed"); callout_drain(&sc->sc_ad_tmo); #ifdef INET callout_drain(&sc->sc_md_tmo); #endif #ifdef INET6 callout_drain(&sc->sc_md6_tmo); #endif CARP_LOCK_DESTROY(sc); free(sc->sc_ifas, M_CARP); free(sc, M_CARP); } -static struct carp_if* +static struct carp_if * carp_alloc_if(struct ifnet *ifp) { struct carp_if *cif; int error; cif = malloc(sizeof(*cif), M_CARP, M_WAITOK|M_ZERO); if ((error = ifpromisc(ifp, 1)) != 0) printf("%s: ifpromisc(%s) failed: %d\n", __func__, ifp->if_xname, error); else cif->cif_flags |= CIF_PROMISC; CIF_LOCK_INIT(cif); cif->cif_ifp = ifp; TAILQ_INIT(&cif->cif_vrs); - IF_ADDR_WLOCK(ifp); - ifp->if_carp = cif; + error = if_setsoftc(ifp, IF_CARP, cif); + KASSERT(error == 0, ("%s: ifp %p has carp softc", __func__, ifp)); if_ref(ifp); - IF_ADDR_WUNLOCK(ifp); return (cif); } static void carp_free_if(struct carp_if *cif) { struct ifnet *ifp = cif->cif_ifp; CIF_LOCK_ASSERT(cif); KASSERT(TAILQ_EMPTY(&cif->cif_vrs), ("%s: softc list not empty", __func__)); - IF_ADDR_WLOCK(ifp); - ifp->if_carp = NULL; - IF_ADDR_WUNLOCK(ifp); + if_setsoftc(ifp, IF_CARP, NULL); CIF_LOCK_DESTROY(cif); if (cif->cif_flags & CIF_PROMISC) ifpromisc(ifp, 0); if_rele(ifp); free(cif, M_CARP); } static void carp_carprcp(struct carpreq *carpr, struct carp_softc *sc, int priv) { CARP_LOCK(sc); carpr->carpr_state = sc->sc_state; carpr->carpr_vhid = sc->sc_vhid; carpr->carpr_advbase = sc->sc_advbase; carpr->carpr_advskew = sc->sc_advskew; if (priv) bcopy(sc->sc_key, carpr->carpr_key, sizeof(carpr->carpr_key)); else bzero(carpr->carpr_key, sizeof(carpr->carpr_key)); CARP_UNLOCK(sc); } int carp_ioctl(struct ifreq *ifr, u_long cmd, struct thread *td) { struct carpreq carpr; struct ifnet *ifp; + struct carp_if *cif; struct carp_softc *sc = NULL; int error = 0, locked = 0; if ((error = copyin(ifr->ifr_data, &carpr, sizeof carpr))) return (error); ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) return (ENXIO); - switch (ifp->if_type) { + switch (if_type(ifp)) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_FDDI: case IFT_ISO88025: break; default: error = EOPNOTSUPP; goto out; } if ((ifp->if_flags & IFF_MULTICAST) == 0) { error = EADDRNOTAVAIL; goto out; } sx_xlock(&carp_sx); + cif = if_getsoftc(ifp, IF_CARP); switch (cmd) { case SIOCSVH: if ((error = priv_check(td, PRIV_NETINET_CARP))) break; if (carpr.carpr_vhid <= 0 || carpr.carpr_vhid > CARP_MAXVHID || carpr.carpr_advbase < 0 || carpr.carpr_advskew < 0) { error = EINVAL; break; } - if (ifp->if_carp) { - CIF_LOCK(ifp->if_carp); - IFNET_FOREACH_CARP(ifp, sc) + if (cif) { + CIF_LOCK(cif); + CIF_FOREACH_CARP(cif, sc) if (sc->sc_vhid == carpr.carpr_vhid) break; - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); } if (sc == NULL) { sc = carp_alloc(ifp); CARP_LOCK(sc); sc->sc_vhid = carpr.carpr_vhid; LLADDR(&sc->sc_addr)[0] = 0; LLADDR(&sc->sc_addr)[1] = 0; LLADDR(&sc->sc_addr)[2] = 0x5e; LLADDR(&sc->sc_addr)[3] = 0; LLADDR(&sc->sc_addr)[4] = 1; LLADDR(&sc->sc_addr)[5] = sc->sc_vhid; } else CARP_LOCK(sc); locked = 1; if (carpr.carpr_advbase > 0) { if (carpr.carpr_advbase > 255 || carpr.carpr_advbase < CARP_DFLTINTV) { error = EINVAL; break; } sc->sc_advbase = carpr.carpr_advbase; } if (carpr.carpr_advskew >= 255) { error = EINVAL; break; } sc->sc_advskew = carpr.carpr_advskew; if (carpr.carpr_key[0] != '\0') { bcopy(carpr.carpr_key, sc->sc_key, sizeof(sc->sc_key)); carp_hmac_prepare(sc); } if (sc->sc_state != INIT && carpr.carpr_state != sc->sc_state) { switch (carpr.carpr_state) { case BACKUP: callout_stop(&sc->sc_ad_tmo); carp_set_state(sc, BACKUP, "user requested via ifconfig"); carp_setrun(sc, 0); carp_delroute(sc); break; case MASTER: carp_master_down_locked(sc, "user requested via ifconfig"); break; default: break; } } break; case SIOCGVH: { int priveleged; if (carpr.carpr_vhid < 0 || carpr.carpr_vhid > CARP_MAXVHID) { error = EINVAL; break; } if (carpr.carpr_count < 1) { error = EMSGSIZE; break; } - if (ifp->if_carp == NULL) { + if (cif == NULL) { error = ENOENT; break; } priveleged = (priv_check(td, PRIV_NETINET_CARP) == 0); if (carpr.carpr_vhid != 0) { - CIF_LOCK(ifp->if_carp); - IFNET_FOREACH_CARP(ifp, sc) + CIF_LOCK(cif); + CIF_FOREACH_CARP(cif, sc) if (sc->sc_vhid == carpr.carpr_vhid) break; - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); if (sc == NULL) { error = ENOENT; break; } carp_carprcp(&carpr, sc, priveleged); error = copyout(&carpr, ifr->ifr_data, sizeof(carpr)); } else { int i, count; count = 0; - CIF_LOCK(ifp->if_carp); - IFNET_FOREACH_CARP(ifp, sc) + CIF_LOCK(cif); + CIF_FOREACH_CARP(cif, sc) count++; if (count > carpr.carpr_count) { - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); error = EMSGSIZE; break; } i = 0; - IFNET_FOREACH_CARP(ifp, sc) { + CIF_FOREACH_CARP(cif, sc) { carp_carprcp(&carpr, sc, priveleged); carpr.carpr_count = count; error = copyout(&carpr, ifr->ifr_data + (i * sizeof(carpr)), sizeof(carpr)); if (error) { - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); break; } i++; } - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); } break; } default: error = EINVAL; } sx_xunlock(&carp_sx); out: if (locked) CARP_UNLOCK(sc); if_rele(ifp); return (error); } static int carp_get_vhid(struct ifaddr *ifa) { if (ifa == NULL || ifa->ifa_carp == NULL) return (0); return (ifa->ifa_carp->sc_vhid); } int carp_attach(struct ifaddr *ifa, int vhid) { struct ifnet *ifp = ifa->ifa_ifp; - struct carp_if *cif = ifp->if_carp; + struct carp_if *cif; struct carp_softc *sc; int index, error; - if (ifp->if_carp == NULL) + cif = if_getsoftc(ifp, IF_CARP); + if (cif == NULL) return (ENOPROTOOPT); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: #endif #ifdef INET6 case AF_INET6: #endif break; default: return (EPROTOTYPE); } CIF_LOCK(cif); - IFNET_FOREACH_CARP(ifp, sc) + CIF_FOREACH_CARP(cif, sc) if (sc->sc_vhid == vhid) break; if (sc == NULL) { CIF_UNLOCK(cif); return (ENOENT); } if (ifa->ifa_carp) { if (ifa->ifa_carp->sc_vhid != vhid) carp_detach_locked(ifa); else { CIF_UNLOCK(cif); return (0); } } error = carp_multicast_setup(cif, ifa->ifa_addr->sa_family); if (error) { CIF_FREE(cif); return (error); } CARP_LOCK(sc); index = sc->sc_naddrs + sc->sc_naddrs6 + 1; if (index > sc->sc_ifasiz / sizeof(struct ifaddr *)) if ((error = carp_grow_ifas(sc)) != 0) { carp_multicast_cleanup(cif, ifa->ifa_addr->sa_family); CARP_UNLOCK(sc); CIF_FREE(cif); return (error); } switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: cif->cif_naddrs++; sc->sc_naddrs++; break; #endif #ifdef INET6 case AF_INET6: cif->cif_naddrs6++; sc->sc_naddrs6++; break; #endif } ifa_ref(ifa); sc->sc_ifas[index - 1] = ifa; ifa->ifa_carp = sc; carp_hmac_prepare(sc); carp_sc_state(sc); CARP_UNLOCK(sc); CIF_UNLOCK(cif); return (0); } void carp_detach(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; - struct carp_if *cif = ifp->if_carp; + struct carp_if *cif; + cif = if_getsoftc(ifp, IF_CARP); CIF_LOCK(cif); carp_detach_locked(ifa); CIF_FREE(cif); } static void carp_detach_locked(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; - struct carp_if *cif = ifp->if_carp; + struct carp_if *cif; struct carp_softc *sc = ifa->ifa_carp; int i, index; KASSERT(sc != NULL, ("%s: %p not attached", __func__, ifa)); + cif = if_getsoftc(ifp, IF_CARP); CIF_LOCK_ASSERT(cif); CARP_LOCK(sc); /* Shift array. */ index = sc->sc_naddrs + sc->sc_naddrs6; for (i = 0; i < index; i++) if (sc->sc_ifas[i] == ifa) break; KASSERT(i < index, ("%s: %p no backref", __func__, ifa)); for (; i < index - 1; i++) sc->sc_ifas[i] = sc->sc_ifas[i+1]; sc->sc_ifas[index - 1] = NULL; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: cif->cif_naddrs--; sc->sc_naddrs--; break; #endif #ifdef INET6 case AF_INET6: cif->cif_naddrs6--; sc->sc_naddrs6--; break; #endif } carp_ifa_delroute(ifa); carp_multicast_cleanup(cif, ifa->ifa_addr->sa_family); ifa->ifa_carp = NULL; ifa_free(ifa); carp_hmac_prepare(sc); carp_sc_state(sc); if (sc->sc_naddrs == 0 && sc->sc_naddrs6 == 0) { CARP_UNLOCK(sc); carp_destroy(sc); } else CARP_UNLOCK(sc); } static void carp_set_state(struct carp_softc *sc, int state, const char *reason) { CARP_LOCK_ASSERT(sc); if (sc->sc_state != state) { const char *carp_states[] = { CARP_STATES }; char subsys[IFNAMSIZ+5]; snprintf(subsys, IFNAMSIZ+5, "%u@%s", sc->sc_vhid, sc->sc_carpdev->if_xname); CARP_LOG("%s: %s -> %s (%s)\n", subsys, carp_states[sc->sc_state], carp_states[state], reason); sc->sc_state = state; devctl_notify("CARP", subsys, carp_states[state], NULL); } } static void carp_linkstate(struct ifnet *ifp) { struct carp_softc *sc; + struct carp_if *cif; - CIF_LOCK(ifp->if_carp); - IFNET_FOREACH_CARP(ifp, sc) { + cif = if_getsoftc(ifp, IF_CARP); + CIF_LOCK(cif); + CIF_FOREACH_CARP(cif, sc) { CARP_LOCK(sc); carp_sc_state(sc); CARP_UNLOCK(sc); } - CIF_UNLOCK(ifp->if_carp); + CIF_UNLOCK(cif); } static void carp_sc_state(struct carp_softc *sc) { CARP_LOCK_ASSERT(sc); if (sc->sc_carpdev->if_link_state != LINK_STATE_UP || !(sc->sc_carpdev->if_flags & IFF_UP)) { callout_stop(&sc->sc_ad_tmo); #ifdef INET callout_stop(&sc->sc_md_tmo); #endif #ifdef INET6 callout_stop(&sc->sc_md6_tmo); #endif carp_set_state(sc, INIT, "hardware interface down"); carp_setrun(sc, 0); if (!sc->sc_suppress) carp_demote_adj(V_carp_ifdown_adj, "interface down"); sc->sc_suppress = 1; } else { carp_set_state(sc, INIT, "hardware interface up"); carp_setrun(sc, 0); if (sc->sc_suppress) carp_demote_adj(-V_carp_ifdown_adj, "interface up"); sc->sc_suppress = 0; } } static void carp_demote_adj(int adj, char *reason) { atomic_add_int(&V_carp_demotion, adj); CARP_LOG("demoted by %d to %d (%s)\n", adj, V_carp_demotion, reason); taskqueue_enqueue(taskqueue_swi, &carp_sendall_task); } static int carp_demote_adj_sysctl(SYSCTL_HANDLER_ARGS) { int new, error; new = V_carp_demotion; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) return (error); carp_demote_adj(new, "sysctl"); return (0); } #ifdef INET extern struct domain inetdomain; static struct protosw in_carp_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inetdomain, .pr_protocol = IPPROTO_CARP, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = carp_input, .pr_output = rip_output, .pr_ctloutput = rip_ctloutput, .pr_usrreqs = &rip_usrreqs }; #endif #ifdef INET6 extern struct domain inet6domain; static struct protosw in6_carp_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inet6domain, .pr_protocol = IPPROTO_CARP, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = carp6_input, .pr_output = rip6_output, .pr_ctloutput = rip6_ctloutput, .pr_usrreqs = &rip6_usrreqs }; #endif static void carp_mod_cleanup(void) { #ifdef INET if (proto_reg[CARP_INET] == 0) { (void)ipproto_unregister(IPPROTO_CARP); pf_proto_unregister(PF_INET, IPPROTO_CARP, SOCK_RAW); proto_reg[CARP_INET] = -1; } carp_iamatch_p = NULL; #endif #ifdef INET6 if (proto_reg[CARP_INET6] == 0) { (void)ip6proto_unregister(IPPROTO_CARP); pf_proto_unregister(PF_INET6, IPPROTO_CARP, SOCK_RAW); proto_reg[CARP_INET6] = -1; } carp_iamatch6_p = NULL; carp_macmatch6_p = NULL; #endif carp_ioctl_p = NULL; carp_attach_p = NULL; carp_detach_p = NULL; carp_get_vhid_p = NULL; carp_linkstate_p = NULL; carp_forus_p = NULL; carp_output_p = NULL; carp_demote_adj_p = NULL; carp_master_p = NULL; mtx_unlock(&carp_mtx); taskqueue_drain(taskqueue_swi, &carp_sendall_task); mtx_destroy(&carp_mtx); sx_destroy(&carp_sx); } static int carp_mod_load(void) { int err; mtx_init(&carp_mtx, "carp_mtx", NULL, MTX_DEF); sx_init(&carp_sx, "carp_sx"); LIST_INIT(&carp_list); carp_get_vhid_p = carp_get_vhid; carp_forus_p = carp_forus; carp_output_p = carp_output; carp_linkstate_p = carp_linkstate; carp_ioctl_p = carp_ioctl; carp_attach_p = carp_attach; carp_detach_p = carp_detach; carp_demote_adj_p = carp_demote_adj; carp_master_p = carp_master; #ifdef INET6 carp_iamatch6_p = carp_iamatch6; carp_macmatch6_p = carp_macmatch6; proto_reg[CARP_INET6] = pf_proto_register(PF_INET6, (struct protosw *)&in6_carp_protosw); if (proto_reg[CARP_INET6]) { printf("carp: error %d attaching to PF_INET6\n", proto_reg[CARP_INET6]); carp_mod_cleanup(); return (proto_reg[CARP_INET6]); } err = ip6proto_register(IPPROTO_CARP); if (err) { printf("carp: error %d registering with INET6\n", err); carp_mod_cleanup(); return (err); } #endif #ifdef INET carp_iamatch_p = carp_iamatch; proto_reg[CARP_INET] = pf_proto_register(PF_INET, &in_carp_protosw); if (proto_reg[CARP_INET]) { printf("carp: error %d attaching to PF_INET\n", proto_reg[CARP_INET]); carp_mod_cleanup(); return (proto_reg[CARP_INET]); } err = ipproto_register(IPPROTO_CARP); if (err) { printf("carp: error %d registering with INET\n", err); carp_mod_cleanup(); return (err); } #endif return (0); } static int carp_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: return carp_mod_load(); /* NOTREACHED */ case MOD_UNLOAD: mtx_lock(&carp_mtx); if (LIST_EMPTY(&carp_list)) carp_mod_cleanup(); else { mtx_unlock(&carp_mtx); return (EBUSY); } break; default: return (EINVAL); } return (0); } static moduledata_t carp_mod = { "carp", carp_modevent, 0 }; DECLARE_MODULE(carp, carp_mod, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); Index: projects/ifnet/sys/netinet/ip_input.c =================================================================== --- projects/ifnet/sys/netinet/ip_input.c (revision 281154) +++ projects/ifnet/sys/netinet/ip_input.c (revision 281155) @@ -1,1868 +1,1868 @@ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_bootp.h" #include "opt_ipfw.h" #include "opt_ipstealth.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #endif /* IPSEC */ #include #include #include #ifdef CTASSERT CTASSERT(sizeof(struct ip) == 20); #endif struct rwlock in_ifaddr_lock; RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); VNET_DEFINE(int, rsvp_on); VNET_DEFINE(int, ipforwarding); SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipforwarding), 0, "Enable IP forwarding between interfaces"); static VNET_DEFINE(int, ipsendredirects) = 1; /* XXX */ #define V_ipsendredirects VNET(ipsendredirects) SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsendredirects), 0, "Enable sending IP redirects"); /* * XXX - Setting ip_checkinterface mostly implements the receive side of * the Strong ES model described in RFC 1122, but since the routing table * and transmit implementation do not implement the Strong ES model, * setting this to 1 results in an odd hybrid. * * XXX - ip_checkinterface currently must be disabled if you use ipnat * to translate the destination address to another local interface. * * XXX - ip_checkinterface must be disabled if you add IP aliases * to the loopback interface instead of the interface where the * packets for those addresses are received. */ static VNET_DEFINE(int, ip_checkinterface); #define V_ip_checkinterface VNET(ip_checkinterface) SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_checkinterface), 0, "Verify packet arrives on correct interface"); VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */ static struct netisr_handler ip_nh = { .nh_name = "ip", .nh_handler = ip_input, .nh_proto = NETISR_IP, #ifdef RSS .nh_m2cpuid = rss_soft_m2cpuid, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, #else .nh_policy = NETISR_POLICY_FLOW, #endif }; #ifdef RSS /* * Directly dispatched frames are currently assumed * to have a flowid already calculated. * * It should likely have something that assert it * actually has valid flow details. */ static struct netisr_handler ip_direct_nh = { .nh_name = "ip_direct", .nh_handler = ip_direct_input, .nh_proto = NETISR_IP_DIRECT, .nh_m2cpuid = rss_m2cpuid, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, }; #endif extern struct domain inetdomain; extern struct protosw inetsw[]; u_char ip_protox[IPPROTO_MAX]; VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ static VNET_DEFINE(uma_zone_t, ipq_zone); static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]); static struct mtx ipqlock; #define V_ipq_zone VNET(ipq_zone) #define V_ipq VNET(ipq) #define IPQ_LOCK() mtx_lock(&ipqlock) #define IPQ_UNLOCK() mtx_unlock(&ipqlock) #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF) #define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED) static void maxnipq_update(void); static void ipq_zone_change(void *); static void ip_drain_locked(void); static VNET_DEFINE(int, maxnipq); /* Administrative limit on # reass queues. */ static VNET_DEFINE(int, nipq); /* Total # of reass queues */ #define V_maxnipq VNET(maxnipq) #define V_nipq VNET(nipq) SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(nipq), 0, "Current number of IPv4 fragment reassembly queue entries"); static VNET_DEFINE(int, maxfragsperpacket); #define V_maxfragsperpacket VNET(maxfragsperpacket) SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(maxfragsperpacket), 0, "Maximum number of IPv4 fragments allowed per packet"); #ifdef IPCTL_DEFMTU SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, &ip_mtu, 0, "Default MTU"); #endif #ifdef IPSTEALTH VNET_DEFINE(int, ipstealth); SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipstealth), 0, "IP stealth mode, no TTL decrementation on forwarding"); #endif static void ip_freef(struct ipqhead *, struct ipq *); /* * IP statistics are stored in the "array" of counter(9)s. */ VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); VNET_PCPUSTAT_SYSINIT(ipstat); SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ipstat); #endif /* VIMAGE */ /* * Kernel module interface for updating ipstat. The argument is an index * into ipstat treated as an array. */ void kmod_ipstat_inc(int statnum) { counter_u64_add(VNET(ipstat)[statnum], 1); } void kmod_ipstat_dec(int statnum) { counter_u64_add(VNET(ipstat)[statnum], -1); } static int sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", "Maximum size of the IP input queue"); static int sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I", "Number of packets dropped from the IP input queue"); #ifdef RSS static int sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_direct_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_direct_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I", "Maximum size of the IP direct input queue"); static int sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_direct_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_direct_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", "Number of packets dropped from the IP direct input queue"); #endif /* RSS */ /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init(void) { struct protosw *pr; int i; TAILQ_INIT(&V_in_ifaddrhead); V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); /* Initialize IP reassembly queue. */ for (i = 0; i < IPREASS_NHASH; i++) TAILQ_INIT(&V_ipq[i]); V_maxnipq = nmbclusters / 32; V_maxfragsperpacket = 16; V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); maxnipq_update(); /* Initialize packet filter hooks. */ V_inet_pfil_hook.ph_type = PFIL_TYPE_AF; V_inet_pfil_hook.ph_af = AF_INET; if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0) printf("%s: WARNING: unable to register pfil hook, " "error %d\n", __func__, i); /* Skip initialization of globals for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) panic("ip_init: PF_INET not found"); /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; /* * Cycle through IP protocols and put them into the appropriate place * in ip_protox[]. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { /* Be careful to only index valid IP protocols. */ if (pr->pr_protocol < IPPROTO_MAX) ip_protox[pr->pr_protocol] = pr - inetsw; } EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change, NULL, EVENTHANDLER_PRI_ANY); /* Initialize various other remaining things. */ IPQ_LOCK_INIT(); netisr_register(&ip_nh); #ifdef RSS netisr_register(&ip_direct_nh); #endif } #ifdef VIMAGE void ip_destroy(void) { int i; if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0) printf("%s: WARNING: unable to unregister pfil hook, " "error %d\n", __func__, i); /* Cleanup in_ifaddr hash table; should be empty. */ hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); IPQ_LOCK(); ip_drain_locked(); IPQ_UNLOCK(); uma_zdestroy(V_ipq_zone); } #endif #ifdef RSS /* * IP direct input routine. * * This is called when reinjecting completed fragments where * all of the previous checking and book-keeping has been done. */ void ip_direct_input(struct mbuf *m) { struct ip *ip; int hlen; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; } #endif /* * Ip input routine. Checksum and byte swap header. If fragmented * try to reassemble. Process options. Pass to next level. */ void ip_input(struct mbuf *m) { struct ip *ip = NULL; struct in_ifaddr *ia = NULL; struct ifaddr *ifa; struct ifnet *ifp; int checkif, hlen = 0; uint16_t sum, ip_len; int dchg = 0; /* dest changed after fw */ struct in_addr odst; /* original dst address */ M_ASSERTPKTHDR(m); if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; /* Set up some basics that will be used later. */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip_len = ntohs(ip->ip_len); goto ours; } IPSTAT_INC(ips_total); if (m->m_pkthdr.len < sizeof(struct ip)) goto tooshort; if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { IPSTAT_INC(ips_toosmall); return; } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { IPSTAT_INC(ips_badvers); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ IPSTAT_INC(ips_badhlen); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == NULL) { IPSTAT_INC(ips_badhlen); return; } ip = mtod(m, struct ip *); } IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); /* 127/8 must not appear on wire - RFC1122 */ ifp = m->m_pkthdr.rcvif; if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); goto bad; } } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof(struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { IPSTAT_INC(ips_badsum); goto bad; } #ifdef ALTQ if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) /* packet is dropped by traffic conditioner */ return; #endif ip_len = ntohs(ip->ip_len); if (ip_len < hlen) { IPSTAT_INC(ips_badlen); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < ip_len) { tooshort: IPSTAT_INC(ips_tooshort); goto bad; } if (m->m_pkthdr.len > ip_len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = ip_len; m->m_pkthdr.len = ip_len; } else m_adj(m, ip_len - m->m_pkthdr.len); } #ifdef IPSEC /* * Bypass packet filtering for packets previously handled by IPsec. */ if (ip_ipsec_filtertunnel(m)) goto passin; #endif /* IPSEC */ /* * Run through list of hooks for input packets. * * NB: Beware of the destination address changing (e.g. * by NAT rewriting). When this happens, tell * ip_forward to do the right thing. */ /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED(&V_inet_pfil_hook)) goto passin; odst = ip->ip_dst; if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0) return; if (m == NULL) /* consumed by filter */ return; ip = mtod(m, struct ip *); dchg = (odst.s_addr != ip->ip_dst.s_addr); ifp = m->m_pkthdr.rcvif; if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; goto ours; } if (m->m_flags & M_IP_NEXTHOP) { dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL); if (dchg != 0) { /* * Directly ship the packet on. This allows * forwarding packets originally destined to us * to some other directly connected host. */ ip_forward(m, 1); return; } } passin: /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) return; /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no * matter if it is destined to another node, or whether it is * a multicast one, RSVP wants it! and prevents it from being forwarded * anywhere else. Also checks if the rsvp daemon is running before * grabbing the packet. */ if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) goto ours; /* * Check our list of addresses, to see if the packet is for us. * If we don't have any addresses, assume any unicast packet * we receive might be for us (and let the upper layers deal * with it). */ if (TAILQ_EMPTY(&V_in_ifaddrhead) && (m->m_flags & (M_MCAST|M_BCAST)) == 0) goto ours; /* * Enable a consistency check between the destination address * and the arrival interface for a unicast packet (the RFC 1122 * strong ES model) if IP forwarding is disabled and the packet * is not locally generated and the packet is not subject to * 'ipfw fwd'. * * XXX - Checking also should be disabled if the destination * address is ipnat'ed to a different interface. * * XXX - Checking is incompatible with IP aliases added * to the loopback interface instead of the interface where * the packets are received. * * XXX - This is the case for carp vhost IPs as well so we * insert a workaround. If the packet got here, we already * checked with carp_iamatch() and carp_forus(). */ checkif = V_ip_checkinterface && (V_ipforwarding == 0) && ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && - ifp->if_carp == NULL && (dchg == 0); + (dchg == 0) && if_getsoftc(ifp, IF_CARP) == NULL; /* * Check for exact addresses in the hash bucket. */ /* IN_IFADDR_RLOCK(); */ LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { /* * If the address matches, verify that the packet * arrived via the correct interface if checking is * enabled. */ if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && (!checkif || ia->ia_ifp == ifp)) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); /* IN_IFADDR_RUNLOCK(); */ goto ours; } } /* IN_IFADDR_RUNLOCK(); */ /* * Check for broadcast addresses. * * Only accept broadcast packets that arrive via the matching * interface. Reception of forwarded directed broadcasts would * be handled via ip_forward() and ether_output() with the loopback * into the stack for SIMPLEX interfaces handled by ether_output(). */ if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == ip->ip_dst.s_addr) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); IF_ADDR_RUNLOCK(ifp); goto ours; } #ifdef BOOTP_COMPAT if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); IF_ADDR_RUNLOCK(ifp); goto ours; } #endif } IF_ADDR_RUNLOCK(ifp); ia = NULL; } /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { if (V_ip_mrouter) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. */ if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } /* * The process-level routing daemon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) goto ours; IPSTAT_INC(ips_forward); } /* * Assume the packet is for us, to avoid prematurely taking * a lock on the in_multi hash. Protocols must perform * their own filtering and update statistics accordingly. */ goto ours; } if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) goto ours; if (ip->ip_dst.s_addr == INADDR_ANY) goto ours; /* * Not for us; forward if possible and desirable. */ if (V_ipforwarding == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); } else { ip_forward(m, dchg); } return; ours: #ifdef IPSTEALTH /* * IPSTEALTH: Process non-routing options only * if the packet is destined for us. */ if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) return; #endif /* IPSTEALTH */ /* * Attempt reassembly; if it succeeds, proceed. * ip_reass() will return a different mbuf. */ if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { /* XXXGL: shouldn't we save & set m_flags? */ m = ip_reass(m); if (m == NULL) return; ip = mtod(m, struct ip *); /* Get the header length of the reassembled packet */ hlen = ip->ip_hl << 2; } #ifdef IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if (ip_ipsec_input(m, ip->ip_p) != 0) goto bad; #endif /* IPSEC */ /* * Switch out to protocol's input routine. */ IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; bad: m_freem(m); } /* * After maxnipq has been updated, propagate the change to UMA. The UMA zone * max has slightly different semantics than the sysctl, for historical * reasons. */ static void maxnipq_update(void) { /* * -1 for unlimited allocation. */ if (V_maxnipq < 0) uma_zone_set_max(V_ipq_zone, 0); /* * Positive number for specific bound. */ if (V_maxnipq > 0) uma_zone_set_max(V_ipq_zone, V_maxnipq); /* * Zero specifies no further fragment queue allocation -- set the * bound very low, but rely on implementation elsewhere to actually * prevent allocation and reclaim current queues. */ if (V_maxnipq == 0) uma_zone_set_max(V_ipq_zone, 1); } static void ipq_zone_change(void *tag) { if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) { V_maxnipq = nmbclusters / 32; maxnipq_update(); } } static int sysctl_maxnipq(SYSCTL_HANDLER_ARGS) { int error, i; i = V_maxnipq; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) return (error); /* * XXXRW: Might be a good idea to sanity check the argument and place * an extreme upper bound. */ if (i < -1) return (EINVAL); V_maxnipq = i; maxnipq_update(); return (0); } SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW, NULL, 0, sysctl_maxnipq, "I", "Maximum number of IPv4 fragment reassembly queue entries"); #define M_IP_FRAG M_PROTO9 /* * Take incoming datagram fragment and try to reassemble it into * whole datagram. If the argument is the first fragment or one * in between the function will return NULL and store the mbuf * in the fragment chain. If the argument is the last fragment * the packet will be reassembled and the pointer to the new * mbuf returned for further processing. Only m_tags attached * to the first packet/fragment are preserved. * The IP header is *NOT* adjusted out of iplen. */ struct mbuf * ip_reass(struct mbuf *m) { struct ip *ip; struct mbuf *p, *q, *nq, *t; struct ipq *fp = NULL; struct ipqhead *head; int i, hlen, next; u_int8_t ecn, ecn0; u_short hash; #ifdef RSS uint32_t rss_hash, rss_type; #endif /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */ if (V_maxnipq == 0 || V_maxfragsperpacket == 0) { IPSTAT_INC(ips_fragments); IPSTAT_INC(ips_fragdropped); m_freem(m); return (NULL); } ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); head = &V_ipq[hash]; IPQ_LOCK(); /* * Look for queue of fragments * of this datagram. */ TAILQ_FOREACH(fp, head, ipq_list) if (ip->ip_id == fp->ipq_id && ip->ip_src.s_addr == fp->ipq_src.s_addr && ip->ip_dst.s_addr == fp->ipq_dst.s_addr && #ifdef MAC mac_ipq_match(m, fp) && #endif ip->ip_p == fp->ipq_p) goto found; fp = NULL; /* * Attempt to trim the number of allocated fragment queues if it * exceeds the administrative limit. */ if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) { /* * drop something from the tail of the current queue * before proceeding further */ struct ipq *q = TAILQ_LAST(head, ipqhead); if (q == NULL) { /* gak */ for (i = 0; i < IPREASS_NHASH; i++) { struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead); if (r) { IPSTAT_ADD(ips_fragtimeout, r->ipq_nfrags); ip_freef(&V_ipq[i], r); break; } } } else { IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags); ip_freef(head, q); } } found: /* * Adjust ip_len to not reflect header, * convert offset of this to bytes. */ ip->ip_len = htons(ntohs(ip->ip_len) - hlen); if (ip->ip_off & htons(IP_MF)) { /* * Make sure that fragments have a data length * that's a non-zero multiple of 8 bytes. */ if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) { IPSTAT_INC(ips_toosmall); /* XXX */ goto dropfrag; } m->m_flags |= M_IP_FRAG; } else m->m_flags &= ~M_IP_FRAG; ip->ip_off = htons(ntohs(ip->ip_off) << 3); /* * Attempt reassembly; if it succeeds, proceed. * ip_reass() will return a different mbuf. */ IPSTAT_INC(ips_fragments); m->m_pkthdr.PH_loc.ptr = ip; /* Previous ip_reass() started here. */ /* * Presence of header sizes in mbufs * would confuse code below. */ m->m_data += hlen; m->m_len -= hlen; /* * If first fragment to arrive, create a reassembly queue. */ if (fp == NULL) { fp = uma_zalloc(V_ipq_zone, M_NOWAIT); if (fp == NULL) goto dropfrag; #ifdef MAC if (mac_ipq_init(fp, M_NOWAIT) != 0) { uma_zfree(V_ipq_zone, fp); fp = NULL; goto dropfrag; } mac_ipq_create(m, fp); #endif TAILQ_INSERT_HEAD(head, fp, ipq_list); V_nipq++; fp->ipq_nfrags = 1; fp->ipq_ttl = IPFRAGTTL; fp->ipq_p = ip->ip_p; fp->ipq_id = ip->ip_id; fp->ipq_src = ip->ip_src; fp->ipq_dst = ip->ip_dst; fp->ipq_frags = m; m->m_nextpkt = NULL; goto done; } else { fp->ipq_nfrags++; #ifdef MAC mac_ipq_update(m, fp); #endif } #define GETIP(m) ((struct ip*)((m)->m_pkthdr.PH_loc.ptr)) /* * Handle ECN by comparing this segment with the first one; * if CE is set, do not lose CE. * drop if CE and not-ECT are mixed for the same packet. */ ecn = ip->ip_tos & IPTOS_ECN_MASK; ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK; if (ecn == IPTOS_ECN_CE) { if (ecn0 == IPTOS_ECN_NOTECT) goto dropfrag; if (ecn0 != IPTOS_ECN_CE) GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE; } if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) goto dropfrag; /* * Find a segment which begins after this one does. */ for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off)) break; /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us, otherwise * stick new segment in the proper place. * * If some of the data is dropped from the preceding * segment, then it's checksum is invalidated. */ if (p) { i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) - ntohs(ip->ip_off); if (i > 0) { if (i >= ntohs(ip->ip_len)) goto dropfrag; m_adj(m, i); m->m_pkthdr.csum_flags = 0; ip->ip_off = htons(ntohs(ip->ip_off) + i); ip->ip_len = htons(ntohs(ip->ip_len) - i); } m->m_nextpkt = p->m_nextpkt; p->m_nextpkt = m; } else { m->m_nextpkt = fp->ipq_frags; fp->ipq_frags = m; } /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) > ntohs(GETIP(q)->ip_off); q = nq) { i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) - ntohs(GETIP(q)->ip_off); if (i < ntohs(GETIP(q)->ip_len)) { GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i); GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i); m_adj(q, i); q->m_pkthdr.csum_flags = 0; break; } nq = q->m_nextpkt; m->m_nextpkt = nq; IPSTAT_INC(ips_fragdropped); fp->ipq_nfrags--; m_freem(q); } /* * Check for complete reassembly and perform frag per packet * limiting. * * Frag limiting is performed here so that the nth frag has * a chance to complete the packet before we drop the packet. * As a result, n+1 frags are actually allowed per packet, but * only n will ever be stored. (n = maxfragsperpacket.) * */ next = 0; for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) { if (ntohs(GETIP(q)->ip_off) != next) { if (fp->ipq_nfrags > V_maxfragsperpacket) { IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags); ip_freef(head, fp); } goto done; } next += ntohs(GETIP(q)->ip_len); } /* Make sure the last packet didn't have the IP_MF flag */ if (p->m_flags & M_IP_FRAG) { if (fp->ipq_nfrags > V_maxfragsperpacket) { IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags); ip_freef(head, fp); } goto done; } /* * Reassembly is complete. Make sure the packet is a sane size. */ q = fp->ipq_frags; ip = GETIP(q); if (next + (ip->ip_hl << 2) > IP_MAXPACKET) { IPSTAT_INC(ips_toolong); IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags); ip_freef(head, fp); goto done; } /* * Concatenate fragments. */ m = q; t = m->m_next; m->m_next = NULL; m_cat(m, t); nq = q->m_nextpkt; q->m_nextpkt = NULL; for (q = nq; q != NULL; q = nq) { nq = q->m_nextpkt; q->m_nextpkt = NULL; m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags; m->m_pkthdr.csum_data += q->m_pkthdr.csum_data; m_cat(m, q); } /* * In order to do checksumming faster we do 'end-around carry' here * (and not in for{} loop), though it implies we are not going to * reassemble more than 64k fragments. */ while (m->m_pkthdr.csum_data & 0xffff0000) m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16); #ifdef MAC mac_ipq_reassemble(fp, m); mac_ipq_destroy(fp); #endif /* * Create header for new ip packet by modifying header of first * packet; dequeue and discard fragment reassembly header. * Make header visible. */ ip->ip_len = htons((ip->ip_hl << 2) + next); ip->ip_src = fp->ipq_src; ip->ip_dst = fp->ipq_dst; TAILQ_REMOVE(head, fp, ipq_list); V_nipq--; uma_zfree(V_ipq_zone, fp); m->m_len += (ip->ip_hl << 2); m->m_data -= (ip->ip_hl << 2); /* some debugging cruft by sklower, below, will go away soon */ if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */ m_fixhdr(m); IPSTAT_INC(ips_reassembled); IPQ_UNLOCK(); #ifdef RSS /* * Query the RSS layer for the flowid / flowtype for the * mbuf payload. * * For now, just assume we have to calculate a new one. * Later on we should check to see if the assigned flowid matches * what RSS wants for the given IP protocol and if so, just keep it. * * We then queue into the relevant netisr so it can be dispatched * to the correct CPU. * * Note - this may return 1, which means the flowid in the mbuf * is correct for the configured RSS hash types and can be used. */ if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) { m->m_pkthdr.flowid = rss_hash; M_HASHTYPE_SET(m, rss_type); } /* * Queue/dispatch for reprocessing. * * Note: this is much slower than just handling the frame in the * current receive context. It's likely worth investigating * why this is. */ netisr_dispatch(NETISR_IP_DIRECT, m); return (NULL); #endif /* Handle in-line */ return (m); dropfrag: IPSTAT_INC(ips_fragdropped); if (fp != NULL) fp->ipq_nfrags--; m_freem(m); done: IPQ_UNLOCK(); return (NULL); #undef GETIP } /* * Free a fragment reassembly header and all * associated datagrams. */ static void ip_freef(struct ipqhead *fhp, struct ipq *fp) { struct mbuf *q; IPQ_LOCK_ASSERT(); while (fp->ipq_frags) { q = fp->ipq_frags; fp->ipq_frags = q->m_nextpkt; m_freem(q); } TAILQ_REMOVE(fhp, fp, ipq_list); uma_zfree(V_ipq_zone, fp); V_nipq--; } /* * IP timer processing; * if a timer expires on a reassembly * queue, discard it. */ void ip_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); struct ipq *fp; int i; VNET_LIST_RLOCK_NOSLEEP(); IPQ_LOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); for (i = 0; i < IPREASS_NHASH; i++) { for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) { struct ipq *fpp; fpp = fp; fp = TAILQ_NEXT(fp, ipq_list); if(--fpp->ipq_ttl == 0) { IPSTAT_ADD(ips_fragtimeout, fpp->ipq_nfrags); ip_freef(&V_ipq[i], fpp); } } } /* * If we are over the maximum number of fragments * (due to the limit being lowered), drain off * enough to get down to the new limit. */ if (V_maxnipq >= 0 && V_nipq > V_maxnipq) { for (i = 0; i < IPREASS_NHASH; i++) { while (V_nipq > V_maxnipq && !TAILQ_EMPTY(&V_ipq[i])) { IPSTAT_ADD(ips_fragdropped, TAILQ_FIRST(&V_ipq[i])->ipq_nfrags); ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i])); } } } CURVNET_RESTORE(); } IPQ_UNLOCK(); VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Drain off all datagram fragments. */ static void ip_drain_locked(void) { int i; IPQ_LOCK_ASSERT(); for (i = 0; i < IPREASS_NHASH; i++) { while(!TAILQ_EMPTY(&V_ipq[i])) { IPSTAT_ADD(ips_fragdropped, TAILQ_FIRST(&V_ipq[i])->ipq_nfrags); ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i])); } } } void ip_drain(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); IPQ_LOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ip_drain_locked(); CURVNET_RESTORE(); } IPQ_UNLOCK(); VNET_LIST_RUNLOCK_NOSLEEP(); } /* * The protocol to be inserted into ip_protox[] must be already registered * in inetsw[], either statically or through pf_proto_register(). */ int ipproto_register(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* * The protocol slot must not be occupied by another protocol * already. An index pointing to IPPROTO_RAW is unused. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ return (EEXIST); /* Find the protocol position in inetsw[] and set the index. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) { if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol == ipproto) { ip_protox[pr->pr_protocol] = pr - inetsw; return (0); } } return (EPROTONOSUPPORT); } int ipproto_unregister(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* Check if the protocol was indeed registered. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ return (ENOENT); /* Reset the protocol slot to IPPROTO_RAW. */ ip_protox[ipproto] = pr - inetsw; return (0); } /* * Given address of next destination (final or next hop), return (referenced) * internet address info of interface to be used to get there. */ struct in_ifaddr * ip_rtaddr(struct in_addr dst, u_int fibnum) { struct route sro; struct sockaddr_in *sin; struct in_ifaddr *ia; bzero(&sro, sizeof(sro)); sin = (struct sockaddr_in *)&sro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = dst; in_rtalloc_ign(&sro, 0, fibnum); if (sro.ro_rt == NULL) return (NULL); ia = ifatoia(sro.ro_rt->rt_ifa); ifa_ref(&ia->ia_ifa); RTFREE(sro.ro_rt); return (ia); } u_char inetctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, EHOSTUNREACH, 0, ENOPROTOOPT, ECONNREFUSED }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(struct mbuf *m, int srcrt) { struct ip *ip = mtod(m, struct ip *); struct in_ifaddr *ia; struct mbuf *mcopy; struct in_addr dest; struct route ro; int error, type = 0, code = 0, mtu = 0; if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } #ifdef IPSEC if (ip_ipsec_fwd(m) != 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } #endif /* IPSEC */ #ifdef IPSTEALTH if (!V_ipstealth) { #endif if (ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); return; } #ifdef IPSTEALTH } #endif ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m)); #ifndef IPSEC /* * 'ia' may be NULL if there is no route for this destination. * In case of IPsec, Don't discard it just yet, but pass it to * ip_output in case of outgoing IPsec policy. */ if (!srcrt && ia == NULL) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); return; } #endif /* * Save the IP header and at most 8 bytes of the payload, * in case we need to generate an ICMP message to the src. * * XXX this can be optimized a lot by saving the data in a local * buffer on the stack (72 bytes at most), and only allocating the * mbuf if really necessary. The vast majority of the packets * are forwarded without having to send an ICMP back (either * because unnecessary, or because rate limited), so we are * really we are wasting a lot of work here. * * We don't use m_copy() because it might return a reference * to a shared cluster. Both this function and ip_output() * assume exclusive access to the IP header in `m', so any * data in a cluster may change before we reach icmp_error(). */ mcopy = m_gethdr(M_NOWAIT, m->m_type); if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { /* * It's probably ok if the pkthdr dup fails (because * the deep copy of the tag chain failed), but for now * be conservative and just discard the copy since * code below may some day want the tags. */ m_free(mcopy); mcopy = NULL; } if (mcopy != NULL) { mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); mcopy->m_pkthdr.len = mcopy->m_len; m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); } #ifdef IPSTEALTH if (!V_ipstealth) { #endif ip->ip_ttl -= IPTTLDEC; #ifdef IPSTEALTH } #endif /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. */ dest.s_addr = 0; if (!srcrt && V_ipsendredirects && ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { struct sockaddr_in *sin; struct rtentry *rt; bzero(&ro, sizeof(ro)); sin = (struct sockaddr_in *)&ro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ip->ip_dst; in_rtalloc_ign(&ro, 0, M_GETFIB(m)); rt = ro.ro_rt; if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && satosin(rt_key(rt))->sin_addr.s_addr != 0) { #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) u_long src = ntohl(ip->ip_src.s_addr); if (RTA(rt) && (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { if (rt->rt_flags & RTF_GATEWAY) dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; else dest.s_addr = ip->ip_dst.s_addr; /* Router requirements says to only send host redirects */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; } } if (rt) RTFREE(rt); } /* * Try to cache the route MTU from ip_output so we can consider it for * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191. */ bzero(&ro, sizeof(ro)); error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); if (error == EMSGSIZE && ro.ro_rt) mtu = ro.ro_rt->rt_mtu; RO_RTFREE(&ro); if (error) IPSTAT_INC(ips_cantforward); else { IPSTAT_INC(ips_forward); if (type) IPSTAT_INC(ips_redirectsent); else { if (mcopy) m_freem(mcopy); if (ia != NULL) ifa_free(&ia->ia_ifa); return; } } if (mcopy == NULL) { if (ia != NULL) ifa_free(&ia->ia_ifa); return; } switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; #ifdef IPSEC /* * If IPsec is configured for this path, * override any possibly mtu value set by ip_output. */ mtu = ip_ipsec_mtu(mcopy, mtu); #endif /* IPSEC */ /* * If the MTU was set before make sure we are below the * interface MTU. * If the MTU wasn't set before use the interface mtu or * fall back to the next smaller mtu step compared to the * current packet size. */ if (mtu != 0) { if (ia != NULL) mtu = min(mtu, ia->ia_ifp->if_mtu); } else { if (ia != NULL) mtu = ia->ia_ifp->if_mtu; else mtu = ip_next_mtu(ntohs(ip->ip_len), 0); } IPSTAT_INC(ips_cantfrag); break; case ENOBUFS: case EACCES: /* ipfw denied packet */ m_freem(mcopy); if (ia != NULL) ifa_free(&ia->ia_ifa); return; } if (ia != NULL) ifa_free(&ia->ia_ifa); icmp_error(mcopy, type, code, dest.s_addr, mtu); } void ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, struct mbuf *m) { if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) { struct bintime bt; bintime(&bt); if (inp->inp_socket->so_options & SO_BINTIME) { *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), SCM_BINTIME, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_socket->so_options & SO_TIMESTAMP) { struct timeval tv; bintime2timeval(&bt, &tv); *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } } if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTTL) { *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, sizeof(u_char), IP_RECVTTL, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* XXX * Moving these out of udp_input() made them even more broken * than they already were. */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((caddr_t)opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct ifnet *ifp; struct sdlbuf { struct sockaddr_dl sdl; u_char pad[32]; } sdlbuf; struct sockaddr_dl *sdp; struct sockaddr_dl *sdl2 = &sdlbuf.sdl; if ((ifp = m->m_pkthdr.rcvif) && ifp->if_index && ifp->if_index <= V_if_index) { sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; /* * Change our mind and don't try copy. */ if (sdp->sdl_family != AF_LINK || sdp->sdl_len > sizeof(sdlbuf)) { goto makedummy; } bcopy(sdp, sdl2, sdp->sdl_len); } else { makedummy: sdl2->sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); sdl2->sdl_family = AF_LINK; sdl2->sdl_index = 0; sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; } *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, IP_RECVIF, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTOS) { *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, sizeof(u_char), IP_RECVTOS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags2 & INP_RECVFLOWID) { uint32_t flowid, flow_type; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); /* * XXX should handle the failure of one or the * other - don't populate both? */ *mp = sbcreatecontrol((caddr_t) &flowid, sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; *mp = sbcreatecontrol((caddr_t) &flow_type, sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef RSS if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { uint32_t flowid, flow_type; uint32_t rss_bucketid; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { *mp = sbcreatecontrol((caddr_t) &rss_bucketid, sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } } #endif } /* * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on * locking. This code remains in ip_input.c as ip_mroute.c is optionally * compiled. */ static VNET_DEFINE(int, ip_rsvp_on); VNET_DEFINE(struct socket *, ip_rsvpd); #define V_ip_rsvp_on VNET(ip_rsvp_on) int ip_rsvp_init(struct socket *so) { if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; if (V_ip_rsvpd != NULL) return EADDRINUSE; V_ip_rsvpd = so; /* * This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!V_ip_rsvp_on) { V_ip_rsvp_on = 1; V_rsvp_on++; } return 0; } int ip_rsvp_done(void) { V_ip_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (V_ip_rsvp_on) { V_ip_rsvp_on = 0; V_rsvp_on--; } return 0; } int rsvp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m; m = *mp; *mp = NULL; if (rsvp_input_p) { /* call the real one if loaded */ *mp = m; rsvp_input_p(mp, offp, proto); return (IPPROTO_DONE); } /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!V_rsvp_on) { m_freem(m); return (IPPROTO_DONE); } if (V_ip_rsvpd != NULL) { *mp = m; rip_input(mp, offp, proto); return (IPPROTO_DONE); } /* Drop the packet */ m_freem(m); return (IPPROTO_DONE); } Index: projects/ifnet/sys/netinet6/nd6_nbr.c =================================================================== --- projects/ifnet/sys/netinet6/nd6_nbr.c (revision 281154) +++ projects/ifnet/sys/netinet6/nd6_nbr.c (revision 281155) @@ -1,1646 +1,1646 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6_nbr.c,v 1.86 2002/01/21 02:33:04 jinmei Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #include #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) #include #include #include #include #include #include #include #include #include #define SDL(s) ((struct sockaddr_dl *)s) struct dadq; static struct dadq *nd6_dad_find(struct ifaddr *, struct nd_opt_nonce *); static void nd6_dad_add(struct dadq *dp); static void nd6_dad_del(struct dadq *dp); static void nd6_dad_rele(struct dadq *); static void nd6_dad_starttimer(struct dadq *, int); static void nd6_dad_stoptimer(struct dadq *); static void nd6_dad_timer(struct dadq *); static void nd6_dad_duplicated(struct ifaddr *, struct dadq *); static void nd6_dad_ns_output(struct dadq *, struct ifaddr *); static void nd6_dad_ns_input(struct ifaddr *, struct nd_opt_nonce *); static void nd6_dad_na_input(struct ifaddr *); static void nd6_na_output_fib(struct ifnet *, const struct in6_addr *, const struct in6_addr *, u_long, int, struct sockaddr *, u_int); static void nd6_ns_output_fib(struct ifnet *, const struct in6_addr *, const struct in6_addr *, struct llentry *, uint8_t *, u_int); static VNET_DEFINE(int, dad_enhanced) = 1; #define V_dad_enhanced VNET(dad_enhanced) SYSCTL_DECL(_net_inet6_ip6); SYSCTL_INT(_net_inet6_ip6, OID_AUTO, dad_enhanced, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(dad_enhanced), 0, "Enable Enhanced DAD, which adds a random nonce to NS messages for DAD."); static VNET_DEFINE(int, dad_maxtry) = 15; /* max # of *tries* to transmit DAD packet */ #define V_dad_maxtry VNET(dad_maxtry) /* * Input a Neighbor Solicitation Message. * * Based on RFC 2461 * Based on RFC 2462 (duplicate address detection) */ void nd6_ns_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct nd_neighbor_solicit *nd_ns; struct in6_addr saddr6 = ip6->ip6_src; struct in6_addr daddr6 = ip6->ip6_dst; struct in6_addr taddr6; struct in6_addr myaddr6; char *lladdr = NULL; struct ifaddr *ifa = NULL; int lladdrlen = 0; int anycast = 0, proxy = 0, tentative = 0; int tlladdr; int rflag; union nd_opts ndopts; struct sockaddr_dl proxydl; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; rflag = (V_ip6_forwarding) ? ND_NA_FLAG_ROUTER : 0; if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && V_ip6_norbit_raif) rflag = 0; #ifndef PULLDOWN_TEST IP6_EXTHDR_CHECK(m, off, icmp6len,); nd_ns = (struct nd_neighbor_solicit *)((caddr_t)ip6 + off); #else IP6_EXTHDR_GET(nd_ns, struct nd_neighbor_solicit *, m, off, icmp6len); if (nd_ns == NULL) { ICMP6STAT_INC(icp6s_tooshort); return; } #endif ip6 = mtod(m, struct ip6_hdr *); /* adjust pointer for safety */ taddr6 = nd_ns->nd_ns_target; if (in6_setscope(&taddr6, ifp, NULL) != 0) goto bad; if (ip6->ip6_hlim != 255) { nd6log((LOG_ERR, "nd6_ns_input: invalid hlim (%d) from %s to %s on %s\n", ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) { /* dst has to be a solicited node multicast address. */ if (daddr6.s6_addr16[0] == IPV6_ADDR_INT16_MLL && /* don't check ifindex portion */ daddr6.s6_addr32[1] == 0 && daddr6.s6_addr32[2] == IPV6_ADDR_INT32_ONE && daddr6.s6_addr8[12] == 0xff) { ; /* good */ } else { nd6log((LOG_INFO, "nd6_ns_input: bad DAD packet " "(wrong ip6 dst)\n")); goto bad; } } else if (!V_nd6_onlink_ns_rfc4861) { struct sockaddr_in6 src_sa6; /* * According to recent IETF discussions, it is not a good idea * to accept a NS from an address which would not be deemed * to be a neighbor otherwise. This point is expected to be * clarified in future revisions of the specification. */ bzero(&src_sa6, sizeof(src_sa6)); src_sa6.sin6_family = AF_INET6; src_sa6.sin6_len = sizeof(src_sa6); src_sa6.sin6_addr = saddr6; if (nd6_is_addr_neighbor(&src_sa6, ifp) == 0) { nd6log((LOG_INFO, "nd6_ns_input: " "NS packet from non-neighbor\n")); goto bad; } } if (IN6_IS_ADDR_MULTICAST(&taddr6)) { nd6log((LOG_INFO, "nd6_ns_input: bad NS target (multicast)\n")); goto bad; } icmp6len -= sizeof(*nd_ns); nd6_option_init(nd_ns + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "nd6_ns_input: invalid ND option, ignored\n")); /* nd6_options have incremented stats */ goto freeit; } if (ndopts.nd_opts_src_lladdr) { lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1); lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3; } if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && lladdr) { nd6log((LOG_INFO, "nd6_ns_input: bad DAD packet " "(link-layer address option)\n")); goto bad; } /* * Attaching target link-layer address to the NA? * (RFC 2461 7.2.4) * * NS IP dst is unicast/anycast MUST NOT add * NS IP dst is solicited-node multicast MUST add * * In implementation, we add target link-layer address by default. * We do not add one in MUST NOT cases. */ if (!IN6_IS_ADDR_MULTICAST(&daddr6)) tlladdr = 0; else tlladdr = 1; /* * Target address (taddr6) must be either: * (1) Valid unicast/anycast address for my receiving interface, * (2) Unicast address for which I'm offering proxy service, or * (3) "tentative" address on which DAD is being performed. */ /* (1) and (3) check. */ - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) ifa = (*carp_iamatch6_p)(ifp, &taddr6); else ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &taddr6); /* (2) check. */ if (ifa == NULL) { struct route_in6 ro; int need_proxy; bzero(&ro, sizeof(ro)); ro.ro_dst.sin6_len = sizeof(struct sockaddr_in6); ro.ro_dst.sin6_family = AF_INET6; ro.ro_dst.sin6_addr = taddr6; /* Always use the default FIB. */ #ifdef RADIX_MPATH rtalloc_mpath_fib((struct route *)&ro, ntohl(taddr6.s6_addr32[3]), RT_DEFAULT_FIB); #else in6_rtalloc(&ro, RT_DEFAULT_FIB); #endif need_proxy = (ro.ro_rt && (ro.ro_rt->rt_flags & RTF_ANNOUNCE) != 0 && ro.ro_rt->rt_gateway->sa_family == AF_LINK); if (ro.ro_rt != NULL) { if (need_proxy) proxydl = *SDL(ro.ro_rt->rt_gateway); RTFREE(ro.ro_rt); } if (need_proxy) { /* * proxy NDP for single entry */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); if (ifa) proxy = 1; } } if (ifa == NULL) { /* * We've got an NS packet, and we don't have that adddress * assigned for us. We MUST silently ignore it. * See RFC2461 7.2.3. */ goto freeit; } myaddr6 = *IFA_IN6(ifa); anycast = ((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST; tentative = ((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_TENTATIVE; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DUPLICATED) goto freeit; if (lladdr && ((if_addrlen(ifp) + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "nd6_ns_input: lladdrlen mismatch for %s " "(if %d, NS packet %d)\n", ip6_sprintf(ip6bufs, &taddr6), if_addrlen(ifp), lladdrlen - 2)); goto bad; } if (IN6_ARE_ADDR_EQUAL(&myaddr6, &saddr6)) { nd6log((LOG_INFO, "nd6_ns_input: duplicate IP6 address %s\n", ip6_sprintf(ip6bufs, &saddr6))); goto freeit; } /* * We have neighbor solicitation packet, with target address equals to * one of my tentative address. * * src addr how to process? * --- --- * multicast of course, invalid (rejected in ip6_input) * unicast somebody is doing address resolution -> ignore * unspec dup address detection * * The processing is defined in RFC 2462. */ if (tentative) { /* * If source address is unspecified address, it is for * duplicate address detection. * * If not, the packet is for addess resolution; * silently ignore it. */ if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) nd6_dad_ns_input(ifa, ndopts.nd_opts_nonce); goto freeit; } /* * If the source address is unspecified address, entries must not * be created or updated. * It looks that sender is performing DAD. Output NA toward * all-node multicast address, to tell the sender that I'm using * the address. * S bit ("solicited") must be zero. */ if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) { struct in6_addr in6_all; in6_all = in6addr_linklocal_allnodes; if (in6_setscope(&in6_all, ifp, NULL) != 0) goto bad; nd6_na_output_fib(ifp, &in6_all, &taddr6, ((anycast || proxy || !tlladdr) ? 0 : ND_NA_FLAG_OVERRIDE) | rflag, tlladdr, proxy ? (struct sockaddr *)&proxydl : NULL, M_GETFIB(m)); goto freeit; } nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_NEIGHBOR_SOLICIT, 0); nd6_na_output_fib(ifp, &saddr6, &taddr6, ((anycast || proxy || !tlladdr) ? 0 : ND_NA_FLAG_OVERRIDE) | rflag | ND_NA_FLAG_SOLICITED, tlladdr, proxy ? (struct sockaddr *)&proxydl : NULL, M_GETFIB(m)); freeit: if (ifa != NULL) ifa_free(ifa); m_freem(m); return; bad: nd6log((LOG_ERR, "nd6_ns_input: src=%s\n", ip6_sprintf(ip6bufs, &saddr6))); nd6log((LOG_ERR, "nd6_ns_input: dst=%s\n", ip6_sprintf(ip6bufs, &daddr6))); nd6log((LOG_ERR, "nd6_ns_input: tgt=%s\n", ip6_sprintf(ip6bufs, &taddr6))); ICMP6STAT_INC(icp6s_badns); if (ifa != NULL) ifa_free(ifa); m_freem(m); } /* * Output a Neighbor Solicitation Message. Caller specifies: * - ICMP6 header source IP6 address * - ND6 header target IP6 address * - ND6 header source datalink address * * Based on RFC 2461 * Based on RFC 2462 (duplicate address detection) * * ln - for source address determination * nonce - If non-NULL, NS is used for duplicate address detection and * the value (length is ND_OPT_NONCE_LEN) is used as a random nonce. */ static void nd6_ns_output_fib(struct ifnet *ifp, const struct in6_addr *daddr6, const struct in6_addr *taddr6, struct llentry *ln, uint8_t *nonce, u_int fibnum) { struct mbuf *m; struct m_tag *mtag; struct ip6_hdr *ip6; struct nd_neighbor_solicit *nd_ns; struct ip6_moptions im6o; int icmp6len; int maxlen; caddr_t mac; struct route_in6 ro; if (IN6_IS_ADDR_MULTICAST(taddr6)) return; /* estimate the size of message */ maxlen = sizeof(*ip6) + sizeof(*nd_ns); maxlen += (sizeof(struct nd_opt_hdr) + if_addrlen(ifp) + 7) & ~7; if (max_linkhdr + maxlen >= MCLBYTES) { #ifdef DIAGNOSTIC printf("%s: max_linkhdr + maxlen >= MCLBYTES " "(%d + %d > %d)\n", __func__, max_linkhdr, maxlen, MCLBYTES); #endif return; } if (max_linkhdr + maxlen > MHLEN) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return; M_SETFIB(m, fibnum); bzero(&ro, sizeof(ro)); if (daddr6 == NULL || IN6_IS_ADDR_MULTICAST(daddr6)) { m->m_flags |= M_MCAST; im6o.im6o_multicast_ifp = ifp; im6o.im6o_multicast_hlim = 255; im6o.im6o_multicast_loop = 0; } icmp6len = sizeof(*nd_ns); m->m_pkthdr.len = m->m_len = sizeof(*ip6) + icmp6len; m->m_data += max_linkhdr; /* or M_ALIGN() equivalent? */ /* fill neighbor solicitation packet */ ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; /* ip6->ip6_plen will be set later */ ip6->ip6_nxt = IPPROTO_ICMPV6; ip6->ip6_hlim = 255; if (daddr6) ip6->ip6_dst = *daddr6; else { ip6->ip6_dst.s6_addr16[0] = IPV6_ADDR_INT16_MLL; ip6->ip6_dst.s6_addr16[1] = 0; ip6->ip6_dst.s6_addr32[1] = 0; ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_ONE; ip6->ip6_dst.s6_addr32[3] = taddr6->s6_addr32[3]; ip6->ip6_dst.s6_addr8[12] = 0xff; if (in6_setscope(&ip6->ip6_dst, ifp, NULL) != 0) goto bad; } if (nonce == NULL) { struct ifaddr *ifa; /* * RFC2461 7.2.2: * "If the source address of the packet prompting the * solicitation is the same as one of the addresses assigned * to the outgoing interface, that address SHOULD be placed * in the IP Source Address of the outgoing solicitation. * Otherwise, any one of the addresses assigned to the * interface should be used." * * We use the source address for the prompting packet * (saddr6), if: * - saddr6 is given from the caller (by giving "ln"), and * - saddr6 belongs to the outgoing interface. * Otherwise, we perform the source address selection as usual. */ struct in6_addr *hsrc; hsrc = NULL; if (ln != NULL) { LLE_RLOCK(ln); if (ln->la_hold != NULL) { struct ip6_hdr *hip6; /* hold ip6 */ /* * assuming every packet in la_hold has the same IP * header */ hip6 = mtod(ln->la_hold, struct ip6_hdr *); /* XXX pullup? */ if (sizeof(*hip6) < ln->la_hold->m_len) { ip6->ip6_src = hip6->ip6_src; hsrc = &hip6->ip6_src; } } LLE_RUNLOCK(ln); } if (hsrc && (ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, hsrc)) != NULL) { /* ip6_src set already. */ ifa_free(ifa); } else { int error; struct sockaddr_in6 dst_sa; struct in6_addr src_in; struct ifnet *oifp; bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; oifp = ifp; error = in6_selectsrc(&dst_sa, NULL, NULL, &ro, NULL, &oifp, &src_in); if (error) { char ip6buf[INET6_ADDRSTRLEN]; nd6log((LOG_DEBUG, "%s: source can't be " "determined: dst=%s, error=%d\n", __func__, ip6_sprintf(ip6buf, &dst_sa.sin6_addr), error)); goto bad; } ip6->ip6_src = src_in; } } else { /* * Source address for DAD packet must always be IPv6 * unspecified address. (0::0) * We actually don't have to 0-clear the address (we did it * above), but we do so here explicitly to make the intention * clearer. */ bzero(&ip6->ip6_src, sizeof(ip6->ip6_src)); } nd_ns = (struct nd_neighbor_solicit *)(ip6 + 1); nd_ns->nd_ns_type = ND_NEIGHBOR_SOLICIT; nd_ns->nd_ns_code = 0; nd_ns->nd_ns_reserved = 0; nd_ns->nd_ns_target = *taddr6; in6_clearscope(&nd_ns->nd_ns_target); /* XXX */ /* * Add source link-layer address option. * * spec implementation * --- --- * DAD packet MUST NOT do not add the option * there's no link layer address: * impossible do not add the option * there's link layer address: * Multicast NS MUST add one add the option * Unicast NS SHOULD add one add the option */ if (nonce == NULL && (mac = nd6_ifptomac(ifp))) { int optlen = sizeof(struct nd_opt_hdr) + if_addrlen(ifp); struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_ns + 1); /* 8 byte alignments... */ optlen = (optlen + 7) & ~7; m->m_pkthdr.len += optlen; m->m_len += optlen; icmp6len += optlen; bzero((caddr_t)nd_opt, optlen); nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR; nd_opt->nd_opt_len = optlen >> 3; bcopy(mac, (caddr_t)(nd_opt + 1), if_addrlen(ifp)); } /* * Add a Nonce option (RFC 3971) to detect looped back NS messages. * This behavior is documented as Enhanced Duplicate Address * Detection in draft-ietf-6man-enhanced-dad-13. * net.inet6.ip6.dad_enhanced=0 disables this. */ if (V_dad_enhanced != 0 && nonce != NULL) { int optlen = sizeof(struct nd_opt_hdr) + ND_OPT_NONCE_LEN; struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_ns + 1); /* 8-byte alignment is required. */ optlen = (optlen + 7) & ~7; m->m_pkthdr.len += optlen; m->m_len += optlen; icmp6len += optlen; bzero((caddr_t)nd_opt, optlen); nd_opt->nd_opt_type = ND_OPT_NONCE; nd_opt->nd_opt_len = optlen >> 3; bcopy(nonce, (caddr_t)(nd_opt + 1), ND_OPT_NONCE_LEN); } ip6->ip6_plen = htons((u_short)icmp6len); nd_ns->nd_ns_cksum = 0; nd_ns->nd_ns_cksum = in6_cksum(m, IPPROTO_ICMPV6, sizeof(*ip6), icmp6len); if (send_sendso_input_hook != NULL) { mtag = m_tag_get(PACKET_TAG_ND_OUTGOING, sizeof(unsigned short), M_NOWAIT); if (mtag == NULL) goto bad; *(unsigned short *)(mtag + 1) = nd_ns->nd_ns_type; m_tag_prepend(m, mtag); } ip6_output(m, NULL, &ro, (nonce != NULL) ? IPV6_UNSPECSRC : 0, &im6o, NULL, NULL); icmp6_ifstat_inc(ifp, ifs6_out_msg); icmp6_ifstat_inc(ifp, ifs6_out_neighborsolicit); ICMP6STAT_INC(icp6s_outhist[ND_NEIGHBOR_SOLICIT]); /* We don't cache this route. */ RO_RTFREE(&ro); return; bad: if (ro.ro_rt) { RTFREE(ro.ro_rt); } m_freem(m); return; } #ifndef BURN_BRIDGES void nd6_ns_output(struct ifnet *ifp, const struct in6_addr *daddr6, const struct in6_addr *taddr6, struct llentry *ln, uint8_t *nonce) { nd6_ns_output_fib(ifp, daddr6, taddr6, ln, nonce, RT_DEFAULT_FIB); } #endif /* * Neighbor advertisement input handling. * * Based on RFC 2461 * Based on RFC 2462 (duplicate address detection) * * the following items are not implemented yet: * - proxy advertisement delay rule (RFC2461 7.2.8, last paragraph, SHOULD) * - anycast advertisement delay rule (RFC2461 7.2.7, SHOULD) */ void nd6_na_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp = m->m_pkthdr.rcvif; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct nd_neighbor_advert *nd_na; struct in6_addr daddr6 = ip6->ip6_dst; struct in6_addr taddr6; int flags; int is_router; int is_solicited; int is_override; char *lladdr = NULL; int lladdrlen = 0; int checklink = 0; struct ifaddr *ifa; struct llentry *ln = NULL; union nd_opts ndopts; struct mbuf *chain = NULL; struct sockaddr_in6 sin6; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; if (ip6->ip6_hlim != 255) { nd6log((LOG_ERR, "nd6_na_input: invalid hlim (%d) from %s to %s on %s\n", ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } #ifndef PULLDOWN_TEST IP6_EXTHDR_CHECK(m, off, icmp6len,); nd_na = (struct nd_neighbor_advert *)((caddr_t)ip6 + off); #else IP6_EXTHDR_GET(nd_na, struct nd_neighbor_advert *, m, off, icmp6len); if (nd_na == NULL) { ICMP6STAT_INC(icp6s_tooshort); return; } #endif flags = nd_na->nd_na_flags_reserved; is_router = ((flags & ND_NA_FLAG_ROUTER) != 0); is_solicited = ((flags & ND_NA_FLAG_SOLICITED) != 0); is_override = ((flags & ND_NA_FLAG_OVERRIDE) != 0); memset(&sin6, 0, sizeof(sin6)); taddr6 = nd_na->nd_na_target; if (in6_setscope(&taddr6, ifp, NULL)) goto bad; /* XXX: impossible */ if (IN6_IS_ADDR_MULTICAST(&taddr6)) { nd6log((LOG_ERR, "nd6_na_input: invalid target address %s\n", ip6_sprintf(ip6bufs, &taddr6))); goto bad; } if (IN6_IS_ADDR_MULTICAST(&daddr6)) if (is_solicited) { nd6log((LOG_ERR, "nd6_na_input: a solicited adv is multicasted\n")); goto bad; } icmp6len -= sizeof(*nd_na); nd6_option_init(nd_na + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "nd6_na_input: invalid ND option, ignored\n")); /* nd6_options have incremented stats */ goto freeit; } if (ndopts.nd_opts_tgt_lladdr) { lladdr = (char *)(ndopts.nd_opts_tgt_lladdr + 1); lladdrlen = ndopts.nd_opts_tgt_lladdr->nd_opt_len << 3; } /* * This effectively disables the DAD check on a non-master CARP * address. */ - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) ifa = (*carp_iamatch6_p)(ifp, &taddr6); else ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &taddr6); /* * Target address matches one of my interface address. * * If my address is tentative, this means that there's somebody * already using the same address as mine. This indicates DAD failure. * This is defined in RFC 2462. * * Otherwise, process as defined in RFC 2461. */ if (ifa && (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_TENTATIVE)) { nd6_dad_na_input(ifa); ifa_free(ifa); goto freeit; } /* Just for safety, maybe unnecessary. */ if (ifa) { ifa_free(ifa); log(LOG_ERR, "nd6_na_input: duplicate IP6 address %s\n", ip6_sprintf(ip6bufs, &taddr6)); goto freeit; } if (lladdr && ((if_addrlen(ifp) + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "nd6_na_input: lladdrlen mismatch for %s " "(if %d, NA packet %d)\n", ip6_sprintf(ip6bufs, &taddr6), if_addrlen(ifp), lladdrlen - 2)); goto bad; } /* * If no neighbor cache entry is found, NA SHOULD silently be * discarded. */ IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(&taddr6, LLE_EXCLUSIVE, ifp); IF_AFDATA_RUNLOCK(ifp); if (ln == NULL) { goto freeit; } if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* * If the link-layer has address, and no lladdr option came, * discard the packet. */ if (if_addrlen(ifp) && lladdr == NULL) { goto freeit; } /* * Record link-layer address, and update the state. */ bcopy(lladdr, &ln->ll_addr, if_addrlen(ifp)); ln->la_flags |= LLE_VALID; EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); if (is_solicited) { ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; if (!ND6_LLINFO_PERMANENT(ln)) { nd6_llinfo_settimer_locked(ln, (long)ND_IFINFO(ln->lle_tbl->llt_ifp)->reachable * hz); } } else { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); } if ((ln->ln_router = is_router) != 0) { /* * This means a router's state has changed from * non-reachable to probably reachable, and might * affect the status of associated prefixes.. */ checklink = 1; } } else { int llchange; /* * Check if the link-layer address has changed or not. */ if (lladdr == NULL) llchange = 0; else { if (ln->la_flags & LLE_VALID) { if (bcmp(lladdr, &ln->ll_addr, if_addrlen(ifp))) llchange = 1; else llchange = 0; } else llchange = 1; } /* * This is VERY complex. Look at it with care. * * override solicit lladdr llchange action * (L: record lladdr) * * 0 0 n -- (2c) * 0 0 y n (2b) L * 0 0 y y (1) REACHABLE->STALE * 0 1 n -- (2c) *->REACHABLE * 0 1 y n (2b) L *->REACHABLE * 0 1 y y (1) REACHABLE->STALE * 1 0 n -- (2a) * 1 0 y n (2a) L * 1 0 y y (2a) L *->STALE * 1 1 n -- (2a) *->REACHABLE * 1 1 y n (2a) L *->REACHABLE * 1 1 y y (2a) L *->REACHABLE */ if (!is_override && (lladdr != NULL && llchange)) { /* (1) */ /* * If state is REACHABLE, make it STALE. * no other updates should be done. */ if (ln->ln_state == ND6_LLINFO_REACHABLE) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); } goto freeit; } else if (is_override /* (2a) */ || (!is_override && (lladdr != NULL && !llchange)) /* (2b) */ || lladdr == NULL) { /* (2c) */ /* * Update link-local address, if any. */ if (lladdr != NULL) { bcopy(lladdr, &ln->ll_addr, if_addrlen(ifp)); ln->la_flags |= LLE_VALID; EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); } /* * If solicited, make the state REACHABLE. * If not solicited and the link-layer address was * changed, make it STALE. */ if (is_solicited) { ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; if (!ND6_LLINFO_PERMANENT(ln)) { nd6_llinfo_settimer_locked(ln, (long)ND_IFINFO(ifp)->reachable * hz); } } else { if (lladdr != NULL && llchange) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); } } } if (ln->ln_router && !is_router) { /* * The peer dropped the router flag. * Remove the sender from the Default Router List and * update the Destination Cache entries. */ struct nd_defrouter *dr; struct in6_addr *in6; in6 = &L3_ADDR_SIN6(ln)->sin6_addr; /* * Lock to protect the default router list. * XXX: this might be unnecessary, since this function * is only called under the network software interrupt * context. However, we keep it just for safety. */ dr = defrouter_lookup(in6, ln->lle_tbl->llt_ifp); if (dr) defrtrlist_del(dr); else if (ND_IFINFO(ln->lle_tbl->llt_ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* * Even if the neighbor is not in the default * router list, the neighbor may be used * as a next hop for some destinations * (e.g. redirect case). So we must * call rt6_flush explicitly. */ rt6_flush(&ip6->ip6_src, ifp); } } ln->ln_router = is_router; } /* XXX - QL * Does this matter? * rt->rt_flags &= ~RTF_REJECT; */ ln->la_asked = 0; if (ln->la_hold != NULL) nd6_grab_holdchain(ln, &chain, &sin6); freeit: if (ln != NULL) LLE_WUNLOCK(ln); if (chain != NULL) nd6_flush_holdchain(ifp, ifp, chain, &sin6); if (checklink) pfxlist_onlink_check(); m_freem(m); return; bad: if (ln != NULL) LLE_WUNLOCK(ln); ICMP6STAT_INC(icp6s_badna); m_freem(m); } /* * Neighbor advertisement output handling. * * Based on RFC 2461 * * the following items are not implemented yet: * - proxy advertisement delay rule (RFC2461 7.2.8, last paragraph, SHOULD) * - anycast advertisement delay rule (RFC2461 7.2.7, SHOULD) * * tlladdr - 1 if include target link-layer address * sdl0 - sockaddr_dl (= proxy NA) or NULL */ static void nd6_na_output_fib(struct ifnet *ifp, const struct in6_addr *daddr6_0, const struct in6_addr *taddr6, u_long flags, int tlladdr, struct sockaddr *sdl0, u_int fibnum) { struct mbuf *m; struct m_tag *mtag; struct ifnet *oifp; struct ip6_hdr *ip6; struct nd_neighbor_advert *nd_na; struct ip6_moptions im6o; struct in6_addr src, daddr6; struct sockaddr_in6 dst_sa; int icmp6len, maxlen, error; caddr_t mac = NULL; struct route_in6 ro; bzero(&ro, sizeof(ro)); daddr6 = *daddr6_0; /* make a local copy for modification */ /* estimate the size of message */ maxlen = sizeof(*ip6) + sizeof(*nd_na); maxlen += (sizeof(struct nd_opt_hdr) + if_addrlen(ifp) + 7) & ~7; if (max_linkhdr + maxlen >= MCLBYTES) { #ifdef DIAGNOSTIC printf("nd6_na_output: max_linkhdr + maxlen >= MCLBYTES " "(%d + %d > %d)\n", max_linkhdr, maxlen, MCLBYTES); #endif return; } if (max_linkhdr + maxlen > MHLEN) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return; M_SETFIB(m, fibnum); if (IN6_IS_ADDR_MULTICAST(&daddr6)) { m->m_flags |= M_MCAST; im6o.im6o_multicast_ifp = ifp; im6o.im6o_multicast_hlim = 255; im6o.im6o_multicast_loop = 0; } icmp6len = sizeof(*nd_na); m->m_pkthdr.len = m->m_len = sizeof(struct ip6_hdr) + icmp6len; m->m_data += max_linkhdr; /* or M_ALIGN() equivalent? */ /* fill neighbor advertisement packet */ ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_nxt = IPPROTO_ICMPV6; ip6->ip6_hlim = 255; if (IN6_IS_ADDR_UNSPECIFIED(&daddr6)) { /* reply to DAD */ daddr6.s6_addr16[0] = IPV6_ADDR_INT16_MLL; daddr6.s6_addr16[1] = 0; daddr6.s6_addr32[1] = 0; daddr6.s6_addr32[2] = 0; daddr6.s6_addr32[3] = IPV6_ADDR_INT32_ONE; if (in6_setscope(&daddr6, ifp, NULL)) goto bad; flags &= ~ND_NA_FLAG_SOLICITED; } ip6->ip6_dst = daddr6; bzero(&dst_sa, sizeof(struct sockaddr_in6)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(struct sockaddr_in6); dst_sa.sin6_addr = daddr6; /* * Select a source whose scope is the same as that of the dest. */ bcopy(&dst_sa, &ro.ro_dst, sizeof(dst_sa)); oifp = ifp; error = in6_selectsrc(&dst_sa, NULL, NULL, &ro, NULL, &oifp, &src); if (error) { char ip6buf[INET6_ADDRSTRLEN]; nd6log((LOG_DEBUG, "nd6_na_output: source can't be " "determined: dst=%s, error=%d\n", ip6_sprintf(ip6buf, &dst_sa.sin6_addr), error)); goto bad; } ip6->ip6_src = src; nd_na = (struct nd_neighbor_advert *)(ip6 + 1); nd_na->nd_na_type = ND_NEIGHBOR_ADVERT; nd_na->nd_na_code = 0; nd_na->nd_na_target = *taddr6; in6_clearscope(&nd_na->nd_na_target); /* XXX */ /* * "tlladdr" indicates NS's condition for adding tlladdr or not. * see nd6_ns_input() for details. * Basically, if NS packet is sent to unicast/anycast addr, * target lladdr option SHOULD NOT be included. */ if (tlladdr) { /* * sdl0 != NULL indicates proxy NA. If we do proxy, use * lladdr in sdl0. If we are not proxying (sending NA for * my address) use lladdr configured for the interface. */ if (sdl0 == NULL) { - if (ifp->if_carp) + if (if_getsoftc(ifp, IF_CARP) != NULL) mac = (*carp_macmatch6_p)(ifp, m, taddr6); if (mac == NULL) mac = nd6_ifptomac(ifp); } else if (sdl0->sa_family == AF_LINK) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)sdl0; if (sdl->sdl_alen == if_addrlen(ifp)) mac = LLADDR(sdl); } } if (tlladdr && mac) { int optlen = sizeof(struct nd_opt_hdr) + if_addrlen(ifp); struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_na + 1); /* roundup to 8 bytes alignment! */ optlen = (optlen + 7) & ~7; m->m_pkthdr.len += optlen; m->m_len += optlen; icmp6len += optlen; bzero((caddr_t)nd_opt, optlen); nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR; nd_opt->nd_opt_len = optlen >> 3; bcopy(mac, (caddr_t)(nd_opt + 1), if_addrlen(ifp)); } else flags &= ~ND_NA_FLAG_OVERRIDE; ip6->ip6_plen = htons((u_short)icmp6len); nd_na->nd_na_flags_reserved = flags; nd_na->nd_na_cksum = 0; nd_na->nd_na_cksum = in6_cksum(m, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), icmp6len); if (send_sendso_input_hook != NULL) { mtag = m_tag_get(PACKET_TAG_ND_OUTGOING, sizeof(unsigned short), M_NOWAIT); if (mtag == NULL) goto bad; *(unsigned short *)(mtag + 1) = nd_na->nd_na_type; m_tag_prepend(m, mtag); } ip6_output(m, NULL, &ro, 0, &im6o, NULL, NULL); icmp6_ifstat_inc(ifp, ifs6_out_msg); icmp6_ifstat_inc(ifp, ifs6_out_neighboradvert); ICMP6STAT_INC(icp6s_outhist[ND_NEIGHBOR_ADVERT]); /* We don't cache this route. */ RO_RTFREE(&ro); return; bad: if (ro.ro_rt) { RTFREE(ro.ro_rt); } m_freem(m); return; } #ifndef BURN_BRIDGES void nd6_na_output(struct ifnet *ifp, const struct in6_addr *daddr6_0, const struct in6_addr *taddr6, u_long flags, int tlladdr, struct sockaddr *sdl0) { nd6_na_output_fib(ifp, daddr6_0, taddr6, flags, tlladdr, sdl0, RT_DEFAULT_FIB); } #endif caddr_t nd6_ifptomac(struct ifnet *ifp) { switch (if_type(ifp)) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: #ifdef IFT_L2VLAN case IFT_L2VLAN: #endif #ifdef IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_INFINIBAND: case IFT_BRIDGE: case IFT_ISO88025: return if_lladdr(ifp); default: return NULL; } } struct dadq { TAILQ_ENTRY(dadq) dad_list; struct ifaddr *dad_ifa; int dad_count; /* max NS to send */ int dad_ns_tcount; /* # of trials to send NS */ int dad_ns_ocount; /* NS sent so far */ int dad_ns_icount; int dad_na_icount; int dad_ns_lcount; /* looped back NS */ int dad_loopbackprobe; /* probing state for loopback detection */ struct callout dad_timer_ch; struct vnet *dad_vnet; u_int dad_refcnt; #define ND_OPT_NONCE_LEN32 \ ((ND_OPT_NONCE_LEN + sizeof(uint32_t) - 1)/sizeof(uint32_t)) uint32_t dad_nonce[ND_OPT_NONCE_LEN32]; }; static VNET_DEFINE(TAILQ_HEAD(, dadq), dadq); static VNET_DEFINE(struct rwlock, dad_rwlock); #define V_dadq VNET(dadq) #define V_dad_rwlock VNET(dad_rwlock) #define DADQ_RLOCK() rw_rlock(&V_dad_rwlock) #define DADQ_RUNLOCK() rw_runlock(&V_dad_rwlock) #define DADQ_WLOCK() rw_wlock(&V_dad_rwlock) #define DADQ_WUNLOCK() rw_wunlock(&V_dad_rwlock) static void nd6_dad_add(struct dadq *dp) { DADQ_WLOCK(); TAILQ_INSERT_TAIL(&V_dadq, dp, dad_list); DADQ_WUNLOCK(); } static void nd6_dad_del(struct dadq *dp) { DADQ_WLOCK(); TAILQ_REMOVE(&V_dadq, dp, dad_list); DADQ_WUNLOCK(); nd6_dad_rele(dp); } static struct dadq * nd6_dad_find(struct ifaddr *ifa, struct nd_opt_nonce *n) { struct dadq *dp; DADQ_RLOCK(); TAILQ_FOREACH(dp, &V_dadq, dad_list) { if (dp->dad_ifa != ifa) continue; /* * Skip if the nonce matches the received one. * +2 in the length is required because of type and * length fields are included in a header. */ if (n != NULL && n->nd_opt_nonce_len == (ND_OPT_NONCE_LEN + 2) / 8 && memcmp(&n->nd_opt_nonce[0], &dp->dad_nonce[0], ND_OPT_NONCE_LEN) == 0) { dp->dad_ns_lcount++; continue; } refcount_acquire(&dp->dad_refcnt); break; } DADQ_RUNLOCK(); return (dp); } static void nd6_dad_starttimer(struct dadq *dp, int ticks) { callout_reset(&dp->dad_timer_ch, ticks, (void (*)(void *))nd6_dad_timer, (void *)dp); } static void nd6_dad_stoptimer(struct dadq *dp) { callout_drain(&dp->dad_timer_ch); } static void nd6_dad_rele(struct dadq *dp) { if (refcount_release(&dp->dad_refcnt)) { ifa_free(dp->dad_ifa); free(dp, M_IP6NDP); } } void nd6_dad_init(void) { rw_init(&V_dad_rwlock, "nd6 DAD queue"); TAILQ_INIT(&V_dadq); } /* * Start Duplicate Address Detection (DAD) for specified interface address. */ void nd6_dad_start(struct ifaddr *ifa, int delay) { struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa; struct dadq *dp; char ip6buf[INET6_ADDRSTRLEN]; /* * If we don't need DAD, don't do it. * There are several cases: * - DAD is disabled (ip6_dad_count == 0) * - the interface address is anycast */ if (!(ia->ia6_flags & IN6_IFF_TENTATIVE)) { log(LOG_DEBUG, "nd6_dad_start: called with non-tentative address " "%s(%s)\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); return; } if (ia->ia6_flags & IN6_IFF_ANYCAST) { ia->ia6_flags &= ~IN6_IFF_TENTATIVE; return; } if (!V_ip6_dad_count) { ia->ia6_flags &= ~IN6_IFF_TENTATIVE; return; } if (ifa->ifa_ifp == NULL) panic("nd6_dad_start: ifa->ifa_ifp == NULL"); if (!(ifa->ifa_ifp->if_flags & IFF_UP)) { return; } if (ND_IFINFO(ifa->ifa_ifp)->flags & ND6_IFF_IFDISABLED) return; if ((dp = nd6_dad_find(ifa, NULL)) != NULL) { /* DAD already in progress */ nd6_dad_rele(dp); return; } dp = malloc(sizeof(*dp), M_IP6NDP, M_NOWAIT | M_ZERO); if (dp == NULL) { log(LOG_ERR, "nd6_dad_start: memory allocation failed for " "%s(%s)\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); return; } callout_init(&dp->dad_timer_ch, 0); #ifdef VIMAGE dp->dad_vnet = curvnet; #endif nd6log((LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp), ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); /* * Send NS packet for DAD, ip6_dad_count times. * Note that we must delay the first transmission, if this is the * first packet to be sent from the interface after interface * (re)initialization. */ dp->dad_ifa = ifa; ifa_ref(dp->dad_ifa); dp->dad_count = V_ip6_dad_count; dp->dad_ns_icount = dp->dad_na_icount = 0; dp->dad_ns_ocount = dp->dad_ns_tcount = 0; dp->dad_ns_lcount = dp->dad_loopbackprobe = 0; refcount_init(&dp->dad_refcnt, 1); nd6_dad_add(dp); if (delay == 0) { nd6_dad_ns_output(dp, ifa); nd6_dad_starttimer(dp, (long)ND_IFINFO(ifa->ifa_ifp)->retrans * hz / 1000); } else { nd6_dad_starttimer(dp, delay); } } /* * terminate DAD unconditionally. used for address removals. */ void nd6_dad_stop(struct ifaddr *ifa) { struct dadq *dp; dp = nd6_dad_find(ifa, NULL); if (!dp) { /* DAD wasn't started yet */ return; } nd6_dad_stoptimer(dp); /* * The DAD queue entry may have been removed by nd6_dad_timer() while * we were waiting for it to stop, so re-do the lookup. */ nd6_dad_rele(dp); if (nd6_dad_find(ifa, NULL) == NULL) return; nd6_dad_del(dp); nd6_dad_rele(dp); } static void nd6_dad_timer(struct dadq *dp) { CURVNET_SET(dp->dad_vnet); struct ifaddr *ifa = dp->dad_ifa; struct ifnet *ifp = dp->dad_ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa; char ip6buf[INET6_ADDRSTRLEN]; /* Sanity check */ if (ia == NULL) { log(LOG_ERR, "nd6_dad_timer: called with null parameter\n"); goto err; } if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { /* Do not need DAD for ifdisabled interface. */ log(LOG_ERR, "nd6_dad_timer: cancel DAD on %s because of " "ND6_IFF_IFDISABLED.\n", ifp->if_xname); goto err; } if (ia->ia6_flags & IN6_IFF_DUPLICATED) { log(LOG_ERR, "nd6_dad_timer: called with duplicated address " "%s(%s)\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); goto err; } if ((ia->ia6_flags & IN6_IFF_TENTATIVE) == 0) { log(LOG_ERR, "nd6_dad_timer: called with non-tentative address " "%s(%s)\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); goto err; } /* Stop DAD if the interface is down even after dad_maxtry attempts. */ if ((dp->dad_ns_tcount > V_dad_maxtry) && ((ifp->if_flags & IFF_UP) == 0)) { nd6log((LOG_INFO, "%s: could not run DAD, driver problem?\n", if_name(ifa->ifa_ifp))); goto err; } /* Need more checks? */ if (dp->dad_ns_ocount < dp->dad_count) { /* * We have more NS to go. Send NS packet for DAD. */ nd6_dad_ns_output(dp, ifa); nd6_dad_starttimer(dp, (long)ND_IFINFO(ifa->ifa_ifp)->retrans * hz / 1000); goto done; } else { /* * We have transmitted sufficient number of DAD packets. * See what we've got. */ if (dp->dad_ns_icount > 0 || dp->dad_na_icount > 0) /* We've seen NS or NA, means DAD has failed. */ nd6_dad_duplicated(ifa, dp); else if (V_dad_enhanced != 0 && dp->dad_ns_lcount > 0 && dp->dad_ns_lcount > dp->dad_loopbackprobe) { /* * A looped back probe is detected, * Sec. 4.1 in draft-ietf-6man-enhanced-dad-13 * requires transmission of additional probes until * the loopback condition becomes clear. */ log(LOG_ERR, "%s: a looped back NS message is " "detected during DAD for %s. " "Another DAD probes are being sent.\n", if_name(ifa->ifa_ifp), ip6_sprintf(ip6buf, IFA_IN6(ifa))); dp->dad_loopbackprobe = dp->dad_ns_lcount; /* * An interface with IGNORELOOP is one which a * loopback is permanently expected while regular * traffic works. In that case, stop DAD after * MAX_MULTICAST_SOLICIT number of NS messages * regardless of the number of received loopback NS * by increasing dad_loopbackprobe in advance. */ if (ND_IFINFO(ifa->ifa_ifp)->flags & ND6_IFF_IGNORELOOP) dp->dad_loopbackprobe += V_nd6_mmaxtries; /* * Send an NS immediately and increase dad_count by * V_nd6_mmaxtries - 1. */ nd6_dad_ns_output(dp, ifa); dp->dad_count = dp->dad_ns_ocount + V_nd6_mmaxtries - 1; nd6_dad_starttimer(dp, (long)ND_IFINFO(ifa->ifa_ifp)->retrans * hz / 1000); goto done; } else { /* * We are done with DAD. No NA came, no NS came. * No duplicate address found. Check IFDISABLED flag * again in case that it is changed between the * beginning of this function and here. */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) == 0) ia->ia6_flags &= ~IN6_IFF_TENTATIVE; nd6log((LOG_DEBUG, "%s: DAD complete for %s - no duplicates found\n", if_name(ifa->ifa_ifp), ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); if (dp->dad_ns_lcount > 0) log(LOG_ERR, "%s: DAD completed while " "a looped back NS message is detected " "during DAD for %s.\n", if_name(ifa->ifa_ifp), ip6_sprintf(ip6buf, IFA_IN6(ifa))); } } err: nd6_dad_del(dp); done: CURVNET_RESTORE(); } static void nd6_dad_duplicated(struct ifaddr *ifa, struct dadq *dp) { struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa; struct ifnet *ifp; char ip6buf[INET6_ADDRSTRLEN]; log(LOG_ERR, "%s: DAD detected duplicate IPv6 address %s: " "NS in/out/loopback=%d/%d/%d, NA in=%d\n", if_name(ifa->ifa_ifp), ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr), dp->dad_ns_icount, dp->dad_ns_ocount, dp->dad_ns_lcount, dp->dad_na_icount); ia->ia6_flags &= ~IN6_IFF_TENTATIVE; ia->ia6_flags |= IN6_IFF_DUPLICATED; ifp = ifa->ifa_ifp; log(LOG_ERR, "%s: DAD complete for %s - duplicate found\n", if_name(ifp), ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr)); log(LOG_ERR, "%s: manual intervention required\n", if_name(ifp)); /* * If the address is a link-local address formed from an interface * identifier based on the hardware address which is supposed to be * uniquely assigned (e.g., EUI-64 for an Ethernet interface), IP * operation on the interface SHOULD be disabled. * [RFC 4862, Section 5.4.5] */ if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { struct in6_addr in6; /* * To avoid over-reaction, we only apply this logic when we are * very sure that hardware addresses are supposed to be unique. */ switch (if_type(ifp)) { case IFT_ETHER: case IFT_FDDI: case IFT_ATM: case IFT_IEEE1394: #ifdef IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_INFINIBAND: in6 = ia->ia_addr.sin6_addr; if (in6_get_hw_ifid(ifp, &in6) == 0 && IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, &in6)) { ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "%s: possible hardware address " "duplication detected, disable IPv6\n", if_name(ifp)); } break; default: break; } } } static void nd6_dad_ns_output(struct dadq *dp, struct ifaddr *ifa) { struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa; struct ifnet *ifp = ifa->ifa_ifp; int i; dp->dad_ns_tcount++; if ((ifp->if_flags & IFF_UP) == 0) { return; } dp->dad_ns_ocount++; if (V_dad_enhanced != 0) { for (i = 0; i < ND_OPT_NONCE_LEN32; i++) dp->dad_nonce[i] = arc4random(); /* * XXXHRS: Note that in the case that * DupAddrDetectTransmits > 1, multiple NS messages with * different nonces can be looped back in an unexpected * order. The current implementation recognizes only * the latest nonce on the sender side. Practically it * should work well in almost all cases. */ } nd6_ns_output(ifp, NULL, &ia->ia_addr.sin6_addr, NULL, (uint8_t *)&dp->dad_nonce[0]); } static void nd6_dad_ns_input(struct ifaddr *ifa, struct nd_opt_nonce *ndopt_nonce) { struct in6_ifaddr *ia; struct ifnet *ifp; const struct in6_addr *taddr6; struct dadq *dp; if (ifa == NULL) panic("ifa == NULL in nd6_dad_ns_input"); ia = (struct in6_ifaddr *)ifa; ifp = ifa->ifa_ifp; taddr6 = &ia->ia_addr.sin6_addr; /* Ignore Nonce option when Enhanced DAD is disabled. */ if (V_dad_enhanced == 0) ndopt_nonce = NULL; dp = nd6_dad_find(ifa, ndopt_nonce); if (dp == NULL) return; dp->dad_ns_icount++; nd6_dad_rele(dp); } static void nd6_dad_na_input(struct ifaddr *ifa) { struct dadq *dp; if (ifa == NULL) panic("ifa == NULL in nd6_dad_na_input"); dp = nd6_dad_find(ifa, NULL); if (dp != NULL) { dp->dad_na_icount++; nd6_dad_rele(dp); } }