Index: head/libexec/rtld-elf/rtld.c
===================================================================
--- head/libexec/rtld-elf/rtld.c	(revision 281004)
+++ head/libexec/rtld-elf/rtld.c	(revision 281005)
@@ -1,5071 +1,5070 @@
 /*-
  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
  * Copyright 2012 John Marino <draco@marino.st>.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 /*
  * Dynamic linker for ELF.
  *
  * John Polstra <jdp@polstra.com>.
  */
 
 #ifndef __GNUC__
 #error "GCC is needed to compile this file"
 #endif
 
 #include <sys/param.h>
 #include <sys/mount.h>
 #include <sys/mman.h>
 #include <sys/stat.h>
 #include <sys/sysctl.h>
 #include <sys/uio.h>
 #include <sys/utsname.h>
 #include <sys/ktrace.h>
 
 #include <dlfcn.h>
 #include <err.h>
 #include <errno.h>
 #include <fcntl.h>
 #include <stdarg.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
 
 #include "debug.h"
 #include "rtld.h"
 #include "libmap.h"
 #include "rtld_tls.h"
 #include "rtld_printf.h"
 #include "notes.h"
 
 #ifndef COMPAT_32BIT
 #define PATH_RTLD	"/libexec/ld-elf.so.1"
 #else
 #define PATH_RTLD	"/libexec/ld-elf32.so.1"
 #endif
 
 /* Types. */
 typedef void (*func_ptr_type)();
 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
 
 /*
  * Function declarations.
  */
 static const char *basename(const char *);
-static void die(void) __dead2;
 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
     const Elf_Dyn **, const Elf_Dyn **);
 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
     const Elf_Dyn *);
 static void digest_dynamic(Obj_Entry *, int);
 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
 static Obj_Entry *dlcheck(void *);
 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
     int lo_flags, int mode, RtldLockState *lockstate);
 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
 static bool donelist_check(DoneList *, const Obj_Entry *);
 static void errmsg_restore(char *);
 static char *errmsg_save(void);
 static void *fill_search_info(const char *, size_t, void *);
 static char *find_library(const char *, const Obj_Entry *, int *);
 static const char *gethints(bool);
 static void init_dag(Obj_Entry *);
 static void init_pagesizes(Elf_Auxinfo **aux_info);
 static void init_rtld(caddr_t, Elf_Auxinfo **);
 static void initlist_add_neededs(Needed_Entry *, Objlist *);
 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
 static void linkmap_add(Obj_Entry *);
 static void linkmap_delete(Obj_Entry *);
 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
 static void unload_filtees(Obj_Entry *);
 static int load_needed_objects(Obj_Entry *, int);
 static int load_preload_objects(void);
 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
 static void map_stacks_exec(RtldLockState *);
 static Obj_Entry *obj_from_addr(const void *);
 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
 static void objlist_call_init(Objlist *, RtldLockState *);
 static void objlist_clear(Objlist *);
 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
 static void objlist_init(Objlist *);
 static void objlist_push_head(Objlist *, Obj_Entry *);
 static void objlist_push_tail(Objlist *, Obj_Entry *);
 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
 static void objlist_remove(Objlist *, Obj_Entry *);
 static int parse_libdir(const char *);
 static void *path_enumerate(const char *, path_enum_proc, void *);
 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate);
 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
     RtldLockState *);
 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
     int flags, RtldLockState *lockstate);
 static int rtld_dirname(const char *, char *);
 static int rtld_dirname_abs(const char *, char *);
 static void *rtld_dlopen(const char *name, int fd, int mode);
 static void rtld_exit(void);
 static char *search_library_path(const char *, const char *);
 static char *search_library_pathfds(const char *, const char *, int *);
 static const void **get_program_var_addr(const char *, RtldLockState *);
 static void set_program_var(const char *, const void *);
 static int symlook_default(SymLook *, const Obj_Entry *refobj);
 static int symlook_global(SymLook *, DoneList *);
 static void symlook_init_from_req(SymLook *, const SymLook *);
 static int symlook_list(SymLook *, const Objlist *, DoneList *);
 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
 static void trace_loaded_objects(Obj_Entry *);
 static void unlink_object(Obj_Entry *);
 static void unload_object(Obj_Entry *);
 static void unref_dag(Obj_Entry *);
 static void ref_dag(Obj_Entry *);
 static char *origin_subst_one(char *, const char *, const char *, bool);
 static char *origin_subst(char *, const char *);
 static void preinit_main(void);
 static int  rtld_verify_versions(const Objlist *);
 static int  rtld_verify_object_versions(Obj_Entry *);
 static void object_add_name(Obj_Entry *, const char *);
 static int  object_match_name(const Obj_Entry *, const char *);
 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
     struct dl_phdr_info *phdr_info);
 static uint32_t gnu_hash(const char *);
 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
     const unsigned long);
 
 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
 void _r_debug_postinit(struct link_map *) __noinline __exported;
 
 int __sys_openat(int, const char *, int, ...);
 
 /*
  * Data declarations.
  */
 static char *error_message;	/* Message for dlerror(), or NULL */
 struct r_debug r_debug __exported;	/* for GDB; */
 static bool libmap_disable;	/* Disable libmap */
 static bool ld_loadfltr;	/* Immediate filters processing */
 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
 static bool trust;		/* False for setuid and setgid programs */
 static bool dangerous_ld_env;	/* True if environment variables have been
 				   used to affect the libraries loaded */
 static char *ld_bind_now;	/* Environment variable for immediate binding */
 static char *ld_debug;		/* Environment variable for debugging */
 static char *ld_library_path;	/* Environment variable for search path */
 static char *ld_library_dirs;	/* Environment variable for library descriptors */
 static char *ld_preload;	/* Environment variable for libraries to
 				   load first */
 static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
 static char *ld_tracing;	/* Called from ldd to print libs */
 static char *ld_utrace;		/* Use utrace() to log events. */
 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
 static Obj_Entry **obj_tail;	/* Link field of last object in list */
 static Obj_Entry *obj_main;	/* The main program shared object */
 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
 static unsigned int obj_count;	/* Number of objects in obj_list */
 static unsigned int obj_loads;	/* Number of objects in obj_list */
 
 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
   STAILQ_HEAD_INITIALIZER(list_global);
 static Objlist list_main =	/* Objects loaded at program startup */
   STAILQ_HEAD_INITIALIZER(list_main);
 static Objlist list_fini =	/* Objects needing fini() calls */
   STAILQ_HEAD_INITIALIZER(list_fini);
 
 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
 
 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
 
 extern Elf_Dyn _DYNAMIC;
 #pragma weak _DYNAMIC
 #ifndef RTLD_IS_DYNAMIC
 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
 #endif
 
 int dlclose(void *) __exported;
 char *dlerror(void) __exported;
 void *dlopen(const char *, int) __exported;
 void *fdlopen(int, int) __exported;
 void *dlsym(void *, const char *) __exported;
 dlfunc_t dlfunc(void *, const char *) __exported;
 void *dlvsym(void *, const char *, const char *) __exported;
 int dladdr(const void *, Dl_info *) __exported;
 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
 int dlinfo(void *, int , void *) __exported;
 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
 int _rtld_get_stack_prot(void) __exported;
 int _rtld_is_dlopened(void *) __exported;
 void _rtld_error(const char *, ...) __exported;
 
 int npagesizes, osreldate;
 size_t *pagesizes;
 
 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
 
 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
 static int max_stack_flags;
 
 /*
  * Global declarations normally provided by crt1.  The dynamic linker is
  * not built with crt1, so we have to provide them ourselves.
  */
 char *__progname;
 char **environ;
 
 /*
  * Used to pass argc, argv to init functions.
  */
 int main_argc;
 char **main_argv;
 
 /*
  * Globals to control TLS allocation.
  */
 size_t tls_last_offset;		/* Static TLS offset of last module */
 size_t tls_last_size;		/* Static TLS size of last module */
 size_t tls_static_space;	/* Static TLS space allocated */
 size_t tls_static_max_align;
 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
 int tls_max_index = 1;		/* Largest module index allocated */
 
 bool ld_library_path_rpath = false;
 
 /*
  * Fill in a DoneList with an allocation large enough to hold all of
  * the currently-loaded objects.  Keep this as a macro since it calls
  * alloca and we want that to occur within the scope of the caller.
  */
 #define donelist_init(dlp)					\
     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
     assert((dlp)->objs != NULL),				\
     (dlp)->num_alloc = obj_count,				\
     (dlp)->num_used = 0)
 
 #define	UTRACE_DLOPEN_START		1
 #define	UTRACE_DLOPEN_STOP		2
 #define	UTRACE_DLCLOSE_START		3
 #define	UTRACE_DLCLOSE_STOP		4
 #define	UTRACE_LOAD_OBJECT		5
 #define	UTRACE_UNLOAD_OBJECT		6
 #define	UTRACE_ADD_RUNDEP		7
 #define	UTRACE_PRELOAD_FINISHED		8
 #define	UTRACE_INIT_CALL		9
 #define	UTRACE_FINI_CALL		10
 #define	UTRACE_DLSYM_START		11
 #define	UTRACE_DLSYM_STOP		12
 
 struct utrace_rtld {
 	char sig[4];			/* 'RTLD' */
 	int event;
 	void *handle;
 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
 	size_t mapsize;
 	int refcnt;			/* Used for 'mode' */
 	char name[MAXPATHLEN];
 };
 
 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
 	if (ld_utrace != NULL)					\
 		ld_utrace_log(e, h, mb, ms, r, n);		\
 } while (0)
 
 static void
 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
     int refcnt, const char *name)
 {
 	struct utrace_rtld ut;
 
 	ut.sig[0] = 'R';
 	ut.sig[1] = 'T';
 	ut.sig[2] = 'L';
 	ut.sig[3] = 'D';
 	ut.event = event;
 	ut.handle = handle;
 	ut.mapbase = mapbase;
 	ut.mapsize = mapsize;
 	ut.refcnt = refcnt;
 	bzero(ut.name, sizeof(ut.name));
 	if (name)
 		strlcpy(ut.name, name, sizeof(ut.name));
 	utrace(&ut, sizeof(ut));
 }
 
 /*
  * Main entry point for dynamic linking.  The first argument is the
  * stack pointer.  The stack is expected to be laid out as described
  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
  * Specifically, the stack pointer points to a word containing
  * ARGC.  Following that in the stack is a null-terminated sequence
  * of pointers to argument strings.  Then comes a null-terminated
  * sequence of pointers to environment strings.  Finally, there is a
  * sequence of "auxiliary vector" entries.
  *
  * The second argument points to a place to store the dynamic linker's
  * exit procedure pointer and the third to a place to store the main
  * program's object.
  *
  * The return value is the main program's entry point.
  */
 func_ptr_type
 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
 {
     Elf_Auxinfo *aux_info[AT_COUNT];
     int i;
     int argc;
     char **argv;
     char **env;
     Elf_Auxinfo *aux;
     Elf_Auxinfo *auxp;
     const char *argv0;
     Objlist_Entry *entry;
     Obj_Entry *obj;
     Obj_Entry **preload_tail;
     Obj_Entry *last_interposer;
     Objlist initlist;
     RtldLockState lockstate;
     char *library_path_rpath;
     int mib[2];
     size_t len;
 
     /*
      * On entry, the dynamic linker itself has not been relocated yet.
      * Be very careful not to reference any global data until after
      * init_rtld has returned.  It is OK to reference file-scope statics
      * and string constants, and to call static and global functions.
      */
 
     /* Find the auxiliary vector on the stack. */
     argc = *sp++;
     argv = (char **) sp;
     sp += argc + 1;	/* Skip over arguments and NULL terminator */
     env = (char **) sp;
     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
 	;
     aux = (Elf_Auxinfo *) sp;
 
     /* Digest the auxiliary vector. */
     for (i = 0;  i < AT_COUNT;  i++)
 	aux_info[i] = NULL;
     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
 	if (auxp->a_type < AT_COUNT)
 	    aux_info[auxp->a_type] = auxp;
     }
 
     /* Initialize and relocate ourselves. */
     assert(aux_info[AT_BASE] != NULL);
     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
 
     __progname = obj_rtld.path;
     argv0 = argv[0] != NULL ? argv[0] : "(null)";
     environ = env;
     main_argc = argc;
     main_argv = argv;
 
     if (aux_info[AT_CANARY] != NULL &&
 	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
 	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
 	    if (i > sizeof(__stack_chk_guard))
 		    i = sizeof(__stack_chk_guard);
 	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
     } else {
 	mib[0] = CTL_KERN;
 	mib[1] = KERN_ARND;
 
 	len = sizeof(__stack_chk_guard);
 	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
 	    len != sizeof(__stack_chk_guard)) {
 		/* If sysctl was unsuccessful, use the "terminator canary". */
 		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
 		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
 		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
 		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
 	}
     }
 
     trust = !issetugid();
 
     ld_bind_now = getenv(LD_ "BIND_NOW");
     /* 
      * If the process is tainted, then we un-set the dangerous environment
      * variables.  The process will be marked as tainted until setuid(2)
      * is called.  If any child process calls setuid(2) we do not want any
      * future processes to honor the potentially un-safe variables.
      */
     if (!trust) {
         if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
 	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBRARY_PATH_FDS") ||
 	    unsetenv(LD_ "LIBMAP_DISABLE") ||
 	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
 	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
 		_rtld_error("environment corrupt; aborting");
-		die();
+		rtld_die();
 	}
     }
     ld_debug = getenv(LD_ "DEBUG");
     libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
     libmap_override = getenv(LD_ "LIBMAP");
     ld_library_path = getenv(LD_ "LIBRARY_PATH");
     ld_library_dirs = getenv(LD_ "LIBRARY_PATH_FDS");
     ld_preload = getenv(LD_ "PRELOAD");
     ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
     ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
     library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
     if (library_path_rpath != NULL) {
 	    if (library_path_rpath[0] == 'y' ||
 		library_path_rpath[0] == 'Y' ||
 		library_path_rpath[0] == '1')
 		    ld_library_path_rpath = true;
 	    else
 		    ld_library_path_rpath = false;
     }
     dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
 	(ld_library_path != NULL) || (ld_preload != NULL) ||
 	(ld_elf_hints_path != NULL) || ld_loadfltr;
     ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
     ld_utrace = getenv(LD_ "UTRACE");
 
     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
 	ld_elf_hints_path = _PATH_ELF_HINTS;
 
     if (ld_debug != NULL && *ld_debug != '\0')
 	debug = 1;
     dbg("%s is initialized, base address = %p", __progname,
 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
 
     dbg("initializing thread locks");
     lockdflt_init();
 
     /*
      * Load the main program, or process its program header if it is
      * already loaded.
      */
     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
 	dbg("loading main program");
 	obj_main = map_object(fd, argv0, NULL);
 	close(fd);
 	if (obj_main == NULL)
-	    die();
+	    rtld_die();
 	max_stack_flags = obj->stack_flags;
     } else {				/* Main program already loaded. */
 	const Elf_Phdr *phdr;
 	int phnum;
 	caddr_t entry;
 
 	dbg("processing main program's program header");
 	assert(aux_info[AT_PHDR] != NULL);
 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
 	assert(aux_info[AT_PHNUM] != NULL);
 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
 	assert(aux_info[AT_PHENT] != NULL);
 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
 	assert(aux_info[AT_ENTRY] != NULL);
 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
-	    die();
+	    rtld_die();
     }
 
     if (aux_info[AT_EXECPATH] != 0) {
 	    char *kexecpath;
 	    char buf[MAXPATHLEN];
 
 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
 	    if (kexecpath[0] == '/')
 		    obj_main->path = kexecpath;
 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
 		    obj_main->path = xstrdup(argv0);
 	    else
 		    obj_main->path = xstrdup(buf);
     } else {
 	    dbg("No AT_EXECPATH");
 	    obj_main->path = xstrdup(argv0);
     }
     dbg("obj_main path %s", obj_main->path);
     obj_main->mainprog = true;
 
     if (aux_info[AT_STACKPROT] != NULL &&
       aux_info[AT_STACKPROT]->a_un.a_val != 0)
 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
 
 #ifndef COMPAT_32BIT
     /*
      * Get the actual dynamic linker pathname from the executable if
      * possible.  (It should always be possible.)  That ensures that
      * gdb will find the right dynamic linker even if a non-standard
      * one is being used.
      */
     if (obj_main->interp != NULL &&
       strcmp(obj_main->interp, obj_rtld.path) != 0) {
 	free(obj_rtld.path);
 	obj_rtld.path = xstrdup(obj_main->interp);
         __progname = obj_rtld.path;
     }
 #endif
 
     digest_dynamic(obj_main, 0);
     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
 	obj_main->dynsymcount);
 
     linkmap_add(obj_main);
     linkmap_add(&obj_rtld);
 
     /* Link the main program into the list of objects. */
     *obj_tail = obj_main;
     obj_tail = &obj_main->next;
     obj_count++;
     obj_loads++;
 
     /* Initialize a fake symbol for resolving undefined weak references. */
     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
     sym_zero.st_shndx = SHN_UNDEF;
     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
 
     if (!libmap_disable)
         libmap_disable = (bool)lm_init(libmap_override);
 
     dbg("loading LD_PRELOAD libraries");
     if (load_preload_objects() == -1)
-	die();
+	rtld_die();
     preload_tail = obj_tail;
 
     dbg("loading needed objects");
     if (load_needed_objects(obj_main, 0) == -1)
-	die();
+	rtld_die();
 
     /* Make a list of all objects loaded at startup. */
     last_interposer = obj_main;
     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
 	if (obj->z_interpose && obj != obj_main) {
 	    objlist_put_after(&list_main, last_interposer, obj);
 	    last_interposer = obj;
 	} else {
 	    objlist_push_tail(&list_main, obj);
 	}
     	obj->refcount++;
     }
 
     dbg("checking for required versions");
     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
-	die();
+	rtld_die();
 
     if (ld_tracing) {		/* We're done */
 	trace_loaded_objects(obj_main);
 	exit(0);
     }
 
     if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
        dump_relocations(obj_main);
        exit (0);
     }
 
     /*
      * Processing tls relocations requires having the tls offsets
      * initialized.  Prepare offsets before starting initial
      * relocation processing.
      */
     dbg("initializing initial thread local storage offsets");
     STAILQ_FOREACH(entry, &list_main, link) {
 	/*
 	 * Allocate all the initial objects out of the static TLS
 	 * block even if they didn't ask for it.
 	 */
 	allocate_tls_offset(entry->obj);
     }
 
     if (relocate_objects(obj_main,
       ld_bind_now != NULL && *ld_bind_now != '\0',
       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
-	die();
+	rtld_die();
 
     dbg("doing copy relocations");
     if (do_copy_relocations(obj_main) == -1)
-	die();
+	rtld_die();
 
     if (getenv(LD_ "DUMP_REL_POST") != NULL) {
        dump_relocations(obj_main);
        exit (0);
     }
 
     /*
      * Setup TLS for main thread.  This must be done after the
      * relocations are processed, since tls initialization section
      * might be the subject for relocations.
      */
     dbg("initializing initial thread local storage");
     allocate_initial_tls(obj_list);
 
     dbg("initializing key program variables");
     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
     set_program_var("environ", env);
     set_program_var("__elf_aux_vector", aux);
 
     /* Make a list of init functions to call. */
     objlist_init(&initlist);
     initlist_add_objects(obj_list, preload_tail, &initlist);
 
     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
 
     map_stacks_exec(NULL);
 
     dbg("resolving ifuncs");
     if (resolve_objects_ifunc(obj_main,
       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
       NULL) == -1)
-	die();
+	rtld_die();
 
     if (!obj_main->crt_no_init) {
 	/*
 	 * Make sure we don't call the main program's init and fini
 	 * functions for binaries linked with old crt1 which calls
 	 * _init itself.
 	 */
 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
 	obj_main->preinit_array = obj_main->init_array =
 	    obj_main->fini_array = (Elf_Addr)NULL;
     }
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     if (obj_main->crt_no_init)
 	preinit_main();
     objlist_call_init(&initlist, &lockstate);
     _r_debug_postinit(&obj_main->linkmap);
     objlist_clear(&initlist);
     dbg("loading filtees");
     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
 	if (ld_loadfltr || obj->z_loadfltr)
 	    load_filtees(obj, 0, &lockstate);
     }
     lock_release(rtld_bind_lock, &lockstate);
 
     dbg("transferring control to program entry point = %p", obj_main->entry);
 
     /* Return the exit procedure and the program entry point. */
     *exit_proc = rtld_exit;
     *objp = obj_main;
     return (func_ptr_type) obj_main->entry;
 }
 
 void *
 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
 {
 	void *ptr;
 	Elf_Addr target;
 
 	ptr = (void *)make_function_pointer(def, obj);
 	target = ((Elf_Addr (*)(void))ptr)();
 	return ((void *)target);
 }
 
 Elf_Addr
 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
 {
     const Elf_Rel *rel;
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     Elf_Addr *where;
     Elf_Addr target;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
     if (obj->pltrel)
 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
     else
 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
 
     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
 	&lockstate);
     if (def == NULL)
-	die();
+	rtld_die();
     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
     else
 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
 
     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
       defobj->strtab + def->st_name, basename(obj->path),
       (void *)target, basename(defobj->path));
 
     /*
      * Write the new contents for the jmpslot. Note that depending on
      * architecture, the value which we need to return back to the
      * lazy binding trampoline may or may not be the target
      * address. The value returned from reloc_jmpslot() is the value
      * that the trampoline needs.
      */
     target = reloc_jmpslot(where, target, defobj, obj, rel);
     lock_release(rtld_bind_lock, &lockstate);
     return target;
 }
 
 /*
  * Error reporting function.  Use it like printf.  If formats the message
  * into a buffer, and sets things up so that the next call to dlerror()
  * will return the message.
  */
 void
 _rtld_error(const char *fmt, ...)
 {
     static char buf[512];
     va_list ap;
 
     va_start(ap, fmt);
     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
     error_message = buf;
     va_end(ap);
 }
 
 /*
  * Return a dynamically-allocated copy of the current error message, if any.
  */
 static char *
 errmsg_save(void)
 {
     return error_message == NULL ? NULL : xstrdup(error_message);
 }
 
 /*
  * Restore the current error message from a copy which was previously saved
  * by errmsg_save().  The copy is freed.
  */
 static void
 errmsg_restore(char *saved_msg)
 {
     if (saved_msg == NULL)
 	error_message = NULL;
     else {
 	_rtld_error("%s", saved_msg);
 	free(saved_msg);
     }
 }
 
 static const char *
 basename(const char *name)
 {
     const char *p = strrchr(name, '/');
     return p != NULL ? p + 1 : name;
 }
 
 static struct utsname uts;
 
 static char *
 origin_subst_one(char *real, const char *kw, const char *subst,
     bool may_free)
 {
 	char *p, *p1, *res, *resp;
 	int subst_len, kw_len, subst_count, old_len, new_len;
 
 	kw_len = strlen(kw);
 
 	/*
 	 * First, count the number of the keyword occurences, to
 	 * preallocate the final string.
 	 */
 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
 		p1 = strstr(p, kw);
 		if (p1 == NULL)
 			break;
 	}
 
 	/*
 	 * If the keyword is not found, just return.
 	 */
 	if (subst_count == 0)
 		return (may_free ? real : xstrdup(real));
 
 	/*
 	 * There is indeed something to substitute.  Calculate the
 	 * length of the resulting string, and allocate it.
 	 */
 	subst_len = strlen(subst);
 	old_len = strlen(real);
 	new_len = old_len + (subst_len - kw_len) * subst_count;
 	res = xmalloc(new_len + 1);
 
 	/*
 	 * Now, execute the substitution loop.
 	 */
 	for (p = real, resp = res, *resp = '\0';;) {
 		p1 = strstr(p, kw);
 		if (p1 != NULL) {
 			/* Copy the prefix before keyword. */
 			memcpy(resp, p, p1 - p);
 			resp += p1 - p;
 			/* Keyword replacement. */
 			memcpy(resp, subst, subst_len);
 			resp += subst_len;
 			*resp = '\0';
 			p = p1 + kw_len;
 		} else
 			break;
 	}
 
 	/* Copy to the end of string and finish. */
 	strcat(resp, p);
 	if (may_free)
 		free(real);
 	return (res);
 }
 
 static char *
 origin_subst(char *real, const char *origin_path)
 {
 	char *res1, *res2, *res3, *res4;
 
 	if (uts.sysname[0] == '\0') {
 		if (uname(&uts) != 0) {
 			_rtld_error("utsname failed: %d", errno);
 			return (NULL);
 		}
 	}
 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
 	return (res4);
 }
 
-static void
-die(void)
+void
+rtld_die(void)
 {
     const char *msg = dlerror();
 
     if (msg == NULL)
 	msg = "Fatal error";
     rtld_fdputstr(STDERR_FILENO, msg);
     rtld_fdputchar(STDERR_FILENO, '\n');
     _exit(1);
 }
 
 /*
  * Process a shared object's DYNAMIC section, and save the important
  * information in its Obj_Entry structure.
  */
 static void
 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
 {
     const Elf_Dyn *dynp;
     Needed_Entry **needed_tail = &obj->needed;
     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
     const Elf_Hashelt *hashtab;
     const Elf32_Word *hashval;
     Elf32_Word bkt, nmaskwords;
     int bloom_size32;
     int plttype = DT_REL;
 
     *dyn_rpath = NULL;
     *dyn_soname = NULL;
     *dyn_runpath = NULL;
 
     obj->bind_now = false;
     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
 	switch (dynp->d_tag) {
 
 	case DT_REL:
 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_RELSZ:
 	    obj->relsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
 	    break;
 
 	case DT_JMPREL:
 	    obj->pltrel = (const Elf_Rel *)
 	      (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PLTRELSZ:
 	    obj->pltrelsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELA:
 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_RELASZ:
 	    obj->relasize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELAENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
 	    break;
 
 	case DT_PLTREL:
 	    plttype = dynp->d_un.d_val;
 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
 	    break;
 
 	case DT_SYMTAB:
 	    obj->symtab = (const Elf_Sym *)
 	      (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_SYMENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
 	    break;
 
 	case DT_STRTAB:
 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_STRSZ:
 	    obj->strsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERNEED:
 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_VERNEEDNUM:
 	    obj->verneednum = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERDEF:
 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_VERDEFNUM:
 	    obj->verdefnum = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERSYM:
 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_HASH:
 	    {
 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
 		    dynp->d_un.d_ptr);
 		obj->nbuckets = hashtab[0];
 		obj->nchains = hashtab[1];
 		obj->buckets = hashtab + 2;
 		obj->chains = obj->buckets + obj->nbuckets;
 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
 		  obj->buckets != NULL;
 	    }
 	    break;
 
 	case DT_GNU_HASH:
 	    {
 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
 		    dynp->d_un.d_ptr);
 		obj->nbuckets_gnu = hashtab[0];
 		obj->symndx_gnu = hashtab[1];
 		nmaskwords = hashtab[2];
 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
 		obj->maskwords_bm_gnu = nmaskwords - 1;
 		obj->shift2_gnu = hashtab[3];
 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
 		  obj->symndx_gnu;
 		/* Number of bitmask words is required to be power of 2 */
 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
 	    }
 	    break;
 
 	case DT_NEEDED:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_tail = nep;
 		needed_tail = &nep->next;
 	    }
 	    break;
 
 	case DT_FILTER:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_filtees_tail = nep;
 		needed_filtees_tail = &nep->next;
 	    }
 	    break;
 
 	case DT_AUXILIARY:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_aux_filtees_tail = nep;
 		needed_aux_filtees_tail = &nep->next;
 	    }
 	    break;
 
 	case DT_PLTGOT:
 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_TEXTREL:
 	    obj->textrel = true;
 	    break;
 
 	case DT_SYMBOLIC:
 	    obj->symbolic = true;
 	    break;
 
 	case DT_RPATH:
 	    /*
 	     * We have to wait until later to process this, because we
 	     * might not have gotten the address of the string table yet.
 	     */
 	    *dyn_rpath = dynp;
 	    break;
 
 	case DT_SONAME:
 	    *dyn_soname = dynp;
 	    break;
 
 	case DT_RUNPATH:
 	    *dyn_runpath = dynp;
 	    break;
 
 	case DT_INIT:
 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PREINIT_ARRAY:
 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PREINIT_ARRAYSZ:
 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	case DT_INIT_ARRAY:
 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_INIT_ARRAYSZ:
 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	case DT_FINI:
 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_FINI_ARRAY:
 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_FINI_ARRAYSZ:
 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	/*
 	 * Don't process DT_DEBUG on MIPS as the dynamic section
 	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
 	 */
 
 #ifndef __mips__
 	case DT_DEBUG:
 	    /* XXX - not implemented yet */
 	    if (!early)
 		dbg("Filling in DT_DEBUG entry");
 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
 	    break;
 #endif
 
 	case DT_FLAGS:
 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
 		    obj->z_origin = true;
 		if (dynp->d_un.d_val & DF_SYMBOLIC)
 		    obj->symbolic = true;
 		if (dynp->d_un.d_val & DF_TEXTREL)
 		    obj->textrel = true;
 		if (dynp->d_un.d_val & DF_BIND_NOW)
 		    obj->bind_now = true;
 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
 		    ;*/
 	    break;
 #ifdef __mips__
 	case DT_MIPS_LOCAL_GOTNO:
 		obj->local_gotno = dynp->d_un.d_val;
 	    break;
 
 	case DT_MIPS_SYMTABNO:
 		obj->symtabno = dynp->d_un.d_val;
 		break;
 
 	case DT_MIPS_GOTSYM:
 		obj->gotsym = dynp->d_un.d_val;
 		break;
 
 	case DT_MIPS_RLD_MAP:
 		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
 		break;
 #endif
 
 	case DT_FLAGS_1:
 		if (dynp->d_un.d_val & DF_1_NOOPEN)
 		    obj->z_noopen = true;
 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
 		    obj->z_origin = true;
 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
 		    XXX ;*/
 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
 		    obj->bind_now = true;
 		if (dynp->d_un.d_val & DF_1_NODELETE)
 		    obj->z_nodelete = true;
 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
 		    obj->z_loadfltr = true;
 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
 		    obj->z_interpose = true;
 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
 		    obj->z_nodeflib = true;
 	    break;
 
 	default:
 	    if (!early) {
 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
 		    (long)dynp->d_tag);
 	    }
 	    break;
 	}
     }
 
     obj->traced = false;
 
     if (plttype == DT_RELA) {
 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
 	obj->pltrel = NULL;
 	obj->pltrelasize = obj->pltrelsize;
 	obj->pltrelsize = 0;
     }
 
     /* Determine size of dynsym table (equal to nchains of sysv hash) */
     if (obj->valid_hash_sysv)
 	obj->dynsymcount = obj->nchains;
     else if (obj->valid_hash_gnu) {
 	obj->dynsymcount = 0;
 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
 	    if (obj->buckets_gnu[bkt] == 0)
 		continue;
 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
 	    do
 		obj->dynsymcount++;
 	    while ((*hashval++ & 1u) == 0);
 	}
 	obj->dynsymcount += obj->symndx_gnu;
     }
 }
 
 static void
 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
 {
 
     if (obj->z_origin && obj->origin_path == NULL) {
 	obj->origin_path = xmalloc(PATH_MAX);
 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
-	    die();
+	    rtld_die();
     }
 
     if (dyn_runpath != NULL) {
 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
 	if (obj->z_origin)
 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
     }
     else if (dyn_rpath != NULL) {
 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
 	if (obj->z_origin)
 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
     }
 
     if (dyn_soname != NULL)
 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
 }
 
 static void
 digest_dynamic(Obj_Entry *obj, int early)
 {
 	const Elf_Dyn *dyn_rpath;
 	const Elf_Dyn *dyn_soname;
 	const Elf_Dyn *dyn_runpath;
 
 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
 }
 
 /*
  * Process a shared object's program header.  This is used only for the
  * main program, when the kernel has already loaded the main program
  * into memory before calling the dynamic linker.  It creates and
  * returns an Obj_Entry structure.
  */
 static Obj_Entry *
 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
 {
     Obj_Entry *obj;
     const Elf_Phdr *phlimit = phdr + phnum;
     const Elf_Phdr *ph;
     Elf_Addr note_start, note_end;
     int nsegs = 0;
 
     obj = obj_new();
     for (ph = phdr;  ph < phlimit;  ph++) {
 	if (ph->p_type != PT_PHDR)
 	    continue;
 
 	obj->phdr = phdr;
 	obj->phsize = ph->p_memsz;
 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
 	break;
     }
 
     obj->stack_flags = PF_X | PF_R | PF_W;
 
     for (ph = phdr;  ph < phlimit;  ph++) {
 	switch (ph->p_type) {
 
 	case PT_INTERP:
 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
 	    break;
 
 	case PT_LOAD:
 	    if (nsegs == 0) {	/* First load segment */
 		obj->vaddrbase = trunc_page(ph->p_vaddr);
 		obj->mapbase = obj->vaddrbase + obj->relocbase;
 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
 		  obj->vaddrbase;
 	    } else {		/* Last load segment */
 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
 		  obj->vaddrbase;
 	    }
 	    nsegs++;
 	    break;
 
 	case PT_DYNAMIC:
 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
 	    break;
 
 	case PT_TLS:
 	    obj->tlsindex = 1;
 	    obj->tlssize = ph->p_memsz;
 	    obj->tlsalign = ph->p_align;
 	    obj->tlsinitsize = ph->p_filesz;
 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
 	    break;
 
 	case PT_GNU_STACK:
 	    obj->stack_flags = ph->p_flags;
 	    break;
 
 	case PT_GNU_RELRO:
 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
 	    obj->relro_size = round_page(ph->p_memsz);
 	    break;
 
 	case PT_NOTE:
 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
 	    note_end = note_start + ph->p_filesz;
 	    digest_notes(obj, note_start, note_end);
 	    break;
 	}
     }
     if (nsegs < 1) {
 	_rtld_error("%s: too few PT_LOAD segments", path);
 	return NULL;
     }
 
     obj->entry = entry;
     return obj;
 }
 
 void
 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
 {
 	const Elf_Note *note;
 	const char *note_name;
 	uintptr_t p;
 
 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
 	    note = (const Elf_Note *)((const char *)(note + 1) +
 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
 		    note->n_descsz != sizeof(int32_t))
 			continue;
 		if (note->n_type != ABI_NOTETYPE &&
 		    note->n_type != CRT_NOINIT_NOTETYPE)
 			continue;
 		note_name = (const char *)(note + 1);
 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
 			continue;
 		switch (note->n_type) {
 		case ABI_NOTETYPE:
 			/* FreeBSD osrel note */
 			p = (uintptr_t)(note + 1);
 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
 			obj->osrel = *(const int32_t *)(p);
 			dbg("note osrel %d", obj->osrel);
 			break;
 		case CRT_NOINIT_NOTETYPE:
 			/* FreeBSD 'crt does not call init' note */
 			obj->crt_no_init = true;
 			dbg("note crt_no_init");
 			break;
 		}
 	}
 }
 
 static Obj_Entry *
 dlcheck(void *handle)
 {
     Obj_Entry *obj;
 
     for (obj = obj_list;  obj != NULL;  obj = obj->next)
 	if (obj == (Obj_Entry *) handle)
 	    break;
 
     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
 	_rtld_error("Invalid shared object handle %p", handle);
 	return NULL;
     }
     return obj;
 }
 
 /*
  * If the given object is already in the donelist, return true.  Otherwise
  * add the object to the list and return false.
  */
 static bool
 donelist_check(DoneList *dlp, const Obj_Entry *obj)
 {
     unsigned int i;
 
     for (i = 0;  i < dlp->num_used;  i++)
 	if (dlp->objs[i] == obj)
 	    return true;
     /*
      * Our donelist allocation should always be sufficient.  But if
      * our threads locking isn't working properly, more shared objects
      * could have been loaded since we allocated the list.  That should
      * never happen, but we'll handle it properly just in case it does.
      */
     if (dlp->num_used < dlp->num_alloc)
 	dlp->objs[dlp->num_used++] = obj;
     return false;
 }
 
 /*
  * Hash function for symbol table lookup.  Don't even think about changing
  * this.  It is specified by the System V ABI.
  */
 unsigned long
 elf_hash(const char *name)
 {
     const unsigned char *p = (const unsigned char *) name;
     unsigned long h = 0;
     unsigned long g;
 
     while (*p != '\0') {
 	h = (h << 4) + *p++;
 	if ((g = h & 0xf0000000) != 0)
 	    h ^= g >> 24;
 	h &= ~g;
     }
     return h;
 }
 
 /*
  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
  * unsigned in case it's implemented with a wider type.
  */
 static uint32_t
 gnu_hash(const char *s)
 {
 	uint32_t h;
 	unsigned char c;
 
 	h = 5381;
 	for (c = *s; c != '\0'; c = *++s)
 		h = h * 33 + c;
 	return (h & 0xffffffff);
 }
 
 
 /*
  * Find the library with the given name, and return its full pathname.
  * The returned string is dynamically allocated.  Generates an error
  * message and returns NULL if the library cannot be found.
  *
  * If the second argument is non-NULL, then it refers to an already-
  * loaded shared object, whose library search path will be searched.
  *
  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
  * descriptor (which is close-on-exec) will be passed out via the third
  * argument.
  *
  * The search order is:
  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
  *   LD_LIBRARY_PATH
  *   DT_RUNPATH in the referencing file
  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
  *	 from list)
  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
  *
  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
  */
 static char *
 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
 {
     char *pathname;
     char *name;
     bool nodeflib, objgiven;
 
     objgiven = refobj != NULL;
     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
 	if (xname[0] != '/' && !trust) {
 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
 	      xname);
 	    return NULL;
 	}
 	if (objgiven && refobj->z_origin) {
 		return (origin_subst(__DECONST(char *, xname),
 		    refobj->origin_path));
 	} else {
 		return (xstrdup(xname));
 	}
     }
 
     if (libmap_disable || !objgiven ||
 	(name = lm_find(refobj->path, xname)) == NULL)
 	name = (char *)xname;
 
     dbg(" Searching for \"%s\"", name);
 
     /*
      * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
      * back to pre-conforming behaviour if user requested so with
      * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
      * nodeflib.
      */
     if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
 	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
 	  (refobj != NULL &&
 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
           (pathname = search_library_path(name, gethints(false))) != NULL ||
 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
 	    return (pathname);
     } else {
 	nodeflib = objgiven ? refobj->z_nodeflib : false;
 	if ((objgiven &&
 	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
 	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
 	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
 	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
 	  (objgiven &&
 	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
 	  (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
 	  (objgiven && !nodeflib &&
 	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
 	    return (pathname);
     }
 
     if (objgiven && refobj->path != NULL) {
 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
 	  name, basename(refobj->path));
     } else {
 	_rtld_error("Shared object \"%s\" not found", name);
     }
     return NULL;
 }
 
 /*
  * Given a symbol number in a referencing object, find the corresponding
  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
  * no definition was found.  Returns a pointer to the Obj_Entry of the
  * defining object via the reference parameter DEFOBJ_OUT.
  */
 const Elf_Sym *
 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
     const Obj_Entry **defobj_out, int flags, SymCache *cache,
     RtldLockState *lockstate)
 {
     const Elf_Sym *ref;
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     SymLook req;
     const char *name;
     int res;
 
     /*
      * If we have already found this symbol, get the information from
      * the cache.
      */
     if (symnum >= refobj->dynsymcount)
 	return NULL;	/* Bad object */
     if (cache != NULL && cache[symnum].sym != NULL) {
 	*defobj_out = cache[symnum].obj;
 	return cache[symnum].sym;
     }
 
     ref = refobj->symtab + symnum;
     name = refobj->strtab + ref->st_name;
     def = NULL;
     defobj = NULL;
 
     /*
      * We don't have to do a full scale lookup if the symbol is local.
      * We know it will bind to the instance in this load module; to
      * which we already have a pointer (ie ref). By not doing a lookup,
      * we not only improve performance, but it also avoids unresolvable
      * symbols when local symbols are not in the hash table. This has
      * been seen with the ia64 toolchain.
      */
     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
 		symnum);
 	}
 	symlook_init(&req, name);
 	req.flags = flags;
 	req.ventry = fetch_ventry(refobj, symnum);
 	req.lockstate = lockstate;
 	res = symlook_default(&req, refobj);
 	if (res == 0) {
 	    def = req.sym_out;
 	    defobj = req.defobj_out;
 	}
     } else {
 	def = ref;
 	defobj = refobj;
     }
 
     /*
      * If we found no definition and the reference is weak, treat the
      * symbol as having the value zero.
      */
     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
 	def = &sym_zero;
 	defobj = obj_main;
     }
 
     if (def != NULL) {
 	*defobj_out = defobj;
 	/* Record the information in the cache to avoid subsequent lookups. */
 	if (cache != NULL) {
 	    cache[symnum].sym = def;
 	    cache[symnum].obj = defobj;
 	}
     } else {
 	if (refobj != &obj_rtld)
 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
     }
     return def;
 }
 
 /*
  * Return the search path from the ldconfig hints file, reading it if
  * necessary.  If nostdlib is true, then the default search paths are
  * not added to result.
  *
  * Returns NULL if there are problems with the hints file,
  * or if the search path there is empty.
  */
 static const char *
 gethints(bool nostdlib)
 {
 	static char *hints, *filtered_path;
 	struct elfhints_hdr hdr;
 	struct fill_search_info_args sargs, hargs;
 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
 	struct dl_serpath *SLPpath, *hintpath;
 	char *p;
 	unsigned int SLPndx, hintndx, fndx, fcount;
 	int fd;
 	size_t flen;
 	bool skip;
 
 	/* First call, read the hints file */
 	if (hints == NULL) {
 		/* Keep from trying again in case the hints file is bad. */
 		hints = "";
 
 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
 			return (NULL);
 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
 		    hdr.magic != ELFHINTS_MAGIC ||
 		    hdr.version != 1) {
 			close(fd);
 			return (NULL);
 		}
 		p = xmalloc(hdr.dirlistlen + 1);
 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
 		    read(fd, p, hdr.dirlistlen + 1) !=
 		    (ssize_t)hdr.dirlistlen + 1) {
 			free(p);
 			close(fd);
 			return (NULL);
 		}
 		hints = p;
 		close(fd);
 	}
 
 	/*
 	 * If caller agreed to receive list which includes the default
 	 * paths, we are done. Otherwise, if we still did not
 	 * calculated filtered result, do it now.
 	 */
 	if (!nostdlib)
 		return (hints[0] != '\0' ? hints : NULL);
 	if (filtered_path != NULL)
 		goto filt_ret;
 
 	/*
 	 * Obtain the list of all configured search paths, and the
 	 * list of the default paths.
 	 *
 	 * First estimate the size of the results.
 	 */
 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
 	smeta.dls_cnt = 0;
 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
 	hmeta.dls_cnt = 0;
 
 	sargs.request = RTLD_DI_SERINFOSIZE;
 	sargs.serinfo = &smeta;
 	hargs.request = RTLD_DI_SERINFOSIZE;
 	hargs.serinfo = &hmeta;
 
 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
 	path_enumerate(p, fill_search_info, &hargs);
 
 	SLPinfo = xmalloc(smeta.dls_size);
 	hintinfo = xmalloc(hmeta.dls_size);
 
 	/*
 	 * Next fetch both sets of paths.
 	 */
 	sargs.request = RTLD_DI_SERINFO;
 	sargs.serinfo = SLPinfo;
 	sargs.serpath = &SLPinfo->dls_serpath[0];
 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
 
 	hargs.request = RTLD_DI_SERINFO;
 	hargs.serinfo = hintinfo;
 	hargs.serpath = &hintinfo->dls_serpath[0];
 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
 
 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
 	path_enumerate(p, fill_search_info, &hargs);
 
 	/*
 	 * Now calculate the difference between two sets, by excluding
 	 * standard paths from the full set.
 	 */
 	fndx = 0;
 	fcount = 0;
 	filtered_path = xmalloc(hdr.dirlistlen + 1);
 	hintpath = &hintinfo->dls_serpath[0];
 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
 		skip = false;
 		SLPpath = &SLPinfo->dls_serpath[0];
 		/*
 		 * Check each standard path against current.
 		 */
 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
 			/* matched, skip the path */
 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
 				skip = true;
 				break;
 			}
 		}
 		if (skip)
 			continue;
 		/*
 		 * Not matched against any standard path, add the path
 		 * to result. Separate consequtive paths with ':'.
 		 */
 		if (fcount > 0) {
 			filtered_path[fndx] = ':';
 			fndx++;
 		}
 		fcount++;
 		flen = strlen(hintpath->dls_name);
 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
 		fndx += flen;
 	}
 	filtered_path[fndx] = '\0';
 
 	free(SLPinfo);
 	free(hintinfo);
 
 filt_ret:
 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
 }
 
 static void
 init_dag(Obj_Entry *root)
 {
     const Needed_Entry *needed;
     const Objlist_Entry *elm;
     DoneList donelist;
 
     if (root->dag_inited)
 	return;
     donelist_init(&donelist);
 
     /* Root object belongs to own DAG. */
     objlist_push_tail(&root->dldags, root);
     objlist_push_tail(&root->dagmembers, root);
     donelist_check(&donelist, root);
 
     /*
      * Add dependencies of root object to DAG in breadth order
      * by exploiting the fact that each new object get added
      * to the tail of the dagmembers list.
      */
     STAILQ_FOREACH(elm, &root->dagmembers, link) {
 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
 		continue;
 	    objlist_push_tail(&needed->obj->dldags, root);
 	    objlist_push_tail(&root->dagmembers, needed->obj);
 	}
     }
     root->dag_inited = true;
 }
 
 static void
 process_nodelete(Obj_Entry *root)
 {
 	const Objlist_Entry *elm;
 
 	/*
 	 * Walk over object DAG and process every dependent object that
 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
 	 * which then should have its reference upped separately.
 	 */
 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 		if (elm->obj != NULL && elm->obj->z_nodelete &&
 		    !elm->obj->ref_nodel) {
 			dbg("obj %s nodelete", elm->obj->path);
 			init_dag(elm->obj);
 			ref_dag(elm->obj);
 			elm->obj->ref_nodel = true;
 		}
 	}
 }
 /*
  * Initialize the dynamic linker.  The argument is the address at which
  * the dynamic linker has been mapped into memory.  The primary task of
  * this function is to relocate the dynamic linker.
  */
 static void
 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
 {
     Obj_Entry objtmp;	/* Temporary rtld object */
     const Elf_Dyn *dyn_rpath;
     const Elf_Dyn *dyn_soname;
     const Elf_Dyn *dyn_runpath;
 
 #ifdef RTLD_INIT_PAGESIZES_EARLY
     /* The page size is required by the dynamic memory allocator. */
     init_pagesizes(aux_info);
 #endif
 
     /*
      * Conjure up an Obj_Entry structure for the dynamic linker.
      *
      * The "path" member can't be initialized yet because string constants
      * cannot yet be accessed. Below we will set it correctly.
      */
     memset(&objtmp, 0, sizeof(objtmp));
     objtmp.path = NULL;
     objtmp.rtld = true;
     objtmp.mapbase = mapbase;
 #ifdef PIC
     objtmp.relocbase = mapbase;
 #endif
     if (RTLD_IS_DYNAMIC()) {
 	objtmp.dynamic = rtld_dynamic(&objtmp);
 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
 	assert(objtmp.needed == NULL);
 #if !defined(__mips__)
 	/* MIPS has a bogus DT_TEXTREL. */
 	assert(!objtmp.textrel);
 #endif
 
 	/*
 	 * Temporarily put the dynamic linker entry into the object list, so
 	 * that symbols can be found.
 	 */
 
 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
     }
 
     /* Initialize the object list. */
     obj_tail = &obj_list;
 
     /* Now that non-local variables can be accesses, copy out obj_rtld. */
     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
 
 #ifndef RTLD_INIT_PAGESIZES_EARLY
     /* The page size is required by the dynamic memory allocator. */
     init_pagesizes(aux_info);
 #endif
 
     if (aux_info[AT_OSRELDATE] != NULL)
 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
 
     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
 
     /* Replace the path with a dynamically allocated copy. */
     obj_rtld.path = xstrdup(PATH_RTLD);
 
     r_debug.r_brk = r_debug_state;
     r_debug.r_state = RT_CONSISTENT;
 }
 
 /*
  * Retrieve the array of supported page sizes.  The kernel provides the page
  * sizes in increasing order.
  */
 static void
 init_pagesizes(Elf_Auxinfo **aux_info)
 {
 	static size_t psa[MAXPAGESIZES];
 	int mib[2];
 	size_t len, size;
 
 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
 	    NULL) {
 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
 	} else {
 		len = 2;
 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
 			size = sizeof(psa);
 		else {
 			/* As a fallback, retrieve the base page size. */
 			size = sizeof(psa[0]);
 			if (aux_info[AT_PAGESZ] != NULL) {
 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
 				goto psa_filled;
 			} else {
 				mib[0] = CTL_HW;
 				mib[1] = HW_PAGESIZE;
 				len = 2;
 			}
 		}
 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
 			_rtld_error("sysctl for hw.pagesize(s) failed");
-			die();
+			rtld_die();
 		}
 psa_filled:
 		pagesizes = psa;
 	}
 	npagesizes = size / sizeof(pagesizes[0]);
 	/* Discard any invalid entries at the end of the array. */
 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
 		npagesizes--;
 }
 
 /*
  * Add the init functions from a needed object list (and its recursive
  * needed objects) to "list".  This is not used directly; it is a helper
  * function for initlist_add_objects().  The write lock must be held
  * when this function is called.
  */
 static void
 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
 {
     /* Recursively process the successor needed objects. */
     if (needed->next != NULL)
 	initlist_add_neededs(needed->next, list);
 
     /* Process the current needed object. */
     if (needed->obj != NULL)
 	initlist_add_objects(needed->obj, &needed->obj->next, list);
 }
 
 /*
  * Scan all of the DAGs rooted in the range of objects from "obj" to
  * "tail" and add their init functions to "list".  This recurses over
  * the DAGs and ensure the proper init ordering such that each object's
  * needed libraries are initialized before the object itself.  At the
  * same time, this function adds the objects to the global finalization
  * list "list_fini" in the opposite order.  The write lock must be
  * held when this function is called.
  */
 static void
 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
 {
 
     if (obj->init_scanned || obj->init_done)
 	return;
     obj->init_scanned = true;
 
     /* Recursively process the successor objects. */
     if (&obj->next != tail)
 	initlist_add_objects(obj->next, tail, list);
 
     /* Recursively process the needed objects. */
     if (obj->needed != NULL)
 	initlist_add_neededs(obj->needed, list);
     if (obj->needed_filtees != NULL)
 	initlist_add_neededs(obj->needed_filtees, list);
     if (obj->needed_aux_filtees != NULL)
 	initlist_add_neededs(obj->needed_aux_filtees, list);
 
     /* Add the object to the init list. */
     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
       obj->init_array != (Elf_Addr)NULL)
 	objlist_push_tail(list, obj);
 
     /* Add the object to the global fini list in the reverse order. */
     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
       && !obj->on_fini_list) {
 	objlist_push_head(&list_fini, obj);
 	obj->on_fini_list = true;
     }
 }
 
 #ifndef FPTR_TARGET
 #define FPTR_TARGET(f)	((Elf_Addr) (f))
 #endif
 
 static void
 free_needed_filtees(Needed_Entry *n)
 {
     Needed_Entry *needed, *needed1;
 
     for (needed = n; needed != NULL; needed = needed->next) {
 	if (needed->obj != NULL) {
 	    dlclose(needed->obj);
 	    needed->obj = NULL;
 	}
     }
     for (needed = n; needed != NULL; needed = needed1) {
 	needed1 = needed->next;
 	free(needed);
     }
 }
 
 static void
 unload_filtees(Obj_Entry *obj)
 {
 
     free_needed_filtees(obj->needed_filtees);
     obj->needed_filtees = NULL;
     free_needed_filtees(obj->needed_aux_filtees);
     obj->needed_aux_filtees = NULL;
     obj->filtees_loaded = false;
 }
 
 static void
 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
     RtldLockState *lockstate)
 {
 
     for (; needed != NULL; needed = needed->next) {
 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
 	  RTLD_LOCAL, lockstate);
     }
 }
 
 static void
 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
 {
 
     lock_restart_for_upgrade(lockstate);
     if (!obj->filtees_loaded) {
 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
 	obj->filtees_loaded = true;
     }
 }
 
 static int
 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
 {
     Obj_Entry *obj1;
 
     for (; needed != NULL; needed = needed->next) {
 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
 	  flags & ~RTLD_LO_NOLOAD);
 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
 	    return (-1);
     }
     return (0);
 }
 
 /*
  * Given a shared object, traverse its list of needed objects, and load
  * each of them.  Returns 0 on success.  Generates an error message and
  * returns -1 on failure.
  */
 static int
 load_needed_objects(Obj_Entry *first, int flags)
 {
     Obj_Entry *obj;
 
     for (obj = first;  obj != NULL;  obj = obj->next) {
 	if (process_needed(obj, obj->needed, flags) == -1)
 	    return (-1);
     }
     return (0);
 }
 
 static int
 load_preload_objects(void)
 {
     char *p = ld_preload;
     Obj_Entry *obj;
     static const char delim[] = " \t:;";
 
     if (p == NULL)
 	return 0;
 
     p += strspn(p, delim);
     while (*p != '\0') {
 	size_t len = strcspn(p, delim);
 	char savech;
 
 	savech = p[len];
 	p[len] = '\0';
 	obj = load_object(p, -1, NULL, 0);
 	if (obj == NULL)
 	    return -1;	/* XXX - cleanup */
 	obj->z_interpose = true;
 	p[len] = savech;
 	p += len;
 	p += strspn(p, delim);
     }
     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
     return 0;
 }
 
 static const char *
 printable_path(const char *path)
 {
 
 	return (path == NULL ? "<unknown>" : path);
 }
 
 /*
  * Load a shared object into memory, if it is not already loaded.  The
  * object may be specified by name or by user-supplied file descriptor
  * fd_u. In the later case, the fd_u descriptor is not closed, but its
  * duplicate is.
  *
  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
  * on failure.
  */
 static Obj_Entry *
 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
 {
     Obj_Entry *obj;
     int fd;
     struct stat sb;
     char *path;
 
     fd = -1;
     if (name != NULL) {
 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
 	    if (object_match_name(obj, name))
 		return (obj);
 	}
 
 	path = find_library(name, refobj, &fd);
 	if (path == NULL)
 	    return (NULL);
     } else
 	path = NULL;
 
     if (fd >= 0) {
 	/*
 	 * search_library_pathfds() opens a fresh file descriptor for the
 	 * library, so there is no need to dup().
 	 */
     } else if (fd_u == -1) {
 	/*
 	 * If we didn't find a match by pathname, or the name is not
 	 * supplied, open the file and check again by device and inode.
 	 * This avoids false mismatches caused by multiple links or ".."
 	 * in pathnames.
 	 *
 	 * To avoid a race, we open the file and use fstat() rather than
 	 * using stat().
 	 */
 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
 	    _rtld_error("Cannot open \"%s\"", path);
 	    free(path);
 	    return (NULL);
 	}
     } else {
 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
 	if (fd == -1) {
 	    _rtld_error("Cannot dup fd");
 	    free(path);
 	    return (NULL);
 	}
     }
     if (fstat(fd, &sb) == -1) {
 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
 	close(fd);
 	free(path);
 	return NULL;
     }
     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
 	    break;
     if (obj != NULL && name != NULL) {
 	object_add_name(obj, name);
 	free(path);
 	close(fd);
 	return obj;
     }
     if (flags & RTLD_LO_NOLOAD) {
 	free(path);
 	close(fd);
 	return (NULL);
     }
 
     /* First use of this object, so we must map it in */
     obj = do_load_object(fd, name, path, &sb, flags);
     if (obj == NULL)
 	free(path);
     close(fd);
 
     return obj;
 }
 
 static Obj_Entry *
 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
   int flags)
 {
     Obj_Entry *obj;
     struct statfs fs;
 
     /*
      * but first, make sure that environment variables haven't been
      * used to circumvent the noexec flag on a filesystem.
      */
     if (dangerous_ld_env) {
 	if (fstatfs(fd, &fs) != 0) {
 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
 	    return NULL;
 	}
 	if (fs.f_flags & MNT_NOEXEC) {
 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
 	    return NULL;
 	}
     }
     dbg("loading \"%s\"", printable_path(path));
     obj = map_object(fd, printable_path(path), sbp);
     if (obj == NULL)
         return NULL;
 
     /*
      * If DT_SONAME is present in the object, digest_dynamic2 already
      * added it to the object names.
      */
     if (name != NULL)
 	object_add_name(obj, name);
     obj->path = path;
     digest_dynamic(obj, 0);
     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
       RTLD_LO_DLOPEN) {
 	dbg("refusing to load non-loadable \"%s\"", obj->path);
 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
 	munmap(obj->mapbase, obj->mapsize);
 	obj_free(obj);
 	return (NULL);
     }
 
     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
     *obj_tail = obj;
     obj_tail = &obj->next;
     obj_count++;
     obj_loads++;
     linkmap_add(obj);	/* for GDB & dlinfo() */
     max_stack_flags |= obj->stack_flags;
 
     dbg("  %p .. %p: %s", obj->mapbase,
          obj->mapbase + obj->mapsize - 1, obj->path);
     if (obj->textrel)
 	dbg("  WARNING: %s has impure text", obj->path);
     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
 	obj->path);    
 
     return obj;
 }
 
 static Obj_Entry *
 obj_from_addr(const void *addr)
 {
     Obj_Entry *obj;
 
     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
 	if (addr < (void *) obj->mapbase)
 	    continue;
 	if (addr < (void *) (obj->mapbase + obj->mapsize))
 	    return obj;
     }
     return NULL;
 }
 
 static void
 preinit_main(void)
 {
     Elf_Addr *preinit_addr;
     int index;
 
     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
     if (preinit_addr == NULL)
 	return;
 
     for (index = 0; index < obj_main->preinit_array_num; index++) {
 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
 	    dbg("calling preinit function for %s at %p", obj_main->path,
 	      (void *)preinit_addr[index]);
 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
 	      0, 0, obj_main->path);
 	    call_init_pointer(obj_main, preinit_addr[index]);
 	}
     }
 }
 
 /*
  * Call the finalization functions for each of the objects in "list"
  * belonging to the DAG of "root" and referenced once. If NULL "root"
  * is specified, every finalization function will be called regardless
  * of the reference count and the list elements won't be freed. All of
  * the objects are expected to have non-NULL fini functions.
  */
 static void
 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
 {
     Objlist_Entry *elm;
     char *saved_msg;
     Elf_Addr *fini_addr;
     int index;
 
     assert(root == NULL || root->refcount == 1);
 
     /*
      * Preserve the current error message since a fini function might
      * call into the dynamic linker and overwrite it.
      */
     saved_msg = errmsg_save();
     do {
 	STAILQ_FOREACH(elm, list, link) {
 	    if (root != NULL && (elm->obj->refcount != 1 ||
 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
 		continue;
 	    /* Remove object from fini list to prevent recursive invocation. */
 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
 	    /*
 	     * XXX: If a dlopen() call references an object while the
 	     * fini function is in progress, we might end up trying to
 	     * unload the referenced object in dlclose() or the object
 	     * won't be unloaded although its fini function has been
 	     * called.
 	     */
 	    lock_release(rtld_bind_lock, lockstate);
 
 	    /*
 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
 	     * When this happens, DT_FINI_ARRAY is processed first.
 	     */
 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
 		for (index = elm->obj->fini_array_num - 1; index >= 0;
 		  index--) {
 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
 			dbg("calling fini function for %s at %p",
 			    elm->obj->path, (void *)fini_addr[index]);
 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
 			call_initfini_pointer(elm->obj, fini_addr[index]);
 		    }
 		}
 	    }
 	    if (elm->obj->fini != (Elf_Addr)NULL) {
 		dbg("calling fini function for %s at %p", elm->obj->path,
 		    (void *)elm->obj->fini);
 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
 		    0, 0, elm->obj->path);
 		call_initfini_pointer(elm->obj, elm->obj->fini);
 	    }
 	    wlock_acquire(rtld_bind_lock, lockstate);
 	    /* No need to free anything if process is going down. */
 	    if (root != NULL)
 	    	free(elm);
 	    /*
 	     * We must restart the list traversal after every fini call
 	     * because a dlclose() call from the fini function or from
 	     * another thread might have modified the reference counts.
 	     */
 	    break;
 	}
     } while (elm != NULL);
     errmsg_restore(saved_msg);
 }
 
 /*
  * Call the initialization functions for each of the objects in
  * "list".  All of the objects are expected to have non-NULL init
  * functions.
  */
 static void
 objlist_call_init(Objlist *list, RtldLockState *lockstate)
 {
     Objlist_Entry *elm;
     Obj_Entry *obj;
     char *saved_msg;
     Elf_Addr *init_addr;
     int index;
 
     /*
      * Clean init_scanned flag so that objects can be rechecked and
      * possibly initialized earlier if any of vectors called below
      * cause the change by using dlopen.
      */
     for (obj = obj_list;  obj != NULL;  obj = obj->next)
 	obj->init_scanned = false;
 
     /*
      * Preserve the current error message since an init function might
      * call into the dynamic linker and overwrite it.
      */
     saved_msg = errmsg_save();
     STAILQ_FOREACH(elm, list, link) {
 	if (elm->obj->init_done) /* Initialized early. */
 	    continue;
 	/*
 	 * Race: other thread might try to use this object before current
 	 * one completes the initilization. Not much can be done here
 	 * without better locking.
 	 */
 	elm->obj->init_done = true;
 	lock_release(rtld_bind_lock, lockstate);
 
         /*
          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
          * When this happens, DT_INIT is processed first.
          */
 	if (elm->obj->init != (Elf_Addr)NULL) {
 	    dbg("calling init function for %s at %p", elm->obj->path,
 	        (void *)elm->obj->init);
 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
 	        0, 0, elm->obj->path);
 	    call_initfini_pointer(elm->obj, elm->obj->init);
 	}
 	init_addr = (Elf_Addr *)elm->obj->init_array;
 	if (init_addr != NULL) {
 	    for (index = 0; index < elm->obj->init_array_num; index++) {
 		if (init_addr[index] != 0 && init_addr[index] != 1) {
 		    dbg("calling init function for %s at %p", elm->obj->path,
 			(void *)init_addr[index]);
 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
 			(void *)init_addr[index], 0, 0, elm->obj->path);
 		    call_init_pointer(elm->obj, init_addr[index]);
 		}
 	    }
 	}
 	wlock_acquire(rtld_bind_lock, lockstate);
     }
     errmsg_restore(saved_msg);
 }
 
 static void
 objlist_clear(Objlist *list)
 {
     Objlist_Entry *elm;
 
     while (!STAILQ_EMPTY(list)) {
 	elm = STAILQ_FIRST(list);
 	STAILQ_REMOVE_HEAD(list, link);
 	free(elm);
     }
 }
 
 static Objlist_Entry *
 objlist_find(Objlist *list, const Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     STAILQ_FOREACH(elm, list, link)
 	if (elm->obj == obj)
 	    return elm;
     return NULL;
 }
 
 static void
 objlist_init(Objlist *list)
 {
     STAILQ_INIT(list);
 }
 
 static void
 objlist_push_head(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     elm = NEW(Objlist_Entry);
     elm->obj = obj;
     STAILQ_INSERT_HEAD(list, elm, link);
 }
 
 static void
 objlist_push_tail(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     elm = NEW(Objlist_Entry);
     elm->obj = obj;
     STAILQ_INSERT_TAIL(list, elm, link);
 }
 
 static void
 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
 {
 	Objlist_Entry *elm, *listelm;
 
 	STAILQ_FOREACH(listelm, list, link) {
 		if (listelm->obj == listobj)
 			break;
 	}
 	elm = NEW(Objlist_Entry);
 	elm->obj = obj;
 	if (listelm != NULL)
 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
 	else
 		STAILQ_INSERT_TAIL(list, elm, link);
 }
 
 static void
 objlist_remove(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     if ((elm = objlist_find(list, obj)) != NULL) {
 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
 	free(elm);
     }
 }
 
 /*
  * Relocate dag rooted in the specified object.
  * Returns 0 on success, or -1 on failure.
  */
 
 static int
 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 	Objlist_Entry *elm;
 	int error;
 
 	error = 0;
 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
 		    lockstate);
 		if (error == -1)
 			break;
 	}
 	return (error);
 }
 
 /*
  * Relocate single object.
  * Returns 0 on success, or -1 on failure.
  */
 static int
 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 
 	if (obj->relocated)
 		return (0);
 	obj->relocated = true;
 	if (obj != rtldobj)
 		dbg("relocating \"%s\"", obj->path);
 
 	if (obj->symtab == NULL || obj->strtab == NULL ||
 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
 		_rtld_error("%s: Shared object has no run-time symbol table",
 			    obj->path);
 		return (-1);
 	}
 
 	if (obj->textrel) {
 		/* There are relocations to the write-protected text segment. */
 		if (mprotect(obj->mapbase, obj->textsize,
 		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
 			_rtld_error("%s: Cannot write-enable text segment: %s",
 			    obj->path, rtld_strerror(errno));
 			return (-1);
 		}
 	}
 
 	/* Process the non-PLT non-IFUNC relocations. */
 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
 		return (-1);
 
 	if (obj->textrel) {	/* Re-protected the text segment. */
 		if (mprotect(obj->mapbase, obj->textsize,
 		    PROT_READ|PROT_EXEC) == -1) {
 			_rtld_error("%s: Cannot write-protect text segment: %s",
 			    obj->path, rtld_strerror(errno));
 			return (-1);
 		}
 	}
 
 	/* Set the special PLT or GOT entries. */
 	init_pltgot(obj);
 
 	/* Process the PLT relocations. */
 	if (reloc_plt(obj) == -1)
 		return (-1);
 	/* Relocate the jump slots if we are doing immediate binding. */
 	if (obj->bind_now || bind_now)
 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
 			return (-1);
 
 	/*
 	 * Process the non-PLT IFUNC relocations.  The relocations are
 	 * processed in two phases, because IFUNC resolvers may
 	 * reference other symbols, which must be readily processed
 	 * before resolvers are called.
 	 */
 	if (obj->non_plt_gnu_ifunc &&
 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
 		return (-1);
 
 	if (obj->relro_size > 0) {
 		if (mprotect(obj->relro_page, obj->relro_size,
 		    PROT_READ) == -1) {
 			_rtld_error("%s: Cannot enforce relro protection: %s",
 			    obj->path, rtld_strerror(errno));
 			return (-1);
 		}
 	}
 
 	/*
 	 * Set up the magic number and version in the Obj_Entry.  These
 	 * were checked in the crt1.o from the original ElfKit, so we
 	 * set them for backward compatibility.
 	 */
 	obj->magic = RTLD_MAGIC;
 	obj->version = RTLD_VERSION;
 
 	return (0);
 }
 
 /*
  * Relocate newly-loaded shared objects.  The argument is a pointer to
  * the Obj_Entry for the first such object.  All objects from the first
  * to the end of the list of objects are relocated.  Returns 0 on success,
  * or -1 on failure.
  */
 static int
 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 	Obj_Entry *obj;
 	int error;
 
 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
 		error = relocate_object(obj, bind_now, rtldobj, flags,
 		    lockstate);
 		if (error == -1)
 			break;
 	}
 	return (error);
 }
 
 /*
  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
  * referencing STT_GNU_IFUNC symbols is postponed till the other
  * relocations are done.  The indirect functions specified as
  * ifunc are allowed to call other symbols, so we need to have
  * objects relocated before asking for resolution from indirects.
  *
  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
  * instead of the usual lazy handling of PLT slots.  It is
  * consistent with how GNU does it.
  */
 static int
 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
     RtldLockState *lockstate)
 {
 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
 		return (-1);
 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
 		return (-1);
 	return (0);
 }
 
 static int
 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
     RtldLockState *lockstate)
 {
 	Obj_Entry *obj;
 
 	for (obj = first;  obj != NULL;  obj = obj->next) {
 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
 			return (-1);
 	}
 	return (0);
 }
 
 static int
 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
     RtldLockState *lockstate)
 {
 	Objlist_Entry *elm;
 
 	STAILQ_FOREACH(elm, list, link) {
 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
 		    lockstate) == -1)
 			return (-1);
 	}
 	return (0);
 }
 
 /*
  * Cleanup procedure.  It will be called (by the atexit mechanism) just
  * before the process exits.
  */
 static void
 rtld_exit(void)
 {
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     dbg("rtld_exit()");
     objlist_call_fini(&list_fini, NULL, &lockstate);
     /* No need to remove the items from the list, since we are exiting. */
     if (!libmap_disable)
         lm_fini();
     lock_release(rtld_bind_lock, &lockstate);
 }
 
 /*
  * Iterate over a search path, translate each element, and invoke the
  * callback on the result.
  */
 static void *
 path_enumerate(const char *path, path_enum_proc callback, void *arg)
 {
     const char *trans;
     if (path == NULL)
 	return (NULL);
 
     path += strspn(path, ":;");
     while (*path != '\0') {
 	size_t len;
 	char  *res;
 
 	len = strcspn(path, ":;");
 	trans = lm_findn(NULL, path, len);
 	if (trans)
 	    res = callback(trans, strlen(trans), arg);
 	else
 	    res = callback(path, len, arg);
 
 	if (res != NULL)
 	    return (res);
 
 	path += len;
 	path += strspn(path, ":;");
     }
 
     return (NULL);
 }
 
 struct try_library_args {
     const char	*name;
     size_t	 namelen;
     char	*buffer;
     size_t	 buflen;
 };
 
 static void *
 try_library_path(const char *dir, size_t dirlen, void *param)
 {
     struct try_library_args *arg;
 
     arg = param;
     if (*dir == '/' || trust) {
 	char *pathname;
 
 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
 		return (NULL);
 
 	pathname = arg->buffer;
 	strncpy(pathname, dir, dirlen);
 	pathname[dirlen] = '/';
 	strcpy(pathname + dirlen + 1, arg->name);
 
 	dbg("  Trying \"%s\"", pathname);
 	if (access(pathname, F_OK) == 0) {		/* We found it */
 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
 	    strcpy(pathname, arg->buffer);
 	    return (pathname);
 	}
     }
     return (NULL);
 }
 
 static char *
 search_library_path(const char *name, const char *path)
 {
     char *p;
     struct try_library_args arg;
 
     if (path == NULL)
 	return NULL;
 
     arg.name = name;
     arg.namelen = strlen(name);
     arg.buffer = xmalloc(PATH_MAX);
     arg.buflen = PATH_MAX;
 
     p = path_enumerate(path, try_library_path, &arg);
 
     free(arg.buffer);
 
     return (p);
 }
 
 
 /*
  * Finds the library with the given name using the directory descriptors
  * listed in the LD_LIBRARY_PATH_FDS environment variable.
  *
  * Returns a freshly-opened close-on-exec file descriptor for the library,
  * or -1 if the library cannot be found.
  */
 static char *
 search_library_pathfds(const char *name, const char *path, int *fdp)
 {
 	char *envcopy, *fdstr, *found, *last_token;
 	size_t len;
 	int dirfd, fd;
 
 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
 
 	/* Don't load from user-specified libdirs into setuid binaries. */
 	if (!trust)
 		return (NULL);
 
 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
 	if (path == NULL)
 		return (NULL);
 
 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
 	if (name[0] == '/') {
 		dbg("Absolute path (%s) passed to %s", name, __func__);
 		return (NULL);
 	}
 
 	/*
 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
 	 * copy of the path, as strtok_r rewrites separator tokens
 	 * with '\0'.
 	 */
 	found = NULL;
 	envcopy = xstrdup(path);
 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
 	    fdstr = strtok_r(NULL, ":", &last_token)) {
 		dirfd = parse_libdir(fdstr);
 		if (dirfd < 0)
 			break;
 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC);
 		if (fd >= 0) {
 			*fdp = fd;
 			len = strlen(fdstr) + strlen(name) + 3;
 			found = xmalloc(len);
 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
 				_rtld_error("error generating '%d/%s'",
 				    dirfd, name);
-				die();
+				rtld_die();
 			}
 			dbg("open('%s') => %d", found, fd);
 			break;
 		}
 	}
 	free(envcopy);
 
 	return (found);
 }
 
 
 int
 dlclose(void *handle)
 {
     Obj_Entry *root;
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     root = dlcheck(handle);
     if (root == NULL) {
 	lock_release(rtld_bind_lock, &lockstate);
 	return -1;
     }
     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
 	root->path);
 
     /* Unreference the object and its dependencies. */
     root->dl_refcount--;
 
     if (root->refcount == 1) {
 	/*
 	 * The object will be no longer referenced, so we must unload it.
 	 * First, call the fini functions.
 	 */
 	objlist_call_fini(&list_fini, root, &lockstate);
 
 	unref_dag(root);
 
 	/* Finish cleaning up the newly-unreferenced objects. */
 	GDB_STATE(RT_DELETE,&root->linkmap);
 	unload_object(root);
 	GDB_STATE(RT_CONSISTENT,NULL);
     } else
 	unref_dag(root);
 
     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
     lock_release(rtld_bind_lock, &lockstate);
     return 0;
 }
 
 char *
 dlerror(void)
 {
     char *msg = error_message;
     error_message = NULL;
     return msg;
 }
 
 /*
  * This function is deprecated and has no effect.
  */
 void
 dllockinit(void *context,
 	   void *(*lock_create)(void *context),
            void (*rlock_acquire)(void *lock),
            void (*wlock_acquire)(void *lock),
            void (*lock_release)(void *lock),
            void (*lock_destroy)(void *lock),
 	   void (*context_destroy)(void *context))
 {
     static void *cur_context;
     static void (*cur_context_destroy)(void *);
 
     /* Just destroy the context from the previous call, if necessary. */
     if (cur_context_destroy != NULL)
 	cur_context_destroy(cur_context);
     cur_context = context;
     cur_context_destroy = context_destroy;
 }
 
 void *
 dlopen(const char *name, int mode)
 {
 
 	return (rtld_dlopen(name, -1, mode));
 }
 
 void *
 fdlopen(int fd, int mode)
 {
 
 	return (rtld_dlopen(NULL, fd, mode));
 }
 
 static void *
 rtld_dlopen(const char *name, int fd, int mode)
 {
     RtldLockState lockstate;
     int lo_flags;
 
     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
     if (ld_tracing != NULL) {
 	rlock_acquire(rtld_bind_lock, &lockstate);
 	if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
 	environ = (char **)*get_program_var_addr("environ", &lockstate);
 	lock_release(rtld_bind_lock, &lockstate);
     }
     lo_flags = RTLD_LO_DLOPEN;
     if (mode & RTLD_NODELETE)
 	    lo_flags |= RTLD_LO_NODELETE;
     if (mode & RTLD_NOLOAD)
 	    lo_flags |= RTLD_LO_NOLOAD;
     if (ld_tracing != NULL)
 	    lo_flags |= RTLD_LO_TRACE;
 
     return (dlopen_object(name, fd, obj_main, lo_flags,
       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
 }
 
 static void
 dlopen_cleanup(Obj_Entry *obj)
 {
 
 	obj->dl_refcount--;
 	unref_dag(obj);
 	if (obj->refcount == 0)
 		unload_object(obj);
 }
 
 static Obj_Entry *
 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
     int mode, RtldLockState *lockstate)
 {
     Obj_Entry **old_obj_tail;
     Obj_Entry *obj;
     Objlist initlist;
     RtldLockState mlockstate;
     int result;
 
     objlist_init(&initlist);
 
     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
 	wlock_acquire(rtld_bind_lock, &mlockstate);
 	lockstate = &mlockstate;
     }
     GDB_STATE(RT_ADD,NULL);
 
     old_obj_tail = obj_tail;
     obj = NULL;
     if (name == NULL && fd == -1) {
 	obj = obj_main;
 	obj->refcount++;
     } else {
 	obj = load_object(name, fd, refobj, lo_flags);
     }
 
     if (obj) {
 	obj->dl_refcount++;
 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
 	    objlist_push_tail(&list_global, obj);
 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
 	    assert(*old_obj_tail == obj);
 	    result = load_needed_objects(obj,
 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
 	    init_dag(obj);
 	    ref_dag(obj);
 	    if (result != -1)
 		result = rtld_verify_versions(&obj->dagmembers);
 	    if (result != -1 && ld_tracing)
 		goto trace;
 	    if (result == -1 || relocate_object_dag(obj,
 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
 	      lockstate) == -1) {
 		dlopen_cleanup(obj);
 		obj = NULL;
 	    } else if (lo_flags & RTLD_LO_EARLY) {
 		/*
 		 * Do not call the init functions for early loaded
 		 * filtees.  The image is still not initialized enough
 		 * for them to work.
 		 *
 		 * Our object is found by the global object list and
 		 * will be ordered among all init calls done right
 		 * before transferring control to main.
 		 */
 	    } else {
 		/* Make list of init functions to call. */
 		initlist_add_objects(obj, &obj->next, &initlist);
 	    }
 	    /*
 	     * Process all no_delete objects here, given them own
 	     * DAGs to prevent their dependencies from being unloaded.
 	     * This has to be done after we have loaded all of the
 	     * dependencies, so that we do not miss any.
 	     */
 	    if (obj != NULL)
 		process_nodelete(obj);
 	} else {
 	    /*
 	     * Bump the reference counts for objects on this DAG.  If
 	     * this is the first dlopen() call for the object that was
 	     * already loaded as a dependency, initialize the dag
 	     * starting at it.
 	     */
 	    init_dag(obj);
 	    ref_dag(obj);
 
 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
 		goto trace;
 	}
 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
 	  obj->z_nodelete) && !obj->ref_nodel) {
 	    dbg("obj %s nodelete", obj->path);
 	    ref_dag(obj);
 	    obj->z_nodelete = obj->ref_nodel = true;
 	}
     }
 
     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
 	name);
     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
 
     if (!(lo_flags & RTLD_LO_EARLY)) {
 	map_stacks_exec(lockstate);
     }
 
     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
       lockstate) == -1) {
 	objlist_clear(&initlist);
 	dlopen_cleanup(obj);
 	if (lockstate == &mlockstate)
 	    lock_release(rtld_bind_lock, lockstate);
 	return (NULL);
     }
 
     if (!(lo_flags & RTLD_LO_EARLY)) {
 	/* Call the init functions. */
 	objlist_call_init(&initlist, lockstate);
     }
     objlist_clear(&initlist);
     if (lockstate == &mlockstate)
 	lock_release(rtld_bind_lock, lockstate);
     return obj;
 trace:
     trace_loaded_objects(obj);
     if (lockstate == &mlockstate)
 	lock_release(rtld_bind_lock, lockstate);
     exit(0);
 }
 
 static void *
 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
     int flags)
 {
     DoneList donelist;
     const Obj_Entry *obj, *defobj;
     const Elf_Sym *def;
     SymLook req;
     RtldLockState lockstate;
     tls_index ti;
     void *sym;
     int res;
 
     def = NULL;
     defobj = NULL;
     symlook_init(&req, name);
     req.ventry = ve;
     req.flags = flags | SYMLOOK_IN_PLT;
     req.lockstate = &lockstate;
 
     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
     rlock_acquire(rtld_bind_lock, &lockstate);
     if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
     if (handle == NULL || handle == RTLD_NEXT ||
 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
 
 	if ((obj = obj_from_addr(retaddr)) == NULL) {
 	    _rtld_error("Cannot determine caller's shared object");
 	    lock_release(rtld_bind_lock, &lockstate);
 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
 	    return NULL;
 	}
 	if (handle == NULL) {	/* Just the caller's shared object. */
 	    res = symlook_obj(&req, obj);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
 		   handle == RTLD_SELF) { /* ... caller included */
 	    if (handle == RTLD_NEXT)
 		obj = obj->next;
 	    for (; obj != NULL; obj = obj->next) {
 		res = symlook_obj(&req, obj);
 		if (res == 0) {
 		    if (def == NULL ||
 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
 			def = req.sym_out;
 			defobj = req.defobj_out;
 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
 			    break;
 		    }
 		}
 	    }
 	    /*
 	     * Search the dynamic linker itself, and possibly resolve the
 	     * symbol from there.  This is how the application links to
 	     * dynamic linker services such as dlopen.
 	     */
 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
 		res = symlook_obj(&req, &obj_rtld);
 		if (res == 0) {
 		    def = req.sym_out;
 		    defobj = req.defobj_out;
 		}
 	    }
 	} else {
 	    assert(handle == RTLD_DEFAULT);
 	    res = symlook_default(&req, obj);
 	    if (res == 0) {
 		defobj = req.defobj_out;
 		def = req.sym_out;
 	    }
 	}
     } else {
 	if ((obj = dlcheck(handle)) == NULL) {
 	    lock_release(rtld_bind_lock, &lockstate);
 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
 	    return NULL;
 	}
 
 	donelist_init(&donelist);
 	if (obj->mainprog) {
             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
 	    res = symlook_global(&req, &donelist);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	    /*
 	     * Search the dynamic linker itself, and possibly resolve the
 	     * symbol from there.  This is how the application links to
 	     * dynamic linker services such as dlopen.
 	     */
 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
 		res = symlook_obj(&req, &obj_rtld);
 		if (res == 0) {
 		    def = req.sym_out;
 		    defobj = req.defobj_out;
 		}
 	    }
 	}
 	else {
 	    /* Search the whole DAG rooted at the given object. */
 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	}
     }
 
     if (def != NULL) {
 	lock_release(rtld_bind_lock, &lockstate);
 
 	/*
 	 * The value required by the caller is derived from the value
 	 * of the symbol. this is simply the relocated value of the
 	 * symbol.
 	 */
 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
 	    sym = make_function_pointer(def, defobj);
 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
 	    sym = rtld_resolve_ifunc(defobj, def);
 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
 	    ti.ti_module = defobj->tlsindex;
 	    ti.ti_offset = def->st_value;
 	    sym = __tls_get_addr(&ti);
 	} else
 	    sym = defobj->relocbase + def->st_value;
 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
 	return (sym);
     }
 
     _rtld_error("Undefined symbol \"%s\"", name);
     lock_release(rtld_bind_lock, &lockstate);
     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
     return NULL;
 }
 
 void *
 dlsym(void *handle, const char *name)
 {
 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
 	    SYMLOOK_DLSYM);
 }
 
 dlfunc_t
 dlfunc(void *handle, const char *name)
 {
 	union {
 		void *d;
 		dlfunc_t f;
 	} rv;
 
 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
 	    SYMLOOK_DLSYM);
 	return (rv.f);
 }
 
 void *
 dlvsym(void *handle, const char *name, const char *version)
 {
 	Ver_Entry ventry;
 
 	ventry.name = version;
 	ventry.file = NULL;
 	ventry.hash = elf_hash(version);
 	ventry.flags= 0;
 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
 	    SYMLOOK_DLSYM);
 }
 
 int
 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
 {
     const Obj_Entry *obj;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     obj = obj_from_addr(addr);
     if (obj == NULL) {
         _rtld_error("No shared object contains address");
 	lock_release(rtld_bind_lock, &lockstate);
         return (0);
     }
     rtld_fill_dl_phdr_info(obj, phdr_info);
     lock_release(rtld_bind_lock, &lockstate);
     return (1);
 }
 
 int
 dladdr(const void *addr, Dl_info *info)
 {
     const Obj_Entry *obj;
     const Elf_Sym *def;
     void *symbol_addr;
     unsigned long symoffset;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     obj = obj_from_addr(addr);
     if (obj == NULL) {
         _rtld_error("No shared object contains address");
 	lock_release(rtld_bind_lock, &lockstate);
         return 0;
     }
     info->dli_fname = obj->path;
     info->dli_fbase = obj->mapbase;
     info->dli_saddr = (void *)0;
     info->dli_sname = NULL;
 
     /*
      * Walk the symbol list looking for the symbol whose address is
      * closest to the address sent in.
      */
     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
         def = obj->symtab + symoffset;
 
         /*
          * For skip the symbol if st_shndx is either SHN_UNDEF or
          * SHN_COMMON.
          */
         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
             continue;
 
         /*
          * If the symbol is greater than the specified address, or if it
          * is further away from addr than the current nearest symbol,
          * then reject it.
          */
         symbol_addr = obj->relocbase + def->st_value;
         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
             continue;
 
         /* Update our idea of the nearest symbol. */
         info->dli_sname = obj->strtab + def->st_name;
         info->dli_saddr = symbol_addr;
 
         /* Exact match? */
         if (info->dli_saddr == addr)
             break;
     }
     lock_release(rtld_bind_lock, &lockstate);
     return 1;
 }
 
 int
 dlinfo(void *handle, int request, void *p)
 {
     const Obj_Entry *obj;
     RtldLockState lockstate;
     int error;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
 
     if (handle == NULL || handle == RTLD_SELF) {
 	void *retaddr;
 
 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
 	if ((obj = obj_from_addr(retaddr)) == NULL)
 	    _rtld_error("Cannot determine caller's shared object");
     } else
 	obj = dlcheck(handle);
 
     if (obj == NULL) {
 	lock_release(rtld_bind_lock, &lockstate);
 	return (-1);
     }
 
     error = 0;
     switch (request) {
     case RTLD_DI_LINKMAP:
 	*((struct link_map const **)p) = &obj->linkmap;
 	break;
     case RTLD_DI_ORIGIN:
 	error = rtld_dirname(obj->path, p);
 	break;
 
     case RTLD_DI_SERINFOSIZE:
     case RTLD_DI_SERINFO:
 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
 	break;
 
     default:
 	_rtld_error("Invalid request %d passed to dlinfo()", request);
 	error = -1;
     }
 
     lock_release(rtld_bind_lock, &lockstate);
 
     return (error);
 }
 
 static void
 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
 {
 
 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
 	phdr_info->dlpi_name = obj->path;
 	phdr_info->dlpi_phdr = obj->phdr;
 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
 	phdr_info->dlpi_tls_modid = obj->tlsindex;
 	phdr_info->dlpi_tls_data = obj->tlsinit;
 	phdr_info->dlpi_adds = obj_loads;
 	phdr_info->dlpi_subs = obj_loads - obj_count;
 }
 
 int
 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
 {
     struct dl_phdr_info phdr_info;
     const Obj_Entry *obj;
     RtldLockState bind_lockstate, phdr_lockstate;
     int error;
 
     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
     rlock_acquire(rtld_bind_lock, &bind_lockstate);
 
     error = 0;
 
     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
 	rtld_fill_dl_phdr_info(obj, &phdr_info);
 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
 		break;
 
     }
     if (error == 0) {
 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
 	error = callback(&phdr_info, sizeof(phdr_info), param);
     }
 
     lock_release(rtld_bind_lock, &bind_lockstate);
     lock_release(rtld_phdr_lock, &phdr_lockstate);
 
     return (error);
 }
 
 static void *
 fill_search_info(const char *dir, size_t dirlen, void *param)
 {
     struct fill_search_info_args *arg;
 
     arg = param;
 
     if (arg->request == RTLD_DI_SERINFOSIZE) {
 	arg->serinfo->dls_cnt ++;
 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
     } else {
 	struct dl_serpath *s_entry;
 
 	s_entry = arg->serpath;
 	s_entry->dls_name  = arg->strspace;
 	s_entry->dls_flags = arg->flags;
 
 	strncpy(arg->strspace, dir, dirlen);
 	arg->strspace[dirlen] = '\0';
 
 	arg->strspace += dirlen + 1;
 	arg->serpath++;
     }
 
     return (NULL);
 }
 
 static int
 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
 {
     struct dl_serinfo _info;
     struct fill_search_info_args args;
 
     args.request = RTLD_DI_SERINFOSIZE;
     args.serinfo = &_info;
 
     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
     _info.dls_cnt  = 0;
 
     path_enumerate(obj->rpath, fill_search_info, &args);
     path_enumerate(ld_library_path, fill_search_info, &args);
     path_enumerate(obj->runpath, fill_search_info, &args);
     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
     if (!obj->z_nodeflib)
       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
 
 
     if (request == RTLD_DI_SERINFOSIZE) {
 	info->dls_size = _info.dls_size;
 	info->dls_cnt = _info.dls_cnt;
 	return (0);
     }
 
     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
 	return (-1);
     }
 
     args.request  = RTLD_DI_SERINFO;
     args.serinfo  = info;
     args.serpath  = &info->dls_serpath[0];
     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
 
     args.flags = LA_SER_RUNPATH;
     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_LIBPATH;
     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_RUNPATH;
     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_CONFIG;
     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
       != NULL)
 	return (-1);
 
     args.flags = LA_SER_DEFAULT;
     if (!obj->z_nodeflib &&
       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
 	return (-1);
     return (0);
 }
 
 static int
 rtld_dirname(const char *path, char *bname)
 {
     const char *endp;
 
     /* Empty or NULL string gets treated as "." */
     if (path == NULL || *path == '\0') {
 	bname[0] = '.';
 	bname[1] = '\0';
 	return (0);
     }
 
     /* Strip trailing slashes */
     endp = path + strlen(path) - 1;
     while (endp > path && *endp == '/')
 	endp--;
 
     /* Find the start of the dir */
     while (endp > path && *endp != '/')
 	endp--;
 
     /* Either the dir is "/" or there are no slashes */
     if (endp == path) {
 	bname[0] = *endp == '/' ? '/' : '.';
 	bname[1] = '\0';
 	return (0);
     } else {
 	do {
 	    endp--;
 	} while (endp > path && *endp == '/');
     }
 
     if (endp - path + 2 > PATH_MAX)
     {
 	_rtld_error("Filename is too long: %s", path);
 	return(-1);
     }
 
     strncpy(bname, path, endp - path + 1);
     bname[endp - path + 1] = '\0';
     return (0);
 }
 
 static int
 rtld_dirname_abs(const char *path, char *base)
 {
 	char *last;
 
 	if (realpath(path, base) == NULL)
 		return (-1);
 	dbg("%s -> %s", path, base);
 	last = strrchr(base, '/');
 	if (last == NULL)
 		return (-1);
 	if (last != base)
 		*last = '\0';
 	return (0);
 }
 
 static void
 linkmap_add(Obj_Entry *obj)
 {
     struct link_map *l = &obj->linkmap;
     struct link_map *prev;
 
     obj->linkmap.l_name = obj->path;
     obj->linkmap.l_addr = obj->mapbase;
     obj->linkmap.l_ld = obj->dynamic;
 #ifdef __mips__
     /* GDB needs load offset on MIPS to use the symbols */
     obj->linkmap.l_offs = obj->relocbase;
 #endif
 
     if (r_debug.r_map == NULL) {
 	r_debug.r_map = l;
 	return;
     }
 
     /*
      * Scan to the end of the list, but not past the entry for the
      * dynamic linker, which we want to keep at the very end.
      */
     for (prev = r_debug.r_map;
       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
       prev = prev->l_next)
 	;
 
     /* Link in the new entry. */
     l->l_prev = prev;
     l->l_next = prev->l_next;
     if (l->l_next != NULL)
 	l->l_next->l_prev = l;
     prev->l_next = l;
 }
 
 static void
 linkmap_delete(Obj_Entry *obj)
 {
     struct link_map *l = &obj->linkmap;
 
     if (l->l_prev == NULL) {
 	if ((r_debug.r_map = l->l_next) != NULL)
 	    l->l_next->l_prev = NULL;
 	return;
     }
 
     if ((l->l_prev->l_next = l->l_next) != NULL)
 	l->l_next->l_prev = l->l_prev;
 }
 
 /*
  * Function for the debugger to set a breakpoint on to gain control.
  *
  * The two parameters allow the debugger to easily find and determine
  * what the runtime loader is doing and to whom it is doing it.
  *
  * When the loadhook trap is hit (r_debug_state, set at program
  * initialization), the arguments can be found on the stack:
  *
  *  +8   struct link_map *m
  *  +4   struct r_debug  *rd
  *  +0   RetAddr
  */
 void
 r_debug_state(struct r_debug* rd, struct link_map *m)
 {
     /*
      * The following is a hack to force the compiler to emit calls to
      * this function, even when optimizing.  If the function is empty,
      * the compiler is not obliged to emit any code for calls to it,
      * even when marked __noinline.  However, gdb depends on those
      * calls being made.
      */
     __compiler_membar();
 }
 
 /*
  * A function called after init routines have completed. This can be used to
  * break before a program's entry routine is called, and can be used when
  * main is not available in the symbol table.
  */
 void
 _r_debug_postinit(struct link_map *m)
 {
 
 	/* See r_debug_state(). */
 	__compiler_membar();
 }
 
 /*
  * Get address of the pointer variable in the main program.
  * Prefer non-weak symbol over the weak one.
  */
 static const void **
 get_program_var_addr(const char *name, RtldLockState *lockstate)
 {
     SymLook req;
     DoneList donelist;
 
     symlook_init(&req, name);
     req.lockstate = lockstate;
     donelist_init(&donelist);
     if (symlook_global(&req, &donelist) != 0)
 	return (NULL);
     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
 	return ((const void **)make_function_pointer(req.sym_out,
 	  req.defobj_out));
     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
     else
 	return ((const void **)(req.defobj_out->relocbase +
 	  req.sym_out->st_value));
 }
 
 /*
  * Set a pointer variable in the main program to the given value.  This
  * is used to set key variables such as "environ" before any of the
  * init functions are called.
  */
 static void
 set_program_var(const char *name, const void *value)
 {
     const void **addr;
 
     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
 	dbg("\"%s\": *%p <-- %p", name, addr, value);
 	*addr = value;
     }
 }
 
 /*
  * Search the global objects, including dependencies and main object,
  * for the given symbol.
  */
 static int
 symlook_global(SymLook *req, DoneList *donelist)
 {
     SymLook req1;
     const Objlist_Entry *elm;
     int res;
 
     symlook_init_from_req(&req1, req);
 
     /* Search all objects loaded at program start up. */
     if (req->defobj_out == NULL ||
       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
 	res = symlook_list(&req1, &list_main, donelist);
 	if (res == 0 && (req->defobj_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
     STAILQ_FOREACH(elm, &list_global, link) {
 	if (req->defobj_out != NULL &&
 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
 	    break;
 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
 	if (res == 0 && (req->defobj_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     return (req->sym_out != NULL ? 0 : ESRCH);
 }
 
 /*
  * Given a symbol name in a referencing object, find the corresponding
  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
  * no definition was found.  Returns a pointer to the Obj_Entry of the
  * defining object via the reference parameter DEFOBJ_OUT.
  */
 static int
 symlook_default(SymLook *req, const Obj_Entry *refobj)
 {
     DoneList donelist;
     const Objlist_Entry *elm;
     SymLook req1;
     int res;
 
     donelist_init(&donelist);
     symlook_init_from_req(&req1, req);
 
     /* Look first in the referencing object if linked symbolically. */
     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
 	res = symlook_obj(&req1, refobj);
 	if (res == 0) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     symlook_global(req, &donelist);
 
     /* Search all dlopened DAGs containing the referencing object. */
     STAILQ_FOREACH(elm, &refobj->dldags, link) {
 	if (req->sym_out != NULL &&
 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
 	    break;
 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
 	if (res == 0 && (req->sym_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     /*
      * Search the dynamic linker itself, and possibly resolve the
      * symbol from there.  This is how the application links to
      * dynamic linker services such as dlopen.
      */
     if (req->sym_out == NULL ||
       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
 	res = symlook_obj(&req1, &obj_rtld);
 	if (res == 0) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     return (req->sym_out != NULL ? 0 : ESRCH);
 }
 
 static int
 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
 {
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     const Objlist_Entry *elm;
     SymLook req1;
     int res;
 
     def = NULL;
     defobj = NULL;
     STAILQ_FOREACH(elm, objlist, link) {
 	if (donelist_check(dlp, elm->obj))
 	    continue;
 	symlook_init_from_req(&req1, req);
 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
 		def = req1.sym_out;
 		defobj = req1.defobj_out;
 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
 		    break;
 	    }
 	}
     }
     if (def != NULL) {
 	req->sym_out = def;
 	req->defobj_out = defobj;
 	return (0);
     }
     return (ESRCH);
 }
 
 /*
  * Search the chain of DAGS cointed to by the given Needed_Entry
  * for a symbol of the given name.  Each DAG is scanned completely
  * before advancing to the next one.  Returns a pointer to the symbol,
  * or NULL if no definition was found.
  */
 static int
 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
 {
     const Elf_Sym *def;
     const Needed_Entry *n;
     const Obj_Entry *defobj;
     SymLook req1;
     int res;
 
     def = NULL;
     defobj = NULL;
     symlook_init_from_req(&req1, req);
     for (n = needed; n != NULL; n = n->next) {
 	if (n->obj == NULL ||
 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
 	    continue;
 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
 	    def = req1.sym_out;
 	    defobj = req1.defobj_out;
 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
 		break;
 	}
     }
     if (def != NULL) {
 	req->sym_out = def;
 	req->defobj_out = defobj;
 	return (0);
     }
     return (ESRCH);
 }
 
 /*
  * Search the symbol table of a single shared object for a symbol of
  * the given name and version, if requested.  Returns a pointer to the
  * symbol, or NULL if no definition was found.  If the object is
  * filter, return filtered symbol from filtee.
  *
  * The symbol's hash value is passed in for efficiency reasons; that
  * eliminates many recomputations of the hash value.
  */
 int
 symlook_obj(SymLook *req, const Obj_Entry *obj)
 {
     DoneList donelist;
     SymLook req1;
     int flags, res, mres;
 
     /*
      * If there is at least one valid hash at this point, we prefer to
      * use the faster GNU version if available.
      */
     if (obj->valid_hash_gnu)
 	mres = symlook_obj1_gnu(req, obj);
     else if (obj->valid_hash_sysv)
 	mres = symlook_obj1_sysv(req, obj);
     else
 	return (EINVAL);
 
     if (mres == 0) {
 	if (obj->needed_filtees != NULL) {
 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
 	    donelist_init(&donelist);
 	    symlook_init_from_req(&req1, req);
 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
 	    if (res == 0) {
 		req->sym_out = req1.sym_out;
 		req->defobj_out = req1.defobj_out;
 	    }
 	    return (res);
 	}
 	if (obj->needed_aux_filtees != NULL) {
 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
 	    donelist_init(&donelist);
 	    symlook_init_from_req(&req1, req);
 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
 	    if (res == 0) {
 		req->sym_out = req1.sym_out;
 		req->defobj_out = req1.defobj_out;
 		return (res);
 	    }
 	}
     }
     return (mres);
 }
 
 /* Symbol match routine common to both hash functions */
 static bool
 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
     const unsigned long symnum)
 {
 	Elf_Versym verndx;
 	const Elf_Sym *symp;
 	const char *strp;
 
 	symp = obj->symtab + symnum;
 	strp = obj->strtab + symp->st_name;
 
 	switch (ELF_ST_TYPE(symp->st_info)) {
 	case STT_FUNC:
 	case STT_NOTYPE:
 	case STT_OBJECT:
 	case STT_COMMON:
 	case STT_GNU_IFUNC:
 		if (symp->st_value == 0)
 			return (false);
 		/* fallthrough */
 	case STT_TLS:
 		if (symp->st_shndx != SHN_UNDEF)
 			break;
 #ifndef __mips__
 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
 			break;
 		/* fallthrough */
 #endif
 	default:
 		return (false);
 	}
 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
 		return (false);
 
 	if (req->ventry == NULL) {
 		if (obj->versyms != NULL) {
 			verndx = VER_NDX(obj->versyms[symnum]);
 			if (verndx > obj->vernum) {
 				_rtld_error(
 				    "%s: symbol %s references wrong version %d",
 				    obj->path, obj->strtab + symnum, verndx);
 				return (false);
 			}
 			/*
 			 * If we are not called from dlsym (i.e. this
 			 * is a normal relocation from unversioned
 			 * binary), accept the symbol immediately if
 			 * it happens to have first version after this
 			 * shared object became versioned.  Otherwise,
 			 * if symbol is versioned and not hidden,
 			 * remember it. If it is the only symbol with
 			 * this name exported by the shared object, it
 			 * will be returned as a match by the calling
 			 * function. If symbol is global (verndx < 2)
 			 * accept it unconditionally.
 			 */
 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
 			    verndx == VER_NDX_GIVEN) {
 				result->sym_out = symp;
 				return (true);
 			}
 			else if (verndx >= VER_NDX_GIVEN) {
 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
 				    == 0) {
 					if (result->vsymp == NULL)
 						result->vsymp = symp;
 					result->vcount++;
 				}
 				return (false);
 			}
 		}
 		result->sym_out = symp;
 		return (true);
 	}
 	if (obj->versyms == NULL) {
 		if (object_match_name(obj, req->ventry->name)) {
 			_rtld_error("%s: object %s should provide version %s "
 			    "for symbol %s", obj_rtld.path, obj->path,
 			    req->ventry->name, obj->strtab + symnum);
 			return (false);
 		}
 	} else {
 		verndx = VER_NDX(obj->versyms[symnum]);
 		if (verndx > obj->vernum) {
 			_rtld_error("%s: symbol %s references wrong version %d",
 			    obj->path, obj->strtab + symnum, verndx);
 			return (false);
 		}
 		if (obj->vertab[verndx].hash != req->ventry->hash ||
 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
 			/*
 			 * Version does not match. Look if this is a
 			 * global symbol and if it is not hidden. If
 			 * global symbol (verndx < 2) is available,
 			 * use it. Do not return symbol if we are
 			 * called by dlvsym, because dlvsym looks for
 			 * a specific version and default one is not
 			 * what dlvsym wants.
 			 */
 			if ((req->flags & SYMLOOK_DLSYM) ||
 			    (verndx >= VER_NDX_GIVEN) ||
 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
 				return (false);
 		}
 	}
 	result->sym_out = symp;
 	return (true);
 }
 
 /*
  * Search for symbol using SysV hash function.
  * obj->buckets is known not to be NULL at this point; the test for this was
  * performed with the obj->valid_hash_sysv assignment.
  */
 static int
 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
 {
 	unsigned long symnum;
 	Sym_Match_Result matchres;
 
 	matchres.sym_out = NULL;
 	matchres.vsymp = NULL;
 	matchres.vcount = 0;
 
 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
 		if (symnum >= obj->nchains)
 			return (ESRCH);	/* Bad object */
 
 		if (matched_symbol(req, obj, &matchres, symnum)) {
 			req->sym_out = matchres.sym_out;
 			req->defobj_out = obj;
 			return (0);
 		}
 	}
 	if (matchres.vcount == 1) {
 		req->sym_out = matchres.vsymp;
 		req->defobj_out = obj;
 		return (0);
 	}
 	return (ESRCH);
 }
 
 /* Search for symbol using GNU hash function */
 static int
 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
 {
 	Elf_Addr bloom_word;
 	const Elf32_Word *hashval;
 	Elf32_Word bucket;
 	Sym_Match_Result matchres;
 	unsigned int h1, h2;
 	unsigned long symnum;
 
 	matchres.sym_out = NULL;
 	matchres.vsymp = NULL;
 	matchres.vcount = 0;
 
 	/* Pick right bitmask word from Bloom filter array */
 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
 	    obj->maskwords_bm_gnu];
 
 	/* Calculate modulus word size of gnu hash and its derivative */
 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
 
 	/* Filter out the "definitely not in set" queries */
 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
 		return (ESRCH);
 
 	/* Locate hash chain and corresponding value element*/
 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
 	if (bucket == 0)
 		return (ESRCH);
 	hashval = &obj->chain_zero_gnu[bucket];
 	do {
 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
 			symnum = hashval - obj->chain_zero_gnu;
 			if (matched_symbol(req, obj, &matchres, symnum)) {
 				req->sym_out = matchres.sym_out;
 				req->defobj_out = obj;
 				return (0);
 			}
 		}
 	} while ((*hashval++ & 1) == 0);
 	if (matchres.vcount == 1) {
 		req->sym_out = matchres.vsymp;
 		req->defobj_out = obj;
 		return (0);
 	}
 	return (ESRCH);
 }
 
 static void
 trace_loaded_objects(Obj_Entry *obj)
 {
     char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
     int		c;
 
     if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
 	main_local = "";
 
     if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
 	fmt1 = "\t%o => %p (%x)\n";
 
     if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
 	fmt2 = "\t%o (%x)\n";
 
     list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
 
     for (; obj; obj = obj->next) {
 	Needed_Entry		*needed;
 	char			*name, *path;
 	bool			is_lib;
 
 	if (list_containers && obj->needed != NULL)
 	    rtld_printf("%s:\n", obj->path);
 	for (needed = obj->needed; needed; needed = needed->next) {
 	    if (needed->obj != NULL) {
 		if (needed->obj->traced && !list_containers)
 		    continue;
 		needed->obj->traced = true;
 		path = needed->obj->path;
 	    } else
 		path = "not found";
 
 	    name = (char *)obj->strtab + needed->name;
 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
 
 	    fmt = is_lib ? fmt1 : fmt2;
 	    while ((c = *fmt++) != '\0') {
 		switch (c) {
 		default:
 		    rtld_putchar(c);
 		    continue;
 		case '\\':
 		    switch (c = *fmt) {
 		    case '\0':
 			continue;
 		    case 'n':
 			rtld_putchar('\n');
 			break;
 		    case 't':
 			rtld_putchar('\t');
 			break;
 		    }
 		    break;
 		case '%':
 		    switch (c = *fmt) {
 		    case '\0':
 			continue;
 		    case '%':
 		    default:
 			rtld_putchar(c);
 			break;
 		    case 'A':
 			rtld_putstr(main_local);
 			break;
 		    case 'a':
 			rtld_putstr(obj_main->path);
 			break;
 		    case 'o':
 			rtld_putstr(name);
 			break;
 #if 0
 		    case 'm':
 			rtld_printf("%d", sodp->sod_major);
 			break;
 		    case 'n':
 			rtld_printf("%d", sodp->sod_minor);
 			break;
 #endif
 		    case 'p':
 			rtld_putstr(path);
 			break;
 		    case 'x':
 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
 			  0);
 			break;
 		    }
 		    break;
 		}
 		++fmt;
 	    }
 	}
     }
 }
 
 /*
  * Unload a dlopened object and its dependencies from memory and from
  * our data structures.  It is assumed that the DAG rooted in the
  * object has already been unreferenced, and that the object has a
  * reference count of 0.
  */
 static void
 unload_object(Obj_Entry *root)
 {
     Obj_Entry *obj;
     Obj_Entry **linkp;
 
     assert(root->refcount == 0);
 
     /*
      * Pass over the DAG removing unreferenced objects from
      * appropriate lists.
      */
     unlink_object(root);
 
     /* Unmap all objects that are no longer referenced. */
     linkp = &obj_list->next;
     while ((obj = *linkp) != NULL) {
 	if (obj->refcount == 0) {
 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
 		obj->path);
 	    dbg("unloading \"%s\"", obj->path);
 	    unload_filtees(root);
 	    munmap(obj->mapbase, obj->mapsize);
 	    linkmap_delete(obj);
 	    *linkp = obj->next;
 	    obj_count--;
 	    obj_free(obj);
 	} else
 	    linkp = &obj->next;
     }
     obj_tail = linkp;
 }
 
 static void
 unlink_object(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     if (root->refcount == 0) {
 	/* Remove the object from the RTLD_GLOBAL list. */
 	objlist_remove(&list_global, root);
 
     	/* Remove the object from all objects' DAG lists. */
     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 	    objlist_remove(&elm->obj->dldags, root);
 	    if (elm->obj != root)
 		unlink_object(elm->obj);
 	}
     }
 }
 
 static void
 ref_dag(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     assert(root->dag_inited);
     STAILQ_FOREACH(elm, &root->dagmembers, link)
 	elm->obj->refcount++;
 }
 
 static void
 unref_dag(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     assert(root->dag_inited);
     STAILQ_FOREACH(elm, &root->dagmembers, link)
 	elm->obj->refcount--;
 }
 
 /*
  * Common code for MD __tls_get_addr().
  */
 static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
 static void *
 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
 {
     Elf_Addr *newdtv, *dtv;
     RtldLockState lockstate;
     int to_copy;
 
     dtv = *dtvp;
     /* Check dtv generation in case new modules have arrived */
     if (dtv[0] != tls_dtv_generation) {
 	wlock_acquire(rtld_bind_lock, &lockstate);
 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 	to_copy = dtv[1];
 	if (to_copy > tls_max_index)
 	    to_copy = tls_max_index;
 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
 	newdtv[0] = tls_dtv_generation;
 	newdtv[1] = tls_max_index;
 	free(dtv);
 	lock_release(rtld_bind_lock, &lockstate);
 	dtv = *dtvp = newdtv;
     }
 
     /* Dynamically allocate module TLS if necessary */
     if (dtv[index + 1] == 0) {
 	/* Signal safe, wlock will block out signals. */
 	wlock_acquire(rtld_bind_lock, &lockstate);
 	if (!dtv[index + 1])
 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
 	lock_release(rtld_bind_lock, &lockstate);
     }
     return ((void *)(dtv[index + 1] + offset));
 }
 
 void *
 tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
 {
 	Elf_Addr *dtv;
 
 	dtv = *dtvp;
 	/* Check dtv generation in case new modules have arrived */
 	if (__predict_true(dtv[0] == tls_dtv_generation &&
 	    dtv[index + 1] != 0))
 		return ((void *)(dtv[index + 1] + offset));
 	return (tls_get_addr_slow(dtvp, index, offset));
 }
 
 #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \
     defined(__powerpc__)
 
 /*
  * Allocate Static TLS using the Variant I method.
  */
 void *
 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
 {
     Obj_Entry *obj;
     char *tcb;
     Elf_Addr **tls;
     Elf_Addr *dtv;
     Elf_Addr addr;
     int i;
 
     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
 	return (oldtcb);
 
     assert(tcbsize >= TLS_TCB_SIZE);
     tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
     tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
 
     if (oldtcb != NULL) {
 	memcpy(tls, oldtcb, tls_static_space);
 	free(oldtcb);
 
 	/* Adjust the DTV. */
 	dtv = tls[0];
 	for (i = 0; i < dtv[1]; i++) {
 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
 	    }
 	}
     } else {
 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 	tls[0] = dtv;
 	dtv[0] = tls_dtv_generation;
 	dtv[1] = tls_max_index;
 
 	for (obj = objs; obj; obj = obj->next) {
 	    if (obj->tlsoffset > 0) {
 		addr = (Elf_Addr)tls + obj->tlsoffset;
 		if (obj->tlsinitsize > 0)
 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
 		if (obj->tlssize > obj->tlsinitsize)
 		    memset((void*) (addr + obj->tlsinitsize), 0,
 			   obj->tlssize - obj->tlsinitsize);
 		dtv[obj->tlsindex + 1] = addr;
 	    }
 	}
     }
 
     return (tcb);
 }
 
 void
 free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
 {
     Elf_Addr *dtv;
     Elf_Addr tlsstart, tlsend;
     int dtvsize, i;
 
     assert(tcbsize >= TLS_TCB_SIZE);
 
     tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
     tlsend = tlsstart + tls_static_space;
 
     dtv = *(Elf_Addr **)tlsstart;
     dtvsize = dtv[1];
     for (i = 0; i < dtvsize; i++) {
 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
 	    free((void*)dtv[i+2]);
 	}
     }
     free(dtv);
     free(tcb);
 }
 
 #endif
 
 #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
 
 /*
  * Allocate Static TLS using the Variant II method.
  */
 void *
 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
 {
     Obj_Entry *obj;
     size_t size, ralign;
     char *tls;
     Elf_Addr *dtv, *olddtv;
     Elf_Addr segbase, oldsegbase, addr;
     int i;
 
     ralign = tcbalign;
     if (tls_static_max_align > ralign)
 	    ralign = tls_static_max_align;
     size = round(tls_static_space, ralign) + round(tcbsize, ralign);
 
     assert(tcbsize >= 2*sizeof(Elf_Addr));
     tls = malloc_aligned(size, ralign);
     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 
     segbase = (Elf_Addr)(tls + round(tls_static_space, ralign));
     ((Elf_Addr*)segbase)[0] = segbase;
     ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
 
     dtv[0] = tls_dtv_generation;
     dtv[1] = tls_max_index;
 
     if (oldtls) {
 	/*
 	 * Copy the static TLS block over whole.
 	 */
 	oldsegbase = (Elf_Addr) oldtls;
 	memcpy((void *)(segbase - tls_static_space),
 	       (const void *)(oldsegbase - tls_static_space),
 	       tls_static_space);
 
 	/*
 	 * If any dynamic TLS blocks have been created tls_get_addr(),
 	 * move them over.
 	 */
 	olddtv = ((Elf_Addr**)oldsegbase)[1];
 	for (i = 0; i < olddtv[1]; i++) {
 	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
 		dtv[i+2] = olddtv[i+2];
 		olddtv[i+2] = 0;
 	    }
 	}
 
 	/*
 	 * We assume that this block was the one we created with
 	 * allocate_initial_tls().
 	 */
 	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
     } else {
 	for (obj = objs; obj; obj = obj->next) {
 	    if (obj->tlsoffset) {
 		addr = segbase - obj->tlsoffset;
 		memset((void*) (addr + obj->tlsinitsize),
 		       0, obj->tlssize - obj->tlsinitsize);
 		if (obj->tlsinit)
 		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
 		dtv[obj->tlsindex + 1] = addr;
 	    }
 	}
     }
 
     return (void*) segbase;
 }
 
 void
 free_tls(void *tls, size_t tcbsize, size_t tcbalign)
 {
     Elf_Addr* dtv;
     size_t size, ralign;
     int dtvsize, i;
     Elf_Addr tlsstart, tlsend;
 
     /*
      * Figure out the size of the initial TLS block so that we can
      * find stuff which ___tls_get_addr() allocated dynamically.
      */
     ralign = tcbalign;
     if (tls_static_max_align > ralign)
 	    ralign = tls_static_max_align;
     size = round(tls_static_space, ralign);
 
     dtv = ((Elf_Addr**)tls)[1];
     dtvsize = dtv[1];
     tlsend = (Elf_Addr) tls;
     tlsstart = tlsend - size;
     for (i = 0; i < dtvsize; i++) {
 	if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) {
 		free_aligned((void *)dtv[i + 2]);
 	}
     }
 
     free_aligned((void *)tlsstart);
     free((void*) dtv);
 }
 
 #endif
 
 /*
  * Allocate TLS block for module with given index.
  */
 void *
 allocate_module_tls(int index)
 {
     Obj_Entry* obj;
     char* p;
 
     for (obj = obj_list; obj; obj = obj->next) {
 	if (obj->tlsindex == index)
 	    break;
     }
     if (!obj) {
 	_rtld_error("Can't find module with TLS index %d", index);
-	die();
+	rtld_die();
     }
 
     p = malloc_aligned(obj->tlssize, obj->tlsalign);
     memcpy(p, obj->tlsinit, obj->tlsinitsize);
     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
 
     return p;
 }
 
 bool
 allocate_tls_offset(Obj_Entry *obj)
 {
     size_t off;
 
     if (obj->tls_done)
 	return true;
 
     if (obj->tlssize == 0) {
 	obj->tls_done = true;
 	return true;
     }
 
     if (obj->tlsindex == 1)
 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
     else
 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
 				   obj->tlssize, obj->tlsalign);
 
     /*
      * If we have already fixed the size of the static TLS block, we
      * must stay within that size. When allocating the static TLS, we
      * leave a small amount of space spare to be used for dynamically
      * loading modules which use static TLS.
      */
     if (tls_static_space != 0) {
 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
 	    return false;
     } else if (obj->tlsalign > tls_static_max_align) {
 	    tls_static_max_align = obj->tlsalign;
     }
 
     tls_last_offset = obj->tlsoffset = off;
     tls_last_size = obj->tlssize;
     obj->tls_done = true;
 
     return true;
 }
 
 void
 free_tls_offset(Obj_Entry *obj)
 {
 
     /*
      * If we were the last thing to allocate out of the static TLS
      * block, we give our space back to the 'allocator'. This is a
      * simplistic workaround to allow libGL.so.1 to be loaded and
      * unloaded multiple times.
      */
     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
 	tls_last_offset -= obj->tlssize;
 	tls_last_size = 0;
     }
 }
 
 void *
 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
 {
     void *ret;
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
     lock_release(rtld_bind_lock, &lockstate);
     return (ret);
 }
 
 void
 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
 {
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     free_tls(tcb, tcbsize, tcbalign);
     lock_release(rtld_bind_lock, &lockstate);
 }
 
 static void
 object_add_name(Obj_Entry *obj, const char *name)
 {
     Name_Entry *entry;
     size_t len;
 
     len = strlen(name);
     entry = malloc(sizeof(Name_Entry) + len);
 
     if (entry != NULL) {
 	strcpy(entry->name, name);
 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
     }
 }
 
 static int
 object_match_name(const Obj_Entry *obj, const char *name)
 {
     Name_Entry *entry;
 
     STAILQ_FOREACH(entry, &obj->names, link) {
 	if (strcmp(name, entry->name) == 0)
 	    return (1);
     }
     return (0);
 }
 
 static Obj_Entry *
 locate_dependency(const Obj_Entry *obj, const char *name)
 {
     const Objlist_Entry *entry;
     const Needed_Entry *needed;
 
     STAILQ_FOREACH(entry, &list_main, link) {
 	if (object_match_name(entry->obj, name))
 	    return entry->obj;
     }
 
     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
 	    /*
 	     * If there is DT_NEEDED for the name we are looking for,
 	     * we are all set.  Note that object might not be found if
 	     * dependency was not loaded yet, so the function can
 	     * return NULL here.  This is expected and handled
 	     * properly by the caller.
 	     */
 	    return (needed->obj);
 	}
     }
     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
 	obj->path, name);
-    die();
+    rtld_die();
 }
 
 static int
 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
     const Elf_Vernaux *vna)
 {
     const Elf_Verdef *vd;
     const char *vername;
 
     vername = refobj->strtab + vna->vna_name;
     vd = depobj->verdef;
     if (vd == NULL) {
 	_rtld_error("%s: version %s required by %s not defined",
 	    depobj->path, vername, refobj->path);
 	return (-1);
     }
     for (;;) {
 	if (vd->vd_version != VER_DEF_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
 		depobj->path, vd->vd_version);
 	    return (-1);
 	}
 	if (vna->vna_hash == vd->vd_hash) {
 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
 		((char *)vd + vd->vd_aux);
 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
 		return (0);
 	}
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
     }
     if (vna->vna_flags & VER_FLG_WEAK)
 	return (0);
     _rtld_error("%s: version %s required by %s not found",
 	depobj->path, vername, refobj->path);
     return (-1);
 }
 
 static int
 rtld_verify_object_versions(Obj_Entry *obj)
 {
     const Elf_Verneed *vn;
     const Elf_Verdef  *vd;
     const Elf_Verdaux *vda;
     const Elf_Vernaux *vna;
     const Obj_Entry *depobj;
     int maxvernum, vernum;
 
     if (obj->ver_checked)
 	return (0);
     obj->ver_checked = true;
 
     maxvernum = 0;
     /*
      * Walk over defined and required version records and figure out
      * max index used by any of them. Do very basic sanity checking
      * while there.
      */
     vn = obj->verneed;
     while (vn != NULL) {
 	if (vn->vn_version != VER_NEED_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
 		obj->path, vn->vn_version);
 	    return (-1);
 	}
 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
 	for (;;) {
 	    vernum = VER_NEED_IDX(vna->vna_other);
 	    if (vernum > maxvernum)
 		maxvernum = vernum;
 	    if (vna->vna_next == 0)
 		 break;
 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
 	}
 	if (vn->vn_next == 0)
 	    break;
 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
     }
 
     vd = obj->verdef;
     while (vd != NULL) {
 	if (vd->vd_version != VER_DEF_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
 		obj->path, vd->vd_version);
 	    return (-1);
 	}
 	vernum = VER_DEF_IDX(vd->vd_ndx);
 	if (vernum > maxvernum)
 		maxvernum = vernum;
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
     }
 
     if (maxvernum == 0)
 	return (0);
 
     /*
      * Store version information in array indexable by version index.
      * Verify that object version requirements are satisfied along the
      * way.
      */
     obj->vernum = maxvernum + 1;
     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
 
     vd = obj->verdef;
     while (vd != NULL) {
 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
 	    vernum = VER_DEF_IDX(vd->vd_ndx);
 	    assert(vernum <= maxvernum);
 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
 	    obj->vertab[vernum].hash = vd->vd_hash;
 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
 	    obj->vertab[vernum].file = NULL;
 	    obj->vertab[vernum].flags = 0;
 	}
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
     }
 
     vn = obj->verneed;
     while (vn != NULL) {
 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
 	if (depobj == NULL)
 	    return (-1);
 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
 	for (;;) {
 	    if (check_object_provided_version(obj, depobj, vna))
 		return (-1);
 	    vernum = VER_NEED_IDX(vna->vna_other);
 	    assert(vernum <= maxvernum);
 	    obj->vertab[vernum].hash = vna->vna_hash;
 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
 		VER_INFO_HIDDEN : 0;
 	    if (vna->vna_next == 0)
 		 break;
 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
 	}
 	if (vn->vn_next == 0)
 	    break;
 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
     }
     return 0;
 }
 
 static int
 rtld_verify_versions(const Objlist *objlist)
 {
     Objlist_Entry *entry;
     int rc;
 
     rc = 0;
     STAILQ_FOREACH(entry, objlist, link) {
 	/*
 	 * Skip dummy objects or objects that have their version requirements
 	 * already checked.
 	 */
 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
 	    continue;
 	if (rtld_verify_object_versions(entry->obj) == -1) {
 	    rc = -1;
 	    if (ld_tracing == NULL)
 		break;
 	}
     }
     if (rc == 0 || ld_tracing != NULL)
     	rc = rtld_verify_object_versions(&obj_rtld);
     return rc;
 }
 
 const Ver_Entry *
 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
 {
     Elf_Versym vernum;
 
     if (obj->vertab) {
 	vernum = VER_NDX(obj->versyms[symnum]);
 	if (vernum >= obj->vernum) {
 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
 		obj->path, obj->strtab + symnum, vernum);
 	} else if (obj->vertab[vernum].hash != 0) {
 	    return &obj->vertab[vernum];
 	}
     }
     return NULL;
 }
 
 int
 _rtld_get_stack_prot(void)
 {
 
 	return (stack_prot);
 }
 
 int
 _rtld_is_dlopened(void *arg)
 {
 	Obj_Entry *obj;
 	RtldLockState lockstate;
 	int res;
 
 	rlock_acquire(rtld_bind_lock, &lockstate);
 	obj = dlcheck(arg);
 	if (obj == NULL)
 		obj = obj_from_addr(arg);
 	if (obj == NULL) {
 		_rtld_error("No shared object contains address");
 		lock_release(rtld_bind_lock, &lockstate);
 		return (-1);
 	}
 	res = obj->dlopened ? 1 : 0;
 	lock_release(rtld_bind_lock, &lockstate);
 	return (res);
 }
 
 static void
 map_stacks_exec(RtldLockState *lockstate)
 {
 	void (*thr_map_stacks_exec)(void);
 
 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
 		return;
 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
 	if (thr_map_stacks_exec != NULL) {
 		stack_prot |= PROT_EXEC;
 		thr_map_stacks_exec();
 	}
 }
 
 void
 symlook_init(SymLook *dst, const char *name)
 {
 
 	bzero(dst, sizeof(*dst));
 	dst->name = name;
 	dst->hash = elf_hash(name);
 	dst->hash_gnu = gnu_hash(name);
 }
 
 static void
 symlook_init_from_req(SymLook *dst, const SymLook *src)
 {
 
 	dst->name = src->name;
 	dst->hash = src->hash;
 	dst->hash_gnu = src->hash_gnu;
 	dst->ventry = src->ventry;
 	dst->flags = src->flags;
 	dst->defobj_out = NULL;
 	dst->sym_out = NULL;
 	dst->lockstate = src->lockstate;
 }
 
 
 /*
  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
  */
 static int
 parse_libdir(const char *str)
 {
 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
 	const char *orig;
 	int fd;
 	char c;
 
 	orig = str;
 	fd = 0;
 	for (c = *str; c != '\0'; c = *++str) {
 		if (c < '0' || c > '9')
 			return (-1);
 
 		fd *= RADIX;
 		fd += c - '0';
 	}
 
 	/* Make sure we actually parsed something. */
 	if (str == orig) {
 		_rtld_error("failed to parse directory FD from '%s'", str);
 		return (-1);
 	}
 	return (fd);
 }
 
 /*
  * Overrides for libc_pic-provided functions.
  */
 
 int
 __getosreldate(void)
 {
 	size_t len;
 	int oid[2];
 	int error, osrel;
 
 	if (osreldate != 0)
 		return (osreldate);
 
 	oid[0] = CTL_KERN;
 	oid[1] = KERN_OSRELDATE;
 	osrel = 0;
 	len = sizeof(osrel);
 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
 		osreldate = osrel;
 	return (osreldate);
 }
 
 void
 exit(int status)
 {
 
 	_exit(status);
 }
 
 void (*__cleanup)(void);
 int __isthreaded = 0;
 int _thread_autoinit_dummy_decl = 1;
 
 /*
  * No unresolved symbols for rtld.
  */
 void
 __pthread_cxa_finalize(struct dl_phdr_info *a)
 {
 }
 
 void
 __stack_chk_fail(void)
 {
 
 	_rtld_error("stack overflow detected; terminated");
-	die();
+	rtld_die();
 }
 __weak_reference(__stack_chk_fail, __stack_chk_fail_local);
 
 void
 __chk_fail(void)
 {
 
 	_rtld_error("buffer overflow detected; terminated");
-	die();
+	rtld_die();
 }
 
 const char *
 rtld_strerror(int errnum)
 {
 
 	if (errnum < 0 || errnum >= sys_nerr)
 		return ("Unknown error");
 	return (sys_errlist[errnum]);
 }
Index: head/libexec/rtld-elf/rtld.h
===================================================================
--- head/libexec/rtld-elf/rtld.h	(revision 281004)
+++ head/libexec/rtld-elf/rtld.h	(revision 281005)
@@ -1,407 +1,408 @@
 /*-
  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef RTLD_H /* { */
 #define RTLD_H 1
 
 #include <machine/elf.h>
 #include <sys/types.h>
 #include <sys/queue.h>
 
 #include <elf-hints.h>
 #include <link.h>
 #include <stdarg.h>
 #include <setjmp.h>
 #include <stddef.h>
 
 #include "rtld_lock.h"
 #include "rtld_machdep.h"
 
 #ifdef COMPAT_32BIT
 #undef STANDARD_LIBRARY_PATH
 #undef _PATH_ELF_HINTS
 #define	_PATH_ELF_HINTS		"/var/run/ld-elf32.so.hints"
 /* For running 32 bit binaries  */
 #define	STANDARD_LIBRARY_PATH	"/lib32:/usr/lib32"
 #define LD_ "LD_32_"
 #endif
 
 #ifndef STANDARD_LIBRARY_PATH
 #define STANDARD_LIBRARY_PATH	"/lib:/usr/lib"
 #endif
 #ifndef LD_
 #define LD_ "LD_"
 #endif
 
 #define NEW(type)	((type *) xmalloc(sizeof(type)))
 #define CNEW(type)	((type *) xcalloc(1, sizeof(type)))
 
 /* We might as well do booleans like C++. */
 typedef unsigned char bool;
 #define false	0
 #define true	1
 
 extern size_t tls_last_offset;
 extern size_t tls_last_size;
 extern size_t tls_static_space;
 extern int tls_dtv_generation;
 extern int tls_max_index;
 
 extern int npagesizes;
 extern size_t *pagesizes;
 
 extern int main_argc;
 extern char **main_argv;
 extern char **environ;
 
 struct stat;
 struct Struct_Obj_Entry;
 
 /* Lists of shared objects */
 typedef struct Struct_Objlist_Entry {
     STAILQ_ENTRY(Struct_Objlist_Entry) link;
     struct Struct_Obj_Entry *obj;
 } Objlist_Entry;
 
 typedef STAILQ_HEAD(Struct_Objlist, Struct_Objlist_Entry) Objlist;
 
 /* Types of init and fini functions */
 typedef void (*InitFunc)(void);
 typedef void (*InitArrFunc)(int, char **, char **);
 
 /* Lists of shared object dependencies */
 typedef struct Struct_Needed_Entry {
     struct Struct_Needed_Entry *next;
     struct Struct_Obj_Entry *obj;
     unsigned long name;		/* Offset of name in string table */
 } Needed_Entry;
 
 typedef struct Struct_Name_Entry {
     STAILQ_ENTRY(Struct_Name_Entry) link;
     char   name[1];
 } Name_Entry;
 
 /* Lock object */
 typedef struct Struct_LockInfo {
     void *context;		/* Client context for creating locks */
     void *thelock;		/* The one big lock */
     /* Debugging aids. */
     volatile int rcount;	/* Number of readers holding lock */
     volatile int wcount;	/* Number of writers holding lock */
     /* Methods */
     void *(*lock_create)(void *context);
     void (*rlock_acquire)(void *lock);
     void (*wlock_acquire)(void *lock);
     void (*rlock_release)(void *lock);
     void (*wlock_release)(void *lock);
     void (*lock_destroy)(void *lock);
     void (*context_destroy)(void *context);
 } LockInfo;
 
 typedef struct Struct_Ver_Entry {
 	Elf_Word     hash;
 	unsigned int flags;
 	const char  *name;
 	const char  *file;
 } Ver_Entry;
 
 typedef struct Struct_Sym_Match_Result {
     const Elf_Sym *sym_out;
     const Elf_Sym *vsymp;
     int vcount;
 } Sym_Match_Result;
 
 #define VER_INFO_HIDDEN	0x01
 
 /*
  * Shared object descriptor.
  *
  * Items marked with "(%)" are dynamically allocated, and must be freed
  * when the structure is destroyed.
  *
  * CAUTION: It appears that the JDK port peeks into these structures.
  * It looks at "next" and "mapbase" at least.  Don't add new members
  * near the front, until this can be straightened out.
  */
 typedef struct Struct_Obj_Entry {
     /*
      * These two items have to be set right for compatibility with the
      * original ElfKit crt1.o.
      */
     Elf_Size magic;		/* Magic number (sanity check) */
     Elf_Size version;		/* Version number of struct format */
 
     struct Struct_Obj_Entry *next;
     char *path;			/* Pathname of underlying file (%) */
     char *origin_path;		/* Directory path of origin file */
     int refcount;
     int dl_refcount;		/* Number of times loaded by dlopen */
 
     /* These items are computed by map_object() or by digest_phdr(). */
     caddr_t mapbase;		/* Base address of mapped region */
     size_t mapsize;		/* Size of mapped region in bytes */
     size_t textsize;		/* Size of text segment in bytes */
     Elf_Addr vaddrbase;		/* Base address in shared object file */
     caddr_t relocbase;		/* Relocation constant = mapbase - vaddrbase */
     const Elf_Dyn *dynamic;	/* Dynamic section */
     caddr_t entry;		/* Entry point */
     const Elf_Phdr *phdr;	/* Program header if it is mapped, else NULL */
     size_t phsize;		/* Size of program header in bytes */
     const char *interp;		/* Pathname of the interpreter, if any */
     Elf_Word stack_flags;
 
     /* TLS information */
     int tlsindex;		/* Index in DTV for this module */
     void *tlsinit;		/* Base address of TLS init block */
     size_t tlsinitsize;		/* Size of TLS init block for this module */
     size_t tlssize;		/* Size of TLS block for this module */
     size_t tlsoffset;		/* Offset of static TLS block for this module */
     size_t tlsalign;		/* Alignment of static TLS block */
 
     caddr_t relro_page;
     size_t relro_size;
 
     /* Items from the dynamic section. */
     Elf_Addr *pltgot;		/* PLT or GOT, depending on architecture */
     const Elf_Rel *rel;		/* Relocation entries */
     unsigned long relsize;	/* Size in bytes of relocation info */
     const Elf_Rela *rela;	/* Relocation entries with addend */
     unsigned long relasize;	/* Size in bytes of addend relocation info */
     const Elf_Rel *pltrel;	/* PLT relocation entries */
     unsigned long pltrelsize;	/* Size in bytes of PLT relocation info */
     const Elf_Rela *pltrela;	/* PLT relocation entries with addend */
     unsigned long pltrelasize;	/* Size in bytes of PLT addend reloc info */
     const Elf_Sym *symtab;	/* Symbol table */
     const char *strtab;		/* String table */
     unsigned long strsize;	/* Size in bytes of string table */
 #ifdef __mips__
     Elf_Word local_gotno;	/* Number of local GOT entries */
     Elf_Word symtabno;		/* Number of dynamic symbols */
     Elf_Word gotsym;		/* First dynamic symbol in GOT */
 #endif
 
     const Elf_Verneed *verneed; /* Required versions. */
     Elf_Word verneednum;	/* Number of entries in verneed table */
     const Elf_Verdef  *verdef;	/* Provided versions. */
     Elf_Word verdefnum;		/* Number of entries in verdef table */
     const Elf_Versym *versyms;  /* Symbol versions table */
 
     const Elf_Hashelt *buckets;	/* Hash table buckets array */
     unsigned long nbuckets;	/* Number of buckets */
     const Elf_Hashelt *chains;	/* Hash table chain array */
     unsigned long nchains;	/* Number of entries in chain array */
 
     Elf32_Word nbuckets_gnu;		/* Number of GNU hash buckets*/
     Elf32_Word symndx_gnu;		/* 1st accessible symbol on dynsym table */
     Elf32_Word maskwords_bm_gnu;  	/* Bloom filter words - 1 (bitmask) */
     Elf32_Word shift2_gnu;		/* Bloom filter shift count */
     Elf32_Word dynsymcount;		/* Total entries in dynsym table */
     Elf_Addr *bloom_gnu;		/* Bloom filter used by GNU hash func */
     const Elf_Hashelt *buckets_gnu;	/* GNU hash table bucket array */
     const Elf_Hashelt *chain_zero_gnu;	/* GNU hash table value array (Zeroed) */
 
     char *rpath;		/* Search path specified in object */
     char *runpath;		/* Search path with different priority */
     Needed_Entry *needed;	/* Shared objects needed by this one (%) */
     Needed_Entry *needed_filtees;
     Needed_Entry *needed_aux_filtees;
 
     STAILQ_HEAD(, Struct_Name_Entry) names; /* List of names for this object we
 					       know about. */
     Ver_Entry *vertab;		/* Versions required /defined by this object */
     int vernum;			/* Number of entries in vertab */
 
     Elf_Addr init;		/* Initialization function to call */
     Elf_Addr fini;		/* Termination function to call */
     Elf_Addr preinit_array;	/* Pre-initialization array of functions */
     Elf_Addr init_array;	/* Initialization array of functions */
     Elf_Addr fini_array;	/* Termination array of functions */
     int preinit_array_num;	/* Number of entries in preinit_array */
     int init_array_num; 	/* Number of entries in init_array */
     int fini_array_num; 	/* Number of entries in fini_array */
 
     int32_t osrel;		/* OSREL note value */
 
     bool mainprog : 1;		/* True if this is the main program */
     bool rtld : 1;		/* True if this is the dynamic linker */
     bool relocated : 1;		/* True if processed by relocate_objects() */
     bool ver_checked : 1;	/* True if processed by rtld_verify_object_versions */
     bool textrel : 1;		/* True if there are relocations to text seg */
     bool symbolic : 1;		/* True if generated with "-Bsymbolic" */
     bool bind_now : 1;		/* True if all relocations should be made first */
     bool traced : 1;		/* Already printed in ldd trace output */
     bool jmpslots_done : 1;	/* Already have relocated the jump slots */
     bool init_done : 1;		/* Already have added object to init list */
     bool tls_done : 1;		/* Already allocated offset for static TLS */
     bool phdr_alloc : 1;	/* Phdr is allocated and needs to be freed. */
     bool z_origin : 1;		/* Process rpath and soname tokens */
     bool z_nodelete : 1;	/* Do not unload the object and dependencies */
     bool z_noopen : 1;		/* Do not load on dlopen */
     bool z_loadfltr : 1;	/* Immediately load filtees */
     bool z_interpose : 1;	/* Interpose all objects but main */
     bool z_nodeflib : 1;	/* Don't search default library path */
     bool ref_nodel : 1;		/* Refcount increased to prevent dlclose */
     bool init_scanned: 1;	/* Object is already on init list. */
     bool on_fini_list: 1;	/* Object is already on fini list. */
     bool dag_inited : 1;	/* Object has its DAG initialized. */
     bool filtees_loaded : 1;	/* Filtees loaded */
     bool irelative : 1;		/* Object has R_MACHDEP_IRELATIVE relocs */
     bool gnu_ifunc : 1;		/* Object has references to STT_GNU_IFUNC */
     bool non_plt_gnu_ifunc : 1;	/* Object has non-plt IFUNC references */
     bool crt_no_init : 1;	/* Object' crt does not call _init/_fini */
     bool valid_hash_sysv : 1;	/* A valid System V hash hash tag is available */
     bool valid_hash_gnu : 1;	/* A valid GNU hash tag is available */
     bool dlopened : 1;		/* dlopen()-ed (vs. load statically) */
 
     struct link_map linkmap;	/* For GDB and dlinfo() */
     Objlist dldags;		/* Object belongs to these dlopened DAGs (%) */
     Objlist dagmembers;		/* DAG has these members (%) */
     dev_t dev;			/* Object's filesystem's device */
     ino_t ino;			/* Object's inode number */
     void *priv;			/* Platform-dependent */
 } Obj_Entry;
 
 #define RTLD_MAGIC	0xd550b87a
 #define RTLD_VERSION	1
 
 #define RTLD_STATIC_TLS_EXTRA	128
 
 /* Flags to be passed into symlook_ family of functions. */
 #define SYMLOOK_IN_PLT	0x01	/* Lookup for PLT symbol */
 #define SYMLOOK_DLSYM	0x02	/* Return newest versioned symbol. Used by
 				   dlsym. */
 #define	SYMLOOK_EARLY	0x04	/* Symlook is done during initialization. */
 #define	SYMLOOK_IFUNC	0x08	/* Allow IFUNC processing in
 				   reloc_non_plt(). */
 
 /* Flags for load_object(). */
 #define	RTLD_LO_NOLOAD	0x01	/* dlopen() specified RTLD_NOLOAD. */
 #define	RTLD_LO_DLOPEN	0x02	/* Load_object() called from dlopen(). */
 #define	RTLD_LO_TRACE	0x04	/* Only tracing. */
 #define	RTLD_LO_NODELETE 0x08	/* Loaded object cannot be closed. */
 #define	RTLD_LO_FILTEES 0x10	/* Loading filtee. */
 #define	RTLD_LO_EARLY	0x20	/* Do not call ctors, postpone it to the
 				   initialization during the image start. */
 
 /*
  * Symbol cache entry used during relocation to avoid multiple lookups
  * of the same symbol.
  */
 typedef struct Struct_SymCache {
     const Elf_Sym *sym;		/* Symbol table entry */
     const Obj_Entry *obj;	/* Shared object which defines it */
 } SymCache;
 
 /*
  * This structure provides a reentrant way to keep a list of objects and
  * check which ones have already been processed in some way.
  */
 typedef struct Struct_DoneList {
     const Obj_Entry **objs;		/* Array of object pointers */
     unsigned int num_alloc;		/* Allocated size of the array */
     unsigned int num_used;		/* Number of array slots used */
 } DoneList;
 
 struct Struct_RtldLockState {
 	int lockstate;
 	sigjmp_buf env;
 };
 
 struct fill_search_info_args {
 	int request;
 	unsigned int flags;
 	struct dl_serinfo *serinfo;
 	struct dl_serpath *serpath;
 	char *strspace;
 };
 
 /*
  * The pack of arguments and results for the symbol lookup functions.
  */
 typedef struct Struct_SymLook {
     const char *name;
     unsigned long hash;
     uint32_t hash_gnu;
     const Ver_Entry *ventry;
     int flags;
     const Obj_Entry *defobj_out;
     const Elf_Sym *sym_out;
     struct Struct_RtldLockState *lockstate;
 } SymLook;
 
 void _rtld_error(const char *, ...) __printflike(1, 2) __exported;
+void rtld_die(void) __dead2;
 const char *rtld_strerror(int);
 Obj_Entry *map_object(int, const char *, const struct stat *);
 void *xcalloc(size_t, size_t);
 void *xmalloc(size_t);
 char *xstrdup(const char *);
 void *malloc_aligned(size_t size, size_t align);
 void free_aligned(void *ptr);
 extern Elf_Addr _GLOBAL_OFFSET_TABLE_[];
 extern Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
 
 void dump_relocations(Obj_Entry *);
 void dump_obj_relocations(Obj_Entry *);
 void dump_Elf_Rel(Obj_Entry *, const Elf_Rel *, u_long);
 void dump_Elf_Rela(Obj_Entry *, const Elf_Rela *, u_long);
 
 /*
  * Function declarations.
  */
 unsigned long elf_hash(const char *);
 const Elf_Sym *find_symdef(unsigned long, const Obj_Entry *,
   const Obj_Entry **, int, SymCache *, struct Struct_RtldLockState *);
 void init_pltgot(Obj_Entry *);
 void lockdflt_init(void);
 void digest_notes(Obj_Entry *, Elf_Addr, Elf_Addr);
 void obj_free(Obj_Entry *);
 Obj_Entry *obj_new(void);
 void _rtld_bind_start(void);
 void *rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def);
 void symlook_init(SymLook *, const char *);
 int symlook_obj(SymLook *, const Obj_Entry *);
 void *tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset);
 void *allocate_tls(Obj_Entry *, void *, size_t, size_t);
 void free_tls(void *, size_t, size_t);
 void *allocate_module_tls(int index);
 bool allocate_tls_offset(Obj_Entry *obj);
 void free_tls_offset(Obj_Entry *obj);
 const Ver_Entry *fetch_ventry(const Obj_Entry *obj, unsigned long);
 
 /*
  * MD function declarations.
  */
 int do_copy_relocations(Obj_Entry *);
 int reloc_non_plt(Obj_Entry *, Obj_Entry *, int flags,
     struct Struct_RtldLockState *);
 int reloc_plt(Obj_Entry *);
 int reloc_jmpslots(Obj_Entry *, int flags, struct Struct_RtldLockState *);
 int reloc_iresolve(Obj_Entry *, struct Struct_RtldLockState *);
 int reloc_gnu_ifunc(Obj_Entry *, int flags, struct Struct_RtldLockState *);
 void allocate_initial_tls(Obj_Entry *);
 
 #endif /* } */