Index: vendor/illumos/dist/cmd/zdb/zdb.c =================================================================== --- vendor/illumos/dist/cmd/zdb/zdb.c (revision 274272) +++ vendor/illumos/dist/cmd/zdb/zdb.c (revision 274273) @@ -1,3651 +1,3677 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef ZFS_MAXNAMELEN #undef verify #include #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \ dmu_ot[(idx)].ot_name : DMU_OT_IS_VALID(idx) ? \ dmu_ot_byteswap[DMU_OT_BYTESWAP(idx)].ob_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ (((idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA) ? \ DMU_OT_ZAP_OTHER : DMU_OT_NUMTYPES)) #ifndef lint extern boolean_t zfs_recover; extern uint64_t zfs_arc_max, zfs_arc_meta_limit; extern int zfs_vdev_async_read_max_active; #else boolean_t zfs_recover; uint64_t zfs_arc_max, zfs_arc_meta_limit; int zfs_vdev_async_read_max_active; #endif const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); extern void dump_intent_log(zilog_t *); uint64_t *zopt_object = NULL; int zopt_objects = 0; libzfs_handle_t *g_zfs; uint64_t max_inflight = 1000; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage: %s [-CumMdibcsDvhLXFPA] [-t txg] [-e [-p path...]] " "[-U config] [-I inflight I/Os] [-x dumpdir] poolname [object...]\n" " %s [-divPA] [-e -p path...] [-U config] dataset " "[object...]\n" " %s -mM [-LXFPA] [-t txg] [-e [-p path...]] [-U config] " "poolname [vdev [metaslab...]]\n" " %s -R [-A] [-e [-p path...]] poolname " "vdev:offset:size[:flags]\n" " %s -S [-PA] [-e [-p path...]] [-U config] poolname\n" " %s -l [-uA] device\n" " %s -C [-A] [-U config]\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers are specified, only " "those objects are dumped\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -u uberblock\n"); (void) fprintf(stderr, " -d dataset(s)\n"); (void) fprintf(stderr, " -i intent logs\n"); (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); (void) fprintf(stderr, " -h pool history\n"); (void) fprintf(stderr, " -b block statistics\n"); (void) fprintf(stderr, " -m metaslabs\n"); (void) fprintf(stderr, " -M metaslab groups\n"); (void) fprintf(stderr, " -c checksum all metadata (twice for " "all data) blocks\n"); (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); (void) fprintf(stderr, " -D dedup statistics\n"); (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v verbose (applies to all others)\n"); (void) fprintf(stderr, " -l dump label contents\n"); (void) fprintf(stderr, " -L disable leak tracking (do not " "load spacemaps)\n"); (void) fprintf(stderr, " -R read and display block from a " "device\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options:\n"); (void) fprintf(stderr, " -A ignore assertions (-A), enable " "panic recovery (-AA) or both (-AAA)\n"); (void) fprintf(stderr, " -F attempt automatic rewind within " "safe range of transaction groups\n"); (void) fprintf(stderr, " -U -- use alternate " "cachefile\n"); (void) fprintf(stderr, " -X attempt extreme rewind (does not " "work with dataset)\n"); (void) fprintf(stderr, " -e pool is exported/destroyed/" "has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -p -- use one or more with " "-e to specify path to vdev dir\n"); (void) fprintf(stderr, " -x -- " "dump all read blocks into specified directory\n"); (void) fprintf(stderr, " -P print numbers in parseable form\n"); (void) fprintf(stderr, " -t -- highest txg to use when " "searching for uberblocks\n"); (void) fprintf(stderr, " -I -- " "specify the maximum number of " "checksumming I/Os [default is 200]\n"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); exit(1); } /* ARGSUSED */ static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } /* ARGSUSED */ static void dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) { spa_history_phys_t *shp = data; if (shp == NULL) return; (void) printf("\t\tpool_create_len = %llu\n", (u_longlong_t)shp->sh_pool_create_len); (void) printf("\t\tphys_max_off = %llu\n", (u_longlong_t)shp->sh_phys_max_off); (void) printf("\t\tbof = %llu\n", (u_longlong_t)shp->sh_bof); (void) printf("\t\teof = %llu\n", (u_longlong_t)shp->sh_eof); (void) printf("\t\trecords_lost = %llu\n", (u_longlong_t)shp->sh_records_lost); } static void zdb_nicenum(uint64_t num, char *buf) { if (dump_opt['P']) (void) sprintf(buf, "%llu", (longlong_t)num); else nicenum(num, buf); } const char histo_stars[] = "****************************************"; const int histo_width = sizeof (histo_stars) - 1; static void dump_histogram(const uint64_t *histo, int size, int offset) { int i; int minidx = size - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < size; i++) { if (histo[i] > max) max = histo[i]; if (histo[i] > 0 && i > maxidx) maxidx = i; if (histo[i] > 0 && i < minidx) minidx = i; } if (max < histo_width) max = histo_width; for (i = minidx; i <= maxidx; i++) { (void) printf("\t\t\t%3u: %6llu %s\n", i + offset, (u_longlong_t)histo[i], &histo_stars[(max - histo[i]) * histo_width / max]); } } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks n/10 full:\n"); dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tEntries with n chunks:\n"); dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBuckets with n entries:\n"); dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); } /*ARGSUSED*/ static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) printf("\tUNKNOWN OBJECT TYPE\n"); } /*ARGSUSED*/ void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; void *prop; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { (void) printf("%s", (char *)prop); } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } /*ARGSUSED*/ static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } int get_dtl_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_ops->vdev_op_leaf) { space_map_t *sm = vd->vdev_dtl_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) return (1); return (0); } for (int c = 0; c < vd->vdev_children; c++) refcount += get_dtl_refcount(vd->vdev_child[c]); return (refcount); } int get_metaslab_refcount(vdev_t *vd) { int refcount = 0; if (vd->vdev_top == vd && !vd->vdev_removing) { for (int m = 0; m < vd->vdev_ms_count; m++) { space_map_t *sm = vd->vdev_ms[m]->ms_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) refcount++; } } for (int c = 0; c < vd->vdev_children; c++) refcount += get_metaslab_refcount(vd->vdev_child[c]); return (refcount); } static int verify_spacemap_refcounts(spa_t *spa) { uint64_t expected_refcount = 0; uint64_t actual_refcount; (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], &expected_refcount); actual_refcount = get_dtl_refcount(spa->spa_root_vdev); actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); if (expected_refcount != actual_refcount) { (void) printf("space map refcount mismatch: expected %lld != " "actual %lld\n", (longlong_t)expected_refcount, (longlong_t)actual_refcount); return (2); } return (0); } static void dump_spacemap(objset_t *os, space_map_t *sm) { uint64_t alloc, offset, entry; char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (sm == NULL) return; /* * Print out the freelist entries in both encoded and decoded form. */ alloc = 0; for (offset = 0; offset < space_map_length(sm); offset += sizeof (entry)) { uint8_t mapshift = sm->sm_shift; VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (entry), &entry, DMU_READ_PREFETCH)); if (SM_DEBUG_DECODE(entry)) { (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n", (u_longlong_t)(offset / sizeof (entry)), ddata[SM_DEBUG_ACTION_DECODE(entry)], (u_longlong_t)SM_DEBUG_TXG_DECODE(entry), (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry)); } else { (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx\n", (u_longlong_t)(offset / sizeof (entry)), SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F', (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + sm->sm_start), (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + sm->sm_start + (SM_RUN_DECODE(entry) << mapshift)), (u_longlong_t)(SM_RUN_DECODE(entry) << mapshift)); if (SM_TYPE_DECODE(entry) == SM_ALLOC) alloc += SM_RUN_DECODE(entry) << mapshift; else alloc -= SM_RUN_DECODE(entry) << mapshift; } } if (alloc != space_map_allocated(sm)) { (void) printf("space_map_object alloc (%llu) INCONSISTENT " "with space map summary (%llu)\n", (u_longlong_t)space_map_allocated(sm), (u_longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; range_tree_t *rt = msp->ms_tree; avl_tree_t *t = &msp->ms_size_tree; int free_pct = range_tree_space(rt) * 100 / msp->ms_size; zdb_nicenum(metaslab_block_maxsize(msp), maxbuf); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", avl_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); (void) printf("\tIn-memory histogram:\n"); dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; space_map_t *sm = msp->ms_sm; char freebuf[32]; zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, (u_longlong_t)space_map_object(sm), freebuf); if (dump_opt['m'] > 2 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); metaslab_load_wait(msp); if (!msp->ms_loaded) { VERIFY0(metaslab_load(msp)); range_tree_stat_verify(msp->ms_tree); } dump_metaslab_stats(msp); metaslab_unload(msp); mutex_exit(&msp->ms_lock); } if (dump_opt['m'] > 1 && sm != NULL && spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { /* * The space map histogram represents free space in chunks * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). */ (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", (u_longlong_t)msp->ms_fragmentation); dump_histogram(sm->sm_phys->smp_histogram, SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); } if (dump_opt['d'] > 5 || dump_opt['m'] > 3) { ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift)); mutex_enter(&msp->ms_lock); dump_spacemap(spa->spa_meta_objset, msp->ms_sm); mutex_exit(&msp->ms_lock); } } static void print_vdev_metaslab_header(vdev_t *vd) { (void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n", (u_longlong_t)vd->vdev_id, "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %10s\n", "---------------", "-------------------", "---------------", "-------------"); } static void dump_metaslab_groups(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; metaslab_class_t *mc = spa_normal_class(spa); uint64_t fragmentation; metaslab_class_histogram_verify(mc); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg->mg_class != mc) continue; metaslab_group_histogram_verify(mg); mg->mg_fragmentation = metaslab_group_fragmentation(mg); (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" "fragmentation", (u_longlong_t)tvd->vdev_id, (u_longlong_t)tvd->vdev_ms_count); if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { (void) printf("%3s\n", "-"); } else { (void) printf("%3llu%%\n", (u_longlong_t)mg->mg_fragmentation); } dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } (void) printf("\tpool %s\tfragmentation", spa_name(spa)); fragmentation = metaslab_class_fragmentation(mc); if (fragmentation == ZFS_FRAG_INVALID) (void) printf("\t%3s\n", "-"); else (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_objects > 0) { c = zopt_object[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_objects > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_objects; m++) { if (zopt_object[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_object[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_object[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); if ((count = ddt_object_count(ddt, type, class)) == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT(error == ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total = { 0 }; ddt_stat_t dds_total = { 0 }; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(void *arg, uint64_t start, uint64_t size) { char *prefix = arg; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (int t = 0; t < DTL_TYPES; t++) { range_tree_t *rt = vd->vdev_dtl[t]; if (range_tree_space(rt) == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); mutex_enter(rt->rt_lock); range_tree_walk(rt, dump_dtl_seg, prefix); mutex_exit(rt->rt_lock); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, vd->vdev_dtl_sm); } for (int c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char buf[SPA_MAXBLOCKSIZE]; uint64_t resid, len, off = 0; uint_t num = 0; int error; time_t tsec; struct tm t; char tbuf[30]; char internalstr[MAXPATHLEN]; do { len = sizeof (buf); if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (int i = 0; i < num; i++) { uint64_t time, txg, ievent; char *cmd, *intstr; boolean_t printed = B_FALSE; if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, &time) != 0) goto next; if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, &cmd) != 0) { if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) goto next; verify(nvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR, &intstr) == 0); if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) goto next; (void) snprintf(internalstr, sizeof (internalstr), "[internal %s txg:%lld] %s", zfs_history_event_names[ievent], txg, intstr); cmd = internalstr; } tsec = time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s\n", tbuf, cmd); printed = B_TRUE; next: if (dump_opt['h'] > 1) { if (!printed) (void) printf("unrecognized record:\n"); dump_nvlist(events[i], 2); } } } /*ARGSUSED*/ static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; if (dump_opt['b'] >= 6) { snprintf_blkptr(blkbuf, buflen, bp); return; } if (BP_IS_EMBEDDED(bp)) { (void) sprintf(blkbuf, "EMBEDDED et=%u %llxL/%llxP B=%llu", (int)BPE_GET_ETYPE(bp), (u_longlong_t)BPE_GET_LSIZE(bp), (u_longlong_t)BPE_GET_PSIZE(bp), (u_longlong_t)bp->blk_birth); return; } blkbuf[0] = '\0'; for (int i = 0; i < ndvas; i++) (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); if (BP_IS_HOLE(bp)) { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "B=%llu", (u_longlong_t)bp->blk_birth); } else { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)BP_GET_FILL(bp), (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); } } static void print_indirect(blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; if (!BP_IS_EMBEDDED(bp)) { ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); } (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_phys_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { uint32_t flags = ARC_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += BP_GET_FILL(cbp); } if (!err) ASSERT3U(fill, ==, BP_GET_FILL(bp)); (void) arc_buf_remove_ref(buf, &buf); } return (err); } /*ARGSUSED*/ static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; int j; zbookmark_phys_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } /*ARGSUSED*/ static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO } /*ARGSUSED*/ static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_referenced_bytes, used); zdb_nicenum(ds->ds_compressed_bytes, compressed); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed); zdb_nicenum(ds->ds_unique_bytes, unique); snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } /* ARGSUSED */ static int dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; if (bp->blk_birth != 0) { snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); } return (0); } static void dump_bptree(objset_t *os, uint64_t obj, char *name) { char bytes[32]; bptree_phys_t *bt; dmu_buf_t *db; if (dump_opt['d'] < 3) return; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; zdb_nicenum(bt->bt_bytes, bytes); (void) printf("\n %s: %llu datasets, %s\n", name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); dmu_buf_rele(db, FTAG); if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); } /* ARGSUSED */ static int dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_bpobj(bpobj_t *bpo, char *name, int indent) { char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp); (void) printf(" %*s: object %llu, %llu local blkptrs, " "%llu subobjs, %s (%s/%s comp)\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, bytes, comp, uncomp); for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } dump_bpobj(&subbpo, "subobj", indent + 1); bpobj_close(&subbpo); } } else { (void) printf(" %*s: object %llu, %llu blkptrs, %s\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } if (dump_opt['d'] < 5) return; if (indent == 0) { (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); (void) printf("\n"); } } static void dump_deadlist(dsl_deadlist_t *dl) { dsl_deadlist_entry_t *dle; uint64_t unused; char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; if (dl->dl_oldfmt) { dump_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); return; } zdb_nicenum(dl->dl_phys->dl_used, bytes); zdb_nicenum(dl->dl_phys->dl_comp, comp); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp); (void) printf("\n Deadlist: %s (%s/%s comp)\n", bytes, comp, uncomp); if (dump_opt['d'] < 4) return; (void) printf("\n"); /* force the tree to be loaded */ dsl_deadlist_space_range(dl, 0, UINT64_MAX, &unused, &unused, &unused); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { if (dump_opt['d'] >= 5) { char buf[128]; (void) snprintf(buf, sizeof (buf), "mintxg %llu -> ", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); dump_bpobj(&dle->dle_bpobj, buf, 0); } else { (void) printf("mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); } } } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static boolean_t sa_loaded; sa_attr_type_t *sa_attr_table; static void fuid_table_destroy() { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the domain-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { char *domain; domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } /*ARGSUSED*/ static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; if (!sa_loaded) { uint64_t sa_attrs = 0; uint64_t version; VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version) == 0); if (version >= ZPL_VERSION_SA) { VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs) == 0); } if ((error = sa_setup(os, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table)) != 0) { (void) printf("sa_setup failed errno %d, can't " "display znode contents\n", error); return; } sa_loaded = B_TRUE; } if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error != 0) { (void) snprintf(path, sizeof (path), "\?\?\?", (u_longlong_t)object); } if (dump_opt['d'] < 3) { (void) printf("\t%s\n", path); (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; (void) printf("\tpath %s\n", path); dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); sa_handle_destroy(hdl); } /*ARGSUSED*/ static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bplist */ dump_none, /* bplist header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_history_offsets, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group used */ dump_zap, /* ZFS user/group quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_none, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static void dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; void *bonus = NULL; size_t bsize = 0; char iblk[32], dblk[32], lsize[32], asize[32], fill[32]; char bonus_size[32]; char aux[50]; int error; if (*print_header) { (void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n", "Object", "lvl", "iblk", "dblk", "dsize", "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } dmu_object_info_from_dnode(dn, &doi); zdb_nicenum(doi.doi_metadata_block_size, iblk); zdb_nicenum(doi.doi_data_block_size, dblk); zdb_nicenum(doi.doi_max_offset, lsize); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize); zdb_nicenum(doi.doi_bonus_size, bonus_size); (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } (void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n", (u_longlong_t)object, doi.doi_indirection, iblk, dblk, asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { (void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n", "", "", "", "", "", bonus_size, "bonus", ZDB_OT_NAME(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); *print_header = 1; } if (verbosity >= 5) dump_indirect(dn); if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } if (db != NULL) dmu_buf_rele(db, FTAG); } static char *objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; static void dump_dir(objset_t *os) { dmu_objset_stats_t dds; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[MAXNAMELEN]; char *type = "UNKNOWN"; int verbosity = dump_opt['d']; int print_header = 1; int i, error; dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = BP_GET_FILL(os->os_rootbp); refdbytes = os->os_spa->spa_dsl_pool-> dp_mos_dir->dd_phys->dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); zdb_nicenum(refdbytes, numbuf); if (verbosity >= 4) { (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); (void) snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf); if (zopt_objects != 0) { for (i = 0; i < zopt_objects; i++) dump_object(os, zopt_object[i], verbosity, &print_header); (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) dump_deadlist(&dmu_objset_ds(os)->ds_deadlist); if (verbosity < 2) return; if (BP_IS_HOLE(os->os_rootbp)) return; dump_object(os, 0, verbosity, &print_header); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header); dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header); } object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { dump_object(os, object, verbosity, &print_header); object_count++; } ASSERT3U(object_count, ==, usedobjs); (void) printf("\n"); if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf(header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); if (dump_opt['u'] >= 3) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf(footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift) { vdev_t vd; vdev_t *vdp = &vd; char header[ZDB_MAX_UB_HEADER_SIZE]; vd.vdev_ashift = ashift; vdp->vdev_top = vdp; for (int i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i); uberblock_t *ub = (void *)((char *)lbl + uoff); if (uberblock_verify(ub)) continue; (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, "Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); } } static void dump_label(const char *dev) { int fd; vdev_label_t label; char *path, *buf = label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist); struct stat64 statbuf; uint64_t psize, ashift; int len = strlen(dev) + 1; if (strncmp(dev, "/dev/dsk/", 9) == 0) { len++; path = malloc(len); (void) snprintf(path, len, "%s%s", "/dev/rdsk/", dev + 9); } else { path = strdup(dev); } if ((fd = open64(path, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", path, strerror(errno)); free(path); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", path, strerror(errno)); free(path); (void) close(fd); exit(1); } if (S_ISBLK(statbuf.st_mode)) { (void) printf("cannot use '%s': character device required\n", path); free(path); (void) close(fd); exit(1); } psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); for (int l = 0; l < VDEV_LABELS; l++) { nvlist_t *config = NULL; (void) printf("--------------------------------------------\n"); (void) printf("LABEL %d\n", l); (void) printf("--------------------------------------------\n"); if (pread64(fd, &label, sizeof (label), vdev_label_offset(psize, l, 0)) != sizeof (label)) { (void) printf("failed to read label %d\n", l); continue; } if (nvlist_unpack(buf, buflen, &config, 0) != 0) { (void) printf("failed to unpack label %d\n", l); ashift = SPA_MINBLOCKSHIFT; } else { nvlist_t *vdev_tree = NULL; dump_nvlist(config, 4); if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; nvlist_free(config); } if (dump_opt['u']) dump_label_uberblocks(&label, ashift); } free(path); (void) close(fd); } +static uint64_t num_large_blocks; + /*ARGSUSED*/ static int dump_one_dir(const char *dsname, void *arg) { int error; objset_t *os; error = dmu_objset_own(dsname, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) { (void) printf("Could not open %s, error %d\n", dsname, error); return (0); } + if (dmu_objset_ds(os)->ds_large_blocks) + num_large_blocks++; dump_dir(os); dmu_objset_disown(os, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; return (0); } /* * Block statistics. */ -#define PSIZE_HISTO_SIZE (SPA_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1) +#define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; uint64_t zb_gangs; uint64_t zb_ditto_samevdev; uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) static char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "other", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] [BPE_PAYLOAD_SIZE]; uint64_t zcb_start; uint64_t zcb_lastprint; uint64_t zcb_totalasize; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; } zdb_cb_t; static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; for (int i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; int equal; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; - zb->zb_psize_histogram[BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT]++; + /* + * The histogram is only big enough to record blocks up to + * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, + * "other", bucket. + */ + int idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; + idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); + zb->zb_psize_histogram[idx]++; + zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal != 0) zb->zb_ditto_samevdev++; break; } } if (BP_IS_EMBEDDED(bp)) { zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] [BPE_GET_PSIZE(bp)]++; return; } if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_first_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } static void zdb_blkptr_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; int ioerr = zio->io_error; zdb_cb_t *zcb = zio->io_private; zbookmark_phys_t *zb = &zio->io_bookmark; zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { char blkbuf[BP_SPRINTF_LEN]; zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } mutex_exit(&spa->spa_scrub_lock); } static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; dmu_object_type_t type; boolean_t is_metadata; if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } if (BP_IS_HOLE(bp)) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); if (!BP_IS_EMBEDDED(bp) && (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { size_t size = BP_GET_PSIZE(bp); void *data = zio_data_buf_alloc(size); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > max_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, data, size, zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); } zcb->zcb_readfails = 0; /* only call gethrtime() every 100 blocks */ static int iters; if (++iters > 100) iters = 0; else return (0); if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { uint64_t now = gethrtime(); char buf[10]; uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; int kb_per_sec = 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); int sec_remaining = (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "\r%5s completed (%4dMB/s) " "estimated time remaining: %uhr %02umin %02usec ", buf, kb_per_sec / 1024, sec_remaining / 60 / 60, sec_remaining / 60 % 60, sec_remaining % 60); zcb->zcb_lastprint = now; } return (0); } static void zdb_leak(void *arg, uint64_t start, uint64_t size) { vdev_t *vd = arg; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } static metaslab_ops_t zdb_metaslab_ops = { NULL /* alloc */ }; static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb = { 0 }; ddt_entry_t dde; int error; while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } if (!dump_opt['L']) { ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } } ASSERT(error == ENOENT); } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); metaslab_unload(msp); /* * For leak detection, we overload the metaslab * ms_tree to contain allocated segments * instead of free segments. As a result, * we can't use the normal metaslab_load/unload * interfaces. */ if (msp->ms_sm != NULL) { (void) fprintf(stderr, "\rloading space map for " "vdev %llu of %llu, " "metaslab %llu of %llu ...", (longlong_t)c, (longlong_t)rvd->vdev_children, (longlong_t)m, (longlong_t)vd->vdev_ms_count); msp->ms_ops = &zdb_metaslab_ops; /* * We don't want to spend the CPU * manipulating the size-ordered * tree, so clear the range_tree * ops. */ msp->ms_tree->rt_ops = NULL; VERIFY0(space_map_load(msp->ms_sm, msp->ms_tree, SM_ALLOC)); msp->ms_loaded = B_TRUE; } mutex_exit(&msp->ms_lock); } } (void) fprintf(stderr, "\n"); } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static void zdb_leak_fini(spa_t *spa) { if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); /* * The ms_tree has been overloaded to * contain allocated segments. Now that we * finished traversing all blocks, any * block that remains in the ms_tree * represents an allocated block that we * did not claim during the traversal. * Claimed blocks would have been removed * from the ms_tree. */ range_tree_vacate(msp->ms_tree, zdb_leak, vd); msp->ms_loaded = B_FALSE; mutex_exit(&msp->ms_lock); } } } } /* ARGSUSED */ static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 5) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } static int dump_block_stats(spa_t *spa) { zdb_cb_t zcb = { 0 }; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD; boolean_t leaks = B_FALSE; (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * Load all space maps as SM_ALLOC maps, then traverse the pool * claiming each block we discover. If the pool is perfectly * consistent, the space maps will be empty when we're done. * Anything left over is a leak; any block we can't claim (because * it's not part of any space map) is a double allocation, * reference to a freed block, or an unclaimed log block. */ zdb_leak_init(spa, &zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, count_block_cb, &zcb, NULL); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, count_block_cb, &zcb, NULL); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, &zcb, NULL)); } if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); /* * If we've traversed the data blocks then we need to wait for those * I/Os to complete. We leverage "The Godfather" zio to wait on * all async I/Os to complete. */ if (dump_opt['c']) { for (int i = 0; i < max_ncpus; i++) { (void) zio_wait(spa->spa_async_zio_root[i]); spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } } if (zcb.zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (int e = 0; e < 256; e++) { if (zcb.zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb.zcb_errors[e]); } } } /* * Report any leaked segments. */ zdb_leak_fini(spa); tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)); total_found = tzb->zb_asize - zcb.zcb_dedup_asize; if (total_found == total_alloc) { if (!dump_opt['L']) (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = B_TRUE; } if (tzb->zb_count == 0) return (2); (void) printf("\n"); (void) printf("\tbp count: %10llu\n", (u_longlong_t)tzb->zb_count); (void) printf("\tganged count: %10llu\n", (longlong_t)tzb->zb_gangs); (void) printf("\tbp logical: %10llu avg: %6llu\n", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\tbp physical: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\tbp allocated: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\tbp deduped: %10llu ref>1:" " %6llu deduplication: %6.2f\n", (u_longlong_t)zcb.zcb_dedup_asize, (u_longlong_t)zcb.zcb_dedup_blocks, (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); for (bp_embedded_type_t i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { if (zcb.zcb_embedded_blocks[i] == 0) continue; (void) printf("\n"); (void) printf("\tadditional, non-pointer bps of type %u: " "%10llu\n", i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); if (dump_opt['b'] >= 3) { (void) printf("\t number of (compressed) bytes: " "number of bps\n"); dump_histogram(zcb.zcb_embedded_histogram[i], sizeof (zcb.zcb_embedded_histogram[i]) / sizeof (zcb.zcb_embedded_histogram[i][0]), 0); } } if (tzb->zb_ditto_samevdev != 0) { (void) printf("\tDittoed blocks on same vdev: %llu\n", (longlong_t)tzb->zb_ditto_samevdev); } if (dump_opt['b'] >= 2) { int l, t, level; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= ZDB_OT_TOTAL; t++) { char csize[32], lsize[32], psize[32], asize[32]; char avg[32], gang[32]; char *typename; if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb.zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb.zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize); zdb_nicenum(zb->zb_lsize, lsize); zdb_nicenum(zb->zb_psize, psize); zdb_nicenum(zb->zb_asize, asize); zdb_nicenum(zb->zb_asize / zb->zb_count, avg); zdb_nicenum(zb->zb_gangs, gang); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { (void) printf("\t number of ganged " "blocks: %s\n", gang); } if (dump_opt['b'] >= 4) { (void) printf("psize " "(in 512-byte sectors): " "number of blocks\n"); dump_histogram(zb->zb_psize_histogram, PSIZE_HISTO_SIZE, 0); } } } } (void) printf("\n"); if (leaks) return (2); if (zcb.zcb_haderrors) return (3); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; /* ARGSUSED */ static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)BP_GET_FILL(bp), avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total = { 0 }; ddt_stat_t dds_total = { 0 }; avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['M']) dump_metaslab_groups(spa); if (dump_opt['d'] || dump_opt['i']) { + uint64_t refcount; dump_dir(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dump_bpobj(&spa->spa_deferred_bpobj, "Deferred frees", 0); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_bpobj(&spa->spa_dsl_pool->dp_free_bpobj, "Pool snapshot frees", 0); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { dump_bptree(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, "Pool dataset frees"); } dump_dtl(spa->spa_root_vdev, 0); } (void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); + + (void) feature_get_refcount(spa, + &spa_feature_table[SPA_FEATURE_LARGE_BLOCKS], &refcount); + if (num_large_blocks != refcount) { + (void) printf("large_blocks feature refcount mismatch: " + "expected %lld != actual %lld\n", + (longlong_t)num_large_blocks, + (longlong_t)refcount); + rc = 2; + } else { + (void) printf("Verified large_blocks feature refcount " + "is correct (%llu)\n", (longlong_t)refcount); + } } - if (dump_opt['b'] || dump_opt['c']) + if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) rc = dump_block_stats(spa); if (rc == 0) rc = verify_spacemap_refcounts(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc != 0) exit(rc); } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_PHYS 0x0020 #define ZDB_FLAG_RAW 0x0040 #define ZDB_FLAG_PRINT_BLKPTR 0x0080 int flagbits[256]; static void zdb_print_blkptr(blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); (void) write(1, buf, size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; int nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); int i, j; char *hdr, *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the heirarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, char *path) { char *s, *p, *q; int i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = (int)strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i < 0 || i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (*s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:size[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * *c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * p: Do I/O to physical offset * r: Dump raw data to stdout * * * = not yet implemented */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; void *pbuf, *lbuf, *buf; char *s, *p, *dup, *vdev, *flagstr; int i, error; dup = strdup(thing); s = strtok(dup, ":"); vdev = s ? s : ""; s = strtok(NULL, ":"); offset = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); size = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); flagstr = s ? s : ""; s = NULL; if (size == 0) s = "size must not be zero"; if (!IS_P2ALIGNED(size, DEV_BSIZE)) s = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) s = "offset must be a multiple of sector size"; if (s) { (void) printf("Invalid block specifier: %s - %s\n", thing, s); free(dup); return; } for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { for (i = 0; flagstr[i]; i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Invalid flag: %c\n", flagstr[i]); continue; } flags |= bit; /* If it's not something with an argument, keep going */ if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_PRINT_BLKPTR)) == 0) continue; p = &flagstr[i + 1]; if (bit == ZDB_FLAG_PRINT_BLKPTR) blkptr_offset = strtoull(p, &p, 16); if (*p != ':' && *p != '\0') { (void) printf("***Invalid flag arg: '%s'\n", s); free(dup); return; } } } vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); free(dup); return; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } psize = size; lsize = size; pbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pbuf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pbuf, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } if (flags & ZDB_FLAG_DECOMPRESS) { /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ enum zio_compress c; void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); bcopy(pbuf, pbuf2, psize); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf + psize, SPA_MAXBLOCKSIZE - psize) == 0); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize, SPA_MAXBLOCKSIZE - psize) == 0); for (lsize = SPA_MAXBLOCKSIZE; lsize > psize; lsize -= SPA_MINBLOCKSIZE) { for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) { if (zio_decompress_data(c, pbuf, lbuf, psize, lsize) == 0 && zio_decompress_data(c, pbuf2, lbuf2, psize, lsize) == 0 && bcmp(lbuf, lbuf2, lsize) == 0) break; } if (c != ZIO_COMPRESS_FUNCTIONS) break; lsize -= SPA_MINBLOCKSIZE; } umem_free(pbuf2, SPA_MAXBLOCKSIZE); umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize <= psize) { (void) printf("Decompress of %s failed\n", thing); goto out; } buf = lbuf; size = lsize; } else { buf = pbuf; size = psize; } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, size, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, size, flags); out: umem_free(pbuf, SPA_MAXBLOCKSIZE); umem_free(lbuf, SPA_MAXBLOCKSIZE); free(dup); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } static char * find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv) { nvlist_t *pools; nvlist_t *match = NULL; char *name = NULL; char *sepp = NULL; char sep; int count = 0; importargs_t args = { 0 }; args.paths = dirc; args.path = dirv; args.can_be_active = B_TRUE; if ((sepp = strpbrk(*target, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(g_zfs, &args); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, configp) == 0); if (pool_match(*configp, *target)) { count++; if (match != NULL) { /* print previously found config */ if (name != NULL) { (void) printf("%s\n", name); dump_nvlist(match, 8); name = NULL; } (void) printf("%s\n", nvpair_name(elem)); dump_nvlist(*configp, 8); } else { match = *configp; name = nvpair_name(elem); } } } } if (count > 1) (void) fatal("\tMatched %d pools - use pool GUID " "instead of pool name or \n" "\tpool name part of a dataset name to select pool", count); if (sepp) *sepp = sep; /* * If pool GUID was specified for pool id, replace it with pool name */ if (name && (strstr(*target, name) != *target)) { int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0); *target = umem_alloc(sz, UMEM_NOFAIL); (void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : ""); } *configp = name ? match : NULL; return (name); } int main(int argc, char **argv) { int i, c; struct rlimit rl = { 1024, 1024 }; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int rewind = ZPOOL_NEVER_REWIND; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); dprintf_setup(&argc, argv); while ((c = getopt(argc, argv, "bcdhilmMI:suCDRSAFLXx:evp:t:U:P")) != -1) { switch (c) { case 'b': case 'c': case 'd': case 'h': case 'i': case 'l': case 'm': case 's': case 'u': case 'C': case 'D': case 'M': case 'R': case 'S': dump_opt[c]++; dump_all = 0; break; case 'A': case 'F': case 'L': case 'X': case 'e': case 'P': dump_opt[c]++; break; case 'I': max_inflight = strtoull(optarg, NULL, 0); if (max_inflight == 0) { (void) fprintf(stderr, "maximum number " "of inflight I/Os must be greater " "than 0\n"); usage(); } break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; break; case 'v': verbose++; break; case 'x': vn_dumpdir = optarg; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } /* * ZDB does not typically re-read blocks; therefore limit the ARC * to 256 MB, which can be used entirely for metadata. */ zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; /* * "zdb -c" uses checksum-verifying scrub i/os which are async reads. * "zdb -b" uses traversal prefetch which uses async reads. * For good performance, let several of them be active at once. */ zfs_vdev_async_read_max_active = 10; kernel_init(FREAD); g_zfs = libzfs_init(); ASSERT(g_zfs != NULL); if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && !strchr("elAFLRSXP", c)) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) { dump_label(argv[0]); return (0); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (dump_opt['e']) { nvlist_t *cfg = NULL; char *name = find_zpool(&target, &cfg, nsearch, searchdirs); error = ENOENT; if (name) { if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } if (nvlist_add_nvlist(cfg, ZPOOL_REWIND_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } if ((error = spa_import(name, cfg, NULL, ZFS_IMPORT_MISSING_LOG)) != 0) { error = spa_import(name, cfg, NULL, ZFS_IMPORT_VERBATIM); } } } if (error == 0) { if (strpbrk(target, "/@") == NULL || dump_opt['R']) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else { error = dmu_objset_own(target, DMU_OST_ANY, B_TRUE, FTAG, &os); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); argv++; argc--; if (!dump_opt['R']) { if (argc > 0) { zopt_objects = argc; zopt_object = calloc(zopt_objects, sizeof (uint64_t)); for (i = 0; i < zopt_objects; i++) { errno = 0; zopt_object[i] = strtoull(argv[i], NULL, 0); if (zopt_object[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } if (os != NULL) { dump_dir(os); } else if (zopt_objects > 0 && !dump_opt['m']) { dump_dir(spa->spa_meta_objset); } else { dump_zpool(spa); } } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['p'] = ZDB_FLAG_PHYS; flagbits['r'] = ZDB_FLAG_RAW; for (i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } (os != NULL) ? dmu_objset_disown(os, FTAG) : spa_close(spa, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; libzfs_fini(g_zfs); kernel_fini(); return (0); } Index: vendor/illumos/dist/cmd/zfs/zfs_main.c =================================================================== --- vendor/illumos/dist/cmd/zfs/zfs_main.c (revision 274272) +++ vendor/illumos/dist/cmd/zfs/zfs_main.c (revision 274273) @@ -1,6838 +1,6843 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright 2012 Milan Jurik. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright 2013 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_iter.h" #include "zfs_util.h" #include "zfs_comutil.h" libzfs_handle_t *g_zfs; static FILE *mnttab_file; static char history_str[HIS_MAX_RECORD_LEN]; static boolean_t log_history = B_TRUE; static int zfs_do_clone(int argc, char **argv); static int zfs_do_create(int argc, char **argv); static int zfs_do_destroy(int argc, char **argv); static int zfs_do_get(int argc, char **argv); static int zfs_do_inherit(int argc, char **argv); static int zfs_do_list(int argc, char **argv); static int zfs_do_mount(int argc, char **argv); static int zfs_do_rename(int argc, char **argv); static int zfs_do_rollback(int argc, char **argv); static int zfs_do_set(int argc, char **argv); static int zfs_do_upgrade(int argc, char **argv); static int zfs_do_snapshot(int argc, char **argv); static int zfs_do_unmount(int argc, char **argv); static int zfs_do_share(int argc, char **argv); static int zfs_do_unshare(int argc, char **argv); static int zfs_do_send(int argc, char **argv); static int zfs_do_receive(int argc, char **argv); static int zfs_do_promote(int argc, char **argv); static int zfs_do_userspace(int argc, char **argv); static int zfs_do_allow(int argc, char **argv); static int zfs_do_unallow(int argc, char **argv); static int zfs_do_hold(int argc, char **argv); static int zfs_do_holds(int argc, char **argv); static int zfs_do_release(int argc, char **argv); static int zfs_do_diff(int argc, char **argv); static int zfs_do_bookmark(int argc, char **argv); /* * Enable a reasonable set of defaults for libumem debugging on DEBUG builds. */ #ifdef DEBUG const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #endif typedef enum { HELP_CLONE, HELP_CREATE, HELP_DESTROY, HELP_GET, HELP_INHERIT, HELP_UPGRADE, HELP_LIST, HELP_MOUNT, HELP_PROMOTE, HELP_RECEIVE, HELP_RENAME, HELP_ROLLBACK, HELP_SEND, HELP_SET, HELP_SHARE, HELP_SNAPSHOT, HELP_UNMOUNT, HELP_UNSHARE, HELP_ALLOW, HELP_UNALLOW, HELP_USERSPACE, HELP_GROUPSPACE, HELP_HOLD, HELP_HOLDS, HELP_RELEASE, HELP_DIFF, HELP_BOOKMARK, } zfs_help_t; typedef struct zfs_command { const char *name; int (*func)(int argc, char **argv); zfs_help_t usage; } zfs_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zfs_command_t command_table[] = { { "create", zfs_do_create, HELP_CREATE }, { "destroy", zfs_do_destroy, HELP_DESTROY }, { NULL }, { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT }, { "rollback", zfs_do_rollback, HELP_ROLLBACK }, { "clone", zfs_do_clone, HELP_CLONE }, { "promote", zfs_do_promote, HELP_PROMOTE }, { "rename", zfs_do_rename, HELP_RENAME }, { "bookmark", zfs_do_bookmark, HELP_BOOKMARK }, { NULL }, { "list", zfs_do_list, HELP_LIST }, { NULL }, { "set", zfs_do_set, HELP_SET }, { "get", zfs_do_get, HELP_GET }, { "inherit", zfs_do_inherit, HELP_INHERIT }, { "upgrade", zfs_do_upgrade, HELP_UPGRADE }, { "userspace", zfs_do_userspace, HELP_USERSPACE }, { "groupspace", zfs_do_userspace, HELP_GROUPSPACE }, { NULL }, { "mount", zfs_do_mount, HELP_MOUNT }, { "unmount", zfs_do_unmount, HELP_UNMOUNT }, { "share", zfs_do_share, HELP_SHARE }, { "unshare", zfs_do_unshare, HELP_UNSHARE }, { NULL }, { "send", zfs_do_send, HELP_SEND }, { "receive", zfs_do_receive, HELP_RECEIVE }, { NULL }, { "allow", zfs_do_allow, HELP_ALLOW }, { NULL }, { "unallow", zfs_do_unallow, HELP_UNALLOW }, { NULL }, { "hold", zfs_do_hold, HELP_HOLD }, { "holds", zfs_do_holds, HELP_HOLDS }, { "release", zfs_do_release, HELP_RELEASE }, { "diff", zfs_do_diff, HELP_DIFF }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) zfs_command_t *current_command; static const char * get_usage(zfs_help_t idx) { switch (idx) { case HELP_CLONE: return (gettext("\tclone [-p] [-o property=value] ... " " \n")); case HELP_CREATE: return (gettext("\tcreate [-p] [-o property=value] ... " "\n" "\tcreate [-ps] [-b blocksize] [-o property=value] ... " "-V \n")); case HELP_DESTROY: return (gettext("\tdestroy [-fnpRrv] \n" "\tdestroy [-dnpRrv] " "@[%][,...]\n" "\tdestroy #\n")); case HELP_GET: return (gettext("\tget [-rHp] [-d max] " "[-o \"all\" | field[,...]]\n" "\t [-t type[,...]] [-s source[,...]]\n" "\t <\"all\" | property[,...]> " "[filesystem|volume|snapshot] ...\n")); case HELP_INHERIT: return (gettext("\tinherit [-rS] " " ...\n")); case HELP_UPGRADE: return (gettext("\tupgrade [-v]\n" "\tupgrade [-r] [-V version] <-a | filesystem ...>\n")); case HELP_LIST: return (gettext("\tlist [-Hp] [-r|-d max] [-o property[,...]] " "[-s property]...\n\t [-S property]... [-t type[,...]] " "[filesystem|volume|snapshot] ...\n")); case HELP_MOUNT: return (gettext("\tmount\n" "\tmount [-vO] [-o opts] <-a | filesystem>\n")); case HELP_PROMOTE: return (gettext("\tpromote \n")); case HELP_RECEIVE: return (gettext("\treceive [-vnFu] \n" "\treceive [-vnFu] [-d | -e] \n")); case HELP_RENAME: return (gettext("\trename [-f] " "\n" "\trename [-f] -p \n" "\trename -r \n")); case HELP_ROLLBACK: return (gettext("\trollback [-rRf] \n")); case HELP_SEND: - return (gettext("\tsend [-DnPpRve] [-[iI] snapshot] " + return (gettext("\tsend [-DnPpRvLe] [-[iI] snapshot] " "\n" - "\tsend [-e] [-i snapshot|bookmark] " + "\tsend [-Le] [-i snapshot|bookmark] " "\n")); case HELP_SET: return (gettext("\tset " " ...\n")); case HELP_SHARE: return (gettext("\tshare <-a | filesystem>\n")); case HELP_SNAPSHOT: return (gettext("\tsnapshot [-r] [-o property=value] ... " "@ ...\n")); case HELP_UNMOUNT: return (gettext("\tunmount [-f] " "<-a | filesystem|mountpoint>\n")); case HELP_UNSHARE: return (gettext("\tunshare " "<-a | filesystem|mountpoint>\n")); case HELP_ALLOW: return (gettext("\tallow \n" "\tallow [-ldug] " "<\"everyone\"|user|group>[,...] [,...]\n" "\t \n" "\tallow [-ld] -e [,...] " "\n" "\tallow -c [,...] \n" "\tallow -s @setname [,...] " "\n")); case HELP_UNALLOW: return (gettext("\tunallow [-rldug] " "<\"everyone\"|user|group>[,...]\n" "\t [[,...]] \n" "\tunallow [-rld] -e [[,...]] " "\n" "\tunallow [-r] -c [[,...]] " "\n" "\tunallow [-r] -s @setname [[,...]] " "\n")); case HELP_USERSPACE: return (gettext("\tuserspace [-Hinp] [-o field[,...]] " "[-s field] ...\n" "\t [-S field] ... [-t type[,...]] " "\n")); case HELP_GROUPSPACE: return (gettext("\tgroupspace [-Hinp] [-o field[,...]] " "[-s field] ...\n" "\t [-S field] ... [-t type[,...]] " "\n")); case HELP_HOLD: return (gettext("\thold [-r] ...\n")); case HELP_HOLDS: return (gettext("\tholds [-r] ...\n")); case HELP_RELEASE: return (gettext("\trelease [-r] ...\n")); case HELP_DIFF: return (gettext("\tdiff [-FHt] " "[snapshot|filesystem]\n")); case HELP_BOOKMARK: return (gettext("\tbookmark \n")); } abort(); /* NOTREACHED */ } void nomem(void) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); exit(1); } /* * Utility function to guarantee malloc() success. */ void * safe_malloc(size_t size) { void *data; if ((data = calloc(1, size)) == NULL) nomem(); return (data); } static char * safe_strdup(char *str) { char *dupstr = strdup(str); if (dupstr == NULL) nomem(); return (dupstr); } /* * Callback routine that will print out information for each of * the properties. */ static int usage_prop_cb(int prop, void *cb) { FILE *fp = cb; (void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop)); if (zfs_prop_readonly(prop)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, "YES "); if (zfs_prop_inheritable(prop)) (void) fprintf(fp, " YES "); else (void) fprintf(fp, " NO "); if (zfs_prop_values(prop) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zfs_prop_values(prop)); return (ZPROP_CONT); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ static void usage(boolean_t requested) { int i; boolean_t show_properties = B_FALSE; FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { (void) fprintf(fp, gettext("usage: zfs command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } (void) fprintf(fp, gettext("\nEach dataset is of the form: " "pool/[dataset/]*dataset[@name]\n")); } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && (strcmp(current_command->name, "set") == 0 || strcmp(current_command->name, "get") == 0 || strcmp(current_command->name, "inherit") == 0 || strcmp(current_command->name, "list") == 0)) show_properties = B_TRUE; if (show_properties) { (void) fprintf(fp, gettext("\nThe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-14s %s %s %s\n\n", "PROPERTY", "EDIT", "INHERIT", "VALUES"); /* Iterate over all properties */ (void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE, ZFS_TYPE_DATASET); (void) fprintf(fp, "\t%-15s ", "userused@..."); (void) fprintf(fp, " NO NO \n"); (void) fprintf(fp, "\t%-15s ", "groupused@..."); (void) fprintf(fp, " NO NO \n"); (void) fprintf(fp, "\t%-15s ", "userquota@..."); (void) fprintf(fp, "YES NO | none\n"); (void) fprintf(fp, "\t%-15s ", "groupquota@..."); (void) fprintf(fp, "YES NO | none\n"); (void) fprintf(fp, "\t%-15s ", "written@"); (void) fprintf(fp, " NO NO \n"); (void) fprintf(fp, gettext("\nSizes are specified in bytes " "with standard units such as K, M, G, etc.\n")); (void) fprintf(fp, gettext("\nUser-defined properties can " "be specified by using a name containing a colon (:).\n")); (void) fprintf(fp, gettext("\nThe {user|group}{used|quota}@ " "properties must be appended with\n" "a user or group specifier of one of these forms:\n" " POSIX name (eg: \"matt\")\n" " POSIX id (eg: \"126829\")\n" " SMB name@domain (eg: \"matt@sun\")\n" " SMB SID (eg: \"S-1-234-567-89\")\n")); } else { (void) fprintf(fp, gettext("\nFor the property list, run: %s\n"), "zfs set|get"); (void) fprintf(fp, gettext("\nFor the delegated permission list, run: %s\n"), "zfs allow|unallow"); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } static int parseprop(nvlist_t *props) { char *propname = optarg; char *propval, *strval; if ((propval = strchr(propname, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); return (-1); } *propval = '\0'; propval++; if (nvlist_lookup_string(props, propname, &strval) == 0) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); return (-1); } if (nvlist_add_string(props, propname, propval) != 0) nomem(); return (0); } static int parse_depth(char *opt, int *flags) { char *tmp; int depth; depth = (int)strtol(opt, &tmp, 0); if (*tmp) { (void) fprintf(stderr, gettext("%s is not an integer\n"), optarg); usage(B_FALSE); } if (depth < 0) { (void) fprintf(stderr, gettext("Depth can not be negative.\n")); usage(B_FALSE); } *flags |= (ZFS_ITER_DEPTH_LIMIT|ZFS_ITER_RECURSE); return (depth); } #define PROGRESS_DELAY 2 /* seconds */ static char *pt_reverse = "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"; static time_t pt_begin; static char *pt_header = NULL; static boolean_t pt_shown; static void start_progress_timer(void) { pt_begin = time(NULL) + PROGRESS_DELAY; pt_shown = B_FALSE; } static void set_progress_header(char *header) { assert(pt_header == NULL); pt_header = safe_strdup(header); if (pt_shown) { (void) printf("%s: ", header); (void) fflush(stdout); } } static void update_progress(char *update) { if (!pt_shown && time(NULL) > pt_begin) { int len = strlen(update); (void) printf("%s: %s%*.*s", pt_header, update, len, len, pt_reverse); (void) fflush(stdout); pt_shown = B_TRUE; } else if (pt_shown) { int len = strlen(update); (void) printf("%s%*.*s", update, len, len, pt_reverse); (void) fflush(stdout); } } static void finish_progress(char *done) { if (pt_shown) { (void) printf("%s\n", done); (void) fflush(stdout); } free(pt_header); pt_header = NULL; } /* * zfs clone [-p] [-o prop=value] ... * * Given an existing dataset, create a writable copy whose initial contents * are the same as the source. The newly created dataset maintains a * dependency on the original; the original cannot be destroyed so long as * the clone exists. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_clone(int argc, char **argv) { zfs_handle_t *zhp = NULL; boolean_t parents = B_FALSE; nvlist_t *props; int ret = 0; int c; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, "o:p")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'p': parents = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); goto usage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); goto usage; } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); goto usage; } /* open the source dataset */ if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) { /* * Now create the ancestors of the target dataset. If the * target already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) return (0); if (zfs_create_ancestors(g_zfs, argv[1]) != 0) return (1); } /* pass to libzfs */ ret = zfs_clone(zhp, argv[1], props); /* create the mountpoint if necessary */ if (ret == 0) { zfs_handle_t *clone; clone = zfs_open(g_zfs, argv[1], ZFS_TYPE_DATASET); if (clone != NULL) { if (zfs_get_type(clone) != ZFS_TYPE_VOLUME) if ((ret = zfs_mount(clone, NULL, 0)) == 0) ret = zfs_share(clone); zfs_close(clone); } } zfs_close(zhp); nvlist_free(props); return (!!ret); usage: if (zhp) zfs_close(zhp); nvlist_free(props); usage(B_FALSE); return (-1); } /* * zfs create [-p] [-o prop=value] ... fs * zfs create [-ps] [-b blocksize] [-o prop=value] ... -V vol size * * Create a new dataset. This command can be used to create filesystems * and volumes. Snapshot creation is handled by 'zfs snapshot'. * For volumes, the user must specify a size to be used. * * The '-s' flag applies only to volumes, and indicates that we should not try * to set the reservation for this volume. By default we set a reservation * equal to the size for any volume. For pools with SPA_VERSION >= * SPA_VERSION_REFRESERVATION, we set a refreservation instead. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_create(int argc, char **argv) { zfs_type_t type = ZFS_TYPE_FILESYSTEM; zfs_handle_t *zhp = NULL; uint64_t volsize; int c; boolean_t noreserve = B_FALSE; boolean_t bflag = B_FALSE; boolean_t parents = B_FALSE; int ret = 1; nvlist_t *props; uint64_t intval; int canmount = ZFS_CANMOUNT_OFF; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, ":V:b:so:p")) != -1) { switch (c) { case 'V': type = ZFS_TYPE_VOLUME; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0) nomem(); volsize = intval; break; case 'p': parents = B_TRUE; break; case 'b': bflag = B_TRUE; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "block size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), intval) != 0) nomem(); break; case 'o': if (parseprop(props)) goto error; break; case 's': noreserve = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing size " "argument\n")); goto badusage; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) { (void) fprintf(stderr, gettext("'-s' and '-b' can only be " "used when creating a volume\n")); goto badusage; } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing %s argument\n"), zfs_type_to_name(type)); goto badusage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto badusage; } if (type == ZFS_TYPE_VOLUME && !noreserve) { zpool_handle_t *zpool_handle; nvlist_t *real_props; uint64_t spa_version; char *p; zfs_prop_t resv_prop; char *strval; char msg[1024]; if (p = strchr(argv[0], '/')) *p = '\0'; zpool_handle = zpool_open(g_zfs, argv[0]); if (p != NULL) *p = '/'; if (zpool_handle == NULL) goto error; spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); zpool_close(zpool_handle); if (spa_version >= SPA_VERSION_REFRESERVATION) resv_prop = ZFS_PROP_REFRESERVATION; else resv_prop = ZFS_PROP_RESERVATION; (void) snprintf(msg, sizeof (msg), gettext("cannot create '%s'"), argv[0]); if (props && (real_props = zfs_valid_proplist(g_zfs, type, props, 0, NULL, msg)) == NULL) goto error; volsize = zvol_volsize_to_reservation(volsize, real_props); nvlist_free(real_props); if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop), &strval) != 0) { if (nvlist_add_uint64(props, zfs_prop_to_name(resv_prop), volsize) != 0) { nvlist_free(props); nomem(); } } } if (parents && zfs_name_valid(argv[0], type)) { /* * Now create the ancestors of target dataset. If the target * already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[0], type)) { ret = 0; goto error; } if (zfs_create_ancestors(g_zfs, argv[0]) != 0) goto error; } /* pass to libzfs */ if (zfs_create(g_zfs, argv[0], type, props) != 0) goto error; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) goto error; ret = 0; /* * if the user doesn't want the dataset automatically mounted, * then skip the mount/share step */ if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type)) canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); /* * Mount and/or share the new filesystem as appropriate. We provide a * verbose error message to let the user know that their filesystem was * in fact created, even if we failed to mount or share it. */ if (canmount == ZFS_CANMOUNT_ON) { if (zfs_mount(zhp, NULL, 0) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not mounted\n")); ret = 1; } else if (zfs_share(zhp) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not shared\n")); ret = 1; } } error: if (zhp) zfs_close(zhp); nvlist_free(props); return (ret); badusage: nvlist_free(props); usage(B_FALSE); return (2); } /* * zfs destroy [-rRf] * zfs destroy [-rRd] * * -r Recursively destroy all children * -R Recursively destroy all dependents, including clones * -f Force unmounting of any dependents * -d If we can't destroy now, mark for deferred destruction * * Destroys the given dataset. By default, it will unmount any filesystems, * and refuse to destroy a dataset that has any dependents. A dependent can * either be a child, or a clone of a child. */ typedef struct destroy_cbdata { boolean_t cb_first; boolean_t cb_force; boolean_t cb_recurse; boolean_t cb_error; boolean_t cb_doclones; zfs_handle_t *cb_target; boolean_t cb_defer_destroy; boolean_t cb_verbose; boolean_t cb_parsable; boolean_t cb_dryrun; nvlist_t *cb_nvl; nvlist_t *cb_batchedsnaps; /* first snap in contiguous run */ char *cb_firstsnap; /* previous snap in contiguous run */ char *cb_prevsnap; int64_t cb_snapused; char *cb_snapspec; char *cb_bookmark; } destroy_cbdata_t; /* * Check for any dependents based on the '-r' or '-R' flags. */ static int destroy_check_dependent(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; const char *tname = zfs_get_name(cbp->cb_target); const char *name = zfs_get_name(zhp); if (strncmp(tname, name, strlen(tname)) == 0 && (name[strlen(tname)] == '/' || name[strlen(tname)] == '@')) { /* * This is a direct descendant, not a clone somewhere else in * the hierarchy. */ if (cbp->cb_recurse) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has children\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-r' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = B_TRUE; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } else { /* * This is a clone. We only want to report this if the '-r' * wasn't specified, or the target is a snapshot. */ if (!cbp->cb_recurse && zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has dependent clones\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-R' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = B_TRUE; cbp->cb_dryrun = B_TRUE; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } out: zfs_close(zhp); return (0); } static int destroy_callback(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cb = data; const char *name = zfs_get_name(zhp); if (cb->cb_verbose) { if (cb->cb_parsable) { (void) printf("destroy\t%s\n", name); } else if (cb->cb_dryrun) { (void) printf(gettext("would destroy %s\n"), name); } else { (void) printf(gettext("will destroy %s\n"), name); } } /* * Ignore pools (which we've already flagged as an error before getting * here). */ if (strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { zfs_close(zhp); return (0); } if (cb->cb_dryrun) { zfs_close(zhp); return (0); } /* * We batch up all contiguous snapshots (even of different * filesystems) and destroy them with one ioctl. We can't * simply do all snap deletions and then all fs deletions, * because we must delete a clone before its origin. */ if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) { fnvlist_add_boolean(cb->cb_batchedsnaps, name); } else { int error = zfs_destroy_snaps_nvl(g_zfs, cb->cb_batchedsnaps, B_FALSE); fnvlist_free(cb->cb_batchedsnaps); cb->cb_batchedsnaps = fnvlist_alloc(); if (error != 0 || zfs_unmount(zhp, NULL, cb->cb_force ? MS_FORCE : 0) != 0 || zfs_destroy(zhp, cb->cb_defer_destroy) != 0) { zfs_close(zhp); return (-1); } } zfs_close(zhp); return (0); } static int destroy_print_cb(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cb = arg; const char *name = zfs_get_name(zhp); int err = 0; if (nvlist_exists(cb->cb_nvl, name)) { if (cb->cb_firstsnap == NULL) cb->cb_firstsnap = strdup(name); if (cb->cb_prevsnap != NULL) free(cb->cb_prevsnap); /* this snap continues the current range */ cb->cb_prevsnap = strdup(name); if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL) nomem(); if (cb->cb_verbose) { if (cb->cb_parsable) { (void) printf("destroy\t%s\n", name); } else if (cb->cb_dryrun) { (void) printf(gettext("would destroy %s\n"), name); } else { (void) printf(gettext("will destroy %s\n"), name); } } } else if (cb->cb_firstsnap != NULL) { /* end of this range */ uint64_t used = 0; err = lzc_snaprange_space(cb->cb_firstsnap, cb->cb_prevsnap, &used); cb->cb_snapused += used; free(cb->cb_firstsnap); cb->cb_firstsnap = NULL; free(cb->cb_prevsnap); cb->cb_prevsnap = NULL; } zfs_close(zhp); return (err); } static int destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_cbdata_t *cb) { int err = 0; assert(cb->cb_firstsnap == NULL); assert(cb->cb_prevsnap == NULL); err = zfs_iter_snapshots_sorted(fs_zhp, destroy_print_cb, cb); if (cb->cb_firstsnap != NULL) { uint64_t used = 0; if (err == 0) { err = lzc_snaprange_space(cb->cb_firstsnap, cb->cb_prevsnap, &used); } cb->cb_snapused += used; free(cb->cb_firstsnap); cb->cb_firstsnap = NULL; free(cb->cb_prevsnap); cb->cb_prevsnap = NULL; } return (err); } static int snapshot_to_nvl_cb(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cb = arg; int err = 0; /* Check for clones. */ if (!cb->cb_doclones && !cb->cb_defer_destroy) { cb->cb_target = zhp; cb->cb_first = B_TRUE; err = zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, cb); } if (err == 0) { if (nvlist_add_boolean(cb->cb_nvl, zfs_get_name(zhp))) nomem(); } zfs_close(zhp); return (err); } static int gather_snapshots(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cb = arg; int err = 0; err = zfs_iter_snapspec(zhp, cb->cb_snapspec, snapshot_to_nvl_cb, cb); if (err == ENOENT) err = 0; if (err != 0) goto out; if (cb->cb_verbose) { err = destroy_print_snapshots(zhp, cb); if (err != 0) goto out; } if (cb->cb_recurse) err = zfs_iter_filesystems(zhp, gather_snapshots, cb); out: zfs_close(zhp); return (err); } static int destroy_clones(destroy_cbdata_t *cb) { nvpair_t *pair; for (pair = nvlist_next_nvpair(cb->cb_nvl, NULL); pair != NULL; pair = nvlist_next_nvpair(cb->cb_nvl, pair)) { zfs_handle_t *zhp = zfs_open(g_zfs, nvpair_name(pair), ZFS_TYPE_SNAPSHOT); if (zhp != NULL) { boolean_t defer = cb->cb_defer_destroy; int err = 0; /* * We can't defer destroy non-snapshots, so set it to * false while destroying the clones. */ cb->cb_defer_destroy = B_FALSE; err = zfs_iter_dependents(zhp, B_FALSE, destroy_callback, cb); cb->cb_defer_destroy = defer; zfs_close(zhp); if (err != 0) return (err); } } return (0); } static int zfs_do_destroy(int argc, char **argv) { destroy_cbdata_t cb = { 0 }; int rv = 0; int err = 0; int c; zfs_handle_t *zhp = NULL; char *at, *pound; zfs_type_t type = ZFS_TYPE_DATASET; /* check options */ while ((c = getopt(argc, argv, "vpndfrR")) != -1) { switch (c) { case 'v': cb.cb_verbose = B_TRUE; break; case 'p': cb.cb_verbose = B_TRUE; cb.cb_parsable = B_TRUE; break; case 'n': cb.cb_dryrun = B_TRUE; break; case 'd': cb.cb_defer_destroy = B_TRUE; type = ZFS_TYPE_SNAPSHOT; break; case 'f': cb.cb_force = B_TRUE; break; case 'r': cb.cb_recurse = B_TRUE; break; case 'R': cb.cb_recurse = B_TRUE; cb.cb_doclones = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } at = strchr(argv[0], '@'); pound = strchr(argv[0], '#'); if (at != NULL) { /* Build the list of snaps to destroy in cb_nvl. */ cb.cb_nvl = fnvlist_alloc(); *at = '\0'; zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); cb.cb_snapspec = at + 1; if (gather_snapshots(zfs_handle_dup(zhp), &cb) != 0 || cb.cb_error) { rv = 1; goto out; } if (nvlist_empty(cb.cb_nvl)) { (void) fprintf(stderr, gettext("could not find any " "snapshots to destroy; check snapshot names.\n")); rv = 1; goto out; } if (cb.cb_verbose) { char buf[16]; zfs_nicenum(cb.cb_snapused, buf, sizeof (buf)); if (cb.cb_parsable) { (void) printf("reclaim\t%llu\n", cb.cb_snapused); } else if (cb.cb_dryrun) { (void) printf(gettext("would reclaim %s\n"), buf); } else { (void) printf(gettext("will reclaim %s\n"), buf); } } if (!cb.cb_dryrun) { if (cb.cb_doclones) { cb.cb_batchedsnaps = fnvlist_alloc(); err = destroy_clones(&cb); if (err == 0) { err = zfs_destroy_snaps_nvl(g_zfs, cb.cb_batchedsnaps, B_FALSE); } if (err != 0) { rv = 1; goto out; } } if (err == 0) { err = zfs_destroy_snaps_nvl(g_zfs, cb.cb_nvl, cb.cb_defer_destroy); } } if (err != 0) rv = 1; } else if (pound != NULL) { int err; nvlist_t *nvl; if (cb.cb_dryrun) { (void) fprintf(stderr, "dryrun is not supported with bookmark\n"); return (-1); } if (cb.cb_defer_destroy) { (void) fprintf(stderr, "defer destroy is not supported with bookmark\n"); return (-1); } if (cb.cb_recurse) { (void) fprintf(stderr, "recursive is not supported with bookmark\n"); return (-1); } if (!zfs_bookmark_exists(argv[0])) { (void) fprintf(stderr, gettext("bookmark '%s' " "does not exist.\n"), argv[0]); return (1); } nvl = fnvlist_alloc(); fnvlist_add_boolean(nvl, argv[0]); err = lzc_destroy_bookmarks(nvl, NULL); if (err != 0) { (void) zfs_standard_error(g_zfs, err, "cannot destroy bookmark"); } nvlist_free(cb.cb_nvl); return (err); } else { /* Open the given dataset */ if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL) return (1); cb.cb_target = zhp; /* * Perform an explicit check for pools before going any further. */ if (!cb.cb_recurse && strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "operation does not apply to pools\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zfs destroy -r " "%s' to destroy all datasets in the pool\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zpool destroy %s' " "to destroy the pool itself\n"), zfs_get_name(zhp)); rv = 1; goto out; } /* * Check for any dependents and/or clones. */ cb.cb_first = B_TRUE; if (!cb.cb_doclones && zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, &cb) != 0) { rv = 1; goto out; } if (cb.cb_error) { rv = 1; goto out; } cb.cb_batchedsnaps = fnvlist_alloc(); if (zfs_iter_dependents(zhp, B_FALSE, destroy_callback, &cb) != 0) { rv = 1; goto out; } /* * Do the real thing. The callback will close the * handle regardless of whether it succeeds or not. */ err = destroy_callback(zhp, &cb); zhp = NULL; if (err == 0) { err = zfs_destroy_snaps_nvl(g_zfs, cb.cb_batchedsnaps, cb.cb_defer_destroy); } if (err != 0) rv = 1; } out: fnvlist_free(cb.cb_batchedsnaps); fnvlist_free(cb.cb_nvl); if (zhp != NULL) zfs_close(zhp); return (rv); } static boolean_t is_recvd_column(zprop_get_cbdata_t *cbp) { int i; zfs_get_column_t col; for (i = 0; i < ZFS_GET_NCOLS && (col = cbp->cb_columns[i]) != GET_COL_NONE; i++) if (col == GET_COL_RECVD) return (B_TRUE); return (B_FALSE); } /* * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...] * < all | property[,property]... > < fs | snap | vol > ... * * -r recurse over any child datasets * -H scripted mode. Headers are stripped, and fields are separated * by tabs instead of spaces. * -o Set of fields to display. One of "name,property,value, * received,source". Default is "name,property,value,source". * "all" is an alias for all five. * -s Set of sources to allow. One of * "local,default,inherited,received,temporary,none". Default is * all six. * -p Display values in parsable (literal) format. * * Prints properties for the given datasets. The user can control which * columns to display as well as which property types to allow. */ /* * Invoked to display the properties for a single dataset. */ static int get_callback(zfs_handle_t *zhp, void *data) { char buf[ZFS_MAXPROPLEN]; char rbuf[ZFS_MAXPROPLEN]; zprop_source_t sourcetype; char source[ZFS_MAXNAMELEN]; zprop_get_cbdata_t *cbp = data; nvlist_t *user_props = zfs_get_user_props(zhp); zprop_list_t *pl = cbp->cb_proplist; nvlist_t *propval; char *strval; char *sourceval; boolean_t received = is_recvd_column(cbp); for (; pl != NULL; pl = pl->pl_next) { char *recvdval = NULL; /* * Skip the special fake placeholder. This will also skip over * the name property when 'all' is specified. */ if (pl->pl_prop == ZFS_PROP_NAME && pl == cbp->cb_proplist) continue; if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, buf, sizeof (buf), &sourcetype, source, sizeof (source), cbp->cb_literal) != 0) { if (pl->pl_all) continue; if (!zfs_prop_valid_for_type(pl->pl_prop, ZFS_TYPE_DATASET)) { (void) fprintf(stderr, gettext("No such property '%s'\n"), zfs_prop_to_name(pl->pl_prop)); continue; } sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } if (received && (zfs_prop_get_recvd(zhp, zfs_prop_to_name(pl->pl_prop), rbuf, sizeof (rbuf), cbp->cb_literal) == 0)) recvdval = rbuf; zprop_print_one_property(zfs_get_name(zhp), cbp, zfs_prop_to_name(pl->pl_prop), buf, sourcetype, source, recvdval); } else if (zfs_prop_userquota(pl->pl_user_prop)) { sourcetype = ZPROP_SRC_LOCAL; if (zfs_prop_get_userquota(zhp, pl->pl_user_prop, buf, sizeof (buf), cbp->cb_literal) != 0) { sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, buf, sourcetype, source, NULL); } else if (zfs_prop_written(pl->pl_user_prop)) { sourcetype = ZPROP_SRC_LOCAL; if (zfs_prop_get_written(zhp, pl->pl_user_prop, buf, sizeof (buf), cbp->cb_literal) != 0) { sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, buf, sourcetype, source, NULL); } else { if (nvlist_lookup_nvlist(user_props, pl->pl_user_prop, &propval) != 0) { if (pl->pl_all) continue; sourcetype = ZPROP_SRC_NONE; strval = "-"; } else { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); verify(nvlist_lookup_string(propval, ZPROP_SOURCE, &sourceval) == 0); if (strcmp(sourceval, zfs_get_name(zhp)) == 0) { sourcetype = ZPROP_SRC_LOCAL; } else if (strcmp(sourceval, ZPROP_SOURCE_VAL_RECVD) == 0) { sourcetype = ZPROP_SRC_RECEIVED; } else { sourcetype = ZPROP_SRC_INHERITED; (void) strlcpy(source, sourceval, sizeof (source)); } } if (received && (zfs_prop_get_recvd(zhp, pl->pl_user_prop, rbuf, sizeof (rbuf), cbp->cb_literal) == 0)) recvdval = rbuf; zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, strval, sourcetype, source, recvdval); } } return (0); } static int zfs_do_get(int argc, char **argv) { zprop_get_cbdata_t cb = { 0 }; int i, c, flags = ZFS_ITER_ARGS_CAN_BE_PATHS; int types = ZFS_TYPE_DATASET; char *value, *fields; int ret = 0; int limit = 0; zprop_list_t fake_name = { 0 }; /* * Set up default columns and sources. */ cb.cb_sources = ZPROP_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; cb.cb_type = ZFS_TYPE_DATASET; /* check options */ while ((c = getopt(argc, argv, ":d:o:s:rt:Hp")) != -1) { switch (c) { case 'p': cb.cb_literal = B_TRUE; break; case 'd': limit = parse_depth(optarg, &flags); break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': cb.cb_scripted = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case 'o': /* * Process the set of columns to display. We zero out * the structure to give us a blank slate. */ bzero(&cb.cb_columns, sizeof (cb.cb_columns)); i = 0; while (*optarg != '\0') { static char *col_subopts[] = { "name", "property", "value", "received", "source", "all", NULL }; if (i == ZFS_GET_NCOLS) { (void) fprintf(stderr, gettext("too " "many fields given to -o " "option\n")); usage(B_FALSE); } switch (getsubopt(&optarg, col_subopts, &value)) { case 0: cb.cb_columns[i++] = GET_COL_NAME; break; case 1: cb.cb_columns[i++] = GET_COL_PROPERTY; break; case 2: cb.cb_columns[i++] = GET_COL_VALUE; break; case 3: cb.cb_columns[i++] = GET_COL_RECVD; flags |= ZFS_ITER_RECVD_PROPS; break; case 4: cb.cb_columns[i++] = GET_COL_SOURCE; break; case 5: if (i > 0) { (void) fprintf(stderr, gettext("\"all\" conflicts " "with specific fields " "given to -o option\n")); usage(B_FALSE); } cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_RECVD; cb.cb_columns[4] = GET_COL_SOURCE; flags |= ZFS_ITER_RECVD_PROPS; i = ZFS_GET_NCOLS; break; default: (void) fprintf(stderr, gettext("invalid column name " "'%s'\n"), value); usage(B_FALSE); } } break; case 's': cb.cb_sources = 0; while (*optarg != '\0') { static char *source_subopts[] = { "local", "default", "inherited", "received", "temporary", "none", NULL }; switch (getsubopt(&optarg, source_subopts, &value)) { case 0: cb.cb_sources |= ZPROP_SRC_LOCAL; break; case 1: cb.cb_sources |= ZPROP_SRC_DEFAULT; break; case 2: cb.cb_sources |= ZPROP_SRC_INHERITED; break; case 3: cb.cb_sources |= ZPROP_SRC_RECEIVED; break; case 4: cb.cb_sources |= ZPROP_SRC_TEMPORARY; break; case 5: cb.cb_sources |= ZPROP_SRC_NONE; break; default: (void) fprintf(stderr, gettext("invalid source " "'%s'\n"), value); usage(B_FALSE); } } break; case 't': types = 0; flags &= ~ZFS_ITER_PROP_LISTSNAPS; while (*optarg != '\0') { static char *type_subopts[] = { "filesystem", "volume", "snapshot", "bookmark", "all", NULL }; switch (getsubopt(&optarg, type_subopts, &value)) { case 0: types |= ZFS_TYPE_FILESYSTEM; break; case 1: types |= ZFS_TYPE_VOLUME; break; case 2: types |= ZFS_TYPE_SNAPSHOT; break; case 3: types |= ZFS_TYPE_BOOKMARK; break; case 4: types = ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK; break; default: (void) fprintf(stderr, gettext("invalid type '%s'\n"), value); usage(B_FALSE); } } break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing property " "argument\n")); usage(B_FALSE); } fields = argv[0]; if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); argc--; argv++; /* * As part of zfs_expand_proplist(), we keep track of the maximum column * width for each property. For the 'NAME' (and 'SOURCE') columns, we * need to know the maximum name length. However, the user likely did * not specify 'name' as one of the properties to fetch, so we need to * make sure we always include at least this property for * print_get_headers() to work properly. */ if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZFS_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } cb.cb_first = B_TRUE; /* run for each object */ ret = zfs_for_each(argc, argv, flags, types, NULL, &cb.cb_proplist, limit, get_callback, &cb); if (cb.cb_proplist == &fake_name) zprop_free_list(fake_name.pl_next); else zprop_free_list(cb.cb_proplist); return (ret); } /* * inherit [-rS] ... * * -r Recurse over all children * -S Revert to received value, if any * * For each dataset specified on the command line, inherit the given property * from its parent. Inheriting a property at the pool level will cause it to * use the default value. The '-r' flag will recurse over all children, and is * useful for setting a property on a hierarchy-wide basis, regardless of any * local modifications for each dataset. */ typedef struct inherit_cbdata { const char *cb_propname; boolean_t cb_received; } inherit_cbdata_t; static int inherit_recurse_cb(zfs_handle_t *zhp, void *data) { inherit_cbdata_t *cb = data; zfs_prop_t prop = zfs_name_to_prop(cb->cb_propname); /* * If we're doing it recursively, then ignore properties that * are not valid for this type of dataset. */ if (prop != ZPROP_INVAL && !zfs_prop_valid_for_type(prop, zfs_get_type(zhp))) return (0); return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0); } static int inherit_cb(zfs_handle_t *zhp, void *data) { inherit_cbdata_t *cb = data; return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0); } static int zfs_do_inherit(int argc, char **argv) { int c; zfs_prop_t prop; inherit_cbdata_t cb = { 0 }; char *propname; int ret = 0; int flags = 0; boolean_t received = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "rS")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case 'S': received = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing property argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } propname = argv[0]; argc--; argv++; if ((prop = zfs_name_to_prop(propname)) != ZPROP_INVAL) { if (zfs_prop_readonly(prop)) { (void) fprintf(stderr, gettext( "%s property is read-only\n"), propname); return (1); } if (!zfs_prop_inheritable(prop) && !received) { (void) fprintf(stderr, gettext("'%s' property cannot " "be inherited\n"), propname); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) (void) fprintf(stderr, gettext("use 'zfs set " "%s=none' to clear\n"), propname); return (1); } if (received && (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION)) { (void) fprintf(stderr, gettext("'%s' property cannot " "be reverted to a received value\n"), propname); return (1); } } else if (!zfs_prop_user(propname)) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), propname); usage(B_FALSE); } cb.cb_propname = propname; cb.cb_received = received; if (flags & ZFS_ITER_RECURSE) { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, 0, inherit_recurse_cb, &cb); } else { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, 0, inherit_cb, &cb); } return (ret); } typedef struct upgrade_cbdata { uint64_t cb_numupgraded; uint64_t cb_numsamegraded; uint64_t cb_numfailed; uint64_t cb_version; boolean_t cb_newer; boolean_t cb_foundone; char cb_lastfs[ZFS_MAXNAMELEN]; } upgrade_cbdata_t; static int same_pool(zfs_handle_t *zhp, const char *name) { int len1 = strcspn(name, "/@"); const char *zhname = zfs_get_name(zhp); int len2 = strcspn(zhname, "/@"); if (len1 != len2) return (B_FALSE); return (strncmp(name, zhname, len1) == 0); } static int upgrade_list_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); /* list if it's old/new */ if ((!cb->cb_newer && version < ZPL_VERSION) || (cb->cb_newer && version > ZPL_VERSION)) { char *str; if (cb->cb_newer) { str = gettext("The following filesystems are " "formatted using a newer software version and\n" "cannot be accessed on the current system.\n\n"); } else { str = gettext("The following filesystems are " "out of date, and can be upgraded. After being\n" "upgraded, these filesystems (and any 'zfs send' " "streams generated from\n" "subsequent snapshots) will no longer be " "accessible by older software versions.\n\n"); } if (!cb->cb_foundone) { (void) puts(str); (void) printf(gettext("VER FILESYSTEM\n")); (void) printf(gettext("--- ------------\n")); cb->cb_foundone = B_TRUE; } (void) printf("%2u %s\n", version, zfs_get_name(zhp)); } return (0); } static int upgrade_set_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); int needed_spa_version; int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); needed_spa_version = zfs_spa_version_map(cb->cb_version); if (needed_spa_version < 0) return (-1); if (spa_version < needed_spa_version) { /* can't upgrade */ (void) printf(gettext("%s: can not be " "upgraded; the pool version needs to first " "be upgraded\nto version %d\n\n"), zfs_get_name(zhp), needed_spa_version); cb->cb_numfailed++; return (0); } /* upgrade */ if (version < cb->cb_version) { char verstr[16]; (void) snprintf(verstr, sizeof (verstr), "%llu", cb->cb_version); if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) { /* * If they did "zfs upgrade -a", then we could * be doing ioctls to different pools. We need * to log this history once to each pool, and bypass * the normal history logging that happens in main(). */ (void) zpool_log_history(g_zfs, history_str); log_history = B_FALSE; } if (zfs_prop_set(zhp, "version", verstr) == 0) cb->cb_numupgraded++; else cb->cb_numfailed++; (void) strcpy(cb->cb_lastfs, zfs_get_name(zhp)); } else if (version > cb->cb_version) { /* can't downgrade */ (void) printf(gettext("%s: can not be downgraded; " "it is already at version %u\n"), zfs_get_name(zhp), version); cb->cb_numfailed++; } else { cb->cb_numsamegraded++; } return (0); } /* * zfs upgrade * zfs upgrade -v * zfs upgrade [-r] [-V ] <-a | filesystem> */ static int zfs_do_upgrade(int argc, char **argv) { boolean_t all = B_FALSE; boolean_t showversions = B_FALSE; int ret = 0; upgrade_cbdata_t cb = { 0 }; char c; int flags = ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, "rvV:a")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case 'v': showversions = B_TRUE; break; case 'V': if (zfs_prop_string_to_index(ZFS_PROP_VERSION, optarg, &cb.cb_version) != 0) { (void) fprintf(stderr, gettext("invalid version %s\n"), optarg); usage(B_FALSE); } break; case 'a': all = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version)) usage(B_FALSE); if (showversions && (flags & ZFS_ITER_RECURSE || all || cb.cb_version || argc)) usage(B_FALSE); if ((all || argc) && (showversions)) usage(B_FALSE); if (all && argc) usage(B_FALSE); if (showversions) { /* Show info on available versions. */ (void) printf(gettext("The following filesystem versions are " "supported:\n\n")); (void) printf(gettext("VER DESCRIPTION\n")); (void) printf("--- -----------------------------------------" "---------------\n"); (void) printf(gettext(" 1 Initial ZFS filesystem version\n")); (void) printf(gettext(" 2 Enhanced directory entries\n")); (void) printf(gettext(" 3 Case insensitive and filesystem " "user identifier (FUID)\n")); (void) printf(gettext(" 4 userquota, groupquota " "properties\n")); (void) printf(gettext(" 5 System attributes\n")); (void) printf(gettext("\nFor more information on a particular " "version, including supported releases,\n")); (void) printf("see the ZFS Administration Guide.\n\n"); ret = 0; } else if (argc || all) { /* Upgrade filesystems */ if (cb.cb_version == 0) cb.cb_version = ZPL_VERSION; ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_set_callback, &cb); (void) printf(gettext("%llu filesystems upgraded\n"), cb.cb_numupgraded); if (cb.cb_numsamegraded) { (void) printf(gettext("%llu filesystems already at " "this version\n"), cb.cb_numsamegraded); } if (cb.cb_numfailed != 0) ret = 1; } else { /* List old-version filesytems */ boolean_t found; (void) printf(gettext("This system is currently running " "ZFS filesystem version %llu.\n\n"), ZPL_VERSION); flags |= ZFS_ITER_RECURSE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_list_callback, &cb); found = cb.cb_foundone; cb.cb_foundone = B_FALSE; cb.cb_newer = B_TRUE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_list_callback, &cb); if (!cb.cb_foundone && !found) { (void) printf(gettext("All filesystems are " "formatted with the current version.\n")); } } return (ret); } /* * zfs userspace [-Hinp] [-o field[,...]] [-s field [-s field]...] * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot * zfs groupspace [-Hinp] [-o field[,...]] [-s field [-s field]...] * [-S field [-S field]...] [-t type[,...]] filesystem | snapshot * * -H Scripted mode; elide headers and separate columns by tabs. * -i Translate SID to POSIX ID. * -n Print numeric ID instead of user/group name. * -o Control which fields to display. * -p Use exact (parsable) numeric output. * -s Specify sort columns, descending order. * -S Specify sort columns, ascending order. * -t Control which object types to display. * * Displays space consumed by, and quotas on, each user in the specified * filesystem or snapshot. */ /* us_field_types, us_field_hdr and us_field_names should be kept in sync */ enum us_field_types { USFIELD_TYPE, USFIELD_NAME, USFIELD_USED, USFIELD_QUOTA }; static char *us_field_hdr[] = { "TYPE", "NAME", "USED", "QUOTA" }; static char *us_field_names[] = { "type", "name", "used", "quota" }; #define USFIELD_LAST (sizeof (us_field_names) / sizeof (char *)) #define USTYPE_PSX_GRP (1 << 0) #define USTYPE_PSX_USR (1 << 1) #define USTYPE_SMB_GRP (1 << 2) #define USTYPE_SMB_USR (1 << 3) #define USTYPE_ALL \ (USTYPE_PSX_GRP | USTYPE_PSX_USR | USTYPE_SMB_GRP | USTYPE_SMB_USR) static int us_type_bits[] = { USTYPE_PSX_GRP, USTYPE_PSX_USR, USTYPE_SMB_GRP, USTYPE_SMB_USR, USTYPE_ALL }; static char *us_type_names[] = { "posixgroup", "posixuser", "smbgroup", "smbuser", "all" }; typedef struct us_node { nvlist_t *usn_nvl; uu_avl_node_t usn_avlnode; uu_list_node_t usn_listnode; } us_node_t; typedef struct us_cbdata { nvlist_t **cb_nvlp; uu_avl_pool_t *cb_avl_pool; uu_avl_t *cb_avl; boolean_t cb_numname; boolean_t cb_nicenum; boolean_t cb_sid2posix; zfs_userquota_prop_t cb_prop; zfs_sort_column_t *cb_sortcol; size_t cb_width[USFIELD_LAST]; } us_cbdata_t; static boolean_t us_populated = B_FALSE; typedef struct { zfs_sort_column_t *si_sortcol; boolean_t si_numname; } us_sort_info_t; static int us_field_index(char *field) { int i; for (i = 0; i < USFIELD_LAST; i++) { if (strcmp(field, us_field_names[i]) == 0) return (i); } return (-1); } static int us_compare(const void *larg, const void *rarg, void *unused) { const us_node_t *l = larg; const us_node_t *r = rarg; us_sort_info_t *si = (us_sort_info_t *)unused; zfs_sort_column_t *sortcol = si->si_sortcol; boolean_t numname = si->si_numname; nvlist_t *lnvl = l->usn_nvl; nvlist_t *rnvl = r->usn_nvl; int rc = 0; boolean_t lvb, rvb; for (; sortcol != NULL; sortcol = sortcol->sc_next) { char *lvstr = ""; char *rvstr = ""; uint32_t lv32 = 0; uint32_t rv32 = 0; uint64_t lv64 = 0; uint64_t rv64 = 0; zfs_prop_t prop = sortcol->sc_prop; const char *propname = NULL; boolean_t reverse = sortcol->sc_reverse; switch (prop) { case ZFS_PROP_TYPE: propname = "type"; (void) nvlist_lookup_uint32(lnvl, propname, &lv32); (void) nvlist_lookup_uint32(rnvl, propname, &rv32); if (rv32 != lv32) rc = (rv32 < lv32) ? 1 : -1; break; case ZFS_PROP_NAME: propname = "name"; if (numname) { (void) nvlist_lookup_uint64(lnvl, propname, &lv64); (void) nvlist_lookup_uint64(rnvl, propname, &rv64); if (rv64 != lv64) rc = (rv64 < lv64) ? 1 : -1; } else { (void) nvlist_lookup_string(lnvl, propname, &lvstr); (void) nvlist_lookup_string(rnvl, propname, &rvstr); rc = strcmp(lvstr, rvstr); } break; case ZFS_PROP_USED: case ZFS_PROP_QUOTA: if (!us_populated) break; if (prop == ZFS_PROP_USED) propname = "used"; else propname = "quota"; (void) nvlist_lookup_uint64(lnvl, propname, &lv64); (void) nvlist_lookup_uint64(rnvl, propname, &rv64); if (rv64 != lv64) rc = (rv64 < lv64) ? 1 : -1; break; } if (rc != 0) { if (rc < 0) return (reverse ? 1 : -1); else return (reverse ? -1 : 1); } } /* * If entries still seem to be the same, check if they are of the same * type (smbentity is added only if we are doing SID to POSIX ID * translation where we can have duplicate type/name combinations). */ if (nvlist_lookup_boolean_value(lnvl, "smbentity", &lvb) == 0 && nvlist_lookup_boolean_value(rnvl, "smbentity", &rvb) == 0 && lvb != rvb) return (lvb < rvb ? -1 : 1); return (0); } static inline const char * us_type2str(unsigned field_type) { switch (field_type) { case USTYPE_PSX_USR: return ("POSIX User"); case USTYPE_PSX_GRP: return ("POSIX Group"); case USTYPE_SMB_USR: return ("SMB User"); case USTYPE_SMB_GRP: return ("SMB Group"); default: return ("Undefined"); } } static int userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space) { us_cbdata_t *cb = (us_cbdata_t *)arg; zfs_userquota_prop_t prop = cb->cb_prop; char *name = NULL; char *propname; char sizebuf[32]; us_node_t *node; uu_avl_pool_t *avl_pool = cb->cb_avl_pool; uu_avl_t *avl = cb->cb_avl; uu_avl_index_t idx; nvlist_t *props; us_node_t *n; zfs_sort_column_t *sortcol = cb->cb_sortcol; unsigned type; const char *typestr; size_t namelen; size_t typelen; size_t sizelen; int typeidx, nameidx, sizeidx; us_sort_info_t sortinfo = { sortcol, cb->cb_numname }; boolean_t smbentity = B_FALSE; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); node = safe_malloc(sizeof (us_node_t)); uu_avl_node_init(node, &node->usn_avlnode, avl_pool); node->usn_nvl = props; if (domain != NULL && domain[0] != '\0') { /* SMB */ char sid[ZFS_MAXNAMELEN + 32]; uid_t id; uint64_t classes; int err; directory_error_t e; smbentity = B_TRUE; (void) snprintf(sid, sizeof (sid), "%s-%u", domain, rid); if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) { type = USTYPE_SMB_GRP; err = sid_to_id(sid, B_FALSE, &id); } else { type = USTYPE_SMB_USR; err = sid_to_id(sid, B_TRUE, &id); } if (err == 0) { rid = id; if (!cb->cb_sid2posix) { e = directory_name_from_sid(NULL, sid, &name, &classes); if (e != NULL) directory_error_free(e); if (name == NULL) name = sid; } } } if (cb->cb_sid2posix || domain == NULL || domain[0] == '\0') { /* POSIX or -i */ if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) { type = USTYPE_PSX_GRP; if (!cb->cb_numname) { struct group *g; if ((g = getgrgid(rid)) != NULL) name = g->gr_name; } } else { type = USTYPE_PSX_USR; if (!cb->cb_numname) { struct passwd *p; if ((p = getpwuid(rid)) != NULL) name = p->pw_name; } } } /* * Make sure that the type/name combination is unique when doing * SID to POSIX ID translation (hence changing the type from SMB to * POSIX). */ if (cb->cb_sid2posix && nvlist_add_boolean_value(props, "smbentity", smbentity) != 0) nomem(); /* Calculate/update width of TYPE field */ typestr = us_type2str(type); typelen = strlen(gettext(typestr)); typeidx = us_field_index("type"); if (typelen > cb->cb_width[typeidx]) cb->cb_width[typeidx] = typelen; if (nvlist_add_uint32(props, "type", type) != 0) nomem(); /* Calculate/update width of NAME field */ if ((cb->cb_numname && cb->cb_sid2posix) || name == NULL) { if (nvlist_add_uint64(props, "name", rid) != 0) nomem(); namelen = snprintf(NULL, 0, "%u", rid); } else { if (nvlist_add_string(props, "name", name) != 0) nomem(); namelen = strlen(name); } nameidx = us_field_index("name"); if (namelen > cb->cb_width[nameidx]) cb->cb_width[nameidx] = namelen; /* * Check if this type/name combination is in the list and update it; * otherwise add new node to the list. */ if ((n = uu_avl_find(avl, node, &sortinfo, &idx)) == NULL) { uu_avl_insert(avl, node, idx); } else { nvlist_free(props); free(node); node = n; props = node->usn_nvl; } /* Calculate/update width of USED/QUOTA fields */ if (cb->cb_nicenum) zfs_nicenum(space, sizebuf, sizeof (sizebuf)); else (void) snprintf(sizebuf, sizeof (sizebuf), "%llu", space); sizelen = strlen(sizebuf); if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED) { propname = "used"; if (!nvlist_exists(props, "quota")) (void) nvlist_add_uint64(props, "quota", 0); } else { propname = "quota"; if (!nvlist_exists(props, "used")) (void) nvlist_add_uint64(props, "used", 0); } sizeidx = us_field_index(propname); if (sizelen > cb->cb_width[sizeidx]) cb->cb_width[sizeidx] = sizelen; if (nvlist_add_uint64(props, propname, space) != 0) nomem(); return (0); } static void print_us_node(boolean_t scripted, boolean_t parsable, int *fields, int types, size_t *width, us_node_t *node) { nvlist_t *nvl = node->usn_nvl; char valstr[ZFS_MAXNAMELEN]; boolean_t first = B_TRUE; int cfield = 0; int field; uint32_t ustype; /* Check type */ (void) nvlist_lookup_uint32(nvl, "type", &ustype); if (!(ustype & types)) return; while ((field = fields[cfield]) != USFIELD_LAST) { nvpair_t *nvp = NULL; data_type_t type; uint32_t val32; uint64_t val64; char *strval = NULL; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { if (strcmp(nvpair_name(nvp), us_field_names[field]) == 0) break; } type = nvpair_type(nvp); switch (type) { case DATA_TYPE_UINT32: (void) nvpair_value_uint32(nvp, &val32); break; case DATA_TYPE_UINT64: (void) nvpair_value_uint64(nvp, &val64); break; case DATA_TYPE_STRING: (void) nvpair_value_string(nvp, &strval); break; default: (void) fprintf(stderr, "invalid data type\n"); } switch (field) { case USFIELD_TYPE: strval = (char *)us_type2str(val32); break; case USFIELD_NAME: if (type == DATA_TYPE_UINT64) { (void) sprintf(valstr, "%llu", val64); strval = valstr; } break; case USFIELD_USED: case USFIELD_QUOTA: if (type == DATA_TYPE_UINT64) { if (parsable) { (void) sprintf(valstr, "%llu", val64); } else { zfs_nicenum(val64, valstr, sizeof (valstr)); } if (field == USFIELD_QUOTA && strcmp(valstr, "0") == 0) strval = "none"; else strval = valstr; } break; } if (!first) { if (scripted) (void) printf("\t"); else (void) printf(" "); } if (scripted) (void) printf("%s", strval); else if (field == USFIELD_TYPE || field == USFIELD_NAME) (void) printf("%-*s", width[field], strval); else (void) printf("%*s", width[field], strval); first = B_FALSE; cfield++; } (void) printf("\n"); } static void print_us(boolean_t scripted, boolean_t parsable, int *fields, int types, size_t *width, boolean_t rmnode, uu_avl_t *avl) { us_node_t *node; const char *col; int cfield = 0; int field; if (!scripted) { boolean_t first = B_TRUE; while ((field = fields[cfield]) != USFIELD_LAST) { col = gettext(us_field_hdr[field]); if (field == USFIELD_TYPE || field == USFIELD_NAME) { (void) printf(first ? "%-*s" : " %-*s", width[field], col); } else { (void) printf(first ? "%*s" : " %*s", width[field], col); } first = B_FALSE; cfield++; } (void) printf("\n"); } for (node = uu_avl_first(avl); node; node = uu_avl_next(avl, node)) { print_us_node(scripted, parsable, fields, types, width, node); if (rmnode) nvlist_free(node->usn_nvl); } } static int zfs_do_userspace(int argc, char **argv) { zfs_handle_t *zhp; zfs_userquota_prop_t p; uu_avl_pool_t *avl_pool; uu_avl_t *avl_tree; uu_avl_walk_t *walk; char *delim; char deffields[] = "type,name,used,quota"; char *ofield = NULL; char *tfield = NULL; int cfield = 0; int fields[256]; int i; boolean_t scripted = B_FALSE; boolean_t prtnum = B_FALSE; boolean_t parsable = B_FALSE; boolean_t sid2posix = B_FALSE; int ret = 0; int c; zfs_sort_column_t *sortcol = NULL; int types = USTYPE_PSX_USR | USTYPE_SMB_USR; us_cbdata_t cb; us_node_t *node; us_node_t *rmnode; uu_list_pool_t *listpool; uu_list_t *list; uu_avl_index_t idx = 0; uu_list_index_t idx2 = 0; if (argc < 2) usage(B_FALSE); if (strcmp(argv[0], "groupspace") == 0) /* Toggle default group types */ types = USTYPE_PSX_GRP | USTYPE_SMB_GRP; while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) != -1) { switch (c) { case 'n': prtnum = B_TRUE; break; case 'H': scripted = B_TRUE; break; case 'p': parsable = B_TRUE; break; case 'o': ofield = optarg; break; case 's': case 'S': if (zfs_add_sort_column(&sortcol, optarg, c == 's' ? B_FALSE : B_TRUE) != 0) { (void) fprintf(stderr, gettext("invalid field '%s'\n"), optarg); usage(B_FALSE); } break; case 't': tfield = optarg; break; case 'i': sid2posix = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing dataset name\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* Use default output fields if not specified using -o */ if (ofield == NULL) ofield = deffields; do { if ((delim = strchr(ofield, ',')) != NULL) *delim = '\0'; if ((fields[cfield++] = us_field_index(ofield)) == -1) { (void) fprintf(stderr, gettext("invalid type '%s' " "for -o option\n"), ofield); return (-1); } if (delim != NULL) ofield = delim + 1; } while (delim != NULL); fields[cfield] = USFIELD_LAST; /* Override output types (-t option) */ if (tfield != NULL) { types = 0; do { boolean_t found = B_FALSE; if ((delim = strchr(tfield, ',')) != NULL) *delim = '\0'; for (i = 0; i < sizeof (us_type_bits) / sizeof (int); i++) { if (strcmp(tfield, us_type_names[i]) == 0) { found = B_TRUE; types |= us_type_bits[i]; break; } } if (!found) { (void) fprintf(stderr, gettext("invalid type " "'%s' for -t option\n"), tfield); return (-1); } if (delim != NULL) tfield = delim + 1; } while (delim != NULL); } if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) return (1); if ((avl_pool = uu_avl_pool_create("us_avl_pool", sizeof (us_node_t), offsetof(us_node_t, usn_avlnode), us_compare, UU_DEFAULT)) == NULL) nomem(); if ((avl_tree = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) nomem(); /* Always add default sorting columns */ (void) zfs_add_sort_column(&sortcol, "type", B_FALSE); (void) zfs_add_sort_column(&sortcol, "name", B_FALSE); cb.cb_sortcol = sortcol; cb.cb_numname = prtnum; cb.cb_nicenum = !parsable; cb.cb_avl_pool = avl_pool; cb.cb_avl = avl_tree; cb.cb_sid2posix = sid2posix; for (i = 0; i < USFIELD_LAST; i++) cb.cb_width[i] = strlen(gettext(us_field_hdr[i])); for (p = 0; p < ZFS_NUM_USERQUOTA_PROPS; p++) { if (((p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA) && !(types & (USTYPE_PSX_USR | USTYPE_SMB_USR))) || ((p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA) && !(types & (USTYPE_PSX_GRP | USTYPE_SMB_GRP)))) continue; cb.cb_prop = p; if ((ret = zfs_userspace(zhp, p, userspace_cb, &cb)) != 0) return (ret); } /* Sort the list */ if ((node = uu_avl_first(avl_tree)) == NULL) return (0); us_populated = B_TRUE; listpool = uu_list_pool_create("tmplist", sizeof (us_node_t), offsetof(us_node_t, usn_listnode), NULL, UU_DEFAULT); list = uu_list_create(listpool, NULL, UU_DEFAULT); uu_list_node_init(node, &node->usn_listnode, listpool); while (node != NULL) { rmnode = node; node = uu_avl_next(avl_tree, node); uu_avl_remove(avl_tree, rmnode); if (uu_list_find(list, rmnode, NULL, &idx2) == NULL) uu_list_insert(list, rmnode, idx2); } for (node = uu_list_first(list); node != NULL; node = uu_list_next(list, node)) { us_sort_info_t sortinfo = { sortcol, cb.cb_numname }; if (uu_avl_find(avl_tree, node, &sortinfo, &idx) == NULL) uu_avl_insert(avl_tree, node, idx); } uu_list_destroy(list); uu_list_pool_destroy(listpool); /* Print and free node nvlist memory */ print_us(scripted, parsable, fields, types, cb.cb_width, B_TRUE, cb.cb_avl); zfs_free_sort_columns(sortcol); /* Clean up the AVL tree */ if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) nomem(); while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(cb.cb_avl, node); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(avl_tree); uu_avl_pool_destroy(avl_pool); return (ret); } /* * list [-Hp][-r|-d max] [-o property[,...]] [-s property] ... [-S property] ... * [-t type[,...]] [filesystem|volume|snapshot] ... * * -H Scripted mode; elide headers and separate columns by tabs. * -p Display values in parsable (literal) format. * -r Recurse over all children. * -d Limit recursion by depth. * -o Control which fields to display. * -s Specify sort columns, descending order. * -S Specify sort columns, ascending order. * -t Control which object types to display. * * When given no arguments, list all filesystems in the system. * Otherwise, list the specified datasets, optionally recursing down them if * '-r' is specified. */ typedef struct list_cbdata { boolean_t cb_first; boolean_t cb_literal; boolean_t cb_scripted; zprop_list_t *cb_proplist; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(list_cbdata_t *cb) { zprop_list_t *pl = cb->cb_proplist; char headerbuf[ZFS_MAXPROPLEN]; const char *header; int i; boolean_t first = B_TRUE; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (!first) { (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { header = zfs_prop_column_name(pl->pl_prop); right_justify = zfs_prop_align_right(pl->pl_prop); } else { for (i = 0; pl->pl_user_prop[i] != '\0'; i++) headerbuf[i] = toupper(pl->pl_user_prop[i]); headerbuf[i] = '\0'; header = headerbuf; } if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) (void) printf("%*s", pl->pl_width, header); else (void) printf("%-*s", pl->pl_width, header); } (void) printf("\n"); } /* * Given a dataset and a list of fields, print out all the properties according * to the described layout. */ static void print_dataset(zfs_handle_t *zhp, list_cbdata_t *cb) { zprop_list_t *pl = cb->cb_proplist; boolean_t first = B_TRUE; char property[ZFS_MAXPROPLEN]; nvlist_t *userprops = zfs_get_user_props(zhp); nvlist_t *propval; char *propstr; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (!first) { if (cb->cb_scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, property, sizeof (property), NULL, NULL, 0, cb->cb_literal) != 0) propstr = "-"; else propstr = property; right_justify = zfs_prop_align_right(pl->pl_prop); } else if (zfs_prop_userquota(pl->pl_user_prop)) { if (zfs_prop_get_userquota(zhp, pl->pl_user_prop, property, sizeof (property), cb->cb_literal) != 0) propstr = "-"; else propstr = property; right_justify = B_TRUE; } else if (zfs_prop_written(pl->pl_user_prop)) { if (zfs_prop_get_written(zhp, pl->pl_user_prop, property, sizeof (property), cb->cb_literal) != 0) propstr = "-"; else propstr = property; right_justify = B_TRUE; } else { if (nvlist_lookup_nvlist(userprops, pl->pl_user_prop, &propval) != 0) propstr = "-"; else verify(nvlist_lookup_string(propval, ZPROP_VALUE, &propstr) == 0); right_justify = B_FALSE; } /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (cb->cb_scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", pl->pl_width, propstr); else (void) printf("%-*s", pl->pl_width, propstr); } (void) printf("\n"); } /* * Generic callback function to list a dataset or snapshot. */ static int list_callback(zfs_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; if (cbp->cb_first) { if (!cbp->cb_scripted) print_header(cbp); cbp->cb_first = B_FALSE; } print_dataset(zhp, cbp); return (0); } static int zfs_do_list(int argc, char **argv) { int c; static char default_fields[] = "name,used,available,referenced,mountpoint"; int types = ZFS_TYPE_DATASET; boolean_t types_specified = B_FALSE; char *fields = NULL; list_cbdata_t cb = { 0 }; char *value; int limit = 0; int ret = 0; zfs_sort_column_t *sortcol = NULL; int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, "HS:d:o:prs:t:")) != -1) { switch (c) { case 'o': fields = optarg; break; case 'p': cb.cb_literal = B_TRUE; flags |= ZFS_ITER_LITERAL_PROPS; break; case 'd': limit = parse_depth(optarg, &flags); break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': cb.cb_scripted = B_TRUE; break; case 's': if (zfs_add_sort_column(&sortcol, optarg, B_FALSE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 'S': if (zfs_add_sort_column(&sortcol, optarg, B_TRUE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 't': types = 0; types_specified = B_TRUE; flags &= ~ZFS_ITER_PROP_LISTSNAPS; while (*optarg != '\0') { static char *type_subopts[] = { "filesystem", "volume", "snapshot", "snap", "bookmark", "all", NULL }; switch (getsubopt(&optarg, type_subopts, &value)) { case 0: types |= ZFS_TYPE_FILESYSTEM; break; case 1: types |= ZFS_TYPE_VOLUME; break; case 2: case 3: types |= ZFS_TYPE_SNAPSHOT; break; case 4: types |= ZFS_TYPE_BOOKMARK; break; case 5: types = ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK; break; default: (void) fprintf(stderr, gettext("invalid type '%s'\n"), value); usage(B_FALSE); } } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (fields == NULL) fields = default_fields; /* * If "-o space" and no types were specified, don't display snapshots. */ if (strcmp(fields, "space") == 0 && types_specified == B_FALSE) types &= ~ZFS_TYPE_SNAPSHOT; /* * If the user specifies '-o all', the zprop_get_list() doesn't * normally include the name of the dataset. For 'zfs list', we always * want this property to be first. */ if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); cb.cb_first = B_TRUE; ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist, limit, list_callback, &cb); zprop_free_list(cb.cb_proplist); zfs_free_sort_columns(sortcol); if (ret == 0 && cb.cb_first && !cb.cb_scripted) (void) printf(gettext("no datasets available\n")); return (ret); } /* * zfs rename [-f] * zfs rename [-f] -p * zfs rename -r * * Renames the given dataset to another of the same type. * * The '-p' flag creates all the non-existing ancestors of the target first. */ /* ARGSUSED */ static int zfs_do_rename(int argc, char **argv) { zfs_handle_t *zhp; int c; int ret = 0; boolean_t recurse = B_FALSE; boolean_t parents = B_FALSE; boolean_t force_unmount = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "prf")) != -1) { switch (c) { case 'p': parents = B_TRUE; break; case 'r': recurse = B_TRUE; break; case 'f': force_unmount = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (recurse && parents) { (void) fprintf(stderr, gettext("-p and -r options are mutually " "exclusive\n")); usage(B_FALSE); } if (recurse && strchr(argv[0], '@') == 0) { (void) fprintf(stderr, gettext("source dataset for recursive " "rename must be a snapshot\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], parents ? ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME : ZFS_TYPE_DATASET)) == NULL) return (1); /* If we were asked and the name looks good, try to create ancestors. */ if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) && zfs_create_ancestors(g_zfs, argv[1]) != 0) { zfs_close(zhp); return (1); } ret = (zfs_rename(zhp, argv[1], recurse, force_unmount) != 0); zfs_close(zhp); return (ret); } /* * zfs promote * * Promotes the given clone fs to be the parent */ /* ARGSUSED */ static int zfs_do_promote(int argc, char **argv) { zfs_handle_t *zhp; int ret = 0; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing clone filesystem" " argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); ret = (zfs_promote(zhp) != 0); zfs_close(zhp); return (ret); } /* * zfs rollback [-rRf] * * -r Delete any intervening snapshots before doing rollback * -R Delete any snapshots and their clones * -f ignored for backwards compatability * * Given a filesystem, rollback to a specific snapshot, discarding any changes * since then and making it the active dataset. If more recent snapshots exist, * the command will complain unless the '-r' flag is given. */ typedef struct rollback_cbdata { uint64_t cb_create; boolean_t cb_first; int cb_doclones; char *cb_target; int cb_error; boolean_t cb_recurse; } rollback_cbdata_t; static int rollback_check_dependent(zfs_handle_t *zhp, void *data) { rollback_cbdata_t *cbp = data; if (cbp->cb_first && cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot rollback to " "'%s': clones of previous snapshots exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-R' to " "force deletion of the following clones and " "dependents:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); zfs_close(zhp); return (0); } /* * Report any snapshots more recent than the one specified. Used when '-r' is * not specified. We reuse this same callback for the snapshot dependents - if * 'cb_dependent' is set, then this is a dependent and we should report it * without checking the transaction group. */ static int rollback_check(zfs_handle_t *zhp, void *data) { rollback_cbdata_t *cbp = data; if (cbp->cb_doclones) { zfs_close(zhp); return (0); } if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { if (cbp->cb_first && !cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot " "rollback to '%s': more recent snapshots " "or bookmarks exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-r' to " "force deletion of the following " "snapshots and bookmarks:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } if (cbp->cb_recurse) { if (zfs_iter_dependents(zhp, B_TRUE, rollback_check_dependent, cbp) != 0) { zfs_close(zhp); return (-1); } } else { (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } } zfs_close(zhp); return (0); } static int zfs_do_rollback(int argc, char **argv) { int ret = 0; int c; boolean_t force = B_FALSE; rollback_cbdata_t cb = { 0 }; zfs_handle_t *zhp, *snap; char parentname[ZFS_MAXNAMELEN]; char *delim; /* check options */ while ((c = getopt(argc, argv, "rRf")) != -1) { switch (c) { case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* open the snapshot */ if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); /* open the parent dataset */ (void) strlcpy(parentname, argv[0], sizeof (parentname)); verify((delim = strrchr(parentname, '@')) != NULL); *delim = '\0'; if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) { zfs_close(snap); return (1); } /* * Check for more recent snapshots and/or clones based on the presence * of '-r' and '-R'. */ cb.cb_target = argv[0]; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_first = B_TRUE; cb.cb_error = 0; if ((ret = zfs_iter_snapshots(zhp, rollback_check, &cb)) != 0) goto out; if ((ret = zfs_iter_bookmarks(zhp, rollback_check, &cb)) != 0) goto out; if ((ret = cb.cb_error) != 0) goto out; /* * Rollback parent to the given snapshot. */ ret = zfs_rollback(zhp, snap, force); out: zfs_close(snap); zfs_close(zhp); if (ret == 0) return (0); else return (1); } /* * zfs set property=value { fs | snap | vol } ... * * Sets the given property for all datasets specified on the command line. */ typedef struct set_cbdata { char *cb_propname; char *cb_value; } set_cbdata_t; static int set_callback(zfs_handle_t *zhp, void *data) { set_cbdata_t *cbp = data; if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) { switch (libzfs_errno(g_zfs)) { case EZFS_MOUNTFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to remount filesystem\n")); break; case EZFS_SHARENFSFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to reshare filesystem\n")); break; } return (1); } return (0); } static int zfs_do_set(int argc, char **argv) { set_cbdata_t cb; int ret = 0; /* check for options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing dataset name\n")); usage(B_FALSE); } /* validate property=value argument */ cb.cb_propname = argv[1]; if (((cb.cb_value = strchr(cb.cb_propname, '=')) == NULL) || (cb.cb_value[1] == '\0')) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *cb.cb_value = '\0'; cb.cb_value++; if (*cb.cb_propname == '\0') { (void) fprintf(stderr, gettext("missing property in property=value argument\n")); usage(B_FALSE); } ret = zfs_for_each(argc - 2, argv + 2, NULL, ZFS_TYPE_DATASET, NULL, NULL, 0, set_callback, &cb); return (ret); } typedef struct snap_cbdata { nvlist_t *sd_nvl; boolean_t sd_recursive; const char *sd_snapname; } snap_cbdata_t; static int zfs_snapshot_cb(zfs_handle_t *zhp, void *arg) { snap_cbdata_t *sd = arg; char *name; int rv = 0; int error; if (sd->sd_recursive && zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) != 0) { zfs_close(zhp); return (0); } error = asprintf(&name, "%s@%s", zfs_get_name(zhp), sd->sd_snapname); if (error == -1) nomem(); fnvlist_add_boolean(sd->sd_nvl, name); free(name); if (sd->sd_recursive) rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd); zfs_close(zhp); return (rv); } /* * zfs snapshot [-r] [-o prop=value] ... * * Creates a snapshot with the given name. While functionally equivalent to * 'zfs create', it is a separate command to differentiate intent. */ static int zfs_do_snapshot(int argc, char **argv) { int ret = 0; char c; nvlist_t *props; snap_cbdata_t sd = { 0 }; boolean_t multiple_snaps = B_FALSE; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); if (nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, "ro:")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'r': sd.sd_recursive = B_TRUE; multiple_snaps = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); goto usage; } if (argc > 1) multiple_snaps = B_TRUE; for (; argc > 0; argc--, argv++) { char *atp; zfs_handle_t *zhp; atp = strchr(argv[0], '@'); if (atp == NULL) goto usage; *atp = '\0'; sd.sd_snapname = atp + 1; zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) goto usage; if (zfs_snapshot_cb(zhp, &sd) != 0) goto usage; } ret = zfs_snapshot_nvl(g_zfs, sd.sd_nvl, props); nvlist_free(sd.sd_nvl); nvlist_free(props); if (ret != 0 && multiple_snaps) (void) fprintf(stderr, gettext("no snapshots were created\n")); return (ret != 0); usage: nvlist_free(sd.sd_nvl); nvlist_free(props); usage(B_FALSE); return (-1); } /* * Send a backup stream to stdout. */ static int zfs_do_send(int argc, char **argv) { char *fromname = NULL; char *toname = NULL; char *cp; zfs_handle_t *zhp; sendflags_t flags = { 0 }; int c, err; nvlist_t *dbgnv = NULL; boolean_t extraverbose = B_FALSE; /* check options */ - while ((c = getopt(argc, argv, ":i:I:RDpvnPe")) != -1) { + while ((c = getopt(argc, argv, ":i:I:RDpvnPLe")) != -1) { switch (c) { case 'i': if (fromname) usage(B_FALSE); fromname = optarg; break; case 'I': if (fromname) usage(B_FALSE); fromname = optarg; flags.doall = B_TRUE; break; case 'R': flags.replicate = B_TRUE; break; case 'p': flags.props = B_TRUE; break; case 'P': flags.parsable = B_TRUE; flags.verbose = B_TRUE; break; case 'v': if (flags.verbose) extraverbose = B_TRUE; flags.verbose = B_TRUE; flags.progress = B_TRUE; break; case 'D': flags.dedup = B_TRUE; break; case 'n': flags.dryrun = B_TRUE; break; + case 'L': + flags.largeblock = B_TRUE; + break; case 'e': flags.embed_data = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (!flags.dryrun && isatty(STDOUT_FILENO)) { (void) fprintf(stderr, gettext("Error: Stream can not be written to a terminal.\n" "You must redirect standard output.\n")); return (1); } /* * Special case sending a filesystem, or from a bookmark. */ if (strchr(argv[0], '@') == NULL || (fromname && strchr(fromname, '#') != NULL)) { char frombuf[ZFS_MAXNAMELEN]; enum lzc_send_flags lzc_flags = 0; if (flags.replicate || flags.doall || flags.props || flags.dedup || flags.dryrun || flags.verbose || flags.progress) { (void) fprintf(stderr, gettext("Error: " "Unsupported flag with filesystem or bookmark.\n")); return (1); } zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET); if (zhp == NULL) return (1); + if (flags.largeblock) + lzc_flags |= LZC_SEND_FLAG_LARGE_BLOCK; if (flags.embed_data) lzc_flags |= LZC_SEND_FLAG_EMBED_DATA; if (fromname != NULL && (fromname[0] == '#' || fromname[0] == '@')) { /* * Incremental source name begins with # or @. * Default to same fs as target. */ (void) strncpy(frombuf, argv[0], sizeof (frombuf)); cp = strchr(frombuf, '@'); if (cp != NULL) *cp = '\0'; (void) strlcat(frombuf, fromname, sizeof (frombuf)); fromname = frombuf; } err = zfs_send_one(zhp, fromname, STDOUT_FILENO, lzc_flags); zfs_close(zhp); return (err != 0); } cp = strchr(argv[0], '@'); *cp = '\0'; toname = cp + 1; zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); /* * If they specified the full path to the snapshot, chop off * everything except the short name of the snapshot, but special * case if they specify the origin. */ if (fromname && (cp = strchr(fromname, '@')) != NULL) { char origin[ZFS_MAXNAMELEN]; zprop_source_t src; (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin, sizeof (origin), &src, NULL, 0, B_FALSE); if (strcmp(origin, fromname) == 0) { fromname = NULL; flags.fromorigin = B_TRUE; } else { *cp = '\0'; if (cp != fromname && strcmp(argv[0], fromname)) { (void) fprintf(stderr, gettext("incremental source must be " "in same filesystem\n")); usage(B_FALSE); } fromname = cp + 1; if (strchr(fromname, '@') || strchr(fromname, '/')) { (void) fprintf(stderr, gettext("invalid incremental source\n")); usage(B_FALSE); } } } if (flags.replicate && fromname == NULL) flags.doall = B_TRUE; err = zfs_send(zhp, fromname, toname, &flags, STDOUT_FILENO, NULL, 0, extraverbose ? &dbgnv : NULL); if (extraverbose && dbgnv != NULL) { /* * dump_nvlist prints to stdout, but that's been * redirected to a file. Make it print to stderr * instead. */ (void) dup2(STDERR_FILENO, STDOUT_FILENO); dump_nvlist(dbgnv, 0); nvlist_free(dbgnv); } zfs_close(zhp); return (err != 0); } /* * zfs receive [-vnFu] [-d | -e] * * Restore a backup stream from stdin. */ static int zfs_do_receive(int argc, char **argv) { int c, err; recvflags_t flags = { 0 }; /* check options */ while ((c = getopt(argc, argv, ":denuvF")) != -1) { switch (c) { case 'd': flags.isprefix = B_TRUE; break; case 'e': flags.isprefix = B_TRUE; flags.istail = B_TRUE; break; case 'n': flags.dryrun = B_TRUE; break; case 'u': flags.nomount = B_TRUE; break; case 'v': flags.verbose = B_TRUE; break; case 'F': flags.force = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, gettext("Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n")); return (1); } err = zfs_receive(g_zfs, argv[0], &flags, STDIN_FILENO, NULL); return (err != 0); } /* * allow/unallow stuff */ /* copied from zfs/sys/dsl_deleg.h */ #define ZFS_DELEG_PERM_CREATE "create" #define ZFS_DELEG_PERM_DESTROY "destroy" #define ZFS_DELEG_PERM_SNAPSHOT "snapshot" #define ZFS_DELEG_PERM_ROLLBACK "rollback" #define ZFS_DELEG_PERM_CLONE "clone" #define ZFS_DELEG_PERM_PROMOTE "promote" #define ZFS_DELEG_PERM_RENAME "rename" #define ZFS_DELEG_PERM_MOUNT "mount" #define ZFS_DELEG_PERM_SHARE "share" #define ZFS_DELEG_PERM_SEND "send" #define ZFS_DELEG_PERM_RECEIVE "receive" #define ZFS_DELEG_PERM_ALLOW "allow" #define ZFS_DELEG_PERM_USERPROP "userprop" #define ZFS_DELEG_PERM_VSCAN "vscan" /* ??? */ #define ZFS_DELEG_PERM_USERQUOTA "userquota" #define ZFS_DELEG_PERM_GROUPQUOTA "groupquota" #define ZFS_DELEG_PERM_USERUSED "userused" #define ZFS_DELEG_PERM_GROUPUSED "groupused" #define ZFS_DELEG_PERM_HOLD "hold" #define ZFS_DELEG_PERM_RELEASE "release" #define ZFS_DELEG_PERM_DIFF "diff" #define ZFS_DELEG_PERM_BOOKMARK "bookmark" #define ZFS_NUM_DELEG_NOTES ZFS_DELEG_NOTE_NONE static zfs_deleg_perm_tab_t zfs_deleg_perm_tbl[] = { { ZFS_DELEG_PERM_ALLOW, ZFS_DELEG_NOTE_ALLOW }, { ZFS_DELEG_PERM_CLONE, ZFS_DELEG_NOTE_CLONE }, { ZFS_DELEG_PERM_CREATE, ZFS_DELEG_NOTE_CREATE }, { ZFS_DELEG_PERM_DESTROY, ZFS_DELEG_NOTE_DESTROY }, { ZFS_DELEG_PERM_DIFF, ZFS_DELEG_NOTE_DIFF}, { ZFS_DELEG_PERM_HOLD, ZFS_DELEG_NOTE_HOLD }, { ZFS_DELEG_PERM_MOUNT, ZFS_DELEG_NOTE_MOUNT }, { ZFS_DELEG_PERM_PROMOTE, ZFS_DELEG_NOTE_PROMOTE }, { ZFS_DELEG_PERM_RECEIVE, ZFS_DELEG_NOTE_RECEIVE }, { ZFS_DELEG_PERM_RELEASE, ZFS_DELEG_NOTE_RELEASE }, { ZFS_DELEG_PERM_RENAME, ZFS_DELEG_NOTE_RENAME }, { ZFS_DELEG_PERM_ROLLBACK, ZFS_DELEG_NOTE_ROLLBACK }, { ZFS_DELEG_PERM_SEND, ZFS_DELEG_NOTE_SEND }, { ZFS_DELEG_PERM_SHARE, ZFS_DELEG_NOTE_SHARE }, { ZFS_DELEG_PERM_SNAPSHOT, ZFS_DELEG_NOTE_SNAPSHOT }, { ZFS_DELEG_PERM_BOOKMARK, ZFS_DELEG_NOTE_BOOKMARK }, { ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_NOTE_GROUPQUOTA }, { ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_NOTE_GROUPUSED }, { ZFS_DELEG_PERM_USERPROP, ZFS_DELEG_NOTE_USERPROP }, { ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_NOTE_USERQUOTA }, { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_NOTE_USERUSED }, { NULL, ZFS_DELEG_NOTE_NONE } }; /* permission structure */ typedef struct deleg_perm { zfs_deleg_who_type_t dp_who_type; const char *dp_name; boolean_t dp_local; boolean_t dp_descend; } deleg_perm_t; /* */ typedef struct deleg_perm_node { deleg_perm_t dpn_perm; uu_avl_node_t dpn_avl_node; } deleg_perm_node_t; typedef struct fs_perm fs_perm_t; /* permissions set */ typedef struct who_perm { zfs_deleg_who_type_t who_type; const char *who_name; /* id */ char who_ug_name[256]; /* user/group name */ fs_perm_t *who_fsperm; /* uplink */ uu_avl_t *who_deleg_perm_avl; /* permissions */ } who_perm_t; /* */ typedef struct who_perm_node { who_perm_t who_perm; uu_avl_node_t who_avl_node; } who_perm_node_t; typedef struct fs_perm_set fs_perm_set_t; /* fs permissions */ struct fs_perm { const char *fsp_name; uu_avl_t *fsp_sc_avl; /* sets,create */ uu_avl_t *fsp_uge_avl; /* user,group,everyone */ fs_perm_set_t *fsp_set; /* uplink */ }; /* */ typedef struct fs_perm_node { fs_perm_t fspn_fsperm; uu_avl_t *fspn_avl; uu_list_node_t fspn_list_node; } fs_perm_node_t; /* top level structure */ struct fs_perm_set { uu_list_pool_t *fsps_list_pool; uu_list_t *fsps_list; /* list of fs_perms */ uu_avl_pool_t *fsps_named_set_avl_pool; uu_avl_pool_t *fsps_who_perm_avl_pool; uu_avl_pool_t *fsps_deleg_perm_avl_pool; }; static inline const char * deleg_perm_type(zfs_deleg_note_t note) { /* subcommands */ switch (note) { /* SUBCOMMANDS */ /* OTHER */ case ZFS_DELEG_NOTE_GROUPQUOTA: case ZFS_DELEG_NOTE_GROUPUSED: case ZFS_DELEG_NOTE_USERPROP: case ZFS_DELEG_NOTE_USERQUOTA: case ZFS_DELEG_NOTE_USERUSED: /* other */ return (gettext("other")); default: return (gettext("subcommand")); } } static int inline who_type2weight(zfs_deleg_who_type_t who_type) { int res; switch (who_type) { case ZFS_DELEG_NAMED_SET_SETS: case ZFS_DELEG_NAMED_SET: res = 0; break; case ZFS_DELEG_CREATE_SETS: case ZFS_DELEG_CREATE: res = 1; break; case ZFS_DELEG_USER_SETS: case ZFS_DELEG_USER: res = 2; break; case ZFS_DELEG_GROUP_SETS: case ZFS_DELEG_GROUP: res = 3; break; case ZFS_DELEG_EVERYONE_SETS: case ZFS_DELEG_EVERYONE: res = 4; break; default: res = -1; } return (res); } /* ARGSUSED */ static int who_perm_compare(const void *larg, const void *rarg, void *unused) { const who_perm_node_t *l = larg; const who_perm_node_t *r = rarg; zfs_deleg_who_type_t ltype = l->who_perm.who_type; zfs_deleg_who_type_t rtype = r->who_perm.who_type; int lweight = who_type2weight(ltype); int rweight = who_type2weight(rtype); int res = lweight - rweight; if (res == 0) res = strncmp(l->who_perm.who_name, r->who_perm.who_name, ZFS_MAX_DELEG_NAME-1); if (res == 0) return (0); if (res > 0) return (1); else return (-1); } /* ARGSUSED */ static int deleg_perm_compare(const void *larg, const void *rarg, void *unused) { const deleg_perm_node_t *l = larg; const deleg_perm_node_t *r = rarg; int res = strncmp(l->dpn_perm.dp_name, r->dpn_perm.dp_name, ZFS_MAX_DELEG_NAME-1); if (res == 0) return (0); if (res > 0) return (1); else return (-1); } static inline void fs_perm_set_init(fs_perm_set_t *fspset) { bzero(fspset, sizeof (fs_perm_set_t)); if ((fspset->fsps_list_pool = uu_list_pool_create("fsps_list_pool", sizeof (fs_perm_node_t), offsetof(fs_perm_node_t, fspn_list_node), NULL, UU_DEFAULT)) == NULL) nomem(); if ((fspset->fsps_list = uu_list_create(fspset->fsps_list_pool, NULL, UU_DEFAULT)) == NULL) nomem(); if ((fspset->fsps_named_set_avl_pool = uu_avl_pool_create( "named_set_avl_pool", sizeof (who_perm_node_t), offsetof( who_perm_node_t, who_avl_node), who_perm_compare, UU_DEFAULT)) == NULL) nomem(); if ((fspset->fsps_who_perm_avl_pool = uu_avl_pool_create( "who_perm_avl_pool", sizeof (who_perm_node_t), offsetof( who_perm_node_t, who_avl_node), who_perm_compare, UU_DEFAULT)) == NULL) nomem(); if ((fspset->fsps_deleg_perm_avl_pool = uu_avl_pool_create( "deleg_perm_avl_pool", sizeof (deleg_perm_node_t), offsetof( deleg_perm_node_t, dpn_avl_node), deleg_perm_compare, UU_DEFAULT)) == NULL) nomem(); } static inline void fs_perm_fini(fs_perm_t *); static inline void who_perm_fini(who_perm_t *); static inline void fs_perm_set_fini(fs_perm_set_t *fspset) { fs_perm_node_t *node = uu_list_first(fspset->fsps_list); while (node != NULL) { fs_perm_node_t *next_node = uu_list_next(fspset->fsps_list, node); fs_perm_t *fsperm = &node->fspn_fsperm; fs_perm_fini(fsperm); uu_list_remove(fspset->fsps_list, node); free(node); node = next_node; } uu_avl_pool_destroy(fspset->fsps_named_set_avl_pool); uu_avl_pool_destroy(fspset->fsps_who_perm_avl_pool); uu_avl_pool_destroy(fspset->fsps_deleg_perm_avl_pool); } static inline void deleg_perm_init(deleg_perm_t *deleg_perm, zfs_deleg_who_type_t type, const char *name) { deleg_perm->dp_who_type = type; deleg_perm->dp_name = name; } static inline void who_perm_init(who_perm_t *who_perm, fs_perm_t *fsperm, zfs_deleg_who_type_t type, const char *name) { uu_avl_pool_t *pool; pool = fsperm->fsp_set->fsps_deleg_perm_avl_pool; bzero(who_perm, sizeof (who_perm_t)); if ((who_perm->who_deleg_perm_avl = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL) nomem(); who_perm->who_type = type; who_perm->who_name = name; who_perm->who_fsperm = fsperm; } static inline void who_perm_fini(who_perm_t *who_perm) { deleg_perm_node_t *node = uu_avl_first(who_perm->who_deleg_perm_avl); while (node != NULL) { deleg_perm_node_t *next_node = uu_avl_next(who_perm->who_deleg_perm_avl, node); uu_avl_remove(who_perm->who_deleg_perm_avl, node); free(node); node = next_node; } uu_avl_destroy(who_perm->who_deleg_perm_avl); } static inline void fs_perm_init(fs_perm_t *fsperm, fs_perm_set_t *fspset, const char *fsname) { uu_avl_pool_t *nset_pool = fspset->fsps_named_set_avl_pool; uu_avl_pool_t *who_pool = fspset->fsps_who_perm_avl_pool; bzero(fsperm, sizeof (fs_perm_t)); if ((fsperm->fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU_DEFAULT)) == NULL) nomem(); if ((fsperm->fsp_uge_avl = uu_avl_create(who_pool, NULL, UU_DEFAULT)) == NULL) nomem(); fsperm->fsp_set = fspset; fsperm->fsp_name = fsname; } static inline void fs_perm_fini(fs_perm_t *fsperm) { who_perm_node_t *node = uu_avl_first(fsperm->fsp_sc_avl); while (node != NULL) { who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_sc_avl, node); who_perm_t *who_perm = &node->who_perm; who_perm_fini(who_perm); uu_avl_remove(fsperm->fsp_sc_avl, node); free(node); node = next_node; } node = uu_avl_first(fsperm->fsp_uge_avl); while (node != NULL) { who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_uge_avl, node); who_perm_t *who_perm = &node->who_perm; who_perm_fini(who_perm); uu_avl_remove(fsperm->fsp_uge_avl, node); free(node); node = next_node; } uu_avl_destroy(fsperm->fsp_sc_avl); uu_avl_destroy(fsperm->fsp_uge_avl); } static void inline set_deleg_perm_node(uu_avl_t *avl, deleg_perm_node_t *node, zfs_deleg_who_type_t who_type, const char *name, char locality) { uu_avl_index_t idx = 0; deleg_perm_node_t *found_node = NULL; deleg_perm_t *deleg_perm = &node->dpn_perm; deleg_perm_init(deleg_perm, who_type, name); if ((found_node = uu_avl_find(avl, node, NULL, &idx)) == NULL) uu_avl_insert(avl, node, idx); else { node = found_node; deleg_perm = &node->dpn_perm; } switch (locality) { case ZFS_DELEG_LOCAL: deleg_perm->dp_local = B_TRUE; break; case ZFS_DELEG_DESCENDENT: deleg_perm->dp_descend = B_TRUE; break; case ZFS_DELEG_NA: break; default: assert(B_FALSE); /* invalid locality */ } } static inline int parse_who_perm(who_perm_t *who_perm, nvlist_t *nvl, char locality) { nvpair_t *nvp = NULL; fs_perm_set_t *fspset = who_perm->who_fsperm->fsp_set; uu_avl_t *avl = who_perm->who_deleg_perm_avl; zfs_deleg_who_type_t who_type = who_perm->who_type; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { const char *name = nvpair_name(nvp); data_type_t type = nvpair_type(nvp); uu_avl_pool_t *avl_pool = fspset->fsps_deleg_perm_avl_pool; deleg_perm_node_t *node = safe_malloc(sizeof (deleg_perm_node_t)); assert(type == DATA_TYPE_BOOLEAN); uu_avl_node_init(node, &node->dpn_avl_node, avl_pool); set_deleg_perm_node(avl, node, who_type, name, locality); } return (0); } static inline int parse_fs_perm(fs_perm_t *fsperm, nvlist_t *nvl) { nvpair_t *nvp = NULL; fs_perm_set_t *fspset = fsperm->fsp_set; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { nvlist_t *nvl2 = NULL; const char *name = nvpair_name(nvp); uu_avl_t *avl = NULL; uu_avl_pool_t *avl_pool; zfs_deleg_who_type_t perm_type = name[0]; char perm_locality = name[1]; const char *perm_name = name + 3; boolean_t is_set = B_TRUE; who_perm_t *who_perm = NULL; assert('$' == name[2]); if (nvpair_value_nvlist(nvp, &nvl2) != 0) return (-1); switch (perm_type) { case ZFS_DELEG_CREATE: case ZFS_DELEG_CREATE_SETS: case ZFS_DELEG_NAMED_SET: case ZFS_DELEG_NAMED_SET_SETS: avl_pool = fspset->fsps_named_set_avl_pool; avl = fsperm->fsp_sc_avl; break; case ZFS_DELEG_USER: case ZFS_DELEG_USER_SETS: case ZFS_DELEG_GROUP: case ZFS_DELEG_GROUP_SETS: case ZFS_DELEG_EVERYONE: case ZFS_DELEG_EVERYONE_SETS: avl_pool = fspset->fsps_who_perm_avl_pool; avl = fsperm->fsp_uge_avl; break; } if (is_set) { who_perm_node_t *found_node = NULL; who_perm_node_t *node = safe_malloc( sizeof (who_perm_node_t)); who_perm = &node->who_perm; uu_avl_index_t idx = 0; uu_avl_node_init(node, &node->who_avl_node, avl_pool); who_perm_init(who_perm, fsperm, perm_type, perm_name); if ((found_node = uu_avl_find(avl, node, NULL, &idx)) == NULL) { if (avl == fsperm->fsp_uge_avl) { uid_t rid = 0; struct passwd *p = NULL; struct group *g = NULL; const char *nice_name = NULL; switch (perm_type) { case ZFS_DELEG_USER_SETS: case ZFS_DELEG_USER: rid = atoi(perm_name); p = getpwuid(rid); if (p) nice_name = p->pw_name; break; case ZFS_DELEG_GROUP_SETS: case ZFS_DELEG_GROUP: rid = atoi(perm_name); g = getgrgid(rid); if (g) nice_name = g->gr_name; break; } if (nice_name != NULL) (void) strlcpy( node->who_perm.who_ug_name, nice_name, 256); } uu_avl_insert(avl, node, idx); } else { node = found_node; who_perm = &node->who_perm; } } (void) parse_who_perm(who_perm, nvl2, perm_locality); } return (0); } static inline int parse_fs_perm_set(fs_perm_set_t *fspset, nvlist_t *nvl) { nvpair_t *nvp = NULL; uu_avl_index_t idx = 0; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { nvlist_t *nvl2 = NULL; const char *fsname = nvpair_name(nvp); data_type_t type = nvpair_type(nvp); fs_perm_t *fsperm = NULL; fs_perm_node_t *node = safe_malloc(sizeof (fs_perm_node_t)); if (node == NULL) nomem(); fsperm = &node->fspn_fsperm; assert(DATA_TYPE_NVLIST == type); uu_list_node_init(node, &node->fspn_list_node, fspset->fsps_list_pool); idx = uu_list_numnodes(fspset->fsps_list); fs_perm_init(fsperm, fspset, fsname); if (nvpair_value_nvlist(nvp, &nvl2) != 0) return (-1); (void) parse_fs_perm(fsperm, nvl2); uu_list_insert(fspset->fsps_list, node, idx); } return (0); } static inline const char * deleg_perm_comment(zfs_deleg_note_t note) { const char *str = ""; /* subcommands */ switch (note) { /* SUBCOMMANDS */ case ZFS_DELEG_NOTE_ALLOW: str = gettext("Must also have the permission that is being" "\n\t\t\t\tallowed"); break; case ZFS_DELEG_NOTE_CLONE: str = gettext("Must also have the 'create' ability and 'mount'" "\n\t\t\t\tability in the origin file system"); break; case ZFS_DELEG_NOTE_CREATE: str = gettext("Must also have the 'mount' ability"); break; case ZFS_DELEG_NOTE_DESTROY: str = gettext("Must also have the 'mount' ability"); break; case ZFS_DELEG_NOTE_DIFF: str = gettext("Allows lookup of paths within a dataset;" "\n\t\t\t\tgiven an object number. Ordinary users need this" "\n\t\t\t\tin order to use zfs diff"); break; case ZFS_DELEG_NOTE_HOLD: str = gettext("Allows adding a user hold to a snapshot"); break; case ZFS_DELEG_NOTE_MOUNT: str = gettext("Allows mount/umount of ZFS datasets"); break; case ZFS_DELEG_NOTE_PROMOTE: str = gettext("Must also have the 'mount'\n\t\t\t\tand" " 'promote' ability in the origin file system"); break; case ZFS_DELEG_NOTE_RECEIVE: str = gettext("Must also have the 'mount' and 'create'" " ability"); break; case ZFS_DELEG_NOTE_RELEASE: str = gettext("Allows releasing a user hold which\n\t\t\t\t" "might destroy the snapshot"); break; case ZFS_DELEG_NOTE_RENAME: str = gettext("Must also have the 'mount' and 'create'" "\n\t\t\t\tability in the new parent"); break; case ZFS_DELEG_NOTE_ROLLBACK: str = gettext(""); break; case ZFS_DELEG_NOTE_SEND: str = gettext(""); break; case ZFS_DELEG_NOTE_SHARE: str = gettext("Allows sharing file systems over NFS or SMB" "\n\t\t\t\tprotocols"); break; case ZFS_DELEG_NOTE_SNAPSHOT: str = gettext(""); break; /* * case ZFS_DELEG_NOTE_VSCAN: * str = gettext(""); * break; */ /* OTHER */ case ZFS_DELEG_NOTE_GROUPQUOTA: str = gettext("Allows accessing any groupquota@... property"); break; case ZFS_DELEG_NOTE_GROUPUSED: str = gettext("Allows reading any groupused@... property"); break; case ZFS_DELEG_NOTE_USERPROP: str = gettext("Allows changing any user property"); break; case ZFS_DELEG_NOTE_USERQUOTA: str = gettext("Allows accessing any userquota@... property"); break; case ZFS_DELEG_NOTE_USERUSED: str = gettext("Allows reading any userused@... property"); break; /* other */ default: str = ""; } return (str); } struct allow_opts { boolean_t local; boolean_t descend; boolean_t user; boolean_t group; boolean_t everyone; boolean_t create; boolean_t set; boolean_t recursive; /* unallow only */ boolean_t prt_usage; boolean_t prt_perms; char *who; char *perms; const char *dataset; }; static inline int prop_cmp(const void *a, const void *b) { const char *str1 = *(const char **)a; const char *str2 = *(const char **)b; return (strcmp(str1, str2)); } static void allow_usage(boolean_t un, boolean_t requested, const char *msg) { const char *opt_desc[] = { "-h", gettext("show this help message and exit"), "-l", gettext("set permission locally"), "-d", gettext("set permission for descents"), "-u", gettext("set permission for user"), "-g", gettext("set permission for group"), "-e", gettext("set permission for everyone"), "-c", gettext("set create time permission"), "-s", gettext("define permission set"), /* unallow only */ "-r", gettext("remove permissions recursively"), }; size_t unallow_size = sizeof (opt_desc) / sizeof (char *); size_t allow_size = unallow_size - 2; const char *props[ZFS_NUM_PROPS]; int i; size_t count = 0; FILE *fp = requested ? stdout : stderr; zprop_desc_t *pdtbl = zfs_prop_get_table(); const char *fmt = gettext("%-16s %-14s\t%s\n"); (void) fprintf(fp, gettext("Usage: %s\n"), get_usage(un ? HELP_UNALLOW : HELP_ALLOW)); (void) fprintf(fp, gettext("Options:\n")); for (int i = 0; i < (un ? unallow_size : allow_size); i++) { const char *opt = opt_desc[i++]; const char *optdsc = opt_desc[i]; (void) fprintf(fp, gettext(" %-10s %s\n"), opt, optdsc); } (void) fprintf(fp, gettext("\nThe following permissions are " "supported:\n\n")); (void) fprintf(fp, fmt, gettext("NAME"), gettext("TYPE"), gettext("NOTES")); for (i = 0; i < ZFS_NUM_DELEG_NOTES; i++) { const char *perm_name = zfs_deleg_perm_tbl[i].z_perm; zfs_deleg_note_t perm_note = zfs_deleg_perm_tbl[i].z_note; const char *perm_type = deleg_perm_type(perm_note); const char *perm_comment = deleg_perm_comment(perm_note); (void) fprintf(fp, fmt, perm_name, perm_type, perm_comment); } for (i = 0; i < ZFS_NUM_PROPS; i++) { zprop_desc_t *pd = &pdtbl[i]; if (pd->pd_visible != B_TRUE) continue; if (pd->pd_attr == PROP_READONLY) continue; props[count++] = pd->pd_name; } props[count] = NULL; qsort(props, count, sizeof (char *), prop_cmp); for (i = 0; i < count; i++) (void) fprintf(fp, fmt, props[i], gettext("property"), ""); if (msg != NULL) (void) fprintf(fp, gettext("\nzfs: error: %s"), msg); exit(requested ? 0 : 2); } static inline const char * munge_args(int argc, char **argv, boolean_t un, size_t expected_argc, char **permsp) { if (un && argc == expected_argc - 1) *permsp = NULL; else if (argc == expected_argc) *permsp = argv[argc - 2]; else allow_usage(un, B_FALSE, gettext("wrong number of parameters\n")); return (argv[argc - 1]); } static void parse_allow_args(int argc, char **argv, boolean_t un, struct allow_opts *opts) { int uge_sum = opts->user + opts->group + opts->everyone; int csuge_sum = opts->create + opts->set + uge_sum; int ldcsuge_sum = csuge_sum + opts->local + opts->descend; int all_sum = un ? ldcsuge_sum + opts->recursive : ldcsuge_sum; if (uge_sum > 1) allow_usage(un, B_FALSE, gettext("-u, -g, and -e are mutually exclusive\n")); if (opts->prt_usage) if (argc == 0 && all_sum == 0) allow_usage(un, B_TRUE, NULL); else usage(B_FALSE); if (opts->set) { if (csuge_sum > 1) allow_usage(un, B_FALSE, gettext("invalid options combined with -s\n")); opts->dataset = munge_args(argc, argv, un, 3, &opts->perms); if (argv[0][0] != '@') allow_usage(un, B_FALSE, gettext("invalid set name: missing '@' prefix\n")); opts->who = argv[0]; } else if (opts->create) { if (ldcsuge_sum > 1) allow_usage(un, B_FALSE, gettext("invalid options combined with -c\n")); opts->dataset = munge_args(argc, argv, un, 2, &opts->perms); } else if (opts->everyone) { if (csuge_sum > 1) allow_usage(un, B_FALSE, gettext("invalid options combined with -e\n")); opts->dataset = munge_args(argc, argv, un, 2, &opts->perms); } else if (uge_sum == 0 && argc > 0 && strcmp(argv[0], "everyone") == 0) { opts->everyone = B_TRUE; argc--; argv++; opts->dataset = munge_args(argc, argv, un, 2, &opts->perms); } else if (argc == 1 && !un) { opts->prt_perms = B_TRUE; opts->dataset = argv[argc-1]; } else { opts->dataset = munge_args(argc, argv, un, 3, &opts->perms); opts->who = argv[0]; } if (!opts->local && !opts->descend) { opts->local = B_TRUE; opts->descend = B_TRUE; } } static void store_allow_perm(zfs_deleg_who_type_t type, boolean_t local, boolean_t descend, const char *who, char *perms, nvlist_t *top_nvl) { int i; char ld[2] = { '\0', '\0' }; char who_buf[ZFS_MAXNAMELEN+32]; char base_type; char set_type; nvlist_t *base_nvl = NULL; nvlist_t *set_nvl = NULL; nvlist_t *nvl; if (nvlist_alloc(&base_nvl, NV_UNIQUE_NAME, 0) != 0) nomem(); if (nvlist_alloc(&set_nvl, NV_UNIQUE_NAME, 0) != 0) nomem(); switch (type) { case ZFS_DELEG_NAMED_SET_SETS: case ZFS_DELEG_NAMED_SET: set_type = ZFS_DELEG_NAMED_SET_SETS; base_type = ZFS_DELEG_NAMED_SET; ld[0] = ZFS_DELEG_NA; break; case ZFS_DELEG_CREATE_SETS: case ZFS_DELEG_CREATE: set_type = ZFS_DELEG_CREATE_SETS; base_type = ZFS_DELEG_CREATE; ld[0] = ZFS_DELEG_NA; break; case ZFS_DELEG_USER_SETS: case ZFS_DELEG_USER: set_type = ZFS_DELEG_USER_SETS; base_type = ZFS_DELEG_USER; if (local) ld[0] = ZFS_DELEG_LOCAL; if (descend) ld[1] = ZFS_DELEG_DESCENDENT; break; case ZFS_DELEG_GROUP_SETS: case ZFS_DELEG_GROUP: set_type = ZFS_DELEG_GROUP_SETS; base_type = ZFS_DELEG_GROUP; if (local) ld[0] = ZFS_DELEG_LOCAL; if (descend) ld[1] = ZFS_DELEG_DESCENDENT; break; case ZFS_DELEG_EVERYONE_SETS: case ZFS_DELEG_EVERYONE: set_type = ZFS_DELEG_EVERYONE_SETS; base_type = ZFS_DELEG_EVERYONE; if (local) ld[0] = ZFS_DELEG_LOCAL; if (descend) ld[1] = ZFS_DELEG_DESCENDENT; } if (perms != NULL) { char *curr = perms; char *end = curr + strlen(perms); while (curr < end) { char *delim = strchr(curr, ','); if (delim == NULL) delim = end; else *delim = '\0'; if (curr[0] == '@') nvl = set_nvl; else nvl = base_nvl; (void) nvlist_add_boolean(nvl, curr); if (delim != end) *delim = ','; curr = delim + 1; } for (i = 0; i < 2; i++) { char locality = ld[i]; if (locality == 0) continue; if (!nvlist_empty(base_nvl)) { if (who != NULL) (void) snprintf(who_buf, sizeof (who_buf), "%c%c$%s", base_type, locality, who); else (void) snprintf(who_buf, sizeof (who_buf), "%c%c$", base_type, locality); (void) nvlist_add_nvlist(top_nvl, who_buf, base_nvl); } if (!nvlist_empty(set_nvl)) { if (who != NULL) (void) snprintf(who_buf, sizeof (who_buf), "%c%c$%s", set_type, locality, who); else (void) snprintf(who_buf, sizeof (who_buf), "%c%c$", set_type, locality); (void) nvlist_add_nvlist(top_nvl, who_buf, set_nvl); } } } else { for (i = 0; i < 2; i++) { char locality = ld[i]; if (locality == 0) continue; if (who != NULL) (void) snprintf(who_buf, sizeof (who_buf), "%c%c$%s", base_type, locality, who); else (void) snprintf(who_buf, sizeof (who_buf), "%c%c$", base_type, locality); (void) nvlist_add_boolean(top_nvl, who_buf); if (who != NULL) (void) snprintf(who_buf, sizeof (who_buf), "%c%c$%s", set_type, locality, who); else (void) snprintf(who_buf, sizeof (who_buf), "%c%c$", set_type, locality); (void) nvlist_add_boolean(top_nvl, who_buf); } } } static int construct_fsacl_list(boolean_t un, struct allow_opts *opts, nvlist_t **nvlp) { if (nvlist_alloc(nvlp, NV_UNIQUE_NAME, 0) != 0) nomem(); if (opts->set) { store_allow_perm(ZFS_DELEG_NAMED_SET, opts->local, opts->descend, opts->who, opts->perms, *nvlp); } else if (opts->create) { store_allow_perm(ZFS_DELEG_CREATE, opts->local, opts->descend, NULL, opts->perms, *nvlp); } else if (opts->everyone) { store_allow_perm(ZFS_DELEG_EVERYONE, opts->local, opts->descend, NULL, opts->perms, *nvlp); } else { char *curr = opts->who; char *end = curr + strlen(curr); while (curr < end) { const char *who; zfs_deleg_who_type_t who_type; char *endch; char *delim = strchr(curr, ','); char errbuf[256]; char id[64]; struct passwd *p = NULL; struct group *g = NULL; uid_t rid; if (delim == NULL) delim = end; else *delim = '\0'; rid = (uid_t)strtol(curr, &endch, 0); if (opts->user) { who_type = ZFS_DELEG_USER; if (*endch != '\0') p = getpwnam(curr); else p = getpwuid(rid); if (p != NULL) rid = p->pw_uid; else { (void) snprintf(errbuf, 256, gettext( "invalid user %s"), curr); allow_usage(un, B_TRUE, errbuf); } } else if (opts->group) { who_type = ZFS_DELEG_GROUP; if (*endch != '\0') g = getgrnam(curr); else g = getgrgid(rid); if (g != NULL) rid = g->gr_gid; else { (void) snprintf(errbuf, 256, gettext( "invalid group %s"), curr); allow_usage(un, B_TRUE, errbuf); } } else { if (*endch != '\0') { p = getpwnam(curr); } else { p = getpwuid(rid); } if (p == NULL) if (*endch != '\0') { g = getgrnam(curr); } else { g = getgrgid(rid); } if (p != NULL) { who_type = ZFS_DELEG_USER; rid = p->pw_uid; } else if (g != NULL) { who_type = ZFS_DELEG_GROUP; rid = g->gr_gid; } else { (void) snprintf(errbuf, 256, gettext( "invalid user/group %s"), curr); allow_usage(un, B_TRUE, errbuf); } } (void) sprintf(id, "%u", rid); who = id; store_allow_perm(who_type, opts->local, opts->descend, who, opts->perms, *nvlp); curr = delim + 1; } } return (0); } static void print_set_creat_perms(uu_avl_t *who_avl) { const char *sc_title[] = { gettext("Permission sets:\n"), gettext("Create time permissions:\n"), NULL }; const char **title_ptr = sc_title; who_perm_node_t *who_node = NULL; int prev_weight = -1; for (who_node = uu_avl_first(who_avl); who_node != NULL; who_node = uu_avl_next(who_avl, who_node)) { uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl; zfs_deleg_who_type_t who_type = who_node->who_perm.who_type; const char *who_name = who_node->who_perm.who_name; int weight = who_type2weight(who_type); boolean_t first = B_TRUE; deleg_perm_node_t *deleg_node; if (prev_weight != weight) { (void) printf(*title_ptr++); prev_weight = weight; } if (who_name == NULL || strnlen(who_name, 1) == 0) (void) printf("\t"); else (void) printf("\t%s ", who_name); for (deleg_node = uu_avl_first(avl); deleg_node != NULL; deleg_node = uu_avl_next(avl, deleg_node)) { if (first) { (void) printf("%s", deleg_node->dpn_perm.dp_name); first = B_FALSE; } else (void) printf(",%s", deleg_node->dpn_perm.dp_name); } (void) printf("\n"); } } static void inline print_uge_deleg_perms(uu_avl_t *who_avl, boolean_t local, boolean_t descend, const char *title) { who_perm_node_t *who_node = NULL; boolean_t prt_title = B_TRUE; uu_avl_walk_t *walk; if ((walk = uu_avl_walk_start(who_avl, UU_WALK_ROBUST)) == NULL) nomem(); while ((who_node = uu_avl_walk_next(walk)) != NULL) { const char *who_name = who_node->who_perm.who_name; const char *nice_who_name = who_node->who_perm.who_ug_name; uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl; zfs_deleg_who_type_t who_type = who_node->who_perm.who_type; char delim = ' '; deleg_perm_node_t *deleg_node; boolean_t prt_who = B_TRUE; for (deleg_node = uu_avl_first(avl); deleg_node != NULL; deleg_node = uu_avl_next(avl, deleg_node)) { if (local != deleg_node->dpn_perm.dp_local || descend != deleg_node->dpn_perm.dp_descend) continue; if (prt_who) { const char *who = NULL; if (prt_title) { prt_title = B_FALSE; (void) printf(title); } switch (who_type) { case ZFS_DELEG_USER_SETS: case ZFS_DELEG_USER: who = gettext("user"); if (nice_who_name) who_name = nice_who_name; break; case ZFS_DELEG_GROUP_SETS: case ZFS_DELEG_GROUP: who = gettext("group"); if (nice_who_name) who_name = nice_who_name; break; case ZFS_DELEG_EVERYONE_SETS: case ZFS_DELEG_EVERYONE: who = gettext("everyone"); who_name = NULL; } prt_who = B_FALSE; if (who_name == NULL) (void) printf("\t%s", who); else (void) printf("\t%s %s", who, who_name); } (void) printf("%c%s", delim, deleg_node->dpn_perm.dp_name); delim = ','; } if (!prt_who) (void) printf("\n"); } uu_avl_walk_end(walk); } static void print_fs_perms(fs_perm_set_t *fspset) { fs_perm_node_t *node = NULL; char buf[ZFS_MAXNAMELEN+32]; const char *dsname = buf; for (node = uu_list_first(fspset->fsps_list); node != NULL; node = uu_list_next(fspset->fsps_list, node)) { uu_avl_t *sc_avl = node->fspn_fsperm.fsp_sc_avl; uu_avl_t *uge_avl = node->fspn_fsperm.fsp_uge_avl; int left = 0; (void) snprintf(buf, ZFS_MAXNAMELEN+32, gettext("---- Permissions on %s "), node->fspn_fsperm.fsp_name); (void) printf(dsname); left = 70 - strlen(buf); while (left-- > 0) (void) printf("-"); (void) printf("\n"); print_set_creat_perms(sc_avl); print_uge_deleg_perms(uge_avl, B_TRUE, B_FALSE, gettext("Local permissions:\n")); print_uge_deleg_perms(uge_avl, B_FALSE, B_TRUE, gettext("Descendent permissions:\n")); print_uge_deleg_perms(uge_avl, B_TRUE, B_TRUE, gettext("Local+Descendent permissions:\n")); } } static fs_perm_set_t fs_perm_set = { NULL, NULL, NULL, NULL }; struct deleg_perms { boolean_t un; nvlist_t *nvl; }; static int set_deleg_perms(zfs_handle_t *zhp, void *data) { struct deleg_perms *perms = (struct deleg_perms *)data; zfs_type_t zfs_type = zfs_get_type(zhp); if (zfs_type != ZFS_TYPE_FILESYSTEM && zfs_type != ZFS_TYPE_VOLUME) return (0); return (zfs_set_fsacl(zhp, perms->un, perms->nvl)); } static int zfs_do_allow_unallow_impl(int argc, char **argv, boolean_t un) { zfs_handle_t *zhp; nvlist_t *perm_nvl = NULL; nvlist_t *update_perm_nvl = NULL; int error = 1; int c; struct allow_opts opts = { 0 }; const char *optstr = un ? "ldugecsrh" : "ldugecsh"; /* check opts */ while ((c = getopt(argc, argv, optstr)) != -1) { switch (c) { case 'l': opts.local = B_TRUE; break; case 'd': opts.descend = B_TRUE; break; case 'u': opts.user = B_TRUE; break; case 'g': opts.group = B_TRUE; break; case 'e': opts.everyone = B_TRUE; break; case 's': opts.set = B_TRUE; break; case 'c': opts.create = B_TRUE; break; case 'r': opts.recursive = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case 'h': opts.prt_usage = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check arguments */ parse_allow_args(argc, argv, un, &opts); /* try to open the dataset */ if ((zhp = zfs_open(g_zfs, opts.dataset, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { (void) fprintf(stderr, "Failed to open dataset: %s\n", opts.dataset); return (-1); } if (zfs_get_fsacl(zhp, &perm_nvl) != 0) goto cleanup2; fs_perm_set_init(&fs_perm_set); if (parse_fs_perm_set(&fs_perm_set, perm_nvl) != 0) { (void) fprintf(stderr, "Failed to parse fsacl permissions\n"); goto cleanup1; } if (opts.prt_perms) print_fs_perms(&fs_perm_set); else { (void) construct_fsacl_list(un, &opts, &update_perm_nvl); if (zfs_set_fsacl(zhp, un, update_perm_nvl) != 0) goto cleanup0; if (un && opts.recursive) { struct deleg_perms data = { un, update_perm_nvl }; if (zfs_iter_filesystems(zhp, set_deleg_perms, &data) != 0) goto cleanup0; } } error = 0; cleanup0: nvlist_free(perm_nvl); if (update_perm_nvl != NULL) nvlist_free(update_perm_nvl); cleanup1: fs_perm_set_fini(&fs_perm_set); cleanup2: zfs_close(zhp); return (error); } static int zfs_do_allow(int argc, char **argv) { return (zfs_do_allow_unallow_impl(argc, argv, B_FALSE)); } static int zfs_do_unallow(int argc, char **argv) { return (zfs_do_allow_unallow_impl(argc, argv, B_TRUE)); } static int zfs_do_hold_rele_impl(int argc, char **argv, boolean_t holding) { int errors = 0; int i; const char *tag; boolean_t recursive = B_FALSE; const char *opts = holding ? "rt" : "r"; int c; /* check options */ while ((c = getopt(argc, argv, opts)) != -1) { switch (c) { case 'r': recursive = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 2) usage(B_FALSE); tag = argv[0]; --argc; ++argv; if (holding && tag[0] == '.') { /* tags starting with '.' are reserved for libzfs */ (void) fprintf(stderr, gettext("tag may not start with '.'\n")); usage(B_FALSE); } for (i = 0; i < argc; ++i) { zfs_handle_t *zhp; char parent[ZFS_MAXNAMELEN]; const char *delim; char *path = argv[i]; delim = strchr(path, '@'); if (delim == NULL) { (void) fprintf(stderr, gettext("'%s' is not a snapshot\n"), path); ++errors; continue; } (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; zhp = zfs_open(g_zfs, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) { ++errors; continue; } if (holding) { if (zfs_hold(zhp, delim+1, tag, recursive, -1) != 0) ++errors; } else { if (zfs_release(zhp, delim+1, tag, recursive) != 0) ++errors; } zfs_close(zhp); } return (errors != 0); } /* * zfs hold [-r] [-t] ... * * -r Recursively hold * * Apply a user-hold with the given tag to the list of snapshots. */ static int zfs_do_hold(int argc, char **argv) { return (zfs_do_hold_rele_impl(argc, argv, B_TRUE)); } /* * zfs release [-r] ... * * -r Recursively release * * Release a user-hold with the given tag from the list of snapshots. */ static int zfs_do_release(int argc, char **argv) { return (zfs_do_hold_rele_impl(argc, argv, B_FALSE)); } typedef struct holds_cbdata { boolean_t cb_recursive; const char *cb_snapname; nvlist_t **cb_nvlp; size_t cb_max_namelen; size_t cb_max_taglen; } holds_cbdata_t; #define STRFTIME_FMT_STR "%a %b %e %k:%M %Y" #define DATETIME_BUF_LEN (32) /* * */ static void print_holds(boolean_t scripted, size_t nwidth, size_t tagwidth, nvlist_t *nvl) { int i; nvpair_t *nvp = NULL; char *hdr_cols[] = { "NAME", "TAG", "TIMESTAMP" }; const char *col; if (!scripted) { for (i = 0; i < 3; i++) { col = gettext(hdr_cols[i]); if (i < 2) (void) printf("%-*s ", i ? tagwidth : nwidth, col); else (void) printf("%s\n", col); } } while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { char *zname = nvpair_name(nvp); nvlist_t *nvl2; nvpair_t *nvp2 = NULL; (void) nvpair_value_nvlist(nvp, &nvl2); while ((nvp2 = nvlist_next_nvpair(nvl2, nvp2)) != NULL) { char tsbuf[DATETIME_BUF_LEN]; char *tagname = nvpair_name(nvp2); uint64_t val = 0; time_t time; struct tm t; char sep = scripted ? '\t' : ' '; size_t sepnum = scripted ? 1 : 2; (void) nvpair_value_uint64(nvp2, &val); time = (time_t)val; (void) localtime_r(&time, &t); (void) strftime(tsbuf, DATETIME_BUF_LEN, gettext(STRFTIME_FMT_STR), &t); (void) printf("%-*s%*c%-*s%*c%s\n", nwidth, zname, sepnum, sep, tagwidth, tagname, sepnum, sep, tsbuf); } } } /* * Generic callback function to list a dataset or snapshot. */ static int holds_callback(zfs_handle_t *zhp, void *data) { holds_cbdata_t *cbp = data; nvlist_t *top_nvl = *cbp->cb_nvlp; nvlist_t *nvl = NULL; nvpair_t *nvp = NULL; const char *zname = zfs_get_name(zhp); size_t znamelen = strnlen(zname, ZFS_MAXNAMELEN); if (cbp->cb_recursive) { const char *snapname; char *delim = strchr(zname, '@'); if (delim == NULL) return (0); snapname = delim + 1; if (strcmp(cbp->cb_snapname, snapname)) return (0); } if (zfs_get_holds(zhp, &nvl) != 0) return (-1); if (znamelen > cbp->cb_max_namelen) cbp->cb_max_namelen = znamelen; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { const char *tag = nvpair_name(nvp); size_t taglen = strnlen(tag, MAXNAMELEN); if (taglen > cbp->cb_max_taglen) cbp->cb_max_taglen = taglen; } return (nvlist_add_nvlist(top_nvl, zname, nvl)); } /* * zfs holds [-r] ... * * -r Recursively hold */ static int zfs_do_holds(int argc, char **argv) { int errors = 0; int c; int i; boolean_t scripted = B_FALSE; boolean_t recursive = B_FALSE; const char *opts = "rH"; nvlist_t *nvl; int types = ZFS_TYPE_SNAPSHOT; holds_cbdata_t cb = { 0 }; int limit = 0; int ret = 0; int flags = 0; /* check options */ while ((c = getopt(argc, argv, opts)) != -1) { switch (c) { case 'r': recursive = B_TRUE; break; case 'H': scripted = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } if (recursive) { types |= ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME; flags |= ZFS_ITER_RECURSE; } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) usage(B_FALSE); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) nomem(); for (i = 0; i < argc; ++i) { char *snapshot = argv[i]; const char *delim; const char *snapname; delim = strchr(snapshot, '@'); if (delim == NULL) { (void) fprintf(stderr, gettext("'%s' is not a snapshot\n"), snapshot); ++errors; continue; } snapname = delim + 1; if (recursive) snapshot[delim - snapshot] = '\0'; cb.cb_recursive = recursive; cb.cb_snapname = snapname; cb.cb_nvlp = &nvl; /* * 1. collect holds data, set format options */ ret = zfs_for_each(argc, argv, flags, types, NULL, NULL, limit, holds_callback, &cb); if (ret != 0) ++errors; } /* * 2. print holds data */ print_holds(scripted, cb.cb_max_namelen, cb.cb_max_taglen, nvl); if (nvlist_empty(nvl)) (void) printf(gettext("no datasets available\n")); nvlist_free(nvl); return (0 != errors); } #define CHECK_SPINNER 30 #define SPINNER_TIME 3 /* seconds */ #define MOUNT_TIME 5 /* seconds */ static int get_one_dataset(zfs_handle_t *zhp, void *data) { static char *spin[] = { "-", "\\", "|", "/" }; static int spinval = 0; static int spincheck = 0; static time_t last_spin_time = (time_t)0; get_all_cb_t *cbp = data; zfs_type_t type = zfs_get_type(zhp); if (cbp->cb_verbose) { if (--spincheck < 0) { time_t now = time(NULL); if (last_spin_time + SPINNER_TIME < now) { update_progress(spin[spinval++ % 4]); last_spin_time = now; } spincheck = CHECK_SPINNER; } } /* * Interate over any nested datasets. */ if (zfs_iter_filesystems(zhp, get_one_dataset, data) != 0) { zfs_close(zhp); return (1); } /* * Skip any datasets whose type does not match. */ if ((type & ZFS_TYPE_FILESYSTEM) == 0) { zfs_close(zhp); return (0); } libzfs_add_handle(cbp, zhp); assert(cbp->cb_used <= cbp->cb_alloc); return (0); } static void get_all_datasets(zfs_handle_t ***dslist, size_t *count, boolean_t verbose) { get_all_cb_t cb = { 0 }; cb.cb_verbose = verbose; cb.cb_getone = get_one_dataset; if (verbose) set_progress_header(gettext("Reading ZFS config")); (void) zfs_iter_root(g_zfs, get_one_dataset, &cb); *dslist = cb.cb_handles; *count = cb.cb_used; if (verbose) finish_progress(gettext("done.")); } /* * Generic callback for sharing or mounting filesystems. Because the code is so * similar, we have a common function with an extra parameter to determine which * mode we are using. */ #define OP_SHARE 0x1 #define OP_MOUNT 0x2 /* * Share or mount a dataset. */ static int share_mount_one(zfs_handle_t *zhp, int op, int flags, char *protocol, boolean_t explicit, const char *options) { char mountpoint[ZFS_MAXPROPLEN]; char shareopts[ZFS_MAXPROPLEN]; char smbshareopts[ZFS_MAXPROPLEN]; const char *cmdname = op == OP_SHARE ? "share" : "mount"; struct mnttab mnt; uint64_t zoned, canmount; boolean_t shared_nfs, shared_smb; assert(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM); /* * Check to make sure we can mount/share this dataset. If we * are in the global zone and the filesystem is exported to a * local zone, or if we are in a local zone and the * filesystem is not exported, then it is an error. */ zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned && getzoneid() == GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "dataset is exported to a local zone\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (!zoned && getzoneid() != GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "permission denied\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * Ignore any filesystems which don't apply to us. This * includes those with a legacy mountpoint, or those with * legacy share options. */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts, sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshareopts, sizeof (smbshareopts), NULL, NULL, 0, B_FALSE) == 0); if (op == OP_SHARE && strcmp(shareopts, "off") == 0 && strcmp(smbshareopts, "off") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share '%s': " "legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use share(1M) to " "share this filesystem, or set " "sharenfs property on\n")); return (1); } /* * We cannot share or mount legacy filesystems. If the * shareopts is non-legacy but the mountpoint is legacy, we * treat it as a legacy share. */ if (strcmp(mountpoint, "legacy") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "legacy mountpoint\n"), cmdname, zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use %s(1M) to " "%s this filesystem\n"), cmdname, cmdname); return (1); } if (strcmp(mountpoint, "none") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': no " "mountpoint set\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * canmount explicit outcome * on no pass through * on yes pass through * off no return 0 * off yes display error, return 1 * noauto no return 0 * noauto yes pass through */ canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); if (canmount == ZFS_CANMOUNT_OFF) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "'canmount' property is set to 'off'\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (canmount == ZFS_CANMOUNT_NOAUTO && !explicit) { return (0); } /* * At this point, we have verified that the mountpoint and/or * shareopts are appropriate for auto management. If the * filesystem is already mounted or shared, return (failing * for explicit requests); otherwise mount or share the * filesystem. */ switch (op) { case OP_SHARE: shared_nfs = zfs_is_shared_nfs(zhp, NULL); shared_smb = zfs_is_shared_smb(zhp, NULL); if (shared_nfs && shared_smb || (shared_nfs && strcmp(shareopts, "on") == 0 && strcmp(smbshareopts, "off") == 0) || (shared_smb && strcmp(smbshareopts, "on") == 0 && strcmp(shareopts, "off") == 0)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share " "'%s': filesystem already shared\n"), zfs_get_name(zhp)); return (1); } if (!zfs_is_mounted(zhp, NULL) && zfs_mount(zhp, NULL, 0) != 0) return (1); if (protocol == NULL) { if (zfs_shareall(zhp) != 0) return (1); } else if (strcmp(protocol, "nfs") == 0) { if (zfs_share_nfs(zhp)) return (1); } else if (strcmp(protocol, "smb") == 0) { if (zfs_share_smb(zhp)) return (1); } else { (void) fprintf(stderr, gettext("cannot share " "'%s': invalid share type '%s' " "specified\n"), zfs_get_name(zhp), protocol); return (1); } break; case OP_MOUNT: if (options == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = (char *)options; if (!hasmntopt(&mnt, MNTOPT_REMOUNT) && zfs_is_mounted(zhp, NULL)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot mount " "'%s': filesystem already mounted\n"), zfs_get_name(zhp)); return (1); } if (zfs_mount(zhp, options, flags) != 0) return (1); break; } return (0); } /* * Reports progress in the form "(current/total)". Not thread-safe. */ static void report_mount_progress(int current, int total) { static time_t last_progress_time = 0; time_t now = time(NULL); char info[32]; /* report 1..n instead of 0..n-1 */ ++current; /* display header if we're here for the first time */ if (current == 1) { set_progress_header(gettext("Mounting ZFS filesystems")); } else if (current != total && last_progress_time + MOUNT_TIME >= now) { /* too soon to report again */ return; } last_progress_time = now; (void) sprintf(info, "(%d/%d)", current, total); if (current == total) finish_progress(info); else update_progress(info); } static void append_options(char *mntopts, char *newopts) { int len = strlen(mntopts); /* original length plus new string to append plus 1 for the comma */ if (len + 1 + strlen(newopts) >= MNT_LINE_MAX) { (void) fprintf(stderr, gettext("the opts argument for " "'%c' option is too long (more than %d chars)\n"), "-o", MNT_LINE_MAX); usage(B_FALSE); } if (*mntopts) mntopts[len++] = ','; (void) strcpy(&mntopts[len], newopts); } static int share_mount(int op, int argc, char **argv) { int do_all = 0; boolean_t verbose = B_FALSE; int c, ret = 0; char *options = NULL; int flags = 0; /* check options */ while ((c = getopt(argc, argv, op == OP_MOUNT ? ":avo:O" : "a")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'v': verbose = B_TRUE; break; case 'o': if (*optarg == '\0') { (void) fprintf(stderr, gettext("empty mount " "options (-o) specified\n")); usage(B_FALSE); } if (options == NULL) options = safe_malloc(MNT_LINE_MAX + 1); /* option validation is done later */ append_options(options, optarg); break; case 'O': flags |= MS_OVERLAY; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (do_all) { zfs_handle_t **dslist = NULL; size_t i, count = 0; char *protocol = NULL; if (op == OP_SHARE && argc > 0) { if (strcmp(argv[0], "nfs") != 0 && strcmp(argv[0], "smb") != 0) { (void) fprintf(stderr, gettext("share type " "must be 'nfs' or 'smb'\n")); usage(B_FALSE); } protocol = argv[0]; argc--; argv++; } if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } start_progress_timer(); get_all_datasets(&dslist, &count, verbose); if (count == 0) return (0); qsort(dslist, count, sizeof (void *), libzfs_dataset_cmp); for (i = 0; i < count; i++) { if (verbose) report_mount_progress(i, count); if (share_mount_one(dslist[i], op, flags, protocol, B_FALSE, options) != 0) ret = 1; zfs_close(dslist[i]); } free(dslist); } else if (argc == 0) { struct mnttab entry; if ((op == OP_SHARE) || (options != NULL)) { (void) fprintf(stderr, gettext("missing filesystem " "argument (specify -a for all)\n")); usage(B_FALSE); } /* * When mount is given no arguments, go through /etc/mnttab and * display any active ZFS mounts. We hide any snapshots, since * they are controlled automatically. */ rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 || strchr(entry.mnt_special, '@') != NULL) continue; (void) printf("%-30s %s\n", entry.mnt_special, entry.mnt_mountp); } } else { zfs_handle_t *zhp; if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; } else { ret = share_mount_one(zhp, op, flags, NULL, B_TRUE, options); zfs_close(zhp); } } return (ret); } /* * zfs mount -a [nfs] * zfs mount filesystem * * Mount all filesystems, or mount the given filesystem. */ static int zfs_do_mount(int argc, char **argv) { return (share_mount(OP_MOUNT, argc, argv)); } /* * zfs share -a [nfs | smb] * zfs share filesystem * * Share all filesystems, or share the given filesystem. */ static int zfs_do_share(int argc, char **argv) { return (share_mount(OP_SHARE, argc, argv)); } typedef struct unshare_unmount_node { zfs_handle_t *un_zhp; char *un_mountp; uu_avl_node_t un_avlnode; } unshare_unmount_node_t; /* ARGSUSED */ static int unshare_unmount_compare(const void *larg, const void *rarg, void *unused) { const unshare_unmount_node_t *l = larg; const unshare_unmount_node_t *r = rarg; return (strcmp(l->un_mountp, r->un_mountp)); } /* * Convenience routine used by zfs_do_umount() and manual_unmount(). Given an * absolute path, find the entry /etc/mnttab, verify that its a ZFS filesystem, * and unmount it appropriately. */ static int unshare_unmount_path(int op, char *path, int flags, boolean_t is_manual) { zfs_handle_t *zhp; int ret = 0; struct stat64 statbuf; struct extmnttab entry; const char *cmdname = (op == OP_SHARE) ? "unshare" : "unmount"; ino_t path_inode; /* * Search for the path in /etc/mnttab. Rather than looking for the * specific path, which can be fooled by non-standard paths (i.e. ".." * or "//"), we stat() the path and search for the corresponding * (major,minor) device pair. */ if (stat64(path, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); return (1); } path_inode = statbuf.st_ino; /* * Search for the given (major,minor) pair in the mount table. */ rewind(mnttab_file); while ((ret = getextmntent(mnttab_file, &entry, 0)) == 0) { if (entry.mnt_major == major(statbuf.st_dev) && entry.mnt_minor == minor(statbuf.st_dev)) break; } if (ret != 0) { if (op == OP_SHARE) { (void) fprintf(stderr, gettext("cannot %s '%s': not " "currently mounted\n"), cmdname, path); return (1); } (void) fprintf(stderr, gettext("warning: %s not in mnttab\n"), path); if ((ret = umount2(path, flags)) != 0) (void) fprintf(stderr, gettext("%s: %s\n"), path, strerror(errno)); return (ret != 0); } if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': not a ZFS " "filesystem\n"), cmdname, path); return (1); } if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); ret = 1; if (stat64(entry.mnt_mountp, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); goto out; } else if (statbuf.st_ino != path_inode) { (void) fprintf(stderr, gettext("cannot " "%s '%s': not a mountpoint\n"), cmdname, path); goto out; } if (op == OP_SHARE) { char nfs_mnt_prop[ZFS_MAXPROPLEN]; char smbshare_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshare_prop, sizeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0 && strcmp(smbshare_prop, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': legacy share\n"), path); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this filesystem\n")); } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot unshare '%s': " "not currently shared\n"), path); } else { ret = zfs_unshareall_bypath(zhp, path); } } else { char mtpt_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mtpt_prop, sizeof (mtpt_prop), NULL, NULL, 0, B_FALSE) == 0); if (is_manual) { ret = zfs_unmount(zhp, NULL, flags); } else if (strcmp(mtpt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': legacy mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use umount(1M) " "to unmount this filesystem\n")); } else { ret = zfs_unmountall(zhp, flags); } } out: zfs_close(zhp); return (ret != 0); } /* * Generic callback for unsharing or unmounting a filesystem. */ static int unshare_unmount(int op, int argc, char **argv) { int do_all = 0; int flags = 0; int ret = 0; int c; zfs_handle_t *zhp; char nfs_mnt_prop[ZFS_MAXPROPLEN]; char sharesmb[ZFS_MAXPROPLEN]; /* check options */ while ((c = getopt(argc, argv, op == OP_SHARE ? "a" : "af")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (do_all) { /* * We could make use of zfs_for_each() to walk all datasets in * the system, but this would be very inefficient, especially * since we would have to linearly search /etc/mnttab for each * one. Instead, do one pass through /etc/mnttab looking for * zfs entries and call zfs_unmount() for each one. * * Things get a little tricky if the administrator has created * mountpoints beneath other ZFS filesystems. In this case, we * have to unmount the deepest filesystems first. To accomplish * this, we place all the mountpoints in an AVL tree sorted by * the special type (dataset name), and walk the result in * reverse to make sure to get any snapshots first. */ struct mnttab entry; uu_avl_pool_t *pool; uu_avl_t *tree; unshare_unmount_node_t *node; uu_avl_index_t idx; uu_avl_walk_t *walk; if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (((pool = uu_avl_pool_create("unmount_pool", sizeof (unshare_unmount_node_t), offsetof(unshare_unmount_node_t, un_avlnode), unshare_unmount_compare, UU_DEFAULT)) == NULL) || ((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL)) nomem(); rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { /* ignore non-ZFS entries */ if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; /* ignore snapshots */ if (strchr(entry.mnt_special, '@') != NULL) continue; if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; continue; } switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") != 0) break; verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0) continue; break; case OP_MOUNT: /* Ignore legacy mounts */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "legacy") == 0) continue; /* Ignore canmount=noauto mounts */ if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) continue; default: break; } node = safe_malloc(sizeof (unshare_unmount_node_t)); node->un_zhp = zhp; node->un_mountp = safe_strdup(entry.mnt_mountp); uu_avl_node_init(node, &node->un_avlnode, pool); if (uu_avl_find(tree, node, NULL, &idx) == NULL) { uu_avl_insert(tree, node, idx); } else { zfs_close(node->un_zhp); free(node->un_mountp); free(node); } } /* * Walk the AVL tree in reverse, unmounting each filesystem and * removing it from the AVL tree in the process. */ if ((walk = uu_avl_walk_start(tree, UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL) nomem(); while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(tree, node); switch (op) { case OP_SHARE: if (zfs_unshareall_bypath(node->un_zhp, node->un_mountp) != 0) ret = 1; break; case OP_MOUNT: if (zfs_unmount(node->un_zhp, node->un_mountp, flags) != 0) ret = 1; break; } zfs_close(node->un_zhp); free(node->un_mountp); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(tree); uu_avl_pool_destroy(pool); } else { if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing filesystem argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * We have an argument, but it may be a full path or a ZFS * filesystem. Pass full paths off to unmount_path() (shared by * manual_unmount), otherwise open the filesystem and pass to * zfs_unmount(). */ if (argv[0][0] == '/') return (unshare_unmount_path(op, argv[0], flags, B_FALSE)); if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) return (1); verify(zfs_prop_get(zhp, op == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, sharesmb, sizeof (sharesmb), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0 && strcmp(sharesmb, "off") == 0) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this " "filesystem\n")); ret = 1; } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': not currently " "shared\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unshareall(zhp) != 0) { ret = 1; } break; case OP_MOUNT: if (strcmp(nfs_mnt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': legacy " "mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "umount(1M) to unmount this " "filesystem\n")); ret = 1; } else if (!zfs_is_mounted(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': not currently " "mounted\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unmountall(zhp, flags) != 0) { ret = 1; } break; } zfs_close(zhp); } return (ret); } /* * zfs unmount -a * zfs unmount filesystem * * Unmount all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unmount(int argc, char **argv) { return (unshare_unmount(OP_MOUNT, argc, argv)); } /* * zfs unshare -a * zfs unshare filesystem * * Unshare all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unshare(int argc, char **argv) { return (unshare_unmount(OP_SHARE, argc, argv)); } /* * Called when invoked as /etc/fs/zfs/mount. Do the mount if the mountpoint is * 'legacy'. Otherwise, complain that use should be using 'zfs mount'. */ static int manual_mount(int argc, char **argv) { zfs_handle_t *zhp; char mountpoint[ZFS_MAXPROPLEN]; char mntopts[MNT_LINE_MAX] = { '\0' }; int ret = 0; int c; int flags = 0; char *dataset, *path; /* check options */ while ((c = getopt(argc, argv, ":mo:O")) != -1) { switch (c) { case 'o': (void) strlcpy(mntopts, optarg, sizeof (mntopts)); break; case 'O': flags |= MS_OVERLAY; break; case 'm': flags |= MS_NOMNTTAB; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: mount [-o opts] " "\n")); return (2); } } argc -= optind; argv += optind; /* check that we only have two arguments */ if (argc != 2) { if (argc == 0) (void) fprintf(stderr, gettext("missing dataset " "argument\n")); else if (argc == 1) (void) fprintf(stderr, gettext("missing mountpoint argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, "usage: mount \n"); return (2); } dataset = argv[0]; path = argv[1]; /* try to open the dataset */ if ((zhp = zfs_open(g_zfs, dataset, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE); /* check for legacy mountpoint and complain appropriately */ ret = 0; if (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) { if (mount(dataset, path, MS_OPTIONSTR | flags, MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { (void) fprintf(stderr, gettext("mount failed: %s\n"), strerror(errno)); ret = 1; } } else { (void) fprintf(stderr, gettext("filesystem '%s' cannot be " "mounted using 'mount -F zfs'\n"), dataset); (void) fprintf(stderr, gettext("Use 'zfs set mountpoint=%s' " "instead.\n"), path); (void) fprintf(stderr, gettext("If you must use 'mount -F zfs' " "or /etc/vfstab, use 'zfs set mountpoint=legacy'.\n")); (void) fprintf(stderr, gettext("See zfs(1M) for more " "information.\n")); ret = 1; } return (ret); } /* * Called when invoked as /etc/fs/zfs/umount. Unlike a manual mount, we allow * unmounts of non-legacy filesystems, as this is the dominant administrative * interface. */ static int manual_unmount(int argc, char **argv) { int flags = 0; int c; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: unmount [-f] " "\n")); return (2); } } argc -= optind; argv += optind; /* check arguments */ if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing path " "argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, gettext("usage: unmount [-f] \n")); return (2); } return (unshare_unmount_path(OP_MOUNT, argv[0], flags, B_TRUE)); } static int find_command_idx(char *command, int *idx) { int i; for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(command, command_table[i].name) == 0) { *idx = i; return (0); } } return (1); } static int zfs_do_diff(int argc, char **argv) { zfs_handle_t *zhp; int flags = 0; char *tosnap = NULL; char *fromsnap = NULL; char *atp, *copy; int err = 0; int c; while ((c = getopt(argc, argv, "FHt")) != -1) { switch (c) { case 'F': flags |= ZFS_DIFF_CLASSIFY; break; case 'H': flags |= ZFS_DIFF_PARSEABLE; break; case 't': flags |= ZFS_DIFF_TIMESTAMP; break; default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("must provide at least one snapshot name\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } fromsnap = argv[0]; tosnap = (argc == 2) ? argv[1] : NULL; copy = NULL; if (*fromsnap != '@') copy = strdup(fromsnap); else if (tosnap) copy = strdup(tosnap); if (copy == NULL) usage(B_FALSE); if (atp = strchr(copy, '@')) *atp = '\0'; if ((zhp = zfs_open(g_zfs, copy, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); free(copy); /* * Ignore SIGPIPE so that the library can give us * information on any failure */ (void) sigignore(SIGPIPE); err = zfs_show_diffs(zhp, STDOUT_FILENO, fromsnap, tosnap, flags); zfs_close(zhp); return (err != 0); } /* * zfs bookmark * * Creates a bookmark with the given name from the given snapshot. */ static int zfs_do_bookmark(int argc, char **argv) { char snapname[ZFS_MAXNAMELEN]; zfs_handle_t *zhp; nvlist_t *nvl; int ret = 0; int c; /* check options */ while ((c = getopt(argc, argv, "")) != -1) { switch (c) { case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); goto usage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing bookmark argument\n")); goto usage; } if (strchr(argv[1], '#') == NULL) { (void) fprintf(stderr, gettext("invalid bookmark name '%s' -- " "must contain a '#'\n"), argv[1]); goto usage; } if (argv[0][0] == '@') { /* * Snapshot name begins with @. * Default to same fs as bookmark. */ (void) strncpy(snapname, argv[1], sizeof (snapname)); *strchr(snapname, '#') = '\0'; (void) strlcat(snapname, argv[0], sizeof (snapname)); } else { (void) strncpy(snapname, argv[0], sizeof (snapname)); } zhp = zfs_open(g_zfs, snapname, ZFS_TYPE_SNAPSHOT); if (zhp == NULL) goto usage; zfs_close(zhp); nvl = fnvlist_alloc(); fnvlist_add_string(nvl, argv[1], snapname); ret = lzc_bookmark(nvl, NULL); fnvlist_free(nvl); if (ret != 0) { const char *err_msg; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create bookmark '%s'"), argv[1]); switch (ret) { case EXDEV: err_msg = "bookmark is in a different pool"; break; case EEXIST: err_msg = "bookmark exists"; break; case EINVAL: err_msg = "invalid argument"; break; case ENOTSUP: err_msg = "bookmark feature not enabled"; break; case ENOSPC: err_msg = "out of space"; break; default: err_msg = "unknown error"; break; } (void) fprintf(stderr, "%s: %s\n", errbuf, dgettext(TEXT_DOMAIN, err_msg)); } return (ret != 0); usage: usage(B_FALSE); return (-1); } int main(int argc, char **argv) { int ret = 0; int i; char *progname; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); opterr = 0; if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } zfs_save_arguments(argc, argv, history_str, sizeof (history_str)); libzfs_print_on_error(g_zfs, B_TRUE); if ((mnttab_file = fopen(MNTTAB, "r")) == NULL) { (void) fprintf(stderr, gettext("internal error: unable to " "open %s\n"), MNTTAB); return (1); } /* * This command also doubles as the /etc/fs mount and unmount program. * Determine if we should take this behavior based on argv[0]. */ progname = basename(argv[0]); if (strcmp(progname, "mount") == 0) { ret = manual_mount(argc, argv); } else if (strcmp(progname, "umount") == 0) { ret = manual_unmount(argc, argv); } else { /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * The 'umount' command is an alias for 'unmount' */ if (strcmp(cmdname, "umount") == 0) cmdname = "unmount"; /* * The 'recv' command is an alias for 'receive' */ if (strcmp(cmdname, "recv") == 0) cmdname = "receive"; /* * The 'snap' command is an alias for 'snapshot' */ if (strcmp(cmdname, "snap") == 0) cmdname = "snapshot"; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); /* * Run the appropriate command. */ libzfs_mnttab_cache(g_zfs, B_TRUE); if (find_command_idx(cmdname, &i) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); } else if (strchr(cmdname, '=') != NULL) { verify(find_command_idx("set", &i) == 0); current_command = &command_table[i]; ret = command_table[i].func(argc, argv); } else { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } libzfs_mnttab_cache(g_zfs, B_FALSE); } (void) fclose(mnttab_file); if (ret == 0 && log_history) (void) zpool_log_history(g_zfs, history_str); libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); } Index: vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c =================================================================== --- vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c (revision 274272) +++ vendor/illumos/dist/cmd/zstreamdump/zstreamdump.c (revision 274273) @@ -1,577 +1,588 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * If dump mode is enabled, the number of bytes to print per line */ #define BYTES_PER_LINE 16 /* * If dump mode is enabled, the number of bytes to group together, separated * by newlines or spaces */ #define DUMP_GROUPING 4 uint64_t total_write_size = 0; uint64_t total_stream_len = 0; FILE *send_stream = 0; boolean_t do_byteswap = B_FALSE; boolean_t do_cksum = B_TRUE; -#define INITIAL_BUFLEN (1<<20) static void usage(void) { (void) fprintf(stderr, "usage: zstreamdump [-v] [-C] [-d] < file\n"); (void) fprintf(stderr, "\t -v -- verbose\n"); (void) fprintf(stderr, "\t -C -- suppress checksum verification\n"); (void) fprintf(stderr, "\t -d -- dump contents of blocks modified, " "implies verbose\n"); exit(1); } +static void * +safe_malloc(size_t size) +{ + void *rv = malloc(size); + if (rv == NULL) { + (void) fprintf(stderr, "ERROR; failed to allocate %zu bytes\n", + size); + abort(); + } + return (rv); +} + /* * ssread - send stream read. * * Read while computing incremental checksum */ static size_t ssread(void *buf, size_t len, zio_cksum_t *cksum) { size_t outlen; if ((outlen = fread(buf, len, 1, send_stream)) == 0) return (0); if (do_cksum && cksum) { if (do_byteswap) fletcher_4_incremental_byteswap(buf, len, cksum); else fletcher_4_incremental_native(buf, len, cksum); } total_stream_len += len; return (outlen); } /* * Print part of a block in ASCII characters */ static void print_ascii_block(char *subbuf, int length) { int i; for (i = 0; i < length; i++) { char char_print = isprint(subbuf[i]) ? subbuf[i] : '.'; if (i != 0 && i % DUMP_GROUPING == 0) { (void) printf(" "); } (void) printf("%c", char_print); } (void) printf("\n"); } /* * print_block - Dump the contents of a modified block to STDOUT * * Assume that buf has capacity evenly divisible by BYTES_PER_LINE */ static void print_block(char *buf, int length) { int i; /* * Start printing ASCII characters at a constant offset, after * the hex prints. Leave 3 characters per byte on a line (2 digit * hex number plus 1 space) plus spaces between characters and * groupings. */ int ascii_start = BYTES_PER_LINE * 3 + BYTES_PER_LINE / DUMP_GROUPING + 2; for (i = 0; i < length; i += BYTES_PER_LINE) { int j; int this_line_length = MIN(BYTES_PER_LINE, length - i); int print_offset = 0; for (j = 0; j < this_line_length; j++) { int buf_offset = i + j; /* * Separate every DUMP_GROUPING bytes by a space. */ if (buf_offset % DUMP_GROUPING == 0) { print_offset += printf(" "); } /* * Print the two-digit hex value for this byte. */ unsigned char hex_print = buf[buf_offset]; print_offset += printf("%02x ", hex_print); } (void) printf("%*s", ascii_start - print_offset, " "); print_ascii_block(buf + i, this_line_length); } } int main(int argc, char *argv[]) { - char *buf = malloc(INITIAL_BUFLEN); + char *buf = safe_malloc(SPA_MAXBLOCKSIZE); uint64_t drr_record_count[DRR_NUMTYPES] = { 0 }; uint64_t total_records = 0; dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; struct drr_begin *drrb = &thedrr.drr_u.drr_begin; struct drr_end *drre = &thedrr.drr_u.drr_end; struct drr_object *drro = &thedrr.drr_u.drr_object; struct drr_freeobjects *drrfo = &thedrr.drr_u.drr_freeobjects; struct drr_write *drrw = &thedrr.drr_u.drr_write; struct drr_write_byref *drrwbr = &thedrr.drr_u.drr_write_byref; struct drr_free *drrf = &thedrr.drr_u.drr_free; struct drr_spill *drrs = &thedrr.drr_u.drr_spill; struct drr_write_embedded *drrwe = &thedrr.drr_u.drr_write_embedded; char c; boolean_t verbose = B_FALSE; boolean_t first = B_TRUE; /* * dump flag controls whether the contents of any modified data blocks * are printed to the console during processing of the stream. Warning: * for large streams, this can obviously lead to massive prints. */ boolean_t dump = B_FALSE; int err; zio_cksum_t zc = { 0 }; zio_cksum_t pcksum = { 0 }; while ((c = getopt(argc, argv, ":vCd")) != -1) { switch (c) { case 'C': do_cksum = B_FALSE; break; case 'v': verbose = B_TRUE; break; case 'd': dump = B_TRUE; verbose = B_TRUE; break; case ':': (void) fprintf(stderr, "missing argument for '%c' option\n", optopt); usage(); break; case '?': (void) fprintf(stderr, "invalid option '%c'\n", optopt); usage(); } } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, "Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n"); exit(1); } send_stream = stdin; pcksum = zc; while (ssread(drr, sizeof (dmu_replay_record_t), &zc)) { /* * If this is the first DMU record being processed, check for * the magic bytes and figure out the endian-ness based on them. */ if (first) { if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { do_byteswap = B_TRUE; if (do_cksum) { ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); /* * recalculate header checksum now * that we know it needs to be * byteswapped. */ fletcher_4_incremental_byteswap(drr, sizeof (dmu_replay_record_t), &zc); } } else if (drrb->drr_magic != DMU_BACKUP_MAGIC) { (void) fprintf(stderr, "Invalid stream " "(bad magic number)\n"); exit(1); } first = B_FALSE; } if (do_byteswap) { drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); } /* * At this point, the leading fields of the replay record * (drr_type and drr_payloadlen) have been byte-swapped if * necessary, but the rest of the data structure (the * union of type-specific structures) is still in its * original state. */ if (drr->drr_type >= DRR_NUMTYPES) { (void) printf("INVALID record found: type 0x%x\n", drr->drr_type); (void) printf("Aborting.\n"); exit(1); } drr_record_count[drr->drr_type]++; total_records++; switch (drr->drr_type) { case DRR_BEGIN: if (do_byteswap) { drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } (void) printf("BEGIN record\n"); (void) printf("\thdrtype = %lld\n", DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo)); (void) printf("\tfeatures = %llx\n", DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo)); (void) printf("\tmagic = %llx\n", (u_longlong_t)drrb->drr_magic); (void) printf("\tcreation_time = %llx\n", (u_longlong_t)drrb->drr_creation_time); (void) printf("\ttype = %u\n", drrb->drr_type); (void) printf("\tflags = 0x%x\n", drrb->drr_flags); (void) printf("\ttoguid = %llx\n", (u_longlong_t)drrb->drr_toguid); (void) printf("\tfromguid = %llx\n", (u_longlong_t)drrb->drr_fromguid); (void) printf("\ttoname = %s\n", drrb->drr_toname); if (verbose) (void) printf("\n"); if ((DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM) && drr->drr_payloadlen != 0) { nvlist_t *nv; int sz = drr->drr_payloadlen; - if (sz > INITIAL_BUFLEN) { + if (sz > SPA_MAXBLOCKSIZE) { free(buf); - buf = malloc(sz); + buf = safe_malloc(sz); } (void) ssread(buf, sz, &zc); if (ferror(send_stream)) perror("fread"); err = nvlist_unpack(buf, sz, &nv, 0); if (err) perror(strerror(err)); nvlist_print(stdout, nv); nvlist_free(nv); } break; case DRR_END: if (do_byteswap) { drre->drr_checksum.zc_word[0] = BSWAP_64(drre->drr_checksum.zc_word[0]); drre->drr_checksum.zc_word[1] = BSWAP_64(drre->drr_checksum.zc_word[1]); drre->drr_checksum.zc_word[2] = BSWAP_64(drre->drr_checksum.zc_word[2]); drre->drr_checksum.zc_word[3] = BSWAP_64(drre->drr_checksum.zc_word[3]); } /* * We compare against the *previous* checksum * value, because the stored checksum is of * everything before the DRR_END record. */ if (do_cksum && !ZIO_CHECKSUM_EQUAL(drre->drr_checksum, pcksum)) { (void) printf("Expected checksum differs from " "checksum in stream.\n"); (void) printf("Expected checksum = " "%llx/%llx/%llx/%llx\n", pcksum.zc_word[0], pcksum.zc_word[1], pcksum.zc_word[2], pcksum.zc_word[3]); } (void) printf("END checksum = %llx/%llx/%llx/%llx\n", drre->drr_checksum.zc_word[0], drre->drr_checksum.zc_word[1], drre->drr_checksum.zc_word[2], drre->drr_checksum.zc_word[3]); ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0); break; case DRR_OBJECT: if (do_byteswap) { drro->drr_object = BSWAP_64(drro->drr_object); drro->drr_type = BSWAP_32(drro->drr_type); drro->drr_bonustype = BSWAP_32(drro->drr_bonustype); drro->drr_blksz = BSWAP_32(drro->drr_blksz); drro->drr_bonuslen = BSWAP_32(drro->drr_bonuslen); drro->drr_toguid = BSWAP_64(drro->drr_toguid); } if (verbose) { (void) printf("OBJECT object = %llu type = %u " "bonustype = %u blksz = %u bonuslen = %u\n", (u_longlong_t)drro->drr_object, drro->drr_type, drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen); } if (drro->drr_bonuslen > 0) { (void) ssread(buf, P2ROUNDUP(drro->drr_bonuslen, 8), &zc); if (dump) { print_block(buf, P2ROUNDUP(drro->drr_bonuslen, 8)); } } break; case DRR_FREEOBJECTS: if (do_byteswap) { drrfo->drr_firstobj = BSWAP_64(drrfo->drr_firstobj); drrfo->drr_numobjs = BSWAP_64(drrfo->drr_numobjs); drrfo->drr_toguid = BSWAP_64(drrfo->drr_toguid); } if (verbose) { (void) printf("FREEOBJECTS firstobj = %llu " "numobjs = %llu\n", (u_longlong_t)drrfo->drr_firstobj, (u_longlong_t)drrfo->drr_numobjs); } break; case DRR_WRITE: if (do_byteswap) { drrw->drr_object = BSWAP_64(drrw->drr_object); drrw->drr_type = BSWAP_32(drrw->drr_type); drrw->drr_offset = BSWAP_64(drrw->drr_offset); drrw->drr_length = BSWAP_64(drrw->drr_length); drrw->drr_toguid = BSWAP_64(drrw->drr_toguid); drrw->drr_key.ddk_prop = BSWAP_64(drrw->drr_key.ddk_prop); } /* * If this is verbose and/or dump output, * print info on the modified block */ if (verbose) { (void) printf("WRITE object = %llu type = %u " "checksum type = %u\n" "offset = %llu length = %llu " "props = %llx\n", (u_longlong_t)drrw->drr_object, drrw->drr_type, drrw->drr_checksumtype, (u_longlong_t)drrw->drr_offset, (u_longlong_t)drrw->drr_length, (u_longlong_t)drrw->drr_key.ddk_prop); } /* * Read the contents of the block in from STDIN to buf */ (void) ssread(buf, drrw->drr_length, &zc); /* * If in dump mode */ if (dump) { print_block(buf, drrw->drr_length); } total_write_size += drrw->drr_length; break; case DRR_WRITE_BYREF: if (do_byteswap) { drrwbr->drr_object = BSWAP_64(drrwbr->drr_object); drrwbr->drr_offset = BSWAP_64(drrwbr->drr_offset); drrwbr->drr_length = BSWAP_64(drrwbr->drr_length); drrwbr->drr_toguid = BSWAP_64(drrwbr->drr_toguid); drrwbr->drr_refguid = BSWAP_64(drrwbr->drr_refguid); drrwbr->drr_refobject = BSWAP_64(drrwbr->drr_refobject); drrwbr->drr_refoffset = BSWAP_64(drrwbr->drr_refoffset); drrwbr->drr_key.ddk_prop = BSWAP_64(drrwbr->drr_key.ddk_prop); } if (verbose) { (void) printf("WRITE_BYREF object = %llu " "checksum type = %u props = %llx\n" "offset = %llu length = %llu\n" "toguid = %llx refguid = %llx\n" "refobject = %llu refoffset = %llu\n", (u_longlong_t)drrwbr->drr_object, drrwbr->drr_checksumtype, (u_longlong_t)drrwbr->drr_key.ddk_prop, (u_longlong_t)drrwbr->drr_offset, (u_longlong_t)drrwbr->drr_length, (u_longlong_t)drrwbr->drr_toguid, (u_longlong_t)drrwbr->drr_refguid, (u_longlong_t)drrwbr->drr_refobject, (u_longlong_t)drrwbr->drr_refoffset); } break; case DRR_FREE: if (do_byteswap) { drrf->drr_object = BSWAP_64(drrf->drr_object); drrf->drr_offset = BSWAP_64(drrf->drr_offset); drrf->drr_length = BSWAP_64(drrf->drr_length); } if (verbose) { (void) printf("FREE object = %llu " "offset = %llu length = %lld\n", (u_longlong_t)drrf->drr_object, (u_longlong_t)drrf->drr_offset, (longlong_t)drrf->drr_length); } break; case DRR_SPILL: if (do_byteswap) { drrs->drr_object = BSWAP_64(drrs->drr_object); drrs->drr_length = BSWAP_64(drrs->drr_length); } if (verbose) { (void) printf("SPILL block for object = %llu " "length = %llu\n", drrs->drr_object, drrs->drr_length); } (void) ssread(buf, drrs->drr_length, &zc); if (dump) { print_block(buf, drrs->drr_length); } break; case DRR_WRITE_EMBEDDED: if (do_byteswap) { drrwe->drr_object = BSWAP_64(drrwe->drr_object); drrwe->drr_offset = BSWAP_64(drrwe->drr_offset); drrwe->drr_length = BSWAP_64(drrwe->drr_length); drrwe->drr_toguid = BSWAP_64(drrwe->drr_toguid); drrwe->drr_lsize = BSWAP_32(drrwe->drr_lsize); drrwe->drr_psize = BSWAP_32(drrwe->drr_psize); } if (verbose) { (void) printf("WRITE_EMBEDDED object = %llu " "offset = %llu length = %llu\n" "toguid = %llx comp = %u etype = %u " "lsize = %u psize = %u\n", (u_longlong_t)drrwe->drr_object, (u_longlong_t)drrwe->drr_offset, (u_longlong_t)drrwe->drr_length, (u_longlong_t)drrwe->drr_toguid, drrwe->drr_compression, drrwe->drr_etype, drrwe->drr_lsize, drrwe->drr_psize); } (void) ssread(buf, P2ROUNDUP(drrwe->drr_psize, 8), &zc); break; } pcksum = zc; } free(buf); /* Print final summary */ (void) printf("SUMMARY:\n"); (void) printf("\tTotal DRR_BEGIN records = %lld\n", (u_longlong_t)drr_record_count[DRR_BEGIN]); (void) printf("\tTotal DRR_END records = %lld\n", (u_longlong_t)drr_record_count[DRR_END]); (void) printf("\tTotal DRR_OBJECT records = %lld\n", (u_longlong_t)drr_record_count[DRR_OBJECT]); (void) printf("\tTotal DRR_FREEOBJECTS records = %lld\n", (u_longlong_t)drr_record_count[DRR_FREEOBJECTS]); (void) printf("\tTotal DRR_WRITE records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE]); (void) printf("\tTotal DRR_WRITE_BYREF records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE_BYREF]); (void) printf("\tTotal DRR_WRITE_EMBEDDED records = %lld\n", (u_longlong_t)drr_record_count[DRR_WRITE_EMBEDDED]); (void) printf("\tTotal DRR_FREE records = %lld\n", (u_longlong_t)drr_record_count[DRR_FREE]); (void) printf("\tTotal DRR_SPILL records = %lld\n", (u_longlong_t)drr_record_count[DRR_SPILL]); (void) printf("\tTotal records = %lld\n", (u_longlong_t)total_records); (void) printf("\tTotal write size = %lld (0x%llx)\n", (u_longlong_t)total_write_size, (u_longlong_t)total_write_size); (void) printf("\tTotal stream length = %lld (0x%llx)\n", (u_longlong_t)total_stream_len, (u_longlong_t)total_stream_len); return (0); } Index: vendor/illumos/dist/cmd/ztest/ztest.c =================================================================== --- vendor/illumos/dist/cmd/ztest/ztest.c (revision 274272) +++ vendor/illumos/dist/cmd/ztest/ztest.c (revision 274273) @@ -1,6323 +1,6329 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. If backwards compatibility * testing is enabled ztest will sometimes run the "older" version * of ztest after a SIGKILL. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * Use the -k option to set the desired frequency of kills. * * When ztest invokes itself it passes all relevant information through a * temporary file which is mmap-ed in the child process. This allows shared * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always * stored at offset 0 of this file and contains information on the size and * number of shared structures in the file. The information stored in this file * must remain backwards compatible with older versions of ztest so that * ztest can invoke them during backwards compatibility testing (-B). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ztest_fd_data = -1; static int ztest_fd_rand = -1; typedef struct ztest_shared_hdr { uint64_t zh_hdr_size; uint64_t zh_opts_size; uint64_t zh_size; uint64_t zh_stats_size; uint64_t zh_stats_count; uint64_t zh_ds_size; uint64_t zh_ds_count; } ztest_shared_hdr_t; static ztest_shared_hdr_t *ztest_shared_hdr; typedef struct ztest_shared_opts { char zo_pool[MAXNAMELEN]; char zo_dir[MAXNAMELEN]; char zo_alt_ztest[MAXNAMELEN]; char zo_alt_libpath[MAXNAMELEN]; uint64_t zo_vdevs; uint64_t zo_vdevtime; size_t zo_vdev_size; int zo_ashift; int zo_mirrors; int zo_raidz; int zo_raidz_parity; int zo_datasets; int zo_threads; uint64_t zo_passtime; uint64_t zo_killrate; int zo_verbose; int zo_init; uint64_t zo_time; uint64_t zo_maxloops; uint64_t zo_metaslab_gang_bang; } ztest_shared_opts_t; static const ztest_shared_opts_t ztest_opts_defaults = { .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, .zo_dir = { '/', 't', 'm', 'p', '\0' }, .zo_alt_ztest = { '\0' }, .zo_alt_libpath = { '\0' }, .zo_vdevs = 5, .zo_ashift = SPA_MINBLOCKSHIFT, .zo_mirrors = 2, .zo_raidz = 4, .zo_raidz_parity = 1, .zo_vdev_size = SPA_MINDEVSIZE * 2, .zo_datasets = 7, .zo_threads = 23, .zo_passtime = 60, /* 60 seconds */ .zo_killrate = 70, /* 70% kill rate */ .zo_verbose = 0, .zo_init = 1, .zo_time = 300, /* 5 minutes */ .zo_maxloops = 50, /* max loops during spa_freeze() */ .zo_metaslab_gang_bang = 32 << 10 }; extern uint64_t metaslab_gang_bang; extern uint64_t metaslab_df_alloc_threshold; extern uint64_t zfs_deadman_synctime_ms; extern int metaslab_preload_limit; static ztest_shared_opts_t *ztest_shared_opts; static ztest_shared_opts_t ztest_opts; typedef struct ztest_shared_ds { uint64_t zd_seq; } ztest_shared_ds_t; static ztest_shared_ds_t *ztest_shared_ds; #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS() \ (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_REWRITE, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * XXX -- fix zfs range locks to be generic so we can use them here. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; mutex_t rll_lock; cond_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; uint64_t od_gen; uint64_t od_crgen; char od_name[MAXNAMELEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { ztest_shared_ds_t *zd_shared; objset_t *zd_os; rwlock_t zd_zilog_lock; zilog_t *zd_zilog; ztest_od_t *zd_od; /* debugging aid */ char zd_name[MAXNAMELEN]; mutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ } ztest_info_t; typedef struct ztest_shared_callstate { uint64_t zc_count; /* per-pass count */ uint64_t zc_time; /* per-pass time */ uint64_t zc_next; /* next time to call this function */ } ztest_shared_callstate_t; static ztest_shared_callstate_t *ztest_shared_callstate; #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) /* * Note: these aren't static because we want dladdr() to work. */ ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_zil_remount; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_ddt_repair; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_spa_rename; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; ztest_func_t ztest_reguid; ztest_func_t ztest_spa_upgrade; uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ ztest_info_t ztest_info[] = { { ztest_dmu_read_write, 1, &zopt_always }, { ztest_dmu_write_parallel, 10, &zopt_always }, { ztest_dmu_object_alloc_free, 1, &zopt_always }, { ztest_dmu_commit_callbacks, 1, &zopt_always }, { ztest_zap, 30, &zopt_always }, { ztest_zap_parallel, 100, &zopt_always }, { ztest_split_pool, 1, &zopt_always }, { ztest_zil_commit, 1, &zopt_incessant }, { ztest_zil_remount, 1, &zopt_sometimes }, { ztest_dmu_read_write_zcopy, 1, &zopt_often }, { ztest_dmu_objset_create_destroy, 1, &zopt_often }, { ztest_dsl_prop_get_set, 1, &zopt_often }, { ztest_spa_prop_get_set, 1, &zopt_sometimes }, #if 0 { ztest_dmu_prealloc, 1, &zopt_sometimes }, #endif { ztest_fzap, 1, &zopt_sometimes }, { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, { ztest_spa_create_destroy, 1, &zopt_sometimes }, { ztest_fault_inject, 1, &zopt_sometimes }, { ztest_ddt_repair, 1, &zopt_sometimes }, { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, { ztest_reguid, 1, &zopt_rarely }, { ztest_spa_rename, 1, &zopt_rarely }, { ztest_scrub, 1, &zopt_rarely }, { ztest_spa_upgrade, 1, &zopt_rarely }, { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, { ztest_vdev_attach_detach, 1, &zopt_sometimes }, { ztest_vdev_LUN_growth, 1, &zopt_rarely }, { ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime }, { ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime }, }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { mutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { boolean_t zs_do_init; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; uint64_t zs_splits; uint64_t zs_mirrors; uint64_t zs_metaslab_sz; uint64_t zs_metaslab_df_alloc_threshold; uint64_t zs_guid; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; ztest_shared_t *ztest_shared; static spa_t *ztest_spa = NULL; static ztest_ds_t *ztest_ds; static mutex_t ztest_vdev_lock; /* * The ztest_name_lock protects the pool and dataset namespace used by * the individual tests. To modify the namespace, consumers must grab * this lock as writer. Grabbing the lock as reader will ensure that the * namespace does not change while the lock is held. */ static rwlock_t ztest_name_lock; static boolean_t ztest_dump_core = B_TRUE; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static void usage(boolean_t) __NORETURN; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #define FATAL_MSG_SZ 1024 char *fatal_msg; static void fatal(int do_perror, char *message, ...) { va_list args; int save_errno = errno; char buf[FATAL_MSG_SZ]; (void) fflush(stdout); va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ if (ztest_dump_core) abort(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); /* NOTREACHED */ } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); if (fval > UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } static void usage(boolean_t requested) { const ztest_shared_opts_t *zo = &ztest_opts_defaults; char nice_vdev_size[10]; char nice_gang_bang[10]; FILE *fp = requested ? stdout : stderr; nicenum(zo->zo_vdev_size, nice_vdev_size); nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); (void) fprintf(fp, "Usage: %s\n" "\t[-v vdevs (default: %llu)]\n" "\t[-s size_of_each_vdev (default: %s)]\n" "\t[-a alignment_shift (default: %d)] use 0 for random\n" "\t[-m mirror_copies (default: %d)]\n" "\t[-r raidz_disks (default: %d)]\n" "\t[-R raidz_parity (default: %d)]\n" "\t[-d datasets (default: %d)]\n" "\t[-t threads (default: %d)]\n" "\t[-g gang_block_threshold (default: %s)]\n" "\t[-i init_count (default: %d)] initialize pool i times\n" "\t[-k kill_percentage (default: %llu%%)]\n" "\t[-p pool_name (default: %s)]\n" "\t[-f dir (default: %s)] file directory for vdev files\n" "\t[-V] verbose (use multiple times for ever more blather)\n" "\t[-E] use existing pool instead of creating new one\n" "\t[-T time (default: %llu sec)] total run time\n" "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" "\t[-P passtime (default: %llu sec)] time per pass\n" "\t[-B alt_ztest (default: )] alternate ztest path\n" "\t[-h] (print help)\n" "", zo->zo_pool, (u_longlong_t)zo->zo_vdevs, /* -v */ nice_vdev_size, /* -s */ zo->zo_ashift, /* -a */ zo->zo_mirrors, /* -m */ zo->zo_raidz, /* -r */ zo->zo_raidz_parity, /* -R */ zo->zo_datasets, /* -d */ zo->zo_threads, /* -t */ nice_gang_bang, /* -g */ zo->zo_init, /* -i */ (u_longlong_t)zo->zo_killrate, /* -k */ zo->zo_pool, /* -p */ zo->zo_dir, /* -f */ (u_longlong_t)zo->zo_time, /* -T */ (u_longlong_t)zo->zo_maxloops, /* -F */ (u_longlong_t)zo->zo_passtime); exit(requested ? 0 : 1); } static void process_options(int argc, char **argv) { char *path; ztest_shared_opts_t *zo = &ztest_opts; int opt; uint64_t value; char altdir[MAXNAMELEN] = { 0 }; bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); while ((opt = getopt(argc, argv, "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zo->zo_vdevs = value; break; case 's': zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zo->zo_ashift = value; break; case 'm': zo->zo_mirrors = value; break; case 'r': zo->zo_raidz = MAX(1, value); break; case 'R': zo->zo_raidz_parity = MIN(MAX(value, 1), 3); break; case 'd': zo->zo_datasets = MAX(1, value); break; case 't': zo->zo_threads = MAX(1, value); break; case 'g': zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zo->zo_init = value; break; case 'k': zo->zo_killrate = value; break; case 'p': (void) strlcpy(zo->zo_pool, optarg, sizeof (zo->zo_pool)); break; case 'f': path = realpath(optarg, NULL); if (path == NULL) { (void) fprintf(stderr, "error: %s: %s\n", optarg, strerror(errno)); usage(B_FALSE); } else { (void) strlcpy(zo->zo_dir, path, sizeof (zo->zo_dir)); } break; case 'V': zo->zo_verbose++; break; case 'E': zo->zo_init = 0; break; case 'T': zo->zo_time = value; break; case 'P': zo->zo_passtime = MAX(1, value); break; case 'F': zo->zo_maxloops = MAX(1, value); break; case 'B': (void) strlcpy(altdir, optarg, sizeof (altdir)); break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); zo->zo_vdevtime = (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : UINT64_MAX >> 2); if (strlen(altdir) > 0) { char *cmd; char *realaltdir; char *bin; char *ztest; char *isa; int isalen; cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); VERIFY(NULL != realpath(getexecname(), cmd)); if (0 != access(altdir, F_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest path: %s", altdir); } VERIFY(NULL != realpath(altdir, realaltdir)); /* * 'cmd' should be of the form "/usr/bin//ztest". * We want to extract to determine if we should use * 32 or 64 bit binaries. */ bin = strstr(cmd, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 9; isalen = ztest - isa; (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), "%s/usr/lib/%.*s", realaltdir, isalen, isa); if (0 != access(zo->zo_alt_ztest, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest: %s", zo->zo_alt_ztest); } else if (0 != access(zo->zo_alt_libpath, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate lib directory %s", zo->zo_alt_libpath); } umem_free(cmd, MAXPATHLEN); umem_free(realaltdir, MAXPATHLEN); } } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); /* * Before we kill off ztest, make sure that the config is updated. * See comment above spa_config_sync(). */ mutex_enter(&spa_namespace_lock); spa_config_sync(ztest_spa, B_FALSE, B_FALSE); mutex_exit(&spa_namespace_lock); zfs_dbgmsg_print(FTAG); (void) kill(getpid(), SIGKILL); } static uint64_t ztest_random(uint64_t range) { uint64_t r; ASSERT3S(ztest_fd_rand, >=, 0); if (range == 0) return (0); if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) fatal(1, "short read from /dev/urandom"); return (r % range); } /* ARGSUSED */ static void ztest_record_enospc(const char *s) { ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (ztest_opts.zo_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(5)); return (ztest_opts.zo_ashift); } static nvlist_t * make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) { char pathbuf[MAXPATHLEN]; uint64_t vdev; nvlist_t *file; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) snprintf(path, sizeof (pathbuf), ztest_aux_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) snprintf(path, sizeof (pathbuf), ztest_dev_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, vdev); } } if (size != 0) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(1, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(1, "can't ftruncate %s", path); (void) close(fd); } VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); return (file); } static nvlist_t * make_vdev_raidz(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r) { nvlist_t *raidz, **child; int c; if (r < 2) return (make_vdev_file(path, aux, pool, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, pool, size, ashift); VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, VDEV_TYPE_RAIDZ) == 0); VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, ztest_opts.zo_raidz_parity) == 0); VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, child, r) == 0); for (c = 0; c < r; c++) nvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raidz); } static nvlist_t * make_vdev_mirror(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raidz(path, aux, pool, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m) == 0); for (c = 0; c < m; c++) nvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int log, int r, int m, int t) { nvlist_t *root, **child; int c; ASSERT(t > 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, pool, size, ashift, r, m); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log) == 0); } VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, child, t) == 0); for (c = 0; c < t; c++) nvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } /* * Find a random spa version. Returns back a random spa version in the * range [initial_version, SPA_VERSION_FEATURES]. */ static uint64_t ztest_random_spa_version(uint64_t initial_version) { uint64_t version = initial_version; if (version <= SPA_VERSION_BEFORE_FEATURES) { version = version + ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); } if (version > SPA_VERSION_BEFORE_FEATURES) version = SPA_VERSION_FEATURES; ASSERT(SPA_VERSION_IS_SUPPORTED(version)); return (version); } /* * Find the largest ashift used */ static uint64_t ztest_spa_get_ashift() { uint64_t i; uint64_t ashift = SPA_MINBLOCKSHIFT; vdev_t *rvd = ztest_spa->spa_root_vdev; for (i = 0; i < rvd->vdev_children; i++) { ashift = MAX(ashift, rvd->vdev_child[i]->vdev_ashift); } return (ashift); } static int ztest_random_blocksize(void) { - // Choose a block size >= the ashift. - uint64_t block_shift = - ztest_random(SPA_MAXBLOCKSHIFT - ztest_spa_get_ashift() + 1); + uint64_t block_shift; + /* + * Choose a block size >= the ashift. + * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. + */ + int maxbs = SPA_OLD_MAXBLOCKSHIFT; + if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) + maxbs = 20; + block_shift = ztest_random(maxbs - ztest_spa_get_ashift() + 1); return (1 << (SPA_MINBLOCKSHIFT + block_shift)); } static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char setpoint[MAXPATHLEN]; uint64_t curval; int error; error = dsl_prop_set_int(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); if (ztest_opts.zo_verbose >= 6) { VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } return (error); } static int ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) { spa_t *spa = ztest_spa; nvlist_t *props = NULL; int error; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); error = spa_prop_set(spa, props); nvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); return (error); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); } static void ztest_rll_destroy(rll_t *rll) { ASSERT(rll->rll_writer == NULL); ASSERT(rll->rll_readers == 0); VERIFY(_mutex_destroy(&rll->rll_lock) == 0); VERIFY(cond_destroy(&rll->rll_cv) == 0); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { VERIFY(mutex_lock(&rll->rll_lock) == 0); if (type == RL_READER) { while (rll->rll_writer != NULL) (void) cond_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) (void) cond_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } VERIFY(mutex_unlock(&rll->rll_lock) == 0); } static void ztest_rll_unlock(rll_t *rll) { VERIFY(mutex_lock(&rll->rll_lock) == 0); if (rll->rll_writer) { ASSERT(rll->rll_readers == 0); rll->rll_writer = NULL; } else { ASSERT(rll->rll_readers != 0); ASSERT(rll->rll_writer == NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) VERIFY(cond_broadcast(&rll->rll_cv) == 0); VERIFY(mutex_unlock(&rll->rll_lock) == 0); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_shared = szd; dmu_objset_name(os, zd->zd_name); if (zd->zd_shared != NULL) zd->zd_shared->zd_seq = 0; VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT(txg_how == TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT(txg != 0); return (txg); } static void ztest_pattern_set(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); while (ip < ip_end) *ip++ = value; } static boolean_t ztest_pattern_match(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); uint64_t diff = 0; while (ip < ip_end) diff |= (value - *ip++); return (diff == 0); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { ASSERT3U(bt->bt_magic, ==, BT_MAGIC); ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, object); ASSERT3U(bt->bt_offset, ==, offset); ASSERT3U(bt->bt_gen, <=, gen); ASSERT3U(bt->bt_txg, <=, txg); ASSERT3U(bt->bt_crtxg, ==, crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev #define lrz_bonuslen lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; if (lr->lr_length > ZIL_MAX_LOG_DATA) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) { char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { lr->lr_foid = zap_create(os, lr->lrz_type, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } else { error = zap_create_claim(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } } else { if (lr->lr_foid == 0) { lr->lr_foid = dmu_object_alloc(os, lr->lrz_type, 0, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } else { error = dmu_object_claim(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT(lr->lr_foid != 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); dmu_buf_rele(db, FTAG); VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) { char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); VERIFY3U(0, ==, zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT(object != 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY3U(0, ==, zap_destroy(os, object, tx)); } else { VERIFY3U(0, ==, dmu_object_free(os, object, tx)); } VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT(offset % doi.doi_data_block_size == 0); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { ztest_bt_verify(&rbt, os, lr->lr_foid, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { ztest_bt_verify(bt, os, lr->lr_foid, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { bcopy(data, abuf->b_data, length); dmu_assign_arcbuf(db, offset, abuf, tx); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx) == 0); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; uint64_t txg, lrtxg, crtxg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; if (zd->zd_zilog->zl_replay) { ASSERT(lr->lr_size != 0); ASSERT(lr->lr_mode != 0); ASSERT(lrtxg != 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT(lrtxg == 0); } /* * Verify that the current bonus buffer is not newer than our txg. */ ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); bbt = ztest_bt_bonus(db); ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ }; /* * ZIL get_data callbacks */ static void ztest_get_done(zgd_t *zgd, int error) { ztest_ds_t *zd = zgd->zgd_private; uint64_t object = zgd->zgd_rl->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock(zgd->zgd_rl); ztest_object_unlock(zd, object); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; blkptr_t *bp = &lr->lr_blkptr; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_zilog = zd->zd_zilog; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT(error == 0); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT(offset < size); offset = 0; } zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *obp = dmu_buf_get_blkptr(db); if (obp) { ASSERT(BP_IS_HOLE(bp)); *bp = *obp; } zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) bcopy(name, lr + lrsize, namesize); return (lr); } void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT(error == ENOENT); ASSERT(od->od_object == 0); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT(od->od_object != 0); ASSERT(missing == 0); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; lr->lrz_bonuslen = dmu_bonus_max(); lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT(missing == 0); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT(od->od_object != 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); od += count - 1; for (int i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } /* * No object was found. */ if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); bcopy(data, lr + 1, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { int err; ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; (void) rw_rdlock(&zd->zd_zilog_lock); switch (io_type) { case ZTEST_IO_WRITE_TAG: ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: bzero(data, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; case ZTEST_IO_REWRITE: (void) rw_rdlock(&ztest_name_lock); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), B_FALSE); VERIFY(err == 0 || err == ENOSPC); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COMPRESSION, ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), B_FALSE); VERIFY(err == 0 || err == ENOSPC); (void) rw_unlock(&ztest_name_lock); VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, DMU_READ_NO_PREFETCH)); (void) ztest_write(zd, object, offset, blocksize, data); break; } (void) rw_unlock(&zd->zd_zilog_lock); umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, dmu_object_type_t type, uint64_t blocksize, uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", tag, (int64_t)id, index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); return (rv); } /* ARGSUSED */ void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { zilog_t *zilog = zd->zd_zilog; (void) rw_rdlock(&zd->zd_zilog_lock); zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT(zd->zd_shared != NULL); ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); (void) rw_unlock(&zd->zd_zilog_lock); } /* * This function is designed to simulate the operations that occur during a * mount/unmount operation. We hold the dataset across these operations in an * attempt to expose any implicit assumptions about ZIL management. */ /* ARGSUSED */ void ztest_zil_remount(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; /* * We grab the zd_dirobj_lock to ensure that no other thread is * updating the zil (i.e. adding in-memory log records) and the * zd_zilog_lock to block any I/O. */ VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); (void) rw_wrlock(&zd->zd_zilog_lock); /* zfsvfs_teardown() */ zil_close(zd->zd_zilog); /* zfsvfs_setup() */ VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); zil_replay(os, zd, ztest_replay_vector); (void) rw_unlock(&zd->zd_zilog_lock); VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ /* ARGSUSED */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa; nvlist_t *nvroot; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ (void) rw_rdlock(&ztest_name_lock); nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); spa_close(spa, FTAG); (void) rw_unlock(&ztest_name_lock); } /* ARGSUSED */ void ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) { spa_t *spa; uint64_t initial_version = SPA_VERSION_INITIAL; uint64_t version, newversion; nvlist_t *nvroot, *props; char *name; VERIFY0(mutex_lock(&ztest_vdev_lock)); name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); /* * Clean up from previous runs. */ (void) spa_destroy(name); nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); /* * If we're configuring a RAIDZ device then make sure that the * the initial version is capable of supporting that feature. */ switch (ztest_opts.zo_raidz_parity) { case 0: case 1: initial_version = SPA_VERSION_INITIAL; break; case 2: initial_version = SPA_VERSION_RAIDZ2; break; case 3: initial_version = SPA_VERSION_RAIDZ3; break; } /* * Create a pool with a spa version that can be upgraded. Pick * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. */ do { version = ztest_random_spa_version(initial_version); } while (version > SPA_VERSION_BEFORE_FEATURES); props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), version); VERIFY0(spa_create(name, nvroot, props, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(name, &spa, FTAG)); VERIFY3U(spa_version(spa), ==, version); newversion = ztest_random_spa_version(version + 1); if (ztest_opts.zo_verbose >= 4) { (void) printf("upgrading spa version from %llu to %llu\n", (u_longlong_t)version, (u_longlong_t)newversion); } spa_upgrade(spa, newversion); VERIFY3U(spa_version(spa), >, version); VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, zpool_prop_to_name(ZPOOL_PROP_VERSION))); spa_close(spa, FTAG); strfree(name); VERIFY0(mutex_unlock(&ztest_vdev_lock)); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } /* * Find the first available hole which can be used as a top-level. */ int find_vdev_hole(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; if (cvd->vdev_ishole) break; } return (c); } /* * Verify that vdev_add() works as expected. */ /* ARGSUSED */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { /* * Grab the guid from the head of the log class rotor. */ guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ VERIFY(rw_wrlock(&ztest_name_lock) == 0); error = spa_vdev_remove(spa, guid, B_FALSE); VERIFY(rw_unlock(&ztest_name_lock) == 0); if (error && error != EEXIST) fatal(0, "spa_vdev_remove() = %d", error); } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices. */ nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, ztest_random(4) == 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(0, "spa_vdev_add() = %d", error); } VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ /* ARGSUSED */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; char *aux; uint64_t guid = 0; int error; if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } VERIFY(mutex_lock(&ztest_vdev_lock) == 0); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { char path[MAXPATHLEN]; int c; (void) snprintf(path, sizeof (path), ztest_aux_template, ztest_opts.zo_dir, ztest_opts.zo_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); error = spa_vdev_add(spa, nvroot); if (error != 0) fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); nvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); if (error != 0 && error != EBUSY) fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); } VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } /* * split a pool if it has mirror tlvdevs */ /* ARGSUSED */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); /* ensure we have a useable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); mutex_exit(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); VERIFY(nvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1) == 0); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); } /* OK, create a config that can be used to split */ VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, lastlogid != 0 ? lastlogid : schildren) == 0); VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); for (c = 0; c < schildren; c++) nvlist_free(schild[c]); free(schild); nvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); (void) rw_wrlock(&ztest_name_lock); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); (void) rw_unlock(&ztest_name_lock); nvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } /* * Verify that we can attach and detach devices. */ /* ARGSUSED */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; uint64_t oldsize, newsize; char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int oldvd_is_log; int error, expected_error; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; if (zs->zs_mirrors >= 1) { ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); ASSERT(oldvd->vdev_children >= zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; } if (ztest_opts.zo_raidz > 1) { ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT(oldvd->vdev_children >= 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP) fatal(0, "detach (%s) returned %d", oldpath, error); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); return; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else expected_error = 0; spa_config_exit(spa, SCL_VDEV, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, ashift, 0, 0, 0, 1); error = spa_vdev_attach(spa, oldguid, root, replacing); nvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; /* XXX workaround 6690467 */ if (error != expected_error && expected_error != EBUSY) { fatal(0, "attach (%s %llu, %s %llu, %d) " "returned %d, expected %d", oldpath, oldsize, newpath, newsize, replacing, error, expected_error); } VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } /* * Callback function which expands the physical size of the vdev. */ vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); (void) ftruncate(fd, *newsize); if (ztest_opts.zo_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ /* ARGSUSED */ vdev_t * online_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Unable to expand vdev, state %llu, " "error %d\n", (u_longlong_t)newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (ztest_opts.zo_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %llu, state %llu, expected gen %llu, " "got gen %llu\n", (u_longlong_t)guid, (u_longlong_t)tvd->vdev_state, (u_longlong_t)generation, (u_longlong_t)spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (uint_t c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ /* ARGSUSED */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); spa_config_enter(spa, SCL_STATE, spa, RW_READER); top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); return; } ASSERT(psize > 0); newsize = psize + psize / 8; ASSERT3U(newsize, >, psize); if (ztest_opts.zo_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", old_ms_count, new_ms_count); /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", old_class_space, new_class_space); if (ztest_opts.zo_verbose >= 5) { char oldnumbuf[6], newnumbuf[6]; nicenum(old_class_space, oldnumbuf); nicenum(new_class_space, newnumbuf); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ /* ARGSUSED */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { /* * Create the objects common to all ztest datasets. */ VERIFY(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); } static int ztest_dataset_create(char *dsname) { uint64_t zilset = ztest_random(100); int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, ztest_objset_create_cb, NULL); if (err || zilset < 80) return (err); if (ztest_opts.zo_verbose >= 6) (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } /* ARGSUSED */ static int ztest_objset_destroy_cb(const char *name, void *arg) { objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT0(error); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_disown(os, FTAG); /* * Destroy the dataset. */ if (strchr(name, '@') != NULL) { VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); } else { VERIFY0(dsl_destroy_head(name)); } return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[MAXNAMELEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); error = dmu_objset_snapshot_one(osname, snapname); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST) { fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, snapname, error); } return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[MAXNAMELEN]; int error; (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, (u_longlong_t)id); error = dsl_destroy_snapshot(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } /* ARGSUSED */ void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_ds_t zdtmp; int iters; int error; objset_t *os, *os2; char name[MAXNAMELEN]; zilog_t *zilog; (void) rw_rdlock(&ztest_name_lock); (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", ztest_opts.zo_pool, (u_longlong_t)id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dmu_objset_destroy() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { ztest_zd_init(&zdtmp, NULL, os); zil_replay(os, &zdtmp, ztest_replay_vector); ztest_zd_fini(&zdtmp); dmu_objset_disown(os, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); (void) rw_unlock(&ztest_name_lock); return; } fatal(0, "dmu_objset_create(%s) = %d", name, error); } VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); ztest_zd_init(&zdtmp, NULL, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (int i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(&zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, FTAG); ztest_zd_fini(&zdtmp); (void) rw_unlock(&ztest_name_lock); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { (void) rw_rdlock(&ztest_name_lock); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); (void) rw_unlock(&ztest_name_lock); } /* * Cleanup non-standard snapshots and clones. */ void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char snap1name[MAXNAMELEN]; char clone1name[MAXNAMELEN]; char snap2name[MAXNAMELEN]; char clone2name[MAXNAMELEN]; char snap3name[MAXNAMELEN]; int error; (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); error = dsl_destroy_head(clone2name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); error = dsl_destroy_snapshot(snap3name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); error = dsl_destroy_snapshot(snap2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); error = dsl_destroy_head(clone1name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); error = dsl_destroy_snapshot(snap1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { objset_t *os; char snap1name[MAXNAMELEN]; char clone1name[MAXNAMELEN]; char snap2name[MAXNAMELEN]; char clone2name[MAXNAMELEN]; char snap3name[MAXNAMELEN]; char *osname = zd->zd_name; int error; (void) rw_rdlock(&ztest_name_lock); ztest_dsl_dataset_cleanup(osname, id); (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_clone(clone1name, snap1name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_clone(clone2name, snap3name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); } error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error == ENOSPC) { dmu_objset_disown(os, FTAG); ztest_record_enospc(FTAG); goto out; } if (error != EBUSY) fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dmu_objset_disown(os, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); (void) rw_unlock(&ztest_name_lock); } /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[4]; int batchsize = sizeof (od) / sizeof (od[0]); for (int b = 0; b < batchsize; b++) ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) return; while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); } /* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; int i, freeit, error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT(chunksize == od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); /* This accounts for setting the checksum/compression. */ dmu_tx_hold_bonus(tx, bigobj); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); return; } enum zio_checksum cksum; do { cksum = (enum zio_checksum) ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); dmu_object_set_checksum(os, bigobj, cksum, tx); enum zio_compress comp; do { comp = (enum zio_compress) ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); dmu_object_set_compress(os, bigobj, comp, tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { bzero(pack, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (ztest_opts.zo_verbose >= 7) { (void) printf("freeing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); } void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; uint64_t i; int error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT(chunksize == od[1].od_gen); VERIFY(dmu_object_info(os, bigobj, &doi) == 0); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY(chunksize == doi.doi_data_block_size); VERIFY(chunksize >= 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf() for the case when there're no * existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5) { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[j]->b_data, chunksize); } else { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[2 * j]->b_data, chunksize / 2); bcopy((caddr_t)bigbuf + (off - bigoff) + chunksize / 2, bigbuf_arcbufs[2 * j + 1]->b_data, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5) { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[j], tx); } else { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx); dmu_assign_arcbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); } /* ARGSUSED */ void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od[0].od_object, offset); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) return; ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od[0].od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od[0].od_object, randoff); } umem_free(data, blocksize); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; for (i = 0; i < 2; i++) { value[i] = i; VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY3U(0, ==, zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a buch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); bzero(value, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg) == 0); VERIFY(zap_length(os, object, propname, &zl_intsize, &zl_ints) == 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY(zap_lookup(os, object, propname, zl_intsize, zl_ints, value) == 0); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; if (last_txg > txg) fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) return; ASSERT0(error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); } /* * Testcase to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, txg; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (int i = 0; i < 2050; i++) { char name[MAXNAMELEN]; uint64_t value = i; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", id, value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } } /* ARGSUSED */ void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; object = od[0].od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY0(zap_count(os, object, &count)); ASSERT(count != -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; bcopy(name, string_value, namelen); } else { tx = NULL; txg = 0; bzero(string_value, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && bcmp(name, data, namelen) != 0) fatal(0, "name '%s' != val '%s' len %d", name, data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY(data != NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(0, "commit callback of txg %" PRIu64 " called prematurely" ", last synced txg = %" PRIu64 "\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT0(data->zcd_txg); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } /* Was this callback added to the global callback list? */ if (!data->zcd_added) goto out; ASSERT3U(data->zcd_txg, !=, 0); /* Remove our callback from the list */ (void) mutex_lock(&zcl.zcl_callbacks_lock); list_remove(&zcl.zcl_callbacks, data); (void) mutex_unlock(&zcl.zcl_callbacks_lock); out: umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); return (cb_data); } /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, old_txg, txg); dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); (void) mutex_lock(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { fatal(0, "Commit callback threshold exceeded, oldest txg: %" PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } (void) mutex_unlock(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); } /* ARGSUSED */ void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; (void) rw_rdlock(&ztest_name_lock); for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); (void) rw_unlock(&ztest_name_lock); } /* ARGSUSED */ void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { nvlist_t *props = NULL; (void) rw_rdlock(&ztest_name_lock); (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); VERIFY0(spa_prop_get(ztest_spa, &props)); if (ztest_opts.zo_verbose >= 6) dump_nvlist(props, 4); nvlist_free(props); (void) rw_unlock(&ztest_name_lock); } static int user_release_one(const char *snapname, const char *holdname) { nvlist_t *snaps, *holds; int error; snaps = fnvlist_alloc(); holds = fnvlist_alloc(); fnvlist_add_boolean(holds, holdname); fnvlist_add_nvlist(snaps, snapname, holds); fnvlist_free(holds); error = dsl_dataset_user_release(snaps, NULL); fnvlist_free(snaps); return (error); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[MAXNAMELEN]; nvlist_t *holds; (void) rw_rdlock(&ztest_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%llu", osname, id); (void) snprintf(tag, sizeof (tag), "tag_%llu", id); /* * Clean up from any previous run. */ error = dsl_destroy_head(clonename); if (error != ENOENT) ASSERT0(error); error = user_release_one(fullname, tag); if (error != ESRCH && error != ENOENT) ASSERT0(error); error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != ENOENT) ASSERT0(error); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_clone(clonename, fullname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = dsl_destroy_head(clonename); if (error) fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } holds = fnvlist_alloc(); fnvlist_add_string(holds, fullname, tag); error = dsl_dataset_user_hold(holds, 0, NULL); fnvlist_free(holds); if (error == ENOSPC) { ztest_record_enospc("dsl_dataset_user_hold"); goto out; } else if (error) { fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", fullname, tag, error); } error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != EBUSY) { fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", fullname, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = user_release_one(fullname, tag); if (error) fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); out: (void) rw_unlock(&ztest_name_lock); } /* * Inject random faults into the on-disk data. */ /* ARGSUSED */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecade; uint64_t top, leaf; char path0[MAXPATHLEN]; char pathrand[MAXPATHLEN]; size_t fsize; - int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ + int bshift = SPA_OLD_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); maxfaults = MAXFAULTS(); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; mirror_save = zs->zs_mirrors; VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); ASSERT(leaves >= 1); /* * Grab the name lock as reader. There are some operations * which don't like to have their vdevs changed while * they are in progress (i.e. spa_change_guid). Those * operations will have grabbed the name lock as writer. */ (void) rw_rdlock(&ztest_name_lock); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, sizeof (path0), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; /* * If the top-level vdev needs to be resilvered * then we only allow faults on the device that is * resilvering. */ if (vd0 != NULL && maxfaults != 1 && (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || vd0->vdev_resilver_txg != 0)) { /* * Make vd0 explicitly claim to be unreadable, * or unwriteable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_vnode->v_fd); vf->vf_vnode->v_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); (void) rw_unlock(&ztest_name_lock); return; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); (void) rw_unlock(&ztest_name_lock); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) (void) rw_wrlock(&ztest_name_lock); VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); if (islog) (void) rw_unlock(&ztest_name_lock); } else { /* * Ideally we would like to be able to randomly * call vdev_[on|off]line without holding locks * to force unpredictable failures but the side * effects of vdev_[on|off]line prevent us from * doing so. We grab the ztest_vdev_lock here to * prevent a race between injection testing and * aux_vdev removal. */ VERIFY(mutex_lock(&ztest_vdev_lock) == 0); (void) vdev_online(spa, guid0, 0, NULL); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); } } if (maxfaults == 0) return; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ return; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); if (offset >= fsize) continue; VERIFY(mutex_lock(&ztest_vdev_lock) == 0); if (mirror_save != zs->zs_mirrors) { VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); (void) close(fd); return; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(1, "can't inject bad word at 0x%llx in %s", offset, pathrand); VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); if (ztest_opts.zo_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%llx\n", pathrand, (u_longlong_t)offset); } (void) close(fd); } /* * Verify that DDT repair works as expected. */ void ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, blocksize, txg, pattern, psize; enum zio_checksum checksum = spa_dedup_checksum(spa); dmu_buf_t *db; dmu_tx_t *tx; void *buf; blkptr_t blk; int copies = 2 * ZIO_DEDUPDITTO_MIN; blocksize = ztest_random_blocksize(); blocksize = MIN(blocksize, 2048); /* because we write so many */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; /* * Take the name lock as writer to prevent anyone else from changing * the pool and dataset properies we need to maintain during this test. */ (void) rw_wrlock(&ztest_name_lock); if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, B_FALSE) != 0 || ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, B_FALSE) != 0) { (void) rw_unlock(&ztest_name_lock); return; } object = od[0].od_object; blocksize = od[0].od_blocksize; pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); ASSERT(object != 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, 0, copies * blocksize); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { (void) rw_unlock(&ztest_name_lock); return; } /* * Write all the copies of our block. */ for (int i = 0; i < copies; i++) { uint64_t offset = i * blocksize; int error = dmu_buf_hold(os, object, offset, FTAG, &db, DMU_READ_NO_PREFETCH); if (error != 0) { fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", os, (long long)object, (long long) offset, error); } ASSERT(db->db_offset == offset); ASSERT(db->db_size == blocksize); ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || ztest_pattern_match(db->db_data, db->db_size, 0ULL)); dmu_buf_will_fill(db, tx); ztest_pattern_set(db->db_data, db->db_size, pattern); dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), txg); /* * Find out what block we got. */ VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); blk = *((dmu_buf_impl_t *)db)->db_blkptr; dmu_buf_rele(db, FTAG); /* * Damage the block. Dedup-ditto will save us when we read it later. */ psize = BP_GET_PSIZE(&blk); buf = zio_buf_alloc(psize); ztest_pattern_set(buf, psize, ~pattern); (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); zio_buf_free(buf, psize); (void) rw_unlock(&ztest_name_lock); } /* * Scrub the pool. */ /* ARGSUSED */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ (void) spa_scan(spa, POOL_SCAN_SCRUB); } /* * Change the guid for the pool. */ /* ARGSUSED */ void ztest_reguid(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; uint64_t orig, load; int error; orig = spa_guid(spa); load = spa_load_guid(spa); (void) rw_wrlock(&ztest_name_lock); error = spa_change_guid(spa); (void) rw_unlock(&ztest_name_lock); if (error != 0) return; if (ztest_opts.zo_verbose >= 4) { (void) printf("Changed guid old %llu -> %llu\n", (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); } VERIFY3U(orig, !=, spa_guid(spa)); VERIFY3U(load, ==, spa_load_guid(spa)); } /* * Rename the pool to a different name and then rename it back. */ /* ARGSUSED */ void ztest_spa_rename(ztest_ds_t *zd, uint64_t id) { char *oldname, *newname; spa_t *spa; (void) rw_wrlock(&ztest_name_lock); oldname = ztest_opts.zo_pool; newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); (void) strcpy(newname, oldname); (void) strcat(newname, "_tmp"); /* * Do the rename */ VERIFY3U(0, ==, spa_rename(oldname, newname)); /* * Try to open it under the old name, which shouldn't exist */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Open it under the new name and make sure it's still the same spa_t. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(spa == ztest_spa); spa_close(spa, FTAG); /* * Rename it back to the original */ VERIFY3U(0, ==, spa_rename(newname, oldname)); /* * Make sure it can still be opened */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); ASSERT(spa == ztest_spa); spa_close(spa, FTAG); umem_free(newname, strlen(newname) + 1); (void) rw_unlock(&ztest_name_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(char *pool) { int status; char zdb[MAXPATHLEN + MAXNAMELEN + 20]; char zbuf[1024]; char *bin; char *ztest; char *isa; int isalen; FILE *fp; (void) realpath(getexecname(), zdb); /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ bin = strstr(zdb, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 8; isalen = ztest - isa; isa = strdup(isa); /* LINTED */ (void) sprintf(bin, "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", isalen, isa, ztest_opts.zo_verbose >= 3 ? "s" : "", ztest_opts.zo_verbose >= 4 ? "v" : "", spa_config_path, pool); free(isa); if (ztest_opts.zo_verbose >= 5) (void) printf("Executing %s\n", strstr(zdb, "zdb ")); fp = popen(zdb, "r"); while (fgets(zbuf, sizeof (zbuf), fp) != NULL) if (ztest_opts.zo_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) return; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); } static void ztest_walk_pool_directory(char *header) { spa_t *spa = NULL; if (ztest_opts.zo_verbose >= 6) (void) printf("%s\n", header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (ztest_opts.zo_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (ztest_opts.zo_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT(newconfig != NULL); nvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL, 0); if (error != 0) { dump_nvlist(config, 0); fatal(B_FALSE, "couldn't import pool %s as %s: error %u", oldname, newname, error); } ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(pool_guid == spa_guid(spa)); spa_close(spa, FTAG); nvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static void * ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); } return (NULL); } static void * ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; spa_t *spa = ztest_spa; hrtime_t delta, total = 0; for (;;) { delta = zs->zs_thread_stop - zs->zs_thread_start + MSEC2NSEC(zfs_deadman_synctime_ms); (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); /* * If the pool is suspended then fail immediately. Otherwise, * check to see if the pool is making any progress. If * vdev_deadman() discovers that there hasn't been any recent * I/Os then it will end up aborting the tests. */ if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { fatal(0, "aborting test after %llu seconds because " "pool has transitioned to a suspended state.", zfs_deadman_synctime_ms / 1000); return (NULL); } vdev_deadman(spa->spa_root_vdev); total += zfs_deadman_synctime_ms/1000; (void) printf("ztest has been running for %lld seconds\n", total); } } static void ztest_execute(int test, ztest_info_t *zi, uint64_t id) { ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); hrtime_t functime = gethrtime(); for (int i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zc->zc_count, 1); atomic_add_64(&zc->zc_time, functime); if (ztest_opts.zo_verbose >= 4) { Dl_info dli; (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, dli.dli_sname); } } static void * ztest_thread(void *arg) { int rand; uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; ztest_shared_callstate_t *zc; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ rand = ztest_random(ZTEST_FUNCS); zi = &ztest_info[rand]; zc = ZTEST_GET_SHARED_CALLSTATE(rand); call_next = zc->zc_next; if (now >= call_next && atomic_cas_64(&zc->zc_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { ztest_execute(rand, zi, id); } } return (NULL); } static void ztest_dataset_name(char *dsname, char *pool, int d) { (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(int d) { char name[MAXNAMELEN]; ztest_dataset_name(name, ztest_opts.zo_pool, d); if (ztest_opts.zo_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (int t = d; t < ztest_opts.zo_threads; t += ztest_opts.zo_datasets) { ztest_dsl_dataset_cleanup(name, t); } (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(int d) { ztest_ds_t *zd = &ztest_ds[d]; uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; objset_t *os; zilog_t *zilog; char name[MAXNAMELEN]; int error; ztest_dataset_name(name, ztest_opts.zo_pool, d); (void) rw_rdlock(&ztest_name_lock); error = ztest_dataset_create(name); if (error == ENOSPC) { (void) rw_unlock(&ztest_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); (void) rw_unlock(&ztest_name_lock); ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(0, "missing log records: claimed %llu < committed %llu", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (ztest_opts.zo_verbose >= 6) (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", zd->zd_name, (u_longlong_t)zilog->zl_parse_blk_count, (u_longlong_t)zilog->zl_parse_lr_count, (u_longlong_t)zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(0, "missing log records: replayed %llu < committed %llu", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(int d) { ztest_ds_t *zd = &ztest_ds[d]; zil_close(zd->zd_zilog); dmu_objset_disown(zd->zd_os, zd); ztest_zd_fini(zd); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { thread_t *tid; spa_t *spa; objset_t *os; thread_t resume_tid; int error; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < ztest_opts.zo_killrate) { zs->zs_thread_kill -= ztest_random(ztest_opts.zo_passtime * NANOSEC); } (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. */ kernel_init(FREAD | FWRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); spa->spa_debug = B_TRUE; metaslab_preload_limit = ztest_random(20) + 1; ztest_spa = spa; VERIFY0(dmu_objset_own(ztest_opts.zo_pool, DMU_OST_ANY, B_TRUE, FTAG, &os)); zs->zs_guid = dmu_objset_fsid_guid(os); dmu_objset_disown(os, FTAG); spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ if (MAXFAULTS() == 0) spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; else spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; /* * Create a thread to periodically resume suspended I/O. */ VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, &resume_tid) == 0); /* * Create a deadman thread to abort() if we hang. */ VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, NULL) == 0); /* * Verify that we can safely inquire about about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (int t = 0; t < 64; t++) { for (int d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(ztest_opts.zo_datasets); ztest_dataset_destroy(d); } zs->zs_enospc_count = 0; tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), UMEM_NOFAIL); if (ztest_opts.zo_verbose >= 4) (void) printf("starting main threads...\n"); /* * Kick off all the tests that run in parallel. */ for (int t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) return; VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, THR_BOUND, &tid[t]) == 0); } /* * Wait for all of the tests to complete. We go in reverse order * so we don't close datasets while threads are still using them. */ for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { VERIFY(thr_join(tid[t], NULL, NULL) == 0); if (t < ztest_opts.zo_datasets) ztest_dataset_close(t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); zfs_dbgmsg_print(FTAG); umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); /* Kill the resume thread */ ztest_exiting = B_TRUE; VERIFY(thr_join(resume_tid, NULL, NULL) == 0); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (uint64_t object = 1; object < 50; object++) dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (ztest_opts.zo_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if (ztest_random(2) == 0) { char name[MAXNAMELEN]; (void) snprintf(name, MAXNAMELEN, "%s_import", ztest_opts.zo_pool); ztest_spa_import_export(ztest_opts.zo_pool, name); ztest_spa_import_export(name, ztest_opts.zo_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); (void) _mutex_destroy(&zcl.zcl_callbacks_lock); (void) rwlock_destroy(&ztest_name_lock); (void) _mutex_destroy(&ztest_vdev_lock); } static void ztest_freeze(void) { ztest_ds_t *zd = &ztest_ds[0]; spa_t *spa; int numloops = 0; if (ztest_opts.zo_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); VERIFY3U(0, ==, ztest_dataset_open(0)); spa->spa_debug = B_TRUE; ztest_spa = spa; /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Because it is hard to predict how much space a write will actually * require beforehand, we leave ourselves some fudge space to write over * capacity. */ uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. * * Run a random number of times less than zo_maxloops and ensure we do * not run out of space on the pool. */ while (ztest_random(10) != 0 && numloops++ < ztest_opts.zo_maxloops && metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { ztest_od_t od; ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); ztest_io(zd, od.od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); ASSERT(spa_freeze_txg(spa) == UINT64_MAX); VERIFY3U(0, ==, ztest_dataset_open(0)); ztest_dataset_close(0); spa->spa_debug = B_TRUE; ztest_spa = spa; txg_wait_synced(spa_get_dsl(spa), 0); ztest_reguid(NULL, 0); spa_close(spa, FTAG); kernel_fini(); } void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props() { nvlist_t *props; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); if (ztest_random(2) == 0) return (props); VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); return (props); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); kernel_init(FREAD | FWRITE); /* * Create the storage pool. */ (void) spa_destroy(ztest_opts.zo_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = ztest_opts.zo_mirrors; nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); props = make_random_props(); for (int i = 0; i < SPA_FEATURES; i++) { char buf[1024]; (void) snprintf(buf, sizeof (buf), "feature@%s", spa_feature_table[i].fi_uname); VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); } VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); (void) rwlock_destroy(&ztest_name_lock); (void) _mutex_destroy(&ztest_vdev_lock); } static void setup_data_fd(void) { static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; ztest_fd_data = mkstemp(ztest_name_data); ASSERT3S(ztest_fd_data, >=, 0); (void) unlink(ztest_name_data); } static int shared_data_size(ztest_shared_hdr_t *hdr) { int size; size = hdr->zh_hdr_size; size += hdr->zh_opts_size; size += hdr->zh_size; size += hdr->zh_stats_size * hdr->zh_stats_count; size += hdr->zh_ds_size * hdr->zh_ds_count; return (size); } static void setup_hdr(void) { int size; ztest_shared_hdr_t *hdr; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); hdr->zh_opts_size = sizeof (ztest_shared_opts_t); hdr->zh_size = sizeof (ztest_shared_t); hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); hdr->zh_stats_count = ZTEST_FUNCS; hdr->zh_ds_size = sizeof (ztest_shared_ds_t); hdr->zh_ds_count = ztest_opts.zo_datasets; size = shared_data_size(hdr); VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); } static void setup_data(void) { int size, offset; ztest_shared_hdr_t *hdr; uint8_t *buf; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); size = shared_data_size(hdr); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); buf = (uint8_t *)hdr; offset = hdr->zh_hdr_size; ztest_shared_opts = (void *)&buf[offset]; offset += hdr->zh_opts_size; ztest_shared = (void *)&buf[offset]; offset += hdr->zh_size; ztest_shared_callstate = (void *)&buf[offset]; offset += hdr->zh_stats_size * hdr->zh_stats_count; ztest_shared_ds = (void *)&buf[offset]; } static boolean_t exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) { pid_t pid; int status; char *cmdbuf = NULL; pid = fork(); if (cmd == NULL) { cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); cmd = cmdbuf; } if (pid == -1) fatal(1, "fork failed"); if (pid == 0) { /* child */ char *emptyargv[2] = { cmd, NULL }; char fd_data_str[12]; struct rlimit rl = { 1024, 1024 }; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) close(ztest_fd_rand); VERIFY3U(11, >=, snprintf(fd_data_str, 12, "%d", ztest_fd_data)); VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); (void) enable_extended_FILE_stdio(-1, -1); if (libpath != NULL) VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); (void) execv(cmd, emptyargv); ztest_dump_core = B_FALSE; fatal(B_TRUE, "exec failed: %s", cmd); } if (cmdbuf != NULL) { umem_free(cmdbuf, MAXPATHLEN); cmd = NULL; } while (waitpid(pid, &status, 0) != pid) continue; if (statusp != NULL) *statusp = status; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } return (B_FALSE); } else if (WIFSIGNALED(status)) { if (!ignorekill || WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } return (B_TRUE); } else { (void) fprintf(stderr, "something strange happened to child\n"); exit(4); /* NOTREACHED */ } } static void ztest_run_init(void) { ztest_shared_t *zs = ztest_shared; ASSERT(ztest_opts.zo_init != 0); /* * Blow away any existing copy of zpool.cache */ (void) remove(spa_config_path); /* * Create and initialize our storage pool. */ for (int i = 1; i <= ztest_opts.zo_init; i++) { bzero(zs, sizeof (ztest_shared_t)); if (ztest_opts.zo_verbose >= 3 && ztest_opts.zo_init != 1) { (void) printf("ztest_init(), pass %d\n", i); } ztest_init(zs); } } int main(int argc, char **argv) { int kills = 0; int iters = 0; int older = 0; int newer = 0; ztest_shared_t *zs; ztest_info_t *zi; ztest_shared_callstate_t *zc; char timebuf[100]; char numbuf[6]; spa_t *spa; char *cmd; boolean_t hasalt; char *fd_data_str = getenv("ZTEST_FD_DATA"); (void) setvbuf(stdout, NULL, _IOLBF, 0); dprintf_setup(&argc, argv); zfs_deadman_synctime_ms = 300000; ztest_fd_rand = open("/dev/urandom", O_RDONLY); ASSERT3S(ztest_fd_rand, >=, 0); if (!fd_data_str) { process_options(argc, argv); setup_data_fd(); setup_hdr(); setup_data(); bcopy(&ztest_opts, ztest_shared_opts, sizeof (*ztest_shared_opts)); } else { ztest_fd_data = atoi(fd_data_str); setup_data(); bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); } ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); /* Override location of zpool.cache */ VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", ztest_opts.zo_dir), !=, -1); ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), UMEM_NOFAIL); zs = ztest_shared; if (fd_data_str) { metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; metaslab_df_alloc_threshold = zs->zs_metaslab_df_alloc_threshold; if (zs->zs_do_init) ztest_run_init(); else ztest_run(zs); exit(0); } hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); if (ztest_opts.zo_verbose >= 1) { (void) printf("%llu vdevs, %d datasets, %d threads," " %llu seconds...\n", (u_longlong_t)ztest_opts.zo_vdevs, ztest_opts.zo_datasets, ztest_opts.zo_threads, (u_longlong_t)ztest_opts.zo_time); } cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); (void) strlcpy(cmd, getexecname(), MAXNAMELEN); zs->zs_do_init = B_TRUE; if (strlen(ztest_opts.zo_alt_ztest) != 0) { if (ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest for " "initialization: %s\n", ztest_opts.zo_alt_ztest); } VERIFY(!exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_FALSE, NULL)); } else { VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); } zs->zs_do_init = B_FALSE; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; for (int f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zc->zc_next = UINT64_MAX; else zc->zc_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; boolean_t killed; /* * Initialize the workload counters for each function. */ for (int f = 0; f < ZTEST_FUNCS; f++) { zc = ZTEST_GET_SHARED_CALLSTATE(f); zc->zc_count = 0; zc->zc_time = 0; } /* Set the allocation switch size */ zs->zs_metaslab_df_alloc_threshold = ztest_random(zs->zs_metaslab_sz / 4) + 1; if (!hasalt || ztest_random(2) == 0) { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing newer ztest: %s\n", cmd); } newer++; killed = exec_child(cmd, NULL, B_TRUE, &status); } else { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest: %s\n", ztest_opts.zo_alt_ztest); } older++; killed = exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_TRUE, &status); } if (killed) kills++; iters++; if (ztest_opts.zo_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf); (void) printf("Pass %3d, %8s, %3llu ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", (u_longlong_t)zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (ztest_opts.zo_time * NANOSEC), timebuf); } if (ztest_opts.zo_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (int f = 0; f < ZTEST_FUNCS; f++) { Dl_info dli; zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); print_time(zc->zc_time, timebuf); (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%7llu %9s %s\n", (u_longlong_t)zc->zc_count, timebuf, dli.dli_sname); } (void) printf("\n"); } /* * It's possible that we killed a child during a rename test, * in which case we'll have a 'ztest_tmp' pool lying around * instead of 'ztest'. Do a blind rename in case this happened. */ kernel_init(FREAD); if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { spa_close(spa, FTAG); } else { char tmpname[MAXNAMELEN]; kernel_fini(); kernel_init(FREAD | FWRITE); (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", ztest_opts.zo_pool); (void) spa_rename(tmpname, ztest_opts.zo_pool); } kernel_fini(); ztest_run_zdb(ztest_opts.zo_pool); } if (ztest_opts.zo_verbose >= 1) { if (hasalt) { (void) printf("%d runs of older ztest: %s\n", older, ztest_opts.zo_alt_ztest); (void) printf("%d runs of newer ztest: %s\n", newer, cmd); } (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } umem_free(cmd, MAXNAMELEN); return (0); } Index: vendor/illumos/dist/lib/libzfs/common/libzfs.h =================================================================== --- vendor/illumos/dist/lib/libzfs/common/libzfs.h (revision 274272) +++ vendor/illumos/dist/lib/libzfs/common/libzfs.h (revision 274273) @@ -1,768 +1,771 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright 2013 Nexenta Systems, Inc. All rights reserved. */ #ifndef _LIBZFS_H #define _LIBZFS_H #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Miscellaneous ZFS constants */ #define ZFS_MAXNAMELEN MAXNAMELEN #define ZPOOL_MAXNAMELEN MAXNAMELEN #define ZFS_MAXPROPLEN MAXPATHLEN #define ZPOOL_MAXPROPLEN MAXPATHLEN /* * libzfs errors */ typedef enum zfs_error { EZFS_SUCCESS = 0, /* no error -- success */ EZFS_NOMEM = 2000, /* out of memory */ EZFS_BADPROP, /* invalid property value */ EZFS_PROPREADONLY, /* cannot set readonly property */ EZFS_PROPTYPE, /* property does not apply to dataset type */ EZFS_PROPNONINHERIT, /* property is not inheritable */ EZFS_PROPSPACE, /* bad quota or reservation */ EZFS_BADTYPE, /* dataset is not of appropriate type */ EZFS_BUSY, /* pool or dataset is busy */ EZFS_EXISTS, /* pool or dataset already exists */ EZFS_NOENT, /* no such pool or dataset */ EZFS_BADSTREAM, /* bad backup stream */ EZFS_DSREADONLY, /* dataset is readonly */ EZFS_VOLTOOBIG, /* volume is too large for 32-bit system */ EZFS_INVALIDNAME, /* invalid dataset name */ EZFS_BADRESTORE, /* unable to restore to destination */ EZFS_BADBACKUP, /* backup failed */ EZFS_BADTARGET, /* bad attach/detach/replace target */ EZFS_NODEVICE, /* no such device in pool */ EZFS_BADDEV, /* invalid device to add */ EZFS_NOREPLICAS, /* no valid replicas */ EZFS_RESILVERING, /* currently resilvering */ EZFS_BADVERSION, /* unsupported version */ EZFS_POOLUNAVAIL, /* pool is currently unavailable */ EZFS_DEVOVERFLOW, /* too many devices in one vdev */ EZFS_BADPATH, /* must be an absolute path */ EZFS_CROSSTARGET, /* rename or clone across pool or dataset */ EZFS_ZONED, /* used improperly in local zone */ EZFS_MOUNTFAILED, /* failed to mount dataset */ EZFS_UMOUNTFAILED, /* failed to unmount dataset */ EZFS_UNSHARENFSFAILED, /* unshare(1M) failed */ EZFS_SHARENFSFAILED, /* share(1M) failed */ EZFS_PERM, /* permission denied */ EZFS_NOSPC, /* out of space */ EZFS_FAULT, /* bad address */ EZFS_IO, /* I/O error */ EZFS_INTR, /* signal received */ EZFS_ISSPARE, /* device is a hot spare */ EZFS_INVALCONFIG, /* invalid vdev configuration */ EZFS_RECURSIVE, /* recursive dependency */ EZFS_NOHISTORY, /* no history object */ EZFS_POOLPROPS, /* couldn't retrieve pool props */ EZFS_POOL_NOTSUP, /* ops not supported for this type of pool */ EZFS_POOL_INVALARG, /* invalid argument for this pool operation */ EZFS_NAMETOOLONG, /* dataset name is too long */ EZFS_OPENFAILED, /* open of device failed */ EZFS_NOCAP, /* couldn't get capacity */ EZFS_LABELFAILED, /* write of label failed */ EZFS_BADWHO, /* invalid permission who */ EZFS_BADPERM, /* invalid permission */ EZFS_BADPERMSET, /* invalid permission set name */ EZFS_NODELEGATION, /* delegated administration is disabled */ EZFS_UNSHARESMBFAILED, /* failed to unshare over smb */ EZFS_SHARESMBFAILED, /* failed to share over smb */ EZFS_BADCACHE, /* bad cache file */ EZFS_ISL2CACHE, /* device is for the level 2 ARC */ EZFS_VDEVNOTSUP, /* unsupported vdev type */ EZFS_NOTSUP, /* ops not supported on this dataset */ EZFS_ACTIVE_SPARE, /* pool has active shared spare devices */ EZFS_UNPLAYED_LOGS, /* log device has unplayed logs */ EZFS_REFTAG_RELE, /* snapshot release: tag not found */ EZFS_REFTAG_HOLD, /* snapshot hold: tag already exists */ EZFS_TAGTOOLONG, /* snapshot hold/rele: tag too long */ EZFS_PIPEFAILED, /* pipe create failed */ EZFS_THREADCREATEFAILED, /* thread create failed */ EZFS_POSTSPLIT_ONLINE, /* onlining a disk after splitting it */ EZFS_SCRUBBING, /* currently scrubbing */ EZFS_NO_SCRUB, /* no active scrub */ EZFS_DIFF, /* general failure of zfs diff */ EZFS_DIFFDATA, /* bad zfs diff data */ EZFS_POOLREADONLY, /* pool is in read-only mode */ EZFS_UNKNOWN } zfs_error_t; /* * The following data structures are all part * of the zfs_allow_t data structure which is * used for printing 'allow' permissions. * It is a linked list of zfs_allow_t's which * then contain avl tree's for user/group/sets/... * and each one of the entries in those trees have * avl tree's for the permissions they belong to and * whether they are local,descendent or local+descendent * permissions. The AVL trees are used primarily for * sorting purposes, but also so that we can quickly find * a given user and or permission. */ typedef struct zfs_perm_node { avl_node_t z_node; char z_pname[MAXPATHLEN]; } zfs_perm_node_t; typedef struct zfs_allow_node { avl_node_t z_node; char z_key[MAXPATHLEN]; /* name, such as joe */ avl_tree_t z_localdescend; /* local+descendent perms */ avl_tree_t z_local; /* local permissions */ avl_tree_t z_descend; /* descendent permissions */ } zfs_allow_node_t; typedef struct zfs_allow { struct zfs_allow *z_next; char z_setpoint[MAXPATHLEN]; avl_tree_t z_sets; avl_tree_t z_crperms; avl_tree_t z_user; avl_tree_t z_group; avl_tree_t z_everyone; } zfs_allow_t; /* * Basic handle types */ typedef struct zfs_handle zfs_handle_t; typedef struct zpool_handle zpool_handle_t; typedef struct libzfs_handle libzfs_handle_t; /* * Library initialization */ extern libzfs_handle_t *libzfs_init(void); extern void libzfs_fini(libzfs_handle_t *); extern libzfs_handle_t *zpool_get_handle(zpool_handle_t *); extern libzfs_handle_t *zfs_get_handle(zfs_handle_t *); extern void libzfs_print_on_error(libzfs_handle_t *, boolean_t); extern void zfs_save_arguments(int argc, char **, char *, int); extern int zpool_log_history(libzfs_handle_t *, const char *); extern int libzfs_errno(libzfs_handle_t *); extern const char *libzfs_error_action(libzfs_handle_t *); extern const char *libzfs_error_description(libzfs_handle_t *); extern int zfs_standard_error(libzfs_handle_t *, int, const char *); extern void libzfs_mnttab_init(libzfs_handle_t *); extern void libzfs_mnttab_fini(libzfs_handle_t *); extern void libzfs_mnttab_cache(libzfs_handle_t *, boolean_t); extern int libzfs_mnttab_find(libzfs_handle_t *, const char *, struct mnttab *); extern void libzfs_mnttab_add(libzfs_handle_t *, const char *, const char *, const char *); extern void libzfs_mnttab_remove(libzfs_handle_t *, const char *); /* * Basic handle functions */ extern zpool_handle_t *zpool_open(libzfs_handle_t *, const char *); extern zpool_handle_t *zpool_open_canfail(libzfs_handle_t *, const char *); extern void zpool_close(zpool_handle_t *); extern const char *zpool_get_name(zpool_handle_t *); extern int zpool_get_state(zpool_handle_t *); extern char *zpool_state_to_name(vdev_state_t, vdev_aux_t); extern void zpool_free_handles(libzfs_handle_t *); /* * Iterate over all active pools in the system. */ typedef int (*zpool_iter_f)(zpool_handle_t *, void *); extern int zpool_iter(libzfs_handle_t *, zpool_iter_f, void *); /* * Functions to create and destroy pools */ extern int zpool_create(libzfs_handle_t *, const char *, nvlist_t *, nvlist_t *, nvlist_t *); extern int zpool_destroy(zpool_handle_t *, const char *); extern int zpool_add(zpool_handle_t *, nvlist_t *); typedef struct splitflags { /* do not split, but return the config that would be split off */ int dryrun : 1; /* after splitting, import the pool */ int import : 1; } splitflags_t; /* * Functions to manipulate pool and vdev state */ extern int zpool_scan(zpool_handle_t *, pool_scan_func_t); extern int zpool_clear(zpool_handle_t *, const char *, nvlist_t *); extern int zpool_reguid(zpool_handle_t *); extern int zpool_reopen(zpool_handle_t *); extern int zpool_vdev_online(zpool_handle_t *, const char *, int, vdev_state_t *); extern int zpool_vdev_offline(zpool_handle_t *, const char *, boolean_t); extern int zpool_vdev_attach(zpool_handle_t *, const char *, const char *, nvlist_t *, int); extern int zpool_vdev_detach(zpool_handle_t *, const char *); extern int zpool_vdev_remove(zpool_handle_t *, const char *); extern int zpool_vdev_split(zpool_handle_t *, char *, nvlist_t **, nvlist_t *, splitflags_t); extern int zpool_vdev_fault(zpool_handle_t *, uint64_t, vdev_aux_t); extern int zpool_vdev_degrade(zpool_handle_t *, uint64_t, vdev_aux_t); extern int zpool_vdev_clear(zpool_handle_t *, uint64_t); extern nvlist_t *zpool_find_vdev(zpool_handle_t *, const char *, boolean_t *, boolean_t *, boolean_t *); extern nvlist_t *zpool_find_vdev_by_physpath(zpool_handle_t *, const char *, boolean_t *, boolean_t *, boolean_t *); extern int zpool_label_disk(libzfs_handle_t *, zpool_handle_t *, char *); /* * Functions to manage pool properties */ extern int zpool_set_prop(zpool_handle_t *, const char *, const char *); extern int zpool_get_prop(zpool_handle_t *, zpool_prop_t, char *, size_t proplen, zprop_source_t *, boolean_t); extern uint64_t zpool_get_prop_int(zpool_handle_t *, zpool_prop_t, zprop_source_t *); extern const char *zpool_prop_to_name(zpool_prop_t); extern const char *zpool_prop_values(zpool_prop_t); /* * Pool health statistics. */ typedef enum { /* * The following correspond to faults as defined in the (fault.fs.zfs.*) * event namespace. Each is associated with a corresponding message ID. */ ZPOOL_STATUS_CORRUPT_CACHE, /* corrupt /kernel/drv/zpool.cache */ ZPOOL_STATUS_MISSING_DEV_R, /* missing device with replicas */ ZPOOL_STATUS_MISSING_DEV_NR, /* missing device with no replicas */ ZPOOL_STATUS_CORRUPT_LABEL_R, /* bad device label with replicas */ ZPOOL_STATUS_CORRUPT_LABEL_NR, /* bad device label with no replicas */ ZPOOL_STATUS_BAD_GUID_SUM, /* sum of device guids didn't match */ ZPOOL_STATUS_CORRUPT_POOL, /* pool metadata is corrupted */ ZPOOL_STATUS_CORRUPT_DATA, /* data errors in user (meta)data */ ZPOOL_STATUS_FAILING_DEV, /* device experiencing errors */ ZPOOL_STATUS_VERSION_NEWER, /* newer on-disk version */ ZPOOL_STATUS_HOSTID_MISMATCH, /* last accessed by another system */ ZPOOL_STATUS_IO_FAILURE_WAIT, /* failed I/O, failmode 'wait' */ ZPOOL_STATUS_IO_FAILURE_CONTINUE, /* failed I/O, failmode 'continue' */ ZPOOL_STATUS_BAD_LOG, /* cannot read log chain(s) */ /* * If the pool has unsupported features but can still be opened in * read-only mode, its status is ZPOOL_STATUS_UNSUP_FEAT_WRITE. If the * pool has unsupported features but cannot be opened at all, its * status is ZPOOL_STATUS_UNSUP_FEAT_READ. */ ZPOOL_STATUS_UNSUP_FEAT_READ, /* unsupported features for read */ ZPOOL_STATUS_UNSUP_FEAT_WRITE, /* unsupported features for write */ /* * These faults have no corresponding message ID. At the time we are * checking the status, the original reason for the FMA fault (I/O or * checksum errors) has been lost. */ ZPOOL_STATUS_FAULTED_DEV_R, /* faulted device with replicas */ ZPOOL_STATUS_FAULTED_DEV_NR, /* faulted device with no replicas */ /* * The following are not faults per se, but still an error possibly * requiring administrative attention. There is no corresponding * message ID. */ ZPOOL_STATUS_VERSION_OLDER, /* older legacy on-disk version */ ZPOOL_STATUS_FEAT_DISABLED, /* supported features are disabled */ ZPOOL_STATUS_RESILVERING, /* device being resilvered */ ZPOOL_STATUS_OFFLINE_DEV, /* device online */ ZPOOL_STATUS_REMOVED_DEV, /* removed device */ /* * Finally, the following indicates a healthy pool. */ ZPOOL_STATUS_OK } zpool_status_t; extern zpool_status_t zpool_get_status(zpool_handle_t *, char **); extern zpool_status_t zpool_import_status(nvlist_t *, char **); extern void zpool_dump_ddt(const ddt_stat_t *dds, const ddt_histogram_t *ddh); /* * Statistics and configuration functions. */ extern nvlist_t *zpool_get_config(zpool_handle_t *, nvlist_t **); extern nvlist_t *zpool_get_features(zpool_handle_t *); extern int zpool_refresh_stats(zpool_handle_t *, boolean_t *); extern int zpool_get_errlog(zpool_handle_t *, nvlist_t **); /* * Import and export functions */ extern int zpool_export(zpool_handle_t *, boolean_t, const char *); extern int zpool_export_force(zpool_handle_t *, const char *); extern int zpool_import(libzfs_handle_t *, nvlist_t *, const char *, char *altroot); extern int zpool_import_props(libzfs_handle_t *, nvlist_t *, const char *, nvlist_t *, int); extern void zpool_print_unsup_feat(nvlist_t *config); /* * Search for pools to import */ typedef struct importargs { char **path; /* a list of paths to search */ int paths; /* number of paths to search */ char *poolname; /* name of a pool to find */ uint64_t guid; /* guid of a pool to find */ char *cachefile; /* cachefile to use for import */ int can_be_active : 1; /* can the pool be active? */ int unique : 1; /* does 'poolname' already exist? */ int exists : 1; /* set on return if pool already exists */ } importargs_t; extern nvlist_t *zpool_search_import(libzfs_handle_t *, importargs_t *); /* legacy pool search routines */ extern nvlist_t *zpool_find_import(libzfs_handle_t *, int, char **); extern nvlist_t *zpool_find_import_cached(libzfs_handle_t *, const char *, char *, uint64_t); /* * Miscellaneous pool functions */ struct zfs_cmd; extern const char *zfs_history_event_names[]; extern char *zpool_vdev_name(libzfs_handle_t *, zpool_handle_t *, nvlist_t *, boolean_t verbose); extern int zpool_upgrade(zpool_handle_t *, uint64_t); extern int zpool_get_history(zpool_handle_t *, nvlist_t **); extern int zpool_history_unpack(char *, uint64_t, uint64_t *, nvlist_t ***, uint_t *); extern void zpool_obj_to_path(zpool_handle_t *, uint64_t, uint64_t, char *, size_t len); extern int zfs_ioctl(libzfs_handle_t *, int, struct zfs_cmd *); extern int zpool_get_physpath(zpool_handle_t *, char *, size_t); extern void zpool_explain_recover(libzfs_handle_t *, const char *, int, nvlist_t *); /* * Basic handle manipulations. These functions do not create or destroy the * underlying datasets, only the references to them. */ extern zfs_handle_t *zfs_open(libzfs_handle_t *, const char *, int); extern zfs_handle_t *zfs_handle_dup(zfs_handle_t *); extern void zfs_close(zfs_handle_t *); extern zfs_type_t zfs_get_type(const zfs_handle_t *); extern const char *zfs_get_name(const zfs_handle_t *); extern zpool_handle_t *zfs_get_pool_handle(const zfs_handle_t *); /* * Property management functions. Some functions are shared with the kernel, * and are found in sys/fs/zfs.h. */ /* * zfs dataset property management */ extern const char *zfs_prop_default_string(zfs_prop_t); extern uint64_t zfs_prop_default_numeric(zfs_prop_t); extern const char *zfs_prop_column_name(zfs_prop_t); extern boolean_t zfs_prop_align_right(zfs_prop_t); extern nvlist_t *zfs_valid_proplist(libzfs_handle_t *, zfs_type_t, nvlist_t *, uint64_t, zfs_handle_t *, const char *); extern const char *zfs_prop_to_name(zfs_prop_t); extern int zfs_prop_set(zfs_handle_t *, const char *, const char *); extern int zfs_prop_get(zfs_handle_t *, zfs_prop_t, char *, size_t, zprop_source_t *, char *, size_t, boolean_t); extern int zfs_prop_get_recvd(zfs_handle_t *, const char *, char *, size_t, boolean_t); extern int zfs_prop_get_numeric(zfs_handle_t *, zfs_prop_t, uint64_t *, zprop_source_t *, char *, size_t); extern int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue); extern int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal); extern int zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue); extern int zfs_prop_get_written(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal); extern int zfs_prop_get_feature(zfs_handle_t *zhp, const char *propname, char *buf, size_t len); extern uint64_t zfs_prop_get_int(zfs_handle_t *, zfs_prop_t); extern int zfs_prop_inherit(zfs_handle_t *, const char *, boolean_t); extern const char *zfs_prop_values(zfs_prop_t); extern int zfs_prop_is_string(zfs_prop_t prop); extern nvlist_t *zfs_get_user_props(zfs_handle_t *); extern nvlist_t *zfs_get_recvd_props(zfs_handle_t *); extern nvlist_t *zfs_get_clones_nvl(zfs_handle_t *); typedef struct zprop_list { int pl_prop; char *pl_user_prop; struct zprop_list *pl_next; boolean_t pl_all; size_t pl_width; size_t pl_recvd_width; boolean_t pl_fixed; } zprop_list_t; extern int zfs_expand_proplist(zfs_handle_t *, zprop_list_t **, boolean_t, boolean_t); extern void zfs_prune_proplist(zfs_handle_t *, uint8_t *); #define ZFS_MOUNTPOINT_NONE "none" #define ZFS_MOUNTPOINT_LEGACY "legacy" #define ZFS_FEATURE_DISABLED "disabled" #define ZFS_FEATURE_ENABLED "enabled" #define ZFS_FEATURE_ACTIVE "active" #define ZFS_UNSUPPORTED_INACTIVE "inactive" #define ZFS_UNSUPPORTED_READONLY "readonly" /* * zpool property management */ extern int zpool_expand_proplist(zpool_handle_t *, zprop_list_t **); extern int zpool_prop_get_feature(zpool_handle_t *, const char *, char *, size_t); extern const char *zpool_prop_default_string(zpool_prop_t); extern uint64_t zpool_prop_default_numeric(zpool_prop_t); extern const char *zpool_prop_column_name(zpool_prop_t); extern boolean_t zpool_prop_align_right(zpool_prop_t); /* * Functions shared by zfs and zpool property management. */ extern int zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered, zfs_type_t type); extern int zprop_get_list(libzfs_handle_t *, char *, zprop_list_t **, zfs_type_t); extern void zprop_free_list(zprop_list_t *); #define ZFS_GET_NCOLS 5 typedef enum { GET_COL_NONE, GET_COL_NAME, GET_COL_PROPERTY, GET_COL_VALUE, GET_COL_RECVD, GET_COL_SOURCE } zfs_get_column_t; /* * Functions for printing zfs or zpool properties */ typedef struct zprop_get_cbdata { int cb_sources; zfs_get_column_t cb_columns[ZFS_GET_NCOLS]; int cb_colwidths[ZFS_GET_NCOLS + 1]; boolean_t cb_scripted; boolean_t cb_literal; boolean_t cb_first; zprop_list_t *cb_proplist; zfs_type_t cb_type; } zprop_get_cbdata_t; void zprop_print_one_property(const char *, zprop_get_cbdata_t *, const char *, const char *, zprop_source_t, const char *, const char *); /* * Iterator functions. */ typedef int (*zfs_iter_f)(zfs_handle_t *, void *); extern int zfs_iter_root(libzfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_children(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_dependents(zfs_handle_t *, boolean_t, zfs_iter_f, void *); extern int zfs_iter_filesystems(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_snapshots(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_snapshots_sorted(zfs_handle_t *, zfs_iter_f, void *); extern int zfs_iter_snapspec(zfs_handle_t *, const char *, zfs_iter_f, void *); extern int zfs_iter_bookmarks(zfs_handle_t *, zfs_iter_f, void *); typedef struct get_all_cb { zfs_handle_t **cb_handles; size_t cb_alloc; size_t cb_used; boolean_t cb_verbose; int (*cb_getone)(zfs_handle_t *, void *); } get_all_cb_t; void libzfs_add_handle(get_all_cb_t *, zfs_handle_t *); int libzfs_dataset_cmp(const void *, const void *); /* * Functions to create and destroy datasets. */ extern int zfs_create(libzfs_handle_t *, const char *, zfs_type_t, nvlist_t *); extern int zfs_create_ancestors(libzfs_handle_t *, const char *); extern int zfs_destroy(zfs_handle_t *, boolean_t); extern int zfs_destroy_snaps(zfs_handle_t *, char *, boolean_t); extern int zfs_destroy_snaps_nvl(libzfs_handle_t *, nvlist_t *, boolean_t); extern int zfs_clone(zfs_handle_t *, const char *, nvlist_t *); extern int zfs_snapshot(libzfs_handle_t *, const char *, boolean_t, nvlist_t *); extern int zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props); extern int zfs_rollback(zfs_handle_t *, zfs_handle_t *, boolean_t); extern int zfs_rename(zfs_handle_t *, const char *, boolean_t, boolean_t); typedef struct sendflags { /* print informational messages (ie, -v was specified) */ boolean_t verbose; /* recursive send (ie, -R) */ boolean_t replicate; /* for incrementals, do all intermediate snapshots */ boolean_t doall; /* if dataset is a clone, do incremental from its origin */ boolean_t fromorigin; /* do deduplication */ boolean_t dedup; /* send properties (ie, -p) */ boolean_t props; /* do not send (no-op, ie. -n) */ boolean_t dryrun; /* parsable verbose output (ie. -P) */ boolean_t parsable; /* show progress (ie. -v) */ boolean_t progress; + /* large blocks (>128K) are permitted */ + boolean_t largeblock; + /* WRITE_EMBEDDED records of type DATA are permitted */ boolean_t embed_data; } sendflags_t; typedef boolean_t (snapfilter_cb_t)(zfs_handle_t *, void *); extern int zfs_send(zfs_handle_t *, const char *, const char *, sendflags_t *, int, snapfilter_cb_t, void *, nvlist_t **); extern int zfs_send_one(zfs_handle_t *, const char *, int, enum lzc_send_flags); extern int zfs_promote(zfs_handle_t *); extern int zfs_hold(zfs_handle_t *, const char *, const char *, boolean_t, int); extern int zfs_hold_nvl(zfs_handle_t *, int, nvlist_t *); extern int zfs_release(zfs_handle_t *, const char *, const char *, boolean_t); extern int zfs_get_holds(zfs_handle_t *, nvlist_t **); extern uint64_t zvol_volsize_to_reservation(uint64_t, nvlist_t *); typedef int (*zfs_userspace_cb_t)(void *arg, const char *domain, uid_t rid, uint64_t space); extern int zfs_userspace(zfs_handle_t *, zfs_userquota_prop_t, zfs_userspace_cb_t, void *); extern int zfs_get_fsacl(zfs_handle_t *, nvlist_t **); extern int zfs_set_fsacl(zfs_handle_t *, boolean_t, nvlist_t *); typedef struct recvflags { /* print informational messages (ie, -v was specified) */ boolean_t verbose; /* the destination is a prefix, not the exact fs (ie, -d) */ boolean_t isprefix; /* * Only the tail of the sent snapshot path is appended to the * destination to determine the received snapshot name (ie, -e). */ boolean_t istail; /* do not actually do the recv, just check if it would work (ie, -n) */ boolean_t dryrun; /* rollback/destroy filesystems as necessary (eg, -F) */ boolean_t force; /* set "canmount=off" on all modified filesystems */ boolean_t canmountoff; /* byteswap flag is used internally; callers need not specify */ boolean_t byteswap; /* do not mount file systems as they are extracted (private) */ boolean_t nomount; } recvflags_t; extern int zfs_receive(libzfs_handle_t *, const char *, recvflags_t *, int, avl_tree_t *); typedef enum diff_flags { ZFS_DIFF_PARSEABLE = 0x1, ZFS_DIFF_TIMESTAMP = 0x2, ZFS_DIFF_CLASSIFY = 0x4 } diff_flags_t; extern int zfs_show_diffs(zfs_handle_t *, int, const char *, const char *, int); /* * Miscellaneous functions. */ extern const char *zfs_type_to_name(zfs_type_t); extern void zfs_refresh_properties(zfs_handle_t *); extern int zfs_name_valid(const char *, zfs_type_t); extern zfs_handle_t *zfs_path_to_zhandle(libzfs_handle_t *, char *, zfs_type_t); extern boolean_t zfs_dataset_exists(libzfs_handle_t *, const char *, zfs_type_t); extern int zfs_spa_version(zfs_handle_t *, int *); extern boolean_t zfs_bookmark_exists(const char *path); /* * Mount support functions. */ extern boolean_t is_mounted(libzfs_handle_t *, const char *special, char **); extern boolean_t zfs_is_mounted(zfs_handle_t *, char **); extern int zfs_mount(zfs_handle_t *, const char *, int); extern int zfs_unmount(zfs_handle_t *, const char *, int); extern int zfs_unmountall(zfs_handle_t *, int); /* * Share support functions. */ extern boolean_t zfs_is_shared(zfs_handle_t *); extern int zfs_share(zfs_handle_t *); extern int zfs_unshare(zfs_handle_t *); /* * Protocol-specific share support functions. */ extern boolean_t zfs_is_shared_nfs(zfs_handle_t *, char **); extern boolean_t zfs_is_shared_smb(zfs_handle_t *, char **); extern int zfs_share_nfs(zfs_handle_t *); extern int zfs_share_smb(zfs_handle_t *); extern int zfs_shareall(zfs_handle_t *); extern int zfs_unshare_nfs(zfs_handle_t *, const char *); extern int zfs_unshare_smb(zfs_handle_t *, const char *); extern int zfs_unshareall_nfs(zfs_handle_t *); extern int zfs_unshareall_smb(zfs_handle_t *); extern int zfs_unshareall_bypath(zfs_handle_t *, const char *); extern int zfs_unshareall(zfs_handle_t *); extern int zfs_deleg_share_nfs(libzfs_handle_t *, char *, char *, char *, void *, void *, int, zfs_share_op_t); /* * When dealing with nvlists, verify() is extremely useful */ #ifdef NDEBUG #define verify(EX) ((void)(EX)) #else #define verify(EX) assert(EX) #endif /* * Utility function to convert a number to a human-readable form. */ extern void zfs_nicenum(uint64_t, char *, size_t); extern int zfs_nicestrtonum(libzfs_handle_t *, const char *, uint64_t *); /* * Given a device or file, determine if it is part of a pool. */ extern int zpool_in_use(libzfs_handle_t *, int, pool_state_t *, char **, boolean_t *); /* * Label manipulation. */ extern int zpool_read_label(int, nvlist_t **); extern int zpool_clear_label(int); /* is this zvol valid for use as a dump device? */ extern int zvol_check_dump_config(char *); /* * Management interfaces for SMB ACL files */ int zfs_smb_acl_add(libzfs_handle_t *, char *, char *, char *); int zfs_smb_acl_remove(libzfs_handle_t *, char *, char *, char *); int zfs_smb_acl_purge(libzfs_handle_t *, char *, char *); int zfs_smb_acl_rename(libzfs_handle_t *, char *, char *, char *, char *); /* * Enable and disable datasets within a pool by mounting/unmounting and * sharing/unsharing them. */ extern int zpool_enable_datasets(zpool_handle_t *, const char *, int); extern int zpool_disable_datasets(zpool_handle_t *, boolean_t); /* * Mappings between vdev and FRU. */ extern void libzfs_fru_refresh(libzfs_handle_t *); extern const char *libzfs_fru_lookup(libzfs_handle_t *, const char *); extern const char *libzfs_fru_devpath(libzfs_handle_t *, const char *); extern boolean_t libzfs_fru_compare(libzfs_handle_t *, const char *, const char *); extern boolean_t libzfs_fru_notself(libzfs_handle_t *, const char *); extern int zpool_fru_set(zpool_handle_t *, uint64_t, const char *); #ifdef __cplusplus } #endif #endif /* _LIBZFS_H */ Index: vendor/illumos/dist/lib/libzfs/common/libzfs_dataset.c =================================================================== --- vendor/illumos/dist/lib/libzfs/common/libzfs_dataset.c (revision 274272) +++ vendor/illumos/dist/lib/libzfs/common/libzfs_dataset.c (revision 274273) @@ -1,4611 +1,4625 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2012 DEY Storage Systems, Inc. All rights reserved. * Copyright (c) 2013 Martin Matuska. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright 2013 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_deleg.h" static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp); /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); } return (NULL); } /* * Given a path and mask of ZFS types, return a string describing this dataset. * This is used when we fail to open a dataset and we cannot get an exact type. * We guess what the type would have been based on the path and the mask of * acceptable types. */ static const char * path_to_str(const char *path, int types) { /* * When given a single type, always report the exact type. */ if (types == ZFS_TYPE_SNAPSHOT) return (dgettext(TEXT_DOMAIN, "snapshot")); if (types == ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); if (types == ZFS_TYPE_VOLUME) return (dgettext(TEXT_DOMAIN, "volume")); /* * The user is requesting more than one type of dataset. If this is the * case, consult the path itself. If we're looking for a snapshot, and * a '@' is found, then report it as "snapshot". Otherwise, remove the * snapshot attribute and try again. */ if (types & ZFS_TYPE_SNAPSHOT) { if (strchr(path, '@') != NULL) return (dgettext(TEXT_DOMAIN, "snapshot")); return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT)); } /* * The user has requested either filesystems or volumes. * We have no way of knowing a priori what type this would be, so always * report it as "filesystem" or "volume", our two primitive types. */ if (types & ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); assert(types & ZFS_TYPE_VOLUME); return (dgettext(TEXT_DOMAIN, "volume")); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We call zfs_error_aux() to * explain exactly why the name was not valid. */ int zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type, boolean_t modifying) { namecheck_err_t why; char what; (void) zfs_prop_get_table(); if (dataset_namecheck(path, &why, &what) != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in name"), what); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool doesn't begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "reserved disk name")); break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot delimiter '@' in filesystem name")); return (0); } if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing '@' delimiter in snapshot name")); return (0); } if (modifying && strchr(path, '%') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character %c in name"), '%'); return (0); } return (-1); } int zfs_name_valid(const char *name, zfs_type_t type) { if (type == ZFS_TYPE_POOL) return (zpool_name_valid(NULL, B_FALSE, name)); return (zfs_validate_name(NULL, name, type, B_FALSE)); } /* * This function takes the raw DSL properties, and filters out the user-defined * properties into a separate nvlist. */ static nvlist_t * process_user_props(zfs_handle_t *zhp, nvlist_t *props) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvpair_t *elem; nvlist_t *propval; nvlist_t *nvl; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { if (!zfs_prop_user(nvpair_name(elem))) continue; verify(nvpair_value_nvlist(elem, &propval) == 0); if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) { nvlist_free(nvl); (void) no_memory(hdl); return (NULL); } } return (nvl); } static zpool_handle_t * zpool_add_handle(zfs_handle_t *zhp, const char *pool_name) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph; if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) { if (hdl->libzfs_pool_handles != NULL) zph->zpool_next = hdl->libzfs_pool_handles; hdl->libzfs_pool_handles = zph; } return (zph); } static zpool_handle_t * zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph = hdl->libzfs_pool_handles; while ((zph != NULL) && (strncmp(pool_name, zpool_get_name(zph), len) != 0)) zph = zph->zpool_next; return (zph); } /* * Returns a handle to the pool that contains the provided dataset. * If a handle to that pool already exists then that handle is returned. * Otherwise, a new handle is created and added to the list of handles. */ static zpool_handle_t * zpool_handle(zfs_handle_t *zhp) { char *pool_name; int len; zpool_handle_t *zph; len = strcspn(zhp->zfs_name, "/@#") + 1; pool_name = zfs_alloc(zhp->zfs_hdl, len); (void) strlcpy(pool_name, zhp->zfs_name, len); zph = zpool_find_handle(zhp, pool_name, len); if (zph == NULL) zph = zpool_add_handle(zhp, pool_name); free(pool_name); return (zph); } void zpool_free_handles(libzfs_handle_t *hdl) { zpool_handle_t *next, *zph = hdl->libzfs_pool_handles; while (zph != NULL) { next = zph->zpool_next; zpool_close(zph); zph = next; } hdl->libzfs_pool_handles = NULL; } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc) { libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, zc) != 0) { return (-1); } } else { return (-1); } } return (0); } /* * Utility function to get the received properties of the given object. */ static int get_recvd_props_ioctl(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *recvdprops; zfs_cmd_t zc = { 0 }; int err; if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_RECVD_PROPS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } err = zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &recvdprops); zcmd_free_nvlists(&zc); if (err != 0) return (-1); nvlist_free(zhp->zfs_recvd_props); zhp->zfs_recvd_props = recvdprops; return (0); } static int put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc) { nvlist_t *allprops, *userprops; zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */ if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) { return (-1); } /* * XXX Why do we store the user props separately, in addition to * storing them in zfs_props? */ if ((userprops = process_user_props(zhp, allprops)) == NULL) { nvlist_free(allprops); return (-1); } nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); zhp->zfs_props = allprops; zhp->zfs_user_props = userprops; return (0); } static int get_stats(zfs_handle_t *zhp) { int rc = 0; zfs_cmd_t zc = { 0 }; if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); if (get_stats_ioctl(zhp, &zc) != 0) rc = -1; else if (put_stats_zhdl(zhp, &zc) != 0) rc = -1; zcmd_free_nvlists(&zc); return (rc); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ static int make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc) { if (put_stats_zhdl(zhp, zc) != 0) return (-1); /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_head_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM; else abort(); if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else abort(); /* we should never see any other types */ if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL) return (-1); return (0); } zfs_handle_t * make_dataset_handle(libzfs_handle_t *hdl, const char *path) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) { free(zhp); return (NULL); } if (get_stats_ioctl(zhp, &zc) == -1) { zcmd_free_nvlists(&zc); free(zhp); return (NULL); } if (make_dataset_handle_common(zhp, &zc) == -1) { free(zhp); zhp = NULL; } zcmd_free_nvlists(&zc); return (zhp); } zfs_handle_t * make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name)); if (make_dataset_handle_common(zhp, zc) == -1) { free(zhp); return (NULL); } return (zhp); } zfs_handle_t * zfs_handle_dup(zfs_handle_t *zhp_orig) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = zhp_orig->zfs_hdl; zhp->zpool_hdl = zhp_orig->zpool_hdl; (void) strlcpy(zhp->zfs_name, zhp_orig->zfs_name, sizeof (zhp->zfs_name)); zhp->zfs_type = zhp_orig->zfs_type; zhp->zfs_head_type = zhp_orig->zfs_head_type; zhp->zfs_dmustats = zhp_orig->zfs_dmustats; if (zhp_orig->zfs_props != NULL) { if (nvlist_dup(zhp_orig->zfs_props, &zhp->zfs_props, 0) != 0) { (void) no_memory(zhp->zfs_hdl); zfs_close(zhp); return (NULL); } } if (zhp_orig->zfs_user_props != NULL) { if (nvlist_dup(zhp_orig->zfs_user_props, &zhp->zfs_user_props, 0) != 0) { (void) no_memory(zhp->zfs_hdl); zfs_close(zhp); return (NULL); } } if (zhp_orig->zfs_recvd_props != NULL) { if (nvlist_dup(zhp_orig->zfs_recvd_props, &zhp->zfs_recvd_props, 0)) { (void) no_memory(zhp->zfs_hdl); zfs_close(zhp); return (NULL); } } zhp->zfs_mntcheck = zhp_orig->zfs_mntcheck; if (zhp_orig->zfs_mntopts != NULL) { zhp->zfs_mntopts = zfs_strdup(zhp_orig->zfs_hdl, zhp_orig->zfs_mntopts); } zhp->zfs_props_table = zhp_orig->zfs_props_table; return (zhp); } boolean_t zfs_bookmark_exists(const char *path) { nvlist_t *bmarks; nvlist_t *props; char fsname[ZFS_MAXNAMELEN]; char *bmark_name; char *pound; int err; boolean_t rv; (void) strlcpy(fsname, path, sizeof (fsname)); pound = strchr(fsname, '#'); if (pound == NULL) return (B_FALSE); *pound = '\0'; bmark_name = pound + 1; props = fnvlist_alloc(); err = lzc_get_bookmarks(fsname, props, &bmarks); nvlist_free(props); if (err != 0) { nvlist_free(bmarks); return (B_FALSE); } rv = nvlist_exists(bmarks, bmark_name); nvlist_free(bmarks); return (rv); } zfs_handle_t * make_bookmark_handle(zfs_handle_t *parent, const char *path, nvlist_t *bmark_props) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); /* Fill in the name. */ zhp->zfs_hdl = parent->zfs_hdl; (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); /* Set the property lists. */ if (nvlist_dup(bmark_props, &zhp->zfs_props, 0) != 0) { free(zhp); return (NULL); } /* Set the types. */ zhp->zfs_head_type = parent->zfs_head_type; zhp->zfs_type = ZFS_TYPE_BOOKMARK; if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL) { nvlist_free(zhp->zfs_props); free(zhp); return (NULL); } return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(libzfs_handle_t *hdl, const char *path, int types) { zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); /* * Validate the name before we even try to open it. */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(hdl, path)) == NULL) { (void) zfs_standard_error(hdl, errno, errbuf); return (NULL); } if (!(types & zhp->zfs_type)) { (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); nvlist_free(zhp->zfs_recvd_props); free(zhp); } typedef struct mnttab_node { struct mnttab mtn_mt; avl_node_t mtn_node; } mnttab_node_t; static int libzfs_mnttab_cache_compare(const void *arg1, const void *arg2) { const mnttab_node_t *mtn1 = arg1; const mnttab_node_t *mtn2 = arg2; int rv; rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } void libzfs_mnttab_init(libzfs_handle_t *hdl) { assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0); avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare, sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node)); } void libzfs_mnttab_update(libzfs_handle_t *hdl) { struct mnttab entry; rewind(hdl->libzfs_mnttab); while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { mnttab_node_t *mtn; if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } } void libzfs_mnttab_fini(libzfs_handle_t *hdl) { void *cookie = NULL; mnttab_node_t *mtn; while (mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie)) { free(mtn->mtn_mt.mnt_special); free(mtn->mtn_mt.mnt_mountp); free(mtn->mtn_mt.mnt_fstype); free(mtn->mtn_mt.mnt_mntopts); free(mtn); } avl_destroy(&hdl->libzfs_mnttab_cache); } void libzfs_mnttab_cache(libzfs_handle_t *hdl, boolean_t enable) { hdl->libzfs_mnttab_enable = enable; } int libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname, struct mnttab *entry) { mnttab_node_t find; mnttab_node_t *mtn; if (!hdl->libzfs_mnttab_enable) { struct mnttab srch = { 0 }; if (avl_numnodes(&hdl->libzfs_mnttab_cache)) libzfs_mnttab_fini(hdl); rewind(hdl->libzfs_mnttab); srch.mnt_special = (char *)fsname; srch.mnt_fstype = MNTTYPE_ZFS; if (getmntany(hdl->libzfs_mnttab, entry, &srch) == 0) return (0); else return (ENOENT); } if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) libzfs_mnttab_update(hdl); find.mtn_mt.mnt_special = (char *)fsname; mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL); if (mtn) { *entry = mtn->mtn_mt; return (0); } return (ENOENT); } void libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special, const char *mountp, const char *mntopts) { mnttab_node_t *mtn; if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) return; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } void libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname) { mnttab_node_t find; mnttab_node_t *ret; find.mtn_mt.mnt_special = (char *)fsname; if (ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL)) { avl_remove(&hdl->libzfs_mnttab_cache, ret); free(ret->mtn_mt.mnt_special); free(ret->mtn_mt.mnt_mountp); free(ret->mtn_mt.mnt_fstype); free(ret->mtn_mt.mnt_mntopts); free(ret); } } int zfs_spa_version(zfs_handle_t *zhp, int *spa_version) { zpool_handle_t *zpool_handle = zhp->zpool_hdl; if (zpool_handle == NULL) return (-1); *spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); return (0); } /* * The choice of reservation property depends on the SPA version. */ static int zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop) { int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); if (spa_version >= SPA_VERSION_REFRESERVATION) *resv_prop = ZFS_PROP_REFRESERVATION; else *resv_prop = ZFS_PROP_RESERVATION; return (0); } /* * Given an nvlist of properties to set, validates that they are correct, and * parses any numeric properties (index, boolean, etc) if they are specified as * strings. */ nvlist_t * zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) { nvpair_t *elem; uint64_t intval; char *strval; zfs_prop_t prop; nvlist_t *ret; int chosen_normal = -1; int chosen_utf = -1; if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } /* * Make sure this property is valid and applies to this type. */ elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); prop = zfs_name_to_prop(propname); if (prop == ZPROP_INVAL && zfs_prop_user(propname)) { /* * This is a user property: make sure it's a * string, and that it's less than ZAP_MAXNAMELEN. */ if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property name '%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Currently, only user properties can be modified on * snapshots. */ if (type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "this property can not be modified for snapshots")); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (prop == ZPROP_INVAL && zfs_prop_userquota(propname)) { zfs_userquota_prop_t uqtype; char newpropname[128]; char domain[128]; uint64_t rid; uint64_t valary[3]; if (userquota_propname_decode(propname, zoned, &uqtype, domain, sizeof (domain), &rid) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' has an invalid user/group name"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (uqtype != ZFS_PROP_USERQUOTA && uqtype != ZFS_PROP_GROUPQUOTA) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (nvpair_type(elem) == DATA_TYPE_STRING) { (void) nvpair_value_string(elem, &strval); if (strcmp(strval, "none") == 0) { intval = 0; } else if (zfs_nicestrtonum(hdl, strval, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { (void) nvpair_value_uint64(elem, &intval); if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "use 'none' to disable " "userquota/groupquota")); goto error; } } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a number"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * Encode the prop name as * userquota@-domain, to make it easy * for the kernel to decode. */ (void) snprintf(newpropname, sizeof (newpropname), "%s%llx-%s", zfs_userquota_prop_prefixes[uqtype], (longlong_t)rid, domain); valary[0] = uqtype; valary[1] = rid; valary[2] = intval; if (nvlist_add_uint64_array(ret, newpropname, valary, 3) != 0) { (void) no_memory(hdl); goto error; } continue; } else if (prop == ZPROP_INVAL && zfs_prop_written(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (prop == ZPROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (!zfs_prop_valid_for_type(prop, type)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' does not " "apply to datasets of this type"), propname); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (zfs_prop_readonly(prop) && (!zfs_prop_setonce(prop) || zhp != NULL)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, type, ret, &strval, &intval, errbuf) != 0) goto error; /* * Perform some additional checks for specific properties. */ switch (prop) { case ZFS_PROP_VERSION: { int version; if (zhp == NULL) break; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (intval < version) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Can not downgrade; already at version %u"), version); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } - case ZFS_PROP_RECORDSIZE: case ZFS_PROP_VOLBLOCKSIZE: - /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ + case ZFS_PROP_RECORDSIZE: + { + int maxbs = SPA_MAXBLOCKSIZE; + if (zhp != NULL) { + maxbs = zpool_get_prop_int(zhp->zpool_hdl, + ZPOOL_PROP_MAXBLOCKSIZE, NULL); + } + /* + * Volumes are limited to a volblocksize of 128KB, + * because they typically service workloads with + * small random writes, which incur a large performance + * penalty with large blocks. + */ + if (prop == ZFS_PROP_VOLBLOCKSIZE) + maxbs = SPA_OLD_MAXBLOCKSIZE; + /* + * The value must be a power of two between + * SPA_MINBLOCKSIZE and maxbs. + */ if (intval < SPA_MINBLOCKSIZE || - intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) { + intval > maxbs || !ISP2(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, - "'%s' must be power of 2 from %u " - "to %uk"), propname, - (uint_t)SPA_MINBLOCKSIZE, - (uint_t)SPA_MAXBLOCKSIZE >> 10); + "'%s' must be power of 2 from 512B " + "to %uKB"), propname, maxbs >> 10); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; - + } case ZFS_PROP_MLSLABEL: { /* * Verify the mlslabel string and convert to * internal hex label string. */ m_label_t *new_sl; char *hex = NULL; /* internal label string */ /* Default value is already OK. */ if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) break; /* Verify the label can be converted to binary form */ if (((new_sl = m_label_alloc(MAC_LABEL)) == NULL) || (str_to_label(strval, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1)) { goto badlabel; } /* Now translate to hex internal label string */ if (label_to_str(new_sl, &hex, M_INTERNAL, DEF_NAMES) != 0) { if (hex) free(hex); goto badlabel; } m_label_free(new_sl); /* If string is already in internal form, we're done. */ if (strcmp(strval, hex) == 0) { free(hex); break; } /* Replace the label string with the internal form. */ (void) nvlist_remove(ret, zfs_prop_to_name(prop), DATA_TYPE_STRING); verify(nvlist_add_string(ret, zfs_prop_to_name(prop), hex) == 0); free(hex); break; badlabel: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid mlslabel '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); m_label_free(new_sl); /* OK if null */ goto error; } case ZFS_PROP_MOUNTPOINT: { namecheck_err_t why; if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (mountpoint_namecheck(strval, &why)) { switch (why) { case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be an absolute path, " "'none', or 'legacy'"), propname); break; case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "component of '%s' is too long"), propname); break; } (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } /*FALLTHRU*/ case ZFS_PROP_SHARESMB: case ZFS_PROP_SHARENFS: /* * For the mountpoint and sharenfs or sharesmb * properties, check if it can be set in a * global/non-global zone based on * the zoned property value: * * global zone non-global zone * -------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * sharesmb (no) sharesmb (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) * sharesmb (yes) */ if (zoned) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set on " "dataset in a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } else if (prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set in " "a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a global zone. If not, something is wrong. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set while dataset " "'zoned' property is set"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * At this point, it is legitimate to set the * property. Now we want to make sure that the * property value is valid if it is sharenfs. */ if ((prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) && strcmp(strval, "on") != 0 && strcmp(strval, "off") != 0) { zfs_share_proto_t proto; if (prop == ZFS_PROP_SHARESMB) proto = PROTO_SMB; else proto = PROTO_NFS; /* * Must be an valid sharing protocol * option string so init the libshare * in order to enable the parser and * then parse the options. We use the * control API since we don't care about * the current configuration and don't * want the overhead of loading it * until we actually do something. */ if (zfs_init_libshare(hdl, SA_INIT_CONTROL_API) != SA_OK) { /* * An error occurred so we can't do * anything */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set: problem " "in share initialization"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zfs_parse_options(strval, proto) != SA_OK) { /* * There was an error in parsing so * deal with it by issuing an error * message and leaving after * uninitializing the the libshare * interface. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set to invalid " "options"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); zfs_uninit_libshare(hdl); goto error; } zfs_uninit_libshare(hdl); } break; case ZFS_PROP_UTF8ONLY: chosen_utf = (int)intval; break; case ZFS_PROP_NORMALIZE: chosen_normal = (int)intval; break; } /* * For changes to existing volumes, we have some additional * checks to enforce. */ if (type == ZFS_TYPE_VOLUME && zhp != NULL) { uint64_t volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t blocksize = zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE); char buf[64]; switch (prop) { case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (intval > volsize) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is greater than current " "volume size"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_VOLSIZE: if (intval % blocksize != 0) { zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a multiple of " "volume block size (%s)"), propname, buf); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be zero"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } } } /* * If normalization was chosen, but no UTF8 choice was made, * enforce rejection of non-UTF8 names. * * If normalization was chosen, but rejecting non-UTF8 names * was explicitly not chosen, it is an error. */ if (chosen_normal > 0 && chosen_utf < 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) { (void) no_memory(hdl); goto error; } } else if (chosen_normal > 0 && chosen_utf == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be set 'on' if normalization chosen"), zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } return (ret); error: nvlist_free(ret); return (NULL); } int zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl) { uint64_t old_volsize; uint64_t new_volsize; uint64_t old_reservation; uint64_t new_reservation; zfs_prop_t resv_prop; nvlist_t *props; /* * If this is an existing volume, and someone is setting the volsize, * make sure that it matches the reservation, or add it if necessary. */ old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_reservation = zfs_prop_get_int(zhp, resv_prop); props = fnvlist_alloc(); fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE)); if ((zvol_volsize_to_reservation(old_volsize, props) != old_reservation) || nvlist_exists(nvl, zfs_prop_to_name(resv_prop))) { fnvlist_free(props); return (0); } if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &new_volsize) != 0) { fnvlist_free(props); return (-1); } new_reservation = zvol_volsize_to_reservation(new_volsize, props); fnvlist_free(props); if (nvlist_add_uint64(nvl, zfs_prop_to_name(resv_prop), new_reservation) != 0) { (void) no_memory(zhp->zfs_hdl); return (-1); } return (1); } void zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err, char *errbuf) { switch (err) { case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is less than current used or " "reserved space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is greater than available space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; default: (void) zfs_standard_error(hdl, err, errbuf); break; } break; case EBUSY: (void) zfs_standard_error(hdl, EBUSY, errbuf); break; case EROFS: (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool and or dataset must be upgraded to set this " "property or value")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case ERANGE: - if (prop == ZFS_PROP_COMPRESSION) { + if (prop == ZFS_PROP_COMPRESSION || + prop == ZFS_PROP_RECORDSIZE) { (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property setting is not allowed on " "bootable datasets")); (void) zfs_error(hdl, EZFS_NOTSUP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EINVAL: if (prop == ZPROP_INVAL) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf); break; } #endif /* FALLTHROUGH */ default: (void) zfs_standard_error(hdl, err, errbuf); } } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; prop_changelist_t *cl = NULL; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *nvl = NULL, *realprops; zfs_prop_t prop; boolean_t do_prefix = B_TRUE; int added_resv; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zfs_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_string(nvl, propname, propval) != 0) { (void) no_memory(hdl); goto error; } if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL) goto error; nvlist_free(nvl); nvl = realprops; prop = zfs_name_to_prop(propname); if (prop == ZFS_PROP_VOLSIZE) { if ((added_resv = zfs_add_synthetic_resv(zhp, nvl)) == -1) goto error; } if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) goto error; if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * We don't want to unmount & remount the dataset when changing * its canmount property to 'on' or 'noauto'. We only use * the changelist logic to unmount when setting canmount=off. */ if (prop == ZFS_PROP_CANMOUNT) { uint64_t idx; int err = zprop_string_to_index(prop, propval, &idx, ZFS_TYPE_DATASET); if (err == 0 && idx != ZFS_CANMOUNT_OFF) do_prefix = B_FALSE; } if (do_prefix && (ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); if (ret != 0) { zfs_setprop_error(hdl, prop, errno, errbuf); if (added_resv && errno == ENOSPC) { /* clean up the volsize property we tried to set */ uint64_t old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); nvlist_free(nvl); zcmd_free_nvlists(&zc); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) goto error; if (nvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE), old_volsize) != 0) goto error; if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); } } else { if (do_prefix) ret = changelist_postfix(cl); /* * Refresh the statistics so the new property value * is reflected. */ if (ret == 0) (void) get_stats(zhp); } error: nvlist_free(nvl); zcmd_free_nvlists(&zc); if (cl) changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset, or if received * is TRUE, revert to the received value, if any. */ int zfs_prop_inherit(zfs_handle_t *zhp, const char *propname, boolean_t received) { zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s'"), propname, zhp->zfs_name); zc.zc_cookie = received; if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) { /* * For user properties, the amount of work we have to do is very * small, so just do it here. */ if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0) return (zfs_standard_error(hdl, errno, errbuf)); return (0); } /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf)); if (!zfs_prop_inheritable(prop) && !received) return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf)); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(hdl, EZFS_PROPTYPE, errbuf)); /* * Normalize the name, to get rid of shorthand abbreviations. */ propname = zfs_prop_to_name(prop); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) { return (zfs_standard_error(hdl, errno, errbuf)); } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } static boolean_t zfs_is_recvd_props_mode(zfs_handle_t *zhp) { return (zhp->zfs_props == zhp->zfs_recvd_props); } static void zfs_set_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { *cookie = (uint64_t)(uintptr_t)zhp->zfs_props; zhp->zfs_props = zhp->zfs_recvd_props; } static void zfs_unset_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie; *cookie = 0; } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static int get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src, char **source, uint64_t *val) { zfs_cmd_t zc = { 0 }; nvlist_t *zplprops = NULL; struct mnttab mnt; char *mntopt_on = NULL; char *mntopt_off = NULL; boolean_t received = zfs_is_recvd_props_mode(zhp); *source = NULL; switch (prop) { case ZFS_PROP_ATIME: mntopt_on = MNTOPT_ATIME; mntopt_off = MNTOPT_NOATIME; break; case ZFS_PROP_DEVICES: mntopt_on = MNTOPT_DEVICES; mntopt_off = MNTOPT_NODEVICES; break; case ZFS_PROP_EXEC: mntopt_on = MNTOPT_EXEC; mntopt_off = MNTOPT_NOEXEC; break; case ZFS_PROP_READONLY: mntopt_on = MNTOPT_RO; mntopt_off = MNTOPT_RW; break; case ZFS_PROP_SETUID: mntopt_on = MNTOPT_SETUID; mntopt_off = MNTOPT_NOSETUID; break; case ZFS_PROP_XATTR: mntopt_on = MNTOPT_XATTR; mntopt_off = MNTOPT_NOXATTR; break; case ZFS_PROP_NBMAND: mntopt_on = MNTOPT_NBMAND; mntopt_off = MNTOPT_NONBMAND; break; } /* * Because looking up the mount options is potentially expensive * (iterating over all of /etc/mnttab), we defer its calculation until * we're looking up a property which requires its presence. */ if (!zhp->zfs_mntcheck && (mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) { libzfs_handle_t *hdl = zhp->zfs_hdl; struct mnttab entry; if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) { zhp->zfs_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); if (zhp->zfs_mntopts == NULL) return (-1); } zhp->zfs_mntcheck = B_TRUE; } if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: *val = getprop_uint64(zhp, prop, source); if (received) break; if (hasmntopt(&mnt, mntopt_on) && !*val) { *val = B_TRUE; if (src) *src = ZPROP_SRC_TEMPORARY; } else if (hasmntopt(&mnt, mntopt_off) && *val) { *val = B_FALSE; if (src) *src = ZPROP_SRC_TEMPORARY; } break; case ZFS_PROP_CANMOUNT: case ZFS_PROP_VOLSIZE: case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: case ZFS_PROP_FILESYSTEM_COUNT: case ZFS_PROP_SNAPSHOT_COUNT: *val = getprop_uint64(zhp, prop, source); if (*source == NULL) { /* not default, must be local */ *source = zhp->zfs_name; } break; case ZFS_PROP_MOUNTED: *val = (zhp->zfs_mntopts != NULL); break; case ZFS_PROP_NUMCLONES: *val = zhp->zfs_dmustats.dds_num_clones; break; case ZFS_PROP_VERSION: case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: case ZFS_PROP_CASE: if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) || zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) { zcmd_free_nvlists(&zc); return (-1); } if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 || nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop), val) != 0) { zcmd_free_nvlists(&zc); return (-1); } if (zplprops) nvlist_free(zplprops); zcmd_free_nvlists(&zc); break; case ZFS_PROP_INCONSISTENT: *val = zhp->zfs_dmustats.dds_inconsistent; break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: *val = getprop_uint64(zhp, prop, source); /* * If we tried to use a default value for a * readonly property, it means that it was not * present. */ if (zfs_prop_readonly(prop) && *source != NULL && (*source)[0] == '\0') { *source = NULL; } break; case PROP_TYPE_STRING: default: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "cannot get non-numeric property")); return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "internal error"))); } } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZPROP_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZPROP_SRC_DEFAULT; } else if (strstr(source, ZPROP_SOURCE_VAL_RECVD) != NULL) { *srctype = ZPROP_SRC_RECEIVED; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZPROP_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZPROP_SRC_INHERITED; } } } int zfs_prop_get_recvd(zfs_handle_t *zhp, const char *propname, char *propbuf, size_t proplen, boolean_t literal) { zfs_prop_t prop; int err = 0; if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (-1); prop = zfs_name_to_prop(propname); if (prop != ZPROP_INVAL) { uint64_t cookie; if (!nvlist_exists(zhp->zfs_recvd_props, propname)) return (-1); zfs_set_recvd_props_mode(zhp, &cookie); err = zfs_prop_get(zhp, prop, propbuf, proplen, NULL, NULL, 0, literal); zfs_unset_recvd_props_mode(zhp, &cookie); } else { nvlist_t *propval; char *recvdval; if (nvlist_lookup_nvlist(zhp->zfs_recvd_props, propname, &propval) != 0) return (-1); verify(nvlist_lookup_string(propval, ZPROP_VALUE, &recvdval) == 0); (void) strlcpy(propbuf, recvdval, proplen); } return (err == 0 ? 0 : -1); } static int get_clones_string(zfs_handle_t *zhp, char *propbuf, size_t proplen) { nvlist_t *value; nvpair_t *pair; value = zfs_get_clones_nvl(zhp); if (value == NULL) return (-1); propbuf[0] = '\0'; for (pair = nvlist_next_nvpair(value, NULL); pair != NULL; pair = nvlist_next_nvpair(value, pair)) { if (propbuf[0] != '\0') (void) strlcat(propbuf, ",", proplen); (void) strlcat(propbuf, nvpair_name(pair), proplen); } return (0); } struct get_clones_arg { uint64_t numclones; nvlist_t *value; const char *origin; char buf[ZFS_MAXNAMELEN]; }; int get_clones_cb(zfs_handle_t *zhp, void *arg) { struct get_clones_arg *gca = arg; if (gca->numclones == 0) { zfs_close(zhp); return (0); } if (zfs_prop_get(zhp, ZFS_PROP_ORIGIN, gca->buf, sizeof (gca->buf), NULL, NULL, 0, B_TRUE) != 0) goto out; if (strcmp(gca->buf, gca->origin) == 0) { fnvlist_add_boolean(gca->value, zfs_get_name(zhp)); gca->numclones--; } out: (void) zfs_iter_children(zhp, get_clones_cb, gca); zfs_close(zhp); return (0); } nvlist_t * zfs_get_clones_nvl(zfs_handle_t *zhp) { nvlist_t *nv, *value; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(ZFS_PROP_CLONES), &nv) != 0) { struct get_clones_arg gca; /* * if this is a snapshot, then the kernel wasn't able * to get the clones. Do it by slowly iterating. */ if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT) return (NULL); if (nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) != 0) return (NULL); if (nvlist_alloc(&value, NV_UNIQUE_NAME, 0) != 0) { nvlist_free(nv); return (NULL); } gca.numclones = zfs_prop_get_int(zhp, ZFS_PROP_NUMCLONES); gca.value = value; gca.origin = zhp->zfs_name; if (gca.numclones != 0) { zfs_handle_t *root; char pool[ZFS_MAXNAMELEN]; char *cp = pool; /* get the pool name */ (void) strlcpy(pool, zhp->zfs_name, sizeof (pool)); (void) strsep(&cp, "/@"); root = zfs_open(zhp->zfs_hdl, pool, ZFS_TYPE_FILESYSTEM); (void) get_clones_cb(root, &gca); } if (gca.numclones != 0 || nvlist_add_nvlist(nv, ZPROP_VALUE, value) != 0 || nvlist_add_nvlist(zhp->zfs_props, zfs_prop_to_name(ZFS_PROP_CLONES), nv) != 0) { nvlist_free(nv); nvlist_free(value); return (NULL); } nvlist_free(nv); nvlist_free(value); verify(0 == nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(ZFS_PROP_CLONES), &nv)); } verify(nvlist_lookup_nvlist(nv, ZPROP_VALUE, &value) == 0); return (value); } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal) { char *source = NULL; uint64_t val; char *str; const char *strval; boolean_t received = zfs_is_recvd_props_mode(zhp); /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (received && zfs_prop_readonly(prop)) return (-1); if (src) *src = ZPROP_SRC_NONE; switch (prop) { case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { val = getprop_uint64(zhp, prop, &source); time_t time = (time_t)val; struct tm t; if (literal || localtime_r(&time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) (void) snprintf(propbuf, proplen, "%llu", val); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ str = getprop_string(zhp, prop, &source); if (str[0] == '/') { char buf[MAXPATHLEN]; char *root = buf; const char *relpath; /* * If we inherit the mountpoint, even from a dataset * with a received value, the source will be the path of * the dataset we inherit from. If source is * ZPROP_SOURCE_VAL_RECVD, the received value is not * inherited. */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) { relpath = ""; } else { relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; } if ((zpool_get_prop(zhp->zpool_hdl, ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL, B_FALSE)) || (strcmp(root, "-") == 0)) root[0] = '\0'; /* * Special case an alternate root of '/'. This will * avoid having multiple leading slashes in the * mountpoint path. */ if (strcmp(root, "/") == 0) root++; /* * If the mountpoint is '/' then skip over this * if we are obtaining either an alternate root or * an inherited mountpoint. */ if (str[1] == '\0' && (root[0] != '\0' || relpath[0] != '\0')) str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_CLONES: if (get_clones_string(zhp, propbuf, proplen) != 0) return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: case ZFS_PROP_FILESYSTEM_COUNT: case ZFS_PROP_SNAPSHOT_COUNT: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If limit is UINT64_MAX, we translate this into 'none' (unless * literal is set), and indicate that it's the default value. * Otherwise, we print the number nicely and indicate that it's * set locally. */ if (literal) { (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); } else if (val == UINT64_MAX) { (void) strlcpy(propbuf, "none", proplen); } else { zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_REFRATIO: case ZFS_PROP_COMPRESSRATIO: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%llu.%02llux", (u_longlong_t)(val / 100), (u_longlong_t)(val % 100)); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; case ZFS_TYPE_BOOKMARK: str = "bookmark"; break; default: abort(); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source, &val) != 0) return (-1); if (val) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; case ZFS_PROP_MLSLABEL: { m_label_t *new_sl = NULL; char *ascii = NULL; /* human readable label */ (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); if (literal || (strcasecmp(propbuf, ZFS_MLSLABEL_DEFAULT) == 0)) break; /* * Try to translate the internal hex string to * human-readable output. If there are any * problems just use the hex string. */ if (str_to_label(propbuf, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1) { m_label_free(new_sl); break; } if (label_to_str(new_sl, &ascii, M_LABEL, DEF_NAMES) != 0) { if (ascii) free(ascii); m_label_free(new_sl); break; } m_label_free(new_sl); (void) strlcpy(propbuf, ascii, proplen); free(ascii); } break; case ZFS_PROP_GUID: /* * GUIDs are stored as numbers, but they are identifiers. * We don't want them to be pretty printed, because pretty * printing mangles the ID into a truncated and useless value. */ if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); break; case PROP_TYPE_STRING: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case PROP_TYPE_INDEX: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (zfs_prop_index_to_string(prop, val, &strval) != 0) return (-1); (void) strlcpy(propbuf, strval, proplen); break; default: abort(); } } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; uint64_t val; (void) get_numeric_property(zhp, prop, NULL, &source, &val); return (val); } int zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val) { char buf[64]; (void) snprintf(buf, sizeof (buf), "%llu", (longlong_t)val); return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf)); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zprop_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE, dgettext(TEXT_DOMAIN, "cannot get property '%s'"), zfs_prop_to_name(prop))); } if (src) *src = ZPROP_SRC_NONE; if (get_numeric_property(zhp, prop, src, &source, value) != 0) return (-1); get_source(zhp, src, source, statbuf, statlen); return (0); } static int idmap_id_to_numeric_domain_rid(uid_t id, boolean_t isuser, char **domainp, idmap_rid_t *ridp) { idmap_get_handle_t *get_hdl = NULL; idmap_stat status; int err = EINVAL; if (idmap_get_create(&get_hdl) != IDMAP_SUCCESS) goto out; if (isuser) { err = idmap_get_sidbyuid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } else { err = idmap_get_sidbygid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } if (err == IDMAP_SUCCESS && idmap_get_mappings(get_hdl) == IDMAP_SUCCESS && status == IDMAP_SUCCESS) err = 0; else err = EINVAL; out: if (get_hdl) idmap_get_destroy(get_hdl); return (err); } /* * convert the propname into parameters needed by kernel * Eg: userquota@ahrens -> ZFS_PROP_USERQUOTA, "", 126829 * Eg: userused@matt@domain -> ZFS_PROP_USERUSED, "S-1-123-456", 789 */ static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp) { zfs_userquota_prop_t type; char *cp, *end; char *numericsid = NULL; boolean_t isuser; domain[0] = '\0'; /* Figure out the property type ({user|group}{quota|space}) */ for (type = 0; type < ZFS_NUM_USERQUOTA_PROPS; type++) { if (strncmp(propname, zfs_userquota_prop_prefixes[type], strlen(zfs_userquota_prop_prefixes[type])) == 0) break; } if (type == ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); *typep = type; isuser = (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_USERUSED); cp = strchr(propname, '@') + 1; if (strchr(cp, '@')) { /* * It's a SID name (eg "user@domain") that needs to be * turned into S-1-domainID-RID. */ directory_error_t e; if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { e = directory_sid_from_user_name(NULL, cp, &numericsid); } else { e = directory_sid_from_group_name(NULL, cp, &numericsid); } if (e != NULL) { directory_error_free(e); return (ENOENT); } if (numericsid == NULL) return (ENOENT); cp = numericsid; /* will be further decoded below */ } if (strncmp(cp, "S-1-", 4) == 0) { /* It's a numeric SID (eg "S-1-234-567-89") */ (void) strlcpy(domain, cp, domainlen); cp = strrchr(domain, '-'); *cp = '\0'; cp++; errno = 0; *ridp = strtoull(cp, &end, 10); if (numericsid) { free(numericsid); numericsid = NULL; } if (errno != 0 || *end != '\0') return (EINVAL); } else if (!isdigit(*cp)) { /* * It's a user/group name (eg "user") that needs to be * turned into a uid/gid */ if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { struct passwd *pw; pw = getpwnam(cp); if (pw == NULL) return (ENOENT); *ridp = pw->pw_uid; } else { struct group *gr; gr = getgrnam(cp); if (gr == NULL) return (ENOENT); *ridp = gr->gr_gid; } } else { /* It's a user/group ID (eg "12345"). */ uid_t id = strtoul(cp, &end, 10); idmap_rid_t rid; char *mapdomain; if (*end != '\0') return (EINVAL); if (id > MAXUID) { /* It's an ephemeral ID. */ if (idmap_id_to_numeric_domain_rid(id, isuser, &mapdomain, &rid) != 0) return (ENOENT); (void) strlcpy(domain, mapdomain, domainlen); *ridp = rid; } else { *ridp = id; } } ASSERT3P(numericsid, ==, NULL); return (0); } static int zfs_prop_get_userquota_common(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue, zfs_userquota_prop_t *typep) { int err; zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); err = userquota_propname_decode(propname, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid); zc.zc_objset_type = *typep; if (err) return (err); err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_ONE, &zc); if (err) return (err); *propvalue = zc.zc_cookie; return (0); } int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue) { zfs_userquota_prop_t type; return (zfs_prop_get_userquota_common(zhp, propname, propvalue, &type)); } int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal) { int err; uint64_t propvalue; zfs_userquota_prop_t type; err = zfs_prop_get_userquota_common(zhp, propname, &propvalue, &type); if (err) return (err); if (literal) { (void) snprintf(propbuf, proplen, "%llu", propvalue); } else if (propvalue == 0 && (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA)) { (void) strlcpy(propbuf, "none", proplen); } else { zfs_nicenum(propvalue, propbuf, proplen); } return (0); } int zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue) { int err; zfs_cmd_t zc = { 0 }; const char *snapname; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); snapname = strchr(propname, '@') + 1; if (strchr(snapname, '@')) { (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); } else { /* snapname is the short name, append it to zhp's fsname */ char *cp; (void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value)); cp = strchr(zc.zc_value, '@'); if (cp != NULL) *cp = '\0'; (void) strlcat(zc.zc_value, "@", sizeof (zc.zc_value)); (void) strlcat(zc.zc_value, snapname, sizeof (zc.zc_value)); } err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SPACE_WRITTEN, &zc); if (err) return (err); *propvalue = zc.zc_cookie; return (0); } int zfs_prop_get_written(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal) { int err; uint64_t propvalue; err = zfs_prop_get_written_int(zhp, propname, &propvalue); if (err) return (err); if (literal) { (void) snprintf(propbuf, proplen, "%llu", propvalue); } else { zfs_nicenum(propvalue, propbuf, proplen); } return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } /* * Is one dataset name a child dataset of another? * * Needs to handle these cases: * Dataset 1 "a/foo" "a/foo" "a/foo" "a/foo" * Dataset 2 "a/fo" "a/foobar" "a/bar/baz" "a/foo/bar" * Descendant? No. No. No. Yes. */ static boolean_t is_descendant(const char *ds1, const char *ds2) { size_t d1len = strlen(ds1); /* ds2 can't be a descendant if it's smaller */ if (strlen(ds2) < d1len) return (B_FALSE); /* otherwise, compare strings and verify that there's a '/' char */ return (ds2[d1len] == '/' && (strncmp(ds1, ds2, d1len) == 0)); } /* * Given a complete name, return just the portion that refers to the parent. * Will return -1 if there is no parent (path is just the name of the * pool). */ static int parent_name(const char *path, char *buf, size_t buflen) { char *slashp; (void) strlcpy(buf, path, buflen); if ((slashp = strrchr(buf, '/')) == NULL) return (-1); *slashp = '\0'; return (0); } /* * If accept_ancestor is false, then check to make sure that the given path has * a parent, and that it exists. If accept_ancestor is true, then find the * closest existing ancestor for the given path. In prefixlen return the * length of already existing prefix of the given path. We also fetch the * 'zoned' property, which is used to validate property settings when creating * new datasets. */ static int check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned, boolean_t accept_ancestor, int *prefixlen) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; char errbuf[1024]; uint64_t is_zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* check to see if the parent dataset exists */ while ((zhp = make_dataset_handle(hdl, parent)) == NULL) { if (errno == ENOENT && accept_ancestor) { /* * Go deeper to find an ancestor, give up on top level. */ if (parent_name(parent, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } } else if (errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent does not exist")); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } else return (zfs_standard_error(hdl, errno, errbuf)); } is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned != NULL) *zoned = is_zoned; /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && !is_zoned) { (void) zfs_standard_error(hdl, EPERM, errbuf); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent is not a filesystem")); (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (-1); } zfs_close(zhp); if (prefixlen != NULL) *prefixlen = strlen(parent); return (0); } /* * Finds whether the dataset of the given type(s) exists. */ boolean_t zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types) { zfs_handle_t *zhp; if (!zfs_validate_name(hdl, path, types, B_FALSE)) return (B_FALSE); /* * Try to get stats for the dataset, which will tell us if it exists. */ if ((zhp = make_dataset_handle(hdl, path)) != NULL) { int ds_type = zhp->zfs_type; zfs_close(zhp); if (types & ds_type) return (B_TRUE); } return (B_FALSE); } /* * Given a path to 'target', create all the ancestors between * the prefixlen portion of the path, and the target itself. * Fail if the initial prefixlen-ancestor does not already exist. */ int create_parents(libzfs_handle_t *hdl, char *target, int prefixlen) { zfs_handle_t *h; char *cp; const char *opname; /* make sure prefix exists */ cp = target + prefixlen; if (*cp != '/') { assert(strchr(cp, '/') == NULL); h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); } else { *cp = '\0'; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); *cp = '/'; } if (h == NULL) return (-1); zfs_close(h); /* * Attempt to create, mount, and share any ancestor filesystems, * up to the prefixlen-long one. */ for (cp = target + prefixlen + 1; cp = strchr(cp, '/'); *cp = '/', cp++) { *cp = '\0'; h = make_dataset_handle(hdl, target); if (h) { /* it already exists, nothing to do here */ zfs_close(h); continue; } if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM, NULL) != 0) { opname = dgettext(TEXT_DOMAIN, "create"); goto ancestorerr; } h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); if (h == NULL) { opname = dgettext(TEXT_DOMAIN, "open"); goto ancestorerr; } if (zfs_mount(h, NULL, 0) != 0) { opname = dgettext(TEXT_DOMAIN, "mount"); goto ancestorerr; } if (zfs_share(h) != 0) { opname = dgettext(TEXT_DOMAIN, "share"); goto ancestorerr; } zfs_close(h); } return (0); ancestorerr: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to %s ancestor '%s'"), opname, target); return (-1); } /* * Creates non-existing ancestors of the given path. */ int zfs_create_ancestors(libzfs_handle_t *hdl, const char *path) { int prefix; char *path_copy; int rc; if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0) return (-1); if ((path_copy = strdup(path)) != NULL) { rc = create_parents(hdl, path_copy, prefix); free(path_copy); } if (path_copy == NULL || rc != 0) return (-1); return (0); } /* * Create a new filesystem or volume. */ int zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, nvlist_t *props) { int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); char errbuf[1024]; uint64_t zoned; dmu_objset_type_t ost; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(hdl, path, type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ if (zfs_dataset_exists(hdl, path, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (type == ZFS_TYPE_VOLUME) ost = DMU_OST_ZVOL; else ost = DMU_OST_ZFS; if (props && (props = zfs_valid_proplist(hdl, type, props, zoned, NULL, errbuf)) == 0) return (-1); if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (props == NULL || nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if ((ret = nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &blocksize)) != 0) { if (ret == ENOENT) { blocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); } else { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume block size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (size == 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size cannot be zero")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (size % blocksize != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size must be a multiple of volume block " "size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } /* create the dataset */ ret = lzc_create(path, ost, props); nvlist_free(props); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesystem"), parent); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume block size must be power of 2 from " - "%u to %uk"), - (uint_t)SPA_MINBLOCKSIZE, - (uint_t)SPA_MAXBLOCKSIZE >> 10); + "512B to 128KB")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to set this " "property or value")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) return (zfs_error(hdl, EZFS_VOLTOOBIG, errbuf)); #endif /* FALLTHROUGH */ default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. If the file system * does not exist this function does nothing. */ int zfs_destroy(zfs_handle_t *zhp, boolean_t defer) { zfs_cmd_t zc = { 0 }; if (zhp->zfs_type == ZFS_TYPE_BOOKMARK) { nvlist_t *nv = fnvlist_alloc(); fnvlist_add_boolean(nv, zhp->zfs_name); int error = lzc_destroy_bookmarks(nv, NULL); fnvlist_free(nv); if (error != 0) { return (zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } return (0); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } zc.zc_defer_destroy = defer; if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0 && errno != ENOENT) { return (zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } remove_mountpoint(zhp); return (0); } struct destroydata { nvlist_t *nvl; const char *snapname; }; static int zfs_check_snap_cb(zfs_handle_t *zhp, void *arg) { struct destroydata *dd = arg; char name[ZFS_MAXNAMELEN]; int rv = 0; (void) snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name, dd->snapname); if (lzc_exists(name)) verify(nvlist_add_boolean(dd->nvl, name) == 0); rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, dd); zfs_close(zhp); return (rv); } /* * Destroys all snapshots with the given name in zhp & descendants. */ int zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname, boolean_t defer) { int ret; struct destroydata dd = { 0 }; dd.snapname = snapname; verify(nvlist_alloc(&dd.nvl, NV_UNIQUE_NAME, 0) == 0); (void) zfs_check_snap_cb(zfs_handle_dup(zhp), &dd); if (nvlist_empty(dd.nvl)) { ret = zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT, dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zhp->zfs_name, snapname); } else { ret = zfs_destroy_snaps_nvl(zhp->zfs_hdl, dd.nvl, defer); } nvlist_free(dd.nvl); return (ret); } /* * Destroys all the snapshots named in the nvlist. */ int zfs_destroy_snaps_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, boolean_t defer) { int ret; nvlist_t *errlist; ret = lzc_destroy_snaps(snaps, defer, &errlist); if (ret == 0) return (0); if (nvlist_empty(errlist)) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy snapshots")); ret = zfs_standard_error(hdl, ret, errbuf); } for (nvpair_t *pair = nvlist_next_nvpair(errlist, NULL); pair != NULL; pair = nvlist_next_nvpair(errlist, pair)) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy snapshot %s"), nvpair_name(pair)); switch (fnvpair_value_int32(pair)) { case EEXIST: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot is cloned")); ret = zfs_error(hdl, EZFS_EXISTS, errbuf); break; default: ret = zfs_standard_error(hdl, errno, errbuf); break; } } return (ret); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props) { char parent[ZFS_MAXNAMELEN]; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; uint64_t zoned; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), target); /* validate the target/clone name */ if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (props) { zfs_type_t type; if (ZFS_IS_VOLUME(zhp)) { type = ZFS_TYPE_VOLUME; } else { type = ZFS_TYPE_FILESYSTEM; } if ((props = zfs_valid_proplist(hdl, type, props, zoned, zhp, errbuf)) == NULL) return (-1); } ret = lzc_clone(target, zhp->zfs_name, props); nvlist_free(props); if (ret != 0) { switch (errno) { case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); case EXDEV: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "source and target pools differ")); return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (ret); } /* * Promotes the given clone fs to be the clone parent. */ int zfs_promote(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_cmd_t zc = { 0 }; char parent[MAXPATHLEN]; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot promote '%s'"), zhp->zfs_name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots can not be promoted")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent)); if (parent[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not a cloned filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (ret != 0) { int save_errno = errno; switch (save_errno) { case EEXIST: /* There is a conflicting snapshot name. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "conflicting snapshot '%s' from parent '%s'"), zc.zc_string, parent); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(hdl, save_errno, errbuf)); } } return (ret); } typedef struct snapdata { nvlist_t *sd_nvl; const char *sd_snapname; } snapdata_t; static int zfs_snapshot_cb(zfs_handle_t *zhp, void *arg) { snapdata_t *sd = arg; char name[ZFS_MAXNAMELEN]; int rv = 0; if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) == 0) { (void) snprintf(name, sizeof (name), "%s@%s", zfs_get_name(zhp), sd->sd_snapname); fnvlist_add_boolean(sd->sd_nvl, name); rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd); } zfs_close(zhp); return (rv); } /* * Creates snapshots. The keys in the snaps nvlist are the snapshots to be * created. */ int zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props) { int ret; char errbuf[1024]; nvpair_t *elem; nvlist_t *errors; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshots ")); elem = NULL; while ((elem = nvlist_next_nvpair(snaps, elem)) != NULL) { const char *snapname = nvpair_name(elem); /* validate the target name */ if (!zfs_validate_name(hdl, snapname, ZFS_TYPE_SNAPSHOT, B_TRUE)) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s'"), snapname); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } if (props != NULL && (props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT, props, B_FALSE, NULL, errbuf)) == NULL) { return (-1); } ret = lzc_snapshot(snaps, props, &errors); if (ret != 0) { boolean_t printed = B_FALSE; for (elem = nvlist_next_nvpair(errors, NULL); elem != NULL; elem = nvlist_next_nvpair(errors, elem)) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s'"), nvpair_name(elem)); (void) zfs_standard_error(hdl, fnvpair_value_int32(elem), errbuf); printed = B_TRUE; } if (!printed) { switch (ret) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple snapshots of same " "fs not allowed")); (void) zfs_error(hdl, EZFS_EXISTS, errbuf); break; default: (void) zfs_standard_error(hdl, ret, errbuf); } } } nvlist_free(props); nvlist_free(errors); return (ret); } int zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive, nvlist_t *props) { int ret; snapdata_t sd = { 0 }; char fsname[ZFS_MAXNAMELEN]; char *cp; zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot snapshot %s"), path); if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); (void) strlcpy(fsname, path, sizeof (fsname)); cp = strchr(fsname, '@'); *cp = '\0'; sd.sd_snapname = cp + 1; if ((zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { return (-1); } verify(nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) == 0); if (recursive) { (void) zfs_snapshot_cb(zfs_handle_dup(zhp), &sd); } else { fnvlist_add_boolean(sd.sd_nvl, path); } ret = zfs_snapshot_nvl(hdl, sd.sd_nvl, props); nvlist_free(sd.sd_nvl); zfs_close(zhp); return (ret); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ boolean_t cb_error; boolean_t cb_force; } rollback_data_t; static int rollback_destroy_dependent(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; prop_changelist_t *clp; /* We must destroy this clone; first unmount it */ clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, cbp->cb_force ? MS_FORCE: 0); if (clp == NULL || changelist_prefix(clp) != 0) { cbp->cb_error = B_TRUE; zfs_close(zhp); return (0); } if (zfs_destroy(zhp, B_FALSE) != 0) cbp->cb_error = B_TRUE; else changelist_remove(clp, zhp->zfs_name); (void) changelist_postfix(clp); changelist_free(clp); zfs_close(zhp); return (0); } static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE, rollback_destroy_dependent, cbp); cbp->cb_error |= zfs_destroy(zhp, B_FALSE); } zfs_close(zhp); return (0); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots and bookmarks more recent than the target are * destroyed, along with their dependents (i.e. clones). */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force) { rollback_data_t cb = { 0 }; int err; boolean_t restore_resv = 0; uint64_t old_volsize, new_volsize; zfs_prop_t resv_prop; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); /* * Destroy all recent snapshots and their dependents. */ cb.cb_force = force; cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); (void) zfs_iter_snapshots(zhp, rollback_destroy, &cb); (void) zfs_iter_bookmarks(zhp, rollback_destroy, &cb); if (cb.cb_error) return (-1); /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ if (zhp->zfs_type == ZFS_TYPE_VOLUME) { if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); restore_resv = (old_volsize == zfs_prop_get_int(zhp, resv_prop)); } /* * We rely on zfs_iter_children() to verify that there are no * newer snapshots for the given dataset. Therefore, we can * simply pass the name on to the ioctl() call. There is still * an unlikely race condition where the user has taken a * snapshot since we verified that this was the most recent. */ err = lzc_rollback(zhp->zfs_name, NULL, 0); if (err != 0) { (void) zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot rollback '%s'"), zhp->zfs_name); return (err); } /* * For volumes, if the pre-rollback volsize matched the pre- * rollback reservation and the volsize has changed then set * the reservation property to the post-rollback volsize. * Make a new handle since the rollback closed the dataset. */ if ((zhp->zfs_type == ZFS_TYPE_VOLUME) && (zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) { if (restore_resv) { new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (old_volsize != new_volsize) err = zfs_prop_set_int(zhp, resv_prop, new_volsize); } zfs_close(zhp); } return (err); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive, boolean_t force_unmount) { int ret; zfs_cmd_t zc = { 0 }; char *delim; prop_changelist_t *cl = NULL; zfs_handle_t *zhrp = NULL; char *parentname = NULL; char parent[ZFS_MAXNAMELEN]; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename to '%s'"), target); /* * Make sure the target name is valid */ if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((strchr(target, '@') == NULL) || *target == '@') { /* * Snapshot target name is abbreviated, * reconstruct full dataset name */ (void) strlcpy(parent, zhp->zfs_name, sizeof (parent)); delim = strchr(parent, '@'); if (strchr(target, '@') == NULL) *(++delim) = '\0'; else *delim = '\0'; (void) strlcat(parent, target, sizeof (parent)); target = parent; } else { /* * Make sure we're renaming within the same dataset. */ delim = strchr(target, '@'); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots must be part of same " "dataset")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } else { if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "recursive rename must be a snapshot")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents */ if (check_parents(hdl, target, NULL, B_FALSE, NULL) != 0) return (-1); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "datasets must be within same pool")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } /* new name cannot be a child of the current dataset name */ if (is_descendant(zhp->zfs_name, target)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "New dataset name cannot be a descendant of " "current dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name); if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } if (recursive) { parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name); if (parentname == NULL) { ret = -1; goto error; } delim = strchr(parentname, '@'); *delim = '\0'; zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET); if (zhrp == NULL) { ret = -1; goto error; } } else if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT) { if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0, force_unmount ? MS_FORCE : 0)) == NULL) return (-1); if (changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; } if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); zc.zc_cookie = recursive; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) { /* * if it was recursive, the one that actually failed will * be in zc.zc_name */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zc.zc_name); if (recursive && errno == EEXIST) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "a child dataset already has a snapshot " "with the new name")); (void) zfs_error(hdl, EZFS_EXISTS, errbuf); } else { (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf); } /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ if (cl != NULL) (void) changelist_postfix(cl); } else { if (cl != NULL) { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } } error: if (parentname != NULL) { free(parentname); } if (zhrp != NULL) { zfs_close(zhrp); } if (cl != NULL) { changelist_free(cl); } return (ret); } nvlist_t * zfs_get_user_props(zfs_handle_t *zhp) { return (zhp->zfs_user_props); } nvlist_t * zfs_get_recvd_props(zfs_handle_t *zhp) { if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (NULL); return (zhp->zfs_recvd_props); } /* * This function is used by 'zfs list' to determine the exact set of columns to * display, and their maximum widths. This does two main things: * * - If this is a list of all properties, then expand the list to include * all native properties, and set a flag so that for each dataset we look * for new unique user properties and add them to the list. * * - For non fixed-width properties, keep track of the maximum width seen * so that we can size the column appropriately. If the user has * requested received property values, we also need to compute the width * of the RECEIVED column. */ int zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received, boolean_t literal) { libzfs_handle_t *hdl = zhp->zfs_hdl; zprop_list_t *entry; zprop_list_t **last, **start; nvlist_t *userprops, *propval; nvpair_t *elem; char *strval; char buf[ZFS_MAXPROPLEN]; if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0) return (-1); userprops = zfs_get_user_props(zhp); entry = *plp; if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) { /* * Go through and add any user properties as necessary. We * start by incrementing our list pointer to the first * non-native property. */ start = plp; while (*start != NULL) { if ((*start)->pl_prop == ZPROP_INVAL) break; start = &(*start)->pl_next; } elem = NULL; while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) { /* * See if we've already found this property in our list. */ for (last = start; *last != NULL; last = &(*last)->pl_next) { if (strcmp((*last)->pl_user_prop, nvpair_name(elem)) == 0) break; } if (*last == NULL) { if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL || ((entry->pl_user_prop = zfs_strdup(hdl, nvpair_name(elem)))) == NULL) { free(entry); return (-1); } entry->pl_prop = ZPROP_INVAL; entry->pl_width = strlen(nvpair_name(elem)); entry->pl_all = B_TRUE; *last = entry; } } } /* * Now go through and check the width of any non-fixed columns */ for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed && !literal) continue; if (entry->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, entry->pl_prop, buf, sizeof (buf), NULL, NULL, 0, literal) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } if (received && zfs_prop_get_recvd(zhp, zfs_prop_to_name(entry->pl_prop), buf, sizeof (buf), literal) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } else { if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop, &propval) == 0) { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); if (strlen(strval) > entry->pl_width) entry->pl_width = strlen(strval); } if (received && zfs_prop_get_recvd(zhp, entry->pl_user_prop, buf, sizeof (buf), literal) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } } return (0); } int zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path, char *resource, void *export, void *sharetab, int sharemax, zfs_share_op_t operation) { zfs_cmd_t zc = { 0 }; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); if (resource) (void) strlcpy(zc.zc_string, resource, sizeof (zc.zc_string)); zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab; zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export; zc.zc_share.z_sharetype = operation; zc.zc_share.z_sharemax = sharemax; error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc); return (error); } void zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props) { nvpair_t *curr; /* * Keep a reference to the props-table against which we prune the * properties. */ zhp->zfs_props_table = props; curr = nvlist_next_nvpair(zhp->zfs_props, NULL); while (curr) { zfs_prop_t zfs_prop = zfs_name_to_prop(nvpair_name(curr)); nvpair_t *next = nvlist_next_nvpair(zhp->zfs_props, curr); /* * User properties will result in ZPROP_INVAL, and since we * only know how to prune standard ZFS properties, we always * leave these in the list. This can also happen if we * encounter an unknown DSL property (when running older * software, for example). */ if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE) (void) nvlist_remove(zhp->zfs_props, nvpair_name(curr), nvpair_type(curr)); curr = next; } } static int zfs_smb_acl_mgmt(libzfs_handle_t *hdl, char *dataset, char *path, zfs_smb_acl_op_t cmd, char *resource1, char *resource2) { zfs_cmd_t zc = { 0 }; nvlist_t *nvlist = NULL; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); zc.zc_cookie = (uint64_t)cmd; if (cmd == ZFS_SMB_ACL_RENAME) { if (nvlist_alloc(&nvlist, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } } switch (cmd) { case ZFS_SMB_ACL_ADD: case ZFS_SMB_ACL_REMOVE: (void) strlcpy(zc.zc_string, resource1, sizeof (zc.zc_string)); break; case ZFS_SMB_ACL_RENAME: if (nvlist_add_string(nvlist, ZFS_SMB_ACL_SRC, resource1) != 0) { (void) no_memory(hdl); return (-1); } if (nvlist_add_string(nvlist, ZFS_SMB_ACL_TARGET, resource2) != 0) { (void) no_memory(hdl); return (-1); } if (zcmd_write_src_nvlist(hdl, &zc, nvlist) != 0) { nvlist_free(nvlist); return (-1); } break; case ZFS_SMB_ACL_PURGE: break; default: return (-1); } error = ioctl(hdl->libzfs_fd, ZFS_IOC_SMB_ACL, &zc); if (nvlist) nvlist_free(nvlist); return (error); } int zfs_smb_acl_add(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_ADD, resource, NULL)); } int zfs_smb_acl_remove(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_REMOVE, resource, NULL)); } int zfs_smb_acl_purge(libzfs_handle_t *hdl, char *dataset, char *path) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_PURGE, NULL, NULL)); } int zfs_smb_acl_rename(libzfs_handle_t *hdl, char *dataset, char *path, char *oldname, char *newname) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_RENAME, oldname, newname)); } int zfs_userspace(zfs_handle_t *zhp, zfs_userquota_prop_t type, zfs_userspace_cb_t func, void *arg) { zfs_cmd_t zc = { 0 }; zfs_useracct_t buf[100]; libzfs_handle_t *hdl = zhp->zfs_hdl; int ret; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_objset_type = type; zc.zc_nvlist_dst = (uintptr_t)buf; for (;;) { zfs_useracct_t *zua = buf; zc.zc_nvlist_dst_size = sizeof (buf); if (zfs_ioctl(hdl, ZFS_IOC_USERSPACE_MANY, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot get used/quota for %s"), zc.zc_name); return (zfs_standard_error_fmt(hdl, errno, errbuf)); } if (zc.zc_nvlist_dst_size == 0) break; while (zc.zc_nvlist_dst_size > 0) { if ((ret = func(arg, zua->zu_domain, zua->zu_rid, zua->zu_space)) != 0) return (ret); zua++; zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t); } } return (0); } struct holdarg { nvlist_t *nvl; const char *snapname; const char *tag; boolean_t recursive; int error; }; static int zfs_hold_one(zfs_handle_t *zhp, void *arg) { struct holdarg *ha = arg; char name[ZFS_MAXNAMELEN]; int rv = 0; (void) snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name, ha->snapname); if (lzc_exists(name)) fnvlist_add_string(ha->nvl, name, ha->tag); if (ha->recursive) rv = zfs_iter_filesystems(zhp, zfs_hold_one, ha); zfs_close(zhp); return (rv); } int zfs_hold(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive, int cleanup_fd) { int ret; struct holdarg ha; ha.nvl = fnvlist_alloc(); ha.snapname = snapname; ha.tag = tag; ha.recursive = recursive; (void) zfs_hold_one(zfs_handle_dup(zhp), &ha); if (nvlist_empty(ha.nvl)) { char errbuf[1024]; fnvlist_free(ha.nvl); ret = ENOENT; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot hold snapshot '%s@%s'"), zhp->zfs_name, snapname); (void) zfs_standard_error(zhp->zfs_hdl, ret, errbuf); return (ret); } ret = zfs_hold_nvl(zhp, cleanup_fd, ha.nvl); fnvlist_free(ha.nvl); return (ret); } int zfs_hold_nvl(zfs_handle_t *zhp, int cleanup_fd, nvlist_t *holds) { int ret; nvlist_t *errors; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; nvpair_t *elem; errors = NULL; ret = lzc_hold(holds, cleanup_fd, &errors); if (ret == 0) { /* There may be errors even in the success case. */ fnvlist_free(errors); return (0); } if (nvlist_empty(errors)) { /* no hold-specific errors */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot hold")); switch (ret) { case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EINVAL: (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); break; default: (void) zfs_standard_error(hdl, ret, errbuf); } } for (elem = nvlist_next_nvpair(errors, NULL); elem != NULL; elem = nvlist_next_nvpair(errors, elem)) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot hold snapshot '%s'"), nvpair_name(elem)); switch (fnvpair_value_int32(elem)) { case E2BIG: /* * Temporary tags wind up having the ds object id * prepended. So even if we passed the length check * above, it's still possible for the tag to wind * up being slightly too long. */ (void) zfs_error(hdl, EZFS_TAGTOOLONG, errbuf); break; case EINVAL: (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); break; case EEXIST: (void) zfs_error(hdl, EZFS_REFTAG_HOLD, errbuf); break; default: (void) zfs_standard_error(hdl, fnvpair_value_int32(elem), errbuf); } } fnvlist_free(errors); return (ret); } static int zfs_release_one(zfs_handle_t *zhp, void *arg) { struct holdarg *ha = arg; char name[ZFS_MAXNAMELEN]; int rv = 0; nvlist_t *existing_holds; (void) snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name, ha->snapname); if (lzc_get_holds(name, &existing_holds) != 0) { ha->error = ENOENT; } else if (!nvlist_exists(existing_holds, ha->tag)) { ha->error = ESRCH; } else { nvlist_t *torelease = fnvlist_alloc(); fnvlist_add_boolean(torelease, ha->tag); fnvlist_add_nvlist(ha->nvl, name, torelease); fnvlist_free(torelease); } if (ha->recursive) rv = zfs_iter_filesystems(zhp, zfs_release_one, ha); zfs_close(zhp); return (rv); } int zfs_release(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive) { int ret; struct holdarg ha; nvlist_t *errors = NULL; nvpair_t *elem; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; ha.nvl = fnvlist_alloc(); ha.snapname = snapname; ha.tag = tag; ha.recursive = recursive; ha.error = 0; (void) zfs_release_one(zfs_handle_dup(zhp), &ha); if (nvlist_empty(ha.nvl)) { fnvlist_free(ha.nvl); ret = ha.error; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot release hold from snapshot '%s@%s'"), zhp->zfs_name, snapname); if (ret == ESRCH) { (void) zfs_error(hdl, EZFS_REFTAG_RELE, errbuf); } else { (void) zfs_standard_error(hdl, ret, errbuf); } return (ret); } ret = lzc_release(ha.nvl, &errors); fnvlist_free(ha.nvl); if (ret == 0) { /* There may be errors even in the success case. */ fnvlist_free(errors); return (0); } if (nvlist_empty(errors)) { /* no hold-specific errors */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot release")); switch (errno) { case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; default: (void) zfs_standard_error_fmt(hdl, errno, errbuf); } } for (elem = nvlist_next_nvpair(errors, NULL); elem != NULL; elem = nvlist_next_nvpair(errors, elem)) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot release hold from snapshot '%s'"), nvpair_name(elem)); switch (fnvpair_value_int32(elem)) { case ESRCH: (void) zfs_error(hdl, EZFS_REFTAG_RELE, errbuf); break; case EINVAL: (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); break; default: (void) zfs_standard_error_fmt(hdl, fnvpair_value_int32(elem), errbuf); } } fnvlist_free(errors); return (ret); } int zfs_get_fsacl(zfs_handle_t *zhp, nvlist_t **nvl) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; int nvsz = 2048; void *nvbuf; int err = 0; char errbuf[1024]; assert(zhp->zfs_type == ZFS_TYPE_VOLUME || zhp->zfs_type == ZFS_TYPE_FILESYSTEM); tryagain: nvbuf = malloc(nvsz); if (nvbuf == NULL) { err = (zfs_error(hdl, EZFS_NOMEM, strerror(errno))); goto out; } zc.zc_nvlist_dst_size = nvsz; zc.zc_nvlist_dst = (uintptr_t)nvbuf; (void) strlcpy(zc.zc_name, zhp->zfs_name, ZFS_MAXNAMELEN); if (ioctl(hdl->libzfs_fd, ZFS_IOC_GET_FSACL, &zc) != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot get permissions on '%s'"), zc.zc_name); switch (errno) { case ENOMEM: free(nvbuf); nvsz = zc.zc_nvlist_dst_size; goto tryagain; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); err = zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EINVAL: err = zfs_error(hdl, EZFS_BADTYPE, errbuf); break; case ENOENT: err = zfs_error(hdl, EZFS_NOENT, errbuf); break; default: err = zfs_standard_error_fmt(hdl, errno, errbuf); break; } } else { /* success */ int rc = nvlist_unpack(nvbuf, zc.zc_nvlist_dst_size, nvl, 0); if (rc) { (void) snprintf(errbuf, sizeof (errbuf), dgettext( TEXT_DOMAIN, "cannot get permissions on '%s'"), zc.zc_name); err = zfs_standard_error_fmt(hdl, rc, errbuf); } } free(nvbuf); out: return (err); } int zfs_set_fsacl(zfs_handle_t *zhp, boolean_t un, nvlist_t *nvl) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; char *nvbuf; char errbuf[1024]; size_t nvsz; int err; assert(zhp->zfs_type == ZFS_TYPE_VOLUME || zhp->zfs_type == ZFS_TYPE_FILESYSTEM); err = nvlist_size(nvl, &nvsz, NV_ENCODE_NATIVE); assert(err == 0); nvbuf = malloc(nvsz); err = nvlist_pack(nvl, &nvbuf, &nvsz, NV_ENCODE_NATIVE, 0); assert(err == 0); zc.zc_nvlist_src_size = nvsz; zc.zc_nvlist_src = (uintptr_t)nvbuf; zc.zc_perm_action = un; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_SET_FSACL, &zc) != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set permissions on '%s'"), zc.zc_name); switch (errno) { case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); err = zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EINVAL: err = zfs_error(hdl, EZFS_BADTYPE, errbuf); break; case ENOENT: err = zfs_error(hdl, EZFS_NOENT, errbuf); break; default: err = zfs_standard_error_fmt(hdl, errno, errbuf); break; } } free(nvbuf); return (err); } int zfs_get_holds(zfs_handle_t *zhp, nvlist_t **nvl) { int err; char errbuf[1024]; err = lzc_get_holds(zhp->zfs_name, nvl); if (err != 0) { libzfs_handle_t *hdl = zhp->zfs_hdl; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot get holds for '%s'"), zhp->zfs_name); switch (err) { case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); err = zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EINVAL: err = zfs_error(hdl, EZFS_BADTYPE, errbuf); break; case ENOENT: err = zfs_error(hdl, EZFS_NOENT, errbuf); break; default: err = zfs_standard_error_fmt(hdl, errno, errbuf); break; } } return (err); } /* * Convert the zvol's volume size to an appropriate reservation. * Note: If this routine is updated, it is necessary to update the ZFS test * suite's shell version in reservation.kshlib. */ uint64_t zvol_volsize_to_reservation(uint64_t volsize, nvlist_t *props) { uint64_t numdb; uint64_t nblocks, volblocksize; int ncopies; char *strval; if (nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0) ncopies = atoi(strval); else ncopies = 1; if (nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = ZVOL_DEFAULT_BLOCKSIZE; nblocks = volsize/volblocksize; /* start with metadnode L0-L6 */ numdb = 7; /* calculate number of indirects */ while (nblocks > 1) { nblocks += DNODES_PER_LEVEL - 1; nblocks /= DNODES_PER_LEVEL; numdb += nblocks; } numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1); volsize *= ncopies; /* * this is exactly DN_MAX_INDBLKSHIFT when metadata isn't * compressed, but in practice they compress down to about * 1100 bytes */ numdb *= 1ULL << DN_MAX_INDBLKSHIFT; volsize += numdb; return (volsize); } Index: vendor/illumos/dist/lib/libzfs/common/libzfs_sendrecv.c =================================================================== --- vendor/illumos/dist/lib/libzfs/common/libzfs_sendrecv.c (revision 274272) +++ vendor/illumos/dist/lib/libzfs/common/libzfs_sendrecv.c (revision 274273) @@ -1,3283 +1,3286 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_fletcher.h" #include "libzfs_impl.h" #include #include #include /* in libzfs_dataset.c */ extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *); static int zfs_receive_impl(libzfs_handle_t *, const char *, recvflags_t *, int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *); static const zio_cksum_t zero_cksum = { 0 }; typedef struct dedup_arg { int inputfd; int outputfd; libzfs_handle_t *dedup_hdl; } dedup_arg_t; typedef struct progress_arg { zfs_handle_t *pa_zhp; int pa_fd; boolean_t pa_parsable; } progress_arg_t; typedef struct dataref { uint64_t ref_guid; uint64_t ref_object; uint64_t ref_offset; } dataref_t; typedef struct dedup_entry { struct dedup_entry *dde_next; zio_cksum_t dde_chksum; uint64_t dde_prop; dataref_t dde_ref; } dedup_entry_t; #define MAX_DDT_PHYSMEM_PERCENT 20 #define SMALLEST_POSSIBLE_MAX_DDT_MB 128 typedef struct dedup_table { dedup_entry_t **dedup_hash_array; umem_cache_t *ddecache; uint64_t max_ddt_size; /* max dedup table size in bytes */ uint64_t cur_ddt_size; /* current dedup table size in bytes */ uint64_t ddt_count; int numhashbits; boolean_t ddt_full; } dedup_table_t; static int high_order_bit(uint64_t n) { int count; for (count = 0; n != 0; count++) n >>= 1; return (count); } static size_t ssread(void *buf, size_t len, FILE *stream) { size_t outlen; if ((outlen = fread(buf, len, 1, stream)) == 0) return (0); return (outlen); } static void ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { dedup_entry_t *dde; if (ddt->cur_ddt_size >= ddt->max_ddt_size) { if (ddt->ddt_full == B_FALSE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Dedup table full. Deduplication will continue " "with existing table entries")); ddt->ddt_full = B_TRUE; } return; } if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT)) != NULL) { assert(*ddepp == NULL); dde->dde_next = NULL; dde->dde_chksum = *cs; dde->dde_prop = prop; dde->dde_ref = *dr; *ddepp = dde; ddt->cur_ddt_size += sizeof (dedup_entry_t); ddt->ddt_count++; } } /* * Using the specified dedup table, do a lookup for an entry with * the checksum cs. If found, return the block's reference info * in *dr. Otherwise, insert a new entry in the dedup table, using * the reference information specified by *dr. * * return value: true - entry was found * false - entry was not found */ static boolean_t ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { uint32_t hashcode; dedup_entry_t **ddepp; hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits); for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; ddepp = &((*ddepp)->dde_next)) { if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) && (*ddepp)->dde_prop == prop) { *dr = (*ddepp)->dde_ref; return (B_TRUE); } } ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr); return (B_FALSE); } static int cksum_and_write(const void *buf, uint64_t len, zio_cksum_t *zc, int outfd) { fletcher_4_incremental_native(buf, len, zc); return (write(outfd, buf, len)); } /* * This function is started in a separate thread when the dedup option * has been requested. The main send thread determines the list of * snapshots to be included in the send stream and makes the ioctl calls * for each one. But instead of having the ioctl send the output to the * the output fd specified by the caller of zfs_send()), the * ioctl is told to direct the output to a pipe, which is read by the * alternate thread running THIS function. This function does the * dedup'ing by: * 1. building a dedup table (the DDT) * 2. doing checksums on each data block and inserting a record in the DDT * 3. looking for matching checksums, and * 4. sending a DRR_WRITE_BYREF record instead of a write record whenever * a duplicate block is found. * The output of this function then goes to the output fd requested * by the caller of zfs_send(). */ static void * cksummer(void *arg) { dedup_arg_t *dda = arg; - char *buf = malloc(1<<20); + char *buf = zfs_alloc(dda->dedup_hdl, SPA_MAXBLOCKSIZE); dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; struct drr_begin *drrb = &thedrr.drr_u.drr_begin; struct drr_end *drre = &thedrr.drr_u.drr_end; struct drr_object *drro = &thedrr.drr_u.drr_object; struct drr_write *drrw = &thedrr.drr_u.drr_write; struct drr_spill *drrs = &thedrr.drr_u.drr_spill; struct drr_write_embedded *drrwe = &thedrr.drr_u.drr_write_embedded; FILE *ofp; int outfd; dmu_replay_record_t wbr_drr = {0}; struct drr_write_byref *wbr_drrr = &wbr_drr.drr_u.drr_write_byref; dedup_table_t ddt; zio_cksum_t stream_cksum; uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE); uint64_t numbuckets; ddt.max_ddt_size = MAX((physmem * MAX_DDT_PHYSMEM_PERCENT)/100, SMALLEST_POSSIBLE_MAX_DDT_MB<<20); numbuckets = ddt.max_ddt_size/(sizeof (dedup_entry_t)); /* * numbuckets must be a power of 2. Increase number to * a power of 2 if necessary. */ if (!ISP2(numbuckets)) numbuckets = 1 << high_order_bit(numbuckets); ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *)); ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *); ddt.numhashbits = high_order_bit(numbuckets) - 1; ddt.ddt_full = B_FALSE; /* Initialize the write-by-reference block. */ wbr_drr.drr_type = DRR_WRITE_BYREF; wbr_drr.drr_payloadlen = 0; outfd = dda->outputfd; ofp = fdopen(dda->inputfd, "r"); while (ssread(drr, sizeof (dmu_replay_record_t), ofp) != 0) { switch (drr->drr_type) { case DRR_BEGIN: { int fflags; ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0); /* set the DEDUP feature flag for this stream */ fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); fflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags); if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM && drr->drr_payloadlen != 0) { int sz = drr->drr_payloadlen; - if (sz > 1<<20) { - free(buf); - buf = malloc(sz); + if (sz > SPA_MAXBLOCKSIZE) { + buf = zfs_realloc(dda->dedup_hdl, buf, + SPA_MAXBLOCKSIZE, sz); } (void) ssread(buf, sz, ofp); if (ferror(stdin)) perror("fread"); if (cksum_and_write(buf, sz, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_END: { /* use the recalculated checksum */ ZIO_SET_CHECKSUM(&drre->drr_checksum, stream_cksum.zc_word[0], stream_cksum.zc_word[1], stream_cksum.zc_word[2], stream_cksum.zc_word[3]); if ((write(outfd, drr, sizeof (dmu_replay_record_t))) == -1) goto out; break; } case DRR_OBJECT: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (drro->drr_bonuslen > 0) { (void) ssread(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), ofp); if (cksum_and_write(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), &stream_cksum, outfd) == -1) goto out; } break; } case DRR_SPILL: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; (void) ssread(buf, drrs->drr_length, ofp); if (cksum_and_write(buf, drrs->drr_length, &stream_cksum, outfd) == -1) goto out; break; } case DRR_FREEOBJECTS: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } case DRR_WRITE: { dataref_t dataref; (void) ssread(buf, drrw->drr_length, ofp); /* * Use the existing checksum if it's dedup-capable, * else calculate a SHA256 checksum for it. */ if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum, zero_cksum) || !DRR_IS_DEDUP_CAPABLE(drrw->drr_checksumflags)) { SHA256_CTX ctx; zio_cksum_t tmpsha256; SHA256Init(&ctx); SHA256Update(&ctx, buf, drrw->drr_length); SHA256Final(&tmpsha256, &ctx); drrw->drr_key.ddk_cksum.zc_word[0] = BE_64(tmpsha256.zc_word[0]); drrw->drr_key.ddk_cksum.zc_word[1] = BE_64(tmpsha256.zc_word[1]); drrw->drr_key.ddk_cksum.zc_word[2] = BE_64(tmpsha256.zc_word[2]); drrw->drr_key.ddk_cksum.zc_word[3] = BE_64(tmpsha256.zc_word[3]); drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256; drrw->drr_checksumflags = DRR_CHECKSUM_DEDUP; } dataref.ref_guid = drrw->drr_toguid; dataref.ref_object = drrw->drr_object; dataref.ref_offset = drrw->drr_offset; if (ddt_update(dda->dedup_hdl, &ddt, &drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop, &dataref)) { /* block already present in stream */ wbr_drrr->drr_object = drrw->drr_object; wbr_drrr->drr_offset = drrw->drr_offset; wbr_drrr->drr_length = drrw->drr_length; wbr_drrr->drr_toguid = drrw->drr_toguid; wbr_drrr->drr_refguid = dataref.ref_guid; wbr_drrr->drr_refobject = dataref.ref_object; wbr_drrr->drr_refoffset = dataref.ref_offset; wbr_drrr->drr_checksumtype = drrw->drr_checksumtype; wbr_drrr->drr_checksumflags = drrw->drr_checksumtype; wbr_drrr->drr_key.ddk_cksum = drrw->drr_key.ddk_cksum; wbr_drrr->drr_key.ddk_prop = drrw->drr_key.ddk_prop; if (cksum_and_write(&wbr_drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; } else { /* block not previously seen */ if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (cksum_and_write(buf, drrw->drr_length, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_WRITE_EMBEDDED: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; (void) ssread(buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), ofp); if (cksum_and_write(buf, P2ROUNDUP((uint64_t)drrwe->drr_psize, 8), &stream_cksum, outfd) == -1) goto out; break; } case DRR_FREE: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } default: (void) printf("INVALID record type 0x%x\n", drr->drr_type); /* should never happen, so assert */ assert(B_FALSE); } } out: umem_cache_destroy(ddt.ddecache); free(ddt.dedup_hash_array); free(buf); (void) fclose(ofp); return (NULL); } /* * Routines for dealing with the AVL tree of fs-nvlists */ typedef struct fsavl_node { avl_node_t fn_node; nvlist_t *fn_nvfs; char *fn_snapname; uint64_t fn_guid; } fsavl_node_t; static int fsavl_compare(const void *arg1, const void *arg2) { const fsavl_node_t *fn1 = arg1; const fsavl_node_t *fn2 = arg2; if (fn1->fn_guid > fn2->fn_guid) return (+1); else if (fn1->fn_guid < fn2->fn_guid) return (-1); else return (0); } /* * Given the GUID of a snapshot, find its containing filesystem and * (optionally) name. */ static nvlist_t * fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname) { fsavl_node_t fn_find; fsavl_node_t *fn; fn_find.fn_guid = snapguid; fn = avl_find(avl, &fn_find, NULL); if (fn) { if (snapname) *snapname = fn->fn_snapname; return (fn->fn_nvfs); } return (NULL); } static void fsavl_destroy(avl_tree_t *avl) { fsavl_node_t *fn; void *cookie; if (avl == NULL) return; cookie = NULL; while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL) free(fn); avl_destroy(avl); free(avl); } /* * Given an nvlist, produce an avl tree of snapshots, ordered by guid */ static avl_tree_t * fsavl_create(nvlist_t *fss) { avl_tree_t *fsavl; nvpair_t *fselem = NULL; if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL) return (NULL); avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t), offsetof(fsavl_node_t, fn_node)); while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) { nvlist_t *nvfs, *snaps; nvpair_t *snapelem = NULL; VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); while ((snapelem = nvlist_next_nvpair(snaps, snapelem)) != NULL) { fsavl_node_t *fn; uint64_t guid; VERIFY(0 == nvpair_value_uint64(snapelem, &guid)); if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) { fsavl_destroy(fsavl); return (NULL); } fn->fn_nvfs = nvfs; fn->fn_snapname = nvpair_name(snapelem); fn->fn_guid = guid; /* * Note: if there are multiple snaps with the * same GUID, we ignore all but one. */ if (avl_find(fsavl, fn, NULL) == NULL) avl_add(fsavl, fn); else free(fn); } } return (fsavl); } /* * Routines for dealing with the giant nvlist of fs-nvlists, etc. */ typedef struct send_data { uint64_t parent_fromsnap_guid; nvlist_t *parent_snaps; nvlist_t *fss; nvlist_t *snapprops; const char *fromsnap; const char *tosnap; boolean_t recursive; /* * The header nvlist is of the following format: * { * "tosnap" -> string * "fromsnap" -> string (if incremental) * "fss" -> { * id -> { * * "name" -> string (full name; for debugging) * "parentfromsnap" -> number (guid of fromsnap in parent) * * "props" -> { name -> value (only if set here) } * "snaps" -> { name (lastname) -> number (guid) } * "snapprops" -> { name (lastname) -> { name -> value } } * * "origin" -> number (guid) (if clone) * "sent" -> boolean (not on-disk) * } * } * } * */ } send_data_t; static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv); static int send_iterate_snap(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; uint64_t guid = zhp->zfs_dmustats.dds_guid; char *snapname; nvlist_t *nv; snapname = strrchr(zhp->zfs_name, '@')+1; VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid)); /* * NB: if there is no fromsnap here (it's a newly created fs in * an incremental replication), we will substitute the tosnap. */ if ((sd->fromsnap && strcmp(snapname, sd->fromsnap) == 0) || (sd->parent_fromsnap_guid == 0 && sd->tosnap && strcmp(snapname, sd->tosnap) == 0)) { sd->parent_fromsnap_guid = guid; } VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv)); nvlist_free(nv); zfs_close(zhp); return (0); } static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(zhp->zfs_props, elem)) != NULL) { char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); nvlist_t *propnv; if (!zfs_prop_user(propname)) { /* * Realistically, this should never happen. However, * we want the ability to add DSL properties without * needing to make incompatible version changes. We * need to ignore unknown properties to allow older * software to still send datasets containing these * properties, with the unknown properties elided. */ if (prop == ZPROP_INVAL) continue; if (zfs_prop_readonly(prop)) continue; } verify(nvpair_value_nvlist(elem, &propnv) == 0); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) { char *source; uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) continue; /* * May have no source before SPA_VERSION_RECVD_PROPS, * but is still modifiable. */ if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) == 0) { if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } } else { char *source; if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) != 0) continue; if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } if (zfs_prop_user(propname) || zfs_prop_get_type(prop) == PROP_TYPE_STRING) { char *value; verify(nvlist_lookup_string(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_string(nv, propname, value)); } else { uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_uint64(nv, propname, value)); } } } /* * recursively generate nvlists describing datasets. See comment * for the data structure send_data_t above for description of contents * of the nvlist. */ static int send_iterate_fs(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; nvlist_t *nvfs, *nv; int rv = 0; uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid; uint64_t guid = zhp->zfs_dmustats.dds_guid; char guidstring[64]; VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name)); VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap", sd->parent_fromsnap_guid)); if (zhp->zfs_dmustats.dds_origin[0]) { zfs_handle_t *origin = zfs_open(zhp->zfs_hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT); if (origin == NULL) return (-1); VERIFY(0 == nvlist_add_uint64(nvfs, "origin", origin->zfs_dmustats.dds_guid)); } /* iterate over props */ VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv)); nvlist_free(nv); /* iterate over snaps, and set sd->parent_fromsnap_guid */ sd->parent_fromsnap_guid = 0; VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0)); (void) zfs_iter_snapshots(zhp, send_iterate_snap, sd); VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps)); VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops)); nvlist_free(sd->parent_snaps); nvlist_free(sd->snapprops); /* add this fs to nvlist */ (void) snprintf(guidstring, sizeof (guidstring), "0x%llx", (longlong_t)guid); VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs)); nvlist_free(nvfs); /* iterate over children */ if (sd->recursive) rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd); sd->parent_fromsnap_guid = parent_fromsnap_guid_save; zfs_close(zhp); return (rv); } static int gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap, const char *tosnap, boolean_t recursive, nvlist_t **nvlp, avl_tree_t **avlp) { zfs_handle_t *zhp; send_data_t sd = { 0 }; int error; zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (EZFS_BADTYPE); VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0)); sd.fromsnap = fromsnap; sd.tosnap = tosnap; sd.recursive = recursive; if ((error = send_iterate_fs(zhp, &sd)) != 0) { nvlist_free(sd.fss); if (avlp != NULL) *avlp = NULL; *nvlp = NULL; return (error); } if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) { nvlist_free(sd.fss); *nvlp = NULL; return (EZFS_NOMEM); } *nvlp = sd.fss; return (0); } /* * Routines specific to "zfs send" */ typedef struct send_dump_data { /* these are all just the short snapname (the part after the @) */ const char *fromsnap; const char *tosnap; char prevsnap[ZFS_MAXNAMELEN]; uint64_t prevsnap_obj; boolean_t seenfrom, seento, replicate, doall, fromorigin; - boolean_t verbose, dryrun, parsable, progress, embed_data; + boolean_t verbose, dryrun, parsable, progress, embed_data, large_block; int outfd; boolean_t err; nvlist_t *fss; nvlist_t *snapholds; avl_tree_t *fsavl; snapfilter_cb_t *filter_cb; void *filter_cb_arg; nvlist_t *debugnv; char holdtag[ZFS_MAXNAMELEN]; int cleanup_fd; uint64_t size; } send_dump_data_t; static int estimate_ioctl(zfs_handle_t *zhp, uint64_t fromsnap_obj, boolean_t fromorigin, uint64_t *sizep) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_guid = 1; /* estimate flag */ if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot estimate space for '%s'"), zhp->zfs_name); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } *sizep = zc.zc_objset_type; return (0); } /* * Dumps a backup of the given snapshot (incremental from fromsnap if it's not * NULL) to the file descriptor specified by outfd. */ static int dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj, boolean_t fromorigin, int outfd, enum lzc_send_flags flags, nvlist_t *debugnv) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *thisdbg; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_cookie = outfd; zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; zc.zc_flags = flags; VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0)); if (fromsnap && fromsnap[0] != '\0') { VERIFY(0 == nvlist_add_string(thisdbg, "fromsnap", fromsnap)); } if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno)); if (debugnv) { VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); } nvlist_free(thisdbg); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } if (debugnv) VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); nvlist_free(thisdbg); return (0); } static void gather_holds(zfs_handle_t *zhp, send_dump_data_t *sdd) { assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); /* * zfs_send() only sets snapholds for sends that need them, * e.g. replication and doall. */ if (sdd->snapholds == NULL) return; fnvlist_add_string(sdd->snapholds, zhp->zfs_name, sdd->holdtag); } static void * send_progress_thread(void *arg) { progress_arg_t *pa = arg; zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp = pa->pa_zhp; libzfs_handle_t *hdl = zhp->zfs_hdl; unsigned long long bytes; char buf[16]; time_t t; struct tm *tm; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (!pa->pa_parsable) (void) fprintf(stderr, "TIME SENT SNAPSHOT\n"); /* * Print the progress from ZFS_IOC_SEND_PROGRESS every second. */ for (;;) { (void) sleep(1); zc.zc_cookie = pa->pa_fd; if (zfs_ioctl(hdl, ZFS_IOC_SEND_PROGRESS, &zc) != 0) return ((void *)-1); (void) time(&t); tm = localtime(&t); bytes = zc.zc_cookie; if (pa->pa_parsable) { (void) fprintf(stderr, "%02d:%02d:%02d\t%llu\t%s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, bytes, zhp->zfs_name); } else { zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "%02d:%02d:%02d %5s %s\n", tm->tm_hour, tm->tm_min, tm->tm_sec, buf, zhp->zfs_name); } } } static int dump_snapshot(zfs_handle_t *zhp, void *arg) { send_dump_data_t *sdd = arg; progress_arg_t pa = { 0 }; pthread_t tid; char *thissnap; int err; boolean_t isfromsnap, istosnap, fromorigin; boolean_t exclude = B_FALSE; err = 0; thissnap = strchr(zhp->zfs_name, '@') + 1; isfromsnap = (sdd->fromsnap != NULL && strcmp(sdd->fromsnap, thissnap) == 0); if (!sdd->seenfrom && isfromsnap) { gather_holds(zhp, sdd); sdd->seenfrom = B_TRUE; (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (0); } if (sdd->seento || !sdd->seenfrom) { zfs_close(zhp); return (0); } istosnap = (strcmp(sdd->tosnap, thissnap) == 0); if (istosnap) sdd->seento = B_TRUE; if (!sdd->doall && !isfromsnap && !istosnap) { if (sdd->replicate) { char *snapname; nvlist_t *snapprops; /* * Filter out all intermediate snapshots except origin * snapshots needed to replicate clones. */ nvlist_t *nvfs = fsavl_find(sdd->fsavl, zhp->zfs_dmustats.dds_guid, &snapname); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, thissnap, &snapprops)); exclude = !nvlist_exists(snapprops, "is_clone_origin"); } else { exclude = B_TRUE; } } /* * If a filter function exists, call it to determine whether * this snapshot will be sent. */ if (exclude || (sdd->filter_cb != NULL && sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) { /* * This snapshot is filtered out. Don't send it, and don't * set prevsnap_obj, so it will be as if this snapshot didn't * exist, and the next accepted snapshot will be sent as * an incremental from the last accepted one, or as the * first (and full) snapshot in the case of a replication, * non-incremental send. */ zfs_close(zhp); return (0); } gather_holds(zhp, sdd); fromorigin = sdd->prevsnap[0] == '\0' && (sdd->fromorigin || sdd->replicate); if (sdd->verbose) { uint64_t size; err = estimate_ioctl(zhp, sdd->prevsnap_obj, fromorigin, &size); if (sdd->parsable) { if (sdd->prevsnap[0] != '\0') { (void) fprintf(stderr, "incremental\t%s\t%s", sdd->prevsnap, zhp->zfs_name); } else { (void) fprintf(stderr, "full\t%s", zhp->zfs_name); } } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "send from @%s to %s"), sdd->prevsnap, zhp->zfs_name); } if (err == 0) { if (sdd->parsable) { (void) fprintf(stderr, "\t%llu\n", (longlong_t)size); } else { char buf[16]; zfs_nicenum(size, buf, sizeof (buf)); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, " estimated size is %s\n"), buf); } sdd->size += size; } else { (void) fprintf(stderr, "\n"); } } if (!sdd->dryrun) { /* * If progress reporting is requested, spawn a new thread to * poll ZFS_IOC_SEND_PROGRESS at a regular interval. */ if (sdd->progress) { pa.pa_zhp = zhp; pa.pa_fd = sdd->outfd; pa.pa_parsable = sdd->parsable; if (err = pthread_create(&tid, NULL, send_progress_thread, &pa)) { zfs_close(zhp); return (err); } } enum lzc_send_flags flags = 0; + if (sdd->large_block) + flags |= LZC_SEND_FLAG_LARGE_BLOCK; if (sdd->embed_data) flags |= LZC_SEND_FLAG_EMBED_DATA; err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj, fromorigin, sdd->outfd, flags, sdd->debugnv); if (sdd->progress) { (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); } } (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (err); } static int dump_filesystem(zfs_handle_t *zhp, void *arg) { int rv = 0; send_dump_data_t *sdd = arg; boolean_t missingfrom = B_FALSE; zfs_cmd_t zc = { 0 }; (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->tosnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); sdd->err = B_TRUE; return (0); } if (sdd->replicate && sdd->fromsnap) { /* * If this fs does not have fromsnap, and we're doing * recursive, we need to send a full stream from the * beginning (or an incremental from the origin if this * is a clone). If we're doing non-recursive, then let * them get the error. */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->fromsnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { missingfrom = B_TRUE; } } sdd->seenfrom = sdd->seento = sdd->prevsnap[0] = 0; sdd->prevsnap_obj = 0; if (sdd->fromsnap == NULL || missingfrom) sdd->seenfrom = B_TRUE; rv = zfs_iter_snapshots_sorted(zhp, dump_snapshot, arg); if (!sdd->seenfrom) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) does not exist\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); sdd->err = B_TRUE; } else if (!sdd->seento) { if (sdd->fromsnap) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) " "is not earlier than it\n"), zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); } else { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "WARNING: " "could not send %s@%s: does not exist\n"), zhp->zfs_name, sdd->tosnap); } sdd->err = B_TRUE; } return (rv); } static int dump_filesystems(zfs_handle_t *rzhp, void *arg) { send_dump_data_t *sdd = arg; nvpair_t *fspair; boolean_t needagain, progress; if (!sdd->replicate) return (dump_filesystem(rzhp, sdd)); /* Mark the clone origin snapshots. */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *nvfs; uint64_t origin_guid = 0; VERIFY(0 == nvpair_value_nvlist(fspair, &nvfs)); (void) nvlist_lookup_uint64(nvfs, "origin", &origin_guid); if (origin_guid != 0) { char *snapname; nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, &snapname); if (origin_nv != NULL) { nvlist_t *snapprops; VERIFY(0 == nvlist_lookup_nvlist(origin_nv, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, snapname, &snapprops)); VERIFY(0 == nvlist_add_boolean( snapprops, "is_clone_origin")); } } } again: needagain = progress = B_FALSE; for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist, *parent_nv; char *fsname; zfs_handle_t *zhp; int err; uint64_t origin_guid = 0; uint64_t parent_guid = 0; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); if (nvlist_lookup_boolean(fslist, "sent") == 0) continue; VERIFY(nvlist_lookup_string(fslist, "name", &fsname) == 0); (void) nvlist_lookup_uint64(fslist, "origin", &origin_guid); (void) nvlist_lookup_uint64(fslist, "parentfromsnap", &parent_guid); if (parent_guid != 0) { parent_nv = fsavl_find(sdd->fsavl, parent_guid, NULL); if (!nvlist_exists(parent_nv, "sent")) { /* parent has not been sent; skip this one */ needagain = B_TRUE; continue; } } if (origin_guid != 0) { nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, NULL); if (origin_nv != NULL && !nvlist_exists(origin_nv, "sent")) { /* * origin has not been sent yet; * skip this clone. */ needagain = B_TRUE; continue; } } zhp = zfs_open(rzhp->zfs_hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); err = dump_filesystem(zhp, sdd); VERIFY(nvlist_add_boolean(fslist, "sent") == 0); progress = B_TRUE; zfs_close(zhp); if (err) return (err); } if (needagain) { assert(progress); goto again; } /* clean out the sent flags in case we reuse this fss */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); (void) nvlist_remove_all(fslist, "sent"); } return (0); } /* * Generate a send stream for the dataset identified by the argument zhp. * * The content of the send stream is the snapshot identified by * 'tosnap'. Incremental streams are requested in two ways: * - from the snapshot identified by "fromsnap" (if non-null) or * - from the origin of the dataset identified by zhp, which must * be a clone. In this case, "fromsnap" is null and "fromorigin" * is TRUE. * * The send stream is recursive (i.e. dumps a hierarchy of snapshots) and * uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM) * if "replicate" is set. If "doall" is set, dump all the intermediate * snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall" * case too. If "props" is set, send properties. */ int zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, sendflags_t *flags, int outfd, snapfilter_cb_t filter_func, void *cb_arg, nvlist_t **debugnvp) { char errbuf[1024]; send_dump_data_t sdd = { 0 }; int err = 0; nvlist_t *fss = NULL; avl_tree_t *fsavl = NULL; static uint64_t holdseq; int spa_version; pthread_t tid = 0; int pipefd[2]; dedup_arg_t dda = { 0 }; int featureflags = 0; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot send '%s'"), zhp->zfs_name); if (fromsnap && fromsnap[0] == '\0') { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "zero-length incremental source")); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); } if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) { uint64_t version; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } if (flags->dedup && !flags->dryrun) { featureflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); if (err = pipe(pipefd)) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf)); } dda.outputfd = outfd; dda.inputfd = pipefd[1]; dda.dedup_hdl = zhp->zfs_hdl; if (err = pthread_create(&tid, NULL, cksummer, &dda)) { (void) close(pipefd[0]); (void) close(pipefd[1]); zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_THREADCREATEFAILED, errbuf)); } } if (flags->replicate || flags->doall || flags->props) { dmu_replay_record_t drr = { 0 }; char *packbuf = NULL; size_t buflen = 0; zio_cksum_t zc = { 0 }; if (flags->replicate || flags->props) { nvlist_t *hdrnv; VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0)); if (fromsnap) { VERIFY(0 == nvlist_add_string(hdrnv, "fromsnap", fromsnap)); } VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap)); if (!flags->replicate) { VERIFY(0 == nvlist_add_boolean(hdrnv, "not_recursive")); } err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name, fromsnap, tosnap, flags->replicate, &fss, &fsavl); if (err) goto err_out; VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss)); err = nvlist_pack(hdrnv, &packbuf, &buflen, NV_ENCODE_XDR, 0); if (debugnvp) *debugnvp = hdrnv; else nvlist_free(hdrnv); if (err) goto stderr_out; } if (!flags->dryrun) { /* write first begin record */ drr.drr_type = DRR_BEGIN; drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin. drr_versioninfo, DMU_COMPOUNDSTREAM); DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin. drr_versioninfo, featureflags); (void) snprintf(drr.drr_u.drr_begin.drr_toname, sizeof (drr.drr_u.drr_begin.drr_toname), "%s@%s", zhp->zfs_name, tosnap); drr.drr_payloadlen = buflen; err = cksum_and_write(&drr, sizeof (drr), &zc, outfd); /* write header nvlist */ if (err != -1 && packbuf != NULL) { err = cksum_and_write(packbuf, buflen, &zc, outfd); } free(packbuf); if (err == -1) { err = errno; goto stderr_out; } /* write end record */ bzero(&drr, sizeof (drr)); drr.drr_type = DRR_END; drr.drr_u.drr_end.drr_checksum = zc; err = write(outfd, &drr, sizeof (drr)); if (err == -1) { err = errno; goto stderr_out; } err = 0; } } /* dump each stream */ sdd.fromsnap = fromsnap; sdd.tosnap = tosnap; if (tid != 0) sdd.outfd = pipefd[0]; else sdd.outfd = outfd; sdd.replicate = flags->replicate; sdd.doall = flags->doall; sdd.fromorigin = flags->fromorigin; sdd.fss = fss; sdd.fsavl = fsavl; sdd.verbose = flags->verbose; sdd.parsable = flags->parsable; sdd.progress = flags->progress; sdd.dryrun = flags->dryrun; + sdd.large_block = flags->largeblock; sdd.embed_data = flags->embed_data; sdd.filter_cb = filter_func; sdd.filter_cb_arg = cb_arg; if (debugnvp) sdd.debugnv = *debugnvp; /* * Some flags require that we place user holds on the datasets that are * being sent so they don't get destroyed during the send. We can skip * this step if the pool is imported read-only since the datasets cannot * be destroyed. */ if (!flags->dryrun && !zpool_get_prop_int(zfs_get_pool_handle(zhp), ZPOOL_PROP_READONLY, NULL) && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS && (flags->doall || flags->replicate)) { ++holdseq; (void) snprintf(sdd.holdtag, sizeof (sdd.holdtag), ".send-%d-%llu", getpid(), (u_longlong_t)holdseq); sdd.cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); if (sdd.cleanup_fd < 0) { err = errno; goto stderr_out; } sdd.snapholds = fnvlist_alloc(); } else { sdd.cleanup_fd = -1; sdd.snapholds = NULL; } if (flags->verbose || sdd.snapholds != NULL) { /* * Do a verbose no-op dry run to get all the verbose output * or to gather snapshot hold's before generating any data, * then do a non-verbose real run to generate the streams. */ sdd.dryrun = B_TRUE; err = dump_filesystems(zhp, &sdd); if (err != 0) goto stderr_out; if (flags->verbose) { if (flags->parsable) { (void) fprintf(stderr, "size\t%llu\n", (longlong_t)sdd.size); } else { char buf[16]; zfs_nicenum(sdd.size, buf, sizeof (buf)); (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "total estimated size is %s\n"), buf); } } /* Ensure no snaps found is treated as an error. */ if (!sdd.seento) { err = ENOENT; goto err_out; } /* Skip the second run if dryrun was requested. */ if (flags->dryrun) goto err_out; if (sdd.snapholds != NULL) { err = zfs_hold_nvl(zhp, sdd.cleanup_fd, sdd.snapholds); if (err != 0) goto stderr_out; fnvlist_free(sdd.snapholds); sdd.snapholds = NULL; } sdd.dryrun = B_FALSE; sdd.verbose = B_FALSE; } err = dump_filesystems(zhp, &sdd); fsavl_destroy(fsavl); nvlist_free(fss); /* Ensure no snaps found is treated as an error. */ if (err == 0 && !sdd.seento) err = ENOENT; if (tid != 0) { if (err != 0) (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } if (sdd.cleanup_fd != -1) { VERIFY(0 == close(sdd.cleanup_fd)); sdd.cleanup_fd = -1; } if (!flags->dryrun && (flags->replicate || flags->doall || flags->props)) { /* * write final end record. NB: want to do this even if * there was some error, because it might not be totally * failed. */ dmu_replay_record_t drr = { 0 }; drr.drr_type = DRR_END; if (write(outfd, &drr, sizeof (drr)) == -1) { return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (err || sdd.err); stderr_out: err = zfs_standard_error(zhp->zfs_hdl, err, errbuf); err_out: fsavl_destroy(fsavl); nvlist_free(fss); fnvlist_free(sdd.snapholds); if (sdd.cleanup_fd != -1) VERIFY(0 == close(sdd.cleanup_fd)); if (tid != 0) { (void) pthread_cancel(tid); (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } return (err); } int zfs_send_one(zfs_handle_t *zhp, const char *from, int fd, enum lzc_send_flags flags) { int err; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); err = lzc_send(zhp->zfs_name, from, fd, flags); if (err != 0) { switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: case ESRCH: if (lzc_exists(zhp->zfs_name)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (%s) does not exist"), from); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "target is busy; if a filesystem, " "it must not be mounted")); return (zfs_error(hdl, EZFS_BUSY, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (err != 0); } /* * Routines specific to "zfs recv" */ static int recv_read(libzfs_handle_t *hdl, int fd, void *buf, int ilen, boolean_t byteswap, zio_cksum_t *zc) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to read from stream")); return (zfs_error(hdl, EZFS_BADSTREAM, dgettext(TEXT_DOMAIN, "cannot receive"))); } if (zc) { if (byteswap) fletcher_4_incremental_byteswap(buf, ilen, zc); else fletcher_4_incremental_native(buf, ilen, zc); } return (0); } static int recv_read_nvlist(libzfs_handle_t *hdl, int fd, int len, nvlist_t **nvp, boolean_t byteswap, zio_cksum_t *zc) { char *buf; int err; buf = zfs_alloc(hdl, len); if (buf == NULL) return (ENOMEM); err = recv_read(hdl, fd, buf, len, byteswap, zc); if (err != 0) { free(buf); return (err); } err = nvlist_unpack(buf, len, nvp, 0); free(buf); if (err != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (malformed nvlist)")); return (EINVAL); } return (0); } static int recv_rename(libzfs_handle_t *hdl, const char *name, const char *tryname, int baselen, char *newname, recvflags_t *flags) { static int seq; zfs_cmd_t zc = { 0 }; int err; prop_changelist_t *clp; zfs_handle_t *zhp; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (tryname) { (void) strcpy(newname, tryname); (void) strlcpy(zc.zc_value, tryname, sizeof (zc.zc_value)); if (flags->verbose) { (void) printf("attempting rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, tryname); } else { err = ENOENT; } if (err != 0 && strncmp(name + baselen, "recv-", 5) != 0) { seq++; (void) snprintf(newname, ZFS_MAXNAMELEN, "%.*srecv-%u-%u", baselen, name, getpid(), seq); (void) strlcpy(zc.zc_value, newname, sizeof (zc.zc_value)); if (flags->verbose) { (void) printf("failed - trying rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, newname); if (err && flags->verbose) { (void) printf("failed (%u) - " "will try again on next pass\n", errno); } err = EAGAIN; } else if (flags->verbose) { if (err == 0) (void) printf("success\n"); else (void) printf("failed (%u)\n", errno); } (void) changelist_postfix(clp); changelist_free(clp); return (err); } static int recv_destroy(libzfs_handle_t *hdl, const char *name, int baselen, char *newname, recvflags_t *flags) { zfs_cmd_t zc = { 0 }; int err = 0; prop_changelist_t *clp; zfs_handle_t *zhp; boolean_t defer = B_FALSE; int spa_version; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags->force ? MS_FORCE : 0); if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS) defer = B_TRUE; zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; zc.zc_defer_destroy = defer; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (flags->verbose) (void) printf("attempting destroy %s\n", zc.zc_name); err = ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc); if (err == 0) { if (flags->verbose) (void) printf("success\n"); changelist_remove(clp, zc.zc_name); } (void) changelist_postfix(clp); changelist_free(clp); /* * Deferred destroy might destroy the snapshot or only mark it to be * destroyed later, and it returns success in either case. */ if (err != 0 || (defer && zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT))) { err = recv_rename(hdl, name, NULL, baselen, newname, flags); } return (err); } typedef struct guid_to_name_data { uint64_t guid; char *name; char *skip; } guid_to_name_data_t; static int guid_to_name_cb(zfs_handle_t *zhp, void *arg) { guid_to_name_data_t *gtnd = arg; int err; if (gtnd->skip != NULL && strcmp(zhp->zfs_name, gtnd->skip) == 0) { return (0); } if (zhp->zfs_dmustats.dds_guid == gtnd->guid) { (void) strcpy(gtnd->name, zhp->zfs_name); zfs_close(zhp); return (EEXIST); } err = zfs_iter_children(zhp, guid_to_name_cb, gtnd); zfs_close(zhp); return (err); } /* * Attempt to find the local dataset associated with this guid. In the case of * multiple matches, we attempt to find the "best" match by searching * progressively larger portions of the hierarchy. This allows one to send a * tree of datasets individually and guarantee that we will find the source * guid within that hierarchy, even if there are multiple matches elsewhere. */ static int guid_to_name(libzfs_handle_t *hdl, const char *parent, uint64_t guid, char *name) { /* exhaustive search all local snapshots */ char pname[ZFS_MAXNAMELEN]; guid_to_name_data_t gtnd; int err = 0; zfs_handle_t *zhp; char *cp; gtnd.guid = guid; gtnd.name = name; gtnd.skip = NULL; (void) strlcpy(pname, parent, sizeof (pname)); /* * Search progressively larger portions of the hierarchy. This will * select the "most local" version of the origin snapshot in the case * that there are multiple matching snapshots in the system. */ while ((cp = strrchr(pname, '/')) != NULL) { /* Chop off the last component and open the parent */ *cp = '\0'; zhp = make_dataset_handle(hdl, pname); if (zhp == NULL) continue; err = zfs_iter_children(zhp, guid_to_name_cb, >nd); zfs_close(zhp); if (err == EEXIST) return (0); /* * Remember the dataset that we already searched, so we * skip it next time through. */ gtnd.skip = pname; } return (ENOENT); } /* * Return +1 if guid1 is before guid2, 0 if they are the same, and -1 if * guid1 is after guid2. */ static int created_before(libzfs_handle_t *hdl, avl_tree_t *avl, uint64_t guid1, uint64_t guid2) { nvlist_t *nvfs; char *fsname, *snapname; char buf[ZFS_MAXNAMELEN]; int rv; zfs_handle_t *guid1hdl, *guid2hdl; uint64_t create1, create2; if (guid2 == 0) return (0); if (guid1 == 0) return (1); nvfs = fsavl_find(avl, guid1, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid1hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid1hdl == NULL) return (-1); nvfs = fsavl_find(avl, guid2, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); guid2hdl = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (guid2hdl == NULL) { zfs_close(guid1hdl); return (-1); } create1 = zfs_prop_get_int(guid1hdl, ZFS_PROP_CREATETXG); create2 = zfs_prop_get_int(guid2hdl, ZFS_PROP_CREATETXG); if (create1 < create2) rv = -1; else if (create1 > create2) rv = +1; else rv = 0; zfs_close(guid1hdl); zfs_close(guid2hdl); return (rv); } static int recv_incremental_replication(libzfs_handle_t *hdl, const char *tofs, recvflags_t *flags, nvlist_t *stream_nv, avl_tree_t *stream_avl, nvlist_t *renamed) { nvlist_t *local_nv; avl_tree_t *local_avl; nvpair_t *fselem, *nextfselem; char *fromsnap; char newname[ZFS_MAXNAMELEN]; int error; boolean_t needagain, progress, recursive; char *s1, *s2; VERIFY(0 == nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap)); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (flags->dryrun) return (0); again: needagain = progress = B_FALSE; if ((error = gather_nvlist(hdl, tofs, fromsnap, NULL, recursive, &local_nv, &local_avl)) != 0) return (error); /* * Process deletes and renames */ for (fselem = nvlist_next_nvpair(local_nv, NULL); fselem; fselem = nextfselem) { nvlist_t *nvfs, *snaps; nvlist_t *stream_nvfs = NULL; nvpair_t *snapelem, *nextsnapelem; uint64_t fromguid = 0; uint64_t originguid = 0; uint64_t stream_originguid = 0; uint64_t parent_fromsnap_guid, stream_parent_fromsnap_guid; char *fsname, *stream_fsname; nextfselem = nvlist_next_nvpair(local_nv, fselem); VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); VERIFY(0 == nvlist_lookup_uint64(nvfs, "parentfromsnap", &parent_fromsnap_guid)); (void) nvlist_lookup_uint64(nvfs, "origin", &originguid); /* * First find the stream's fs, so we can check for * a different origin (due to "zfs promote") */ for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nvlist_next_nvpair(snaps, snapelem)) { uint64_t thisguid; VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); stream_nvfs = fsavl_find(stream_avl, thisguid, NULL); if (stream_nvfs != NULL) break; } /* check for promote */ (void) nvlist_lookup_uint64(stream_nvfs, "origin", &stream_originguid); if (stream_nvfs && originguid != stream_originguid) { switch (created_before(hdl, local_avl, stream_originguid, originguid)) { case 1: { /* promote it! */ zfs_cmd_t zc = { 0 }; nvlist_t *origin_nvfs; char *origin_fsname; if (flags->verbose) (void) printf("promoting %s\n", fsname); origin_nvfs = fsavl_find(local_avl, originguid, NULL); VERIFY(0 == nvlist_lookup_string(origin_nvfs, "name", &origin_fsname)); (void) strlcpy(zc.zc_value, origin_fsname, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); error = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (error == 0) progress = B_TRUE; break; } default: break; case -1: fsavl_destroy(local_avl); nvlist_free(local_nv); return (-1); } /* * We had/have the wrong origin, therefore our * list of snapshots is wrong. Need to handle * them on the next pass. */ needagain = B_TRUE; continue; } for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nextsnapelem) { uint64_t thisguid; char *stream_snapname; nvlist_t *found, *props; nextsnapelem = nvlist_next_nvpair(snaps, snapelem); VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); found = fsavl_find(stream_avl, thisguid, &stream_snapname); /* check for delete */ if (found == NULL) { char name[ZFS_MAXNAMELEN]; if (!flags->force) continue; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); error = recv_destroy(hdl, name, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } stream_nvfs = found; if (0 == nvlist_lookup_nvlist(stream_nvfs, "snapprops", &props) && 0 == nvlist_lookup_nvlist(props, stream_snapname, &props)) { zfs_cmd_t zc = { 0 }; zc.zc_cookie = B_TRUE; /* received */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", fsname, nvpair_name(snapelem)); if (zcmd_write_src_nvlist(hdl, &zc, props) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); zcmd_free_nvlists(&zc); } } /* check for different snapname */ if (strcmp(nvpair_name(snapelem), stream_snapname) != 0) { char name[ZFS_MAXNAMELEN]; char tryname[ZFS_MAXNAMELEN]; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); (void) snprintf(tryname, sizeof (name), "%s@%s", fsname, stream_snapname); error = recv_rename(hdl, name, tryname, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; } if (strcmp(stream_snapname, fromsnap) == 0) fromguid = thisguid; } /* check for delete */ if (stream_nvfs == NULL) { if (!flags->force) continue; error = recv_destroy(hdl, fsname, strlen(tofs)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } if (fromguid == 0) { if (flags->verbose) { (void) printf("local fs %s does not have " "fromsnap (%s in stream); must have " "been deleted locally; ignoring\n", fsname, fromsnap); } continue; } VERIFY(0 == nvlist_lookup_string(stream_nvfs, "name", &stream_fsname)); VERIFY(0 == nvlist_lookup_uint64(stream_nvfs, "parentfromsnap", &stream_parent_fromsnap_guid)); s1 = strrchr(fsname, '/'); s2 = strrchr(stream_fsname, '/'); /* * Check for rename. If the exact receive path is specified, it * does not count as a rename, but we still need to check the * datasets beneath it. */ if ((stream_parent_fromsnap_guid != 0 && parent_fromsnap_guid != 0 && stream_parent_fromsnap_guid != parent_fromsnap_guid) || ((flags->isprefix || strcmp(tofs, fsname) != 0) && (s1 != NULL) && (s2 != NULL) && strcmp(s1, s2) != 0)) { nvlist_t *parent; char tryname[ZFS_MAXNAMELEN]; parent = fsavl_find(local_avl, stream_parent_fromsnap_guid, NULL); /* * NB: parent might not be found if we used the * tosnap for stream_parent_fromsnap_guid, * because the parent is a newly-created fs; * we'll be able to rename it after we recv the * new fs. */ if (parent != NULL) { char *pname; VERIFY(0 == nvlist_lookup_string(parent, "name", &pname)); (void) snprintf(tryname, sizeof (tryname), "%s%s", pname, strrchr(stream_fsname, '/')); } else { tryname[0] = '\0'; if (flags->verbose) { (void) printf("local fs %s new parent " "not found\n", fsname); } } newname[0] = '\0'; error = recv_rename(hdl, fsname, tryname, strlen(tofs)+1, newname, flags); if (renamed != NULL && newname[0] != '\0') { VERIFY(0 == nvlist_add_boolean(renamed, newname)); } if (error) needagain = B_TRUE; else progress = B_TRUE; } } fsavl_destroy(local_avl); nvlist_free(local_nv); if (needagain && progress) { /* do another pass to fix up temporary names */ if (flags->verbose) (void) printf("another pass:\n"); goto again; } return (needagain); } static int zfs_receive_package(libzfs_handle_t *hdl, int fd, const char *destname, recvflags_t *flags, dmu_replay_record_t *drr, zio_cksum_t *zc, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { nvlist_t *stream_nv = NULL; avl_tree_t *stream_avl = NULL; char *fromsnap = NULL; char *cp; char tofs[ZFS_MAXNAMELEN]; char sendfs[ZFS_MAXNAMELEN]; char errbuf[1024]; dmu_replay_record_t drre; int error; boolean_t anyerr = B_FALSE; boolean_t softerr = B_FALSE; boolean_t recursive; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); assert(drr->drr_type == DRR_BEGIN); assert(drr->drr_u.drr_begin.drr_magic == DMU_BACKUP_MAGIC); assert(DMU_GET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo) == DMU_COMPOUNDSTREAM); /* * Read in the nvlist from the stream. */ if (drr->drr_payloadlen != 0) { error = recv_read_nvlist(hdl, fd, drr->drr_payloadlen, &stream_nv, flags->byteswap, zc); if (error) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } } recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (recursive && strchr(destname, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot stream")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } /* * Read in the end record and verify checksum. */ if (0 != (error = recv_read(hdl, fd, &drre, sizeof (drre), flags->byteswap, NULL))) goto out; if (flags->byteswap) { drre.drr_type = BSWAP_32(drre.drr_type); drre.drr_u.drr_end.drr_checksum.zc_word[0] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[0]); drre.drr_u.drr_end.drr_checksum.zc_word[1] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[1]); drre.drr_u.drr_end.drr_checksum.zc_word[2] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[2]); drre.drr_u.drr_end.drr_checksum.zc_word[3] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[3]); } if (drre.drr_type != DRR_END) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } if (!ZIO_CHECKSUM_EQUAL(drre.drr_u.drr_end.drr_checksum, *zc)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incorrect header checksum")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } (void) nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap); if (drr->drr_payloadlen != 0) { nvlist_t *stream_fss; VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss)); if ((stream_avl = fsavl_create(stream_fss)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "couldn't allocate avl tree")); error = zfs_error(hdl, EZFS_NOMEM, errbuf); goto out; } if (fromsnap != NULL) { nvlist_t *renamed = NULL; nvpair_t *pair = NULL; (void) strlcpy(tofs, destname, ZFS_MAXNAMELEN); if (flags->isprefix) { struct drr_begin *drrb = &drr->drr_u.drr_begin; int i; if (flags->istail) { cp = strrchr(drrb->drr_toname, '/'); if (cp == NULL) { (void) strlcat(tofs, "/", ZFS_MAXNAMELEN); i = 0; } else { i = (cp - drrb->drr_toname); } } else { i = strcspn(drrb->drr_toname, "/@"); } /* zfs_receive_one() will create_parents() */ (void) strlcat(tofs, &drrb->drr_toname[i], ZFS_MAXNAMELEN); *strchr(tofs, '@') = '\0'; } if (recursive && !flags->dryrun && !flags->nomount) { VERIFY(0 == nvlist_alloc(&renamed, NV_UNIQUE_NAME, 0)); } softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, renamed); /* Unmount renamed filesystems before receiving. */ while ((pair = nvlist_next_nvpair(renamed, pair)) != NULL) { zfs_handle_t *zhp; prop_changelist_t *clp = NULL; zhp = zfs_open(hdl, nvpair_name(pair), ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, 0); zfs_close(zhp); if (clp != NULL) { softerr |= changelist_prefix(clp); changelist_free(clp); } } } nvlist_free(renamed); } } /* * Get the fs specified by the first path in the stream (the top level * specified by 'zfs send') and pass it to each invocation of * zfs_receive_one(). */ (void) strlcpy(sendfs, drr->drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(sendfs, '@')) != NULL) *cp = '\0'; /* Finally, receive each contained stream */ do { /* * we should figure out if it has a recoverable * error, in which case do a recv_skip() and drive on. * Note, if we fail due to already having this guid, * zfs_receive_one() will take care of it (ie, * recv_skip() and return 0). */ error = zfs_receive_impl(hdl, destname, flags, fd, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep); if (error == ENODATA) { error = 0; break; } anyerr |= error; } while (error == 0); if (drr->drr_payloadlen != 0 && fromsnap != NULL) { /* * Now that we have the fs's they sent us, try the * renames again. */ softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, NULL); } out: fsavl_destroy(stream_avl); if (stream_nv) nvlist_free(stream_nv); if (softerr) error = -2; if (anyerr) error = -1; return (error); } static void trunc_prop_errs(int truncated) { ASSERT(truncated != 0); if (truncated == 1) (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "1 more property could not be set\n")); else (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "%d more properties could not be set\n"), truncated); } static int recv_skip(libzfs_handle_t *hdl, int fd, boolean_t byteswap) { dmu_replay_record_t *drr; - void *buf = malloc(1<<20); + void *buf = zfs_alloc(hdl, SPA_MAXBLOCKSIZE); char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive:")); /* XXX would be great to use lseek if possible... */ drr = buf; while (recv_read(hdl, fd, drr, sizeof (dmu_replay_record_t), byteswap, NULL) == 0) { if (byteswap) drr->drr_type = BSWAP_32(drr->drr_type); switch (drr->drr_type) { case DRR_BEGIN: /* NB: not to be used on v2 stream packages */ if (drr->drr_payloadlen != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid substream header")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } break; case DRR_END: free(buf); return (0); case DRR_OBJECT: if (byteswap) { drr->drr_u.drr_object.drr_bonuslen = BSWAP_32(drr->drr_u.drr_object. drr_bonuslen); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_object.drr_bonuslen, 8), B_FALSE, NULL); break; case DRR_WRITE: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_write.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_write.drr_length, B_FALSE, NULL); break; case DRR_SPILL: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_spill.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_spill.drr_length, B_FALSE, NULL); break; case DRR_WRITE_EMBEDDED: if (byteswap) { drr->drr_u.drr_write_embedded.drr_psize = BSWAP_32(drr->drr_u.drr_write_embedded. drr_psize); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_write_embedded.drr_psize, 8), B_FALSE, NULL); break; case DRR_WRITE_BYREF: case DRR_FREEOBJECTS: case DRR_FREE: break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid record type")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } } free(buf); return (-1); } /* * Restores a backup of tosnap from the file descriptor specified by infd. */ static int zfs_receive_one(libzfs_handle_t *hdl, int infd, const char *tosnap, recvflags_t *flags, dmu_replay_record_t *drr, dmu_replay_record_t *drr_noswap, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { zfs_cmd_t zc = { 0 }; time_t begin_time; int ioctl_err, ioctl_errno, err; char *cp; struct drr_begin *drrb = &drr->drr_u.drr_begin; char errbuf[1024]; char prop_errbuf[1024]; const char *chopprefix; boolean_t newfs = B_FALSE; boolean_t stream_wantsnewfs; uint64_t parent_snapguid = 0; prop_changelist_t *clp = NULL; nvlist_t *snapprops_nvlist = NULL; zprop_errflags_t prop_errflags; boolean_t recursive; begin_time = time(NULL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (stream_avl != NULL) { char *snapname; nvlist_t *fs = fsavl_find(stream_avl, drrb->drr_toguid, &snapname); nvlist_t *props; int ret; (void) nvlist_lookup_uint64(fs, "parentfromsnap", &parent_snapguid); err = nvlist_lookup_nvlist(fs, "props", &props); if (err) VERIFY(0 == nvlist_alloc(&props, NV_UNIQUE_NAME, 0)); if (flags->canmountoff) { VERIFY(0 == nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_CANMOUNT), 0)); } ret = zcmd_write_src_nvlist(hdl, &zc, props); if (err) nvlist_free(props); if (0 == nvlist_lookup_nvlist(fs, "snapprops", &props)) { VERIFY(0 == nvlist_lookup_nvlist(props, snapname, &snapprops_nvlist)); } if (ret != 0) return (-1); } cp = NULL; /* * Determine how much of the snapshot name stored in the stream * we are going to tack on to the name they specified on the * command line, and how much we are going to chop off. * * If they specified a snapshot, chop the entire name stored in * the stream. */ if (flags->istail) { /* * A filesystem was specified with -e. We want to tack on only * the tail of the sent snapshot path. */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -e")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strrchr(sendfs, '/'); if (chopprefix == NULL) { /* * The tail is the poolname, so we need to * prepend a path separator. */ int len = strlen(drrb->drr_toname); cp = malloc(len + 2); cp[0] = '/'; (void) strcpy(&cp[1], drrb->drr_toname); chopprefix = cp; } else { chopprefix = drrb->drr_toname + (chopprefix - sendfs); } } else if (flags->isprefix) { /* * A filesystem was specified with -d. We want to tack on * everything but the first element of the sent snapshot path * (all but the pool name). */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -d")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strchr(drrb->drr_toname, '/'); if (chopprefix == NULL) chopprefix = strchr(drrb->drr_toname, '@'); } else if (strchr(tosnap, '@') == NULL) { /* * If a filesystem was specified without -d or -e, we want to * tack on everything after the fs specified by 'zfs send'. */ chopprefix = drrb->drr_toname + strlen(sendfs); } else { /* A snapshot was specified as an exact path (no -d or -e). */ if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot " "stream")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } chopprefix = drrb->drr_toname + strlen(drrb->drr_toname); } ASSERT(strstr(drrb->drr_toname, sendfs) == drrb->drr_toname); ASSERT(chopprefix > drrb->drr_toname); ASSERT(chopprefix <= drrb->drr_toname + strlen(drrb->drr_toname)); ASSERT(chopprefix[0] == '/' || chopprefix[0] == '@' || chopprefix[0] == '\0'); /* * Determine name of destination snapshot, store in zc_value. */ (void) strcpy(zc.zc_value, tosnap); (void) strncat(zc.zc_value, chopprefix, sizeof (zc.zc_value)); free(cp); if (!zfs_name_valid(zc.zc_value, ZFS_TYPE_SNAPSHOT)) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* * Determine the name of the origin snapshot, store in zc_string. */ if (drrb->drr_flags & DRR_FLAG_CLONE) { if (guid_to_name(hdl, zc.zc_value, drrb->drr_fromguid, zc.zc_string) != 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "local origin for clone %s does not exist"), zc.zc_value); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } if (flags->verbose) (void) printf("found clone origin %s\n", zc.zc_string); } stream_wantsnewfs = (drrb->drr_fromguid == NULL || (drrb->drr_flags & DRR_FLAG_CLONE)); if (stream_wantsnewfs) { /* * if the parent fs does not exist, look for it based on * the parent snap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive new filesystem stream")); (void) strcpy(zc.zc_name, zc.zc_value); cp = strrchr(zc.zc_name, '/'); if (cp) *cp = '\0'; if (cp && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char suffix[ZFS_MAXNAMELEN]; (void) strcpy(suffix, strrchr(zc.zc_value, '/')); if (guid_to_name(hdl, zc.zc_name, parent_snapguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, suffix); } } } else { /* * if the fs does not exist, look for it based on the * fromsnap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive incremental stream")); (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; /* * If the exact receive path was specified and this is the * topmost path in the stream, then if the fs does not exist we * should look no further. */ if ((flags->isprefix || (*(chopprefix = drrb->drr_toname + strlen(sendfs)) != '\0' && *chopprefix != '@')) && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char snap[ZFS_MAXNAMELEN]; (void) strcpy(snap, strchr(zc.zc_value, '@')); if (guid_to_name(hdl, zc.zc_name, drrb->drr_fromguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, snap); } } } (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_handle_t *zhp; /* * Destination fs exists. Therefore this should either * be an incremental, or the stream specifies a new fs * (full stream or clone) and they want us to blow it * away (and have therefore specified -F and removed any * snapshots). */ if (stream_wantsnewfs) { if (!flags->force) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' exists\n" "must specify -F to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination has snapshots (eg. %s)\n" "must destroy them to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } } if ((zhp = zfs_open(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } if (stream_wantsnewfs && zhp->zfs_dmustats.dds_origin[0]) { zcmd_free_nvlists(&zc); zfs_close(zhp); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' is a clone\n" "must destroy it to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (!flags->dryrun && zhp->zfs_type == ZFS_TYPE_FILESYSTEM && stream_wantsnewfs) { /* We can't do online recv in this case */ clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0); if (clp == NULL) { zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } if (changelist_prefix(clp) != 0) { changelist_free(clp); zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } } zfs_close(zhp); } else { /* * Destination filesystem does not exist. Therefore we better * be creating a new filesystem (either from a full backup, or * a clone). It would therefore be invalid if the user * specified only the pool name (i.e. if the destination name * contained no slash character). */ if (!stream_wantsnewfs || (cp = strrchr(zc.zc_name, '/')) == NULL) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' does not exist"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* * Trim off the final dataset component so we perform the * recvbackup ioctl to the filesystems's parent. */ *cp = '\0'; if (flags->isprefix && !flags->istail && !flags->dryrun && create_parents(hdl, zc.zc_value, strlen(tosnap)) != 0) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_BADRESTORE, errbuf)); } newfs = B_TRUE; } zc.zc_begin_record = drr_noswap->drr_u.drr_begin; zc.zc_cookie = infd; zc.zc_guid = flags->force; if (flags->verbose) { (void) printf("%s %s stream of %s into %s\n", flags->dryrun ? "would receive" : "receiving", drrb->drr_fromguid ? "incremental" : "full", drrb->drr_toname, zc.zc_value); (void) fflush(stdout); } if (flags->dryrun) { zcmd_free_nvlists(&zc); return (recv_skip(hdl, infd, flags->byteswap)); } zc.zc_nvlist_dst = (uint64_t)(uintptr_t)prop_errbuf; zc.zc_nvlist_dst_size = sizeof (prop_errbuf); zc.zc_cleanup_fd = cleanup_fd; zc.zc_action_handle = *action_handlep; err = ioctl_err = zfs_ioctl(hdl, ZFS_IOC_RECV, &zc); ioctl_errno = errno; prop_errflags = (zprop_errflags_t)zc.zc_obj; if (err == 0) { nvlist_t *prop_errors; VERIFY(0 == nvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size, &prop_errors, 0)); nvpair_t *prop_err = NULL; while ((prop_err = nvlist_next_nvpair(prop_errors, prop_err)) != NULL) { char tbuf[1024]; zfs_prop_t prop; int intval; prop = zfs_name_to_prop(nvpair_name(prop_err)); (void) nvpair_value_int32(prop_err, &intval); if (strcmp(nvpair_name(prop_err), ZPROP_N_MORE_ERRORS) == 0) { trunc_prop_errs(intval); break; } else { (void) snprintf(tbuf, sizeof (tbuf), dgettext(TEXT_DOMAIN, "cannot receive %s property on %s"), nvpair_name(prop_err), zc.zc_name); zfs_setprop_error(hdl, prop, intval, tbuf); } } nvlist_free(prop_errors); } zc.zc_nvlist_dst = 0; zc.zc_nvlist_dst_size = 0; zcmd_free_nvlists(&zc); if (err == 0 && snapprops_nvlist) { zfs_cmd_t zc2 = { 0 }; (void) strcpy(zc2.zc_name, zc.zc_value); zc2.zc_cookie = B_TRUE; /* received */ if (zcmd_write_src_nvlist(hdl, &zc2, snapprops_nvlist) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc2); zcmd_free_nvlists(&zc2); } } if (err && (ioctl_errno == ENOENT || ioctl_errno == EEXIST)) { /* * It may be that this snapshot already exists, * in which case we want to consume & ignore it * rather than failing. */ avl_tree_t *local_avl; nvlist_t *local_nv, *fs; cp = strchr(zc.zc_value, '@'); /* * XXX Do this faster by just iterating over snaps in * this fs. Also if zc_value does not exist, we will * get a strange "does not exist" error message. */ *cp = '\0'; if (gather_nvlist(hdl, zc.zc_value, NULL, NULL, B_FALSE, &local_nv, &local_avl) == 0) { *cp = '@'; fs = fsavl_find(local_avl, drrb->drr_toguid, NULL); fsavl_destroy(local_avl); nvlist_free(local_nv); if (fs != NULL) { if (flags->verbose) { (void) printf("snap %s already exists; " "ignoring\n", zc.zc_value); } err = ioctl_err = recv_skip(hdl, infd, flags->byteswap); } } *cp = '@'; } if (ioctl_err != 0) { switch (ioctl_errno) { case ENODEV: cp = strchr(zc.zc_value, '@'); *cp = '\0'; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "most recent snapshot of %s does not\n" "match incremental source"), zc.zc_value); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); *cp = '@'; break; case ETXTBSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s has been modified\n" "since most recent snapshot"), zc.zc_name); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case EEXIST: cp = strchr(zc.zc_value, '@'); if (newfs) { /* it's the containing fs that exists */ *cp = '\0'; } zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination already exists")); (void) zfs_error_fmt(hdl, EZFS_EXISTS, dgettext(TEXT_DOMAIN, "cannot restore to %s"), zc.zc_value); *cp = '@'; break; case EINVAL: (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ECKSUM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid stream (checksum mismatch)")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to receive this stream.")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EDQUOT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s space quota exceeded"), zc.zc_name); (void) zfs_error(hdl, EZFS_NOSPC, errbuf); break; default: (void) zfs_standard_error(hdl, ioctl_errno, errbuf); } } /* * Mount the target filesystem (if created). Also mount any * children of the target filesystem if we did a replication * receive (indicated by stream_avl being non-NULL). */ cp = strchr(zc.zc_value, '@'); if (cp && (ioctl_err == 0 || !newfs)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(hdl, zc.zc_value, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h != NULL) { if (h->zfs_type == ZFS_TYPE_VOLUME) { *cp = '@'; } else if (newfs || stream_avl) { /* * Track the first/top of hierarchy fs, * for mounting and sharing later. */ if (top_zfs && *top_zfs == NULL) *top_zfs = zfs_strdup(hdl, zc.zc_value); } zfs_close(h); } *cp = '@'; } if (clp) { err |= changelist_postfix(clp); changelist_free(clp); } if (prop_errflags & ZPROP_ERR_NOCLEAR) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to clear unreceived properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (prop_errflags & ZPROP_ERR_NORESTORE) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to restore original properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (err || ioctl_err) return (-1); *action_handlep = zc.zc_action_handle; if (flags->verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = zc.zc_cookie; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("received %sB stream in %lu seconds (%sB/sec)\n", buf1, delta, buf2); } return (0); } static int zfs_receive_impl(libzfs_handle_t *hdl, const char *tosnap, recvflags_t *flags, int infd, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { int err; dmu_replay_record_t drr, drr_noswap; struct drr_begin *drrb = &drr.drr_u.drr_begin; char errbuf[1024]; zio_cksum_t zcksum = { 0 }; uint64_t featureflags; int hdrtype; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); if (flags->isprefix && !zfs_dataset_exists(hdl, tosnap, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified fs " "(%s) does not exist"), tosnap); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* read in the BEGIN record */ if (0 != (err = recv_read(hdl, infd, &drr, sizeof (drr), B_FALSE, &zcksum))) return (err); if (drr.drr_type == DRR_END || drr.drr_type == BSWAP_32(DRR_END)) { /* It's the double end record at the end of a package */ return (ENODATA); } /* the kernel needs the non-byteswapped begin record */ drr_noswap = drr; flags->byteswap = B_FALSE; if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { /* * We computed the checksum in the wrong byteorder in * recv_read() above; do it again correctly. */ bzero(&zcksum, sizeof (zio_cksum_t)); fletcher_4_incremental_byteswap(&drr, sizeof (drr), &zcksum); flags->byteswap = B_TRUE; drr.drr_type = BSWAP_32(drr.drr_type); drr.drr_payloadlen = BSWAP_32(drr.drr_payloadlen); drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } if (drrb->drr_magic != DMU_BACKUP_MAGIC || drr.drr_type != DRR_BEGIN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad magic number)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); hdrtype = DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo); if (!DMU_STREAM_SUPPORTED(featureflags) || (hdrtype != DMU_SUBSTREAM && hdrtype != DMU_COMPOUNDSTREAM)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "stream has unsupported feature, feature flags = %lx"), featureflags); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (strchr(drrb->drr_toname, '@') == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad snapshot name)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_SUBSTREAM) { char nonpackage_sendfs[ZFS_MAXNAMELEN]; if (sendfs == NULL) { /* * We were not called from zfs_receive_package(). Get * the fs specified by 'zfs send'. */ char *cp; (void) strlcpy(nonpackage_sendfs, drr.drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(nonpackage_sendfs, '@')) != NULL) *cp = '\0'; sendfs = nonpackage_sendfs; } return (zfs_receive_one(hdl, infd, tosnap, flags, &drr, &drr_noswap, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep)); } else { assert(DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM); return (zfs_receive_package(hdl, infd, tosnap, flags, &drr, &zcksum, top_zfs, cleanup_fd, action_handlep)); } } /* * Restores a backup of tosnap from the file descriptor specified by infd. * Return 0 on total success, -2 if some things couldn't be * destroyed/renamed/promoted, -1 if some things couldn't be received. * (-1 will override -2). */ int zfs_receive(libzfs_handle_t *hdl, const char *tosnap, recvflags_t *flags, int infd, avl_tree_t *stream_avl) { char *top_zfs = NULL; int err; int cleanup_fd; uint64_t action_handle = 0; cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); VERIFY(cleanup_fd >= 0); err = zfs_receive_impl(hdl, tosnap, flags, infd, NULL, NULL, stream_avl, &top_zfs, cleanup_fd, &action_handle); VERIFY(0 == close(cleanup_fd)); if (err == 0 && !flags->nomount && top_zfs) { zfs_handle_t *zhp; prop_changelist_t *clp; zhp = zfs_open(hdl, top_zfs, ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, CL_GATHER_MOUNT_ALWAYS, 0); zfs_close(zhp); if (clp != NULL) { /* mount and share received datasets */ err = changelist_postfix(clp); changelist_free(clp); } } if (zhp == NULL || clp == NULL || err) err = -1; } if (top_zfs) free(top_zfs); return (err); } Index: vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.c =================================================================== --- vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.c (revision 274272) +++ vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.c (revision 274273) @@ -1,723 +1,729 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. */ /* * LibZFS_Core (lzc) is intended to replace most functionality in libzfs. * It has the following characteristics: * * - Thread Safe. libzfs_core is accessible concurrently from multiple * threads. This is accomplished primarily by avoiding global data * (e.g. caching). Since it's thread-safe, there is no reason for a * process to have multiple libzfs "instances". Therefore, we store * our few pieces of data (e.g. the file descriptor) in global * variables. The fd is reference-counted so that the libzfs_core * library can be "initialized" multiple times (e.g. by different * consumers within the same process). * * - Committed Interface. The libzfs_core interface will be committed, * therefore consumers can compile against it and be confident that * their code will continue to work on future releases of this code. * Currently, the interface is Evolving (not Committed), but we intend * to commit to it once it is more complete and we determine that it * meets the needs of all consumers. * * - Programatic Error Handling. libzfs_core communicates errors with * defined error numbers, and doesn't print anything to stdout/stderr. * * - Thin Layer. libzfs_core is a thin layer, marshaling arguments * to/from the kernel ioctls. There is generally a 1:1 correspondence * between libzfs_core functions and ioctls to /dev/zfs. * * - Clear Atomicity. Because libzfs_core functions are generally 1:1 * with kernel ioctls, and kernel ioctls are general atomic, each * libzfs_core function is atomic. For example, creating multiple * snapshots with a single call to lzc_snapshot() is atomic -- it * can't fail with only some of the requested snapshots created, even * in the event of power loss or system crash. * * - Continued libzfs Support. Some higher-level operations (e.g. * support for "zfs send -R") are too complicated to fit the scope of * libzfs_core. This functionality will continue to live in libzfs. * Where appropriate, libzfs will use the underlying atomic operations * of libzfs_core. For example, libzfs may implement "zfs send -R | * zfs receive" by using individual "send one snapshot", rename, * destroy, and "receive one snapshot" operations in libzfs_core. * /sbin/zfs and /zbin/zpool will link with both libzfs and * libzfs_core. Other consumers should aim to use only libzfs_core, * since that will be the supported, stable interface going forwards. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static int g_fd; static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER; static int g_refcount; int libzfs_core_init(void) { (void) pthread_mutex_lock(&g_lock); if (g_refcount == 0) { g_fd = open("/dev/zfs", O_RDWR); if (g_fd < 0) { (void) pthread_mutex_unlock(&g_lock); return (errno); } } g_refcount++; (void) pthread_mutex_unlock(&g_lock); return (0); } void libzfs_core_fini(void) { (void) pthread_mutex_lock(&g_lock); ASSERT3S(g_refcount, >, 0); g_refcount--; if (g_refcount == 0) (void) close(g_fd); (void) pthread_mutex_unlock(&g_lock); } static int lzc_ioctl(zfs_ioc_t ioc, const char *name, nvlist_t *source, nvlist_t **resultp) { zfs_cmd_t zc = { 0 }; int error = 0; char *packed; size_t size; ASSERT3S(g_refcount, >, 0); (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); packed = fnvlist_pack(source, &size); zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed; zc.zc_nvlist_src_size = size; if (resultp != NULL) { *resultp = NULL; zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024); zc.zc_nvlist_dst = (uint64_t)(uintptr_t) malloc(zc.zc_nvlist_dst_size); if (zc.zc_nvlist_dst == NULL) { error = ENOMEM; goto out; } } while (ioctl(g_fd, ioc, &zc) != 0) { if (errno == ENOMEM && resultp != NULL) { free((void *)(uintptr_t)zc.zc_nvlist_dst); zc.zc_nvlist_dst_size *= 2; zc.zc_nvlist_dst = (uint64_t)(uintptr_t) malloc(zc.zc_nvlist_dst_size); if (zc.zc_nvlist_dst == NULL) { error = ENOMEM; goto out; } } else { error = errno; break; } } if (zc.zc_nvlist_dst_filled) { *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size); } out: fnvlist_pack_free(packed, size); free((void *)(uintptr_t)zc.zc_nvlist_dst); return (error); } int lzc_create(const char *fsname, dmu_objset_type_t type, nvlist_t *props) { int error; nvlist_t *args = fnvlist_alloc(); fnvlist_add_int32(args, "type", type); if (props != NULL) fnvlist_add_nvlist(args, "props", props); error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL); nvlist_free(args); return (error); } int lzc_clone(const char *fsname, const char *origin, nvlist_t *props) { int error; nvlist_t *args = fnvlist_alloc(); fnvlist_add_string(args, "origin", origin); if (props != NULL) fnvlist_add_nvlist(args, "props", props); error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL); nvlist_free(args); return (error); } /* * Creates snapshots. * * The keys in the snaps nvlist are the snapshots to be created. * They must all be in the same pool. * * The props nvlist is properties to set. Currently only user properties * are supported. { user:prop_name -> string value } * * The returned results nvlist will have an entry for each snapshot that failed. * The value will be the (int32) error code. * * The return value will be 0 if all snapshots were created, otherwise it will * be the errno of a (unspecified) snapshot that failed. */ int lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist) { nvpair_t *elem; nvlist_t *args; int error; char pool[MAXNAMELEN]; *errlist = NULL; /* determine the pool name */ elem = nvlist_next_nvpair(snaps, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "snaps", snaps); if (props != NULL) fnvlist_add_nvlist(args, "props", props); error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist); nvlist_free(args); return (error); } /* * Destroys snapshots. * * The keys in the snaps nvlist are the snapshots to be destroyed. * They must all be in the same pool. * * Snapshots that do not exist will be silently ignored. * * If 'defer' is not set, and a snapshot has user holds or clones, the * destroy operation will fail and none of the snapshots will be * destroyed. * * If 'defer' is set, and a snapshot has user holds or clones, it will be * marked for deferred destruction, and will be destroyed when the last hold * or clone is removed/destroyed. * * The return value will be 0 if all snapshots were destroyed (or marked for * later destruction if 'defer' is set) or didn't exist to begin with. * * Otherwise the return value will be the errno of a (unspecified) snapshot * that failed, no snapshots will be destroyed, and the errlist will have an * entry for each snapshot that failed. The value in the errlist will be * the (int32) error code. */ int lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist) { nvpair_t *elem; nvlist_t *args; int error; char pool[MAXNAMELEN]; /* determine the pool name */ elem = nvlist_next_nvpair(snaps, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "snaps", snaps); if (defer) fnvlist_add_boolean(args, "defer"); error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist); nvlist_free(args); return (error); } int lzc_snaprange_space(const char *firstsnap, const char *lastsnap, uint64_t *usedp) { nvlist_t *args; nvlist_t *result; int err; char fs[MAXNAMELEN]; char *atp; /* determine the fs name */ (void) strlcpy(fs, firstsnap, sizeof (fs)); atp = strchr(fs, '@'); if (atp == NULL) return (EINVAL); *atp = '\0'; args = fnvlist_alloc(); fnvlist_add_string(args, "firstsnap", firstsnap); err = lzc_ioctl(ZFS_IOC_SPACE_SNAPS, lastsnap, args, &result); nvlist_free(args); if (err == 0) *usedp = fnvlist_lookup_uint64(result, "used"); fnvlist_free(result); return (err); } boolean_t lzc_exists(const char *dataset) { /* * The objset_stats ioctl is still legacy, so we need to construct our * own zfs_cmd_t rather than using zfsc_ioctl(). */ zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); return (ioctl(g_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0); } /* * Create "user holds" on snapshots. If there is a hold on a snapshot, * the snapshot can not be destroyed. (However, it can be marked for deletion * by lzc_destroy_snaps(defer=B_TRUE).) * * The keys in the nvlist are snapshot names. * The snapshots must all be in the same pool. * The value is the name of the hold (string type). * * If cleanup_fd is not -1, it must be the result of open("/dev/zfs", O_EXCL). * In this case, when the cleanup_fd is closed (including on process * termination), the holds will be released. If the system is shut down * uncleanly, the holds will be released when the pool is next opened * or imported. * * Holds for snapshots which don't exist will be skipped and have an entry * added to errlist, but will not cause an overall failure. * * The return value will be 0 if all holds, for snapshots that existed, * were succesfully created. * * Otherwise the return value will be the errno of a (unspecified) hold that * failed and no holds will be created. * * In all cases the errlist will have an entry for each hold that failed * (name = snapshot), with its value being the error code (int32). */ int lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist) { char pool[MAXNAMELEN]; nvlist_t *args; nvpair_t *elem; int error; /* determine the pool name */ elem = nvlist_next_nvpair(holds, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "holds", holds); if (cleanup_fd != -1) fnvlist_add_int32(args, "cleanup_fd", cleanup_fd); error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist); nvlist_free(args); return (error); } /* * Release "user holds" on snapshots. If the snapshot has been marked for * deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have * any clones, and all the user holds are removed, then the snapshot will be * destroyed. * * The keys in the nvlist are snapshot names. * The snapshots must all be in the same pool. * The value is a nvlist whose keys are the holds to remove. * * Holds which failed to release because they didn't exist will have an entry * added to errlist, but will not cause an overall failure. * * The return value will be 0 if the nvl holds was empty or all holds that * existed, were successfully removed. * * Otherwise the return value will be the errno of a (unspecified) hold that * failed to release and no holds will be released. * * In all cases the errlist will have an entry for each hold that failed to * to release. */ int lzc_release(nvlist_t *holds, nvlist_t **errlist) { char pool[MAXNAMELEN]; nvpair_t *elem; /* determine the pool name */ elem = nvlist_next_nvpair(holds, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist)); } /* * Retrieve list of user holds on the specified snapshot. * * On success, *holdsp will be set to a nvlist which the caller must free. * The keys are the names of the holds, and the value is the creation time * of the hold (uint64) in seconds since the epoch. */ int lzc_get_holds(const char *snapname, nvlist_t **holdsp) { int error; nvlist_t *innvl = fnvlist_alloc(); error = lzc_ioctl(ZFS_IOC_GET_HOLDS, snapname, innvl, holdsp); fnvlist_free(innvl); return (error); } /* * Generate a zfs send stream for the specified snapshot and write it to * the specified file descriptor. * * "snapname" is the full name of the snapshot to send (e.g. "pool/fs@snap") * * If "from" is NULL, a full (non-incremental) stream will be sent. * If "from" is non-NULL, it must be the full name of a snapshot or * bookmark to send an incremental from (e.g. "pool/fs@earlier_snap" or * "pool/fs#earlier_bmark"). If non-NULL, the specified snapshot or * bookmark must represent an earlier point in the history of "snapname"). * It can be an earlier snapshot in the same filesystem or zvol as "snapname", * or it can be the origin of "snapname"'s filesystem, or an earlier * snapshot in the origin, etc. * * "fd" is the file descriptor to write the send stream to. * + * If "flags" contains LZC_SEND_FLAG_LARGE_BLOCK, the stream is permitted + * to contain DRR_WRITE records with drr_length > 128K, and DRR_OBJECT + * records with drr_blksz > 128K. + * * If "flags" contains LZC_SEND_FLAG_EMBED_DATA, the stream is permitted * to contain DRR_WRITE_EMBEDDED records with drr_etype==BP_EMBEDDED_TYPE_DATA, * which the receiving system must support (as indicated by support * for the "embedded_data" feature). */ int lzc_send(const char *snapname, const char *from, int fd, enum lzc_send_flags flags) { nvlist_t *args; int err; args = fnvlist_alloc(); fnvlist_add_int32(args, "fd", fd); if (from != NULL) fnvlist_add_string(args, "fromsnap", from); + if (flags & LZC_SEND_FLAG_LARGE_BLOCK) + fnvlist_add_boolean(args, "largeblockok"); if (flags & LZC_SEND_FLAG_EMBED_DATA) fnvlist_add_boolean(args, "embedok"); err = lzc_ioctl(ZFS_IOC_SEND_NEW, snapname, args, NULL); nvlist_free(args); return (err); } /* * If fromsnap is NULL, a full (non-incremental) stream will be estimated. */ int lzc_send_space(const char *snapname, const char *fromsnap, uint64_t *spacep) { nvlist_t *args; nvlist_t *result; int err; args = fnvlist_alloc(); if (fromsnap != NULL) fnvlist_add_string(args, "fromsnap", fromsnap); err = lzc_ioctl(ZFS_IOC_SEND_SPACE, snapname, args, &result); nvlist_free(args); if (err == 0) *spacep = fnvlist_lookup_uint64(result, "space"); nvlist_free(result); return (err); } static int recv_read(int fd, void *buf, int ilen) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) return (EIO); return (0); } /* * The simplest receive case: receive from the specified fd, creating the * specified snapshot. Apply the specified properties a "received" properties * (which can be overridden by locally-set properties). If the stream is a * clone, its origin snapshot must be specified by 'origin'. The 'force' * flag will cause the target filesystem to be rolled back or destroyed if * necessary to receive. * * Return 0 on success or an errno on failure. * * Note: this interface does not work on dedup'd streams * (those with DMU_BACKUP_FEATURE_DEDUP). */ int lzc_receive(const char *snapname, nvlist_t *props, const char *origin, boolean_t force, int fd) { /* * The receive ioctl is still legacy, so we need to construct our own * zfs_cmd_t rather than using zfsc_ioctl(). */ zfs_cmd_t zc = { 0 }; char *atp; char *packed = NULL; size_t size; dmu_replay_record_t drr; int error; ASSERT3S(g_refcount, >, 0); /* zc_name is name of containing filesystem */ (void) strlcpy(zc.zc_name, snapname, sizeof (zc.zc_name)); atp = strchr(zc.zc_name, '@'); if (atp == NULL) return (EINVAL); *atp = '\0'; /* if the fs does not exist, try its parent. */ if (!lzc_exists(zc.zc_name)) { char *slashp = strrchr(zc.zc_name, '/'); if (slashp == NULL) return (ENOENT); *slashp = '\0'; } /* zc_value is full name of the snapshot to create */ (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (props != NULL) { /* zc_nvlist_src is props to set */ packed = fnvlist_pack(props, &size); zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed; zc.zc_nvlist_src_size = size; } /* zc_string is name of clone origin (if DRR_FLAG_CLONE) */ if (origin != NULL) (void) strlcpy(zc.zc_string, origin, sizeof (zc.zc_string)); /* zc_begin_record is non-byteswapped BEGIN record */ error = recv_read(fd, &drr, sizeof (drr)); if (error != 0) goto out; zc.zc_begin_record = drr.drr_u.drr_begin; /* zc_cookie is fd to read from */ zc.zc_cookie = fd; /* zc guid is force flag */ zc.zc_guid = force; /* zc_cleanup_fd is unused */ zc.zc_cleanup_fd = -1; error = ioctl(g_fd, ZFS_IOC_RECV, &zc); if (error != 0) error = errno; out: if (packed != NULL) fnvlist_pack_free(packed, size); free((void*)(uintptr_t)zc.zc_nvlist_dst); return (error); } /* * Roll back this filesystem or volume to its most recent snapshot. * If snapnamebuf is not NULL, it will be filled in with the name * of the most recent snapshot. * * Return 0 on success or an errno on failure. */ int lzc_rollback(const char *fsname, char *snapnamebuf, int snapnamelen) { nvlist_t *args; nvlist_t *result; int err; args = fnvlist_alloc(); err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result); nvlist_free(args); if (err == 0 && snapnamebuf != NULL) { const char *snapname = fnvlist_lookup_string(result, "target"); (void) strlcpy(snapnamebuf, snapname, snapnamelen); } return (err); } /* * Creates bookmarks. * * The bookmarks nvlist maps from name of the bookmark (e.g. "pool/fs#bmark") to * the name of the snapshot (e.g. "pool/fs@snap"). All the bookmarks and * snapshots must be in the same pool. * * The returned results nvlist will have an entry for each bookmark that failed. * The value will be the (int32) error code. * * The return value will be 0 if all bookmarks were created, otherwise it will * be the errno of a (undetermined) bookmarks that failed. */ int lzc_bookmark(nvlist_t *bookmarks, nvlist_t **errlist) { nvpair_t *elem; int error; char pool[MAXNAMELEN]; /* determine the pool name */ elem = nvlist_next_nvpair(bookmarks, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/#")] = '\0'; error = lzc_ioctl(ZFS_IOC_BOOKMARK, pool, bookmarks, errlist); return (error); } /* * Retrieve bookmarks. * * Retrieve the list of bookmarks for the given file system. The props * parameter is an nvlist of property names (with no values) that will be * returned for each bookmark. * * The following are valid properties on bookmarks, all of which are numbers * (represented as uint64 in the nvlist) * * "guid" - globally unique identifier of the snapshot it refers to * "createtxg" - txg when the snapshot it refers to was created * "creation" - timestamp when the snapshot it refers to was created * * The format of the returned nvlist as follows: * -> { * -> { * "value" -> uint64 * } * } */ int lzc_get_bookmarks(const char *fsname, nvlist_t *props, nvlist_t **bmarks) { return (lzc_ioctl(ZFS_IOC_GET_BOOKMARKS, fsname, props, bmarks)); } /* * Destroys bookmarks. * * The keys in the bmarks nvlist are the bookmarks to be destroyed. * They must all be in the same pool. Bookmarks are specified as * #. * * Bookmarks that do not exist will be silently ignored. * * The return value will be 0 if all bookmarks that existed were destroyed. * * Otherwise the return value will be the errno of a (undetermined) bookmark * that failed, no bookmarks will be destroyed, and the errlist will have an * entry for each bookmarks that failed. The value in the errlist will be * the (int32) error code. */ int lzc_destroy_bookmarks(nvlist_t *bmarks, nvlist_t **errlist) { nvpair_t *elem; int error; char pool[MAXNAMELEN]; /* determine the pool name */ elem = nvlist_next_nvpair(bmarks, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/#")] = '\0'; error = lzc_ioctl(ZFS_IOC_DESTROY_BOOKMARKS, pool, bmarks, errlist); return (error); } Index: vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.h =================================================================== --- vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.h (revision 274272) +++ vendor/illumos/dist/lib/libzfs_core/common/libzfs_core.h (revision 274273) @@ -1,71 +1,72 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2013 by Delphix. All rights reserved. */ #ifndef _LIBZFS_CORE_H #define _LIBZFS_CORE_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif int libzfs_core_init(void); void libzfs_core_fini(void); int lzc_snapshot(nvlist_t *, nvlist_t *, nvlist_t **); int lzc_create(const char *, dmu_objset_type_t, nvlist_t *); int lzc_clone(const char *, const char *, nvlist_t *); int lzc_destroy_snaps(nvlist_t *, boolean_t, nvlist_t **); int lzc_bookmark(nvlist_t *, nvlist_t **); int lzc_get_bookmarks(const char *, nvlist_t *, nvlist_t **); int lzc_destroy_bookmarks(nvlist_t *, nvlist_t **); int lzc_snaprange_space(const char *, const char *, uint64_t *); int lzc_hold(nvlist_t *, int, nvlist_t **); int lzc_release(nvlist_t *, nvlist_t **); int lzc_get_holds(const char *, nvlist_t **); enum lzc_send_flags { - LZC_SEND_FLAG_EMBED_DATA = 1 << 0 + LZC_SEND_FLAG_EMBED_DATA = 1 << 0, + LZC_SEND_FLAG_LARGE_BLOCK = 1 << 1 }; int lzc_send(const char *, const char *, int, enum lzc_send_flags); int lzc_receive(const char *, nvlist_t *, const char *, boolean_t, int); int lzc_send_space(const char *, const char *, uint64_t *); boolean_t lzc_exists(const char *); int lzc_rollback(const char *, char *, int); #ifdef __cplusplus } #endif #endif /* _LIBZFS_CORE_H */ Index: vendor/illumos/dist/man/man1m/zfs.1m =================================================================== --- vendor/illumos/dist/man/man1m/zfs.1m (revision 274272) +++ vendor/illumos/dist/man/man1m/zfs.1m (revision 274273) @@ -1,4214 +1,4246 @@ '\" t .\" .\" CDDL HEADER START .\" .\" The contents of this file are subject to the terms of the .\" Common Development and Distribution License (the "License"). .\" You may not use this file except in compliance with the License. .\" .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE .\" or http://www.opensolaris.org/os/licensing. .\" See the License for the specific language governing permissions .\" and limitations under the License. .\" .\" When distributing Covered Code, include this CDDL HEADER in each .\" file and include the License file at usr/src/OPENSOLARIS.LICENSE. .\" If applicable, add the following below this CDDL HEADER, with the .\" fields enclosed by brackets "[]" replaced with your own identifying .\" information: Portions Copyright [yyyy] [name of copyright owner] .\" .\" CDDL HEADER END .\" .\" .\" Copyright (c) 2009 Sun Microsystems, Inc. All Rights Reserved. .\" Copyright 2011 Joshua M. Clulow .\" Copyright (c) 2014 by Delphix. All rights reserved. .\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved. .\" Copyright 2013 Nexenta Systems, Inc. All Rights Reserved. .\" Copyright (c) 2014, Joyent, Inc. All rights reserved. .\" Copyright (c) 2014 by Adam Stevko. All rights reserved. .\" .TH ZFS 1M "March 6, 2014" .SH NAME zfs \- configures ZFS file systems .SH SYNOPSIS .LP .nf \fBzfs\fR [\fB-?\fR] .fi .LP .nf \fBzfs\fR \fBcreate\fR [\fB-p\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIfilesystem\fR .fi .LP .nf \fBzfs\fR \fBcreate\fR [\fB-ps\fR] [\fB-b\fR \fIblocksize\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fB-V\fR \fIsize\fR \fIvolume\fR .fi .LP .nf \fBzfs\fR \fBdestroy\fR [\fB-fnpRrv\fR] \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBdestroy\fR [\fB-dnpRrv\fR] \fIfilesystem\fR|\fIvolume\fR@\fIsnap\fR[%\fIsnap\fR][,\fIsnap\fR[%\fIsnap\fR]]... .fi .LP .nf \fBzfs\fR \fBdestroy\fR \fIfilesystem\fR|\fIvolume\fR#\fIbookmark\fR .fi .LP .nf \fBzfs\fR \fBsnapshot\fR [\fB-r\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIfilesystem@snapname\fR|\fIvolume@snapname\fR... .fi .LP .nf \fBzfs\fR \fBrollback\fR [\fB-rRf\fR] \fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBclone\fR [\fB-p\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIsnapshot\fR \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBpromote\fR \fIclone-filesystem\fR .fi .LP .nf \fBzfs\fR \fBrename\fR [\fB-f\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBrename\fR [\fB-fp\fR] \fIfilesystem\fR|\fIvolume\fR \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBrename\fR \fB-r\fR \fIsnapshot\fR \fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBlist\fR [\fB-r\fR|\fB-d\fR \fIdepth\fR][\fB-Hp\fR][\fB-o\fR \fIproperty\fR[,\fIproperty\fR]...] [\fB-t\fR \fItype\fR[,\fItype\fR]...] [\fB-s\fR \fIproperty\fR]... [\fB-S\fR \fIproperty\fR]... [\fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR]... .fi .LP .nf \fBzfs\fR \fBset\fR \fIproperty\fR=\fIvalue\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR... .fi .LP .nf \fBzfs\fR \fBget\fR [\fB-r\fR|\fB-d\fR \fIdepth\fR][\fB-Hp\fR][\fB-o\fR \fIfield\fR[,\fIfield\fR]...] [\fB-t\fR \fItype\fR[,\fItype\fR]...] [\fB-s\fR \fIsource\fR[,\fIsource\fR]...] \fBall\fR | \fIproperty\fR[,\fIproperty\fR]... \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR... .fi .LP .nf \fBzfs\fR \fBinherit\fR [\fB-r\fR] \fIproperty\fR \fIfilesystem\fR|\fIvolume|snapshot\fR... .fi .LP .nf \fBzfs\fR \fBupgrade\fR [\fB-v\fR] .fi .LP .nf \fBzfs\fR \fBupgrade\fR [\fB-r\fR] [\fB-V\fR \fIversion\fR] \fB-a\fR | \fIfilesystem\fR .fi .LP .nf \fBzfs\fR \fBuserspace\fR [\fB-Hinp\fR] [\fB-o\fR \fIfield\fR[,\fIfield\fR]...] [\fB-s\fR \fIfield\fR]... [\fB-S\fR \fIfield\fR]... [\fB-t\fR \fItype\fR[,\fItype\fR]...] \fIfilesystem\fR|\fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBgroupspace\fR [\fB-Hinp\fR] [\fB-o\fR \fIfield\fR[,\fIfield\fR]...] [\fB-s\fR \fIfield\fR]... [\fB-S\fR \fIfield\fR]... [\fB-t\fR \fItype\fR[,\fItype\fR]...] \fIfilesystem\fR|\fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBmount\fR .fi .LP .nf \fBzfs\fR \fBmount\fR [\fB-vO\fR] [\fB-o \fIoptions\fR\fR] \fB-a\fR | \fIfilesystem\fR .fi .LP .nf \fBzfs\fR \fBunmount\fR [\fB-f\fR] \fB-a\fR | \fIfilesystem\fR|\fImountpoint\fR .fi .LP .nf \fBzfs\fR \fBshare\fR \fB-a\fR | \fIfilesystem\fR .fi .LP .nf \fBzfs\fR \fBunshare\fR \fB-a\fR \fIfilesystem\fR|\fImountpoint\fR .fi .LP .nf \fBzfs\fR \fBbookmark\fR \fIsnapshot\fR \fIbookmark\fR .fi .LP .nf -\fBzfs\fR \fBsend\fR [\fB-DnPpRve\fR] [\fB-\fR[\fBiI\fR] \fIsnapshot\fR] \fIsnapshot\fR +\fBzfs\fR \fBsend\fR [\fB-DnPpRveL\fR] [\fB-\fR[\fBiI\fR] \fIsnapshot\fR] \fIsnapshot\fR .fi .LP .nf -\fBzfs\fR \fBsend\fR [\fB-e\fR] [\fB-i \fIsnapshot\fR|\fIbookmark\fR]\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR +\fBzfs\fR \fBsend\fR [\fB-eL\fR] [\fB-i \fIsnapshot\fR|\fIbookmark\fR]\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBreceive\fR [\fB-vnFu\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR .fi .LP .nf \fBzfs\fR \fBreceive\fR [\fB-vnFu\fR] [\fB-d\fR|\fB-e\fR] \fIfilesystem\fR .fi .LP .nf \fBzfs\fR \fBallow\fR \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBallow\fR [\fB-ldug\fR] \fIuser\fR|\fIgroup\fR[,\fIuser\fR|\fIgroup\fR]... \fIperm\fR|\fI@setname\fR[,\fIperm\fR|\fI@setname\fR]... \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBallow\fR [\fB-ld\fR] \fB-e\fR|\fBeveryone\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]... \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBallow\fR \fB-c\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]... \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBallow\fR \fB-s\fR @\fIsetname\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]... \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBunallow\fR [\fB-rldug\fR] \fIuser\fR|\fIgroup\fR[,\fIuser\fR|\fIgroup\fR]... [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]...] \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBunallow\fR [\fB-rld\fR] \fB-e\fR|\fBeveryone\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]...] \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBunallow\fR [\fB-r\fR] \fB-c\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]...] \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBunallow\fR [\fB-r\fR] \fB-s\fR @\fIsetname\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|\fI@setname\fR]...] \fIfilesystem\fR|\fIvolume\fR .fi .LP .nf \fBzfs\fR \fBhold\fR [\fB-r\fR] \fItag\fR \fIsnapshot\fR... .fi .LP .nf \fBzfs\fR \fBholds\fR [\fB-r\fR] \fIsnapshot\fR... .fi .LP .nf \fBzfs\fR \fBrelease\fR [\fB-r\fR] \fItag\fR \fIsnapshot\fR... .fi .LP .nf \fBzfs\fR \fBdiff\fR [\fB-FHt\fR] \fIsnapshot\fR \fIsnapshot|filesystem\fR .SH DESCRIPTION .LP The \fBzfs\fR command configures \fBZFS\fR datasets within a \fBZFS\fR storage pool, as described in \fBzpool\fR(1M). A dataset is identified by a unique path within the \fBZFS\fR namespace. For example: .sp .in +2 .nf pool/{filesystem,volume,snapshot} .fi .in -2 .sp .sp .LP where the maximum length of a dataset name is \fBMAXNAMELEN\fR (256 bytes). .sp .LP A dataset can be one of the following: .sp .ne 2 .na \fB\fIfile system\fR\fR .ad .sp .6 .RS 4n A \fBZFS\fR dataset of type \fBfilesystem\fR can be mounted within the standard system namespace and behaves like other file systems. While \fBZFS\fR file systems are designed to be \fBPOSIX\fR compliant, known issues exist that prevent compliance in some cases. Applications that depend on standards conformance might fail due to nonstandard behavior when checking file system free space. .RE .sp .ne 2 .na \fB\fIvolume\fR\fR .ad .sp .6 .RS 4n A logical volume exported as a raw or block device. This type of dataset should only be used under special circumstances. File systems are typically used in most environments. .RE .sp .ne 2 .na \fB\fIsnapshot\fR\fR .ad .sp .6 .RS 4n A read-only version of a file system or volume at a given point in time. It is specified as \fIfilesystem@name\fR or \fIvolume@name\fR. .RE .SS "ZFS File System Hierarchy" .LP A \fBZFS\fR storage pool is a logical collection of devices that provide space for datasets. A storage pool is also the root of the \fBZFS\fR file system hierarchy. .sp .LP The root of the pool can be accessed as a file system, such as mounting and unmounting, taking snapshots, and setting properties. The physical storage characteristics, however, are managed by the \fBzpool\fR(1M) command. .sp .LP See \fBzpool\fR(1M) for more information on creating and administering pools. .SS "Snapshots" .LP A snapshot is a read-only copy of a file system or volume. Snapshots can be created extremely quickly, and initially consume no additional space within the pool. As data within the active dataset changes, the snapshot consumes more data than would otherwise be shared with the active dataset. .sp .LP Snapshots can have arbitrary names. Snapshots of volumes can be cloned or rolled back, but cannot be accessed independently. .sp .LP File system snapshots can be accessed under the \fB\&.zfs/snapshot\fR directory in the root of the file system. Snapshots are automatically mounted on demand and may be unmounted at regular intervals. The visibility of the \fB\&.zfs\fR directory can be controlled by the \fBsnapdir\fR property. .SS "Clones" .LP A clone is a writable volume or file system whose initial contents are the same as another dataset. As with snapshots, creating a clone is nearly instantaneous, and initially consumes no additional space. .sp .LP Clones can only be created from a snapshot. When a snapshot is cloned, it creates an implicit dependency between the parent and child. Even though the clone is created somewhere else in the dataset hierarchy, the original snapshot cannot be destroyed as long as a clone exists. The \fBorigin\fR property exposes this dependency, and the \fBdestroy\fR command lists any such dependencies, if they exist. .sp .LP The clone parent-child dependency relationship can be reversed by using the \fBpromote\fR subcommand. This causes the "origin" file system to become a clone of the specified file system, which makes it possible to destroy the file system that the clone was created from. .SS "Mount Points" .LP Creating a \fBZFS\fR file system is a simple operation, so the number of file systems per system is likely to be numerous. To cope with this, \fBZFS\fR automatically manages mounting and unmounting file systems without the need to edit the \fB/etc/vfstab\fR file. All automatically managed file systems are mounted by \fBZFS\fR at boot time. .sp .LP By default, file systems are mounted under \fB/\fIpath\fR\fR, where \fIpath\fR is the name of the file system in the \fBZFS\fR namespace. Directories are created and destroyed as needed. .sp .LP A file system can also have a mount point set in the \fBmountpoint\fR property. This directory is created as needed, and \fBZFS\fR automatically mounts the file system when the \fBzfs mount -a\fR command is invoked (without editing \fB/etc/vfstab\fR). The \fBmountpoint\fR property can be inherited, so if \fBpool/home\fR has a mount point of \fB/export/stuff\fR, then \fBpool/home/user\fR automatically inherits a mount point of \fB/export/stuff/user\fR. .sp .LP A file system \fBmountpoint\fR property of \fBnone\fR prevents the file system from being mounted. .sp .LP If needed, \fBZFS\fR file systems can also be managed with traditional tools (\fBmount\fR, \fBumount\fR, \fB/etc/vfstab\fR). If a file system's mount point is set to \fBlegacy\fR, \fBZFS\fR makes no attempt to manage the file system, and the administrator is responsible for mounting and unmounting the file system. .SS "Zones" .LP A \fBZFS\fR file system can be added to a non-global zone by using the \fBzonecfg\fR \fBadd fs\fR subcommand. A \fBZFS\fR file system that is added to a non-global zone must have its \fBmountpoint\fR property set to \fBlegacy\fR. .sp .LP The physical properties of an added file system are controlled by the global administrator. However, the zone administrator can create, modify, or destroy files within the added file system, depending on how the file system is mounted. .sp .LP A dataset can also be delegated to a non-global zone by using the \fBzonecfg\fR \fBadd dataset\fR subcommand. You cannot delegate a dataset to one zone and the children of the same dataset to another zone. The zone administrator can change properties of the dataset or any of its children. However, the \fBquota\fR, \fBfilesystem_limit\fR and \fBsnapshot_limit\fR properties of the delegated dataset can be modified only by the global administrator. .sp .LP A \fBZFS\fR volume can be added as a device to a non-global zone by using the \fBzonecfg\fR \fBadd device\fR subcommand. However, its physical properties can be modified only by the global administrator. .sp .LP For more information about \fBzonecfg\fR syntax, see \fBzonecfg\fR(1M). .sp .LP After a dataset is delegated to a non-global zone, the \fBzoned\fR property is automatically set. A zoned file system cannot be mounted in the global zone, since the zone administrator might have to set the mount point to an unacceptable value. .sp .LP The global administrator can forcibly clear the \fBzoned\fR property, though this should be done with extreme care. The global administrator should verify that all the mount points are acceptable before clearing the property. .SS "Native Properties" .LP Properties are divided into two types, native properties and user-defined (or "user") properties. Native properties either export internal statistics or control \fBZFS\fR behavior. In addition, native properties are either editable or read-only. User properties have no effect on \fBZFS\fR behavior, but you can use them to annotate datasets in a way that is meaningful in your environment. For more information about user properties, see the "User Properties" section, below. .sp .LP Every dataset has a set of properties that export statistics about the dataset as well as control various behaviors. Properties are inherited from the parent unless overridden by the child. Some properties apply only to certain types of datasets (file systems, volumes, or snapshots). .sp .LP The values of numeric properties can be specified using human-readable suffixes (for example, \fBk\fR, \fBKB\fR, \fBM\fR, \fBGb\fR, and so forth, up to \fBZ\fR for zettabyte). The following are all valid (and equal) specifications: .sp .in +2 .nf 1536M, 1.5g, 1.50GB .fi .in -2 .sp .sp .LP The values of non-numeric properties are case sensitive and must be lowercase, except for \fBmountpoint\fR, \fBsharenfs\fR, and \fBsharesmb\fR. .sp .LP The following native properties consist of read-only statistics about the dataset. These properties can be neither set, nor inherited. Native properties apply to all dataset types unless otherwise noted. .sp .ne 2 .na \fB\fBavailable\fR\fR .ad .sp .6 .RS 4n The amount of space available to the dataset and all its children, assuming that there is no other activity in the pool. Because space is shared within a pool, availability can be limited by any number of factors, including physical pool size, quotas, reservations, or other datasets within the pool. .sp This property can also be referred to by its shortened column name, \fBavail\fR. .RE .sp .ne 2 .na \fB\fBcompressratio\fR\fR .ad .sp .6 .RS 4n For non-snapshots, the compression ratio achieved for the \fBused\fR space of this dataset, expressed as a multiplier. The \fBused\fR property includes descendant datasets, and, for clones, does not include the space shared with the origin snapshot. For snapshots, the \fBcompressratio\fR is the same as the \fBrefcompressratio\fR property. Compression can be turned on by running: \fBzfs set compression=on \fIdataset\fR\fR. The default value is \fBoff\fR. .RE .sp .ne 2 .na \fB\fBcreation\fR\fR .ad .sp .6 .RS 4n The time this dataset was created. .RE .sp .ne 2 .na \fB\fBclones\fR\fR .ad .sp .6 .RS 4n For snapshots, this property is a comma-separated list of filesystems or volumes which are clones of this snapshot. The clones' \fBorigin\fR property is this snapshot. If the \fBclones\fR property is not empty, then this snapshot can not be destroyed (even with the \fB-r\fR or \fB-f\fR options). .RE .sp .ne 2 .na \fB\fBdefer_destroy\fR\fR .ad .sp .6 .RS 4n This property is \fBon\fR if the snapshot has been marked for deferred destroy by using the \fBzfs destroy\fR \fB-d\fR command. Otherwise, the property is \fBoff\fR. .RE .sp .ne 2 .na \fB\fBfilesystem_count\fR .ad .sp .6 .RS 4n The total number of filesystems and volumes that exist under this location in the dataset tree. This value is only available when a \fBfilesystem_limit\fR has been set somewhere in the tree under which the dataset resides. .RE .sp .ne 2 .na \fB\fBlogicalreferenced\fR\fR .ad .sp .6 .RS 4n The amount of space that is "logically" accessible by this dataset. See the \fBreferenced\fR property. The logical space ignores the effect of the \fBcompression\fR and \fBcopies\fR properties, giving a quantity closer to the amount of data that applications see. However, it does include space consumed by metadata. .sp This property can also be referred to by its shortened column name, \fBlrefer\fR. .RE .sp .ne 2 .na \fB\fBlogicalused\fR\fR .ad .sp .6 .RS 4n The amount of space that is "logically" consumed by this dataset and all its descendents. See the \fBused\fR property. The logical space ignores the effect of the \fBcompression\fR and \fBcopies\fR properties, giving a quantity closer to the amount of data that applications see. However, it does include space consumed by metadata. .sp This property can also be referred to by its shortened column name, \fBlused\fR. .RE .sp .ne 2 .na \fB\fBmounted\fR\fR .ad .sp .6 .RS 4n For file systems, indicates whether the file system is currently mounted. This property can be either \fByes\fR or \fBno\fR. .RE .sp .ne 2 .na \fB\fBorigin\fR\fR .ad .sp .6 .RS 4n For cloned file systems or volumes, the snapshot from which the clone was created. See also the \fBclones\fR property. .RE .sp .ne 2 .na \fB\fBreferenced\fR\fR .ad .sp .6 .RS 4n The amount of data that is accessible by this dataset, which may or may not be shared with other datasets in the pool. When a snapshot or clone is created, it initially references the same amount of space as the file system or snapshot it was created from, since its contents are identical. .sp This property can also be referred to by its shortened column name, \fBrefer\fR. .RE .sp .ne 2 .na \fB\fBrefcompressratio\fR\fR .ad .sp .6 .RS 4n The compression ratio achieved for the \fBreferenced\fR space of this dataset, expressed as a multiplier. See also the \fBcompressratio\fR property. .RE .sp .ne 2 .na \fB\fBsnapshot_count\fR .ad .sp .6 .RS 4n The total number of snapshots that exist under this location in the dataset tree. This value is only available when a \fBsnapshot_limit\fR has been set somewhere in the tree under which the dataset resides. .RE .sp .ne 2 .na \fB\fBtype\fR\fR .ad .sp .6 .RS 4n The type of dataset: \fBfilesystem\fR, \fBvolume\fR, or \fBsnapshot\fR. .RE .sp .ne 2 .na \fB\fBused\fR\fR .ad .sp .6 .RS 4n The amount of space consumed by this dataset and all its descendents. This is the value that is checked against this dataset's quota and reservation. The space used does not include this dataset's reservation, but does take into account the reservations of any descendent datasets. The amount of space that a dataset consumes from its parent, as well as the amount of space that are freed if this dataset is recursively destroyed, is the greater of its space used and its reservation. .sp When snapshots (see the "Snapshots" section) are created, their space is initially shared between the snapshot and the file system, and possibly with previous snapshots. As the file system changes, space that was previously shared becomes unique to the snapshot, and counted in the snapshot's space used. Additionally, deleting snapshots can increase the amount of space unique to (and used by) other snapshots. .sp The amount of space used, available, or referenced does not take into account pending changes. Pending changes are generally accounted for within a few seconds. Committing a change to a disk using \fBfsync\fR(3c) or \fBO_SYNC\fR does not necessarily guarantee that the space usage information is updated immediately. .RE .sp .ne 2 .na \fB\fBusedby*\fR\fR .ad .sp .6 .RS 4n The \fBusedby*\fR properties decompose the \fBused\fR properties into the various reasons that space is used. Specifically, \fBused\fR = \fBusedbychildren\fR + \fBusedbydataset\fR + \fBusedbyrefreservation\fR +, \fBusedbysnapshots\fR. These properties are only available for datasets created on \fBzpool\fR "version 13" pools. .RE .sp .ne 2 .na \fB\fBusedbychildren\fR\fR .ad .sp .6 .RS 4n The amount of space used by children of this dataset, which would be freed if all the dataset's children were destroyed. .RE .sp .ne 2 .na \fB\fBusedbydataset\fR\fR .ad .sp .6 .RS 4n The amount of space used by this dataset itself, which would be freed if the dataset were destroyed (after first removing any \fBrefreservation\fR and destroying any necessary snapshots or descendents). .RE .sp .ne 2 .na \fB\fBusedbyrefreservation\fR\fR .ad .sp .6 .RS 4n The amount of space used by a \fBrefreservation\fR set on this dataset, which would be freed if the \fBrefreservation\fR was removed. .RE .sp .ne 2 .na \fB\fBusedbysnapshots\fR\fR .ad .sp .6 .RS 4n The amount of space consumed by snapshots of this dataset. In particular, it is the amount of space that would be freed if all of this dataset's snapshots were destroyed. Note that this is not simply the sum of the snapshots' \fBused\fR properties because space can be shared by multiple snapshots. .RE .sp .ne 2 .na \fB\fBuserused@\fR\fIuser\fR\fR .ad .sp .6 .RS 4n The amount of space consumed by the specified user in this dataset. Space is charged to the owner of each file, as displayed by \fBls\fR \fB-l\fR. The amount of space charged is displayed by \fBdu\fR and \fBls\fR \fB-s\fR. See the \fBzfs userspace\fR subcommand for more information. .sp Unprivileged users can access only their own space usage. The root user, or a user who has been granted the \fBuserused\fR privilege with \fBzfs allow\fR, can access everyone's usage. .sp The \fBuserused@\fR... properties are not displayed by \fBzfs get all\fR. The user's name must be appended after the \fB@\fR symbol, using one of the following forms: .RS +4 .TP .ie t \(bu .el o \fIPOSIX name\fR (for example, \fBjoe\fR) .RE .RS +4 .TP .ie t \(bu .el o \fIPOSIX numeric ID\fR (for example, \fB789\fR) .RE .RS +4 .TP .ie t \(bu .el o \fISID name\fR (for example, \fBjoe.smith@mydomain\fR) .RE .RS +4 .TP .ie t \(bu .el o \fISID numeric ID\fR (for example, \fBS-1-123-456-789\fR) .RE .RE .sp .ne 2 .na \fB\fBuserrefs\fR\fR .ad .sp .6 .RS 4n This property is set to the number of user holds on this snapshot. User holds are set by using the \fBzfs hold\fR command. .RE .sp .ne 2 .na \fB\fBgroupused@\fR\fIgroup\fR\fR .ad .sp .6 .RS 4n The amount of space consumed by the specified group in this dataset. Space is charged to the group of each file, as displayed by \fBls\fR \fB-l\fR. See the \fBuserused@\fR\fIuser\fR property for more information. .sp Unprivileged users can only access their own groups' space usage. The root user, or a user who has been granted the \fBgroupused\fR privilege with \fBzfs allow\fR, can access all groups' usage. .RE .sp .ne 2 .na \fB\fBvolblocksize\fR=\fIblocksize\fR\fR .ad .sp .6 .RS 4n For volumes, specifies the block size of the volume. The \fBblocksize\fR cannot be changed once the volume has been written, so it should be set at volume creation time. The default \fBblocksize\fR for volumes is 8 Kbytes. Any power of 2 from 512 bytes to 128 Kbytes is valid. .sp This property can also be referred to by its shortened column name, \fBvolblock\fR. .RE .sp .ne 2 .na \fB\fBwritten\fR\fR .ad .sp .6 .RS 4n The amount of \fBreferenced\fR space written to this dataset since the previous snapshot. .RE .sp .ne 2 .na \fB\fBwritten@\fR\fIsnapshot\fR\fR .ad .sp .6 .RS 4n The amount of \fBreferenced\fR space written to this dataset since the specified snapshot. This is the space that is referenced by this dataset but was not referenced by the specified snapshot. .sp The \fIsnapshot\fR may be specified as a short snapshot name (just the part after the \fB@\fR), in which case it will be interpreted as a snapshot in the same filesystem as this dataset. The \fIsnapshot\fR be a full snapshot name (\fIfilesystem\fR@\fIsnapshot\fR), which for clones may be a snapshot in the origin's filesystem (or the origin of the origin's filesystem, etc). .RE .sp .LP The following native properties can be used to change the behavior of a \fBZFS\fR dataset. .sp .ne 2 .na \fB\fBaclinherit\fR=\fBdiscard\fR | \fBnoallow\fR | \fBrestricted\fR | \fBpassthrough\fR | \fBpassthrough-x\fR\fR .ad .sp .6 .RS 4n Controls how \fBACL\fR entries are inherited when files and directories are created. A file system with an \fBaclinherit\fR property of \fBdiscard\fR does not inherit any \fBACL\fR entries. A file system with an \fBaclinherit\fR property value of \fBnoallow\fR only inherits inheritable \fBACL\fR entries that specify "deny" permissions. The property value \fBrestricted\fR (the default) removes the \fBwrite_acl\fR and \fBwrite_owner\fR permissions when the \fBACL\fR entry is inherited. A file system with an \fBaclinherit\fR property value of \fBpassthrough\fR inherits all inheritable \fBACL\fR entries without any modifications made to the \fBACL\fR entries when they are inherited. A file system with an \fBaclinherit\fR property value of \fBpassthrough-x\fR has the same meaning as \fBpassthrough\fR, except that the \fBowner@\fR, \fBgroup@\fR, and \fBeveryone@\fR \fBACE\fRs inherit the execute permission only if the file creation mode also requests the execute bit. .sp When the property value is set to \fBpassthrough\fR, files are created with a mode determined by the inheritable \fBACE\fRs. If no inheritable \fBACE\fRs exist that affect the mode, then the mode is set in accordance to the requested mode from the application. .RE .sp .ne 2 .na \fB\fBaclmode\fR=\fBdiscard\fR | \fBgroupmask\fR | \fBpassthrough\fR\fR | \fBrestricted\fR\fR .ad .sp .6 .RS 4n Controls how an \fBACL\fR is modified during \fBchmod\fR(2). A file system with an \fBaclmode\fR property of \fBdiscard\fR (the default) deletes all \fBACL\fR entries that do not represent the mode of the file. An \fBaclmode\fR property of \fBgroupmask\fR reduces permissions granted in all \fBALLOW\fR entries found in the \fBACL\fR such that they are no greater than the group permissions specified by \fBchmod\fR(2). A file system with an \fBaclmode\fR property of \fBpassthrough\fR indicates that no changes are made to the \fBACL\fR other than creating or updating the necessary \fBACL\fR entries to represent the new mode of the file or directory. An \fBaclmode\fR property of \fBrestricted\fR will cause the \fBchmod\fR(2) operation to return an error when used on any file or directory which has a non-trivial \fBACL\fR whose entries can not be represented by a mode. \fBchmod\fR(2) is required to change the set user ID, set group ID, or sticky bits on a file or directory, as they do not have equivalent \fBACL\fR entries. In order to use \fBchmod\fR(2) on a file or directory with a non-trivial \fBACL\fR when \fBaclmode\fR is set to \fBrestricted\fR, you must first remove all \fBACL\fR entries which do not represent the current mode. .RE .sp .ne 2 .na \fB\fBatime\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether the access time for files is updated when they are read. Turning this property off avoids producing write traffic when reading files and can result in significant performance gains, though it might confuse mailers and other similar utilities. The default value is \fBon\fR. .RE .sp .ne 2 .na \fB\fBcanmount\fR=\fBon\fR | \fBoff\fR | \fBnoauto\fR\fR .ad .sp .6 .RS 4n If this property is set to \fBoff\fR, the file system cannot be mounted, and is ignored by \fBzfs mount -a\fR. Setting this property to \fBoff\fR is similar to setting the \fBmountpoint\fR property to \fBnone\fR, except that the dataset still has a normal \fBmountpoint\fR property, which can be inherited. Setting this property to \fBoff\fR allows datasets to be used solely as a mechanism to inherit properties. One example of setting \fBcanmount=\fR\fBoff\fR is to have two datasets with the same \fBmountpoint\fR, so that the children of both datasets appear in the same directory, but might have different inherited characteristics. .sp When the \fBnoauto\fR option is set, a dataset can only be mounted and unmounted explicitly. The dataset is not mounted automatically when the dataset is created or imported, nor is it mounted by the \fBzfs mount -a\fR command or unmounted by the \fBzfs unmount -a\fR command. .sp This property is not inherited. .RE .sp .ne 2 .na \fB\fBchecksum\fR=\fBon\fR | \fBoff\fR | \fBfletcher2\fR | \fBfletcher4\fR | \fBsha256\fR | \fBnoparity\fR \fR .ad .sp .6 .RS 4n Controls the checksum used to verify data integrity. The default value is \fBon\fR, which automatically selects an appropriate algorithm (currently, \fBfletcher4\fR, but this may change in future releases). The value \fBoff\fR disables integrity checking on user data. The value \fBnoparity\fR not only disables integrity but also disables maintaining parity for user data. This setting is used internally by a dump device residing on a RAID-Z pool and should not be used by any other dataset. Disabling checksums is \fBNOT\fR a recommended practice. .sp Changing this property affects only newly-written data. .RE .sp .ne 2 .na \fB\fBcompression\fR=\fBon\fR | \fBoff\fR | \fBlzjb\fR | \fBgzip\fR | \fBgzip-\fR\fIN\fR | \fBzle\fR\fR | \fBlz4\fR .ad .sp .6 .RS 4n Controls the compression algorithm used for this dataset. The \fBlzjb\fR compression algorithm is optimized for performance while providing decent data compression. Setting compression to \fBon\fR uses the \fBlzjb\fR compression algorithm. The \fBgzip\fR compression algorithm uses the same compression as the \fBgzip\fR(1) command. You can specify the \fBgzip\fR level by using the value \fBgzip-\fR\fIN\fR where \fIN\fR is an integer from 1 (fastest) to 9 (best compression ratio). Currently, \fBgzip\fR is equivalent to \fBgzip-6\fR (which is also the default for \fBgzip\fR(1)). The \fBzle\fR compression algorithm compresses runs of zeros. .sp The \fBlz4\fR compression algorithm is a high-performance replacement for the \fBlzjb\fR algorithm. It features significantly faster compression and decompression, as well as a moderately higher compression ratio than \fBlzjb\fR, but can only be used on pools with the \fBlz4_compress\fR feature set to \fIenabled\fR. See \fBzpool-features\fR(5) for details on ZFS feature flags and the \fBlz4_compress\fR feature. .sp This property can also be referred to by its shortened column name \fBcompress\fR. Changing this property affects only newly-written data. .RE .sp .ne 2 .na \fB\fBcopies\fR=\fB1\fR | \fB2\fR | \fB3\fR\fR .ad .sp .6 .RS 4n Controls the number of copies of data stored for this dataset. These copies are in addition to any redundancy provided by the pool, for example, mirroring or RAID-Z. The copies are stored on different disks, if possible. The space used by multiple copies is charged to the associated file and dataset, changing the \fBused\fR property and counting against quotas and reservations. .sp Changing this property only affects newly-written data. Therefore, set this property at file system creation time by using the \fB-o\fR \fBcopies=\fR\fIN\fR option. .RE .sp .ne 2 .na \fB\fBdevices\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether device nodes can be opened on this file system. The default value is \fBon\fR. .RE .sp .ne 2 .na \fB\fBexec\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether processes can be executed from within this file system. The default value is \fBon\fR. .RE .sp .ne 2 .na \fB\fBfilesystem_limit\fR=\fIcount\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the number of filesystems and volumes that can exist under this point in the dataset tree. The limit is not enforced if the user is allowed to change the limit. Setting a filesystem_limit on a descendent of a filesystem that already has a filesystem_limit does not override the ancestor's filesystem_limit, but rather imposes an additional limit. This feature must be enabled to be used (see \fBzpool-features\fR(5)). .RE .sp .ne 2 .na \fB\fBmountpoint\fR=\fIpath\fR | \fBnone\fR | \fBlegacy\fR\fR .ad .sp .6 .RS 4n Controls the mount point used for this file system. See the "Mount Points" section for more information on how this property is used. .sp When the \fBmountpoint\fR property is changed for a file system, the file system and any children that inherit the mount point are unmounted. If the new value is \fBlegacy\fR, then they remain unmounted. Otherwise, they are automatically remounted in the new location if the property was previously \fBlegacy\fR or \fBnone\fR, or if they were mounted before the property was changed. In addition, any shared file systems are unshared and shared in the new location. .RE .sp .ne 2 .na \fB\fBnbmand\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether the file system should be mounted with \fBnbmand\fR (Non Blocking mandatory locks). This is used for \fBCIFS\fR clients. Changes to this property only take effect when the file system is umounted and remounted. See \fBmount\fR(1M) for more information on \fBnbmand\fR mounts. .RE .sp .ne 2 .na \fB\fBprimarycache\fR=\fBall\fR | \fBnone\fR | \fBmetadata\fR\fR .ad .sp .6 .RS 4n Controls what is cached in the primary cache (ARC). If this property is set to \fBall\fR, then both user data and metadata is cached. If this property is set to \fBnone\fR, then neither user data nor metadata is cached. If this property is set to \fBmetadata\fR, then only metadata is cached. The default value is \fBall\fR. .RE .sp .ne 2 .na \fB\fBquota\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the amount of space a dataset and its descendents can consume. This property enforces a hard limit on the amount of space used. This includes all space consumed by descendents, including file systems and snapshots. Setting a quota on a descendent of a dataset that already has a quota does not override the ancestor's quota, but rather imposes an additional limit. .sp Quotas cannot be set on volumes, as the \fBvolsize\fR property acts as an implicit quota. .RE .sp .ne 2 .na \fB\fBsnapshot_limit\fR=\fIcount\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the number of snapshots that can be created on a dataset and its descendents. Setting a snapshot_limit on a descendent of a dataset that already has a snapshot_limit does not override the ancestor's snapshot_limit, but rather imposes an additional limit. The limit is not enforced if the user is allowed to change the limit. For example, this means that recursive snapshots taken from the global zone are counted against each delegated dataset within a zone. This feature must be enabled to be used (see \fBzpool-features\fR(5)). .RE .sp .ne 2 .na \fB\fBuserquota@\fR\fIuser\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the amount of space consumed by the specified user. User space consumption is identified by the \fBuserspace@\fR\fIuser\fR property. .sp Enforcement of user quotas may be delayed by several seconds. This delay means that a user might exceed their quota before the system notices that they are over quota and begins to refuse additional writes with the \fBEDQUOT\fR error message . See the \fBzfs userspace\fR subcommand for more information. .sp Unprivileged users can only access their own groups' space usage. The root user, or a user who has been granted the \fBuserquota\fR privilege with \fBzfs allow\fR, can get and set everyone's quota. .sp This property is not available on volumes, on file systems before version 4, or on pools before version 15. The \fBuserquota@\fR... properties are not displayed by \fBzfs get all\fR. The user's name must be appended after the \fB@\fR symbol, using one of the following forms: .RS +4 .TP .ie t \(bu .el o \fIPOSIX name\fR (for example, \fBjoe\fR) .RE .RS +4 .TP .ie t \(bu .el o \fIPOSIX numeric ID\fR (for example, \fB789\fR) .RE .RS +4 .TP .ie t \(bu .el o \fISID name\fR (for example, \fBjoe.smith@mydomain\fR) .RE .RS +4 .TP .ie t \(bu .el o \fISID numeric ID\fR (for example, \fBS-1-123-456-789\fR) .RE .RE .sp .ne 2 .na \fB\fBgroupquota@\fR\fIgroup\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the amount of space consumed by the specified group. Group space consumption is identified by the \fBuserquota@\fR\fIuser\fR property. .sp Unprivileged users can access only their own groups' space usage. The root user, or a user who has been granted the \fBgroupquota\fR privilege with \fBzfs allow\fR, can get and set all groups' quotas. .RE .sp .ne 2 .na \fB\fBreadonly\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether this dataset can be modified. The default value is \fBoff\fR. .sp This property can also be referred to by its shortened column name, \fBrdonly\fR. .RE .sp .ne 2 .na \fB\fBrecordsize\fR=\fIsize\fR\fR .ad .sp .6 .RS 4n Specifies a suggested block size for files in the file system. This property is designed solely for use with database workloads that access files in fixed-size records. \fBZFS\fR automatically tunes block sizes according to internal algorithms optimized for typical access patterns. .sp For databases that create very large files but access them in small random chunks, these algorithms may be suboptimal. Specifying a \fBrecordsize\fR greater than or equal to the record size of the database can result in significant performance gains. Use of this property for general purpose file systems is strongly discouraged, and may adversely affect performance. .sp The size specified must be a power of two greater than or equal to 512 and less -than or equal to 128 Kbytes. +than or equal to 128 Kbytes. If the \fBlarge_blocks\fR feature is enabled +on the pool, the size may be up to 1 Mbyte. See \fBzpool-features\fR(5) +for details on ZFS feature flags. .sp Changing the file system's \fBrecordsize\fR affects only files created afterward; existing files are unaffected. .sp This property can also be referred to by its shortened column name, \fBrecsize\fR. .RE .sp .ne 2 .na \fB\fBredundant_metadata\fR=\fBall\fR | \fBmost\fR\fR .ad .sp .6 .RS 4n Controls what types of metadata are stored redundantly. ZFS stores an extra copy of metadata, so that if a single block is corrupted, the amount of user data lost is limited. This extra copy is in addition to any redundancy provided at the pool level (e.g. by mirroring or RAID-Z), and is in addition to an extra copy specified by the \fBcopies\fR property (up to a total of 3 copies). For example if the pool is mirrored, \fBcopies\fR=2, and \fBredundant_metadata\fR=most, then ZFS stores 6 copies of most metadata, and 4 copies of data and some metadata. .sp When set to \fBall\fR, ZFS stores an extra copy of all metadata. If a single on-disk block is corrupt, at worst a single block of user data (which is \fBrecordsize\fR bytes long) can be lost. .sp When set to \fBmost\fR, ZFS stores an extra copy of most types of metadata. This can improve performance of random writes, because less metadata must be written. In practice, at worst about 100 blocks (of \fBrecordsize\fR bytes each) of user data can be lost if a single on-disk block is corrupt. The exact behavior of which metadata blocks are stored redundantly may change in future releases. .sp The default value is \fBall\fR. .RE .sp .ne 2 .na \fB\fBrefquota\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n Limits the amount of space a dataset can consume. This property enforces a hard limit on the amount of space used. This hard limit does not include space used by descendents, including file systems and snapshots. .RE .sp .ne 2 .na \fB\fBrefreservation\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n The minimum amount of space guaranteed to a dataset, not including its descendents. When the amount of space used is below this value, the dataset is treated as if it were taking up the amount of space specified by \fBrefreservation\fR. The \fBrefreservation\fR reservation is accounted for in the parent datasets' space used, and counts against the parent datasets' quotas and reservations. .sp If \fBrefreservation\fR is set, a snapshot is only allowed if there is enough free pool space outside of this reservation to accommodate the current number of "referenced" bytes in the dataset. .sp This property can also be referred to by its shortened column name, \fBrefreserv\fR. .RE .sp .ne 2 .na \fB\fBreservation\fR=\fIsize\fR | \fBnone\fR\fR .ad .sp .6 .RS 4n The minimum amount of space guaranteed to a dataset and its descendents. When the amount of space used is below this value, the dataset is treated as if it were taking up the amount of space specified by its reservation. Reservations are accounted for in the parent datasets' space used, and count against the parent datasets' quotas and reservations. .sp This property can also be referred to by its shortened column name, \fBreserv\fR. .RE .sp .ne 2 .na \fB\fBsecondarycache\fR=\fBall\fR | \fBnone\fR | \fBmetadata\fR\fR .ad .sp .6 .RS 4n Controls what is cached in the secondary cache (L2ARC). If this property is set to \fBall\fR, then both user data and metadata is cached. If this property is set to \fBnone\fR, then neither user data nor metadata is cached. If this property is set to \fBmetadata\fR, then only metadata is cached. The default value is \fBall\fR. .RE .sp .ne 2 .na \fB\fBsetuid\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether the set-\fBUID\fR bit is respected for the file system. The default value is \fBon\fR. .RE .sp .ne 2 .na \fB\fBshareiscsi\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Like the \fBsharenfs\fR property, \fBshareiscsi\fR indicates whether a \fBZFS\fR volume is exported as an \fBiSCSI\fR target. The acceptable values for this property are \fBon\fR, \fBoff\fR, and \fBtype=disk\fR. The default value is \fBoff\fR. In the future, other target types might be supported. For example, \fBtape\fR. .sp You might want to set \fBshareiscsi=on\fR for a file system so that all \fBZFS\fR volumes within the file system are shared by default. However, setting this property on a file system has no direct effect. .RE .sp .ne 2 .na \fB\fBsharesmb\fR=\fBon\fR | \fBoff\fR | \fIopts\fR\fR .ad .sp .6 .RS 4n Controls whether the file system is shared by using the Solaris \fBCIFS\fR service, and what options are to be used. A file system with the \fBsharesmb\fR property set to \fBoff\fR is managed through traditional tools such as \fBsharemgr\fR(1M). Otherwise, the file system is automatically shared and unshared with the \fBzfs share\fR and \fBzfs unshare\fR commands. If the property is set to \fBon\fR, the \fBsharemgr\fR(1M) command is invoked with no options. Otherwise, the \fBsharemgr\fR(1M) command is invoked with options equivalent to the contents of this property. .sp Because \fBSMB\fR shares requires a resource name, a unique resource name is constructed from the dataset name. The constructed name is a copy of the dataset name except that the characters in the dataset name, which would be illegal in the resource name, are replaced with underscore (\fB_\fR) characters. A pseudo property "name" is also supported that allows you to replace the data set name with a specified name. The specified name is then used to replace the prefix dataset in the case of inheritance. For example, if the dataset \fBdata/home/john\fR is set to \fBname=john\fR, then \fBdata/home/john\fR has a resource name of \fBjohn\fR. If a child dataset of \fBdata/home/john/backups\fR, it has a resource name of \fBjohn_backups\fR. .sp When SMB shares are created, the SMB share name appears as an entry in the \fB\&.zfs/shares\fR directory. You can use the \fBls\fR or \fBchmod\fR command to display the share-level ACLs on the entries in this directory. .sp When the \fBsharesmb\fR property is changed for a dataset, the dataset and any children inheriting the property are re-shared with the new options, only if the property was previously set to \fBoff\fR, or if they were shared before the property was changed. If the new property is set to \fBoff\fR, the file systems are unshared. .RE .sp .ne 2 .na \fB\fBsharenfs\fR=\fBon\fR | \fBoff\fR | \fIopts\fR\fR .ad .sp .6 .RS 4n Controls whether the file system is shared via \fBNFS\fR, and what options are used. A file system with a \fBsharenfs\fR property of \fBoff\fR is managed through traditional tools such as \fBshare\fR(1M), \fBunshare\fR(1M), and \fBdfstab\fR(4). Otherwise, the file system is automatically shared and unshared with the \fBzfs share\fR and \fBzfs unshare\fR commands. If the property is set to \fBon\fR, the \fBshare\fR(1M) command is invoked with no options. Otherwise, the \fBshare\fR(1M) command is invoked with options equivalent to the contents of this property. .sp When the \fBsharenfs\fR property is changed for a dataset, the dataset and any children inheriting the property are re-shared with the new options, only if the property was previously \fBoff\fR, or if they were shared before the property was changed. If the new property is \fBoff\fR, the file systems are unshared. .RE .sp .ne 2 .na \fB\fBlogbias\fR = \fBlatency\fR | \fBthroughput\fR\fR .ad .sp .6 .RS 4n Provide a hint to ZFS about handling of synchronous requests in this dataset. If \fBlogbias\fR is set to \fBlatency\fR (the default), ZFS will use pool log devices (if configured) to handle the requests at low latency. If \fBlogbias\fR is set to \fBthroughput\fR, ZFS will not use configured pool log devices. ZFS will instead optimize synchronous operations for global pool throughput and efficient use of resources. .RE .sp .ne 2 .na \fB\fBsnapdir\fR=\fBhidden\fR | \fBvisible\fR\fR .ad .sp .6 .RS 4n Controls whether the \fB\&.zfs\fR directory is hidden or visible in the root of the file system as discussed in the "Snapshots" section. The default value is \fBhidden\fR. .RE .sp .ne 2 .na \fB\fBsync\fR=\fBstandard\fR | \fBalways\fR | \fBdisabled\fR\fR .ad .sp .6 .RS 4n Controls the behavior of synchronous requests (e.g. fsync, O_DSYNC). \fBstandard\fR is the POSIX specified behavior of ensuring all synchronous requests are written to stable storage and all devices are flushed to ensure data is not cached by device controllers (this is the default). \fBalways\fR causes every file system transaction to be written and flushed before its system call returns. This has a large performance penalty. \fBdisabled\fR disables synchronous requests. File system transactions are only committed to stable storage periodically. This option will give the highest performance. However, it is very dangerous as ZFS would be ignoring the synchronous transaction demands of applications such as databases or NFS. Administrators should only use this option when the risks are understood. .RE .sp .ne 2 .na \fB\fBversion\fR=\fB1\fR | \fB2\fR | \fBcurrent\fR\fR .ad .sp .6 .RS 4n The on-disk version of this file system, which is independent of the pool version. This property can only be set to later supported versions. See the \fBzfs upgrade\fR command. .RE .sp .ne 2 .na \fB\fBvolsize\fR=\fIsize\fR\fR .ad .sp .6 .RS 4n For volumes, specifies the logical size of the volume. By default, creating a volume establishes a reservation of equal size. For storage pools with a version number of 9 or higher, a \fBrefreservation\fR is set instead. Any changes to \fBvolsize\fR are reflected in an equivalent change to the reservation (or \fBrefreservation\fR). The \fBvolsize\fR can only be set to a multiple of \fBvolblocksize\fR, and cannot be zero. .sp The reservation is kept equal to the volume's logical size to prevent unexpected behavior for consumers. Without the reservation, the volume could run out of space, resulting in undefined behavior or data corruption, depending on how the volume is used. These effects can also occur when the volume size is changed while it is in use (particularly when shrinking the size). Extreme care should be used when adjusting the volume size. .sp Though not recommended, a "sparse volume" (also known as "thin provisioning") can be created by specifying the \fB-s\fR option to the \fBzfs create -V\fR command, or by changing the reservation after the volume has been created. A "sparse volume" is a volume where the reservation is less then the volume size. Consequently, writes to a sparse volume can fail with \fBENOSPC\fR when the pool is low on space. For a sparse volume, changes to \fBvolsize\fR are not reflected in the reservation. .RE .sp .ne 2 .na \fB\fBvscan\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether regular files should be scanned for viruses when a file is opened and closed. In addition to enabling this property, the virus scan service must also be enabled for virus scanning to occur. The default value is \fBoff\fR. .RE .sp .ne 2 .na \fB\fBxattr\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether extended attributes are enabled for this file system. The default value is \fBon\fR. .RE .sp .ne 2 .na \fB\fBzoned\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Controls whether the dataset is managed from a non-global zone. See the "Zones" section for more information. The default value is \fBoff\fR. .RE .sp .LP The following three properties cannot be changed after the file system is created, and therefore, should be set when the file system is created. If the properties are not set with the \fBzfs create\fR or \fBzpool create\fR commands, these properties are inherited from the parent dataset. If the parent dataset lacks these properties due to having been created prior to these features being supported, the new file system will have the default values for these properties. .sp .ne 2 .na \fB\fBcasesensitivity\fR=\fBsensitive\fR | \fBinsensitive\fR | \fBmixed\fR\fR .ad .sp .6 .RS 4n Indicates whether the file name matching algorithm used by the file system should be case-sensitive, case-insensitive, or allow a combination of both styles of matching. The default value for the \fBcasesensitivity\fR property is \fBsensitive\fR. Traditionally, UNIX and POSIX file systems have case-sensitive file names. .sp The \fBmixed\fR value for the \fBcasesensitivity\fR property indicates that the file system can support requests for both case-sensitive and case-insensitive matching behavior. Currently, case-insensitive matching behavior on a file system that supports mixed behavior is limited to the Solaris CIFS server product. For more information about the \fBmixed\fR value behavior, see the \fISolaris ZFS Administration Guide\fR. .RE .sp .ne 2 .na \fB\fBnormalization\fR = \fBnone\fR | \fBformC\fR | \fBformD\fR | \fBformKC\fR | \fBformKD\fR\fR .ad .sp .6 .RS 4n Indicates whether the file system should perform a \fBunicode\fR normalization of file names whenever two file names are compared, and which normalization algorithm should be used. File names are always stored unmodified, names are normalized as part of any comparison process. If this property is set to a legal value other than \fBnone\fR, and the \fButf8only\fR property was left unspecified, the \fButf8only\fR property is automatically set to \fBon\fR. The default value of the \fBnormalization\fR property is \fBnone\fR. This property cannot be changed after the file system is created. .RE .sp .ne 2 .na \fB\fButf8only\fR=\fBon\fR | \fBoff\fR\fR .ad .sp .6 .RS 4n Indicates whether the file system should reject file names that include characters that are not present in the \fBUTF-8\fR character code set. If this property is explicitly set to \fBoff\fR, the normalization property must either not be explicitly set or be set to \fBnone\fR. The default value for the \fButf8only\fR property is \fBoff\fR. This property cannot be changed after the file system is created. .RE .sp .LP The \fBcasesensitivity\fR, \fBnormalization\fR, and \fButf8only\fR properties are also new permissions that can be assigned to non-privileged users by using the \fBZFS\fR delegated administration feature. .SS "Temporary Mount Point Properties" .LP When a file system is mounted, either through \fBmount\fR(1M) for legacy mounts or the \fBzfs mount\fR command for normal file systems, its mount options are set according to its properties. The correlation between properties and mount options is as follows: .sp .in +2 .nf PROPERTY MOUNT OPTION devices devices/nodevices exec exec/noexec readonly ro/rw setuid setuid/nosetuid xattr xattr/noxattr .fi .in -2 .sp .sp .LP In addition, these options can be set on a per-mount basis using the \fB-o\fR option, without affecting the property that is stored on disk. The values specified on the command line override the values stored in the dataset. The \fB-nosuid\fR option is an alias for \fBnodevices,nosetuid\fR. These properties are reported as "temporary" by the \fBzfs get\fR command. If the properties are changed while the dataset is mounted, the new setting overrides any temporary settings. .SS "User Properties" .LP In addition to the standard native properties, \fBZFS\fR supports arbitrary user properties. User properties have no effect on \fBZFS\fR behavior, but applications or administrators can use them to annotate datasets (file systems, volumes, and snapshots). .sp .LP User property names must contain a colon (\fB:\fR) character to distinguish them from native properties. They may contain lowercase letters, numbers, and the following punctuation characters: colon (\fB:\fR), dash (\fB-\fR), period (\fB\&.\fR), and underscore (\fB_\fR). The expected convention is that the property name is divided into two portions such as \fImodule\fR\fB:\fR\fIproperty\fR, but this namespace is not enforced by \fBZFS\fR. User property names can be at most 256 characters, and cannot begin with a dash (\fB-\fR). .sp .LP When making programmatic use of user properties, it is strongly suggested to use a reversed \fBDNS\fR domain name for the \fImodule\fR component of property names to reduce the chance that two independently-developed packages use the same property name for different purposes. Property names beginning with \fBcom.sun\fR. are reserved for use by Sun Microsystems. .sp .LP The values of user properties are arbitrary strings, are always inherited, and are never validated. All of the commands that operate on properties (\fBzfs list\fR, \fBzfs get\fR, \fBzfs set\fR, and so forth) can be used to manipulate both native properties and user properties. Use the \fBzfs inherit\fR command to clear a user property . If the property is not defined in any parent dataset, it is removed entirely. Property values are limited to 1024 characters. .SS "ZFS Volumes as Swap or Dump Devices" .LP During an initial installation a swap device and dump device are created on \fBZFS\fR volumes in the \fBZFS\fR root pool. By default, the swap area size is based on 1/2 the size of physical memory up to 2 Gbytes. The size of the dump device depends on the kernel's requirements at installation time. Separate \fBZFS\fR volumes must be used for the swap area and dump devices. Do not swap to a file on a \fBZFS\fR file system. A \fBZFS\fR swap file configuration is not supported. .sp .LP If you need to change your swap area or dump device after the system is installed or upgraded, use the \fBswap\fR(1M) and \fBdumpadm\fR(1M) commands. If you need to change the size of your swap area or dump device, see the \fISolaris ZFS Administration Guide\fR. .SH SUBCOMMANDS .LP All subcommands that modify state are logged persistently to the pool in their original form. .sp .ne 2 .na \fB\fBzfs ?\fR\fR .ad .sp .6 .RS 4n Displays a help message. .RE .sp .ne 2 .na \fB\fBzfs create\fR [\fB-p\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIfilesystem\fR\fR .ad .sp .6 .RS 4n Creates a new \fBZFS\fR file system. The file system is automatically mounted according to the \fBmountpoint\fR property inherited from the parent. .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Creates all the non-existing parent datasets. Datasets created in this manner are automatically mounted according to the \fBmountpoint\fR property inherited from their parent. Any property specified on the command line using the \fB-o\fR option is ignored. If the target filesystem already exists, the operation completes successfully. .RE .sp .ne 2 .na \fB\fB-o\fR \fIproperty\fR=\fIvalue\fR\fR .ad .sp .6 .RS 4n Sets the specified property as if the command \fBzfs set\fR \fIproperty\fR=\fIvalue\fR was invoked at the same time the dataset was created. Any editable \fBZFS\fR property can also be set at creation time. Multiple \fB-o\fR options can be specified. An error results if the same property is specified in multiple \fB-o\fR options. .RE .RE .sp .ne 2 .na \fB\fBzfs create\fR [\fB-ps\fR] [\fB-b\fR \fIblocksize\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fB-V\fR \fIsize\fR \fIvolume\fR\fR .ad .sp .6 .RS 4n Creates a volume of the given size. The volume is exported as a block device in \fB/dev/zvol/{dsk,rdsk}/\fR\fIpath\fR, where \fIpath\fR is the name of the volume in the \fBZFS\fR namespace. The size represents the logical size as exported by the device. By default, a reservation of equal size is created. .sp \fIsize\fR is automatically rounded up to the nearest 128 Kbytes to ensure that the volume has an integral number of blocks regardless of \fIblocksize\fR. .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Creates all the non-existing parent datasets. Datasets created in this manner are automatically mounted according to the \fBmountpoint\fR property inherited from their parent. Any property specified on the command line using the \fB-o\fR option is ignored. If the target filesystem already exists, the operation completes successfully. .RE .sp .ne 2 .na \fB\fB-s\fR\fR .ad .sp .6 .RS 4n Creates a sparse volume with no reservation. See \fBvolsize\fR in the Native Properties section for more information about sparse volumes. .RE .sp .ne 2 .na \fB\fB-o\fR \fIproperty\fR=\fIvalue\fR\fR .ad .sp .6 .RS 4n Sets the specified property as if the \fBzfs set\fR \fIproperty\fR=\fIvalue\fR command was invoked at the same time the dataset was created. Any editable \fBZFS\fR property can also be set at creation time. Multiple \fB-o\fR options can be specified. An error results if the same property is specified in multiple \fB-o\fR options. .RE .sp .ne 2 .na \fB\fB-b\fR \fIblocksize\fR\fR .ad .sp .6 .RS 4n Equivalent to \fB-o\fR \fBvolblocksize\fR=\fIblocksize\fR. If this option is specified in conjunction with \fB-o\fR \fBvolblocksize\fR, the resulting behavior is undefined. .RE .RE .sp .ne 2 .na \fBzfs destroy\fR [\fB-fnpRrv\fR] \fIfilesystem\fR|\fIvolume\fR .ad .sp .6 .RS 4n Destroys the given dataset. By default, the command unshares any file systems that are currently shared, unmounts any file systems that are currently mounted, and refuses to destroy a dataset that has active dependents (children or clones). .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively destroy all children. .RE .sp .ne 2 .na \fB\fB-R\fR\fR .ad .sp .6 .RS 4n Recursively destroy all dependents, including cloned file systems outside the target hierarchy. .RE .sp .ne 2 .na \fB\fB-f\fR\fR .ad .sp .6 .RS 4n Force an unmount of any file systems using the \fBunmount -f\fR command. This option has no effect on non-file systems or unmounted file systems. .RE .sp .ne 2 .na \fB\fB-n\fR\fR .ad .sp .6 .RS 4n Do a dry-run ("No-op") deletion. No data will be deleted. This is useful in conjunction with the \fB-v\fR or \fB-p\fR flags to determine what data would be deleted. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Print machine-parsable verbose information about the deleted data. .RE .sp .ne 2 .na \fB\fB-v\fR\fR .ad .sp .6 .RS 4n Print verbose information about the deleted data. .RE .sp Extreme care should be taken when applying either the \fB-r\fR or the \fB-R\fR options, as they can destroy large portions of a pool and cause unexpected behavior for mounted file systems in use. .RE .sp .ne 2 .na \fBzfs destroy\fR [\fB-dnpRrv\fR] \fIfilesystem\fR|\fIvolume\fR@\fIsnap\fR[%\fIsnap\fR][,\fIsnap\fR[%\fIsnap\fR]]... .ad .sp .6 .RS 4n The given snapshots are destroyed immediately if and only if the \fBzfs destroy\fR command without the \fB-d\fR option would have destroyed it. Such immediate destruction would occur, for example, if the snapshot had no clones and the user-initiated reference count were zero. .sp If a snapshot does not qualify for immediate destruction, it is marked for deferred deletion. In this state, it exists as a usable, visible snapshot until both of the preconditions listed above are met, at which point it is destroyed. .sp An inclusive range of snapshots may be specified by separating the first and last snapshots with a percent sign. The first and/or last snapshots may be left blank, in which case the filesystem's oldest or newest snapshot will be implied. .sp Multiple snapshots (or ranges of snapshots) of the same filesystem or volume may be specified in a comma-separated list of snapshots. Only the snapshot's short name (the part after the \fB@\fR) should be specified when using a range or comma-separated list to identify multiple snapshots. .sp .ne 2 .na \fB\fB-d\fR\fR .ad .sp .6 .RS 4n Defer snapshot deletion. .RE .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Destroy (or mark for deferred deletion) all snapshots with this name in descendent file systems. .RE .sp .ne 2 .na \fB\fB-R\fR\fR .ad .sp .6 .RS 4n Recursively destroy all clones of these snapshots, including the clones, snapshots, and children. If this flag is specified, the \fB-d\fR flag will have no effect. .RE .sp .ne 2 .na \fB\fB-n\fR\fR .ad .sp .6 .RS 4n Do a dry-run ("No-op") deletion. No data will be deleted. This is useful in conjunction with the \fB-v\fR or \fB-p\fR flags to determine what data would be deleted. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Print machine-parsable verbose information about the deleted data. .RE .sp .ne 2 .na \fB\fB-v\fR\fR .ad .sp .6 .RS 4n Print verbose information about the deleted data. .RE .sp Extreme care should be taken when applying either the \fB-r\fR or the \fB-R\fR options, as they can destroy large portions of a pool and cause unexpected behavior for mounted file systems in use. .RE .sp .ne 2 .na \fBzfs destroy\fR \fIfilesystem\fR|\fIvolume\fR#\fIbookmark\fR .ad .sp .6 .RS 4n The given bookmark is destroyed. .RE .sp .ne 2 .na \fB\fBzfs snapshot\fR [\fB-r\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIfilesystem@snapname\fR|\fIvolume@snapname\fR\fR... .ad .sp .6 .RS 4n Creates snapshots with the given names. All previous modifications by successful system calls to the file system are part of the snapshots. Snapshots are taken atomically, so that all snapshots correspond to the same moment in time. See the "Snapshots" section for details. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively create snapshots of all descendent datasets .RE .sp .ne 2 .na \fB\fB-o\fR \fIproperty\fR=\fIvalue\fR\fR .ad .sp .6 .RS 4n Sets the specified property; see \fBzfs create\fR for details. .RE .RE .sp .ne 2 .na \fB\fBzfs rollback\fR [\fB-rRf\fR] \fIsnapshot\fR\fR .ad .sp .6 .RS 4n Roll back the given dataset to a previous snapshot. When a dataset is rolled back, all data that has changed since the snapshot is discarded, and the dataset reverts to the state at the time of the snapshot. By default, the command refuses to roll back to a snapshot other than the most recent one. In order to do so, all intermediate snapshots and bookmarks must be destroyed by specifying the \fB-r\fR option. .sp The \fB-rR\fR options do not recursively destroy the child snapshots of a recursive snapshot. Only direct snapshots of the specified filesystem are destroyed by either of these options. To completely roll back a recursive snapshot, you must rollback the individual child snapshots. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Destroy any snapshots and bookmarks more recent than the one specified. .RE .sp .ne 2 .na \fB\fB-R\fR\fR .ad .sp .6 .RS 4n Destroy any more recent snapshots and bookmarks, as well as any clones of those snapshots. .RE .sp .ne 2 .na \fB\fB-f\fR\fR .ad .sp .6 .RS 4n Used with the \fB-R\fR option to force an unmount of any clone file systems that are to be destroyed. .RE .RE .sp .ne 2 .na \fB\fBzfs clone\fR [\fB-p\fR] [\fB-o\fR \fIproperty\fR=\fIvalue\fR]... \fIsnapshot\fR \fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Creates a clone of the given snapshot. See the "Clones" section for details. The target dataset can be located anywhere in the \fBZFS\fR hierarchy, and is created as the same type as the original. .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Creates all the non-existing parent datasets. Datasets created in this manner are automatically mounted according to the \fBmountpoint\fR property inherited from their parent. If the target filesystem or volume already exists, the operation completes successfully. .RE .sp .ne 2 .na \fB\fB-o\fR \fIproperty\fR=\fIvalue\fR\fR .ad .sp .6 .RS 4n Sets the specified property; see \fBzfs create\fR for details. .RE .RE .sp .ne 2 .na \fB\fBzfs promote\fR \fIclone-filesystem\fR\fR .ad .sp .6 .RS 4n Promotes a clone file system to no longer be dependent on its "origin" snapshot. This makes it possible to destroy the file system that the clone was created from. The clone parent-child dependency relationship is reversed, so that the origin file system becomes a clone of the specified file system. .sp The snapshot that was cloned, and any snapshots previous to this snapshot, are now owned by the promoted clone. The space they use moves from the origin file system to the promoted clone, so enough space must be available to accommodate these snapshots. No new space is consumed by this operation, but the space accounting is adjusted. The promoted clone must not have any conflicting snapshot names of its own. The \fBrename\fR subcommand can be used to rename any conflicting snapshots. .RE .sp .ne 2 .na \fB\fBzfs rename\fR [\fB-f\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR\fR .ad .br .na \fB\fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR\fR .ad .br .na \fB\fBzfs rename\fR [\fB-fp\fR] \fIfilesystem\fR|\fIvolume\fR \fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Renames the given dataset. The new target can be located anywhere in the \fBZFS\fR hierarchy, with the exception of snapshots. Snapshots can only be renamed within the parent file system or volume. When renaming a snapshot, the parent file system of the snapshot does not need to be specified as part of the second argument. Renamed file systems can inherit new mount points, in which case they are unmounted and remounted at the new mount point. .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Creates all the nonexistent parent datasets. Datasets created in this manner are automatically mounted according to the \fBmountpoint\fR property inherited from their parent. .RE .sp .ne 2 .na \fB\fB-f\fR\fR .ad .sp .6 .RS 4n Force unmount any filesystems that need to be unmounted in the process. .RE .RE .sp .ne 2 .na \fB\fBzfs rename\fR \fB-r\fR \fIsnapshot\fR \fIsnapshot\fR\fR .ad .sp .6 .RS 4n Recursively rename the snapshots of all descendent datasets. Snapshots are the only dataset that can be renamed recursively. .RE .sp .ne 2 .na \fB\fBzfs\fR \fBlist\fR [\fB-r\fR|\fB-d\fR \fIdepth\fR] [\fB-Hp\fR] [\fB-o\fR \fIproperty\fR[,\fIproperty\fR]...] [ \fB-t\fR \fItype\fR[,\fItype\fR]...] [ \fB-s\fR \fIproperty\fR ]... [ \fB-S\fR \fIproperty\fR ]... [\fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR]...\fR .ad .sp .6 .RS 4n Lists the property information for the given datasets in tabular form. If specified, you can list property information by the absolute pathname or the relative pathname. By default, all file systems and volumes are displayed. Snapshots are displayed if the \fBlistsnaps\fR property is \fBon\fR (the default is \fBoff\fR) . The following fields are displayed, \fBname,used,available,referenced,mountpoint\fR. .sp .ne 2 .na \fB\fB-H\fR\fR .ad .sp .6 .RS 4n Used for scripting mode. Do not print headers and separate fields by a single tab instead of arbitrary white space. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Display numbers in parsable (exact) values. .RE .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively display any children of the dataset on the command line. .RE .sp .ne 2 .na \fB\fB-d\fR \fIdepth\fR\fR .ad .sp .6 .RS 4n Recursively display any children of the dataset, limiting the recursion to \fIdepth\fR. A depth of \fB1\fR will display only the dataset and its direct children. .RE .sp .ne 2 .na \fB\fB-o\fR \fIproperty\fR\fR .ad .sp .6 .RS 4n A comma-separated list of properties to display. The property must be: .RS +4 .TP .ie t \(bu .el o One of the properties described in the "Native Properties" section .RE .RS +4 .TP .ie t \(bu .el o A user property .RE .RS +4 .TP .ie t \(bu .el o The value \fBname\fR to display the dataset name .RE .RS +4 .TP .ie t \(bu .el o The value \fBspace\fR to display space usage properties on file systems and volumes. This is a shortcut for specifying \fB-o name,avail,used,usedsnap,usedds,usedrefreserv,usedchild\fR \fB-t filesystem,volume\fR syntax. .RE .RE .sp .ne 2 .na \fB\fB-s\fR \fIproperty\fR\fR .ad .sp .6 .RS 4n A property for sorting the output by column in ascending order based on the value of the property. The property must be one of the properties described in the "Properties" section, or the special value \fBname\fR to sort by the dataset name. Multiple properties can be specified at one time using multiple \fB-s\fR property options. Multiple \fB-s\fR options are evaluated from left to right in decreasing order of importance. .sp The following is a list of sorting criteria: .RS +4 .TP .ie t \(bu .el o Numeric types sort in numeric order. .RE .RS +4 .TP .ie t \(bu .el o String types sort in alphabetical order. .RE .RS +4 .TP .ie t \(bu .el o Types inappropriate for a row sort that row to the literal bottom, regardless of the specified ordering. .RE .RS +4 .TP .ie t \(bu .el o If no sorting options are specified the existing behavior of \fBzfs list\fR is preserved. .RE .RE .sp .ne 2 .na \fB\fB-S\fR \fIproperty\fR\fR .ad .sp .6 .RS 4n Same as the \fB-s\fR option, but sorts by property in descending order. .RE .sp .ne 2 .na \fB\fB-t\fR \fItype\fR\fR .ad .sp .6 .RS 4n A comma-separated list of types to display, where \fItype\fR is one of \fBfilesystem\fR, \fBsnapshot\fR , \fBvolume\fR, \fBbookmark\fR, or \fBall\fR. For example, specifying \fB-t snapshot\fR displays only snapshots. .RE .RE .sp .ne 2 .na \fB\fBzfs set\fR \fIproperty\fR=\fIvalue\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Sets the property to the given value for each dataset. Only some properties can be edited. See the "Properties" section for more information on what properties can be set and acceptable values. Numeric values can be specified as exact values, or in a human-readable form with a suffix of \fBB\fR, \fBK\fR, \fBM\fR, \fBG\fR, \fBT\fR, \fBP\fR, \fBE\fR, \fBZ\fR (for bytes, kilobytes, megabytes, gigabytes, terabytes, petabytes, exabytes, or zettabytes, respectively). User properties can be set on snapshots. For more information, see the "User Properties" section. .RE .sp .ne 2 .na \fB\fBzfs get\fR [\fB-r\fR|\fB-d\fR \fIdepth\fR] [\fB-Hp\fR] [\fB-o\fR \fIfield\fR[,\fIfield\fR]... [\fB-t\fR \fItype\fR[,\fItype\fR]...] [\fB-s\fR \fIsource\fR[,\fIsource\fR]... \fBall\fR | \fIproperty\fR[,\fIproperty\fR]... \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Displays properties for the given datasets. If no datasets are specified, then the command displays properties for all datasets on the system. For each property, the following columns are displayed: .sp .in +2 .nf name Dataset name property Property name value Property value source Property source. Can either be local, default, temporary, inherited, or none (-). .fi .in -2 .sp All columns are displayed by default, though this can be controlled by using the \fB-o\fR option. This command takes a comma-separated list of properties as described in the "Native Properties" and "User Properties" sections. .sp The special value \fBall\fR can be used to display all properties that apply to the given dataset's type (filesystem, volume, snapshot, or bookmark). .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively display properties for any children. .RE .sp .ne 2 .na \fB\fB-d\fR \fIdepth\fR\fR .ad .sp .6 .RS 4n Recursively display any children of the dataset, limiting the recursion to \fIdepth\fR. A depth of \fB1\fR will display only the dataset and its direct children. .RE .sp .ne 2 .na \fB\fB-H\fR\fR .ad .sp .6 .RS 4n Display output in a form more easily parsed by scripts. Any headers are omitted, and fields are explicitly separated by a single tab instead of an arbitrary amount of space. .RE .sp .ne 2 .na \fB\fB-o\fR \fIfield\fR\fR .ad .sp .6 .RS 4n A comma-separated list of columns to display. \fBname,property,value,source\fR is the default value. .RE .sp .ne 2 .na \fB\fB-s\fR \fIsource\fR\fR .ad .sp .6 .RS 4n A comma-separated list of sources to display. Those properties coming from a source other than those in this list are ignored. Each source must be one of the following: \fBlocal,default,inherited,temporary,none\fR. The default value is all sources. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Display numbers in parsable (exact) values. .RE .RE .sp .ne 2 .na \fB\fBzfs inherit\fR [\fB-r\fR] \fIproperty\fR \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Clears the specified property, causing it to be inherited from an ancestor. If no ancestor has the property set, then the default value is used. See the "Properties" section for a listing of default values, and details on which properties can be inherited. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively inherit the given property for all children. .RE .RE .sp .ne 2 .na \fB\fBzfs upgrade\fR [\fB-v\fR]\fR .ad .sp .6 .RS 4n Displays a list of file systems that are not the most recent version. .RE .sp .ne 2 .na \fB\fBzfs upgrade\fR [\fB-r\fR] [\fB-V\fR \fIversion\fR] [\fB-a\fR | \fIfilesystem\fR]\fR .ad .sp .6 .RS 4n Upgrades file systems to a new on-disk version. Once this is done, the file systems will no longer be accessible on systems running older versions of the software. \fBzfs send\fR streams generated from new snapshots of these file systems cannot be accessed on systems running older versions of the software. .sp In general, the file system version is independent of the pool version. See \fBzpool\fR(1M) for information on the \fBzpool upgrade\fR command. .sp In some cases, the file system version and the pool version are interrelated and the pool version must be upgraded before the file system version can be upgraded. .sp .ne 2 .na \fB\fB-a\fR\fR .ad .sp .6 .RS 4n Upgrade all file systems on all imported pools. .RE .sp .ne 2 .na \fB\fIfilesystem\fR\fR .ad .sp .6 .RS 4n Upgrade the specified file system. .RE .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Upgrade the specified file system and all descendent file systems .RE .sp .ne 2 .na \fB\fB-V\fR \fIversion\fR\fR .ad .sp .6 .RS 4n Upgrade to the specified \fIversion\fR. If the \fB-V\fR flag is not specified, this command upgrades to the most recent version. This option can only be used to increase the version number, and only up to the most recent version supported by this software. .RE .RE .sp .ne 2 .na \fBzfs\fR \fBuserspace\fR [\fB-Hinp\fR] [\fB-o\fR \fIfield\fR[,\fIfield\fR]...] [\fB-s\fR \fIfield\fR]... [\fB-S\fR \fIfield\fR]... [\fB-t\fR \fItype\fR[,\fItype\fR]...] \fIfilesystem\fR|\fIsnapshot\fR .ad .sp .6 .RS 4n Displays space consumed by, and quotas on, each user in the specified filesystem or snapshot. This corresponds to the \fBuserused@\fR\fIuser\fR and \fBuserquota@\fR\fIuser\fR properties. .sp .ne 2 .na \fB\fB-n\fR\fR .ad .sp .6 .RS 4n Print numeric ID instead of user/group name. .RE .sp .ne 2 .na \fB\fB-H\fR\fR .ad .sp .6 .RS 4n Do not print headers, use tab-delimited output. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Use exact (parsable) numeric output. .RE .sp .ne 2 .na \fB\fB-o\fR \fIfield\fR[,\fIfield\fR]...\fR .ad .sp .6 .RS 4n Display only the specified fields from the following set: \fBtype, name, used, quota\fR. The default is to display all fields. .RE .sp .ne 2 .na \fB\fB-s\fR \fIfield\fR\fR .ad .sp .6 .RS 4n Sort output by this field. The \fIs\fR and \fIS\fR flags may be specified multiple times to sort first by one field, then by another. The default is \fB-s type\fR \fB-s name\fR. .RE .sp .ne 2 .na \fB\fB-S\fR \fIfield\fR\fR .ad .sp .6 .RS 4n Sort by this field in reverse order. See \fB-s\fR. .RE .sp .ne 2 .na \fB\fB-t\fR \fItype\fR[,\fItype\fR]...\fR .ad .sp .6 .RS 4n Print only the specified types from the following set: \fBall, posixuser, smbuser, posixgroup, smbgroup\fR. The default is \fB-t posixuser,smbuser\fR. The default can be changed to include group types. .RE .sp .ne 2 .na \fB\fB-i\fR\fR .ad .sp .6 .RS 4n Translate SID to POSIX ID. The POSIX ID may be ephemeral if no mapping exists. Normal POSIX interfaces (for example, \fBstat\fR(2), \fBls\fR \fB-l\fR) perform this translation, so the \fB-i\fR option allows the output from \fBzfs userspace\fR to be compared directly with those utilities. However, \fB-i\fR may lead to confusion if some files were created by an SMB user before a SMB-to-POSIX name mapping was established. In such a case, some files will be owned by the SMB entity and some by the POSIX entity. However, the \fB-i\fR option will report that the POSIX entity has the total usage and quota for both. .RE .RE .sp .ne 2 .na \fBzfs\fR \fBgroupspace\fR [\fB-Hinp\fR] [\fB-o\fR \fIfield\fR[,\fIfield\fR]...] [\fB-s\fR \fIfield\fR]... [\fB-S\fR \fIfield\fR]... [\fB-t\fR \fItype\fR[,\fItype\fR]...] \fIfilesystem\fR|\fIsnapshot\fR .ad .sp .6 .RS 4n Displays space consumed by, and quotas on, each group in the specified filesystem or snapshot. This subcommand is identical to \fBzfs userspace\fR, except that the default types to display are \fB-t posixgroup,smbgroup\fR. .RE .sp .ne 2 .na \fB\fBzfs mount\fR\fR .ad .sp .6 .RS 4n Displays all \fBZFS\fR file systems currently mounted. .RE .sp .ne 2 .na \fB\fBzfs mount\fR [\fB-vO\fR] [\fB-o\fR \fIoptions\fR] \fB-a\fR | \fIfilesystem\fR\fR .ad .sp .6 .RS 4n Mounts \fBZFS\fR file systems. Invoked automatically as part of the boot process. .sp .ne 2 .na \fB\fB-o\fR \fIoptions\fR\fR .ad .sp .6 .RS 4n An optional, comma-separated list of mount options to use temporarily for the duration of the mount. See the "Temporary Mount Point Properties" section for details. .RE .sp .ne 2 .na \fB\fB-O\fR\fR .ad .sp .6 .RS 4n Perform an overlay mount. See \fBmount\fR(1M) for more information. .RE .sp .ne 2 .na \fB\fB-v\fR\fR .ad .sp .6 .RS 4n Report mount progress. .RE .sp .ne 2 .na \fB\fB-a\fR\fR .ad .sp .6 .RS 4n Mount all available \fBZFS\fR file systems. Invoked automatically as part of the boot process. .RE .sp .ne 2 .na \fB\fIfilesystem\fR\fR .ad .sp .6 .RS 4n Mount the specified filesystem. .RE .RE .sp .ne 2 .na \fB\fBzfs unmount\fR [\fB-f\fR] \fB-a\fR | \fIfilesystem\fR|\fImountpoint\fR\fR .ad .sp .6 .RS 4n Unmounts currently mounted \fBZFS\fR file systems. Invoked automatically as part of the shutdown process. .sp .ne 2 .na \fB\fB-f\fR\fR .ad .sp .6 .RS 4n Forcefully unmount the file system, even if it is currently in use. .RE .sp .ne 2 .na \fB\fB-a\fR\fR .ad .sp .6 .RS 4n Unmount all available \fBZFS\fR file systems. Invoked automatically as part of the boot process. .RE .sp .ne 2 .na \fB\fIfilesystem\fR|\fImountpoint\fR\fR .ad .sp .6 .RS 4n Unmount the specified filesystem. The command can also be given a path to a \fBZFS\fR file system mount point on the system. .RE .RE .sp .ne 2 .na \fB\fBzfs share\fR \fB-a\fR | \fIfilesystem\fR\fR .ad .sp .6 .RS 4n Shares available \fBZFS\fR file systems. .sp .ne 2 .na \fB\fB-a\fR\fR .ad .sp .6 .RS 4n Share all available \fBZFS\fR file systems. Invoked automatically as part of the boot process. .RE .sp .ne 2 .na \fB\fIfilesystem\fR\fR .ad .sp .6 .RS 4n Share the specified filesystem according to the \fBsharenfs\fR and \fBsharesmb\fR properties. File systems are shared when the \fBsharenfs\fR or \fBsharesmb\fR property is set. .RE .RE .sp .ne 2 .na \fB\fBzfs unshare\fR \fB-a\fR | \fIfilesystem\fR|\fImountpoint\fR\fR .ad .sp .6 .RS 4n Unshares currently shared \fBZFS\fR file systems. This is invoked automatically as part of the shutdown process. .sp .ne 2 .na \fB\fB-a\fR\fR .ad .sp .6 .RS 4n Unshare all available \fBZFS\fR file systems. Invoked automatically as part of the boot process. .RE .sp .ne 2 .na \fB\fIfilesystem\fR|\fImountpoint\fR\fR .ad .sp .6 .RS 4n Unshare the specified filesystem. The command can also be given a path to a \fBZFS\fR file system shared on the system. .RE .RE .sp .ne 2 .na \fB\fBzfs bookmark\fR \fIsnapshot\fR \fIbookmark\fR\fR .ad .sp .6 .RS 4n Creates a bookmark of the given snapshot. Bookmarks mark the point in time when the snapshot was created, and can be used as the incremental source for a \fBzfs send\fR command. .sp This feature must be enabled to be used. See \fBzpool-features\fR(5) for details on ZFS feature flags and the \fBbookmarks\fR feature. .RE .sp .ne 2 .na -\fBzfs send\fR [\fB-DnPpRve\fR] [\fB-\fR[\fBiI\fR] \fIsnapshot\fR] \fIsnapshot\fR +\fBzfs send\fR [\fB-DnPpRveL\fR] [\fB-\fR[\fBiI\fR] \fIsnapshot\fR] \fIsnapshot\fR .ad .sp .6 .RS 4n Creates a stream representation of the second \fIsnapshot\fR, which is written to standard output. The output can be redirected to a file or to a different system (for example, using \fBssh\fR(1). By default, a full stream is generated. .sp .ne 2 .na \fB\fB-i\fR \fIsnapshot\fR\fR .ad .sp .6 .RS 4n Generate an incremental stream from the first \fIsnapshot\fR (the incremental source) to the second \fIsnapshot\fR (the incremental target). The incremental source can be specified as the last component of the snapshot name (the \fB@\fR character and following) and it is assumed to be from the same file system as the incremental target. .sp If the destination is a clone, the source may be the origin snapshot, which must be fully specified (for example, \fBpool/fs@origin\fR, not just \fB@origin\fR). .RE .sp .ne 2 .na \fB\fB-I\fR \fIsnapshot\fR\fR .ad .sp .6 .RS 4n Generate a stream package that sends all intermediary snapshots from the first snapshot to the second snapshot. For example, \fB-I @a fs@d\fR is similar to \fB-i @a fs@b; -i @b fs@c; -i @c fs@d\fR. The incremental source may be specified as with the \fB-i\fR option. .RE .sp .ne 2 .na \fB\fB-R\fR\fR .ad .sp .6 .RS 4n Generate a replication stream package, which will replicate the specified filesystem, and all descendent file systems, up to the named snapshot. When received, all properties, snapshots, descendent file systems, and clones are preserved. .sp If the \fB-i\fR or \fB-I\fR flags are used in conjunction with the \fB-R\fR flag, an incremental replication stream is generated. The current values of properties, and current snapshot and file system names are set when the stream is received. If the \fB-F\fR flag is specified when this stream is received, snapshots and file systems that do not exist on the sending side are destroyed. .RE .sp .ne 2 .na \fB\fB-D\fR\fR .ad .sp .6 .RS 4n Generate a deduplicated stream. Blocks which would have been sent multiple times in the send stream will only be sent once. The receiving system must also support this feature to recieve a deduplicated stream. This flag can be used regardless of the dataset's \fBdedup\fR property, but performance will be much better if the filesystem uses a dedup-capable checksum (eg. \fBsha256\fR). .RE .sp .ne 2 .na +\fB\fB-L\fR\fR +.ad +.sp .6 +.RS 4n +Generate a stream which may contain blocks larger than 128KB. This flag +has no effect if the \fBlarge_blocks\fR pool feature is disabled, or if +the \fRrecordsize\fR property of this filesystem has never been set above +128KB. The receiving system must have the \fBlarge_blocks\fR pool feature +enabled as well. See \fBzpool-features\fR(5) for details on ZFS feature +flags and the \fBlarge_blocks\fR feature. +.RE + +.sp +.ne 2 +.na \fB\fB-e\fR\fR .ad .sp .6 .RS 4n Generate a more compact stream by using WRITE_EMBEDDED records for blocks which are stored more compactly on disk by the \fBembedded_data\fR pool feature. This flag has no effect if the \fBembedded_data\fR feature is disabled. The receiving system must have the \fBembedded_data\fR feature enabled. If the \fBlz4_compress\fR feature is active on the sending system, then the receiving system must have that feature enabled as well. See \fBzpool-features\fR(5) for details on ZFS feature flags and the \fBembedded_data\fR feature. .RE .sp .ne 2 .na \fB\fB-p\fR\fR .ad .sp .6 .RS 4n Include the dataset's properties in the stream. This flag is implicit when \fB-R\fR is specified. The receiving system must also support this feature. .RE .sp .ne 2 .na \fB\fB-n\fR\fR .ad .sp .6 .RS 4n Do a dry-run ("No-op") send. Do not generate any actual send data. This is useful in conjunction with the \fB-v\fR or \fB-P\fR flags to determine what data will be sent. .RE .sp .ne 2 .na \fB\fB-P\fR\fR .ad .sp .6 .RS 4n Print machine-parsable verbose information about the stream package generated. .RE .sp .ne 2 .na \fB\fB-v\fR\fR .ad .sp .6 .RS 4n Print verbose information about the stream package generated. This information includes a per-second report of how much data has been sent. .RE The format of the stream is committed. You will be able to receive your streams on future versions of \fBZFS\fR. .RE .sp .ne 2 .na -\fBzfs send\fR [\fB-e\fR] [\fB-i\fR \fIsnapshot\fR|\fIbookmark\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR +\fBzfs send\fR [\fB-eL\fR] [\fB-i\fR \fIsnapshot\fR|\fIbookmark\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR .ad .sp .6 .RS 4n Generate a send stream, which may be of a filesystem, and may be incremental from a bookmark. If the destination is a filesystem or volume, the pool must be read-only, or the filesystem must not be mounted. When the stream generated from a filesystem or volume is received, the default snapshot name will be "--head--". .sp .ne 2 .na \fB-i\fR \fIsnapshot\fR|\fIbookmark\fR .ad .sp .6 .RS 4n Generate an incremental send stream. The incremental source must be an earlier snapshot in the destination's history. It will commonly be an earlier snapshot in the destination's filesystem, in which case it can be specified as the last component of the name (the \fB#\fR or \fB@\fR character and following). .sp If the incremental target is a clone, the incremental source can be the origin snapshot, or an earlier snapshot in the origin's filesystem, or the origin's origin, etc. +.RE + +.sp +.ne 2 +.na +\fB\fB-L\fR\fR +.ad +.sp .6 +.RS 4n +Generate a stream which may contain blocks larger than 128KB. This flag +has no effect if the \fBlarge_blocks\fR pool feature is disabled, or if +the \fRrecordsize\fR property of this filesystem has never been set above +128KB. The receiving system must have the \fBlarge_blocks\fR pool feature +enabled as well. See \fBzpool-features\fR(5) for details on ZFS feature +flags and the \fBlarge_blocks\fR feature. .RE .sp .ne 2 .na \fB\fB-e\fR\fR .ad .sp .6 .RS 4n Generate a more compact stream by using WRITE_EMBEDDED records for blocks which are stored more compactly on disk by the \fBembedded_data\fR pool feature. This flag has no effect if the \fBembedded_data\fR feature is disabled. The receiving system must have the \fBembedded_data\fR feature enabled. If the \fBlz4_compress\fR feature is active on the sending system, then the receiving system must have that feature enabled as well. See \fBzpool-features\fR(5) for details on ZFS feature flags and the \fBembedded_data\fR feature. .RE .RE .sp .ne 2 .na \fB\fBzfs receive\fR [\fB-vnFu\fR] \fIfilesystem\fR|\fIvolume\fR|\fIsnapshot\fR\fR .ad .br .na \fB\fBzfs receive\fR [\fB-vnFu\fR] [\fB-d\fR|\fB-e\fR] \fIfilesystem\fR\fR .ad .sp .6 .RS 4n Creates a snapshot whose contents are as specified in the stream provided on standard input. If a full stream is received, then a new file system is created as well. Streams are created using the \fBzfs send\fR subcommand, which by default creates a full stream. \fBzfs recv\fR can be used as an alias for \fBzfs receive\fR. .sp If an incremental stream is received, then the destination file system must already exist, and its most recent snapshot must match the incremental stream's source. For \fBzvols\fR, the destination device link is destroyed and recreated, which means the \fBzvol\fR cannot be accessed during the \fBreceive\fR operation. .sp When a snapshot replication package stream that is generated by using the \fBzfs send\fR \fB-R\fR command is received, any snapshots that do not exist on the sending location are destroyed by using the \fBzfs destroy\fR \fB-d\fR command. .sp The name of the snapshot (and file system, if a full stream is received) that this subcommand creates depends on the argument type and the use of the \fB-d\fR or \fB-e\fR options. .sp If the argument is a snapshot name, the specified \fIsnapshot\fR is created. If the argument is a file system or volume name, a snapshot with the same name as the sent snapshot is created within the specified \fIfilesystem\fR or \fIvolume\fR. If neither of the \fB-d\fR or \fB-e\fR options are specified, the provided target snapshot name is used exactly as provided. .sp The \fB-d\fR and \fB-e\fR options cause the file system name of the target snapshot to be determined by appending a portion of the sent snapshot's name to the specified target \fIfilesystem\fR. If the \fB-d\fR option is specified, all but the first element of the sent snapshot's file system path (usually the pool name) is used and any required intermediate file systems within the specified one are created. If the \fB-e\fR option is specified, then only the last element of the sent snapshot's file system name (i.e. the name of the source file system itself) is used as the target file system name. .sp .ne 2 .na \fB\fB-d\fR\fR .ad .sp .6 .RS 4n Discard the first element of the sent snapshot's file system name, using the remaining elements to determine the name of the target file system for the new snapshot as described in the paragraph above. .RE .sp .ne 2 .na \fB\fB-e\fR\fR .ad .sp .6 .RS 4n Discard all but the last element of the sent snapshot's file system name, using that element to determine the name of the target file system for the new snapshot as described in the paragraph above. .RE .sp .ne 2 .na \fB\fB-u\fR\fR .ad .sp .6 .RS 4n File system that is associated with the received stream is not mounted. .RE .sp .ne 2 .na \fB\fB-v\fR\fR .ad .sp .6 .RS 4n Print verbose information about the stream and the time required to perform the receive operation. .RE .sp .ne 2 .na \fB\fB-n\fR\fR .ad .sp .6 .RS 4n Do not actually receive the stream. This can be useful in conjunction with the \fB-v\fR option to verify the name the receive operation would use. .RE .sp .ne 2 .na \fB\fB-F\fR\fR .ad .sp .6 .RS 4n Force a rollback of the file system to the most recent snapshot before performing the receive operation. If receiving an incremental replication stream (for example, one generated by \fBzfs send -R -[iI]\fR), destroy snapshots and file systems that do not exist on the sending side. .RE .RE .sp .ne 2 .na \fB\fBzfs allow\fR \fIfilesystem\fR | \fIvolume\fR\fR .ad .sp .6 .RS 4n Displays permissions that have been delegated on the specified filesystem or volume. See the other forms of \fBzfs allow\fR for more information. .RE .sp .ne 2 .na \fB\fBzfs allow\fR [\fB-ldug\fR] \fIuser\fR|\fIgroup\fR[,\fIuser\fR|\fIgroup\fR]... \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]... \fIfilesystem\fR|\fIvolume\fR\fR .ad .br .na \fB\fBzfs allow\fR [\fB-ld\fR] \fB-e\fR|\fBeveryone\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]... \fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Delegates \fBZFS\fR administration permission for the file systems to non-privileged users. .sp .ne 2 .na [\fB-ug\fR] \fIuser\fR|\fIgroup\fR[,\fIuser\fR|\fIgroup\fR]... .ad .sp .6 .RS 4n Specifies to whom the permissions are delegated. Multiple entities can be specified as a comma-separated list. If neither of the \fB-ug\fR options are specified, then the argument is interpreted preferentially as the keyword \fBeveryone,\fR then as a user name, and lastly as a group name. To specify a user or group named "everyone", use the \fB-u\fR or \fB-g\fR options. To specify a group with the same name as a user, use the \fB-g\fR options. .RE .sp .ne 2 .na \fB-e\fR|\fBeveryone\fR .ad .sp .6 .RS 4n Specifies that the permissions be delegated to everyone. .RE .sp .ne 2 .na \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]... .ad .sp .6 .RS 4n The permissions to delegate. Multiple permissions may be specified as a comma-separated list. Permission names are the same as \fBZFS\fR subcommand and property names. See the property list below. Property set names, which begin with an at sign (\fB@\fR) , may be specified. See the \fB-s\fR form below for details. .RE .sp .ne 2 .na [\fB-ld\fR] \fIfilesystem\fR|\fIvolume\fR .ad .sp .6 .RS 4n Specifies where the permissions are delegated. If neither of the \fB-ld\fR options are specified, or both are, then the permissions are allowed for the file system or volume, and all of its descendents. If only the \fB-l\fR option is used, then is allowed "locally" only for the specified file system. If only the \fB-d\fR option is used, then is allowed only for the descendent file systems. .RE .RE .sp .LP Permissions are generally the ability to use a \fBZFS\fR subcommand or change a \fBZFS\fR property. The following permissions are available: .sp .in +2 .nf NAME TYPE NOTES allow subcommand Must also have the permission that is being allowed clone subcommand Must also have the 'create' ability and 'mount' ability in the origin file system create subcommand Must also have the 'mount' ability destroy subcommand Must also have the 'mount' ability diff subcommand Allows lookup of paths within a dataset given an object number, and the ability to create snapshots necessary to 'zfs diff'. mount subcommand Allows mount/umount of ZFS datasets promote subcommand Must also have the 'mount' and 'promote' ability in the origin file system receive subcommand Must also have the 'mount' and 'create' ability rename subcommand Must also have the 'mount' and 'create' ability in the new parent rollback subcommand Must also have the 'mount' ability send subcommand share subcommand Allows sharing file systems over NFS or SMB protocols snapshot subcommand Must also have the 'mount' ability groupquota other Allows accessing any groupquota@... property groupused other Allows reading any groupused@... property userprop other Allows changing any user property userquota other Allows accessing any userquota@... property userused other Allows reading any userused@... property aclinherit property aclmode property atime property canmount property casesensitivity property checksum property compression property copies property devices property exec property filesystem_limit property mountpoint property nbmand property normalization property primarycache property quota property readonly property recordsize property refquota property refreservation property reservation property secondarycache property setuid property shareiscsi property sharenfs property sharesmb property snapdir property snapshot_limit property utf8only property version property volblocksize property volsize property vscan property xattr property zoned property .fi .in -2 .sp .sp .ne 2 .na \fB\fBzfs allow\fR \fB-c\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]... \fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Sets "create time" permissions. These permissions are granted (locally) to the creator of any newly-created descendent file system. .RE .sp .ne 2 .na \fB\fBzfs allow\fR \fB-s\fR @\fIsetname\fR \fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]... \fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Defines or adds permissions to a permission set. The set can be used by other \fBzfs allow\fR commands for the specified file system and its descendents. Sets are evaluated dynamically, so changes to a set are immediately reflected. Permission sets follow the same naming restrictions as ZFS file systems, but the name must begin with an "at sign" (\fB@\fR), and can be no more than 64 characters long. .RE .sp .ne 2 .na \fB\fBzfs unallow\fR [\fB-rldug\fR] \fIuser\fR|\fIgroup\fR[,\fIuser\fR|\fIgroup\fR]... [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]...] \fIfilesystem\fR|\fIvolume\fR\fR .ad .br .na \fB\fBzfs unallow\fR [\fB-rld\fR] \fB-e\fR|\fBeveryone\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]...] \fIfilesystem\fR|\fIvolume\fR\fR .ad .br .na \fB\fBzfs unallow\fR [\fB-r\fR] \fB-c\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]...]\fR .ad .br .na \fB\fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Removes permissions that were granted with the \fBzfs allow\fR command. No permissions are explicitly denied, so other permissions granted are still in effect. For example, if the permission is granted by an ancestor. If no permissions are specified, then all permissions for the specified \fIuser\fR, \fIgroup\fR, or everyone are removed. Specifying \fBeveryone\fR (or using the \fB-e\fR option) only removes the permissions that were granted to everyone, not all permissions for every user and group. See the \fBzfs allow\fR command for a description of the \fB-ldugec\fR options. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively remove the permissions from this file system and all descendents. .RE .RE .sp .ne 2 .na \fB\fBzfs unallow\fR [\fB-r\fR] \fB-s\fR @\fIsetname\fR [\fIperm\fR|@\fIsetname\fR[,\fIperm\fR|@\fIsetname\fR]...]\fR .ad .br .na \fB\fIfilesystem\fR|\fIvolume\fR\fR .ad .sp .6 .RS 4n Removes permissions from a permission set. If no permissions are specified, then all permissions are removed, thus removing the set entirely. .RE .sp .ne 2 .na \fB\fBzfs hold\fR [\fB-r\fR] \fItag\fR \fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Adds a single reference, named with the \fItag\fR argument, to the specified snapshot or snapshots. Each snapshot has its own tag namespace, and tags must be unique within that space. .sp If a hold exists on a snapshot, attempts to destroy that snapshot by using the \fBzfs destroy\fR command return \fBEBUSY\fR. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Specifies that a hold with the given tag is applied recursively to the snapshots of all descendent file systems. .RE .RE .sp .ne 2 .na \fB\fBzfs holds\fR [\fB-r\fR] \fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Lists all existing user references for the given snapshot or snapshots. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Lists the holds that are set on the named descendent snapshots, in addition to listing the holds on the named snapshot. .RE .RE .sp .ne 2 .na \fB\fBzfs release\fR [\fB-r\fR] \fItag\fR \fIsnapshot\fR...\fR .ad .sp .6 .RS 4n Removes a single reference, named with the \fItag\fR argument, from the specified snapshot or snapshots. The tag must already exist for each snapshot. .sp If a hold exists on a snapshot, attempts to destroy that snapshot by using the \fBzfs destroy\fR command return \fBEBUSY\fR. .sp .ne 2 .na \fB\fB-r\fR\fR .ad .sp .6 .RS 4n Recursively releases a hold with the given tag on the snapshots of all descendent file systems. .RE .sp .ne 2 .na \fBzfs diff\fR [\fB-FHt\fR] \fIsnapshot\fR \fIsnapshot|filesystem\fR .ad .sp .6 .RS 4n Display the difference between a snapshot of a given filesystem and another snapshot of that filesystem from a later time or the current contents of the filesystem. The first column is a character indicating the type of change, the other columns indicate pathname, new pathname (in case of rename), change in link count, and optionally file type and/or change time. The types of change are: .in +2 .nf - The path has been removed + The path has been created M The path has been modified R The path has been renamed .fi .in -2 .sp .ne 2 .na \fB-F\fR .ad .sp .6 .RS 4n Display an indication of the type of file, in a manner similar to the \fB-F\fR option of \fBls\fR(1). .in +2 .nf B Block device C Character device / Directory > Door | Named pipe @ Symbolic link P Event port = Socket F Regular file .fi .in -2 .RE .sp .ne 2 .na \fB-H\fR .ad .sp .6 .RS 4n Give more parsable tab-separated output, without header lines and without arrows. .RE .sp .ne 2 .na \fB-t\fR .ad .sp .6 .RS 4n Display the path's inode change time as the first column of output. .RE .SH EXAMPLES .LP \fBExample 1 \fRCreating a ZFS File System Hierarchy .sp .LP The following commands create a file system named \fBpool/home\fR and a file system named \fBpool/home/bob\fR. The mount point \fB/export/home\fR is set for the parent file system, and is automatically inherited by the child file system. .sp .in +2 .nf # \fBzfs create pool/home\fR # \fBzfs set mountpoint=/export/home pool/home\fR # \fBzfs create pool/home/bob\fR .fi .in -2 .sp .LP \fBExample 2 \fRCreating a ZFS Snapshot .sp .LP The following command creates a snapshot named \fByesterday\fR. This snapshot is mounted on demand in the \fB\&.zfs/snapshot\fR directory at the root of the \fBpool/home/bob\fR file system. .sp .in +2 .nf # \fBzfs snapshot pool/home/bob@yesterday\fR .fi .in -2 .sp .LP \fBExample 3 \fRCreating and Destroying Multiple Snapshots .sp .LP The following command creates snapshots named \fByesterday\fR of \fBpool/home\fR and all of its descendent file systems. Each snapshot is mounted on demand in the \fB\&.zfs/snapshot\fR directory at the root of its file system. The second command destroys the newly created snapshots. .sp .in +2 .nf # \fBzfs snapshot -r pool/home@yesterday\fR # \fBzfs destroy -r pool/home@yesterday\fR .fi .in -2 .sp .LP \fBExample 4 \fRDisabling and Enabling File System Compression .sp .LP The following command disables the \fBcompression\fR property for all file systems under \fBpool/home\fR. The next command explicitly enables \fBcompression\fR for \fBpool/home/anne\fR. .sp .in +2 .nf # \fBzfs set compression=off pool/home\fR # \fBzfs set compression=on pool/home/anne\fR .fi .in -2 .sp .LP \fBExample 5 \fRListing ZFS Datasets .sp .LP The following command lists all active file systems and volumes in the system. Snapshots are displayed if the \fBlistsnaps\fR property is \fBon\fR. The default is \fBoff\fR. See \fBzpool\fR(1M) for more information on pool properties. .sp .in +2 .nf # \fBzfs list\fR NAME USED AVAIL REFER MOUNTPOINT pool 450K 457G 18K /pool pool/home 315K 457G 21K /export/home pool/home/anne 18K 457G 18K /export/home/anne pool/home/bob 276K 457G 276K /export/home/bob .fi .in -2 .sp .LP \fBExample 6 \fRSetting a Quota on a ZFS File System .sp .LP The following command sets a quota of 50 Gbytes for \fBpool/home/bob\fR. .sp .in +2 .nf # \fBzfs set quota=50G pool/home/bob\fR .fi .in -2 .sp .LP \fBExample 7 \fRListing ZFS Properties .sp .LP The following command lists all properties for \fBpool/home/bob\fR. .sp .in +2 .nf # \fBzfs get all pool/home/bob\fR NAME PROPERTY VALUE SOURCE pool/home/bob type filesystem - pool/home/bob creation Tue Jul 21 15:53 2009 - pool/home/bob used 21K - pool/home/bob available 20.0G - pool/home/bob referenced 21K - pool/home/bob compressratio 1.00x - pool/home/bob mounted yes - pool/home/bob quota 20G local pool/home/bob reservation none default pool/home/bob recordsize 128K default pool/home/bob mountpoint /pool/home/bob default pool/home/bob sharenfs off default pool/home/bob checksum on default pool/home/bob compression on local pool/home/bob atime on default pool/home/bob devices on default pool/home/bob exec on default pool/home/bob setuid on default pool/home/bob readonly off default pool/home/bob zoned off default pool/home/bob snapdir hidden default pool/home/bob aclmode discard default pool/home/bob aclinherit restricted default pool/home/bob canmount on default pool/home/bob shareiscsi off default pool/home/bob xattr on default pool/home/bob copies 1 default pool/home/bob version 4 - pool/home/bob utf8only off - pool/home/bob normalization none - pool/home/bob casesensitivity sensitive - pool/home/bob vscan off default pool/home/bob nbmand off default pool/home/bob sharesmb off default pool/home/bob refquota none default pool/home/bob refreservation none default pool/home/bob primarycache all default pool/home/bob secondarycache all default pool/home/bob usedbysnapshots 0 - pool/home/bob usedbydataset 21K - pool/home/bob usedbychildren 0 - pool/home/bob usedbyrefreservation 0 - .fi .in -2 .sp .sp .LP The following command gets a single property value. .sp .in +2 .nf # \fBzfs get -H -o value compression pool/home/bob\fR on .fi .in -2 .sp .sp .LP The following command lists all properties with local settings for \fBpool/home/bob\fR. .sp .in +2 .nf # \fBzfs get -r -s local -o name,property,value all pool/home/bob\fR NAME PROPERTY VALUE pool/home/bob quota 20G pool/home/bob compression on .fi .in -2 .sp .LP \fBExample 8 \fRRolling Back a ZFS File System .sp .LP The following command reverts the contents of \fBpool/home/anne\fR to the snapshot named \fByesterday\fR, deleting all intermediate snapshots. .sp .in +2 .nf # \fBzfs rollback -r pool/home/anne@yesterday\fR .fi .in -2 .sp .LP \fBExample 9 \fRCreating a ZFS Clone .sp .LP The following command creates a writable file system whose initial contents are the same as \fBpool/home/bob@yesterday\fR. .sp .in +2 .nf # \fBzfs clone pool/home/bob@yesterday pool/clone\fR .fi .in -2 .sp .LP \fBExample 10 \fRPromoting a ZFS Clone .sp .LP The following commands illustrate how to test out changes to a file system, and then replace the original file system with the changed one, using clones, clone promotion, and renaming: .sp .in +2 .nf # \fBzfs create pool/project/production\fR populate /pool/project/production with data # \fBzfs snapshot pool/project/production@today\fR # \fBzfs clone pool/project/production@today pool/project/beta\fR make changes to /pool/project/beta and test them # \fBzfs promote pool/project/beta\fR # \fBzfs rename pool/project/production pool/project/legacy\fR # \fBzfs rename pool/project/beta pool/project/production\fR once the legacy version is no longer needed, it can be destroyed # \fBzfs destroy pool/project/legacy\fR .fi .in -2 .sp .LP \fBExample 11 \fRInheriting ZFS Properties .sp .LP The following command causes \fBpool/home/bob\fR and \fBpool/home/anne\fR to inherit the \fBchecksum\fR property from their parent. .sp .in +2 .nf # \fBzfs inherit checksum pool/home/bob pool/home/anne\fR .fi .in -2 .sp .LP \fBExample 12 \fRRemotely Replicating ZFS Data .sp .LP The following commands send a full stream and then an incremental stream to a remote machine, restoring them into \fBpoolB/received/fs@a\fRand \fBpoolB/received/fs@b\fR, respectively. \fBpoolB\fR must contain the file system \fBpoolB/received\fR, and must not initially contain \fBpoolB/received/fs\fR. .sp .in +2 .nf # \fBzfs send pool/fs@a | \e\fR \fBssh host zfs receive poolB/received/fs@a\fR # \fBzfs send -i a pool/fs@b | ssh host \e\fR \fBzfs receive poolB/received/fs\fR .fi .in -2 .sp .LP \fBExample 13 \fRUsing the \fBzfs receive\fR \fB-d\fR Option .sp .LP The following command sends a full stream of \fBpoolA/fsA/fsB@snap\fR to a remote machine, receiving it into \fBpoolB/received/fsA/fsB@snap\fR. The \fBfsA/fsB@snap\fR portion of the received snapshot's name is determined from the name of the sent snapshot. \fBpoolB\fR must contain the file system \fBpoolB/received\fR. If \fBpoolB/received/fsA\fR does not exist, it is created as an empty file system. .sp .in +2 .nf # \fBzfs send poolA/fsA/fsB@snap | \e ssh host zfs receive -d poolB/received\fR .fi .in -2 .sp .LP \fBExample 14 \fRSetting User Properties .sp .LP The following example sets the user-defined \fBcom.example:department\fR property for a dataset. .sp .in +2 .nf # \fBzfs set com.example:department=12345 tank/accounting\fR .fi .in -2 .sp .LP \fBExample 15 \fRCreating a ZFS Volume as an iSCSI Target Device .sp .LP The following example shows how to create a \fBZFS\fR volume as an \fBiSCSI\fR target. .sp .in +2 .nf # \fBzfs create -V 2g pool/volumes/vol1\fR # \fBzfs set shareiscsi=on pool/volumes/vol1\fR # \fBiscsitadm list target\fR Target: pool/volumes/vol1 iSCSI Name: iqn.1986-03.com.sun:02:7b4b02a6-3277-eb1b-e686-a24762c52a8c Connections: 0 .fi .in -2 .sp .sp .LP After the \fBiSCSI\fR target is created, set up the \fBiSCSI\fR initiator. For more information about the Solaris \fBiSCSI\fR initiator, see \fBiscsitadm\fR(1M). .LP \fBExample 16 \fRPerforming a Rolling Snapshot .sp .LP The following example shows how to maintain a history of snapshots with a consistent naming scheme. To keep a week's worth of snapshots, the user destroys the oldest snapshot, renames the remaining snapshots, and then creates a new snapshot, as follows: .sp .in +2 .nf # \fBzfs destroy -r pool/users@7daysago\fR # \fBzfs rename -r pool/users@6daysago @7daysago\fR # \fBzfs rename -r pool/users@5daysago @6daysago\fR # \fBzfs rename -r pool/users@yesterday @5daysago\fR # \fBzfs rename -r pool/users@yesterday @4daysago\fR # \fBzfs rename -r pool/users@yesterday @3daysago\fR # \fBzfs rename -r pool/users@yesterday @2daysago\fR # \fBzfs rename -r pool/users@today @yesterday\fR # \fBzfs snapshot -r pool/users@today\fR .fi .in -2 .sp .LP \fBExample 17 \fRSetting \fBsharenfs\fR Property Options on a ZFS File System .sp .LP The following commands show how to set \fBsharenfs\fR property options to enable \fBrw\fR access for a set of \fBIP\fR addresses and to enable root access for system \fBneo\fR on the \fBtank/home\fR file system. .sp .in +2 .nf # \fBzfs set sharenfs='rw=@123.123.0.0/16,root=neo' tank/home\fR .fi .in -2 .sp .sp .LP If you are using \fBDNS\fR for host name resolution, specify the fully qualified hostname. .LP \fBExample 18 \fRDelegating ZFS Administration Permissions on a ZFS Dataset .sp .LP The following example shows how to set permissions so that user \fBcindys\fR can create, destroy, mount, and take snapshots on \fBtank/cindys\fR. The permissions on \fBtank/cindys\fR are also displayed. .sp .in +2 .nf # \fBzfs allow cindys create,destroy,mount,snapshot tank/cindys\fR # \fBzfs allow tank/cindys\fR ------------------------------------------------------------- Local+Descendent permissions on (tank/cindys) user cindys create,destroy,mount,snapshot ------------------------------------------------------------- .fi .in -2 .sp .sp .LP Because the \fBtank/cindys\fR mount point permission is set to 755 by default, user \fBcindys\fR will be unable to mount file systems under \fBtank/cindys\fR. Set an \fBACL\fR similar to the following syntax to provide mount point access: .sp .in +2 .nf # \fBchmod A+user:cindys:add_subdirectory:allow /tank/cindys\fR .fi .in -2 .sp .LP \fBExample 19 \fRDelegating Create Time Permissions on a ZFS Dataset .sp .LP The following example shows how to grant anyone in the group \fBstaff\fR to create file systems in \fBtank/users\fR. This syntax also allows staff members to destroy their own file systems, but not destroy anyone else's file system. The permissions on \fBtank/users\fR are also displayed. .sp .in +2 .nf # \fBzfs allow staff create,mount tank/users\fR # \fBzfs allow -c destroy tank/users\fR # \fBzfs allow tank/users\fR ------------------------------------------------------------- Create time permissions on (tank/users) create,destroy Local+Descendent permissions on (tank/users) group staff create,mount ------------------------------------------------------------- .fi .in -2 .sp .LP \fBExample 20 \fRDefining and Granting a Permission Set on a ZFS Dataset .sp .LP The following example shows how to define and grant a permission set on the \fBtank/users\fR file system. The permissions on \fBtank/users\fR are also displayed. .sp .in +2 .nf # \fBzfs allow -s @pset create,destroy,snapshot,mount tank/users\fR # \fBzfs allow staff @pset tank/users\fR # \fBzfs allow tank/users\fR ------------------------------------------------------------- Permission sets on (tank/users) @pset create,destroy,mount,snapshot Create time permissions on (tank/users) create,destroy Local+Descendent permissions on (tank/users) group staff @pset,create,mount ------------------------------------------------------------- .fi .in -2 .sp .LP \fBExample 21 \fRDelegating Property Permissions on a ZFS Dataset .sp .LP The following example shows to grant the ability to set quotas and reservations on the \fBusers/home\fR file system. The permissions on \fBusers/home\fR are also displayed. .sp .in +2 .nf # \fBzfs allow cindys quota,reservation users/home\fR # \fBzfs allow users/home\fR ------------------------------------------------------------- Local+Descendent permissions on (users/home) user cindys quota,reservation ------------------------------------------------------------- cindys% \fBzfs set quota=10G users/home/marks\fR cindys% \fBzfs get quota users/home/marks\fR NAME PROPERTY VALUE SOURCE users/home/marks quota 10G local .fi .in -2 .sp .LP \fBExample 22 \fRRemoving ZFS Delegated Permissions on a ZFS Dataset .sp .LP The following example shows how to remove the snapshot permission from the \fBstaff\fR group on the \fBtank/users\fR file system. The permissions on \fBtank/users\fR are also displayed. .sp .in +2 .nf # \fBzfs unallow staff snapshot tank/users\fR # \fBzfs allow tank/users\fR ------------------------------------------------------------- Permission sets on (tank/users) @pset create,destroy,mount,snapshot Create time permissions on (tank/users) create,destroy Local+Descendent permissions on (tank/users) group staff @pset,create,mount ------------------------------------------------------------- .fi .in -2 .sp .LP \fBExample 23\fR Showing the differences between a snapshot and a ZFS Dataset .sp .LP The following example shows how to see what has changed between a prior snapshot of a ZFS Dataset and its current state. The \fB-F\fR option is used to indicate type information for the files affected. .sp .in +2 .nf # zfs diff -F tank/test@before tank/test M / /tank/test/ M F /tank/test/linked (+1) R F /tank/test/oldname -> /tank/test/newname - F /tank/test/deleted + F /tank/test/created M F /tank/test/modified .fi .in -2 .sp .SH EXIT STATUS .LP The following exit values are returned: .sp .ne 2 .na \fB\fB0\fR\fR .ad .sp .6 .RS 4n Successful completion. .RE .sp .ne 2 .na \fB\fB1\fR\fR .ad .sp .6 .RS 4n An error occurred. .RE .sp .ne 2 .na \fB\fB2\fR\fR .ad .sp .6 .RS 4n Invalid command line options were specified. .RE .SH ATTRIBUTES .LP See \fBattributes\fR(5) for descriptions of the following attributes: .sp .sp .TS box; c | c l | l . ATTRIBUTE TYPE ATTRIBUTE VALUE _ Interface Stability Committed .TE .SH SEE ALSO .LP \fBssh\fR(1), \fBiscsitadm\fR(1M), \fBmount\fR(1M), \fBshare\fR(1M), \fBsharemgr\fR(1M), \fBunshare\fR(1M), \fBzonecfg\fR(1M), \fBzpool\fR(1M), \fBchmod\fR(2), \fBstat\fR(2), \fBwrite\fR(2), \fBfsync\fR(3C), \fBdfstab\fR(4), \fBacl\fR(5), \fBattributes\fR(5) .sp .LP See the \fBgzip\fR(1) man page, which is not part of the SunOS man page collection. .sp .LP For information about using the \fBZFS\fR web-based management tool and other \fBZFS\fR features, see the \fISolaris ZFS Administration Guide\fR. Index: vendor/illumos/dist/man/man5/zpool-features.5 =================================================================== --- vendor/illumos/dist/man/man5/zpool-features.5 (revision 274272) +++ vendor/illumos/dist/man/man5/zpool-features.5 (revision 274273) @@ -1,434 +1,448 @@ '\" te .\" Copyright (c) 2013 by Delphix. All rights reserved. .\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved. .\" Copyright (c) 2014, Joyent, Inc. All rights reserved. .\" The contents of this file are subject to the terms of the Common Development .\" and Distribution License (the "License"). You may not use this file except .\" in compliance with the License. You can obtain a copy of the license at .\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. .\" .\" See the License for the specific language governing permissions and .\" limitations under the License. When distributing Covered Code, include this .\" CDDL HEADER in each file and include the License file at .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your .\" own identifying information: .\" Portions Copyright [yyyy] [name of copyright owner] .TH ZPOOL-FEATURES 5 "Aug 27, 2013" .SH NAME zpool\-features \- ZFS pool feature descriptions .SH DESCRIPTION -.sp .LP ZFS pool on\-disk format versions are specified via "features" which replace the old on\-disk format numbers (the last supported on\-disk format number is 28). To enable a feature on a pool use the \fBupgrade\fR subcommand of the \fBzpool\fR(1M) command, or set the \fBfeature@\fR\fIfeature_name\fR property to \fBenabled\fR. .sp .LP The pool format does not affect file system version compatibility or the ability to send file systems between pools. .sp .LP Since most features can be enabled independently of each other the on\-disk format of the pool is specified by the set of all features marked as \fBactive\fR on the pool. If the pool was created by another software version this set may include unsupported features. .SS "Identifying features" -.sp .LP Every feature has a guid of the form \fIcom.example:feature_name\fR. The reverse DNS name ensures that the feature's guid is unique across all ZFS implementations. When unsupported features are encountered on a pool they will be identified by their guids. Refer to the documentation for the ZFS implementation that created the pool for information about those features. .sp .LP Each supported feature also has a short name. By convention a feature's short name is the portion of its guid which follows the ':' (e.g. \fIcom.example:feature_name\fR would have the short name \fIfeature_name\fR), however a feature's short name may differ across ZFS implementations if following the convention would result in name conflicts. .SS "Feature states" -.sp .LP Features can be in one of three states: .sp .ne 2 .na \fB\fBactive\fR\fR .ad .RS 12n This feature's on\-disk format changes are in effect on the pool. Support for this feature is required to import the pool in read\-write mode. If this feature is not read-only compatible, support is also required to import the pool in read\-only mode (see "Read\-only compatibility"). .RE .sp .ne 2 .na \fB\fBenabled\fR\fR .ad .RS 12n An administrator has marked this feature as enabled on the pool, but the feature's on\-disk format changes have not been made yet. The pool can still be imported by software that does not support this feature, but changes may be made to the on\-disk format at any time which will move the feature to the \fBactive\fR state. Some features may support returning to the \fBenabled\fR state after becoming \fBactive\fR. See feature\-specific documentation for details. .RE .sp .ne 2 .na \fBdisabled\fR .ad .RS 12n This feature's on\-disk format changes have not been made and will not be made unless an administrator moves the feature to the \fBenabled\fR state. Features cannot be disabled once they have been enabled. .RE .sp .LP The state of supported features is exposed through pool properties of the form \fIfeature@short_name\fR. .SS "Read\-only compatibility" -.sp .LP Some features may make on\-disk format changes that do not interfere with other software's ability to read from the pool. These features are referred to as "read\-only compatible". If all unsupported features on a pool are read\-only compatible, the pool can be imported in read\-only mode by setting the \fBreadonly\fR property during import (see \fBzpool\fR(1M) for details on importing pools). .SS "Unsupported features" -.sp .LP For each unsupported feature enabled on an imported pool a pool property named \fIunsupported@feature_guid\fR will indicate why the import was allowed despite the unsupported feature. Possible values for this property are: .sp .ne 2 .na \fB\fBinactive\fR\fR .ad .RS 12n The feature is in the \fBenabled\fR state and therefore the pool's on\-disk format is still compatible with software that does not support this feature. .RE .sp .ne 2 .na \fB\fBreadonly\fR\fR .ad .RS 12n The feature is read\-only compatible and the pool has been imported in read\-only mode. .RE .SS "Feature dependencies" -.sp .LP Some features depend on other features being enabled in order to function properly. Enabling a feature will automatically enable any features it depends on. .SH FEATURES -.sp .LP The following features are supported on this system: .sp .ne 2 .na \fB\fBasync_destroy\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:async_destroy READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE Destroying a file system requires traversing all of its data in order to return its used space to the pool. Without \fBasync_destroy\fR the file system is not fully removed until all space has been reclaimed. If the destroy operation is interrupted by a reboot or power outage the next attempt to open the pool will need to complete the destroy operation synchronously. When \fBasync_destroy\fR is enabled the file system's data will be reclaimed by a background process, allowing the destroy operation to complete without traversing the entire file system. The background process is able to resume interrupted destroys after the pool has been opened, eliminating the need to finish interrupted destroys as part of the open operation. The amount of space remaining to be reclaimed by the background process is available through the \fBfreeing\fR property. This feature is only \fBactive\fR while \fBfreeing\fR is non\-zero. .RE .sp .ne 2 .na \fB\fBempty_bpobj\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:empty_bpobj READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This feature increases the performance of creating and using a large number of snapshots of a single filesystem or volume, and also reduces the disk space required. When there are many snapshots, each snapshot uses many Block Pointer Objects (bpobj's) to track blocks associated with that snapshot. However, in common use cases, most of these bpobj's are empty. This feature allows us to create each bpobj on-demand, thus eliminating the empty bpobjs. This feature is \fBactive\fR while there are any filesystems, volumes, or snapshots which were created after enabling this feature. .RE .sp .ne 2 .na \fB\fBfilesystem_limits\fR\fR .ad .RS 4n .TS l l . GUID com.joyent:filesystem_limits READ\-ONLY COMPATIBLE yes DEPENDENCIES extensible_dataset .TE This feature enables filesystem and snapshot limits. These limits can be used to control how many filesystems and/or snapshots can be created at the point in the tree on which the limits are set. This feature is \fBactive\fR once either of the limit properties has been set on a dataset. Once activated the feature is never deactivated. .RE .sp .ne 2 .na \fB\fBlz4_compress\fR\fR .ad .RS 4n .TS l l . GUID org.illumos:lz4_compress READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE \fBlz4\fR is a high-performance real-time compression algorithm that features significantly faster compression and decompression as well as a higher compression ratio than the older \fBlzjb\fR compression. Typically, \fBlz4\fR compression is approximately 50% faster on compressible data and 200% faster on incompressible data than \fBlzjb\fR. It is also approximately 80% faster on decompression, while giving approximately 10% better compression ratio. When the \fBlz4_compress\fR feature is set to \fBenabled\fR, the administrator can turn on \fBlz4\fR compression on any dataset on the pool using the \fBzfs\fR(1M) command. Also, all newly written metadata will be compressed with \fBlz4\fR algorithm. Since this feature is not read-only compatible, this operation will render the pool unimportable on systems without support for the \fBlz4_compress\fR feature. Booting off of \fBlz4\fR-compressed root pools is supported. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBspacemap_histogram\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:spacemap_histogram READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE This features allows ZFS to maintain more information about how free space is organized within the pool. If this feature is \fBenabled\fR, ZFS will set this feature to \fBactive\fR when a new space map object is created or an existing space map is upgraded to the new format. Once the feature is \fBactive\fR, it will remain in that state until the pool is destroyed. .RE .sp .ne 2 .na \fB\fBmulti_vdev_crash_dump\fR\fR .ad .RS 4n .TS l l . GUID com.joyent:multi_vdev_crash_dump READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature allows a dump device to be configured with a pool comprised of multiple vdevs. Those vdevs may be arranged in any mirrored or raidz configuration. When the \fBmulti_vdev_crash_dump\fR feature is set to \fBenabled\fR, the administrator can use the \fBdumpadm\fR(1M) command to configure a dump device on a pool comprised of multiple vdevs. .RE .sp .ne 2 .na \fB\fBextensible_dataset\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:extensible_dataset READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature allows more flexible use of internal ZFS data structures, and exists for other features to depend on. This feature will be \fBactive\fR when the first dependent feature uses it, and will be returned to the \fBenabled\fR state when all datasets that use this feature are destroyed. .RE .sp .ne 2 .na \fB\fBbookmarks\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:bookmarks READ\-ONLY COMPATIBLE yes DEPENDENCIES extensible_dataset .TE This feature enables use of the \fBzfs bookmark\fR subcommand. This feature is \fBactive\fR while any bookmarks exist in the pool. All bookmarks in the pool can be listed by running \fBzfs list -t bookmark -r \fIpoolname\fR\fR. .RE .sp .ne 2 .na \fB\fBenabled_txg\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:enabled_txg READ\-ONLY COMPATIBLE yes DEPENDENCIES none .TE Once this feature is enabled ZFS records the transaction group number in which new features are enabled. This has no user-visible impact, but other features may depend on this feature. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBhole_birth\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:hole_birth READ\-ONLY COMPATIBLE no DEPENDENCIES enabled_txg .TE This feature improves performance of incremental sends ("zfs send -i") and receives for objects with many holes. The most common case of hole-filled objects is zvols. An incremental send stream from snapshot \fBA\fR to snapshot \fBB\fR contains information about every block that changed between \fBA\fR and \fBB\fR. Blocks which did not change between those snapshots can be identified and omitted from the stream using a piece of metadata called the 'block birth time', but birth times are not recorded for holes (blocks filled only with zeroes). Since holes created after \fBA\fR cannot be distinguished from holes created before \fBA\fR, information about every hole in the entire filesystem or zvol is included in the send stream. For workloads where holes are rare this is not a problem. However, when incrementally replicating filesystems or zvols with many holes (for example a zvol formatted with another filesystem) a lot of time will be spent sending and receiving unnecessary information about holes that already exist on the receiving side. Once the \fBhole_birth\fR feature has been enabled the block birth times of all new holes will be recorded. Incremental sends between snapshots created after this feature is enabled will use this new metadata to avoid sending information about holes that already exist on the receiving side. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fB. .RE .sp .ne 2 .na \fB\fBembedded_data\fR\fR .ad .RS 4n .TS l l . GUID com.delphix:embedded_data READ\-ONLY COMPATIBLE no DEPENDENCIES none .TE This feature improves the performance and compression ratio of highly-compressible blocks. Blocks whose contents can compress to 112 bytes or smaller can take advantage of this feature. When this feature is enabled, the contents of highly-compressible blocks are stored in the block "pointer" itself (a misnomer in this case, as it contains the compresseed data, rather than a pointer to its location on disk). Thus the space of the block (one sector, typically 512 bytes or 4KB) is saved, and no additional i/o is needed to read and write the data block. This feature becomes \fBactive\fR as soon as it is enabled and will never return to being \fBenabled\fR. +.RE + +.sp +.ne 2 +.na +\fB\fBlarge_blocks\fR\fR +.ad +.RS 4n +.TS +l l . +GUID org.open-zfs:large_block +READ\-ONLY COMPATIBLE no +DEPENDENCIES extensible_dataset +.TE + +The \fBlarge_block\fR feature allows the record size on a dataset to be +set larger than 128KB. + +This feature becomes \fBactive\fR once a \fBrecordsize\fR property has been +set larger than 128KB, and will return to being \fBenabled\fR once all +filesystems that have ever had their recordsize larger than 128KB are destroyed. .RE .SH "SEE ALSO" \fBzpool\fR(1M) Index: vendor-sys/illumos/dist/common/zfs/zfeature_common.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfeature_common.c (revision 274272) +++ vendor-sys/illumos/dist/common/zfs/zfeature_common.c (revision 274273) @@ -1,224 +1,234 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ #ifdef _KERNEL #include #else #include #include #endif #include #include #include #include #include "zfeature_common.h" /* * Set to disable all feature checks while opening pools, allowing pools with * unsupported features to be opened. Set for testing only. */ boolean_t zfeature_checks_disable = B_FALSE; zfeature_info_t spa_feature_table[SPA_FEATURES]; /* * Valid characters for feature guids. This list is mainly for aesthetic * purposes and could be expanded in the future. There are different allowed * characters in the guids reverse dns portion (before the colon) and its * short name (after the colon). */ static int valid_char(char c, boolean_t after_colon) { return ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || - c == (after_colon ? '_' : '.')); + (after_colon && c == '_') || + (!after_colon && (c == '.' || c == '-'))); } /* * Every feature guid must contain exactly one colon which separates a reverse * dns organization name from the feature's "short" name (e.g. * "com.company:feature_name"). */ boolean_t zfeature_is_valid_guid(const char *name) { int i; boolean_t has_colon = B_FALSE; i = 0; while (name[i] != '\0') { char c = name[i++]; if (c == ':') { if (has_colon) return (B_FALSE); has_colon = B_TRUE; continue; } if (!valid_char(c, has_colon)) return (B_FALSE); } return (has_colon); } boolean_t zfeature_is_supported(const char *guid) { if (zfeature_checks_disable) return (B_TRUE); for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (strcmp(guid, feature->fi_guid) == 0) return (B_TRUE); } return (B_FALSE); } int zfeature_lookup_name(const char *name, spa_feature_t *res) { for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { zfeature_info_t *feature = &spa_feature_table[i]; if (strcmp(name, feature->fi_uname) == 0) { if (res != NULL) *res = i; return (0); } } return (ENOENT); } boolean_t zfeature_depends_on(spa_feature_t fid, spa_feature_t check) { zfeature_info_t *feature = &spa_feature_table[fid]; for (int i = 0; feature->fi_depends[i] != SPA_FEATURE_NONE; i++) { if (feature->fi_depends[i] == check) return (B_TRUE); } return (B_FALSE); } static void zfeature_register(spa_feature_t fid, const char *guid, const char *name, const char *desc, boolean_t readonly, boolean_t mos, boolean_t activate_on_enable, const spa_feature_t *deps) { zfeature_info_t *feature = &spa_feature_table[fid]; static spa_feature_t nodeps[] = { SPA_FEATURE_NONE }; ASSERT(name != NULL); ASSERT(desc != NULL); ASSERT(!readonly || !mos); ASSERT3U(fid, <, SPA_FEATURES); ASSERT(zfeature_is_valid_guid(guid)); if (deps == NULL) deps = nodeps; feature->fi_feature = fid; feature->fi_guid = guid; feature->fi_uname = name; feature->fi_desc = desc; feature->fi_can_readonly = readonly; feature->fi_mos = mos; feature->fi_activate_on_enable = activate_on_enable; feature->fi_depends = deps; } void zpool_feature_init(void) { zfeature_register(SPA_FEATURE_ASYNC_DESTROY, "com.delphix:async_destroy", "async_destroy", "Destroy filesystems asynchronously.", B_TRUE, B_FALSE, B_FALSE, NULL); zfeature_register(SPA_FEATURE_EMPTY_BPOBJ, "com.delphix:empty_bpobj", "empty_bpobj", "Snapshots use less space.", B_TRUE, B_FALSE, B_FALSE, NULL); zfeature_register(SPA_FEATURE_LZ4_COMPRESS, "org.illumos:lz4_compress", "lz4_compress", "LZ4 compression algorithm support.", B_FALSE, B_FALSE, B_TRUE, NULL); zfeature_register(SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, "com.joyent:multi_vdev_crash_dump", "multi_vdev_crash_dump", "Crash dumps to multiple vdev pools.", B_FALSE, B_FALSE, B_FALSE, NULL); zfeature_register(SPA_FEATURE_SPACEMAP_HISTOGRAM, "com.delphix:spacemap_histogram", "spacemap_histogram", "Spacemaps maintain space histograms.", B_TRUE, B_FALSE, B_FALSE, NULL); zfeature_register(SPA_FEATURE_ENABLED_TXG, "com.delphix:enabled_txg", "enabled_txg", "Record txg at which a feature is enabled", B_TRUE, B_FALSE, B_FALSE, NULL); static spa_feature_t hole_birth_deps[] = { SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_HOLE_BIRTH, "com.delphix:hole_birth", "hole_birth", "Retain hole birth txg for more precise zfs send", B_FALSE, B_TRUE, B_TRUE, hole_birth_deps); zfeature_register(SPA_FEATURE_EXTENSIBLE_DATASET, "com.delphix:extensible_dataset", "extensible_dataset", "Enhanced dataset functionality, used by other features.", B_FALSE, B_FALSE, B_FALSE, NULL); static const spa_feature_t bookmarks_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_BOOKMARKS, "com.delphix:bookmarks", "bookmarks", "\"zfs bookmark\" command", B_TRUE, B_FALSE, B_FALSE, bookmarks_deps); static const spa_feature_t filesystem_limits_deps[] = { SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_NONE }; zfeature_register(SPA_FEATURE_FS_SS_LIMIT, "com.joyent:filesystem_limits", "filesystem_limits", "Filesystem and snapshot limits.", B_TRUE, B_FALSE, B_FALSE, filesystem_limits_deps); zfeature_register(SPA_FEATURE_EMBEDDED_DATA, "com.delphix:embedded_data", "embedded_data", "Blocks which compress very well use even less space.", B_FALSE, B_TRUE, B_TRUE, NULL); + + static const spa_feature_t large_blocks_deps[] = { + SPA_FEATURE_EXTENSIBLE_DATASET, + SPA_FEATURE_NONE + }; + zfeature_register(SPA_FEATURE_LARGE_BLOCKS, + "org.open-zfs:large_blocks", "large_blocks", + "Support for blocks larger than 128KB.", B_FALSE, B_FALSE, B_FALSE, + large_blocks_deps); } Index: vendor-sys/illumos/dist/common/zfs/zfeature_common.h =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfeature_common.h (revision 274272) +++ vendor-sys/illumos/dist/common/zfs/zfeature_common.h (revision 274273) @@ -1,90 +1,91 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #ifndef _ZFEATURE_COMMON_H #define _ZFEATURE_COMMON_H #include #include #include #ifdef __cplusplus extern "C" { #endif struct zfeature_info; typedef enum spa_feature { SPA_FEATURE_NONE = -1, SPA_FEATURE_ASYNC_DESTROY, SPA_FEATURE_EMPTY_BPOBJ, SPA_FEATURE_LZ4_COMPRESS, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, SPA_FEATURE_SPACEMAP_HISTOGRAM, SPA_FEATURE_ENABLED_TXG, SPA_FEATURE_HOLE_BIRTH, SPA_FEATURE_EXTENSIBLE_DATASET, SPA_FEATURE_EMBEDDED_DATA, SPA_FEATURE_BOOKMARKS, SPA_FEATURE_FS_SS_LIMIT, + SPA_FEATURE_LARGE_BLOCKS, SPA_FEATURES } spa_feature_t; #define SPA_FEATURE_DISABLED (-1ULL) typedef struct zfeature_info { spa_feature_t fi_feature; const char *fi_uname; /* User-facing feature name */ const char *fi_guid; /* On-disk feature identifier */ const char *fi_desc; /* Feature description */ boolean_t fi_can_readonly; /* Can open pool readonly w/o support? */ boolean_t fi_mos; /* Is the feature necessary to read the MOS? */ /* Activate this feature at the same time it is enabled */ boolean_t fi_activate_on_enable; /* array of dependencies, terminated by SPA_FEATURE_NONE */ const spa_feature_t *fi_depends; } zfeature_info_t; typedef int (zfeature_func_t)(zfeature_info_t *, void *); #define ZFS_FEATURE_DEBUG extern zfeature_info_t spa_feature_table[SPA_FEATURES]; extern boolean_t zfeature_is_valid_guid(const char *); extern boolean_t zfeature_is_supported(const char *); extern int zfeature_lookup_name(const char *, spa_feature_t *); extern boolean_t zfeature_depends_on(spa_feature_t, spa_feature_t); extern void zpool_feature_init(void); #ifdef __cplusplus } #endif #endif /* _ZFEATURE_COMMON_H */ Index: vendor-sys/illumos/dist/common/zfs/zfs_prop.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zfs_prop.c (revision 274272) +++ vendor-sys/illumos/dist/common/zfs/zfs_prop.c (revision 274273) @@ -1,656 +1,656 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_deleg.h" #if defined(_KERNEL) #include #else #include #include #include #endif static zprop_desc_t zfs_prop_table[ZFS_NUM_PROPS]; /* Note this is indexed by zfs_userquota_prop_t, keep the order the same */ const char *zfs_userquota_prop_prefixes[] = { "userused@", "userquota@", "groupused@", "groupquota@" }; zprop_desc_t * zfs_prop_get_table(void) { return (zfs_prop_table); } void zfs_prop_init(void) { static zprop_index_t checksum_table[] = { { "on", ZIO_CHECKSUM_ON }, { "off", ZIO_CHECKSUM_OFF }, { "fletcher2", ZIO_CHECKSUM_FLETCHER_2 }, { "fletcher4", ZIO_CHECKSUM_FLETCHER_4 }, { "sha256", ZIO_CHECKSUM_SHA256 }, { "noparity", ZIO_CHECKSUM_NOPARITY }, { NULL } }; static zprop_index_t dedup_table[] = { { "on", ZIO_CHECKSUM_ON }, { "off", ZIO_CHECKSUM_OFF }, { "verify", ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY }, { "sha256", ZIO_CHECKSUM_SHA256 }, { "sha256,verify", ZIO_CHECKSUM_SHA256 | ZIO_CHECKSUM_VERIFY }, { NULL } }; static zprop_index_t compress_table[] = { { "on", ZIO_COMPRESS_ON }, { "off", ZIO_COMPRESS_OFF }, { "lzjb", ZIO_COMPRESS_LZJB }, { "gzip", ZIO_COMPRESS_GZIP_6 }, /* gzip default */ { "gzip-1", ZIO_COMPRESS_GZIP_1 }, { "gzip-2", ZIO_COMPRESS_GZIP_2 }, { "gzip-3", ZIO_COMPRESS_GZIP_3 }, { "gzip-4", ZIO_COMPRESS_GZIP_4 }, { "gzip-5", ZIO_COMPRESS_GZIP_5 }, { "gzip-6", ZIO_COMPRESS_GZIP_6 }, { "gzip-7", ZIO_COMPRESS_GZIP_7 }, { "gzip-8", ZIO_COMPRESS_GZIP_8 }, { "gzip-9", ZIO_COMPRESS_GZIP_9 }, { "zle", ZIO_COMPRESS_ZLE }, { "lz4", ZIO_COMPRESS_LZ4 }, { NULL } }; static zprop_index_t snapdir_table[] = { { "hidden", ZFS_SNAPDIR_HIDDEN }, { "visible", ZFS_SNAPDIR_VISIBLE }, { NULL } }; static zprop_index_t acl_mode_table[] = { { "discard", ZFS_ACL_DISCARD }, { "groupmask", ZFS_ACL_GROUPMASK }, { "passthrough", ZFS_ACL_PASSTHROUGH }, { "restricted", ZFS_ACL_RESTRICTED }, { NULL } }; static zprop_index_t acl_inherit_table[] = { { "discard", ZFS_ACL_DISCARD }, { "noallow", ZFS_ACL_NOALLOW }, { "restricted", ZFS_ACL_RESTRICTED }, { "passthrough", ZFS_ACL_PASSTHROUGH }, { "secure", ZFS_ACL_RESTRICTED }, /* bkwrd compatability */ { "passthrough-x", ZFS_ACL_PASSTHROUGH_X }, { NULL } }; static zprop_index_t case_table[] = { { "sensitive", ZFS_CASE_SENSITIVE }, { "insensitive", ZFS_CASE_INSENSITIVE }, { "mixed", ZFS_CASE_MIXED }, { NULL } }; static zprop_index_t copies_table[] = { { "1", 1 }, { "2", 2 }, { "3", 3 }, { NULL } }; /* * Use the unique flags we have to send to u8_strcmp() and/or * u8_textprep() to represent the various normalization property * values. */ static zprop_index_t normalize_table[] = { { "none", 0 }, { "formD", U8_TEXTPREP_NFD }, { "formKC", U8_TEXTPREP_NFKC }, { "formC", U8_TEXTPREP_NFC }, { "formKD", U8_TEXTPREP_NFKD }, { NULL } }; static zprop_index_t version_table[] = { { "1", 1 }, { "2", 2 }, { "3", 3 }, { "4", 4 }, { "5", 5 }, { "current", ZPL_VERSION }, { NULL } }; static zprop_index_t boolean_table[] = { { "off", 0 }, { "on", 1 }, { NULL } }; static zprop_index_t logbias_table[] = { { "latency", ZFS_LOGBIAS_LATENCY }, { "throughput", ZFS_LOGBIAS_THROUGHPUT }, { NULL } }; static zprop_index_t canmount_table[] = { { "off", ZFS_CANMOUNT_OFF }, { "on", ZFS_CANMOUNT_ON }, { "noauto", ZFS_CANMOUNT_NOAUTO }, { NULL } }; static zprop_index_t cache_table[] = { { "none", ZFS_CACHE_NONE }, { "metadata", ZFS_CACHE_METADATA }, { "all", ZFS_CACHE_ALL }, { NULL } }; static zprop_index_t sync_table[] = { { "standard", ZFS_SYNC_STANDARD }, { "always", ZFS_SYNC_ALWAYS }, { "disabled", ZFS_SYNC_DISABLED }, { NULL } }; static zprop_index_t redundant_metadata_table[] = { { "all", ZFS_REDUNDANT_METADATA_ALL }, { "most", ZFS_REDUNDANT_METADATA_MOST }, { NULL } }; /* inherit index properties */ zprop_register_index(ZFS_PROP_REDUNDANT_METADATA, "redundant_metadata", ZFS_REDUNDANT_METADATA_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "all | most", "REDUND_MD", redundant_metadata_table); zprop_register_index(ZFS_PROP_SYNC, "sync", ZFS_SYNC_STANDARD, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "standard | always | disabled", "SYNC", sync_table); zprop_register_index(ZFS_PROP_CHECKSUM, "checksum", ZIO_CHECKSUM_DEFAULT, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | fletcher2 | fletcher4 | sha256", "CHECKSUM", checksum_table); zprop_register_index(ZFS_PROP_DEDUP, "dedup", ZIO_CHECKSUM_OFF, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | verify | sha256[,verify]", "DEDUP", dedup_table); zprop_register_index(ZFS_PROP_COMPRESSION, "compression", ZIO_COMPRESS_DEFAULT, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off | lzjb | gzip | gzip-[1-9] | zle | lz4", "COMPRESS", compress_table); zprop_register_index(ZFS_PROP_SNAPDIR, "snapdir", ZFS_SNAPDIR_HIDDEN, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "hidden | visible", "SNAPDIR", snapdir_table); zprop_register_index(ZFS_PROP_ACLMODE, "aclmode", ZFS_ACL_DISCARD, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "discard | groupmask | passthrough | restricted", "ACLMODE", acl_mode_table); zprop_register_index(ZFS_PROP_ACLINHERIT, "aclinherit", ZFS_ACL_RESTRICTED, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "discard | noallow | restricted | passthrough | passthrough-x", "ACLINHERIT", acl_inherit_table); zprop_register_index(ZFS_PROP_COPIES, "copies", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "1 | 2 | 3", "COPIES", copies_table); zprop_register_index(ZFS_PROP_PRIMARYCACHE, "primarycache", ZFS_CACHE_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT | ZFS_TYPE_VOLUME, "all | none | metadata", "PRIMARYCACHE", cache_table); zprop_register_index(ZFS_PROP_SECONDARYCACHE, "secondarycache", ZFS_CACHE_ALL, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT | ZFS_TYPE_VOLUME, "all | none | metadata", "SECONDARYCACHE", cache_table); zprop_register_index(ZFS_PROP_LOGBIAS, "logbias", ZFS_LOGBIAS_LATENCY, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "latency | throughput", "LOGBIAS", logbias_table); /* inherit index (boolean) properties */ zprop_register_index(ZFS_PROP_ATIME, "atime", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "ATIME", boolean_table); zprop_register_index(ZFS_PROP_DEVICES, "devices", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "DEVICES", boolean_table); zprop_register_index(ZFS_PROP_EXEC, "exec", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "EXEC", boolean_table); zprop_register_index(ZFS_PROP_SETUID, "setuid", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "SETUID", boolean_table); zprop_register_index(ZFS_PROP_READONLY, "readonly", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "on | off", "RDONLY", boolean_table); zprop_register_index(ZFS_PROP_ZONED, "zoned", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "ZONED", boolean_table); zprop_register_index(ZFS_PROP_XATTR, "xattr", 1, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "XATTR", boolean_table); zprop_register_index(ZFS_PROP_VSCAN, "vscan", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off", "VSCAN", boolean_table); zprop_register_index(ZFS_PROP_NBMAND, "nbmand", 0, PROP_INHERIT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "NBMAND", boolean_table); /* default index properties */ zprop_register_index(ZFS_PROP_VERSION, "version", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "1 | 2 | 3 | 4 | 5 | current", "VERSION", version_table); zprop_register_index(ZFS_PROP_CANMOUNT, "canmount", ZFS_CANMOUNT_ON, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, "on | off | noauto", "CANMOUNT", canmount_table); /* readonly index (boolean) properties */ zprop_register_index(ZFS_PROP_MOUNTED, "mounted", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM, "yes | no", "MOUNTED", boolean_table); zprop_register_index(ZFS_PROP_DEFER_DESTROY, "defer_destroy", 0, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "yes | no", "DEFER_DESTROY", boolean_table); /* set once index properties */ zprop_register_index(ZFS_PROP_NORMALIZE, "normalization", 0, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "none | formC | formD | formKC | formKD", "NORMALIZATION", normalize_table); zprop_register_index(ZFS_PROP_CASE, "casesensitivity", ZFS_CASE_SENSITIVE, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "sensitive | insensitive | mixed", "CASE", case_table); /* set once index (boolean) properties */ zprop_register_index(ZFS_PROP_UTF8ONLY, "utf8only", 0, PROP_ONETIME, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT, "on | off", "UTF8ONLY", boolean_table); /* string properties */ zprop_register_string(ZFS_PROP_ORIGIN, "origin", NULL, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "ORIGIN"); zprop_register_string(ZFS_PROP_CLONES, "clones", NULL, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "[,...]", "CLONES"); zprop_register_string(ZFS_PROP_MOUNTPOINT, "mountpoint", "/", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, " | legacy | none", "MOUNTPOINT"); zprop_register_string(ZFS_PROP_SHARENFS, "sharenfs", "off", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off | share(1M) options", "SHARENFS"); zprop_register_string(ZFS_PROP_TYPE, "type", NULL, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "filesystem | volume | snapshot | bookmark", "TYPE"); zprop_register_string(ZFS_PROP_SHARESMB, "sharesmb", "off", PROP_INHERIT, ZFS_TYPE_FILESYSTEM, "on | off | sharemgr(1M) options", "SHARESMB"); zprop_register_string(ZFS_PROP_MLSLABEL, "mlslabel", ZFS_MLSLABEL_DEFAULT, PROP_INHERIT, ZFS_TYPE_DATASET, "", "MLSLABEL"); /* readonly number properties */ zprop_register_number(ZFS_PROP_USED, "used", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "USED"); zprop_register_number(ZFS_PROP_AVAILABLE, "available", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "AVAIL"); zprop_register_number(ZFS_PROP_REFERENCED, "referenced", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "REFER"); zprop_register_number(ZFS_PROP_COMPRESSRATIO, "compressratio", 0, PROP_READONLY, ZFS_TYPE_DATASET, "<1.00x or higher if compressed>", "RATIO"); zprop_register_number(ZFS_PROP_REFRATIO, "refcompressratio", 0, PROP_READONLY, ZFS_TYPE_DATASET, "<1.00x or higher if compressed>", "REFRATIO"); zprop_register_number(ZFS_PROP_VOLBLOCKSIZE, "volblocksize", ZVOL_DEFAULT_BLOCKSIZE, PROP_ONETIME, ZFS_TYPE_VOLUME, "512 to 128k, power of 2", "VOLBLOCK"); zprop_register_number(ZFS_PROP_USEDSNAP, "usedbysnapshots", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDSNAP"); zprop_register_number(ZFS_PROP_USEDDS, "usedbydataset", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDDS"); zprop_register_number(ZFS_PROP_USEDCHILD, "usedbychildren", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDCHILD"); zprop_register_number(ZFS_PROP_USEDREFRESERV, "usedbyrefreservation", 0, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "USEDREFRESERV"); zprop_register_number(ZFS_PROP_USERREFS, "userrefs", 0, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "", "USERREFS"); zprop_register_number(ZFS_PROP_WRITTEN, "written", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "WRITTEN"); zprop_register_number(ZFS_PROP_LOGICALUSED, "logicalused", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "LUSED"); zprop_register_number(ZFS_PROP_LOGICALREFERENCED, "logicalreferenced", 0, PROP_READONLY, ZFS_TYPE_DATASET, "", "LREFER"); /* default number properties */ zprop_register_number(ZFS_PROP_QUOTA, "quota", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "QUOTA"); zprop_register_number(ZFS_PROP_RESERVATION, "reservation", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "RESERV"); zprop_register_number(ZFS_PROP_VOLSIZE, "volsize", 0, PROP_DEFAULT, ZFS_TYPE_VOLUME, "", "VOLSIZE"); zprop_register_number(ZFS_PROP_REFQUOTA, "refquota", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "REFQUOTA"); zprop_register_number(ZFS_PROP_REFRESERVATION, "refreservation", 0, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "REFRESERV"); zprop_register_number(ZFS_PROP_FILESYSTEM_LIMIT, "filesystem_limit", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, " | none", "FSLIMIT"); zprop_register_number(ZFS_PROP_SNAPSHOT_LIMIT, "snapshot_limit", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, " | none", "SSLIMIT"); zprop_register_number(ZFS_PROP_FILESYSTEM_COUNT, "filesystem_count", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM, "", "FSCOUNT"); zprop_register_number(ZFS_PROP_SNAPSHOT_COUNT, "snapshot_count", UINT64_MAX, PROP_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "", "SSCOUNT"); /* inherit number properties */ zprop_register_number(ZFS_PROP_RECORDSIZE, "recordsize", - SPA_MAXBLOCKSIZE, PROP_INHERIT, - ZFS_TYPE_FILESYSTEM, "512 to 128k, power of 2", "RECSIZE"); + SPA_OLD_MAXBLOCKSIZE, PROP_INHERIT, + ZFS_TYPE_FILESYSTEM, "512 to 1M, power of 2", "RECSIZE"); /* hidden properties */ zprop_register_hidden(ZFS_PROP_CREATETXG, "createtxg", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "CREATETXG"); zprop_register_hidden(ZFS_PROP_NUMCLONES, "numclones", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_SNAPSHOT, "NUMCLONES"); zprop_register_hidden(ZFS_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "NAME"); zprop_register_hidden(ZFS_PROP_ISCSIOPTIONS, "iscsioptions", PROP_TYPE_STRING, PROP_INHERIT, ZFS_TYPE_VOLUME, "ISCSIOPTIONS"); zprop_register_hidden(ZFS_PROP_STMF_SHAREINFO, "stmf_sbd_lu", PROP_TYPE_STRING, PROP_INHERIT, ZFS_TYPE_VOLUME, "STMF_SBD_LU"); zprop_register_hidden(ZFS_PROP_GUID, "guid", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "GUID"); zprop_register_hidden(ZFS_PROP_USERACCOUNTING, "useraccounting", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "USERACCOUNTING"); zprop_register_hidden(ZFS_PROP_UNIQUE, "unique", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "UNIQUE"); zprop_register_hidden(ZFS_PROP_OBJSETID, "objsetid", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "OBJSETID"); zprop_register_hidden(ZFS_PROP_INCONSISTENT, "inconsistent", PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_DATASET, "INCONSISTENT"); zprop_register_hidden(ZFS_PROP_PREV_SNAP, "prevsnap", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, "PREVSNAP"); /* oddball properties */ zprop_register_impl(ZFS_PROP_CREATION, "creation", PROP_TYPE_NUMBER, 0, NULL, PROP_READONLY, ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "", "CREATION", B_FALSE, B_TRUE, NULL); } boolean_t zfs_prop_delegatable(zfs_prop_t prop) { zprop_desc_t *pd = &zfs_prop_table[prop]; /* The mlslabel property is never delegatable. */ if (prop == ZFS_PROP_MLSLABEL) return (B_FALSE); return (pd->pd_attr != PROP_READONLY); } /* * Given a zfs dataset property name, returns the corresponding property ID. */ zfs_prop_t zfs_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_DATASET)); } /* * For user property names, we allow all lowercase alphanumeric characters, plus * a few useful punctuation characters. */ static int valid_char(char c) { return ((c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || c == '-' || c == '_' || c == '.' || c == ':'); } /* * Returns true if this is a valid user-defined property (one with a ':'). */ boolean_t zfs_prop_user(const char *name) { int i; char c; boolean_t foundsep = B_FALSE; for (i = 0; i < strlen(name); i++) { c = name[i]; if (!valid_char(c)) return (B_FALSE); if (c == ':') foundsep = B_TRUE; } if (!foundsep) return (B_FALSE); return (B_TRUE); } /* * Returns true if this is a valid userspace-type property (one with a '@'). * Note that after the @, any character is valid (eg, another @, for SID * user@domain). */ boolean_t zfs_prop_userquota(const char *name) { zfs_userquota_prop_t prop; for (prop = 0; prop < ZFS_NUM_USERQUOTA_PROPS; prop++) { if (strncmp(name, zfs_userquota_prop_prefixes[prop], strlen(zfs_userquota_prop_prefixes[prop])) == 0) { return (B_TRUE); } } return (B_FALSE); } /* * Returns true if this is a valid written@ property. * Note that after the @, any character is valid (eg, another @, for * written@pool/fs@origin). */ boolean_t zfs_prop_written(const char *name) { static const char *prefix = "written@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } /* * Tables of index types, plus functions to convert between the user view * (strings) and internal representation (uint64_t). */ int zfs_prop_string_to_index(zfs_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_DATASET)); } int zfs_prop_index_to_string(zfs_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_DATASET)); } uint64_t zfs_prop_random_value(zfs_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_DATASET)); } /* * Returns TRUE if the property applies to any of the given dataset types. */ boolean_t zfs_prop_valid_for_type(int prop, zfs_type_t types) { return (zprop_valid_for_type(prop, types)); } zprop_type_t zfs_prop_get_type(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_proptype); } /* * Returns TRUE if the property is readonly. */ boolean_t zfs_prop_readonly(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_READONLY || zfs_prop_table[prop].pd_attr == PROP_ONETIME); } /* * Returns TRUE if the property is only allowed to be set once. */ boolean_t zfs_prop_setonce(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_ONETIME); } const char * zfs_prop_default_string(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_strdefault); } uint64_t zfs_prop_default_numeric(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_numdefault); } /* * Given a dataset property ID, returns the corresponding name. * Assuming the zfs dataset property ID is valid. */ const char * zfs_prop_to_name(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_name); } /* * Returns TRUE if the property is inheritable. */ boolean_t zfs_prop_inheritable(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_attr == PROP_INHERIT || zfs_prop_table[prop].pd_attr == PROP_ONETIME); } #ifndef _KERNEL /* * Returns a string describing the set of acceptable values for the given * zfs property, or NULL if it cannot be set. */ const char * zfs_prop_values(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_values); } /* * Returns TRUE if this property is a string type. Note that index types * (compression, checksum) are treated as strings in userland, even though they * are stored numerically on disk. */ int zfs_prop_is_string(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_proptype == PROP_TYPE_STRING || zfs_prop_table[prop].pd_proptype == PROP_TYPE_INDEX); } /* * Returns the column header for the given property. Used only in * 'zfs list -o', but centralized here with the other property information. */ const char * zfs_prop_column_name(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_colname); } /* * Returns whether the given property should be displayed right-justified for * 'zfs list'. */ boolean_t zfs_prop_align_right(zfs_prop_t prop) { return (zfs_prop_table[prop].pd_rightalign); } #endif Index: vendor-sys/illumos/dist/common/zfs/zpool_prop.c =================================================================== --- vendor-sys/illumos/dist/common/zfs/zpool_prop.c (revision 274272) +++ vendor-sys/illumos/dist/common/zfs/zpool_prop.c (revision 274273) @@ -1,234 +1,236 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include "zfs_prop.h" #if defined(_KERNEL) #include #else #include #include #include #endif static zprop_desc_t zpool_prop_table[ZPOOL_NUM_PROPS]; zprop_desc_t * zpool_prop_get_table(void) { return (zpool_prop_table); } void zpool_prop_init(void) { static zprop_index_t boolean_table[] = { { "off", 0}, { "on", 1}, { NULL } }; static zprop_index_t failuremode_table[] = { { "wait", ZIO_FAILURE_MODE_WAIT }, { "continue", ZIO_FAILURE_MODE_CONTINUE }, { "panic", ZIO_FAILURE_MODE_PANIC }, { NULL } }; /* string properties */ zprop_register_string(ZPOOL_PROP_ALTROOT, "altroot", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "ALTROOT"); zprop_register_string(ZPOOL_PROP_BOOTFS, "bootfs", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "BOOTFS"); zprop_register_string(ZPOOL_PROP_CACHEFILE, "cachefile", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, " | none", "CACHEFILE"); zprop_register_string(ZPOOL_PROP_COMMENT, "comment", NULL, PROP_DEFAULT, ZFS_TYPE_POOL, "", "COMMENT"); /* readonly number properties */ zprop_register_number(ZPOOL_PROP_SIZE, "size", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "SIZE"); zprop_register_number(ZPOOL_PROP_FREE, "free", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREE"); zprop_register_number(ZPOOL_PROP_FREEING, "freeing", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FREEING"); zprop_register_number(ZPOOL_PROP_LEAKED, "leaked", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "LEAKED"); zprop_register_number(ZPOOL_PROP_ALLOCATED, "allocated", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "ALLOC"); zprop_register_number(ZPOOL_PROP_EXPANDSZ, "expandsize", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "EXPANDSZ"); zprop_register_number(ZPOOL_PROP_FRAGMENTATION, "fragmentation", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "FRAG"); zprop_register_number(ZPOOL_PROP_CAPACITY, "capacity", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "CAP"); zprop_register_number(ZPOOL_PROP_GUID, "guid", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "GUID"); zprop_register_number(ZPOOL_PROP_HEALTH, "health", 0, PROP_READONLY, ZFS_TYPE_POOL, "", "HEALTH"); zprop_register_number(ZPOOL_PROP_DEDUPRATIO, "dedupratio", 0, PROP_READONLY, ZFS_TYPE_POOL, "<1.00x or higher if deduped>", "DEDUP"); /* default number properties */ zprop_register_number(ZPOOL_PROP_VERSION, "version", SPA_VERSION, PROP_DEFAULT, ZFS_TYPE_POOL, "", "VERSION"); zprop_register_number(ZPOOL_PROP_DEDUPDITTO, "dedupditto", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "", "DEDUPDITTO"); /* default index (boolean) properties */ zprop_register_index(ZPOOL_PROP_DELEGATION, "delegation", 1, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "DELEGATION", boolean_table); zprop_register_index(ZPOOL_PROP_AUTOREPLACE, "autoreplace", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "REPLACE", boolean_table); zprop_register_index(ZPOOL_PROP_LISTSNAPS, "listsnapshots", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "LISTSNAPS", boolean_table); zprop_register_index(ZPOOL_PROP_AUTOEXPAND, "autoexpand", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "EXPAND", boolean_table); zprop_register_index(ZPOOL_PROP_READONLY, "readonly", 0, PROP_DEFAULT, ZFS_TYPE_POOL, "on | off", "RDONLY", boolean_table); /* default index properties */ zprop_register_index(ZPOOL_PROP_FAILUREMODE, "failmode", ZIO_FAILURE_MODE_WAIT, PROP_DEFAULT, ZFS_TYPE_POOL, "wait | continue | panic", "FAILMODE", failuremode_table); /* hidden properties */ zprop_register_hidden(ZPOOL_PROP_NAME, "name", PROP_TYPE_STRING, PROP_READONLY, ZFS_TYPE_POOL, "NAME"); + zprop_register_hidden(ZPOOL_PROP_MAXBLOCKSIZE, "maxblocksize", + PROP_TYPE_NUMBER, PROP_READONLY, ZFS_TYPE_POOL, "MAXBLOCKSIZE"); } /* * Given a property name and its type, returns the corresponding property ID. */ zpool_prop_t zpool_name_to_prop(const char *propname) { return (zprop_name_to_prop(propname, ZFS_TYPE_POOL)); } /* * Given a pool property ID, returns the corresponding name. * Assuming the pool propety ID is valid. */ const char * zpool_prop_to_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_name); } zprop_type_t zpool_prop_get_type(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_proptype); } boolean_t zpool_prop_readonly(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_attr == PROP_READONLY); } const char * zpool_prop_default_string(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_strdefault); } uint64_t zpool_prop_default_numeric(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_numdefault); } /* * Returns true if this is a valid feature@ property. */ boolean_t zpool_prop_feature(const char *name) { static const char *prefix = "feature@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } /* * Returns true if this is a valid unsupported@ property. */ boolean_t zpool_prop_unsupported(const char *name) { static const char *prefix = "unsupported@"; return (strncmp(name, prefix, strlen(prefix)) == 0); } int zpool_prop_string_to_index(zpool_prop_t prop, const char *string, uint64_t *index) { return (zprop_string_to_index(prop, string, index, ZFS_TYPE_POOL)); } int zpool_prop_index_to_string(zpool_prop_t prop, uint64_t index, const char **string) { return (zprop_index_to_string(prop, index, string, ZFS_TYPE_POOL)); } uint64_t zpool_prop_random_value(zpool_prop_t prop, uint64_t seed) { return (zprop_random_value(prop, seed, ZFS_TYPE_POOL)); } #ifndef _KERNEL const char * zpool_prop_values(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_values); } const char * zpool_prop_column_name(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_colname); } boolean_t zpool_prop_align_right(zpool_prop_t prop) { return (zpool_prop_table[prop].pd_rightalign); } #endif Index: vendor-sys/illumos/dist/uts/common/fs/zfs/bpobj.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/bpobj.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/bpobj.c (revision 274273) @@ -1,589 +1,590 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ #include #include #include #include #include #include /* * Return an empty bpobj, preferably the empty dummy one (dp_empty_bpobj). */ uint64_t bpobj_alloc_empty(objset_t *os, int blocksize, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); dsl_pool_t *dp = dmu_objset_pool(os); if (spa_feature_is_enabled(spa, SPA_FEATURE_EMPTY_BPOBJ)) { if (!spa_feature_is_active(spa, SPA_FEATURE_EMPTY_BPOBJ)) { ASSERT0(dp->dp_empty_bpobj); dp->dp_empty_bpobj = - bpobj_alloc(os, SPA_MAXBLOCKSIZE, tx); + bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx); VERIFY(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, &dp->dp_empty_bpobj, tx) == 0); } spa_feature_incr(spa, SPA_FEATURE_EMPTY_BPOBJ, tx); ASSERT(dp->dp_empty_bpobj != 0); return (dp->dp_empty_bpobj); } else { return (bpobj_alloc(os, blocksize, tx)); } } void bpobj_decr_empty(objset_t *os, dmu_tx_t *tx) { dsl_pool_t *dp = dmu_objset_pool(os); spa_feature_decr(dmu_objset_spa(os), SPA_FEATURE_EMPTY_BPOBJ, tx); if (!spa_feature_is_active(dmu_objset_spa(os), SPA_FEATURE_EMPTY_BPOBJ)) { VERIFY3U(0, ==, zap_remove(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_EMPTY_BPOBJ, tx)); VERIFY3U(0, ==, dmu_object_free(os, dp->dp_empty_bpobj, tx)); dp->dp_empty_bpobj = 0; } } uint64_t bpobj_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) { int size; if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_BPOBJ_ACCOUNT) size = BPOBJ_SIZE_V0; else if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS) size = BPOBJ_SIZE_V1; else size = sizeof (bpobj_phys_t); return (dmu_object_alloc(os, DMU_OT_BPOBJ, blocksize, DMU_OT_BPOBJ_HDR, size, tx)); } void bpobj_free(objset_t *os, uint64_t obj, dmu_tx_t *tx) { int64_t i; bpobj_t bpo; dmu_object_info_t doi; int epb; dmu_buf_t *dbuf = NULL; ASSERT(obj != dmu_objset_pool(os)->dp_empty_bpobj); VERIFY3U(0, ==, bpobj_open(&bpo, os, obj)); mutex_enter(&bpo.bpo_lock); if (!bpo.bpo_havesubobj || bpo.bpo_phys->bpo_subobjs == 0) goto out; VERIFY3U(0, ==, dmu_object_info(os, bpo.bpo_phys->bpo_subobjs, &doi)); epb = doi.doi_data_block_size / sizeof (uint64_t); for (i = bpo.bpo_phys->bpo_num_subobjs - 1; i >= 0; i--) { uint64_t *objarray; uint64_t offset, blkoff; offset = i * sizeof (uint64_t); blkoff = P2PHASE(i, epb); if (dbuf == NULL || dbuf->db_offset > offset) { if (dbuf) dmu_buf_rele(dbuf, FTAG); VERIFY3U(0, ==, dmu_buf_hold(os, bpo.bpo_phys->bpo_subobjs, offset, FTAG, &dbuf, 0)); } ASSERT3U(offset, >=, dbuf->db_offset); ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size); objarray = dbuf->db_data; bpobj_free(os, objarray[blkoff], tx); } if (dbuf) { dmu_buf_rele(dbuf, FTAG); dbuf = NULL; } VERIFY3U(0, ==, dmu_object_free(os, bpo.bpo_phys->bpo_subobjs, tx)); out: mutex_exit(&bpo.bpo_lock); bpobj_close(&bpo); VERIFY3U(0, ==, dmu_object_free(os, obj, tx)); } int bpobj_open(bpobj_t *bpo, objset_t *os, uint64_t object) { dmu_object_info_t doi; int err; err = dmu_object_info(os, object, &doi); if (err) return (err); bzero(bpo, sizeof (*bpo)); mutex_init(&bpo->bpo_lock, NULL, MUTEX_DEFAULT, NULL); ASSERT(bpo->bpo_dbuf == NULL); ASSERT(bpo->bpo_phys == NULL); ASSERT(object != 0); ASSERT3U(doi.doi_type, ==, DMU_OT_BPOBJ); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_BPOBJ_HDR); err = dmu_bonus_hold(os, object, bpo, &bpo->bpo_dbuf); if (err) return (err); bpo->bpo_os = os; bpo->bpo_object = object; bpo->bpo_epb = doi.doi_data_block_size >> SPA_BLKPTRSHIFT; bpo->bpo_havecomp = (doi.doi_bonus_size > BPOBJ_SIZE_V0); bpo->bpo_havesubobj = (doi.doi_bonus_size > BPOBJ_SIZE_V1); bpo->bpo_phys = bpo->bpo_dbuf->db_data; return (0); } void bpobj_close(bpobj_t *bpo) { /* Lame workaround for closing a bpobj that was never opened. */ if (bpo->bpo_object == 0) return; dmu_buf_rele(bpo->bpo_dbuf, bpo); if (bpo->bpo_cached_dbuf != NULL) dmu_buf_rele(bpo->bpo_cached_dbuf, bpo); bpo->bpo_dbuf = NULL; bpo->bpo_phys = NULL; bpo->bpo_cached_dbuf = NULL; bpo->bpo_object = 0; mutex_destroy(&bpo->bpo_lock); } static boolean_t bpobj_hasentries(bpobj_t *bpo) { return (bpo->bpo_phys->bpo_num_blkptrs != 0 || (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_num_subobjs != 0)); } static int bpobj_iterate_impl(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx, boolean_t free) { dmu_object_info_t doi; int epb; int64_t i; int err = 0; dmu_buf_t *dbuf = NULL; mutex_enter(&bpo->bpo_lock); if (free) dmu_buf_will_dirty(bpo->bpo_dbuf, tx); for (i = bpo->bpo_phys->bpo_num_blkptrs - 1; i >= 0; i--) { blkptr_t *bparray; blkptr_t *bp; uint64_t offset, blkoff; offset = i * sizeof (blkptr_t); blkoff = P2PHASE(i, bpo->bpo_epb); if (dbuf == NULL || dbuf->db_offset > offset) { if (dbuf) dmu_buf_rele(dbuf, FTAG); err = dmu_buf_hold(bpo->bpo_os, bpo->bpo_object, offset, FTAG, &dbuf, 0); if (err) break; } ASSERT3U(offset, >=, dbuf->db_offset); ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size); bparray = dbuf->db_data; bp = &bparray[blkoff]; err = func(arg, bp, tx); if (err) break; if (free) { bpo->bpo_phys->bpo_bytes -= bp_get_dsize_sync(dmu_objset_spa(bpo->bpo_os), bp); ASSERT3S(bpo->bpo_phys->bpo_bytes, >=, 0); if (bpo->bpo_havecomp) { bpo->bpo_phys->bpo_comp -= BP_GET_PSIZE(bp); bpo->bpo_phys->bpo_uncomp -= BP_GET_UCSIZE(bp); } bpo->bpo_phys->bpo_num_blkptrs--; ASSERT3S(bpo->bpo_phys->bpo_num_blkptrs, >=, 0); } } if (dbuf) { dmu_buf_rele(dbuf, FTAG); dbuf = NULL; } if (free) { i++; VERIFY3U(0, ==, dmu_free_range(bpo->bpo_os, bpo->bpo_object, i * sizeof (blkptr_t), -1ULL, tx)); } if (err || !bpo->bpo_havesubobj || bpo->bpo_phys->bpo_subobjs == 0) goto out; ASSERT(bpo->bpo_havecomp); err = dmu_object_info(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, &doi); if (err) { mutex_exit(&bpo->bpo_lock); return (err); } ASSERT3U(doi.doi_type, ==, DMU_OT_BPOBJ_SUBOBJ); epb = doi.doi_data_block_size / sizeof (uint64_t); for (i = bpo->bpo_phys->bpo_num_subobjs - 1; i >= 0; i--) { uint64_t *objarray; uint64_t offset, blkoff; bpobj_t sublist; uint64_t used_before, comp_before, uncomp_before; uint64_t used_after, comp_after, uncomp_after; offset = i * sizeof (uint64_t); blkoff = P2PHASE(i, epb); if (dbuf == NULL || dbuf->db_offset > offset) { if (dbuf) dmu_buf_rele(dbuf, FTAG); err = dmu_buf_hold(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, offset, FTAG, &dbuf, 0); if (err) break; } ASSERT3U(offset, >=, dbuf->db_offset); ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size); objarray = dbuf->db_data; err = bpobj_open(&sublist, bpo->bpo_os, objarray[blkoff]); if (err) break; if (free) { err = bpobj_space(&sublist, &used_before, &comp_before, &uncomp_before); if (err) break; } err = bpobj_iterate_impl(&sublist, func, arg, tx, free); if (free) { VERIFY3U(0, ==, bpobj_space(&sublist, &used_after, &comp_after, &uncomp_after)); bpo->bpo_phys->bpo_bytes -= used_before - used_after; ASSERT3S(bpo->bpo_phys->bpo_bytes, >=, 0); bpo->bpo_phys->bpo_comp -= comp_before - comp_after; bpo->bpo_phys->bpo_uncomp -= uncomp_before - uncomp_after; } bpobj_close(&sublist); if (err) break; if (free) { err = dmu_object_free(bpo->bpo_os, objarray[blkoff], tx); if (err) break; bpo->bpo_phys->bpo_num_subobjs--; ASSERT3S(bpo->bpo_phys->bpo_num_subobjs, >=, 0); } } if (dbuf) { dmu_buf_rele(dbuf, FTAG); dbuf = NULL; } if (free) { VERIFY3U(0, ==, dmu_free_range(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, (i + 1) * sizeof (uint64_t), -1ULL, tx)); } out: /* If there are no entries, there should be no bytes. */ if (!bpobj_hasentries(bpo)) { ASSERT0(bpo->bpo_phys->bpo_bytes); ASSERT0(bpo->bpo_phys->bpo_comp); ASSERT0(bpo->bpo_phys->bpo_uncomp); } mutex_exit(&bpo->bpo_lock); return (err); } /* * Iterate and remove the entries. If func returns nonzero, iteration * will stop and that entry will not be removed. */ int bpobj_iterate(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx) { return (bpobj_iterate_impl(bpo, func, arg, tx, B_TRUE)); } /* * Iterate the entries. If func returns nonzero, iteration will stop. */ int bpobj_iterate_nofree(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx) { return (bpobj_iterate_impl(bpo, func, arg, tx, B_FALSE)); } void bpobj_enqueue_subobj(bpobj_t *bpo, uint64_t subobj, dmu_tx_t *tx) { bpobj_t subbpo; uint64_t used, comp, uncomp, subsubobjs; ASSERT(bpo->bpo_havesubobj); ASSERT(bpo->bpo_havecomp); ASSERT(bpo->bpo_object != dmu_objset_pool(bpo->bpo_os)->dp_empty_bpobj); if (subobj == dmu_objset_pool(bpo->bpo_os)->dp_empty_bpobj) { bpobj_decr_empty(bpo->bpo_os, tx); return; } VERIFY3U(0, ==, bpobj_open(&subbpo, bpo->bpo_os, subobj)); VERIFY3U(0, ==, bpobj_space(&subbpo, &used, &comp, &uncomp)); if (!bpobj_hasentries(&subbpo)) { /* No point in having an empty subobj. */ bpobj_close(&subbpo); bpobj_free(bpo->bpo_os, subobj, tx); return; } dmu_buf_will_dirty(bpo->bpo_dbuf, tx); if (bpo->bpo_phys->bpo_subobjs == 0) { bpo->bpo_phys->bpo_subobjs = dmu_object_alloc(bpo->bpo_os, - DMU_OT_BPOBJ_SUBOBJ, SPA_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); + DMU_OT_BPOBJ_SUBOBJ, SPA_OLD_MAXBLOCKSIZE, + DMU_OT_NONE, 0, tx); } dmu_object_info_t doi; ASSERT0(dmu_object_info(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, &doi)); ASSERT3U(doi.doi_type, ==, DMU_OT_BPOBJ_SUBOBJ); mutex_enter(&bpo->bpo_lock); dmu_write(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, bpo->bpo_phys->bpo_num_subobjs * sizeof (subobj), sizeof (subobj), &subobj, tx); bpo->bpo_phys->bpo_num_subobjs++; /* * If subobj has only one block of subobjs, then move subobj's * subobjs to bpo's subobj list directly. This reduces * recursion in bpobj_iterate due to nested subobjs. */ subsubobjs = subbpo.bpo_phys->bpo_subobjs; if (subsubobjs != 0) { dmu_object_info_t doi; VERIFY3U(0, ==, dmu_object_info(bpo->bpo_os, subsubobjs, &doi)); if (doi.doi_max_offset == doi.doi_data_block_size) { dmu_buf_t *subdb; uint64_t numsubsub = subbpo.bpo_phys->bpo_num_subobjs; VERIFY3U(0, ==, dmu_buf_hold(bpo->bpo_os, subsubobjs, 0, FTAG, &subdb, 0)); /* * Make sure that we are not asking dmu_write() * to write more data than we have in our buffer. */ VERIFY3U(subdb->db_size, >=, numsubsub * sizeof (subobj)); dmu_write(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, bpo->bpo_phys->bpo_num_subobjs * sizeof (subobj), numsubsub * sizeof (subobj), subdb->db_data, tx); dmu_buf_rele(subdb, FTAG); bpo->bpo_phys->bpo_num_subobjs += numsubsub; dmu_buf_will_dirty(subbpo.bpo_dbuf, tx); subbpo.bpo_phys->bpo_subobjs = 0; VERIFY3U(0, ==, dmu_object_free(bpo->bpo_os, subsubobjs, tx)); } } bpo->bpo_phys->bpo_bytes += used; bpo->bpo_phys->bpo_comp += comp; bpo->bpo_phys->bpo_uncomp += uncomp; mutex_exit(&bpo->bpo_lock); bpobj_close(&subbpo); } void bpobj_enqueue(bpobj_t *bpo, const blkptr_t *bp, dmu_tx_t *tx) { blkptr_t stored_bp = *bp; uint64_t offset; int blkoff; blkptr_t *bparray; ASSERT(!BP_IS_HOLE(bp)); ASSERT(bpo->bpo_object != dmu_objset_pool(bpo->bpo_os)->dp_empty_bpobj); if (BP_IS_EMBEDDED(bp)) { /* * The bpobj will compress better without the payload. * * Note that we store EMBEDDED bp's because they have an * uncompressed size, which must be accounted for. An * alternative would be to add their size to bpo_uncomp * without storing the bp, but that would create additional * complications: bpo_uncomp would be inconsistent with the * set of BP's stored, and bpobj_iterate() wouldn't visit * all the space accounted for in the bpobj. */ bzero(&stored_bp, sizeof (stored_bp)); stored_bp.blk_prop = bp->blk_prop; stored_bp.blk_birth = bp->blk_birth; } else if (!BP_GET_DEDUP(bp)) { /* The bpobj will compress better without the checksum */ bzero(&stored_bp.blk_cksum, sizeof (stored_bp.blk_cksum)); } /* We never need the fill count. */ stored_bp.blk_fill = 0; mutex_enter(&bpo->bpo_lock); offset = bpo->bpo_phys->bpo_num_blkptrs * sizeof (stored_bp); blkoff = P2PHASE(bpo->bpo_phys->bpo_num_blkptrs, bpo->bpo_epb); if (bpo->bpo_cached_dbuf == NULL || offset < bpo->bpo_cached_dbuf->db_offset || offset >= bpo->bpo_cached_dbuf->db_offset + bpo->bpo_cached_dbuf->db_size) { if (bpo->bpo_cached_dbuf) dmu_buf_rele(bpo->bpo_cached_dbuf, bpo); VERIFY3U(0, ==, dmu_buf_hold(bpo->bpo_os, bpo->bpo_object, offset, bpo, &bpo->bpo_cached_dbuf, 0)); } dmu_buf_will_dirty(bpo->bpo_cached_dbuf, tx); bparray = bpo->bpo_cached_dbuf->db_data; bparray[blkoff] = stored_bp; dmu_buf_will_dirty(bpo->bpo_dbuf, tx); bpo->bpo_phys->bpo_num_blkptrs++; bpo->bpo_phys->bpo_bytes += bp_get_dsize_sync(dmu_objset_spa(bpo->bpo_os), bp); if (bpo->bpo_havecomp) { bpo->bpo_phys->bpo_comp += BP_GET_PSIZE(bp); bpo->bpo_phys->bpo_uncomp += BP_GET_UCSIZE(bp); } mutex_exit(&bpo->bpo_lock); } struct space_range_arg { spa_t *spa; uint64_t mintxg; uint64_t maxtxg; uint64_t used; uint64_t comp; uint64_t uncomp; }; /* ARGSUSED */ static int space_range_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { struct space_range_arg *sra = arg; if (bp->blk_birth > sra->mintxg && bp->blk_birth <= sra->maxtxg) { if (dsl_pool_sync_context(spa_get_dsl(sra->spa))) sra->used += bp_get_dsize_sync(sra->spa, bp); else sra->used += bp_get_dsize(sra->spa, bp); sra->comp += BP_GET_PSIZE(bp); sra->uncomp += BP_GET_UCSIZE(bp); } return (0); } int bpobj_space(bpobj_t *bpo, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { mutex_enter(&bpo->bpo_lock); *usedp = bpo->bpo_phys->bpo_bytes; if (bpo->bpo_havecomp) { *compp = bpo->bpo_phys->bpo_comp; *uncompp = bpo->bpo_phys->bpo_uncomp; mutex_exit(&bpo->bpo_lock); return (0); } else { mutex_exit(&bpo->bpo_lock); return (bpobj_space_range(bpo, 0, UINT64_MAX, usedp, compp, uncompp)); } } /* * Return the amount of space in the bpobj which is: * mintxg < blk_birth <= maxtxg */ int bpobj_space_range(bpobj_t *bpo, uint64_t mintxg, uint64_t maxtxg, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { struct space_range_arg sra = { 0 }; int err; /* * As an optimization, if they want the whole txg range, just * get bpo_bytes rather than iterating over the bps. */ if (mintxg < TXG_INITIAL && maxtxg == UINT64_MAX && bpo->bpo_havecomp) return (bpobj_space(bpo, usedp, compp, uncompp)); sra.spa = dmu_objset_spa(bpo->bpo_os); sra.mintxg = mintxg; sra.maxtxg = maxtxg; err = bpobj_iterate_nofree(bpo, space_range_cb, &sra, NULL); *usedp = sra.used; *compp = sra.comp; *uncompp = sra.uncomp; return (err); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/bptree.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/bptree.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/bptree.c (revision 274273) @@ -1,299 +1,299 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * A bptree is a queue of root block pointers from destroyed datasets. When a * dataset is destroyed its root block pointer is put on the end of the pool's * bptree queue so the dataset's blocks can be freed asynchronously by * dsl_scan_sync. This allows the delete operation to finish without traversing * all the dataset's blocks. * * Note that while bt_begin and bt_end are only ever incremented in this code, * they are effectively reset to 0 every time the entire bptree is freed because * the bptree's object is destroyed and re-created. */ struct bptree_args { bptree_phys_t *ba_phys; /* data in bonus buffer, dirtied if freeing */ boolean_t ba_free; /* true if freeing during traversal */ bptree_itor_t *ba_func; /* function to call for each blockpointer */ void *ba_arg; /* caller supplied argument to ba_func */ dmu_tx_t *ba_tx; /* caller supplied tx, NULL if not freeing */ } bptree_args_t; uint64_t bptree_alloc(objset_t *os, dmu_tx_t *tx) { uint64_t obj; dmu_buf_t *db; bptree_phys_t *bt; obj = dmu_object_alloc(os, DMU_OTN_UINT64_METADATA, - SPA_MAXBLOCKSIZE, DMU_OTN_UINT64_METADATA, + SPA_OLD_MAXBLOCKSIZE, DMU_OTN_UINT64_METADATA, sizeof (bptree_phys_t), tx); /* * Bonus buffer contents are already initialized to 0, but for * readability we make it explicit. */ VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); bt = db->db_data; bt->bt_begin = 0; bt->bt_end = 0; bt->bt_bytes = 0; bt->bt_comp = 0; bt->bt_uncomp = 0; dmu_buf_rele(db, FTAG); return (obj); } int bptree_free(objset_t *os, uint64_t obj, dmu_tx_t *tx) { dmu_buf_t *db; bptree_phys_t *bt; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; ASSERT3U(bt->bt_begin, ==, bt->bt_end); ASSERT0(bt->bt_bytes); ASSERT0(bt->bt_comp); ASSERT0(bt->bt_uncomp); dmu_buf_rele(db, FTAG); return (dmu_object_free(os, obj, tx)); } boolean_t bptree_is_empty(objset_t *os, uint64_t obj) { dmu_buf_t *db; bptree_phys_t *bt; boolean_t rv; VERIFY0(dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; rv = (bt->bt_begin == bt->bt_end); dmu_buf_rele(db, FTAG); return (rv); } void bptree_add(objset_t *os, uint64_t obj, blkptr_t *bp, uint64_t birth_txg, uint64_t bytes, uint64_t comp, uint64_t uncomp, dmu_tx_t *tx) { dmu_buf_t *db; bptree_phys_t *bt; bptree_entry_phys_t bte = { 0 }; /* * bptree objects are in the pool mos, therefore they can only be * modified in syncing context. Furthermore, this is only modified * by the sync thread, so no locking is necessary. */ ASSERT(dmu_tx_is_syncing(tx)); VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; bte.be_birth_txg = birth_txg; bte.be_bp = *bp; dmu_write(os, obj, bt->bt_end * sizeof (bte), sizeof (bte), &bte, tx); dmu_buf_will_dirty(db, tx); bt->bt_end++; bt->bt_bytes += bytes; bt->bt_comp += comp; bt->bt_uncomp += uncomp; dmu_buf_rele(db, FTAG); } /* ARGSUSED */ static int bptree_visit_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { int err; struct bptree_args *ba = arg; if (BP_IS_HOLE(bp)) return (0); err = ba->ba_func(ba->ba_arg, bp, ba->ba_tx); if (err == 0 && ba->ba_free) { ba->ba_phys->bt_bytes -= bp_get_dsize_sync(spa, bp); ba->ba_phys->bt_comp -= BP_GET_PSIZE(bp); ba->ba_phys->bt_uncomp -= BP_GET_UCSIZE(bp); } return (err); } /* * If "free" is set: * - It is assumed that "func" will be freeing the block pointers. * - If "func" returns nonzero, the bookmark will be remembered and * iteration will be restarted from this point on next invocation. * - If an i/o error is encountered (e.g. "func" returns EIO or ECKSUM), * bptree_iterate will remember the bookmark, continue traversing * any additional entries, and return 0. * * If "free" is not set, traversal will stop and return an error if * an i/o error is encountered. * * In either case, if zfs_free_leak_on_eio is set, i/o errors will be * ignored and traversal will continue (i.e. TRAVERSE_HARD will be passed to * traverse_dataset_destroyed()). */ int bptree_iterate(objset_t *os, uint64_t obj, boolean_t free, bptree_itor_t func, void *arg, dmu_tx_t *tx) { boolean_t ioerr = B_FALSE; int err; uint64_t i; dmu_buf_t *db; struct bptree_args ba; ASSERT(!free || dmu_tx_is_syncing(tx)); err = dmu_bonus_hold(os, obj, FTAG, &db); if (err != 0) return (err); if (free) dmu_buf_will_dirty(db, tx); ba.ba_phys = db->db_data; ba.ba_free = free; ba.ba_func = func; ba.ba_arg = arg; ba.ba_tx = tx; err = 0; for (i = ba.ba_phys->bt_begin; i < ba.ba_phys->bt_end; i++) { bptree_entry_phys_t bte; int flags = TRAVERSE_PREFETCH_METADATA | TRAVERSE_POST; err = dmu_read(os, obj, i * sizeof (bte), sizeof (bte), &bte, DMU_READ_NO_PREFETCH); if (err != 0) break; if (zfs_free_leak_on_eio) flags |= TRAVERSE_HARD; zfs_dbgmsg("bptree index %d: traversing from min_txg=%lld " "bookmark %lld/%lld/%lld/%lld", i, (longlong_t)bte.be_birth_txg, (longlong_t)bte.be_zb.zb_objset, (longlong_t)bte.be_zb.zb_object, (longlong_t)bte.be_zb.zb_level, (longlong_t)bte.be_zb.zb_blkid); err = traverse_dataset_destroyed(os->os_spa, &bte.be_bp, bte.be_birth_txg, &bte.be_zb, flags, bptree_visit_cb, &ba); if (free) { /* * The callback has freed the visited block pointers. * Record our traversal progress on disk, either by * updating this record's bookmark, or by logically * removing this record by advancing bt_begin. */ if (err != 0) { /* save bookmark for future resume */ ASSERT3U(bte.be_zb.zb_objset, ==, ZB_DESTROYED_OBJSET); ASSERT0(bte.be_zb.zb_level); dmu_write(os, obj, i * sizeof (bte), sizeof (bte), &bte, tx); if (err == EIO || err == ECKSUM || err == ENXIO) { /* * Skip the rest of this tree and * continue on to the next entry. */ err = 0; ioerr = B_TRUE; } else { break; } } else if (ioerr) { /* * This entry is finished, but there were * i/o errors on previous entries, so we * can't adjust bt_begin. Set this entry's * be_birth_txg such that it will be * treated as a no-op in future traversals. */ bte.be_birth_txg = UINT64_MAX; dmu_write(os, obj, i * sizeof (bte), sizeof (bte), &bte, tx); } if (!ioerr) { ba.ba_phys->bt_begin++; (void) dmu_free_range(os, obj, i * sizeof (bte), sizeof (bte), tx); } } else if (err != 0) { break; } } ASSERT(!free || err != 0 || ioerr || ba.ba_phys->bt_begin == ba.ba_phys->bt_end); /* if all blocks are free there should be no used space */ if (ba.ba_phys->bt_begin == ba.ba_phys->bt_end) { if (zfs_free_leak_on_eio) { ba.ba_phys->bt_bytes = 0; ba.ba_phys->bt_comp = 0; ba.ba_phys->bt_uncomp = 0; } ASSERT0(ba.ba_phys->bt_bytes); ASSERT0(ba.ba_phys->bt_comp); ASSERT0(ba.ba_phys->bt_uncomp); } dmu_buf_rele(db, FTAG); return (err); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dbuf.c (revision 274273) @@ -1,2856 +1,2854 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Number of times that zfs_free_range() took the slow path while doing * a zfs receive. A nonzero value indicates a potential performance problem. */ uint64_t zfs_free_range_recv_miss; static void dbuf_destroy(dmu_buf_impl_t *db); static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); /* * Global data structures and functions for the dbuf cache. */ static kmem_cache_t *dbuf_cache; /* ARGSUSED */ static int dbuf_cons(void *vdb, void *unused, int kmflag) { dmu_buf_impl_t *db = vdb; bzero(db, sizeof (dmu_buf_impl_t)); mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); refcount_create(&db->db_holds); return (0); } /* ARGSUSED */ static void dbuf_dest(void *vdb, void *unused) { dmu_buf_impl_t *db = vdb; mutex_destroy(&db->db_mtx); cv_destroy(&db->db_changed); refcount_destroy(&db->db_holds); } /* * dbuf hash table routines */ static dbuf_hash_table_t dbuf_hash_table; static uint64_t dbuf_hash_count; static uint64_t dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) { uintptr_t osv = (uintptr_t)os; uint64_t crc = -1ULL; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF]; crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF]; crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16); return (crc); } #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid); #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ ((dbuf)->db.db_object == (obj) && \ (dbuf)->db_objset == (os) && \ (dbuf)->db_level == (level) && \ (dbuf)->db_blkid == (blkid)) dmu_buf_impl_t * dbuf_find(dnode_t *dn, uint8_t level, uint64_t blkid) { dbuf_hash_table_t *h = &dbuf_hash_table; objset_t *os = dn->dn_objset; uint64_t obj = dn->dn_object; uint64_t hv = DBUF_HASH(os, obj, level, blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *db; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { if (DBUF_EQUAL(db, os, obj, level, blkid)) { mutex_enter(&db->db_mtx); if (db->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (db); } mutex_exit(&db->db_mtx); } } mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (NULL); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static dmu_buf_impl_t * dbuf_hash_insert(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; objset_t *os = db->db_objset; uint64_t obj = db->db.db_object; int level = db->db_level; uint64_t blkid = db->db_blkid; uint64_t hv = DBUF_HASH(os, obj, level, blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *dbf; mutex_enter(DBUF_HASH_MUTEX(h, idx)); for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) { if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { mutex_enter(&dbf->db_mtx); if (dbf->db_state != DB_EVICTING) { mutex_exit(DBUF_HASH_MUTEX(h, idx)); return (dbf); } mutex_exit(&dbf->db_mtx); } } mutex_enter(&db->db_mtx); db->db_hash_next = h->hash_table[idx]; h->hash_table[idx] = db; mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_inc_64(&dbuf_hash_count); return (NULL); } /* * Remove an entry from the hash table. It must be in the EVICTING state. */ static void dbuf_hash_remove(dmu_buf_impl_t *db) { dbuf_hash_table_t *h = &dbuf_hash_table; uint64_t hv = DBUF_HASH(db->db_objset, db->db.db_object, db->db_level, db->db_blkid); uint64_t idx = hv & h->hash_table_mask; dmu_buf_impl_t *dbf, **dbp; /* * We musn't hold db_mtx to maintain lock ordering: * DBUF_HASH_MUTEX > db_mtx. */ ASSERT(refcount_is_zero(&db->db_holds)); ASSERT(db->db_state == DB_EVICTING); ASSERT(!MUTEX_HELD(&db->db_mtx)); mutex_enter(DBUF_HASH_MUTEX(h, idx)); dbp = &h->hash_table[idx]; while ((dbf = *dbp) != db) { dbp = &dbf->db_hash_next; ASSERT(dbf != NULL); } *dbp = db->db_hash_next; db->db_hash_next = NULL; mutex_exit(DBUF_HASH_MUTEX(h, idx)); atomic_dec_64(&dbuf_hash_count); } static arc_evict_func_t dbuf_do_evict; static void dbuf_evict_user(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_level != 0 || db->db_evict_func == NULL) return; if (db->db_user_data_ptr_ptr) *db->db_user_data_ptr_ptr = db->db.db_data; db->db_evict_func(&db->db, db->db_user_ptr); db->db_user_ptr = NULL; db->db_user_data_ptr_ptr = NULL; db->db_evict_func = NULL; } boolean_t dbuf_is_metadata(dmu_buf_impl_t *db) { if (db->db_level > 0) { return (B_TRUE); } else { boolean_t is_metadata; DB_DNODE_ENTER(db); is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); DB_DNODE_EXIT(db); return (is_metadata); } } void dbuf_evict(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_buf == NULL); ASSERT(db->db_data_pending == NULL); dbuf_clear(db); dbuf_destroy(db); } void dbuf_init(void) { uint64_t hsize = 1ULL << 16; dbuf_hash_table_t *h = &dbuf_hash_table; int i; /* * The hash table is big enough to fill all of physical memory * with an average 4K block size. The table will take up * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers). */ while (hsize * 4096 < physmem * PAGESIZE) hsize <<= 1; retry: h->hash_table_mask = hsize - 1; h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); if (h->hash_table == NULL) { /* XXX - we should really return an error instead of assert */ ASSERT(hsize > (1ULL << 10)); hsize >>= 1; goto retry; } dbuf_cache = kmem_cache_create("dmu_buf_impl_t", sizeof (dmu_buf_impl_t), 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); for (i = 0; i < DBUF_MUTEXES; i++) mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); } void dbuf_fini(void) { dbuf_hash_table_t *h = &dbuf_hash_table; int i; for (i = 0; i < DBUF_MUTEXES; i++) mutex_destroy(&h->hash_mutexes[i]); kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); kmem_cache_destroy(dbuf_cache); } /* * Other stuff. */ #ifdef ZFS_DEBUG static void dbuf_verify(dmu_buf_impl_t *db) { dnode_t *dn; dbuf_dirty_record_t *dr; ASSERT(MUTEX_HELD(&db->db_mtx)); if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) return; ASSERT(db->db_objset != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn == NULL) { ASSERT(db->db_parent == NULL); ASSERT(db->db_blkptr == NULL); } else { ASSERT3U(db->db.db_object, ==, dn->dn_object); ASSERT3P(db->db_objset, ==, dn->dn_objset); ASSERT3U(db->db_level, <, dn->dn_nlevels); ASSERT(db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID || !avl_is_empty(&dn->dn_dbufs)); } if (db->db_blkid == DMU_BONUS_BLKID) { ASSERT(dn != NULL); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); } else if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn != NULL); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); ASSERT0(db->db.db_offset); } else { ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); } for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next) ASSERT(dr->dr_dbuf == db); for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next) ASSERT(dr->dr_dbuf == db); /* * We can't assert that db_size matches dn_datablksz because it * can be momentarily different when another thread is doing * dnode_set_blksz(). */ if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { dr = db->db_data_pending; /* * It should only be modified in syncing context, so * make sure we only have one copy of the data. */ ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); } /* verify db->db_blkptr */ if (db->db_blkptr) { if (db->db_parent == dn->dn_dbuf) { /* db is pointed to by the dnode */ /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) ASSERT(db->db_parent == NULL); else ASSERT(db->db_parent != NULL); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); } else { /* db is pointed to by an indirect block */ int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT; ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); ASSERT3U(db->db_parent->db.db_object, ==, db->db.db_object); /* * dnode_grow_indblksz() can make this fail if we don't * have the struct_rwlock. XXX indblksz no longer * grows. safe to do this now? */ if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) { ASSERT3P(db->db_blkptr, ==, ((blkptr_t *)db->db_parent->db.db_data + db->db_blkid % epb)); } } } if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && (db->db_buf == NULL || db->db_buf->b_data) && db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_FILL && !dn->dn_free_txg) { /* * If the blkptr isn't set but they have nonzero data, * it had better be dirty, otherwise we'll lose that * data when we evict this buffer. */ if (db->db_dirtycnt == 0) { uint64_t *buf = db->db.db_data; int i; for (i = 0; i < db->db.db_size >> 3; i++) { ASSERT(buf[i] == 0); } } } DB_DNODE_EXIT(db); } #endif static void dbuf_update_data(dmu_buf_impl_t *db) { ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_level == 0 && db->db_user_data_ptr_ptr) { ASSERT(!refcount_is_zero(&db->db_holds)); *db->db_user_data_ptr_ptr = db->db.db_data; } } static void dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) { ASSERT(MUTEX_HELD(&db->db_mtx)); db->db_buf = buf; if (buf != NULL) { ASSERT(buf->b_data != NULL); db->db.db_data = buf->b_data; if (!arc_released(buf)) arc_set_callback(buf, dbuf_do_evict, db); dbuf_update_data(db); } else { dbuf_evict_user(db); db->db.db_data = NULL; if (db->db_state != DB_NOFILL) db->db_state = DB_UNCACHED; } } /* * Loan out an arc_buf for read. Return the loaned arc_buf. */ arc_buf_t * dbuf_loan_arcbuf(dmu_buf_impl_t *db) { arc_buf_t *abuf; mutex_enter(&db->db_mtx); if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) { int blksz = db->db.db_size; spa_t *spa = db->db_objset->os_spa; mutex_exit(&db->db_mtx); abuf = arc_loan_buf(spa, blksz); bcopy(db->db.db_data, abuf->b_data, blksz); } else { abuf = db->db_buf; arc_loan_inuse_buf(abuf, db); dbuf_set_data(db, NULL); mutex_exit(&db->db_mtx); } return (abuf); } uint64_t dbuf_whichblock(dnode_t *dn, uint64_t offset) { if (dn->dn_datablkshift) { return (offset >> dn->dn_datablkshift); } else { ASSERT3U(offset, <, dn->dn_datablksz); return (0); } } static void dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; mutex_enter(&db->db_mtx); ASSERT3U(db->db_state, ==, DB_READ); /* * All reads are synchronous, so we must have a hold on the dbuf */ ASSERT(refcount_count(&db->db_holds) > 0); ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); if (db->db_level == 0 && db->db_freed_in_flight) { /* we were freed in flight; disregard any error */ arc_release(buf, db); bzero(buf->b_data, db->db.db_size); arc_buf_freeze(buf); db->db_freed_in_flight = FALSE; dbuf_set_data(db, buf); db->db_state = DB_CACHED; } else if (zio == NULL || zio->io_error == 0) { dbuf_set_data(db, buf); db->db_state = DB_CACHED; } else { ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT3P(db->db_buf, ==, NULL); VERIFY(arc_buf_remove_ref(buf, db)); db->db_state = DB_UNCACHED; } cv_broadcast(&db->db_changed); dbuf_rele_and_unlock(db, NULL); } static void dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags) { dnode_t *dn; zbookmark_phys_t zb; uint32_t aflags = ARC_NOWAIT; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(!refcount_is_zero(&db->db_holds)); /* We need the struct_rwlock to prevent db_blkptr from changing. */ ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db_state == DB_UNCACHED); ASSERT(db->db_buf == NULL); if (db->db_blkid == DMU_BONUS_BLKID) { int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); ASSERT3U(bonuslen, <=, db->db.db_size); db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN); arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); if (bonuslen < DN_MAX_BONUSLEN) bzero(db->db.db_data, DN_MAX_BONUSLEN); if (bonuslen) bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); DB_DNODE_EXIT(db); dbuf_update_data(db); db->db_state = DB_CACHED; mutex_exit(&db->db_mtx); return; } /* * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() * processes the delete record and clears the bp while we are waiting * for the dn_mtx (resulting in a "no" from block_freed). */ if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) || (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(db->db_blkptr)))) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); DB_DNODE_EXIT(db); dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa, db->db.db_size, db, type)); bzero(db->db.db_data, db->db.db_size); db->db_state = DB_CACHED; *flags |= DB_RF_CACHED; mutex_exit(&db->db_mtx); return; } DB_DNODE_EXIT(db); db->db_state = DB_READ; mutex_exit(&db->db_mtx); if (DBUF_IS_L2CACHEABLE(db)) aflags |= ARC_L2CACHE; if (DBUF_IS_L2COMPRESSIBLE(db)) aflags |= ARC_L2COMPRESS; SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ? db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); dbuf_add_ref(db, NULL); (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr, dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, (*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED, &aflags, &zb); if (aflags & ARC_CACHED) *flags |= DB_RF_CACHED; } int dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) { int err = 0; boolean_t havepzio = (zio != NULL); boolean_t prefetch; dnode_t *dn; /* * We don't have to hold the mutex to check db_state because it * can't be freed while we have a hold on the buffer. */ ASSERT(!refcount_is_zero(&db->db_holds)); if (db->db_state == DB_NOFILL) return (SET_ERROR(EIO)); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_enter(&dn->dn_struct_rwlock, RW_READER); prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && DBUF_IS_CACHEABLE(db); mutex_enter(&db->db_mtx); if (db->db_state == DB_CACHED) { mutex_exit(&db->db_mtx); if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, db->db.db_size, TRUE); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); } else if (db->db_state == DB_UNCACHED) { spa_t *spa = dn->dn_objset->os_spa; if (zio == NULL) zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); dbuf_read_impl(db, zio, &flags); /* dbuf_read_impl has dropped db_mtx for us */ if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, db->db.db_size, flags & DB_RF_CACHED); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); if (!havepzio) err = zio_wait(zio); } else { /* * Another reader came in while the dbuf was in flight * between UNCACHED and CACHED. Either a writer will finish * writing the buffer (sending the dbuf to CACHED) or the * first reader's request will reach the read_done callback * and send the dbuf to CACHED. Otherwise, a failure * occurred and the dbuf went to UNCACHED. */ mutex_exit(&db->db_mtx); if (prefetch) dmu_zfetch(&dn->dn_zfetch, db->db.db_offset, db->db.db_size, TRUE); if ((flags & DB_RF_HAVESTRUCT) == 0) rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); /* Skip the wait per the caller's request. */ mutex_enter(&db->db_mtx); if ((flags & DB_RF_NEVERWAIT) == 0) { while (db->db_state == DB_READ || db->db_state == DB_FILL) { ASSERT(db->db_state == DB_READ || (flags & DB_RF_HAVESTRUCT) == 0); DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, zio_t *, zio); cv_wait(&db->db_changed, &db->db_mtx); } if (db->db_state == DB_UNCACHED) err = SET_ERROR(EIO); } mutex_exit(&db->db_mtx); } ASSERT(err || havepzio || db->db_state == DB_CACHED); return (err); } static void dbuf_noread(dmu_buf_impl_t *db) { ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; ASSERT(db->db_buf == NULL); ASSERT(db->db.db_data == NULL); dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type)); db->db_state = DB_FILL; } else if (db->db_state == DB_NOFILL) { dbuf_set_data(db, NULL); } else { ASSERT3U(db->db_state, ==, DB_CACHED); } mutex_exit(&db->db_mtx); } /* * This is our just-in-time copy function. It makes a copy of * buffers, that have been modified in a previous transaction * group, before we modify them in the current active group. * * This function is used in two places: when we are dirtying a * buffer for the first time in a txg, and when we are freeing * a range in a dnode that includes this buffer. * * Note that when we are called from dbuf_free_range() we do * not put a hold on the buffer, we just traverse the active * dbuf list for the dnode. */ static void dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) { dbuf_dirty_record_t *dr = db->db_last_dirty; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(db->db.db_data != NULL); ASSERT(db->db_level == 0); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); if (dr == NULL || (dr->dt.dl.dr_data != ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) return; /* * If the last dirty record for this dbuf has not yet synced * and its referencing the dbuf data, either: * reset the reference to point to a new copy, * or (if there a no active holders) * just null out the current db_data pointer. */ ASSERT(dr->dr_txg >= txg - 2); if (db->db_blkid == DMU_BONUS_BLKID) { /* Note that the data bufs here are zio_bufs */ dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN); arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN); } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) { int size = db->db.db_size; arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); spa_t *spa = db->db_objset->os_spa; dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type); bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); } else { dbuf_set_data(db, NULL); } } void dbuf_unoverride(dbuf_dirty_record_t *dr) { dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *bp = &dr->dt.dl.dr_overridden_by; uint64_t txg = dr->dr_txg; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); ASSERT(db->db_level == 0); if (db->db_blkid == DMU_BONUS_BLKID || dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) return; ASSERT(db->db_data_pending != dr); /* free this block */ if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) zio_free(db->db_objset->os_spa, txg, bp); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; dr->dt.dl.dr_nopwrite = B_FALSE; /* * Release the already-written buffer, so we leave it in * a consistent dirty state. Note that all callers are * modifying the buffer, so they will immediately do * another (redundant) arc_release(). Therefore, leave * the buf thawed to save the effort of freezing & * immediately re-thawing it. */ arc_release(dr->dt.dl.dr_data, db); } /* * Evict (if its unreferenced) or clear (if its referenced) any level-0 * data blocks in the free range, so that any future readers will find * empty blocks. * * This is a no-op if the dataset is in the middle of an incremental * receive; see comment below for details. */ void dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, dmu_tx_t *tx) { dmu_buf_impl_t *db, *db_next, db_search; uint64_t txg = tx->tx_txg; avl_index_t where; if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID)) end_blkid = dn->dn_maxblkid; dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); db_search.db_level = 0; db_search.db_blkid = start_blkid; db_search.db_state = DB_SEARCH; mutex_enter(&dn->dn_dbufs_mtx); if (start_blkid >= dn->dn_unlisted_l0_blkid) { /* There can't be any dbufs in this range; no need to search. */ #ifdef DEBUG db = avl_find(&dn->dn_dbufs, &db_search, &where); ASSERT3P(db, ==, NULL); db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); ASSERT(db == NULL || db->db_level > 0); #endif mutex_exit(&dn->dn_dbufs_mtx); return; } else if (dmu_objset_is_receiving(dn->dn_objset)) { /* * If we are receiving, we expect there to be no dbufs in * the range to be freed, because receive modifies each * block at most once, and in offset order. If this is * not the case, it can lead to performance problems, * so note that we unexpectedly took the slow path. */ atomic_inc_64(&zfs_free_range_recv_miss); } db = avl_find(&dn->dn_dbufs, &db_search, &where); ASSERT3P(db, ==, NULL); db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); for (; db != NULL; db = db_next) { db_next = AVL_NEXT(&dn->dn_dbufs, db); ASSERT(db->db_blkid != DMU_BONUS_BLKID); if (db->db_level != 0 || db->db_blkid > end_blkid) { break; } ASSERT3U(db->db_blkid, >=, start_blkid); /* found a level 0 buffer in the range */ mutex_enter(&db->db_mtx); if (dbuf_undirty(db, tx)) { /* mutex has been dropped and dbuf destroyed */ continue; } if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL || db->db_state == DB_EVICTING) { ASSERT(db->db.db_data == NULL); mutex_exit(&db->db_mtx); continue; } if (db->db_state == DB_READ || db->db_state == DB_FILL) { /* will be handled in dbuf_read_done or dbuf_rele */ db->db_freed_in_flight = TRUE; mutex_exit(&db->db_mtx); continue; } if (refcount_count(&db->db_holds) == 0) { ASSERT(db->db_buf); dbuf_clear(db); continue; } /* The dbuf is referenced */ if (db->db_last_dirty != NULL) { dbuf_dirty_record_t *dr = db->db_last_dirty; if (dr->dr_txg == txg) { /* * This buffer is "in-use", re-adjust the file * size to reflect that this buffer may * contain new data when we sync. */ if (db->db_blkid != DMU_SPILL_BLKID && db->db_blkid > dn->dn_maxblkid) dn->dn_maxblkid = db->db_blkid; dbuf_unoverride(dr); } else { /* * This dbuf is not dirty in the open context. * Either uncache it (if its not referenced in * the open context) or reset its contents to * empty. */ dbuf_fix_old_data(db, txg); } } /* clear the contents if its cached */ if (db->db_state == DB_CACHED) { ASSERT(db->db.db_data != NULL); arc_release(db->db_buf, db); bzero(db->db.db_data, db->db.db_size); arc_buf_freeze(db->db_buf); } mutex_exit(&db->db_mtx); } mutex_exit(&dn->dn_dbufs_mtx); } static int dbuf_block_freeable(dmu_buf_impl_t *db) { dsl_dataset_t *ds = db->db_objset->os_dsl_dataset; uint64_t birth_txg = 0; /* * We don't need any locking to protect db_blkptr: * If it's syncing, then db_last_dirty will be set * so we'll ignore db_blkptr. * * This logic ensures that only block births for * filled blocks are considered. */ ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_last_dirty && (db->db_blkptr == NULL || !BP_IS_HOLE(db->db_blkptr))) { birth_txg = db->db_last_dirty->dr_txg; } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { birth_txg = db->db_blkptr->blk_birth; } /* * If this block don't exist or is in a snapshot, it can't be freed. * Don't pass the bp to dsl_dataset_block_freeable() since we * are holding the db_mtx lock and might deadlock if we are * prefetching a dedup-ed block. */ if (birth_txg != 0) return (ds == NULL || dsl_dataset_block_freeable(ds, NULL, birth_txg)); else return (B_FALSE); } void dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) { arc_buf_t *buf, *obuf; int osize = db->db.db_size; arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dnode_t *dn; ASSERT(db->db_blkid != DMU_BONUS_BLKID); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* XXX does *this* func really need the lock? */ ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); /* * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held * is OK, because there can be no other references to the db * when we are changing its size, so no concurrent DB_FILL can * be happening. */ /* * XXX we should be doing a dbuf_read, checking the return * value and returning that up to our callers */ dmu_buf_will_dirty(&db->db, tx); /* create the data buffer for the new block */ buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type); /* copy old block data to the new block */ obuf = db->db_buf; bcopy(obuf->b_data, buf->b_data, MIN(osize, size)); /* zero the remainder */ if (size > osize) bzero((uint8_t *)buf->b_data + osize, size - osize); mutex_enter(&db->db_mtx); dbuf_set_data(db, buf); VERIFY(arc_buf_remove_ref(obuf, db)); db->db.db_size = size; if (db->db_level == 0) { ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); db->db_last_dirty->dt.dl.dr_data = buf; } mutex_exit(&db->db_mtx); dnode_willuse_space(dn, size-osize, tx); DB_DNODE_EXIT(db); } void dbuf_release_bp(dmu_buf_impl_t *db) { objset_t *os = db->db_objset; ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); ASSERT(arc_released(os->os_phys_buf) || list_link_active(&os->os_dsl_dataset->ds_synced_link)); ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); (void) arc_release(db->db_buf, db); } dbuf_dirty_record_t * dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; objset_t *os; dbuf_dirty_record_t **drp, *dr; int drop_struct_lock = FALSE; boolean_t do_free_accounting = B_FALSE; int txgoff = tx->tx_txg & TXG_MASK; ASSERT(tx->tx_txg != 0); ASSERT(!refcount_is_zero(&db->db_holds)); DMU_TX_DIRTY_BUF(tx, db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* * Shouldn't dirty a regular buffer in syncing context. Private * objects may be dirtied in syncing context, but only if they * were already pre-dirtied in open context. */ ASSERT(!dmu_tx_is_syncing(tx) || BP_IS_HOLE(dn->dn_objset->os_rootbp) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_objset->os_dsl_dataset == NULL); /* * We make this assert for private objects as well, but after we * check if we're already dirty. They are allowed to re-dirty * in syncing context. */ ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); mutex_enter(&db->db_mtx); /* * XXX make this true for indirects too? The problem is that * transactions created with dmu_tx_create_assigned() from * syncing context don't bother holding ahead. */ ASSERT(db->db_level != 0 || db->db_state == DB_CACHED || db->db_state == DB_FILL || db->db_state == DB_NOFILL); mutex_enter(&dn->dn_mtx); /* * Don't set dirtyctx to SYNC if we're just modifying this as we * initialize the objset. */ if (dn->dn_dirtyctx == DN_UNDIRTIED && !BP_IS_HOLE(dn->dn_objset->os_rootbp)) { dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN); ASSERT(dn->dn_dirtyctx_firstset == NULL); dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP); } mutex_exit(&dn->dn_mtx); if (db->db_blkid == DMU_SPILL_BLKID) dn->dn_have_spill = B_TRUE; /* * If this buffer is already dirty, we're done. */ drp = &db->db_last_dirty; ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg || db->db.db_object == DMU_META_DNODE_OBJECT); while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg) drp = &dr->dr_next; if (dr && dr->dr_txg == tx->tx_txg) { DB_DNODE_EXIT(db); if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { /* * If this buffer has already been written out, * we now need to reset its state. */ dbuf_unoverride(dr); if (db->db.db_object != DMU_META_DNODE_OBJECT && db->db_state != DB_NOFILL) arc_buf_thaw(db->db_buf); } mutex_exit(&db->db_mtx); return (dr); } /* * Only valid if not already dirty. */ ASSERT(dn->dn_object == 0 || dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); ASSERT3U(dn->dn_nlevels, >, db->db_level); ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || dn->dn_phys->dn_nlevels > db->db_level || dn->dn_next_nlevels[txgoff] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); /* * We should only be dirtying in syncing context if it's the * mos or we're initializing the os or it's a special object. * However, we are allowed to dirty in syncing context provided * we already dirtied it in open context. Hence we must make * this assertion only if we're not already dirty. */ os = dn->dn_objset; ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); ASSERT(db->db.db_size != 0); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); if (db->db_blkid != DMU_BONUS_BLKID) { /* * Update the accounting. * Note: we delay "free accounting" until after we drop * the db_mtx. This keeps us from grabbing other locks * (and possibly deadlocking) in bp_get_dsize() while * also holding the db_mtx. */ dnode_willuse_space(dn, db->db.db_size, tx); do_free_accounting = dbuf_block_freeable(db); } /* * If this buffer is dirty in an old transaction group we need * to make a copy of it so that the changes we make in this * transaction group won't leak out when we sync the older txg. */ dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); if (db->db_level == 0) { void *data_old = db->db_buf; if (db->db_state != DB_NOFILL) { if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db.db_data; } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { /* * Release the data buffer from the cache so * that we can modify it without impacting * possible other users of this cached data * block. Note that indirect blocks and * private objects are not released until the * syncing state (since they are only modified * then). */ arc_release(db->db_buf, db); dbuf_fix_old_data(db, tx->tx_txg); data_old = db->db_buf; } ASSERT(data_old != NULL); } dr->dt.dl.dr_data = data_old; } else { mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL); list_create(&dr->dt.di.dr_children, sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL) dr->dr_accounted = db->db.db_size; dr->dr_dbuf = db; dr->dr_txg = tx->tx_txg; dr->dr_next = *drp; *drp = dr; /* * We could have been freed_in_flight between the dbuf_noread * and dbuf_dirty. We win, as though the dbuf_noread() had * happened after the free. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_free_ranges[txgoff] != NULL) { range_tree_clear(dn->dn_free_ranges[txgoff], db->db_blkid, 1); } mutex_exit(&dn->dn_mtx); db->db_freed_in_flight = FALSE; } /* * This buffer is now part of this txg */ dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); db->db_dirtycnt += 1; ASSERT3U(db->db_dirtycnt, <=, 3); mutex_exit(&db->db_mtx); if (db->db_blkid == DMU_BONUS_BLKID || db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } else if (do_free_accounting) { blkptr_t *bp = db->db_blkptr; int64_t willfree = (bp && !BP_IS_HOLE(bp)) ? bp_get_dsize(os->os_spa, bp) : db->db.db_size; /* * This is only a guess -- if the dbuf is dirty * in a previous txg, we don't know how much * space it will use on disk yet. We should * really have the struct_rwlock to access * db_blkptr, but since this is just a guess, * it's OK if we get an odd answer. */ ddt_prefetch(os->os_spa, bp); dnode_willuse_space(dn, -willfree, tx); } if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } if (db->db_level == 0) { dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock); ASSERT(dn->dn_maxblkid >= db->db_blkid); } if (db->db_level+1 < dn->dn_nlevels) { dmu_buf_impl_t *parent = db->db_parent; dbuf_dirty_record_t *di; int parent_held = FALSE; if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; parent = dbuf_hold_level(dn, db->db_level+1, db->db_blkid >> epbs, FTAG); ASSERT(parent != NULL); parent_held = TRUE; } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); ASSERT3U(db->db_level+1, ==, parent->db_level); di = dbuf_dirty(parent, tx); if (parent_held) dbuf_rele(parent, FTAG); mutex_enter(&db->db_mtx); /* * Since we've dropped the mutex, it's possible that * dbuf_undirty() might have changed this out from under us. */ if (db->db_last_dirty == dr || dn->dn_object == DMU_META_DNODE_OBJECT) { mutex_enter(&di->dt.di.dr_mtx); ASSERT3U(di->dr_txg, ==, tx->tx_txg); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&di->dt.di.dr_children, dr); mutex_exit(&di->dt.di.dr_mtx); dr->dr_parent = di; } mutex_exit(&db->db_mtx); } else { ASSERT(db->db_level+1 == dn->dn_nlevels); ASSERT(db->db_blkid < dn->dn_nblkptr); ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); ASSERT(!list_link_active(&dr->dr_dirty_node)); list_insert_tail(&dn->dn_dirty_records[txgoff], dr); mutex_exit(&dn->dn_mtx); if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } dnode_setdirty(dn, tx); DB_DNODE_EXIT(db); return (dr); } /* * Undirty a buffer in the transaction group referenced by the given * transaction. Return whether this evicted the dbuf. */ static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) { dnode_t *dn; uint64_t txg = tx->tx_txg; dbuf_dirty_record_t *dr, **drp; ASSERT(txg != 0); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT0(db->db_level); ASSERT(MUTEX_HELD(&db->db_mtx)); /* * If this buffer is not dirty, we're done. */ for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) if (dr->dr_txg <= txg) break; if (dr == NULL || dr->dr_txg < txg) return (B_FALSE); ASSERT(dr->dr_txg == txg); ASSERT(dr->dr_dbuf == db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); ASSERT(db->db.db_size != 0); /* * Any space we accounted for in dp_dirty_* will be cleaned up by * dsl_pool_sync(). This is relatively rare so the discrepancy * is not a big deal. */ *drp = dr->dr_next; /* * Note that there are three places in dbuf_dirty() * where this dirty record may be put on a list. * Make sure to do a list_remove corresponding to * every one of those list_insert calls. */ if (dr->dr_parent) { mutex_enter(&dr->dr_parent->dt.di.dr_mtx); list_remove(&dr->dr_parent->dt.di.dr_children, dr); mutex_exit(&dr->dr_parent->dt.di.dr_mtx); } else if (db->db_blkid == DMU_SPILL_BLKID || db->db_level+1 == dn->dn_nlevels) { ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); mutex_enter(&dn->dn_mtx); list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); mutex_exit(&dn->dn_mtx); } DB_DNODE_EXIT(db); if (db->db_state != DB_NOFILL) { dbuf_unoverride(dr); ASSERT(db->db_buf != NULL); ASSERT(dr->dt.dl.dr_data != NULL); if (dr->dt.dl.dr_data != db->db_buf) VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); } if (db->db_level != 0) { mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { arc_buf_t *buf = db->db_buf; ASSERT(db->db_state == DB_NOFILL || arc_released(buf)); dbuf_set_data(db, NULL); VERIFY(arc_buf_remove_ref(buf, db)); dbuf_evict(db); return (B_TRUE); } return (B_FALSE); } void dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH; ASSERT(tx->tx_txg != 0); ASSERT(!refcount_is_zero(&db->db_holds)); DB_DNODE_ENTER(db); if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) rf |= DB_RF_HAVESTRUCT; DB_DNODE_EXIT(db); (void) dbuf_read(db, NULL, rf); (void) dbuf_dirty(db, tx); } void dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_state = DB_NOFILL; dmu_buf_will_fill(db_fake, tx); } void dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(tx->tx_txg != 0); ASSERT(db->db_level == 0); ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); dbuf_noread(db); (void) dbuf_dirty(db, tx); } #pragma weak dmu_buf_fill_done = dbuf_fill_done /* ARGSUSED */ void dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx) { mutex_enter(&db->db_mtx); DBUF_VERIFY(db); if (db->db_state == DB_FILL) { if (db->db_level == 0 && db->db_freed_in_flight) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); /* we were freed while filling */ /* XXX dbuf_undirty? */ bzero(db->db.db_data, db->db.db_size); db->db_freed_in_flight = FALSE; } db->db_state = DB_CACHED; cv_broadcast(&db->db_changed); } mutex_exit(&db->db_mtx); } void dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, bp_embedded_type_t etype, enum zio_compress comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; struct dirty_leaf *dl; dmu_object_type_t type; DB_DNODE_ENTER(db); type = DB_DNODE(db)->dn_type; DB_DNODE_EXIT(db); ASSERT0(db->db_level); ASSERT(db->db_blkid != DMU_BONUS_BLKID); dmu_buf_will_not_fill(dbuf, tx); ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg); dl = &db->db_last_dirty->dt.dl; encode_embedded_bp_compressed(&dl->dr_overridden_by, data, comp, uncompressed_size, compressed_size); BPE_SET_ETYPE(&dl->dr_overridden_by, etype); BP_SET_TYPE(&dl->dr_overridden_by, type); BP_SET_LEVEL(&dl->dr_overridden_by, 0); BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); dl->dr_override_state = DR_OVERRIDDEN; dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg; } /* * Directly assign a provided arc buf to a given dbuf if it's not referenced * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. */ void dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) { ASSERT(!refcount_is_zero(&db->db_holds)); ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(db->db_level == 0); ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA); ASSERT(buf != NULL); ASSERT(arc_buf_size(buf) == db->db.db_size); ASSERT(tx->tx_txg != 0); arc_return_buf(buf, db); ASSERT(arc_released(buf)); mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); if (db->db_state == DB_CACHED && refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); bcopy(buf->b_data, db->db.db_data, db->db.db_size); VERIFY(arc_buf_remove_ref(buf, db)); xuio_stat_wbuf_copied(); return; } xuio_stat_wbuf_nocopy(); if (db->db_state == DB_CACHED) { dbuf_dirty_record_t *dr = db->db_last_dirty; ASSERT(db->db_buf != NULL); if (dr != NULL && dr->dr_txg == tx->tx_txg) { ASSERT(dr->dt.dl.dr_data == db->db_buf); if (!arc_released(db->db_buf)) { ASSERT(dr->dt.dl.dr_override_state == DR_OVERRIDDEN); arc_release(db->db_buf, db); } dr->dt.dl.dr_data = buf; VERIFY(arc_buf_remove_ref(db->db_buf, db)); } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { arc_release(db->db_buf, db); VERIFY(arc_buf_remove_ref(db->db_buf, db)); } db->db_buf = NULL; } ASSERT(db->db_buf == NULL); dbuf_set_data(db, buf); db->db_state = DB_FILL; mutex_exit(&db->db_mtx); (void) dbuf_dirty(db, tx); dmu_buf_fill_done(&db->db, tx); } /* * "Clear" the contents of this dbuf. This will mark the dbuf * EVICTING and clear *most* of its references. Unfortunately, * when we are not holding the dn_dbufs_mtx, we can't clear the * entry in the dn_dbufs list. We have to wait until dbuf_destroy() * in this case. For callers from the DMU we will usually see: * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy() * For the arc callback, we will usually see: * dbuf_do_evict()->dbuf_clear();dbuf_destroy() * Sometimes, though, we will get a mix of these two: * DMU: dbuf_clear()->arc_clear_callback() * ARC: dbuf_do_evict()->dbuf_destroy() * * This routine will dissociate the dbuf from the arc, by calling * arc_clear_callback(), but will not evict the data from the ARC. */ void dbuf_clear(dmu_buf_impl_t *db) { dnode_t *dn; dmu_buf_impl_t *parent = db->db_parent; dmu_buf_impl_t *dndb; boolean_t dbuf_gone = B_FALSE; ASSERT(MUTEX_HELD(&db->db_mtx)); ASSERT(refcount_is_zero(&db->db_holds)); dbuf_evict_user(db); if (db->db_state == DB_CACHED) { ASSERT(db->db.db_data != NULL); if (db->db_blkid == DMU_BONUS_BLKID) { zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN); arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); } db->db.db_data = NULL; db->db_state = DB_UNCACHED; } ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); ASSERT(db->db_data_pending == NULL); db->db_state = DB_EVICTING; db->db_blkptr = NULL; DB_DNODE_ENTER(db); dn = DB_DNODE(db); dndb = dn->dn_dbuf; if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) { avl_remove(&dn->dn_dbufs, db); atomic_dec_32(&dn->dn_dbufs_count); membar_producer(); DB_DNODE_EXIT(db); /* * Decrementing the dbuf count means that the hold corresponding * to the removed dbuf is no longer discounted in dnode_move(), * so the dnode cannot be moved until after we release the hold. * The membar_producer() ensures visibility of the decremented * value in dnode_move(), since DB_DNODE_EXIT doesn't actually * release any lock. */ dnode_rele(dn, db); db->db_dnode_handle = NULL; } else { DB_DNODE_EXIT(db); } if (db->db_buf) dbuf_gone = arc_clear_callback(db->db_buf); if (!dbuf_gone) mutex_exit(&db->db_mtx); /* * If this dbuf is referenced from an indirect dbuf, * decrement the ref count on the indirect dbuf. */ if (parent && parent != dndb) dbuf_rele(parent, db); } static int dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, dmu_buf_impl_t **parentp, blkptr_t **bpp) { int nlevels, epbs; *parentp = NULL; *bpp = NULL; ASSERT(blkid != DMU_BONUS_BLKID); if (blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); if (dn->dn_have_spill && (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) *bpp = &dn->dn_phys->dn_spill; else *bpp = NULL; dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; mutex_exit(&dn->dn_mtx); return (0); } if (dn->dn_phys->dn_nlevels == 0) nlevels = 1; else nlevels = dn->dn_phys->dn_nlevels; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(level * epbs, <, 64); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); if (level >= nlevels || (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { /* the buffer has no parent yet */ return (SET_ERROR(ENOENT)); } else if (level < nlevels-1) { /* this block is referenced from an indirect block */ int err = dbuf_hold_impl(dn, level+1, blkid >> epbs, fail_sparse, NULL, parentp); if (err) return (err); err = dbuf_read(*parentp, NULL, (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); if (err) { dbuf_rele(*parentp, NULL); *parentp = NULL; return (err); } *bpp = ((blkptr_t *)(*parentp)->db.db_data) + (blkid & ((1ULL << epbs) - 1)); return (0); } else { /* the block is referenced from the dnode */ ASSERT3U(level, ==, nlevels-1); ASSERT(dn->dn_phys->dn_nblkptr == 0 || blkid < dn->dn_phys->dn_nblkptr); if (dn->dn_dbuf) { dbuf_add_ref(dn->dn_dbuf, NULL); *parentp = dn->dn_dbuf; } *bpp = &dn->dn_phys->dn_blkptr[blkid]; return (0); } } static dmu_buf_impl_t * dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, dmu_buf_impl_t *parent, blkptr_t *blkptr) { objset_t *os = dn->dn_objset; dmu_buf_impl_t *db, *odb; ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_type != DMU_OT_NONE); db = kmem_cache_alloc(dbuf_cache, KM_SLEEP); db->db_objset = os; db->db.db_object = dn->dn_object; db->db_level = level; db->db_blkid = blkid; db->db_last_dirty = NULL; db->db_dirtycnt = 0; db->db_dnode_handle = dn->dn_handle; db->db_parent = parent; db->db_blkptr = blkptr; db->db_user_ptr = NULL; db->db_user_data_ptr_ptr = NULL; db->db_evict_func = NULL; db->db_immediate_evict = 0; db->db_freed_in_flight = 0; if (blkid == DMU_BONUS_BLKID) { ASSERT3P(parent, ==, dn->dn_dbuf); db->db.db_size = DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); db->db.db_offset = DMU_BONUS_BLKID; db->db_state = DB_UNCACHED; /* the bonus dbuf is not placed in the hash table */ arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); return (db); } else if (blkid == DMU_SPILL_BLKID) { db->db.db_size = (blkptr != NULL) ? BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; db->db.db_offset = 0; } else { int blocksize = db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; db->db.db_size = blocksize; db->db.db_offset = db->db_blkid * blocksize; } /* * Hold the dn_dbufs_mtx while we get the new dbuf * in the hash table *and* added to the dbufs list. * This prevents a possible deadlock with someone * trying to look up this dbuf before its added to the * dn_dbufs list. */ mutex_enter(&dn->dn_dbufs_mtx); db->db_state = DB_EVICTING; if ((odb = dbuf_hash_insert(db)) != NULL) { /* someone else inserted it first */ kmem_cache_free(dbuf_cache, db); mutex_exit(&dn->dn_dbufs_mtx); return (odb); } avl_add(&dn->dn_dbufs, db); if (db->db_level == 0 && db->db_blkid >= dn->dn_unlisted_l0_blkid) dn->dn_unlisted_l0_blkid = db->db_blkid + 1; db->db_state = DB_UNCACHED; mutex_exit(&dn->dn_dbufs_mtx); arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); if (parent && parent != dn->dn_dbuf) dbuf_add_ref(parent, db); ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || refcount_count(&dn->dn_holds) > 0); (void) refcount_add(&dn->dn_holds, db); atomic_inc_32(&dn->dn_dbufs_count); dprintf_dbuf(db, "db=%p\n", db); return (db); } static int dbuf_do_evict(void *private) { dmu_buf_impl_t *db = private; if (!MUTEX_HELD(&db->db_mtx)) mutex_enter(&db->db_mtx); ASSERT(refcount_is_zero(&db->db_holds)); if (db->db_state != DB_EVICTING) { ASSERT(db->db_state == DB_CACHED); DBUF_VERIFY(db); db->db_buf = NULL; dbuf_evict(db); } else { mutex_exit(&db->db_mtx); dbuf_destroy(db); } return (0); } static void dbuf_destroy(dmu_buf_impl_t *db) { ASSERT(refcount_is_zero(&db->db_holds)); if (db->db_blkid != DMU_BONUS_BLKID) { /* * If this dbuf is still on the dn_dbufs list, * remove it from that list. */ if (db->db_dnode_handle != NULL) { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); mutex_enter(&dn->dn_dbufs_mtx); avl_remove(&dn->dn_dbufs, db); atomic_dec_32(&dn->dn_dbufs_count); mutex_exit(&dn->dn_dbufs_mtx); DB_DNODE_EXIT(db); /* * Decrementing the dbuf count means that the hold * corresponding to the removed dbuf is no longer * discounted in dnode_move(), so the dnode cannot be * moved until after we release the hold. */ dnode_rele(dn, db); db->db_dnode_handle = NULL; } dbuf_hash_remove(db); } db->db_parent = NULL; db->db_buf = NULL; ASSERT(db->db.db_data == NULL); ASSERT(db->db_hash_next == NULL); ASSERT(db->db_blkptr == NULL); ASSERT(db->db_data_pending == NULL); kmem_cache_free(dbuf_cache, db); arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER); } void dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio) { dmu_buf_impl_t *db = NULL; blkptr_t *bp = NULL; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); if (dnode_block_freed(dn, blkid)) return; /* dbuf_find() returns with db_mtx held */ if (db = dbuf_find(dn, 0, blkid)) { /* * This dbuf is already in the cache. We assume that * it is already CACHED, or else about to be either * read or filled. */ mutex_exit(&db->db_mtx); return; } if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp) == 0) { if (bp && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH; zbookmark_phys_t zb; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, dn->dn_object, 0, blkid); (void) arc_read(NULL, dn->dn_objset->os_spa, bp, NULL, NULL, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, &zb); } if (db) dbuf_rele(db, NULL); } } /* * Returns with db_holds incremented, and db_mtx not held. * Note: dn_struct_rwlock must be held. */ int dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, int fail_sparse, void *tag, dmu_buf_impl_t **dbp) { dmu_buf_impl_t *db, *parent = NULL; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); ASSERT3U(dn->dn_nlevels, >, level); *dbp = NULL; top: /* dbuf_find() returns with db_mtx held */ db = dbuf_find(dn, level, blkid); if (db == NULL) { blkptr_t *bp = NULL; int err; ASSERT3P(parent, ==, NULL); err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); if (fail_sparse) { if (err == 0 && bp && BP_IS_HOLE(bp)) err = SET_ERROR(ENOENT); if (err) { if (parent) dbuf_rele(parent, NULL); return (err); } } if (err && err != ENOENT) return (err); db = dbuf_create(dn, level, blkid, parent, bp); } if (db->db_buf && refcount_is_zero(&db->db_holds)) { arc_buf_add_ref(db->db_buf, db); if (db->db_buf->b_data == NULL) { dbuf_clear(db); if (parent) { dbuf_rele(parent, NULL); parent = NULL; } goto top; } ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); } ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); /* * If this buffer is currently syncing out, and we are are * still referencing it from db_data, we need to make a copy * of it in case we decide we want to dirty it again in this txg. */ if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && dn->dn_object != DMU_META_DNODE_OBJECT && db->db_state == DB_CACHED && db->db_data_pending) { dbuf_dirty_record_t *dr = db->db_data_pending; if (dr->dt.dl.dr_data == db->db_buf) { arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); dbuf_set_data(db, arc_buf_alloc(dn->dn_objset->os_spa, db->db.db_size, db, type)); bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data, db->db.db_size); } } (void) refcount_add(&db->db_holds, tag); dbuf_update_data(db); DBUF_VERIFY(db); mutex_exit(&db->db_mtx); /* NOTE: we can't rele the parent until after we drop the db_mtx */ if (parent) dbuf_rele(parent, NULL); ASSERT3P(DB_DNODE(db), ==, dn); ASSERT3U(db->db_blkid, ==, blkid); ASSERT3U(db->db_level, ==, level); *dbp = db; return (0); } dmu_buf_impl_t * dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) { dmu_buf_impl_t *db; int err = dbuf_hold_impl(dn, 0, blkid, FALSE, tag, &db); return (err ? NULL : db); } dmu_buf_impl_t * dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) { dmu_buf_impl_t *db; int err = dbuf_hold_impl(dn, level, blkid, FALSE, tag, &db); return (err ? NULL : db); } void dbuf_create_bonus(dnode_t *dn) { ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); ASSERT(dn->dn_bonus == NULL); dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); } int dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; dnode_t *dn; if (db->db_blkid != DMU_SPILL_BLKID) return (SET_ERROR(ENOTSUP)); if (blksz == 0) blksz = SPA_MINBLOCKSIZE; - if (blksz > SPA_MAXBLOCKSIZE) - blksz = SPA_MAXBLOCKSIZE; - else - blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); + ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); + blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); DB_DNODE_ENTER(db); dn = DB_DNODE(db); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dbuf_new_size(db, blksz, tx); rw_exit(&dn->dn_struct_rwlock); DB_DNODE_EXIT(db); return (0); } void dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) { dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); } #pragma weak dmu_buf_add_ref = dbuf_add_ref void dbuf_add_ref(dmu_buf_impl_t *db, void *tag) { int64_t holds = refcount_add(&db->db_holds, tag); ASSERT(holds > 1); } /* * If you call dbuf_rele() you had better not be referencing the dnode handle * unless you have some other direct or indirect hold on the dnode. (An indirect * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the * dnode's parent dbuf evicting its dnode handles. */ void dbuf_rele(dmu_buf_impl_t *db, void *tag) { mutex_enter(&db->db_mtx); dbuf_rele_and_unlock(db, tag); } void dmu_buf_rele(dmu_buf_t *db, void *tag) { dbuf_rele((dmu_buf_impl_t *)db, tag); } /* * dbuf_rele() for an already-locked dbuf. This is necessary to allow * db_dirtycnt and db_holds to be updated atomically. */ void dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag) { int64_t holds; ASSERT(MUTEX_HELD(&db->db_mtx)); DBUF_VERIFY(db); /* * Remove the reference to the dbuf before removing its hold on the * dnode so we can guarantee in dnode_move() that a referenced bonus * buffer has a corresponding dnode hold. */ holds = refcount_remove(&db->db_holds, tag); ASSERT(holds >= 0); /* * We can't freeze indirects if there is a possibility that they * may be modified in the current syncing context. */ if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) arc_buf_freeze(db->db_buf); if (holds == db->db_dirtycnt && db->db_level == 0 && db->db_immediate_evict) dbuf_evict_user(db); if (holds == 0) { if (db->db_blkid == DMU_BONUS_BLKID) { mutex_exit(&db->db_mtx); /* * If the dnode moves here, we cannot cross this barrier * until the move completes. */ DB_DNODE_ENTER(db); atomic_dec_32(&DB_DNODE(db)->dn_dbufs_count); DB_DNODE_EXIT(db); /* * The bonus buffer's dnode hold is no longer discounted * in dnode_move(). The dnode cannot move until after * the dnode_rele(). */ dnode_rele(DB_DNODE(db), db); } else if (db->db_buf == NULL) { /* * This is a special case: we never associated this * dbuf with any data allocated from the ARC. */ ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); dbuf_evict(db); } else if (arc_released(db->db_buf)) { arc_buf_t *buf = db->db_buf; /* * This dbuf has anonymous data associated with it. */ dbuf_set_data(db, NULL); VERIFY(arc_buf_remove_ref(buf, db)); dbuf_evict(db); } else { VERIFY(!arc_buf_remove_ref(db->db_buf, db)); /* * A dbuf will be eligible for eviction if either the * 'primarycache' property is set or a duplicate * copy of this buffer is already cached in the arc. * * In the case of the 'primarycache' a buffer * is considered for eviction if it matches the * criteria set in the property. * * To decide if our buffer is considered a * duplicate, we must call into the arc to determine * if multiple buffers are referencing the same * block on-disk. If so, then we simply evict * ourselves. */ if (!DBUF_IS_CACHEABLE(db)) { if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr) && !BP_IS_EMBEDDED(db->db_blkptr)) { spa_t *spa = dmu_objset_spa(db->db_objset); blkptr_t bp = *db->db_blkptr; dbuf_clear(db); arc_freed(spa, &bp); } else { dbuf_clear(db); } } else if (arc_buf_eviction_needed(db->db_buf)) { dbuf_clear(db); } else { mutex_exit(&db->db_mtx); } } } else { mutex_exit(&db->db_mtx); } } #pragma weak dmu_buf_refcount = dbuf_refcount uint64_t dbuf_refcount(dmu_buf_impl_t *db) { return (refcount_count(&db->db_holds)); } void * dmu_buf_set_user(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) { return (dmu_buf_update_user(db_fake, NULL, user_ptr, user_data_ptr_ptr, evict_func)); } void * dmu_buf_set_user_ie(dmu_buf_t *db_fake, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; db->db_immediate_evict = TRUE; return (dmu_buf_update_user(db_fake, NULL, user_ptr, user_data_ptr_ptr, evict_func)); } void * dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *evict_func) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(db->db_level == 0); ASSERT((user_ptr == NULL) == (evict_func == NULL)); mutex_enter(&db->db_mtx); if (db->db_user_ptr == old_user_ptr) { db->db_user_ptr = user_ptr; db->db_user_data_ptr_ptr = user_data_ptr_ptr; db->db_evict_func = evict_func; dbuf_update_data(db); } else { old_user_ptr = db->db_user_ptr; } mutex_exit(&db->db_mtx); return (old_user_ptr); } void * dmu_buf_get_user(dmu_buf_t *db_fake) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; ASSERT(!refcount_is_zero(&db->db_holds)); return (db->db_user_ptr); } boolean_t dmu_buf_freeable(dmu_buf_t *dbuf) { boolean_t res = B_FALSE; dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; if (db->db_blkptr) res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset, db->db_blkptr, db->db_blkptr->blk_birth); return (res); } blkptr_t * dmu_buf_get_blkptr(dmu_buf_t *db) { dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; return (dbi->db_blkptr); } static void dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) { /* ASSERT(dmu_tx_is_syncing(tx) */ ASSERT(MUTEX_HELD(&db->db_mtx)); if (db->db_blkptr != NULL) return; if (db->db_blkid == DMU_SPILL_BLKID) { db->db_blkptr = &dn->dn_phys->dn_spill; BP_ZERO(db->db_blkptr); return; } if (db->db_level == dn->dn_phys->dn_nlevels-1) { /* * This buffer was allocated at a time when there was * no available blkptrs from the dnode, or it was * inappropriate to hook it in (i.e., nlevels mis-match). */ ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); ASSERT(db->db_parent == NULL); db->db_parent = dn->dn_dbuf; db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; DBUF_VERIFY(db); } else { dmu_buf_impl_t *parent = db->db_parent; int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT(dn->dn_phys->dn_nlevels > 1); if (parent == NULL) { mutex_exit(&db->db_mtx); rw_enter(&dn->dn_struct_rwlock, RW_READER); (void) dbuf_hold_impl(dn, db->db_level+1, db->db_blkid >> epbs, FALSE, db, &parent); rw_exit(&dn->dn_struct_rwlock); mutex_enter(&db->db_mtx); db->db_parent = parent; } db->db_blkptr = (blkptr_t *)parent->db.db_data + (db->db_blkid & ((1ULL << epbs) - 1)); DBUF_VERIFY(db); } } static void dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; zio_t *zio; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); ASSERT(db->db_level > 0); DBUF_VERIFY(db); /* Read the block if it hasn't been read yet. */ if (db->db_buf == NULL) { mutex_exit(&db->db_mtx); (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); mutex_enter(&db->db_mtx); } ASSERT3U(db->db_state, ==, DB_CACHED); ASSERT(db->db_buf != NULL); DB_DNODE_ENTER(db); dn = DB_DNODE(db); /* Indirect block size must match what the dnode thinks it is. */ ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); dbuf_check_blkptr(dn, db); DB_DNODE_EXIT(db); /* Provide the pending dirty record to child dbufs */ db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, db->db_buf, tx); zio = dr->dr_zio; mutex_enter(&dr->dt.di.dr_mtx); dbuf_sync_list(&dr->dt.di.dr_children, tx); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); mutex_exit(&dr->dt.di.dr_mtx); zio_nowait(zio); } static void dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) { arc_buf_t **datap = &dr->dt.dl.dr_data; dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; objset_t *os; uint64_t txg = tx->tx_txg; ASSERT(dmu_tx_is_syncing(tx)); dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); mutex_enter(&db->db_mtx); /* * To be synced, we must be dirtied. But we * might have been freed after the dirty. */ if (db->db_state == DB_UNCACHED) { /* This buffer has been freed since it was dirtied */ ASSERT(db->db.db_data == NULL); } else if (db->db_state == DB_FILL) { /* This buffer was freed and is now being re-filled */ ASSERT(db->db.db_data != dr->dt.dl.dr_data); } else { ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); } DBUF_VERIFY(db); DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (db->db_blkid == DMU_SPILL_BLKID) { mutex_enter(&dn->dn_mtx); dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; mutex_exit(&dn->dn_mtx); } /* * If this is a bonus buffer, simply copy the bonus data into the * dnode. It will be written out when the dnode is synced (and it * will be synced, since it must have been dirty for dbuf_sync to * be called). */ if (db->db_blkid == DMU_BONUS_BLKID) { dbuf_dirty_record_t **drp; ASSERT(*datap != NULL); ASSERT0(db->db_level); ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN); bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen); DB_DNODE_EXIT(db); if (*datap != db->db.db_data) { zio_buf_free(*datap, DN_MAX_BONUSLEN); arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER); } db->db_data_pending = NULL; drp = &db->db_last_dirty; while (*drp != dr) drp = &(*drp)->dr_next; ASSERT(dr->dr_next == NULL); ASSERT(dr->dr_dbuf == db); *drp = dr->dr_next; kmem_free(dr, sizeof (dbuf_dirty_record_t)); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); return; } os = dn->dn_objset; /* * This function may have dropped the db_mtx lock allowing a dmu_sync * operation to sneak in. As a result, we need to ensure that we * don't check the dr_override_state until we have returned from * dbuf_check_blkptr. */ dbuf_check_blkptr(dn, db); /* * If this buffer is in the middle of an immediate write, * wait for the synchronous IO to complete. */ while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); cv_wait(&db->db_changed, &db->db_mtx); ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); } if (db->db_state != DB_NOFILL && dn->dn_object != DMU_META_DNODE_OBJECT && refcount_count(&db->db_holds) > 1 && dr->dt.dl.dr_override_state != DR_OVERRIDDEN && *datap == db->db_buf) { /* * If this buffer is currently "in use" (i.e., there * are active holds and db_data still references it), * then make a copy before we start the write so that * any modifications from the open txg will not leak * into this write. * * NOTE: this copy does not need to be made for * objects only modified in the syncing context (e.g. * DNONE_DNODE blocks). */ int blksz = arc_buf_size(*datap); arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); *datap = arc_buf_alloc(os->os_spa, blksz, db, type); bcopy(db->db.db_data, (*datap)->b_data, blksz); } db->db_data_pending = dr; mutex_exit(&db->db_mtx); dbuf_write(dr, *datap, tx); ASSERT(!list_link_active(&dr->dr_dirty_node)); if (dn->dn_object == DMU_META_DNODE_OBJECT) { list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr); DB_DNODE_EXIT(db); } else { /* * Although zio_nowait() does not "wait for an IO", it does * initiate the IO. If this is an empty write it seems plausible * that the IO could actually be completed before the nowait * returns. We need to DB_DNODE_EXIT() first in case * zio_nowait() invalidates the dbuf. */ DB_DNODE_EXIT(db); zio_nowait(dr->dr_zio); } } void dbuf_sync_list(list_t *list, dmu_tx_t *tx) { dbuf_dirty_record_t *dr; while (dr = list_head(list)) { if (dr->dr_zio != NULL) { /* * If we find an already initialized zio then we * are processing the meta-dnode, and we have finished. * The dbufs for all dnodes are put back on the list * during processing, so that we can zio_wait() * these IOs after initiating all child IOs. */ ASSERT3U(dr->dr_dbuf->db.db_object, ==, DMU_META_DNODE_OBJECT); break; } list_remove(list, dr); if (dr->dr_dbuf->db_level > 0) dbuf_sync_indirect(dr, tx); else dbuf_sync_leaf(dr, tx); } } /* ARGSUSED */ static void dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; dnode_t *dn; blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; spa_t *spa = zio->io_spa; int64_t delta; uint64_t fill = 0; int i; ASSERT3P(db->db_blkptr, ==, bp); DB_DNODE_ENTER(db); dn = DB_DNODE(db); delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); dnode_diduse_space(dn, delta - zio->io_prev_space_delta); zio->io_prev_space_delta = delta; if (bp->blk_birth != 0) { ASSERT((db->db_blkid != DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_type) || (db->db_blkid == DMU_SPILL_BLKID && BP_GET_TYPE(bp) == dn->dn_bonustype) || BP_IS_EMBEDDED(bp)); ASSERT(BP_GET_LEVEL(bp) == db->db_level); } mutex_enter(&db->db_mtx); #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && db->db_blkptr == &dn->dn_phys->dn_spill); } #endif if (db->db_level == 0) { mutex_enter(&dn->dn_mtx); if (db->db_blkid > dn->dn_phys->dn_maxblkid && db->db_blkid != DMU_SPILL_BLKID) dn->dn_phys->dn_maxblkid = db->db_blkid; mutex_exit(&dn->dn_mtx); if (dn->dn_type == DMU_OT_DNODE) { dnode_phys_t *dnp = db->db.db_data; for (i = db->db.db_size >> DNODE_SHIFT; i > 0; i--, dnp++) { if (dnp->dn_type != DMU_OT_NONE) fill++; } } else { if (BP_IS_HOLE(bp)) { fill = 0; } else { fill = 1; } } } else { blkptr_t *ibp = db->db.db_data; ASSERT3U(db->db.db_size, ==, 1<dn_phys->dn_indblkshift); for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { if (BP_IS_HOLE(ibp)) continue; fill += BP_GET_FILL(ibp); } } DB_DNODE_EXIT(db); if (!BP_IS_EMBEDDED(bp)) bp->blk_fill = fill; mutex_exit(&db->db_mtx); } /* * The SPA will call this callback several times for each zio - once * for every physical child i/o (zio->io_phys_children times). This * allows the DMU to monitor the progress of each logical i/o. For example, * there may be 2 copies of an indirect block, or many fragments of a RAID-Z * block. There may be a long delay before all copies/fragments are completed, * so this callback allows us to retire dirty space gradually, as the physical * i/os complete. */ /* ARGSUSED */ static void dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) { dmu_buf_impl_t *db = arg; objset_t *os = db->db_objset; dsl_pool_t *dp = dmu_objset_pool(os); dbuf_dirty_record_t *dr; int delta = 0; dr = db->db_data_pending; ASSERT3U(dr->dr_txg, ==, zio->io_txg); /* * The callback will be called io_phys_children times. Retire one * portion of our dirty space each time we are called. Any rounding * error will be cleaned up by dsl_pool_sync()'s call to * dsl_pool_undirty_space(). */ delta = dr->dr_accounted / zio->io_phys_children; dsl_pool_undirty_space(dp, delta, zio->io_txg); } /* ARGSUSED */ static void dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) { dmu_buf_impl_t *db = vdb; blkptr_t *bp_orig = &zio->io_bp_orig; blkptr_t *bp = db->db_blkptr; objset_t *os = db->db_objset; dmu_tx_t *tx = os->os_synctx; dbuf_dirty_record_t **drp, *dr; ASSERT0(zio->io_error); ASSERT(db->db_blkptr == bp); /* * For nopwrites and rewrites we ensure that the bp matches our * original and bypass all the accounting. */ if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } mutex_enter(&db->db_mtx); DBUF_VERIFY(db); drp = &db->db_last_dirty; while ((dr = *drp) != db->db_data_pending) drp = &dr->dr_next; ASSERT(!list_link_active(&dr->dr_dirty_node)); ASSERT(dr->dr_dbuf == db); ASSERT(dr->dr_next == NULL); *drp = dr->dr_next; #ifdef ZFS_DEBUG if (db->db_blkid == DMU_SPILL_BLKID) { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && db->db_blkptr == &dn->dn_phys->dn_spill); DB_DNODE_EXIT(db); } #endif if (db->db_level == 0) { ASSERT(db->db_blkid != DMU_BONUS_BLKID); ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); if (db->db_state != DB_NOFILL) { if (dr->dt.dl.dr_data != db->db_buf) VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db)); else if (!arc_released(db->db_buf)) arc_set_callback(db->db_buf, dbuf_do_evict, db); } } else { dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(list_head(&dr->dt.di.dr_children) == NULL); ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); if (!BP_IS_HOLE(db->db_blkptr)) { int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; ASSERT3U(db->db_blkid, <=, dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, db->db.db_size); if (!arc_released(db->db_buf)) arc_set_callback(db->db_buf, dbuf_do_evict, db); } DB_DNODE_EXIT(db); mutex_destroy(&dr->dt.di.dr_mtx); list_destroy(&dr->dt.di.dr_children); } kmem_free(dr, sizeof (dbuf_dirty_record_t)); cv_broadcast(&db->db_changed); ASSERT(db->db_dirtycnt > 0); db->db_dirtycnt -= 1; db->db_data_pending = NULL; dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg); } static void dbuf_write_nofill_ready(zio_t *zio) { dbuf_write_ready(zio, NULL, zio->io_private); } static void dbuf_write_nofill_done(zio_t *zio) { dbuf_write_done(zio, NULL, zio->io_private); } static void dbuf_write_override_ready(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; dbuf_write_ready(zio, NULL, db); } static void dbuf_write_override_done(zio_t *zio) { dbuf_dirty_record_t *dr = zio->io_private; dmu_buf_impl_t *db = dr->dr_dbuf; blkptr_t *obp = &dr->dt.dl.dr_overridden_by; mutex_enter(&db->db_mtx); if (!BP_EQUAL(zio->io_bp, obp)) { if (!BP_IS_HOLE(obp)) dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); arc_release(dr->dt.dl.dr_data, db); } mutex_exit(&db->db_mtx); dbuf_write_done(zio, NULL, db); } /* Issue I/O to commit a dirty buffer to disk. */ static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) { dmu_buf_impl_t *db = dr->dr_dbuf; dnode_t *dn; objset_t *os; dmu_buf_impl_t *parent = db->db_parent; uint64_t txg = tx->tx_txg; zbookmark_phys_t zb; zio_prop_t zp; zio_t *zio; int wp_flag = 0; DB_DNODE_ENTER(db); dn = DB_DNODE(db); os = dn->dn_objset; if (db->db_state != DB_NOFILL) { if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { /* * Private object buffers are released here rather * than in dbuf_dirty() since they are only modified * in the syncing context and we don't want the * overhead of making multiple copies of the data. */ if (BP_IS_HOLE(db->db_blkptr)) { arc_buf_thaw(data); } else { dbuf_release_bp(db); } } } if (parent != dn->dn_dbuf) { /* Our parent is an indirect block. */ /* We have a dirty parent that has been scheduled for write. */ ASSERT(parent && parent->db_data_pending); /* Our parent's buffer is one level closer to the dnode. */ ASSERT(db->db_level == parent->db_level-1); /* * We're about to modify our parent's db_data by modifying * our block pointer, so the parent must be released. */ ASSERT(arc_released(parent->db_buf)); zio = parent->db_data_pending->dr_zio; } else { /* Our parent is the dnode itself. */ ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && db->db_blkid != DMU_SPILL_BLKID) || (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); if (db->db_blkid != DMU_SPILL_BLKID) ASSERT3P(db->db_blkptr, ==, &dn->dn_phys->dn_blkptr[db->db_blkid]); zio = dn->dn_zio; } ASSERT(db->db_level == 0 || data == db->db_buf); ASSERT3U(db->db_blkptr->blk_birth, <=, txg); ASSERT(zio); SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, db->db.db_object, db->db_level, db->db_blkid); if (db->db_blkid == DMU_SPILL_BLKID) wp_flag = WP_SPILL; wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); DB_DNODE_EXIT(db); if (db->db_level == 0 && dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { /* * The BP for this block has been provided by open context * (by dmu_sync() or dmu_buf_write_embedded()). */ void *contents = (data != NULL) ? data->b_data : NULL; dr->dr_zio = zio_write(zio, os->os_spa, txg, db->db_blkptr, contents, db->db.db_size, &zp, dbuf_write_override_ready, NULL, dbuf_write_override_done, dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); mutex_enter(&db->db_mtx); dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); mutex_exit(&db->db_mtx); } else if (db->db_state == DB_NOFILL) { ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); dr->dr_zio = zio_write(zio, os->os_spa, txg, db->db_blkptr, NULL, db->db.db_size, &zp, dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); } else { ASSERT(arc_released(data)); dr->dr_zio = arc_write(zio, os->os_spa, txg, db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db), DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready, dbuf_write_physdone, dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_objset.c (revision 274273) @@ -1,1809 +1,1825 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Needed to close a window in dnode_move() that allows the objset to be freed * before it can be safely accessed. */ krwlock_t os_lock; void dmu_objset_init(void) { rw_init(&os_lock, NULL, RW_DEFAULT, NULL); } void dmu_objset_fini(void) { rw_destroy(&os_lock); } spa_t * dmu_objset_spa(objset_t *os) { return (os->os_spa); } zilog_t * dmu_objset_zil(objset_t *os) { return (os->os_zil); } dsl_pool_t * dmu_objset_pool(objset_t *os) { dsl_dataset_t *ds; if ((ds = os->os_dsl_dataset) != NULL && ds->ds_dir) return (ds->ds_dir->dd_pool); else return (spa_get_dsl(os->os_spa)); } dsl_dataset_t * dmu_objset_ds(objset_t *os) { return (os->os_dsl_dataset); } dmu_objset_type_t dmu_objset_type(objset_t *os) { return (os->os_phys->os_type); } void dmu_objset_name(objset_t *os, char *buf) { dsl_dataset_name(os->os_dsl_dataset, buf); } uint64_t dmu_objset_id(objset_t *os) { dsl_dataset_t *ds = os->os_dsl_dataset; return (ds ? ds->ds_object : 0); } zfs_sync_type_t dmu_objset_syncprop(objset_t *os) { return (os->os_sync); } zfs_logbias_op_t dmu_objset_logbias(objset_t *os) { return (os->os_logbias); } static void checksum_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance should have been done by now. */ ASSERT(newval != ZIO_CHECKSUM_INHERIT); os->os_checksum = zio_checksum_select(newval, ZIO_CHECKSUM_ON_VALUE); } static void compression_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval != ZIO_COMPRESS_INHERIT); os->os_compress = zio_compress_select(newval, ZIO_COMPRESS_ON_VALUE); } static void copies_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval > 0); ASSERT(newval <= spa_max_replication(os->os_spa)); os->os_copies = newval; } static void dedup_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; spa_t *spa = os->os_spa; enum zio_checksum checksum; /* * Inheritance should have been done by now. */ ASSERT(newval != ZIO_CHECKSUM_INHERIT); checksum = zio_checksum_dedup_select(spa, newval, ZIO_CHECKSUM_OFF); os->os_dedup_checksum = checksum & ZIO_CHECKSUM_MASK; os->os_dedup_verify = !!(checksum & ZIO_CHECKSUM_VERIFY); } static void primary_cache_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE || newval == ZFS_CACHE_METADATA); os->os_primary_cache = newval; } static void secondary_cache_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE || newval == ZFS_CACHE_METADATA); os->os_secondary_cache = newval; } static void sync_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_SYNC_STANDARD || newval == ZFS_SYNC_ALWAYS || newval == ZFS_SYNC_DISABLED); os->os_sync = newval; if (os->os_zil) zil_set_sync(os->os_zil, newval); } static void redundant_metadata_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; /* * Inheritance and range checking should have been done by now. */ ASSERT(newval == ZFS_REDUNDANT_METADATA_ALL || newval == ZFS_REDUNDANT_METADATA_MOST); os->os_redundant_metadata = newval; } static void logbias_changed_cb(void *arg, uint64_t newval) { objset_t *os = arg; ASSERT(newval == ZFS_LOGBIAS_LATENCY || newval == ZFS_LOGBIAS_THROUGHPUT); os->os_logbias = newval; if (os->os_zil) zil_set_logbias(os->os_zil, newval); } +static void +recordsize_changed_cb(void *arg, uint64_t newval) +{ + objset_t *os = arg; + + os->os_recordsize = newval; +} + void dmu_objset_byteswap(void *buf, size_t size) { objset_phys_t *osp = buf; ASSERT(size == OBJSET_OLD_PHYS_SIZE || size == sizeof (objset_phys_t)); dnode_byteswap(&osp->os_meta_dnode); byteswap_uint64_array(&osp->os_zil_header, sizeof (zil_header_t)); osp->os_type = BSWAP_64(osp->os_type); osp->os_flags = BSWAP_64(osp->os_flags); if (size == sizeof (objset_phys_t)) { dnode_byteswap(&osp->os_userused_dnode); dnode_byteswap(&osp->os_groupused_dnode); } } int dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp, objset_t **osp) { objset_t *os; int i, err; ASSERT(ds == NULL || MUTEX_HELD(&ds->ds_opening_lock)); os = kmem_zalloc(sizeof (objset_t), KM_SLEEP); os->os_dsl_dataset = ds; os->os_spa = spa; os->os_rootbp = bp; if (!BP_IS_HOLE(os->os_rootbp)) { uint32_t aflags = ARC_WAIT; zbookmark_phys_t zb; SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); if (DMU_OS_IS_L2CACHEABLE(os)) aflags |= ARC_L2CACHE; if (DMU_OS_IS_L2COMPRESSIBLE(os)) aflags |= ARC_L2COMPRESS; dprintf_bp(os->os_rootbp, "reading %s", ""); err = arc_read(NULL, spa, os->os_rootbp, arc_getbuf_func, &os->os_phys_buf, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL, &aflags, &zb); if (err != 0) { kmem_free(os, sizeof (objset_t)); /* convert checksum errors into IO errors */ if (err == ECKSUM) err = SET_ERROR(EIO); return (err); } /* Increase the blocksize if we are permitted. */ if (spa_version(spa) >= SPA_VERSION_USERSPACE && arc_buf_size(os->os_phys_buf) < sizeof (objset_phys_t)) { arc_buf_t *buf = arc_buf_alloc(spa, sizeof (objset_phys_t), &os->os_phys_buf, ARC_BUFC_METADATA); bzero(buf->b_data, sizeof (objset_phys_t)); bcopy(os->os_phys_buf->b_data, buf->b_data, arc_buf_size(os->os_phys_buf)); (void) arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf); os->os_phys_buf = buf; } os->os_phys = os->os_phys_buf->b_data; os->os_flags = os->os_phys->os_flags; } else { int size = spa_version(spa) >= SPA_VERSION_USERSPACE ? sizeof (objset_phys_t) : OBJSET_OLD_PHYS_SIZE; os->os_phys_buf = arc_buf_alloc(spa, size, &os->os_phys_buf, ARC_BUFC_METADATA); os->os_phys = os->os_phys_buf->b_data; bzero(os->os_phys, size); } /* * Note: the changed_cb will be called once before the register * func returns, thus changing the checksum/compression from the * default (fletcher2/off). Snapshots don't need to know about * checksum/compression/copies. */ if (ds != NULL) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE), primary_cache_changed_cb, os); if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE), secondary_cache_changed_cb, os); } if (!dsl_dataset_is_snapshot(ds)) { if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_COMPRESSION), compression_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_COPIES), copies_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEDUP), dedup_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_LOGBIAS), logbias_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SYNC), sync_changed_cb, os); } if (err == 0) { err = dsl_prop_register(ds, zfs_prop_to_name( ZFS_PROP_REDUNDANT_METADATA), redundant_metadata_changed_cb, os); } + if (err == 0) { + err = dsl_prop_register(ds, + zfs_prop_to_name(ZFS_PROP_RECORDSIZE), + recordsize_changed_cb, os); + } } if (err != 0) { VERIFY(arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf)); kmem_free(os, sizeof (objset_t)); return (err); } } else { /* It's the meta-objset. */ os->os_checksum = ZIO_CHECKSUM_FLETCHER_4; os->os_compress = ZIO_COMPRESS_LZJB; os->os_copies = spa_max_replication(spa); os->os_dedup_checksum = ZIO_CHECKSUM_OFF; os->os_dedup_verify = B_FALSE; os->os_logbias = ZFS_LOGBIAS_LATENCY; os->os_sync = ZFS_SYNC_STANDARD; os->os_primary_cache = ZFS_CACHE_ALL; os->os_secondary_cache = ZFS_CACHE_ALL; } if (ds == NULL || !dsl_dataset_is_snapshot(ds)) os->os_zil_header = os->os_phys->os_zil_header; os->os_zil = zil_alloc(os, &os->os_zil_header); for (i = 0; i < TXG_SIZE; i++) { list_create(&os->os_dirty_dnodes[i], sizeof (dnode_t), offsetof(dnode_t, dn_dirty_link[i])); list_create(&os->os_free_dnodes[i], sizeof (dnode_t), offsetof(dnode_t, dn_dirty_link[i])); } list_create(&os->os_dnodes, sizeof (dnode_t), offsetof(dnode_t, dn_link)); list_create(&os->os_downgraded_dbufs, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); mutex_init(&os->os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&os->os_obj_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&os->os_user_ptr_lock, NULL, MUTEX_DEFAULT, NULL); DMU_META_DNODE(os) = dnode_special_open(os, &os->os_phys->os_meta_dnode, DMU_META_DNODE_OBJECT, &os->os_meta_dnode); if (arc_buf_size(os->os_phys_buf) >= sizeof (objset_phys_t)) { DMU_USERUSED_DNODE(os) = dnode_special_open(os, &os->os_phys->os_userused_dnode, DMU_USERUSED_OBJECT, &os->os_userused_dnode); DMU_GROUPUSED_DNODE(os) = dnode_special_open(os, &os->os_phys->os_groupused_dnode, DMU_GROUPUSED_OBJECT, &os->os_groupused_dnode); } *osp = os; return (0); } int dmu_objset_from_ds(dsl_dataset_t *ds, objset_t **osp) { int err = 0; mutex_enter(&ds->ds_opening_lock); if (ds->ds_objset == NULL) { objset_t *os; err = dmu_objset_open_impl(dsl_dataset_get_spa(ds), ds, dsl_dataset_get_blkptr(ds), &os); if (err == 0) { mutex_enter(&ds->ds_lock); ASSERT(ds->ds_objset == NULL); ds->ds_objset = os; mutex_exit(&ds->ds_lock); } } *osp = ds->ds_objset; mutex_exit(&ds->ds_opening_lock); return (err); } /* * Holds the pool while the objset is held. Therefore only one objset * can be held at a time. */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; err = dsl_pool_hold(name, tag, &dp); if (err != 0) return (err); err = dsl_dataset_hold(dp, name, tag, &ds); if (err != 0) { dsl_pool_rele(dp, tag); return (err); } err = dmu_objset_from_ds(ds, osp); if (err != 0) { dsl_dataset_rele(ds, tag); dsl_pool_rele(dp, tag); } return (err); } /* * dsl_pool must not be held when this is called. * Upon successful return, there will be a longhold on the dataset, * and the dsl_pool will not be held. */ int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; err = dsl_pool_hold(name, FTAG, &dp); if (err != 0) return (err); err = dsl_dataset_own(dp, name, tag, &ds); if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } err = dmu_objset_from_ds(ds, osp); dsl_pool_rele(dp, FTAG); if (err != 0) { dsl_dataset_disown(ds, tag); } else if (type != DMU_OST_ANY && type != (*osp)->os_phys->os_type) { dsl_dataset_disown(ds, tag); return (SET_ERROR(EINVAL)); } else if (!readonly && dsl_dataset_is_snapshot(ds)) { dsl_dataset_disown(ds, tag); return (SET_ERROR(EROFS)); } return (err); } void dmu_objset_rele(objset_t *os, void *tag) { dsl_pool_t *dp = dmu_objset_pool(os); dsl_dataset_rele(os->os_dsl_dataset, tag); dsl_pool_rele(dp, tag); } /* * When we are called, os MUST refer to an objset associated with a dataset * that is owned by 'tag'; that is, is held and long held by 'tag' and ds_owner * == tag. We will then release and reacquire ownership of the dataset while * holding the pool config_rwlock to avoid intervening namespace or ownership * changes may occur. * * This exists solely to accommodate zfs_ioc_userspace_upgrade()'s desire to * release the hold on its dataset and acquire a new one on the dataset of the * same name so that it can be partially torn down and reconstructed. */ void dmu_objset_refresh_ownership(objset_t *os, void *tag) { dsl_pool_t *dp; dsl_dataset_t *ds, *newds; char name[MAXNAMELEN]; ds = os->os_dsl_dataset; VERIFY3P(ds, !=, NULL); VERIFY3P(ds->ds_owner, ==, tag); VERIFY(dsl_dataset_long_held(ds)); dsl_dataset_name(ds, name); dp = dmu_objset_pool(os); dsl_pool_config_enter(dp, FTAG); dmu_objset_disown(os, tag); VERIFY0(dsl_dataset_own(dp, name, tag, &newds)); VERIFY3P(newds, ==, os->os_dsl_dataset); dsl_pool_config_exit(dp, FTAG); } void dmu_objset_disown(objset_t *os, void *tag) { dsl_dataset_disown(os->os_dsl_dataset, tag); } void dmu_objset_evict_dbufs(objset_t *os) { dnode_t *dn; mutex_enter(&os->os_lock); /* process the mdn last, since the other dnodes have holds on it */ list_remove(&os->os_dnodes, DMU_META_DNODE(os)); list_insert_tail(&os->os_dnodes, DMU_META_DNODE(os)); /* * Find the first dnode with holds. We have to do this dance * because dnode_add_ref() only works if you already have a * hold. If there are no holds then it has no dbufs so OK to * skip. */ for (dn = list_head(&os->os_dnodes); dn && !dnode_add_ref(dn, FTAG); dn = list_next(&os->os_dnodes, dn)) continue; while (dn) { dnode_t *next_dn = dn; do { next_dn = list_next(&os->os_dnodes, next_dn); } while (next_dn && !dnode_add_ref(next_dn, FTAG)); mutex_exit(&os->os_lock); dnode_evict_dbufs(dn); dnode_rele(dn, FTAG); mutex_enter(&os->os_lock); dn = next_dn; } mutex_exit(&os->os_lock); } void dmu_objset_evict(objset_t *os) { dsl_dataset_t *ds = os->os_dsl_dataset; for (int t = 0; t < TXG_SIZE; t++) ASSERT(!dmu_objset_is_dirty(os, t)); if (ds) { if (!dsl_dataset_is_snapshot(ds)) { VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_COMPRESSION), compression_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_COPIES), copies_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEDUP), dedup_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_LOGBIAS), logbias_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SYNC), sync_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_REDUNDANT_METADATA), redundant_metadata_changed_cb, os)); + VERIFY0(dsl_prop_unregister(ds, + zfs_prop_to_name(ZFS_PROP_RECORDSIZE), + recordsize_changed_cb, os)); } VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE), primary_cache_changed_cb, os)); VERIFY0(dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE), secondary_cache_changed_cb, os)); } if (os->os_sa) sa_tear_down(os); dmu_objset_evict_dbufs(os); dnode_special_close(&os->os_meta_dnode); if (DMU_USERUSED_DNODE(os)) { dnode_special_close(&os->os_userused_dnode); dnode_special_close(&os->os_groupused_dnode); } zil_free(os->os_zil); ASSERT3P(list_head(&os->os_dnodes), ==, NULL); VERIFY(arc_buf_remove_ref(os->os_phys_buf, &os->os_phys_buf)); /* * This is a barrier to prevent the objset from going away in * dnode_move() until we can safely ensure that the objset is still in * use. We consider the objset valid before the barrier and invalid * after the barrier. */ rw_enter(&os_lock, RW_READER); rw_exit(&os_lock); mutex_destroy(&os->os_lock); mutex_destroy(&os->os_obj_lock); mutex_destroy(&os->os_user_ptr_lock); kmem_free(os, sizeof (objset_t)); } timestruc_t dmu_objset_snap_cmtime(objset_t *os) { return (dsl_dir_snap_cmtime(os->os_dsl_dataset->ds_dir)); } /* called from dsl for meta-objset */ objset_t * dmu_objset_create_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx) { objset_t *os; dnode_t *mdn; ASSERT(dmu_tx_is_syncing(tx)); if (ds != NULL) VERIFY0(dmu_objset_from_ds(ds, &os)); else VERIFY0(dmu_objset_open_impl(spa, NULL, bp, &os)); mdn = DMU_META_DNODE(os); dnode_allocate(mdn, DMU_OT_DNODE, 1 << DNODE_BLOCK_SHIFT, DN_MAX_INDBLKSHIFT, DMU_OT_NONE, 0, tx); /* * We don't want to have to increase the meta-dnode's nlevels * later, because then we could do it in quescing context while * we are also accessing it in open context. * * This precaution is not necessary for the MOS (ds == NULL), * because the MOS is only updated in syncing context. * This is most fortunate: the MOS is the only objset that * needs to be synced multiple times as spa_sync() iterates * to convergence, so minimizing its dn_nlevels matters. */ if (ds != NULL) { int levels = 1; /* * Determine the number of levels necessary for the meta-dnode * to contain DN_MAX_OBJECT dnodes. */ while ((uint64_t)mdn->dn_nblkptr << (mdn->dn_datablkshift + (levels - 1) * (mdn->dn_indblkshift - SPA_BLKPTRSHIFT)) < DN_MAX_OBJECT * sizeof (dnode_phys_t)) levels++; mdn->dn_next_nlevels[tx->tx_txg & TXG_MASK] = mdn->dn_nlevels = levels; } ASSERT(type != DMU_OST_NONE); ASSERT(type != DMU_OST_ANY); ASSERT(type < DMU_OST_NUMTYPES); os->os_phys->os_type = type; if (dmu_objset_userused_enabled(os)) { os->os_phys->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE; os->os_flags = os->os_phys->os_flags; } dsl_dataset_dirty(ds, tx); return (os); } typedef struct dmu_objset_create_arg { const char *doca_name; cred_t *doca_cred; void (*doca_userfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); void *doca_userarg; dmu_objset_type_t doca_type; uint64_t doca_flags; } dmu_objset_create_arg_t; /*ARGSUSED*/ static int dmu_objset_create_check(void *arg, dmu_tx_t *tx) { dmu_objset_create_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; int error; if (strchr(doca->doca_name, '@') != NULL) return (SET_ERROR(EINVAL)); error = dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail); if (error != 0) return (error); if (tail == NULL) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EEXIST)); } error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, doca->doca_cred); dsl_dir_rele(pdd, FTAG); return (error); } static void dmu_objset_create_sync(void *arg, dmu_tx_t *tx) { dmu_objset_create_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; dsl_dataset_t *ds; uint64_t obj; blkptr_t *bp; objset_t *os; VERIFY0(dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail)); obj = dsl_dataset_create_sync(pdd, tail, NULL, doca->doca_flags, doca->doca_cred, tx); VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds)); bp = dsl_dataset_get_blkptr(ds); os = dmu_objset_create_impl(pdd->dd_pool->dp_spa, ds, bp, doca->doca_type, tx); if (doca->doca_userfunc != NULL) { doca->doca_userfunc(os, doca->doca_userarg, doca->doca_cred, tx); } spa_history_log_internal_ds(ds, "create", tx, ""); dsl_dataset_rele(ds, FTAG); dsl_dir_rele(pdd, FTAG); } int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg) { dmu_objset_create_arg_t doca; doca.doca_name = name; doca.doca_cred = CRED(); doca.doca_flags = flags; doca.doca_userfunc = func; doca.doca_userarg = arg; doca.doca_type = type; return (dsl_sync_task(name, dmu_objset_create_check, dmu_objset_create_sync, &doca, 5, ZFS_SPACE_CHECK_NORMAL)); } typedef struct dmu_objset_clone_arg { const char *doca_clone; const char *doca_origin; cred_t *doca_cred; } dmu_objset_clone_arg_t; /*ARGSUSED*/ static int dmu_objset_clone_check(void *arg, dmu_tx_t *tx) { dmu_objset_clone_arg_t *doca = arg; dsl_dir_t *pdd; const char *tail; int error; dsl_dataset_t *origin; dsl_pool_t *dp = dmu_tx_pool(tx); if (strchr(doca->doca_clone, '@') != NULL) return (SET_ERROR(EINVAL)); error = dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail); if (error != 0) return (error); if (tail == NULL) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EEXIST)); } /* You can't clone across pools. */ if (pdd->dd_pool != dp) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EXDEV)); } error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, doca->doca_cred); if (error != 0) { dsl_dir_rele(pdd, FTAG); return (SET_ERROR(EDQUOT)); } dsl_dir_rele(pdd, FTAG); error = dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin); if (error != 0) return (error); /* You can't clone across pools. */ if (origin->ds_dir->dd_pool != dp) { dsl_dataset_rele(origin, FTAG); return (SET_ERROR(EXDEV)); } /* You can only clone snapshots, not the head datasets. */ if (!dsl_dataset_is_snapshot(origin)) { dsl_dataset_rele(origin, FTAG); return (SET_ERROR(EINVAL)); } dsl_dataset_rele(origin, FTAG); return (0); } static void dmu_objset_clone_sync(void *arg, dmu_tx_t *tx) { dmu_objset_clone_arg_t *doca = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *pdd; const char *tail; dsl_dataset_t *origin, *ds; uint64_t obj; char namebuf[MAXNAMELEN]; VERIFY0(dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail)); VERIFY0(dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin)); obj = dsl_dataset_create_sync(pdd, tail, origin, 0, doca->doca_cred, tx); VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds)); dsl_dataset_name(origin, namebuf); spa_history_log_internal_ds(ds, "clone", tx, "origin=%s (%llu)", namebuf, origin->ds_object); dsl_dataset_rele(ds, FTAG); dsl_dataset_rele(origin, FTAG); dsl_dir_rele(pdd, FTAG); } int dmu_objset_clone(const char *clone, const char *origin) { dmu_objset_clone_arg_t doca; doca.doca_clone = clone; doca.doca_origin = origin; doca.doca_cred = CRED(); return (dsl_sync_task(clone, dmu_objset_clone_check, dmu_objset_clone_sync, &doca, 5, ZFS_SPACE_CHECK_NORMAL)); } int dmu_objset_snapshot_one(const char *fsname, const char *snapname) { int err; char *longsnap = kmem_asprintf("%s@%s", fsname, snapname); nvlist_t *snaps = fnvlist_alloc(); fnvlist_add_boolean(snaps, longsnap); strfree(longsnap); err = dsl_dataset_snapshot(snaps, NULL, NULL); fnvlist_free(snaps); return (err); } static void dmu_objset_sync_dnodes(list_t *list, list_t *newlist, dmu_tx_t *tx) { dnode_t *dn; while (dn = list_head(list)) { ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); ASSERT(dn->dn_dbuf->db_data_pending); /* * Initialize dn_zio outside dnode_sync() because the * meta-dnode needs to set it ouside dnode_sync(). */ dn->dn_zio = dn->dn_dbuf->db_data_pending->dr_zio; ASSERT(dn->dn_zio); ASSERT3U(dn->dn_nlevels, <=, DN_MAX_LEVELS); list_remove(list, dn); if (newlist) { (void) dnode_add_ref(dn, newlist); list_insert_tail(newlist, dn); } dnode_sync(dn, tx); } } /* ARGSUSED */ static void dmu_objset_write_ready(zio_t *zio, arc_buf_t *abuf, void *arg) { blkptr_t *bp = zio->io_bp; objset_t *os = arg; dnode_phys_t *dnp = &os->os_phys->os_meta_dnode; ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3P(bp, ==, os->os_rootbp); ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_OBJSET); ASSERT0(BP_GET_LEVEL(bp)); /* * Update rootbp fill count: it should be the number of objects * allocated in the object set (not counting the "special" * objects that are stored in the objset_phys_t -- the meta * dnode and user/group accounting objects). */ bp->blk_fill = 0; for (int i = 0; i < dnp->dn_nblkptr; i++) bp->blk_fill += BP_GET_FILL(&dnp->dn_blkptr[i]); } /* ARGSUSED */ static void dmu_objset_write_done(zio_t *zio, arc_buf_t *abuf, void *arg) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; objset_t *os = arg; if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { ASSERT(BP_EQUAL(bp, bp_orig)); } else { dsl_dataset_t *ds = os->os_dsl_dataset; dmu_tx_t *tx = os->os_synctx; (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); dsl_dataset_block_born(ds, bp, tx); } } /* called from dsl */ void dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx) { int txgoff; zbookmark_phys_t zb; zio_prop_t zp; zio_t *zio; list_t *list; list_t *newlist = NULL; dbuf_dirty_record_t *dr; dprintf_ds(os->os_dsl_dataset, "txg=%llu\n", tx->tx_txg); ASSERT(dmu_tx_is_syncing(tx)); /* XXX the write_done callback should really give us the tx... */ os->os_synctx = tx; if (os->os_dsl_dataset == NULL) { /* * This is the MOS. If we have upgraded, * spa_max_replication() could change, so reset * os_copies here. */ os->os_copies = spa_max_replication(os->os_spa); } /* * Create the root block IO */ SET_BOOKMARK(&zb, os->os_dsl_dataset ? os->os_dsl_dataset->ds_object : DMU_META_OBJSET, ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); arc_release(os->os_phys_buf, &os->os_phys_buf); dmu_write_policy(os, NULL, 0, 0, &zp); zio = arc_write(pio, os->os_spa, tx->tx_txg, os->os_rootbp, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os), DMU_OS_IS_L2COMPRESSIBLE(os), &zp, dmu_objset_write_ready, NULL, dmu_objset_write_done, os, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); /* * Sync special dnodes - the parent IO for the sync is the root block */ DMU_META_DNODE(os)->dn_zio = zio; dnode_sync(DMU_META_DNODE(os), tx); os->os_phys->os_flags = os->os_flags; if (DMU_USERUSED_DNODE(os) && DMU_USERUSED_DNODE(os)->dn_type != DMU_OT_NONE) { DMU_USERUSED_DNODE(os)->dn_zio = zio; dnode_sync(DMU_USERUSED_DNODE(os), tx); DMU_GROUPUSED_DNODE(os)->dn_zio = zio; dnode_sync(DMU_GROUPUSED_DNODE(os), tx); } txgoff = tx->tx_txg & TXG_MASK; if (dmu_objset_userused_enabled(os)) { newlist = &os->os_synced_dnodes; /* * We must create the list here because it uses the * dn_dirty_link[] of this txg. */ list_create(newlist, sizeof (dnode_t), offsetof(dnode_t, dn_dirty_link[txgoff])); } dmu_objset_sync_dnodes(&os->os_free_dnodes[txgoff], newlist, tx); dmu_objset_sync_dnodes(&os->os_dirty_dnodes[txgoff], newlist, tx); list = &DMU_META_DNODE(os)->dn_dirty_records[txgoff]; while (dr = list_head(list)) { ASSERT0(dr->dr_dbuf->db_level); list_remove(list, dr); if (dr->dr_zio) zio_nowait(dr->dr_zio); } /* * Free intent log blocks up to this tx. */ zil_sync(os->os_zil, tx); os->os_phys->os_zil_header = os->os_zil_header; zio_nowait(zio); } boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg) { return (!list_is_empty(&os->os_dirty_dnodes[txg & TXG_MASK]) || !list_is_empty(&os->os_free_dnodes[txg & TXG_MASK])); } static objset_used_cb_t *used_cbs[DMU_OST_NUMTYPES]; void dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb) { used_cbs[ost] = cb; } boolean_t dmu_objset_userused_enabled(objset_t *os) { return (spa_version(os->os_spa) >= SPA_VERSION_USERSPACE && used_cbs[os->os_phys->os_type] != NULL && DMU_USERUSED_DNODE(os) != NULL); } static void do_userquota_update(objset_t *os, uint64_t used, uint64_t flags, uint64_t user, uint64_t group, boolean_t subtract, dmu_tx_t *tx) { if ((flags & DNODE_FLAG_USERUSED_ACCOUNTED)) { int64_t delta = DNODE_SIZE + used; if (subtract) delta = -delta; VERIFY3U(0, ==, zap_increment_int(os, DMU_USERUSED_OBJECT, user, delta, tx)); VERIFY3U(0, ==, zap_increment_int(os, DMU_GROUPUSED_OBJECT, group, delta, tx)); } } void dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx) { dnode_t *dn; list_t *list = &os->os_synced_dnodes; ASSERT(list_head(list) == NULL || dmu_objset_userused_enabled(os)); while (dn = list_head(list)) { int flags; ASSERT(!DMU_OBJECT_IS_SPECIAL(dn->dn_object)); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE || dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED); /* Allocate the user/groupused objects if necessary. */ if (DMU_USERUSED_DNODE(os)->dn_type == DMU_OT_NONE) { VERIFY(0 == zap_create_claim(os, DMU_USERUSED_OBJECT, DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx)); VERIFY(0 == zap_create_claim(os, DMU_GROUPUSED_OBJECT, DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx)); } /* * We intentionally modify the zap object even if the * net delta is zero. Otherwise * the block of the zap obj could be shared between * datasets but need to be different between them after * a bprewrite. */ flags = dn->dn_id_flags; ASSERT(flags); if (flags & DN_ID_OLD_EXIST) { do_userquota_update(os, dn->dn_oldused, dn->dn_oldflags, dn->dn_olduid, dn->dn_oldgid, B_TRUE, tx); } if (flags & DN_ID_NEW_EXIST) { do_userquota_update(os, DN_USED_BYTES(dn->dn_phys), dn->dn_phys->dn_flags, dn->dn_newuid, dn->dn_newgid, B_FALSE, tx); } mutex_enter(&dn->dn_mtx); dn->dn_oldused = 0; dn->dn_oldflags = 0; if (dn->dn_id_flags & DN_ID_NEW_EXIST) { dn->dn_olduid = dn->dn_newuid; dn->dn_oldgid = dn->dn_newgid; dn->dn_id_flags |= DN_ID_OLD_EXIST; if (dn->dn_bonuslen == 0) dn->dn_id_flags |= DN_ID_CHKED_SPILL; else dn->dn_id_flags |= DN_ID_CHKED_BONUS; } dn->dn_id_flags &= ~(DN_ID_NEW_EXIST); mutex_exit(&dn->dn_mtx); list_remove(list, dn); dnode_rele(dn, list); } } /* * Returns a pointer to data to find uid/gid from * * If a dirty record for transaction group that is syncing can't * be found then NULL is returned. In the NULL case it is assumed * the uid/gid aren't changing. */ static void * dmu_objset_userquota_find_data(dmu_buf_impl_t *db, dmu_tx_t *tx) { dbuf_dirty_record_t *dr, **drp; void *data; if (db->db_dirtycnt == 0) return (db->db.db_data); /* Nothing is changing */ for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next) if (dr->dr_txg == tx->tx_txg) break; if (dr == NULL) { data = NULL; } else { dnode_t *dn; DB_DNODE_ENTER(dr->dr_dbuf); dn = DB_DNODE(dr->dr_dbuf); if (dn->dn_bonuslen == 0 && dr->dr_dbuf->db_blkid == DMU_SPILL_BLKID) data = dr->dt.dl.dr_data->b_data; else data = dr->dt.dl.dr_data; DB_DNODE_EXIT(dr->dr_dbuf); } return (data); } void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; void *data = NULL; dmu_buf_impl_t *db = NULL; uint64_t *user = NULL; uint64_t *group = NULL; int flags = dn->dn_id_flags; int error; boolean_t have_spill = B_FALSE; if (!dmu_objset_userused_enabled(dn->dn_objset)) return; if (before && (flags & (DN_ID_CHKED_BONUS|DN_ID_OLD_EXIST| DN_ID_CHKED_SPILL))) return; if (before && dn->dn_bonuslen != 0) data = DN_BONUS(dn->dn_phys); else if (!before && dn->dn_bonuslen != 0) { if (dn->dn_bonus) { db = dn->dn_bonus; mutex_enter(&db->db_mtx); data = dmu_objset_userquota_find_data(db, tx); } else { data = DN_BONUS(dn->dn_phys); } } else if (dn->dn_bonuslen == 0 && dn->dn_bonustype == DMU_OT_SA) { int rf = 0; if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) rf |= DB_RF_HAVESTRUCT; error = dmu_spill_hold_by_dnode(dn, rf | DB_RF_MUST_SUCCEED, FTAG, (dmu_buf_t **)&db); ASSERT(error == 0); mutex_enter(&db->db_mtx); data = (before) ? db->db.db_data : dmu_objset_userquota_find_data(db, tx); have_spill = B_TRUE; } else { mutex_enter(&dn->dn_mtx); dn->dn_id_flags |= DN_ID_CHKED_BONUS; mutex_exit(&dn->dn_mtx); return; } if (before) { ASSERT(data); user = &dn->dn_olduid; group = &dn->dn_oldgid; } else if (data) { user = &dn->dn_newuid; group = &dn->dn_newgid; } /* * Must always call the callback in case the object * type has changed and that type isn't an object type to track */ error = used_cbs[os->os_phys->os_type](dn->dn_bonustype, data, user, group); /* * Preserve existing uid/gid when the callback can't determine * what the new uid/gid are and the callback returned EEXIST. * The EEXIST error tells us to just use the existing uid/gid. * If we don't know what the old values are then just assign * them to 0, since that is a new file being created. */ if (!before && data == NULL && error == EEXIST) { if (flags & DN_ID_OLD_EXIST) { dn->dn_newuid = dn->dn_olduid; dn->dn_newgid = dn->dn_oldgid; } else { dn->dn_newuid = 0; dn->dn_newgid = 0; } error = 0; } if (db) mutex_exit(&db->db_mtx); mutex_enter(&dn->dn_mtx); if (error == 0 && before) dn->dn_id_flags |= DN_ID_OLD_EXIST; if (error == 0 && !before) dn->dn_id_flags |= DN_ID_NEW_EXIST; if (have_spill) { dn->dn_id_flags |= DN_ID_CHKED_SPILL; } else { dn->dn_id_flags |= DN_ID_CHKED_BONUS; } mutex_exit(&dn->dn_mtx); if (have_spill) dmu_buf_rele((dmu_buf_t *)db, FTAG); } boolean_t dmu_objset_userspace_present(objset_t *os) { return (os->os_phys->os_flags & OBJSET_FLAG_USERACCOUNTING_COMPLETE); } int dmu_objset_userspace_upgrade(objset_t *os) { uint64_t obj; int err = 0; if (dmu_objset_userspace_present(os)) return (0); if (!dmu_objset_userused_enabled(os)) return (SET_ERROR(ENOTSUP)); if (dmu_objset_is_snapshot(os)) return (SET_ERROR(EINVAL)); /* * We simply need to mark every object dirty, so that it will be * synced out and now accounted. If this is called * concurrently, or if we already did some work before crashing, * that's fine, since we track each object's accounted state * independently. */ for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { dmu_tx_t *tx; dmu_buf_t *db; int objerr; if (issig(JUSTLOOKING) && issig(FORREAL)) return (SET_ERROR(EINTR)); objerr = dmu_bonus_hold(os, obj, FTAG, &db); if (objerr != 0) continue; tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, obj); objerr = dmu_tx_assign(tx, TXG_WAIT); if (objerr != 0) { dmu_tx_abort(tx); continue; } dmu_buf_will_dirty(db, tx); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } os->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE; txg_wait_synced(dmu_objset_pool(os), 0); return (0); } void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp) { dsl_dataset_space(os->os_dsl_dataset, refdbytesp, availbytesp, usedobjsp, availobjsp); } uint64_t dmu_objset_fsid_guid(objset_t *os) { return (dsl_dataset_fsid_guid(os->os_dsl_dataset)); } void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat) { stat->dds_type = os->os_phys->os_type; if (os->os_dsl_dataset) dsl_dataset_fast_stat(os->os_dsl_dataset, stat); } void dmu_objset_stats(objset_t *os, nvlist_t *nv) { ASSERT(os->os_dsl_dataset || os->os_phys->os_type == DMU_OST_META); if (os->os_dsl_dataset != NULL) dsl_dataset_stats(os->os_dsl_dataset, nv); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_TYPE, os->os_phys->os_type); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERACCOUNTING, dmu_objset_userspace_present(os)); } int dmu_objset_is_snapshot(objset_t *os) { if (os->os_dsl_dataset != NULL) return (dsl_dataset_is_snapshot(os->os_dsl_dataset)); else return (B_FALSE); } int dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen, boolean_t *conflict) { dsl_dataset_t *ds = os->os_dsl_dataset; uint64_t ignored; if (ds->ds_phys->ds_snapnames_zapobj == 0) return (SET_ERROR(ENOENT)); return (zap_lookup_norm(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_phys->ds_snapnames_zapobj, name, 8, 1, &ignored, MT_FIRST, real, maxlen, conflict)); } int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp, boolean_t *case_conflict) { dsl_dataset_t *ds = os->os_dsl_dataset; zap_cursor_t cursor; zap_attribute_t attr; ASSERT(dsl_pool_config_held(dmu_objset_pool(os))); if (ds->ds_phys->ds_snapnames_zapobj == 0) return (SET_ERROR(ENOENT)); zap_cursor_init_serialized(&cursor, ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_phys->ds_snapnames_zapobj, *offp); if (zap_cursor_retrieve(&cursor, &attr) != 0) { zap_cursor_fini(&cursor); return (SET_ERROR(ENOENT)); } if (strlen(attr.za_name) + 1 > namelen) { zap_cursor_fini(&cursor); return (SET_ERROR(ENAMETOOLONG)); } (void) strcpy(name, attr.za_name); if (idp) *idp = attr.za_first_integer; if (case_conflict) *case_conflict = attr.za_normalization_conflict; zap_cursor_advance(&cursor); *offp = zap_cursor_serialize(&cursor); zap_cursor_fini(&cursor); return (0); } int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp) { dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; zap_cursor_t cursor; zap_attribute_t attr; /* there is no next dir on a snapshot! */ if (os->os_dsl_dataset->ds_object != dd->dd_phys->dd_head_dataset_obj) return (SET_ERROR(ENOENT)); zap_cursor_init_serialized(&cursor, dd->dd_pool->dp_meta_objset, dd->dd_phys->dd_child_dir_zapobj, *offp); if (zap_cursor_retrieve(&cursor, &attr) != 0) { zap_cursor_fini(&cursor); return (SET_ERROR(ENOENT)); } if (strlen(attr.za_name) + 1 > namelen) { zap_cursor_fini(&cursor); return (SET_ERROR(ENAMETOOLONG)); } (void) strcpy(name, attr.za_name); if (idp) *idp = attr.za_first_integer; zap_cursor_advance(&cursor); *offp = zap_cursor_serialize(&cursor); zap_cursor_fini(&cursor); return (0); } /* * Find objsets under and including ddobj, call func(ds) on each. */ int dmu_objset_find_dp(dsl_pool_t *dp, uint64_t ddobj, int func(dsl_pool_t *, dsl_dataset_t *, void *), void *arg, int flags) { dsl_dir_t *dd; dsl_dataset_t *ds; zap_cursor_t zc; zap_attribute_t *attr; uint64_t thisobj; int err; ASSERT(dsl_pool_config_held(dp)); err = dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd); if (err != 0) return (err); /* Don't visit hidden ($MOS & $ORIGIN) objsets. */ if (dd->dd_myname[0] == '$') { dsl_dir_rele(dd, FTAG); return (0); } thisobj = dd->dd_phys->dd_head_dataset_obj; attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* * Iterate over all children. */ if (flags & DS_FIND_CHILDREN) { for (zap_cursor_init(&zc, dp->dp_meta_objset, dd->dd_phys->dd_child_dir_zapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); err = dmu_objset_find_dp(dp, attr->za_first_integer, func, arg, flags); if (err != 0) break; } zap_cursor_fini(&zc); if (err != 0) { dsl_dir_rele(dd, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); return (err); } } /* * Iterate over all snapshots. */ if (flags & DS_FIND_SNAPSHOTS) { dsl_dataset_t *ds; err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); if (err == 0) { uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; dsl_dataset_rele(ds, FTAG); for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); err = dsl_dataset_hold_obj(dp, attr->za_first_integer, FTAG, &ds); if (err != 0) break; err = func(dp, ds, arg); dsl_dataset_rele(ds, FTAG); if (err != 0) break; } zap_cursor_fini(&zc); } } dsl_dir_rele(dd, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); if (err != 0) return (err); /* * Apply to self. */ err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); if (err != 0) return (err); err = func(dp, ds, arg); dsl_dataset_rele(ds, FTAG); return (err); } /* * Find all objsets under name, and for each, call 'func(child_name, arg)'. * The dp_config_rwlock must not be held when this is called, and it * will not be held when the callback is called. * Therefore this function should only be used when the pool is not changing * (e.g. in syncing context), or the callback can deal with the possible races. */ static int dmu_objset_find_impl(spa_t *spa, const char *name, int func(const char *, void *), void *arg, int flags) { dsl_dir_t *dd; dsl_pool_t *dp = spa_get_dsl(spa); dsl_dataset_t *ds; zap_cursor_t zc; zap_attribute_t *attr; char *child; uint64_t thisobj; int err; dsl_pool_config_enter(dp, FTAG); err = dsl_dir_hold(dp, name, FTAG, &dd, NULL); if (err != 0) { dsl_pool_config_exit(dp, FTAG); return (err); } /* Don't visit hidden ($MOS & $ORIGIN) objsets. */ if (dd->dd_myname[0] == '$') { dsl_dir_rele(dd, FTAG); dsl_pool_config_exit(dp, FTAG); return (0); } thisobj = dd->dd_phys->dd_head_dataset_obj; attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* * Iterate over all children. */ if (flags & DS_FIND_CHILDREN) { for (zap_cursor_init(&zc, dp->dp_meta_objset, dd->dd_phys->dd_child_dir_zapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); child = kmem_asprintf("%s/%s", name, attr->za_name); dsl_pool_config_exit(dp, FTAG); err = dmu_objset_find_impl(spa, child, func, arg, flags); dsl_pool_config_enter(dp, FTAG); strfree(child); if (err != 0) break; } zap_cursor_fini(&zc); if (err != 0) { dsl_dir_rele(dd, FTAG); dsl_pool_config_exit(dp, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); return (err); } } /* * Iterate over all snapshots. */ if (flags & DS_FIND_SNAPSHOTS) { err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds); if (err == 0) { uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; dsl_dataset_rele(ds, FTAG); for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj); zap_cursor_retrieve(&zc, attr) == 0; (void) zap_cursor_advance(&zc)) { ASSERT3U(attr->za_integer_length, ==, sizeof (uint64_t)); ASSERT3U(attr->za_num_integers, ==, 1); child = kmem_asprintf("%s@%s", name, attr->za_name); dsl_pool_config_exit(dp, FTAG); err = func(child, arg); dsl_pool_config_enter(dp, FTAG); strfree(child); if (err != 0) break; } zap_cursor_fini(&zc); } } dsl_dir_rele(dd, FTAG); kmem_free(attr, sizeof (zap_attribute_t)); dsl_pool_config_exit(dp, FTAG); if (err != 0) return (err); /* Apply to self. */ return (func(name, arg)); } /* * See comment above dmu_objset_find_impl(). */ int dmu_objset_find(char *name, int func(const char *, void *), void *arg, int flags) { spa_t *spa; int error; error = spa_open(name, &spa, FTAG); if (error != 0) return (error); error = dmu_objset_find_impl(spa, name, func, arg, flags); spa_close(spa, FTAG); return (error); } void dmu_objset_set_user(objset_t *os, void *user_ptr) { ASSERT(MUTEX_HELD(&os->os_user_ptr_lock)); os->os_user_ptr = user_ptr; } void * dmu_objset_get_user(objset_t *os) { ASSERT(MUTEX_HELD(&os->os_user_ptr_lock)); return (os->os_user_ptr); } /* * Determine name of filesystem, given name of snapshot. * buf must be at least MAXNAMELEN bytes */ int dmu_fsname(const char *snapname, char *buf) { char *atp = strchr(snapname, '@'); if (atp == NULL) return (SET_ERROR(EINVAL)); if (atp - snapname >= MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); (void) strlcpy(buf, snapname, atp - snapname + 1); return (0); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_send.c (revision 274273) @@ -1,2113 +1,2156 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright 2014 HybridCluster. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ int zfs_send_corrupt_data = B_FALSE; static char *dmu_recv_tag = "dmu_recv_tag"; static const char *recv_clone_name = "%recv"; static int dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) { dsl_dataset_t *ds = dsp->dsa_os->os_dsl_dataset; ssize_t resid; /* have to get resid to get detailed errno */ ASSERT0(len % 8); fletcher_4_incremental_native(buf, len, &dsp->dsa_zc); dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, (caddr_t)buf, len, 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); mutex_enter(&ds->ds_sendstream_lock); *dsp->dsa_off += len; mutex_exit(&ds->ds_sendstream_lock); return (dsp->dsa_err); } static int dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, uint64_t length) { struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); /* * When we receive a free record, dbuf_free_range() assumes * that the receiving system doesn't have any dbufs in the range * being freed. This is always true because there is a one-record * constraint: we only send one WRITE record for any given * object+offset. We know that the one-record constraint is * true because we always send data in increasing order by * object,offset. * * If the increasing-order constraint ever changes, we should find * another way to assert that the one-record constraint is still * satisfied. */ ASSERT(object > dsp->dsa_last_data_object || (object == dsp->dsa_last_data_object && offset > dsp->dsa_last_data_offset)); /* * If we are doing a non-incremental send, then there can't * be any data in the dataset we're receiving into. Therefore * a free record would simply be a no-op. Save space by not * sending it to begin with. */ if (!dsp->dsa_incremental) return (0); if (length != -1ULL && offset + length < offset) length = -1ULL; /* * If there is a pending op, but it's not PENDING_FREE, push it out, * since free block aggregation can only be done for blocks of the * same type (i.e., DRR_FREE records can only be aggregated with * other DRR_FREE records. DRR_FREEOBJECTS records can only be * aggregated with other DRR_FREEOBJECTS records. */ if (dsp->dsa_pending_op != PENDING_NONE && dsp->dsa_pending_op != PENDING_FREE) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } if (dsp->dsa_pending_op == PENDING_FREE) { /* * There should never be a PENDING_FREE if length is -1 * (because dump_dnode is the only place where this * function is called with a -1, and only after flushing * any pending record). */ ASSERT(length != -1ULL); /* * Check to see whether this free block can be aggregated * with pending one. */ if (drrf->drr_object == object && drrf->drr_offset + drrf->drr_length == offset) { drrf->drr_length += length; return (0); } else { /* not a continuation. Push out pending record */ if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } } /* create a FREE record and make it pending */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_FREE; drrf->drr_object = object; drrf->drr_offset = offset; drrf->drr_length = length; drrf->drr_toguid = dsp->dsa_toguid; if (length == -1ULL) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); } else { dsp->dsa_pending_op = PENDING_FREE; } return (0); } static int dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) { struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); /* * We send data in increasing object, offset order. * See comment in dump_free() for details. */ ASSERT(object > dsp->dsa_last_data_object || (object == dsp->dsa_last_data_object && offset > dsp->dsa_last_data_offset)); dsp->dsa_last_data_object = object; dsp->dsa_last_data_offset = offset + blksz - 1; /* * If there is any kind of pending aggregation (currently either * a grouping of free objects or free blocks), push it out to * the stream, since aggregation can't be done across operations * of different types. */ if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write a DATA record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_WRITE; drrw->drr_object = object; drrw->drr_type = type; drrw->drr_offset = offset; drrw->drr_length = blksz; drrw->drr_toguid = dsp->dsa_toguid; - if (BP_IS_EMBEDDED(bp)) { + if (bp == NULL || BP_IS_EMBEDDED(bp)) { /* - * There's no pre-computed checksum of embedded BP's, so - * (like fletcher4-checkummed blocks) userland will have - * to compute a dedup-capable checksum itself. + * There's no pre-computed checksum for partial-block + * writes or embedded BP's, so (like + * fletcher4-checkummed blocks) userland will have to + * compute a dedup-capable checksum itself. */ drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; } else { drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); if (zio_checksum_table[drrw->drr_checksumtype].ci_dedup) drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); drrw->drr_key.ddk_cksum = bp->blk_cksum; } if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); if (dump_bytes(dsp, data, blksz) != 0) return (SET_ERROR(EINTR)); return (0); } static int dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp) { char buf[BPE_PAYLOAD_SIZE]; struct drr_write_embedded *drrw = &(dsp->dsa_drr->drr_u.drr_write_embedded); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (EINTR); dsp->dsa_pending_op = PENDING_NONE; } ASSERT(BP_IS_EMBEDDED(bp)); bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; drrw->drr_object = object; drrw->drr_offset = offset; drrw->drr_length = blksz; drrw->drr_toguid = dsp->dsa_toguid; drrw->drr_compression = BP_GET_COMPRESS(bp); drrw->drr_etype = BPE_GET_ETYPE(bp); drrw->drr_lsize = BPE_GET_LSIZE(bp); drrw->drr_psize = BPE_GET_PSIZE(bp); decode_embedded_bp_compressed(bp, buf); if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (EINTR); if (dump_bytes(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) return (EINTR); return (0); } static int dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) { struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write a SPILL record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_SPILL; drrs->drr_object = object; drrs->drr_length = blksz; drrs->drr_toguid = dsp->dsa_toguid; if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t))) return (SET_ERROR(EINTR)); if (dump_bytes(dsp, data, blksz)) return (SET_ERROR(EINTR)); return (0); } static int dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) { struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); /* See comment in dump_free(). */ if (!dsp->dsa_incremental) return (0); /* * If there is a pending op, but it's not PENDING_FREEOBJECTS, * push it out, since free block aggregation can only be done for * blocks of the same type (i.e., DRR_FREE records can only be * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records * can only be aggregated with other DRR_FREEOBJECTS records. */ if (dsp->dsa_pending_op != PENDING_NONE && dsp->dsa_pending_op != PENDING_FREEOBJECTS) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { /* * See whether this free object array can be aggregated * with pending one */ if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { drrfo->drr_numobjs += numobjs; return (0); } else { /* can't be aggregated. Push out pending record */ if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } } /* write a FREEOBJECTS record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; drrfo->drr_firstobj = firstobj; drrfo->drr_numobjs = numobjs; drrfo->drr_toguid = dsp->dsa_toguid; dsp->dsa_pending_op = PENDING_FREEOBJECTS; return (0); } static int dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) { struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) return (dump_freeobjects(dsp, object, 1)); if (dsp->dsa_pending_op != PENDING_NONE) { if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); dsp->dsa_pending_op = PENDING_NONE; } /* write an OBJECT record */ bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); dsp->dsa_drr->drr_type = DRR_OBJECT; drro->drr_object = object; drro->drr_type = dnp->dn_type; drro->drr_bonustype = dnp->dn_bonustype; drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; drro->drr_bonuslen = dnp->dn_bonuslen; drro->drr_checksumtype = dnp->dn_checksum; drro->drr_compress = dnp->dn_compress; drro->drr_toguid = dsp->dsa_toguid; + if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) + drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; + if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) return (SET_ERROR(EINTR)); if (dump_bytes(dsp, DN_BONUS(dnp), P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) return (SET_ERROR(EINTR)); /* Free anything past the end of the file. */ if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) return (SET_ERROR(EINTR)); if (dsp->dsa_err != 0) return (SET_ERROR(EINTR)); return (0); } static boolean_t backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) { if (!BP_IS_EMBEDDED(bp)) return (B_FALSE); /* * Compression function must be legacy, or explicitly enabled. */ if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) return (B_FALSE); /* * Embed type must be explicitly enabled. */ switch (BPE_GET_ETYPE(bp)) { case BP_EMBEDDED_TYPE_DATA: if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) return (B_TRUE); break; default: return (B_FALSE); } return (B_FALSE); } #define BP_SPAN(dnp, level) \ (((uint64_t)dnp->dn_datablkszsec) << (SPA_MINBLOCKSHIFT + \ (level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) /* ARGSUSED */ static int backup_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { dmu_sendarg_t *dsp = arg; dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; int err = 0; if (issig(JUSTLOOKING) && issig(FORREAL)) return (SET_ERROR(EINTR)); if (zb->zb_object != DMU_META_DNODE_OBJECT && DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { return (0); } else if (zb->zb_level == ZB_ZIL_LEVEL) { /* * If we are sending a non-snapshot (which is allowed on * read-only pools), it may have a ZIL, which must be ignored. */ return (0); } else if (BP_IS_HOLE(bp) && zb->zb_object == DMU_META_DNODE_OBJECT) { uint64_t span = BP_SPAN(dnp, zb->zb_level); uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; err = dump_freeobjects(dsp, dnobj, span >> DNODE_SHIFT); } else if (BP_IS_HOLE(bp)) { uint64_t span = BP_SPAN(dnp, zb->zb_level); err = dump_free(dsp, zb->zb_object, zb->zb_blkid * span, span); } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { return (0); } else if (type == DMU_OT_DNODE) { dnode_phys_t *blk; int i; int blksz = BP_GET_LSIZE(bp); uint32_t aflags = ARC_WAIT; arc_buf_t *abuf; if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &aflags, zb) != 0) return (SET_ERROR(EIO)); blk = abuf->b_data; for (i = 0; i < blksz >> DNODE_SHIFT; i++) { uint64_t dnobj = (zb->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)) + i; err = dump_dnode(dsp, dnobj, blk+i); if (err != 0) break; } (void) arc_buf_remove_ref(abuf, &abuf); } else if (type == DMU_OT_SA) { uint32_t aflags = ARC_WAIT; arc_buf_t *abuf; int blksz = BP_GET_LSIZE(bp); if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &aflags, zb) != 0) return (SET_ERROR(EIO)); err = dump_spill(dsp, zb->zb_object, blksz, abuf->b_data); (void) arc_buf_remove_ref(abuf, &abuf); } else if (backup_do_embed(dsp, bp)) { /* it's an embedded level-0 block of a regular object */ int blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; err = dump_write_embedded(dsp, zb->zb_object, zb->zb_blkid * blksz, blksz, bp); } else { /* it's a level-0 block of a regular object */ uint32_t aflags = ARC_WAIT; arc_buf_t *abuf; int blksz = BP_GET_LSIZE(bp); + uint64_t offset; ASSERT3U(blksz, ==, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT0(zb->zb_level); if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &aflags, zb) != 0) { if (zfs_send_corrupt_data) { /* Send a block filled with 0x"zfs badd bloc" */ abuf = arc_buf_alloc(spa, blksz, &abuf, ARC_BUFC_DATA); uint64_t *ptr; for (ptr = abuf->b_data; (char *)ptr < (char *)abuf->b_data + blksz; ptr++) *ptr = 0x2f5baddb10c; } else { return (SET_ERROR(EIO)); } } - err = dump_write(dsp, type, zb->zb_object, zb->zb_blkid * blksz, - blksz, bp, abuf->b_data); + offset = zb->zb_blkid * blksz; + + if (!(dsp->dsa_featureflags & + DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + blksz > SPA_OLD_MAXBLOCKSIZE) { + char *buf = abuf->b_data; + while (blksz > 0 && err == 0) { + int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); + err = dump_write(dsp, type, zb->zb_object, + offset, n, NULL, buf); + offset += n; + buf += n; + blksz -= n; + } + } else { + err = dump_write(dsp, type, zb->zb_object, + offset, blksz, bp, abuf->b_data); + } (void) arc_buf_remove_ref(abuf, &abuf); } ASSERT(err == 0 || err == EINTR); return (err); } /* * Releases dp using the specified tag. */ static int dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *ds, zfs_bookmark_phys_t *fromzb, boolean_t is_clone, boolean_t embedok, - int outfd, vnode_t *vp, offset_t *off) + boolean_t large_block_ok, int outfd, vnode_t *vp, offset_t *off) { objset_t *os; dmu_replay_record_t *drr; dmu_sendarg_t *dsp; int err; uint64_t fromtxg = 0; uint64_t featureflags = 0; err = dmu_objset_from_ds(ds, &os); if (err != 0) { dsl_pool_rele(dp, tag); return (err); } drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); drr->drr_type = DRR_BEGIN; drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, DMU_SUBSTREAM); #ifdef _KERNEL if (dmu_objset_type(os) == DMU_OST_ZFS) { uint64_t version; if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { kmem_free(drr, sizeof (dmu_replay_record_t)); dsl_pool_rele(dp, tag); return (SET_ERROR(EINVAL)); } if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } #endif + if (large_block_ok && ds->ds_large_blocks) + featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; if (embedok && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; } else { embedok = B_FALSE; } DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, featureflags); drr->drr_u.drr_begin.drr_creation_time = ds->ds_phys->ds_creation_time; drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); if (is_clone) drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; drr->drr_u.drr_begin.drr_toguid = ds->ds_phys->ds_guid; if (ds->ds_phys->ds_flags & DS_FLAG_CI_DATASET) drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; if (fromzb != NULL) { drr->drr_u.drr_begin.drr_fromguid = fromzb->zbm_guid; fromtxg = fromzb->zbm_creation_txg; } dsl_dataset_name(ds, drr->drr_u.drr_begin.drr_toname); if (!dsl_dataset_is_snapshot(ds)) { (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", sizeof (drr->drr_u.drr_begin.drr_toname)); } dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); dsp->dsa_drr = drr; dsp->dsa_vp = vp; dsp->dsa_outfd = outfd; dsp->dsa_proc = curproc; dsp->dsa_os = os; dsp->dsa_off = off; dsp->dsa_toguid = ds->ds_phys->ds_guid; ZIO_SET_CHECKSUM(&dsp->dsa_zc, 0, 0, 0, 0); dsp->dsa_pending_op = PENDING_NONE; dsp->dsa_incremental = (fromzb != NULL); dsp->dsa_featureflags = featureflags; mutex_enter(&ds->ds_sendstream_lock); list_insert_head(&ds->ds_sendstreams, dsp); mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_long_hold(ds, FTAG); dsl_pool_rele(dp, tag); if (dump_bytes(dsp, drr, sizeof (dmu_replay_record_t)) != 0) { err = dsp->dsa_err; goto out; } err = traverse_dataset(ds, fromtxg, TRAVERSE_PRE | TRAVERSE_PREFETCH, backup_cb, dsp); if (dsp->dsa_pending_op != PENDING_NONE) if (dump_bytes(dsp, drr, sizeof (dmu_replay_record_t)) != 0) err = SET_ERROR(EINTR); if (err != 0) { if (err == EINTR && dsp->dsa_err != 0) err = dsp->dsa_err; goto out; } bzero(drr, sizeof (dmu_replay_record_t)); drr->drr_type = DRR_END; drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; if (dump_bytes(dsp, drr, sizeof (dmu_replay_record_t)) != 0) { err = dsp->dsa_err; goto out; } out: mutex_enter(&ds->ds_sendstream_lock); list_remove(&ds->ds_sendstreams, dsp); mutex_exit(&ds->ds_sendstream_lock); kmem_free(drr, sizeof (dmu_replay_record_t)); kmem_free(dsp, sizeof (dmu_sendarg_t)); dsl_dataset_long_rele(ds, FTAG); return (err); } int dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, - boolean_t embedok, int outfd, vnode_t *vp, offset_t *off) + boolean_t embedok, boolean_t large_block_ok, + int outfd, vnode_t *vp, offset_t *off) { dsl_pool_t *dp; dsl_dataset_t *ds; dsl_dataset_t *fromds = NULL; int err; err = dsl_pool_hold(pool, FTAG, &dp); if (err != 0) return (err); err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } if (fromsnap != 0) { zfs_bookmark_phys_t zb; boolean_t is_clone; err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); if (err != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (err); } if (!dsl_dataset_is_before(ds, fromds, 0)) err = SET_ERROR(EXDEV); zb.zbm_creation_time = fromds->ds_phys->ds_creation_time; zb.zbm_creation_txg = fromds->ds_phys->ds_creation_txg; zb.zbm_guid = fromds->ds_phys->ds_guid; is_clone = (fromds->ds_dir != ds->ds_dir); dsl_dataset_rele(fromds, FTAG); - err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, embedok, - outfd, vp, off); + err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, + embedok, large_block_ok, outfd, vp, off); } else { - err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, embedok, - outfd, vp, off); + err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, + embedok, large_block_ok, outfd, vp, off); } dsl_dataset_rele(ds, FTAG); return (err); } int -dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, +dmu_send(const char *tosnap, const char *fromsnap, + boolean_t embedok, boolean_t large_block_ok, int outfd, vnode_t *vp, offset_t *off) { dsl_pool_t *dp; dsl_dataset_t *ds; int err; boolean_t owned = B_FALSE; if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) return (SET_ERROR(EINVAL)); err = dsl_pool_hold(tosnap, FTAG, &dp); if (err != 0) return (err); if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { /* * We are sending a filesystem or volume. Ensure * that it doesn't change by owning the dataset. */ err = dsl_dataset_own(dp, tosnap, FTAG, &ds); owned = B_TRUE; } else { err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); } if (err != 0) { dsl_pool_rele(dp, FTAG); return (err); } if (fromsnap != NULL) { zfs_bookmark_phys_t zb; boolean_t is_clone = B_FALSE; int fsnamelen = strchr(tosnap, '@') - tosnap; /* * If the fromsnap is in a different filesystem, then * mark the send stream as a clone. */ if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || (fromsnap[fsnamelen] != '@' && fromsnap[fsnamelen] != '#')) { is_clone = B_TRUE; } if (strchr(fromsnap, '@')) { dsl_dataset_t *fromds; err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); if (err == 0) { if (!dsl_dataset_is_before(ds, fromds, 0)) err = SET_ERROR(EXDEV); zb.zbm_creation_time = fromds->ds_phys->ds_creation_time; zb.zbm_creation_txg = fromds->ds_phys->ds_creation_txg; zb.zbm_guid = fromds->ds_phys->ds_guid; is_clone = (ds->ds_dir != fromds->ds_dir); dsl_dataset_rele(fromds, FTAG); } } else { err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); } if (err != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (err); } - err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, embedok, - outfd, vp, off); + err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, + embedok, large_block_ok, outfd, vp, off); } else { - err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, embedok, - outfd, vp, off); + err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, + embedok, large_block_ok, outfd, vp, off); } if (owned) dsl_dataset_disown(ds, FTAG); else dsl_dataset_rele(ds, FTAG); return (err); } int dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) { dsl_pool_t *dp = ds->ds_dir->dd_pool; int err; uint64_t size; ASSERT(dsl_pool_config_held(dp)); /* tosnap must be a snapshot */ if (!dsl_dataset_is_snapshot(ds)) return (SET_ERROR(EINVAL)); /* * fromsnap must be an earlier snapshot from the same fs as tosnap, * or the origin's fs. */ if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) return (SET_ERROR(EXDEV)); /* Get uncompressed size estimate of changed data. */ if (fromds == NULL) { size = ds->ds_phys->ds_uncompressed_bytes; } else { uint64_t used, comp; err = dsl_dataset_space_written(fromds, ds, &used, &comp, &size); if (err != 0) return (err); } /* * Assume that space (both on-disk and in-stream) is dominated by * data. We will adjust for indirect blocks and the copies property, * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). */ /* * Subtract out approximate space used by indirect blocks. * Assume most space is used by data blocks (non-indirect, non-dnode). * Assume all blocks are recordsize. Assume ditto blocks and * internal fragmentation counter out compression. * * Therefore, space used by indirect blocks is sizeof(blkptr_t) per * block, which we observe in practice. */ uint64_t recordsize; err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); if (err != 0) return (err); size -= size / recordsize * sizeof (blkptr_t); /* Add in the space for the record associated with each block. */ size += size / recordsize * sizeof (dmu_replay_record_t); *sizep = size; return (0); } typedef struct dmu_recv_begin_arg { const char *drba_origin; dmu_recv_cookie_t *drba_cookie; cred_t *drba_cred; uint64_t drba_snapobj; } dmu_recv_begin_arg_t; static int recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, uint64_t fromguid) { uint64_t val; int error; dsl_pool_t *dp = ds->ds_dir->dd_pool; /* temporary clone name must not exist */ error = zap_lookup(dp->dp_meta_objset, ds->ds_dir->dd_phys->dd_child_dir_zapobj, recv_clone_name, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EBUSY : error); /* new snapshot name must not exist */ error = zap_lookup(dp->dp_meta_objset, ds->ds_phys->ds_snapnames_zapobj, drba->drba_cookie->drc_tosnap, 8, 1, &val); if (error != ENOENT) return (error == 0 ? EEXIST : error); /* * Check snapshot limit before receiving. We'll recheck again at the * end, but might as well abort before receiving if we're already over * the limit. * * Note that we do not check the file system limit with * dsl_dir_fscount_check because the temporary %clones don't count * against that limit. */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) return (error); if (fromguid != 0) { dsl_dataset_t *snap; uint64_t obj = ds->ds_phys->ds_prev_snap_obj; /* Find snapshot in this dir that matches fromguid. */ while (obj != 0) { error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (SET_ERROR(ENODEV)); if (snap->ds_dir != ds->ds_dir) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ENODEV)); } if (snap->ds_phys->ds_guid == fromguid) break; obj = snap->ds_phys->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); } if (obj == 0) return (SET_ERROR(ENODEV)); if (drba->drba_cookie->drc_force) { drba->drba_snapobj = obj; } else { /* * If we are not forcing, there must be no * changes since fromsnap. */ if (dsl_dataset_modified_since_snap(ds, snap)) { dsl_dataset_rele(snap, FTAG); return (SET_ERROR(ETXTBSY)); } drba->drba_snapobj = ds->ds_prev->ds_object; } dsl_dataset_rele(snap, FTAG); } else { /* if full, most recent snapshot must be $ORIGIN */ if (ds->ds_phys->ds_prev_snap_txg >= TXG_INITIAL) return (SET_ERROR(ENODEV)); drba->drba_snapobj = ds->ds_phys->ds_prev_snap_obj; } return (0); } static int dmu_recv_begin_check(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; uint64_t fromguid = drrb->drr_fromguid; int flags = drrb->drr_flags; int error; uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); dsl_dataset_t *ds; const char *tofs = drba->drba_cookie->drc_tofs; /* already checked */ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM || drrb->drr_type >= DMU_OST_NUMTYPES || ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) return (SET_ERROR(EINVAL)); /* Verify pool version supports SA if SA_SPILL feature set */ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && spa_version(dp->dp_spa) < SPA_VERSION_SA) return (SET_ERROR(ENOTSUP)); /* * The receiving code doesn't know how to translate a WRITE_EMBEDDED * record to a plan WRITE record, so the pool must have the * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED * records. Same with WRITE_EMBEDDED records that use LZ4 compression. */ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) return (SET_ERROR(ENOTSUP)); if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) return (SET_ERROR(ENOTSUP)); + /* + * The receiving code doesn't know how to translate large blocks + * to smaller ones, so the pool must have the LARGE_BLOCKS + * feature enabled if the stream has LARGE_BLOCKS. + */ + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SET_ERROR(ENOTSUP)); + error = dsl_dataset_hold(dp, tofs, FTAG, &ds); if (error == 0) { /* target fs already exists; recv into temp clone */ /* Can't recv a clone into an existing fs */ if (flags & DRR_FLAG_CLONE) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = recv_begin_check_existing_impl(drba, ds, fromguid); dsl_dataset_rele(ds, FTAG); } else if (error == ENOENT) { /* target fs does not exist; must be a full backup or clone */ char buf[MAXNAMELEN]; /* * If it's a non-clone incremental, we are missing the * target fs, so fail the recv. */ if (fromguid != 0 && !(flags & DRR_FLAG_CLONE)) return (SET_ERROR(ENOENT)); /* Open the parent of tofs */ ASSERT3U(strlen(tofs), <, MAXNAMELEN); (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); error = dsl_dataset_hold(dp, buf, FTAG, &ds); if (error != 0) return (error); /* * Check filesystem and snapshot limits before receiving. We'll * recheck snapshot limits again at the end (we create the * filesystems and increment those counts during begin_sync). */ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (drba->drba_origin != NULL) { dsl_dataset_t *origin; error = dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (!dsl_dataset_is_snapshot(origin)) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } if (origin->ds_phys->ds_guid != fromguid) { dsl_dataset_rele(origin, FTAG); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENODEV)); } dsl_dataset_rele(origin, FTAG); } dsl_dataset_rele(ds, FTAG); error = 0; } return (error); } static void dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) { dmu_recv_begin_arg_t *drba = arg; dsl_pool_t *dp = dmu_tx_pool(tx); struct drr_begin *drrb = drba->drba_cookie->drc_drrb; const char *tofs = drba->drba_cookie->drc_tofs; dsl_dataset_t *ds, *newds; uint64_t dsobj; int error; uint64_t crflags; crflags = (drrb->drr_flags & DRR_FLAG_CI_DATA) ? DS_FLAG_CI_DATASET : 0; error = dsl_dataset_hold(dp, tofs, FTAG, &ds); if (error == 0) { /* create temporary clone */ dsl_dataset_t *snap = NULL; if (drba->drba_snapobj != 0) { VERIFY0(dsl_dataset_hold_obj(dp, drba->drba_snapobj, FTAG, &snap)); } dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, snap, crflags, drba->drba_cred, tx); dsl_dataset_rele(snap, FTAG); dsl_dataset_rele(ds, FTAG); } else { dsl_dir_t *dd; const char *tail; dsl_dataset_t *origin = NULL; VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); if (drba->drba_origin != NULL) { VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, FTAG, &origin)); } /* Create new dataset. */ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, origin, crflags, drba->drba_cred, tx); if (origin != NULL) dsl_dataset_rele(origin, FTAG); dsl_dir_rele(dd, FTAG); drba->drba_cookie->drc_newfs = B_TRUE; } VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); + if ((DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & + DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + !newds->ds_large_blocks) { + dsl_dataset_activate_large_blocks_sync_impl(dsobj, tx); + newds->ds_large_blocks = B_TRUE; + } + dmu_buf_will_dirty(newds->ds_dbuf, tx); newds->ds_phys->ds_flags |= DS_FLAG_INCONSISTENT; /* * If we actually created a non-clone, we need to create the * objset in our new dataset. */ if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { (void) dmu_objset_create_impl(dp->dp_spa, newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); } drba->drba_cookie->drc_ds = newds; spa_history_log_internal_ds(newds, "receive", tx, ""); } /* * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() * succeeds; otherwise we will leak the holds on the datasets. */ int dmu_recv_begin(char *tofs, char *tosnap, struct drr_begin *drrb, boolean_t force, char *origin, dmu_recv_cookie_t *drc) { dmu_recv_begin_arg_t drba = { 0 }; dmu_replay_record_t *drr; bzero(drc, sizeof (dmu_recv_cookie_t)); drc->drc_drrb = drrb; drc->drc_tosnap = tosnap; drc->drc_tofs = tofs; drc->drc_force = force; drc->drc_cred = CRED(); if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) drc->drc_byteswap = B_TRUE; else if (drrb->drr_magic != DMU_BACKUP_MAGIC) return (SET_ERROR(EINVAL)); drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); drr->drr_type = DRR_BEGIN; drr->drr_u.drr_begin = *drc->drc_drrb; if (drc->drc_byteswap) { fletcher_4_incremental_byteswap(drr, sizeof (dmu_replay_record_t), &drc->drc_cksum); } else { fletcher_4_incremental_native(drr, sizeof (dmu_replay_record_t), &drc->drc_cksum); } kmem_free(drr, sizeof (dmu_replay_record_t)); if (drc->drc_byteswap) { drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } drba.drba_origin = origin; drba.drba_cookie = drc; drba.drba_cred = CRED(); return (dsl_sync_task(tofs, dmu_recv_begin_check, dmu_recv_begin_sync, &drba, 5, ZFS_SPACE_CHECK_NORMAL)); } struct restorearg { int err; boolean_t byteswap; vnode_t *vp; char *buf; uint64_t voff; int bufsize; /* amount of memory allocated for buf */ zio_cksum_t cksum; avl_tree_t *guid_to_ds_map; }; typedef struct guid_map_entry { uint64_t guid; dsl_dataset_t *gme_ds; avl_node_t avlnode; } guid_map_entry_t; static int guid_compare(const void *arg1, const void *arg2) { const guid_map_entry_t *gmep1 = arg1; const guid_map_entry_t *gmep2 = arg2; if (gmep1->guid < gmep2->guid) return (-1); else if (gmep1->guid > gmep2->guid) return (1); return (0); } static void free_guid_map_onexit(void *arg) { avl_tree_t *ca = arg; void *cookie = NULL; guid_map_entry_t *gmep; while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { dsl_dataset_long_rele(gmep->gme_ds, gmep); dsl_dataset_rele(gmep->gme_ds, gmep); kmem_free(gmep, sizeof (guid_map_entry_t)); } avl_destroy(ca); kmem_free(ca, sizeof (avl_tree_t)); } static void * restore_read(struct restorearg *ra, int len, char *buf) { int done = 0; if (buf == NULL) buf = ra->buf; /* some things will require 8-byte alignment, so everything must */ ASSERT0(len % 8); + ASSERT3U(len, <=, ra->bufsize); while (done < len) { ssize_t resid; ra->err = vn_rdwr(UIO_READ, ra->vp, buf + done, len - done, ra->voff, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); if (resid == len - done) ra->err = SET_ERROR(EINVAL); ra->voff += len - done - resid; done = len - resid; if (ra->err != 0) return (NULL); } ASSERT3U(done, ==, len); if (ra->byteswap) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); else fletcher_4_incremental_native(buf, len, &ra->cksum); return (buf); } static void backup_byteswap(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_versioninfo); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO32(drr_begin.drr_flags); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); DO64(drr_object.drr_toguid); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); DO64(drr_freeobjects.drr_toguid); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_length); DO64(drr_write.drr_toguid); DO64(drr_write.drr_key.ddk_cksum.zc_word[0]); DO64(drr_write.drr_key.ddk_cksum.zc_word[1]); DO64(drr_write.drr_key.ddk_cksum.zc_word[2]); DO64(drr_write.drr_key.ddk_cksum.zc_word[3]); DO64(drr_write.drr_key.ddk_prop); break; case DRR_WRITE_BYREF: DO64(drr_write_byref.drr_object); DO64(drr_write_byref.drr_offset); DO64(drr_write_byref.drr_length); DO64(drr_write_byref.drr_toguid); DO64(drr_write_byref.drr_refguid); DO64(drr_write_byref.drr_refobject); DO64(drr_write_byref.drr_refoffset); DO64(drr_write_byref.drr_key.ddk_cksum.zc_word[0]); DO64(drr_write_byref.drr_key.ddk_cksum.zc_word[1]); DO64(drr_write_byref.drr_key.ddk_cksum.zc_word[2]); DO64(drr_write_byref.drr_key.ddk_cksum.zc_word[3]); DO64(drr_write_byref.drr_key.ddk_prop); break; case DRR_WRITE_EMBEDDED: DO64(drr_write_embedded.drr_object); DO64(drr_write_embedded.drr_offset); DO64(drr_write_embedded.drr_length); DO64(drr_write_embedded.drr_toguid); DO32(drr_write_embedded.drr_lsize); DO32(drr_write_embedded.drr_psize); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); DO64(drr_free.drr_toguid); break; case DRR_SPILL: DO64(drr_spill.drr_object); DO64(drr_spill.drr_length); DO64(drr_spill.drr_toguid); break; case DRR_END: DO64(drr_end.drr_checksum.zc_word[0]); DO64(drr_end.drr_checksum.zc_word[1]); DO64(drr_end.drr_checksum.zc_word[2]); DO64(drr_end.drr_checksum.zc_word[3]); DO64(drr_end.drr_toguid); break; } #undef DO64 #undef DO32 } static inline uint8_t deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) { if (bonus_type == DMU_OT_SA) { return (1); } else { return (1 + ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); } } static int restore_object(struct restorearg *ra, objset_t *os, struct drr_object *drro) { dmu_object_info_t doi; dmu_tx_t *tx; void *data = NULL; uint64_t object; int err; if (drro->drr_type == DMU_OT_NONE || !DMU_OT_IS_VALID(drro->drr_type) || !DMU_OT_IS_VALID(drro->drr_bonustype) || drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || - drro->drr_blksz > SPA_MAXBLOCKSIZE || + drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(os)) || drro->drr_bonuslen > DN_MAX_BONUSLEN) { return (SET_ERROR(EINVAL)); } err = dmu_object_info(os, drro->drr_object, &doi); if (err != 0 && err != ENOENT) return (SET_ERROR(EINVAL)); object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; if (drro->drr_bonuslen) { data = restore_read(ra, P2ROUNDUP(drro->drr_bonuslen, 8), NULL); if (ra->err != 0) return (ra->err); } /* * If we are losing blkptrs or changing the block size this must * be a new file instance. We must clear out the previous file * contents before we can change this type of metadata in the dnode. */ if (err == 0) { int nblkptr; nblkptr = deduce_nblkptr(drro->drr_bonustype, drro->drr_bonuslen); if (drro->drr_blksz != doi.doi_data_block_size || nblkptr < doi.doi_nblkptr) { err = dmu_free_long_range(os, drro->drr_object, 0, DMU_OBJECT_END); if (err != 0) return (SET_ERROR(EINVAL)); } } tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } if (object == DMU_NEW_OBJECT) { /* currently free, want to be allocated */ err = dmu_object_claim(os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, tx); } else if (drro->drr_type != doi.doi_type || drro->drr_blksz != doi.doi_data_block_size || drro->drr_bonustype != doi.doi_bonus_type || drro->drr_bonuslen != doi.doi_bonus_size) { /* currently allocated, but with different properties */ err = dmu_object_reclaim(os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, tx); } if (err != 0) { dmu_tx_commit(tx); return (SET_ERROR(EINVAL)); } dmu_object_set_checksum(os, drro->drr_object, drro->drr_checksumtype, tx); dmu_object_set_compress(os, drro->drr_object, drro->drr_compress, tx); if (data != NULL) { dmu_buf_t *db; VERIFY(0 == dmu_bonus_hold(os, drro->drr_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, drro->drr_bonuslen); bcopy(data, db->db_data, drro->drr_bonuslen); if (ra->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drro->drr_bonustype); dmu_ot_byteswap[byteswap].ob_func(db->db_data, drro->drr_bonuslen); } dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int restore_freeobjects(struct restorearg *ra, objset_t *os, struct drr_freeobjects *drrfo) { uint64_t obj; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (SET_ERROR(EINVAL)); for (obj = drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs; (void) dmu_object_next(os, &obj, FALSE, 0)) { int err; if (dmu_object_info(os, obj, NULL) != 0) continue; err = dmu_free_long_object(os, obj); if (err != 0) return (err); } return (0); } static int restore_write(struct restorearg *ra, objset_t *os, struct drr_write *drrw) { dmu_tx_t *tx; void *data; int err; if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || !DMU_OT_IS_VALID(drrw->drr_type)) return (SET_ERROR(EINVAL)); if (dmu_object_info(os, drrw->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); dmu_buf_t *bonus; if (dmu_bonus_hold(os, drrw->drr_object, FTAG, &bonus) != 0) return (SET_ERROR(EINVAL)); arc_buf_t *abuf = dmu_request_arcbuf(bonus, drrw->drr_length); data = restore_read(ra, drrw->drr_length, abuf->b_data); if (data == NULL) { dmu_return_arcbuf(abuf); dmu_buf_rele(bonus, FTAG); return (ra->err); } tx = dmu_tx_create(os); dmu_tx_hold_write(tx, drrw->drr_object, drrw->drr_offset, drrw->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_return_arcbuf(abuf); dmu_buf_rele(bonus, FTAG); dmu_tx_abort(tx); return (err); } if (ra->byteswap) { dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(drrw->drr_type); dmu_ot_byteswap[byteswap].ob_func(data, drrw->drr_length); } dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); dmu_tx_commit(tx); dmu_buf_rele(bonus, FTAG); return (0); } /* * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed * streams to refer to a copy of the data that is already on the * system because it came in earlier in the stream. This function * finds the earlier copy of the data, and uses that copy instead of * data from the stream to fulfill this write. */ static int restore_write_byref(struct restorearg *ra, objset_t *os, struct drr_write_byref *drrwbr) { dmu_tx_t *tx; int err; guid_map_entry_t gmesrch; guid_map_entry_t *gmep; avl_index_t where; objset_t *ref_os = NULL; dmu_buf_t *dbp; if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) return (SET_ERROR(EINVAL)); /* * If the GUID of the referenced dataset is different from the * GUID of the target dataset, find the referenced dataset. */ if (drrwbr->drr_toguid != drrwbr->drr_refguid) { gmesrch.guid = drrwbr->drr_refguid; if ((gmep = avl_find(ra->guid_to_ds_map, &gmesrch, &where)) == NULL) { return (SET_ERROR(EINVAL)); } if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) return (SET_ERROR(EINVAL)); } else { ref_os = os; } err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); if (err != 0) return (err); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write(os, drrwbr->drr_object, drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); dmu_buf_rele(dbp, FTAG); dmu_tx_commit(tx); return (0); } static int restore_write_embedded(struct restorearg *ra, objset_t *os, struct drr_write_embedded *drrwnp) { dmu_tx_t *tx; int err; void *data; if (drrwnp->drr_offset + drrwnp->drr_length < drrwnp->drr_offset) return (EINVAL); if (drrwnp->drr_psize > BPE_PAYLOAD_SIZE) return (EINVAL); if (drrwnp->drr_etype >= NUM_BP_EMBEDDED_TYPES) return (EINVAL); if (drrwnp->drr_compression >= ZIO_COMPRESS_FUNCTIONS) return (EINVAL); data = restore_read(ra, P2ROUNDUP(drrwnp->drr_psize, 8), NULL); if (data == NULL) return (ra->err); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, drrwnp->drr_object, drrwnp->drr_offset, drrwnp->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); return (err); } dmu_write_embedded(os, drrwnp->drr_object, drrwnp->drr_offset, data, drrwnp->drr_etype, drrwnp->drr_compression, drrwnp->drr_lsize, drrwnp->drr_psize, ra->byteswap ^ ZFS_HOST_BYTEORDER, tx); dmu_tx_commit(tx); return (0); } static int restore_spill(struct restorearg *ra, objset_t *os, struct drr_spill *drrs) { dmu_tx_t *tx; void *data; dmu_buf_t *db, *db_spill; int err; if (drrs->drr_length < SPA_MINBLOCKSIZE || - drrs->drr_length > SPA_MAXBLOCKSIZE) + drrs->drr_length > spa_maxblocksize(dmu_objset_spa(os))) return (SET_ERROR(EINVAL)); data = restore_read(ra, drrs->drr_length, NULL); if (data == NULL) return (ra->err); if (dmu_object_info(os, drrs->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); VERIFY(0 == dmu_bonus_hold(os, drrs->drr_object, FTAG, &db)); if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { dmu_buf_rele(db, FTAG); return (err); } tx = dmu_tx_create(os); dmu_tx_hold_spill(tx, db->db_object); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_abort(tx); return (err); } dmu_buf_will_dirty(db_spill, tx); if (db_spill->db_size < drrs->drr_length) VERIFY(0 == dbuf_spill_set_blksz(db_spill, drrs->drr_length, tx)); bcopy(data, db_spill->db_data, drrs->drr_length); dmu_buf_rele(db, FTAG); dmu_buf_rele(db_spill, FTAG); dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int restore_free(struct restorearg *ra, objset_t *os, struct drr_free *drrf) { int err; if (drrf->drr_length != -1ULL && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (SET_ERROR(EINVAL)); if (dmu_object_info(os, drrf->drr_object, NULL) != 0) return (SET_ERROR(EINVAL)); err = dmu_free_long_range(os, drrf->drr_object, drrf->drr_offset, drrf->drr_length); return (err); } /* used to destroy the drc_ds on error */ static void dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) { char name[MAXNAMELEN]; dsl_dataset_name(drc->drc_ds, name); dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); (void) dsl_destroy_head(name); } /* * NB: callers *must* call dmu_recv_end() if this succeeds. */ int dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, int cleanup_fd, uint64_t *action_handlep) { struct restorearg ra = { 0 }; dmu_replay_record_t *drr; objset_t *os; zio_cksum_t pcksum; int featureflags; ra.byteswap = drc->drc_byteswap; ra.cksum = drc->drc_cksum; ra.vp = vp; ra.voff = *voffp; - ra.bufsize = 1<<20; + ra.bufsize = SPA_MAXBLOCKSIZE; ra.buf = kmem_alloc(ra.bufsize, KM_SLEEP); /* these were verified in dmu_recv_begin */ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, DMU_SUBSTREAM); ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); /* * Open the objset we are modifying. */ VERIFY0(dmu_objset_from_ds(drc->drc_ds, &os)); ASSERT(drc->drc_ds->ds_phys->ds_flags & DS_FLAG_INCONSISTENT); featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); /* if this stream is dedup'ed, set up the avl tree for guid mapping */ if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { minor_t minor; if (cleanup_fd == -1) { ra.err = SET_ERROR(EBADF); goto out; } ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); if (ra.err != 0) { cleanup_fd = -1; goto out; } if (*action_handlep == 0) { ra.guid_to_ds_map = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); avl_create(ra.guid_to_ds_map, guid_compare, sizeof (guid_map_entry_t), offsetof(guid_map_entry_t, avlnode)); ra.err = zfs_onexit_add_cb(minor, free_guid_map_onexit, ra.guid_to_ds_map, action_handlep); if (ra.err != 0) goto out; } else { ra.err = zfs_onexit_cb_data(minor, *action_handlep, (void **)&ra.guid_to_ds_map); if (ra.err != 0) goto out; } drc->drc_guid_to_ds_map = ra.guid_to_ds_map; } /* * Read records and process them. */ pcksum = ra.cksum; while (ra.err == 0 && NULL != (drr = restore_read(&ra, sizeof (*drr), NULL))) { if (issig(JUSTLOOKING) && issig(FORREAL)) { ra.err = SET_ERROR(EINTR); goto out; } if (ra.byteswap) backup_byteswap(drr); switch (drr->drr_type) { case DRR_OBJECT: { /* * We need to make a copy of the record header, * because restore_{object,write} may need to * restore_read(), which will invalidate drr. */ struct drr_object drro = drr->drr_u.drr_object; ra.err = restore_object(&ra, os, &drro); break; } case DRR_FREEOBJECTS: { struct drr_freeobjects drrfo = drr->drr_u.drr_freeobjects; ra.err = restore_freeobjects(&ra, os, &drrfo); break; } case DRR_WRITE: { struct drr_write drrw = drr->drr_u.drr_write; ra.err = restore_write(&ra, os, &drrw); break; } case DRR_WRITE_BYREF: { struct drr_write_byref drrwbr = drr->drr_u.drr_write_byref; ra.err = restore_write_byref(&ra, os, &drrwbr); break; } case DRR_WRITE_EMBEDDED: { struct drr_write_embedded drrwe = drr->drr_u.drr_write_embedded; ra.err = restore_write_embedded(&ra, os, &drrwe); break; } case DRR_FREE: { struct drr_free drrf = drr->drr_u.drr_free; ra.err = restore_free(&ra, os, &drrf); break; } case DRR_END: { struct drr_end drre = drr->drr_u.drr_end; /* * We compare against the *previous* checksum * value, because the stored checksum is of * everything before the DRR_END record. */ if (!ZIO_CHECKSUM_EQUAL(drre.drr_checksum, pcksum)) ra.err = SET_ERROR(ECKSUM); goto out; } case DRR_SPILL: { struct drr_spill drrs = drr->drr_u.drr_spill; ra.err = restore_spill(&ra, os, &drrs); break; } default: ra.err = SET_ERROR(EINVAL); goto out; } pcksum = ra.cksum; } ASSERT(ra.err != 0); out: if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) zfs_onexit_fd_rele(cleanup_fd); if (ra.err != 0) { /* * destroy what we created, so we don't leave it in the * inconsistent restoring state. */ dmu_recv_cleanup_ds(drc); } kmem_free(ra.buf, ra.bufsize); *voffp = ra.voff; return (ra.err); } static int dmu_recv_end_check(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); int error; ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); if (error != 0) return (error); if (drc->drc_force) { /* * We will destroy any snapshots in tofs (i.e. before * origin_head) that are after the origin (which is * the snap before drc_ds, because drc_ds can not * have any snaps of its own). */ uint64_t obj = origin_head->ds_phys->ds_prev_snap_obj; while (obj != drc->drc_ds->ds_phys->ds_prev_snap_obj) { dsl_dataset_t *snap; error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); if (error != 0) return (error); if (snap->ds_dir != origin_head->ds_dir) error = SET_ERROR(EINVAL); if (error == 0) { error = dsl_destroy_snapshot_check_impl( snap, B_FALSE); } obj = snap->ds_phys->ds_prev_snap_obj; dsl_dataset_rele(snap, FTAG); if (error != 0) return (error); } } error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, origin_head, drc->drc_force, drc->drc_owner, tx); if (error != 0) { dsl_dataset_rele(origin_head, FTAG); return (error); } error = dsl_dataset_snapshot_check_impl(origin_head, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); dsl_dataset_rele(origin_head, FTAG); if (error != 0) return (error); error = dsl_destroy_head_check_impl(drc->drc_ds, 1); } else { error = dsl_dataset_snapshot_check_impl(drc->drc_ds, drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); } return (error); } static void dmu_recv_end_sync(void *arg, dmu_tx_t *tx) { dmu_recv_cookie_t *drc = arg; dsl_pool_t *dp = dmu_tx_pool(tx); spa_history_log_internal_ds(drc->drc_ds, "finish receiving", tx, "snap=%s", drc->drc_tosnap); if (!drc->drc_newfs) { dsl_dataset_t *origin_head; VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head)); if (drc->drc_force) { /* * Destroy any snapshots of drc_tofs (origin_head) * after the origin (the snap before drc_ds). */ uint64_t obj = origin_head->ds_phys->ds_prev_snap_obj; while (obj != drc->drc_ds->ds_phys->ds_prev_snap_obj) { dsl_dataset_t *snap; VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &snap)); ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); obj = snap->ds_phys->ds_prev_snap_obj; dsl_destroy_snapshot_sync_impl(snap, B_FALSE, tx); dsl_dataset_rele(snap, FTAG); } } VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); dsl_dataset_clone_swap_sync_impl(drc->drc_ds, origin_head, tx); dsl_dataset_snapshot_sync_impl(origin_head, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); origin_head->ds_prev->ds_phys->ds_creation_time = drc->drc_drrb->drr_creation_time; origin_head->ds_prev->ds_phys->ds_guid = drc->drc_drrb->drr_toguid; origin_head->ds_prev->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(origin_head->ds_dbuf, tx); origin_head->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; dsl_dataset_rele(origin_head, FTAG); dsl_destroy_head_sync_impl(drc->drc_ds, tx); if (drc->drc_owner != NULL) VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); } else { dsl_dataset_t *ds = drc->drc_ds; dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); /* set snapshot's creation time and guid */ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); ds->ds_prev->ds_phys->ds_creation_time = drc->drc_drrb->drr_creation_time; ds->ds_prev->ds_phys->ds_guid = drc->drc_drrb->drr_toguid; ds->ds_prev->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; } drc->drc_newsnapobj = drc->drc_ds->ds_phys->ds_prev_snap_obj; /* * Release the hold from dmu_recv_begin. This must be done before * we return to open context, so that when we free the dataset's dnode, * we can evict its bonus buffer. */ dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); drc->drc_ds = NULL; } static int add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) { dsl_pool_t *dp; dsl_dataset_t *snapds; guid_map_entry_t *gmep; int err; ASSERT(guid_map != NULL); err = dsl_pool_hold(name, FTAG, &dp); if (err != 0) return (err); gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); if (err == 0) { gmep->guid = snapds->ds_phys->ds_guid; gmep->gme_ds = snapds; avl_add(guid_map, gmep); dsl_dataset_long_hold(snapds, gmep); } else { kmem_free(gmep, sizeof (*gmep)); } dsl_pool_rele(dp, FTAG); return (err); } static int dmu_recv_end_modified_blocks = 3; static int dmu_recv_existing_end(dmu_recv_cookie_t *drc) { int error; char name[MAXNAMELEN]; #ifdef _KERNEL /* * We will be destroying the ds; make sure its origin is unmounted if * necessary. */ dsl_dataset_name(drc->drc_ds, name); zfs_destroy_unmount_origin(name); #endif error = dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); if (error != 0) dmu_recv_cleanup_ds(drc); return (error); } static int dmu_recv_new_end(dmu_recv_cookie_t *drc) { int error; error = dsl_sync_task(drc->drc_tofs, dmu_recv_end_check, dmu_recv_end_sync, drc, dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); if (error != 0) { dmu_recv_cleanup_ds(drc); } else if (drc->drc_guid_to_ds_map != NULL) { (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, drc->drc_newsnapobj); } return (error); } int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) { drc->drc_owner = owner; if (drc->drc_newfs) return (dmu_recv_new_end(drc)); else return (dmu_recv_existing_end(drc)); } /* * Return TRUE if this objset is currently being received into. */ boolean_t dmu_objset_is_receiving(objset_t *os) { return (os->os_dsl_dataset != NULL && os->os_dsl_dataset->ds_owner == dmu_recv_tag); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dmu_tx.c (revision 274273) @@ -1,1641 +1,1649 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include /* for dsl_dataset_block_freeable() */ #include /* for dsl_dir_tempreserve_*() */ #include #include /* for fzap_default_block_shift */ #include #include #include #include #include typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, uint64_t arg1, uint64_t arg2); dmu_tx_t * dmu_tx_create_dd(dsl_dir_t *dd) { dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); tx->tx_dir = dd; if (dd != NULL) tx->tx_pool = dd->dd_pool; list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), offsetof(dmu_tx_hold_t, txh_node)); list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); tx->tx_start = gethrtime(); #ifdef ZFS_DEBUG refcount_create(&tx->tx_space_written); refcount_create(&tx->tx_space_freed); #endif return (tx); } dmu_tx_t * dmu_tx_create(objset_t *os) { dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir); tx->tx_objset = os; tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset); return (tx); } dmu_tx_t * dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) { dmu_tx_t *tx = dmu_tx_create_dd(NULL); ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); tx->tx_pool = dp; tx->tx_txg = txg; tx->tx_anyobj = TRUE; return (tx); } int dmu_tx_is_syncing(dmu_tx_t *tx) { return (tx->tx_anyobj); } int dmu_tx_private_ok(dmu_tx_t *tx) { return (tx->tx_anyobj); } static dmu_tx_hold_t * dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) { dmu_tx_hold_t *txh; dnode_t *dn = NULL; int err; if (object != DMU_NEW_OBJECT) { err = dnode_hold(os, object, tx, &dn); if (err) { tx->tx_err = err; return (NULL); } if (err == 0 && tx->tx_txg != 0) { mutex_enter(&dn->dn_mtx); /* * dn->dn_assigned_txg == tx->tx_txg doesn't pose a * problem, but there's no way for it to happen (for * now, at least). */ ASSERT(dn->dn_assigned_txg == 0); dn->dn_assigned_txg = tx->tx_txg; (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } } txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); txh->txh_tx = tx; txh->txh_dnode = dn; #ifdef ZFS_DEBUG txh->txh_type = type; txh->txh_arg1 = arg1; txh->txh_arg2 = arg2; #endif list_insert_tail(&tx->tx_holds, txh); return (txh); } void dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) { /* * If we're syncing, they can manipulate any object anyhow, and * the hold on the dnode_t can cause problems. */ if (!dmu_tx_is_syncing(tx)) { (void) dmu_tx_hold_object_impl(tx, os, object, THT_NEWOBJECT, 0, 0); } } static int dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) { int err; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold_level(dn, level, blkid, FTAG); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) return (SET_ERROR(EIO)); err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); dbuf_rele(db, FTAG); return (err); } static void dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db, int level, uint64_t blkid, boolean_t freeable, uint64_t *history) { objset_t *os = dn->dn_objset; dsl_dataset_t *ds = os->os_dsl_dataset; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; dmu_buf_impl_t *parent = NULL; blkptr_t *bp = NULL; uint64_t space; if (level >= dn->dn_nlevels || history[level] == blkid) return; history[level] = blkid; space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift); if (db == NULL || db == dn->dn_dbuf) { ASSERT(level != 0); db = NULL; } else { ASSERT(DB_DNODE(db) == dn); ASSERT(db->db_level == level); ASSERT(db->db.db_size == space); ASSERT(db->db_blkid == blkid); bp = db->db_blkptr; parent = db->db_parent; } freeable = (bp && (freeable || dsl_dataset_block_freeable(ds, bp, bp->blk_birth))); if (freeable) txh->txh_space_tooverwrite += space; else txh->txh_space_towrite += space; if (bp) txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp); dmu_tx_count_twig(txh, dn, parent, level + 1, blkid >> epbs, freeable, history); } /* ARGSUSED */ static void dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { dnode_t *dn = txh->txh_dnode; uint64_t start, end, i; int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; int err = 0; if (len == 0) return; min_bs = SPA_MINBLOCKSHIFT; - max_bs = SPA_MAXBLOCKSHIFT; + max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1; min_ibs = DN_MIN_INDBLKSHIFT; max_ibs = DN_MAX_INDBLKSHIFT; if (dn) { uint64_t history[DN_MAX_LEVELS]; int nlvls = dn->dn_nlevels; int delta; /* * For i/o error checking, read the first and last level-0 * blocks (if they are not aligned), and all the level-1 blocks. */ if (dn->dn_maxblkid == 0) { delta = dn->dn_datablksz; start = (off < dn->dn_datablksz) ? 0 : 1; end = (off+len <= dn->dn_datablksz) ? 0 : 1; if (start == 0 && (off > 0 || len < dn->dn_datablksz)) { err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) goto out; delta -= off; } } else { zio_t *zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* first level-0 block */ start = off >> dn->dn_datablkshift; if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) { err = dmu_tx_check_ioerr(zio, dn, 0, start); if (err) goto out; } /* last level-0 block */ end = (off+len-1) >> dn->dn_datablkshift; if (end != start && end <= dn->dn_maxblkid && P2PHASE(off+len, dn->dn_datablksz)) { err = dmu_tx_check_ioerr(zio, dn, 0, end); if (err) goto out; } /* level-1 blocks */ if (nlvls > 1) { int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (i = (start>>shft)+1; i < end>>shft; i++) { err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) goto out; } } err = zio_wait(zio); if (err) goto out; delta = P2NPHASE(off, dn->dn_datablksz); } min_ibs = max_ibs = dn->dn_indblkshift; if (dn->dn_maxblkid > 0) { /* * The blocksize can't change, * so we can make a more precise estimate. */ ASSERT(dn->dn_datablkshift != 0); min_bs = max_bs = dn->dn_datablkshift; + } else { + /* + * The blocksize can increase up to the recordsize, + * or if it is already more than the recordsize, + * up to the next power of 2. + */ + min_bs = highbit64(dn->dn_datablksz - 1); + max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1)); } /* * If this write is not off the end of the file * we need to account for overwrites/unref. */ if (start <= dn->dn_maxblkid) { for (int l = 0; l < DN_MAX_LEVELS; l++) history[l] = -1ULL; } while (start <= dn->dn_maxblkid) { dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db); rw_exit(&dn->dn_struct_rwlock); if (err) { txh->txh_tx->tx_err = err; return; } dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE, history); dbuf_rele(db, FTAG); if (++start > end) { /* * Account for new indirects appearing * before this IO gets assigned into a txg. */ bits = 64 - min_bs; epbs = min_ibs - SPA_BLKPTRSHIFT; for (bits -= epbs * (nlvls - 1); bits >= 0; bits -= epbs) txh->txh_fudge += 1ULL << max_ibs; goto out; } off += delta; if (len >= delta) len -= delta; delta = dn->dn_datablksz; } } /* * 'end' is the last thing we will access, not one past. * This way we won't overflow when accessing the last byte. */ start = P2ALIGN(off, 1ULL << max_bs); end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; txh->txh_space_towrite += end - start + 1; start >>= min_bs; end >>= min_bs; epbs = min_ibs - SPA_BLKPTRSHIFT; /* * The object contains at most 2^(64 - min_bs) blocks, * and each indirect level maps 2^epbs. */ for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { start >>= epbs; end >>= epbs; ASSERT3U(end, >=, start); txh->txh_space_towrite += (end - start + 1) << max_ibs; if (start != 0) { /* * We also need a new blkid=0 indirect block * to reference any existing file data. */ txh->txh_space_towrite += 1ULL << max_ibs; } } out: if (txh->txh_space_towrite + txh->txh_space_tooverwrite > 2 * DMU_MAX_ACCESS) err = SET_ERROR(EFBIG); if (err) txh->txh_tx->tx_err = err; } static void dmu_tx_count_dnode(dmu_tx_hold_t *txh) { dnode_t *dn = txh->txh_dnode; dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset); uint64_t space = mdn->dn_datablksz + ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); if (dn && dn->dn_dbuf->db_blkptr && dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) { txh->txh_space_tooverwrite += space; txh->txh_space_tounref += space; } else { txh->txh_space_towrite += space; if (dn && dn->dn_dbuf->db_blkptr) txh->txh_space_tounref += space; } } void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); ASSERT(len < DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, off, len); if (txh == NULL) return; dmu_tx_count_write(txh, off, len); dmu_tx_count_dnode(txh); } static void dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) { uint64_t blkid, nblks, lastblk; uint64_t space = 0, unref = 0, skipped = 0; dnode_t *dn = txh->txh_dnode; dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; spa_t *spa = txh->txh_tx->tx_pool->dp_spa; int epbs; uint64_t l0span = 0, nl1blks = 0; if (dn->dn_nlevels == 0) return; /* * The struct_rwlock protects us against dn_nlevels * changing, in case (against all odds) we manage to dirty & * sync out the changes after we check for being dirty. * Also, dbuf_hold_impl() wants us to have the struct_rwlock. */ rw_enter(&dn->dn_struct_rwlock, RW_READER); epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; if (dn->dn_maxblkid == 0) { if (off == 0 && len >= dn->dn_datablksz) { blkid = 0; nblks = 1; } else { rw_exit(&dn->dn_struct_rwlock); return; } } else { blkid = off >> dn->dn_datablkshift; nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; if (blkid > dn->dn_maxblkid) { rw_exit(&dn->dn_struct_rwlock); return; } if (blkid + nblks > dn->dn_maxblkid) nblks = dn->dn_maxblkid - blkid + 1; } l0span = nblks; /* save for later use to calc level > 1 overhead */ if (dn->dn_nlevels == 1) { int i; for (i = 0; i < nblks; i++) { blkptr_t *bp = dn->dn_phys->dn_blkptr; ASSERT3U(blkid + i, <, dn->dn_nblkptr); bp += blkid + i; if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) { dprintf_bp(bp, "can free old%s", ""); space += bp_get_dsize(spa, bp); } unref += BP_GET_ASIZE(bp); } nl1blks = 1; nblks = 0; } lastblk = blkid + nblks - 1; while (nblks) { dmu_buf_impl_t *dbuf; uint64_t ibyte, new_blkid; int epb = 1 << epbs; int err, i, blkoff, tochk; blkptr_t *bp; ibyte = blkid << dn->dn_datablkshift; err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); new_blkid = ibyte >> dn->dn_datablkshift; if (err == ESRCH) { skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; break; } if (err) { txh->txh_tx->tx_err = err; break; } if (new_blkid > lastblk) { skipped += (lastblk >> epbs) - (blkid >> epbs) + 1; break; } if (new_blkid > blkid) { ASSERT((new_blkid >> epbs) > (blkid >> epbs)); skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1; nblks -= new_blkid - blkid; blkid = new_blkid; } blkoff = P2PHASE(blkid, epb); tochk = MIN(epb - blkoff, nblks); err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf); if (err) { txh->txh_tx->tx_err = err; break; } txh->txh_memory_tohold += dbuf->db.db_size; /* * We don't check memory_tohold against DMU_MAX_ACCESS because * memory_tohold is an over-estimation (especially the >L1 * indirect blocks), so it could fail. Callers should have * already verified that they will not be holding too much * memory. */ err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); if (err != 0) { txh->txh_tx->tx_err = err; dbuf_rele(dbuf, FTAG); break; } bp = dbuf->db.db_data; bp += blkoff; for (i = 0; i < tochk; i++) { if (dsl_dataset_block_freeable(ds, &bp[i], bp[i].blk_birth)) { dprintf_bp(&bp[i], "can free old%s", ""); space += bp_get_dsize(spa, &bp[i]); } unref += BP_GET_ASIZE(bp); } dbuf_rele(dbuf, FTAG); ++nl1blks; blkid += tochk; nblks -= tochk; } rw_exit(&dn->dn_struct_rwlock); /* * Add in memory requirements of higher-level indirects. * This assumes a worst-possible scenario for dn_nlevels and a * worst-possible distribution of l1-blocks over the region to free. */ { uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs); int level = 2; /* * Here we don't use DN_MAX_LEVEL, but calculate it with the * given datablkshift and indblkshift. This makes the * difference between 19 and 8 on large files. */ int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) / (dn->dn_indblkshift - SPA_BLKPTRSHIFT); while (level++ < maxlevel) { txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1) << dn->dn_indblkshift; blkcnt = 1 + (blkcnt >> epbs); } } /* account for new level 1 indirect blocks that might show up */ if (skipped > 0) { txh->txh_fudge += skipped << dn->dn_indblkshift; skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); txh->txh_memory_tohold += skipped << dn->dn_indblkshift; } txh->txh_space_tofree += space; txh->txh_space_tounref += unref; } /* * This function marks the transaction as being a "net free". The end * result is that refquotas will be disabled for this transaction, and * this transaction will be able to use half of the pool space overhead * (see dsl_pool_adjustedsize()). Therefore this function should only * be called for transactions that we expect will not cause a net increase * in the amount of space used (but it's OK if that is occasionally not true). */ void dmu_tx_mark_netfree(dmu_tx_t *tx) { dmu_tx_hold_t *txh; txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_FREE, 0, 0); /* * Pretend that this operation will free 1GB of space. This * should be large enough to cancel out the largest write. * We don't want to use something like UINT64_MAX, because that would * cause overflows when doing math with these values (e.g. in * dmu_tx_try_assign()). */ txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024; } void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) { dmu_tx_hold_t *txh; dnode_t *dn; int err; zio_t *zio; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_FREE, off, len); if (txh == NULL) return; dn = txh->txh_dnode; dmu_tx_count_dnode(txh); if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) return; if (len == DMU_OBJECT_END) len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; /* * For i/o error checking, we read the first and last level-0 * blocks if they are not aligned, and all the level-1 blocks. * * Note: dbuf_free_range() assumes that we have not instantiated * any level-0 dbufs that will be completely freed. Therefore we must * exercise care to not read or count the first and last blocks * if they are blocksize-aligned. */ if (dn->dn_datablkshift == 0) { if (off != 0 || len < dn->dn_datablksz) dmu_tx_count_write(txh, 0, dn->dn_datablksz); } else { /* first block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off, 1); /* last block will be modified if it is not aligned */ if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift)) dmu_tx_count_write(txh, off+len, 1); } /* * Check level-1 blocks. */ if (dn->dn_nlevels > 1) { int shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t start = off >> shift; uint64_t end = (off + len) >> shift; ASSERT(dn->dn_indblkshift != 0); /* * dnode_reallocate() can result in an object with indirect * blocks having an odd data block size. In this case, * just check the single block. */ if (dn->dn_datablkshift == 0) start = end = 0; zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); for (uint64_t i = start; i <= end; i++) { uint64_t ibyte = i << shift; err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); i = ibyte >> shift; if (err == ESRCH) break; if (err) { tx->tx_err = err; return; } err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) { tx->tx_err = err; return; } } err = zio_wait(zio); if (err) { tx->tx_err = err; return; } } dmu_tx_count_free(txh, off, len); } void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name) { dmu_tx_hold_t *txh; dnode_t *dn; uint64_t nblocks; int epbs, err; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_ZAP, add, (uintptr_t)name); if (txh == NULL) return; dn = txh->txh_dnode; dmu_tx_count_dnode(txh); if (dn == NULL) { /* * We will be able to fit a new object's entries into one leaf * block. So there will be at most 2 blocks total, * including the header block. */ dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); return; } ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP); if (dn->dn_maxblkid == 0 && !add) { blkptr_t *bp; /* * If there is only one block (i.e. this is a micro-zap) * and we are not adding anything, the accounting is simple. */ err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) { tx->tx_err = err; return; } /* * Use max block size here, since we don't know how much * the size will change between now and the dbuf dirty call. */ bp = &dn->dn_phys->dn_blkptr[0]; if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, bp, bp->blk_birth)) - txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; + txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ; else - txh->txh_space_towrite += SPA_MAXBLOCKSIZE; + txh->txh_space_towrite += MZAP_MAX_BLKSZ; if (!BP_IS_HOLE(bp)) - txh->txh_space_tounref += SPA_MAXBLOCKSIZE; + txh->txh_space_tounref += MZAP_MAX_BLKSZ; return; } if (dn->dn_maxblkid > 0 && name) { /* * access the name in this fat-zap so that we'll check * for i/o errors to the leaf blocks, etc. */ err = zap_lookup(dn->dn_objset, dn->dn_object, name, 8, 0, NULL); if (err == EIO) { tx->tx_err = err; return; } } err = zap_count_write(dn->dn_objset, dn->dn_object, name, add, &txh->txh_space_towrite, &txh->txh_space_tooverwrite); /* * If the modified blocks are scattered to the four winds, * we'll have to modify an indirect twig for each. */ epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj) txh->txh_space_towrite += 3 << dn->dn_indblkshift; else txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift; } void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_BONUS, 0, 0); if (txh) dmu_tx_count_dnode(txh); } void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPACE, space, 0); txh->txh_space_towrite += space; } int dmu_tx_holds(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *txh; int holds = 0; /* * By asserting that the tx is assigned, we're counting the * number of dn_tx_holds, which is the same as the number of * dn_holds. Otherwise, we'd be counting dn_holds, but * dn_tx_holds could be 0. */ ASSERT(tx->tx_txg != 0); /* if (tx->tx_anyobj == TRUE) */ /* return (0); */ for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { if (txh->txh_dnode && txh->txh_dnode->dn_object == object) holds++; } return (holds); } #ifdef ZFS_DEBUG void dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) { dmu_tx_hold_t *txh; int match_object = FALSE, match_offset = FALSE; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); ASSERT(tx->tx_txg != 0); ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset); ASSERT3U(dn->dn_object, ==, db->db.db_object); if (tx->tx_anyobj) { DB_DNODE_EXIT(db); return; } /* XXX No checking on the meta dnode for now */ if (db->db.db_object == DMU_META_DNODE_OBJECT) { DB_DNODE_EXIT(db); return; } for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) match_object = TRUE; if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { int datablkshift = dn->dn_datablkshift ? dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; int shift = datablkshift + epbs * db->db_level; uint64_t beginblk = shift >= 64 ? 0 : (txh->txh_arg1 >> shift); uint64_t endblk = shift >= 64 ? 0 : ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); uint64_t blkid = db->db_blkid; /* XXX txh_arg2 better not be zero... */ dprintf("found txh type %x beginblk=%llx endblk=%llx\n", txh->txh_type, beginblk, endblk); switch (txh->txh_type) { case THT_WRITE: if (blkid >= beginblk && blkid <= endblk) match_offset = TRUE; /* * We will let this hold work for the bonus * or spill buffer so that we don't need to * hold it when creating a new object. */ if (blkid == DMU_BONUS_BLKID || blkid == DMU_SPILL_BLKID) match_offset = TRUE; /* * They might have to increase nlevels, * thus dirtying the new TLIBs. Or the * might have to change the block size, * thus dirying the new lvl=0 blk=0. */ if (blkid == 0) match_offset = TRUE; break; case THT_FREE: /* * We will dirty all the level 1 blocks in * the free range and perhaps the first and * last level 0 block. */ if (blkid >= beginblk && (blkid <= endblk || txh->txh_arg2 == DMU_OBJECT_END)) match_offset = TRUE; break; case THT_SPILL: if (blkid == DMU_SPILL_BLKID) match_offset = TRUE; break; case THT_BONUS: if (blkid == DMU_BONUS_BLKID) match_offset = TRUE; break; case THT_ZAP: match_offset = TRUE; break; case THT_NEWOBJECT: match_object = TRUE; break; default: ASSERT(!"bad txh_type"); } } if (match_object && match_offset) { DB_DNODE_EXIT(db); return; } } DB_DNODE_EXIT(db); panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", (u_longlong_t)db->db.db_object, db->db_level, (u_longlong_t)db->db_blkid); } #endif /* * If we can't do 10 iops, something is wrong. Let us go ahead * and hit zfs_dirty_data_max. */ hrtime_t zfs_delay_max_ns = MSEC2NSEC(100); int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */ /* * We delay transactions when we've determined that the backend storage * isn't able to accommodate the rate of incoming writes. * * If there is already a transaction waiting, we delay relative to when * that transaction finishes waiting. This way the calculated min_time * is independent of the number of threads concurrently executing * transactions. * * If we are the only waiter, wait relative to when the transaction * started, rather than the current time. This credits the transaction for * "time already served", e.g. reading indirect blocks. * * The minimum time for a transaction to take is calculated as: * min_time = scale * (dirty - min) / (max - dirty) * min_time is then capped at zfs_delay_max_ns. * * The delay has two degrees of freedom that can be adjusted via tunables. * The percentage of dirty data at which we start to delay is defined by * zfs_delay_min_dirty_percent. This should typically be at or above * zfs_vdev_async_write_active_max_dirty_percent so that we only start to * delay after writing at full speed has failed to keep up with the incoming * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly * speaking, this variable determines the amount of delay at the midpoint of * the curve. * * delay * 10ms +-------------------------------------------------------------*+ * | *| * 9ms + *+ * | *| * 8ms + *+ * | * | * 7ms + * + * | * | * 6ms + * + * | * | * 5ms + * + * | * | * 4ms + * + * | * | * 3ms + * + * | * | * 2ms + (midpoint) * + * | | ** | * 1ms + v *** + * | zfs_delay_scale ----------> ******** | * 0 +-------------------------------------*********----------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note that since the delay is added to the outstanding time remaining on the * most recent transaction, the delay is effectively the inverse of IOPS. * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve * was chosen such that small changes in the amount of accumulated dirty data * in the first 3/4 of the curve yield relatively small differences in the * amount of delay. * * The effects can be easier to understand when the amount of delay is * represented on a log scale: * * delay * 100ms +-------------------------------------------------------------++ * + + * | | * + *+ * 10ms + *+ * + ** + * | (midpoint) ** | * + | ** + * 1ms + v **** + * + zfs_delay_scale ----------> ***** + * | **** | * + **** + * 100us + ** + * + * + * | * | * + * + * 10us + * + * + + * | | * + + * +--------------------------------------------------------------+ * 0% <- zfs_dirty_data_max -> 100% * * Note here that only as the amount of dirty data approaches its limit does * the delay start to increase rapidly. The goal of a properly tuned system * should be to keep the amount of dirty data out of that range by first * ensuring that the appropriate limits are set for the I/O scheduler to reach * optimal throughput on the backend storage, and then by changing the value * of zfs_delay_scale to increase the steepness of the curve. */ static void dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty) { dsl_pool_t *dp = tx->tx_pool; uint64_t delay_min_bytes = zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; hrtime_t wakeup, min_tx_time, now; if (dirty <= delay_min_bytes) return; /* * The caller has already waited until we are under the max. * We make them pass us the amount of dirty data so we don't * have to handle the case of it being >= the max, which could * cause a divide-by-zero if it's == the max. */ ASSERT3U(dirty, <, zfs_dirty_data_max); now = gethrtime(); min_tx_time = zfs_delay_scale * (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty); if (now > tx->tx_start + min_tx_time) return; min_tx_time = MIN(min_tx_time, zfs_delay_max_ns); DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty, uint64_t, min_tx_time); mutex_enter(&dp->dp_lock); wakeup = MAX(tx->tx_start + min_tx_time, dp->dp_last_wakeup + min_tx_time); dp->dp_last_wakeup = wakeup; mutex_exit(&dp->dp_lock); #ifdef _KERNEL mutex_enter(&curthread->t_delay_lock); while (cv_timedwait_hires(&curthread->t_delay_cv, &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns, CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0) continue; mutex_exit(&curthread->t_delay_lock); #else hrtime_t delta = wakeup - gethrtime(); struct timespec ts; ts.tv_sec = delta / NANOSEC; ts.tv_nsec = delta % NANOSEC; (void) nanosleep(&ts, NULL); #endif } static int dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how) { dmu_tx_hold_t *txh; spa_t *spa = tx->tx_pool->dp_spa; uint64_t memory, asize, fsize, usize; uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge; ASSERT0(tx->tx_txg); if (tx->tx_err) return (tx->tx_err); if (spa_suspended(spa)) { /* * If the user has indicated a blocking failure mode * then return ERESTART which will block in dmu_tx_wait(). * Otherwise, return EIO so that an error can get * propagated back to the VOP calls. * * Note that we always honor the txg_how flag regardless * of the failuremode setting. */ if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && txg_how != TXG_WAIT) return (SET_ERROR(EIO)); return (SET_ERROR(ERESTART)); } if (!tx->tx_waited && dsl_pool_need_dirty_delay(tx->tx_pool)) { tx->tx_wait_dirty = B_TRUE; return (SET_ERROR(ERESTART)); } tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); tx->tx_needassign_txh = NULL; /* * NB: No error returns are allowed after txg_hold_open, but * before processing the dnode holds, due to the * dmu_tx_unassign() logic. */ towrite = tofree = tooverwrite = tounref = tohold = fudge = 0; for (txh = list_head(&tx->tx_holds); txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn != NULL) { mutex_enter(&dn->dn_mtx); if (dn->dn_assigned_txg == tx->tx_txg - 1) { mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = txh; return (SET_ERROR(ERESTART)); } if (dn->dn_assigned_txg == 0) dn->dn_assigned_txg = tx->tx_txg; ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } towrite += txh->txh_space_towrite; tofree += txh->txh_space_tofree; tooverwrite += txh->txh_space_tooverwrite; tounref += txh->txh_space_tounref; tohold += txh->txh_memory_tohold; fudge += txh->txh_fudge; } /* * If a snapshot has been taken since we made our estimates, * assume that we won't be able to free or overwrite anything. */ if (tx->tx_objset && dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) > tx->tx_lastsnap_txg) { towrite += tooverwrite; tooverwrite = tofree = 0; } /* needed allocation: worst-case estimate of write space */ asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); /* freed space estimate: worst-case overwrite + free estimate */ fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; /* convert unrefd space to worst-case estimate */ usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); /* calculate memory footprint estimate */ memory = towrite + tooverwrite + tohold; #ifdef ZFS_DEBUG /* * Add in 'tohold' to account for our dirty holds on this memory * XXX - the "fudge" factor is to account for skipped blocks that * we missed because dnode_next_offset() misses in-core-only blocks. */ tx->tx_space_towrite = asize + spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge); tx->tx_space_tofree = tofree; tx->tx_space_tooverwrite = tooverwrite; tx->tx_space_tounref = tounref; #endif if (tx->tx_dir && asize != 0) { int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); if (err) return (err); } return (0); } static void dmu_tx_unassign(dmu_tx_t *tx) { dmu_tx_hold_t *txh; if (tx->tx_txg == 0) return; txg_rele_to_quiesce(&tx->tx_txgh); /* * Walk the transaction's hold list, removing the hold on the * associated dnode, and notifying waiters if the refcount drops to 0. */ for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; txh = list_next(&tx->tx_holds, txh)) { dnode_t *dn = txh->txh_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } txg_rele_to_sync(&tx->tx_txgh); tx->tx_lasttried_txg = tx->tx_txg; tx->tx_txg = 0; } /* * Assign tx to a transaction group. txg_how can be one of: * * (1) TXG_WAIT. If the current open txg is full, waits until there's * a new one. This should be used when you're not holding locks. * It will only fail if we're truly out of space (or over quota). * * (2) TXG_NOWAIT. If we can't assign into the current open txg without * blocking, returns immediately with ERESTART. This should be used * whenever you're holding locks. On an ERESTART error, the caller * should drop locks, do a dmu_tx_wait(tx), and try again. * * (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait() * has already been called on behalf of this operation (though * most likely on a different tx). */ int dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how) { int err; ASSERT(tx->tx_txg == 0); ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT || txg_how == TXG_WAITED); ASSERT(!dsl_pool_sync_context(tx->tx_pool)); /* If we might wait, we must not hold the config lock. */ ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool)); if (txg_how == TXG_WAITED) tx->tx_waited = B_TRUE; while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { dmu_tx_unassign(tx); if (err != ERESTART || txg_how != TXG_WAIT) return (err); dmu_tx_wait(tx); } txg_rele_to_quiesce(&tx->tx_txgh); return (0); } void dmu_tx_wait(dmu_tx_t *tx) { spa_t *spa = tx->tx_pool->dp_spa; dsl_pool_t *dp = tx->tx_pool; ASSERT(tx->tx_txg == 0); ASSERT(!dsl_pool_config_held(tx->tx_pool)); if (tx->tx_wait_dirty) { /* * dmu_tx_try_assign() has determined that we need to wait * because we've consumed much or all of the dirty buffer * space. */ mutex_enter(&dp->dp_lock); while (dp->dp_dirty_total >= zfs_dirty_data_max) cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock); uint64_t dirty = dp->dp_dirty_total; mutex_exit(&dp->dp_lock); dmu_tx_delay(tx, dirty); tx->tx_wait_dirty = B_FALSE; /* * Note: setting tx_waited only has effect if the caller * used TX_WAIT. Otherwise they are going to destroy * this tx and try again. The common case, zfs_write(), * uses TX_WAIT. */ tx->tx_waited = B_TRUE; } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) { /* * If the pool is suspended we need to wait until it * is resumed. Note that it's possible that the pool * has become active after this thread has tried to * obtain a tx. If that's the case then tx_lasttried_txg * would not have been set. */ txg_wait_synced(dp, spa_last_synced_txg(spa) + 1); } else if (tx->tx_needassign_txh) { /* * A dnode is assigned to the quiescing txg. Wait for its * transaction to complete. */ dnode_t *dn = tx->tx_needassign_txh->txh_dnode; mutex_enter(&dn->dn_mtx); while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) cv_wait(&dn->dn_notxholds, &dn->dn_mtx); mutex_exit(&dn->dn_mtx); tx->tx_needassign_txh = NULL; } else { txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); } } void dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) { #ifdef ZFS_DEBUG if (tx->tx_dir == NULL || delta == 0) return; if (delta > 0) { ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, tx->tx_space_towrite); (void) refcount_add_many(&tx->tx_space_written, delta, NULL); } else { (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); } #endif } void dmu_tx_commit(dmu_tx_t *tx) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg != 0); /* * Go through the transaction's hold list and remove holds on * associated dnodes, notifying waiters if no holds remain. */ while (txh = list_head(&tx->tx_holds)) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); dnode_rele(dn, tx); } if (tx->tx_tempreserve_cookie) dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); if (!list_is_empty(&tx->tx_callbacks)) txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks); if (tx->tx_anyobj == FALSE) txg_rele_to_sync(&tx->tx_txgh); list_destroy(&tx->tx_callbacks); list_destroy(&tx->tx_holds); #ifdef ZFS_DEBUG dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", tx->tx_space_towrite, refcount_count(&tx->tx_space_written), tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #endif kmem_free(tx, sizeof (dmu_tx_t)); } void dmu_tx_abort(dmu_tx_t *tx) { dmu_tx_hold_t *txh; ASSERT(tx->tx_txg == 0); while (txh = list_head(&tx->tx_holds)) { dnode_t *dn = txh->txh_dnode; list_remove(&tx->tx_holds, txh); kmem_free(txh, sizeof (dmu_tx_hold_t)); if (dn != NULL) dnode_rele(dn, tx); } /* * Call any registered callbacks with an error code. */ if (!list_is_empty(&tx->tx_callbacks)) dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED); list_destroy(&tx->tx_callbacks); list_destroy(&tx->tx_holds); #ifdef ZFS_DEBUG refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #endif kmem_free(tx, sizeof (dmu_tx_t)); } uint64_t dmu_tx_get_txg(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); return (tx->tx_txg); } dsl_pool_t * dmu_tx_pool(dmu_tx_t *tx) { ASSERT(tx->tx_pool != NULL); return (tx->tx_pool); } void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data) { dmu_tx_callback_t *dcb; dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP); dcb->dcb_func = func; dcb->dcb_data = data; list_insert_tail(&tx->tx_callbacks, dcb); } /* * Call all the commit callbacks on a list, with a given error code. */ void dmu_tx_do_callbacks(list_t *cb_list, int error) { dmu_tx_callback_t *dcb; while (dcb = list_head(cb_list)) { list_remove(cb_list, dcb); dcb->dcb_func(dcb->dcb_data, error); kmem_free(dcb, sizeof (dmu_tx_callback_t)); } } /* * Interface to hold a bunch of attributes. * used for creating new files. * attrsize is the total size of all attributes * to be added during object creation * * For updating/adding a single attribute dmu_tx_hold_sa() should be used. */ /* * hold necessary attribute name for attribute registration. * should be a very rare case where this is needed. If it does * happen it would only happen on the first write to the file system. */ static void dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx) { int i; if (!sa->sa_need_attr_registration) return; for (i = 0; i != sa->sa_num_attrs; i++) { if (!sa->sa_attr_table[i].sa_registered) { if (sa->sa_reg_attr_obj) dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj, B_TRUE, sa->sa_attr_table[i].sa_name); else dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, sa->sa_attr_table[i].sa_name); } } } void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object) { dnode_t *dn; dmu_tx_hold_t *txh; txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_SPILL, 0, 0); dn = txh->txh_dnode; if (dn == NULL) return; /* If blkptr doesn't exist then add space to towrite */ if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { - txh->txh_space_towrite += SPA_MAXBLOCKSIZE; + txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; } else { blkptr_t *bp; bp = &dn->dn_phys->dn_spill; if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, bp, bp->blk_birth)) - txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; + txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE; else - txh->txh_space_towrite += SPA_MAXBLOCKSIZE; + txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE; if (!BP_IS_HOLE(bp)) - txh->txh_space_tounref += SPA_MAXBLOCKSIZE; + txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE; } } void dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize) { sa_os_t *sa = tx->tx_objset->os_sa; dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_layout_attr_obj) dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); else { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill) return; (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPILL, 0, 0); } /* * Hold SA attribute * * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size) * * variable_size is the total size of all variable sized attributes * passed to this function. It is not the total size of all * variable size attributes that *may* exist on this object. */ void dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow) { uint64_t object; sa_os_t *sa = tx->tx_objset->os_sa; ASSERT(hdl != NULL); object = sa_handle_object(hdl); dmu_tx_hold_bonus(tx, object); if (tx->tx_objset->os_sa->sa_master_obj == 0) return; if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 || tx->tx_objset->os_sa->sa_layout_attr_obj == 0) { dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS); dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } dmu_tx_sa_registration_hold(sa, tx); if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj) dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL); if (sa->sa_force_spill || may_grow || hdl->sa_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } else { dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; dnode_t *dn; DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_have_spill) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_spill(tx, object); } DB_DNODE_EXIT(db); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dnode.c (revision 274273) @@ -1,1963 +1,1963 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static kmem_cache_t *dnode_cache; /* * Define DNODE_STATS to turn on statistic gathering. By default, it is only * turned on when DEBUG is also defined. */ #ifdef DEBUG #define DNODE_STATS #endif /* DEBUG */ #ifdef DNODE_STATS #define DNODE_STAT_ADD(stat) ((stat)++) #else #define DNODE_STAT_ADD(stat) /* nothing */ #endif /* DNODE_STATS */ static dnode_phys_t dnode_phys_zero; int zfs_default_bs = SPA_MINBLOCKSHIFT; int zfs_default_ibs = DN_MAX_INDBLKSHIFT; static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); static int dbuf_compare(const void *x1, const void *x2) { const dmu_buf_impl_t *d1 = x1; const dmu_buf_impl_t *d2 = x2; if (d1->db_level < d2->db_level) { return (-1); } if (d1->db_level > d2->db_level) { return (1); } if (d1->db_blkid < d2->db_blkid) { return (-1); } if (d1->db_blkid > d2->db_blkid) { return (1); } if (d1->db_state < d2->db_state) { return (-1); } if (d1->db_state > d2->db_state) { return (1); } ASSERT3S(d1->db_state, !=, DB_SEARCH); ASSERT3S(d2->db_state, !=, DB_SEARCH); if ((uintptr_t)d1 < (uintptr_t)d2) { return (-1); } if ((uintptr_t)d1 > (uintptr_t)d2) { return (1); } return (0); } /* ARGSUSED */ static int dnode_cons(void *arg, void *unused, int kmflag) { dnode_t *dn = arg; int i; rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); /* * Every dbuf has a reference, and dropping a tracked reference is * O(number of references), so don't track dn_holds. */ refcount_create_untracked(&dn->dn_holds); refcount_create(&dn->dn_tx_holds); list_link_init(&dn->dn_link); bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); for (i = 0; i < TXG_SIZE; i++) { list_link_init(&dn->dn_dirty_link[i]); dn->dn_free_ranges[i] = NULL; list_create(&dn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); } dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirtyctx = 0; dn->dn_dirtyctx_firstset = NULL; dn->dn_bonus = NULL; dn->dn_have_spill = B_FALSE; dn->dn_zio = NULL; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_id_flags = 0; dn->dn_dbufs_count = 0; dn->dn_unlisted_l0_blkid = 0; avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); dn->dn_moved = 0; return (0); } /* ARGSUSED */ static void dnode_dest(void *arg, void *unused) { int i; dnode_t *dn = arg; rw_destroy(&dn->dn_struct_rwlock); mutex_destroy(&dn->dn_mtx); mutex_destroy(&dn->dn_dbufs_mtx); cv_destroy(&dn->dn_notxholds); refcount_destroy(&dn->dn_holds); refcount_destroy(&dn->dn_tx_holds); ASSERT(!list_link_active(&dn->dn_link)); for (i = 0; i < TXG_SIZE; i++) { ASSERT(!list_link_active(&dn->dn_dirty_link[i])); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); list_destroy(&dn->dn_dirty_records[i]); ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_blksz[i]); } ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_free_txg); ASSERT0(dn->dn_assigned_txg); ASSERT0(dn->dn_dirtyctx); ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); ASSERT3P(dn->dn_bonus, ==, NULL); ASSERT(!dn->dn_have_spill); ASSERT3P(dn->dn_zio, ==, NULL); ASSERT0(dn->dn_oldused); ASSERT0(dn->dn_oldflags); ASSERT0(dn->dn_olduid); ASSERT0(dn->dn_oldgid); ASSERT0(dn->dn_newuid); ASSERT0(dn->dn_newgid); ASSERT0(dn->dn_id_flags); ASSERT0(dn->dn_dbufs_count); ASSERT0(dn->dn_unlisted_l0_blkid); avl_destroy(&dn->dn_dbufs); } void dnode_init(void) { ASSERT(dnode_cache == NULL); dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); kmem_cache_set_move(dnode_cache, dnode_move); } void dnode_fini(void) { kmem_cache_destroy(dnode_cache); dnode_cache = NULL; } #ifdef ZFS_DEBUG void dnode_verify(dnode_t *dn) { int drop_struct_lock = FALSE; ASSERT(dn->dn_phys); ASSERT(dn->dn_objset); ASSERT(dn->dn_handle->dnh_dnode == dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) return; if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { rw_enter(&dn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { int i; ASSERT3U(dn->dn_indblkshift, >=, 0); ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); if (dn->dn_datablkshift) { ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); ASSERT3U(1<dn_datablkshift, ==, dn->dn_datablksz); } ASSERT3U(dn->dn_nlevels, <=, 30); ASSERT(DMU_OT_IS_VALID(dn->dn_type)); ASSERT3U(dn->dn_nblkptr, >=, 1); ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); ASSERT3U(dn->dn_datablksz, ==, dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); for (i = 0; i < TXG_SIZE; i++) { ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); } } if (dn->dn_phys->dn_type != DMU_OT_NONE) ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); if (dn->dn_dbuf != NULL) { ASSERT3P(dn->dn_phys, ==, (dnode_phys_t *)dn->dn_dbuf->db.db_data + (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); } if (drop_struct_lock) rw_exit(&dn->dn_struct_rwlock); } #endif void dnode_byteswap(dnode_phys_t *dnp) { uint64_t *buf64 = (void*)&dnp->dn_blkptr; int i; if (dnp->dn_type == DMU_OT_NONE) { bzero(dnp, sizeof (dnode_phys_t)); return; } dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); dnp->dn_used = BSWAP_64(dnp->dn_used); /* * dn_nblkptr is only one byte, so it's OK to read it in either * byte order. We can't read dn_bouslen. */ ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) buf64[i] = BSWAP_64(buf64[i]); /* * OK to check dn_bonuslen for zero, because it won't matter if * we have the wrong byte order. This is necessary because the * dnode dnode is smaller than a regular dnode. */ if (dnp->dn_bonuslen != 0) { /* * Note that the bonus length calculated here may be * longer than the actual bonus buffer. This is because * we always put the bonus buffer after the last block * pointer (instead of packing it against the end of the * dnode buffer). */ int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); size_t len = DN_MAX_BONUSLEN - off; ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); dmu_object_byteswap_t byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); } /* Swap SPILL block if we have one */ if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); } void dnode_buf_byteswap(void *vbuf, size_t size) { dnode_phys_t *buf = vbuf; int i; ASSERT3U(sizeof (dnode_phys_t), ==, (1<>= DNODE_SHIFT; for (i = 0; i < size; i++) { dnode_byteswap(buf); buf++; } } void dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t)); dn->dn_bonuslen = newsize; if (newsize == 0) dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; else dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; rw_exit(&dn->dn_struct_rwlock); } void dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); dnode_setdirty(dn, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dn->dn_bonustype = newtype; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; rw_exit(&dn->dn_struct_rwlock); } void dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) { ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); dnode_setdirty(dn, tx); dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; dn->dn_have_spill = B_FALSE; } static void dnode_setdblksz(dnode_t *dn, int size) { ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(size, >=, SPA_MINBLOCKSIZE); ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); dn->dn_datablksz = size; dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; } static dnode_t * dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); ASSERT(!POINTER_IS_VALID(dn->dn_objset)); dn->dn_moved = 0; /* * Defer setting dn_objset until the dnode is ready to be a candidate * for the dnode_move() callback. */ dn->dn_object = object; dn->dn_dbuf = db; dn->dn_handle = dnh; dn->dn_phys = dnp; if (dnp->dn_datablkszsec) { dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } else { dn->dn_datablksz = 0; dn->dn_datablkszsec = 0; dn->dn_datablkshift = 0; } dn->dn_indblkshift = dnp->dn_indblkshift; dn->dn_nlevels = dnp->dn_nlevels; dn->dn_type = dnp->dn_type; dn->dn_nblkptr = dnp->dn_nblkptr; dn->dn_checksum = dnp->dn_checksum; dn->dn_compress = dnp->dn_compress; dn->dn_bonustype = dnp->dn_bonustype; dn->dn_bonuslen = dnp->dn_bonuslen; dn->dn_maxblkid = dnp->dn_maxblkid; dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); dn->dn_id_flags = 0; dmu_zfetch_init(&dn->dn_zfetch, dn); ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); mutex_enter(&os->os_lock); list_insert_head(&os->os_dnodes, dn); membar_producer(); /* * Everything else must be valid before assigning dn_objset makes the * dnode eligible for dnode_move(). */ dn->dn_objset = os; mutex_exit(&os->os_lock); arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); return (dn); } /* * Caller must be holding the dnode handle, which is released upon return. */ static void dnode_destroy(dnode_t *dn) { objset_t *os = dn->dn_objset; ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); mutex_enter(&os->os_lock); POINTER_INVALIDATE(&dn->dn_objset); list_remove(&os->os_dnodes, dn); mutex_exit(&os->os_lock); /* the dnode can no longer move, so we can release the handle */ zrl_remove(&dn->dn_handle->dnh_zrlock); dn->dn_allocated_txg = 0; dn->dn_free_txg = 0; dn->dn_assigned_txg = 0; dn->dn_dirtyctx = 0; if (dn->dn_dirtyctx_firstset != NULL) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } if (dn->dn_bonus != NULL) { mutex_enter(&dn->dn_bonus->db_mtx); dbuf_evict(dn->dn_bonus); dn->dn_bonus = NULL; } dn->dn_zio = NULL; dn->dn_have_spill = B_FALSE; dn->dn_oldused = 0; dn->dn_oldflags = 0; dn->dn_olduid = 0; dn->dn_oldgid = 0; dn->dn_newuid = 0; dn->dn_newgid = 0; dn->dn_id_flags = 0; dn->dn_unlisted_l0_blkid = 0; dmu_zfetch_rele(&dn->dn_zfetch); kmem_cache_free(dnode_cache, dn); arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); } void dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { int i; + ASSERT3U(blocksize, <=, + spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (blocksize == 0) blocksize = 1 << zfs_default_bs; - else if (blocksize > SPA_MAXBLOCKSIZE) - blocksize = SPA_MAXBLOCKSIZE; else blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); if (ibs == 0) ibs = zfs_default_ibs; ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); ASSERT(ot != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(ot)); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype == DMU_OT_SA && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); ASSERT(dn->dn_type == DMU_OT_NONE); ASSERT0(dn->dn_maxblkid); ASSERT0(dn->dn_allocated_txg); ASSERT0(dn->dn_assigned_txg); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); ASSERT(avl_is_empty(&dn->dn_dbufs)); for (i = 0; i < TXG_SIZE; i++) { ASSERT0(dn->dn_next_nblkptr[i]); ASSERT0(dn->dn_next_nlevels[i]); ASSERT0(dn->dn_next_indblkshift[i]); ASSERT0(dn->dn_next_bonuslen[i]); ASSERT0(dn->dn_next_bonustype[i]); ASSERT0(dn->dn_rm_spillblk[i]); ASSERT0(dn->dn_next_blksz[i]); ASSERT(!list_link_active(&dn->dn_dirty_link[i])); ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); ASSERT3P(dn->dn_free_ranges[i], ==, NULL); } dn->dn_type = ot; dnode_setdblksz(dn, blocksize); dn->dn_indblkshift = ibs; dn->dn_nlevels = 1; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ dn->dn_nblkptr = 1; else dn->dn_nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; dn->dn_dirtyctx = 0; dn->dn_free_txg = 0; if (dn->dn_dirtyctx_firstset) { kmem_free(dn->dn_dirtyctx_firstset, 1); dn->dn_dirtyctx_firstset = NULL; } dn->dn_allocated_txg = tx->tx_txg; dn->dn_id_flags = 0; dnode_setdirty(dn, tx); dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; } void dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { int nblkptr; ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); - ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); + ASSERT3U(blocksize, <=, + spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); ASSERT0(blocksize % SPA_MINBLOCKSIZE); ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); ASSERT(tx->tx_txg != 0); ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || (bonustype != DMU_OT_NONE && bonuslen != 0) || (bonustype == DMU_OT_SA && bonuslen == 0)); ASSERT(DMU_OT_IS_VALID(bonustype)); ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); /* clean up any unreferenced dbufs */ dnode_evict_dbufs(dn); dn->dn_id_flags = 0; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); dnode_setdirty(dn, tx); if (dn->dn_datablksz != blocksize) { /* change blocksize */ ASSERT(dn->dn_maxblkid == 0 && (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || dnode_block_freed(dn, 0))); dnode_setdblksz(dn, blocksize); dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; } if (dn->dn_bonuslen != bonuslen) dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ nblkptr = 1; else nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); if (dn->dn_bonustype != bonustype) dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; if (dn->dn_nblkptr != nblkptr) dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { dbuf_rm_spill(dn, tx); dnode_rm_spill(dn, tx); } rw_exit(&dn->dn_struct_rwlock); /* change type */ dn->dn_type = ot; /* change bonus size and type */ mutex_enter(&dn->dn_mtx); dn->dn_bonustype = bonustype; dn->dn_bonuslen = bonuslen; dn->dn_nblkptr = nblkptr; dn->dn_checksum = ZIO_CHECKSUM_INHERIT; dn->dn_compress = ZIO_COMPRESS_INHERIT; ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); /* fix up the bonus db_size */ if (dn->dn_bonus) { dn->dn_bonus->db.db_size = DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); } dn->dn_allocated_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); } #ifdef DNODE_STATS static struct { uint64_t dms_dnode_invalid; uint64_t dms_dnode_recheck1; uint64_t dms_dnode_recheck2; uint64_t dms_dnode_special; uint64_t dms_dnode_handle; uint64_t dms_dnode_rwlock; uint64_t dms_dnode_active; } dnode_move_stats; #endif /* DNODE_STATS */ static void dnode_move_impl(dnode_t *odn, dnode_t *ndn) { int i; ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); /* Copy fields. */ ndn->dn_objset = odn->dn_objset; ndn->dn_object = odn->dn_object; ndn->dn_dbuf = odn->dn_dbuf; ndn->dn_handle = odn->dn_handle; ndn->dn_phys = odn->dn_phys; ndn->dn_type = odn->dn_type; ndn->dn_bonuslen = odn->dn_bonuslen; ndn->dn_bonustype = odn->dn_bonustype; ndn->dn_nblkptr = odn->dn_nblkptr; ndn->dn_checksum = odn->dn_checksum; ndn->dn_compress = odn->dn_compress; ndn->dn_nlevels = odn->dn_nlevels; ndn->dn_indblkshift = odn->dn_indblkshift; ndn->dn_datablkshift = odn->dn_datablkshift; ndn->dn_datablkszsec = odn->dn_datablkszsec; ndn->dn_datablksz = odn->dn_datablksz; ndn->dn_maxblkid = odn->dn_maxblkid; bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], sizeof (odn->dn_next_nblkptr)); bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], sizeof (odn->dn_next_nlevels)); bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], sizeof (odn->dn_next_indblkshift)); bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], sizeof (odn->dn_next_bonustype)); bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], sizeof (odn->dn_rm_spillblk)); bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], sizeof (odn->dn_next_bonuslen)); bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], sizeof (odn->dn_next_blksz)); for (i = 0; i < TXG_SIZE; i++) { list_move_tail(&ndn->dn_dirty_records[i], &odn->dn_dirty_records[i]); } bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], sizeof (odn->dn_free_ranges)); ndn->dn_allocated_txg = odn->dn_allocated_txg; ndn->dn_free_txg = odn->dn_free_txg; ndn->dn_assigned_txg = odn->dn_assigned_txg; ndn->dn_dirtyctx = odn->dn_dirtyctx; ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; ASSERT(refcount_count(&odn->dn_tx_holds) == 0); refcount_transfer(&ndn->dn_holds, &odn->dn_holds); ASSERT(avl_is_empty(&ndn->dn_dbufs)); avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); ndn->dn_dbufs_count = odn->dn_dbufs_count; ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid; ndn->dn_bonus = odn->dn_bonus; ndn->dn_have_spill = odn->dn_have_spill; ndn->dn_zio = odn->dn_zio; ndn->dn_oldused = odn->dn_oldused; ndn->dn_oldflags = odn->dn_oldflags; ndn->dn_olduid = odn->dn_olduid; ndn->dn_oldgid = odn->dn_oldgid; ndn->dn_newuid = odn->dn_newuid; ndn->dn_newgid = odn->dn_newgid; ndn->dn_id_flags = odn->dn_id_flags; dmu_zfetch_init(&ndn->dn_zfetch, NULL); list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt; ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail; /* * Update back pointers. Updating the handle fixes the back pointer of * every descendant dbuf as well as the bonus dbuf. */ ASSERT(ndn->dn_handle->dnh_dnode == odn); ndn->dn_handle->dnh_dnode = ndn; if (ndn->dn_zfetch.zf_dnode == odn) { ndn->dn_zfetch.zf_dnode = ndn; } /* * Invalidate the original dnode by clearing all of its back pointers. */ odn->dn_dbuf = NULL; odn->dn_handle = NULL; avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), offsetof(dmu_buf_impl_t, db_link)); odn->dn_dbufs_count = 0; odn->dn_unlisted_l0_blkid = 0; odn->dn_bonus = NULL; odn->dn_zfetch.zf_dnode = NULL; /* * Set the low bit of the objset pointer to ensure that dnode_move() * recognizes the dnode as invalid in any subsequent callback. */ POINTER_INVALIDATE(&odn->dn_objset); /* * Satisfy the destructor. */ for (i = 0; i < TXG_SIZE; i++) { list_create(&odn->dn_dirty_records[i], sizeof (dbuf_dirty_record_t), offsetof(dbuf_dirty_record_t, dr_dirty_node)); odn->dn_free_ranges[i] = NULL; odn->dn_next_nlevels[i] = 0; odn->dn_next_indblkshift[i] = 0; odn->dn_next_bonustype[i] = 0; odn->dn_rm_spillblk[i] = 0; odn->dn_next_bonuslen[i] = 0; odn->dn_next_blksz[i] = 0; } odn->dn_allocated_txg = 0; odn->dn_free_txg = 0; odn->dn_assigned_txg = 0; odn->dn_dirtyctx = 0; odn->dn_dirtyctx_firstset = NULL; odn->dn_have_spill = B_FALSE; odn->dn_zio = NULL; odn->dn_oldused = 0; odn->dn_oldflags = 0; odn->dn_olduid = 0; odn->dn_oldgid = 0; odn->dn_newuid = 0; odn->dn_newgid = 0; odn->dn_id_flags = 0; /* * Mark the dnode. */ ndn->dn_moved = 1; odn->dn_moved = (uint8_t)-1; } #ifdef _KERNEL /*ARGSUSED*/ static kmem_cbrc_t dnode_move(void *buf, void *newbuf, size_t size, void *arg) { dnode_t *odn = buf, *ndn = newbuf; objset_t *os; int64_t refcount; uint32_t dbufs; /* * The dnode is on the objset's list of known dnodes if the objset * pointer is valid. We set the low bit of the objset pointer when * freeing the dnode to invalidate it, and the memory patterns written * by kmem (baddcafe and deadbeef) set at least one of the two low bits. * A newly created dnode sets the objset pointer last of all to indicate * that the dnode is known and in a valid state to be moved by this * function. */ os = odn->dn_objset; if (!POINTER_IS_VALID(os)) { DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); return (KMEM_CBRC_DONT_KNOW); } /* * Ensure that the objset does not go away during the move. */ rw_enter(&os_lock, RW_WRITER); if (os != odn->dn_objset) { rw_exit(&os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); return (KMEM_CBRC_DONT_KNOW); } /* * If the dnode is still valid, then so is the objset. We know that no * valid objset can be freed while we hold os_lock, so we can safely * ensure that the objset remains in use. */ mutex_enter(&os->os_lock); /* * Recheck the objset pointer in case the dnode was removed just before * acquiring the lock. */ if (os != odn->dn_objset) { mutex_exit(&os->os_lock); rw_exit(&os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); return (KMEM_CBRC_DONT_KNOW); } /* * At this point we know that as long as we hold os->os_lock, the dnode * cannot be freed and fields within the dnode can be safely accessed. * The objset listing this dnode cannot go away as long as this dnode is * on its list. */ rw_exit(&os_lock); if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { mutex_exit(&os->os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); return (KMEM_CBRC_NO); } ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ /* * Lock the dnode handle to prevent the dnode from obtaining any new * holds. This also prevents the descendant dbufs and the bonus dbuf * from accessing the dnode, so that we can discount their holds. The * handle is safe to access because we know that while the dnode cannot * go away, neither can its handle. Once we hold dnh_zrlock, we can * safely move any dnode referenced only by dbufs. */ if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { mutex_exit(&os->os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); return (KMEM_CBRC_LATER); } /* * Ensure a consistent view of the dnode's holds and the dnode's dbufs. * We need to guarantee that there is a hold for every dbuf in order to * determine whether the dnode is actively referenced. Falsely matching * a dbuf to an active hold would lead to an unsafe move. It's possible * that a thread already having an active dnode hold is about to add a * dbuf, and we can't compare hold and dbuf counts while the add is in * progress. */ if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); return (KMEM_CBRC_LATER); } /* * A dbuf may be removed (evicted) without an active dnode hold. In that * case, the dbuf count is decremented under the handle lock before the * dbuf's hold is released. This order ensures that if we count the hold * after the dbuf is removed but before its hold is released, we will * treat the unmatched hold as active and exit safely. If we count the * hold before the dbuf is removed, the hold is discounted, and the * removal is blocked until the move completes. */ refcount = refcount_count(&odn->dn_holds); ASSERT(refcount >= 0); dbufs = odn->dn_dbufs_count; /* We can't have more dbufs than dnode holds. */ ASSERT3U(dbufs, <=, refcount); DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, uint32_t, dbufs); if (refcount > dbufs) { rw_exit(&odn->dn_struct_rwlock); zrl_exit(&odn->dn_handle->dnh_zrlock); mutex_exit(&os->os_lock); DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); return (KMEM_CBRC_LATER); } rw_exit(&odn->dn_struct_rwlock); /* * At this point we know that anyone with a hold on the dnode is not * actively referencing it. The dnode is known and in a valid state to * move. We're holding the locks needed to execute the critical section. */ dnode_move_impl(odn, ndn); list_link_replace(&odn->dn_link, &ndn->dn_link); /* If the dnode was safe to move, the refcount cannot have changed. */ ASSERT(refcount == refcount_count(&ndn->dn_holds)); ASSERT(dbufs == ndn->dn_dbufs_count); zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ mutex_exit(&os->os_lock); return (KMEM_CBRC_YES); } #endif /* _KERNEL */ void dnode_special_close(dnode_handle_t *dnh) { dnode_t *dn = dnh->dnh_dnode; /* * Wait for final references to the dnode to clear. This can * only happen if the arc is asyncronously evicting state that * has a hold on this dnode while we are trying to evict this * dnode. */ while (refcount_count(&dn->dn_holds) > 0) delay(1); zrl_add(&dnh->dnh_zrlock); dnode_destroy(dn); /* implicit zrl_remove() */ zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = NULL; } dnode_t * dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, dnode_handle_t *dnh) { dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh); dnh->dnh_dnode = dn; zrl_init(&dnh->dnh_zrlock); DNODE_VERIFY(dn); return (dn); } static void dnode_buf_pageout(dmu_buf_t *db, void *arg) { dnode_children_t *children_dnodes = arg; int i; int epb = db->db_size >> DNODE_SHIFT; ASSERT(epb == children_dnodes->dnc_count); for (i = 0; i < epb; i++) { dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; dnode_t *dn; /* * The dnode handle lock guards against the dnode moving to * another valid address, so there is no need here to guard * against changes to or from NULL. */ if (dnh->dnh_dnode == NULL) { zrl_destroy(&dnh->dnh_zrlock); continue; } zrl_add(&dnh->dnh_zrlock); dn = dnh->dnh_dnode; /* * If there are holds on this dnode, then there should * be holds on the dnode's containing dbuf as well; thus * it wouldn't be eligible for eviction and this function * would not have been called. */ ASSERT(refcount_is_zero(&dn->dn_holds)); ASSERT(refcount_is_zero(&dn->dn_tx_holds)); dnode_destroy(dn); /* implicit zrl_remove() */ zrl_destroy(&dnh->dnh_zrlock); dnh->dnh_dnode = NULL; } kmem_free(children_dnodes, sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t)); } /* * errors: * EINVAL - invalid object number. * EIO - i/o error. * succeeds even for free dnodes. */ int dnode_hold_impl(objset_t *os, uint64_t object, int flag, void *tag, dnode_t **dnp) { int epb, idx, err; int drop_struct_lock = FALSE; int type; uint64_t blk; dnode_t *mdn, *dn; dmu_buf_impl_t *db; dnode_children_t *children_dnodes; dnode_handle_t *dnh; /* * If you are holding the spa config lock as writer, you shouldn't * be asking the DMU to do *anything* unless it's the root pool * which may require us to read from the root filesystem while * holding some (not all) of the locks as writer. */ ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || (spa_is_root(os->os_spa) && spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { dn = (object == DMU_USERUSED_OBJECT) ? DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); if (dn == NULL) return (SET_ERROR(ENOENT)); type = dn->dn_type; if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) return (SET_ERROR(ENOENT)); if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) return (SET_ERROR(EEXIST)); DNODE_VERIFY(dn); (void) refcount_add(&dn->dn_holds, tag); *dnp = dn; return (0); } if (object == 0 || object >= DN_MAX_OBJECT) return (SET_ERROR(EINVAL)); mdn = DMU_META_DNODE(os); ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); DNODE_VERIFY(mdn); if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { rw_enter(&mdn->dn_struct_rwlock, RW_READER); drop_struct_lock = TRUE; } blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); db = dbuf_hold(mdn, blk, FTAG); if (drop_struct_lock) rw_exit(&mdn->dn_struct_rwlock); if (db == NULL) return (SET_ERROR(EIO)); err = dbuf_read(db, NULL, DB_RF_CANFAIL); if (err) { dbuf_rele(db, FTAG); return (err); } ASSERT3U(db->db.db_size, >=, 1<db.db_size >> DNODE_SHIFT; idx = object & (epb-1); ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); children_dnodes = dmu_buf_get_user(&db->db); if (children_dnodes == NULL) { int i; dnode_children_t *winner; children_dnodes = kmem_alloc(sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t), KM_SLEEP); children_dnodes->dnc_count = epb; dnh = &children_dnodes->dnc_children[0]; for (i = 0; i < epb; i++) { zrl_init(&dnh[i].dnh_zrlock); dnh[i].dnh_dnode = NULL; } if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, dnode_buf_pageout)) { for (i = 0; i < epb; i++) { zrl_destroy(&dnh[i].dnh_zrlock); } kmem_free(children_dnodes, sizeof (dnode_children_t) + epb * sizeof (dnode_handle_t)); children_dnodes = winner; } } ASSERT(children_dnodes->dnc_count == epb); dnh = &children_dnodes->dnc_children[idx]; zrl_add(&dnh->dnh_zrlock); if ((dn = dnh->dnh_dnode) == NULL) { dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; dnode_t *winner; dn = dnode_create(os, phys, db, object, dnh); winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn); if (winner != NULL) { zrl_add(&dnh->dnh_zrlock); dnode_destroy(dn); /* implicit zrl_remove() */ dn = winner; } } mutex_enter(&dn->dn_mtx); type = dn->dn_type; if (dn->dn_free_txg || ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || ((flag & DNODE_MUST_BE_FREE) && (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { mutex_exit(&dn->dn_mtx); zrl_remove(&dnh->dnh_zrlock); dbuf_rele(db, FTAG); return (type == DMU_OT_NONE ? ENOENT : EEXIST); } mutex_exit(&dn->dn_mtx); if (refcount_add(&dn->dn_holds, tag) == 1) dbuf_add_ref(db, dnh); /* Now we can rely on the hold to prevent the dnode from moving. */ zrl_remove(&dnh->dnh_zrlock); DNODE_VERIFY(dn); ASSERT3P(dn->dn_dbuf, ==, db); ASSERT3U(dn->dn_object, ==, object); dbuf_rele(db, FTAG); *dnp = dn; return (0); } /* * Return held dnode if the object is allocated, NULL if not. */ int dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) { return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); } /* * Can only add a reference if there is already at least one * reference on the dnode. Returns FALSE if unable to add a * new reference. */ boolean_t dnode_add_ref(dnode_t *dn, void *tag) { mutex_enter(&dn->dn_mtx); if (refcount_is_zero(&dn->dn_holds)) { mutex_exit(&dn->dn_mtx); return (FALSE); } VERIFY(1 < refcount_add(&dn->dn_holds, tag)); mutex_exit(&dn->dn_mtx); return (TRUE); } void dnode_rele(dnode_t *dn, void *tag) { uint64_t refs; /* Get while the hold prevents the dnode from moving. */ dmu_buf_impl_t *db = dn->dn_dbuf; dnode_handle_t *dnh = dn->dn_handle; mutex_enter(&dn->dn_mtx); refs = refcount_remove(&dn->dn_holds, tag); mutex_exit(&dn->dn_mtx); /* * It's unsafe to release the last hold on a dnode by dnode_rele() or * indirectly by dbuf_rele() while relying on the dnode handle to * prevent the dnode from moving, since releasing the last hold could * result in the dnode's parent dbuf evicting its dnode handles. For * that reason anyone calling dnode_rele() or dbuf_rele() without some * other direct or indirect hold on the dnode must first drop the dnode * handle. */ ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ if (refs == 0 && db != NULL) { /* * Another thread could add a hold to the dnode handle in * dnode_hold_impl() while holding the parent dbuf. Since the * hold on the parent dbuf prevents the handle from being * destroyed, the hold on the handle is OK. We can't yet assert * that the handle has zero references, but that will be * asserted anyway when the handle gets destroyed. */ dbuf_rele(db, dnh); } } void dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; uint64_t txg = tx->tx_txg; if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { dsl_dataset_dirty(os->os_dsl_dataset, tx); return; } DNODE_VERIFY(dn); #ifdef ZFS_DEBUG mutex_enter(&dn->dn_mtx); ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); mutex_exit(&dn->dn_mtx); #endif /* * Determine old uid/gid when necessary */ dmu_objset_userquota_get_ids(dn, B_TRUE, tx); mutex_enter(&os->os_lock); /* * If we are already marked dirty, we're done. */ if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { mutex_exit(&os->os_lock); return; } ASSERT(!refcount_is_zero(&dn->dn_holds) || !avl_is_empty(&dn->dn_dbufs)); ASSERT(dn->dn_datablksz != 0); ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", dn->dn_object, txg); if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); } else { list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); } mutex_exit(&os->os_lock); /* * The dnode maintains a hold on its containing dbuf as * long as there are holds on it. Each instantiated child * dbuf maintains a hold on the dnode. When the last child * drops its hold, the dnode will drop its hold on the * containing dbuf. We add a "dirty hold" here so that the * dnode will hang around after we finish processing its * children. */ VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); (void) dbuf_dirty(dn->dn_dbuf, tx); dsl_dataset_dirty(os->os_dsl_dataset, tx); } void dnode_free(dnode_t *dn, dmu_tx_t *tx) { int txgoff = tx->tx_txg & TXG_MASK; dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); /* we should be the only holder... hopefully */ /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ mutex_enter(&dn->dn_mtx); if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { mutex_exit(&dn->dn_mtx); return; } dn->dn_free_txg = tx->tx_txg; mutex_exit(&dn->dn_mtx); /* * If the dnode is already dirty, it needs to be moved from * the dirty list to the free list. */ mutex_enter(&dn->dn_objset->os_lock); if (list_link_active(&dn->dn_dirty_link[txgoff])) { list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); mutex_exit(&dn->dn_objset->os_lock); } else { mutex_exit(&dn->dn_objset->os_lock); dnode_setdirty(dn, tx); } } /* * Try to change the block size for the indicated dnode. This can only * succeed if there are no blocks allocated or dirty beyond first block */ int dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) { dmu_buf_impl_t *db; int err; + ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); if (size == 0) size = SPA_MINBLOCKSIZE; - if (size > SPA_MAXBLOCKSIZE) - size = SPA_MAXBLOCKSIZE; else size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); if (ibs == dn->dn_indblkshift) ibs = 0; if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) return (0); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); /* Check for any allocated blocks beyond the first */ if (dn->dn_maxblkid != 0) goto fail; mutex_enter(&dn->dn_dbufs_mtx); for (db = avl_first(&dn->dn_dbufs); db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && db->db_blkid != DMU_SPILL_BLKID) { mutex_exit(&dn->dn_dbufs_mtx); goto fail; } } mutex_exit(&dn->dn_dbufs_mtx); if (ibs && dn->dn_nlevels != 1) goto fail; /* resize the old block */ err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); if (err == 0) dbuf_new_size(db, size, tx); else if (err != ENOENT) goto fail; dnode_setdblksz(dn, size); dnode_setdirty(dn, tx); dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; if (ibs) { dn->dn_indblkshift = ibs; dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; } /* rele after we have fixed the blocksize in the dnode */ if (db) dbuf_rele(db, FTAG); rw_exit(&dn->dn_struct_rwlock); return (0); fail: rw_exit(&dn->dn_struct_rwlock); return (SET_ERROR(ENOTSUP)); } /* read-holding callers must not rely on the lock being continuously held */ void dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) { uint64_t txgoff = tx->tx_txg & TXG_MASK; int epbs, new_nlevels; uint64_t sz; ASSERT(blkid != DMU_BONUS_BLKID); ASSERT(have_read ? RW_READ_HELD(&dn->dn_struct_rwlock) : RW_WRITE_HELD(&dn->dn_struct_rwlock)); /* * if we have a read-lock, check to see if we need to do any work * before upgrading to a write-lock. */ if (have_read) { if (blkid <= dn->dn_maxblkid) return; if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); } } if (blkid <= dn->dn_maxblkid) goto out; dn->dn_maxblkid = blkid; /* * Compute the number of levels necessary to support the new maxblkid. */ new_nlevels = 1; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (sz = dn->dn_nblkptr; sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) new_nlevels++; if (new_nlevels > dn->dn_nlevels) { int old_nlevels = dn->dn_nlevels; dmu_buf_impl_t *db; list_t *list; dbuf_dirty_record_t *new, *dr, *dr_next; dn->dn_nlevels = new_nlevels; ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); dn->dn_next_nlevels[txgoff] = new_nlevels; /* dirty the left indirects */ db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); ASSERT(db != NULL); new = dbuf_dirty(db, tx); dbuf_rele(db, FTAG); /* transfer the dirty records to the new indirect */ mutex_enter(&dn->dn_mtx); mutex_enter(&new->dt.di.dr_mtx); list = &dn->dn_dirty_records[txgoff]; for (dr = list_head(list); dr; dr = dr_next) { dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); if (dr->dr_dbuf->db_level != new_nlevels-1 && dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); list_remove(&dn->dn_dirty_records[txgoff], dr); list_insert_tail(&new->dt.di.dr_children, dr); dr->dr_parent = new; } } mutex_exit(&new->dt.di.dr_mtx); mutex_exit(&dn->dn_mtx); } out: if (have_read) rw_downgrade(&dn->dn_struct_rwlock); } void dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) { dmu_buf_impl_t *db; uint64_t blkoff, blkid, nblks; int blksz, blkshift, head, tail; int trunc = FALSE; int epbs; rw_enter(&dn->dn_struct_rwlock, RW_WRITER); blksz = dn->dn_datablksz; blkshift = dn->dn_datablkshift; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; if (len == DMU_OBJECT_END) { len = UINT64_MAX - off; trunc = TRUE; } /* * First, block align the region to free: */ if (ISP2(blksz)) { head = P2NPHASE(off, blksz); blkoff = P2PHASE(off, blksz); if ((off >> blkshift) > dn->dn_maxblkid) goto out; } else { ASSERT(dn->dn_maxblkid == 0); if (off == 0 && len >= blksz) { /* * Freeing the whole block; fast-track this request. * Note that we won't dirty any indirect blocks, * which is fine because we will be freeing the entire * file and thus all indirect blocks will be freed * by free_children(). */ blkid = 0; nblks = 1; goto done; } else if (off >= blksz) { /* Freeing past end-of-data */ goto out; } else { /* Freeing part of the block. */ head = blksz - off; ASSERT3U(head, >, 0); } blkoff = off; } /* zero out any partial block data at the start of the range */ if (head) { ASSERT3U(blkoff + head, ==, blksz); if (len < head) head = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, FTAG, &db) == 0) { caddr_t data; /* don't dirty if it isn't on disk and isn't dirty */ if (db->db_last_dirty || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_will_dirty(&db->db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); data = db->db.db_data; bzero(data + blkoff, head); } dbuf_rele(db, FTAG); } off += head; len -= head; } /* If the range was less than one block, we're done */ if (len == 0) goto out; /* If the remaining range is past end of file, we're done */ if ((off >> blkshift) > dn->dn_maxblkid) goto out; ASSERT(ISP2(blksz)); if (trunc) tail = 0; else tail = P2PHASE(len, blksz); ASSERT0(P2PHASE(off, blksz)); /* zero out any partial block data at the end of the range */ if (tail) { if (len < tail) tail = len; if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), TRUE, FTAG, &db) == 0) { /* don't dirty if not on disk and not dirty */ if (db->db_last_dirty || (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_will_dirty(&db->db, tx); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); bzero(db->db.db_data, tail); } dbuf_rele(db, FTAG); } len -= tail; } /* If the range did not include a full block, we are done */ if (len == 0) goto out; ASSERT(IS_P2ALIGNED(off, blksz)); ASSERT(trunc || IS_P2ALIGNED(len, blksz)); blkid = off >> blkshift; nblks = len >> blkshift; if (trunc) nblks += 1; /* * Dirty the first and last indirect blocks, as they (and/or their * parents) will need to be written out if they were only * partially freed. Interior indirect blocks will be themselves freed, * by free_children(), so they need not be dirtied. Note that these * interior blocks have already been prefetched by dmu_tx_hold_free(). */ if (dn->dn_nlevels > 1) { uint64_t first, last; first = blkid >> epbs; if (db = dbuf_hold_level(dn, 1, first, FTAG)) { dmu_buf_will_dirty(&db->db, tx); dbuf_rele(db, FTAG); } if (trunc) last = dn->dn_maxblkid >> epbs; else last = (blkid + nblks - 1) >> epbs; if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { dmu_buf_will_dirty(&db->db, tx); dbuf_rele(db, FTAG); } } done: /* * Add this range to the dnode range list. * We will finish up this free operation in the syncing phase. */ mutex_enter(&dn->dn_mtx); int txgoff = tx->tx_txg & TXG_MASK; if (dn->dn_free_ranges[txgoff] == NULL) { dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL, &dn->dn_mtx); } range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", blkid, nblks, tx->tx_txg); mutex_exit(&dn->dn_mtx); dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); dnode_setdirty(dn, tx); out: rw_exit(&dn->dn_struct_rwlock); } static boolean_t dnode_spill_freed(dnode_t *dn) { int i; mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ uint64_t dnode_block_freed(dnode_t *dn, uint64_t blkid) { void *dp = spa_get_dsl(dn->dn_objset->os_spa); int i; if (blkid == DMU_BONUS_BLKID) return (FALSE); /* * If we're in the process of opening the pool, dp will not be * set yet, but there shouldn't be anything dirty. */ if (dp == NULL) return (FALSE); if (dn->dn_free_txg) return (TRUE); if (blkid == DMU_SPILL_BLKID) return (dnode_spill_freed(dn)); mutex_enter(&dn->dn_mtx); for (i = 0; i < TXG_SIZE; i++) { if (dn->dn_free_ranges[i] != NULL && range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) break; } mutex_exit(&dn->dn_mtx); return (i < TXG_SIZE); } /* call from syncing context when we actually write/free space for this dnode */ void dnode_diduse_space(dnode_t *dn, int64_t delta) { uint64_t space; dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", dn, dn->dn_phys, (u_longlong_t)dn->dn_phys->dn_used, (longlong_t)delta); mutex_enter(&dn->dn_mtx); space = DN_USED_BYTES(dn->dn_phys); if (delta > 0) { ASSERT3U(space + delta, >=, space); /* no overflow */ } else { ASSERT3U(space, >=, -delta); /* no underflow */ } space += delta; if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); ASSERT0(P2PHASE(space, 1<dn_phys->dn_used = space >> DEV_BSHIFT; } else { dn->dn_phys->dn_used = space; dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; } mutex_exit(&dn->dn_mtx); } /* * Call when we think we're going to write/free space in open context to track * the amount of memory in use by the currently open txg. */ void dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) { objset_t *os = dn->dn_objset; dsl_dataset_t *ds = os->os_dsl_dataset; int64_t aspace = spa_get_asize(os->os_spa, space); if (ds != NULL) { dsl_dir_willuse_space(ds->ds_dir, aspace, tx); dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx); } dmu_tx_willuse_space(tx, aspace); } /* * Scans a block at the indicated "level" looking for a hole or data, * depending on 'flags'. * * If level > 0, then we are scanning an indirect block looking at its * pointers. If level == 0, then we are looking at a block of dnodes. * * If we don't find what we are looking for in the block, we return ESRCH. * Otherwise, return with *offset pointing to the beginning (if searching * forwards) or end (if searching backwards) of the range covered by the * block pointer we matched on (or dnode). * * The basic search algorithm used below by dnode_next_offset() is to * use this function to search up the block tree (widen the search) until * we find something (i.e., we don't return ESRCH) and then search back * down the tree (narrow the search) until we reach our original search * level. */ static int dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, int lvl, uint64_t blkfill, uint64_t txg) { dmu_buf_impl_t *db = NULL; void *data = NULL; uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; uint64_t epb = 1ULL << epbs; uint64_t minfill, maxfill; boolean_t hole; int i, inc, error, span; dprintf("probing object %llu offset %llx level %d of %u\n", dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); hole = ((flags & DNODE_FIND_HOLE) != 0); inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; ASSERT(txg == 0 || !hole); if (lvl == dn->dn_phys->dn_nlevels) { error = 0; epb = dn->dn_phys->dn_nblkptr; data = dn->dn_phys->dn_blkptr; } else { uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); if (error) { if (error != ENOENT) return (error); if (hole) return (0); /* * This can only happen when we are searching up * the block tree for data. We don't really need to * adjust the offset, as we will just end up looking * at the pointer to this block in its parent, and its * going to be unallocated, so we will skip over it. */ return (SET_ERROR(ESRCH)); } error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); if (error) { dbuf_rele(db, FTAG); return (error); } data = db->db.db_data; } if (db != NULL && txg != 0 && (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg || BP_IS_HOLE(db->db_blkptr))) { /* * This can only happen when we are searching up the tree * and these conditions mean that we need to keep climbing. */ error = SET_ERROR(ESRCH); } else if (lvl == 0) { dnode_phys_t *dnp = data; span = DNODE_SHIFT; ASSERT(dn->dn_type == DMU_OT_DNODE); for (i = (*offset >> span) & (blkfill - 1); i >= 0 && i < blkfill; i += inc) { if ((dnp[i].dn_type == DMU_OT_NONE) == hole) break; *offset += (1ULL << span) * inc; } if (i < 0 || i == blkfill) error = SET_ERROR(ESRCH); } else { blkptr_t *bp = data; uint64_t start = *offset; span = (lvl - 1) * epbs + dn->dn_datablkshift; minfill = 0; maxfill = blkfill << ((lvl - 1) * epbs); if (hole) maxfill--; else minfill++; *offset = *offset >> span; for (i = BF64_GET(*offset, 0, epbs); i >= 0 && i < epb; i += inc) { if (BP_GET_FILL(&bp[i]) >= minfill && BP_GET_FILL(&bp[i]) <= maxfill && (hole || bp[i].blk_birth > txg)) break; if (inc > 0 || *offset > 0) *offset += inc; } *offset = *offset << span; if (inc < 0) { /* traversing backwards; position offset at the end */ ASSERT3U(*offset, <=, start); *offset = MIN(*offset + (1ULL << span) - 1, start); } else if (*offset < start) { *offset = start; } if (i < 0 || i >= epb) error = SET_ERROR(ESRCH); } if (db) dbuf_rele(db, FTAG); return (error); } /* * Find the next hole, data, or sparse region at or after *offset. * The value 'blkfill' tells us how many items we expect to find * in an L0 data block; this value is 1 for normal objects, * DNODES_PER_BLOCK for the meta dnode, and some fraction of * DNODES_PER_BLOCK when searching for sparse regions thereof. * * Examples: * * dnode_next_offset(dn, flags, offset, 1, 1, 0); * Finds the next/previous hole/data in a file. * Used in dmu_offset_next(). * * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); * Finds the next free/allocated dnode an objset's meta-dnode. * Only finds objects that have new contents since txg (ie. * bonus buffer changes and content removal are ignored). * Used in dmu_object_next(). * * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); * Finds the next L2 meta-dnode bp that's at most 1/4 full. * Used in dmu_object_alloc(). */ int dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, int minlvl, uint64_t blkfill, uint64_t txg) { uint64_t initial_offset = *offset; int lvl, maxlvl; int error = 0; if (!(flags & DNODE_FIND_HAVELOCK)) rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_phys->dn_nlevels == 0) { error = SET_ERROR(ESRCH); goto out; } if (dn->dn_datablkshift == 0) { if (*offset < dn->dn_datablksz) { if (flags & DNODE_FIND_HOLE) *offset = dn->dn_datablksz; } else { error = SET_ERROR(ESRCH); } goto out; } maxlvl = dn->dn_phys->dn_nlevels; for (lvl = minlvl; lvl <= maxlvl; lvl++) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); if (error != ESRCH) break; } while (error == 0 && --lvl >= minlvl) { error = dnode_next_offset_level(dn, flags, offset, lvl, blkfill, txg); } /* * There's always a "virtual hole" at the end of the object, even * if all BP's which physically exist are non-holes. */ if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { error = 0; } if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? initial_offset < *offset : initial_offset > *offset)) error = SET_ERROR(ESRCH); out: if (!(flags & DNODE_FIND_HAVELOCK)) rw_exit(&dn->dn_struct_rwlock); return (error); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_dataset.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_dataset.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_dataset.c (revision 274273) @@ -1,3181 +1,3282 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2014 RackTop Systems. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +/* + * The SPA supports block sizes up to 16MB. However, very large blocks + * can have an impact on i/o latency (e.g. tying up a spinning disk for + * ~300ms), and also potentially on the memory allocator. Therefore, + * we do not allow the recordsize to be set larger than zfs_max_recordsize + * (default 1MB). Larger blocks can be created by changing this tunable, + * and pools with larger blocks can always be imported and used, regardless + * of this setting. + */ +int zfs_max_recordsize = 1 * 1024 * 1024; + #define SWITCH64(x, y) \ { \ uint64_t __tmp = (x); \ (x) = (y); \ (y) = __tmp; \ } #define DS_REF_MAX (1ULL << 62) -#define DSL_DEADLIST_BLOCKSIZE SPA_MAXBLOCKSIZE - /* * Figure out how much of this delta should be propogated to the dsl_dir * layer. If there's a refreservation, that space has already been * partially accounted for in our ancestors. */ static int64_t parent_delta(dsl_dataset_t *ds, int64_t delta) { uint64_t old_bytes, new_bytes; if (ds->ds_reserved == 0) return (delta); old_bytes = MAX(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); new_bytes = MAX(ds->ds_phys->ds_unique_bytes + delta, ds->ds_reserved); ASSERT3U(ABS((int64_t)(new_bytes - old_bytes)), <=, ABS(delta)); return (new_bytes - old_bytes); } void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx) { int used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp); int compressed = BP_GET_PSIZE(bp); int uncompressed = BP_GET_UCSIZE(bp); int64_t delta; dprintf_bp(bp, "ds=%p", ds); ASSERT(dmu_tx_is_syncing(tx)); /* It could have been compressed away to nothing */ if (BP_IS_HOLE(bp)) return; ASSERT(BP_GET_TYPE(bp) != DMU_OT_NONE); ASSERT(DMU_OT_IS_VALID(BP_GET_TYPE(bp))); if (ds == NULL) { dsl_pool_mos_diduse_space(tx->tx_pool, used, compressed, uncompressed); return; } dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_lock); delta = parent_delta(ds, used); ds->ds_phys->ds_referenced_bytes += used; ds->ds_phys->ds_compressed_bytes += compressed; ds->ds_phys->ds_uncompressed_bytes += uncompressed; ds->ds_phys->ds_unique_bytes += used; + if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) + ds->ds_need_large_blocks = B_TRUE; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, compressed, uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); } int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx, boolean_t async) { int used = bp_get_dsize_sync(tx->tx_pool->dp_spa, bp); int compressed = BP_GET_PSIZE(bp); int uncompressed = BP_GET_UCSIZE(bp); if (BP_IS_HOLE(bp)) return (0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(bp->blk_birth <= tx->tx_txg); if (ds == NULL) { dsl_free(tx->tx_pool, tx->tx_txg, bp); dsl_pool_mos_diduse_space(tx->tx_pool, -used, -compressed, -uncompressed); return (used); } ASSERT3P(tx->tx_pool, ==, ds->ds_dir->dd_pool); ASSERT(!dsl_dataset_is_snapshot(ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); if (bp->blk_birth > ds->ds_phys->ds_prev_snap_txg) { int64_t delta; dprintf_bp(bp, "freeing ds=%llu", ds->ds_object); dsl_free(tx->tx_pool, tx->tx_txg, bp); mutex_enter(&ds->ds_lock); ASSERT(ds->ds_phys->ds_unique_bytes >= used || !DS_UNIQUE_IS_ACCURATE(ds)); delta = parent_delta(ds, -used); ds->ds_phys->ds_unique_bytes -= used; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, delta, -compressed, -uncompressed, tx); dsl_dir_transfer_space(ds->ds_dir, -used - delta, DD_USED_REFRSRV, DD_USED_HEAD, tx); } else { dprintf_bp(bp, "putting on dead list: %s", ""); if (async) { /* * We are here as part of zio's write done callback, * which means we're a zio interrupt thread. We can't * call dsl_deadlist_insert() now because it may block * waiting for I/O. Instead, put bp on the deferred * queue and let dsl_pool_sync() finish the job. */ bplist_append(&ds->ds_pending_deadlist, bp); } else { dsl_deadlist_insert(&ds->ds_deadlist, bp, tx); } ASSERT3U(ds->ds_prev->ds_object, ==, ds->ds_phys->ds_prev_snap_obj); ASSERT(ds->ds_prev->ds_phys->ds_num_children > 0); /* if (bp->blk_birth > prev prev snap txg) prev unique += bs */ if (ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object && bp->blk_birth > ds->ds_prev->ds_phys->ds_prev_snap_txg) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); mutex_enter(&ds->ds_prev->ds_lock); ds->ds_prev->ds_phys->ds_unique_bytes += used; mutex_exit(&ds->ds_prev->ds_lock); } if (bp->blk_birth > ds->ds_dir->dd_origin_txg) { dsl_dir_transfer_space(ds->ds_dir, used, DD_USED_HEAD, DD_USED_SNAP, tx); } } mutex_enter(&ds->ds_lock); ASSERT3U(ds->ds_phys->ds_referenced_bytes, >=, used); ds->ds_phys->ds_referenced_bytes -= used; ASSERT3U(ds->ds_phys->ds_compressed_bytes, >=, compressed); ds->ds_phys->ds_compressed_bytes -= compressed; ASSERT3U(ds->ds_phys->ds_uncompressed_bytes, >=, uncompressed); ds->ds_phys->ds_uncompressed_bytes -= uncompressed; mutex_exit(&ds->ds_lock); return (used); } uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds) { uint64_t trysnap = 0; if (ds == NULL) return (0); /* * The snapshot creation could fail, but that would cause an * incorrect FALSE return, which would only result in an * overestimation of the amount of space that an operation would * consume, which is OK. * * There's also a small window where we could miss a pending * snapshot, because we could set the sync task in the quiescing * phase. So this should only be used as a guess. */ if (ds->ds_trysnap_txg > spa_last_synced_txg(ds->ds_dir->dd_pool->dp_spa)) trysnap = ds->ds_trysnap_txg; return (MAX(ds->ds_phys->ds_prev_snap_txg, trysnap)); } boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp, uint64_t blk_birth) { if (blk_birth <= dsl_dataset_prev_snap_txg(ds) || (bp != NULL && BP_IS_HOLE(bp))) return (B_FALSE); ddt_prefetch(dsl_dataset_get_spa(ds), bp); return (B_TRUE); } /* ARGSUSED */ static void dsl_dataset_evict(dmu_buf_t *db, void *dsv) { dsl_dataset_t *ds = dsv; ASSERT(ds->ds_owner == NULL); unique_remove(ds->ds_fsid_guid); if (ds->ds_objset != NULL) dmu_objset_evict(ds->ds_objset); if (ds->ds_prev) { dsl_dataset_rele(ds->ds_prev, ds); ds->ds_prev = NULL; } bplist_destroy(&ds->ds_pending_deadlist); if (ds->ds_phys->ds_deadlist_obj != 0) dsl_deadlist_close(&ds->ds_deadlist); if (ds->ds_dir) dsl_dir_rele(ds->ds_dir, ds); ASSERT(!list_link_active(&ds->ds_synced_link)); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); mutex_destroy(&ds->ds_sendstream_lock); refcount_destroy(&ds->ds_longholds); kmem_free(ds, sizeof (dsl_dataset_t)); } int dsl_dataset_get_snapname(dsl_dataset_t *ds) { dsl_dataset_phys_t *headphys; int err; dmu_buf_t *headdbuf; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; if (ds->ds_snapname[0]) return (0); if (ds->ds_phys->ds_next_snap_obj == 0) return (0); err = dmu_bonus_hold(mos, ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &headdbuf); if (err != 0) return (err); headphys = headdbuf->db_data; err = zap_value_search(dp->dp_meta_objset, headphys->ds_snapnames_zapobj, ds->ds_object, 0, ds->ds_snapname); dmu_buf_rele(headdbuf, FTAG); return (err); } int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; matchtype_t mt; int err; if (ds->ds_phys->ds_flags & DS_FLAG_CI_DATASET) mt = MT_FIRST; else mt = MT_EXACT; err = zap_lookup_norm(mos, snapobj, name, 8, 1, value, mt, NULL, 0, NULL); if (err == ENOTSUP && mt == MT_FIRST) err = zap_lookup(mos, snapobj, name, 8, 1, value); return (err); } int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx, boolean_t adj_cnt) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t snapobj = ds->ds_phys->ds_snapnames_zapobj; matchtype_t mt; int err; dsl_dir_snap_cmtime_update(ds->ds_dir); if (ds->ds_phys->ds_flags & DS_FLAG_CI_DATASET) mt = MT_FIRST; else mt = MT_EXACT; err = zap_remove_norm(mos, snapobj, name, mt, tx); if (err == ENOTSUP && mt == MT_FIRST) err = zap_remove(mos, snapobj, name, tx); if (err == 0 && adj_cnt) dsl_fs_ss_count_adjust(ds->ds_dir, -1, DD_FIELD_SNAPSHOT_COUNT, tx); return (err); } int dsl_dataset_hold_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp) { objset_t *mos = dp->dp_meta_objset; dmu_buf_t *dbuf; dsl_dataset_t *ds; int err; dmu_object_info_t doi; ASSERT(dsl_pool_config_held(dp)); err = dmu_bonus_hold(mos, dsobj, tag, &dbuf); if (err != 0) return (err); /* Make sure dsobj has the correct object type. */ dmu_object_info_from_db(dbuf, &doi); if (doi.doi_bonus_type != DMU_OT_DSL_DATASET) { dmu_buf_rele(dbuf, tag); return (SET_ERROR(EINVAL)); } ds = dmu_buf_get_user(dbuf); if (ds == NULL) { dsl_dataset_t *winner = NULL; ds = kmem_zalloc(sizeof (dsl_dataset_t), KM_SLEEP); ds->ds_dbuf = dbuf; ds->ds_object = dsobj; ds->ds_phys = dbuf->db_data; mutex_init(&ds->ds_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_opening_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&ds->ds_sendstream_lock, NULL, MUTEX_DEFAULT, NULL); refcount_create(&ds->ds_longholds); bplist_create(&ds->ds_pending_deadlist); dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj); list_create(&ds->ds_sendstreams, sizeof (dmu_sendarg_t), offsetof(dmu_sendarg_t, dsa_link)); + if (doi.doi_type == DMU_OTN_ZAP_METADATA) { + err = zap_contains(mos, dsobj, DS_FIELD_LARGE_BLOCKS); + if (err == 0) + ds->ds_large_blocks = B_TRUE; + else + ASSERT3U(err, ==, ENOENT); + } + if (err == 0) { err = dsl_dir_hold_obj(dp, ds->ds_phys->ds_dir_obj, NULL, ds, &ds->ds_dir); } if (err != 0) { mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); mutex_destroy(&ds->ds_sendstream_lock); refcount_destroy(&ds->ds_longholds); bplist_destroy(&ds->ds_pending_deadlist); dsl_deadlist_close(&ds->ds_deadlist); kmem_free(ds, sizeof (dsl_dataset_t)); dmu_buf_rele(dbuf, tag); return (err); } if (!dsl_dataset_is_snapshot(ds)) { ds->ds_snapname[0] = '\0'; if (ds->ds_phys->ds_prev_snap_obj != 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev); } if (doi.doi_type == DMU_OTN_ZAP_METADATA) { int zaperr = zap_lookup(mos, ds->ds_object, DS_FIELD_BOOKMARK_NAMES, sizeof (ds->ds_bookmarks), 1, &ds->ds_bookmarks); if (zaperr != ENOENT) VERIFY0(zaperr); } } else { if (zfs_flags & ZFS_DEBUG_SNAPNAMES) err = dsl_dataset_get_snapname(ds); if (err == 0 && ds->ds_phys->ds_userrefs_obj != 0) { err = zap_count( ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_phys->ds_userrefs_obj, &ds->ds_userrefs); } } if (err == 0 && !dsl_dataset_is_snapshot(ds)) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &ds->ds_reserved); if (err == 0) { err = dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &ds->ds_quota); } } else { ds->ds_reserved = ds->ds_quota = 0; } if (err != 0 || (winner = dmu_buf_set_user_ie(dbuf, ds, &ds->ds_phys, dsl_dataset_evict)) != NULL) { bplist_destroy(&ds->ds_pending_deadlist); dsl_deadlist_close(&ds->ds_deadlist); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); dsl_dir_rele(ds->ds_dir, ds); mutex_destroy(&ds->ds_lock); mutex_destroy(&ds->ds_opening_lock); mutex_destroy(&ds->ds_sendstream_lock); refcount_destroy(&ds->ds_longholds); kmem_free(ds, sizeof (dsl_dataset_t)); if (err != 0) { dmu_buf_rele(dbuf, tag); return (err); } ds = winner; } else { ds->ds_fsid_guid = unique_insert(ds->ds_phys->ds_fsid_guid); } } ASSERT3P(ds->ds_dbuf, ==, dbuf); ASSERT3P(ds->ds_phys, ==, dbuf->db_data); ASSERT(ds->ds_phys->ds_prev_snap_obj != 0 || spa_version(dp->dp_spa) < SPA_VERSION_ORIGIN || dp->dp_origin_snap == NULL || ds == dp->dp_origin_snap); *dsp = ds; return (0); } int dsl_dataset_hold(dsl_pool_t *dp, const char *name, void *tag, dsl_dataset_t **dsp) { dsl_dir_t *dd; const char *snapname; uint64_t obj; int err = 0; err = dsl_dir_hold(dp, name, FTAG, &dd, &snapname); if (err != 0) return (err); ASSERT(dsl_pool_config_held(dp)); obj = dd->dd_phys->dd_head_dataset_obj; if (obj != 0) err = dsl_dataset_hold_obj(dp, obj, tag, dsp); else err = SET_ERROR(ENOENT); /* we may be looking for a snapshot */ if (err == 0 && snapname != NULL) { dsl_dataset_t *ds; if (*snapname++ != '@') { dsl_dataset_rele(*dsp, tag); dsl_dir_rele(dd, FTAG); return (SET_ERROR(ENOENT)); } dprintf("looking for snapshot '%s'\n", snapname); err = dsl_dataset_snap_lookup(*dsp, snapname, &obj); if (err == 0) err = dsl_dataset_hold_obj(dp, obj, tag, &ds); dsl_dataset_rele(*dsp, tag); if (err == 0) { mutex_enter(&ds->ds_lock); if (ds->ds_snapname[0] == 0) (void) strlcpy(ds->ds_snapname, snapname, sizeof (ds->ds_snapname)); mutex_exit(&ds->ds_lock); *dsp = ds; } } dsl_dir_rele(dd, FTAG); return (err); } int dsl_dataset_own_obj(dsl_pool_t *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp) { int err = dsl_dataset_hold_obj(dp, dsobj, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag)) { dsl_dataset_rele(*dsp, tag); *dsp = NULL; return (SET_ERROR(EBUSY)); } return (0); } int dsl_dataset_own(dsl_pool_t *dp, const char *name, void *tag, dsl_dataset_t **dsp) { int err = dsl_dataset_hold(dp, name, tag, dsp); if (err != 0) return (err); if (!dsl_dataset_tryown(*dsp, tag)) { dsl_dataset_rele(*dsp, tag); return (SET_ERROR(EBUSY)); } return (0); } /* * See the comment above dsl_pool_hold() for details. In summary, a long * hold is used to prevent destruction of a dataset while the pool hold * is dropped, allowing other concurrent operations (e.g. spa_sync()). * * The dataset and pool must be held when this function is called. After it * is called, the pool hold may be released while the dataset is still held * and accessed. */ void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag) { ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); (void) refcount_add(&ds->ds_longholds, tag); } void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag) { (void) refcount_remove(&ds->ds_longholds, tag); } /* Return B_TRUE if there are any long holds on this dataset. */ boolean_t dsl_dataset_long_held(dsl_dataset_t *ds) { return (!refcount_is_zero(&ds->ds_longholds)); } void dsl_dataset_name(dsl_dataset_t *ds, char *name) { if (ds == NULL) { (void) strcpy(name, "mos"); } else { dsl_dir_name(ds->ds_dir, name); VERIFY0(dsl_dataset_get_snapname(ds)); if (ds->ds_snapname[0]) { (void) strcat(name, "@"); /* * We use a "recursive" mutex so that we * can call dprintf_ds() with ds_lock held. */ if (!MUTEX_HELD(&ds->ds_lock)) { mutex_enter(&ds->ds_lock); (void) strcat(name, ds->ds_snapname); mutex_exit(&ds->ds_lock); } else { (void) strcat(name, ds->ds_snapname); } } } } void dsl_dataset_rele(dsl_dataset_t *ds, void *tag) { dmu_buf_rele(ds->ds_dbuf, tag); } void dsl_dataset_disown(dsl_dataset_t *ds, void *tag) { ASSERT(ds->ds_owner == tag && ds->ds_dbuf != NULL); mutex_enter(&ds->ds_lock); ds->ds_owner = NULL; mutex_exit(&ds->ds_lock); dsl_dataset_long_rele(ds, tag); if (ds->ds_dbuf != NULL) dsl_dataset_rele(ds, tag); else dsl_dataset_evict(NULL, ds); } boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag) { boolean_t gotit = FALSE; mutex_enter(&ds->ds_lock); if (ds->ds_owner == NULL && !DS_IS_INCONSISTENT(ds)) { ds->ds_owner = tag; dsl_dataset_long_hold(ds, tag); gotit = TRUE; } mutex_exit(&ds->ds_lock); return (gotit); } uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin, uint64_t flags, dmu_tx_t *tx) { dsl_pool_t *dp = dd->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj; objset_t *mos = dp->dp_meta_objset; if (origin == NULL) origin = dp->dp_origin_snap; ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp); ASSERT(origin == NULL || origin->ds_phys->ds_num_children > 0); ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dd->dd_phys->dd_head_dataset_obj == 0); dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = dd->dd_object; dsphys->ds_flags = flags; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_snapnames_zapobj = zap_create_norm(mos, U8_TEXTPREP_TOUPPER, DMU_OT_DSL_DS_SNAP_MAP, DMU_OT_NONE, 0, tx); dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = tx->tx_txg == TXG_INITIAL ? 1 : tx->tx_txg; if (origin == NULL) { dsphys->ds_deadlist_obj = dsl_deadlist_alloc(mos, tx); } else { dsl_dataset_t *ohds; /* head of the origin snapshot */ dsphys->ds_prev_snap_obj = origin->ds_object; dsphys->ds_prev_snap_txg = origin->ds_phys->ds_creation_txg; dsphys->ds_referenced_bytes = origin->ds_phys->ds_referenced_bytes; dsphys->ds_compressed_bytes = origin->ds_phys->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = origin->ds_phys->ds_uncompressed_bytes; dsphys->ds_bp = origin->ds_phys->ds_bp; /* * Inherit flags that describe the dataset's contents * (INCONSISTENT) or properties (Case Insensitive). */ dsphys->ds_flags |= origin->ds_phys->ds_flags & (DS_FLAG_INCONSISTENT | DS_FLAG_CI_DATASET); + if (origin->ds_large_blocks) + dsl_dataset_activate_large_blocks_sync_impl(dsobj, tx); + dmu_buf_will_dirty(origin->ds_dbuf, tx); origin->ds_phys->ds_num_children++; VERIFY0(dsl_dataset_hold_obj(dp, origin->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ohds)); dsphys->ds_deadlist_obj = dsl_deadlist_clone(&ohds->ds_deadlist, dsphys->ds_prev_snap_txg, dsphys->ds_prev_snap_obj, tx); dsl_dataset_rele(ohds, FTAG); if (spa_version(dp->dp_spa) >= SPA_VERSION_NEXT_CLONES) { if (origin->ds_phys->ds_next_clones_obj == 0) { origin->ds_phys->ds_next_clones_obj = zap_create(mos, DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, origin->ds_phys->ds_next_clones_obj, dsobj, tx)); } dmu_buf_will_dirty(dd->dd_dbuf, tx); dd->dd_phys->dd_origin_obj = origin->ds_object; if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { if (origin->ds_dir->dd_phys->dd_clones == 0) { dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); origin->ds_dir->dd_phys->dd_clones = zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(mos, origin->ds_dir->dd_phys->dd_clones, dsobj, tx)); } } if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) dsphys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; dmu_buf_rele(dbuf, FTAG); dmu_buf_will_dirty(dd->dd_dbuf, tx); dd->dd_phys->dd_head_dataset_obj = dsobj; return (dsobj); } static void dsl_dataset_zero_zil(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *os; VERIFY0(dmu_objset_from_ds(ds, &os)); bzero(&os->os_zil_header, sizeof (os->os_zil_header)); dsl_dataset_dirty(ds, tx); } uint64_t dsl_dataset_create_sync(dsl_dir_t *pdd, const char *lastname, dsl_dataset_t *origin, uint64_t flags, cred_t *cr, dmu_tx_t *tx) { dsl_pool_t *dp = pdd->dd_pool; uint64_t dsobj, ddobj; dsl_dir_t *dd; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(lastname[0] != '@'); ddobj = dsl_dir_create_sync(dp, pdd, lastname, tx); VERIFY0(dsl_dir_hold_obj(dp, ddobj, lastname, FTAG, &dd)); dsobj = dsl_dataset_create_sync_dd(dd, origin, flags & ~DS_CREATE_FLAG_NODIRTY, tx); dsl_deleg_set_create_perms(dd, tx, cr); /* * Since we're creating a new node we know it's a leaf, so we can * initialize the counts if the limit feature is active. */ if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { uint64_t cnt = 0; objset_t *os = dd->dd_pool->dp_meta_objset; dsl_dir_zapify(dd, tx); VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, sizeof (cnt), 1, &cnt, tx)); VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, sizeof (cnt), 1, &cnt, tx)); } dsl_dir_rele(dd, FTAG); /* * If we are creating a clone, make sure we zero out any stale * data from the origin snapshots zil header. */ if (origin != NULL && !(flags & DS_CREATE_FLAG_NODIRTY)) { dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); dsl_dataset_zero_zil(ds, tx); dsl_dataset_rele(ds, FTAG); } return (dsobj); } /* * The unique space in the head dataset can be calculated by subtracting * the space used in the most recent snapshot, that is still being used * in this file system, from the space currently in use. To figure out * the space in the most recent snapshot still in use, we need to take * the total space used in the snapshot and subtract out the space that * has been freed up since the snapshot was taken. */ void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds) { uint64_t mrs_used; uint64_t dlused, dlcomp, dluncomp; ASSERT(!dsl_dataset_is_snapshot(ds)); if (ds->ds_phys->ds_prev_snap_obj != 0) mrs_used = ds->ds_prev->ds_phys->ds_referenced_bytes; else mrs_used = 0; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ASSERT3U(dlused, <=, mrs_used); ds->ds_phys->ds_unique_bytes = ds->ds_phys->ds_referenced_bytes - (mrs_used - dlused); if (spa_version(ds->ds_dir->dd_pool->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) ds->ds_phys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; } void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; uint64_t count; int err; ASSERT(ds->ds_phys->ds_num_children >= 2); err = zap_remove_int(mos, ds->ds_phys->ds_next_clones_obj, obj, tx); /* * The err should not be ENOENT, but a bug in a previous version * of the code could cause upgrade_clones_cb() to not set * ds_next_snap_obj when it should, leading to a missing entry. * If we knew that the pool was created after * SPA_VERSION_NEXT_CLONES, we could assert that it isn't * ENOENT. However, at least we can check that we don't have * too many entries in the next_clones_obj even after failing to * remove this one. */ if (err != ENOENT) VERIFY0(err); ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count)); ASSERT3U(count, <=, ds->ds_phys->ds_num_children - 2); } blkptr_t * dsl_dataset_get_blkptr(dsl_dataset_t *ds) { return (&ds->ds_phys->ds_bp); } void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); /* If it's the meta-objset, set dp_meta_rootbp */ if (ds == NULL) { tx->tx_pool->dp_meta_rootbp = *bp; } else { dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_bp = *bp; } } spa_t * dsl_dataset_get_spa(dsl_dataset_t *ds) { return (ds->ds_dir->dd_pool->dp_spa); } void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp; if (ds == NULL) /* this is the meta-objset */ return; ASSERT(ds->ds_objset != NULL); if (ds->ds_phys->ds_next_snap_obj != 0) panic("dirtying snapshot!"); dp = ds->ds_dir->dd_pool; if (txg_list_add(&dp->dp_dirty_datasets, ds, tx->tx_txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, ds); } } boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds) { for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&ds->ds_dir->dd_pool->dp_dirty_datasets, ds, t)) return (B_TRUE); } return (B_FALSE); } static int dsl_dataset_snapshot_reserve_space(dsl_dataset_t *ds, dmu_tx_t *tx) { uint64_t asize; if (!dmu_tx_is_syncing(tx)) return (0); /* * If there's an fs-only reservation, any blocks that might become * owned by the snapshot dataset must be accommodated by space * outside of the reservation. */ ASSERT(ds->ds_reserved == 0 || DS_UNIQUE_IS_ACCURATE(ds)); asize = MIN(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); if (asize > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* * Propagate any reserved space for this snapshot to other * snapshot checks in this sync group. */ if (asize > 0) dsl_dir_willuse_space(ds->ds_dir, asize, tx); return (0); } typedef struct dsl_dataset_snapshot_arg { nvlist_t *ddsa_snaps; nvlist_t *ddsa_props; nvlist_t *ddsa_errors; cred_t *ddsa_cr; } dsl_dataset_snapshot_arg_t; int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx, boolean_t recv, uint64_t cnt, cred_t *cr) { int error; uint64_t value; ds->ds_trysnap_txg = tx->tx_txg; if (!dmu_tx_is_syncing(tx)) return (0); /* * We don't allow multiple snapshots of the same txg. If there * is already one, try again. */ if (ds->ds_phys->ds_prev_snap_txg >= tx->tx_txg) return (SET_ERROR(EAGAIN)); /* * Check for conflicting snapshot name. */ error = dsl_dataset_snap_lookup(ds, snapname, &value); if (error == 0) return (SET_ERROR(EEXIST)); if (error != ENOENT) return (error); /* * We don't allow taking snapshots of inconsistent datasets, such as * those into which we are currently receiving. However, if we are * creating this snapshot as part of a receive, this check will be * executed atomically with respect to the completion of the receive * itself but prior to the clearing of DS_FLAG_INCONSISTENT; in this * case we ignore this, knowing it will be fixed up for us shortly in * dmu_recv_end_sync(). */ if (!recv && DS_IS_INCONSISTENT(ds)) return (SET_ERROR(EBUSY)); /* * Skip the check for temporary snapshots or if we have already checked * the counts in dsl_dataset_snapshot_check. This means we really only * check the count here when we're receiving a stream. */ if (cnt != 0 && cr != NULL) { error = dsl_fs_ss_limit_check(ds->ds_dir, cnt, ZFS_PROP_SNAPSHOT_LIMIT, NULL, cr); if (error != 0) return (error); } error = dsl_dataset_snapshot_reserve_space(ds, tx); if (error != 0) return (error); return (0); } static int dsl_dataset_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; int rv = 0; /* * Pre-compute how many total new snapshots will be created for each * level in the tree and below. This is needed for validating the * snapshot limit when either taking a recursive snapshot or when * taking multiple snapshots. * * The problem is that the counts are not actually adjusted when * we are checking, only when we finally sync. For a single snapshot, * this is easy, the count will increase by 1 at each node up the tree, * but its more complicated for the recursive/multiple snapshot case. * * The dsl_fs_ss_limit_check function does recursively check the count * at each level up the tree but since it is validating each snapshot * independently we need to be sure that we are validating the complete * count for the entire set of snapshots. We do this by rolling up the * counts for each component of the name into an nvlist and then * checking each of those cases with the aggregated count. * * This approach properly handles not only the recursive snapshot * case (where we get all of those on the ddsa_snaps list) but also * the sibling case (e.g. snapshot a/b and a/c so that we will also * validate the limit on 'a' using a count of 2). * * We validate the snapshot names in the third loop and only report * name errors once. */ if (dmu_tx_is_syncing(tx)) { nvlist_t *cnt_track = NULL; cnt_track = fnvlist_alloc(); /* Rollup aggregated counts into the cnt_track list */ for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { char *pdelim; uint64_t val; char nm[MAXPATHLEN]; (void) strlcpy(nm, nvpair_name(pair), sizeof (nm)); pdelim = strchr(nm, '@'); if (pdelim == NULL) continue; *pdelim = '\0'; do { if (nvlist_lookup_uint64(cnt_track, nm, &val) == 0) { /* update existing entry */ fnvlist_add_uint64(cnt_track, nm, val + 1); } else { /* add to list */ fnvlist_add_uint64(cnt_track, nm, 1); } pdelim = strrchr(nm, '/'); if (pdelim != NULL) *pdelim = '\0'; } while (pdelim != NULL); } /* Check aggregated counts at each level */ for (pair = nvlist_next_nvpair(cnt_track, NULL); pair != NULL; pair = nvlist_next_nvpair(cnt_track, pair)) { int error = 0; char *name; uint64_t cnt = 0; dsl_dataset_t *ds; name = nvpair_name(pair); cnt = fnvpair_value_uint64(pair); ASSERT(cnt > 0); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error == 0) { error = dsl_fs_ss_limit_check(ds->ds_dir, cnt, ZFS_PROP_SNAPSHOT_LIMIT, NULL, ddsa->ddsa_cr); dsl_dataset_rele(ds, FTAG); } if (error != 0) { if (ddsa->ddsa_errors != NULL) fnvlist_add_int32(ddsa->ddsa_errors, name, error); rv = error; /* only report one error for this check */ break; } } nvlist_free(cnt_track); } for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { int error = 0; dsl_dataset_t *ds; char *name, *atp; char dsname[MAXNAMELEN]; name = nvpair_name(pair); if (strlen(name) >= MAXNAMELEN) error = SET_ERROR(ENAMETOOLONG); if (error == 0) { atp = strchr(name, '@'); if (atp == NULL) error = SET_ERROR(EINVAL); if (error == 0) (void) strlcpy(dsname, name, atp - name + 1); } if (error == 0) error = dsl_dataset_hold(dp, dsname, FTAG, &ds); if (error == 0) { /* passing 0/NULL skips dsl_fs_ss_limit_check */ error = dsl_dataset_snapshot_check_impl(ds, atp + 1, tx, B_FALSE, 0, NULL); dsl_dataset_rele(ds, FTAG); } if (error != 0) { if (ddsa->ddsa_errors != NULL) { fnvlist_add_int32(ddsa->ddsa_errors, name, error); } rv = error; } } return (rv); } void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx) { static zil_header_t zero_zil; dsl_pool_t *dp = ds->ds_dir->dd_pool; dmu_buf_t *dbuf; dsl_dataset_phys_t *dsphys; uint64_t dsobj, crtxg; objset_t *mos = dp->dp_meta_objset; objset_t *os; ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock)); /* * If we are on an old pool, the zil must not be active, in which * case it will be zeroed. Usually zil_suspend() accomplishes this. */ ASSERT(spa_version(dmu_tx_pool(tx)->dp_spa) >= SPA_VERSION_FAST_SNAP || dmu_objset_from_ds(ds, &os) != 0 || bcmp(&os->os_phys->os_zil_header, &zero_zil, sizeof (zero_zil)) == 0); dsl_fs_ss_count_adjust(ds->ds_dir, 1, DD_FIELD_SNAPSHOT_COUNT, tx); /* * The origin's ds_creation_txg has to be < TXG_INITIAL */ if (strcmp(snapname, ORIGIN_DIR_NAME) == 0) crtxg = 1; else crtxg = tx->tx_txg; dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0, DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx); VERIFY0(dmu_bonus_hold(mos, dsobj, FTAG, &dbuf)); dmu_buf_will_dirty(dbuf, tx); dsphys = dbuf->db_data; bzero(dsphys, sizeof (dsl_dataset_phys_t)); dsphys->ds_dir_obj = ds->ds_dir->dd_object; dsphys->ds_fsid_guid = unique_create(); (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid, sizeof (dsphys->ds_guid)); dsphys->ds_prev_snap_obj = ds->ds_phys->ds_prev_snap_obj; dsphys->ds_prev_snap_txg = ds->ds_phys->ds_prev_snap_txg; dsphys->ds_next_snap_obj = ds->ds_object; dsphys->ds_num_children = 1; dsphys->ds_creation_time = gethrestime_sec(); dsphys->ds_creation_txg = crtxg; dsphys->ds_deadlist_obj = ds->ds_phys->ds_deadlist_obj; dsphys->ds_referenced_bytes = ds->ds_phys->ds_referenced_bytes; dsphys->ds_compressed_bytes = ds->ds_phys->ds_compressed_bytes; dsphys->ds_uncompressed_bytes = ds->ds_phys->ds_uncompressed_bytes; dsphys->ds_flags = ds->ds_phys->ds_flags; dsphys->ds_bp = ds->ds_phys->ds_bp; dmu_buf_rele(dbuf, FTAG); + if (ds->ds_large_blocks) + dsl_dataset_activate_large_blocks_sync_impl(dsobj, tx); + ASSERT3U(ds->ds_prev != 0, ==, ds->ds_phys->ds_prev_snap_obj != 0); if (ds->ds_prev) { uint64_t next_clones_obj = ds->ds_prev->ds_phys->ds_next_clones_obj; ASSERT(ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object || ds->ds_prev->ds_phys->ds_num_children > 1); if (ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object) { dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==, ds->ds_prev->ds_phys->ds_creation_txg); ds->ds_prev->ds_phys->ds_next_snap_obj = dsobj; } else if (next_clones_obj != 0) { dsl_dataset_remove_from_next_clones(ds->ds_prev, dsphys->ds_next_snap_obj, tx); VERIFY0(zap_add_int(mos, next_clones_obj, dsobj, tx)); } } /* * If we have a reference-reservation on this dataset, we will * need to increase the amount of refreservation being charged * since our unique space is going to zero. */ if (ds->ds_reserved) { int64_t delta; ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); delta = MIN(ds->ds_phys->ds_unique_bytes, ds->ds_reserved); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); } dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_deadlist_obj = dsl_deadlist_clone(&ds->ds_deadlist, UINT64_MAX, ds->ds_phys->ds_prev_snap_obj, tx); dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj); dsl_deadlist_add_key(&ds->ds_deadlist, ds->ds_phys->ds_prev_snap_txg, tx); ASSERT3U(ds->ds_phys->ds_prev_snap_txg, <, tx->tx_txg); ds->ds_phys->ds_prev_snap_obj = dsobj; ds->ds_phys->ds_prev_snap_txg = crtxg; ds->ds_phys->ds_unique_bytes = 0; if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE) ds->ds_phys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE; VERIFY0(zap_add(mos, ds->ds_phys->ds_snapnames_zapobj, snapname, 8, 1, &dsobj, tx)); if (ds->ds_prev) dsl_dataset_rele(ds->ds_prev, ds); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); dsl_scan_ds_snapshotted(ds, tx); dsl_dir_snap_cmtime_update(ds->ds_dir); spa_history_log_internal_ds(ds->ds_prev, "snapshot", tx, ""); } static void dsl_dataset_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_arg_t *ddsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; for (pair = nvlist_next_nvpair(ddsa->ddsa_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(ddsa->ddsa_snaps, pair)) { dsl_dataset_t *ds; char *name, *atp; char dsname[MAXNAMELEN]; name = nvpair_name(pair); atp = strchr(name, '@'); (void) strlcpy(dsname, name, atp - name + 1); VERIFY0(dsl_dataset_hold(dp, dsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, atp + 1, tx); if (ddsa->ddsa_props != NULL) { dsl_props_set_sync_impl(ds->ds_prev, ZPROP_SRC_LOCAL, ddsa->ddsa_props, tx); } dsl_dataset_rele(ds, FTAG); } } /* * The snapshots must all be in the same pool. * All-or-nothing: if there are any failures, nothing will be modified. */ int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors) { dsl_dataset_snapshot_arg_t ddsa; nvpair_t *pair; boolean_t needsuspend; int error; spa_t *spa; char *firstname; nvlist_t *suspended = NULL; pair = nvlist_next_nvpair(snaps, NULL); if (pair == NULL) return (0); firstname = nvpair_name(pair); error = spa_open(firstname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { suspended = fnvlist_alloc(); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char fsname[MAXNAMELEN]; char *snapname = nvpair_name(pair); char *atp; void *cookie; atp = strchr(snapname, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } (void) strlcpy(fsname, snapname, atp - snapname + 1); error = zil_suspend(fsname, &cookie); if (error != 0) break; fnvlist_add_uint64(suspended, fsname, (uintptr_t)cookie); } } ddsa.ddsa_snaps = snaps; ddsa.ddsa_props = props; ddsa.ddsa_errors = errors; ddsa.ddsa_cr = CRED(); if (error == 0) { error = dsl_sync_task(firstname, dsl_dataset_snapshot_check, dsl_dataset_snapshot_sync, &ddsa, fnvlist_num_pairs(snaps) * 3, ZFS_SPACE_CHECK_NORMAL); } if (suspended != NULL) { for (pair = nvlist_next_nvpair(suspended, NULL); pair != NULL; pair = nvlist_next_nvpair(suspended, pair)) { zil_resume((void *)(uintptr_t) fnvpair_value_uint64(pair)); } fnvlist_free(suspended); } return (error); } typedef struct dsl_dataset_snapshot_tmp_arg { const char *ddsta_fsname; const char *ddsta_snapname; minor_t ddsta_cleanup_minor; const char *ddsta_htag; } dsl_dataset_snapshot_tmp_arg_t; static int dsl_dataset_snapshot_tmp_check(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; error = dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds); if (error != 0) return (error); /* NULL cred means no limit check for tmp snapshot */ error = dsl_dataset_snapshot_check_impl(ds, ddsta->ddsta_snapname, tx, B_FALSE, 0, NULL); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (spa_version(dp->dp_spa) < SPA_VERSION_USERREFS) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOTSUP)); } error = dsl_dataset_user_hold_check_one(NULL, ddsta->ddsta_htag, B_TRUE, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_snapshot_tmp_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_snapshot_tmp_arg_t *ddsta = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddsta->ddsta_fsname, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, ddsta->ddsta_snapname, tx); dsl_dataset_user_hold_sync_one(ds->ds_prev, ddsta->ddsta_htag, ddsta->ddsta_cleanup_minor, gethrestime_sec(), tx); dsl_destroy_snapshot_sync_impl(ds->ds_prev, B_TRUE, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname, minor_t cleanup_minor, const char *htag) { dsl_dataset_snapshot_tmp_arg_t ddsta; int error; spa_t *spa; boolean_t needsuspend; void *cookie; ddsta.ddsta_fsname = fsname; ddsta.ddsta_snapname = snapname; ddsta.ddsta_cleanup_minor = cleanup_minor; ddsta.ddsta_htag = htag; error = spa_open(fsname, &spa, FTAG); if (error != 0) return (error); needsuspend = (spa_version(spa) < SPA_VERSION_FAST_SNAP); spa_close(spa, FTAG); if (needsuspend) { error = zil_suspend(fsname, &cookie); if (error != 0) return (error); } error = dsl_sync_task(fsname, dsl_dataset_snapshot_tmp_check, dsl_dataset_snapshot_tmp_sync, &ddsta, 3, ZFS_SPACE_CHECK_RESERVED); if (needsuspend) zil_resume(cookie); return (error); } void dsl_dataset_sync(dsl_dataset_t *ds, zio_t *zio, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); ASSERT(ds->ds_objset != NULL); ASSERT(ds->ds_phys->ds_next_snap_obj == 0); /* * in case we had to change ds_fsid_guid when we opened it, * sync it out now. */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_fsid_guid = ds->ds_fsid_guid; dmu_objset_sync(ds->ds_objset, zio, tx); + + if (ds->ds_need_large_blocks && !ds->ds_large_blocks) { + dsl_dataset_activate_large_blocks_sync_impl(ds->ds_object, tx); + ds->ds_large_blocks = B_TRUE; + } } static void get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv) { uint64_t count = 0; objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; zap_cursor_t zc; zap_attribute_t za; nvlist_t *propval = fnvlist_alloc(); nvlist_t *val = fnvlist_alloc(); ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool)); /* * There may be missing entries in ds_next_clones_obj * due to a bug in a previous version of the code. * Only trust it if it has the right number of entries. */ if (ds->ds_phys->ds_next_clones_obj != 0) { VERIFY0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count)); } if (count != ds->ds_phys->ds_num_children - 1) goto fail; for (zap_cursor_init(&zc, mos, ds->ds_phys->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *clone; char buf[ZFS_MAXNAMELEN]; VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool, za.za_first_integer, FTAG, &clone)); dsl_dir_name(clone->ds_dir, buf); fnvlist_add_boolean(val, buf); dsl_dataset_rele(clone, FTAG); } zap_cursor_fini(&zc); fnvlist_add_nvlist(propval, ZPROP_VALUE, val); fnvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_CLONES), propval); fail: nvlist_free(val); nvlist_free(propval); } void dsl_dataset_stats(dsl_dataset_t *ds, nvlist_t *nv) { dsl_pool_t *dp = ds->ds_dir->dd_pool; uint64_t refd, avail, uobjs, aobjs, ratio; ASSERT(dsl_pool_config_held(dp)); ratio = ds->ds_phys->ds_compressed_bytes == 0 ? 100 : (ds->ds_phys->ds_uncompressed_bytes * 100 / ds->ds_phys->ds_compressed_bytes); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRATIO, ratio); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALREFERENCED, ds->ds_phys->ds_uncompressed_bytes); if (dsl_dataset_is_snapshot(ds)) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, ratio); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, ds->ds_phys->ds_unique_bytes); get_clones_stat(ds, nv); } else { if (ds->ds_prev != NULL && ds->ds_prev != dp->dp_origin_snap) { char buf[MAXNAMELEN]; dsl_dataset_name(ds->ds_prev, buf); dsl_prop_nvlist_add_string(nv, ZFS_PROP_PREV_SNAP, buf); } dsl_dir_stats(ds->ds_dir, nv); } dsl_dataset_space(ds, &refd, &avail, &uobjs, &aobjs); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_AVAILABLE, avail); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFERENCED, refd); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATION, ds->ds_phys->ds_creation_time); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_CREATETXG, ds->ds_phys->ds_creation_txg); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFQUOTA, ds->ds_quota); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REFRESERVATION, ds->ds_reserved); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_GUID, ds->ds_phys->ds_guid); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_UNIQUE, ds->ds_phys->ds_unique_bytes); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_OBJSETID, ds->ds_object); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERREFS, ds->ds_userrefs); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_DEFER_DESTROY, DS_IS_DEFER_DESTROY(ds) ? 1 : 0); if (ds->ds_phys->ds_prev_snap_obj != 0) { uint64_t written, comp, uncomp; dsl_pool_t *dp = ds->ds_dir->dd_pool; dsl_dataset_t *prev; int err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, FTAG, &prev); if (err == 0) { err = dsl_dataset_space_written(prev, ds, &written, &comp, &uncomp); dsl_dataset_rele(prev, FTAG); if (err == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_WRITTEN, written); } } } } void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat) { dsl_pool_t *dp = ds->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); stat->dds_creation_txg = ds->ds_phys->ds_creation_txg; stat->dds_inconsistent = ds->ds_phys->ds_flags & DS_FLAG_INCONSISTENT; stat->dds_guid = ds->ds_phys->ds_guid; stat->dds_origin[0] = '\0'; if (dsl_dataset_is_snapshot(ds)) { stat->dds_is_snapshot = B_TRUE; stat->dds_num_clones = ds->ds_phys->ds_num_children - 1; } else { stat->dds_is_snapshot = B_FALSE; stat->dds_num_clones = 0; if (dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_t *ods; VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &ods)); dsl_dataset_name(ods, stat->dds_origin); dsl_dataset_rele(ods, FTAG); } } } uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds) { return (ds->ds_fsid_guid); } void dsl_dataset_space(dsl_dataset_t *ds, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp) { *refdbytesp = ds->ds_phys->ds_referenced_bytes; *availbytesp = dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE); if (ds->ds_reserved > ds->ds_phys->ds_unique_bytes) *availbytesp += ds->ds_reserved - ds->ds_phys->ds_unique_bytes; if (ds->ds_quota != 0) { /* * Adjust available bytes according to refquota */ if (*refdbytesp < ds->ds_quota) *availbytesp = MIN(*availbytesp, ds->ds_quota - *refdbytesp); else *availbytesp = 0; } *usedobjsp = BP_GET_FILL(&ds->ds_phys->ds_bp); *availobjsp = DN_MAX_OBJECT - *usedobjsp; } boolean_t dsl_dataset_modified_since_snap(dsl_dataset_t *ds, dsl_dataset_t *snap) { dsl_pool_t *dp = ds->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); if (snap == NULL) return (B_FALSE); if (ds->ds_phys->ds_bp.blk_birth > snap->ds_phys->ds_creation_txg) { objset_t *os, *os_snap; /* * It may be that only the ZIL differs, because it was * reset in the head. Don't count that as being * modified. */ if (dmu_objset_from_ds(ds, &os) != 0) return (B_TRUE); if (dmu_objset_from_ds(snap, &os_snap) != 0) return (B_TRUE); return (bcmp(&os->os_phys->os_meta_dnode, &os_snap->os_phys->os_meta_dnode, sizeof (os->os_phys->os_meta_dnode)) != 0); } return (B_FALSE); } typedef struct dsl_dataset_rename_snapshot_arg { const char *ddrsa_fsname; const char *ddrsa_oldsnapname; const char *ddrsa_newsnapname; boolean_t ddrsa_recursive; dmu_tx_t *ddrsa_tx; } dsl_dataset_rename_snapshot_arg_t; /* ARGSUSED */ static int dsl_dataset_rename_snapshot_check_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; int error; uint64_t val; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); if (error != 0) { /* ignore nonexistent snapshots */ return (error == ENOENT ? 0 : error); } /* new name should not exist */ error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_newsnapname, &val); if (error == 0) error = SET_ERROR(EEXIST); else if (error == ENOENT) error = 0; /* dataset name + 1 for the "@" + the new snapshot name must fit */ if (dsl_dir_namelen(hds->ds_dir) + 1 + strlen(ddrsa->ddrsa_newsnapname) >= MAXNAMELEN) error = SET_ERROR(ENAMETOOLONG); return (error); } static int dsl_dataset_rename_snapshot_check(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; int error; error = dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds); if (error != 0) return (error); if (ddrsa->ddrsa_recursive) { error = dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_check_impl, ddrsa, DS_FIND_CHILDREN); } else { error = dsl_dataset_rename_snapshot_check_impl(dp, hds, ddrsa); } dsl_dataset_rele(hds, FTAG); return (error); } static int dsl_dataset_rename_snapshot_sync_impl(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_dataset_t *ds; uint64_t val; dmu_tx_t *tx = ddrsa->ddrsa_tx; int error; error = dsl_dataset_snap_lookup(hds, ddrsa->ddrsa_oldsnapname, &val); ASSERT(error == 0 || error == ENOENT); if (error == ENOENT) { /* ignore nonexistent snapshots */ return (0); } VERIFY0(dsl_dataset_hold_obj(dp, val, FTAG, &ds)); /* log before we change the name */ spa_history_log_internal_ds(ds, "rename", tx, "-> @%s", ddrsa->ddrsa_newsnapname); VERIFY0(dsl_dataset_snap_remove(hds, ddrsa->ddrsa_oldsnapname, tx, B_FALSE)); mutex_enter(&ds->ds_lock); (void) strcpy(ds->ds_snapname, ddrsa->ddrsa_newsnapname); mutex_exit(&ds->ds_lock); VERIFY0(zap_add(dp->dp_meta_objset, hds->ds_phys->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_rename_snapshot_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_rename_snapshot_arg_t *ddrsa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; VERIFY0(dsl_dataset_hold(dp, ddrsa->ddrsa_fsname, FTAG, &hds)); ddrsa->ddrsa_tx = tx; if (ddrsa->ddrsa_recursive) { VERIFY0(dmu_objset_find_dp(dp, hds->ds_dir->dd_object, dsl_dataset_rename_snapshot_sync_impl, ddrsa, DS_FIND_CHILDREN)); } else { VERIFY0(dsl_dataset_rename_snapshot_sync_impl(dp, hds, ddrsa)); } dsl_dataset_rele(hds, FTAG); } int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive) { dsl_dataset_rename_snapshot_arg_t ddrsa; ddrsa.ddrsa_fsname = fsname; ddrsa.ddrsa_oldsnapname = oldsnapname; ddrsa.ddrsa_newsnapname = newsnapname; ddrsa.ddrsa_recursive = recursive; return (dsl_sync_task(fsname, dsl_dataset_rename_snapshot_check, dsl_dataset_rename_snapshot_sync, &ddrsa, 1, ZFS_SPACE_CHECK_RESERVED)); } /* * If we're doing an ownership handoff, we need to make sure that there is * only one long hold on the dataset. We're not allowed to change anything here * so we don't permanently release the long hold or regular hold here. We want * to do this only when syncing to avoid the dataset unexpectedly going away * when we release the long hold. */ static int dsl_dataset_handoff_check(dsl_dataset_t *ds, void *owner, dmu_tx_t *tx) { boolean_t held; if (!dmu_tx_is_syncing(tx)) return (0); if (owner != NULL) { VERIFY3P(ds->ds_owner, ==, owner); dsl_dataset_long_rele(ds, owner); } held = dsl_dataset_long_held(ds); if (owner != NULL) dsl_dataset_long_hold(ds, owner); if (held) return (SET_ERROR(EBUSY)); return (0); } typedef struct dsl_dataset_rollback_arg { const char *ddra_fsname; void *ddra_owner; nvlist_t *ddra_result; } dsl_dataset_rollback_arg_t; static int dsl_dataset_rollback_check(void *arg, dmu_tx_t *tx) { dsl_dataset_rollback_arg_t *ddra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int64_t unused_refres_delta; int error; error = dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds); if (error != 0) return (error); /* must not be a snapshot */ if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* must have a most recent snapshot */ if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } /* must not have any bookmarks after the most recent snapshot */ nvlist_t *proprequest = fnvlist_alloc(); fnvlist_add_boolean(proprequest, zfs_prop_to_name(ZFS_PROP_CREATETXG)); nvlist_t *bookmarks = fnvlist_alloc(); error = dsl_get_bookmarks_impl(ds, proprequest, bookmarks); fnvlist_free(proprequest); if (error != 0) return (error); for (nvpair_t *pair = nvlist_next_nvpair(bookmarks, NULL); pair != NULL; pair = nvlist_next_nvpair(bookmarks, pair)) { nvlist_t *valuenv = fnvlist_lookup_nvlist(fnvpair_value_nvlist(pair), zfs_prop_to_name(ZFS_PROP_CREATETXG)); uint64_t createtxg = fnvlist_lookup_uint64(valuenv, "value"); if (createtxg > ds->ds_phys->ds_prev_snap_txg) { fnvlist_free(bookmarks); dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EEXIST)); } } fnvlist_free(bookmarks); error = dsl_dataset_handoff_check(ds, ddra->ddra_owner, tx); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* * Check if the snap we are rolling back to uses more than * the refquota. */ if (ds->ds_quota != 0 && ds->ds_prev->ds_phys->ds_referenced_bytes > ds->ds_quota) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EDQUOT)); } /* * When we do the clone swap, we will temporarily use more space * due to the refreservation (the head will no longer have any * unique space, so the entire amount of the refreservation will need * to be free). We will immediately destroy the clone, freeing * this space, but the freeing happens over many txg's. */ unused_refres_delta = (int64_t)MIN(ds->ds_reserved, ds->ds_phys->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, TRUE)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_rollback_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_rollback_arg_t *ddra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds, *clone; uint64_t cloneobj; char namebuf[ZFS_MAXNAMELEN]; VERIFY0(dsl_dataset_hold(dp, ddra->ddra_fsname, FTAG, &ds)); dsl_dataset_name(ds->ds_prev, namebuf); fnvlist_add_string(ddra->ddra_result, "target", namebuf); cloneobj = dsl_dataset_create_sync(ds->ds_dir, "%rollback", ds->ds_prev, DS_CREATE_FLAG_NODIRTY, kcred, tx); VERIFY0(dsl_dataset_hold_obj(dp, cloneobj, FTAG, &clone)); dsl_dataset_clone_swap_sync_impl(clone, ds, tx); dsl_dataset_zero_zil(ds, tx); dsl_destroy_head_sync_impl(clone, tx); dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(ds, FTAG); } /* * Rolls back the given filesystem or volume to the most recent snapshot. * The name of the most recent snapshot will be returned under key "target" * in the result nvlist. * * If owner != NULL: * - The existing dataset MUST be owned by the specified owner at entry * - Upon return, dataset will still be held by the same owner, whether we * succeed or not. * * This mode is required any time the existing filesystem is mounted. See * notes above zfs_suspend_fs() for further details. */ int dsl_dataset_rollback(const char *fsname, void *owner, nvlist_t *result) { dsl_dataset_rollback_arg_t ddra; ddra.ddra_fsname = fsname; ddra.ddra_owner = owner; ddra.ddra_result = result; return (dsl_sync_task(fsname, dsl_dataset_rollback_check, dsl_dataset_rollback_sync, &ddra, 1, ZFS_SPACE_CHECK_RESERVED)); } struct promotenode { list_node_t link; dsl_dataset_t *ds; }; typedef struct dsl_dataset_promote_arg { const char *ddpa_clonename; dsl_dataset_t *ddpa_clone; list_t shared_snaps, origin_snaps, clone_snaps; dsl_dataset_t *origin_origin; /* origin of the origin */ uint64_t used, comp, uncomp, unique, cloneusedsnap, originusedsnap; char *err_ds; cred_t *cr; } dsl_dataset_promote_arg_t; static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep); static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag); static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag); static int dsl_dataset_promote_check(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds; int err; uint64_t unused; uint64_t ss_mv_cnt; err = promote_hold(ddpa, dp, FTAG); if (err != 0) return (err); hds = ddpa->ddpa_clone; if (hds->ds_phys->ds_flags & DS_FLAG_NOPROMOTE) { promote_rele(ddpa, FTAG); return (SET_ERROR(EXDEV)); } /* * Compute and check the amount of space to transfer. Since this is * so expensive, don't do the preliminary check. */ if (!dmu_tx_is_syncing(tx)) { promote_rele(ddpa, FTAG); return (0); } snap = list_head(&ddpa->shared_snaps); origin_ds = snap->ds; /* compute origin's new unique space */ snap = list_tail(&ddpa->clone_snaps); ASSERT3U(snap->ds->ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object); dsl_deadlist_space_range(&snap->ds->ds_deadlist, origin_ds->ds_phys->ds_prev_snap_txg, UINT64_MAX, &ddpa->unique, &unused, &unused); /* * Walk the snapshots that we are moving * * Compute space to transfer. Consider the incremental changes * to used by each snapshot: * (my used) = (prev's used) + (blocks born) - (blocks killed) * So each snapshot gave birth to: * (blocks born) = (my used) - (prev's used) + (blocks killed) * So a sequence would look like: * (uN - u(N-1) + kN) + ... + (u1 - u0 + k1) + (u0 - 0 + k0) * Which simplifies to: * uN + kN + kN-1 + ... + k1 + k0 * Note however, if we stop before we reach the ORIGIN we get: * uN + kN + kN-1 + ... + kM - uM-1 */ ss_mv_cnt = 0; ddpa->used = origin_ds->ds_phys->ds_referenced_bytes; ddpa->comp = origin_ds->ds_phys->ds_compressed_bytes; ddpa->uncomp = origin_ds->ds_phys->ds_uncompressed_bytes; for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { uint64_t val, dlused, dlcomp, dluncomp; dsl_dataset_t *ds = snap->ds; ss_mv_cnt++; /* * If there are long holds, we won't be able to evict * the objset. */ if (dsl_dataset_long_held(ds)) { err = SET_ERROR(EBUSY); goto out; } /* Check that the snapshot name does not conflict */ VERIFY0(dsl_dataset_get_snapname(ds)); err = dsl_dataset_snap_lookup(hds, ds->ds_snapname, &val); if (err == 0) { (void) strcpy(ddpa->err_ds, snap->ds->ds_snapname); err = SET_ERROR(EEXIST); goto out; } if (err != ENOENT) goto out; /* The very first snapshot does not have a deadlist */ if (ds->ds_phys->ds_prev_snap_obj == 0) continue; dsl_deadlist_space(&ds->ds_deadlist, &dlused, &dlcomp, &dluncomp); ddpa->used += dlused; ddpa->comp += dlcomp; ddpa->uncomp += dluncomp; } /* * If we are a clone of a clone then we never reached ORIGIN, * so we need to subtract out the clone origin's used space. */ if (ddpa->origin_origin) { ddpa->used -= ddpa->origin_origin->ds_phys->ds_referenced_bytes; ddpa->comp -= ddpa->origin_origin->ds_phys->ds_compressed_bytes; ddpa->uncomp -= ddpa->origin_origin->ds_phys->ds_uncompressed_bytes; } /* Check that there is enough space and limit headroom here */ err = dsl_dir_transfer_possible(origin_ds->ds_dir, hds->ds_dir, 0, ss_mv_cnt, ddpa->used, ddpa->cr); if (err != 0) goto out; /* * Compute the amounts of space that will be used by snapshots * after the promotion (for both origin and clone). For each, * it is the amount of space that will be on all of their * deadlists (that was not born before their new origin). */ if (hds->ds_dir->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { uint64_t space; /* * Note, typically this will not be a clone of a clone, * so dd_origin_txg will be < TXG_INITIAL, so * these snaplist_space() -> dsl_deadlist_space_range() * calls will be fast because they do not have to * iterate over all bps. */ snap = list_head(&ddpa->origin_snaps); err = snaplist_space(&ddpa->shared_snaps, snap->ds->ds_dir->dd_origin_txg, &ddpa->cloneusedsnap); if (err != 0) goto out; err = snaplist_space(&ddpa->clone_snaps, snap->ds->ds_dir->dd_origin_txg, &space); if (err != 0) goto out; ddpa->cloneusedsnap += space; } if (origin_ds->ds_dir->dd_phys->dd_flags & DD_FLAG_USED_BREAKDOWN) { err = snaplist_space(&ddpa->origin_snaps, origin_ds->ds_phys->ds_creation_txg, &ddpa->originusedsnap); if (err != 0) goto out; } out: promote_rele(ddpa, FTAG); return (err); } static void dsl_dataset_promote_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_promote_arg_t *ddpa = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *hds; struct promotenode *snap; dsl_dataset_t *origin_ds; dsl_dataset_t *origin_head; dsl_dir_t *dd; dsl_dir_t *odd = NULL; uint64_t oldnext_obj; int64_t delta; VERIFY0(promote_hold(ddpa, dp, FTAG)); hds = ddpa->ddpa_clone; ASSERT0(hds->ds_phys->ds_flags & DS_FLAG_NOPROMOTE); snap = list_head(&ddpa->shared_snaps); origin_ds = snap->ds; dd = hds->ds_dir; snap = list_head(&ddpa->origin_snaps); origin_head = snap->ds; /* * We need to explicitly open odd, since origin_ds's dd will be * changing. */ VERIFY0(dsl_dir_hold_obj(dp, origin_ds->ds_dir->dd_object, NULL, FTAG, &odd)); /* change origin's next snap */ dmu_buf_will_dirty(origin_ds->ds_dbuf, tx); oldnext_obj = origin_ds->ds_phys->ds_next_snap_obj; snap = list_tail(&ddpa->clone_snaps); ASSERT3U(snap->ds->ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object); origin_ds->ds_phys->ds_next_snap_obj = snap->ds->ds_object; /* change the origin's next clone */ if (origin_ds->ds_phys->ds_next_clones_obj) { dsl_dataset_remove_from_next_clones(origin_ds, snap->ds->ds_object, tx); VERIFY0(zap_add_int(dp->dp_meta_objset, origin_ds->ds_phys->ds_next_clones_obj, oldnext_obj, tx)); } /* change origin */ dmu_buf_will_dirty(dd->dd_dbuf, tx); ASSERT3U(dd->dd_phys->dd_origin_obj, ==, origin_ds->ds_object); dd->dd_phys->dd_origin_obj = odd->dd_phys->dd_origin_obj; dd->dd_origin_txg = origin_head->ds_dir->dd_origin_txg; dmu_buf_will_dirty(odd->dd_dbuf, tx); odd->dd_phys->dd_origin_obj = origin_ds->ds_object; origin_head->ds_dir->dd_origin_txg = origin_ds->ds_phys->ds_creation_txg; /* change dd_clone entries */ if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { VERIFY0(zap_remove_int(dp->dp_meta_objset, odd->dd_phys->dd_clones, hds->ds_object, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, ddpa->origin_origin->ds_dir->dd_phys->dd_clones, hds->ds_object, tx)); VERIFY0(zap_remove_int(dp->dp_meta_objset, ddpa->origin_origin->ds_dir->dd_phys->dd_clones, origin_head->ds_object, tx)); if (dd->dd_phys->dd_clones == 0) { dd->dd_phys->dd_clones = zap_create(dp->dp_meta_objset, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(dp->dp_meta_objset, dd->dd_phys->dd_clones, origin_head->ds_object, tx)); } /* move snapshots to this dir */ for (snap = list_head(&ddpa->shared_snaps); snap; snap = list_next(&ddpa->shared_snaps, snap)) { dsl_dataset_t *ds = snap->ds; /* * Property callbacks are registered to a particular * dsl_dir. Since ours is changing, evict the objset * so that they will be unregistered from the old dsl_dir. */ if (ds->ds_objset) { dmu_objset_evict(ds->ds_objset); ds->ds_objset = NULL; } /* move snap name entry */ VERIFY0(dsl_dataset_get_snapname(ds)); VERIFY0(dsl_dataset_snap_remove(origin_head, ds->ds_snapname, tx, B_TRUE)); VERIFY0(zap_add(dp->dp_meta_objset, hds->ds_phys->ds_snapnames_zapobj, ds->ds_snapname, 8, 1, &ds->ds_object, tx)); dsl_fs_ss_count_adjust(hds->ds_dir, 1, DD_FIELD_SNAPSHOT_COUNT, tx); /* change containing dsl_dir */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ASSERT3U(ds->ds_phys->ds_dir_obj, ==, odd->dd_object); ds->ds_phys->ds_dir_obj = dd->dd_object; ASSERT3P(ds->ds_dir, ==, odd); dsl_dir_rele(ds->ds_dir, ds); VERIFY0(dsl_dir_hold_obj(dp, dd->dd_object, NULL, ds, &ds->ds_dir)); /* move any clone references */ if (ds->ds_phys->ds_next_clones_obj && spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, dp->dp_meta_objset, ds->ds_phys->ds_next_clones_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *cnds; uint64_t o; if (za.za_first_integer == oldnext_obj) { /* * We've already moved the * origin's reference. */ continue; } VERIFY0(dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &cnds)); o = cnds->ds_dir->dd_phys->dd_head_dataset_obj; VERIFY0(zap_remove_int(dp->dp_meta_objset, odd->dd_phys->dd_clones, o, tx)); VERIFY0(zap_add_int(dp->dp_meta_objset, dd->dd_phys->dd_clones, o, tx)); dsl_dataset_rele(cnds, FTAG); } zap_cursor_fini(&zc); } ASSERT(!dsl_prop_hascb(ds)); } /* * Change space accounting. * Note, pa->*usedsnap and dd_used_breakdown[SNAP] will either * both be valid, or both be 0 (resulting in delta == 0). This * is true for each of {clone,origin} independently. */ delta = ddpa->cloneusedsnap - dd->dd_phys->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, >=, 0); ASSERT3U(ddpa->used, >=, delta); dsl_dir_diduse_space(dd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(dd, DD_USED_HEAD, ddpa->used - delta, ddpa->comp, ddpa->uncomp, tx); delta = ddpa->originusedsnap - odd->dd_phys->dd_used_breakdown[DD_USED_SNAP]; ASSERT3S(delta, <=, 0); ASSERT3U(ddpa->used, >=, -delta); dsl_dir_diduse_space(odd, DD_USED_SNAP, delta, 0, 0, tx); dsl_dir_diduse_space(odd, DD_USED_HEAD, -ddpa->used - delta, -ddpa->comp, -ddpa->uncomp, tx); origin_ds->ds_phys->ds_unique_bytes = ddpa->unique; /* log history record */ spa_history_log_internal_ds(hds, "promote", tx, ""); dsl_dir_rele(odd, FTAG); promote_rele(ddpa, FTAG); } /* * Make a list of dsl_dataset_t's for the snapshots between first_obj * (exclusive) and last_obj (inclusive). The list will be in reverse * order (last_obj will be the list_head()). If first_obj == 0, do all * snapshots back to this dataset's origin. */ static int snaplist_make(dsl_pool_t *dp, uint64_t first_obj, uint64_t last_obj, list_t *l, void *tag) { uint64_t obj = last_obj; list_create(l, sizeof (struct promotenode), offsetof(struct promotenode, link)); while (obj != first_obj) { dsl_dataset_t *ds; struct promotenode *snap; int err; err = dsl_dataset_hold_obj(dp, obj, tag, &ds); ASSERT(err != ENOENT); if (err != 0) return (err); if (first_obj == 0) first_obj = ds->ds_dir->dd_phys->dd_origin_obj; snap = kmem_alloc(sizeof (*snap), KM_SLEEP); snap->ds = ds; list_insert_tail(l, snap); obj = ds->ds_phys->ds_prev_snap_obj; } return (0); } static int snaplist_space(list_t *l, uint64_t mintxg, uint64_t *spacep) { struct promotenode *snap; *spacep = 0; for (snap = list_head(l); snap; snap = list_next(l, snap)) { uint64_t used, comp, uncomp; dsl_deadlist_space_range(&snap->ds->ds_deadlist, mintxg, UINT64_MAX, &used, &comp, &uncomp); *spacep += used; } return (0); } static void snaplist_destroy(list_t *l, void *tag) { struct promotenode *snap; if (l == NULL || !list_link_active(&l->list_head)) return; while ((snap = list_tail(l)) != NULL) { list_remove(l, snap); dsl_dataset_rele(snap->ds, tag); kmem_free(snap, sizeof (*snap)); } list_destroy(l); } static int promote_hold(dsl_dataset_promote_arg_t *ddpa, dsl_pool_t *dp, void *tag) { int error; dsl_dir_t *dd; struct promotenode *snap; error = dsl_dataset_hold(dp, ddpa->ddpa_clonename, tag, &ddpa->ddpa_clone); if (error != 0) return (error); dd = ddpa->ddpa_clone->ds_dir; if (dsl_dataset_is_snapshot(ddpa->ddpa_clone) || !dsl_dir_is_clone(dd)) { dsl_dataset_rele(ddpa->ddpa_clone, tag); return (SET_ERROR(EINVAL)); } error = snaplist_make(dp, 0, dd->dd_phys->dd_origin_obj, &ddpa->shared_snaps, tag); if (error != 0) goto out; error = snaplist_make(dp, 0, ddpa->ddpa_clone->ds_object, &ddpa->clone_snaps, tag); if (error != 0) goto out; snap = list_head(&ddpa->shared_snaps); ASSERT3U(snap->ds->ds_object, ==, dd->dd_phys->dd_origin_obj); error = snaplist_make(dp, dd->dd_phys->dd_origin_obj, snap->ds->ds_dir->dd_phys->dd_head_dataset_obj, &ddpa->origin_snaps, tag); if (error != 0) goto out; if (snap->ds->ds_dir->dd_phys->dd_origin_obj != 0) { error = dsl_dataset_hold_obj(dp, snap->ds->ds_dir->dd_phys->dd_origin_obj, tag, &ddpa->origin_origin); if (error != 0) goto out; } out: if (error != 0) promote_rele(ddpa, tag); return (error); } static void promote_rele(dsl_dataset_promote_arg_t *ddpa, void *tag) { snaplist_destroy(&ddpa->shared_snaps, tag); snaplist_destroy(&ddpa->clone_snaps, tag); snaplist_destroy(&ddpa->origin_snaps, tag); if (ddpa->origin_origin != NULL) dsl_dataset_rele(ddpa->origin_origin, tag); dsl_dataset_rele(ddpa->ddpa_clone, tag); } /* * Promote a clone. * * If it fails due to a conflicting snapshot name, "conflsnap" will be filled * in with the name. (It must be at least MAXNAMELEN bytes long.) */ int dsl_dataset_promote(const char *name, char *conflsnap) { dsl_dataset_promote_arg_t ddpa = { 0 }; uint64_t numsnaps; int error; objset_t *os; /* * We will modify space proportional to the number of * snapshots. Compute numsnaps. */ error = dmu_objset_hold(name, FTAG, &os); if (error != 0) return (error); error = zap_count(dmu_objset_pool(os)->dp_meta_objset, dmu_objset_ds(os)->ds_phys->ds_snapnames_zapobj, &numsnaps); dmu_objset_rele(os, FTAG); if (error != 0) return (error); ddpa.ddpa_clonename = name; ddpa.err_ds = conflsnap; ddpa.cr = CRED(); return (dsl_sync_task(name, dsl_dataset_promote_check, dsl_dataset_promote_sync, &ddpa, 2 + numsnaps, ZFS_SPACE_CHECK_RESERVED)); } int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force, void *owner, dmu_tx_t *tx) { int64_t unused_refres_delta; /* they should both be heads */ if (dsl_dataset_is_snapshot(clone) || dsl_dataset_is_snapshot(origin_head)) return (SET_ERROR(EINVAL)); /* if we are not forcing, the branch point should be just before them */ if (!force && clone->ds_prev != origin_head->ds_prev) return (SET_ERROR(EINVAL)); /* clone should be the clone (unless they are unrelated) */ if (clone->ds_prev != NULL && clone->ds_prev != clone->ds_dir->dd_pool->dp_origin_snap && origin_head->ds_dir != clone->ds_prev->ds_dir) return (SET_ERROR(EINVAL)); /* the clone should be a child of the origin */ if (clone->ds_dir->dd_parent != origin_head->ds_dir) return (SET_ERROR(EINVAL)); /* origin_head shouldn't be modified unless 'force' */ if (!force && dsl_dataset_modified_since_snap(origin_head, origin_head->ds_prev)) return (SET_ERROR(ETXTBSY)); /* origin_head should have no long holds (e.g. is not mounted) */ if (dsl_dataset_handoff_check(origin_head, owner, tx)) return (SET_ERROR(EBUSY)); /* check amount of any unconsumed refreservation */ unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, origin_head->ds_phys->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, clone->ds_phys->ds_unique_bytes); if (unused_refres_delta > 0 && unused_refres_delta > dsl_dir_space_available(origin_head->ds_dir, NULL, 0, TRUE)) return (SET_ERROR(ENOSPC)); /* clone can't be over the head's refquota */ if (origin_head->ds_quota != 0 && clone->ds_phys->ds_referenced_bytes > origin_head->ds_quota) return (SET_ERROR(EDQUOT)); return (0); } void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, dmu_tx_t *tx) { dsl_pool_t *dp = dmu_tx_pool(tx); int64_t unused_refres_delta; ASSERT(clone->ds_reserved == 0); ASSERT(origin_head->ds_quota == 0 || clone->ds_phys->ds_unique_bytes <= origin_head->ds_quota); ASSERT3P(clone->ds_prev, ==, origin_head->ds_prev); dmu_buf_will_dirty(clone->ds_dbuf, tx); dmu_buf_will_dirty(origin_head->ds_dbuf, tx); if (clone->ds_objset != NULL) { dmu_objset_evict(clone->ds_objset); clone->ds_objset = NULL; } if (origin_head->ds_objset != NULL) { dmu_objset_evict(origin_head->ds_objset); origin_head->ds_objset = NULL; } unused_refres_delta = (int64_t)MIN(origin_head->ds_reserved, origin_head->ds_phys->ds_unique_bytes) - (int64_t)MIN(origin_head->ds_reserved, clone->ds_phys->ds_unique_bytes); /* * Reset origin's unique bytes, if it exists. */ if (clone->ds_prev) { dsl_dataset_t *origin = clone->ds_prev; uint64_t comp, uncomp; dmu_buf_will_dirty(origin->ds_dbuf, tx); dsl_deadlist_space_range(&clone->ds_deadlist, origin->ds_phys->ds_prev_snap_txg, UINT64_MAX, &origin->ds_phys->ds_unique_bytes, &comp, &uncomp); } /* swap blkptrs */ { blkptr_t tmp; tmp = origin_head->ds_phys->ds_bp; origin_head->ds_phys->ds_bp = clone->ds_phys->ds_bp; clone->ds_phys->ds_bp = tmp; } /* set dd_*_bytes */ { int64_t dused, dcomp, duncomp; uint64_t cdl_used, cdl_comp, cdl_uncomp; uint64_t odl_used, odl_comp, odl_uncomp; ASSERT3U(clone->ds_dir->dd_phys-> dd_used_breakdown[DD_USED_SNAP], ==, 0); dsl_deadlist_space(&clone->ds_deadlist, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space(&origin_head->ds_deadlist, &odl_used, &odl_comp, &odl_uncomp); dused = clone->ds_phys->ds_referenced_bytes + cdl_used - (origin_head->ds_phys->ds_referenced_bytes + odl_used); dcomp = clone->ds_phys->ds_compressed_bytes + cdl_comp - (origin_head->ds_phys->ds_compressed_bytes + odl_comp); duncomp = clone->ds_phys->ds_uncompressed_bytes + cdl_uncomp - (origin_head->ds_phys->ds_uncompressed_bytes + odl_uncomp); dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_HEAD, dused, dcomp, duncomp, tx); dsl_dir_diduse_space(clone->ds_dir, DD_USED_HEAD, -dused, -dcomp, -duncomp, tx); /* * The difference in the space used by snapshots is the * difference in snapshot space due to the head's * deadlist (since that's the only thing that's * changing that affects the snapused). */ dsl_deadlist_space_range(&clone->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &cdl_used, &cdl_comp, &cdl_uncomp); dsl_deadlist_space_range(&origin_head->ds_deadlist, origin_head->ds_dir->dd_origin_txg, UINT64_MAX, &odl_used, &odl_comp, &odl_uncomp); dsl_dir_transfer_space(origin_head->ds_dir, cdl_used - odl_used, DD_USED_HEAD, DD_USED_SNAP, tx); } /* swap ds_*_bytes */ SWITCH64(origin_head->ds_phys->ds_referenced_bytes, clone->ds_phys->ds_referenced_bytes); SWITCH64(origin_head->ds_phys->ds_compressed_bytes, clone->ds_phys->ds_compressed_bytes); SWITCH64(origin_head->ds_phys->ds_uncompressed_bytes, clone->ds_phys->ds_uncompressed_bytes); SWITCH64(origin_head->ds_phys->ds_unique_bytes, clone->ds_phys->ds_unique_bytes); /* apply any parent delta for change in unconsumed refreservation */ dsl_dir_diduse_space(origin_head->ds_dir, DD_USED_REFRSRV, unused_refres_delta, 0, 0, tx); /* * Swap deadlists. */ dsl_deadlist_close(&clone->ds_deadlist); dsl_deadlist_close(&origin_head->ds_deadlist); SWITCH64(origin_head->ds_phys->ds_deadlist_obj, clone->ds_phys->ds_deadlist_obj); dsl_deadlist_open(&clone->ds_deadlist, dp->dp_meta_objset, clone->ds_phys->ds_deadlist_obj); dsl_deadlist_open(&origin_head->ds_deadlist, dp->dp_meta_objset, origin_head->ds_phys->ds_deadlist_obj); dsl_scan_ds_clone_swapped(origin_head, clone, tx); spa_history_log_internal_ds(clone, "clone swap", tx, "parent=%s", origin_head->ds_dir->dd_myname); } /* * Given a pool name and a dataset object number in that pool, * return the name of that dataset. */ int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf) { dsl_pool_t *dp; dsl_dataset_t *ds; int error; error = dsl_pool_hold(pname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, obj, FTAG, &ds); if (error == 0) { dsl_dataset_name(ds, buf); dsl_dataset_rele(ds, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota, uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv) { int error = 0; ASSERT3S(asize, >, 0); /* * *ref_rsrv is the portion of asize that will come from any * unconsumed refreservation space. */ *ref_rsrv = 0; mutex_enter(&ds->ds_lock); /* * Make a space adjustment for reserved bytes. */ if (ds->ds_reserved > ds->ds_phys->ds_unique_bytes) { ASSERT3U(*used, >=, ds->ds_reserved - ds->ds_phys->ds_unique_bytes); *used -= (ds->ds_reserved - ds->ds_phys->ds_unique_bytes); *ref_rsrv = asize - MIN(asize, parent_delta(ds, asize + inflight)); } if (!check_quota || ds->ds_quota == 0) { mutex_exit(&ds->ds_lock); return (0); } /* * If they are requesting more space, and our current estimate * is over quota, they get to try again unless the actual * on-disk is over quota and there are no pending changes (which * may free up space for us). */ if (ds->ds_phys->ds_referenced_bytes + inflight >= ds->ds_quota) { if (inflight > 0 || ds->ds_phys->ds_referenced_bytes < ds->ds_quota) error = SET_ERROR(ERESTART); else error = SET_ERROR(EDQUOT); } mutex_exit(&ds->ds_lock); return (error); } typedef struct dsl_dataset_set_qr_arg { const char *ddsqra_name; zprop_source_t ddsqra_source; uint64_t ddsqra_value; } dsl_dataset_set_qr_arg_t; /* ARGSUSED */ static int dsl_dataset_set_refquota_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval; if (spa_version(dp->dp_spa) < SPA_VERSION_REFQUOTA) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } if (newval == 0) { dsl_dataset_rele(ds, FTAG); return (0); } if (newval < ds->ds_phys->ds_referenced_bytes || newval < ds->ds_reserved) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } dsl_dataset_rele(ds, FTAG); return (0); } static void dsl_dataset_set_refquota_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; uint64_t newval; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, &ddsqra->ddsqra_value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFQUOTA), &newval)); if (ds->ds_quota != newval) { dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_quota = newval; } dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source, uint64_t refquota) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refquota; return (dsl_sync_task(dsname, dsl_dataset_set_refquota_check, dsl_dataset_set_refquota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); } static int dsl_dataset_set_refreservation_check(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; uint64_t newval, unique; if (spa_version(dp->dp_spa) < SPA_VERSION_REFRESERVATION) return (SET_ERROR(ENOTSUP)); error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); if (error != 0) return (error); if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_prop_predict(ds->ds_dir, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); if (error != 0) { dsl_dataset_rele(ds, FTAG); return (error); } /* * If we are doing the preliminary check in open context, the * space estimates may be inaccurate. */ if (!dmu_tx_is_syncing(tx)) { dsl_dataset_rele(ds, FTAG); return (0); } mutex_enter(&ds->ds_lock); if (!DS_UNIQUE_IS_ACCURATE(ds)) dsl_dataset_recalc_head_uniq(ds); unique = ds->ds_phys->ds_unique_bytes; mutex_exit(&ds->ds_lock); if (MAX(unique, newval) > MAX(unique, ds->ds_reserved)) { uint64_t delta = MAX(unique, newval) - MAX(unique, ds->ds_reserved); if (delta > dsl_dir_space_available(ds->ds_dir, NULL, 0, B_TRUE) || (ds->ds_quota > 0 && newval > ds->ds_quota)) { dsl_dataset_rele(ds, FTAG); return (SET_ERROR(ENOSPC)); } } dsl_dataset_rele(ds, FTAG); return (0); } void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds, zprop_source_t source, uint64_t value, dmu_tx_t *tx) { uint64_t newval; uint64_t unique; int64_t delta; dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), source, sizeof (value), 1, &value, tx); VERIFY0(dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &newval)); dmu_buf_will_dirty(ds->ds_dbuf, tx); mutex_enter(&ds->ds_dir->dd_lock); mutex_enter(&ds->ds_lock); ASSERT(DS_UNIQUE_IS_ACCURATE(ds)); unique = ds->ds_phys->ds_unique_bytes; delta = MAX(0, (int64_t)(newval - unique)) - MAX(0, (int64_t)(ds->ds_reserved - unique)); ds->ds_reserved = newval; mutex_exit(&ds->ds_lock); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, delta, 0, 0, tx); mutex_exit(&ds->ds_dir->dd_lock); } static void dsl_dataset_set_refreservation_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_set_qr_arg_t *ddsqra = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); dsl_dataset_set_refreservation_sync_impl(ds, ddsqra->ddsqra_source, ddsqra->ddsqra_value, tx); dsl_dataset_rele(ds, FTAG); } int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source, uint64_t refreservation) { dsl_dataset_set_qr_arg_t ddsqra; ddsqra.ddsqra_name = dsname; ddsqra.ddsqra_source = source; ddsqra.ddsqra_value = refreservation; return (dsl_sync_task(dsname, dsl_dataset_set_refreservation_check, dsl_dataset_set_refreservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); } /* * Return (in *usedp) the amount of space written in new that is not * present in oldsnap. New may be a snapshot or the head. Old must be * a snapshot before new, in new's filesystem (or its origin). If not then * fail and return EINVAL. * * The written space is calculated by considering two components: First, we * ignore any freed space, and calculate the written as new's used space * minus old's used space. Next, we add in the amount of space that was freed * between the two snapshots, thus reducing new's used space relative to old's. * Specifically, this is the space that was born before old->ds_creation_txg, * and freed before new (ie. on new's deadlist or a previous deadlist). * * space freed [---------------------] * snapshots ---O-------O--------O-------O------ * oldsnap new */ int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; uint64_t snapobj; dsl_pool_t *dp = new->ds_dir->dd_pool; ASSERT(dsl_pool_config_held(dp)); *usedp = 0; *usedp += new->ds_phys->ds_referenced_bytes; *usedp -= oldsnap->ds_phys->ds_referenced_bytes; *compp = 0; *compp += new->ds_phys->ds_compressed_bytes; *compp -= oldsnap->ds_phys->ds_compressed_bytes; *uncompp = 0; *uncompp += new->ds_phys->ds_uncompressed_bytes; *uncompp -= oldsnap->ds_phys->ds_uncompressed_bytes; snapobj = new->ds_object; while (snapobj != oldsnap->ds_object) { dsl_dataset_t *snap; uint64_t used, comp, uncomp; if (snapobj == new->ds_object) { snap = new; } else { err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &snap); if (err != 0) break; } if (snap->ds_phys->ds_prev_snap_txg == oldsnap->ds_phys->ds_creation_txg) { /* * The blocks in the deadlist can not be born after * ds_prev_snap_txg, so get the whole deadlist space, * which is more efficient (especially for old-format * deadlists). Unfortunately the deadlist code * doesn't have enough information to make this * optimization itself. */ dsl_deadlist_space(&snap->ds_deadlist, &used, &comp, &uncomp); } else { dsl_deadlist_space_range(&snap->ds_deadlist, 0, oldsnap->ds_phys->ds_creation_txg, &used, &comp, &uncomp); } *usedp += used; *compp += comp; *uncompp += uncomp; /* * If we get to the beginning of the chain of snapshots * (ds_prev_snap_obj == 0) before oldsnap, then oldsnap * was not a snapshot of/before new. */ snapobj = snap->ds_phys->ds_prev_snap_obj; if (snap != new) dsl_dataset_rele(snap, FTAG); if (snapobj == 0) { err = SET_ERROR(EINVAL); break; } } return (err); } /* * Return (in *usedp) the amount of space that will be reclaimed if firstsnap, * lastsnap, and all snapshots in between are deleted. * * blocks that would be freed [---------------------------] * snapshots ---O-------O--------O-------O--------O * firstsnap lastsnap * * This is the set of blocks that were born after the snap before firstsnap, * (birth > firstsnap->prev_snap_txg) and died before the snap after the * last snap (ie, is on lastsnap->ds_next->ds_deadlist or an earlier deadlist). * We calculate this by iterating over the relevant deadlists (from the snap * after lastsnap, backward to the snap after firstsnap), summing up the * space on the deadlist that was born after the snap before firstsnap. */ int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *lastsnap, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { int err = 0; uint64_t snapobj; dsl_pool_t *dp = firstsnap->ds_dir->dd_pool; ASSERT(dsl_dataset_is_snapshot(firstsnap)); ASSERT(dsl_dataset_is_snapshot(lastsnap)); /* * Check that the snapshots are in the same dsl_dir, and firstsnap * is before lastsnap. */ if (firstsnap->ds_dir != lastsnap->ds_dir || firstsnap->ds_phys->ds_creation_txg > lastsnap->ds_phys->ds_creation_txg) return (SET_ERROR(EINVAL)); *usedp = *compp = *uncompp = 0; snapobj = lastsnap->ds_phys->ds_next_snap_obj; while (snapobj != firstsnap->ds_object) { dsl_dataset_t *ds; uint64_t used, comp, uncomp; err = dsl_dataset_hold_obj(dp, snapobj, FTAG, &ds); if (err != 0) break; dsl_deadlist_space_range(&ds->ds_deadlist, firstsnap->ds_phys->ds_prev_snap_txg, UINT64_MAX, &used, &comp, &uncomp); *usedp += used; *compp += comp; *uncompp += uncomp; snapobj = ds->ds_phys->ds_prev_snap_obj; ASSERT3U(snapobj, !=, 0); dsl_dataset_rele(ds, FTAG); } return (err); +} + +static int +dsl_dataset_activate_large_blocks_check(void *arg, dmu_tx_t *tx) +{ + const char *dsname = arg; + dsl_dataset_t *ds; + dsl_pool_t *dp = dmu_tx_pool(tx); + int error = 0; + + if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SET_ERROR(ENOTSUP)); + + ASSERT(spa_feature_is_enabled(dp->dp_spa, + SPA_FEATURE_EXTENSIBLE_DATASET)); + + error = dsl_dataset_hold(dp, dsname, FTAG, &ds); + if (error != 0) + return (error); + + if (ds->ds_large_blocks) + error = EALREADY; + dsl_dataset_rele(ds, FTAG); + + return (error); +} + +void +dsl_dataset_activate_large_blocks_sync_impl(uint64_t dsobj, dmu_tx_t *tx) +{ + spa_t *spa = dmu_tx_pool(tx)->dp_spa; + objset_t *mos = dmu_tx_pool(tx)->dp_meta_objset; + uint64_t zero = 0; + + spa_feature_incr(spa, SPA_FEATURE_LARGE_BLOCKS, tx); + dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx); + + VERIFY0(zap_add(mos, dsobj, DS_FIELD_LARGE_BLOCKS, + sizeof (zero), 1, &zero, tx)); +} + +static void +dsl_dataset_activate_large_blocks_sync(void *arg, dmu_tx_t *tx) +{ + const char *dsname = arg; + dsl_dataset_t *ds; + + VERIFY0(dsl_dataset_hold(dmu_tx_pool(tx), dsname, FTAG, &ds)); + + dsl_dataset_activate_large_blocks_sync_impl(ds->ds_object, tx); + ASSERT(!ds->ds_large_blocks); + ds->ds_large_blocks = B_TRUE; + dsl_dataset_rele(ds, FTAG); +} + +int +dsl_dataset_activate_large_blocks(const char *dsname) +{ + int error; + + error = dsl_sync_task(dsname, + dsl_dataset_activate_large_blocks_check, + dsl_dataset_activate_large_blocks_sync, (void *)dsname, + 1, ZFS_SPACE_CHECK_RESERVED); + + /* + * EALREADY indicates that this dataset already supports large blocks. + */ + if (error == EALREADY) + error = 0; + return (error); } /* * Return TRUE if 'earlier' is an earlier snapshot in 'later's timeline. * For example, they could both be snapshots of the same filesystem, and * 'earlier' is before 'later'. Or 'earlier' could be the origin of * 'later's filesystem. Or 'earlier' could be an older snapshot in the origin's * filesystem. Or 'earlier' could be the origin's origin. * * If non-zero, earlier_txg is used instead of earlier's ds_creation_txg. */ boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier, uint64_t earlier_txg) { dsl_pool_t *dp = later->ds_dir->dd_pool; int error; boolean_t ret; ASSERT(dsl_pool_config_held(dp)); ASSERT(dsl_dataset_is_snapshot(earlier) || earlier_txg != 0); if (earlier_txg == 0) earlier_txg = earlier->ds_phys->ds_creation_txg; if (dsl_dataset_is_snapshot(later) && earlier_txg >= later->ds_phys->ds_creation_txg) return (B_FALSE); if (later->ds_dir == earlier->ds_dir) return (B_TRUE); if (!dsl_dir_is_clone(later->ds_dir)) return (B_FALSE); if (later->ds_dir->dd_phys->dd_origin_obj == earlier->ds_object) return (B_TRUE); dsl_dataset_t *origin; error = dsl_dataset_hold_obj(dp, later->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin); if (error != 0) return (B_FALSE); ret = dsl_dataset_is_before(origin, earlier, earlier_txg); dsl_dataset_rele(origin, FTAG); return (ret); } void dsl_dataset_zapify(dsl_dataset_t *ds, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; dmu_object_zapify(mos, ds->ds_object, DMU_OT_DSL_DATASET, tx); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_deadlist.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_deadlist.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_deadlist.c (revision 274273) @@ -1,534 +1,534 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include #include /* * Deadlist concurrency: * * Deadlists can only be modified from the syncing thread. * * Except for dsl_deadlist_insert(), it can only be modified with the * dp_config_rwlock held with RW_WRITER. * * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can * be called concurrently, from open context, with the dl_config_rwlock held * with RW_READER. * * Therefore, we only need to provide locking between dsl_deadlist_insert() and * the accessors, protecting: * dl_phys->dl_used,comp,uncomp * and protecting the dl_tree from being loaded. * The locking is provided by dl_lock. Note that locking on the bpobj_t * provides its own locking, and dl_oldfmt is immutable. */ static int dsl_deadlist_compare(const void *arg1, const void *arg2) { const dsl_deadlist_entry_t *dle1 = arg1; const dsl_deadlist_entry_t *dle2 = arg2; if (dle1->dle_mintxg < dle2->dle_mintxg) return (-1); else if (dle1->dle_mintxg > dle2->dle_mintxg) return (+1); else return (0); } static void dsl_deadlist_load_tree(dsl_deadlist_t *dl) { zap_cursor_t zc; zap_attribute_t za; ASSERT(!dl->dl_oldfmt); if (dl->dl_havetree) return; avl_create(&dl->dl_tree, dsl_deadlist_compare, sizeof (dsl_deadlist_entry_t), offsetof(dsl_deadlist_entry_t, dle_node)); for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP); dle->dle_mintxg = strtonum(za.za_name, NULL); VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os, za.za_first_integer)); avl_add(&dl->dl_tree, dle); } zap_cursor_fini(&zc); dl->dl_havetree = B_TRUE; } void dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object) { dmu_object_info_t doi; mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL); dl->dl_os = os; dl->dl_object = object; VERIFY3U(0, ==, dmu_bonus_hold(os, object, dl, &dl->dl_dbuf)); dmu_object_info_from_db(dl->dl_dbuf, &doi); if (doi.doi_type == DMU_OT_BPOBJ) { dmu_buf_rele(dl->dl_dbuf, dl); dl->dl_dbuf = NULL; dl->dl_oldfmt = B_TRUE; VERIFY3U(0, ==, bpobj_open(&dl->dl_bpobj, os, object)); return; } dl->dl_oldfmt = B_FALSE; dl->dl_phys = dl->dl_dbuf->db_data; dl->dl_havetree = B_FALSE; } void dsl_deadlist_close(dsl_deadlist_t *dl) { void *cookie = NULL; dsl_deadlist_entry_t *dle; if (dl->dl_oldfmt) { dl->dl_oldfmt = B_FALSE; bpobj_close(&dl->dl_bpobj); return; } if (dl->dl_havetree) { while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) { bpobj_close(&dle->dle_bpobj); kmem_free(dle, sizeof (*dle)); } avl_destroy(&dl->dl_tree); } dmu_buf_rele(dl->dl_dbuf, dl); mutex_destroy(&dl->dl_lock); dl->dl_dbuf = NULL; dl->dl_phys = NULL; } uint64_t dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx) { if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS) - return (bpobj_alloc(os, SPA_MAXBLOCKSIZE, tx)); + return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx)); return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR, sizeof (dsl_deadlist_phys_t), tx)); } void dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx) { dmu_object_info_t doi; zap_cursor_t zc; zap_attribute_t za; VERIFY3U(0, ==, dmu_object_info(os, dlobj, &doi)); if (doi.doi_type == DMU_OT_BPOBJ) { bpobj_free(os, dlobj, tx); return; } for (zap_cursor_init(&zc, os, dlobj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t obj = za.za_first_integer; if (obj == dmu_objset_pool(os)->dp_empty_bpobj) bpobj_decr_empty(os, tx); else bpobj_free(os, obj, tx); } zap_cursor_fini(&zc); VERIFY3U(0, ==, dmu_object_free(os, dlobj, tx)); } static void dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle, const blkptr_t *bp, dmu_tx_t *tx) { if (dle->dle_bpobj.bpo_object == dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) { - uint64_t obj = bpobj_alloc(dl->dl_os, SPA_MAXBLOCKSIZE, tx); + uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); bpobj_close(&dle->dle_bpobj); bpobj_decr_empty(dl->dl_os, tx); VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); VERIFY3U(0, ==, zap_update_int_key(dl->dl_os, dl->dl_object, dle->dle_mintxg, obj, tx)); } bpobj_enqueue(&dle->dle_bpobj, bp, tx); } static void dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle, uint64_t obj, dmu_tx_t *tx) { if (dle->dle_bpobj.bpo_object != dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) { bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx); } else { bpobj_close(&dle->dle_bpobj); bpobj_decr_empty(dl->dl_os, tx); VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); VERIFY3U(0, ==, zap_update_int_key(dl->dl_os, dl->dl_object, dle->dle_mintxg, obj, tx)); } } void dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, dmu_tx_t *tx) { dsl_deadlist_entry_t dle_tofind; dsl_deadlist_entry_t *dle; avl_index_t where; if (dl->dl_oldfmt) { bpobj_enqueue(&dl->dl_bpobj, bp, tx); return; } dsl_deadlist_load_tree(dl); dmu_buf_will_dirty(dl->dl_dbuf, tx); mutex_enter(&dl->dl_lock); dl->dl_phys->dl_used += bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp); dl->dl_phys->dl_comp += BP_GET_PSIZE(bp); dl->dl_phys->dl_uncomp += BP_GET_UCSIZE(bp); mutex_exit(&dl->dl_lock); dle_tofind.dle_mintxg = bp->blk_birth; dle = avl_find(&dl->dl_tree, &dle_tofind, &where); if (dle == NULL) dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE); else dle = AVL_PREV(&dl->dl_tree, dle); dle_enqueue(dl, dle, bp, tx); } /* * Insert new key in deadlist, which must be > all current entries. * mintxg is not inclusive. */ void dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx) { uint64_t obj; dsl_deadlist_entry_t *dle; if (dl->dl_oldfmt) return; dsl_deadlist_load_tree(dl); dle = kmem_alloc(sizeof (*dle), KM_SLEEP); dle->dle_mintxg = mintxg; - obj = bpobj_alloc_empty(dl->dl_os, SPA_MAXBLOCKSIZE, tx); + obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os, obj)); avl_add(&dl->dl_tree, dle); VERIFY3U(0, ==, zap_add_int_key(dl->dl_os, dl->dl_object, mintxg, obj, tx)); } /* * Remove this key, merging its entries into the previous key. */ void dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx) { dsl_deadlist_entry_t dle_tofind; dsl_deadlist_entry_t *dle, *dle_prev; if (dl->dl_oldfmt) return; dsl_deadlist_load_tree(dl); dle_tofind.dle_mintxg = mintxg; dle = avl_find(&dl->dl_tree, &dle_tofind, NULL); dle_prev = AVL_PREV(&dl->dl_tree, dle); dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx); avl_remove(&dl->dl_tree, dle); bpobj_close(&dle->dle_bpobj); kmem_free(dle, sizeof (*dle)); VERIFY3U(0, ==, zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx)); } /* * Walk ds's snapshots to regenerate generate ZAP & AVL. */ static void dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj, uint64_t mrs_obj, dmu_tx_t *tx) { dsl_deadlist_t dl; dsl_pool_t *dp = dmu_objset_pool(os); dsl_deadlist_open(&dl, os, dlobj); if (dl.dl_oldfmt) { dsl_deadlist_close(&dl); return; } while (mrs_obj != 0) { dsl_dataset_t *ds; VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds)); dsl_deadlist_add_key(&dl, ds->ds_phys->ds_prev_snap_txg, tx); mrs_obj = ds->ds_phys->ds_prev_snap_obj; dsl_dataset_rele(ds, FTAG); } dsl_deadlist_close(&dl); } uint64_t dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg, uint64_t mrs_obj, dmu_tx_t *tx) { dsl_deadlist_entry_t *dle; uint64_t newobj; newobj = dsl_deadlist_alloc(dl->dl_os, tx); if (dl->dl_oldfmt) { dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx); return (newobj); } dsl_deadlist_load_tree(dl); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { uint64_t obj; if (dle->dle_mintxg >= maxtxg) break; - obj = bpobj_alloc_empty(dl->dl_os, SPA_MAXBLOCKSIZE, tx); + obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx); VERIFY3U(0, ==, zap_add_int_key(dl->dl_os, newobj, dle->dle_mintxg, obj, tx)); } return (newobj); } void dsl_deadlist_space(dsl_deadlist_t *dl, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { if (dl->dl_oldfmt) { VERIFY3U(0, ==, bpobj_space(&dl->dl_bpobj, usedp, compp, uncompp)); return; } mutex_enter(&dl->dl_lock); *usedp = dl->dl_phys->dl_used; *compp = dl->dl_phys->dl_comp; *uncompp = dl->dl_phys->dl_uncomp; mutex_exit(&dl->dl_lock); } /* * return space used in the range (mintxg, maxtxg]. * Includes maxtxg, does not include mintxg. * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is * larger than any bp in the deadlist (eg. UINT64_MAX)). */ void dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp) { dsl_deadlist_entry_t *dle; dsl_deadlist_entry_t dle_tofind; avl_index_t where; if (dl->dl_oldfmt) { VERIFY3U(0, ==, bpobj_space_range(&dl->dl_bpobj, mintxg, maxtxg, usedp, compp, uncompp)); return; } *usedp = *compp = *uncompp = 0; mutex_enter(&dl->dl_lock); dsl_deadlist_load_tree(dl); dle_tofind.dle_mintxg = mintxg; dle = avl_find(&dl->dl_tree, &dle_tofind, &where); /* * If we don't find this mintxg, there shouldn't be anything * after it either. */ ASSERT(dle != NULL || avl_nearest(&dl->dl_tree, where, AVL_AFTER) == NULL); for (; dle && dle->dle_mintxg < maxtxg; dle = AVL_NEXT(&dl->dl_tree, dle)) { uint64_t used, comp, uncomp; VERIFY3U(0, ==, bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp)); *usedp += used; *compp += comp; *uncompp += uncomp; } mutex_exit(&dl->dl_lock); } static void dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth, dmu_tx_t *tx) { dsl_deadlist_entry_t dle_tofind; dsl_deadlist_entry_t *dle; avl_index_t where; uint64_t used, comp, uncomp; bpobj_t bpo; VERIFY3U(0, ==, bpobj_open(&bpo, dl->dl_os, obj)); VERIFY3U(0, ==, bpobj_space(&bpo, &used, &comp, &uncomp)); bpobj_close(&bpo); dsl_deadlist_load_tree(dl); dmu_buf_will_dirty(dl->dl_dbuf, tx); mutex_enter(&dl->dl_lock); dl->dl_phys->dl_used += used; dl->dl_phys->dl_comp += comp; dl->dl_phys->dl_uncomp += uncomp; mutex_exit(&dl->dl_lock); dle_tofind.dle_mintxg = birth; dle = avl_find(&dl->dl_tree, &dle_tofind, &where); if (dle == NULL) dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE); dle_enqueue_subobj(dl, dle, obj, tx); } static int dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_deadlist_t *dl = arg; dsl_deadlist_insert(dl, bp, tx); return (0); } /* * Merge the deadlist pointed to by 'obj' into dl. obj will be left as * an empty deadlist. */ void dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; dmu_buf_t *bonus; dsl_deadlist_phys_t *dlp; dmu_object_info_t doi; VERIFY3U(0, ==, dmu_object_info(dl->dl_os, obj, &doi)); if (doi.doi_type == DMU_OT_BPOBJ) { bpobj_t bpo; VERIFY3U(0, ==, bpobj_open(&bpo, dl->dl_os, obj)); VERIFY3U(0, ==, bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx)); bpobj_close(&bpo); return; } for (zap_cursor_init(&zc, dl->dl_os, obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t mintxg = strtonum(za.za_name, NULL); dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx); VERIFY3U(0, ==, zap_remove_int(dl->dl_os, obj, mintxg, tx)); } zap_cursor_fini(&zc); VERIFY3U(0, ==, dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus)); dlp = bonus->db_data; dmu_buf_will_dirty(bonus, tx); bzero(dlp, sizeof (*dlp)); dmu_buf_rele(bonus, FTAG); } /* * Remove entries on dl that are >= mintxg, and put them on the bpobj. */ void dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg, dmu_tx_t *tx) { dsl_deadlist_entry_t dle_tofind; dsl_deadlist_entry_t *dle; avl_index_t where; ASSERT(!dl->dl_oldfmt); dmu_buf_will_dirty(dl->dl_dbuf, tx); dsl_deadlist_load_tree(dl); dle_tofind.dle_mintxg = mintxg; dle = avl_find(&dl->dl_tree, &dle_tofind, &where); if (dle == NULL) dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER); while (dle) { uint64_t used, comp, uncomp; dsl_deadlist_entry_t *dle_next; bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx); VERIFY3U(0, ==, bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp)); mutex_enter(&dl->dl_lock); ASSERT3U(dl->dl_phys->dl_used, >=, used); ASSERT3U(dl->dl_phys->dl_comp, >=, comp); ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp); dl->dl_phys->dl_used -= used; dl->dl_phys->dl_comp -= comp; dl->dl_phys->dl_uncomp -= uncomp; mutex_exit(&dl->dl_lock); VERIFY3U(0, ==, zap_remove_int(dl->dl_os, dl->dl_object, dle->dle_mintxg, tx)); dle_next = AVL_NEXT(&dl->dl_tree, dle); avl_remove(&dl->dl_tree, dle); bpobj_close(&dle->dle_bpobj); kmem_free(dle, sizeof (*dle)); dle = dle_next; } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_destroy.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_destroy.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_destroy.c (revision 274273) @@ -1,949 +1,956 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2013 by Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef struct dmu_snapshots_destroy_arg { nvlist_t *dsda_snaps; nvlist_t *dsda_successful_snaps; boolean_t dsda_defer; nvlist_t *dsda_errlist; } dmu_snapshots_destroy_arg_t; int dsl_destroy_snapshot_check_impl(dsl_dataset_t *ds, boolean_t defer) { if (!dsl_dataset_is_snapshot(ds)) return (SET_ERROR(EINVAL)); if (dsl_dataset_long_held(ds)) return (SET_ERROR(EBUSY)); /* * Only allow deferred destroy on pools that support it. * NOTE: deferred destroy is only supported on snapshots. */ if (defer) { if (spa_version(ds->ds_dir->dd_pool->dp_spa) < SPA_VERSION_USERREFS) return (SET_ERROR(ENOTSUP)); return (0); } /* * If this snapshot has an elevated user reference count, * we can't destroy it yet. */ if (ds->ds_userrefs > 0) return (SET_ERROR(EBUSY)); /* * Can't delete a branch point. */ if (ds->ds_phys->ds_num_children > 1) return (SET_ERROR(EEXIST)); return (0); } static int dsl_destroy_snapshot_check(void *arg, dmu_tx_t *tx) { dmu_snapshots_destroy_arg_t *dsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; int error = 0; if (!dmu_tx_is_syncing(tx)) return (0); for (pair = nvlist_next_nvpair(dsda->dsda_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(dsda->dsda_snaps, pair)) { dsl_dataset_t *ds; error = dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds); /* * If the snapshot does not exist, silently ignore it * (it's "already destroyed"). */ if (error == ENOENT) continue; if (error == 0) { error = dsl_destroy_snapshot_check_impl(ds, dsda->dsda_defer); dsl_dataset_rele(ds, FTAG); } if (error == 0) { fnvlist_add_boolean(dsda->dsda_successful_snaps, nvpair_name(pair)); } else { fnvlist_add_int32(dsda->dsda_errlist, nvpair_name(pair), error); } } pair = nvlist_next_nvpair(dsda->dsda_errlist, NULL); if (pair != NULL) return (fnvpair_value_int32(pair)); return (0); } struct process_old_arg { dsl_dataset_t *ds; dsl_dataset_t *ds_prev; boolean_t after_branch_point; zio_t *pio; uint64_t used, comp, uncomp; }; static int process_old_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { struct process_old_arg *poa = arg; dsl_pool_t *dp = poa->ds->ds_dir->dd_pool; ASSERT(!BP_IS_HOLE(bp)); if (bp->blk_birth <= poa->ds->ds_phys->ds_prev_snap_txg) { dsl_deadlist_insert(&poa->ds->ds_deadlist, bp, tx); if (poa->ds_prev && !poa->after_branch_point && bp->blk_birth > poa->ds_prev->ds_phys->ds_prev_snap_txg) { poa->ds_prev->ds_phys->ds_unique_bytes += bp_get_dsize_sync(dp->dp_spa, bp); } } else { poa->used += bp_get_dsize_sync(dp->dp_spa, bp); poa->comp += BP_GET_PSIZE(bp); poa->uncomp += BP_GET_UCSIZE(bp); dsl_free_sync(poa->pio, dp, tx->tx_txg, bp); } return (0); } static void process_old_deadlist(dsl_dataset_t *ds, dsl_dataset_t *ds_prev, dsl_dataset_t *ds_next, boolean_t after_branch_point, dmu_tx_t *tx) { struct process_old_arg poa = { 0 }; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; uint64_t deadlist_obj; ASSERT(ds->ds_deadlist.dl_oldfmt); ASSERT(ds_next->ds_deadlist.dl_oldfmt); poa.ds = ds; poa.ds_prev = ds_prev; poa.after_branch_point = after_branch_point; poa.pio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); VERIFY0(bpobj_iterate(&ds_next->ds_deadlist.dl_bpobj, process_old_cb, &poa, tx)); VERIFY0(zio_wait(poa.pio)); ASSERT3U(poa.used, ==, ds->ds_phys->ds_unique_bytes); /* change snapused */ dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP, -poa.used, -poa.comp, -poa.uncomp, tx); /* swap next's deadlist to our deadlist */ dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_close(&ds_next->ds_deadlist); deadlist_obj = ds->ds_phys->ds_deadlist_obj; ds->ds_phys->ds_deadlist_obj = ds_next->ds_phys->ds_deadlist_obj; ds_next->ds_phys->ds_deadlist_obj = deadlist_obj; dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj); dsl_deadlist_open(&ds_next->ds_deadlist, mos, ds_next->ds_phys->ds_deadlist_obj); } static void dsl_dataset_remove_clones_key(dsl_dataset_t *ds, uint64_t mintxg, dmu_tx_t *tx) { objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset; zap_cursor_t zc; zap_attribute_t za; /* * If it is the old version, dd_clones doesn't exist so we can't * find the clones, but dsl_deadlist_remove_key() is a no-op so it * doesn't matter. */ if (ds->ds_dir->dd_phys->dd_clones == 0) return; for (zap_cursor_init(&zc, mos, ds->ds_dir->dd_phys->dd_clones); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { dsl_dataset_t *clone; VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool, za.za_first_integer, FTAG, &clone)); if (clone->ds_dir->dd_origin_txg > mintxg) { dsl_deadlist_remove_key(&clone->ds_deadlist, mintxg, tx); dsl_dataset_remove_clones_key(clone, mintxg, tx); } dsl_dataset_rele(clone, FTAG); } zap_cursor_fini(&zc); } void dsl_destroy_snapshot_sync_impl(dsl_dataset_t *ds, boolean_t defer, dmu_tx_t *tx) { int err; int after_branch_point = FALSE; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; dsl_dataset_t *ds_prev = NULL; uint64_t obj; ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock)); ASSERT3U(ds->ds_phys->ds_bp.blk_birth, <=, tx->tx_txg); ASSERT(refcount_is_zero(&ds->ds_longholds)); if (defer && (ds->ds_userrefs > 0 || ds->ds_phys->ds_num_children > 1)) { ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_flags |= DS_FLAG_DEFER_DESTROY; spa_history_log_internal_ds(ds, "defer_destroy", tx, ""); return; } ASSERT3U(ds->ds_phys->ds_num_children, <=, 1); /* We need to log before removing it from the namespace. */ spa_history_log_internal_ds(ds, "destroy", tx, ""); dsl_scan_ds_destroyed(ds, tx); obj = ds->ds_object; + if (ds->ds_large_blocks) { + ASSERT0(zap_contains(mos, obj, DS_FIELD_LARGE_BLOCKS)); + spa_feature_decr(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS, tx); + } if (ds->ds_phys->ds_prev_snap_obj != 0) { ASSERT3P(ds->ds_prev, ==, NULL); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, FTAG, &ds_prev)); after_branch_point = (ds_prev->ds_phys->ds_next_snap_obj != obj); dmu_buf_will_dirty(ds_prev->ds_dbuf, tx); if (after_branch_point && ds_prev->ds_phys->ds_next_clones_obj != 0) { dsl_dataset_remove_from_next_clones(ds_prev, obj, tx); if (ds->ds_phys->ds_next_snap_obj != 0) { VERIFY0(zap_add_int(mos, ds_prev->ds_phys->ds_next_clones_obj, ds->ds_phys->ds_next_snap_obj, tx)); } } if (!after_branch_point) { ds_prev->ds_phys->ds_next_snap_obj = ds->ds_phys->ds_next_snap_obj; } } dsl_dataset_t *ds_next; uint64_t old_unique; uint64_t used = 0, comp = 0, uncomp = 0; VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_next_snap_obj, FTAG, &ds_next)); ASSERT3U(ds_next->ds_phys->ds_prev_snap_obj, ==, obj); old_unique = ds_next->ds_phys->ds_unique_bytes; dmu_buf_will_dirty(ds_next->ds_dbuf, tx); ds_next->ds_phys->ds_prev_snap_obj = ds->ds_phys->ds_prev_snap_obj; ds_next->ds_phys->ds_prev_snap_txg = ds->ds_phys->ds_prev_snap_txg; ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==, ds_prev ? ds_prev->ds_phys->ds_creation_txg : 0); if (ds_next->ds_deadlist.dl_oldfmt) { process_old_deadlist(ds, ds_prev, ds_next, after_branch_point, tx); } else { /* Adjust prev's unique space. */ if (ds_prev && !after_branch_point) { dsl_deadlist_space_range(&ds_next->ds_deadlist, ds_prev->ds_phys->ds_prev_snap_txg, ds->ds_phys->ds_prev_snap_txg, &used, &comp, &uncomp); ds_prev->ds_phys->ds_unique_bytes += used; } /* Adjust snapused. */ dsl_deadlist_space_range(&ds_next->ds_deadlist, ds->ds_phys->ds_prev_snap_txg, UINT64_MAX, &used, &comp, &uncomp); dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP, -used, -comp, -uncomp, tx); /* Move blocks to be freed to pool's free list. */ dsl_deadlist_move_bpobj(&ds_next->ds_deadlist, &dp->dp_free_bpobj, ds->ds_phys->ds_prev_snap_txg, tx); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, used, comp, uncomp, tx); /* Merge our deadlist into next's and free it. */ dsl_deadlist_merge(&ds_next->ds_deadlist, ds->ds_phys->ds_deadlist_obj, tx); } dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx); dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_deadlist_obj = 0; /* Collapse range in clone heads */ dsl_dataset_remove_clones_key(ds, ds->ds_phys->ds_creation_txg, tx); if (dsl_dataset_is_snapshot(ds_next)) { dsl_dataset_t *ds_nextnext; /* * Update next's unique to include blocks which * were previously shared by only this snapshot * and it. Those blocks will be born after the * prev snap and before this snap, and will have * died after the next snap and before the one * after that (ie. be on the snap after next's * deadlist). */ VERIFY0(dsl_dataset_hold_obj(dp, ds_next->ds_phys->ds_next_snap_obj, FTAG, &ds_nextnext)); dsl_deadlist_space_range(&ds_nextnext->ds_deadlist, ds->ds_phys->ds_prev_snap_txg, ds->ds_phys->ds_creation_txg, &used, &comp, &uncomp); ds_next->ds_phys->ds_unique_bytes += used; dsl_dataset_rele(ds_nextnext, FTAG); ASSERT3P(ds_next->ds_prev, ==, NULL); /* Collapse range in this head. */ dsl_dataset_t *hds; VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &hds)); dsl_deadlist_remove_key(&hds->ds_deadlist, ds->ds_phys->ds_creation_txg, tx); dsl_dataset_rele(hds, FTAG); } else { ASSERT3P(ds_next->ds_prev, ==, ds); dsl_dataset_rele(ds_next->ds_prev, ds_next); ds_next->ds_prev = NULL; if (ds_prev) { VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds_next, &ds_next->ds_prev)); } dsl_dataset_recalc_head_uniq(ds_next); /* * Reduce the amount of our unconsumed refreservation * being charged to our parent by the amount of * new unique data we have gained. */ if (old_unique < ds_next->ds_reserved) { int64_t mrsdelta; uint64_t new_unique = ds_next->ds_phys->ds_unique_bytes; ASSERT(old_unique <= new_unique); mrsdelta = MIN(new_unique - old_unique, ds_next->ds_reserved - old_unique); dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV, -mrsdelta, 0, 0, tx); } } dsl_dataset_rele(ds_next, FTAG); /* * This must be done after the dsl_traverse(), because it will * re-open the objset. */ if (ds->ds_objset) { dmu_objset_evict(ds->ds_objset); ds->ds_objset = NULL; } /* remove from snapshot namespace */ dsl_dataset_t *ds_head; ASSERT(ds->ds_phys->ds_snapnames_zapobj == 0); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ds_head)); VERIFY0(dsl_dataset_get_snapname(ds)); #ifdef ZFS_DEBUG { uint64_t val; err = dsl_dataset_snap_lookup(ds_head, ds->ds_snapname, &val); ASSERT0(err); ASSERT3U(val, ==, obj); } #endif VERIFY0(dsl_dataset_snap_remove(ds_head, ds->ds_snapname, tx, B_TRUE)); dsl_dataset_rele(ds_head, FTAG); if (ds_prev != NULL) dsl_dataset_rele(ds_prev, FTAG); spa_prop_clear_bootfs(dp->dp_spa, ds->ds_object, tx); if (ds->ds_phys->ds_next_clones_obj != 0) { uint64_t count; ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count) && count == 0); VERIFY0(dmu_object_free(mos, ds->ds_phys->ds_next_clones_obj, tx)); } if (ds->ds_phys->ds_props_obj != 0) VERIFY0(zap_destroy(mos, ds->ds_phys->ds_props_obj, tx)); if (ds->ds_phys->ds_userrefs_obj != 0) VERIFY0(zap_destroy(mos, ds->ds_phys->ds_userrefs_obj, tx)); dsl_dir_rele(ds->ds_dir, ds); ds->ds_dir = NULL; dmu_object_free_zapified(mos, obj, tx); } static void dsl_destroy_snapshot_sync(void *arg, dmu_tx_t *tx) { dmu_snapshots_destroy_arg_t *dsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); nvpair_t *pair; for (pair = nvlist_next_nvpair(dsda->dsda_successful_snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(dsda->dsda_successful_snaps, pair)) { dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, nvpair_name(pair), FTAG, &ds)); dsl_destroy_snapshot_sync_impl(ds, dsda->dsda_defer, tx); dsl_dataset_rele(ds, FTAG); } } /* * The semantics of this function are described in the comment above * lzc_destroy_snaps(). To summarize: * * The snapshots must all be in the same pool. * * Snapshots that don't exist will be silently ignored (considered to be * "already deleted"). * * On success, all snaps will be destroyed and this will return 0. * On failure, no snaps will be destroyed, the errlist will be filled in, * and this will return an errno. */ int dsl_destroy_snapshots_nvl(nvlist_t *snaps, boolean_t defer, nvlist_t *errlist) { dmu_snapshots_destroy_arg_t dsda; int error; nvpair_t *pair; pair = nvlist_next_nvpair(snaps, NULL); if (pair == NULL) return (0); dsda.dsda_snaps = snaps; dsda.dsda_successful_snaps = fnvlist_alloc(); dsda.dsda_defer = defer; dsda.dsda_errlist = errlist; error = dsl_sync_task(nvpair_name(pair), dsl_destroy_snapshot_check, dsl_destroy_snapshot_sync, &dsda, 0, ZFS_SPACE_CHECK_NONE); fnvlist_free(dsda.dsda_successful_snaps); return (error); } int dsl_destroy_snapshot(const char *name, boolean_t defer) { int error; nvlist_t *nvl = fnvlist_alloc(); nvlist_t *errlist = fnvlist_alloc(); fnvlist_add_boolean(nvl, name); error = dsl_destroy_snapshots_nvl(nvl, defer, errlist); fnvlist_free(errlist); fnvlist_free(nvl); return (error); } struct killarg { dsl_dataset_t *ds; dmu_tx_t *tx; }; /* ARGSUSED */ static int kill_blkptr(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { struct killarg *ka = arg; dmu_tx_t *tx = ka->tx; if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); if (zb->zb_level == ZB_ZIL_LEVEL) { ASSERT(zilog != NULL); /* * It's a block in the intent log. It has no * accounting, so just free it. */ dsl_free(ka->tx->tx_pool, ka->tx->tx_txg, bp); } else { ASSERT(zilog == NULL); ASSERT3U(bp->blk_birth, >, ka->ds->ds_phys->ds_prev_snap_txg); (void) dsl_dataset_block_kill(ka->ds, bp, tx, B_FALSE); } return (0); } static void old_synchronous_dataset_destroy(dsl_dataset_t *ds, dmu_tx_t *tx) { struct killarg ka; /* * Free everything that we point to (that's born after * the previous snapshot, if we are a clone) * * NB: this should be very quick, because we already * freed all the objects in open context. */ ka.ds = ds; ka.tx = tx; VERIFY0(traverse_dataset(ds, ds->ds_phys->ds_prev_snap_txg, TRAVERSE_POST, kill_blkptr, &ka)); ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) || ds->ds_phys->ds_unique_bytes == 0); } typedef struct dsl_destroy_head_arg { const char *ddha_name; } dsl_destroy_head_arg_t; int dsl_destroy_head_check_impl(dsl_dataset_t *ds, int expected_holds) { int error; uint64_t count; objset_t *mos; ASSERT(!dsl_dataset_is_snapshot(ds)); if (dsl_dataset_is_snapshot(ds)) return (SET_ERROR(EINVAL)); if (refcount_count(&ds->ds_longholds) != expected_holds) return (SET_ERROR(EBUSY)); mos = ds->ds_dir->dd_pool->dp_meta_objset; /* * Can't delete a head dataset if there are snapshots of it. * (Except if the only snapshots are from the branch we cloned * from.) */ if (ds->ds_prev != NULL && ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object) return (SET_ERROR(EBUSY)); /* * Can't delete if there are children of this fs. */ error = zap_count(mos, ds->ds_dir->dd_phys->dd_child_dir_zapobj, &count); if (error != 0) return (error); if (count != 0) return (SET_ERROR(EEXIST)); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev) && ds->ds_prev->ds_phys->ds_num_children == 2 && ds->ds_prev->ds_userrefs == 0) { /* We need to remove the origin snapshot as well. */ if (!refcount_is_zero(&ds->ds_prev->ds_longholds)) return (SET_ERROR(EBUSY)); } return (0); } static int dsl_destroy_head_check(void *arg, dmu_tx_t *tx) { dsl_destroy_head_arg_t *ddha = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; int error; error = dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds); if (error != 0) return (error); error = dsl_destroy_head_check_impl(ds, 0); dsl_dataset_rele(ds, FTAG); return (error); } static void dsl_dir_destroy_sync(uint64_t ddobj, dmu_tx_t *tx) { dsl_dir_t *dd; dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; dd_used_t t; ASSERT(RRW_WRITE_HELD(&dmu_tx_pool(tx)->dp_config_rwlock)); VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd)); ASSERT0(dd->dd_phys->dd_head_dataset_obj); /* * Decrement the filesystem count for all parent filesystems. * * When we receive an incremental stream into a filesystem that already * exists, a temporary clone is created. We never count this temporary * clone, whose name begins with a '%'. */ if (dd->dd_myname[0] != '%' && dd->dd_parent != NULL) dsl_fs_ss_count_adjust(dd->dd_parent, -1, DD_FIELD_FILESYSTEM_COUNT, tx); /* * Remove our reservation. The impl() routine avoids setting the * actual property, which would require the (already destroyed) ds. */ dsl_dir_set_reservation_sync_impl(dd, 0, tx); ASSERT0(dd->dd_phys->dd_used_bytes); ASSERT0(dd->dd_phys->dd_reserved); for (t = 0; t < DD_USED_NUM; t++) ASSERT0(dd->dd_phys->dd_used_breakdown[t]); VERIFY0(zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx)); VERIFY0(zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx)); VERIFY0(dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx)); VERIFY0(zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx)); dsl_dir_rele(dd, FTAG); dmu_object_free_zapified(mos, ddobj, tx); } void dsl_destroy_head_sync_impl(dsl_dataset_t *ds, dmu_tx_t *tx) { dsl_pool_t *dp = dmu_tx_pool(tx); objset_t *mos = dp->dp_meta_objset; uint64_t obj, ddobj, prevobj = 0; boolean_t rmorigin; ASSERT3U(ds->ds_phys->ds_num_children, <=, 1); ASSERT(ds->ds_prev == NULL || ds->ds_prev->ds_phys->ds_next_snap_obj != ds->ds_object); ASSERT3U(ds->ds_phys->ds_bp.blk_birth, <=, tx->tx_txg); ASSERT(RRW_WRITE_HELD(&dp->dp_config_rwlock)); /* We need to log before removing it from the namespace. */ spa_history_log_internal_ds(ds, "destroy", tx, ""); rmorigin = (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev) && ds->ds_prev->ds_phys->ds_num_children == 2 && ds->ds_prev->ds_userrefs == 0); /* Remove our reservation. */ if (ds->ds_reserved != 0) { dsl_dataset_set_refreservation_sync_impl(ds, (ZPROP_SRC_NONE | ZPROP_SRC_LOCAL | ZPROP_SRC_RECEIVED), 0, tx); ASSERT0(ds->ds_reserved); } + + if (ds->ds_large_blocks) + spa_feature_decr(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS, tx); dsl_scan_ds_destroyed(ds, tx); obj = ds->ds_object; if (ds->ds_phys->ds_prev_snap_obj != 0) { /* This is a clone */ ASSERT(ds->ds_prev != NULL); ASSERT3U(ds->ds_prev->ds_phys->ds_next_snap_obj, !=, obj); ASSERT0(ds->ds_phys->ds_next_snap_obj); dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); if (ds->ds_prev->ds_phys->ds_next_clones_obj != 0) { dsl_dataset_remove_from_next_clones(ds->ds_prev, obj, tx); } ASSERT3U(ds->ds_prev->ds_phys->ds_num_children, >, 1); ds->ds_prev->ds_phys->ds_num_children--; } /* * Destroy the deadlist. Unless it's a clone, the * deadlist should be empty. (If it's a clone, it's * safe to ignore the deadlist contents.) */ dsl_deadlist_close(&ds->ds_deadlist); dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx); dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_deadlist_obj = 0; objset_t *os; VERIFY0(dmu_objset_from_ds(ds, &os)); if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { old_synchronous_dataset_destroy(ds, tx); } else { /* * Move the bptree into the pool's list of trees to * clean up and update space accounting information. */ uint64_t used, comp, uncomp; zil_destroy_sync(dmu_objset_zil(os), tx); if (!spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { dsl_scan_t *scn = dp->dp_scan; spa_feature_incr(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY, tx); dp->dp_bptree_obj = bptree_alloc(mos, tx); VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, &dp->dp_bptree_obj, tx)); ASSERT(!scn->scn_async_destroying); scn->scn_async_destroying = B_TRUE; } used = ds->ds_dir->dd_phys->dd_used_bytes; comp = ds->ds_dir->dd_phys->dd_compressed_bytes; uncomp = ds->ds_dir->dd_phys->dd_uncompressed_bytes; ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) || ds->ds_phys->ds_unique_bytes == used); bptree_add(mos, dp->dp_bptree_obj, &ds->ds_phys->ds_bp, ds->ds_phys->ds_prev_snap_txg, used, comp, uncomp, tx); dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD, -used, -comp, -uncomp, tx); dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, used, comp, uncomp, tx); } if (ds->ds_prev != NULL) { if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) { VERIFY0(zap_remove_int(mos, ds->ds_prev->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); } prevobj = ds->ds_prev->ds_object; dsl_dataset_rele(ds->ds_prev, ds); ds->ds_prev = NULL; } /* * This must be done after the dsl_traverse(), because it will * re-open the objset. */ if (ds->ds_objset) { dmu_objset_evict(ds->ds_objset); ds->ds_objset = NULL; } /* Erase the link in the dir */ dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); ds->ds_dir->dd_phys->dd_head_dataset_obj = 0; ddobj = ds->ds_dir->dd_object; ASSERT(ds->ds_phys->ds_snapnames_zapobj != 0); VERIFY0(zap_destroy(mos, ds->ds_phys->ds_snapnames_zapobj, tx)); if (ds->ds_bookmarks != 0) { VERIFY0(zap_destroy(mos, ds->ds_bookmarks, tx)); spa_feature_decr(dp->dp_spa, SPA_FEATURE_BOOKMARKS, tx); } spa_prop_clear_bootfs(dp->dp_spa, ds->ds_object, tx); ASSERT0(ds->ds_phys->ds_next_clones_obj); ASSERT0(ds->ds_phys->ds_props_obj); ASSERT0(ds->ds_phys->ds_userrefs_obj); dsl_dir_rele(ds->ds_dir, ds); ds->ds_dir = NULL; dmu_object_free_zapified(mos, obj, tx); dsl_dir_destroy_sync(ddobj, tx); if (rmorigin) { dsl_dataset_t *prev; VERIFY0(dsl_dataset_hold_obj(dp, prevobj, FTAG, &prev)); dsl_destroy_snapshot_sync_impl(prev, B_FALSE, tx); dsl_dataset_rele(prev, FTAG); } } static void dsl_destroy_head_sync(void *arg, dmu_tx_t *tx) { dsl_destroy_head_arg_t *ddha = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds)); dsl_destroy_head_sync_impl(ds, tx); dsl_dataset_rele(ds, FTAG); } static void dsl_destroy_head_begin_sync(void *arg, dmu_tx_t *tx) { dsl_destroy_head_arg_t *ddha = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold(dp, ddha->ddha_name, FTAG, &ds)); /* Mark it as inconsistent on-disk, in case we crash */ dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_flags |= DS_FLAG_INCONSISTENT; spa_history_log_internal_ds(ds, "destroy begin", tx, ""); dsl_dataset_rele(ds, FTAG); } int dsl_destroy_head(const char *name) { dsl_destroy_head_arg_t ddha; int error; spa_t *spa; boolean_t isenabled; #ifdef _KERNEL zfs_destroy_unmount_origin(name); #endif error = spa_open(name, &spa, FTAG); if (error != 0) return (error); isenabled = spa_feature_is_enabled(spa, SPA_FEATURE_ASYNC_DESTROY); spa_close(spa, FTAG); ddha.ddha_name = name; if (!isenabled) { objset_t *os; error = dsl_sync_task(name, dsl_destroy_head_check, dsl_destroy_head_begin_sync, &ddha, 0, ZFS_SPACE_CHECK_NONE); if (error != 0) return (error); /* * Head deletion is processed in one txg on old pools; * remove the objects from open context so that the txg sync * is not too long. */ error = dmu_objset_own(name, DMU_OST_ANY, B_FALSE, FTAG, &os); if (error == 0) { uint64_t prev_snap_txg = dmu_objset_ds(os)->ds_phys->ds_prev_snap_txg; for (uint64_t obj = 0; error == 0; error = dmu_object_next(os, &obj, FALSE, prev_snap_txg)) (void) dmu_free_long_object(os, obj); /* sync out all frees */ txg_wait_synced(dmu_objset_pool(os), 0); dmu_objset_disown(os, FTAG); } } return (dsl_sync_task(name, dsl_destroy_head_check, dsl_destroy_head_sync, &ddha, 0, ZFS_SPACE_CHECK_NONE)); } /* * Note, this function is used as the callback for dmu_objset_find(). We * always return 0 so that we will continue to find and process * inconsistent datasets, even if we encounter an error trying to * process one of them. */ /* ARGSUSED */ int dsl_destroy_inconsistent(const char *dsname, void *arg) { objset_t *os; if (dmu_objset_hold(dsname, FTAG, &os) == 0) { boolean_t inconsistent = DS_IS_INCONSISTENT(dmu_objset_ds(os)); dmu_objset_rele(os, FTAG); if (inconsistent) (void) dsl_destroy_head(dsname); } return (0); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_pool.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_pool.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/dsl_pool.c (revision 274273) @@ -1,1044 +1,1044 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * ZFS Write Throttle * ------------------ * * ZFS must limit the rate of incoming writes to the rate at which it is able * to sync data modifications to the backend storage. Throttling by too much * creates an artificial limit; throttling by too little can only be sustained * for short periods and would lead to highly lumpy performance. On a per-pool * basis, ZFS tracks the amount of modified (dirty) data. As operations change * data, the amount of dirty data increases; as ZFS syncs out data, the amount * of dirty data decreases. When the amount of dirty data exceeds a * predetermined threshold further modifications are blocked until the amount * of dirty data decreases (as data is synced out). * * The limit on dirty data is tunable, and should be adjusted according to * both the IO capacity and available memory of the system. The larger the * window, the more ZFS is able to aggregate and amortize metadata (and data) * changes. However, memory is a limited resource, and allowing for more dirty * data comes at the cost of keeping other useful data in memory (for example * ZFS data cached by the ARC). * * Implementation * * As buffers are modified dsl_pool_willuse_space() increments both the per- * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of * dirty space used; dsl_pool_dirty_space() decrements those values as data * is synced out from dsl_pool_sync(). While only the poolwide value is * relevant, the per-txg value is useful for debugging. The tunable * zfs_dirty_data_max determines the dirty space limit. Once that value is * exceeded, new writes are halted until space frees up. * * The zfs_dirty_data_sync tunable dictates the threshold at which we * ensure that there is a txg syncing (see the comment in txg.c for a full * description of transaction group stages). * * The IO scheduler uses both the dirty space limit and current amount of * dirty data as inputs. Those values affect the number of concurrent IOs ZFS * issues. See the comment in vdev_queue.c for details of the IO scheduler. * * The delay is also calculated based on the amount of dirty data. See the * comment above dmu_tx_delay() for details. */ /* * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. */ uint64_t zfs_dirty_data_max; uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; int zfs_dirty_data_max_percent = 10; /* * If there is at least this much dirty data, push out a txg. */ uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; /* * Once there is this amount of dirty data, the dmu_tx_delay() will kick in * and delay each transaction. * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. */ int zfs_delay_min_dirty_percent = 60; /* * This controls how quickly the delay approaches infinity. * Larger values cause it to delay more for a given amount of dirty data. * Therefore larger values will cause there to be less dirty data for a * given throughput. * * For the smoothest delay, this value should be about 1 billion divided * by the maximum number of operations per second. This will smoothly * handle between 10x and 1/10th this number. * * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the * multiply in dmu_tx_delay(). */ uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; hrtime_t zfs_throttle_delay = MSEC2NSEC(10); hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); int dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) { uint64_t obj; int err; err = zap_lookup(dp->dp_meta_objset, dp->dp_root_dir->dd_phys->dd_child_dir_zapobj, name, sizeof (obj), 1, &obj); if (err) return (err); return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); } static dsl_pool_t * dsl_pool_open_impl(spa_t *spa, uint64_t txg) { dsl_pool_t *dp; blkptr_t *bp = spa_get_rootblkptr(spa); dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); dp->dp_spa = spa; dp->dp_meta_rootbp = *bp; rrw_init(&dp->dp_config_rwlock, B_TRUE); txg_init(dp, txg); txg_list_create(&dp->dp_dirty_datasets, offsetof(dsl_dataset_t, ds_dirty_link)); txg_list_create(&dp->dp_dirty_zilogs, offsetof(zilog_t, zl_dirty_link)); txg_list_create(&dp->dp_dirty_dirs, offsetof(dsl_dir_t, dd_dirty_link)); txg_list_create(&dp->dp_sync_tasks, offsetof(dsl_sync_task_t, dst_node)); mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 1, 4, 0); return (dp); } int dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) { int err; dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, &dp->dp_meta_objset); if (err != 0) dsl_pool_close(dp); else *dpp = dp; return (err); } int dsl_pool_open(dsl_pool_t *dp) { int err; dsl_dir_t *dd; dsl_dataset_t *ds; uint64_t obj; rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &dp->dp_root_dir_obj); if (err) goto out; err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, dp, &dp->dp_root_dir); if (err) goto out; err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); if (err) goto out; if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); if (err) goto out; err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj, FTAG, &ds); if (err == 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, dp, &dp->dp_origin_snap); dsl_dataset_rele(ds, FTAG); } dsl_dir_rele(dd, dp); if (err) goto out; } if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir); if (err) goto out; err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); if (err) goto out; VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); } /* * Note: errors ignored, because the leak dir will not exist if we * have not encountered a leak yet. */ (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, &dp->dp_leak_dir); if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, &dp->dp_bptree_obj); if (err != 0) goto out; } if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, &dp->dp_empty_bpobj); if (err != 0) goto out; } err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, &dp->dp_tmp_userrefs_obj); if (err == ENOENT) err = 0; if (err) goto out; err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); out: rrw_exit(&dp->dp_config_rwlock, FTAG); return (err); } void dsl_pool_close(dsl_pool_t *dp) { /* * Drop our references from dsl_pool_open(). * * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. */ if (dp->dp_origin_snap) dsl_dataset_rele(dp->dp_origin_snap, dp); if (dp->dp_mos_dir) dsl_dir_rele(dp->dp_mos_dir, dp); if (dp->dp_free_dir) dsl_dir_rele(dp->dp_free_dir, dp); if (dp->dp_leak_dir) dsl_dir_rele(dp->dp_leak_dir, dp); if (dp->dp_root_dir) dsl_dir_rele(dp->dp_root_dir, dp); bpobj_close(&dp->dp_free_bpobj); /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ if (dp->dp_meta_objset) dmu_objset_evict(dp->dp_meta_objset); txg_list_destroy(&dp->dp_dirty_datasets); txg_list_destroy(&dp->dp_dirty_zilogs); txg_list_destroy(&dp->dp_sync_tasks); txg_list_destroy(&dp->dp_dirty_dirs); arc_flush(dp->dp_spa); txg_fini(dp); dsl_scan_fini(dp); rrw_destroy(&dp->dp_config_rwlock); mutex_destroy(&dp->dp_lock); taskq_destroy(dp->dp_vnrele_taskq); if (dp->dp_blkstats) kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); kmem_free(dp, sizeof (dsl_pool_t)); } dsl_pool_t * dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) { int err; dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); objset_t *os; dsl_dataset_t *ds; uint64_t obj; rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); /* create and open the MOS (meta-objset) */ dp->dp_meta_objset = dmu_objset_create_impl(spa, NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); /* create the pool directory */ err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); ASSERT0(err); /* Initialize scan structures */ VERIFY0(dsl_scan_init(dp, txg)); /* create and open the root dir */ dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, dp, &dp->dp_root_dir)); /* create and open the meta-objset dir */ (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir)); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { /* create and open the free dir */ (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir)); /* create and open the free_bplist */ - obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx); + obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); } if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) dsl_pool_create_origin(dp, tx); /* create the root dataset */ obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); /* create the root objset */ VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); os = dmu_objset_create_impl(dp->dp_spa, ds, dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); #ifdef _KERNEL zfs_create_fs(os, kcred, zplprops, tx); #endif dsl_dataset_rele(ds, FTAG); dmu_tx_commit(tx); rrw_exit(&dp->dp_config_rwlock, FTAG); return (dp); } /* * Account for the meta-objset space in its placeholder dsl_dir. */ void dsl_pool_mos_diduse_space(dsl_pool_t *dp, int64_t used, int64_t comp, int64_t uncomp) { ASSERT3U(comp, ==, uncomp); /* it's all metadata */ mutex_enter(&dp->dp_lock); dp->dp_mos_used_delta += used; dp->dp_mos_compressed_delta += comp; dp->dp_mos_uncompressed_delta += uncomp; mutex_exit(&dp->dp_lock); } static int deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { dsl_deadlist_t *dl = arg; dsl_deadlist_insert(dl, bp, tx); return (0); } static void dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) { zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); dmu_objset_sync(dp->dp_meta_objset, zio, tx); VERIFY0(zio_wait(zio)); dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); } static void dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) { ASSERT(MUTEX_HELD(&dp->dp_lock)); if (delta < 0) ASSERT3U(-delta, <=, dp->dp_dirty_total); dp->dp_dirty_total += delta; /* * Note: we signal even when increasing dp_dirty_total. * This ensures forward progress -- each thread wakes the next waiter. */ if (dp->dp_dirty_total <= zfs_dirty_data_max) cv_signal(&dp->dp_spaceavail_cv); } void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { zio_t *zio; dmu_tx_t *tx; dsl_dir_t *dd; dsl_dataset_t *ds; objset_t *mos = dp->dp_meta_objset; list_t synced_datasets; list_create(&synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); tx = dmu_tx_create_assigned(dp, txg); /* * Write out all dirty blocks of dirty datasets. */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we * may sync newly-created datasets on pass 2. */ ASSERT(!list_link_active(&ds->ds_synced_link)); list_insert_tail(&synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } VERIFY0(zio_wait(zio)); /* * We have written all of the accounted dirty data, so our * dp_space_towrite should now be zero. However, some seldom-used * code paths do not adhere to this (e.g. dbuf_undirty(), also * rounding error in dbuf_write_physdone). * Shore up the accounting of any dirtied space now. */ dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); /* * After the data blocks have been written (ensured by the zio_wait() * above), update the user/group space accounting. */ for (ds = list_head(&synced_datasets); ds != NULL; ds = list_next(&synced_datasets, ds)) { dmu_objset_do_userquota_updates(ds->ds_objset, tx); } /* * Sync the datasets again to push out the changes due to * userspace updates. This must be done before we process the * sync tasks, so that any snapshots will have the correct * user accounting information (and we won't get confused * about which blocks are part of the snapshot). */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } VERIFY0(zio_wait(zio)); /* * Now that the datasets have been completely synced, we can * clean up our in-memory structures accumulated while syncing: * * - move dead blocks from the pending deadlist to the on-disk deadlist * - release hold from dsl_dataset_dirty() */ while ((ds = list_remove_head(&synced_datasets)) != NULL) { objset_t *os = ds->ds_objset; bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); ASSERT(!dmu_objset_is_dirty(os, txg)); dmu_buf_rele(ds->ds_dbuf, ds); } while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { dsl_dir_sync(dd, tx); } /* * The MOS's space is accounted for in the pool/$MOS * (dp_mos_dir). We can't modify the mos while we're syncing * it, so we remember the deltas and apply them here. */ if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || dp->dp_mos_uncompressed_delta != 0) { dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, dp->dp_mos_used_delta, dp->dp_mos_compressed_delta, dp->dp_mos_uncompressed_delta, tx); dp->dp_mos_used_delta = 0; dp->dp_mos_compressed_delta = 0; dp->dp_mos_uncompressed_delta = 0; } if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { dsl_pool_sync_mos(dp, tx); } /* * If we modify a dataset in the same txg that we want to destroy it, * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. * dsl_dir_destroy_check() will fail if there are unexpected holds. * Therefore, we want to sync the MOS (thus syncing the dd_dbuf * and clearing the hold on it) before we process the sync_tasks. * The MOS data dirtied by the sync_tasks will be synced on the next * pass. */ if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { dsl_sync_task_t *dst; /* * No more sync tasks should have been added while we * were syncing. */ ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) dsl_sync_task_sync(dst, tx); } dmu_tx_commit(tx); DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { zilog_t *zilog; while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); zil_clean(zilog, txg); ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); dmu_buf_rele(ds->ds_dbuf, zilog); } ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); } /* * TRUE if the current thread is the tx_sync_thread or if we * are being called from SPA context during pool initialization. */ int dsl_pool_sync_context(dsl_pool_t *dp) { return (curthread == dp->dp_tx.tx_sync_thread || spa_is_initializing(dp->dp_spa)); } uint64_t dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) { uint64_t space, resv; /* * If we're trying to assess whether it's OK to do a free, * cut the reservation in half to allow forward progress * (e.g. make it possible to rm(1) files from a full pool). */ space = spa_get_dspace(dp->dp_spa); resv = spa_get_slop_space(dp->dp_spa); if (netfree) resv >>= 1; return (space - resv); } boolean_t dsl_pool_need_dirty_delay(dsl_pool_t *dp) { uint64_t delay_min_bytes = zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; boolean_t rv; mutex_enter(&dp->dp_lock); if (dp->dp_dirty_total > zfs_dirty_data_sync) txg_kick(dp); rv = (dp->dp_dirty_total > delay_min_bytes); mutex_exit(&dp->dp_lock); return (rv); } void dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { if (space > 0) { mutex_enter(&dp->dp_lock); dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; dsl_pool_dirty_delta(dp, space); mutex_exit(&dp->dp_lock); } } void dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) { ASSERT3S(space, >=, 0); if (space == 0) return; mutex_enter(&dp->dp_lock); if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { /* XXX writing something we didn't dirty? */ space = dp->dp_dirty_pertxg[txg & TXG_MASK]; } ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; ASSERT3U(dp->dp_dirty_total, >=, space); dsl_pool_dirty_delta(dp, -space); mutex_exit(&dp->dp_lock); } /* ARGSUSED */ static int upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) { dmu_tx_t *tx = arg; dsl_dataset_t *ds, *prev = NULL; int err; err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); if (err) return (err); while (ds->ds_phys->ds_prev_snap_obj != 0) { err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, FTAG, &prev); if (err) { dsl_dataset_rele(ds, FTAG); return (err); } if (prev->ds_phys->ds_next_snap_obj != ds->ds_object) break; dsl_dataset_rele(ds, FTAG); ds = prev; prev = NULL; } if (prev == NULL) { prev = dp->dp_origin_snap; /* * The $ORIGIN can't have any data, or the accounting * will be wrong. */ ASSERT0(prev->ds_phys->ds_bp.blk_birth); /* The origin doesn't get attached to itself */ if (ds->ds_object == prev->ds_object) { dsl_dataset_rele(ds, FTAG); return (0); } dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_prev_snap_obj = prev->ds_object; ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg; dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object; dmu_buf_will_dirty(prev->ds_dbuf, tx); prev->ds_phys->ds_num_children++; if (ds->ds_phys->ds_next_snap_obj == 0) { ASSERT(ds->ds_prev == NULL); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev)); } } ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object); ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object); if (prev->ds_phys->ds_next_clones_obj == 0) { dmu_buf_will_dirty(prev->ds_dbuf, tx); prev->ds_phys->ds_next_clones_obj = zap_create(dp->dp_meta_objset, DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(dp->dp_meta_objset, prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx)); dsl_dataset_rele(ds, FTAG); if (prev != dp->dp_origin_snap) dsl_dataset_rele(prev, FTAG); return (0); } void dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dp->dp_origin_snap != NULL); VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, tx, DS_FIND_CHILDREN)); } /* ARGSUSED */ static int upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { dmu_tx_t *tx = arg; objset_t *mos = dp->dp_meta_objset; if (ds->ds_dir->dd_phys->dd_origin_obj != 0) { dsl_dataset_t *origin; VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin)); if (origin->ds_dir->dd_phys->dd_clones == 0) { dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); origin->ds_dir->dd_phys->dd_clones = zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx); } VERIFY0(zap_add_int(dp->dp_meta_objset, origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx)); dsl_dataset_rele(origin, FTAG); } return (0); } void dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) { ASSERT(dmu_tx_is_syncing(tx)); uint64_t obj; (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); VERIFY0(dsl_pool_open_special_dir(dp, FREE_DIR_NAME, &dp->dp_free_dir)); /* * We can't use bpobj_alloc(), because spa_version() still * returns the old version, and we need a new-version bpobj with * subobj support. So call dmu_object_alloc() directly. */ obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, - SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); + SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); } void dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) { uint64_t dsobj; dsl_dataset_t *ds; ASSERT(dmu_tx_is_syncing(tx)); ASSERT(dp->dp_origin_snap == NULL); ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); /* create the origin dir, ds, & snap-ds */ dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, NULL, 0, kcred, tx); VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj, dp, &dp->dp_origin_snap)); dsl_dataset_rele(ds, FTAG); } taskq_t * dsl_pool_vnrele_taskq(dsl_pool_t *dp) { return (dp->dp_vnrele_taskq); } /* * Walk through the pool-wide zap object of temporary snapshot user holds * and release them. */ void dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) { zap_attribute_t za; zap_cursor_t zc; objset_t *mos = dp->dp_meta_objset; uint64_t zapobj = dp->dp_tmp_userrefs_obj; nvlist_t *holds; if (zapobj == 0) return; ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); holds = fnvlist_alloc(); for (zap_cursor_init(&zc, mos, zapobj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { char *htag; nvlist_t *tags; htag = strchr(za.za_name, '-'); *htag = '\0'; ++htag; if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { tags = fnvlist_alloc(); fnvlist_add_boolean(tags, htag); fnvlist_add_nvlist(holds, za.za_name, tags); fnvlist_free(tags); } else { fnvlist_add_boolean(tags, htag); } } dsl_dataset_user_release_tmp(dp, holds); fnvlist_free(holds); zap_cursor_fini(&zc); } /* * Create the pool-wide zap object for storing temporary snapshot holds. */ void dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) { objset_t *mos = dp->dp_meta_objset; ASSERT(dp->dp_tmp_userrefs_obj == 0); ASSERT(dmu_tx_is_syncing(tx)); dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); } static int dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) { objset_t *mos = dp->dp_meta_objset; uint64_t zapobj = dp->dp_tmp_userrefs_obj; char *name; int error; ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); ASSERT(dmu_tx_is_syncing(tx)); /* * If the pool was created prior to SPA_VERSION_USERREFS, the * zap object for temporary holds might not exist yet. */ if (zapobj == 0) { if (holding) { dsl_pool_user_hold_create_obj(dp, tx); zapobj = dp->dp_tmp_userrefs_obj; } else { return (SET_ERROR(ENOENT)); } } name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); if (holding) error = zap_add(mos, zapobj, name, 8, 1, &now, tx); else error = zap_remove(mos, zapobj, name, tx); strfree(name); return (error); } /* * Add a temporary hold for the given dataset object and tag. */ int dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, uint64_t now, dmu_tx_t *tx) { return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); } /* * Release a temporary hold for the given dataset object and tag. */ int dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, dmu_tx_t *tx) { return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, tx, B_FALSE)); } /* * DSL Pool Configuration Lock * * The dp_config_rwlock protects against changes to DSL state (e.g. dataset * creation / destruction / rename / property setting). It must be held for * read to hold a dataset or dsl_dir. I.e. you must call * dsl_pool_config_enter() or dsl_pool_hold() before calling * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock * must be held continuously until all datasets and dsl_dirs are released. * * The only exception to this rule is that if a "long hold" is placed on * a dataset, then the dp_config_rwlock may be dropped while the dataset * is still held. The long hold will prevent the dataset from being * destroyed -- the destroy will fail with EBUSY. A long hold can be * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset * (by calling dsl_{dataset,objset}_{try}own{_obj}). * * Legitimate long-holders (including owners) should be long-running, cancelable * tasks that should cause "zfs destroy" to fail. This includes DMU * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), * "zfs send", and "zfs diff". There are several other long-holders whose * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). * * The usual formula for long-holding would be: * dsl_pool_hold() * dsl_dataset_hold() * ... perform checks ... * dsl_dataset_long_hold() * dsl_pool_rele() * ... perform long-running task ... * dsl_dataset_long_rele() * dsl_dataset_rele() * * Note that when the long hold is released, the dataset is still held but * the pool is not held. The dataset may change arbitrarily during this time * (e.g. it could be destroyed). Therefore you shouldn't do anything to the * dataset except release it. * * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only * or modifying operations. * * Modifying operations should generally use dsl_sync_task(). The synctask * infrastructure enforces proper locking strategy with respect to the * dp_config_rwlock. See the comment above dsl_sync_task() for details. * * Read-only operations will manually hold the pool, then the dataset, obtain * information from the dataset, then release the pool and dataset. * dmu_objset_{hold,rele}() are convenience routines that also do the pool * hold/rele. */ int dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) { spa_t *spa; int error; error = spa_open(name, &spa, tag); if (error == 0) { *dp = spa_get_dsl(spa); dsl_pool_config_enter(*dp, tag); } return (error); } void dsl_pool_rele(dsl_pool_t *dp, void *tag) { dsl_pool_config_exit(dp, tag); spa_close(dp->dp_spa, tag); } void dsl_pool_config_enter(dsl_pool_t *dp, void *tag) { /* * We use a "reentrant" reader-writer lock, but not reentrantly. * * The rrwlock can (with the track_all flag) track all reading threads, * which is very useful for debugging which code path failed to release * the lock, and for verifying that the *current* thread does hold * the lock. * * (Unlike a rwlock, which knows that N threads hold it for * read, but not *which* threads, so rw_held(RW_READER) returns TRUE * if any thread holds it for read, even if this thread doesn't). */ ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); } void dsl_pool_config_exit(dsl_pool_t *dp, void *tag) { rrw_exit(&dp->dp_config_rwlock, tag); } boolean_t dsl_pool_config_held(dsl_pool_t *dp) { return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c (revision 274273) @@ -1,2576 +1,2576 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * Allow allocations to switch to gang blocks quickly. We do this to * avoid having to load lots of space_maps in a given txg. There are, * however, some cases where we want to avoid "fast" ganging and instead * we want to do an exhaustive search of all metaslabs on this device. * Currently we don't allow any gang, slog, or dump device related allocations * to "fast" gang. */ #define CAN_FASTGANG(flags) \ (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \ METASLAB_GANG_AVOID))) #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) #define METASLAB_ACTIVE_MASK \ (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) uint64_t metaslab_aliquot = 512ULL << 10; uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ /* * The in-core space map representation is more compact than its on-disk form. * The zfs_condense_pct determines how much more compact the in-core * space_map representation must be before we compact it on-disk. * Values should be greater than or equal to 100. */ int zfs_condense_pct = 200; /* * Condensing a metaslab is not guaranteed to actually reduce the amount of * space used on disk. In particular, a space map uses data in increments of * MAX(1 << ashift, space_map_blksize), so a metaslab might use the * same number of blocks after condensing. Since the goal of condensing is to * reduce the number of IOPs required to read the space map, we only want to * condense when we can be sure we will reduce the number of blocks used by the * space map. Unfortunately, we cannot precisely compute whether or not this is * the case in metaslab_should_condense since we are holding ms_lock. Instead, * we apply the following heuristic: do not condense a spacemap unless the * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold * blocks. */ int zfs_metaslab_condense_block_threshold = 4; /* * The zfs_mg_noalloc_threshold defines which metaslab groups should * be eligible for allocation. The value is defined as a percentage of * free space. Metaslab groups that have more free space than * zfs_mg_noalloc_threshold are always eligible for allocations. Once * a metaslab group's free space is less than or equal to the * zfs_mg_noalloc_threshold the allocator will avoid allocating to that * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. * Once all groups in the pool reach zfs_mg_noalloc_threshold then all * groups are allowed to accept allocations. Gang blocks are always * eligible to allocate on any metaslab group. The default value of 0 means * no metaslab group will be excluded based on this criterion. */ int zfs_mg_noalloc_threshold = 0; /* * Metaslab groups are considered eligible for allocations if their * fragmenation metric (measured as a percentage) is less than or equal to * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold * then it will be skipped unless all metaslab groups within the metaslab * class have also crossed this threshold. */ int zfs_mg_fragmentation_threshold = 85; /* * Allow metaslabs to keep their active state as long as their fragmentation * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An * active metaslab that exceeds this threshold will no longer keep its active * status allowing better metaslabs to be selected. */ int zfs_metaslab_fragmentation_threshold = 70; /* * When set will load all metaslabs when pool is first opened. */ int metaslab_debug_load = 0; /* * When set will prevent metaslabs from being unloaded. */ int metaslab_debug_unload = 0; /* * Minimum size which forces the dynamic allocator to change * it's allocation strategy. Once the space map cannot satisfy * an allocation of this size then it switches to using more * aggressive strategy (i.e search by size rather than offset). */ -uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE; +uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; /* * The minimum free space, in percent, which must be available * in a space map to continue allocations in a first-fit fashion. * Once the space_map's free space drops below this level we dynamically * switch to using best-fit allocations. */ int metaslab_df_free_pct = 4; /* * A metaslab is considered "free" if it contains a contiguous * segment which is greater than metaslab_min_alloc_size. */ uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; /* * Percentage of all cpus that can be used by the metaslab taskq. */ int metaslab_load_pct = 50; /* * Determines how many txgs a metaslab may remain loaded without having any * allocations from it. As long as a metaslab continues to be used we will * keep it loaded. */ int metaslab_unload_delay = TXG_SIZE * 2; /* * Max number of metaslabs per group to preload. */ int metaslab_preload_limit = SPA_DVAS_PER_BP; /* * Enable/disable preloading of metaslab. */ boolean_t metaslab_preload_enabled = B_TRUE; /* * Enable/disable fragmentation weighting on metaslabs. */ boolean_t metaslab_fragmentation_factor_enabled = B_TRUE; /* * Enable/disable lba weighting (i.e. outer tracks are given preference). */ boolean_t metaslab_lba_weighting_enabled = B_TRUE; /* * Enable/disable metaslab group biasing. */ boolean_t metaslab_bias_enabled = B_TRUE; static uint64_t metaslab_fragmentation(metaslab_t *); /* * ========================================================================== * Metaslab classes * ========================================================================== */ metaslab_class_t * metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) { metaslab_class_t *mc; mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); mc->mc_spa = spa; mc->mc_rotor = NULL; mc->mc_ops = ops; return (mc); } void metaslab_class_destroy(metaslab_class_t *mc) { ASSERT(mc->mc_rotor == NULL); ASSERT(mc->mc_alloc == 0); ASSERT(mc->mc_deferred == 0); ASSERT(mc->mc_space == 0); ASSERT(mc->mc_dspace == 0); kmem_free(mc, sizeof (metaslab_class_t)); } int metaslab_class_validate(metaslab_class_t *mc) { metaslab_group_t *mg; vdev_t *vd; /* * Must hold one of the spa_config locks. */ ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); if ((mg = mc->mc_rotor) == NULL) return (0); do { vd = mg->mg_vd; ASSERT(vd->vdev_mg != NULL); ASSERT3P(vd->vdev_top, ==, vd); ASSERT3P(mg->mg_class, ==, mc); ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); } while ((mg = mg->mg_next) != mc->mc_rotor); return (0); } void metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) { atomic_add_64(&mc->mc_alloc, alloc_delta); atomic_add_64(&mc->mc_deferred, defer_delta); atomic_add_64(&mc->mc_space, space_delta); atomic_add_64(&mc->mc_dspace, dspace_delta); } uint64_t metaslab_class_get_alloc(metaslab_class_t *mc) { return (mc->mc_alloc); } uint64_t metaslab_class_get_deferred(metaslab_class_t *mc) { return (mc->mc_deferred); } uint64_t metaslab_class_get_space(metaslab_class_t *mc) { return (mc->mc_space); } uint64_t metaslab_class_get_dspace(metaslab_class_t *mc) { return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); } void metaslab_class_histogram_verify(metaslab_class_t *mc) { vdev_t *rvd = mc->mc_spa->spa_root_vdev; uint64_t *mc_hist; int i; if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) return; mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, KM_SLEEP); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; /* * Skip any holes, uninitialized top-levels, or * vdevs that are not in this metalab class. */ if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || mg->mg_class != mc) { continue; } for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) mc_hist[i] += mg->mg_histogram[i]; } for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); } /* * Calculate the metaslab class's fragmentation metric. The metric * is weighted based on the space contribution of each metaslab group. * The return value will be a number between 0 and 100 (inclusive), or * ZFS_FRAG_INVALID if the metric has not been set. See comment above the * zfs_frag_table for more information about the metric. */ uint64_t metaslab_class_fragmentation(metaslab_class_t *mc) { vdev_t *rvd = mc->mc_spa->spa_root_vdev; uint64_t fragmentation = 0; spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; /* * Skip any holes, uninitialized top-levels, or * vdevs that are not in this metalab class. */ if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || mg->mg_class != mc) { continue; } /* * If a metaslab group does not contain a fragmentation * metric then just bail out. */ if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); return (ZFS_FRAG_INVALID); } /* * Determine how much this metaslab_group is contributing * to the overall pool fragmentation metric. */ fragmentation += mg->mg_fragmentation * metaslab_group_get_space(mg); } fragmentation /= metaslab_class_get_space(mc); ASSERT3U(fragmentation, <=, 100); spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); return (fragmentation); } /* * Calculate the amount of expandable space that is available in * this metaslab class. If a device is expanded then its expandable * space will be the amount of allocatable space that is currently not * part of this metaslab class. */ uint64_t metaslab_class_expandable_space(metaslab_class_t *mc) { vdev_t *rvd = mc->mc_spa->spa_root_vdev; uint64_t space = 0; spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 || mg->mg_class != mc) { continue; } space += tvd->vdev_max_asize - tvd->vdev_asize; } spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); return (space); } /* * ========================================================================== * Metaslab groups * ========================================================================== */ static int metaslab_compare(const void *x1, const void *x2) { const metaslab_t *m1 = x1; const metaslab_t *m2 = x2; if (m1->ms_weight < m2->ms_weight) return (1); if (m1->ms_weight > m2->ms_weight) return (-1); /* * If the weights are identical, use the offset to force uniqueness. */ if (m1->ms_start < m2->ms_start) return (-1); if (m1->ms_start > m2->ms_start) return (1); ASSERT3P(m1, ==, m2); return (0); } /* * Update the allocatable flag and the metaslab group's capacity. * The allocatable flag is set to true if the capacity is below * the zfs_mg_noalloc_threshold. If a metaslab group transitions * from allocatable to non-allocatable or vice versa then the metaslab * group's class is updated to reflect the transition. */ static void metaslab_group_alloc_update(metaslab_group_t *mg) { vdev_t *vd = mg->mg_vd; metaslab_class_t *mc = mg->mg_class; vdev_stat_t *vs = &vd->vdev_stat; boolean_t was_allocatable; ASSERT(vd == vd->vdev_top); mutex_enter(&mg->mg_lock); was_allocatable = mg->mg_allocatable; mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / (vs->vs_space + 1); /* * A metaslab group is considered allocatable if it has plenty * of free space or is not heavily fragmented. We only take * fragmentation into account if the metaslab group has a valid * fragmentation metric (i.e. a value between 0 and 100). */ mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold && (mg->mg_fragmentation == ZFS_FRAG_INVALID || mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); /* * The mc_alloc_groups maintains a count of the number of * groups in this metaslab class that are still above the * zfs_mg_noalloc_threshold. This is used by the allocating * threads to determine if they should avoid allocations to * a given group. The allocator will avoid allocations to a group * if that group has reached or is below the zfs_mg_noalloc_threshold * and there are still other groups that are above the threshold. * When a group transitions from allocatable to non-allocatable or * vice versa we update the metaslab class to reflect that change. * When the mc_alloc_groups value drops to 0 that means that all * groups have reached the zfs_mg_noalloc_threshold making all groups * eligible for allocations. This effectively means that all devices * are balanced again. */ if (was_allocatable && !mg->mg_allocatable) mc->mc_alloc_groups--; else if (!was_allocatable && mg->mg_allocatable) mc->mc_alloc_groups++; mutex_exit(&mg->mg_lock); } metaslab_group_t * metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) { metaslab_group_t *mg; mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&mg->mg_metaslab_tree, metaslab_compare, sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); mg->mg_vd = vd; mg->mg_class = mc; mg->mg_activation_count = 0; mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); return (mg); } void metaslab_group_destroy(metaslab_group_t *mg) { ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); /* * We may have gone below zero with the activation count * either because we never activated in the first place or * because we're done, and possibly removing the vdev. */ ASSERT(mg->mg_activation_count <= 0); taskq_destroy(mg->mg_taskq); avl_destroy(&mg->mg_metaslab_tree); mutex_destroy(&mg->mg_lock); kmem_free(mg, sizeof (metaslab_group_t)); } void metaslab_group_activate(metaslab_group_t *mg) { metaslab_class_t *mc = mg->mg_class; metaslab_group_t *mgprev, *mgnext; ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); ASSERT(mc->mc_rotor != mg); ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); ASSERT(mg->mg_activation_count <= 0); if (++mg->mg_activation_count <= 0) return; mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); metaslab_group_alloc_update(mg); if ((mgprev = mc->mc_rotor) == NULL) { mg->mg_prev = mg; mg->mg_next = mg; } else { mgnext = mgprev->mg_next; mg->mg_prev = mgprev; mg->mg_next = mgnext; mgprev->mg_next = mg; mgnext->mg_prev = mg; } mc->mc_rotor = mg; } void metaslab_group_passivate(metaslab_group_t *mg) { metaslab_class_t *mc = mg->mg_class; metaslab_group_t *mgprev, *mgnext; ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); if (--mg->mg_activation_count != 0) { ASSERT(mc->mc_rotor != mg); ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); ASSERT(mg->mg_activation_count < 0); return; } taskq_wait(mg->mg_taskq); metaslab_group_alloc_update(mg); mgprev = mg->mg_prev; mgnext = mg->mg_next; if (mg == mgnext) { mc->mc_rotor = NULL; } else { mc->mc_rotor = mgnext; mgprev->mg_next = mgnext; mgnext->mg_prev = mgprev; } mg->mg_prev = NULL; mg->mg_next = NULL; } uint64_t metaslab_group_get_space(metaslab_group_t *mg) { return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); } void metaslab_group_histogram_verify(metaslab_group_t *mg) { uint64_t *mg_hist; vdev_t *vd = mg->mg_vd; uint64_t ashift = vd->vdev_ashift; int i; if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) return; mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, KM_SLEEP); ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, SPACE_MAP_HISTOGRAM_SIZE + ashift); for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp->ms_sm == NULL) continue; for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) mg_hist[i + ashift] += msp->ms_sm->sm_phys->smp_histogram[i]; } for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); } static void metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) { metaslab_class_t *mc = mg->mg_class; uint64_t ashift = mg->mg_vd->vdev_ashift; ASSERT(MUTEX_HELD(&msp->ms_lock)); if (msp->ms_sm == NULL) return; mutex_enter(&mg->mg_lock); for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { mg->mg_histogram[i + ashift] += msp->ms_sm->sm_phys->smp_histogram[i]; mc->mc_histogram[i + ashift] += msp->ms_sm->sm_phys->smp_histogram[i]; } mutex_exit(&mg->mg_lock); } void metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) { metaslab_class_t *mc = mg->mg_class; uint64_t ashift = mg->mg_vd->vdev_ashift; ASSERT(MUTEX_HELD(&msp->ms_lock)); if (msp->ms_sm == NULL) return; mutex_enter(&mg->mg_lock); for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { ASSERT3U(mg->mg_histogram[i + ashift], >=, msp->ms_sm->sm_phys->smp_histogram[i]); ASSERT3U(mc->mc_histogram[i + ashift], >=, msp->ms_sm->sm_phys->smp_histogram[i]); mg->mg_histogram[i + ashift] -= msp->ms_sm->sm_phys->smp_histogram[i]; mc->mc_histogram[i + ashift] -= msp->ms_sm->sm_phys->smp_histogram[i]; } mutex_exit(&mg->mg_lock); } static void metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) { ASSERT(msp->ms_group == NULL); mutex_enter(&mg->mg_lock); msp->ms_group = mg; msp->ms_weight = 0; avl_add(&mg->mg_metaslab_tree, msp); mutex_exit(&mg->mg_lock); mutex_enter(&msp->ms_lock); metaslab_group_histogram_add(mg, msp); mutex_exit(&msp->ms_lock); } static void metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) { mutex_enter(&msp->ms_lock); metaslab_group_histogram_remove(mg, msp); mutex_exit(&msp->ms_lock); mutex_enter(&mg->mg_lock); ASSERT(msp->ms_group == mg); avl_remove(&mg->mg_metaslab_tree, msp); msp->ms_group = NULL; mutex_exit(&mg->mg_lock); } static void metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) { /* * Although in principle the weight can be any value, in * practice we do not use values in the range [1, 511]. */ ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); ASSERT(MUTEX_HELD(&msp->ms_lock)); mutex_enter(&mg->mg_lock); ASSERT(msp->ms_group == mg); avl_remove(&mg->mg_metaslab_tree, msp); msp->ms_weight = weight; avl_add(&mg->mg_metaslab_tree, msp); mutex_exit(&mg->mg_lock); } /* * Calculate the fragmentation for a given metaslab group. We can use * a simple average here since all metaslabs within the group must have * the same size. The return value will be a value between 0 and 100 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this * group have a fragmentation metric. */ uint64_t metaslab_group_fragmentation(metaslab_group_t *mg) { vdev_t *vd = mg->mg_vd; uint64_t fragmentation = 0; uint64_t valid_ms = 0; for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp->ms_fragmentation == ZFS_FRAG_INVALID) continue; valid_ms++; fragmentation += msp->ms_fragmentation; } if (valid_ms <= vd->vdev_ms_count / 2) return (ZFS_FRAG_INVALID); fragmentation /= valid_ms; ASSERT3U(fragmentation, <=, 100); return (fragmentation); } /* * Determine if a given metaslab group should skip allocations. A metaslab * group should avoid allocations if its free capacity is less than the * zfs_mg_noalloc_threshold or its fragmentation metric is greater than * zfs_mg_fragmentation_threshold and there is at least one metaslab group * that can still handle allocations. */ static boolean_t metaslab_group_allocatable(metaslab_group_t *mg) { vdev_t *vd = mg->mg_vd; spa_t *spa = vd->vdev_spa; metaslab_class_t *mc = mg->mg_class; /* * We use two key metrics to determine if a metaslab group is * considered allocatable -- free space and fragmentation. If * the free space is greater than the free space threshold and * the fragmentation is less than the fragmentation threshold then * consider the group allocatable. There are two case when we will * not consider these key metrics. The first is if the group is * associated with a slog device and the second is if all groups * in this metaslab class have already been consider ineligible * for allocations. */ return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold && (mg->mg_fragmentation == ZFS_FRAG_INVALID || mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) || mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0); } /* * ========================================================================== * Range tree callbacks * ========================================================================== */ /* * Comparison function for the private size-ordered tree. Tree is sorted * by size, larger sizes at the end of the tree. */ static int metaslab_rangesize_compare(const void *x1, const void *x2) { const range_seg_t *r1 = x1; const range_seg_t *r2 = x2; uint64_t rs_size1 = r1->rs_end - r1->rs_start; uint64_t rs_size2 = r2->rs_end - r2->rs_start; if (rs_size1 < rs_size2) return (-1); if (rs_size1 > rs_size2) return (1); if (r1->rs_start < r2->rs_start) return (-1); if (r1->rs_start > r2->rs_start) return (1); return (0); } /* * Create any block allocator specific components. The current allocators * rely on using both a size-ordered range_tree_t and an array of uint64_t's. */ static void metaslab_rt_create(range_tree_t *rt, void *arg) { metaslab_t *msp = arg; ASSERT3P(rt->rt_arg, ==, msp); ASSERT(msp->ms_tree == NULL); avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); } /* * Destroy the block allocator specific components. */ static void metaslab_rt_destroy(range_tree_t *rt, void *arg) { metaslab_t *msp = arg; ASSERT3P(rt->rt_arg, ==, msp); ASSERT3P(msp->ms_tree, ==, rt); ASSERT0(avl_numnodes(&msp->ms_size_tree)); avl_destroy(&msp->ms_size_tree); } static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) { metaslab_t *msp = arg; ASSERT3P(rt->rt_arg, ==, msp); ASSERT3P(msp->ms_tree, ==, rt); VERIFY(!msp->ms_condensing); avl_add(&msp->ms_size_tree, rs); } static void metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) { metaslab_t *msp = arg; ASSERT3P(rt->rt_arg, ==, msp); ASSERT3P(msp->ms_tree, ==, rt); VERIFY(!msp->ms_condensing); avl_remove(&msp->ms_size_tree, rs); } static void metaslab_rt_vacate(range_tree_t *rt, void *arg) { metaslab_t *msp = arg; ASSERT3P(rt->rt_arg, ==, msp); ASSERT3P(msp->ms_tree, ==, rt); /* * Normally one would walk the tree freeing nodes along the way. * Since the nodes are shared with the range trees we can avoid * walking all nodes and just reinitialize the avl tree. The nodes * will be freed by the range tree, so we don't want to free them here. */ avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); } static range_tree_ops_t metaslab_rt_ops = { metaslab_rt_create, metaslab_rt_destroy, metaslab_rt_add, metaslab_rt_remove, metaslab_rt_vacate }; /* * ========================================================================== * Metaslab block operations * ========================================================================== */ /* * Return the maximum contiguous segment within the metaslab. */ uint64_t metaslab_block_maxsize(metaslab_t *msp) { avl_tree_t *t = &msp->ms_size_tree; range_seg_t *rs; if (t == NULL || (rs = avl_last(t)) == NULL) return (0ULL); return (rs->rs_end - rs->rs_start); } uint64_t metaslab_block_alloc(metaslab_t *msp, uint64_t size) { uint64_t start; range_tree_t *rt = msp->ms_tree; VERIFY(!msp->ms_condensing); start = msp->ms_ops->msop_alloc(msp, size); if (start != -1ULL) { vdev_t *vd = msp->ms_group->mg_vd; VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); range_tree_remove(rt, start, size); } return (start); } /* * ========================================================================== * Common allocator routines * ========================================================================== */ /* * This is a helper function that can be used by the allocator to find * a suitable block to allocate. This will search the specified AVL * tree looking for a block that matches the specified criteria. */ static uint64_t metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, uint64_t align) { range_seg_t *rs, rsearch; avl_index_t where; rsearch.rs_start = *cursor; rsearch.rs_end = *cursor + size; rs = avl_find(t, &rsearch, &where); if (rs == NULL) rs = avl_nearest(t, where, AVL_AFTER); while (rs != NULL) { uint64_t offset = P2ROUNDUP(rs->rs_start, align); if (offset + size <= rs->rs_end) { *cursor = offset + size; return (offset); } rs = AVL_NEXT(t, rs); } /* * If we know we've searched the whole map (*cursor == 0), give up. * Otherwise, reset the cursor to the beginning and try again. */ if (*cursor == 0) return (-1ULL); *cursor = 0; return (metaslab_block_picker(t, cursor, size, align)); } /* * ========================================================================== * The first-fit block allocator * ========================================================================== */ static uint64_t metaslab_ff_alloc(metaslab_t *msp, uint64_t size) { /* * Find the largest power of 2 block size that evenly divides the * requested size. This is used to try to allocate blocks with similar * alignment from the same area of the metaslab (i.e. same cursor * bucket) but it does not guarantee that other allocations sizes * may exist in the same region. */ uint64_t align = size & -size; uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; avl_tree_t *t = &msp->ms_tree->rt_root; return (metaslab_block_picker(t, cursor, size, align)); } static metaslab_ops_t metaslab_ff_ops = { metaslab_ff_alloc }; /* * ========================================================================== * Dynamic block allocator - * Uses the first fit allocation scheme until space get low and then * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold * and metaslab_df_free_pct to determine when to switch the allocation scheme. * ========================================================================== */ static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size) { /* * Find the largest power of 2 block size that evenly divides the * requested size. This is used to try to allocate blocks with similar * alignment from the same area of the metaslab (i.e. same cursor * bucket) but it does not guarantee that other allocations sizes * may exist in the same region. */ uint64_t align = size & -size; uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; range_tree_t *rt = msp->ms_tree; avl_tree_t *t = &rt->rt_root; uint64_t max_size = metaslab_block_maxsize(msp); int free_pct = range_tree_space(rt) * 100 / msp->ms_size; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); if (max_size < size) return (-1ULL); /* * If we're running low on space switch to using the size * sorted AVL tree (best-fit). */ if (max_size < metaslab_df_alloc_threshold || free_pct < metaslab_df_free_pct) { t = &msp->ms_size_tree; *cursor = 0; } return (metaslab_block_picker(t, cursor, size, 1ULL)); } static metaslab_ops_t metaslab_df_ops = { metaslab_df_alloc }; /* * ========================================================================== * Cursor fit block allocator - * Select the largest region in the metaslab, set the cursor to the beginning * of the range and the cursor_end to the end of the range. As allocations * are made advance the cursor. Continue allocating from the cursor until * the range is exhausted and then find a new range. * ========================================================================== */ static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size) { range_tree_t *rt = msp->ms_tree; avl_tree_t *t = &msp->ms_size_tree; uint64_t *cursor = &msp->ms_lbas[0]; uint64_t *cursor_end = &msp->ms_lbas[1]; uint64_t offset = 0; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); ASSERT3U(*cursor_end, >=, *cursor); if ((*cursor + size) > *cursor_end) { range_seg_t *rs; rs = avl_last(&msp->ms_size_tree); if (rs == NULL || (rs->rs_end - rs->rs_start) < size) return (-1ULL); *cursor = rs->rs_start; *cursor_end = rs->rs_end; } offset = *cursor; *cursor += size; return (offset); } static metaslab_ops_t metaslab_cf_ops = { metaslab_cf_alloc }; /* * ========================================================================== * New dynamic fit allocator - * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift * contiguous blocks. If no region is found then just use the largest segment * that remains. * ========================================================================== */ /* * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) * to request from the allocator. */ uint64_t metaslab_ndf_clump_shift = 4; static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) { avl_tree_t *t = &msp->ms_tree->rt_root; avl_index_t where; range_seg_t *rs, rsearch; uint64_t hbit = highbit64(size); uint64_t *cursor = &msp->ms_lbas[hbit - 1]; uint64_t max_size = metaslab_block_maxsize(msp); ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); if (max_size < size) return (-1ULL); rsearch.rs_start = *cursor; rsearch.rs_end = *cursor + size; rs = avl_find(t, &rsearch, &where); if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { t = &msp->ms_size_tree; rsearch.rs_start = 0; rsearch.rs_end = MIN(max_size, 1ULL << (hbit + metaslab_ndf_clump_shift)); rs = avl_find(t, &rsearch, &where); if (rs == NULL) rs = avl_nearest(t, where, AVL_AFTER); ASSERT(rs != NULL); } if ((rs->rs_end - rs->rs_start) >= size) { *cursor = rs->rs_start + size; return (rs->rs_start); } return (-1ULL); } static metaslab_ops_t metaslab_ndf_ops = { metaslab_ndf_alloc }; metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; /* * ========================================================================== * Metaslabs * ========================================================================== */ /* * Wait for any in-progress metaslab loads to complete. */ void metaslab_load_wait(metaslab_t *msp) { ASSERT(MUTEX_HELD(&msp->ms_lock)); while (msp->ms_loading) { ASSERT(!msp->ms_loaded); cv_wait(&msp->ms_load_cv, &msp->ms_lock); } } int metaslab_load(metaslab_t *msp) { int error = 0; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT(!msp->ms_loaded); ASSERT(!msp->ms_loading); msp->ms_loading = B_TRUE; /* * If the space map has not been allocated yet, then treat * all the space in the metaslab as free and add it to the * ms_tree. */ if (msp->ms_sm != NULL) error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE); else range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size); msp->ms_loaded = (error == 0); msp->ms_loading = B_FALSE; if (msp->ms_loaded) { for (int t = 0; t < TXG_DEFER_SIZE; t++) { range_tree_walk(msp->ms_defertree[t], range_tree_remove, msp->ms_tree); } } cv_broadcast(&msp->ms_load_cv); return (error); } void metaslab_unload(metaslab_t *msp) { ASSERT(MUTEX_HELD(&msp->ms_lock)); range_tree_vacate(msp->ms_tree, NULL, NULL); msp->ms_loaded = B_FALSE; msp->ms_weight &= ~METASLAB_ACTIVE_MASK; } metaslab_t * metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg) { vdev_t *vd = mg->mg_vd; objset_t *mos = vd->vdev_spa->spa_meta_objset; metaslab_t *msp; msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL); msp->ms_id = id; msp->ms_start = id << vd->vdev_ms_shift; msp->ms_size = 1ULL << vd->vdev_ms_shift; /* * We only open space map objects that already exist. All others * will be opened when we finally allocate an object for it. */ if (object != 0) { VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start, msp->ms_size, vd->vdev_ashift, &msp->ms_lock)); ASSERT(msp->ms_sm != NULL); } /* * We create the main range tree here, but we don't create the * alloctree and freetree until metaslab_sync_done(). This serves * two purposes: it allows metaslab_sync_done() to detect the * addition of new space; and for debugging, it ensures that we'd * data fault on any attempt to use this metaslab before it's ready. */ msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock); metaslab_group_add(mg, msp); msp->ms_fragmentation = metaslab_fragmentation(msp); msp->ms_ops = mg->mg_class->mc_ops; /* * If we're opening an existing pool (txg == 0) or creating * a new one (txg == TXG_INITIAL), all space is available now. * If we're adding space to an existing pool, the new space * does not become available until after this txg has synced. */ if (txg <= TXG_INITIAL) metaslab_sync_done(msp, 0); /* * If metaslab_debug_load is set and we're initializing a metaslab * that has an allocated space_map object then load the its space * map so that can verify frees. */ if (metaslab_debug_load && msp->ms_sm != NULL) { mutex_enter(&msp->ms_lock); VERIFY0(metaslab_load(msp)); mutex_exit(&msp->ms_lock); } if (txg != 0) { vdev_dirty(vd, 0, NULL, txg); vdev_dirty(vd, VDD_METASLAB, msp, txg); } return (msp); } void metaslab_fini(metaslab_t *msp) { metaslab_group_t *mg = msp->ms_group; metaslab_group_remove(mg, msp); mutex_enter(&msp->ms_lock); VERIFY(msp->ms_group == NULL); vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), 0, -msp->ms_size); space_map_close(msp->ms_sm); metaslab_unload(msp); range_tree_destroy(msp->ms_tree); for (int t = 0; t < TXG_SIZE; t++) { range_tree_destroy(msp->ms_alloctree[t]); range_tree_destroy(msp->ms_freetree[t]); } for (int t = 0; t < TXG_DEFER_SIZE; t++) { range_tree_destroy(msp->ms_defertree[t]); } ASSERT0(msp->ms_deferspace); mutex_exit(&msp->ms_lock); cv_destroy(&msp->ms_load_cv); mutex_destroy(&msp->ms_lock); kmem_free(msp, sizeof (metaslab_t)); } #define FRAGMENTATION_TABLE_SIZE 17 /* * This table defines a segment size based fragmentation metric that will * allow each metaslab to derive its own fragmentation value. This is done * by calculating the space in each bucket of the spacemap histogram and * multiplying that by the fragmetation metric in this table. Doing * this for all buckets and dividing it by the total amount of free * space in this metaslab (i.e. the total free space in all buckets) gives * us the fragmentation metric. This means that a high fragmentation metric * equates to most of the free space being comprised of small segments. * Conversely, if the metric is low, then most of the free space is in * large segments. A 10% change in fragmentation equates to approximately * double the number of segments. * * This table defines 0% fragmented space using 16MB segments. Testing has * shown that segments that are greater than or equal to 16MB do not suffer * from drastic performance problems. Using this value, we derive the rest * of the table. Since the fragmentation value is never stored on disk, it * is possible to change these calculations in the future. */ int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 100, /* 512B */ 100, /* 1K */ 98, /* 2K */ 95, /* 4K */ 90, /* 8K */ 80, /* 16K */ 70, /* 32K */ 60, /* 64K */ 50, /* 128K */ 40, /* 256K */ 30, /* 512K */ 20, /* 1M */ 15, /* 2M */ 10, /* 4M */ 5, /* 8M */ 0 /* 16M */ }; /* * Calclate the metaslab's fragmentation metric. A return value * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does * not support this metric. Otherwise, the return value should be in the * range [0, 100]. */ static uint64_t metaslab_fragmentation(metaslab_t *msp) { spa_t *spa = msp->ms_group->mg_vd->vdev_spa; uint64_t fragmentation = 0; uint64_t total = 0; boolean_t feature_enabled = spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM); if (!feature_enabled) return (ZFS_FRAG_INVALID); /* * A null space map means that the entire metaslab is free * and thus is not fragmented. */ if (msp->ms_sm == NULL) return (0); /* * If this metaslab's space_map has not been upgraded, flag it * so that we upgrade next time we encounter it. */ if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { uint64_t txg = spa_syncing_txg(spa); vdev_t *vd = msp->ms_group->mg_vd; if (spa_writeable(spa)) { msp->ms_condense_wanted = B_TRUE; vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); spa_dbgmsg(spa, "txg %llu, requesting force condense: " "msp %p, vd %p", txg, msp, vd); } return (ZFS_FRAG_INVALID); } for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { uint64_t space = 0; uint8_t shift = msp->ms_sm->sm_shift; int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, FRAGMENTATION_TABLE_SIZE - 1); if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) continue; space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); total += space; ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); fragmentation += space * zfs_frag_table[idx]; } if (total > 0) fragmentation /= total; ASSERT3U(fragmentation, <=, 100); return (fragmentation); } /* * Compute a weight -- a selection preference value -- for the given metaslab. * This is based on the amount of free space, the level of fragmentation, * the LBA range, and whether the metaslab is loaded. */ static uint64_t metaslab_weight(metaslab_t *msp) { metaslab_group_t *mg = msp->ms_group; vdev_t *vd = mg->mg_vd; uint64_t weight, space; ASSERT(MUTEX_HELD(&msp->ms_lock)); /* * This vdev is in the process of being removed so there is nothing * for us to do here. */ if (vd->vdev_removing) { ASSERT0(space_map_allocated(msp->ms_sm)); ASSERT0(vd->vdev_ms_shift); return (0); } /* * The baseline weight is the metaslab's free space. */ space = msp->ms_size - space_map_allocated(msp->ms_sm); msp->ms_fragmentation = metaslab_fragmentation(msp); if (metaslab_fragmentation_factor_enabled && msp->ms_fragmentation != ZFS_FRAG_INVALID) { /* * Use the fragmentation information to inversely scale * down the baseline weight. We need to ensure that we * don't exclude this metaslab completely when it's 100% * fragmented. To avoid this we reduce the fragmented value * by 1. */ space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; /* * If space < SPA_MINBLOCKSIZE, then we will not allocate from * this metaslab again. The fragmentation metric may have * decreased the space to something smaller than * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE * so that we can consume any remaining space. */ if (space > 0 && space < SPA_MINBLOCKSIZE) space = SPA_MINBLOCKSIZE; } weight = space; /* * Modern disks have uniform bit density and constant angular velocity. * Therefore, the outer recording zones are faster (higher bandwidth) * than the inner zones by the ratio of outer to inner track diameter, * which is typically around 2:1. We account for this by assigning * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). * In effect, this means that we'll select the metaslab with the most * free bandwidth rather than simply the one with the most free space. */ if (metaslab_lba_weighting_enabled) { weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; ASSERT(weight >= space && weight <= 2 * space); } /* * If this metaslab is one we're actively using, adjust its * weight to make it preferable to any inactive metaslab so * we'll polish it off. If the fragmentation on this metaslab * has exceed our threshold, then don't mark it active. */ if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); } return (weight); } static int metaslab_activate(metaslab_t *msp, uint64_t activation_weight) { ASSERT(MUTEX_HELD(&msp->ms_lock)); if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { metaslab_load_wait(msp); if (!msp->ms_loaded) { int error = metaslab_load(msp); if (error) { metaslab_group_sort(msp->ms_group, msp, 0); return (error); } } metaslab_group_sort(msp->ms_group, msp, msp->ms_weight | activation_weight); } ASSERT(msp->ms_loaded); ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); return (0); } static void metaslab_passivate(metaslab_t *msp, uint64_t size) { /* * If size < SPA_MINBLOCKSIZE, then we will not allocate from * this metaslab again. In that case, it had better be empty, * or we would be leaving space on the table. */ ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0); metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); } static void metaslab_preload(void *arg) { metaslab_t *msp = arg; spa_t *spa = msp->ms_group->mg_vd->vdev_spa; ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); mutex_enter(&msp->ms_lock); metaslab_load_wait(msp); if (!msp->ms_loaded) (void) metaslab_load(msp); /* * Set the ms_access_txg value so that we don't unload it right away. */ msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1; mutex_exit(&msp->ms_lock); } static void metaslab_group_preload(metaslab_group_t *mg) { spa_t *spa = mg->mg_vd->vdev_spa; metaslab_t *msp; avl_tree_t *t = &mg->mg_metaslab_tree; int m = 0; if (spa_shutting_down(spa) || !metaslab_preload_enabled) { taskq_wait(mg->mg_taskq); return; } mutex_enter(&mg->mg_lock); /* * Load the next potential metaslabs */ msp = avl_first(t); while (msp != NULL) { metaslab_t *msp_next = AVL_NEXT(t, msp); /* * We preload only the maximum number of metaslabs specified * by metaslab_preload_limit. If a metaslab is being forced * to condense then we preload it too. This will ensure * that force condensing happens in the next txg. */ if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { msp = msp_next; continue; } /* * We must drop the metaslab group lock here to preserve * lock ordering with the ms_lock (when grabbing both * the mg_lock and the ms_lock, the ms_lock must be taken * first). As a result, it is possible that the ordering * of the metaslabs within the avl tree may change before * we reacquire the lock. The metaslab cannot be removed from * the tree while we're in syncing context so it is safe to * drop the mg_lock here. If the metaslabs are reordered * nothing will break -- we just may end up loading a * less than optimal one. */ mutex_exit(&mg->mg_lock); VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, msp, TQ_SLEEP) != NULL); mutex_enter(&mg->mg_lock); msp = msp_next; } mutex_exit(&mg->mg_lock); } /* * Determine if the space map's on-disk footprint is past our tolerance * for inefficiency. We would like to use the following criteria to make * our decision: * * 1. The size of the space map object should not dramatically increase as a * result of writing out the free space range tree. * * 2. The minimal on-disk space map representation is zfs_condense_pct/100 * times the size than the free space range tree representation * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB). * * 3. The on-disk size of the space map should actually decrease. * * Checking the first condition is tricky since we don't want to walk * the entire AVL tree calculating the estimated on-disk size. Instead we * use the size-ordered range tree in the metaslab and calculate the * size required to write out the largest segment in our free tree. If the * size required to represent that segment on disk is larger than the space * map object then we avoid condensing this map. * * To determine the second criterion we use a best-case estimate and assume * each segment can be represented on-disk as a single 64-bit entry. We refer * to this best-case estimate as the space map's minimal form. * * Unfortunately, we cannot compute the on-disk size of the space map in this * context because we cannot accurately compute the effects of compression, etc. * Instead, we apply the heuristic described in the block comment for * zfs_metaslab_condense_block_threshold - we only condense if the space used * is greater than a threshold number of blocks. */ static boolean_t metaslab_should_condense(metaslab_t *msp) { space_map_t *sm = msp->ms_sm; range_seg_t *rs; uint64_t size, entries, segsz, object_size, optimal_size, record_size; dmu_object_info_t doi; uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT(msp->ms_loaded); /* * Use the ms_size_tree range tree, which is ordered by size, to * obtain the largest segment in the free tree. We always condense * metaslabs that are empty and metaslabs for which a condense * request has been made. */ rs = avl_last(&msp->ms_size_tree); if (rs == NULL || msp->ms_condense_wanted) return (B_TRUE); /* * Calculate the number of 64-bit entries this segment would * require when written to disk. If this single segment would be * larger on-disk than the entire current on-disk structure, then * clearly condensing will increase the on-disk structure size. */ size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; entries = size / (MIN(size, SM_RUN_MAX)); segsz = entries * sizeof (uint64_t); optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root); object_size = space_map_length(msp->ms_sm); dmu_object_info_from_db(sm->sm_dbuf, &doi); record_size = MAX(doi.doi_data_block_size, vdev_blocksize); return (segsz <= object_size && object_size >= (optimal_size * zfs_condense_pct / 100) && object_size > zfs_metaslab_condense_block_threshold * record_size); } /* * Condense the on-disk space map representation to its minimized form. * The minimized form consists of a small number of allocations followed by * the entries of the free range tree. */ static void metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) { spa_t *spa = msp->ms_group->mg_vd->vdev_spa; range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK]; range_tree_t *condense_tree; space_map_t *sm = msp->ms_sm; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT3U(spa_sync_pass(spa), ==, 1); ASSERT(msp->ms_loaded); spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, " "smp size %llu, segments %lu, forcing condense=%s", txg, msp->ms_id, msp, space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root), msp->ms_condense_wanted ? "TRUE" : "FALSE"); msp->ms_condense_wanted = B_FALSE; /* * Create an range tree that is 100% allocated. We remove segments * that have been freed in this txg, any deferred frees that exist, * and any allocation in the future. Removing segments should be * a relatively inexpensive operation since we expect these trees to * have a small number of nodes. */ condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock); range_tree_add(condense_tree, msp->ms_start, msp->ms_size); /* * Remove what's been freed in this txg from the condense_tree. * Since we're in sync_pass 1, we know that all the frees from * this txg are in the freetree. */ range_tree_walk(freetree, range_tree_remove, condense_tree); for (int t = 0; t < TXG_DEFER_SIZE; t++) { range_tree_walk(msp->ms_defertree[t], range_tree_remove, condense_tree); } for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK], range_tree_remove, condense_tree); } /* * We're about to drop the metaslab's lock thus allowing * other consumers to change it's content. Set the * metaslab's ms_condensing flag to ensure that * allocations on this metaslab do not occur while we're * in the middle of committing it to disk. This is only critical * for the ms_tree as all other range trees use per txg * views of their content. */ msp->ms_condensing = B_TRUE; mutex_exit(&msp->ms_lock); space_map_truncate(sm, tx); mutex_enter(&msp->ms_lock); /* * While we would ideally like to create a space_map representation * that consists only of allocation records, doing so can be * prohibitively expensive because the in-core free tree can be * large, and therefore computationally expensive to subtract * from the condense_tree. Instead we sync out two trees, a cheap * allocation only tree followed by the in-core free tree. While not * optimal, this is typically close to optimal, and much cheaper to * compute. */ space_map_write(sm, condense_tree, SM_ALLOC, tx); range_tree_vacate(condense_tree, NULL, NULL); range_tree_destroy(condense_tree); space_map_write(sm, msp->ms_tree, SM_FREE, tx); msp->ms_condensing = B_FALSE; } /* * Write a metaslab to disk in the context of the specified transaction group. */ void metaslab_sync(metaslab_t *msp, uint64_t txg) { metaslab_group_t *mg = msp->ms_group; vdev_t *vd = mg->mg_vd; spa_t *spa = vd->vdev_spa; objset_t *mos = spa_meta_objset(spa); range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK]; range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK]; range_tree_t **freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; dmu_tx_t *tx; uint64_t object = space_map_object(msp->ms_sm); ASSERT(!vd->vdev_ishole); /* * This metaslab has just been added so there's no work to do now. */ if (*freetree == NULL) { ASSERT3P(alloctree, ==, NULL); return; } ASSERT3P(alloctree, !=, NULL); ASSERT3P(*freetree, !=, NULL); ASSERT3P(*freed_tree, !=, NULL); /* * Normally, we don't want to process a metaslab if there * are no allocations or frees to perform. However, if the metaslab * is being forced to condense we need to let it through. */ if (range_tree_space(alloctree) == 0 && range_tree_space(*freetree) == 0 && !msp->ms_condense_wanted) return; /* * The only state that can actually be changing concurrently with * metaslab_sync() is the metaslab's ms_tree. No other thread can * be modifying this txg's alloctree, freetree, freed_tree, or * space_map_phys_t. Therefore, we only hold ms_lock to satify * space_map ASSERTs. We drop it whenever we call into the DMU, * because the DMU can call down to us (e.g. via zio_free()) at * any time. */ tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); if (msp->ms_sm == NULL) { uint64_t new_object; new_object = space_map_alloc(mos, tx); VERIFY3U(new_object, !=, 0); VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, msp->ms_start, msp->ms_size, vd->vdev_ashift, &msp->ms_lock)); ASSERT(msp->ms_sm != NULL); } mutex_enter(&msp->ms_lock); /* * Note: metaslab_condense() clears the space_map's histogram. * Therefore we must verify and remove this histogram before * condensing. */ metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); metaslab_group_histogram_remove(mg, msp); if (msp->ms_loaded && spa_sync_pass(spa) == 1 && metaslab_should_condense(msp)) { metaslab_condense(msp, txg, tx); } else { space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx); space_map_write(msp->ms_sm, *freetree, SM_FREE, tx); } if (msp->ms_loaded) { /* * When the space map is loaded, we have an accruate * histogram in the range tree. This gives us an opportunity * to bring the space map's histogram up-to-date so we clear * it first before updating it. */ space_map_histogram_clear(msp->ms_sm); space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx); } else { /* * Since the space map is not loaded we simply update the * exisiting histogram with what was freed in this txg. This * means that the on-disk histogram may not have an accurate * view of the free space but it's close enough to allow * us to make allocation decisions. */ space_map_histogram_add(msp->ms_sm, *freetree, tx); } metaslab_group_histogram_add(mg, msp); metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); /* * For sync pass 1, we avoid traversing this txg's free range tree * and instead will just swap the pointers for freetree and * freed_tree. We can safely do this since the freed_tree is * guaranteed to be empty on the initial pass. */ if (spa_sync_pass(spa) == 1) { range_tree_swap(freetree, freed_tree); } else { range_tree_vacate(*freetree, range_tree_add, *freed_tree); } range_tree_vacate(alloctree, NULL, NULL); ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); mutex_exit(&msp->ms_lock); if (object != space_map_object(msp->ms_sm)) { object = space_map_object(msp->ms_sm); dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * msp->ms_id, sizeof (uint64_t), &object, tx); } dmu_tx_commit(tx); } /* * Called after a transaction group has completely synced to mark * all of the metaslab's free space as usable. */ void metaslab_sync_done(metaslab_t *msp, uint64_t txg) { metaslab_group_t *mg = msp->ms_group; vdev_t *vd = mg->mg_vd; range_tree_t **freed_tree; range_tree_t **defer_tree; int64_t alloc_delta, defer_delta; ASSERT(!vd->vdev_ishole); mutex_enter(&msp->ms_lock); /* * If this metaslab is just becoming available, initialize its * alloctrees, freetrees, and defertree and add its capacity to * the vdev. */ if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) { for (int t = 0; t < TXG_SIZE; t++) { ASSERT(msp->ms_alloctree[t] == NULL); ASSERT(msp->ms_freetree[t] == NULL); msp->ms_alloctree[t] = range_tree_create(NULL, msp, &msp->ms_lock); msp->ms_freetree[t] = range_tree_create(NULL, msp, &msp->ms_lock); } for (int t = 0; t < TXG_DEFER_SIZE; t++) { ASSERT(msp->ms_defertree[t] == NULL); msp->ms_defertree[t] = range_tree_create(NULL, msp, &msp->ms_lock); } vdev_space_update(vd, 0, 0, msp->ms_size); } freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE]; alloc_delta = space_map_alloc_delta(msp->ms_sm); defer_delta = range_tree_space(*freed_tree) - range_tree_space(*defer_tree); vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); /* * If there's a metaslab_load() in progress, wait for it to complete * so that we have a consistent view of the in-core space map. */ metaslab_load_wait(msp); /* * Move the frees from the defer_tree back to the free * range tree (if it's loaded). Swap the freed_tree and the * defer_tree -- this is safe to do because we've just emptied out * the defer_tree. */ range_tree_vacate(*defer_tree, msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); range_tree_swap(freed_tree, defer_tree); space_map_update(msp->ms_sm); msp->ms_deferspace += defer_delta; ASSERT3S(msp->ms_deferspace, >=, 0); ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); if (msp->ms_deferspace != 0) { /* * Keep syncing this metaslab until all deferred frees * are back in circulation. */ vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); } if (msp->ms_loaded && msp->ms_access_txg < txg) { for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { VERIFY0(range_tree_space( msp->ms_alloctree[(txg + t) & TXG_MASK])); } if (!metaslab_debug_unload) metaslab_unload(msp); } metaslab_group_sort(mg, msp, metaslab_weight(msp)); mutex_exit(&msp->ms_lock); } void metaslab_sync_reassess(metaslab_group_t *mg) { metaslab_group_alloc_update(mg); mg->mg_fragmentation = metaslab_group_fragmentation(mg); /* * Preload the next potential metaslabs */ metaslab_group_preload(mg); } static uint64_t metaslab_distance(metaslab_t *msp, dva_t *dva) { uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; uint64_t start = msp->ms_id; if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) return (1ULL << 63); if (offset < start) return ((start - offset) << ms_shift); if (offset > start) return ((offset - start) << ms_shift); return (0); } static uint64_t metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d) { spa_t *spa = mg->mg_vd->vdev_spa; metaslab_t *msp = NULL; uint64_t offset = -1ULL; avl_tree_t *t = &mg->mg_metaslab_tree; uint64_t activation_weight; uint64_t target_distance; int i; activation_weight = METASLAB_WEIGHT_PRIMARY; for (i = 0; i < d; i++) { if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { activation_weight = METASLAB_WEIGHT_SECONDARY; break; } } for (;;) { boolean_t was_active; mutex_enter(&mg->mg_lock); for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { if (msp->ms_weight < asize) { spa_dbgmsg(spa, "%s: failed to meet weight " "requirement: vdev %llu, txg %llu, mg %p, " "msp %p, psize %llu, asize %llu, " "weight %llu", spa_name(spa), mg->mg_vd->vdev_id, txg, mg, msp, psize, asize, msp->ms_weight); mutex_exit(&mg->mg_lock); return (-1ULL); } /* * If the selected metaslab is condensing, skip it. */ if (msp->ms_condensing) continue; was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; if (activation_weight == METASLAB_WEIGHT_PRIMARY) break; target_distance = min_distance + (space_map_allocated(msp->ms_sm) != 0 ? 0 : min_distance >> 1); for (i = 0; i < d; i++) if (metaslab_distance(msp, &dva[i]) < target_distance) break; if (i == d) break; } mutex_exit(&mg->mg_lock); if (msp == NULL) return (-1ULL); mutex_enter(&msp->ms_lock); /* * Ensure that the metaslab we have selected is still * capable of handling our request. It's possible that * another thread may have changed the weight while we * were blocked on the metaslab lock. */ if (msp->ms_weight < asize || (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK) && activation_weight == METASLAB_WEIGHT_PRIMARY)) { mutex_exit(&msp->ms_lock); continue; } if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && activation_weight == METASLAB_WEIGHT_PRIMARY) { metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); mutex_exit(&msp->ms_lock); continue; } if (metaslab_activate(msp, activation_weight) != 0) { mutex_exit(&msp->ms_lock); continue; } /* * If this metaslab is currently condensing then pick again as * we can't manipulate this metaslab until it's committed * to disk. */ if (msp->ms_condensing) { mutex_exit(&msp->ms_lock); continue; } if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL) break; metaslab_passivate(msp, metaslab_block_maxsize(msp)); mutex_exit(&msp->ms_lock); } if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize); msp->ms_access_txg = txg + metaslab_unload_delay; mutex_exit(&msp->ms_lock); return (offset); } /* * Allocate a block for the specified i/o. */ static int metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags) { metaslab_group_t *mg, *rotor; vdev_t *vd; int dshift = 3; int all_zero; int zio_lock = B_FALSE; boolean_t allocatable; uint64_t offset = -1ULL; uint64_t asize; uint64_t distance; ASSERT(!DVA_IS_VALID(&dva[d])); /* * For testing, make some blocks above a certain size be gang blocks. */ if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) return (SET_ERROR(ENOSPC)); /* * Start at the rotor and loop through all mgs until we find something. * Note that there's no locking on mc_rotor or mc_aliquot because * nothing actually breaks if we miss a few updates -- we just won't * allocate quite as evenly. It all balances out over time. * * If we are doing ditto or log blocks, try to spread them across * consecutive vdevs. If we're forced to reuse a vdev before we've * allocated all of our ditto blocks, then try and spread them out on * that vdev as much as possible. If it turns out to not be possible, * gradually lower our standards until anything becomes acceptable. * Also, allocating on consecutive vdevs (as opposed to random vdevs) * gives us hope of containing our fault domains to something we're * able to reason about. Otherwise, any two top-level vdev failures * will guarantee the loss of data. With consecutive allocation, * only two adjacent top-level vdev failures will result in data loss. * * If we are doing gang blocks (hintdva is non-NULL), try to keep * ourselves on the same vdev as our gang block header. That * way, we can hope for locality in vdev_cache, plus it makes our * fault domains something tractable. */ if (hintdva) { vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); /* * It's possible the vdev we're using as the hint no * longer exists (i.e. removed). Consult the rotor when * all else fails. */ if (vd != NULL) { mg = vd->vdev_mg; if (flags & METASLAB_HINTBP_AVOID && mg->mg_next != NULL) mg = mg->mg_next; } else { mg = mc->mc_rotor; } } else if (d != 0) { vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); mg = vd->vdev_mg->mg_next; } else { mg = mc->mc_rotor; } /* * If the hint put us into the wrong metaslab class, or into a * metaslab group that has been passivated, just follow the rotor. */ if (mg->mg_class != mc || mg->mg_activation_count <= 0) mg = mc->mc_rotor; rotor = mg; top: all_zero = B_TRUE; do { ASSERT(mg->mg_activation_count == 1); vd = mg->mg_vd; /* * Don't allocate from faulted devices. */ if (zio_lock) { spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); allocatable = vdev_allocatable(vd); spa_config_exit(spa, SCL_ZIO, FTAG); } else { allocatable = vdev_allocatable(vd); } /* * Determine if the selected metaslab group is eligible * for allocations. If we're ganging or have requested * an allocation for the smallest gang block size * then we don't want to avoid allocating to the this * metaslab group. If we're in this condition we should * try to allocate from any device possible so that we * don't inadvertently return ENOSPC and suspend the pool * even though space is still available. */ if (allocatable && CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE) allocatable = metaslab_group_allocatable(mg); if (!allocatable) goto next; /* * Avoid writing single-copy data to a failing vdev * unless the user instructs us that it is okay. */ if ((vd->vdev_stat.vs_write_errors > 0 || vd->vdev_state < VDEV_STATE_HEALTHY) && d == 0 && dshift == 3 && vd->vdev_children == 0) { all_zero = B_FALSE; goto next; } ASSERT(mg->mg_class == mc); distance = vd->vdev_asize >> dshift; if (distance <= (1ULL << vd->vdev_ms_shift)) distance = 0; else all_zero = B_FALSE; asize = vdev_psize_to_asize(vd, psize); ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); offset = metaslab_group_alloc(mg, psize, asize, txg, distance, dva, d); if (offset != -1ULL) { /* * If we've just selected this metaslab group, * figure out whether the corresponding vdev is * over- or under-used relative to the pool, * and set an allocation bias to even it out. */ if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { vdev_stat_t *vs = &vd->vdev_stat; int64_t vu, cu; vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); /* * Calculate how much more or less we should * try to allocate from this device during * this iteration around the rotor. * For example, if a device is 80% full * and the pool is 20% full then we should * reduce allocations by 60% on this device. * * mg_bias = (20 - 80) * 512K / 100 = -307K * * This reduces allocations by 307K for this * iteration. */ mg->mg_bias = ((cu - vu) * (int64_t)mg->mg_aliquot) / 100; } else if (!metaslab_bias_enabled) { mg->mg_bias = 0; } if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= mg->mg_aliquot + mg->mg_bias) { mc->mc_rotor = mg->mg_next; mc->mc_aliquot = 0; } DVA_SET_VDEV(&dva[d], vd->vdev_id); DVA_SET_OFFSET(&dva[d], offset); DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); DVA_SET_ASIZE(&dva[d], asize); return (0); } next: mc->mc_rotor = mg->mg_next; mc->mc_aliquot = 0; } while ((mg = mg->mg_next) != rotor); if (!all_zero) { dshift++; ASSERT(dshift < 64); goto top; } if (!allocatable && !zio_lock) { dshift = 3; zio_lock = B_TRUE; goto top; } bzero(&dva[d], sizeof (dva_t)); return (SET_ERROR(ENOSPC)); } /* * Free the block represented by DVA in the context of the specified * transaction group. */ static void metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) { uint64_t vdev = DVA_GET_VDEV(dva); uint64_t offset = DVA_GET_OFFSET(dva); uint64_t size = DVA_GET_ASIZE(dva); vdev_t *vd; metaslab_t *msp; ASSERT(DVA_IS_VALID(dva)); if (txg > spa_freeze_txg(spa)) return; if ((vd = vdev_lookup_top(spa, vdev)) == NULL || (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", (u_longlong_t)vdev, (u_longlong_t)offset); ASSERT(0); return; } msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (DVA_GET_GANG(dva)) size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); mutex_enter(&msp->ms_lock); if (now) { range_tree_remove(msp->ms_alloctree[txg & TXG_MASK], offset, size); VERIFY(!msp->ms_condensing); VERIFY3U(offset, >=, msp->ms_start); VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); VERIFY3U(range_tree_space(msp->ms_tree) + size, <=, msp->ms_size); VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); range_tree_add(msp->ms_tree, offset, size); } else { if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); range_tree_add(msp->ms_freetree[txg & TXG_MASK], offset, size); } mutex_exit(&msp->ms_lock); } /* * Intent log support: upon opening the pool after a crash, notify the SPA * of blocks that the intent log has allocated for immediate write, but * which are still considered free by the SPA because the last transaction * group didn't commit yet. */ static int metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) { uint64_t vdev = DVA_GET_VDEV(dva); uint64_t offset = DVA_GET_OFFSET(dva); uint64_t size = DVA_GET_ASIZE(dva); vdev_t *vd; metaslab_t *msp; int error = 0; ASSERT(DVA_IS_VALID(dva)); if ((vd = vdev_lookup_top(spa, vdev)) == NULL || (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) return (SET_ERROR(ENXIO)); msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (DVA_GET_GANG(dva)) size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); mutex_enter(&msp->ms_lock); if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size)) error = SET_ERROR(ENOENT); if (error || txg == 0) { /* txg == 0 indicates dry run */ mutex_exit(&msp->ms_lock); return (error); } VERIFY(!msp->ms_condensing); VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size); range_tree_remove(msp->ms_tree, offset, size); if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size); } mutex_exit(&msp->ms_lock); return (0); } int metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, int ndvas, uint64_t txg, blkptr_t *hintbp, int flags) { dva_t *dva = bp->blk_dva; dva_t *hintdva = hintbp->blk_dva; int error = 0; ASSERT(bp->blk_birth == 0); ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); if (mc->mc_rotor == NULL) { /* no vdevs in this class */ spa_config_exit(spa, SCL_ALLOC, FTAG); return (SET_ERROR(ENOSPC)); } ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); ASSERT(BP_GET_NDVAS(bp) == 0); ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); for (int d = 0; d < ndvas; d++) { error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, txg, flags); if (error != 0) { for (d--; d >= 0; d--) { metaslab_free_dva(spa, &dva[d], txg, B_TRUE); bzero(&dva[d], sizeof (dva_t)); } spa_config_exit(spa, SCL_ALLOC, FTAG); return (error); } } ASSERT(error == 0); ASSERT(BP_GET_NDVAS(bp) == ndvas); spa_config_exit(spa, SCL_ALLOC, FTAG); BP_SET_BIRTH(bp, txg, txg); return (0); } void metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) { const dva_t *dva = bp->blk_dva; int ndvas = BP_GET_NDVAS(bp); ASSERT(!BP_IS_HOLE(bp)); ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); for (int d = 0; d < ndvas; d++) metaslab_free_dva(spa, &dva[d], txg, now); spa_config_exit(spa, SCL_FREE, FTAG); } int metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) { const dva_t *dva = bp->blk_dva; int ndvas = BP_GET_NDVAS(bp); int error = 0; ASSERT(!BP_IS_HOLE(bp)); if (txg != 0) { /* * First do a dry run to make sure all DVAs are claimable, * so we don't have to unwind from partial failures below. */ if ((error = metaslab_claim(spa, bp, 0)) != 0) return (error); } spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); for (int d = 0; d < ndvas; d++) if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) break; spa_config_exit(spa, SCL_ALLOC, FTAG); ASSERT(error == 0 || txg == 0); return (error); } void metaslab_check_free(spa_t *spa, const blkptr_t *bp) { if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) return; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int i = 0; i < BP_GET_NDVAS(bp); i++) { uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); vdev_t *vd = vdev_lookup_top(spa, vdev); uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (msp->ms_loaded) range_tree_verify(msp->ms_tree, offset, size); for (int j = 0; j < TXG_SIZE; j++) range_tree_verify(msp->ms_freetree[j], offset, size); for (int j = 0; j < TXG_DEFER_SIZE; j++) range_tree_verify(msp->ms_defertree[j], offset, size); } spa_config_exit(spa, SCL_VDEV, FTAG); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sa.c (revision 274273) @@ -1,1997 +1,1997 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 iXsystems, Inc * Copyright (c) 2013 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * ZFS System attributes: * * A generic mechanism to allow for arbitrary attributes * to be stored in a dnode. The data will be stored in the bonus buffer of * the dnode and if necessary a special "spill" block will be used to handle * overflow situations. The spill block will be sized to fit the data * from 512 - 128K. When a spill block is used the BP (blkptr_t) for the * spill block is stored at the end of the current bonus buffer. Any * attributes that would be in the way of the blkptr_t will be relocated * into the spill block. * * Attribute registration: * * Stored persistently on a per dataset basis * a mapping between attribute "string" names and their actual attribute * numeric values, length, and byteswap function. The names are only used * during registration. All attributes are known by their unique attribute * id value. If an attribute can have a variable size then the value * 0 will be used to indicate this. * * Attribute Layout: * * Attribute layouts are a way to compactly store multiple attributes, but * without taking the overhead associated with managing each attribute * individually. Since you will typically have the same set of attributes * stored in the same order a single table will be used to represent that * layout. The ZPL for example will usually have only about 10 different * layouts (regular files, device files, symlinks, * regular files + scanstamp, files/dir with extended attributes, and then * you have the possibility of all of those minus ACL, because it would * be kicked out into the spill block) * * Layouts are simply an array of the attributes and their * ordering i.e. [0, 1, 4, 5, 2] * * Each distinct layout is given a unique layout number and that is whats * stored in the header at the beginning of the SA data buffer. * * A layout only covers a single dbuf (bonus or spill). If a set of * attributes is split up between the bonus buffer and a spill buffer then * two different layouts will be used. This allows us to byteswap the * spill without looking at the bonus buffer and keeps the on disk format of * the bonus and spill buffer the same. * * Adding a single attribute will cause the entire set of attributes to * be rewritten and could result in a new layout number being constructed * as part of the rewrite if no such layout exists for the new set of * attribues. The new attribute will be appended to the end of the already * existing attributes. * * Both the attribute registration and attribute layout information are * stored in normal ZAP attributes. Their should be a small number of * known layouts and the set of attributes is assumed to typically be quite * small. * * The registered attributes and layout "table" information is maintained * in core and a special "sa_os_t" is attached to the objset_t. * * A special interface is provided to allow for quickly applying * a large set of attributes at once. sa_replace_all_by_template() is * used to set an array of attributes. This is used by the ZPL when * creating a brand new file. The template that is passed into the function * specifies the attribute, size for variable length attributes, location of * data and special "data locator" function if the data isn't in a contiguous * location. * * Byteswap implications: * * Since the SA attributes are not entirely self describing we can't do * the normal byteswap processing. The special ZAP layout attribute and * attribute registration attributes define the byteswap function and the * size of the attributes, unless it is variable sized. * The normal ZFS byteswapping infrastructure assumes you don't need * to read any objects in order to do the necessary byteswapping. Whereas * SA attributes can only be properly byteswapped if the dataset is opened * and the layout/attribute ZAP attributes are available. Because of this * the SA attributes will be byteswapped when they are first accessed by * the SA code that will read the SA data. */ typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t, uint16_t length, int length_idx, boolean_t, void *userp); static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype); static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab); static void *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data); static void sa_idx_tab_rele(objset_t *os, void *arg); static void sa_copy_data(sa_data_locator_t *func, void *start, void *target, int buflen); static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx); arc_byteswap_func_t *sa_bswap_table[] = { byteswap_uint64_array, byteswap_uint32_array, byteswap_uint16_array, byteswap_uint8_array, zfs_acl_byteswap, }; #define SA_COPY_DATA(f, s, t, l) \ { \ if (f == NULL) { \ if (l == 8) { \ *(uint64_t *)t = *(uint64_t *)s; \ } else if (l == 16) { \ *(uint64_t *)t = *(uint64_t *)s; \ *(uint64_t *)((uintptr_t)t + 8) = \ *(uint64_t *)((uintptr_t)s + 8); \ } else { \ bcopy(s, t, l); \ } \ } else \ sa_copy_data(f, s, t, l); \ } /* * This table is fixed and cannot be changed. Its purpose is to * allow the SA code to work with both old/new ZPL file systems. * It contains the list of legacy attributes. These attributes aren't * stored in the "attribute" registry zap objects, since older ZPL file systems * won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will * use this static table. */ sa_attr_reg_t sa_legacy_attrs[] = { {"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0}, {"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1}, {"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2}, {"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3}, {"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4}, {"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5}, {"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6}, {"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7}, {"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8}, {"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9}, {"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10}, {"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11}, {"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12}, {"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13}, {"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14}, {"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15}, }; /* * This is only used for objects of type DMU_OT_ZNODE */ sa_attr_type_t sa_legacy_zpl_layout[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* * Special dummy layout used for buffers with no attributes. */ sa_attr_type_t sa_dummy_zpl_layout[] = { 0 }; static int sa_legacy_attr_count = 16; static kmem_cache_t *sa_cache = NULL; /*ARGSUSED*/ static int sa_cache_constructor(void *buf, void *unused, int kmflag) { sa_handle_t *hdl = buf; hdl->sa_bonus_tab = NULL; hdl->sa_spill_tab = NULL; hdl->sa_os = NULL; hdl->sa_userp = NULL; hdl->sa_bonus = NULL; hdl->sa_spill = NULL; mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void sa_cache_destructor(void *buf, void *unused) { sa_handle_t *hdl = buf; mutex_destroy(&hdl->sa_lock); } void sa_cache_init(void) { sa_cache = kmem_cache_create("sa_cache", sizeof (sa_handle_t), 0, sa_cache_constructor, sa_cache_destructor, NULL, NULL, NULL, 0); } void sa_cache_fini(void) { if (sa_cache) kmem_cache_destroy(sa_cache); } static int layout_num_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_num > node2->lot_num) return (1); else if (node1->lot_num < node2->lot_num) return (-1); return (0); } static int layout_hash_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_hash > node2->lot_hash) return (1); if (node1->lot_hash < node2->lot_hash) return (-1); if (node1->lot_instance > node2->lot_instance) return (1); if (node1->lot_instance < node2->lot_instance) return (-1); return (0); } boolean_t sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count) { int i; if (count != tbf->lot_attr_count) return (1); for (i = 0; i != count; i++) { if (attrs[i] != tbf->lot_attrs[i]) return (1); } return (0); } #define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF]) static uint64_t sa_layout_info_hash(sa_attr_type_t *attrs, int attr_count) { int i; uint64_t crc = -1ULL; for (i = 0; i != attr_count; i++) crc ^= SA_ATTR_HASH(attrs[i]); return (crc); } static int sa_get_spill(sa_handle_t *hdl) { int rc; if (hdl->sa_spill == NULL) { if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL, &hdl->sa_spill)) == 0) VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } else { rc = 0; } return (rc); } /* * Main attribute lookup/update function * returns 0 for success or non zero for failures * * Operates on bulk array, first failure will abort further processing */ int sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, sa_data_op_t data_op, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; int i; int error = 0; sa_buf_type_t buftypes; buftypes = 0; ASSERT(count > 0); for (i = 0; i != count; i++) { ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs); bulk[i].sa_addr = NULL; /* First check the bonus buffer */ if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT( hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_bonus_tab, SA_GET_HDR(hdl, SA_BONUS), bulk[i].sa_attr, bulk[i], SA_BONUS, hdl); if (tx && !(buftypes & SA_BONUS)) { dmu_buf_will_dirty(hdl->sa_bonus, tx); buftypes |= SA_BONUS; } } if (bulk[i].sa_addr == NULL && ((error = sa_get_spill(hdl)) == 0)) { if (TOC_ATTR_PRESENT( hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_spill_tab, SA_GET_HDR(hdl, SA_SPILL), bulk[i].sa_attr, bulk[i], SA_SPILL, hdl); if (tx && !(buftypes & SA_SPILL) && bulk[i].sa_size == bulk[i].sa_length) { dmu_buf_will_dirty(hdl->sa_spill, tx); buftypes |= SA_SPILL; } } } if (error && error != ENOENT) { return ((error == ECKSUM) ? EIO : error); } switch (data_op) { case SA_LOOKUP: if (bulk[i].sa_addr == NULL) return (SET_ERROR(ENOENT)); if (bulk[i].sa_data) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_addr, bulk[i].sa_data, bulk[i].sa_size); } continue; case SA_UPDATE: /* existing rewrite of attr */ if (bulk[i].sa_addr && bulk[i].sa_size == bulk[i].sa_length) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_addr, bulk[i].sa_length); continue; } else if (bulk[i].sa_addr) { /* attr size change */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_REPLACE, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } else { /* adding new attribute */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_ADD, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } if (error) return (error); break; } } return (error); } static sa_lot_t * sa_add_layout_entry(objset_t *os, sa_attr_type_t *attrs, int attr_count, uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx) { sa_os_t *sa = os->os_sa; sa_lot_t *tb, *findtb; int i; avl_index_t loc; ASSERT(MUTEX_HELD(&sa->sa_lock)); tb = kmem_zalloc(sizeof (sa_lot_t), KM_SLEEP); tb->lot_attr_count = attr_count; tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); bcopy(attrs, tb->lot_attrs, sizeof (sa_attr_type_t) * attr_count); tb->lot_num = lot_num; tb->lot_hash = hash; tb->lot_instance = 0; if (zapadd) { char attr_name[8]; if (sa->sa_layout_attr_obj == 0) { sa->sa_layout_attr_obj = zap_create_link(os, DMU_OT_SA_ATTR_LAYOUTS, sa->sa_master_obj, SA_LAYOUTS, tx); } (void) snprintf(attr_name, sizeof (attr_name), "%d", (int)lot_num); VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj, attr_name, 2, attr_count, attrs, tx)); } list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t), offsetof(sa_idx_tab_t, sa_next)); for (i = 0; i != attr_count; i++) { if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0) tb->lot_var_sizes++; } avl_add(&sa->sa_layout_num_tree, tb); /* verify we don't have a hash collision */ if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) { for (; findtb && findtb->lot_hash == hash; findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) { if (findtb->lot_instance != tb->lot_instance) break; tb->lot_instance++; } } avl_add(&sa->sa_layout_hash_tree, tb); return (tb); } static void sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs, int count, dmu_tx_t *tx, sa_lot_t **lot) { sa_lot_t *tb, tbsearch; avl_index_t loc; sa_os_t *sa = os->os_sa; boolean_t found = B_FALSE; mutex_enter(&sa->sa_lock); tbsearch.lot_hash = hash; tbsearch.lot_instance = 0; tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc); if (tb) { for (; tb && tb->lot_hash == hash; tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) { if (sa_layout_equal(tb, attrs, count) == 0) { found = B_TRUE; break; } } } if (!found) { tb = sa_add_layout_entry(os, attrs, count, avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx); } mutex_exit(&sa->sa_lock); *lot = tb; } static int sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx) { int error; uint32_t blocksize; if (size == 0) { blocksize = SPA_MINBLOCKSIZE; - } else if (size > SPA_MAXBLOCKSIZE) { + } else if (size > SPA_OLD_MAXBLOCKSIZE) { ASSERT(0); return (SET_ERROR(EFBIG)); } else { blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t); } error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx); ASSERT(error == 0); return (error); } static void sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen) { if (func == NULL) { bcopy(datastart, target, buflen); } else { boolean_t start; int bytes; void *dataptr; void *saptr = target; uint32_t length; start = B_TRUE; bytes = 0; while (bytes < buflen) { func(&dataptr, &length, buflen, start, datastart); bcopy(dataptr, saptr, length); saptr = (void *)((caddr_t)saptr + length); bytes += length; start = B_FALSE; } } } /* * Determine several different sizes * first the sa header size * the number of bytes to be stored * if spill would occur the index in the attribute array is returned * * the boolean will_spill will be set when spilling is necessary. It * is only set when the buftype is SA_BONUS */ static int sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count, dmu_buf_t *db, sa_buf_type_t buftype, int *index, int *total, boolean_t *will_spill) { int var_size = 0; int i; int j = -1; int full_space; int hdrsize; boolean_t done = B_FALSE; if (buftype == SA_BONUS && sa->sa_force_spill) { *total = 0; *index = 0; *will_spill = B_TRUE; return (0); } *index = -1; *total = 0; if (buftype == SA_BONUS) *will_spill = B_FALSE; hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 : sizeof (sa_hdr_phys_t); full_space = (buftype == SA_BONUS) ? DN_MAX_BONUSLEN : db->db_size; ASSERT(IS_P2ALIGNED(full_space, 8)); for (i = 0; i != attr_count; i++) { boolean_t is_var_sz; *total = P2ROUNDUP(*total, 8); *total += attr_desc[i].sa_length; if (done) goto next; is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0); if (is_var_sz) { var_size++; } if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), 8) + *total < full_space) { /* * Account for header space used by array of * optional sizes of variable-length attributes. * Record the index in case this increase needs * to be reversed due to spill-over. */ hdrsize += sizeof (uint16_t); j = i; } else { done = B_TRUE; *index = i; if (buftype == SA_BONUS) *will_spill = B_TRUE; continue; } } /* * find index of where spill *could* occur. * Then continue to count of remainder attribute * space. The sum is used later for sizing bonus * and spill buffer. */ if (buftype == SA_BONUS && *index == -1 && *total + P2ROUNDUP(hdrsize, 8) > (full_space - sizeof (blkptr_t))) { *index = i; done = B_TRUE; } next: if (*total + P2ROUNDUP(hdrsize, 8) > full_space && buftype == SA_BONUS) *will_spill = B_TRUE; } /* * j holds the index of the last variable-sized attribute for * which hdrsize was increased. Reverse the increase if that * attribute will be relocated to the spill block. */ if (*will_spill && j == *index) hdrsize -= sizeof (uint16_t); hdrsize = P2ROUNDUP(hdrsize, 8); return (hdrsize); } #define BUF_SPACE_NEEDED(total, header) (total + header) /* * Find layout that corresponds to ordering of attributes * If not found a new layout number is created and added to * persistent layout tables. */ static int sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; uint64_t hash; sa_buf_type_t buftype; sa_hdr_phys_t *sahdr; void *data_start; int buf_space; sa_attr_type_t *attrs, *attrs_start; int i, lot_count; int hdrsize; int spillhdrsize = 0; int used; dmu_object_type_t bonustype; sa_lot_t *lot; int len_idx; int spill_used; boolean_t spilling; dmu_buf_will_dirty(hdl->sa_bonus, tx); bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus); /* first determine bonus header size and sum of all attributes */ hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus, SA_BONUS, &i, &used, &spilling); - if (used > SPA_MAXBLOCKSIZE) + if (used > SPA_OLD_MAXBLOCKSIZE) return (SET_ERROR(EFBIG)); VERIFY(0 == dmu_set_bonus(hdl->sa_bonus, spilling ? MIN(DN_MAX_BONUSLEN - sizeof (blkptr_t), used + hdrsize) : used + hdrsize, tx)); ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) || bonustype == DMU_OT_SA); /* setup and size spill buffer when needed */ if (spilling) { boolean_t dummy; if (hdl->sa_spill == NULL) { VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, NULL, &hdl->sa_spill) == 0); } dmu_buf_will_dirty(hdl->sa_spill, tx); spillhdrsize = sa_find_sizes(sa, &attr_desc[i], attr_count - i, hdl->sa_spill, SA_SPILL, &i, &spill_used, &dummy); - if (spill_used > SPA_MAXBLOCKSIZE) + if (spill_used > SPA_OLD_MAXBLOCKSIZE) return (SET_ERROR(EFBIG)); buf_space = hdl->sa_spill->db_size - spillhdrsize; if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) > hdl->sa_spill->db_size) VERIFY(0 == sa_resize_spill(hdl, BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx)); } /* setup starting pointers to lay down data */ data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize); sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data; buftype = SA_BONUS; if (spilling) buf_space = (sa->sa_force_spill) ? 0 : SA_BLKPTR_SPACE - hdrsize; else buf_space = hdl->sa_bonus->db_size - hdrsize; attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); lot_count = 0; for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) { uint16_t length; ASSERT(IS_P2ALIGNED(data_start, 8)); ASSERT(IS_P2ALIGNED(buf_space, 8)); attrs[i] = attr_desc[i].sa_attr; length = SA_REGISTERED_LEN(sa, attrs[i]); if (length == 0) length = attr_desc[i].sa_length; if (buf_space < length) { /* switch to spill buffer */ VERIFY(spilling); VERIFY(bonustype == DMU_OT_SA); if (buftype == SA_BONUS && !sa->sa_force_spill) { sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); SA_SET_HDR(sahdr, lot->lot_num, hdrsize); } buftype = SA_SPILL; hash = -1ULL; len_idx = 0; sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data; sahdr->sa_magic = SA_MAGIC; data_start = (void *)((uintptr_t)sahdr + spillhdrsize); attrs_start = &attrs[i]; buf_space = hdl->sa_spill->db_size - spillhdrsize; lot_count = 0; } hash ^= SA_ATTR_HASH(attrs[i]); attr_desc[i].sa_addr = data_start; attr_desc[i].sa_size = length; SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data, data_start, length); if (sa->sa_attr_table[attrs[i]].sa_length == 0) { sahdr->sa_lengths[len_idx++] = length; } data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + length), 8); buf_space -= P2ROUNDUP(length, 8); lot_count++; } sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); /* * Verify that old znodes always have layout number 0. * Must be DMU_OT_SA for arbitrary layouts */ VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) || (bonustype == DMU_OT_SA && lot->lot_num > 1)); if (bonustype == DMU_OT_SA) { SA_SET_HDR(sahdr, lot->lot_num, buftype == SA_BONUS ? hdrsize : spillhdrsize); } kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count); if (hdl->sa_bonus_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); hdl->sa_bonus_tab = NULL; } if (!sa->sa_force_spill) VERIFY(0 == sa_build_index(hdl, SA_BONUS)); if (hdl->sa_spill) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); if (!spilling) { /* * remove spill block that is no longer needed. */ dmu_buf_rele(hdl->sa_spill, NULL); hdl->sa_spill = NULL; hdl->sa_spill_tab = NULL; VERIFY(0 == dmu_rm_spill(hdl->sa_os, sa_handle_object(hdl), tx)); } else { VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } } return (0); } static void sa_free_attr_table(sa_os_t *sa) { int i; if (sa->sa_attr_table == NULL) return; for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_name) kmem_free(sa->sa_attr_table[i].sa_name, strlen(sa->sa_attr_table[i].sa_name) + 1); } kmem_free(sa->sa_attr_table, sizeof (sa_attr_table_t) * sa->sa_num_attrs); sa->sa_attr_table = NULL; } static int sa_attr_table_setup(objset_t *os, sa_attr_reg_t *reg_attrs, int count) { sa_os_t *sa = os->os_sa; uint64_t sa_attr_count = 0; uint64_t sa_reg_count = 0; int error = 0; uint64_t attr_value; sa_attr_table_t *tb; zap_cursor_t zc; zap_attribute_t za; int registered_count = 0; int i; dmu_objset_type_t ostype = dmu_objset_type(os); sa->sa_user_table = kmem_zalloc(count * sizeof (sa_attr_type_t), KM_SLEEP); sa->sa_user_table_sz = count * sizeof (sa_attr_type_t); if (sa->sa_reg_attr_obj != 0) { error = zap_count(os, sa->sa_reg_attr_obj, &sa_attr_count); /* * Make sure we retrieved a count and that it isn't zero */ if (error || (error == 0 && sa_attr_count == 0)) { if (error == 0) error = SET_ERROR(EINVAL); goto bail; } sa_reg_count = sa_attr_count; } if (ostype == DMU_OST_ZFS && sa_attr_count == 0) sa_attr_count += sa_legacy_attr_count; /* Allocate attribute numbers for attributes that aren't registered */ for (i = 0; i != count; i++) { boolean_t found = B_FALSE; int j; if (ostype == DMU_OST_ZFS) { for (j = 0; j != sa_legacy_attr_count; j++) { if (strcmp(reg_attrs[i].sa_name, sa_legacy_attrs[j].sa_name) == 0) { sa->sa_user_table[i] = sa_legacy_attrs[j].sa_attr; found = B_TRUE; } } } if (found) continue; if (sa->sa_reg_attr_obj) error = zap_lookup(os, sa->sa_reg_attr_obj, reg_attrs[i].sa_name, 8, 1, &attr_value); else error = SET_ERROR(ENOENT); switch (error) { case ENOENT: sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count; sa_attr_count++; break; case 0: sa->sa_user_table[i] = ATTR_NUM(attr_value); break; default: goto bail; } } sa->sa_num_attrs = sa_attr_count; tb = sa->sa_attr_table = kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_SLEEP); /* * Attribute table is constructed from requested attribute list, * previously foreign registered attributes, and also the legacy * ZPL set of attributes. */ if (sa->sa_reg_attr_obj) { for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t value; value = za.za_first_integer; registered_count++; tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value); tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value); tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value); tb[ATTR_NUM(value)].sa_registered = B_TRUE; if (tb[ATTR_NUM(value)].sa_name) { continue; } tb[ATTR_NUM(value)].sa_name = kmem_zalloc(strlen(za.za_name) +1, KM_SLEEP); (void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name, strlen(za.za_name) +1); } zap_cursor_fini(&zc); /* * Make sure we processed the correct number of registered * attributes */ if (registered_count != sa_reg_count) { ASSERT(error != 0); goto bail; } } if (ostype == DMU_OST_ZFS) { for (i = 0; i != sa_legacy_attr_count; i++) { if (tb[i].sa_name) continue; tb[i].sa_attr = sa_legacy_attrs[i].sa_attr; tb[i].sa_length = sa_legacy_attrs[i].sa_length; tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap; tb[i].sa_registered = B_FALSE; tb[i].sa_name = kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1, KM_SLEEP); (void) strlcpy(tb[i].sa_name, sa_legacy_attrs[i].sa_name, strlen(sa_legacy_attrs[i].sa_name) + 1); } } for (i = 0; i != count; i++) { sa_attr_type_t attr_id; attr_id = sa->sa_user_table[i]; if (tb[attr_id].sa_name) continue; tb[attr_id].sa_length = reg_attrs[i].sa_length; tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap; tb[attr_id].sa_attr = attr_id; tb[attr_id].sa_name = kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_SLEEP); (void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name, strlen(reg_attrs[i].sa_name) + 1); } sa->sa_need_attr_registration = (sa_attr_count != registered_count); return (0); bail: kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t)); sa->sa_user_table = NULL; sa_free_attr_table(sa); return ((error != 0) ? error : EINVAL); } int sa_setup(objset_t *os, uint64_t sa_obj, sa_attr_reg_t *reg_attrs, int count, sa_attr_type_t **user_table) { zap_cursor_t zc; zap_attribute_t za; sa_os_t *sa; dmu_objset_type_t ostype = dmu_objset_type(os); sa_attr_type_t *tb; int error; mutex_enter(&os->os_user_ptr_lock); if (os->os_sa) { mutex_enter(&os->os_sa->sa_lock); mutex_exit(&os->os_user_ptr_lock); tb = os->os_sa->sa_user_table; mutex_exit(&os->os_sa->sa_lock); *user_table = tb; return (0); } sa = kmem_zalloc(sizeof (sa_os_t), KM_SLEEP); mutex_init(&sa->sa_lock, NULL, MUTEX_DEFAULT, NULL); sa->sa_master_obj = sa_obj; os->os_sa = sa; mutex_enter(&sa->sa_lock); mutex_exit(&os->os_user_ptr_lock); avl_create(&sa->sa_layout_num_tree, layout_num_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node)); avl_create(&sa->sa_layout_hash_tree, layout_hash_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node)); if (sa_obj) { error = zap_lookup(os, sa_obj, SA_LAYOUTS, 8, 1, &sa->sa_layout_attr_obj); if (error != 0 && error != ENOENT) goto fail; error = zap_lookup(os, sa_obj, SA_REGISTRY, 8, 1, &sa->sa_reg_attr_obj); if (error != 0 && error != ENOENT) goto fail; } if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0) goto fail; if (sa->sa_layout_attr_obj != 0) { uint64_t layout_count; error = zap_count(os, sa->sa_layout_attr_obj, &layout_count); /* * Layout number count should be > 0 */ if (error || (error == 0 && layout_count == 0)) { if (error == 0) error = SET_ERROR(EINVAL); goto fail; } for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { sa_attr_type_t *lot_attrs; uint64_t lot_num; lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) * za.za_num_integers, KM_SLEEP); if ((error = (zap_lookup(os, sa->sa_layout_attr_obj, za.za_name, 2, za.za_num_integers, lot_attrs))) != 0) { kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); break; } VERIFY(ddi_strtoull(za.za_name, NULL, 10, (unsigned long long *)&lot_num) == 0); (void) sa_add_layout_entry(os, lot_attrs, za.za_num_integers, lot_num, sa_layout_info_hash(lot_attrs, za.za_num_integers), B_FALSE, NULL); kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); } zap_cursor_fini(&zc); /* * Make sure layout count matches number of entries added * to AVL tree */ if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) { ASSERT(error != 0); goto fail; } } /* Add special layout number for old ZNODES */ if (ostype == DMU_OST_ZFS) { (void) sa_add_layout_entry(os, sa_legacy_zpl_layout, sa_legacy_attr_count, 0, sa_layout_info_hash(sa_legacy_zpl_layout, sa_legacy_attr_count), B_FALSE, NULL); (void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1, 0, B_FALSE, NULL); } *user_table = os->os_sa->sa_user_table; mutex_exit(&sa->sa_lock); return (0); fail: os->os_sa = NULL; sa_free_attr_table(sa); if (sa->sa_user_table) kmem_free(sa->sa_user_table, sa->sa_user_table_sz); mutex_exit(&sa->sa_lock); avl_destroy(&sa->sa_layout_hash_tree); avl_destroy(&sa->sa_layout_num_tree); mutex_destroy(&sa->sa_lock); kmem_free(sa, sizeof (sa_os_t)); return ((error == ECKSUM) ? EIO : error); } void sa_tear_down(objset_t *os) { sa_os_t *sa = os->os_sa; sa_lot_t *layout; void *cookie; kmem_free(sa->sa_user_table, sa->sa_user_table_sz); /* Free up attr table */ sa_free_attr_table(sa); cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie)) { sa_idx_tab_t *tab; while (tab = list_head(&layout->lot_idx_tab)) { ASSERT(refcount_count(&tab->sa_refcount)); sa_idx_tab_rele(os, tab); } } cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie)) { kmem_free(layout->lot_attrs, sizeof (sa_attr_type_t) * layout->lot_attr_count); kmem_free(layout, sizeof (sa_lot_t)); } avl_destroy(&sa->sa_layout_hash_tree); avl_destroy(&sa->sa_layout_num_tree); mutex_destroy(&sa->sa_lock); kmem_free(sa, sizeof (sa_os_t)); os->os_sa = NULL; } void sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t var_length, void *userp) { sa_idx_tab_t *idx_tab = userp; if (var_length) { ASSERT(idx_tab->sa_variable_lengths); idx_tab->sa_variable_lengths[length_idx] = length; } TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx, (uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr)); } static void sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type, sa_iterfunc_t func, sa_lot_t *tab, void *userp) { void *data_start; sa_lot_t *tb = tab; sa_lot_t search; avl_index_t loc; sa_os_t *sa = os->os_sa; int i; uint16_t *length_start = NULL; uint8_t length_idx = 0; if (tab == NULL) { search.lot_num = SA_LAYOUT_NUM(hdr, type); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); ASSERT(tb); } if (IS_SA_BONUSTYPE(type)) { data_start = (void *)P2ROUNDUP(((uintptr_t)hdr + offsetof(sa_hdr_phys_t, sa_lengths) + (sizeof (uint16_t) * tb->lot_var_sizes)), 8); length_start = hdr->sa_lengths; } else { data_start = hdr; } for (i = 0; i != tb->lot_attr_count; i++) { int attr_length, reg_length; uint8_t idx_len; reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length; if (reg_length) { attr_length = reg_length; idx_len = 0; } else { attr_length = length_start[length_idx]; idx_len = length_idx++; } func(hdr, data_start, tb->lot_attrs[i], attr_length, idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp); data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + attr_length), 8); } } /*ARGSUSED*/ void sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t variable_length, void *userp) { sa_handle_t *hdl = userp; sa_os_t *sa = hdl->sa_os->os_sa; sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length); } void sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype); dmu_buf_impl_t *db; sa_os_t *sa = hdl->sa_os->os_sa; int num_lengths = 1; int i; ASSERT(MUTEX_HELD(&sa->sa_lock)); if (sa_hdr_phys->sa_magic == SA_MAGIC) return; db = SA_GET_DB(hdl, buftype); if (buftype == SA_SPILL) { arc_release(db->db_buf, NULL); arc_buf_thaw(db->db_buf); } sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic); sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info); /* * Determine number of variable lenghts in header * The standard 8 byte header has one for free and a * 16 byte header would have 4 + 1; */ if (SA_HDR_SIZE(sa_hdr_phys) > 8) num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1; for (i = 0; i != num_lengths; i++) sa_hdr_phys->sa_lengths[i] = BSWAP_16(sa_hdr_phys->sa_lengths[i]); sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA, sa_byteswap_cb, NULL, hdl); if (buftype == SA_SPILL) arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf); } static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys; dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype); dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db); sa_os_t *sa = hdl->sa_os->os_sa; sa_idx_tab_t *idx_tab; sa_hdr_phys = SA_GET_HDR(hdl, buftype); mutex_enter(&sa->sa_lock); /* Do we need to byteswap? */ /* only check if not old znode */ if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC && sa_hdr_phys->sa_magic != 0) { VERIFY(BSWAP_32(sa_hdr_phys->sa_magic) == SA_MAGIC); sa_byteswap(hdl, buftype); } idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys); if (buftype == SA_BONUS) hdl->sa_bonus_tab = idx_tab; else hdl->sa_spill_tab = idx_tab; mutex_exit(&sa->sa_lock); return (0); } /*ARGSUSED*/ void sa_evict(dmu_buf_t *db, void *sap) { panic("evicting sa dbuf %p\n", (void *)db); } static void sa_idx_tab_rele(objset_t *os, void *arg) { sa_os_t *sa = os->os_sa; sa_idx_tab_t *idx_tab = arg; if (idx_tab == NULL) return; mutex_enter(&sa->sa_lock); if (refcount_remove(&idx_tab->sa_refcount, NULL) == 0) { list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab); if (idx_tab->sa_variable_lengths) kmem_free(idx_tab->sa_variable_lengths, sizeof (uint16_t) * idx_tab->sa_layout->lot_var_sizes); refcount_destroy(&idx_tab->sa_refcount); kmem_free(idx_tab->sa_idx_tab, sizeof (uint32_t) * sa->sa_num_attrs); kmem_free(idx_tab, sizeof (sa_idx_tab_t)); } mutex_exit(&sa->sa_lock); } static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab) { sa_os_t *sa = os->os_sa; ASSERT(MUTEX_HELD(&sa->sa_lock)); (void) refcount_add(&idx_tab->sa_refcount, NULL); } void sa_handle_destroy(sa_handle_t *hdl) { mutex_enter(&hdl->sa_lock); (void) dmu_buf_update_user((dmu_buf_t *)hdl->sa_bonus, hdl, NULL, NULL, NULL); if (hdl->sa_bonus_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); hdl->sa_bonus_tab = NULL; } if (hdl->sa_spill_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); hdl->sa_spill_tab = NULL; } dmu_buf_rele(hdl->sa_bonus, NULL); if (hdl->sa_spill) dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL); mutex_exit(&hdl->sa_lock); kmem_cache_free(sa_cache, hdl); } int sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { int error = 0; dmu_object_info_t doi; sa_handle_t *handle; #ifdef ZFS_DEBUG dmu_object_info_from_db(db, &doi); ASSERT(doi.doi_bonus_type == DMU_OT_SA || doi.doi_bonus_type == DMU_OT_ZNODE); #endif /* find handle, if it exists */ /* if one doesn't exist then create a new one, and initialize it */ handle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_get_user(db) : NULL; if (handle == NULL) { sa_handle_t *newhandle; handle = kmem_cache_alloc(sa_cache, KM_SLEEP); handle->sa_userp = userp; handle->sa_bonus = db; handle->sa_os = os; handle->sa_spill = NULL; error = sa_build_index(handle, SA_BONUS); newhandle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_set_user_ie(db, handle, NULL, sa_evict) : NULL; if (newhandle != NULL) { kmem_cache_free(sa_cache, handle); handle = newhandle; } } *handlepp = handle; return (error); } int sa_handle_get(objset_t *objset, uint64_t objid, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { dmu_buf_t *db; int error; if (error = dmu_bonus_hold(objset, objid, NULL, &db)) return (error); return (sa_handle_get_from_db(objset, db, userp, hdl_type, handlepp)); } int sa_buf_hold(objset_t *objset, uint64_t obj_num, void *tag, dmu_buf_t **db) { return (dmu_bonus_hold(objset, obj_num, tag, db)); } void sa_buf_rele(dmu_buf_t *db, void *tag) { dmu_buf_rele(db, tag); } int sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL)); } int sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = buf; bulk.sa_length = buflen; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_lookup_impl(hdl, &bulk, 1); mutex_exit(&hdl->sa_lock); return (error); } #ifdef _KERNEL int sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, uio_t *uio) { int error; sa_bulk_attr_t bulk; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) { error = uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size, uio->uio_resid), UIO_READ, uio); } mutex_exit(&hdl->sa_lock); return (error); } #endif void * sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data) { sa_idx_tab_t *idx_tab; sa_hdr_phys_t *hdr = (sa_hdr_phys_t *)data; sa_os_t *sa = os->os_sa; sa_lot_t *tb, search; avl_index_t loc; /* * Deterimine layout number. If SA node and header == 0 then * force the index table to the dummy "1" empty layout. * * The layout number would only be zero for a newly created file * that has not added any attributes yet, or with crypto enabled which * doesn't write any attributes to the bonus buffer. */ search.lot_num = SA_LAYOUT_NUM(hdr, bonustype); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); /* Verify header size is consistent with layout information */ ASSERT(tb); ASSERT(IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)); /* * See if any of the already existing TOC entries can be reused? */ for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab; idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) { boolean_t valid_idx = B_TRUE; int i; if (tb->lot_var_sizes != 0 && idx_tab->sa_variable_lengths != NULL) { for (i = 0; i != tb->lot_var_sizes; i++) { if (hdr->sa_lengths[i] != idx_tab->sa_variable_lengths[i]) { valid_idx = B_FALSE; break; } } } if (valid_idx) { sa_idx_tab_hold(os, idx_tab); return (idx_tab); } } /* No such luck, create a new entry */ idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_SLEEP); idx_tab->sa_idx_tab = kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_SLEEP); idx_tab->sa_layout = tb; refcount_create(&idx_tab->sa_refcount); if (tb->lot_var_sizes) idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) * tb->lot_var_sizes, KM_SLEEP); sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab, tb, idx_tab); sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */ sa_idx_tab_hold(os, idx_tab); /* one for layout */ list_insert_tail(&tb->lot_idx_tab, idx_tab); return (idx_tab); } void sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len, boolean_t start, void *userdata) { ASSERT(start); *dataptr = userdata; *len = total_len; } static void sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx) { uint64_t attr_value = 0; sa_os_t *sa = hdl->sa_os->os_sa; sa_attr_table_t *tb = sa->sa_attr_table; int i; mutex_enter(&sa->sa_lock); if (!sa->sa_need_attr_registration || sa->sa_master_obj == NULL) { mutex_exit(&sa->sa_lock); return; } if (sa->sa_reg_attr_obj == NULL) { sa->sa_reg_attr_obj = zap_create_link(hdl->sa_os, DMU_OT_SA_ATTR_REGISTRATION, sa->sa_master_obj, SA_REGISTRY, tx); } for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_registered) continue; ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length, tb[i].sa_byteswap); VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj, tb[i].sa_name, 8, 1, &attr_value, tx)); tb[i].sa_registered = B_TRUE; } sa->sa_need_attr_registration = B_FALSE; mutex_exit(&sa->sa_lock); } /* * Replace all attributes with attributes specified in template. * If dnode had a spill buffer then those attributes will be * also be replaced, possibly with just an empty spill block * * This interface is intended to only be used for bulk adding of * attributes for a new file. It will also be used by the ZPL * when converting and old formatted znode to native SA support. */ int sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); return (sa_build_layouts(hdl, attr_desc, attr_count, tx)); } int sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_replace_all_by_template_locked(hdl, attr_desc, attr_count, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * add/remove/replace a single attribute and then rewrite the entire set * of attributes. */ static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; dnode_t *dn; sa_bulk_attr_t *attr_desc; void *old_data[2]; int bonus_attr_count = 0; int bonus_data_size = 0; int spill_data_size = 0; int spill_attr_count = 0; int error; uint16_t length; int i, j, k, length_idx; sa_hdr_phys_t *hdr; sa_idx_tab_t *idx_tab; int attr_count; int count; ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* First make of copy of the old data */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonuslen != 0) { bonus_data_size = hdl->sa_bonus->db_size; old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP); bcopy(hdl->sa_bonus->db_data, old_data[0], hdl->sa_bonus->db_size); bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count; } else { old_data[0] = NULL; } DB_DNODE_EXIT(db); /* Bring spill buffer online if it isn't currently */ if ((error = sa_get_spill(hdl)) == 0) { spill_data_size = hdl->sa_spill->db_size; old_data[1] = kmem_alloc(spill_data_size, KM_SLEEP); bcopy(hdl->sa_spill->db_data, old_data[1], hdl->sa_spill->db_size); spill_attr_count = hdl->sa_spill_tab->sa_layout->lot_attr_count; } else if (error && error != ENOENT) { if (old_data[0]) kmem_free(old_data[0], bonus_data_size); return (error); } else { old_data[1] = NULL; } /* build descriptor of all attributes */ attr_count = bonus_attr_count + spill_attr_count; if (action == SA_ADD) attr_count++; else if (action == SA_REMOVE) attr_count--; attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP); /* * loop through bonus and spill buffer if it exists, and * build up new attr_descriptor to reset the attributes */ k = j = 0; count = bonus_attr_count; hdr = SA_GET_HDR(hdl, SA_BONUS); idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS); for (; k != 2; k++) { /* iterate over each attribute in layout */ for (i = 0, length_idx = 0; i != count; i++) { sa_attr_type_t attr; attr = idx_tab->sa_layout->lot_attrs[i]; if (attr == newattr) { if (action == SA_REMOVE) { j++; continue; } ASSERT(SA_REGISTERED_LEN(sa, attr) == 0); ASSERT(action == SA_REPLACE); SA_ADD_BULK_ATTR(attr_desc, j, attr, locator, datastart, buflen); } else { length = SA_REGISTERED_LEN(sa, attr); if (length == 0) { length = hdr->sa_lengths[length_idx++]; } SA_ADD_BULK_ATTR(attr_desc, j, attr, NULL, (void *) (TOC_OFF(idx_tab->sa_idx_tab[attr]) + (uintptr_t)old_data[k]), length); } } if (k == 0 && hdl->sa_spill) { hdr = SA_GET_HDR(hdl, SA_SPILL); idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL); count = spill_attr_count; } else { break; } } if (action == SA_ADD) { length = SA_REGISTERED_LEN(sa, newattr); if (length == 0) { length = buflen; } SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator, datastart, buflen); } error = sa_build_layouts(hdl, attr_desc, attr_count, tx); if (old_data[0]) kmem_free(old_data[0], bonus_data_size); if (old_data[1]) kmem_free(old_data[1], spill_data_size); kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count); return (error); } static int sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, dmu_tx_t *tx) { int error; sa_os_t *sa = hdl->sa_os->os_sa; dmu_object_type_t bonustype; bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS)); ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* sync out registration table if necessary */ if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx); if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb) sa->sa_update_cb(hdl, tx); return (error); } /* * update or add new attribute */ int sa_update(sa_handle_t *hdl, sa_attr_type_t type, void *buf, uint32_t buflen, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = type; bulk.sa_data_func = NULL; bulk.sa_length = buflen; bulk.sa_data = buf; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_update_from_cb(sa_handle_t *hdl, sa_attr_type_t attr, uint32_t buflen, sa_data_locator_t *locator, void *userdata, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = userdata; bulk.sa_data_func = locator; bulk.sa_length = buflen; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * Return size of an attribute */ int sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size) { sa_bulk_attr_t bulk; int error; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) { mutex_exit(&hdl->sa_lock); return (error); } *size = bulk.sa_size; mutex_exit(&hdl->sa_lock); return (0); } int sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_lookup_impl(hdl, attrs, count)); } int sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_lookup_locked(hdl, attrs, count); mutex_exit(&hdl->sa_lock); return (error); } int sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, attrs, count, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL, NULL, 0, tx); mutex_exit(&hdl->sa_lock); return (error); } void sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi) { dmu_object_info_from_db((dmu_buf_t *)hdl->sa_bonus, doi); } void sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks) { dmu_object_size_from_db((dmu_buf_t *)hdl->sa_bonus, blksize, nblocks); } void sa_update_user(sa_handle_t *newhdl, sa_handle_t *oldhdl) { (void) dmu_buf_update_user((dmu_buf_t *)newhdl->sa_bonus, oldhdl, newhdl, NULL, sa_evict); oldhdl->sa_bonus = NULL; } void sa_set_userp(sa_handle_t *hdl, void *ptr) { hdl->sa_userp = ptr; } dmu_buf_t * sa_get_db(sa_handle_t *hdl) { return ((dmu_buf_t *)hdl->sa_bonus); } void * sa_get_userdata(sa_handle_t *hdl) { return (hdl->sa_userp); } void sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func) { ASSERT(MUTEX_HELD(&os->os_sa->sa_lock)); os->os_sa->sa_update_cb = func; } void sa_register_update_callback(objset_t *os, sa_update_cb_t *func) { mutex_enter(&os->os_sa->sa_lock); sa_register_update_callback_locked(os, func); mutex_exit(&os->os_sa->sa_lock); } uint64_t sa_handle_object(sa_handle_t *hdl) { return (hdl->sa_bonus->db_object); } boolean_t sa_enabled(objset_t *os) { return (os->os_sa == NULL); } int sa_set_sa_object(objset_t *os, uint64_t sa_object) { sa_os_t *sa = os->os_sa; if (sa->sa_master_obj) return (1); sa->sa_master_obj = sa_object; return (0); } int sa_hdrsize(void *arg) { sa_hdr_phys_t *hdr = arg; return (SA_HDR_SIZE(hdr)); } void sa_handle_lock(sa_handle_t *hdl) { ASSERT(hdl); mutex_enter(&hdl->sa_lock); } void sa_handle_unlock(sa_handle_t *hdl) { ASSERT(hdl); mutex_exit(&hdl->sa_lock); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/spa.c (revision 274273) @@ -1,6606 +1,6624 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ static int zfs_ccw_retry_interval = 300; typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "issue", "issue_high", "intr", "intr_high" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the * particular taskq is chosen at random. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, char **ereport); static void spa_vdev_resilver_done(spa_t *spa); uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ id_t zio_taskq_psrset_bind = PS_NONE; boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ uint_t zio_taskq_basedc = 80; /* base duty cycle */ boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ extern int zfs_sync_pass_deferred_free; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); if (strval != NULL) VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); else VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(spa_normal_class(spa)); size = metaslab_class_get_space(spa_normal_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == FREAD), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, pool->dp_free_dir->dd_phys->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, pool->dp_leak_dir->dd_phys->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); + if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { + spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, + MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); + } else { + spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, + SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); + } + if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; int err; VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) { mutex_exit(&spa->spa_props_lock); return (0); } /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); if (err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds)) { dsl_pool_config_exit(dp, FTAG); break; } strval = kmem_alloc( MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); dsl_pool_config_exit(dp, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); mutex_exit(&spa->spa_props_lock); out: if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; - uint64_t compress; + uint64_t propval; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } if (error = dmu_objset_hold(strval, FTAG, &os)) break; - /* Must be ZPL and not gzip compressed. */ + /* + * Must be ZPL, and its property settings + * must be supported by GRUB (compression + * is not gzip, and large blocks are not used). + */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else if ((error = dsl_prop_get_int_ds(dmu_objset_ds(os), zfs_prop_to_name(ZFS_PROP_COMPRESSION), - &compress)) == 0 && - !BOOTFS_COMPRESS_VALID(compress)) { + &propval)) == 0 && + !BOOTFS_COMPRESS_VALID(propval)) { + error = SET_ERROR(ENOTSUP); + } else if ((error = + dsl_prop_get_int_ds(dmu_objset_ds(os), + zfs_prop_to_name(ZFS_PROP_RECORDSIZE), + &propval)) == 0 && + propval > SPA_OLD_MAXBLOCKSIZE) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < ZIO_FAILURE_MODE_WAIT || intval > ZIO_FAILURE_MODE_PANIC)) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { /* * The kernel doesn't have an easy isprint() * check. For this kernel check, we merely * check ASCII apart from DEL. Fix this if * there is an easy-to-use kernel isprint(). */ if (*check >= 0x7f) { error = SET_ERROR(EINVAL); break; } check++; } if (strlen(strval) > ZPROP_MAX_COMMENT) error = E2BIG; break; case ZPOOL_PROP_DEDUPDITTO: if (spa_version(spa) < SPA_VERSION_DEDUP) error = SET_ERROR(ENOTSUP); else error = nvpair_value_uint64(elem, &intval); if (error == 0 && intval != 0 && intval < ZIO_DEDUPDITTO_MIN) error = SET_ERROR(EINVAL); break; } if (error) break; } if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { uint64_t ver; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } /*ARGSUSED*/ static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", oldguid, *newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { spa_config_sync(spa, B_FALSE, B_TRUE); spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { spa_error_entry_t *sa = (spa_error_entry_t *)a; spa_error_entry_t *sb = (spa_error_entry_t *)b; int ret; ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; char name[32]; uint_t flags = 0; boolean_t batch = B_FALSE; if (mode == ZTI_MODE_NULL) { tqs->stqs_count = 0; tqs->stqs_taskq = NULL; return; } ASSERT3U(count, >, 0); tqs->stqs_count = count; tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); switch (mode) { case ZTI_MODE_FIXED: ASSERT3U(value, >=, 1); value = MAX(value, 1); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = zio_taskq_batch_pct; break; default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } for (uint_t i = 0; i < count; i++) { taskq_t *tq; if (count > 1) { (void) snprintf(name, sizeof (name), "%s_%s_%u", zio_type_name[t], zio_taskq_types[q], i); } else { (void) snprintf(name, sizeof (name), "%s_%s", zio_type_name[t], zio_taskq_types[q]); } if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly lower priority * than the other taskqs. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) pri--; tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); } tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT0(tqs->stqs_count); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; } taskq_dispatch_ent(tq, func, arg, flags, ent); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } #ifdef _KERNEL static void spa_thread(void *arg) { callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, int mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_state_dirty_list); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { int i; ASSERT(MUTEX_HELD(&spa_namespace_lock)); /* * Stop async tasks. */ spa_async_suspend(spa); /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); for (i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } spa_config_exit(spa, SCL_ALL, FTAG); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ static void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ static void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (sav->sav_config != NULL) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); } else { nl2cache = 0; newvdevs = NULL; } oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); } } /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); if (sav->sav_config == NULL) goto out; sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); out: for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); kmem_free(packed, nvsize); return (error); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && !vd->vdev_ishole) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); } } /* * Validate the current config against the MOS config */ static boolean_t spa_config_valid(spa_t *spa, nvlist_t *config) { vdev_t *mrvd, *rvd = spa->spa_root_vdev; nvlist_t *nv; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); /* * If we're doing a normal import, then build up any additional * diagnostic information about missing devices in this config. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), KM_SLEEP); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; vdev_t *mtvd = mrvd->vdev_child[c]; if (tvd->vdev_ops == &vdev_missing_ops && mtvd->vdev_ops != &vdev_missing_ops && mtvd->vdev_islog) child[idx++] = vdev_config_generate(spa, mtvd, B_FALSE, 0); } if (idx) { VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, child, idx) == 0); VERIFY(nvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); for (int i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); } /* * Compare the root vdev tree with the information we have * from the MOS config (mrvd). Check each top-level vdev * with the corresponding MOS config top-level (mtvd). */ for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; vdev_t *mtvd = mrvd->vdev_child[c]; /* * Resolve any "missing" vdevs in the current configuration. * If we find that the MOS config has more accurate information * about the top-level vdev then use that vdev instead. */ if (tvd->vdev_ops == &vdev_missing_ops && mtvd->vdev_ops != &vdev_missing_ops) { if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) continue; /* * Device specific actions. */ if (mtvd->vdev_islog) { spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * XXX - once we have 'readonly' pool * support we should be able to handle * missing data devices by transitioning * the pool to readonly. */ continue; } /* * Swap the missing vdev with the data we were * able to obtain from the MOS config. */ vdev_remove_child(rvd, tvd); vdev_remove_child(mrvd, mtvd); vdev_add_child(rvd, mtvd); vdev_add_child(mrvd, tvd); spa_config_exit(spa, SCL_ALL, FTAG); vdev_load(mtvd); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_reopen(rvd); } else if (mtvd->vdev_islog) { /* * Load the slog device's state from the MOS config * since it's possible that the label does not * contain the most up-to-date information. */ vdev_load_log_state(tvd, mtvd); vdev_reopen(tvd); } } vdev_free(mrvd); spa_config_exit(spa, SCL_ALL, FTAG); /* * Ensure we were able to validate the config. */ return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; switch (spa->spa_log_state) { case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); if (!spa_has_slogs(spa)) return (B_FALSE); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) { metaslab_group_passivate(mg); slog_found = B_TRUE; } } return (slog_found); } static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (tvd->vdev_islog) metaslab_group_activate(mg); } } int spa_offline_log(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_vdev_offline, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { for (int i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of concurrent scrub i/os to create while verifying * a pool while importing it. */ int spa_load_verify_maxinflight = 10000; boolean_t spa_load_verify_metadata = B_TRUE; boolean_t spa_load_verify_data = B_TRUE; /*ARGSUSED*/ static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) return (0); zio_t *rio = arg; size_t size = BP_GET_PSIZE(bp); void *data = zio_data_buf_alloc(size); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, data, size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_rewind_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_rewind_policy(spa->spa_config, &policy); if (policy.zrp_request & ZPOOL_NEVER_REWIND) return (0); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, spa_load_verify_cb, rio); } (void) zio_wait(rio); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && sle.sle_data_count <= policy.zrp_maxdata) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); VERIFY(nvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss) == 0); VERIFY(nvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) { return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val)); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (err); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig) { nvlist_t *config = spa->spa_config; char *ereport = FM_EREPORT_ZFS_POOL; char *comment; int error; uint64_t pool_guid; nvlist_t *nvl; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) return (SET_ERROR(EINVAL)); ASSERT(spa->spa_comment == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) spa->spa_comment = spa_strdup(comment); /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { error = SET_ERROR(EEXIST); } else { spa->spa_config_guid = pool_guid; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) { VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, KM_SLEEP) == 0); } nvlist_free(spa->spa_load_info); spa->spa_load_info = fnvlist_alloc(); gethrestime(&spa->spa_loaded_ts); error = spa_load_impl(spa, pool_guid, config, state, type, mosconfig, &ereport); } spa->spa_minref = refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; return (error); } /* * Load an existing storage pool, using the pool's builtin spa_config as a * source of configuration information. */ static int spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, char **ereport) { int error = 0; nvlist_t *nvroot = NULL; nvlist_t *label; vdev_t *rvd; uberblock_t *ub = &spa->spa_uberblock; uint64_t children, config_cache_txg = spa->spa_config_txg; int orig_mode = spa->spa_mode; int parse; uint64_t obj; boolean_t missing_feat_write = B_FALSE; /* * If this is an untrusted config, access the pool in read-only mode. * This prevents things like resilvering recently removed devices. */ if (!mosconfig) spa->spa_mode = FREAD; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa->spa_load_state = state; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) return (SET_ERROR(EINVAL)); parse = (type == SPA_IMPORT_EXISTING ? VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) return (error); ASSERT(spa->spa_root_vdev == rvd); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } /* * Try to open all vdevs, loading each label in the process. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(rvd); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) return (error); /* * We need to validate the vdev labels against the configuration that * we have in hand, which is dependent on the setting of mosconfig. If * mosconfig is true then we're validating the vdev labels based on * that config. Otherwise, we're validating against the cached config * (zpool.cache) that was read when we loaded the zfs module, and then * later we will recursively call spa_load() and validate against * the vdev config. * * If we're assembling a new pool that's been split off from an * existing pool, the labels haven't yet been updated so we skip * validation for now. */ if (type != SPA_IMPORT_ASSEMBLE) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_validate(rvd, mosconfig); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) return (error); if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) return (SET_ERROR(ENXIO)); } /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL || nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { VERIFY(nvlist_add_string(unsup_feat, nvpair_name(nvp), "") == 0); } } if (!nvlist_empty(unsup_feat)) { VERIFY(nvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); nvlist_free(unsup_feat); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } /* * If the vdev guid sum doesn't match the uberblock, we have an * incomplete configuration. We first check to see if the pool * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). * If it is, defer the vdev_guid_sum check till later so we * can handle missing vdevs. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && rvd->vdev_guid_sum != ub->ub_guid_sum) return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_try_repair(spa, config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { missing_feat_write = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (missing_feat_write && spa_writeable(spa))) { return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (!mosconfig) { uint64_t hostid; nvlist_t *policy = NULL, *nvconfig; if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { char *hostname; unsigned long myhostid = 0; VERIFY(nvlist_lookup_string(nvconfig, ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); #ifdef _KERNEL myhostid = zone_get_hostid(NULL); #else /* _KERNEL */ /* * We're emulating the system's hostid in userland, so * we can't use zone_get_hostid(). */ (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); #endif /* _KERNEL */ if (hostid != 0 && myhostid != 0 && hostid != myhostid) { nvlist_free(nvconfig); cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%lx). " "See: http://illumos.org/msg/ZFS-8000-EY", spa_name(spa), hostname, (unsigned long)hostid); return (SET_ERROR(EBADF)); } } if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY, &policy) == 0) VERIFY(nvlist_add_nvlist(nvconfig, ZPOOL_REWIND_POLICY, policy) == 0); spa_config_set(spa, nvconfig); spa_unload(spa); spa_deactivate(spa); spa_activate(spa, orig_mode); return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, &spa->spa_dedup_ditto); spa->spa_autoreplace = (autoreplace != 0); } /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev state for all toplevel vdevs. */ vdev_load(rvd); /* * Propagate the leaf DTLs we just loaded all the way up the tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); /* * Load the DDTs (dedup tables). */ error = ddt_load(spa); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); spa_update_dspace(spa); /* * Validate the config, using the MOS config to fill in any * information which might be missing. If we fail to validate * the config then declare the pool unfit for use. If we're * assembling a pool from a split, the log is not transferred * over. */ if (type != SPA_IMPORT_ASSEMBLE) { nvlist_t *nvconfig; if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (!spa_config_valid(spa, nvconfig)) { nvlist_free(nvconfig); return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); } nvlist_free(nvconfig); /* * Now that we've validated the config, check the state of the * root vdev. If it can't be opened, it indicates one or * more toplevel vdevs are faulted. */ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) return (SET_ERROR(ENXIO)); if (spa_check_logs(spa)) { *ereport = FM_EREPORT_ZFS_LOG_REPLAY; return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); } } if (missing_feat_write) { ASSERT(state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (state != SPA_LOAD_TRYIMPORT) { if (error = spa_load_verify(spa)) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { dmu_tx_t *tx; int need_update = B_FALSE; ASSERT(state != SPA_LOAD_TRYIMPORT); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(spa_get_dsl(spa), spa_first_txg(spa)); (void) dmu_objset_find(spa_name(spa), zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by either zil_check_log_chain() * (invoked from spa_check_logs()) or zil_claim() above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ if (config_cache_txg != spa->spa_config_txg || state == SPA_LOAD_IMPORT || state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asychronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); /* * Check all DTLs to see if anything needs resilvering. */ if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(rvd, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open"); /* * Delete any inconsistent datasets. */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); } return (0); } static int spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) { int mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, uint64_t max_request, int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig); if (load_error == 0) return (0); if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; rewind_error = spa_load_retry(spa, state, mosconfig); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_rewind_policy_t policy; zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zrp_request & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, policy.zrp_request); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_config_sync(spa, B_TRUE, B_TRUE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { VERIFY(nvlist_dup(spa->spa_config, config, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER) { VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); } *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); if (nl2cache != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); vdev_get_stats(vd, vs); } } } static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; zap_cursor_t zc; zap_attribute_t za; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features) == 0); nvlist_free(features); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; VERIFY(nvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); if (spa_suspended(spa)) VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0); spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } /* * The L2ARC currently only supports disk devices in * kernel context. For user-level testing, we allow it. */ #ifdef _KERNEL if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { error = SET_ERROR(ENOTBLK); vdev_free(vd); goto out; } #endif vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatentating with the * current dev list. */ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs) == 0); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) VERIFY(nvlist_dup(olddevs[i], &newdevs[i], KM_SLEEP) == 0); for (i = 0; i < ndevs; i++) VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], KM_SLEEP) == 0); VERIFY(nvlist_remove(sav->sav_config, config, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, newdevs, ndevs + oldndevs) == 0); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs) == 0); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj; boolean_t has_features; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(pool, NULL, altroot); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } has_features = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) has_features = B_TRUE; } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_metaslab_set_size(rvd->vdev_child[c]); vdev_expand(rvd->vdev_child[c], txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); spa->spa_meta_objset = dp->dp_meta_objset; spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (spa_version(spa) >= SPA_VERSION_FEATURES) spa_feature_create_zap_objects(spa, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY) spa_history_create_obj(spa, tx); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_config_sync(spa, B_FALSE, B_TRUE); spa_history_log_version(spa, "create"); spa->spa_minref = refcount_count(&spa->spa_refcount); mutex_exit(&spa_namespace_lock); return (0); } #ifdef _KERNEL /* * Get the root pool information from the root disk, then import the root pool * during the system boot up time. */ extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); static nvlist_t * spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) { nvlist_t *config; nvlist_t *nvtop, *nvroot; uint64_t pgid; if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) return (NULL); /* * Add this top-level vdev to the child array. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); /* * Put this pool's top-level vdevs into a root vdev. */ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &nvtop, 1) == 0); /* * Replace the existing vdev_tree with the new root vdev in * this pool's configuration (remove the old, add the new). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); return (config); } /* * Walk the vdev tree and see if we can find a device with "better" * configuration. A configuration is "better" if the label on that * device has a more recent txg. */ static void spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) { for (int c = 0; c < vd->vdev_children; c++) spa_alt_rootvdev(vd->vdev_child[c], avd, txg); if (vd->vdev_ops->vdev_op_leaf) { nvlist_t *label; uint64_t label_txg; if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, &label) != 0) return; VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, &label_txg) == 0); /* * Do we have a better boot device? */ if (label_txg > *txg) { *txg = label_txg; *avd = vd; } nvlist_free(label); } } /* * Import a root pool. * * For x86. devpath_list will consist of devid and/or physpath name of * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). * The GRUB "findroot" command will return the vdev we should boot. * * For Sparc, devpath_list consists the physpath name of the booting device * no matter the rootpool is a single device pool or a mirrored pool. * e.g. * "/pci@1f,0/ide@d/disk@0,0:a" */ int spa_import_rootpool(char *devpath, char *devid) { spa_t *spa; vdev_t *rvd, *bvd, *avd = NULL; nvlist_t *config, *nvtop; uint64_t guid, txg; char *pname; int error; /* * Read the label from the boot device and generate a configuration. */ config = spa_generate_rootconf(devpath, devid, &guid); #if defined(_OBP) && defined(_KERNEL) if (config == NULL) { if (strstr(devpath, "/iscsi/ssd") != NULL) { /* iscsi boot */ get_iscsi_bootpath_phy(devpath); config = spa_generate_rootconf(devpath, devid, &guid); } } #endif if (config == NULL) { cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", devpath); return (SET_ERROR(EIO)); } VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pname)) != NULL) { /* * Remove the existing root pool from the namespace so that we * can replace it with the correct config we just read in. */ spa_remove(spa); } spa = spa_add(pname, config, NULL); spa->spa_is_root = B_TRUE; spa->spa_import_flags = ZFS_IMPORT_VERBATIM; /* * Build up a vdev tree based on the boot device's label config. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, VDEV_ALLOC_ROOTPOOL); spa_config_exit(spa, SCL_ALL, FTAG); if (error) { mutex_exit(&spa_namespace_lock); nvlist_free(config); cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", pname); return (error); } /* * Get the boot vdev. */ if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", (u_longlong_t)guid); error = SET_ERROR(ENOENT); goto out; } /* * Determine if there is a better boot device. */ avd = bvd; spa_alt_rootvdev(rvd, &avd, &txg); if (avd != bvd) { cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " "try booting from '%s'", avd->vdev_path); error = SET_ERROR(EINVAL); goto out; } /* * If the boot device is part of a spare vdev then ensure that * we're booting off the active spare. */ if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && !bvd->vdev_isspare) { cmn_err(CE_NOTE, "The boot device is currently spared. Please " "try booting from '%s'", bvd->vdev_parent-> vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); error = SET_ERROR(EINVAL); goto out; } error = 0; out: spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_free(rvd); spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&spa_namespace_lock); nvlist_free(config); return (error); } #endif /* * Import a non-root pool into the system. */ int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_rewind_policy_t policy; uint64_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = FREAD; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_config_sync(spa, B_FALSE, B_TRUE); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_rewind_policy(config, &policy); if (policy.zrp_request & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; /* * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig * because the user-supplied config is actually the one to trust when * doing an import. */ if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, policy.zrp_request); /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_L2CACHE); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); mutex_exit(&spa_namespace_lock); spa_history_log_version(spa, "import"); return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname; spa_t *spa; uint64_t state; int error; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, FREAD); /* * Pass off the heavy lifting to spa_load(). * Pass TRUE for mosconfig because the user-supplied config * is actually the one to trust when doing an import. */ error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info) == 0); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname) == 0); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & FWRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ txg_wait_synced(spa->spa_dsl_pool, 0); /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0 && new_state != POOL_STATE_UNINITIALIZED)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EBUSY)); } /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (SET_ERROR(EXDEV)); } /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); } } spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_config_sync(spa, B_TRUE, B_TRUE); spa_remove(spa); } mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, id; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * Transfer each new top-level vdev from vd to rvd. */ for (int c = 0; c < vd->vdev_children; c++) { /* * Set the vdev id to the first hole, if one exists. */ for (id = 0; id < rvd->vdev_children; id++) { if (rvd->vdev_child[id]->vdev_ishole) { vdev_free(rvd->vdev_child[id]); break; } } tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = id; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH)) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* mark the device being resilvered */ newvd->vdev_resilver_txg = txg; /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver to restart in the future. We do this to * ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); if (spa->spa_bootfs) spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a spare, then it implies * that the spare should become a real disk, and be removed from the * active spare list for the pool. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0 && pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) unspare = B_TRUE; /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_offline_log(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || vd->vdev_ishole) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || vml[c]->vdev_ishole || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c])) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize) == 0); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift) == 0); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children) == 0); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl) == 0); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)) == 0); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); /* create the new pool from the disks of the original pool */ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { VERIFY(nvlist_alloc(&newspa->spa_config_splitting, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL) { vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } static nvlist_t * spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) { for (int i = 0; i < count; i++) { uint64_t guid; VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (guid == target_guid) return (nvpp[i]); } return (NULL); } static void spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, nvlist_t *dev_to_remove) { nvlist_t **newdev = NULL; if (count > 1) newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); for (int i = 0, j = 0; i < count; i++) { if (dev[i] == dev_to_remove) continue; VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); } VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); for (int i = 0; i < count - 1; i++) nvlist_free(newdev[i]); if (count > 1) kmem_free(newdev, (count - 1) * sizeof (void *)); } /* * Evacuate the device. */ static int spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) { uint64_t txg; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); ASSERT(vd == vd->vdev_top); /* * Evacuate the device. We don't hold the config lock as writer * since we need to do I/O but we do keep the * spa_namespace_lock held. Once this completes the device * should no longer have any blocks allocated on it. */ if (vd->vdev_islog) { if (vd->vdev_stat.vs_alloc != 0) error = spa_offline_log(spa); } else { error = SET_ERROR(ENOTSUP); } if (error) return (error); /* * The evacuation succeeded. Remove any remaining MOS metadata * associated with this vdev, and wait for these changes to sync. */ ASSERT0(vd->vdev_stat.vs_alloc); txg = spa_vdev_config_enter(spa); vd->vdev_removing = B_TRUE; vdev_dirty_leaves(vd, VDD_DTL, txg); vdev_config_dirty(vd); spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); return (0); } /* * Complete the removal by cleaning up the namespace. */ static void spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; uint64_t id = vd->vdev_id; boolean_t last_vdev = (id == (rvd->vdev_children - 1)); ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(vd == vd->vdev_top); /* * Only remove any devices which are empty. */ if (vd->vdev_stat.vs_alloc != 0) return; (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); if (list_link_active(&vd->vdev_state_dirty_node)) vdev_state_clean(vd); if (list_link_active(&vd->vdev_config_dirty_node)) vdev_config_clean(vd); vdev_free(vd); if (last_vdev) { vdev_compact_children(rvd); } else { vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); vdev_add_child(rvd, vd); } vdev_config_dirty(rvd); /* * Reassess the health of our root vdev. */ vdev_reopen(rvd); } /* * Remove a device from the pool - * * Removing a device from the vdev namespace requires several steps * and can take a significant amount of time. As a result we use * the spa_vdev_config_[enter/exit] functions which allow us to * grab and release the spa_config_lock while still holding the namespace * lock. During each step the configuration is synced out. * * Currently, this supports removing only hot spares, slogs, and level 2 ARC * devices. */ int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) { vdev_t *vd; metaslab_group_t *mg; nvlist_t **spares, **l2cache, *nv; uint64_t txg = 0; uint_t nspares, nl2cache; int error = 0; boolean_t locked = MUTEX_HELD(&spa_namespace_lock); ASSERT(spa_writeable(spa)); if (!locked) txg = spa_vdev_enter(spa); vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (spa->spa_spares.sav_vdevs != NULL && nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { /* * Only remove the hot spare if it's not currently in use * in this pool. */ if (vd == NULL || unspare) { spa_vdev_remove_aux(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares, nv); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } else { error = SET_ERROR(EBUSY); } } else if (spa->spa_l2cache.sav_vdevs != NULL && nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { /* * Cache devices can always be removed. */ spa_vdev_remove_aux(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } else if (vd != NULL && vd->vdev_islog) { ASSERT(!locked); ASSERT(vd == vd->vdev_top); mg = vd->vdev_mg; /* * Stop allocating from this vdev. */ metaslab_group_passivate(mg); /* * Wait for the youngest allocations and frees to sync, * and then wait for the deferral of those frees to finish. */ spa_vdev_config_exit(spa, NULL, txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); /* * Attempt to evacuate the vdev. */ error = spa_vdev_remove_evacuate(spa, vd); txg = spa_vdev_config_enter(spa); /* * If we couldn't evacuate the vdev, unwind. */ if (error) { metaslab_group_activate(mg); return (spa_vdev_exit(spa, NULL, txg, error)); } /* * Clean up the vdev namespace. */ spa_vdev_remove_from_namespace(spa, vd); } else if (vd != NULL) { /* * Normal vdevs cannot be removed (yet). */ error = SET_ERROR(ENOTSUP); } else { /* * There is no vdev of any kind with the specified guid. */ error = SET_ERROR(ENOENT); } if (!locked) return (spa_vdev_exit(spa, NULL, txg, error)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); } /* * Update the stored path or FRU for this vdev. */ int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { sysevent_id_t eid; nvlist_t *attr; char *physpath; if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, ESC_DEV_DLE, attr, &eid, DDI_SLEEP); nvlist_free(attr); kmem_free(physpath, MAXPATHLEN); } static void spa_async_thread(spa_t *spa) { int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), new_space, new_space - old_space); } } /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE) spa_vdev_resilver_done(spa); /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER) dsl_resilver_restart(spa->spa_dsl_pool, 0); /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < (zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL && rootdir != NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, tx); return (0); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *zio = arg; zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, zio->io_flags)); return (0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = kmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); bzero(packed + nvsize, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); kmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (sav->sav_count == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); } else { list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); VERIFY(nvlist_add_nvlist_array(nvroot, config, list, sav->sav_count) == 0); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; if (list_is_empty(&spa->spa_config_dirty_list)) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); if (spa->spa_config_syncing) nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced seperatly before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persisitent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. It's unnecessary * to do this for pool creation since the vdev's * configuratoin has already been dirtied. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), intval); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_DEDUPDITTO: spa->spa_dedup_ditto = intval; break; default: break; } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { dsl_pool_t *dp = spa->spa_dsl_pool; ASSERT(spa->spa_sync_pass == 1); rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } rrw_exit(&dp->dp_config_rwlock, FTAG); } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int error; VERIFY(spa_writeable(spa)); /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while (list_head(&spa->spa_state_dirty_list) != NULL) { /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, spa->spa_sync_starttime + spa->spa_deadman_synctime)); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY(0 == zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } /* * If anything has changed in this txg, or if someone is waiting * for this txg to sync (eg, spa_vdev_remove()), push the * deferred frees from the previous txg. If not, leave them * alone so that we don't generate work on an otherwise idle * system. */ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || !txg_list_empty(&dp->dp_dirty_dirs, txg) || !txg_list_empty(&dp->dp_sync_tasks, txg) || ((dsl_scan_active(dp->dp_scan) || txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { spa_sync_deferred_frees(spa, tx); } /* * Iterate to convergence. */ do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free) { spa_sync_frees(spa, free_bpl, tx); } else { bplist_iterate(free_bpl, bpobj_enqueue_cb, &spa->spa_deferred_bpobj, tx); } ddt_sync(spa, txg); dsl_scan_sync(dp, tx); while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) vdev_sync(vd, txg); if (pass == 1) spa_sync_upgrades(spa, tx); } while (dmu_objset_is_dirty(mos, txg)); /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few * random top-level vdevs that are known to be visible in the * config cache (see spa_vdev_add() for a complete description). * If there *are* dirty vdevs, sync the uberblock to all vdevs. */ for (;;) { /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { vdev_t *svd[SPA_DVAS_PER_BP]; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); for (int c = 0; c < children; c++) { vd = rvd->vdev_child[(c0 + c) % children]; if (vd->vdev_ms_array == 0 || vd->vdev_islog) continue; svd[svdcount++] = vd; if (svdcount == SPA_DVAS_PER_BP) break; } error = vdev_config_sync(svd, svdcount, txg, B_FALSE); if (error != 0) error = vdev_config_sync(svd, svdcount, txg, B_TRUE); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg, B_FALSE); if (error != 0) error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg, B_TRUE); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL); zio_resume_wait(spa); } dmu_tx_commit(tx); VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } spa->spa_ubsync = spa->spa_uberblock; dsl_pool_sync_done(dp, txg); /* * Update usable space statistics. */ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) vdev_sync_done(vd, txg); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); spa->spa_sync_pass = 0; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } /* * Post a sysevent corresponding to the given event. The 'name' must be one of * the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev. This doesn't do anything * in the userland libzpool, as we don't want consumers to misinterpret ztest * or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) { #ifdef _KERNEL sysevent_t *ev; sysevent_attr_list_t *attr = NULL; sysevent_value_t value; sysevent_id_t eid; ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", SE_SLEEP); value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = spa_name(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) goto done; value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = spa_guid(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) goto done; if (vd) { value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = vd->vdev_guid; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, SE_SLEEP) != 0) goto done; if (vd->vdev_path) { value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = vd->vdev_path; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, &value, SE_SLEEP) != 0) goto done; } } if (sysevent_attach_attributes(ev, attr) != 0) goto done; attr = NULL; (void) log_sysevent(ev, SE_SLEEP, &eid); done: if (attr) sysevent_free_attr(attr); sysevent_free(ev); #endif } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/spa_history.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/spa_history.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/spa_history.c (revision 274273) @@ -1,538 +1,538 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" #ifdef _KERNEL #include #endif /* * Routines to manage the on-disk history log. * * The history log is stored as a dmu object containing * tuples. * * Where "record nvlist" is a nvlist containing uint64_ts and strings, and * "packed record length" is the packed length of the "record nvlist" stored * as a little endian uint64_t. * * The log is implemented as a ring buffer, though the original creation * of the pool ('zpool create') is never overwritten. * * The history log is tracked as object 'spa_t::spa_history'. The bonus buffer * of 'spa_history' stores the offsets for logging/retrieving history as * 'spa_history_phys_t'. 'sh_pool_create_len' is the ending offset in bytes of * where the 'zpool create' record is stored. This allows us to never * overwrite the original creation of the pool. 'sh_phys_max_off' is the * physical ending offset in bytes of the log. This tells you the length of * the buffer. 'sh_eof' is the logical EOF (in bytes). Whenever a record * is added, 'sh_eof' is incremented by the the size of the record. * 'sh_eof' is never decremented. 'sh_bof' is the logical BOF (in bytes). * This is where the consumer should start reading from after reading in * the 'zpool create' portion of the log. * * 'sh_records_lost' keeps track of how many records have been overwritten * and permanently lost. */ /* convert a logical offset to physical */ static uint64_t spa_history_log_to_phys(uint64_t log_off, spa_history_phys_t *shpp) { uint64_t phys_len; phys_len = shpp->sh_phys_max_off - shpp->sh_pool_create_len; return ((log_off - shpp->sh_pool_create_len) % phys_len + shpp->sh_pool_create_len); } void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx) { dmu_buf_t *dbp; spa_history_phys_t *shpp; objset_t *mos = spa->spa_meta_objset; ASSERT(spa->spa_history == 0); spa->spa_history = dmu_object_alloc(mos, DMU_OT_SPA_HISTORY, - SPA_MAXBLOCKSIZE, DMU_OT_SPA_HISTORY_OFFSETS, + SPA_OLD_MAXBLOCKSIZE, DMU_OT_SPA_HISTORY_OFFSETS, sizeof (spa_history_phys_t), tx); VERIFY(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, sizeof (uint64_t), 1, &spa->spa_history, tx) == 0); VERIFY(0 == dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)); ASSERT(dbp->db_size >= sizeof (spa_history_phys_t)); shpp = dbp->db_data; dmu_buf_will_dirty(dbp, tx); /* * Figure out maximum size of history log. We set it at * 0.1% of pool size, with a max of 1G and min of 128KB. */ shpp->sh_phys_max_off = metaslab_class_get_dspace(spa_normal_class(spa)) / 1000; shpp->sh_phys_max_off = MIN(shpp->sh_phys_max_off, 1<<30); shpp->sh_phys_max_off = MAX(shpp->sh_phys_max_off, 128<<10); dmu_buf_rele(dbp, FTAG); } /* * Change 'sh_bof' to the beginning of the next record. */ static int spa_history_advance_bof(spa_t *spa, spa_history_phys_t *shpp) { objset_t *mos = spa->spa_meta_objset; uint64_t firstread, reclen, phys_bof; char buf[sizeof (reclen)]; int err; phys_bof = spa_history_log_to_phys(shpp->sh_bof, shpp); firstread = MIN(sizeof (reclen), shpp->sh_phys_max_off - phys_bof); if ((err = dmu_read(mos, spa->spa_history, phys_bof, firstread, buf, DMU_READ_PREFETCH)) != 0) return (err); if (firstread != sizeof (reclen)) { if ((err = dmu_read(mos, spa->spa_history, shpp->sh_pool_create_len, sizeof (reclen) - firstread, buf + firstread, DMU_READ_PREFETCH)) != 0) return (err); } reclen = LE_64(*((uint64_t *)buf)); shpp->sh_bof += reclen + sizeof (reclen); shpp->sh_records_lost++; return (0); } static int spa_history_write(spa_t *spa, void *buf, uint64_t len, spa_history_phys_t *shpp, dmu_tx_t *tx) { uint64_t firstwrite, phys_eof; objset_t *mos = spa->spa_meta_objset; int err; ASSERT(MUTEX_HELD(&spa->spa_history_lock)); /* see if we need to reset logical BOF */ while (shpp->sh_phys_max_off - shpp->sh_pool_create_len - (shpp->sh_eof - shpp->sh_bof) <= len) { if ((err = spa_history_advance_bof(spa, shpp)) != 0) { return (err); } } phys_eof = spa_history_log_to_phys(shpp->sh_eof, shpp); firstwrite = MIN(len, shpp->sh_phys_max_off - phys_eof); shpp->sh_eof += len; dmu_write(mos, spa->spa_history, phys_eof, firstwrite, buf, tx); len -= firstwrite; if (len > 0) { /* write out the rest at the beginning of physical file */ dmu_write(mos, spa->spa_history, shpp->sh_pool_create_len, len, (char *)buf + firstwrite, tx); } return (0); } static char * spa_history_zone(void) { #ifdef _KERNEL if (INGLOBALZONE(curproc)) return (NULL); return (curproc->p_zone->zone_name); #else return (NULL); #endif } /* * Write out a history event. */ /*ARGSUSED*/ static void spa_history_log_sync(void *arg, dmu_tx_t *tx) { nvlist_t *nvl = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *dbp; spa_history_phys_t *shpp; size_t reclen; uint64_t le_len; char *record_packed = NULL; int ret; /* * If we have an older pool that doesn't have a command * history object, create it now. */ mutex_enter(&spa->spa_history_lock); if (!spa->spa_history) spa_history_create_obj(spa, tx); mutex_exit(&spa->spa_history_lock); /* * Get the offset of where we need to write via the bonus buffer. * Update the offset when the write completes. */ VERIFY0(dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)); shpp = dbp->db_data; dmu_buf_will_dirty(dbp, tx); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbp, &doi); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_SPA_HISTORY_OFFSETS); } #endif fnvlist_add_uint64(nvl, ZPOOL_HIST_TIME, gethrestime_sec()); #ifdef _KERNEL fnvlist_add_string(nvl, ZPOOL_HIST_HOST, utsname.nodename); #endif if (nvlist_exists(nvl, ZPOOL_HIST_CMD)) { zfs_dbgmsg("command: %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_CMD)); } else if (nvlist_exists(nvl, ZPOOL_HIST_INT_NAME)) { if (nvlist_exists(nvl, ZPOOL_HIST_DSNAME)) { zfs_dbgmsg("txg %lld %s %s (id %llu) %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_DSNAME), fnvlist_lookup_uint64(nvl, ZPOOL_HIST_DSID), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } else { zfs_dbgmsg("txg %lld %s %s", fnvlist_lookup_uint64(nvl, ZPOOL_HIST_TXG), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_NAME), fnvlist_lookup_string(nvl, ZPOOL_HIST_INT_STR)); } } else if (nvlist_exists(nvl, ZPOOL_HIST_IOCTL)) { zfs_dbgmsg("ioctl %s", fnvlist_lookup_string(nvl, ZPOOL_HIST_IOCTL)); } record_packed = fnvlist_pack(nvl, &reclen); mutex_enter(&spa->spa_history_lock); /* write out the packed length as little endian */ le_len = LE_64((uint64_t)reclen); ret = spa_history_write(spa, &le_len, sizeof (le_len), shpp, tx); if (!ret) ret = spa_history_write(spa, record_packed, reclen, shpp, tx); /* The first command is the create, which we keep forever */ if (ret == 0 && shpp->sh_pool_create_len == 0 && nvlist_exists(nvl, ZPOOL_HIST_CMD)) { shpp->sh_pool_create_len = shpp->sh_bof = shpp->sh_eof; } mutex_exit(&spa->spa_history_lock); fnvlist_pack_free(record_packed, reclen); dmu_buf_rele(dbp, FTAG); fnvlist_free(nvl); } /* * Write out a history event. */ int spa_history_log(spa_t *spa, const char *msg) { int err; nvlist_t *nvl = fnvlist_alloc(); fnvlist_add_string(nvl, ZPOOL_HIST_CMD, msg); err = spa_history_log_nvl(spa, nvl); fnvlist_free(nvl); return (err); } int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl) { int err = 0; dmu_tx_t *tx; nvlist_t *nvarg; if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY || !spa_writeable(spa)) return (SET_ERROR(EINVAL)); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } nvarg = fnvlist_dup(nvl); if (spa_history_zone() != NULL) { fnvlist_add_string(nvarg, ZPOOL_HIST_ZONE, spa_history_zone()); } fnvlist_add_uint64(nvarg, ZPOOL_HIST_WHO, crgetruid(CRED())); /* Kick this off asynchronously; errors are ignored. */ dsl_sync_task_nowait(spa_get_dsl(spa), spa_history_log_sync, nvarg, 0, ZFS_SPACE_CHECK_NONE, tx); dmu_tx_commit(tx); /* spa_history_log_sync will free nvl */ return (err); } /* * Read out the command history. */ int spa_history_get(spa_t *spa, uint64_t *offp, uint64_t *len, char *buf) { objset_t *mos = spa->spa_meta_objset; dmu_buf_t *dbp; uint64_t read_len, phys_read_off, phys_eof; uint64_t leftover = 0; spa_history_phys_t *shpp; int err; /* * If the command history doesn't exist (older pool), * that's ok, just return ENOENT. */ if (!spa->spa_history) return (SET_ERROR(ENOENT)); /* * The history is logged asynchronously, so when they request * the first chunk of history, make sure everything has been * synced to disk so that we get it. */ if (*offp == 0 && spa_writeable(spa)) txg_wait_synced(spa_get_dsl(spa), 0); if ((err = dmu_bonus_hold(mos, spa->spa_history, FTAG, &dbp)) != 0) return (err); shpp = dbp->db_data; #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(dbp, &doi); ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_SPA_HISTORY_OFFSETS); } #endif mutex_enter(&spa->spa_history_lock); phys_eof = spa_history_log_to_phys(shpp->sh_eof, shpp); if (*offp < shpp->sh_pool_create_len) { /* read in just the zpool create history */ phys_read_off = *offp; read_len = MIN(*len, shpp->sh_pool_create_len - phys_read_off); } else { /* * Need to reset passed in offset to BOF if the passed in * offset has since been overwritten. */ *offp = MAX(*offp, shpp->sh_bof); phys_read_off = spa_history_log_to_phys(*offp, shpp); /* * Read up to the minimum of what the user passed down or * the EOF (physical or logical). If we hit physical EOF, * use 'leftover' to read from the physical BOF. */ if (phys_read_off <= phys_eof) { read_len = MIN(*len, phys_eof - phys_read_off); } else { read_len = MIN(*len, shpp->sh_phys_max_off - phys_read_off); if (phys_read_off + *len > shpp->sh_phys_max_off) { leftover = MIN(*len - read_len, phys_eof - shpp->sh_pool_create_len); } } } /* offset for consumer to use next */ *offp += read_len + leftover; /* tell the consumer how much you actually read */ *len = read_len + leftover; if (read_len == 0) { mutex_exit(&spa->spa_history_lock); dmu_buf_rele(dbp, FTAG); return (0); } err = dmu_read(mos, spa->spa_history, phys_read_off, read_len, buf, DMU_READ_PREFETCH); if (leftover && err == 0) { err = dmu_read(mos, spa->spa_history, shpp->sh_pool_create_len, leftover, buf + read_len, DMU_READ_PREFETCH); } mutex_exit(&spa->spa_history_lock); dmu_buf_rele(dbp, FTAG); return (err); } /* * The nvlist will be consumed by this call. */ static void log_internal(nvlist_t *nvl, const char *operation, spa_t *spa, dmu_tx_t *tx, const char *fmt, va_list adx) { char *msg; /* * If this is part of creating a pool, not everything is * initialized yet, so don't bother logging the internal events. * Likewise if the pool is not writeable. */ if (tx->tx_txg == TXG_INITIAL || !spa_writeable(spa)) { fnvlist_free(nvl); return; } msg = kmem_alloc(vsnprintf(NULL, 0, fmt, adx) + 1, KM_SLEEP); (void) vsprintf(msg, fmt, adx); fnvlist_add_string(nvl, ZPOOL_HIST_INT_STR, msg); strfree(msg); fnvlist_add_string(nvl, ZPOOL_HIST_INT_NAME, operation); fnvlist_add_uint64(nvl, ZPOOL_HIST_TXG, tx->tx_txg); if (dmu_tx_is_syncing(tx)) { spa_history_log_sync(nvl, tx); } else { dsl_sync_task_nowait(spa_get_dsl(spa), spa_history_log_sync, nvl, 0, ZFS_SPACE_CHECK_NONE, tx); } /* spa_history_log_sync() will free nvl */ } void spa_history_log_internal(spa_t *spa, const char *operation, dmu_tx_t *tx, const char *fmt, ...) { dmu_tx_t *htx = tx; va_list adx; /* create a tx if we didn't get one */ if (tx == NULL) { htx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); if (dmu_tx_assign(htx, TXG_WAIT) != 0) { dmu_tx_abort(htx); return; } } va_start(adx, fmt); log_internal(fnvlist_alloc(), operation, spa, htx, fmt, adx); va_end(adx); /* if we didn't get a tx from the caller, commit the one we made */ if (tx == NULL) dmu_tx_commit(htx); } void spa_history_log_internal_ds(dsl_dataset_t *ds, const char *operation, dmu_tx_t *tx, const char *fmt, ...) { va_list adx; char namebuf[MAXNAMELEN]; nvlist_t *nvl = fnvlist_alloc(); ASSERT(tx != NULL); dsl_dataset_name(ds, namebuf); fnvlist_add_string(nvl, ZPOOL_HIST_DSNAME, namebuf); fnvlist_add_uint64(nvl, ZPOOL_HIST_DSID, ds->ds_object); va_start(adx, fmt); log_internal(nvl, operation, dsl_dataset_get_spa(ds), tx, fmt, adx); va_end(adx); } void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, dmu_tx_t *tx, const char *fmt, ...) { va_list adx; char namebuf[MAXNAMELEN]; nvlist_t *nvl = fnvlist_alloc(); ASSERT(tx != NULL); dsl_dir_name(dd, namebuf); fnvlist_add_string(nvl, ZPOOL_HIST_DSNAME, namebuf); fnvlist_add_uint64(nvl, ZPOOL_HIST_DSID, dd->dd_phys->dd_head_dataset_obj); va_start(adx, fmt); log_internal(nvl, operation, dd->dd_pool->dp_spa, tx, fmt, adx); va_end(adx); } void spa_history_log_version(spa_t *spa, const char *operation) { spa_history_log_internal(spa, operation, NULL, "pool version %llu; software version %llu/%d; uts %s %s %s %s", (u_longlong_t)spa_version(spa), SPA_VERSION, ZPL_VERSION, utsname.nodename, utsname.release, utsname.version, utsname.machine); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/spa_misc.c (revision 274273) @@ -1,1965 +1,1974 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include "zfeature_common.h" /* * SPA locking * * There are four basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. * * spa_rename() is also implemented within this file since it requires * manipulation of the namespace. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; static int spa_active_count; int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; kmem_cache_t *spa_buffer_pool; int spa_mode_global; #ifdef ZFS_DEBUG /* Everything except dprintf and spa is on by default in debug builds */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ boolean_t zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ boolean_t zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in a system panic. */ uint64_t zfs_deadman_synctime_ms = 1000000ULL; /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ uint64_t zfs_deadman_checktime_ms = 5000ULL; /* * Override the zfs deadman behavior via /etc/system. By default the * deadman is enabled except on VMware and sparc deployments. */ int zfs_deadman_enabled = -1; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ int spa_asize_inflation = 24; /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed. This ensures that we don't run the pool * completely out of space, due to unaccounted changes (e.g. to the MOS). * It also limits the worst-case time to allocate space. If we have * less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these * operations result in a net increase in the amount of space used, * it is possible to run the pool completely out of space, causing it to * be permanently read-only. * * See also the comments in zfs_space_check_t. */ int spa_slop_shift = 5; /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); refcount_create_untracked(&scl->scl_count); scl->scl_writer = NULL; scl->scl_write_wanted = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); refcount_destroy(&scl->scl_count); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); } } int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks ^ (1 << i), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (!refcount_is_zero(&scl->scl_count)) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks ^ (1 << i), tag); return (0); } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } return (1); } void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) { int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || scl->scl_write_wanted) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (!refcount_is_zero(&scl->scl_count)) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } (void) refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } ASSERT(wlocks_held <= locks); } void spa_config_exit(spa_t *spa, int locks, void *tag) { for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(!refcount_is_zero(&scl->scl_count)); if (refcount_remove(&scl->scl_count, tag) == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ void spa_deadman(void *arg) { spa_t *spa = arg; /* * Disable the deadman timer if the pool is suspended. */ if (spa_suspended(spa)) { VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); return; } zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, ++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev); } /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; cyc_handler_t hdlr; cyc_time_t when; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; hdlr.cyh_func = spa_deadman; hdlr.cyh_arg = spa; hdlr.cyh_level = CY_LOW_LEVEL; spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); /* * This determines how often we need to check for hung I/Os after * the cyclic has already fired. Since checking for hung I/Os is * an expensive operation we don't want to check too frequently. * Instead wait for 5 seconds before checking again. */ when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); when.cyt_when = CY_INFINITY; mutex_enter(&cpu_lock); spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); mutex_exit(&cpu_lock); refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) { spa->spa_root = spa_strdup(altroot); spa_active_count++; } /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_iokstat = kstat_create("zfs", 0, name, "disk", KSTAT_TYPE_IO, 1, 0); if (spa->spa_iokstat) { spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; kstat_install(spa->spa_iokstat); } spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) { spa_strfree(spa->spa_root); spa_active_count--; } while ((dp = list_head(&spa->spa_config_list)) != NULL) { list_remove(&spa->spa_config_list, dp); if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } list_destroy(&spa->spa_config_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); spa_config_set(spa, NULL); mutex_enter(&cpu_lock); if (spa->spa_deadman_cycid != CYCLIC_NONE) cyclic_remove(spa->spa_deadman_cycid); mutex_exit(&cpu_lock); spa->spa_deadman_cycid = CYCLIC_NONE; refcount_destroy(&spa->spa_refcount); spa_config_lock_destroy(spa); kstat_delete(spa->spa_iokstat); spa->spa_iokstat = NULL; for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); mutex_destroy(&spa->spa_iokstat_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, void *tag) { ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = a; const spa_aux_t *sb = b; if (sa->aux_guid < sb->aux_guid) return (-1); else if (sa->aux_guid > sb->aux_guid) return (1); else return (0); } void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * * - A spare may be part of multiple pools. * - A spare may be added to a pool even if it's actively in use within * another pool. * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_config_sync(spa, B_FALSE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; if (vd != NULL || error == 0) vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 0, 0, B_FALSE); if (vd != NULL) { vdev_state_dirty(vd->vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(1M) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_config_sync(spa, B_FALSE, B_TRUE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Rename a spa_t. */ int spa_rename(const char *name, const char *newname) { spa_t *spa; int err; /* * Lookup the spa_t and grab the config lock for writing. We need to * actually open the pool so that we can sync out the necessary labels. * It's OK to call spa_open() with the namespace lock held because we * allow recursive calls for other reasons. */ mutex_enter(&spa_namespace_lock); if ((err = spa_open(name, &spa, FTAG)) != 0) { mutex_exit(&spa_namespace_lock); return (err); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); avl_remove(&spa_namespace_avl, spa); (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); avl_add(&spa_namespace_avl, spa); /* * Sync all labels to disk with the new names by marking the root vdev * dirty and waiting for it to sync. It will pick up the new pool name * during the sync. */ vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa->spa_dsl_pool, 0); /* * Sync the updated config cache. */ spa_config_sync(spa, B_FALSE, B_TRUE); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (0); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); bcopy(s, new, len); new[len] = '\0'; return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_get_random(uint64_t range) { uint64_t r; ASSERT(range != 0); (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); return (r % range); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid = spa_get_random(-1ULL); if (spa != NULL) { while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } else { while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; char *checksum = NULL; char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strncpy(buf, spa->spa_root, buflen); } int spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* ARGSUSED */ uint64_t spa_get_asize(spa_t *spa, uint64_t lsize) { return (lsize * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), * or at least 32MB. * * See the comment above spa_slop_shift for details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = spa_get_dspace(spa); return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1)); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + ddt_get_dedup_dspace(spa); } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint8_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); if (s > 0) return (1); if (s < 0) return (-1); return (0); } int spa_busy(void) { return (spa_active_count); } void spa_boot_init() { spa_config_load(); } void spa_init(int mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifdef _KERNEL spa_arch_init(); #else if (spa_mode_global != FREAD && dprintf_find_string("watch")) { arc_procfd = open("/proc/self/ctl", O_WRONLY); if (arc_procfd == -1) { perror("could not enable watchpoints: " "opening /proc/self/ctl failed: "); } else { arc_watch = B_TRUE; } } #endif refcount_init(); unique_init(); range_tree_init(); zio_init(); dmu_init(); zil_init(); vdev_cache_stat_init(); zfs_prop_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); l2arc_start(); } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_cache_stat_fini(); zil_fini(); dmu_fini(); zio_fini(); range_tree_fini(); unique_fini(); refcount_fini(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has slogs. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_rotor != NULL); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { return (!!(spa->spa_mode & FWRITE)); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks)); } int spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); spa->spa_scan_pass_exam = 0; vdev_scan_stat_init(spa->spa_root_vdev); } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) return (SET_ERROR(ENOENT)); bzero(ps, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; ps->pss_state = scn->scn_phys.scn_state; /* data not stored on disk */ ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_exam = spa->spa_scan_pass_exam; return (0); } boolean_t spa_debug_enabled(spa_t *spa) { return (spa->spa_debug); } + +int +spa_maxblocksize(spa_t *spa) +{ + if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SPA_MAXBLOCKSIZE); + else + return (SPA_OLD_MAXBLOCKSIZE); +} Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu.h (revision 274273) @@ -1,833 +1,834 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright 2013 DEY Storage Systems, Inc. * Copyright 2014 HybridCluster. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_H #define _SYS_DMU_H /* * This file describes the interface that the DMU provides for its * consumers. * * The DMU also interacts with the SPA. That interface is described in * dmu_spa.h. */ #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct uio; struct xuio; struct page; struct vnode; struct spa; struct zilog; struct zio; struct blkptr; struct zap_cursor; struct dsl_dataset; struct dsl_pool; struct dnode; struct drr_begin; struct drr_end; struct zbookmark_phys; struct spa; struct nvlist; struct arc_buf; struct zio_prop; struct sa_handle; typedef struct objset objset_t; typedef struct dmu_tx dmu_tx_t; typedef struct dsl_dir dsl_dir_t; typedef enum dmu_object_byteswap { DMU_BSWAP_UINT8, DMU_BSWAP_UINT16, DMU_BSWAP_UINT32, DMU_BSWAP_UINT64, DMU_BSWAP_ZAP, DMU_BSWAP_DNODE, DMU_BSWAP_OBJSET, DMU_BSWAP_ZNODE, DMU_BSWAP_OLDACL, DMU_BSWAP_ACL, /* * Allocating a new byteswap type number makes the on-disk format * incompatible with any other format that uses the same number. * * Data can usually be structured to work with one of the * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. */ DMU_BSWAP_NUMFUNCS } dmu_object_byteswap_t; #define DMU_OT_NEWTYPE 0x80 #define DMU_OT_METADATA 0x40 #define DMU_OT_BYTESWAP_MASK 0x3f /* * Defines a uint8_t object type. Object types specify if the data * in the object is metadata (boolean) and how to byteswap the data * (dmu_object_byteswap_t). */ #define DMU_OT(byteswap, metadata) \ (DMU_OT_NEWTYPE | \ ((metadata) ? DMU_OT_METADATA : 0) | \ ((byteswap) & DMU_OT_BYTESWAP_MASK)) #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ (ot) < DMU_OT_NUMTYPES) #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_METADATA) : \ dmu_ot[(ot)].ot_metadata) /* * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill * is repurposed for embedded BPs. */ #define DMU_OT_HAS_FILL(ot) \ ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ ((ot) & DMU_OT_BYTESWAP_MASK) : \ dmu_ot[(ot)].ot_byteswap) typedef enum dmu_object_type { DMU_OT_NONE, /* general: */ DMU_OT_OBJECT_DIRECTORY, /* ZAP */ DMU_OT_OBJECT_ARRAY, /* UINT64 */ DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ DMU_OT_BPOBJ, /* UINT64 */ DMU_OT_BPOBJ_HDR, /* UINT64 */ /* spa: */ DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ DMU_OT_SPACE_MAP, /* UINT64 */ /* zil: */ DMU_OT_INTENT_LOG, /* UINT64 */ /* dmu: */ DMU_OT_DNODE, /* DNODE */ DMU_OT_OBJSET, /* OBJSET */ /* dsl: */ DMU_OT_DSL_DIR, /* UINT64 */ DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ DMU_OT_DSL_PROPS, /* ZAP */ DMU_OT_DSL_DATASET, /* UINT64 */ /* zpl: */ DMU_OT_ZNODE, /* ZNODE */ DMU_OT_OLDACL, /* Old ACL */ DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ DMU_OT_MASTER_NODE, /* ZAP */ DMU_OT_UNLINKED_SET, /* ZAP */ /* zvol: */ DMU_OT_ZVOL, /* UINT8 */ DMU_OT_ZVOL_PROP, /* ZAP */ /* other; for testing only! */ DMU_OT_PLAIN_OTHER, /* UINT8 */ DMU_OT_UINT64_OTHER, /* UINT64 */ DMU_OT_ZAP_OTHER, /* ZAP */ /* new object types: */ DMU_OT_ERROR_LOG, /* ZAP */ DMU_OT_SPA_HISTORY, /* UINT8 */ DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ DMU_OT_POOL_PROPS, /* ZAP */ DMU_OT_DSL_PERMS, /* ZAP */ DMU_OT_ACL, /* ACL */ DMU_OT_SYSACL, /* SYSACL */ DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ DMU_OT_NEXT_CLONES, /* ZAP */ DMU_OT_SCAN_QUEUE, /* ZAP */ DMU_OT_USERGROUP_USED, /* ZAP */ DMU_OT_USERGROUP_QUOTA, /* ZAP */ DMU_OT_USERREFS, /* ZAP */ DMU_OT_DDT_ZAP, /* ZAP */ DMU_OT_DDT_STATS, /* ZAP */ DMU_OT_SA, /* System attr */ DMU_OT_SA_MASTER_NODE, /* ZAP */ DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ DMU_OT_SCAN_XLATE, /* ZAP */ DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ DMU_OT_DEADLIST, /* ZAP */ DMU_OT_DEADLIST_HDR, /* UINT64 */ DMU_OT_DSL_CLONES, /* ZAP */ DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ /* * Do not allocate new object types here. Doing so makes the on-disk * format incompatible with any other format that uses the same object * type number. * * When creating an object which does not have one of the above types * use the DMU_OTN_* type with the correct byteswap and metadata * values. * * The DMU_OTN_* types do not have entries in the dmu_ot table, * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead * of indexing into dmu_ot directly (this works for both DMU_OT_* types * and DMU_OTN_* types). */ DMU_OT_NUMTYPES, /* * Names for valid types declared with DMU_OT(). */ DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), } dmu_object_type_t; typedef enum txg_how { TXG_WAIT = 1, TXG_NOWAIT, TXG_WAITED, } txg_how_t; void byteswap_uint64_array(void *buf, size_t size); void byteswap_uint32_array(void *buf, size_t size); void byteswap_uint16_array(void *buf, size_t size); void byteswap_uint8_array(void *buf, size_t size); void zap_byteswap(void *buf, size_t size); void zfs_oldacl_byteswap(void *buf, size_t size); void zfs_acl_byteswap(void *buf, size_t size); void zfs_znode_byteswap(void *buf, size_t size); #define DS_FIND_SNAPSHOTS (1<<0) #define DS_FIND_CHILDREN (1<<1) /* * The maximum number of bytes that can be accessed as part of one * operation, including metadata. */ -#define DMU_MAX_ACCESS (10<<20) /* 10MB */ +#define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ #define DMU_USERUSED_OBJECT (-1ULL) #define DMU_GROUPUSED_OBJECT (-2ULL) /* * artificial blkids for bonus buffer and spill blocks */ #define DMU_BONUS_BLKID (-1ULL) #define DMU_SPILL_BLKID (-2ULL) /* * Public routines to create, destroy, open, and close objsets. */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); void dmu_objset_rele(objset_t *os, void *tag); void dmu_objset_disown(objset_t *os, void *tag); int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_evict_dbufs(objset_t *os); int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); int dmu_objset_clone(const char *name, const char *origin); int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, struct nvlist *errlist); int dmu_objset_snapshot_one(const char *fsname, const char *snapname); int dmu_objset_snapshot_tmp(const char *, const char *, int); int dmu_objset_find(char *name, int func(const char *, void *), void *arg, int flags); void dmu_objset_byteswap(void *buf, size_t size); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); typedef struct dmu_buf { uint64_t db_object; /* object that this buffer is part of */ uint64_t db_offset; /* byte offset in this object */ uint64_t db_size; /* size of buffer in bytes */ void *db_data; /* data in buffer */ } dmu_buf_t; typedef void dmu_buf_evict_func_t(struct dmu_buf *db, void *user_ptr); /* * The names of zap entries in the DIRECTORY_OBJECT of the MOS. */ #define DMU_POOL_DIRECTORY_OBJECT 1 #define DMU_POOL_CONFIG "config" #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" #define DMU_POOL_FEATURES_FOR_READ "features_for_read" #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" #define DMU_POOL_ROOT_DATASET "root_dataset" #define DMU_POOL_SYNC_BPOBJ "sync_bplist" #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" #define DMU_POOL_ERRLOG_LAST "errlog_last" #define DMU_POOL_SPARES "spares" #define DMU_POOL_DEFLATE "deflate" #define DMU_POOL_HISTORY "history" #define DMU_POOL_PROPS "pool_props" #define DMU_POOL_L2CACHE "l2cache" #define DMU_POOL_TMP_USERREFS "tmp_userrefs" #define DMU_POOL_DDT "DDT-%s-%s-%s" #define DMU_POOL_DDT_STATS "DDT-statistics" #define DMU_POOL_CREATION_VERSION "creation_version" #define DMU_POOL_SCAN "scan" #define DMU_POOL_FREE_BPOBJ "free_bpobj" #define DMU_POOL_BPTREE_OBJ "bptree_obj" #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" /* * Allocate an object from this objset. The range of object numbers * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. * * The transaction must be assigned to a txg. The newly allocated * object will be "held" in the transaction (ie. you can modify the * newly allocated object in this transaction). * * dmu_object_alloc() chooses an object and returns it in *objectp. * * dmu_object_claim() allocates a specific object number. If that * number is already allocated, it fails and returns EEXIST. * * Return 0 on success, or ENOSPC or EEXIST as specified above. */ uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); /* * Free an object from this objset. * * The object's data will be freed as well (ie. you don't need to call * dmu_free(object, 0, -1, tx)). * * The object need not be held in the transaction. * * If there are any holds on this object's buffers (via dmu_buf_hold()), * or tx holds on the object (via dmu_tx_hold_object()), you can not * free it; it fails and returns EBUSY. * * If the object is not allocated, it fails and returns ENOENT. * * Return 0 on success, or EBUSY or ENOENT as specified above. */ int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); /* * Find the next allocated or free object. * * The objectp parameter is in-out. It will be updated to be the next * object which is allocated. Ignore objects which have not been * modified since txg. * * XXX Can only be called on a objset with no dirty data. * * Returns 0 on success, or ENOENT if there are no more objects. */ int dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg); /* * Set the data blocksize for an object. * * The object cannot have any blocks allcated beyond the first. If * the first block is allocated already, the new size must be greater * than the current block size. If these conditions are not met, * ENOTSUP will be returned. * * Returns 0 on success, or EBUSY if there are any holds on the object * contents, or ENOTSUP as described above. */ int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx); /* * Set the checksum property on a dnode. The new checksum algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx); /* * Set the compress property on a dnode. The new compression algorithm will * apply to all newly written blocks; existing blocks will not be affected. */ void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx); void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, void *data, uint8_t etype, uint8_t comp, int uncompressed_size, int compressed_size, int byteorder, dmu_tx_t *tx); /* * Decide how to write a block: checksum, compression, number of copies, etc. */ #define WP_NOFILL 0x1 #define WP_DMU_SYNC 0x2 #define WP_SPILL 0x4 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp, struct zio_prop *zp); /* * The bonus data is accessed more or less like a regular buffer. * You must dmu_bonus_hold() to get the buffer, which will give you a * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus * data. As with any normal buffer, you must call dmu_buf_read() to * read db_data, dmu_buf_will_dirty() before modifying it, and the * object must be held in an assigned transaction before calling * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus * buffer as well. You must release your hold with dmu_buf_rele(). * * Returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); int dmu_bonus_max(void); int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); /* * Special spill buffer support used by "SA" framework */ int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags, void *tag, dmu_buf_t **dbp); int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); /* * Obtain the DMU buffer from the specified object which contains the * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so * that it will remain in memory. You must release the hold with * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. * * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill * on the returned buffer before reading or writing the buffer's * db_data. The comments for those routines describe what particular * operations are valid after calling them. * * The object number must be a valid, allocated object number. */ int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **, int flags); void dmu_buf_add_ref(dmu_buf_t *db, void* tag); void dmu_buf_rele(dmu_buf_t *db, void *tag); uint64_t dmu_buf_refcount(dmu_buf_t *db); /* * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a * range of an object. A pointer to an array of dmu_buf_t*'s is * returned (in *dbpp). * * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and * frees the array. The hold on the array of buffers MUST be released * with dmu_buf_rele_array. You can NOT release the hold on each buffer * individually with dmu_buf_rele. */ int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp); void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); /* * Returns NULL on success, or the existing user ptr if it's already * been set. * * user_ptr is for use by the user and can be obtained via dmu_buf_get_user(). * * user_data_ptr_ptr should be NULL, or a pointer to a pointer which * will be set to db->db_data when you are allowed to access it. Note * that db->db_data (the pointer) can change when you do dmu_buf_read(), * dmu_buf_tryupgrade(), dmu_buf_will_dirty(), or dmu_buf_will_fill(). * *user_data_ptr_ptr will be set to the new value when it changes. * * If non-NULL, pageout func will be called when this buffer is being * excised from the cache, so that you can clean up the data structure * pointed to by user_ptr. * * dmu_evict_user() will call the pageout func for all buffers in a * objset with a given pageout func. */ void *dmu_buf_set_user(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func); /* * set_user_ie is the same as set_user, but request immediate eviction * when hold count goes to zero. */ void *dmu_buf_set_user_ie(dmu_buf_t *db, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func); void *dmu_buf_update_user(dmu_buf_t *db_fake, void *old_user_ptr, void *user_ptr, void *user_data_ptr_ptr, dmu_buf_evict_func_t *pageout_func); void dmu_evict_user(objset_t *os, dmu_buf_evict_func_t *func); /* * Returns the user_ptr set with dmu_buf_set_user(), or NULL if not set. */ void *dmu_buf_get_user(dmu_buf_t *db); /* * Returns the blkptr associated with this dbuf, or NULL if not set. */ struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); /* * Indicate that you are going to modify the buffer's data (db_data). * * The transaction (tx) must be assigned to a txg (ie. you've called * dmu_tx_assign()). The buffer's object must be held in the tx * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). */ void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); /* * Tells if the given dbuf is freeable. */ boolean_t dmu_buf_freeable(dmu_buf_t *); /* * You must create a transaction, then hold the objects which you will * (or might) modify as part of this transaction. Then you must assign * the transaction to a transaction group. Once the transaction has * been assigned, you can modify buffers which belong to held objects as * part of this transaction. You can't modify buffers before the * transaction has been assigned; you can't modify buffers which don't * belong to objects which this transaction holds; you can't hold * objects once the transaction has been assigned. You may hold an * object which you are going to free (with dmu_object_free()), but you * don't have to. * * You can abort the transaction before it has been assigned. * * Note that you may hold buffers (with dmu_buf_hold) at any time, * regardless of transaction state. */ #define DMU_NEW_OBJECT (-1ULL) #define DMU_OBJECT_END (-1ULL) dmu_tx_t *dmu_tx_create(objset_t *os); void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len); void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); void dmu_tx_abort(dmu_tx_t *tx); int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how); void dmu_tx_wait(dmu_tx_t *tx); void dmu_tx_commit(dmu_tx_t *tx); void dmu_tx_mark_netfree(dmu_tx_t *tx); /* * To register a commit callback, dmu_tx_callback_register() must be called. * * dcb_data is a pointer to caller private data that is passed on as a * callback parameter. The caller is responsible for properly allocating and * freeing it. * * When registering a callback, the transaction must be already created, but * it cannot be committed or aborted. It can be assigned to a txg or not. * * The callback will be called after the transaction has been safely written * to stable storage and will also be called if the dmu_tx is aborted. * If there is any error which prevents the transaction from being committed to * disk, the callback will be called with a value of error != 0. */ typedef void dmu_tx_callback_func_t(void *dcb_data, int error); void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, void *dcb_data); /* * Free up the data blocks for a defined range of a file. If size is * -1, the range from offset to end-of-file is freed. */ int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size); int dmu_free_long_object(objset_t *os, uint64_t object); /* * Convenience functions. * * Canfail routines will return 0 on success, or an errno if there is a * nonrecoverable I/O error. */ #define DMU_READ_PREFETCH 0 /* prefetch */ #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf, uint32_t flags); void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx); void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx); int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, dmu_tx_t *tx); int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, struct page *pp, dmu_tx_t *tx); struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); void dmu_return_arcbuf(struct arc_buf *buf); void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, dmu_tx_t *tx); int dmu_xuio_init(struct xuio *uio, int niov); void dmu_xuio_fini(struct xuio *uio); int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, size_t n); int dmu_xuio_cnt(struct xuio *uio); struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); void dmu_xuio_clear(struct xuio *uio, int i); void xuio_stat_wbuf_copied(); void xuio_stat_wbuf_nocopy(); extern int zfs_prefetch_disable; +extern int zfs_max_recordsize; /* * Asynchronously try to read in the data. */ void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len); typedef struct dmu_object_info { /* All sizes are in bytes unless otherwise indicated. */ uint32_t doi_data_block_size; uint32_t doi_metadata_block_size; dmu_object_type_t doi_type; dmu_object_type_t doi_bonus_type; uint64_t doi_bonus_size; uint8_t doi_indirection; /* 2 = dnode->indirect->data */ uint8_t doi_checksum; uint8_t doi_compress; uint8_t doi_nblkptr; uint8_t doi_pad[4]; uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ uint64_t doi_max_offset; uint64_t doi_fill_count; /* number of non-empty blocks */ } dmu_object_info_t; typedef void arc_byteswap_func_t(void *buf, size_t size); typedef struct dmu_object_type_info { dmu_object_byteswap_t ot_byteswap; boolean_t ot_metadata; char *ot_name; } dmu_object_type_info_t; typedef struct dmu_object_byteswap_info { arc_byteswap_func_t *ob_func; char *ob_name; } dmu_object_byteswap_info_t; extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; /* * Get information on a DMU object. * * Return 0 on success or ENOENT if object is not allocated. * * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dnode in hand. */ void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi); /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); /* * Like dmu_object_info_from_db, but faster still when you only care about * the size. This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512); typedef struct dmu_objset_stats { uint64_t dds_num_clones; /* number of clones of this */ uint64_t dds_creation_txg; uint64_t dds_guid; dmu_objset_type_t dds_type; uint8_t dds_is_snapshot; uint8_t dds_inconsistent; char dds_origin[MAXNAMELEN]; } dmu_objset_stats_t; /* * Get stats on a dataset. */ void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); /* * Add entries to the nvlist for all the objset's properties. See * zfs_prop_table[] and zfs(1m) for details on the properties. */ void dmu_objset_stats(objset_t *os, struct nvlist *nv); /* * Get the space usage statistics for statvfs(). * * refdbytes is the amount of space "referenced" by this objset. * availbytes is the amount of space available to this objset, taking * into account quotas & reservations, assuming that no other objsets * use the space first. These values correspond to the 'referenced' and * 'available' properties, described in the zfs(1m) manpage. * * usedobjs and availobjs are the number of objects currently allocated, * and available. */ void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); /* * The fsid_guid is a 56-bit ID that can change to avoid collisions. * (Contrast with the ds_guid which is a 64-bit ID that will never * change, so there is a small probability that it will collide.) */ uint64_t dmu_objset_fsid_guid(objset_t *os); /* * Get the [cm]time for an objset's snapshot dir */ timestruc_t dmu_objset_snap_cmtime(objset_t *os); int dmu_objset_is_snapshot(objset_t *os); extern struct spa *dmu_objset_spa(objset_t *os); extern struct zilog *dmu_objset_zil(objset_t *os); extern struct dsl_pool *dmu_objset_pool(objset_t *os); extern struct dsl_dataset *dmu_objset_ds(objset_t *os); extern void dmu_objset_name(objset_t *os, char *buf); extern dmu_objset_type_t dmu_objset_type(objset_t *os); extern uint64_t dmu_objset_id(objset_t *os); extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, uint64_t *id, uint64_t *offp, boolean_t *case_conflict); extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen, boolean_t *conflict); extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, uint64_t *idp, uint64_t *offp); typedef int objset_used_cb_t(dmu_object_type_t bonustype, void *bonus, uint64_t *userp, uint64_t *groupp); extern void dmu_objset_register_type(dmu_objset_type_t ost, objset_used_cb_t *cb); extern void dmu_objset_set_user(objset_t *os, void *user_ptr); extern void *dmu_objset_get_user(objset_t *os); /* * Return the txg number for the given assigned transaction. */ uint64_t dmu_tx_get_txg(dmu_tx_t *tx); /* * Synchronous write. * If a parent zio is provided this function initiates a write on the * provided buffer as a child of the parent zio. * In the absence of a parent zio, the write is completed synchronously. * At write completion, blk is filled with the bp of the written block. * Note that while the data covered by this function will be on stable * storage when the write completes this new data does not become a * permanent part of the file until the associated transaction commits. */ /* * {zfs,zvol,ztest}_get_done() args */ typedef struct zgd { struct zilog *zgd_zilog; struct blkptr *zgd_bp; dmu_buf_t *zgd_db; struct rl *zgd_rl; void *zgd_private; } zgd_t; typedef void dmu_sync_cb_t(zgd_t *arg, int error); int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); /* * Find the next hole or data block in file starting at *off * Return found offset in *off. Return ESRCH for end of file. */ int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off); /* * Initial setup and final teardown. */ extern void dmu_init(void); extern void dmu_fini(void); typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, uint64_t object, uint64_t offset, int len); void dmu_traverse_objset(objset_t *os, uint64_t txg_start, dmu_traverse_cb_t cb, void *arg); int dmu_diff(const char *tosnap_name, const char *fromsnap_name, struct vnode *vp, offset_t *offp); /* CRC64 table */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ extern uint64_t zfs_crc64_table[256]; extern int zfs_mdcomp_disable; #ifdef __cplusplus } #endif #endif /* _SYS_DMU_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_objset.h (revision 274273) @@ -1,179 +1,180 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_DMU_OBJSET_H #define _SYS_DMU_OBJSET_H #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif extern krwlock_t os_lock; struct dsl_pool; struct dsl_dataset; struct dmu_tx; #define OBJSET_PHYS_SIZE 2048 #define OBJSET_OLD_PHYS_SIZE 1024 #define OBJSET_BUF_HAS_USERUSED(buf) \ (arc_buf_size(buf) > OBJSET_OLD_PHYS_SIZE) #define OBJSET_FLAG_USERACCOUNTING_COMPLETE (1ULL<<0) typedef struct objset_phys { dnode_phys_t os_meta_dnode; zil_header_t os_zil_header; uint64_t os_type; uint64_t os_flags; char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 - sizeof (zil_header_t) - sizeof (uint64_t)*2]; dnode_phys_t os_userused_dnode; dnode_phys_t os_groupused_dnode; } objset_phys_t; struct objset { /* Immutable: */ struct dsl_dataset *os_dsl_dataset; spa_t *os_spa; arc_buf_t *os_phys_buf; objset_phys_t *os_phys; /* * The following "special" dnodes have no parent and are exempt from * dnode_move(), but they root their descendents in this objset using * handles anyway, so that all access to dnodes from dbufs consistently * uses handles. */ dnode_handle_t os_meta_dnode; dnode_handle_t os_userused_dnode; dnode_handle_t os_groupused_dnode; zilog_t *os_zil; /* can change, under dsl_dir's locks: */ enum zio_checksum os_checksum; enum zio_compress os_compress; uint8_t os_copies; enum zio_checksum os_dedup_checksum; boolean_t os_dedup_verify; zfs_logbias_op_t os_logbias; zfs_cache_type_t os_primary_cache; zfs_cache_type_t os_secondary_cache; zfs_sync_type_t os_sync; zfs_redundant_metadata_type_t os_redundant_metadata; + int os_recordsize; /* no lock needed: */ struct dmu_tx *os_synctx; /* XXX sketchy */ blkptr_t *os_rootbp; zil_header_t os_zil_header; list_t os_synced_dnodes; uint64_t os_flags; /* Protected by os_obj_lock */ kmutex_t os_obj_lock; uint64_t os_obj_next; /* Protected by os_lock */ kmutex_t os_lock; list_t os_dirty_dnodes[TXG_SIZE]; list_t os_free_dnodes[TXG_SIZE]; list_t os_dnodes; list_t os_downgraded_dbufs; /* stuff we store for the user */ kmutex_t os_user_ptr_lock; void *os_user_ptr; sa_os_t *os_sa; }; #define DMU_META_OBJSET 0 #define DMU_META_DNODE_OBJECT 0 #define DMU_OBJECT_IS_SPECIAL(obj) ((int64_t)(obj) <= 0) #define DMU_META_DNODE(os) ((os)->os_meta_dnode.dnh_dnode) #define DMU_USERUSED_DNODE(os) ((os)->os_userused_dnode.dnh_dnode) #define DMU_GROUPUSED_DNODE(os) ((os)->os_groupused_dnode.dnh_dnode) #define DMU_OS_IS_L2CACHEABLE(os) \ ((os)->os_secondary_cache == ZFS_CACHE_ALL || \ (os)->os_secondary_cache == ZFS_CACHE_METADATA) #define DMU_OS_IS_L2COMPRESSIBLE(os) (zfs_mdcomp_disable == B_FALSE) /* called from zpl */ int dmu_objset_hold(const char *name, void *tag, objset_t **osp); int dmu_objset_own(const char *name, dmu_objset_type_t type, boolean_t readonly, void *tag, objset_t **osp); void dmu_objset_refresh_ownership(objset_t *os, void *tag); void dmu_objset_rele(objset_t *os, void *tag); void dmu_objset_disown(objset_t *os, void *tag); int dmu_objset_from_ds(struct dsl_dataset *ds, objset_t **osp); void dmu_objset_stats(objset_t *os, nvlist_t *nv); void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); uint64_t dmu_objset_fsid_guid(objset_t *os); int dmu_objset_find_dp(struct dsl_pool *dp, uint64_t ddobj, int func(struct dsl_pool *, struct dsl_dataset *, void *), void *arg, int flags); int dmu_objset_prefetch(const char *name, void *arg); void dmu_objset_evict_dbufs(objset_t *os); timestruc_t dmu_objset_snap_cmtime(objset_t *os); /* called from dsl */ void dmu_objset_sync(objset_t *os, zio_t *zio, dmu_tx_t *tx); boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg); objset_t *dmu_objset_create_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx); int dmu_objset_open_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp, objset_t **osp); void dmu_objset_evict(objset_t *os); void dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx); void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx); boolean_t dmu_objset_userused_enabled(objset_t *os); int dmu_objset_userspace_upgrade(objset_t *os); boolean_t dmu_objset_userspace_present(objset_t *os); int dmu_fsname(const char *snapname, char *buf); void dmu_objset_init(void); void dmu_objset_fini(void); #ifdef __cplusplus } #endif #endif /* _SYS_DMU_OBJSET_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_send.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_send.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dmu_send.h (revision 274273) @@ -1,69 +1,71 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #ifndef _DMU_SEND_H #define _DMU_SEND_H #include #include struct vnode; struct dsl_dataset; struct drr_begin; struct avl_tree; -int dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, +int dmu_send(const char *tosnap, const char *fromsnap, + boolean_t embedok, boolean_t large_block_ok, int outfd, struct vnode *vp, offset_t *off); int dmu_send_estimate(struct dsl_dataset *ds, struct dsl_dataset *fromds, uint64_t *sizep); int dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, - boolean_t embedok, int outfd, vnode_t *vp, offset_t *off); + boolean_t embedok, boolean_t large_block_ok, + int outfd, struct vnode *vp, offset_t *off); typedef struct dmu_recv_cookie { struct dsl_dataset *drc_ds; struct drr_begin *drc_drrb; const char *drc_tofs; const char *drc_tosnap; boolean_t drc_newfs; boolean_t drc_byteswap; boolean_t drc_force; struct avl_tree *drc_guid_to_ds_map; zio_cksum_t drc_cksum; uint64_t drc_newsnapobj; void *drc_owner; cred_t *drc_cred; } dmu_recv_cookie_t; int dmu_recv_begin(char *tofs, char *tosnap, struct drr_begin *drrb, boolean_t force, char *origin, dmu_recv_cookie_t *drc); int dmu_recv_stream(dmu_recv_cookie_t *drc, struct vnode *vp, offset_t *voffp, int cleanup_fd, uint64_t *action_handlep); int dmu_recv_end(dmu_recv_cookie_t *drc, void *owner); boolean_t dmu_objset_is_receiving(objset_t *os); #endif /* _DMU_SEND_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/dsl_dataset.h (revision 274273) @@ -1,303 +1,314 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. */ #ifndef _SYS_DSL_DATASET_H #define _SYS_DSL_DATASET_H #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_dataset; struct dsl_dir; struct dsl_pool; #define DS_FLAG_INCONSISTENT (1ULL<<0) #define DS_IS_INCONSISTENT(ds) \ ((ds)->ds_phys->ds_flags & DS_FLAG_INCONSISTENT) /* * Do not allow this dataset to be promoted. */ #define DS_FLAG_NOPROMOTE (1ULL<<1) /* * DS_FLAG_UNIQUE_ACCURATE is set if ds_unique_bytes has been correctly * calculated for head datasets (starting with SPA_VERSION_UNIQUE_ACCURATE, * refquota/refreservations). */ #define DS_FLAG_UNIQUE_ACCURATE (1ULL<<2) /* * DS_FLAG_DEFER_DESTROY is set after 'zfs destroy -d' has been called * on a dataset. This allows the dataset to be destroyed using 'zfs release'. */ #define DS_FLAG_DEFER_DESTROY (1ULL<<3) #define DS_IS_DEFER_DESTROY(ds) \ ((ds)->ds_phys->ds_flags & DS_FLAG_DEFER_DESTROY) /* * DS_FIELD_* are strings that are used in the "extensified" dataset zap object. * They should be of the format :. */ /* * This field's value is the object ID of a zap object which contains the * bookmarks of this dataset. If it is present, then this dataset is counted * in the refcount of the SPA_FEATURES_BOOKMARKS feature. */ #define DS_FIELD_BOOKMARK_NAMES "com.delphix:bookmarks" /* + * This field is present (with value=0) if this dataset may contain large + * blocks (>128KB). If it is present, then this dataset + * is counted in the refcount of the SPA_FEATURE_LARGE_BLOCKS feature. + */ +#define DS_FIELD_LARGE_BLOCKS "org.open-zfs:large_blocks" + +/* * DS_FLAG_CI_DATASET is set if the dataset contains a file system whose * name lookups should be performed case-insensitively. */ #define DS_FLAG_CI_DATASET (1ULL<<16) #define DS_CREATE_FLAG_NODIRTY (1ULL<<24) typedef struct dsl_dataset_phys { uint64_t ds_dir_obj; /* DMU_OT_DSL_DIR */ uint64_t ds_prev_snap_obj; /* DMU_OT_DSL_DATASET */ uint64_t ds_prev_snap_txg; uint64_t ds_next_snap_obj; /* DMU_OT_DSL_DATASET */ uint64_t ds_snapnames_zapobj; /* DMU_OT_DSL_DS_SNAP_MAP 0 for snaps */ uint64_t ds_num_children; /* clone/snap children; ==0 for head */ uint64_t ds_creation_time; /* seconds since 1970 */ uint64_t ds_creation_txg; uint64_t ds_deadlist_obj; /* DMU_OT_DEADLIST */ /* * ds_referenced_bytes, ds_compressed_bytes, and ds_uncompressed_bytes * include all blocks referenced by this dataset, including those * shared with any other datasets. */ uint64_t ds_referenced_bytes; uint64_t ds_compressed_bytes; uint64_t ds_uncompressed_bytes; uint64_t ds_unique_bytes; /* only relevant to snapshots */ /* * The ds_fsid_guid is a 56-bit ID that can change to avoid * collisions. The ds_guid is a 64-bit ID that will never * change, so there is a small probability that it will collide. */ uint64_t ds_fsid_guid; uint64_t ds_guid; uint64_t ds_flags; /* DS_FLAG_* */ blkptr_t ds_bp; uint64_t ds_next_clones_obj; /* DMU_OT_DSL_CLONES */ uint64_t ds_props_obj; /* DMU_OT_DSL_PROPS for snaps */ uint64_t ds_userrefs_obj; /* DMU_OT_USERREFS */ uint64_t ds_pad[5]; /* pad out to 320 bytes for good measure */ } dsl_dataset_phys_t; typedef struct dsl_dataset { /* Immutable: */ struct dsl_dir *ds_dir; dsl_dataset_phys_t *ds_phys; dmu_buf_t *ds_dbuf; uint64_t ds_object; uint64_t ds_fsid_guid; /* only used in syncing context, only valid for non-snapshots: */ struct dsl_dataset *ds_prev; uint64_t ds_bookmarks; /* DMU_OTN_ZAP_METADATA */ + boolean_t ds_large_blocks; + boolean_t ds_need_large_blocks; /* has internal locking: */ dsl_deadlist_t ds_deadlist; bplist_t ds_pending_deadlist; /* protected by lock on pool's dp_dirty_datasets list */ txg_node_t ds_dirty_link; list_node_t ds_synced_link; /* * ds_phys->ds_ is also protected by ds_lock. * Protected by ds_lock: */ kmutex_t ds_lock; objset_t *ds_objset; uint64_t ds_userrefs; void *ds_owner; /* * Long holds prevent the ds from being destroyed; they allow the * ds to remain held even after dropping the dp_config_rwlock. * Owning counts as a long hold. See the comments above * dsl_pool_hold() for details. */ refcount_t ds_longholds; /* no locking; only for making guesses */ uint64_t ds_trysnap_txg; /* for objset_open() */ kmutex_t ds_opening_lock; uint64_t ds_reserved; /* cached refreservation */ uint64_t ds_quota; /* cached refquota */ kmutex_t ds_sendstream_lock; list_t ds_sendstreams; /* Protected by ds_lock; keep at end of struct for better locality */ char ds_snapname[MAXNAMELEN]; } dsl_dataset_t; /* * The max length of a temporary tag prefix is the number of hex digits * required to express UINT64_MAX plus one for the hyphen. */ #define MAX_TAG_PREFIX_LEN 17 #define dsl_dataset_is_snapshot(ds) \ ((ds)->ds_phys->ds_num_children != 0) #define DS_UNIQUE_IS_ACCURATE(ds) \ (((ds)->ds_phys->ds_flags & DS_FLAG_UNIQUE_ACCURATE) != 0) int dsl_dataset_hold(struct dsl_pool *dp, const char *name, void *tag, dsl_dataset_t **dsp); int dsl_dataset_hold_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag, dsl_dataset_t **); void dsl_dataset_rele(dsl_dataset_t *ds, void *tag); int dsl_dataset_own(struct dsl_pool *dp, const char *name, void *tag, dsl_dataset_t **dsp); int dsl_dataset_own_obj(struct dsl_pool *dp, uint64_t dsobj, void *tag, dsl_dataset_t **dsp); void dsl_dataset_disown(dsl_dataset_t *ds, void *tag); void dsl_dataset_name(dsl_dataset_t *ds, char *name); boolean_t dsl_dataset_tryown(dsl_dataset_t *ds, void *tag); uint64_t dsl_dataset_create_sync(dsl_dir_t *pds, const char *lastname, dsl_dataset_t *origin, uint64_t flags, cred_t *, dmu_tx_t *); uint64_t dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin, uint64_t flags, dmu_tx_t *tx); int dsl_dataset_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t *errors); int dsl_dataset_promote(const char *name, char *conflsnap); int dsl_dataset_clone_swap(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force); int dsl_dataset_rename_snapshot(const char *fsname, const char *oldsnapname, const char *newsnapname, boolean_t recursive); int dsl_dataset_snapshot_tmp(const char *fsname, const char *snapname, minor_t cleanup_minor, const char *htag); blkptr_t *dsl_dataset_get_blkptr(dsl_dataset_t *ds); void dsl_dataset_set_blkptr(dsl_dataset_t *ds, blkptr_t *bp, dmu_tx_t *tx); spa_t *dsl_dataset_get_spa(dsl_dataset_t *ds); boolean_t dsl_dataset_modified_since_snap(dsl_dataset_t *ds, dsl_dataset_t *snap); void dsl_dataset_sync(dsl_dataset_t *os, zio_t *zio, dmu_tx_t *tx); void dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx); int dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx, boolean_t async); boolean_t dsl_dataset_block_freeable(dsl_dataset_t *ds, const blkptr_t *bp, uint64_t blk_birth); uint64_t dsl_dataset_prev_snap_txg(dsl_dataset_t *ds); void dsl_dataset_dirty(dsl_dataset_t *ds, dmu_tx_t *tx); void dsl_dataset_stats(dsl_dataset_t *os, nvlist_t *nv); void dsl_dataset_fast_stat(dsl_dataset_t *ds, dmu_objset_stats_t *stat); void dsl_dataset_space(dsl_dataset_t *ds, uint64_t *refdbytesp, uint64_t *availbytesp, uint64_t *usedobjsp, uint64_t *availobjsp); uint64_t dsl_dataset_fsid_guid(dsl_dataset_t *ds); int dsl_dataset_space_written(dsl_dataset_t *oldsnap, dsl_dataset_t *new, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp); int dsl_dataset_space_wouldfree(dsl_dataset_t *firstsnap, dsl_dataset_t *last, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp); boolean_t dsl_dataset_is_dirty(dsl_dataset_t *ds); +int dsl_dataset_activate_large_blocks(const char *dsname); +void dsl_dataset_activate_large_blocks_sync_impl(uint64_t dsobj, dmu_tx_t *tx); int dsl_dsobj_to_dsname(char *pname, uint64_t obj, char *buf); int dsl_dataset_check_quota(dsl_dataset_t *ds, boolean_t check_quota, uint64_t asize, uint64_t inflight, uint64_t *used, uint64_t *ref_rsrv); int dsl_dataset_set_refquota(const char *dsname, zprop_source_t source, uint64_t quota); int dsl_dataset_set_refreservation(const char *dsname, zprop_source_t source, uint64_t reservation); boolean_t dsl_dataset_is_before(dsl_dataset_t *later, dsl_dataset_t *earlier, uint64_t earlier_txg); void dsl_dataset_long_hold(dsl_dataset_t *ds, void *tag); void dsl_dataset_long_rele(dsl_dataset_t *ds, void *tag); boolean_t dsl_dataset_long_held(dsl_dataset_t *ds); int dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, boolean_t force, void *owner, dmu_tx_t *tx); void dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone, dsl_dataset_t *origin_head, dmu_tx_t *tx); int dsl_dataset_snapshot_check_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx, boolean_t recv, uint64_t cnt, cred_t *cr); void dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname, dmu_tx_t *tx); void dsl_dataset_remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx); void dsl_dataset_recalc_head_uniq(dsl_dataset_t *ds); int dsl_dataset_get_snapname(dsl_dataset_t *ds); int dsl_dataset_snap_lookup(dsl_dataset_t *ds, const char *name, uint64_t *value); int dsl_dataset_snap_remove(dsl_dataset_t *ds, const char *name, dmu_tx_t *tx, boolean_t adj_cnt); void dsl_dataset_set_refreservation_sync_impl(dsl_dataset_t *ds, zprop_source_t source, uint64_t value, dmu_tx_t *tx); void dsl_dataset_zapify(dsl_dataset_t *ds, dmu_tx_t *tx); int dsl_dataset_rollback(const char *fsname, void *owner, nvlist_t *result); #ifdef ZFS_DEBUG #define dprintf_ds(ds, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__ds_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); \ dsl_dataset_name(ds, __ds_name); \ dprintf("ds=%s " fmt, __ds_name, __VA_ARGS__); \ kmem_free(__ds_name, MAXNAMELEN); \ } \ _NOTE(CONSTCOND) } while (0) #else #define dprintf_ds(dd, fmt, ...) #endif #ifdef __cplusplus } #endif #endif /* _SYS_DSL_DATASET_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/spa.h (revision 274273) @@ -1,862 +1,872 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ #ifndef _SYS_SPA_H #define _SYS_SPA_H #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Forward references that lots of things need. */ typedef struct spa spa_t; typedef struct vdev vdev_t; typedef struct metaslab metaslab_t; typedef struct metaslab_group metaslab_group_t; typedef struct metaslab_class metaslab_class_t; typedef struct zio zio_t; typedef struct zilog zilog_t; typedef struct spa_aux_vdev spa_aux_vdev_t; typedef struct ddt ddt_t; typedef struct ddt_entry ddt_entry_t; struct dsl_pool; struct dsl_dataset; /* * General-purpose 32-bit and 64-bit bitfield encodings. */ #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) #define BF32_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1U << (len)); \ ASSERT3U(low + len, <=, 32); \ (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET(x, low, len, val) do { \ ASSERT3U(val, <, 1ULL << (len)); \ ASSERT3U(low + len, <=, 64); \ ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \ _NOTE(CONSTCOND) } while (0) #define BF32_GET_SB(x, low, len, shift, bias) \ ((BF32_GET(x, low, len) + (bias)) << (shift)) #define BF64_GET_SB(x, low, len, shift, bias) \ ((BF64_GET(x, low, len) + (bias)) << (shift)) #define BF32_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1U << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) #define BF64_SET_SB(x, low, len, shift, bias, val) do { \ ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \ ASSERT3S((val) >> (shift), >=, bias); \ BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \ _NOTE(CONSTCOND) } while (0) /* - * We currently support nine block sizes, from 512 bytes to 128K. - * We could go higher, but the benefits are near-zero and the cost - * of COWing a giant block to modify one byte would become excessive. + * We currently support block sizes from 512 bytes to 16MB. + * The benefits of larger blocks, and thus larger IO, need to be weighed + * against the cost of COWing a giant block to modify one byte, and the + * large latency of reading or writing a large block. + * + * Note that although blocks up to 16MB are supported, the recordsize + * property can not be set larger than zfs_max_recordsize (default 1MB). + * See the comment near zfs_max_recordsize in dsl_dataset.c for details. + * + * Note that although the LSIZE field of the blkptr_t can store sizes up + * to 32MB, the dnode's dn_datablkszsec can only store sizes up to + * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. */ #define SPA_MINBLOCKSHIFT 9 -#define SPA_MAXBLOCKSHIFT 17 +#define SPA_OLD_MAXBLOCKSHIFT 17 +#define SPA_MAXBLOCKSHIFT 24 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) +#define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) -#define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1) - /* * Size of block to hold the configuration data (a packed nvlist) */ #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) /* * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. * The ASIZE encoding should be at least 64 times larger (6 more bits) * to support up to 4-way RAID-Z mirror mode with worst-case gang block * overhead, three DVAs per bp, plus one more bit in case we do anything * else that expands the ASIZE. */ #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ /* * All SPA data is represented by 128-bit data virtual addresses (DVAs). * The members of the dva_t should be considered opaque outside the SPA. */ typedef struct dva { uint64_t dva_word[2]; } dva_t; /* * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. */ typedef struct zio_cksum { uint64_t zc_word[4]; } zio_cksum_t; /* * Each block is described by its DVAs, time of birth, checksum, etc. * The word-by-word, bit-by-bit layout of the blkptr is as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | vdev1 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 1 |G| offset1 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 2 | vdev2 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 3 |G| offset2 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 4 | vdev3 | GRID | ASIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 5 |G| offset3 | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 8 | padding | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 9 | physical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | fill count | * +-------+-------+-------+-------+-------+-------+-------+-------+ * c | checksum[0] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * d | checksum[1] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * e | checksum[2] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * f | checksum[3] | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * vdev virtual device ID * offset offset into virtual device * LSIZE logical size * PSIZE physical size (after compression) * ASIZE allocated size (including RAID-Z parity and gang block headers) * GRID RAID-Z layout information (reserved for future use) * cksum checksum function * comp compression function * G gang block indicator * B byteorder (endianness) * D dedup * X encryption (on version 30, which is not supported) * E blkptr_t contains embedded data (see below) * lvl level of indirection * type DMU object type * phys birth txg of block allocation; zero if same as logical birth txg * log. birth transaction group in which the block was logically born * fill count number of non-zero blocks under this bp * checksum[4] 256-bit checksum of the data this bp describes */ /* * "Embedded" blkptr_t's don't actually point to a block, instead they * have a data payload embedded in the blkptr_t itself. See the comment * in blkptr.c for more details. * * The blkptr_t is laid out as follows: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * 0 | payload | * 1 | payload | * 2 | payload | * 3 | payload | * 4 | payload | * 5 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | * +-------+-------+-------+-------+-------+-------+-------+-------+ * 7 | payload | * 8 | payload | * 9 | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * a | logical birth txg | * +-------+-------+-------+-------+-------+-------+-------+-------+ * b | payload | * c | payload | * d | payload | * e | payload | * f | payload | * +-------+-------+-------+-------+-------+-------+-------+-------+ * * Legend: * * payload contains the embedded data * B (byteorder) byteorder (endianness) * D (dedup) padding (set to zero) * X encryption (set to zero; see above) * E (embedded) set to one * lvl indirection level * type DMU object type * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) * comp compression function of payload * PSIZE size of payload after compression, in bytes * LSIZE logical size of payload, in bytes * note that 25 bits is enough to store the largest * "normal" BP's LSIZE (2^16 * 2^9) in bytes * log. birth transaction group in which the block was logically born * * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded * bp's they are stored in units of SPA_MINBLOCKSHIFT. * Generally, the generic BP_GET_*() macros can be used on embedded BP's. * The B, D, X, lvl, type, and comp fields are stored the same as with normal * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before * other macros, as they assert that they are only used on BP's of the correct * "embedded-ness". */ #define BPE_GET_ETYPE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET((bp)->blk_prop, 40, 8)) #define BPE_SET_ETYPE(bp, t) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, t); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_LSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) #define BPE_SET_LSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BPE_GET_PSIZE(bp) \ (ASSERT(BP_IS_EMBEDDED(bp)), \ BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) #define BPE_SET_PSIZE(bp, x) do { \ ASSERT(BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ _NOTE(CONSTCOND) } while (0) typedef enum bp_embedded_type { BP_EMBEDDED_TYPE_DATA, BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED } bp_embedded_type_t; #define BPE_NUM_WORDS 14 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) #define BPE_IS_PAYLOADWORD(bp, wp) \ ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ /* * A block is a hole when it has either 1) never been written to, or * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads * without physically allocating disk space. Holes are represented in the * blkptr_t structure by zeroed blk_dva. Correct checking for holes is * done through the BP_IS_HOLE macro. For holes, the logical size, level, * DMU object type, and birth times are all also stored for holes that * were written to at some point (i.e. were punched after having been filled). */ typedef struct blkptr { dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ uint64_t blk_prop; /* size, compression, type, etc */ uint64_t blk_pad[2]; /* Extra space for the future */ uint64_t blk_phys_birth; /* txg when block was allocated */ uint64_t blk_birth; /* transaction group at birth */ uint64_t blk_fill; /* fill count */ zio_cksum_t blk_cksum; /* 256-bit checksum */ } blkptr_t; /* * Macros to get and set fields in a bp or DVA. */ #define DVA_GET_ASIZE(dva) \ BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_ASIZE(dva, x) \ BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) #define DVA_GET_OFFSET(dva) \ BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) #define DVA_SET_OFFSET(dva, x) \ BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) #define BP_GET_LSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? \ (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_LSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_PSIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) #define BP_SET_PSIZE(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET_SB((bp)->blk_prop, \ 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7) #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x) #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) #define BP_GET_CHECKSUM(bp) \ (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ BF64_GET((bp)->blk_prop, 40, 8)) #define BP_SET_CHECKSUM(bp, x) do { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ BF64_SET((bp)->blk_prop, 40, 8, x); \ _NOTE(CONSTCOND) } while (0) #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) #define BP_PHYSICAL_BIRTH(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) #define BP_SET_BIRTH(bp, logical, physical) \ { \ ASSERT(!BP_IS_EMBEDDED(bp)); \ (bp)->blk_birth = (logical); \ (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ } #define BP_GET_FILL(bp) (BP_IS_EMBEDDED(bp) ? 1 : (bp)->blk_fill) #define BP_GET_ASIZE(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_GET_UCSIZE(bp) \ ((BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) ? \ BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) #define BP_GET_NDVAS(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) #define BP_COUNT_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? 0 : \ (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ DVA_GET_GANG(&(bp)->blk_dva[1]) + \ DVA_GET_GANG(&(bp)->blk_dva[2]))) #define DVA_EQUAL(dva1, dva2) \ ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ (dva1)->dva_word[0] == (dva2)->dva_word[0]) #define BP_EQUAL(bp1, bp2) \ (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ (bp1)->blk_birth == (bp2)->blk_birth && \ DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ ((zc1).zc_word[3] - (zc2).zc_word[3]))) #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ { \ (zcp)->zc_word[0] = w0; \ (zcp)->zc_word[1] = w1; \ (zcp)->zc_word[2] = w2; \ (zcp)->zc_word[3] = w3; \ } #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) #define BP_IS_GANG(bp) \ (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ (dva)->dva_word[1] == 0ULL) #define BP_IS_HOLE(bp) \ (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) /* BP_IS_RAIDZ(bp) assumes no block compression */ #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ BP_GET_PSIZE(bp)) #define BP_ZERO(bp) \ { \ (bp)->blk_dva[0].dva_word[0] = 0; \ (bp)->blk_dva[0].dva_word[1] = 0; \ (bp)->blk_dva[1].dva_word[0] = 0; \ (bp)->blk_dva[1].dva_word[1] = 0; \ (bp)->blk_dva[2].dva_word[0] = 0; \ (bp)->blk_dva[2].dva_word[1] = 0; \ (bp)->blk_prop = 0; \ (bp)->blk_pad[0] = 0; \ (bp)->blk_pad[1] = 0; \ (bp)->blk_phys_birth = 0; \ (bp)->blk_birth = 0; \ (bp)->blk_fill = 0; \ ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ } #ifdef _BIG_ENDIAN #define ZFS_HOST_BYTEORDER (0ULL) #else #define ZFS_HOST_BYTEORDER (1ULL) #endif #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) #define BP_SPRINTF_LEN 320 /* * This macro allows code sharing between zfs, libzpool, and mdb. * 'func' is either snprintf() or mdb_snprintf(). * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. */ #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ { \ static const char *copyname[] = \ { "zero", "single", "double", "triple" }; \ int len = 0; \ int copies = 0; \ \ if (bp == NULL) { \ len += func(buf + len, size - len, ""); \ } else if (BP_IS_HOLE(bp)) { \ len += func(buf + len, size - len, ""); \ if (bp->blk_birth > 0) { \ len += func(buf + len, size - len, \ " birth=%lluL", \ (u_longlong_t)bp->blk_birth); \ } \ } else if (BP_IS_EMBEDDED(bp)) { \ len = func(buf + len, size - len, \ "EMBEDDED [L%llu %s] et=%u %s " \ "size=%llxL/%llxP birth=%lluL", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ (int)BPE_GET_ETYPE(bp), \ compress, \ (u_longlong_t)BPE_GET_LSIZE(bp), \ (u_longlong_t)BPE_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth); \ } else { \ for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ const dva_t *dva = &bp->blk_dva[d]; \ if (DVA_IS_VALID(dva)) \ copies++; \ len += func(buf + len, size - len, \ "DVA[%d]=<%llu:%llx:%llx>%c", d, \ (u_longlong_t)DVA_GET_VDEV(dva), \ (u_longlong_t)DVA_GET_OFFSET(dva), \ (u_longlong_t)DVA_GET_ASIZE(dva), \ ws); \ } \ if (BP_IS_GANG(bp) && \ DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ copies--; \ len += func(buf + len, size - len, \ "[L%llu %s] %s %s %s %s %s %s%c" \ "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ "cksum=%llx:%llx:%llx:%llx", \ (u_longlong_t)BP_GET_LEVEL(bp), \ type, \ checksum, \ compress, \ BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ BP_IS_GANG(bp) ? "gang" : "contiguous", \ BP_GET_DEDUP(bp) ? "dedup" : "unique", \ copyname[copies], \ ws, \ (u_longlong_t)BP_GET_LSIZE(bp), \ (u_longlong_t)BP_GET_PSIZE(bp), \ (u_longlong_t)bp->blk_birth, \ (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ (u_longlong_t)BP_GET_FILL(bp), \ ws, \ (u_longlong_t)bp->blk_cksum.zc_word[0], \ (u_longlong_t)bp->blk_cksum.zc_word[1], \ (u_longlong_t)bp->blk_cksum.zc_word[2], \ (u_longlong_t)bp->blk_cksum.zc_word[3]); \ } \ ASSERT(len < size); \ } #include #define BP_GET_BUFC_TYPE(bp) \ (((BP_GET_LEVEL(bp) > 0) || (DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))) ? \ ARC_BUFC_METADATA : ARC_BUFC_DATA) typedef enum spa_import_type { SPA_IMPORT_EXISTING, SPA_IMPORT_ASSEMBLE } spa_import_type_t; /* state manipulation functions */ extern int spa_open(const char *pool, spa_t **, void *tag); extern int spa_open_rewind(const char *pool, spa_t **, void *tag, nvlist_t *policy, nvlist_t **config); extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, size_t buflen); extern int spa_create(const char *pool, nvlist_t *config, nvlist_t *props, nvlist_t *zplprops); extern int spa_import_rootpool(char *devpath, char *devid); extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags); extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); extern int spa_destroy(char *pool); extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce); extern int spa_reset(char *pool); extern void spa_async_request(spa_t *spa, int flag); extern void spa_async_unrequest(spa_t *spa, int flag); extern void spa_async_suspend(spa_t *spa); extern void spa_async_resume(spa_t *spa); extern spa_t *spa_inject_addref(char *pool); extern void spa_inject_delref(spa_t *spa); extern void spa_scan_stat_init(spa_t *spa); extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); #define SPA_ASYNC_CONFIG_UPDATE 0x01 #define SPA_ASYNC_REMOVE 0x02 #define SPA_ASYNC_PROBE 0x04 #define SPA_ASYNC_RESILVER_DONE 0x08 #define SPA_ASYNC_RESILVER 0x10 #define SPA_ASYNC_AUTOEXPAND 0x20 #define SPA_ASYNC_REMOVE_DONE 0x40 #define SPA_ASYNC_REMOVE_STOP 0x80 /* * Controls the behavior of spa_vdev_remove(). */ #define SPA_REMOVE_UNSPARE 0x01 #define SPA_REMOVE_DONE 0x02 /* device manipulation */ extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing); extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done); extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare); extern boolean_t spa_vdev_remove_active(spa_t *spa); extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp); /* spare state (which is global across all pools) */ extern void spa_spare_add(vdev_t *vd); extern void spa_spare_remove(vdev_t *vd); extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); extern void spa_spare_activate(vdev_t *vd); /* L2ARC state (which is global across all pools) */ extern void spa_l2cache_add(vdev_t *vd); extern void spa_l2cache_remove(vdev_t *vd); extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); extern void spa_l2cache_activate(vdev_t *vd); extern void spa_l2cache_drop(spa_t *spa); /* scanning */ extern int spa_scan(spa_t *spa, pool_scan_func_t func); extern int spa_scan_stop(spa_t *spa); /* spa syncing */ extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ extern void spa_sync_allpools(void); /* spa namespace global mutex */ extern kmutex_t spa_namespace_lock; /* * SPA configuration functions in spa_config.c */ #define SPA_CONFIG_UPDATE_POOL 0 #define SPA_CONFIG_UPDATE_VDEVS 1 extern void spa_config_sync(spa_t *, boolean_t, boolean_t); extern void spa_config_load(void); extern nvlist_t *spa_all_configs(uint64_t *); extern void spa_config_set(spa_t *spa, nvlist_t *config); extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats); extern void spa_config_update(spa_t *spa, int what); /* * Miscellaneous SPA routines in spa_misc.c */ /* Namespace manipulation */ extern spa_t *spa_lookup(const char *name); extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); extern void spa_remove(spa_t *spa); extern spa_t *spa_next(spa_t *prev); /* Refcount functions */ extern void spa_open_ref(spa_t *spa, void *tag); extern void spa_close(spa_t *spa, void *tag); extern boolean_t spa_refcount_zero(spa_t *spa); #define SCL_NONE 0x00 #define SCL_CONFIG 0x01 #define SCL_STATE 0x02 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ #define SCL_ALLOC 0x08 #define SCL_ZIO 0x10 #define SCL_FREE 0x20 #define SCL_VDEV 0x40 #define SCL_LOCKS 7 #define SCL_ALL ((1 << SCL_LOCKS) - 1) #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) /* Pool configuration locks */ extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw); extern void spa_config_exit(spa_t *spa, int locks, void *tag); extern int spa_config_held(spa_t *spa, int locks, krw_t rw); /* Pool vdev add/remove lock */ extern uint64_t spa_vdev_enter(spa_t *spa); extern uint64_t spa_vdev_config_enter(spa_t *spa); extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag); extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); /* Pool vdev state change lock */ extern void spa_vdev_state_enter(spa_t *spa, int oplock); extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); /* Log state */ typedef enum spa_log_state { SPA_LOG_UNKNOWN = 0, /* unknown log state */ SPA_LOG_MISSING, /* missing log(s) */ SPA_LOG_CLEAR, /* clear the log(s) */ SPA_LOG_GOOD, /* log(s) are good */ } spa_log_state_t; extern spa_log_state_t spa_get_log_state(spa_t *spa); extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); extern int spa_offline_log(spa_t *spa); /* Log claim callback */ extern void spa_claim_notify(zio_t *zio); /* Accessor functions */ extern boolean_t spa_shutting_down(spa_t *spa); extern struct dsl_pool *spa_get_dsl(spa_t *spa); extern boolean_t spa_is_initializing(spa_t *spa); extern blkptr_t *spa_get_rootblkptr(spa_t *spa); extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); extern void spa_altroot(spa_t *, char *, size_t); extern int spa_sync_pass(spa_t *spa); extern char *spa_name(spa_t *spa); extern uint64_t spa_guid(spa_t *spa); extern uint64_t spa_load_guid(spa_t *spa); extern uint64_t spa_last_synced_txg(spa_t *spa); extern uint64_t spa_first_txg(spa_t *spa); extern uint64_t spa_syncing_txg(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern pool_state_t spa_state(spa_t *spa); extern spa_load_state_t spa_load_state(spa_t *spa); extern uint64_t spa_freeze_txg(spa_t *spa); extern uint64_t spa_get_asize(spa_t *spa, uint64_t lsize); extern uint64_t spa_get_dspace(spa_t *spa); extern uint64_t spa_get_slop_space(spa_t *spa); extern void spa_update_dspace(spa_t *spa); extern uint64_t spa_version(spa_t *spa); extern boolean_t spa_deflate(spa_t *spa); extern metaslab_class_t *spa_normal_class(spa_t *spa); extern metaslab_class_t *spa_log_class(spa_t *spa); extern int spa_max_replication(spa_t *spa); extern int spa_prev_software_version(spa_t *spa); extern int spa_busy(void); extern uint8_t spa_get_failmode(spa_t *spa); extern boolean_t spa_suspended(spa_t *spa); extern uint64_t spa_bootfs(spa_t *spa); extern uint64_t spa_delegation(spa_t *spa); extern objset_t *spa_meta_objset(spa_t *spa); extern uint64_t spa_deadman_synctime(spa_t *spa); /* Miscellaneous support routines */ extern void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx); extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); extern int spa_rename(const char *oldname, const char *newname); extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); extern char *spa_strdup(const char *); extern void spa_strfree(char *); extern uint64_t spa_get_random(uint64_t range); extern uint64_t spa_generate_guid(spa_t *spa); extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); extern void spa_freeze(spa_t *spa); extern int spa_change_guid(spa_t *spa); extern void spa_upgrade(spa_t *spa, uint64_t version); extern void spa_evict_all(void); extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache); extern boolean_t spa_has_spare(spa_t *, uint64_t guid); extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); extern boolean_t spa_has_slogs(spa_t *spa); extern boolean_t spa_is_root(spa_t *spa); extern boolean_t spa_writeable(spa_t *spa); extern boolean_t spa_has_pending_synctask(spa_t *spa); +extern int spa_maxblocksize(spa_t *spa); extern int spa_mode(spa_t *spa); extern uint64_t strtonum(const char *str, char **nptr); extern char *spa_his_ievent_table[]; extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, char *his_buf); extern int spa_history_log(spa_t *spa, const char *his_buf); extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); extern void spa_history_log_version(spa_t *spa, const char *operation); extern void spa_history_log_internal(spa_t *spa, const char *operation, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, dmu_tx_t *tx, const char *fmt, ...); extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, dmu_tx_t *tx, const char *fmt, ...); /* error handling */ struct zbookmark_phys; extern void spa_log_error(spa_t *spa, zio_t *zio); extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t length); extern void zfs_post_remove(spa_t *spa, vdev_t *vd); extern void zfs_post_state_change(spa_t *spa, vdev_t *vd); extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); extern uint64_t spa_get_errlog_size(spa_t *spa); extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count); extern void spa_errlog_rotate(spa_t *spa); extern void spa_errlog_drain(spa_t *spa); extern void spa_errlog_sync(spa_t *spa, uint64_t txg); extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); /* vdev cache */ extern void vdev_cache_stat_init(void); extern void vdev_cache_stat_fini(void); /* Initialization and termination */ extern void spa_init(int flags); extern void spa_fini(void); extern void spa_boot_init(); /* properties */ extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); /* asynchronous event notification */ extern void spa_event_notify(spa_t *spa, vdev_t *vdev, const char *name); #ifdef ZFS_DEBUG #define dprintf_bp(bp, fmt, ...) do { \ if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ kmem_free(__blkbuf, BP_SPRINTF_LEN); \ } \ _NOTE(CONSTCOND) } while (0) #else #define dprintf_bp(bp, fmt, ...) #endif extern boolean_t spa_debug_enabled(spa_t *spa); #define spa_dbgmsg(spa, ...) \ { \ if (spa_debug_enabled(spa)) \ zfs_dbgmsg(__VA_ARGS__); \ } extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */ #ifdef __cplusplus } #endif #endif /* _SYS_SPA_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap_impl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap_impl.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zap_impl.h (revision 274273) @@ -1,228 +1,227 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ #ifndef _SYS_ZAP_IMPL_H #define _SYS_ZAP_IMPL_H #include #include #include #ifdef __cplusplus extern "C" { #endif extern int fzap_default_block_shift; #define ZAP_MAGIC 0x2F52AB2ABULL #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_f.zap_block_shift) #define MZAP_ENT_LEN 64 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) -#define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT -#define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT) +#define MZAP_MAX_BLKSZ SPA_OLD_MAXBLOCKSIZE #define ZAP_NEED_CD (-1U) typedef struct mzap_ent_phys { uint64_t mze_value; uint32_t mze_cd; uint16_t mze_pad; /* in case we want to chain them someday */ char mze_name[MZAP_NAME_LEN]; } mzap_ent_phys_t; typedef struct mzap_phys { uint64_t mz_block_type; /* ZBT_MICRO */ uint64_t mz_salt; uint64_t mz_normflags; uint64_t mz_pad[5]; mzap_ent_phys_t mz_chunk[1]; /* actually variable size depending on block size */ } mzap_phys_t; typedef struct mzap_ent { avl_node_t mze_node; int mze_chunkid; uint64_t mze_hash; uint32_t mze_cd; /* copy from mze_phys->mze_cd */ } mzap_ent_t; #define MZE_PHYS(zap, mze) \ (&(zap)->zap_m.zap_phys->mz_chunk[(mze)->mze_chunkid]) /* * The (fat) zap is stored in one object. It is an array of * 1<= 6] [zap_leaf_t] [ptrtbl] ... * */ struct dmu_buf; struct zap_leaf; #define ZBT_LEAF ((1ULL << 63) + 0) #define ZBT_HEADER ((1ULL << 63) + 1) #define ZBT_MICRO ((1ULL << 63) + 3) /* any other values are ptrtbl blocks */ /* * the embedded pointer table takes up half a block: * block size / entry size (2^3) / 2 */ #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) /* * The embedded pointer table starts half-way through the block. Since * the pointer table itself is half the block, it starts at (64-bit) * word number (1<zap_f.zap_phys) \ [(idx) + (1<> (64 - (n)))) void fzap_byteswap(void *buf, size_t size); int fzap_count(zap_t *zap, uint64_t *count); int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *normalization_conflictp); void fzap_prefetch(zap_name_t *zn); int fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, uint64_t *tooverwrite); int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers); int fzap_remove(zap_name_t *zn, dmu_tx_t *tx); int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za); void fzap_get_stats(zap_t *zap, zap_stats_t *zs); void zap_put_leaf(struct zap_leaf *l); int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, dmu_tx_t *tx); void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags); #ifdef __cplusplus } #endif #endif /* _SYS_ZAP_IMPL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_ioctl.h (revision 274273) @@ -1,395 +1,398 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ #ifndef _SYS_ZFS_IOCTL_H #define _SYS_ZFS_IOCTL_H #include #include #include #include #include #include #ifdef _KERNEL #include #endif /* _KERNEL */ #ifdef __cplusplus extern "C" { #endif /* * The structures in this file are passed between userland and the * kernel. Userland may be running a 32-bit process, while the kernel * is 64-bit. Therefore, these structures need to compile the same in * 32-bit and 64-bit. This means not using type "long", and adding * explicit padding so that the 32-bit structure will not be packed more * tightly than the 64-bit structure (which requires 64-bit alignment). */ /* * Property values for snapdir */ #define ZFS_SNAPDIR_HIDDEN 0 #define ZFS_SNAPDIR_VISIBLE 1 /* * Field manipulation macros for the drr_versioninfo field of the * send stream header. */ /* * Header types for zfs send streams. */ typedef enum drr_headertype { DMU_SUBSTREAM = 0x1, DMU_COMPOUNDSTREAM = 0x2 } drr_headertype_t; #define DMU_GET_STREAM_HDRTYPE(vi) BF64_GET((vi), 0, 2) #define DMU_SET_STREAM_HDRTYPE(vi, x) BF64_SET((vi), 0, 2, x) #define DMU_GET_FEATUREFLAGS(vi) BF64_GET((vi), 2, 30) #define DMU_SET_FEATUREFLAGS(vi, x) BF64_SET((vi), 2, 30, x) /* * Feature flags for zfs send streams (flags in drr_versioninfo) */ #define DMU_BACKUP_FEATURE_DEDUP (1<<0) #define DMU_BACKUP_FEATURE_DEDUPPROPS (1<<1) #define DMU_BACKUP_FEATURE_SA_SPILL (1<<2) /* flags #3 - #15 are reserved for incompatible closed-source implementations */ #define DMU_BACKUP_FEATURE_EMBED_DATA (1<<16) #define DMU_BACKUP_FEATURE_EMBED_DATA_LZ4 (1<<17) +/* flag #18 is reserved for a Delphix feature */ +#define DMU_BACKUP_FEATURE_LARGE_BLOCKS (1<<19) /* * Mask of all supported backup features */ #define DMU_BACKUP_FEATURE_MASK (DMU_BACKUP_FEATURE_DEDUP | \ DMU_BACKUP_FEATURE_DEDUPPROPS | DMU_BACKUP_FEATURE_SA_SPILL | \ - DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) + DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_EMBED_DATA_LZ4 | \ + DMU_BACKUP_FEATURE_LARGE_BLOCKS) /* Are all features in the given flag word currently supported? */ #define DMU_STREAM_SUPPORTED(x) (!((x) & ~DMU_BACKUP_FEATURE_MASK)) /* * The drr_versioninfo field of the dmu_replay_record has the * following layout: * * 64 56 48 40 32 24 16 8 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * | reserved | feature-flags |C|S| * +-------+-------+-------+-------+-------+-------+-------+-------+ * * The low order two bits indicate the header type: SUBSTREAM (0x1) * or COMPOUNDSTREAM (0x2). Using two bits for this is historical: * this field used to be a version number, where the two version types * were 1 and 2. Using two bits for this allows earlier versions of * the code to be able to recognize send streams that don't use any * of the features indicated by feature flags. */ #define DMU_BACKUP_MAGIC 0x2F5bacbacULL #define DRR_FLAG_CLONE (1<<0) #define DRR_FLAG_CI_DATA (1<<1) /* * flags in the drr_checksumflags field in the DRR_WRITE and * DRR_WRITE_BYREF blocks */ #define DRR_CHECKSUM_DEDUP (1<<0) #define DRR_IS_DEDUP_CAPABLE(flags) ((flags) & DRR_CHECKSUM_DEDUP) /* * zfs ioctl command structure */ typedef struct dmu_replay_record { enum { DRR_BEGIN, DRR_OBJECT, DRR_FREEOBJECTS, DRR_WRITE, DRR_FREE, DRR_END, DRR_WRITE_BYREF, DRR_SPILL, DRR_WRITE_EMBEDDED, DRR_NUMTYPES } drr_type; uint32_t drr_payloadlen; union { struct drr_begin { uint64_t drr_magic; uint64_t drr_versioninfo; /* was drr_version */ uint64_t drr_creation_time; dmu_objset_type_t drr_type; uint32_t drr_flags; uint64_t drr_toguid; uint64_t drr_fromguid; char drr_toname[MAXNAMELEN]; } drr_begin; struct drr_end { zio_cksum_t drr_checksum; uint64_t drr_toguid; } drr_end; struct drr_object { uint64_t drr_object; dmu_object_type_t drr_type; dmu_object_type_t drr_bonustype; uint32_t drr_blksz; uint32_t drr_bonuslen; uint8_t drr_checksumtype; uint8_t drr_compress; uint8_t drr_pad[6]; uint64_t drr_toguid; /* bonus content follows */ } drr_object; struct drr_freeobjects { uint64_t drr_firstobj; uint64_t drr_numobjs; uint64_t drr_toguid; } drr_freeobjects; struct drr_write { uint64_t drr_object; dmu_object_type_t drr_type; uint32_t drr_pad; uint64_t drr_offset; uint64_t drr_length; uint64_t drr_toguid; uint8_t drr_checksumtype; uint8_t drr_checksumflags; uint8_t drr_pad2[6]; ddt_key_t drr_key; /* deduplication key */ /* content follows */ } drr_write; struct drr_free { uint64_t drr_object; uint64_t drr_offset; uint64_t drr_length; uint64_t drr_toguid; } drr_free; struct drr_write_byref { /* where to put the data */ uint64_t drr_object; uint64_t drr_offset; uint64_t drr_length; uint64_t drr_toguid; /* where to find the prior copy of the data */ uint64_t drr_refguid; uint64_t drr_refobject; uint64_t drr_refoffset; /* properties of the data */ uint8_t drr_checksumtype; uint8_t drr_checksumflags; uint8_t drr_pad2[6]; ddt_key_t drr_key; /* deduplication key */ } drr_write_byref; struct drr_spill { uint64_t drr_object; uint64_t drr_length; uint64_t drr_toguid; uint64_t drr_pad[4]; /* needed for crypto */ /* spill data follows */ } drr_spill; struct drr_write_embedded { uint64_t drr_object; uint64_t drr_offset; /* logical length, should equal blocksize */ uint64_t drr_length; uint64_t drr_toguid; uint8_t drr_compression; uint8_t drr_etype; uint8_t drr_pad[6]; uint32_t drr_lsize; /* uncompressed size of payload */ uint32_t drr_psize; /* compr. (real) size of payload */ /* (possibly compressed) content follows */ } drr_write_embedded; } drr_u; } dmu_replay_record_t; /* diff record range types */ typedef enum diff_type { DDR_NONE = 0x1, DDR_INUSE = 0x2, DDR_FREE = 0x4 } diff_type_t; /* * The diff reports back ranges of free or in-use objects. */ typedef struct dmu_diff_record { uint64_t ddr_type; uint64_t ddr_first; uint64_t ddr_last; } dmu_diff_record_t; typedef struct zinject_record { uint64_t zi_objset; uint64_t zi_object; uint64_t zi_start; uint64_t zi_end; uint64_t zi_guid; uint32_t zi_level; uint32_t zi_error; uint64_t zi_type; uint32_t zi_freq; uint32_t zi_failfast; char zi_func[MAXNAMELEN]; uint32_t zi_iotype; int32_t zi_duration; uint64_t zi_timer; uint32_t zi_cmd; uint32_t zi_pad; } zinject_record_t; #define ZINJECT_NULL 0x1 #define ZINJECT_FLUSH_ARC 0x2 #define ZINJECT_UNLOAD_SPA 0x4 typedef enum zinject_type { ZINJECT_UNINITIALIZED, ZINJECT_DATA_FAULT, ZINJECT_DEVICE_FAULT, ZINJECT_LABEL_FAULT, ZINJECT_IGNORED_WRITES, ZINJECT_PANIC, ZINJECT_DELAY_IO, } zinject_type_t; typedef struct zfs_share { uint64_t z_exportdata; uint64_t z_sharedata; uint64_t z_sharetype; /* 0 = share, 1 = unshare */ uint64_t z_sharemax; /* max length of share string */ } zfs_share_t; /* * ZFS file systems may behave the usual, POSIX-compliant way, where * name lookups are case-sensitive. They may also be set up so that * all the name lookups are case-insensitive, or so that only some * lookups, the ones that set an FIGNORECASE flag, are case-insensitive. */ typedef enum zfs_case { ZFS_CASE_SENSITIVE, ZFS_CASE_INSENSITIVE, ZFS_CASE_MIXED } zfs_case_t; typedef struct zfs_cmd { char zc_name[MAXPATHLEN]; /* name of pool or dataset */ uint64_t zc_nvlist_src; /* really (char *) */ uint64_t zc_nvlist_src_size; uint64_t zc_nvlist_dst; /* really (char *) */ uint64_t zc_nvlist_dst_size; boolean_t zc_nvlist_dst_filled; /* put an nvlist in dst? */ int zc_pad2; /* * The following members are for legacy ioctls which haven't been * converted to the new method. */ uint64_t zc_history; /* really (char *) */ char zc_value[MAXPATHLEN * 2]; char zc_string[MAXNAMELEN]; uint64_t zc_guid; uint64_t zc_nvlist_conf; /* really (char *) */ uint64_t zc_nvlist_conf_size; uint64_t zc_cookie; uint64_t zc_objset_type; uint64_t zc_perm_action; uint64_t zc_history_len; uint64_t zc_history_offset; uint64_t zc_obj; uint64_t zc_iflags; /* internal to zfs(7fs) */ zfs_share_t zc_share; dmu_objset_stats_t zc_objset_stats; struct drr_begin zc_begin_record; zinject_record_t zc_inject_record; uint32_t zc_defer_destroy; uint32_t zc_flags; uint64_t zc_action_handle; int zc_cleanup_fd; uint8_t zc_pad[4]; /* alignment */ uint64_t zc_sendobj; uint64_t zc_fromobj; uint64_t zc_createtxg; zfs_stat_t zc_stat; } zfs_cmd_t; typedef struct zfs_useracct { char zu_domain[256]; uid_t zu_rid; uint32_t zu_pad; uint64_t zu_space; } zfs_useracct_t; #define ZFSDEV_MAX_MINOR (1 << 16) #define ZFS_MIN_MINOR (ZFSDEV_MAX_MINOR + 1) #define ZPOOL_EXPORT_AFTER_SPLIT 0x1 #ifdef _KERNEL typedef struct zfs_creat { nvlist_t *zct_zplprops; nvlist_t *zct_props; } zfs_creat_t; extern dev_info_t *zfs_dip; extern int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr); extern int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr); extern int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr); extern int zfs_busy(void); extern int zfs_unmount_snap(const char *); extern void zfs_destroy_unmount_origin(const char *); /* * ZFS minor numbers can refer to either a control device instance or * a zvol. Depending on the value of zss_type, zss_data points to either * a zvol_state_t or a zfs_onexit_t. */ enum zfs_soft_state_type { ZSST_ZVOL, ZSST_CTLDEV }; typedef struct zfs_soft_state { enum zfs_soft_state_type zss_type; void *zss_data; } zfs_soft_state_t; extern void *zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which); extern minor_t zfsdev_minor_alloc(void); extern void *zfsdev_state; extern kmutex_t zfsdev_state_lock; #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _SYS_ZFS_IOCTL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zfs_znode.h (revision 274273) @@ -1,360 +1,358 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ #ifndef _SYS_FS_ZFS_ZNODE_H #define _SYS_FS_ZFS_ZNODE_H #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #endif #include #include #ifdef __cplusplus extern "C" { #endif /* * Additional file level attributes, that are stored * in the upper half of zp_flags */ #define ZFS_READONLY 0x0000000100000000 #define ZFS_HIDDEN 0x0000000200000000 #define ZFS_SYSTEM 0x0000000400000000 #define ZFS_ARCHIVE 0x0000000800000000 #define ZFS_IMMUTABLE 0x0000001000000000 #define ZFS_NOUNLINK 0x0000002000000000 #define ZFS_APPENDONLY 0x0000004000000000 #define ZFS_NODUMP 0x0000008000000000 #define ZFS_OPAQUE 0x0000010000000000 #define ZFS_AV_QUARANTINED 0x0000020000000000 #define ZFS_AV_MODIFIED 0x0000040000000000 #define ZFS_REPARSE 0x0000080000000000 #define ZFS_OFFLINE 0x0000100000000000 #define ZFS_SPARSE 0x0000200000000000 #define ZFS_ATTR_SET(zp, attr, value, pflags, tx) \ { \ if (value) \ pflags |= attr; \ else \ pflags &= ~attr; \ VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_FLAGS(zp->z_zfsvfs), \ &pflags, sizeof (pflags), tx)); \ } /* * Define special zfs pflags */ #define ZFS_XATTR 0x1 /* is an extended attribute */ #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ #define ZFS_ACL_OBJ_ACE 0x8 /* ACL has CMPLX Object ACE */ #define ZFS_ACL_PROTECTED 0x10 /* ACL protected */ #define ZFS_ACL_DEFAULTED 0x20 /* ACL should be defaulted */ #define ZFS_ACL_AUTO_INHERIT 0x40 /* ACL should be inherited */ #define ZFS_BONUS_SCANSTAMP 0x80 /* Scanstamp in bonus area */ #define ZFS_NO_EXECS_DENIED 0x100 /* exec was given to everyone */ #define SA_ZPL_ATIME(z) z->z_attr_table[ZPL_ATIME] #define SA_ZPL_MTIME(z) z->z_attr_table[ZPL_MTIME] #define SA_ZPL_CTIME(z) z->z_attr_table[ZPL_CTIME] #define SA_ZPL_CRTIME(z) z->z_attr_table[ZPL_CRTIME] #define SA_ZPL_GEN(z) z->z_attr_table[ZPL_GEN] #define SA_ZPL_DACL_ACES(z) z->z_attr_table[ZPL_DACL_ACES] #define SA_ZPL_XATTR(z) z->z_attr_table[ZPL_XATTR] #define SA_ZPL_SYMLINK(z) z->z_attr_table[ZPL_SYMLINK] #define SA_ZPL_RDEV(z) z->z_attr_table[ZPL_RDEV] #define SA_ZPL_SCANSTAMP(z) z->z_attr_table[ZPL_SCANSTAMP] #define SA_ZPL_UID(z) z->z_attr_table[ZPL_UID] #define SA_ZPL_GID(z) z->z_attr_table[ZPL_GID] #define SA_ZPL_PARENT(z) z->z_attr_table[ZPL_PARENT] #define SA_ZPL_LINKS(z) z->z_attr_table[ZPL_LINKS] #define SA_ZPL_MODE(z) z->z_attr_table[ZPL_MODE] #define SA_ZPL_DACL_COUNT(z) z->z_attr_table[ZPL_DACL_COUNT] #define SA_ZPL_FLAGS(z) z->z_attr_table[ZPL_FLAGS] #define SA_ZPL_SIZE(z) z->z_attr_table[ZPL_SIZE] #define SA_ZPL_ZNODE_ACL(z) z->z_attr_table[ZPL_ZNODE_ACL] #define SA_ZPL_PAD(z) z->z_attr_table[ZPL_PAD] /* * Is ID ephemeral? */ #define IS_EPHEMERAL(x) (x > MAXUID) /* * Should we use FUIDs? */ #define USE_FUIDS(version, os) (version >= ZPL_VERSION_FUID && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) #define USE_SA(version, os) (version >= ZPL_VERSION_SA && \ spa_version(dmu_objset_spa(os)) >= SPA_VERSION_SA) #define MASTER_NODE_OBJ 1 /* * Special attributes for master node. * "userquota@" and "groupquota@" are also valid (from * zfs_userquota_prop_prefixes[]). */ #define ZFS_FSID "FSID" #define ZFS_UNLINKED_SET "DELETE_QUEUE" #define ZFS_ROOT_OBJ "ROOT" #define ZPL_VERSION_STR "VERSION" #define ZFS_FUID_TABLES "FUID" #define ZFS_SHARES_DIR "SHARES" #define ZFS_SA_ATTRS "SA_ATTRS" -#define ZFS_MAX_BLOCKSIZE (SPA_MAXBLOCKSIZE) - /* * Path component length * * The generic fs code uses MAXNAMELEN to represent * what the largest component length is. Unfortunately, * this length includes the terminating NULL. ZFS needs * to tell the users via pathconf() and statvfs() what the * true maximum length of a component is, excluding the NULL. */ #define ZFS_MAXNAMELEN (MAXNAMELEN - 1) /* * Convert mode bits (zp_mode) to BSD-style DT_* values for storing in * the directory entries. */ #define IFTODT(mode) (((mode) & S_IFMT) >> 12) /* * The directory entry has the type (currently unused on Solaris) in the * top 4 bits, and the object number in the low 48 bits. The "middle" * 12 bits are unused. */ #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) /* * Directory entry locks control access to directory entries. * They are used to protect creates, deletes, and renames. * Each directory znode has a mutex and a list of locked names. */ #ifdef _KERNEL typedef struct zfs_dirlock { char *dl_name; /* directory entry being locked */ uint32_t dl_sharecnt; /* 0 if exclusive, > 0 if shared */ uint8_t dl_namelock; /* 1 if z_name_lock is NOT held */ uint16_t dl_namesize; /* set if dl_name was allocated */ kcondvar_t dl_cv; /* wait for entry to be unlocked */ struct znode *dl_dzp; /* directory znode */ struct zfs_dirlock *dl_next; /* next in z_dirlocks list */ } zfs_dirlock_t; typedef struct znode { struct zfsvfs *z_zfsvfs; vnode_t *z_vnode; uint64_t z_id; /* object ID for this znode */ kmutex_t z_lock; /* znode modification lock */ krwlock_t z_parent_lock; /* parent lock for directories */ krwlock_t z_name_lock; /* "master" lock for dirent locks */ zfs_dirlock_t *z_dirlocks; /* directory entry lock list */ kmutex_t z_range_lock; /* protects changes to z_range_avl */ avl_tree_t z_range_avl; /* avl tree of file range locks */ uint8_t z_unlinked; /* file has been unlinked */ uint8_t z_atime_dirty; /* atime needs to be synced */ uint8_t z_zn_prefetch; /* Prefetch znodes? */ uint8_t z_moved; /* Has this znode been moved? */ uint_t z_blksz; /* block size in bytes */ uint_t z_seq; /* modification sequence number */ uint64_t z_mapcnt; /* number of pages mapped to file */ uint64_t z_gen; /* generation (cached) */ uint64_t z_size; /* file size (cached) */ uint64_t z_atime[2]; /* atime (cached) */ uint64_t z_links; /* file links (cached) */ uint64_t z_pflags; /* pflags (cached) */ uint64_t z_uid; /* uid fuid (cached) */ uint64_t z_gid; /* gid fuid (cached) */ mode_t z_mode; /* mode (cached) */ uint32_t z_sync_cnt; /* synchronous open count */ kmutex_t z_acl_lock; /* acl data lock */ zfs_acl_t *z_acl_cached; /* cached acl */ list_node_t z_link_node; /* all znodes in fs link */ sa_handle_t *z_sa_hdl; /* handle to sa data */ boolean_t z_is_sa; /* are we native sa? */ } znode_t; /* * Range locking rules * -------------------- * 1. When truncating a file (zfs_create, zfs_setattr, zfs_space) the whole * file range needs to be locked as RL_WRITER. Only then can the pages be * freed etc and zp_size reset. zp_size must be set within range lock. * 2. For writes and punching holes (zfs_write & zfs_space) just the range * being written or freed needs to be locked as RL_WRITER. * Multiple writes at the end of the file must coordinate zp_size updates * to ensure data isn't lost. A compare and swap loop is currently used * to ensure the file size is at least the offset last written. * 3. For reads (zfs_read, zfs_get_data & zfs_putapage) just the range being * read needs to be locked as RL_READER. A check against zp_size can then * be made for reading beyond end of file. */ /* * Convert between znode pointers and vnode pointers */ #define ZTOV(ZP) ((ZP)->z_vnode) #define VTOZ(VP) ((znode_t *)(VP)->v_data) /* Called on entry to each ZFS vnode and vfs operation */ #define ZFS_ENTER(zfsvfs) \ { \ rrm_enter_read(&(zfsvfs)->z_teardown_lock, FTAG); \ if ((zfsvfs)->z_unmounted) { \ ZFS_EXIT(zfsvfs); \ return (EIO); \ } \ } /* Must be called before exiting the vop */ #define ZFS_EXIT(zfsvfs) rrm_exit(&(zfsvfs)->z_teardown_lock, FTAG) /* Verifies the znode is valid */ #define ZFS_VERIFY_ZP(zp) \ if ((zp)->z_sa_hdl == NULL) { \ ZFS_EXIT((zp)->z_zfsvfs); \ return (EIO); \ } \ /* * Macros for dealing with dmu_buf_hold */ #define ZFS_OBJ_HASH(obj_num) ((obj_num) & (ZFS_OBJ_MTX_SZ - 1)) #define ZFS_OBJ_MUTEX(zfsvfs, obj_num) \ (&(zfsvfs)->z_hold_mtx[ZFS_OBJ_HASH(obj_num)]) #define ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num) \ mutex_enter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_TRYENTER(zfsvfs, obj_num) \ mutex_tryenter(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) #define ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num) \ mutex_exit(ZFS_OBJ_MUTEX((zfsvfs), (obj_num))) /* Encode ZFS stored time values from a struct timespec */ #define ZFS_TIME_ENCODE(tp, stmp) \ { \ (stmp)[0] = (uint64_t)(tp)->tv_sec; \ (stmp)[1] = (uint64_t)(tp)->tv_nsec; \ } /* Decode ZFS stored time values to a struct timespec */ #define ZFS_TIME_DECODE(tp, stmp) \ { \ (tp)->tv_sec = (time_t)(stmp)[0]; \ (tp)->tv_nsec = (long)(stmp)[1]; \ } /* * Timestamp defines */ #define ACCESSED (AT_ATIME) #define STATE_CHANGED (AT_CTIME) #define CONTENT_MODIFIED (AT_MTIME | AT_CTIME) #define ZFS_ACCESSTIME_STAMP(zfsvfs, zp) \ if ((zfsvfs)->z_atime && !((zfsvfs)->z_vfs->vfs_flag & VFS_RDONLY)) \ zfs_tstamp_update_setup(zp, ACCESSED, NULL, NULL, B_FALSE); extern int zfs_init_fs(zfsvfs_t *, znode_t **); extern void zfs_set_dataprop(objset_t *); extern void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *, dmu_tx_t *tx); extern void zfs_tstamp_update_setup(znode_t *, uint_t, uint64_t [2], uint64_t [2], boolean_t); extern void zfs_grow_blocksize(znode_t *, uint64_t, dmu_tx_t *); extern int zfs_freesp(znode_t *, uint64_t, uint64_t, int, boolean_t); extern void zfs_znode_init(void); extern void zfs_znode_fini(void); extern int zfs_zget(zfsvfs_t *, uint64_t, znode_t **); extern int zfs_rezget(znode_t *); extern void zfs_zinactive(znode_t *); extern void zfs_znode_delete(znode_t *, dmu_tx_t *); extern void zfs_znode_free(znode_t *); extern void zfs_remove_op_tables(); extern int zfs_create_op_tables(); extern int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr); extern dev_t zfs_cmpldev(uint64_t); extern int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value); extern int zfs_get_stats(objset_t *os, nvlist_t *nv); extern void zfs_znode_dmu_fini(znode_t *); extern void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, vsecattr_t *, zfs_fuid_info_t *, vattr_t *vap); extern int zfs_log_create_txtype(zil_create_t, vsecattr_t *vsecp, vattr_t *vap); extern void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, char *name, uint64_t foid); #define ZFS_NO_OBJECT 0 /* no object id */ extern void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name); extern void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, char *link); extern void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp); extern void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t len, int ioflag); extern void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len); extern void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp); extern void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp); extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx); extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx); extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx); extern caddr_t zfs_map_page(page_t *, enum seg_rw); extern void zfs_unmap_page(page_t *, caddr_t); extern zil_get_data_t zfs_get_data; extern zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE]; extern int zfsfstype; #endif /* _KERNEL */ extern int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len); #ifdef __cplusplus } #endif #endif /* _SYS_FS_ZFS_ZNODE_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil.h (revision 274273) @@ -1,429 +1,428 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_H #define _SYS_ZIL_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif /* * Intent log format: * * Each objset has its own intent log. The log header (zil_header_t) * for objset N's intent log is kept in the Nth object of the SPA's * intent_log objset. The log header points to a chain of log blocks, * each of which contains log records (i.e., transactions) followed by * a log block trailer (zil_trailer_t). The format of a log record * depends on the record (or transaction) type, but all records begin * with a common structure that defines the type, length, and txg. */ /* * Intent log header - this on disk structure holds fields to manage * the log. All fields are 64 bit to easily handle cross architectures. */ typedef struct zil_header { uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ uint64_t zh_replay_seq; /* highest replayed sequence number */ blkptr_t zh_log; /* log chain */ uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */ uint64_t zh_flags; /* header flags */ uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */ uint64_t zh_pad[3]; } zil_header_t; /* * zh_flags bit settings */ #define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */ #define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */ /* * Log block chaining. * * Log blocks are chained together. Originally they were chained at the * end of the block. For performance reasons the chain was moved to the * beginning of the block which allows writes for only the data being used. * The older position is supported for backwards compatability. * * The zio_eck_t contains a zec_cksum which for the intent log is * the sequence number of this log block. A seq of 0 is invalid. * The zec_cksum is checked by the SPA against the sequence * number passed in the blk_cksum field of the blkptr_t */ typedef struct zil_chain { uint64_t zc_pad; blkptr_t zc_next_blk; /* next block in chain */ uint64_t zc_nused; /* bytes in log block used */ zio_eck_t zc_eck; /* block trailer */ } zil_chain_t; #define ZIL_MIN_BLKSZ 4096ULL -#define ZIL_MAX_BLKSZ SPA_MAXBLOCKSIZE /* * The words of a log block checksum. */ #define ZIL_ZC_GUID_0 0 #define ZIL_ZC_GUID_1 1 #define ZIL_ZC_OBJSET 2 #define ZIL_ZC_SEQ 3 typedef enum zil_create { Z_FILE, Z_DIR, Z_XATTRDIR, } zil_create_t; /* * size of xvattr log section. * its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps * for create time and a single 64 bit integer for all of the attributes, * and 4 64 bit integers (32 bytes) for the scanstamp. * */ #define ZIL_XVAT_SIZE(mapsize) \ sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \ (sizeof (uint64_t) * 7) /* * Size of ACL in log. The ACE data is padded out to properly align * on 8 byte boundary. */ #define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t))) /* * Intent log transaction types and record structures */ #define TX_CREATE 1 /* Create file */ #define TX_MKDIR 2 /* Make directory */ #define TX_MKXATTR 3 /* Make XATTR directory */ #define TX_SYMLINK 4 /* Create symbolic link to a file */ #define TX_REMOVE 5 /* Remove file */ #define TX_RMDIR 6 /* Remove directory */ #define TX_LINK 7 /* Create hard link to a file */ #define TX_RENAME 8 /* Rename a file */ #define TX_WRITE 9 /* File write */ #define TX_TRUNCATE 10 /* Truncate a file */ #define TX_SETATTR 11 /* Set file attributes */ #define TX_ACL_V0 12 /* Set old formatted ACL */ #define TX_ACL 13 /* Set ACL */ #define TX_CREATE_ACL 14 /* create with ACL */ #define TX_CREATE_ATTR 15 /* create + attrs */ #define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ #define TX_MKDIR_ACL 17 /* mkdir with ACL */ #define TX_MKDIR_ATTR 18 /* mkdir with attr */ #define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */ #define TX_WRITE2 20 /* dmu_sync EALREADY write */ #define TX_MAX_TYPE 21 /* Max transaction type */ /* * The transactions for mkdir, symlink, remove, rmdir, link, and rename * may have the following bit set, indicating the original request * specified case-insensitive handling of names. */ #define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */ /* * Transactions for write, truncate, setattr, acl_v0, and acl can be logged * out of order. For convenience in the code, all such records must have * lr_foid at the same offset. */ #define TX_OOO(txtype) \ ((txtype) == TX_WRITE || \ (txtype) == TX_TRUNCATE || \ (txtype) == TX_SETATTR || \ (txtype) == TX_ACL_V0 || \ (txtype) == TX_ACL || \ (txtype) == TX_WRITE2) /* * Format of log records. * The fields are carefully defined to allow them to be aligned * and sized the same on sparc & intel architectures. * Each log record has a common structure at the beginning. * * The log record on disk (lrc_seq) holds the sequence number of all log * records which is used to ensure we don't replay the same record. */ typedef struct { /* common log record header */ uint64_t lrc_txtype; /* intent log transaction type */ uint64_t lrc_reclen; /* transaction record length */ uint64_t lrc_txg; /* dmu transaction group number */ uint64_t lrc_seq; /* see comment above */ } lr_t; /* * Common start of all out-of-order record types (TX_OOO() above). */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id */ } lr_ooo_t; /* * Handle option extended vattr attributes. * * Whenever new attributes are added the version number * will need to be updated as will code in * zfs_log.c and zfs_replay.c */ typedef struct { uint32_t lr_attr_masksize; /* number of elements in array */ uint32_t lr_attr_bitmap; /* First entry of array */ /* remainder of array and any additional fields */ } lr_attr_t; /* * log record for creates without optional ACL. * This log record does support optional xvattr_t attributes. */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* object id of directory */ uint64_t lr_foid; /* object id of created file object */ uint64_t lr_mode; /* mode of object */ uint64_t lr_uid; /* uid of object */ uint64_t lr_gid; /* gid of object */ uint64_t lr_gen; /* generation (txg of creation) */ uint64_t lr_crtime[2]; /* creation time */ uint64_t lr_rdev; /* rdev of object to create */ /* name of object to create follows this */ /* for symlinks, link content follows name */ /* for creates with xvattr data, the name follows the xvattr info */ } lr_create_t; /* * FUID ACL record will be an array of ACEs from the original ACL. * If this array includes ephemeral IDs, the record will also include * an array of log-specific FUIDs to replace the ephemeral IDs. * Only one copy of each unique domain will be present, so the log-specific * FUIDs will use an index into a compressed domain table. On replay this * information will be used to construct real FUIDs (and bypass idmap, * since it may not be available). */ /* * Log record for creates with optional ACL * This log record is also used for recording any FUID * information needed for replaying the create. If the * file doesn't have any actual ACEs then the lr_aclcnt * would be zero. * * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's. * If create is also setting xvattr's, then acl data follows xvattr. * If ACE FUIDs are needed then they will follow the xvattr_t. Following * the FUIDs will be the domain table information. The FUIDs for the owner * and group will be in lr_create. Name follows ACL data. */ typedef struct { lr_create_t lr_create; /* common create portion */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ } lr_acl_create_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ /* name of object to remove follows this */ } lr_remove_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ uint64_t lr_link_obj; /* obj id of link */ /* name of object to link follows this */ } lr_link_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_sdoid; /* obj id of source directory */ uint64_t lr_tdoid; /* obj id of target directory */ /* 2 strings: names of source and destination follow this */ } lr_rename_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to write */ uint64_t lr_offset; /* offset to write to */ uint64_t lr_length; /* user data length to write */ uint64_t lr_blkoff; /* no longer used */ blkptr_t lr_blkptr; /* spa block pointer for replay */ /* write data will follow for small writes */ } lr_write_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id of file to truncate */ uint64_t lr_offset; /* offset to truncate from */ uint64_t lr_length; /* length to truncate */ } lr_truncate_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_mask; /* mask of attributes to set */ uint64_t lr_mode; /* mode to set */ uint64_t lr_uid; /* uid to set */ uint64_t lr_gid; /* gid to set */ uint64_t lr_size; /* size to set */ uint64_t lr_atime[2]; /* access time */ uint64_t lr_mtime[2]; /* modification time */ /* optional attribute lr_attr_t may be here */ } lr_setattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of acl entries */ /* lr_aclcnt number of ace_t entries follow this */ } lr_acl_v0_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ /* lr_acl_bytes number of variable sized ace's follows */ } lr_acl_t; /* * ZIL structure definitions, interface function prototype and globals. */ /* * Writes are handled in three different ways: * * WR_INDIRECT: * In this mode, if we need to commit the write later, then the block * is immediately written into the file system (using dmu_sync), * and a pointer to the block is put into the log record. * When the txg commits the block is linked in. * This saves additionally writing the data into the log record. * There are a few requirements for this to occur: * - write is greater than zfs/zvol_immediate_write_sz * - not using slogs (as slogs are assumed to always be faster * than writing into the main pool) * - the write occupies only one block * WR_COPIED: * If we know we'll immediately be committing the * transaction (FSYNC or FDSYNC), the we allocate a larger * log record here for the data and copy the data in. * WR_NEED_COPY: * Otherwise we don't allocate a buffer, and *if* we need to * flush the write later then a buffer is allocated and * we retrieve the data using the dmu. */ typedef enum { WR_INDIRECT, /* indirect - a large write (dmu_sync() data */ /* and put blkptr in log, rather than actual data) */ WR_COPIED, /* immediate - data is copied into lr_write_t */ WR_NEED_COPY, /* immediate - data needs to be copied if pushed */ WR_NUM_STATES /* number of states */ } itx_wr_state_t; typedef struct itx { list_node_t itx_node; /* linkage on zl_itx_list */ void *itx_private; /* type-specific opaque data */ itx_wr_state_t itx_wr_state; /* write state */ uint8_t itx_sync; /* synchronous transaction */ uint64_t itx_sod; /* record size on disk */ uint64_t itx_oid; /* object id */ lr_t itx_lr; /* common part of log record */ /* followed by type-specific part of lr_xx_t and its immediate data */ } itx_t; typedef int zil_parse_blk_func_t(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t txg); typedef int zil_parse_lr_func_t(zilog_t *zilog, lr_t *lr, void *arg, uint64_t txg); typedef int zil_replay_func_t(); typedef int zil_get_data_t(void *arg, lr_write_t *lr, char *dbuf, zio_t *zio); extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg); extern void zil_init(void); extern void zil_fini(void); extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys); extern void zil_free(zilog_t *zilog); extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data); extern void zil_close(zilog_t *zilog); extern void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]); extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx); extern void zil_destroy(zilog_t *zilog, boolean_t keep_first); extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx); extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize); extern void zil_itx_destroy(itx_t *itx); extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx); extern void zil_commit(zilog_t *zilog, uint64_t oid); extern int zil_vdev_offline(const char *osname, void *txarg); extern int zil_claim(const char *osname, void *txarg); extern int zil_check_log_chain(const char *osname, void *txarg); extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_clean(zilog_t *zilog, uint64_t synced_txg); extern int zil_suspend(const char *osname, void **cookiep); extern void zil_resume(void *cookie); extern void zil_add_block(zilog_t *zilog, const blkptr_t *bp); extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp); extern void zil_set_sync(zilog_t *zilog, uint64_t syncval); extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval); extern int zil_replay_disable; #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil_impl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil_impl.h (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/zil_impl.h (revision 274273) @@ -1,149 +1,149 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_IMPL_H #define _SYS_ZIL_IMPL_H #include #include #ifdef __cplusplus extern "C" { #endif /* * Log write buffer. */ typedef struct lwb { zilog_t *lwb_zilog; /* back pointer to log struct */ blkptr_t lwb_blk; /* on disk address of this log blk */ int lwb_nused; /* # used bytes in buffer */ int lwb_sz; /* size of block and buffer */ char *lwb_buf; /* log write buffer */ zio_t *lwb_zio; /* zio for this buffer */ dmu_tx_t *lwb_tx; /* tx for log block allocation */ uint64_t lwb_max_txg; /* highest txg in this lwb */ list_node_t lwb_node; /* zilog->zl_lwb_list linkage */ } lwb_t; /* * Intent log transaction lists */ typedef struct itxs { list_t i_sync_list; /* list of synchronous itxs */ avl_tree_t i_async_tree; /* tree of foids for async itxs */ } itxs_t; typedef struct itxg { kmutex_t itxg_lock; /* lock for this structure */ uint64_t itxg_txg; /* txg for this chain */ uint64_t itxg_sod; /* total size on disk for this txg */ itxs_t *itxg_itxs; /* sync and async itxs */ } itxg_t; /* for async nodes we build up an AVL tree of lists of async itxs per file */ typedef struct itx_async_node { uint64_t ia_foid; /* file object id */ list_t ia_list; /* list of async itxs for this foid */ avl_node_t ia_node; /* AVL tree linkage */ } itx_async_node_t; /* * Vdev flushing: during a zil_commit(), we build up an AVL tree of the vdevs * we've touched so we know which ones need a write cache flush at the end. */ typedef struct zil_vdev_node { uint64_t zv_vdev; /* vdev to be flushed */ avl_node_t zv_node; /* AVL tree linkage */ } zil_vdev_node_t; #define ZIL_PREV_BLKS 16 /* * Stable storage intent log management structure. One per dataset. */ struct zilog { kmutex_t zl_lock; /* protects most zilog_t fields */ struct dsl_pool *zl_dmu_pool; /* DSL pool */ spa_t *zl_spa; /* handle for read/write log */ const zil_header_t *zl_header; /* log header buffer */ objset_t *zl_os; /* object set we're logging */ zil_get_data_t *zl_get_data; /* callback to get object content */ zio_t *zl_root_zio; /* log writer root zio */ uint64_t zl_lr_seq; /* on-disk log record sequence number */ uint64_t zl_commit_lr_seq; /* last committed on-disk lr seq */ uint64_t zl_destroy_txg; /* txg of last zil_destroy() */ uint64_t zl_replayed_seq[TXG_SIZE]; /* last replayed rec seq */ uint64_t zl_replaying_seq; /* current replay seq number */ uint32_t zl_suspend; /* log suspend count */ kcondvar_t zl_cv_writer; /* log writer thread completion */ kcondvar_t zl_cv_suspend; /* log suspend completion */ uint8_t zl_suspending; /* log is currently suspending */ uint8_t zl_keep_first; /* keep first log block in destroy */ uint8_t zl_replay; /* replaying records while set */ uint8_t zl_stop_sync; /* for debugging */ uint8_t zl_writer; /* boolean: write setup in progress */ uint8_t zl_logbias; /* latency or throughput */ uint8_t zl_sync; /* synchronous or asynchronous */ int zl_parse_error; /* last zil_parse() error */ uint64_t zl_parse_blk_seq; /* highest blk seq on last parse */ uint64_t zl_parse_lr_seq; /* highest lr seq on last parse */ uint64_t zl_parse_blk_count; /* number of blocks parsed */ uint64_t zl_parse_lr_count; /* number of log records parsed */ uint64_t zl_next_batch; /* next batch number */ uint64_t zl_com_batch; /* committed batch number */ kcondvar_t zl_cv_batch[2]; /* batch condition variables */ itxg_t zl_itxg[TXG_SIZE]; /* intent log txg chains */ list_t zl_itx_commit_list; /* itx list to be committed */ uint64_t zl_itx_list_sz; /* total size of records on list */ uint64_t zl_cur_used; /* current commit log size used */ list_t zl_lwb_list; /* in-flight log write list */ kmutex_t zl_vdev_lock; /* protects zl_vdev_tree */ avl_tree_t zl_vdev_tree; /* vdevs to flush in zil_commit() */ taskq_t *zl_clean_taskq; /* runs lwb and itx clean tasks */ avl_tree_t zl_bp_tree; /* track bps during log parse */ clock_t zl_replay_time; /* lbolt of when replay started */ uint64_t zl_replay_blks; /* number of log blocks replayed */ zil_header_t zl_old_header; /* debugging aid */ uint_t zl_prev_blks[ZIL_PREV_BLKS]; /* size - sector rounded */ uint_t zl_prev_rotor; /* rotor for zl_prev[] */ txg_node_t zl_dirty_link; /* protected by dp_dirty_zilogs list */ }; typedef struct zil_bp_node { dva_t zn_dva; avl_node_t zn_node; } zil_bp_node_t; -#define ZIL_MAX_LOG_DATA (SPA_MAXBLOCKSIZE - sizeof (zil_chain_t) - \ +#define ZIL_MAX_LOG_DATA (SPA_OLD_MAXBLOCKSIZE - sizeof (zil_chain_t) - \ sizeof (lr_write_t)) #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_IMPL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c (revision 274273) @@ -1,3332 +1,3332 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual device management. */ static vdev_ops_t *vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, &vdev_disk_ops, &vdev_file_ops, &vdev_missing_ops, &vdev_hole_ops, NULL }; /* maximum scrub/resilver I/O queue per leaf vdev */ int zfs_scrub_limit = 10; /* * When a vdev is added, it will be divided into approximately (but no * more than) this number of metaslabs. */ int metaslabs_per_vdev = 200; /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, **opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; for (int c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } /* * Get the minimum allocatable size. We define the allocatable size as * the vdev's asize rounded to the nearest metaslab. This allows us to * replace or attach devices which don't have the same physical size but * can still satisfy the same number of allocations. */ uint64_t vdev_get_min_asize(vdev_t *vd) { vdev_t *pvd = vd->vdev_parent; /* * If our parent is NULL (inactive spare or cache) or is the root, * just return our own asize. */ if (pvd == NULL) return (vd->vdev_asize); /* * The top-level vdev just returns the allocatable size rounded * to the nearest metaslab. */ if (vd == vd->vdev_top) return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); /* * The allocatable space for a raidz vdev is N * sizeof(smallest child), * so each child must provide at least 1/Nth of its asize. */ if (pvd->vdev_ops == &vdev_raidz_ops) return (pvd->vdev_min_asize / pvd->vdev_children); return (pvd->vdev_min_asize); } void vdev_set_min_asize(vdev_t *vd) { vd->vdev_min_asize = vdev_get_min_asize(vd); for (int c = 0; c < vd->vdev_children; c++) vdev_set_min_asize(vd->vdev_child[c]); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (vdev < rvd->vdev_children) { ASSERT(rvd->vdev_child[vdev] != NULL); return (rvd->vdev_child[vdev]); } return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_zalloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { bcopy(pvd->vdev_child, newchild, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc; ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); for (int c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); for (int c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; spa->spa_load_guid = spa_generate_guid(NULL); } if (guid == 0 && ops != &vdev_hole_ops) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ guid = spa_generate_guid(NULL); } else { /* * Any other vdev's guid must be unique within the pool. */ guid = spa_generate_guid(spa); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_ishole = (ops == &vdev_hole_ops); mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); for (int t = 0; t < DTL_TYPES; t++) { vd->vdev_dtl[t] = range_tree_create(NULL, NULL, &vd->vdev_dtl_lock); } txg_list_create(&vd->vdev_ms_list, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); vdev_queue_init(vd); vdev_cache_init(vd); return (vd); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; char *type; uint64_t guid = 0, islog, nparity; vdev_t *vd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (SET_ERROR(EINVAL)); if ((ops = vdev_getops(type)) == NULL) return (SET_ERROR(EINVAL)); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_L2CACHE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (SET_ERROR(EINVAL)); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (SET_ERROR(EINVAL)); /* * Determine whether we're a log vdev. */ islog = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); if (islog && spa_version(spa) < SPA_VERSION_SLOGS) return (SET_ERROR(ENOTSUP)); if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) return (SET_ERROR(ENOTSUP)); /* * Set the nparity property for RAID-Z vdevs. */ nparity = -1ULL; if (ops == &vdev_raidz_ops) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) return (SET_ERROR(EINVAL)); /* * Previous versions could only support 1 or 2 parity * device. */ if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) return (SET_ERROR(ENOTSUP)); if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) return (SET_ERROR(ENOTSUP)); } else { /* * We require the parity to be specified for SPAs that * support multiple parity levels. */ if (spa_version(spa) >= SPA_VERSION_RAIDZ2) return (SET_ERROR(EINVAL)); /* * Otherwise, we default to 1 parity device for RAID-Z. */ nparity = 1; } } else { nparity = 0; } ASSERT(nparity != -1ULL); vd = vdev_alloc_common(spa, id, guid, ops); vd->vdev_islog = islog; vd->vdev_nparity = nparity; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) vd->vdev_path = spa_strdup(vd->vdev_path); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) vd->vdev_devid = spa_strdup(vd->vdev_devid); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &vd->vdev_physpath) == 0) vd->vdev_physpath = spa_strdup(vd->vdev_physpath); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) vd->vdev_fru = spa_strdup(vd->vdev_fru); /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * Retrieve the vdev creation time. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, &vd->vdev_crtxg); /* * If we're a top-level vdev, try to load the allocation parameters. */ if (parent && !parent->vdev_parent && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, &vd->vdev_removing); } if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { ASSERT(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_ADD || alloctype == VDEV_ALLOC_SPLIT || alloctype == VDEV_ALLOC_ROOTPOOL); vd->vdev_mg = metaslab_group_create(islog ? spa_log_class(spa) : spa_normal_class(spa), vd); } /* * If we're a leaf vdev, try to load the DTL object and other state. */ if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || alloctype == VDEV_ALLOC_ROOTPOOL)) { if (alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, &vd->vdev_unspare); } if (alloctype == VDEV_ALLOC_ROOTPOOL) { uint64_t spare = 0; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare) == 0 && spare) spa_spare_add(vd); } (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, &vd->vdev_resilver_txg); /* * When importing a pool, we want to ignore the persistent fault * state, as the diagnosis made on another system may not be * valid in the current context. Local vdevs will * remain in the faulted state. */ if (spa_load_state(spa) == SPA_LOAD_OPEN) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &vd->vdev_faulted); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &vd->vdev_degraded); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &vd->vdev_removed); if (vd->vdev_faulted || vd->vdev_degraded) { char *aux; vd->vdev_label_aux = VDEV_AUX_ERR_EXCEEDED; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && strcmp(aux, "external") == 0) vd->vdev_label_aux = VDEV_AUX_EXTERNAL; } } } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { spa_t *spa = vd->vdev_spa; /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); /* * Free all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); /* * Discard allocation state. */ if (vd->vdev_mg != NULL) { vdev_metaslab_fini(vd); metaslab_group_destroy(vd->vdev_mg); } ASSERT0(vd->vdev_stat.vs_space); ASSERT0(vd->vdev_stat.vs_dspace); ASSERT0(vd->vdev_stat.vs_alloc); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); /* * Clean up vdev structure. */ vdev_queue_fini(vd); vdev_cache_fini(vd); if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); if (vd->vdev_fru) spa_strfree(vd->vdev_fru); if (vd->vdev_isspare) spa_spare_remove(vd); if (vd->vdev_isl2cache) spa_l2cache_remove(vd); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); space_map_close(vd->vdev_dtl_sm); for (int t = 0; t < DTL_TYPES; t++) { range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); range_tree_destroy(vd->vdev_dtl[t]); } mutex_exit(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_stat_lock); mutex_destroy(&vd->vdev_probe_lock); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; if (tvd->vdev_mg) ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); tvd->vdev_mg = svd->vdev_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_config_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } if (list_link_active(&svd->vdev_state_dirty_node)) { vdev_state_clean(svd); vdev_state_dirty(tvd); } tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; tvd->vdev_islog = svd->vdev_islog; svd->vdev_islog = 0; } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { if (vd == NULL) return; vd->vdev_top = tvd; for (int c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_min_asize = cvd->vdev_min_asize; mvd->vdev_max_asize = cvd->vdev_max_asize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_state = cvd->vdev_state; mvd->vdev_crtxg = cvd->vdev_crtxg; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); /* * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. * Otherwise, we could have detached an offline device, and when we * go to import the pool we'll think we have two top-level vdevs, * instead of a different version of the same top-level vdev. */ if (mvd->vdev_top == mvd) { uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; cvd->vdev_orig_guid = cvd->vdev_guid; cvd->vdev_guid += guid_delta; cvd->vdev_guid_sum += guid_delta; } cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; uint64_t m; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); /* * This vdev is not being allocated from yet or is a hole. */ if (vd->vdev_ms_shift == 0) return (0); ASSERT(!vd->vdev_ishole); /* * Compute the raidz-deflation ratio. Note, we hard-code - * in 128k (1 << 17) because it is the current "typical" blocksize. - * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, - * or we will inconsistently account for existing bp's. + * in 128k (1 << 17) because it is the "typical" blocksize. + * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, + * otherwise it would inconsistently account for existing bp's. */ vd->vdev_deflate_ratio = (1 << 17) / (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); ASSERT(oldc <= newc); mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (oldc != 0) { bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (m = oldc; m < newc; m++) { uint64_t object = 0; if (txg == 0) { error = dmu_read(mos, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object, DMU_READ_PREFETCH); if (error) return (error); } vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); } if (txg == 0) spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); /* * If the vdev is being removed we don't activate * the metaslabs since we want to ensure that no new * allocations are performed on this device. */ if (oldc == 0 && !vd->vdev_removing) metaslab_group_activate(vd->vdev_mg); if (txg == 0) spa_config_exit(spa, SCL_ALLOC, FTAG); return (0); } void vdev_metaslab_fini(vdev_t *vd) { uint64_t m; uint64_t count = vd->vdev_ms_count; if (vd->vdev_ms != NULL) { metaslab_group_passivate(vd->vdev_mg); for (m = 0; m < count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp != NULL) metaslab_fini(msp); } kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; } } typedef struct vdev_probe_stats { boolean_t vps_readable; boolean_t vps_writeable; int vps_flags; } vdev_probe_stats_t; static void vdev_probe_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; vdev_probe_stats_t *vps = zio->io_private; ASSERT(vd->vdev_probe_zio != NULL); if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_error == 0) vps->vps_readable = 1; if (zio->io_error == 0 && spa_writeable(spa)) { zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, zio->io_offset, zio->io_size, zio->io_data, ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); } else { zio_buf_free(zio->io_data, zio->io_size); } } else if (zio->io_type == ZIO_TYPE_WRITE) { if (zio->io_error == 0) vps->vps_writeable = 1; zio_buf_free(zio->io_data, zio->io_size); } else if (zio->io_type == ZIO_TYPE_NULL) { zio_t *pio; vd->vdev_cant_read |= !vps->vps_readable; vd->vdev_cant_write |= !vps->vps_writeable; if (vdev_readable(vd) && (vdev_writeable(vd) || !spa_writeable(spa))) { zio->io_error = 0; } else { ASSERT(zio->io_error != 0); zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, spa, vd, NULL, 0, 0); zio->io_error = SET_ERROR(ENXIO); } mutex_enter(&vd->vdev_probe_lock); ASSERT(vd->vdev_probe_zio == zio); vd->vdev_probe_zio = NULL; mutex_exit(&vd->vdev_probe_lock); while ((pio = zio_walk_parents(zio)) != NULL) if (!vdev_accessible(vd, pio)) pio->io_error = SET_ERROR(ENXIO); kmem_free(vps, sizeof (*vps)); } } /* * Determine whether this device is accessible. * * Read and write to several known locations: the pad regions of each * vdev label but the first, which we leave alone in case it contains * a VTOC. */ zio_t * vdev_probe(vdev_t *vd, zio_t *zio) { spa_t *spa = vd->vdev_spa; vdev_probe_stats_t *vps = NULL; zio_t *pio; ASSERT(vd->vdev_ops->vdev_op_leaf); /* * Don't probe the probe. */ if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) return (NULL); /* * To prevent 'probe storms' when a device fails, we create * just one probe i/o at a time. All zios that want to probe * this vdev will become parents of the probe io. */ mutex_enter(&vd->vdev_probe_lock); if ((pio = vd->vdev_probe_zio) == NULL) { vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { /* * vdev_cant_read and vdev_cant_write can only * transition from TRUE to FALSE when we have the * SCL_ZIO lock as writer; otherwise they can only * transition from FALSE to TRUE. This ensures that * any zio looking at these values can assume that * failures persist for the life of the I/O. That's * important because when a device has intermittent * connectivity problems, we want to ensure that * they're ascribed to the device (ENXIO) and not * the zio (EIO). * * Since we hold SCL_ZIO as writer here, clear both * values so the probe can reevaluate from first * principles. */ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; } vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, vdev_probe_done, vps, vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); /* * We can't change the vdev state in this context, so we * kick off an async task to do it on our behalf. */ if (zio != NULL) { vd->vdev_probe_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_PROBE); } } if (zio != NULL) zio_add_child(zio, pio); mutex_exit(&vd->vdev_probe_lock); if (vps == NULL) { ASSERT(zio != NULL); return (NULL); } for (int l = 1; l < VDEV_LABELS; l++) { zio_nowait(zio_read_phys(pio, vd, vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); } if (zio == NULL) return (pio); zio_nowait(pio); return (NULL); } static void vdev_open_child(void *arg) { vdev_t *vd = arg; vd->vdev_open_thread = curthread; vd->vdev_open_error = vdev_open(vd); vd->vdev_open_thread = NULL; } boolean_t vdev_uses_zvols(vdev_t *vd) { if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, strlen(ZVOL_DIR)) == 0) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_uses_zvols(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } void vdev_open_children(vdev_t *vd) { taskq_t *tq; int children = vd->vdev_children; /* * in order to handle pools on top of zvols, do the opens * in a single thread so that the same thread holds the * spa_namespace_lock */ if (vdev_uses_zvols(vd)) { for (int c = 0; c < children; c++) vd->vdev_child[c]->vdev_open_error = vdev_open(vd->vdev_child[c]); return; } tq = taskq_create("vdev_open", children, minclsyspri, children, children, TASKQ_PREPOPULATE); for (int c = 0; c < children; c++) VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], TQ_SLEEP) != NULL); taskq_destroy(tq); } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int error; uint64_t osize = 0; uint64_t max_osize = 0; uint64_t asize, max_asize, psize; uint64_t ashift = 0; ASSERT(vd->vdev_open_thread == curthread || spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); vd->vdev_stat.vs_aux = VDEV_AUX_NONE; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vd->vdev_min_asize = vdev_get_min_asize(vd); /* * If this vdev is not removed, check its fault status. If it's * faulted, bail out of the open. */ if (!vd->vdev_removed && vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } else if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (SET_ERROR(ENXIO)); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); /* * Reset the vdev_reopening flag so that we actually close * the vdev on error. */ vd->vdev_reopening = B_FALSE; if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, NULL, ENXIO); if (error) { if (vd->vdev_removed && vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) vd->vdev_removed = B_FALSE; vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, vd->vdev_stat.vs_aux); return (error); } vd->vdev_removed = B_FALSE; /* * Recheck the faulted flag now that we have confirmed that * the vdev is accessible. If we're faulted, bail. */ if (vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (SET_ERROR(ENXIO)); } if (vd->vdev_degraded) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } else { vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); } /* * For hole or missing vdevs we just return success. */ if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) return (0); for (int c = 0; c < vd->vdev_children; c++) { if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); max_asize = max_osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (SET_ERROR(EOVERFLOW)); } psize = 0; asize = osize; max_asize = max_osize; } vd->vdev_psize = psize; /* * Make sure the allocatable size hasn't shrunk. */ if (asize < vd->vdev_min_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (SET_ERROR(EINVAL)); } if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For testing purposes, a higher ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_max_asize = max_asize; vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); } else { /* * Detect if the alignment requirement has increased. * We don't want to make the pool unavailable, just * issue a warning instead. */ if (ashift > vd->vdev_top->vdev_ashift && vd->vdev_ops->vdev_op_leaf) { cmn_err(CE_WARN, "Disk, '%s', has a block alignment that is " "larger than the pool's alignment\n", vd->vdev_path); } vd->vdev_max_asize = max_asize; } /* * If all children are healthy and the asize has increased, * then we've experienced dynamic LUN growth. If automatic * expansion is enabled then use the additional space. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && (vd->vdev_expanding || spa->spa_autoexpand)) vd->vdev_asize = asize; vdev_set_min_asize(vd); /* * Ensure we can issue some IO before declaring the * vdev open for business. */ if (vd->vdev_ops->vdev_op_leaf && (error = zio_wait(vdev_probe(vd, NULL))) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); return (error); } /* * If a leaf vdev has a DTL, and seems healthy, then kick off a * resilver. But don't do this if we are doing a reopen for a scrub, * since this would just restart the scrub we are already doing. */ if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && vdev_resilver_needed(vd, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); return (0); } /* * Called once the vdevs are all opened, this routine validates the label * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device. * * If 'strict' is false ignore the spa guid check. This is necessary because * if the machine crashed during a re-guid the new guid might have been written * to all of the vdev labels, but not the cached config. The strict check * will be performed when the pool is opened again using the mos config. * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int vdev_validate(vdev_t *vd, boolean_t strict) { spa_t *spa = vd->vdev_spa; nvlist_t *label; uint64_t guid = 0, top_guid; uint64_t state; for (int c = 0; c < vd->vdev_children; c++) if (vdev_validate(vd->vdev_child[c], strict) != 0) return (SET_ERROR(EBADF)); /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { uint64_t aux_guid = 0; nvlist_t *nvl; uint64_t txg = spa_last_synced_txg(spa) != 0 ? spa_last_synced_txg(spa) : -1ULL; if ((label = vdev_label_read_config(vd, txg)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (0); } /* * Determine if this vdev has been split off into another * pool. If so, then refuse to open it. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, &aux_guid) == 0 && aux_guid == spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_SPLIT_POOL); nvlist_free(label); return (0); } if (strict && (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != spa_guid(spa))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, &aux_guid) != 0) aux_guid = 0; /* * If this vdev just became a top-level vdev because its * sibling was detached, it will have adopted the parent's * vdev guid -- but the label may or may not be on disk yet. * Fortunately, either version of the label will have the * same top guid, so if we're a top-level vdev, we can * safely compare to that instead. * * If we split this vdev off instead, then we also check the * original pool's guid. We don't want to consider the vdev * corrupt if it is partway through a split operation. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } nvlist_free(label); /* * If this is a verbatim import, no need to check the * state of the pool. */ if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && spa_load_state(spa) == SPA_LOAD_OPEN && state != POOL_STATE_ACTIVE) return (SET_ERROR(EBADF)); /* * If we were able to open and validate a vdev that was * previously marked permanently unavailable, clear that state * now. */ if (vd->vdev_not_present) vd->vdev_not_present = 0; } return (0); } /* * Close a virtual device. */ void vdev_close(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *pvd = vd->vdev_parent; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* * If our parent is reopening, then we are as well, unless we are * going offline. */ if (pvd != NULL && pvd->vdev_reopening) vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); vd->vdev_ops->vdev_op_close(vd); vdev_cache_purge(vd); /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_hold(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); if (spa->spa_state == POOL_STATE_UNINITIALIZED) return; for (int c = 0; c < vd->vdev_children; c++) vdev_hold(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_hold(vd); } void vdev_rele(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); for (int c = 0; c < vd->vdev_children; c++) vdev_rele(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_rele(vd); } /* * Reopen all interior vdevs and any unopened leaves. We don't actually * reopen leaf vdevs which had previously been opened as they might deadlock * on the spa_config_lock. Instead we only obtain the leaf's physical size. * If the leaf has never been opened then open it, as usual. */ void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* set the reopening flag unless we're taking the vdev offline */ vd->vdev_reopening = !vd->vdev_offline; vdev_close(vd); (void) vdev_open(vd); /* * Call vdev_validate() here to make sure we have the same device. * Otherwise, a device with an invalid label could be successfully * opened in response to vdev_reopen(). */ if (vd->vdev_aux) { (void) vdev_validate_aux(vd); if (vdev_readable(vd) && vdev_writeable(vd) && vd->vdev_aux == &spa->spa_l2cache && !l2arc_vdev_present(vd)) l2arc_add_vdev(spa, vd); } else { (void) vdev_validate(vd, B_TRUE); } /* * Reassess parent vdev's health. */ vdev_propagate_state(vd); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : ENXIO); } /* * Recursively load DTLs and initialize all labels. */ if ((error = vdev_dtl_load(vd)) != 0 || (error = vdev_label_init(vd, txg, isreplacing ? VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { vdev_close(vd); return (error); } return (0); } void vdev_metaslab_set_size(vdev_t *vd) { /* * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. */ vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); ASSERT(!vd->vdev_ishole); ASSERT(ISP2(flags)); ASSERT(spa_writeable(vd->vdev_spa)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } void vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) { for (int c = 0; c < vd->vdev_children; c++) vdev_dirty_leaves(vd->vdev_child[c], flags, txg); if (vd->vdev_ops->vdev_op_leaf) vdev_dirty(vd->vdev_top, flags, vd, txg); } /* * DTLs. * * A vdev's DTL (dirty time log) is the set of transaction groups for which * the vdev has less than perfect replication. There are four kinds of DTL: * * DTL_MISSING: txgs for which the vdev has no valid copies of the data * * DTL_PARTIAL: txgs for which data is available, but not fully replicated * * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of * txgs that was scrubbed. * * DTL_OUTAGE: txgs which cannot currently be read, whether due to * persistent errors or just some device being offline. * Unlike the other three, the DTL_OUTAGE map is not generally * maintained; it's only computed when needed, typically to * determine whether a device can be detached. * * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device * either has the data or it doesn't. * * For interior vdevs such as mirror and RAID-Z the picture is more complex. * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because * if any child is less than fully replicated, then so is its parent. * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, * comprising only those txgs which appear in 'maxfaults' or more children; * those are the txgs we don't have enough replication to read. For example, * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); * thus, its DTL_MISSING consists of the set of txgs that appear in more than * two child DTL_MISSING maps. * * It should be clear from the above that to compute the DTLs and outage maps * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. * Therefore, that is all we keep on disk. When loading the pool, or after * a configuration change, we generate all other DTLs from first principles. */ void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); ASSERT(spa_writeable(vd->vdev_spa)); mutex_enter(rt->rt_lock); if (!range_tree_contains(rt, txg, size)) range_tree_add(rt, txg, size); mutex_exit(rt->rt_lock); } boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t dirty = B_FALSE; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); mutex_enter(rt->rt_lock); if (range_tree_space(rt) != 0) dirty = range_tree_contains(rt, txg, size); mutex_exit(rt->rt_lock); return (dirty); } boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) { range_tree_t *rt = vd->vdev_dtl[t]; boolean_t empty; mutex_enter(rt->rt_lock); empty = (range_tree_space(rt) == 0); mutex_exit(rt->rt_lock); return (empty); } /* * Returns the lowest txg in the DTL range. */ static uint64_t vdev_dtl_min(vdev_t *vd) { range_seg_t *rs; ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); return (rs->rs_start - 1); } /* * Returns the highest txg in the DTL. */ static uint64_t vdev_dtl_max(vdev_t *vd) { range_seg_t *rs; ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); ASSERT0(vd->vdev_children); rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); return (rs->rs_end); } /* * Determine if a resilvering vdev should remove any DTL entries from * its range. If the vdev was resilvering for the entire duration of the * scan then it should excise that range from its DTLs. Otherwise, this * vdev is considered partially resilvered and should leave its DTL * entries intact. The comment in vdev_dtl_reassess() describes how we * excise the DTLs. */ static boolean_t vdev_dtl_should_excise(vdev_t *vd) { spa_t *spa = vd->vdev_spa; dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; ASSERT0(scn->scn_phys.scn_errors); ASSERT0(vd->vdev_children); if (vd->vdev_resilver_txg == 0 || range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) return (B_TRUE); /* * When a resilver is initiated the scan will assign the scn_max_txg * value to the highest txg value that exists in all DTLs. If this * device's max DTL is not part of this scan (i.e. it is not in * the range (scn_min_txg, scn_max_txg] then it is not eligible * for excision. */ if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); return (B_TRUE); } return (B_FALSE); } /* * Reassess DTLs after a config change or scrub completion. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) { spa_t *spa = vd->vdev_spa; avl_tree_t reftree; int minref; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); for (int c = 0; c < vd->vdev_children; c++) vdev_dtl_reassess(vd->vdev_child[c], txg, scrub_txg, scrub_done); if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) return; if (vd->vdev_ops->vdev_op_leaf) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; mutex_enter(&vd->vdev_dtl_lock); /* * If we've completed a scan cleanly then determine * if this vdev should remove any DTLs. We only want to * excise regions on vdevs that were available during * the entire duration of this scan. */ if (scrub_txg != 0 && (spa->spa_scrub_started || (scn != NULL && scn->scn_phys.scn_errors == 0)) && vdev_dtl_should_excise(vd)) { /* * We completed a scrub up to scrub_txg. If we * did it without rebooting, then the scrub dtl * will be valid, so excise the old region and * fold in the scrub dtl. Otherwise, leave the * dtl as-is if there was an error. * * There's little trick here: to excise the beginning * of the DTL_MISSING map, we put it into a reference * tree and then add a segment with refcnt -1 that * covers the range [0, scrub_txg). This means * that each txg in that range has refcnt -1 or 0. * We then add DTL_SCRUB with a refcnt of 2, so that * entries in the range [0, scrub_txg) will have a * positive refcnt -- either 1 or 2. We then convert * the reference tree into the new DTL_MISSING map. */ space_reftree_create(&reftree); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_add_seg(&reftree, 0, scrub_txg, -1); space_reftree_add_map(&reftree, vd->vdev_dtl[DTL_SCRUB], 2); space_reftree_generate_map(&reftree, vd->vdev_dtl[DTL_MISSING], 1); space_reftree_destroy(&reftree); } range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); if (scrub_done) range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); if (!vdev_readable(vd)) range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); else range_tree_walk(vd->vdev_dtl[DTL_MISSING], range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); /* * If the vdev was resilvering and no longer has any * DTLs then reset its resilvering flag. */ if (vd->vdev_resilver_txg != 0 && range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) vd->vdev_resilver_txg = 0; mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { /* account for child's outage in parent's missing map */ int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; if (t == DTL_SCRUB) continue; /* leaf vdevs only */ if (t == DTL_PARTIAL) minref = 1; /* i.e. non-zero */ else if (vd->vdev_nparity != 0) minref = vd->vdev_nparity + 1; /* RAID-Z */ else minref = vd->vdev_children; /* any kind of mirror */ space_reftree_create(&reftree); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; mutex_enter(&cvd->vdev_dtl_lock); space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); mutex_exit(&cvd->vdev_dtl_lock); } space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); space_reftree_destroy(&reftree); } mutex_exit(&vd->vdev_dtl_lock); } int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; int error = 0; if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { ASSERT(!vd->vdev_ishole); error = space_map_open(&vd->vdev_dtl_sm, mos, vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); if (error) return (error); ASSERT(vd->vdev_dtl_sm != NULL); mutex_enter(&vd->vdev_dtl_lock); /* * Now that we've opened the space_map we need to update * the in-core DTL. */ space_map_update(vd->vdev_dtl_sm); error = space_map_load(vd->vdev_dtl_sm, vd->vdev_dtl[DTL_MISSING], SM_ALLOC); mutex_exit(&vd->vdev_dtl_lock); return (error); } for (int c = 0; c < vd->vdev_children; c++) { error = vdev_dtl_load(vd->vdev_child[c]); if (error != 0) break; } return (error); } void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; objset_t *mos = spa->spa_meta_objset; range_tree_t *rtsync; kmutex_t rtlock; dmu_tx_t *tx; uint64_t object = space_map_object(vd->vdev_dtl_sm); ASSERT(!vd->vdev_ishole); ASSERT(vd->vdev_ops->vdev_op_leaf); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached || vd->vdev_top->vdev_removing) { mutex_enter(&vd->vdev_dtl_lock); space_map_free(vd->vdev_dtl_sm, tx); space_map_close(vd->vdev_dtl_sm); vd->vdev_dtl_sm = NULL; mutex_exit(&vd->vdev_dtl_lock); dmu_tx_commit(tx); return; } if (vd->vdev_dtl_sm == NULL) { uint64_t new_object; new_object = space_map_alloc(mos, tx); VERIFY3U(new_object, !=, 0); VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 0, -1ULL, 0, &vd->vdev_dtl_lock)); ASSERT(vd->vdev_dtl_sm != NULL); } mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); rtsync = range_tree_create(NULL, NULL, &rtlock); mutex_enter(&rtlock); mutex_enter(&vd->vdev_dtl_lock); range_tree_walk(rt, range_tree_add, rtsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(vd->vdev_dtl_sm, tx); space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); range_tree_vacate(rtsync, NULL, NULL); range_tree_destroy(rtsync); mutex_exit(&rtlock); mutex_destroy(&rtlock); /* * If the object for the space map has changed then dirty * the top level so that we update the config. */ if (object != space_map_object(vd->vdev_dtl_sm)) { zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " "new object %llu", txg, spa_name(spa), object, space_map_object(vd->vdev_dtl_sm)); vdev_config_dirty(vd->vdev_top); } dmu_tx_commit(tx); mutex_enter(&vd->vdev_dtl_lock); space_map_update(vd->vdev_dtl_sm); mutex_exit(&vd->vdev_dtl_lock); } /* * Determine whether the specified vdev can be offlined/detached/removed * without losing data. */ boolean_t vdev_dtl_required(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint8_t cant_read = vd->vdev_cant_read; boolean_t required; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == spa->spa_root_vdev || vd == tvd) return (B_TRUE); /* * Temporarily mark the device as unreadable, and then determine * whether this results in any DTL outages in the top-level vdev. * If not, we can safely offline/detach/remove the device. */ vd->vdev_cant_read = B_TRUE; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); required = !vdev_dtl_empty(tvd, DTL_OUTAGE); vd->vdev_cant_read = cant_read; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); if (!required && zio_injection_enabled) required = !!zio_handle_device_injection(vd, NULL, ECHILD); return (required); } /* * Determine if resilver is needed, and if so the txg range. */ boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) { boolean_t needed = B_FALSE; uint64_t thismin = UINT64_MAX; uint64_t thismax = 0; if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && vdev_writeable(vd)) { thismin = vdev_dtl_min(vd); thismax = vdev_dtl_max(vd); needed = B_TRUE; } mutex_exit(&vd->vdev_dtl_lock); } else { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; uint64_t cmin, cmax; if (vdev_resilver_needed(cvd, &cmin, &cmax)) { thismin = MIN(thismin, cmin); thismax = MAX(thismax, cmax); needed = B_TRUE; } } } if (needed && minp) { *minp = thismin; *maxp = thismax; } return (needed); } void vdev_load(vdev_t *vd) { /* * Recursively load all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_load(vd->vdev_child[c]); /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && !vd->vdev_ishole && (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || vdev_metaslab_init(vd, 0) != 0)) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } /* * The special vdev case is used for hot spares and l2cache devices. Its * sole purpose it to set the vdev state for the associated vdev. To do this, * we make sure that we can open the underlying device, then try to read the * label, and make sure that the label is sane and that it hasn't been * repurposed to another pool. */ int vdev_validate_aux(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if (!vdev_readable(vd)) return (0); if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || !SPA_VERSION_IS_SUPPORTED(version) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } void vdev_remove(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); if (vd->vdev_ms != NULL) { metaslab_group_t *mg = vd->vdev_mg; metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp == NULL || msp->ms_sm == NULL) continue; mutex_enter(&msp->ms_lock); /* * If the metaslab was not loaded when the vdev * was removed then the histogram accounting may * not be accurate. Update the histogram information * here so that we ensure that the metaslab group * and metaslab class are up-to-date. */ metaslab_group_histogram_remove(mg, msp); VERIFY0(space_map_allocated(msp->ms_sm)); space_map_free(msp->ms_sm, tx); space_map_close(msp->ms_sm); msp->ms_sm = NULL; mutex_exit(&msp->ms_lock); } metaslab_group_histogram_verify(mg); metaslab_class_histogram_verify(mg->mg_class); for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) ASSERT0(mg->mg_histogram[i]); } if (vd->vdev_ms_array) { (void) dmu_object_free(mos, vd->vdev_ms_array, tx); vd->vdev_ms_array = 0; } dmu_tx_commit(tx); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); ASSERT(!vd->vdev_ishole); while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) metaslab_sync_done(msp, txg); if (reassess) metaslab_sync_reassess(vd->vdev_mg); } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; dmu_tx_t *tx; ASSERT(!vd->vdev_ishole); if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { ASSERT(vd == vd->vdev_top); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); dmu_tx_commit(tx); } /* * Remove the metadata associated with this vdev once it's empty. */ if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) vdev_remove(vd, txg); while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } /* * Mark the given vdev faulted. A faulted vdev behaves as if the device could * not be opened, and no I/O is attempted. */ int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd, *tvd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; /* * We don't directly use the aux state here, but if we do a * vdev_reopen(), we need this value to be present to remember why we * were faulted. */ vd->vdev_label_aux = aux; /* * Faulted state takes precedence over degraded. */ vd->vdev_delayed_close = B_FALSE; vd->vdev_faulted = 1ULL; vd->vdev_degraded = 0ULL; vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); /* * If this device has the only valid copy of the data, then * back off and simply mark the vdev as degraded instead. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { vd->vdev_degraded = 1ULL; vd->vdev_faulted = 0ULL; /* * If we reopen the device and it's not dead, only then do we * mark it degraded. */ vdev_reopen(tvd); if (vdev_readable(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); } return (spa_vdev_state_exit(spa, vd, 0)); } /* * Mark the given vdev degraded. A degraded vdev is purely an indication to the * user that something is wrong. The vdev continues to operate as normal as far * as I/O is concerned. */ int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * If the vdev is already faulted, then don't do anything. */ if (vd->vdev_faulted || vd->vdev_degraded) return (spa_vdev_state_exit(spa, NULL, 0)); vd->vdev_degraded = 1ULL; if (!vdev_is_dead(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Online the given vdev. * * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached * spare device should be detached when the device finishes resilvering. * Second, the online should be treated like a 'test' online case, so no FMA * events are generated if the device fails to open. */ int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) { vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); /* XXX - L2ARC 1.0 does not support expansion */ if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); } vdev_reopen(tvd); vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = B_FALSE; } if (newstate) *newstate = vd->vdev_state; if ((flags & ZFS_ONLINE_UNSPARE) && !vdev_is_dead(vd) && vd->vdev_parent && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { /* XXX - L2ARC 1.0 does not support expansion */ if (vd->vdev_aux) return (spa_vdev_state_exit(spa, vd, ENOTSUP)); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } return (spa_vdev_state_exit(spa, vd, 0)); } static int vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) { vdev_t *vd, *tvd; int error = 0; uint64_t generation; metaslab_group_t *mg; top: spa_vdev_state_enter(spa, SCL_ALLOC); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; mg = tvd->vdev_mg; generation = spa->spa_config_generation + 1; /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device has the only valid copy of some data, * don't allow it to be offlined. Log devices are always * expendable. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) return (spa_vdev_state_exit(spa, NULL, EBUSY)); /* * If the top-level is a slog and it has had allocations * then proceed. We check that the vdev's metaslab group * is not NULL since it's possible that we may have just * added this vdev but not yet initialized its metaslabs. */ if (tvd->vdev_islog && mg != NULL) { /* * Prevent any future allocations. */ metaslab_group_passivate(mg); (void) spa_vdev_state_exit(spa, vd, 0); error = spa_offline_log(spa); spa_vdev_state_enter(spa, SCL_ALLOC); /* * Check to see if the config has changed. */ if (error || generation != spa->spa_config_generation) { metaslab_group_activate(mg); if (error) return (spa_vdev_state_exit(spa, vd, error)); (void) spa_vdev_state_exit(spa, vd, 0); goto top; } ASSERT0(tvd->vdev_stat.vs_alloc); } /* * Offline this device and reopen its top-level vdev. * If the top-level vdev is a log device then just offline * it. Otherwise, if this action results in the top-level * vdev becoming unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(tvd); if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_is_dead(tvd)) { vd->vdev_offline = B_FALSE; vdev_reopen(tvd); return (spa_vdev_state_exit(spa, NULL, EBUSY)); } /* * Add the device back into the metaslab rotor so that * once we online the device it's open for business. */ if (tvd->vdev_islog && mg != NULL) metaslab_group_activate(mg); } vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) { int error; mutex_enter(&spa->spa_vdev_top_lock); error = vdev_offline_locked(spa, guid, flags); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == NULL) vd = rvd; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; for (int c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); /* * If we're in the FAULTED state or have experienced failed I/O, then * clear the persistent state and attempt to reopen the device. We * also mark the vdev config dirty, so that the new faulted state is * written out to disk. */ if (vd->vdev_faulted || vd->vdev_degraded || !vdev_readable(vd) || !vdev_writeable(vd)) { /* * When reopening in reponse to a clear event, it may be due to * a fmadm repair request. In this case, if the device is * still broken, we want to still post the ereport again. */ vd->vdev_forcefault = B_TRUE; vd->vdev_faulted = vd->vdev_degraded = 0ULL; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vdev_reopen(vd == rvd ? rvd : vd->vdev_top); vd->vdev_forcefault = B_FALSE; if (vd != rvd && vdev_writeable(vd->vdev_top)) vdev_state_dirty(vd->vdev_top); if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) spa_async_request(spa, SPA_ASYNC_RESILVER); spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); } /* * When clearing a FMA-diagnosed fault, we always want to * unspare the device, as we assume that the original spare was * done in response to the FMA fault. */ if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; } boolean_t vdev_is_dead(vdev_t *vd) { /* * Holes and missing devices are always considered "dead". * This simplifies the code since we don't have to check for * these types of devices in the various code paths. * Instead we rely on the fact that we skip over dead devices * before issuing I/O to them. */ return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops); } boolean_t vdev_readable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_read); } boolean_t vdev_writeable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_write); } boolean_t vdev_allocatable(vdev_t *vd) { uint64_t state = vd->vdev_state; /* * We currently allow allocations from vdevs which may be in the * process of reopening (i.e. VDEV_STATE_CLOSED). If the device * fails to reopen then we'll catch it later when we're holding * the proper locks. Note that we have to get the vdev state * in a local variable because although it changes atomically, * we're asking two separate questions about it. */ return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && !vd->vdev_cant_write && !vd->vdev_ishole); } boolean_t vdev_accessible(vdev_t *vd, zio_t *zio) { ASSERT(zio->io_vd == vd); if (vdev_is_dead(vd) || vd->vdev_remove_wanted) return (B_FALSE); if (zio->io_type == ZIO_TYPE_READ) return (!vd->vdev_cant_read); if (zio->io_type == ZIO_TYPE_WRITE) return (!vd->vdev_cant_write); return (B_TRUE); } /* * Get statistics for the given vdev. */ void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); mutex_enter(&vd->vdev_stat_lock); bcopy(&vd->vdev_stat, vs, sizeof (*vs)); vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_min_asize(vd); if (vd->vdev_ops->vdev_op_leaf) vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; } /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (vd == rvd) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; for (int t = 0; t < ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } cvs->vs_scan_removing = cvd->vdev_removing; } } mutex_exit(&vd->vdev_stat_lock); } void vdev_clear_stats(vdev_t *vd) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space = 0; vd->vdev_stat.vs_dspace = 0; vd->vdev_stat.vs_alloc = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_scan_stat_init(vdev_t *vd) { vdev_stat_t *vs = &vd->vdev_stat; for (int c = 0; c < vd->vdev_children; c++) vdev_scan_stat_init(vd->vdev_child[c]); mutex_enter(&vd->vdev_stat_lock); vs->vs_scan_processed = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_stat_update(zio_t *zio, uint64_t psize) { spa_t *spa = zio->io_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; vdev_t *pvd; uint64_t txg = zio->io_txg; vdev_stat_t *vs = &vd->vdev_stat; zio_type_t type = zio->io_type; int flags = zio->io_flags; /* * If this i/o is a gang leader, it didn't do any actual work. */ if (zio->io_gang_tree) return; if (zio->io_error == 0) { /* * If this is a root i/o, don't count it -- we've already * counted the top-level vdevs, and vdev_get_stats() will * aggregate them when asked. This reduces contention on * the root vdev_stat_lock and implicitly handles blocks * that compress away to holes, for which there is no i/o. * (Holes never create vdev children, so all the counters * remain zero, which is what we want.) * * Note: this only applies to successful i/o (io_error == 0) * because unlike i/o counts, errors are not additive. * When reading a ditto block, for example, failure of * one top-level vdev does not imply a root-level error. */ if (vd == rvd) return; ASSERT(vd == zio->io_vd); if (flags & ZIO_FLAG_IO_BYPASS) return; mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_IO_REPAIR) { if (flags & ZIO_FLAG_SCAN_THREAD) { dsl_scan_phys_t *scn_phys = &spa->spa_dsl_pool->dp_scan->scn_phys; uint64_t *processed = &scn_phys->scn_processed; /* XXX cleanup? */ if (vd->vdev_ops->vdev_op_leaf) atomic_add_64(processed, psize); vs->vs_scan_processed += psize; } if (flags & ZIO_FLAG_SELF_HEAL) vs->vs_self_healed += psize; } vs->vs_ops[type]++; vs->vs_bytes[type] += psize; mutex_exit(&vd->vdev_stat_lock); return; } if (flags & ZIO_FLAG_SPECULATIVE) return; /* * If this is an I/O error that is going to be retried, then ignore the * error. Otherwise, the user may interpret B_FAILFAST I/O errors as * hard errors, when in reality they can happen for any number of * innocuous reasons (bus resets, MPxIO link failure, etc). */ if (zio->io_error == EIO && !(zio->io_flags & ZIO_FLAG_IO_RETRY)) return; /* * Intent logs writes won't propagate their error to the root * I/O so don't mark these types of failures as pool-level * errors. */ if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) return; mutex_enter(&vd->vdev_stat_lock); if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { if (zio->io_error == ECKSUM) vs->vs_checksum_errors++; else vs->vs_read_errors++; } if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) vs->vs_write_errors++; mutex_exit(&vd->vdev_stat_lock); if (type == ZIO_TYPE_WRITE && txg != 0 && (!(flags & ZIO_FLAG_IO_REPAIR) || (flags & ZIO_FLAG_SCAN_THREAD) || spa->spa_claiming)) { /* * This is either a normal write (not a repair), or it's * a repair induced by the scrub thread, or it's a repair * made by zil_claim() during spa_load() in the first txg. * In the normal case, we commit the DTL change in the same * txg as the block was born. In the scrub-induced repair * case, we know that scrubs run in first-pass syncing context, * so we commit the DTL change in spa_syncing_txg(spa). * In the zil_claim() case, we commit in spa_first_txg(spa). * * We currently do not make DTL entries for failed spontaneous * self-healing writes triggered by normal (non-scrubbing) * reads, because we have no transactional context in which to * do so -- and it's not clear that it'd be desirable anyway. */ if (vd->vdev_ops->vdev_op_leaf) { uint64_t commit_txg = txg; if (flags & ZIO_FLAG_SCAN_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); ASSERT(spa_sync_pass(spa) == 1); vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); commit_txg = spa_syncing_txg(spa); } else if (spa->spa_claiming) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); commit_txg = spa_first_txg(spa); } ASSERT(commit_txg >= spa_syncing_txg(spa)); if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) return; for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); } if (vd != rvd) vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); } } /* * Update the in-core space usage stats for this vdev, its metaslab class, * and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta) { int64_t dspace_delta = space_delta; spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; metaslab_group_t *mg = vd->vdev_mg; metaslab_class_t *mc = mg ? mg->mg_class : NULL; ASSERT(vd == vd->vdev_top); /* * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion * factor. We must calculate this here and not at the root vdev * because the root vdev's psize-to-asize is simply the max of its * childrens', thus not accurate enough for us. */ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); if (mc == spa_normal_class(spa)) { mutex_enter(&rvd->vdev_stat_lock); rvd->vdev_stat.vs_alloc += alloc_delta; rvd->vdev_stat.vs_space += space_delta; rvd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&rvd->vdev_stat_lock); } if (mc != NULL) { ASSERT(rvd == vd->vdev_parent); ASSERT(vd->vdev_ms_count != 0); metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, dspace_delta); } } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_writeable(spa)); /* * If this is an aux vdev (as with l2cache and spare devices), then we * update the vdev config manually and set the sync flag. */ if (vd->vdev_aux != NULL) { spa_aux_vdev_t *sav = vd->vdev_aux; nvlist_t **aux; uint_t naux; for (c = 0; c < sav->sav_count; c++) { if (sav->sav_vdevs[c] == vd) break; } if (c == sav->sav_count) { /* * We're being removed. There's nothing more to do. */ ASSERT(sav->sav_sync == B_TRUE); return; } sav->sav_sync = B_TRUE; if (nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); } ASSERT(c < naux); /* * Setting the nvlist in the middle if the array is a little * sketchy, but it will work. */ nvlist_free(aux[c]); aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); return; } /* * The dirty list is protected by the SCL_CONFIG lock. The caller * must either hold SCL_CONFIG as writer, or must be the sync thread * (which holds SCL_CONFIG as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_config_dirty_node) && !vd->vdev_ishole) list_insert_head(&spa->spa_config_dirty_list, vd); } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); ASSERT(list_link_active(&vd->vdev_config_dirty_node)); list_remove(&spa->spa_config_dirty_list, vd); } /* * Mark a top-level vdev's state as dirty, so that the next pass of * spa_sync() can convert this into vdev_config_dirty(). We distinguish * the state changes from larger config changes because they require * much less locking, and are often needed for administrative actions. */ void vdev_state_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_writeable(spa)); ASSERT(vd == vd->vdev_top); /* * The state list is protected by the SCL_STATE lock. The caller * must either hold SCL_STATE as writer, or must be the sync thread * (which holds SCL_STATE as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) list_insert_head(&spa->spa_state_dirty_list, vd); } void vdev_state_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); ASSERT(list_link_active(&vd->vdev_state_dirty_node)); list_remove(&spa->spa_state_dirty_list, vd); } /* * Propagate vdev state up from children to parent. */ void vdev_propagate_state(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; vdev_t *child; if (vd->vdev_children > 0) { for (int c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; /* * Don't factor holes into the decision. */ if (child->vdev_ishole) continue; if (!vdev_readable(child) || (!vdev_writeable(child) && spa_writeable(spa))) { /* * Root special: if there is a top-level log * device, treat the root vdev as if it were * degraded. */ if (child->vdev_islog && vd == rvd) degraded++; else faulted++; } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { degraded++; } if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a top-level vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } if (vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; spa_t *spa = vd->vdev_spa; if (state == vd->vdev_state) { vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; /* * If we are setting the vdev state to anything but an open state, then * always close the underlying device unless the device has requested * a delayed close (i.e. we're about to remove or fault the device). * Otherwise, we keep accessible but invalid devices open forever. * We don't call vdev_close() itself, because that implies some extra * checks (offline, etc) that we don't want here. This is limited to * leaf devices, because otherwise closing the device will affect other * children. */ if (!vd->vdev_delayed_close && vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_close(vd); /* * If we have brought this vdev back into service, we need * to notify fmd so that it can gracefully repair any outstanding * cases due to a missing device. We do this in all cases, even those * that probably don't correlate to a repaired fault. This is sure to * catch all cases, and we let the zfs-retire agent sort it out. If * this is a transient state it's OK, as the retire agent will * double-check the state of the vdev before repairing it. */ if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && vd->vdev_prevstate != state) zfs_post_state_change(spa, vd); if (vd->vdev_removed && state == VDEV_STATE_CANT_OPEN && (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { /* * If the previous state is set to VDEV_STATE_REMOVED, then this * device was previously marked removed and someone attempted to * reopen it. If this failed due to a nonexistent device, then * keep the device in the REMOVED state. We also let this be if * it is one of our special test online cases, which is only * attempting to online the device and shouldn't generate an FMA * fault. */ vd->vdev_state = VDEV_STATE_REMOVED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } else if (state == VDEV_STATE_REMOVED) { vd->vdev_removed = B_TRUE; } else if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import or recovery, we * mark it as "not available", which signifies that it was * never there to begin with. Failure to open such a device * is not considered an error. */ if ((spa_load_state(spa) == SPA_LOAD_IMPORT || spa_load_state(spa) == SPA_LOAD_RECOVER) && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. * * If the 'checkremove' flag is set, then this is an attempt to * online the device in response to an insertion event. If we * hit this case, then we have detected an insertion event for a * faulted or offline device that wasn't in the removed state. * In this scenario, we don't post an ereport because we are * about to replace the device, or attempt an online with * vdev_forcefault, which will generate the fault for us. */ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && !vd->vdev_not_present && !vd->vdev_checkremove && vd != spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } zfs_ereport_post(class, spa, vd, NULL, save_state, 0); } /* Erase any notion of persistent removed state */ vd->vdev_removed = B_FALSE; } else { vd->vdev_removed = B_FALSE; } if (!isopen && vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Check the vdev configuration to ensure that it's capable of supporting * a root pool. Currently, we do not support RAID-Z or partial configuration. * In addition, only a single top-level vdev is allowed and none of the leaves * can be wholedisks. */ boolean_t vdev_is_bootable(vdev_t *vd) { if (!vd->vdev_ops->vdev_op_leaf) { char *vdev_type = vd->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && vd->vdev_children > 1) { return (B_FALSE); } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { return (B_FALSE); } } else if (vd->vdev_wholedisk == 1) { return (B_FALSE); } for (int c = 0; c < vd->vdev_children; c++) { if (!vdev_is_bootable(vd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } /* * Load the state from the original vdev tree (ovd) which * we've retrieved from the MOS config object. If the original * vdev was offline or faulted then we transfer that state to the * device in the current vdev tree (nvd). */ void vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) { spa_t *spa = nvd->vdev_spa; ASSERT(nvd->vdev_top->vdev_islog); ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); for (int c = 0; c < nvd->vdev_children; c++) vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); if (nvd->vdev_ops->vdev_op_leaf) { /* * Restore the persistent vdev state */ nvd->vdev_offline = ovd->vdev_offline; nvd->vdev_faulted = ovd->vdev_faulted; nvd->vdev_degraded = ovd->vdev_degraded; nvd->vdev_removed = ovd->vdev_removed; } } /* * Determine if a log device has valid content. If the vdev was * removed or faulted in the MOS config then we know that * the content on the log device has already been written to the pool. */ boolean_t vdev_log_state_valid(vdev_t *vd) { if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && !vd->vdev_removed) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_log_state_valid(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } /* * Expand a vdev if possible. */ void vdev_expand(vdev_t *vd, uint64_t txg) { ASSERT(vd->vdev_top == vd); ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { VERIFY(vdev_metaslab_init(vd, txg) == 0); vdev_config_dirty(vd); } } /* * Split a vdev. */ void vdev_split(vdev_t *vd) { vdev_t *cvd, *pvd = vd->vdev_parent; vdev_remove_child(pvd, vd); vdev_compact_children(pvd); cvd = pvd->vdev_child[0]; if (pvd->vdev_children == 1) { vdev_remove_parent(cvd); cvd->vdev_splitting = B_TRUE; } vdev_propagate_state(cvd); } void vdev_deadman(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_deadman(cvd); } if (vd->vdev_ops->vdev_op_leaf) { vdev_queue_t *vq = &vd->vdev_queue; mutex_enter(&vq->vq_lock); if (avl_numnodes(&vq->vq_active_tree) > 0) { spa_t *spa = vd->vdev_spa; zio_t *fio; uint64_t delta; /* * Look at the head of all the pending queues, * if any I/O has been outstanding for longer than * the spa_deadman_synctime we panic the system. */ fio = avl_first(&vq->vq_active_tree); delta = gethrtime() - fio->io_timestamp; if (delta > spa_deadman_synctime(spa)) { zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " "delta %lluns, last io %lluns", fio->io_timestamp, delta, vq->vq_io_complete_ts); fm_panic("I/O to pool '%s' appears to be " "hung.", spa_name(spa)); } } mutex_exit(&vq->vq_lock); } } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_queue.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_queue.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_queue.c (revision 274273) @@ -1,735 +1,735 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include /* * ZFS I/O Scheduler * --------------- * * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The * I/O scheduler determines when and in what order those operations are * issued. The I/O scheduler divides operations into five I/O classes * prioritized in the following order: sync read, sync write, async read, * async write, and scrub/resilver. Each queue defines the minimum and * maximum number of concurrent operations that may be issued to the device. * In addition, the device has an aggregate maximum. Note that the sum of the * per-queue minimums must not exceed the aggregate maximum, and if the * aggregate maximum is equal to or greater than the sum of the per-queue * maximums, the per-queue minimum has no effect. * * For many physical devices, throughput increases with the number of * concurrent operations, but latency typically suffers. Further, physical * devices typically have a limit at which more concurrent operations have no * effect on throughput or can actually cause it to decrease. * * The scheduler selects the next operation to issue by first looking for an * I/O class whose minimum has not been satisfied. Once all are satisfied and * the aggregate maximum has not been hit, the scheduler looks for classes * whose maximum has not been satisfied. Iteration through the I/O classes is * done in the order specified above. No further operations are issued if the * aggregate maximum number of concurrent operations has been hit or if there * are no operations queued for an I/O class that has not hit its maximum. * Every time an i/o is queued or an operation completes, the I/O scheduler * looks for new operations to issue. * * All I/O classes have a fixed maximum number of outstanding operations * except for the async write class. Asynchronous writes represent the data * that is committed to stable storage during the syncing stage for * transaction groups (see txg.c). Transaction groups enter the syncing state * periodically so the number of queued async writes will quickly burst up and * then bleed down to zero. Rather than servicing them as quickly as possible, * the I/O scheduler changes the maximum number of active async write i/os * according to the amount of dirty data in the pool (see dsl_pool.c). Since * both throughput and latency typically increase with the number of * concurrent operations issued to physical devices, reducing the burstiness * in the number of concurrent operations also stabilizes the response time of * operations from other -- and in particular synchronous -- queues. In broad * strokes, the I/O scheduler will issue more concurrent operations from the * async write queue as there's more dirty data in the pool. * * Async Writes * * The number of concurrent operations issued for the async write I/O class * follows a piece-wise linear function defined by a few adjustable points. * * | o---------| <-- zfs_vdev_async_write_max_active * ^ | /^ | * | | / | | * active | / | | * I/O | / | | * count | / | | * | / | | * |------------o | | <-- zfs_vdev_async_write_min_active * 0|____________^______|_________| * 0% | | 100% of zfs_dirty_data_max * | | * | `-- zfs_vdev_async_write_active_max_dirty_percent * `--------- zfs_vdev_async_write_active_min_dirty_percent * * Until the amount of dirty data exceeds a minimum percentage of the dirty * data allowed in the pool, the I/O scheduler will limit the number of * concurrent operations to the minimum. As that threshold is crossed, the * number of concurrent operations issued increases linearly to the maximum at * the specified maximum percentage of the dirty data allowed in the pool. * * Ideally, the amount of dirty data on a busy pool will stay in the sloped * part of the function between zfs_vdev_async_write_active_min_dirty_percent * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the * maximum percentage, this indicates that the rate of incoming data is * greater than the rate that the backend storage can handle. In this case, we * must further throttle incoming writes (see dmu_tx_delay() for details). */ /* * The maximum number of i/os active to each device. Ideally, this will be >= * the sum of each queue's max_active. It must be at least the sum of each * queue's min_active. */ uint32_t zfs_vdev_max_active = 1000; /* * Per-queue limits on the number of i/os active to each device. If the * sum of the queue's max_active is < zfs_vdev_max_active, then the * min_active comes into play. We will send min_active from each queue, * and then select from queues in the order defined by zio_priority_t. * * In general, smaller max_active's will lead to lower latency of synchronous * operations. Larger max_active's may lead to higher overall throughput, * depending on underlying storage. * * The ratio of the queues' max_actives determines the balance of performance * between reads, writes, and scrubs. E.g., increasing * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete * more quickly, but reads and writes to have higher latency and lower * throughput. */ uint32_t zfs_vdev_sync_read_min_active = 10; uint32_t zfs_vdev_sync_read_max_active = 10; uint32_t zfs_vdev_sync_write_min_active = 10; uint32_t zfs_vdev_sync_write_max_active = 10; uint32_t zfs_vdev_async_read_min_active = 1; uint32_t zfs_vdev_async_read_max_active = 3; uint32_t zfs_vdev_async_write_min_active = 1; uint32_t zfs_vdev_async_write_max_active = 10; uint32_t zfs_vdev_scrub_min_active = 1; uint32_t zfs_vdev_scrub_max_active = 2; /* * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent * dirty data, use zfs_vdev_async_write_min_active. When it has more than * zfs_vdev_async_write_active_max_dirty_percent, use * zfs_vdev_async_write_max_active. The value is linearly interpolated * between min and max. */ int zfs_vdev_async_write_active_min_dirty_percent = 30; int zfs_vdev_async_write_active_max_dirty_percent = 60; /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. * For read I/Os, we also aggregate across small adjacency gaps; for writes * we include spans of optional I/Os to aid aggregation at the disk even when * they aren't able to help us aggregate at this level. */ -int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; +int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; int zfs_vdev_read_gap_limit = 32 << 10; int zfs_vdev_write_gap_limit = 4 << 10; int vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } int vdev_queue_timestamp_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_timestamp < z2->io_timestamp) return (-1); if (z1->io_timestamp > z2->io_timestamp) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } void vdev_queue_init(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); vq->vq_vdev = vd; avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_queue_node)); for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { /* * The synchronous i/o queues are FIFO rather than LBA ordered. * This provides more consistent latency for these i/os, and * they tend to not be tightly clustered anyway so there is * little to no throughput loss. */ boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE); avl_create(&vq->vq_class[p].vqc_queued_tree, fifo ? vdev_queue_timestamp_compare : vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_queue_node)); } } void vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) avl_destroy(&vq->vq_class[p].vqc_queued_tree); avl_destroy(&vq->vq_active_tree); mutex_destroy(&vq->vq_lock); } static void vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); mutex_enter(&spa->spa_iokstat_lock); spa->spa_queue_stats[zio->io_priority].spa_queued++; if (spa->spa_iokstat != NULL) kstat_waitq_enter(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } static void vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); mutex_enter(&spa->spa_iokstat_lock); ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); spa->spa_queue_stats[zio->io_priority].spa_queued--; if (spa->spa_iokstat != NULL) kstat_waitq_exit(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } static void vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active++; avl_add(&vq->vq_active_tree, zio); mutex_enter(&spa->spa_iokstat_lock); spa->spa_queue_stats[zio->io_priority].spa_active++; if (spa->spa_iokstat != NULL) kstat_runq_enter(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } static void vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; ASSERT(MUTEX_HELD(&vq->vq_lock)); ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); vq->vq_class[zio->io_priority].vqc_active--; avl_remove(&vq->vq_active_tree, zio); mutex_enter(&spa->spa_iokstat_lock); ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); spa->spa_queue_stats[zio->io_priority].spa_active--; if (spa->spa_iokstat != NULL) { kstat_io_t *ksio = spa->spa_iokstat->ks_data; kstat_runq_exit(spa->spa_iokstat->ks_data); if (zio->io_type == ZIO_TYPE_READ) { ksio->reads++; ksio->nread += zio->io_size; } else if (zio->io_type == ZIO_TYPE_WRITE) { ksio->writes++; ksio->nwritten += zio->io_size; } } mutex_exit(&spa->spa_iokstat_lock); } static void vdev_queue_agg_io_done(zio_t *aio) { if (aio->io_type == ZIO_TYPE_READ) { zio_t *pio; while ((pio = zio_walk_parents(aio)) != NULL) { bcopy((char *)aio->io_data + (pio->io_offset - aio->io_offset), pio->io_data, pio->io_size); } } zio_buf_free(aio->io_data, aio->io_size); } static int vdev_queue_class_min_active(zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: return (zfs_vdev_sync_read_min_active); case ZIO_PRIORITY_SYNC_WRITE: return (zfs_vdev_sync_write_min_active); case ZIO_PRIORITY_ASYNC_READ: return (zfs_vdev_async_read_min_active); case ZIO_PRIORITY_ASYNC_WRITE: return (zfs_vdev_async_write_min_active); case ZIO_PRIORITY_SCRUB: return (zfs_vdev_scrub_min_active); default: panic("invalid priority %u", p); return (0); } } static int vdev_queue_max_async_writes(spa_t *spa) { int writes; uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; uint64_t min_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_min_dirty_percent / 100; uint64_t max_bytes = zfs_dirty_data_max * zfs_vdev_async_write_active_max_dirty_percent / 100; /* * Sync tasks correspond to interactive user actions. To reduce the * execution time of those actions we push data out as fast as possible. */ if (spa_has_pending_synctask(spa)) { return (zfs_vdev_async_write_max_active); } if (dirty < min_bytes) return (zfs_vdev_async_write_min_active); if (dirty > max_bytes) return (zfs_vdev_async_write_max_active); /* * linear interpolation: * slope = (max_writes - min_writes) / (max_bytes - min_bytes) * move right by min_bytes * move up by min_writes */ writes = (dirty - min_bytes) * (zfs_vdev_async_write_max_active - zfs_vdev_async_write_min_active) / (max_bytes - min_bytes) + zfs_vdev_async_write_min_active; ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); return (writes); } static int vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) { switch (p) { case ZIO_PRIORITY_SYNC_READ: return (zfs_vdev_sync_read_max_active); case ZIO_PRIORITY_SYNC_WRITE: return (zfs_vdev_sync_write_max_active); case ZIO_PRIORITY_ASYNC_READ: return (zfs_vdev_async_read_max_active); case ZIO_PRIORITY_ASYNC_WRITE: return (vdev_queue_max_async_writes(spa)); case ZIO_PRIORITY_SCRUB: return (zfs_vdev_scrub_max_active); default: panic("invalid priority %u", p); return (0); } } /* * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if * there is no eligible class. */ static zio_priority_t vdev_queue_class_to_issue(vdev_queue_t *vq) { spa_t *spa = vq->vq_vdev->vdev_spa; zio_priority_t p; if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) return (ZIO_PRIORITY_NUM_QUEUEABLE); /* find a queue that has not reached its minimum # outstanding i/os */ for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && vq->vq_class[p].vqc_active < vdev_queue_class_min_active(p)) return (p); } /* * If we haven't found a queue, look for one that hasn't reached its * maximum # outstanding i/os. */ for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && vq->vq_class[p].vqc_active < vdev_queue_class_max_active(spa, p)) return (p); } /* No eligible queued i/os */ return (ZIO_PRIORITY_NUM_QUEUEABLE); } /* * Compute the range spanned by two i/os, which is the endpoint of the last * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. */ #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) static zio_t * vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) { zio_t *first, *last, *aio, *dio, *mandatory, *nio; uint64_t maxgap = 0; uint64_t size; boolean_t stretch = B_FALSE; vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; avl_tree_t *t = &vqc->vqc_queued_tree; enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) return (NULL); /* * The synchronous i/o queues are not sorted by LBA, so we can't * find adjacent i/os. These i/os tend to not be tightly clustered, * or too large to aggregate, so this has little impact on performance. */ if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) return (NULL); first = last = zio; if (zio->io_type == ZIO_TYPE_READ) maxgap = zfs_vdev_read_gap_limit; /* * We can aggregate I/Os that are sufficiently adjacent and of * the same flavor, as expressed by the AGG_INHERIT flags. * The latter requirement is necessary so that certain * attributes of the I/O, such as whether it's a normal I/O * or a scrub/resilver, can be preserved in the aggregate. * We can include optional I/Os, but don't allow them * to begin a range as they add no benefit in that situation. */ /* * We keep track of the last non-optional I/O. */ mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; /* * Walk backwards through sufficiently contiguous I/Os * recording the last non-option I/O. */ while ((dio = AVL_PREV(t, first)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && IO_GAP(dio, first) <= maxgap) { first = dio; if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = first; } /* * Skip any initial optional I/Os. */ while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { first = AVL_NEXT(t, first); ASSERT(first != NULL); } /* * Walk forward through sufficiently contiguous I/Os. */ while ((dio = AVL_NEXT(t, last)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && IO_GAP(last, dio) <= maxgap) { last = dio; if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) mandatory = last; } /* * Now that we've established the range of the I/O aggregation * we must decide what to do with trailing optional I/Os. * For reads, there's nothing to do. While we are unable to * aggregate further, it's possible that a trailing optional * I/O would allow the underlying device to aggregate with * subsequent I/Os. We must therefore determine if the next * non-optional I/O is close enough to make aggregation * worthwhile. */ if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { zio_t *nio = last; while ((dio = AVL_NEXT(t, nio)) != NULL && IO_GAP(nio, dio) == 0 && IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { nio = dio; if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { stretch = B_TRUE; break; } } } if (stretch) { /* This may be a no-op. */ dio = AVL_NEXT(t, last); dio->io_flags &= ~ZIO_FLAG_OPTIONAL; } else { while (last != mandatory && last != first) { ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); last = AVL_PREV(t, last); ASSERT(last != NULL); } } if (first == last) return (NULL); size = IO_SPAN(first, last); ASSERT3U(size, <=, zfs_vdev_aggregation_limit); aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, zio_buf_alloc(size), size, first->io_type, zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); aio->io_timestamp = first->io_timestamp; nio = first; do { dio = nio; nio = AVL_NEXT(t, dio); ASSERT3U(dio->io_type, ==, aio->io_type); if (dio->io_flags & ZIO_FLAG_NODATA) { ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); bzero((char *)aio->io_data + (dio->io_offset - aio->io_offset), dio->io_size); } else if (dio->io_type == ZIO_TYPE_WRITE) { bcopy(dio->io_data, (char *)aio->io_data + (dio->io_offset - aio->io_offset), dio->io_size); } zio_add_child(dio, aio); vdev_queue_io_remove(vq, dio); zio_vdev_io_bypass(dio); zio_execute(dio); } while (dio != last); return (aio); } static zio_t * vdev_queue_io_to_issue(vdev_queue_t *vq) { zio_t *zio, *aio; zio_priority_t p; avl_index_t idx; vdev_queue_class_t *vqc; zio_t search; again: ASSERT(MUTEX_HELD(&vq->vq_lock)); p = vdev_queue_class_to_issue(vq); if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { /* No eligible queued i/os */ return (NULL); } /* * For LBA-ordered queues (async / scrub), issue the i/o which follows * the most recently issued i/o in LBA (offset) order. * * For FIFO queues (sync), issue the i/o with the lowest timestamp. */ vqc = &vq->vq_class[p]; search.io_timestamp = 0; search.io_offset = vq->vq_last_offset + 1; VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL); zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); if (zio == NULL) zio = avl_first(&vqc->vqc_queued_tree); ASSERT3U(zio->io_priority, ==, p); aio = vdev_queue_aggregate(vq, zio); if (aio != NULL) zio = aio; else vdev_queue_io_remove(vq, zio); /* * If the I/O is or was optional and therefore has no data, we need to * simply discard it. We need to drop the vdev queue's lock to avoid a * deadlock that we could encounter since this I/O will complete * immediately. */ if (zio->io_flags & ZIO_FLAG_NODATA) { mutex_exit(&vq->vq_lock); zio_vdev_io_bypass(zio); zio_execute(zio); mutex_enter(&vq->vq_lock); goto again; } vdev_queue_pending_add(vq, zio); vq->vq_last_offset = zio->io_offset; return (zio); } zio_t * vdev_queue_io(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); /* * Children i/os inherent their parent's priority, which might * not match the child's i/o type. Fix it up here. */ if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && zio->io_priority != ZIO_PRIORITY_ASYNC_READ && zio->io_priority != ZIO_PRIORITY_SCRUB) zio->io_priority = ZIO_PRIORITY_ASYNC_READ; } else { ASSERT(zio->io_type == ZIO_TYPE_WRITE); if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; } zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; mutex_enter(&vq->vq_lock); zio->io_timestamp = gethrtime(); vdev_queue_io_add(vq, zio); nio = vdev_queue_io_to_issue(vq); mutex_exit(&vq->vq_lock); if (nio == NULL) return (NULL); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); return (NULL); } return (nio); } void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; if (zio_injection_enabled) delay(SEC_TO_TICK(zio_handle_io_delay(zio))); mutex_enter(&vq->vq_lock); vdev_queue_pending_remove(vq, zio); vq->vq_io_complete_ts = gethrtime(); while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); } else { zio_vdev_io_reissue(nio); zio_execute(nio); } mutex_enter(&vq->vq_lock); } mutex_exit(&vq->vq_lock); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_raidz.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_raidz.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/vdev_raidz.c (revision 274273) @@ -1,2374 +1,2374 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include /* * Virtual device vector for RAID-Z. * * This vdev supports single, double, and triple parity. For single parity, * we use a simple XOR of all the data columns. For double or triple parity, * we use a special case of Reed-Solomon coding. This extends the * technique described in "The mathematics of RAID-6" by H. Peter Anvin by * drawing on the system described in "A Tutorial on Reed-Solomon Coding for * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the * former is also based. The latter is designed to provide higher performance * for writes. * * Note that the Plank paper claimed to support arbitrary N+M, but was then * amended six years later identifying a critical flaw that invalidates its * claims. Nevertheless, the technique can be adapted to work for up to * triple parity. For additional parity, the amendment "Note: Correction to * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding * is viable, but the additional complexity means that write performance will * suffer. * * All of the methods above operate on a Galois field, defined over the * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements * can be expressed with a single byte. Briefly, the operations on the * field are defined as follows: * * o addition (+) is represented by a bitwise XOR * o subtraction (-) is therefore identical to addition: A + B = A - B * o multiplication of A by 2 is defined by the following bitwise expression: * * (A * 2)_7 = A_6 * (A * 2)_6 = A_5 * (A * 2)_5 = A_4 * (A * 2)_4 = A_3 + A_7 * (A * 2)_3 = A_2 + A_7 * (A * 2)_2 = A_1 + A_7 * (A * 2)_1 = A_0 * (A * 2)_0 = A_7 * * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). * As an aside, this multiplication is derived from the error correcting * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. * * Observe that any number in the field (except for 0) can be expressed as a * power of 2 -- a generator for the field. We store a table of the powers of * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather * than field addition). The inverse of a field element A (A^-1) is therefore * A ^ (255 - 1) = A^254. * * The up-to-three parity columns, P, Q, R over several data columns, * D_0, ... D_n-1, can be expressed by field operations: * * P = D_0 + D_1 + ... + D_n-2 + D_n-1 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 * * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival * XOR operation, and 2 and 4 can be computed quickly and generate linearly- * independent coefficients. (There are no additional coefficients that have * this property which is why the uncorrected Plank method breaks down.) * * See the reconstruction code below for how P, Q and R can used individually * or in concert to recover missing data columns. */ typedef struct raidz_col { uint64_t rc_devidx; /* child device index for I/O */ uint64_t rc_offset; /* device offset */ uint64_t rc_size; /* I/O size */ void *rc_data; /* I/O data */ void *rc_gdata; /* used to store the "good" version */ int rc_error; /* I/O error for this device */ uint8_t rc_tried; /* Did we attempt this I/O column? */ uint8_t rc_skipped; /* Did we skip this I/O column? */ } raidz_col_t; typedef struct raidz_map { uint64_t rm_cols; /* Regular column count */ uint64_t rm_scols; /* Count including skipped columns */ uint64_t rm_bigcols; /* Number of oversized columns */ uint64_t rm_asize; /* Actual total I/O size */ uint64_t rm_missingdata; /* Count of missing data devices */ uint64_t rm_missingparity; /* Count of missing parity devices */ uint64_t rm_firstdatacol; /* First data column/parity count */ uint64_t rm_nskip; /* Skipped sectors for padding */ uint64_t rm_skipstart; /* Column index of padding start */ void *rm_datacopy; /* rm_asize-buffer of copied data */ uintptr_t rm_reports; /* # of referencing checksum reports */ uint8_t rm_freed; /* map no longer has referencing ZIO */ uint8_t rm_ecksuminjected; /* checksum error was injected */ raidz_col_t rm_col[1]; /* Flexible array of I/O columns */ } raidz_map_t; #define VDEV_RAIDZ_P 0 #define VDEV_RAIDZ_Q 1 #define VDEV_RAIDZ_R 2 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) /* * We provide a mechanism to perform the field multiplication operation on a * 64-bit value all at once rather than a byte at a time. This works by * creating a mask from the top bit in each byte and using that to * conditionally apply the XOR of 0x1d. */ #define VDEV_RAIDZ_64MUL_2(x, mask) \ { \ (mask) = (x) & 0x8080808080808080ULL; \ (mask) = ((mask) << 1) - ((mask) >> 7); \ (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ ((mask) & 0x1d1d1d1d1d1d1d1d); \ } #define VDEV_RAIDZ_64MUL_4(x, mask) \ { \ VDEV_RAIDZ_64MUL_2((x), mask); \ VDEV_RAIDZ_64MUL_2((x), mask); \ } #define VDEV_LABEL_OFFSET(x) (x + VDEV_LABEL_START_SIZE) /* * Force reconstruction to use the general purpose method. */ int vdev_raidz_default_to_general; /* Powers of 2 in the Galois field defined above. */ static const uint8_t vdev_raidz_pow2[256] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26, 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9, 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0, 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35, 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23, 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0, 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1, 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc, 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f, 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2, 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88, 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce, 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93, 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc, 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9, 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54, 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa, 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73, 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e, 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff, 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4, 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41, 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6, 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef, 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09, 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5, 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83, 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01 }; /* Logs of 2 in the Galois field defined above. */ static const uint8_t vdev_raidz_log2[256] = { 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6, 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b, 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81, 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71, 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21, 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45, 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9, 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6, 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd, 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88, 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd, 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40, 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e, 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d, 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b, 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57, 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d, 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18, 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c, 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e, 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd, 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61, 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e, 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2, 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76, 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6, 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa, 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a, 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51, 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7, 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8, 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf, }; static void vdev_raidz_generate_parity(raidz_map_t *rm); /* * Multiply a given number by 2 raised to the given power. */ static uint8_t vdev_raidz_exp2(uint_t a, int exp) { if (a == 0) return (0); ASSERT(exp >= 0); ASSERT(vdev_raidz_log2[a] > 0 || a == 1); exp += vdev_raidz_log2[a]; if (exp > 255) exp -= 255; return (vdev_raidz_pow2[exp]); } static void vdev_raidz_map_free(raidz_map_t *rm) { int c; size_t size; for (c = 0; c < rm->rm_firstdatacol; c++) { zio_buf_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size); if (rm->rm_col[c].rc_gdata != NULL) zio_buf_free(rm->rm_col[c].rc_gdata, rm->rm_col[c].rc_size); } size = 0; for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) size += rm->rm_col[c].rc_size; if (rm->rm_datacopy != NULL) zio_buf_free(rm->rm_datacopy, size); kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols])); } static void vdev_raidz_map_free_vsd(zio_t *zio) { raidz_map_t *rm = zio->io_vsd; ASSERT0(rm->rm_freed); rm->rm_freed = 1; if (rm->rm_reports == 0) vdev_raidz_map_free(rm); } /*ARGSUSED*/ static void vdev_raidz_cksum_free(void *arg, size_t ignored) { raidz_map_t *rm = arg; ASSERT3U(rm->rm_reports, >, 0); if (--rm->rm_reports == 0 && rm->rm_freed != 0) vdev_raidz_map_free(rm); } static void vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const void *good_data) { raidz_map_t *rm = zcr->zcr_cbdata; size_t c = zcr->zcr_cbinfo; size_t x; const char *good = NULL; const char *bad = rm->rm_col[c].rc_data; if (good_data == NULL) { zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE); return; } if (c < rm->rm_firstdatacol) { /* * The first time through, calculate the parity blocks for * the good data (this relies on the fact that the good * data never changes for a given logical ZIO) */ if (rm->rm_col[0].rc_gdata == NULL) { char *bad_parity[VDEV_RAIDZ_MAXPARITY]; char *buf; /* * Set up the rm_col[]s to generate the parity for * good_data, first saving the parity bufs and * replacing them with buffers to hold the result. */ for (x = 0; x < rm->rm_firstdatacol; x++) { bad_parity[x] = rm->rm_col[x].rc_data; rm->rm_col[x].rc_data = rm->rm_col[x].rc_gdata = zio_buf_alloc(rm->rm_col[x].rc_size); } /* fill in the data columns from good_data */ buf = (char *)good_data; for (; x < rm->rm_cols; x++) { rm->rm_col[x].rc_data = buf; buf += rm->rm_col[x].rc_size; } /* * Construct the parity from the good data. */ vdev_raidz_generate_parity(rm); /* restore everything back to its original state */ for (x = 0; x < rm->rm_firstdatacol; x++) rm->rm_col[x].rc_data = bad_parity[x]; buf = rm->rm_datacopy; for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) { rm->rm_col[x].rc_data = buf; buf += rm->rm_col[x].rc_size; } } ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL); good = rm->rm_col[c].rc_gdata; } else { /* adjust good_data to point at the start of our column */ good = good_data; for (x = rm->rm_firstdatacol; x < c; x++) good += rm->rm_col[x].rc_size; } /* we drop the ereport if it ends up that the data was good */ zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE); } /* * Invoked indirectly by zfs_ereport_start_checksum(), called * below when our read operation fails completely. The main point * is to keep a copy of everything we read from disk, so that at * vdev_raidz_cksum_finish() time we can compare it with the good data. */ static void vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg) { size_t c = (size_t)(uintptr_t)arg; caddr_t buf; raidz_map_t *rm = zio->io_vsd; size_t size; /* set up the report and bump the refcount */ zcr->zcr_cbdata = rm; zcr->zcr_cbinfo = c; zcr->zcr_finish = vdev_raidz_cksum_finish; zcr->zcr_free = vdev_raidz_cksum_free; rm->rm_reports++; ASSERT3U(rm->rm_reports, >, 0); if (rm->rm_datacopy != NULL) return; /* * It's the first time we're called for this raidz_map_t, so we need * to copy the data aside; there's no guarantee that our zio's buffer * won't be re-used for something else. * * Our parity data is already in separate buffers, so there's no need * to copy them. */ size = 0; for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) size += rm->rm_col[c].rc_size; buf = rm->rm_datacopy = zio_buf_alloc(size); for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { raidz_col_t *col = &rm->rm_col[c]; bcopy(col->rc_data, buf, col->rc_size); col->rc_data = buf; buf += col->rc_size; } ASSERT3P(buf - (caddr_t)rm->rm_datacopy, ==, size); } static const zio_vsd_ops_t vdev_raidz_vsd_ops = { vdev_raidz_map_free_vsd, vdev_raidz_cksum_report }; /* * Divides the IO evenly across all child vdevs; usually, dcols is * the number of children in the target vdev. */ static raidz_map_t * vdev_raidz_map_alloc(caddr_t data, uint64_t size, uint64_t offset, uint64_t unit_shift, uint64_t dcols, uint64_t nparity) { raidz_map_t *rm; /* The starting RAIDZ (parent) vdev sector of the block. */ uint64_t b = offset >> unit_shift; /* The zio's size in units of the vdev's minimum sector size. */ uint64_t s = size >> unit_shift; /* The first column for this stripe. */ uint64_t f = b % dcols; /* The starting byte offset on each child vdev. */ uint64_t o = (b / dcols) << unit_shift; uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; /* * "Quotient": The number of data sectors for this stripe on all but * the "big column" child vdevs that also contain "remainder" data. */ q = s / (dcols - nparity); /* * "Remainder": The number of partial stripe data sectors in this I/O. * This will add a sector to some, but not all, child vdevs. */ r = s - q * (dcols - nparity); /* The number of "big columns" - those which contain remainder data. */ bc = (r == 0 ? 0 : r + nparity); /* * The total number of data and parity sectors associated with * this I/O. */ tot = s + nparity * (q + (r == 0 ? 0 : 1)); /* acols: The columns that will be accessed. */ /* scols: The columns that will be accessed or skipped. */ if (q == 0) { /* Our I/O request doesn't span all child vdevs. */ acols = bc; scols = MIN(dcols, roundup(bc, nparity + 1)); } else { acols = dcols; scols = dcols; } ASSERT3U(acols, <=, scols); rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP); rm->rm_cols = acols; rm->rm_scols = scols; rm->rm_bigcols = bc; rm->rm_skipstart = bc; rm->rm_missingdata = 0; rm->rm_missingparity = 0; rm->rm_firstdatacol = nparity; rm->rm_datacopy = NULL; rm->rm_reports = 0; rm->rm_freed = 0; rm->rm_ecksuminjected = 0; asize = 0; for (c = 0; c < scols; c++) { col = f + c; coff = o; if (col >= dcols) { col -= dcols; coff += 1ULL << unit_shift; } rm->rm_col[c].rc_devidx = col; rm->rm_col[c].rc_offset = coff; rm->rm_col[c].rc_data = NULL; rm->rm_col[c].rc_gdata = NULL; rm->rm_col[c].rc_error = 0; rm->rm_col[c].rc_tried = 0; rm->rm_col[c].rc_skipped = 0; if (c >= acols) rm->rm_col[c].rc_size = 0; else if (c < bc) rm->rm_col[c].rc_size = (q + 1) << unit_shift; else rm->rm_col[c].rc_size = q << unit_shift; asize += rm->rm_col[c].rc_size; } ASSERT3U(asize, ==, tot << unit_shift); rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift); rm->rm_nskip = roundup(tot, nparity + 1) - tot; ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift); ASSERT3U(rm->rm_nskip, <=, nparity); for (c = 0; c < rm->rm_firstdatacol; c++) rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size); rm->rm_col[c].rc_data = data; for (c = c + 1; c < acols; c++) rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data + rm->rm_col[c - 1].rc_size; /* * If all data stored spans all columns, there's a danger that parity * will always be on the same device and, since parity isn't read * during normal operation, that that device's I/O bandwidth won't be * used effectively. We therefore switch the parity every 1MB. * * ... at least that was, ostensibly, the theory. As a practical * matter unless we juggle the parity between all devices evenly, we * won't see any benefit. Further, occasional writes that aren't a * multiple of the LCM of the number of children and the minimum * stripe width are sufficient to avoid pessimal behavior. * Unfortunately, this decision created an implicit on-disk format * requirement that we need to support for all eternity, but only * for single-parity RAID-Z. * * If we intend to skip a sector in the zeroth column for padding * we must make sure to note this swap. We will never intend to * skip the first column since at least one data and one parity * column must appear in each row. */ ASSERT(rm->rm_cols >= 2); ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size); if (rm->rm_firstdatacol == 1 && (offset & (1ULL << 20))) { devidx = rm->rm_col[0].rc_devidx; o = rm->rm_col[0].rc_offset; rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx; rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset; rm->rm_col[1].rc_devidx = devidx; rm->rm_col[1].rc_offset = o; if (rm->rm_skipstart == 0) rm->rm_skipstart = 1; } return (rm); } static void vdev_raidz_generate_parity_p(raidz_map_t *rm) { uint64_t *p, *src, pcount, ccount, i; int c; pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { src = rm->rm_col[c].rc_data; p = rm->rm_col[VDEV_RAIDZ_P].rc_data; ccount = rm->rm_col[c].rc_size / sizeof (src[0]); if (c == rm->rm_firstdatacol) { ASSERT(ccount == pcount); for (i = 0; i < ccount; i++, src++, p++) { *p = *src; } } else { ASSERT(ccount <= pcount); for (i = 0; i < ccount; i++, src++, p++) { *p ^= *src; } } } } static void vdev_raidz_generate_parity_pq(raidz_map_t *rm) { uint64_t *p, *q, *src, pcnt, ccnt, mask, i; int c; pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == rm->rm_col[VDEV_RAIDZ_Q].rc_size); for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { src = rm->rm_col[c].rc_data; p = rm->rm_col[VDEV_RAIDZ_P].rc_data; q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); if (c == rm->rm_firstdatacol) { ASSERT(ccnt == pcnt || ccnt == 0); for (i = 0; i < ccnt; i++, src++, p++, q++) { *p = *src; *q = *src; } for (; i < pcnt; i++, src++, p++, q++) { *p = 0; *q = 0; } } else { ASSERT(ccnt <= pcnt); /* * Apply the algorithm described above by multiplying * the previous result and adding in the new value. */ for (i = 0; i < ccnt; i++, src++, p++, q++) { *p ^= *src; VDEV_RAIDZ_64MUL_2(*q, mask); *q ^= *src; } /* * Treat short columns as though they are full of 0s. * Note that there's therefore nothing needed for P. */ for (; i < pcnt; i++, q++) { VDEV_RAIDZ_64MUL_2(*q, mask); } } } } static void vdev_raidz_generate_parity_pqr(raidz_map_t *rm) { uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i; int c; pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == rm->rm_col[VDEV_RAIDZ_Q].rc_size); ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == rm->rm_col[VDEV_RAIDZ_R].rc_size); for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { src = rm->rm_col[c].rc_data; p = rm->rm_col[VDEV_RAIDZ_P].rc_data; q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; r = rm->rm_col[VDEV_RAIDZ_R].rc_data; ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); if (c == rm->rm_firstdatacol) { ASSERT(ccnt == pcnt || ccnt == 0); for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { *p = *src; *q = *src; *r = *src; } for (; i < pcnt; i++, src++, p++, q++, r++) { *p = 0; *q = 0; *r = 0; } } else { ASSERT(ccnt <= pcnt); /* * Apply the algorithm described above by multiplying * the previous result and adding in the new value. */ for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { *p ^= *src; VDEV_RAIDZ_64MUL_2(*q, mask); *q ^= *src; VDEV_RAIDZ_64MUL_4(*r, mask); *r ^= *src; } /* * Treat short columns as though they are full of 0s. * Note that there's therefore nothing needed for P. */ for (; i < pcnt; i++, q++, r++) { VDEV_RAIDZ_64MUL_2(*q, mask); VDEV_RAIDZ_64MUL_4(*r, mask); } } } } /* * Generate RAID parity in the first virtual columns according to the number of * parity columns available. */ static void vdev_raidz_generate_parity(raidz_map_t *rm) { switch (rm->rm_firstdatacol) { case 1: vdev_raidz_generate_parity_p(rm); break; case 2: vdev_raidz_generate_parity_pq(rm); break; case 3: vdev_raidz_generate_parity_pqr(rm); break; default: cmn_err(CE_PANIC, "invalid RAID-Z configuration"); } } static int vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts) { uint64_t *dst, *src, xcount, ccount, count, i; int x = tgts[0]; int c; ASSERT(ntgts == 1); ASSERT(x >= rm->rm_firstdatacol); ASSERT(x < rm->rm_cols); xcount = rm->rm_col[x].rc_size / sizeof (src[0]); ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0])); ASSERT(xcount > 0); src = rm->rm_col[VDEV_RAIDZ_P].rc_data; dst = rm->rm_col[x].rc_data; for (i = 0; i < xcount; i++, dst++, src++) { *dst = *src; } for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { src = rm->rm_col[c].rc_data; dst = rm->rm_col[x].rc_data; if (c == x) continue; ccount = rm->rm_col[c].rc_size / sizeof (src[0]); count = MIN(ccount, xcount); for (i = 0; i < count; i++, dst++, src++) { *dst ^= *src; } } return (1 << VDEV_RAIDZ_P); } static int vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts) { uint64_t *dst, *src, xcount, ccount, count, mask, i; uint8_t *b; int x = tgts[0]; int c, j, exp; ASSERT(ntgts == 1); xcount = rm->rm_col[x].rc_size / sizeof (src[0]); ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0])); for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { src = rm->rm_col[c].rc_data; dst = rm->rm_col[x].rc_data; if (c == x) ccount = 0; else ccount = rm->rm_col[c].rc_size / sizeof (src[0]); count = MIN(ccount, xcount); if (c == rm->rm_firstdatacol) { for (i = 0; i < count; i++, dst++, src++) { *dst = *src; } for (; i < xcount; i++, dst++) { *dst = 0; } } else { for (i = 0; i < count; i++, dst++, src++) { VDEV_RAIDZ_64MUL_2(*dst, mask); *dst ^= *src; } for (; i < xcount; i++, dst++) { VDEV_RAIDZ_64MUL_2(*dst, mask); } } } src = rm->rm_col[VDEV_RAIDZ_Q].rc_data; dst = rm->rm_col[x].rc_data; exp = 255 - (rm->rm_cols - 1 - x); for (i = 0; i < xcount; i++, dst++, src++) { *dst ^= *src; for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) { *b = vdev_raidz_exp2(*b, exp); } } return (1 << VDEV_RAIDZ_Q); } static int vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts) { uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp; void *pdata, *qdata; uint64_t xsize, ysize, i; int x = tgts[0]; int y = tgts[1]; ASSERT(ntgts == 2); ASSERT(x < y); ASSERT(x >= rm->rm_firstdatacol); ASSERT(y < rm->rm_cols); ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size); /* * Move the parity data aside -- we're going to compute parity as * though columns x and y were full of zeros -- Pxy and Qxy. We want to * reuse the parity generation mechanism without trashing the actual * parity so we make those columns appear to be full of zeros by * setting their lengths to zero. */ pdata = rm->rm_col[VDEV_RAIDZ_P].rc_data; qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_data; xsize = rm->rm_col[x].rc_size; ysize = rm->rm_col[y].rc_size; rm->rm_col[VDEV_RAIDZ_P].rc_data = zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_P].rc_size); rm->rm_col[VDEV_RAIDZ_Q].rc_data = zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_Q].rc_size); rm->rm_col[x].rc_size = 0; rm->rm_col[y].rc_size = 0; vdev_raidz_generate_parity_pq(rm); rm->rm_col[x].rc_size = xsize; rm->rm_col[y].rc_size = ysize; p = pdata; q = qdata; pxy = rm->rm_col[VDEV_RAIDZ_P].rc_data; qxy = rm->rm_col[VDEV_RAIDZ_Q].rc_data; xd = rm->rm_col[x].rc_data; yd = rm->rm_col[y].rc_data; /* * We now have: * Pxy = P + D_x + D_y * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y * * We can then solve for D_x: * D_x = A * (P + Pxy) + B * (Q + Qxy) * where * A = 2^(x - y) * (2^(x - y) + 1)^-1 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1 * * With D_x in hand, we can easily solve for D_y: * D_y = P + Pxy + D_x */ a = vdev_raidz_pow2[255 + x - y]; b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)]; tmp = 255 - vdev_raidz_log2[a ^ 1]; aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)]; bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)]; for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) { *xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^ vdev_raidz_exp2(*q ^ *qxy, bexp); if (i < ysize) *yd = *p ^ *pxy ^ *xd; } zio_buf_free(rm->rm_col[VDEV_RAIDZ_P].rc_data, rm->rm_col[VDEV_RAIDZ_P].rc_size); zio_buf_free(rm->rm_col[VDEV_RAIDZ_Q].rc_data, rm->rm_col[VDEV_RAIDZ_Q].rc_size); /* * Restore the saved parity data. */ rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata; rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata; return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q)); } /* BEGIN CSTYLED */ /* * In the general case of reconstruction, we must solve the system of linear * equations defined by the coeffecients used to generate parity as well as * the contents of the data and parity disks. This can be expressed with * vectors for the original data (D) and the actual data (d) and parity (p) * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): * * __ __ __ __ * | | __ __ | p_0 | * | V | | D_0 | | p_m-1 | * | | x | : | = | d_0 | * | I | | D_n-1 | | : | * | | ~~ ~~ | d_n-1 | * ~~ ~~ ~~ ~~ * * I is simply a square identity matrix of size n, and V is a vandermonde * matrix defined by the coeffecients we chose for the various parity columns * (1, 2, 4). Note that these values were chosen both for simplicity, speedy * computation as well as linear separability. * * __ __ __ __ * | 1 .. 1 1 1 | | p_0 | * | 2^n-1 .. 4 2 1 | __ __ | : | * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | * | 1 .. 0 0 0 | | D_1 | | d_0 | * | 0 .. 0 0 0 | x | D_2 | = | d_1 | * | : : : : | | : | | d_2 | * | 0 .. 1 0 0 | | D_n-1 | | : | * | 0 .. 0 1 0 | ~~ ~~ | : | * | 0 .. 0 0 1 | | d_n-1 | * ~~ ~~ ~~ ~~ * * Note that I, V, d, and p are known. To compute D, we must invert the * matrix and use the known data and parity values to reconstruct the unknown * data values. We begin by removing the rows in V|I and d|p that correspond * to failed or missing columns; we then make V|I square (n x n) and d|p * sized n by removing rows corresponding to unused parity from the bottom up * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' * using Gauss-Jordan elimination. In the example below we use m=3 parity * columns, n=8 data columns, with errors in d_1, d_2, and p_1: * __ __ * | 1 1 1 1 1 1 1 1 | * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks * | 19 205 116 29 64 16 4 1 | / / * | 1 0 0 0 0 0 0 0 | / / * | 0 1 0 0 0 0 0 0 | <--' / * (V|I) = | 0 0 1 0 0 0 0 0 | <---' * | 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 1 1 1 1 1 1 1 | * | 19 205 116 29 64 16 4 1 | * | 1 0 0 0 0 0 0 0 | * (V|I)' = | 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 | * ~~ ~~ * * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We * have carefully chosen the seed values 1, 2, and 4 to ensure that this * matrix is not singular. * __ __ * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | * ~~ ~~ * __ __ * | 0 0 1 0 0 0 0 0 | * | 167 100 5 41 159 169 217 208 | * | 166 100 4 40 158 168 216 209 | * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | * | 0 0 0 0 1 0 0 0 | * | 0 0 0 0 0 1 0 0 | * | 0 0 0 0 0 0 1 0 | * | 0 0 0 0 0 0 0 1 | * ~~ ~~ * * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values * of the missing data. * * As is apparent from the example above, the only non-trivial rows in the * inverse matrix correspond to the data disks that we're trying to * reconstruct. Indeed, those are the only rows we need as the others would * only be useful for reconstructing data known or assumed to be valid. For * that reason, we only build the coefficients in the rows that correspond to * targeted columns. */ /* END CSTYLED */ static void vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map, uint8_t **rows) { int i, j; int pow; ASSERT(n == rm->rm_cols - rm->rm_firstdatacol); /* * Fill in the missing rows of interest. */ for (i = 0; i < nmap; i++) { ASSERT3S(0, <=, map[i]); ASSERT3S(map[i], <=, 2); pow = map[i] * n; if (pow > 255) pow -= 255; ASSERT(pow <= 255); for (j = 0; j < n; j++) { pow -= map[i]; if (pow < 0) pow += 255; rows[i][j] = vdev_raidz_pow2[pow]; } } } static void vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing, uint8_t **rows, uint8_t **invrows, const uint8_t *used) { int i, j, ii, jj; uint8_t log; /* * Assert that the first nmissing entries from the array of used * columns correspond to parity columns and that subsequent entries * correspond to data columns. */ for (i = 0; i < nmissing; i++) { ASSERT3S(used[i], <, rm->rm_firstdatacol); } for (; i < n; i++) { ASSERT3S(used[i], >=, rm->rm_firstdatacol); } /* * First initialize the storage where we'll compute the inverse rows. */ for (i = 0; i < nmissing; i++) { for (j = 0; j < n; j++) { invrows[i][j] = (i == j) ? 1 : 0; } } /* * Subtract all trivial rows from the rows of consequence. */ for (i = 0; i < nmissing; i++) { for (j = nmissing; j < n; j++) { ASSERT3U(used[j], >=, rm->rm_firstdatacol); jj = used[j] - rm->rm_firstdatacol; ASSERT3S(jj, <, n); invrows[i][j] = rows[i][jj]; rows[i][jj] = 0; } } /* * For each of the rows of interest, we must normalize it and subtract * a multiple of it from the other rows. */ for (i = 0; i < nmissing; i++) { for (j = 0; j < missing[i]; j++) { ASSERT0(rows[i][j]); } ASSERT3U(rows[i][missing[i]], !=, 0); /* * Compute the inverse of the first element and multiply each * element in the row by that value. */ log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; for (j = 0; j < n; j++) { rows[i][j] = vdev_raidz_exp2(rows[i][j], log); invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); } for (ii = 0; ii < nmissing; ii++) { if (i == ii) continue; ASSERT3U(rows[ii][missing[i]], !=, 0); log = vdev_raidz_log2[rows[ii][missing[i]]]; for (j = 0; j < n; j++) { rows[ii][j] ^= vdev_raidz_exp2(rows[i][j], log); invrows[ii][j] ^= vdev_raidz_exp2(invrows[i][j], log); } } } /* * Verify that the data that is left in the rows are properly part of * an identity matrix. */ for (i = 0; i < nmissing; i++) { for (j = 0; j < n; j++) { if (j == missing[i]) { ASSERT3U(rows[i][j], ==, 1); } else { ASSERT0(rows[i][j]); } } } } static void vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing, int *missing, uint8_t **invrows, const uint8_t *used) { int i, j, x, cc, c; uint8_t *src; uint64_t ccount; uint8_t *dst[VDEV_RAIDZ_MAXPARITY]; uint64_t dcount[VDEV_RAIDZ_MAXPARITY]; uint8_t log = 0; uint8_t val; int ll; uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; uint8_t *p, *pp; size_t psize; psize = sizeof (invlog[0][0]) * n * nmissing; p = kmem_alloc(psize, KM_SLEEP); for (pp = p, i = 0; i < nmissing; i++) { invlog[i] = pp; pp += n; } for (i = 0; i < nmissing; i++) { for (j = 0; j < n; j++) { ASSERT3U(invrows[i][j], !=, 0); invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; } } for (i = 0; i < n; i++) { c = used[i]; ASSERT3U(c, <, rm->rm_cols); src = rm->rm_col[c].rc_data; ccount = rm->rm_col[c].rc_size; for (j = 0; j < nmissing; j++) { cc = missing[j] + rm->rm_firstdatacol; ASSERT3U(cc, >=, rm->rm_firstdatacol); ASSERT3U(cc, <, rm->rm_cols); ASSERT3U(cc, !=, c); dst[j] = rm->rm_col[cc].rc_data; dcount[j] = rm->rm_col[cc].rc_size; } ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0); for (x = 0; x < ccount; x++, src++) { if (*src != 0) log = vdev_raidz_log2[*src]; for (cc = 0; cc < nmissing; cc++) { if (x >= dcount[cc]) continue; if (*src == 0) { val = 0; } else { if ((ll = log + invlog[cc][i]) >= 255) ll -= 255; val = vdev_raidz_pow2[ll]; } if (i == 0) dst[cc][x] = val; else dst[cc][x] ^= val; } } } kmem_free(p, psize); } static int vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts) { int n, i, c, t, tt; int nmissing_rows; int missing_rows[VDEV_RAIDZ_MAXPARITY]; int parity_map[VDEV_RAIDZ_MAXPARITY]; uint8_t *p, *pp; size_t psize; uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; uint8_t *used; int code = 0; n = rm->rm_cols - rm->rm_firstdatacol; /* * Figure out which data columns are missing. */ nmissing_rows = 0; for (t = 0; t < ntgts; t++) { if (tgts[t] >= rm->rm_firstdatacol) { missing_rows[nmissing_rows++] = tgts[t] - rm->rm_firstdatacol; } } /* * Figure out which parity columns to use to help generate the missing * data columns. */ for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { ASSERT(tt < ntgts); ASSERT(c < rm->rm_firstdatacol); /* * Skip any targeted parity columns. */ if (c == tgts[tt]) { tt++; continue; } code |= 1 << c; parity_map[i] = c; i++; } ASSERT(code != 0); ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY); psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * nmissing_rows * n + sizeof (used[0]) * n; p = kmem_alloc(psize, KM_SLEEP); for (pp = p, i = 0; i < nmissing_rows; i++) { rows[i] = pp; pp += n; invrows[i] = pp; pp += n; } used = pp; for (i = 0; i < nmissing_rows; i++) { used[i] = parity_map[i]; } for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { if (tt < nmissing_rows && c == missing_rows[tt] + rm->rm_firstdatacol) { tt++; continue; } ASSERT3S(i, <, n); used[i] = c; i++; } /* * Initialize the interesting rows of the matrix. */ vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows); /* * Invert the matrix. */ vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows, invrows, used); /* * Reconstruct the missing data using the generated matrix. */ vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows, invrows, used); kmem_free(p, psize); return (code); } static int vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt) { int tgts[VDEV_RAIDZ_MAXPARITY], *dt; int ntgts; int i, c; int code; int nbadparity, nbaddata; int parity_valid[VDEV_RAIDZ_MAXPARITY]; /* * The tgts list must already be sorted. */ for (i = 1; i < nt; i++) { ASSERT(t[i] > t[i - 1]); } nbadparity = rm->rm_firstdatacol; nbaddata = rm->rm_cols - nbadparity; ntgts = 0; for (i = 0, c = 0; c < rm->rm_cols; c++) { if (c < rm->rm_firstdatacol) parity_valid[c] = B_FALSE; if (i < nt && c == t[i]) { tgts[ntgts++] = c; i++; } else if (rm->rm_col[c].rc_error != 0) { tgts[ntgts++] = c; } else if (c >= rm->rm_firstdatacol) { nbaddata--; } else { parity_valid[c] = B_TRUE; nbadparity--; } } ASSERT(ntgts >= nt); ASSERT(nbaddata >= 0); ASSERT(nbaddata + nbadparity == ntgts); dt = &tgts[nbadparity]; /* * See if we can use any of our optimized reconstruction routines. */ if (!vdev_raidz_default_to_general) { switch (nbaddata) { case 1: if (parity_valid[VDEV_RAIDZ_P]) return (vdev_raidz_reconstruct_p(rm, dt, 1)); ASSERT(rm->rm_firstdatacol > 1); if (parity_valid[VDEV_RAIDZ_Q]) return (vdev_raidz_reconstruct_q(rm, dt, 1)); ASSERT(rm->rm_firstdatacol > 2); break; case 2: ASSERT(rm->rm_firstdatacol > 1); if (parity_valid[VDEV_RAIDZ_P] && parity_valid[VDEV_RAIDZ_Q]) return (vdev_raidz_reconstruct_pq(rm, dt, 2)); ASSERT(rm->rm_firstdatacol > 2); break; } } code = vdev_raidz_reconstruct_general(rm, tgts, ntgts); ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY)); ASSERT(code > 0); return (code); } static int vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, uint64_t *ashift) { vdev_t *cvd; uint64_t nparity = vd->vdev_nparity; int c; int lasterror = 0; int numerrors = 0; ASSERT(nparity > 0); if (nparity > VDEV_RAIDZ_MAXPARITY || vd->vdev_children < nparity + 1) { vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; return (SET_ERROR(EINVAL)); } vdev_open_children(vd); for (c = 0; c < vd->vdev_children; c++) { cvd = vd->vdev_child[c]; if (cvd->vdev_open_error != 0) { lasterror = cvd->vdev_open_error; numerrors++; continue; } *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; *ashift = MAX(*ashift, cvd->vdev_ashift); } *asize *= vd->vdev_children; *max_asize *= vd->vdev_children; if (numerrors > nparity) { vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; return (lasterror); } return (0); } static void vdev_raidz_close(vdev_t *vd) { int c; for (c = 0; c < vd->vdev_children; c++) vdev_close(vd->vdev_child[c]); } /* * Handle a read or write I/O to a RAID-Z dump device. * * The dump device is in a unique situation compared to other ZFS datasets: * writing to this device should be as simple and fast as possible. In * addition, durability matters much less since the dump will be extracted * once the machine reboots. For that reason, this function eschews parity for * performance and simplicity. The dump device uses the checksum setting * ZIO_CHECKSUM_NOPARITY to indicate that parity is not maintained for this * dataset. * * Blocks of size 128 KB have been preallocated for this volume. I/Os less than * 128 KB will not fill an entire block; in addition, they may not be properly * aligned. In that case, this function uses the preallocated 128 KB block and * omits reading or writing any "empty" portions of that block, as opposed to * allocating a fresh appropriately-sized block. * * Looking at an example of a 32 KB I/O to a RAID-Z vdev with 5 child vdevs: * * vdev_raidz_io_start(data, size: 32 KB, offset: 64 KB) * * If this were a standard RAID-Z dataset, a block of at least 40 KB would be * allocated which spans all five child vdevs. 8 KB of data would be written to * each of four vdevs, with the fifth containing the parity bits. * * parity data data data data * | PP | XX | XX | XX | XX | * ^ ^ ^ ^ ^ * | | | | | * 8 KB parity ------8 KB data blocks------ * * However, when writing to the dump device, the behavior is different: * * vdev_raidz_physio(data, size: 32 KB, offset: 64 KB) * * Unlike the normal RAID-Z case in which the block is allocated based on the * I/O size, reads and writes here always use a 128 KB logical I/O size. If the * I/O size is less than 128 KB, only the actual portions of data are written. * In this example the data is written to the third data vdev since that vdev * contains the offset [64 KB, 96 KB). * * parity data data data data * | | | | XX | | * ^ * | * 32 KB data block * * As a result, an individual I/O may not span all child vdevs; moreover, a * small I/O may only operate on a single child vdev. * * Note that since there are no parity bits calculated or written, this format * remains the same no matter how many parity bits are used in a normal RAID-Z * stripe. On a RAID-Z3 configuration with seven child vdevs, the example above * would look like: * * parity parity parity data data data data * | | | | | | XX | | * ^ * | * 32 KB data block */ int vdev_raidz_physio(vdev_t *vd, caddr_t data, size_t size, uint64_t offset, uint64_t origoffset, boolean_t doread, boolean_t isdump) { vdev_t *tvd = vd->vdev_top; vdev_t *cvd; raidz_map_t *rm; raidz_col_t *rc; int c, err = 0; uint64_t start, end, colstart, colend; uint64_t coloffset, colsize, colskip; int flags = doread ? B_READ : B_WRITE; #ifdef _KERNEL /* * Don't write past the end of the block */ - VERIFY3U(offset + size, <=, origoffset + SPA_MAXBLOCKSIZE); + VERIFY3U(offset + size, <=, origoffset + SPA_OLD_MAXBLOCKSIZE); start = offset; end = start + size; /* * Allocate a RAID-Z map for this block. Note that this block starts * from the "original" offset, this is, the offset of the extent which * contains the requisite offset of the data being read or written. * * Even if this I/O operation doesn't span the full block size, let's * treat the on-disk format as if the only blocks are the complete 128 * KB size. */ rm = vdev_raidz_map_alloc(data - (offset - origoffset), - SPA_MAXBLOCKSIZE, origoffset, tvd->vdev_ashift, vd->vdev_children, - vd->vdev_nparity); + SPA_OLD_MAXBLOCKSIZE, origoffset, tvd->vdev_ashift, + vd->vdev_children, vd->vdev_nparity); coloffset = origoffset; for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++, coloffset += rc->rc_size) { rc = &rm->rm_col[c]; cvd = vd->vdev_child[rc->rc_devidx]; /* * Find the start and end of this column in the RAID-Z map, * keeping in mind that the stated size and offset of the * operation may not fill the entire column for this vdev. * * If any portion of the data spans this column, issue the * appropriate operation to the vdev. */ if (coloffset + rc->rc_size <= start) continue; if (coloffset >= end) continue; colstart = MAX(coloffset, start); colend = MIN(end, coloffset + rc->rc_size); colsize = colend - colstart; colskip = colstart - coloffset; VERIFY3U(colsize, <=, rc->rc_size); VERIFY3U(colskip, <=, rc->rc_size); /* * Note that the child vdev will have a vdev label at the start * of its range of offsets, hence the need for * VDEV_LABEL_OFFSET(). See zio_vdev_child_io() for another * example of why this calculation is needed. */ if ((err = vdev_disk_physio(cvd, ((char *)rc->rc_data) + colskip, colsize, VDEV_LABEL_OFFSET(rc->rc_offset) + colskip, flags, isdump)) != 0) break; } vdev_raidz_map_free(rm); #endif /* KERNEL */ return (err); } static uint64_t vdev_raidz_asize(vdev_t *vd, uint64_t psize) { uint64_t asize; uint64_t ashift = vd->vdev_top->vdev_ashift; uint64_t cols = vd->vdev_children; uint64_t nparity = vd->vdev_nparity; asize = ((psize - 1) >> ashift) + 1; asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity)); asize = roundup(asize, nparity + 1) << ashift; return (asize); } static void vdev_raidz_child_done(zio_t *zio) { raidz_col_t *rc = zio->io_private; rc->rc_error = zio->io_error; rc->rc_tried = 1; rc->rc_skipped = 0; } /* * Start an IO operation on a RAIDZ VDev * * Outline: * - For write operations: * 1. Generate the parity data * 2. Create child zio write operations to each column's vdev, for both * data and parity. * 3. If the column skips any sectors for padding, create optional dummy * write zio children for those areas to improve aggregation continuity. * - For read operations: * 1. Create child zio read operations to each data column's vdev to read * the range of data required for zio. * 2. If this is a scrub or resilver operation, or if any of the data * vdevs have had errors, then create zio read operations to the parity * columns' VDevs as well. */ static void vdev_raidz_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_t *tvd = vd->vdev_top; vdev_t *cvd; raidz_map_t *rm; raidz_col_t *rc; int c, i; rm = vdev_raidz_map_alloc(zio->io_data, zio->io_size, zio->io_offset, tvd->vdev_ashift, vd->vdev_children, vd->vdev_nparity); zio->io_vsd = rm; zio->io_vsd_ops = &vdev_raidz_vsd_ops; ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size)); if (zio->io_type == ZIO_TYPE_WRITE) { vdev_raidz_generate_parity(rm); for (c = 0; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; cvd = vd->vdev_child[rc->rc_devidx]; zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset, rc->rc_data, rc->rc_size, zio->io_type, zio->io_priority, 0, vdev_raidz_child_done, rc)); } /* * Generate optional I/Os for any skipped sectors to improve * aggregation contiguity. */ for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) { ASSERT(c <= rm->rm_scols); if (c == rm->rm_scols) c = 0; rc = &rm->rm_col[c]; cvd = vd->vdev_child[rc->rc_devidx]; zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset + rc->rc_size, NULL, 1 << tvd->vdev_ashift, zio->io_type, zio->io_priority, ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL)); } zio_execute(zio); return; } ASSERT(zio->io_type == ZIO_TYPE_READ); /* * Iterate over the columns in reverse order so that we hit the parity * last -- any errors along the way will force us to read the parity. */ for (c = rm->rm_cols - 1; c >= 0; c--) { rc = &rm->rm_col[c]; cvd = vd->vdev_child[rc->rc_devidx]; if (!vdev_readable(cvd)) { if (c >= rm->rm_firstdatacol) rm->rm_missingdata++; else rm->rm_missingparity++; rc->rc_error = SET_ERROR(ENXIO); rc->rc_tried = 1; /* don't even try */ rc->rc_skipped = 1; continue; } if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { if (c >= rm->rm_firstdatacol) rm->rm_missingdata++; else rm->rm_missingparity++; rc->rc_error = SET_ERROR(ESTALE); rc->rc_skipped = 1; continue; } if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 || (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset, rc->rc_data, rc->rc_size, zio->io_type, zio->io_priority, 0, vdev_raidz_child_done, rc)); } } zio_execute(zio); } /* * Report a checksum error for a child of a RAID-Z device. */ static void raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data) { vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx]; if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { zio_bad_cksum_t zbc; raidz_map_t *rm = zio->io_vsd; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_checksum_errors++; mutex_exit(&vd->vdev_stat_lock); zbc.zbc_has_cksum = 0; zbc.zbc_injected = rm->rm_ecksuminjected; zfs_ereport_post_checksum(zio->io_spa, vd, zio, rc->rc_offset, rc->rc_size, rc->rc_data, bad_data, &zbc); } } /* * We keep track of whether or not there were any injected errors, so that * any ereports we generate can note it. */ static int raidz_checksum_verify(zio_t *zio) { zio_bad_cksum_t zbc; raidz_map_t *rm = zio->io_vsd; int ret = zio_checksum_error(zio, &zbc); if (ret != 0 && zbc.zbc_injected != 0) rm->rm_ecksuminjected = 1; return (ret); } /* * Generate the parity from the data columns. If we tried and were able to * read the parity without error, verify that the generated parity matches the * data we read. If it doesn't, we fire off a checksum error. Return the * number such failures. */ static int raidz_parity_verify(zio_t *zio, raidz_map_t *rm) { void *orig[VDEV_RAIDZ_MAXPARITY]; int c, ret = 0; raidz_col_t *rc; blkptr_t *bp = zio->io_bp; enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum : (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); if (checksum == ZIO_CHECKSUM_NOPARITY) return (ret); for (c = 0; c < rm->rm_firstdatacol; c++) { rc = &rm->rm_col[c]; if (!rc->rc_tried || rc->rc_error != 0) continue; orig[c] = zio_buf_alloc(rc->rc_size); bcopy(rc->rc_data, orig[c], rc->rc_size); } vdev_raidz_generate_parity(rm); for (c = 0; c < rm->rm_firstdatacol; c++) { rc = &rm->rm_col[c]; if (!rc->rc_tried || rc->rc_error != 0) continue; if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) { raidz_checksum_error(zio, rc, orig[c]); rc->rc_error = SET_ERROR(ECKSUM); ret++; } zio_buf_free(orig[c], rc->rc_size); } return (ret); } /* * Keep statistics on all the ways that we used parity to correct data. */ static uint64_t raidz_corrected[1 << VDEV_RAIDZ_MAXPARITY]; static int vdev_raidz_worst_error(raidz_map_t *rm) { int error = 0; for (int c = 0; c < rm->rm_cols; c++) error = zio_worst_error(error, rm->rm_col[c].rc_error); return (error); } /* * Iterate over all combinations of bad data and attempt a reconstruction. * Note that the algorithm below is non-optimal because it doesn't take into * account how reconstruction is actually performed. For example, with * triple-parity RAID-Z the reconstruction procedure is the same if column 4 * is targeted as invalid as if columns 1 and 4 are targeted since in both * cases we'd only use parity information in column 0. */ static int vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors) { raidz_map_t *rm = zio->io_vsd; raidz_col_t *rc; void *orig[VDEV_RAIDZ_MAXPARITY]; int tstore[VDEV_RAIDZ_MAXPARITY + 2]; int *tgts = &tstore[1]; int current, next, i, c, n; int code, ret = 0; ASSERT(total_errors < rm->rm_firstdatacol); /* * This simplifies one edge condition. */ tgts[-1] = -1; for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) { /* * Initialize the targets array by finding the first n columns * that contain no error. * * If there were no data errors, we need to ensure that we're * always explicitly attempting to reconstruct at least one * data column. To do this, we simply push the highest target * up into the data columns. */ for (c = 0, i = 0; i < n; i++) { if (i == n - 1 && data_errors == 0 && c < rm->rm_firstdatacol) { c = rm->rm_firstdatacol; } while (rm->rm_col[c].rc_error != 0) { c++; ASSERT3S(c, <, rm->rm_cols); } tgts[i] = c++; } /* * Setting tgts[n] simplifies the other edge condition. */ tgts[n] = rm->rm_cols; /* * These buffers were allocated in previous iterations. */ for (i = 0; i < n - 1; i++) { ASSERT(orig[i] != NULL); } orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size); current = 0; next = tgts[current]; while (current != n) { tgts[current] = next; current = 0; /* * Save off the original data that we're going to * attempt to reconstruct. */ for (i = 0; i < n; i++) { ASSERT(orig[i] != NULL); c = tgts[i]; ASSERT3S(c, >=, 0); ASSERT3S(c, <, rm->rm_cols); rc = &rm->rm_col[c]; bcopy(rc->rc_data, orig[i], rc->rc_size); } /* * Attempt a reconstruction and exit the outer loop on * success. */ code = vdev_raidz_reconstruct(rm, tgts, n); if (raidz_checksum_verify(zio) == 0) { atomic_inc_64(&raidz_corrected[code]); for (i = 0; i < n; i++) { c = tgts[i]; rc = &rm->rm_col[c]; ASSERT(rc->rc_error == 0); if (rc->rc_tried) raidz_checksum_error(zio, rc, orig[i]); rc->rc_error = SET_ERROR(ECKSUM); } ret = code; goto done; } /* * Restore the original data. */ for (i = 0; i < n; i++) { c = tgts[i]; rc = &rm->rm_col[c]; bcopy(orig[i], rc->rc_data, rc->rc_size); } do { /* * Find the next valid column after the current * position.. */ for (next = tgts[current] + 1; next < rm->rm_cols && rm->rm_col[next].rc_error != 0; next++) continue; ASSERT(next <= tgts[current + 1]); /* * If that spot is available, we're done here. */ if (next != tgts[current + 1]) break; /* * Otherwise, find the next valid column after * the previous position. */ for (c = tgts[current - 1] + 1; rm->rm_col[c].rc_error != 0; c++) continue; tgts[current] = c; current++; } while (current != n); } } n--; done: for (i = 0; i < n; i++) { zio_buf_free(orig[i], rm->rm_col[0].rc_size); } return (ret); } /* * Complete an IO operation on a RAIDZ VDev * * Outline: * - For write operations: * 1. Check for errors on the child IOs. * 2. Return, setting an error code if too few child VDevs were written * to reconstruct the data later. Note that partial writes are * considered successful if they can be reconstructed at all. * - For read operations: * 1. Check for errors on the child IOs. * 2. If data errors occurred: * a. Try to reassemble the data from the parity available. * b. If we haven't yet read the parity drives, read them now. * c. If all parity drives have been read but the data still doesn't * reassemble with a correct checksum, then try combinatorial * reconstruction. * d. If that doesn't work, return an error. * 3. If there were unexpected errors or this is a resilver operation, * rewrite the vdevs that had errors. */ static void vdev_raidz_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_t *cvd; raidz_map_t *rm = zio->io_vsd; raidz_col_t *rc; int unexpected_errors = 0; int parity_errors = 0; int parity_untried = 0; int data_errors = 0; int total_errors = 0; int n, c; int tgts[VDEV_RAIDZ_MAXPARITY]; int code; ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */ ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol); ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol); for (c = 0; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; if (rc->rc_error) { ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ if (c < rm->rm_firstdatacol) parity_errors++; else data_errors++; if (!rc->rc_skipped) unexpected_errors++; total_errors++; } else if (c < rm->rm_firstdatacol && !rc->rc_tried) { parity_untried++; } } if (zio->io_type == ZIO_TYPE_WRITE) { /* * XXX -- for now, treat partial writes as a success. * (If we couldn't write enough columns to reconstruct * the data, the I/O failed. Otherwise, good enough.) * * Now that we support write reallocation, it would be better * to treat partial failure as real failure unless there are * no non-degraded top-level vdevs left, and not update DTLs * if we intend to reallocate. */ /* XXPOLICY */ if (total_errors > rm->rm_firstdatacol) zio->io_error = vdev_raidz_worst_error(rm); return; } ASSERT(zio->io_type == ZIO_TYPE_READ); /* * There are three potential phases for a read: * 1. produce valid data from the columns read * 2. read all disks and try again * 3. perform combinatorial reconstruction * * Each phase is progressively both more expensive and less likely to * occur. If we encounter more errors than we can repair or all phases * fail, we have no choice but to return an error. */ /* * If the number of errors we saw was correctable -- less than or equal * to the number of parity disks read -- attempt to produce data that * has a valid checksum. Naturally, this case applies in the absence of * any errors. */ if (total_errors <= rm->rm_firstdatacol - parity_untried) { if (data_errors == 0) { if (raidz_checksum_verify(zio) == 0) { /* * If we read parity information (unnecessarily * as it happens since no reconstruction was * needed) regenerate and verify the parity. * We also regenerate parity when resilvering * so we can write it out to the failed device * later. */ if (parity_errors + parity_untried < rm->rm_firstdatacol || (zio->io_flags & ZIO_FLAG_RESILVER)) { n = raidz_parity_verify(zio, rm); unexpected_errors += n; ASSERT(parity_errors + n <= rm->rm_firstdatacol); } goto done; } } else { /* * We either attempt to read all the parity columns or * none of them. If we didn't try to read parity, we * wouldn't be here in the correctable case. There must * also have been fewer parity errors than parity * columns or, again, we wouldn't be in this code path. */ ASSERT(parity_untried == 0); ASSERT(parity_errors < rm->rm_firstdatacol); /* * Identify the data columns that reported an error. */ n = 0; for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; if (rc->rc_error != 0) { ASSERT(n < VDEV_RAIDZ_MAXPARITY); tgts[n++] = c; } } ASSERT(rm->rm_firstdatacol >= n); code = vdev_raidz_reconstruct(rm, tgts, n); if (raidz_checksum_verify(zio) == 0) { atomic_inc_64(&raidz_corrected[code]); /* * If we read more parity disks than were used * for reconstruction, confirm that the other * parity disks produced correct data. This * routine is suboptimal in that it regenerates * the parity that we already used in addition * to the parity that we're attempting to * verify, but this should be a relatively * uncommon case, and can be optimized if it * becomes a problem. Note that we regenerate * parity when resilvering so we can write it * out to failed devices later. */ if (parity_errors < rm->rm_firstdatacol - n || (zio->io_flags & ZIO_FLAG_RESILVER)) { n = raidz_parity_verify(zio, rm); unexpected_errors += n; ASSERT(parity_errors + n <= rm->rm_firstdatacol); } goto done; } } } /* * This isn't a typical situation -- either we got a read error or * a child silently returned bad data. Read every block so we can * try again with as much data and parity as we can track down. If * we've already been through once before, all children will be marked * as tried so we'll proceed to combinatorial reconstruction. */ unexpected_errors = 1; rm->rm_missingdata = 0; rm->rm_missingparity = 0; for (c = 0; c < rm->rm_cols; c++) { if (rm->rm_col[c].rc_tried) continue; zio_vdev_io_redone(zio); do { rc = &rm->rm_col[c]; if (rc->rc_tried) continue; zio_nowait(zio_vdev_child_io(zio, NULL, vd->vdev_child[rc->rc_devidx], rc->rc_offset, rc->rc_data, rc->rc_size, zio->io_type, zio->io_priority, 0, vdev_raidz_child_done, rc)); } while (++c < rm->rm_cols); return; } /* * At this point we've attempted to reconstruct the data given the * errors we detected, and we've attempted to read all columns. There * must, therefore, be one or more additional problems -- silent errors * resulting in invalid data rather than explicit I/O errors resulting * in absent data. We check if there is enough additional data to * possibly reconstruct the data and then perform combinatorial * reconstruction over all possible combinations. If that fails, * we're cooked. */ if (total_errors > rm->rm_firstdatacol) { zio->io_error = vdev_raidz_worst_error(rm); } else if (total_errors < rm->rm_firstdatacol && (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) { /* * If we didn't use all the available parity for the * combinatorial reconstruction, verify that the remaining * parity is correct. */ if (code != (1 << rm->rm_firstdatacol) - 1) (void) raidz_parity_verify(zio, rm); } else { /* * We're here because either: * * total_errors == rm_first_datacol, or * vdev_raidz_combrec() failed * * In either case, there is enough bad data to prevent * reconstruction. * * Start checksum ereports for all children which haven't * failed, and the IO wasn't speculative. */ zio->io_error = SET_ERROR(ECKSUM); if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { for (c = 0; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; if (rc->rc_error == 0) { zio_bad_cksum_t zbc; zbc.zbc_has_cksum = 0; zbc.zbc_injected = rm->rm_ecksuminjected; zfs_ereport_start_checksum( zio->io_spa, vd->vdev_child[rc->rc_devidx], zio, rc->rc_offset, rc->rc_size, (void *)(uintptr_t)c, &zbc); } } } } done: zio_checksum_verified(zio); if (zio->io_error == 0 && spa_writeable(zio->io_spa) && (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) { /* * Use the good data we have in hand to repair damaged children. */ for (c = 0; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; cvd = vd->vdev_child[rc->rc_devidx]; if (rc->rc_error == 0) continue; zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset, rc->rc_data, rc->rc_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_IO_REPAIR | (unexpected_errors ? ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); } } } static void vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded) { if (faulted > vd->vdev_nparity) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_NO_REPLICAS); else if (degraded + faulted != 0) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); else vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); } vdev_ops_t vdev_raidz_ops = { vdev_raidz_open, vdev_raidz_close, vdev_raidz_asize, vdev_raidz_io_start, vdev_raidz_io_done, vdev_raidz_state_change, NULL, NULL, VDEV_TYPE_RAIDZ, /* name of this vdev type */ B_FALSE /* not a leaf vdev */ }; Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zap_micro.c (revision 274273) @@ -1,1415 +1,1415 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include +#include #ifdef _KERNEL #include #endif static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); uint64_t zap_getflags(zap_t *zap) { if (zap->zap_ismicro) return (0); return (zap->zap_u.zap_fat.zap_phys->zap_flags); } int zap_hashbits(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return (48); else return (28); } uint32_t zap_maxcd(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return ((1<<16)-1); else return (-1U); } static uint64_t zap_hash(zap_name_t *zn) { zap_t *zap = zn->zn_zap; uint64_t h = 0; if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); h = *(uint64_t *)zn->zn_key_orig; } else { h = zap->zap_salt; ASSERT(h != 0); ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { int i; const uint64_t *wp = zn->zn_key_norm; ASSERT(zn->zn_key_intlen == 8); for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { int j; uint64_t word = *wp; for (j = 0; j < zn->zn_key_intlen; j++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ word) & 0xFF]; word >>= NBBY; } } } else { int i, len; const uint8_t *cp = zn->zn_key_norm; /* * We previously stored the terminating null on * disk, but didn't hash it, so we need to * continue to not hash it. (The * zn_key_*_numints includes the terminating * null for non-binary keys.) */ len = zn->zn_key_norm_numints - 1; ASSERT(zn->zn_key_intlen == 1); for (i = 0; i < len; cp++, i++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ *cp) & 0xFF]; } } } /* * Don't use all 64 bits, since we need some in the cookie for * the collision differentiator. We MUST use the high bits, * since those are the ones that we first pay attention to when * chosing the bucket. */ h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); return (h); } static int zap_normalize(zap_t *zap, const char *name, char *namenorm) { size_t inlen, outlen; int err; ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); inlen = strlen(name) + 1; outlen = ZAP_MAXNAMELEN; err = 0; (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); return (err); } boolean_t zap_match(zap_name_t *zn, const char *matchname) { ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); if (zn->zn_matchtype == MT_FIRST) { char norm[ZAP_MAXNAMELEN]; if (zap_normalize(zn->zn_zap, matchname, norm) != 0) return (B_FALSE); return (strcmp(zn->zn_key_norm, norm) == 0); } else { /* MT_BEST or MT_EXACT */ return (strcmp(zn->zn_key_orig, matchname) == 0); } } void zap_name_free(zap_name_t *zn) { kmem_free(zn, sizeof (zap_name_t)); } zap_name_t * zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); zn->zn_zap = zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = key; zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; zn->zn_matchtype = mt; if (zap->zap_normflags) { if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { zap_name_free(zn); return (NULL); } zn->zn_key_norm = zn->zn_normbuf; zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; } else { if (mt != MT_EXACT) { zap_name_free(zn); return (NULL); } zn->zn_key_norm = zn->zn_key_orig; zn->zn_key_norm_numints = zn->zn_key_orig_numints; } zn->zn_hash = zap_hash(zn); return (zn); } zap_name_t * zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); ASSERT(zap->zap_normflags == 0); zn->zn_zap = zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = zn->zn_key_norm = key; zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; zn->zn_matchtype = MT_EXACT; zn->zn_hash = zap_hash(zn); return (zn); } static void mzap_byteswap(mzap_phys_t *buf, size_t size) { int i, max; buf->mz_block_type = BSWAP_64(buf->mz_block_type); buf->mz_salt = BSWAP_64(buf->mz_salt); buf->mz_normflags = BSWAP_64(buf->mz_normflags); max = (size / MZAP_ENT_LEN) - 1; for (i = 0; i < max; i++) { buf->mz_chunk[i].mze_value = BSWAP_64(buf->mz_chunk[i].mze_value); buf->mz_chunk[i].mze_cd = BSWAP_32(buf->mz_chunk[i].mze_cd); } } void zap_byteswap(void *buf, size_t size) { uint64_t block_type; block_type = *(uint64_t *)buf; if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { /* ASSERT(magic == ZAP_LEAF_MAGIC); */ mzap_byteswap(buf, size); } else { fzap_byteswap(buf, size); } } static int mze_compare(const void *arg1, const void *arg2) { const mzap_ent_t *mze1 = arg1; const mzap_ent_t *mze2 = arg2; if (mze1->mze_hash > mze2->mze_hash) return (+1); if (mze1->mze_hash < mze2->mze_hash) return (-1); if (mze1->mze_cd > mze2->mze_cd) return (+1); if (mze1->mze_cd < mze2->mze_cd) return (-1); return (0); } static void mze_insert(zap_t *zap, int chunkid, uint64_t hash) { mzap_ent_t *mze; ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); mze->mze_chunkid = chunkid; mze->mze_hash = hash; mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); avl_add(&zap->zap_m.zap_avl, mze); } static mzap_ent_t * mze_find(zap_name_t *zn) { mzap_ent_t mze_tofind; mzap_ent_t *mze; avl_index_t idx; avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; ASSERT(zn->zn_zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); mze_tofind.mze_hash = zn->zn_hash; mze_tofind.mze_cd = 0; again: mze = avl_find(avl, &mze_tofind, &idx); if (mze == NULL) mze = avl_nearest(avl, idx, AVL_AFTER); for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) return (mze); } if (zn->zn_matchtype == MT_BEST) { zn->zn_matchtype = MT_FIRST; goto again; } return (NULL); } static uint32_t mze_find_unused_cd(zap_t *zap, uint64_t hash) { mzap_ent_t mze_tofind; mzap_ent_t *mze; avl_index_t idx; avl_tree_t *avl = &zap->zap_m.zap_avl; uint32_t cd; ASSERT(zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); mze_tofind.mze_hash = hash; mze_tofind.mze_cd = 0; cd = 0; for (mze = avl_find(avl, &mze_tofind, &idx); mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { if (mze->mze_cd != cd) break; cd++; } return (cd); } static void mze_remove(zap_t *zap, mzap_ent_t *mze) { ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); avl_remove(&zap->zap_m.zap_avl, mze); kmem_free(mze, sizeof (mzap_ent_t)); } static void mze_destroy(zap_t *zap) { mzap_ent_t *mze; void *avlcookie = NULL; while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) kmem_free(mze, sizeof (mzap_ent_t)); avl_destroy(&zap->zap_m.zap_avl); } static zap_t * mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) { zap_t *winner; zap_t *zap; int i; ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); rw_init(&zap->zap_rwlock, 0, 0, 0); rw_enter(&zap->zap_rwlock, RW_WRITER); zap->zap_objset = os; zap->zap_object = obj; zap->zap_dbuf = db; if (*(uint64_t *)db->db_data != ZBT_MICRO) { mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; } else { zap->zap_ismicro = TRUE; } /* * Make sure that zap_ismicro is set before we let others see * it, because zap_lockdir() checks zap_ismicro without the lock * held. */ winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); if (winner != NULL) { rw_exit(&zap->zap_rwlock); rw_destroy(&zap->zap_rwlock); if (!zap->zap_ismicro) mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); return (winner); } if (zap->zap_ismicro) { zap->zap_salt = zap->zap_m.zap_phys->mz_salt; zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags; zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; avl_create(&zap->zap_m.zap_avl, mze_compare, sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; if (mze->mze_name[0]) { zap_name_t *zn; zap->zap_m.zap_num_entries++; zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); mze_insert(zap, i, zn->zn_hash); zap_name_free(zn); } } } else { zap->zap_salt = zap->zap_f.zap_phys->zap_salt; zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags; ASSERT3U(sizeof (struct zap_leaf_header), ==, 2*ZAP_LEAF_CHUNKSIZE); /* * The embedded pointer table should not overlap the * other members. */ ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, &zap->zap_f.zap_phys->zap_salt); /* * The embedded pointer table should end at the end of * the block */ ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 1<zap_f.zap_phys, ==, zap->zap_dbuf->db_size); } rw_exit(&zap->zap_rwlock); return (zap); } int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) { zap_t *zap; dmu_buf_t *db; krw_t lt; int err; *zapp = NULL; err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH); if (err) return (err); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); } #endif zap = dmu_buf_get_user(db); if (zap == NULL) zap = mzap_open(os, obj, db); /* * We're checking zap_ismicro without the lock held, in order to * tell what type of lock we want. Once we have some sort of * lock, see if it really is the right type. In practice this * can only be different if it was upgraded from micro to fat, * and micro wanted WRITER but fat only needs READER. */ lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; rw_enter(&zap->zap_rwlock, lt); if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { /* it was upgraded, now we only need reader */ ASSERT(lt == RW_WRITER); ASSERT(RW_READER == (!zap->zap_ismicro && fatreader) ? RW_READER : lti); rw_downgrade(&zap->zap_rwlock); lt = RW_READER; } zap->zap_objset = os; if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3P(zap->zap_dbuf, ==, db); ASSERT(!zap->zap_ismicro || zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); if (zap->zap_ismicro && tx && adding && zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; if (newsz > MZAP_MAX_BLKSZ) { dprintf("upgrading obj %llu: num_entries=%u\n", obj, zap->zap_m.zap_num_entries); *zapp = zap; return (mzap_upgrade(zapp, tx, 0)); } err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); ASSERT0(err); zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; } *zapp = zap; return (0); } void zap_unlockdir(zap_t *zap) { rw_exit(&zap->zap_rwlock); dmu_buf_rele(zap->zap_dbuf, NULL); } static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) { mzap_phys_t *mzp; int i, sz, nchunks; int err = 0; zap_t *zap = *zapp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); sz = zap->zap_dbuf->db_size; mzp = kmem_alloc(sz, KM_SLEEP); bcopy(zap->zap_dbuf->db_data, mzp, sz); nchunks = zap->zap_m.zap_num_chunks; if (!flags) { err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 1ULL << fzap_default_block_shift, 0, tx); if (err) { kmem_free(mzp, sz); return (err); } } dprintf("upgrading obj=%llu with %u chunks\n", zap->zap_object, nchunks); /* XXX destroy the avl later, so we can use the stored hash value */ mze_destroy(zap); fzap_upgrade(zap, tx, flags); for (i = 0; i < nchunks; i++) { mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; zap_name_t *zn; if (mze->mze_name[0] == 0) continue; dprintf("adding %s=%llu\n", mze->mze_name, mze->mze_value); zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); zap = zn->zn_zap; /* fzap_add_cd() may change zap */ zap_name_free(zn); if (err) break; } kmem_free(mzp, sz); *zapp = zap; return (err); } void mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, dmu_tx_t *tx) { dmu_buf_t *db; mzap_phys_t *zp; VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); } #endif dmu_buf_will_dirty(db, tx); zp = db->db_data; zp->mz_block_type = ZBT_MICRO; zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; zp->mz_normflags = normflags; dmu_buf_rele(db, FTAG); if (flags != 0) { zap_t *zap; /* Only fat zap supports flags; upgrade immediately. */ VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, B_FALSE, B_FALSE, &zap)); VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); zap_unlockdir(zap); } } int zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_claim_norm(os, obj, 0, ot, bonustype, bonuslen, tx)); } int zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { int err; err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); if (err != 0) return (err); mzap_create_impl(os, obj, normflags, 0, tx); return (0); } uint64_t zap_create(objset_t *os, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); } uint64_t zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); mzap_create_impl(os, obj, normflags, 0, tx); return (obj); } uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && - leaf_blockshift <= SPA_MAXBLOCKSHIFT && + leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT && indirect_blockshift >= SPA_MINBLOCKSHIFT && - indirect_blockshift <= SPA_MAXBLOCKSHIFT); + indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT); VERIFY(dmu_object_set_blocksize(os, obj, 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); mzap_create_impl(os, obj, normflags, flags, tx); return (obj); } int zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) { /* * dmu_object_free will free the object number and free the * data. Freeing the data will cause our pageout function to be * called, which will destroy our data (zap_leaf_t's and zap_t). */ return (dmu_object_free(os, zapobj, tx)); } _NOTE(ARGSUSED(0)) void zap_evict(dmu_buf_t *db, void *vzap) { zap_t *zap = vzap; rw_destroy(&zap->zap_rwlock); if (zap->zap_ismicro) mze_destroy(zap); else mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); } int zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); if (!zap->zap_ismicro) { err = fzap_count(zap, count); } else { *count = zap->zap_m.zap_num_entries; } zap_unlockdir(zap); return (err); } /* * zn may be NULL; if not specified, it will be computed if needed. * See also the comment above zap_entry_normalization_conflict(). */ static boolean_t mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) { mzap_ent_t *other; int direction = AVL_BEFORE; boolean_t allocdzn = B_FALSE; if (zap->zap_normflags == 0) return (B_FALSE); again: for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); other && other->mze_hash == mze->mze_hash; other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { if (zn == NULL) { zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, MT_FIRST); allocdzn = B_TRUE; } if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (direction == AVL_BEFORE) { direction = AVL_AFTER; goto again; } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for manipulating attributes. */ int zap_lookup(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm(os, zapobj, name, integer_size, num_integers, buf, MT_EXACT, NULL, 0, NULL)); } int zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, mt); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_lookup(zn, integer_size, num_integers, buf, realname, rn_len, ncp); } else { mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (num_integers < 1) { err = SET_ERROR(EOVERFLOW); } else if (integer_size != 8) { err = SET_ERROR(EINVAL); } else { *(uint64_t *)buf = MZE_PHYS(zap, mze)->mze_value; (void) strlcpy(realname, MZE_PHYS(zap, mze)->mze_name, rn_len); if (ncp) { *ncp = mzap_normalization_conflict(zap, zn, mze); } } } } zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } fzap_prefetch(zn); zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } err = fzap_lookup(zn, integer_size, num_integers, buf, NULL, 0, NULL); zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_contains(objset_t *os, uint64_t zapobj, const char *name) { int err = zap_lookup_norm(os, zapobj, name, 0, 0, NULL, MT_EXACT, NULL, 0, NULL); if (err == EOVERFLOW || err == EINVAL) err = 0; /* found, but skipped reading the value */ return (err); } int zap_length(objset_t *os, uint64_t zapobj, const char *name, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_length(zn, integer_size, num_integers); } else { mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (integer_size) *integer_size = 8; if (num_integers) *num_integers = 1; } } zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } err = fzap_length(zn, integer_size, num_integers); zap_name_free(zn); zap_unlockdir(zap); return (err); } static void mzap_addent(zap_name_t *zn, uint64_t value) { int i; zap_t *zap = zn->zn_zap; int start = zap->zap_m.zap_alloc_next; uint32_t cd; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); #ifdef ZFS_DEBUG for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); } #endif cd = mze_find_unused_cd(zap, zn->zn_hash); /* given the limited size of the microzap, this can't happen */ ASSERT(cd < zap_maxcd(zap)); again: for (i = start; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; if (mze->mze_name[0] == 0) { mze->mze_value = value; mze->mze_cd = cd; (void) strcpy(mze->mze_name, zn->zn_key_orig); zap->zap_m.zap_num_entries++; zap->zap_m.zap_alloc_next = i+1; if (zap->zap_m.zap_alloc_next == zap->zap_m.zap_num_chunks) zap->zap_m.zap_alloc_next = 0; mze_insert(zap, i, zn->zn_hash); return; } } if (start != 0) { start = 0; goto again; } ASSERT(!"out of entries!"); } int zap_add(objset_t *os, uint64_t zapobj, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; mzap_ent_t *mze; const uint64_t *intval = val; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc(zap, key, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_add(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(key) >= MZAP_NAME_LEN) { err = mzap_upgrade(&zn->zn_zap, tx, 0); if (err == 0) err = fzap_add(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else { mze = mze_find(zn); if (mze != NULL) { err = SET_ERROR(EEXIST); } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap); return (err); } int zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } err = fzap_add(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap); return (err); } int zap_update(objset_t *os, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; mzap_ent_t *mze; uint64_t oldval; const uint64_t *intval = val; zap_name_t *zn; int err; #ifdef ZFS_DEBUG /* * If there is an old value, it shouldn't change across the * lockdir (eg, due to bprewrite's xlation). */ if (integer_size == 8 && num_integers == 1) (void) zap_lookup(os, zapobj, name, 8, 1, &oldval); #endif err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_update(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(name) >= MZAP_NAME_LEN) { dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", zapobj, integer_size, num_integers, name); err = mzap_upgrade(&zn->zn_zap, tx, 0); if (err == 0) err = fzap_update(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else { mze = mze_find(zn); if (mze != NULL) { ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval); MZE_PHYS(zap, mze)->mze_value = *intval; } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap); return (err); } int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; zap_name_t *zn; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } err = fzap_update(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap); return (err); } int zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) { return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); } int zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, matchtype_t mt, dmu_tx_t *tx) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, mt); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_remove(zn, tx); } else { mze = mze_find(zn); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { zap->zap_m.zap_num_entries--; bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], sizeof (mzap_ent_phys_t)); mze_remove(zap, mze); } } zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, dmu_tx_t *tx) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap); return (SET_ERROR(ENOTSUP)); } err = fzap_remove(zn, tx); zap_name_free(zn); zap_unlockdir(zap); return (err); } /* * Routines for iterating over the attributes. */ void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, uint64_t serialized) { zc->zc_objset = os; zc->zc_zap = NULL; zc->zc_leaf = NULL; zc->zc_zapobj = zapobj; zc->zc_serialized = serialized; zc->zc_hash = 0; zc->zc_cd = 0; } void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) { zap_cursor_init_serialized(zc, os, zapobj, 0); } void zap_cursor_fini(zap_cursor_t *zc) { if (zc->zc_zap) { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); zap_unlockdir(zc->zc_zap); zc->zc_zap = NULL; } if (zc->zc_leaf) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } zc->zc_objset = NULL; } uint64_t zap_cursor_serialize(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return (-1ULL); if (zc->zc_zap == NULL) return (zc->zc_serialized); ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); /* * We want to keep the high 32 bits of the cursor zero if we can, so * that 32-bit programs can access this. So usually use a small * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits * of the cursor. * * [ collision differentiator | zap_hashbits()-bit hash value ] */ return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); } int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) { int err; avl_index_t idx; mzap_ent_t mze_tofind; mzap_ent_t *mze; if (zc->zc_hash == -1ULL) return (SET_ERROR(ENOENT)); if (zc->zc_zap == NULL) { int hb; err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, RW_READER, TRUE, FALSE, &zc->zc_zap); if (err) return (err); /* * To support zap_cursor_init_serialized, advance, retrieve, * we must add to the existing zc_cd, which may already * be 1 due to the zap_cursor_advance. */ ASSERT(zc->zc_hash == 0); hb = zap_hashbits(zc->zc_zap); zc->zc_hash = zc->zc_serialized << (64 - hb); zc->zc_cd += zc->zc_serialized >> hb; if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ zc->zc_cd = 0; } else { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); } if (!zc->zc_zap->zap_ismicro) { err = fzap_cursor_retrieve(zc->zc_zap, zc, za); } else { mze_tofind.mze_hash = zc->zc_hash; mze_tofind.mze_cd = zc->zc_cd; mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); if (mze == NULL) { mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, idx, AVL_AFTER); } if (mze) { mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); za->za_normalization_conflict = mzap_normalization_conflict(zc->zc_zap, NULL, mze); za->za_integer_length = 8; za->za_num_integers = 1; za->za_first_integer = mzep->mze_value; (void) strcpy(za->za_name, mzep->mze_name); zc->zc_hash = mze->mze_hash; zc->zc_cd = mze->mze_cd; err = 0; } else { zc->zc_hash = -1ULL; err = SET_ERROR(ENOENT); } } rw_exit(&zc->zc_zap->zap_rwlock); return (err); } void zap_cursor_advance(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return; zc->zc_cd++; } int zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) { int err; zap_t *zap; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); bzero(zs, sizeof (zap_stats_t)); if (zap->zap_ismicro) { zs->zs_blocksize = zap->zap_dbuf->db_size; zs->zs_num_entries = zap->zap_m.zap_num_entries; zs->zs_num_blocks = 1; } else { fzap_get_stats(zap, zs); } zap_unlockdir(zap); return (0); } int zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, uint64_t *towrite, uint64_t *tooverwrite) { zap_t *zap; int err = 0; - /* * Since, we don't have a name, we cannot figure out which blocks will * be affected in this operation. So, account for the worst case : * - 3 blocks overwritten: target leaf, ptrtbl block, header block * - 4 new blocks written if adding: * - 2 blocks for possibly split leaves, * - 2 grown ptrtbl blocks * * This also accomodates the case where an add operation to a fairly * large microzap results in a promotion to fatzap. */ if (name == NULL) { - *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; + *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; return (err); } /* * We lock the zap with adding == FALSE. Because, if we pass * the actual value of add, it could trigger a mzap_upgrade(). * At present we are just evaluating the possibility of this operation * and hence we donot want to trigger an upgrade. */ err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); if (!zap->zap_ismicro) { zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); if (zn) { err = fzap_count_write(zn, add, towrite, tooverwrite); zap_name_free(zn); } else { /* * We treat this case as similar to (name == NULL) */ - *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; + *towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE; } } else { /* * We are here if (name != NULL) and this is a micro-zap. * We account for the header block depending on whether it * is freeable. * * Incase of an add-operation it is hard to find out * if this add will promote this microzap to fatzap. * Hence, we consider the worst case and account for the * blocks assuming this microzap would be promoted to a * fatzap. * * 1 block overwritten : header block * 4 new blocks written : 2 new split leaf, 2 grown * ptrtbl blocks */ if (dmu_buf_freeable(zap->zap_dbuf)) - *tooverwrite += SPA_MAXBLOCKSIZE; + *tooverwrite += MZAP_MAX_BLKSZ; else - *towrite += SPA_MAXBLOCKSIZE; + *towrite += MZAP_MAX_BLKSZ; if (add) { - *towrite += 4 * SPA_MAXBLOCKSIZE; + *towrite += 4 * MZAP_MAX_BLKSZ; } } zap_unlockdir(zap); return (err); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_ioctl.c (revision 274273) @@ -1,6071 +1,6113 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ /* * ZFS ioctls. * * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. * * There are two ways that we handle ioctls: the legacy way where almost * all of the logic is in the ioctl callback, and the new way where most * of the marshalling is handled in the common entry point, zfsdev_ioctl(). * * Non-legacy ioctls should be registered by calling * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked * from userland by lzc_ioctl(). * * The registration arguments are as follows: * * const char *name * The name of the ioctl. This is used for history logging. If the * ioctl returns successfully (the callback returns 0), and allow_log * is true, then a history log entry will be recorded with the input & * output nvlists. The log entry can be printed with "zpool history -i". * * zfs_ioc_t ioc * The ioctl request number, which userland will pass to ioctl(2). * The ioctl numbers can change from release to release, because * the caller (libzfs) must be matched to the kernel. * * zfs_secpolicy_func_t *secpolicy * This function will be called before the zfs_ioc_func_t, to * determine if this operation is permitted. It should return EPERM * on failure, and 0 on success. Checks include determining if the * dataset is visible in this zone, and if the user has either all * zfs privileges in the zone (SYS_MOUNT), or has been granted permission * to do this operation on this dataset with "zfs allow". * * zfs_ioc_namecheck_t namecheck * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool * name, a dataset name, or nothing. If the name is not well-formed, * the ioctl will fail and the callback will not be called. * Therefore, the callback can assume that the name is well-formed * (e.g. is null-terminated, doesn't have more than one '@' character, * doesn't have invalid characters). * * zfs_ioc_poolcheck_t pool_check * This specifies requirements on the pool state. If the pool does * not meet them (is suspended or is readonly), the ioctl will fail * and the callback will not be called. If any checks are specified * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | * POOL_CHECK_READONLY). * * boolean_t smush_outnvlist * If smush_outnvlist is true, then the output is presumed to be a * list of errors, and it will be "smushed" down to fit into the * caller's buffer, by removing some entries and replacing them with a * single "N_MORE_ERRORS" entry indicating how many were removed. See * nvlist_smush() for details. If smush_outnvlist is false, and the * outnvlist does not fit into the userland-provided buffer, then the * ioctl will fail with ENOMEM. * * zfs_ioc_func_t *func * The callback function that will perform the operation. * * The callback should return 0 on success, or an error number on * failure. If the function fails, the userland ioctl will return -1, * and errno will be set to the callback's return value. The callback * will be called with the following arguments: * * const char *name * The name of the pool or dataset to operate on, from * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the * expected type (pool, dataset, or none). * * nvlist_t *innvl * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or * NULL if no input nvlist was provided. Changes to this nvlist are * ignored. If the input nvlist could not be deserialized, the * ioctl will fail and the callback will not be called. * * nvlist_t *outnvl * The output nvlist, initially empty. The callback can fill it in, * and it will be returned to userland by serializing it into * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization * fails (e.g. because the caller didn't supply a large enough * buffer), then the overall ioctl will fail. See the * 'smush_nvlist' argument above for additional behaviors. * * There are two typical uses of the output nvlist: * - To return state, e.g. property values. In this case, * smush_outnvlist should be false. If the buffer was not large * enough, the caller will reallocate a larger buffer and try * the ioctl again. * * - To return multiple errors from an ioctl which makes on-disk * changes. In this case, smush_outnvlist should be true. * Ioctls which make on-disk modifications should generally not * use the outnvl if they succeed, because the caller can not * distinguish between the operation failing, and * deserialization failing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; uint_t zfs_fsyncer_key; extern uint_t rrw_tsd_key; static uint_t zfs_allow_log_key; typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *); typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *); typedef enum { NO_NAME, POOL_NAME, DATASET_NAME } zfs_ioc_namecheck_t; typedef enum { POOL_CHECK_NONE = 1 << 0, POOL_CHECK_SUSPENDED = 1 << 1, POOL_CHECK_READONLY = 1 << 2, } zfs_ioc_poolcheck_t; typedef struct zfs_ioc_vec { zfs_ioc_legacy_func_t *zvec_legacy_func; zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_allow_log; zfs_ioc_poolcheck_t zvec_pool_check; boolean_t zvec_smush_outnvlist; const char *zvec_name; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); static int zfs_prop_activate_feature(spa_t *spa, spa_feature_t feature); /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[512]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == NULL) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Check to see if the named dataset is currently defined as bootable */ static boolean_t zfs_is_bootfs(const char *name) { objset_t *os; if (dmu_objset_hold(name, FTAG, &os) == 0) { boolean_t ret; ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os))); dmu_objset_rele(os, FTAG); return (ret); } return (B_FALSE); } /* * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (SET_ERROR(ENOENT)); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (SET_ERROR(ENOENT)); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (SET_ERROR(EPERM)); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (SET_ERROR(EPERM)); /* must be writable by this zone */ if (!writable) return (SET_ERROR(EPERM)); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_int_ds(ds, "zoned", &zoned)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error != 0) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } static int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; dsl_dataset_t *ds; dsl_pool_t *dp; error = dsl_pool_hold(name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr) { char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error != 0) return (SET_ERROR(EPERM)); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (SET_ERROR(EINVAL)); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (SET_ERROR(EPERM)); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EPERM)); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (SET_ERROR(EPERM)); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, setsl_tag, &os); if (error != 0) return (SET_ERROR(EPERM)); dmu_objset_disown(os, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (SET_ERROR(EPERM)); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); break; case ZFS_PROP_QUOTA: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[MAXNAMELEN]; /* * Unprivileged users are allowed to modify the * limit on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, "zoned", &zoned, setpoint)) return (SET_ERROR(EPERM)); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (SET_ERROR(EPERM)); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (SET_ERROR(EPERM)); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } /* ARGSUSED */ static int zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error != 0) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } /* ARGSUSED */ static int zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } /* ARGSUSED */ static int zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *ds; char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } /* ARGSUSED */ static int zfs_secpolicy_deleg_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { vnode_t *vp; int error; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (SET_ERROR(EPERM)); } VN_RELE(vp); return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_SHARE, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); if (secpolicy_nfs(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, innvl, cr)); } } int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); if (secpolicy_smb(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, innvl, cr)); } } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (SET_ERROR(ENOENT)); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } /* ARGSUSED */ static int zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendant mount and destroy permissions. */ /* ARGSUSED */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; nvpair_t *pair, *nextpair; int error = 0; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nextpair) { nextpair = nvlist_next_nvpair(snaps, pair); error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); if (error == ENOENT) { /* * Ignore any snapshots that don't exist (we consider * them "already destroyed"). Remove the name from the * nvl here in case the snapshot is created between * now and when we try to destroy it (in which case * we don't want to destroy it since we haven't * checked for permission). */ fnvlist_remove_nvpair(snaps, pair); error = 0; } if (error != 0) break; } return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } /* ARGSUSED */ static int zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } /* ARGSUSED */ static int zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error != 0) return (error); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); if (error == 0) { char parentname[MAXNAMELEN]; dsl_dataset_t *origin = NULL; dsl_dir_t *dd; dd = clone->ds_dir; error = dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_origin_obj, FTAG, &origin); if (error != 0) { dsl_dataset_rele(clone, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(origin, parentname); if (error == 0) { error = zfs_secpolicy_write_perms_ds(parentname, origin, ZFS_DELEG_PERM_PROMOTE, cr); } dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(origin, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } /* * Check for permission to create each snapshot in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; int error = 0; nvpair_t *pair; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char *name = nvpair_name(pair); char *atp = strchr(name, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } *atp = '\0'; error = zfs_secpolicy_snapshot_perms(name, cr); *atp = '@'; if (error != 0) break; } return (error); } /* * Check for permission to create each snapshot in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error = 0; for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_BOOKMARK, cr); *hashp = '#'; if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair, *nextpair; int error = 0; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nextpair) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); nextpair = nvlist_next_nvpair(innvl, pair); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr); *hashp = '#'; if (error == ENOENT) { /* * Ignore any filesystems that don't exist (we consider * their bookmarks "already destroyed"). Remove * the name from the nvl here in case the filesystem * is created between now and when we try to destroy * the bookmark (in which case we don't want to * destroy it since we haven't checked for permission). */ fnvlist_remove_nvpair(innvl, pair); error = 0; } if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * Even root must have a proper TSD so that we know what pool * to log to. */ if (tsd_get(zfs_allow_log_key) == NULL) return (SET_ERROR(EPERM)); return (0); } static int zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { char parentname[MAXNAMELEN]; int error; char *origin; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && (error = zfs_secpolicy_write_perms(origin, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (SET_ERROR(EPERM)); return (0); } /* * Policy for object to name lookups. */ /* ARGSUSED */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (secpolicy_zinject(cr)); } /* ARGSUSED */ static int zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else { if (groupmember(zc->zc_guid, cr)) return (0); } } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } /* ARGSUSED */ static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } /* ARGSUSED */ static int zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; nvlist_t *holds; int error; error = nvlist_lookup_nvlist(innvl, "holds", &holds); if (error != 0) return (SET_ERROR(EINVAL)); for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char fsname[MAXNAMELEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_HOLD, cr); if (error != 0) return (error); } return (0); } /* ARGSUSED */ static int zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; int error; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char fsname[MAXNAMELEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_RELEASE, cr); if (error != 0) return (error); } return (0); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr)) == 0) return (0); error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); if (error == 0) error = zfs_secpolicy_hold(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_release(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_destroy(zc, innvl, cr); return (error); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (SET_ERROR(EINVAL)); packed = kmem_alloc(size, KM_SLEEP); if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag)) != 0) { kmem_free(packed, size); return (error); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = list; return (0); } /* * Reduce the size of this nvlist until it can be serialized in 'max' bytes. * Entries will be removed from the end of the nvlist, and one int32 entry * named "N_MORE_ERRORS" will be added indicating how many entries were * removed. */ static int nvlist_smush(nvlist_t *errors, size_t max) { size_t size; size = fnvlist_size(errors); if (size > max) { nvpair_t *more_errors; int n = 0; if (max < 1024) return (SET_ERROR(ENOMEM)); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); more_errors = nvlist_prev_nvpair(errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(errors, more_errors); fnvlist_remove_nvpair(errors, pair); n++; size = fnvlist_size(errors); } while (size > max); fnvlist_remove_nvpair(errors, more_errors); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); ASSERT3U(fnvlist_size(errors), <=, max); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; size = fnvlist_size(nvl); if (size > zc->zc_nvlist_dst_size) { error = SET_ERROR(ENOMEM); } else { packed = fnvlist_pack(nvl, &size); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = SET_ERROR(EFAULT); fnvlist_pack_free(packed, size); } zc->zc_nvlist_dst_size = size; zc->zc_nvlist_dst_filled = B_TRUE; return (error); } static int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); if (*zfvp) { VFS_HOLD((*zfvp)->z_vfs); } else { error = SET_ERROR(ESRCH); } mutex_exit(&os->os_user_ptr_lock); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_vfs will be NULL, and it will be opened as the owner. * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, * which prevents all vnode ops from running. */ static int zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, zfvp); if (error == 0) { rrm_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER : RW_READER, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ rrm_exit(&(*zfvp)->z_teardown_lock, tag); return (SET_ERROR(EBUSY)); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag) { rrm_exit(&zfsvfs->z_teardown_lock, tag); if (zfsvfs->z_vfs) { VFS_RELE(zfsvfs->z_vfs); } else { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; uint64_t version = SPA_VERSION; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (!SPA_VERSION_IS_SUPPORTED(version)) { error = SET_ERROR(EINVAL); goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) { nvlist_free(config); nvlist_free(props); return (error); } (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error != 0) goto pool_props_bad; } error = spa_create(zc->zc_name, config, props, zplprops); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) (void) spa_destroy(zc->zc_name); pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = SET_ERROR(EINVAL); else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); if (props) nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (SET_ERROR(EEXIST)); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } /* * inputs: * zc_name name of the pool * * outputs: * zc_cookie real errno * zc_nvlist_dst config nvlist * zc_nvlist_dst_size size of config nvlist */ static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (SET_ERROR(EINVAL)); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_reguid(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { error = spa_change_guid(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config, **l2cache, **spares; uint_t nl2cache = 0, nspares = 0; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES, &spares, &nspares); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool. * * Intent log device can not be added to a rootpool because * during mountroot, zil is replayed, a seperated log device * can not be accessed during the mountroot time. * * l2cache and spare devices are ok to be added to a rootpool. */ if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) { nvlist_free(config); spa_close(spa, FTAG); return (SET_ERROR(EDOM)); } if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_nvlist_conf nvlist of devices to remove * zc_cookie to stop the remove? */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; default: error = SET_ERROR(EINVAL); } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading with out owning */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) { error = zvol_get_stats(os, nv); if (error == EIO) return (error); VERIFY0(error); } error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error == 0) { error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { int error = 0; nvlist_t *nv; /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(zc->zc_name)) return (SET_ERROR(ENOTSUP)); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if (err = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != NULL && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = SET_ERROR(ENOENT); } dmu_objset_rele(os, FTAG); return (err); } static boolean_t dataset_name_hidden(const char *name) { /* * Skip over datasets that are not visible in this zone, * internal datasets (which have a $ in their name), and * temporary datasets (which have a % in their name). */ if (strchr(name, '$') != NULL) return (B_TRUE); if (strchr(name, '%') != NULL) return (B_TRUE); if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL)) return (B_TRUE); return (B_FALSE); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) { if (error == ENOENT) error = SET_ERROR(ESRCH); return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = SET_ERROR(ESRCH); } while (error == 0 && dataset_name_hidden(zc->zc_name)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) { return (error == ENOENT ? ESRCH : error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ESRCH)); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == 0) { dsl_dataset_t *ds; dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds); if (error == 0) { objset_t *ossnap; error = dmu_objset_from_ds(ds, &ossnap); if (error == 0) error = zfs_ioc_objset_stats_impl(zc, ossnap); dsl_dataset_rele(ds, FTAG); } } else if (error == ENOENT) { error = SET_ERROR(ESRCH); } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error != 0) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *domain; char *dash; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (SET_ERROR(EINVAL)); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (SET_ERROR(EINVAL)); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; - int err; + int err = -1; if (prop == ZPROP_INVAL) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) return (-1); VERIFY(0 == nvpair_value_uint64(pair, &intval)); switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_refquota(dsname, source, intval); break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (intval == UINT64_MAX) { /* clearing the limit, just do it */ err = 0; } else { err = dsl_dir_activate_fs_ss_limit(dsname); } /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_refreservation(dsname, source, intval); break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dsname); (void) zfs_ioc_userspace_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the last error * encountered. If the caller provides a non-NULL errlist, it will be filled in * with the list of names of all the properties that failed along with the * corresponding error numbers. * * If every property is set successfully, zero is returned and errlist is not * modified. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t *errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; uint64_t intval; char *strval; nvlist_t *genericnvl = fnvlist_alloc(); nvlist_t *retrynvl = fnvlist_alloc(); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); int err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = SET_ERROR(EINVAL); } /* Validate value type */ if (err == 0 && prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = SET_ERROR(EINVAL); } else { err = SET_ERROR(EINVAL); } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; intval = fnvpair_value_uint64(propval); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = SET_ERROR(EINVAL); break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = SET_ERROR(EINVAL); break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = SET_ERROR(EINVAL); } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) { if (errlist != NULL) fnvlist_add_int32(errlist, propname, err); rv = err; } } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (!nvlist_empty(genericnvl) && dsl_props_set(dsname, source, genericnvl) != 0) { /* * If this fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); int err = 0; propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); } if (nvpair_type(propval) == DATA_TYPE_STRING) { strval = fnvpair_value_string(propval); err = dsl_prop_set_string(dsname, propname, source, strval); } else { intval = fnvpair_value_uint64(propval); err = dsl_prop_set_int(dsname, propname, source, intval); } if (err != 0) { if (errlist != NULL) { fnvlist_add_int32(errlist, propname, err); } rv = err; } } } nvlist_free(genericnvl); nvlist_free(retrynvl); return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(const char *fsname, nvlist_t *nvl) { nvpair_t *pair = NULL; int error = 0; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (SET_ERROR(EINVAL)); if (error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_USERPROP, CRED())) return (error); if (strlen(propname) >= ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) return (E2BIG); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(const char *dsname, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { (void) clear_received_props(zc->zc_name, origprops, nvl); nvlist_free(origprops); } error = dsl_prop_set_hasrecvd(zc->zc_name); } errors = fnvlist_alloc(); if (error == 0) error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); if (zc->zc_nvlist_dst != NULL && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ if (received) { nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ if (prop == ZPROP_INVAL) { if (!zfs_prop_user(propname)) return (SET_ERROR(EINVAL)); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (SET_ERROR(EINVAL)); } else { type = zfs_prop_get_type(prop); } VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: nvlist_free(dummy); return (SET_ERROR(EINVAL)); } pair = nvlist_next_nvpair(dummy, NULL); err = zfs_prop_set_special(zc->zc_name, source, pair); nvlist_free(dummy); if (err != -1) return (err); /* special property already handled */ } else { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop)) return (SET_ERROR(EINVAL)); } /* property name has been validated by zfs_secpolicy_inherit_prop() */ return (dsl_prop_inherit(zc->zc_name, zc->zc_value, source)); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_config_sync(spa, B_FALSE, B_TRUE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != NULL) error = put_nvlist(zc, nvp); else error = SET_ERROR(EFAULT); nvlist_free(nvp); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (SET_ERROR(EINVAL)); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error != 0) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* * Search the vfs list for a specified resource. Returns a pointer to it * or NULL if no suitable entry is found. The caller of this routine * is responsible for releasing the returned vfs pointer. */ static vfs_t * zfs_get_vfs(const char *resource) { struct vfs *vfsp; struct vfs *vfs_found = NULL; vfs_list_read_lock(); vfsp = rootvfs; do { if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) { VFS_HOLD(vfsp); vfs_found = vfsp; break; } vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (vfs_found); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * os parent objset pointer (NULL if root fs) * fuids_ok fuids allowed in this version of the spa? * sa_ok SAs allowed in this version of the spa? * createprops list of properties requested by creator * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; ASSERT(zplprops != NULL); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (SET_ERROR(ENOTSUP)); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[MAXNAMELEN]; char *cp; spa_t *spa; uint64_t spa_vers; int error; (void) strlcpy(parentname, dataset, sizeof (parentname)); cp = strrchr(parentname, '/'); ASSERT(cp != NULL); cp[0] = '\0'; if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * innvl: { * "type" -> dmu_objset_type_t (int32) * (optional) "props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static int zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; zfs_creat_t zct = { 0 }; nvlist_t *nvprops = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); int32_t type32; dmu_objset_type_t type; boolean_t is_insensitive = B_FALSE; if (nvlist_lookup_int32(innvl, "type", &type32) != 0) return (SET_ERROR(EINVAL)); type = type32; (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); zct.zct_props = nvprops; if (cbfunc == NULL) return (SET_ERROR(EINVAL)); if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) return (SET_ERROR(EINVAL)); if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) return (SET_ERROR(EINVAL)); if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) return (error); } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(fsname, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } } error = dmu_objset_create(fsname, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct); nvlist_free(zct.zct_zplprops); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } /* * innvl: { * "origin" -> name of origin snapshot * (optional) "props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static int zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; nvlist_t *nvprops = NULL; char *origin_name; if (nvlist_lookup_string(innvl, "origin", &origin_name) != 0) return (SET_ERROR(EINVAL)); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); if (dataset_namecheck(origin_name, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); error = dmu_objset_clone(fsname, origin_name); if (error != 0) return (error); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional) "props" -> { prop -> value (string) } * } * * outnvl: snapshot -> error code (int32) */ static int zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvlist_t *props = NULL; int error, poollen; nvpair_t *pair; (void) nvlist_lookup_nvlist(innvl, "props", &props); if ((error = zfs_check_userprops(poolname, props)) != 0) return (error); if (!nvlist_empty(props) && zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) return (SET_ERROR(ENOTSUP)); if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The snap must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); /* This must be the only snap of this fs. */ for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { if (strncmp(name, nvpair_name(pair2), cp - name + 1) == 0) { return (SET_ERROR(EXDEV)); } } } error = dsl_dataset_snapshot(snaps, props, outnvl); return (error); } /* * innvl: "message" -> string */ /* ARGSUSED */ static int zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) { char *message; spa_t *spa; int error; char *poolname; /* * The poolname in the ioctl is not set, we get it from the TSD, * which was set at the end of the last successful ioctl that allows * logging. The secpolicy func already checked that it is set. * Only one log ioctl is allowed after each successful ioctl, so * we clear the TSD here. */ poolname = tsd_get(zfs_allow_log_key); (void) tsd_set(zfs_allow_log_key, NULL); error = spa_open(poolname, &spa, FTAG); strfree(poolname); if (error != 0) return (error); if (nvlist_lookup_string(innvl, "message", &message) != 0) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } error = spa_history_log(spa, message); spa_close(spa, FTAG); return (error); } /* * The dp_config_rwlock must not be held when calling this, because the * unmount may need to write out data. * * This function is best-effort. Callers must deal gracefully if it * remains mounted (or is remounted after this call). * * Returns 0 if the argument is not a snapshot, or it is not currently a * filesystem, or we were able to unmount it. Returns error code otherwise. */ int zfs_unmount_snap(const char *snapname) { vfs_t *vfsp; zfsvfs_t *zfsvfs; int err; if (strchr(snapname, '@') == NULL) return (0); vfsp = zfs_get_vfs(snapname); if (vfsp == NULL) return (0); zfsvfs = vfsp->vfs_data; ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os))); err = vn_vfswlock(vfsp->vfs_vnodecovered); VFS_RELE(vfsp); if (err != 0) return (SET_ERROR(err)); /* * Always force the unmount for snapshots. */ (void) dounmount(vfsp, MS_FORCE, kcred); return (0); } /* ARGSUSED */ static int zfs_unmount_snap_cb(const char *snapname, void *arg) { return (zfs_unmount_snap(snapname)); } /* * When a clone is destroyed, its origin may also need to be destroyed, * in which case it must be unmounted. This routine will do that unmount * if necessary. */ void zfs_destroy_unmount_origin(const char *fsname) { int error; objset_t *os; dsl_dataset_t *ds; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) return; ds = dmu_objset_ds(os); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { char originname[MAXNAMELEN]; dsl_dataset_name(ds->ds_prev, originname); dmu_objset_rele(os, FTAG); (void) zfs_unmount_snap(originname); } else { dmu_objset_rele(os, FTAG); } } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional boolean) "defer" * } * * outnvl: snapshot -> error code (int32) * */ /* ARGSUSED */ static int zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvpair_t *pair; boolean_t defer; if (nvlist_lookup_nvlist(innvl, "snaps", &snaps) != 0) return (SET_ERROR(EINVAL)); defer = nvlist_exists(innvl, "defer"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { (void) zfs_unmount_snap(nvpair_name(pair)); } return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); } /* * Create bookmarks. Bookmark names are of the form #. * All bookmarks must be in the same pool. * * innvl: { * bookmark1 -> snapshot1, bookmark2 -> snapshot2 * } * * outnvl: bookmark -> error code (int32) * */ /* ARGSUSED */ static int zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *snap_name; /* * Verify the snapshot argument. */ if (nvpair_value_string(pair, &snap_name) != 0) return (SET_ERROR(EINVAL)); /* Verify that the keys (bookmarks) are unique */ for (nvpair_t *pair2 = nvlist_next_nvpair(innvl, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(innvl, pair2)) { if (strcmp(nvpair_name(pair), nvpair_name(pair2)) == 0) return (SET_ERROR(EINVAL)); } } return (dsl_bookmark_create(innvl, outnvl)); } /* * innvl: { * property 1, property 2, ... * } * * outnvl: { * bookmark name 1 -> { property 1, property 2, ... }, * bookmark name 2 -> { property 1, property 2, ... } * } * */ static int zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { return (dsl_get_bookmarks(fsname, innvl, outnvl)); } /* * innvl: { * bookmark name 1, bookmark name 2 * } * * outnvl: bookmark -> error code (int32) * */ static int zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int error, poollen; poollen = strlen(poolname); for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '#'); /* * The bookmark name must contain an #, and the part after it * must contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The bookmark must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '#')) return (SET_ERROR(EXDEV)); } error = dsl_bookmark_destroy(innvl, outnvl); return (error); } /* * inputs: * zc_name name of dataset to destroy * zc_objset_type type of objset * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { int err; if (zc->zc_objset_type == DMU_OST_ZFS) { err = zfs_unmount_snap(zc->zc_name); if (err != 0) return (err); } if (strchr(zc->zc_name, '@')) err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); else err = dsl_destroy_head(zc->zc_name); if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0) (void) zvol_remove_minor(zc->zc_name); return (err); } /* * fsname is name of dataset to rollback (to most recent snapshot) * * innvl is not used. * * outnvl: "target" -> name of most recent snapshot * } */ /* ARGSUSED */ static int zfs_ioc_rollback(const char *fsname, nvlist_t *args, nvlist_t *outnvl) { zfsvfs_t *zfsvfs; int error; if (getzfsvfs(fsname, &zfsvfs) == 0) { error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; error = dsl_dataset_rollback(fsname, zfsvfs, outnvl); resume_err = zfs_resume_fs(zfsvfs, fsname); error = error ? error : resume_err; } VFS_RELE(zfsvfs->z_vfs); } else { error = dsl_dataset_rollback(fsname, NULL, outnvl); } return (error); } static int recursive_unmount(const char *fsname, void *arg) { const char *snapname = arg; char fullname[MAXNAMELEN]; (void) snprintf(fullname, sizeof (fullname), "%s@%s", fsname, snapname); return (zfs_unmount_snap(fullname)); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie & 1; char *at; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); at = strchr(zc->zc_name, '@'); if (at != NULL) { /* snaps must be in same fs */ int error; if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) return (SET_ERROR(EXDEV)); *at = '\0'; if (zc->zc_objset_type == DMU_OST_ZFS) { error = dmu_objset_find(zc->zc_name, recursive_unmount, at + 1, recursive ? DS_FIND_CHILDREN : 0); if (error != 0) { *at = '@'; return (error); } } error = dsl_dataset_rename_snapshot(zc->zc_name, at + 1, strchr(zc->zc_value, '@') + 1, recursive); *at = '@'; return (error); } else { if (zc->zc_objset_type == DMU_OST_ZVOL) (void) zvol_remove_minor(zc->zc_name); return (dsl_dir_rename(zc->zc_name, zc->zc_value)); } } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr)) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else { /* USERUSED and GROUPUSED are read-only */ return (SET_ERROR(EINVAL)); } if (err = zfs_secpolicy_write_perms(dsname, perm, cr)) return (err); return (0); } return (SET_ERROR(EINVAL)); } if (issnap) return (SET_ERROR(EINVAL)); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ - if (nvpair_type(pair) == DATA_TYPE_UINT64 && - nvpair_value_uint64(pair, &intval) == 0) { + if (nvpair_value_uint64(pair, &intval) == 0) { if (intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (SET_ERROR(ENOTSUP)); } if (intval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (SET_ERROR(ENOTSUP)); if (intval == ZIO_COMPRESS_LZ4) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } /* * If this is a bootable dataset then * verify that the compression algorithm * is supported for booting. We must return * something other than ENOTSUP since it * implies a downrev pool version. */ if (zfs_is_bootfs(dsname) && !BOOTFS_COMPRESS_VALID(intval)) { return (SET_ERROR(ERANGE)); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_DEDUP: if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (SET_ERROR(ENOTSUP)); break; + case ZFS_PROP_RECORDSIZE: + /* Record sizes above 128k need the feature to be enabled */ + if (nvpair_value_uint64(pair, &intval) == 0 && + intval > SPA_OLD_MAXBLOCKSIZE) { + spa_t *spa; + + /* + * If this is a bootable dataset then + * the we don't allow large (>128K) blocks, + * because GRUB doesn't support them. + */ + if (zfs_is_bootfs(dsname) && + intval > SPA_OLD_MAXBLOCKSIZE) { + return (SET_ERROR(EDOM)); + } + + /* + * We don't allow setting the property above 1MB, + * unless the tunable has been changed. + */ + if (intval > zfs_max_recordsize || + intval > SPA_MAXBLOCKSIZE) + return (SET_ERROR(EDOM)); + + if ((err = spa_open(dsname, &spa, FTAG)) != 0) + return (err); + + if (!spa_feature_is_enabled(spa, + SPA_FEATURE_LARGE_BLOCKS)) { + spa_close(spa, FTAG); + return (SET_ERROR(ENOTSUP)); + } + spa_close(spa, FTAG); + } + break; + case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (SET_ERROR(ENOTSUP)); } break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Checks for a race condition to make sure we don't increment a feature flag * multiple times. */ static int zfs_prop_activate_feature_check(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_t *featurep = arg; if (!spa_feature_is_active(spa, *featurep)) return (0); else return (SET_ERROR(EBUSY)); } /* * The callback invoked on feature activation in the sync task caused by * zfs_prop_activate_feature. */ static void zfs_prop_activate_feature_sync(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_t *featurep = arg; spa_feature_incr(spa, *featurep, tx); } /* * Activates a feature on a pool in response to a property setting. This * creates a new sync task which modifies the pool to reflect the feature * as being active. */ static int zfs_prop_activate_feature(spa_t *spa, spa_feature_t feature) { int err; /* EBUSY here indicates that the feature is already active */ err = dsl_sync_task(spa_name(spa), zfs_prop_activate_feature_check, zfs_prop_activate_feature_sync, &feature, 2, ZFS_SPACE_CHECK_RESERVED); if (err != 0 && err != EBUSY) return (err); else return (0); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dataset); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strcpy(zc->zc_value, nvpair_name(pair)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } #ifdef DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * inputs: * zc_name name of containing filesystem * zc_nvlist_src{_size} nvlist of properties to apply * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * zc_cleanup_fd cleanup-on-exit file descriptor * zc_action_handle handle for this guid/ds mapping (or zero on first call) * * outputs: * zc_cookie number of bytes read * zc_nvlist_dst{_size} error for each unapplied received property * zc_obj zprop_errflags_t * zc_action_handle handle for this guid/ds mapping */ static int zfs_ioc_recv(zfs_cmd_t *zc) { file_t *fp; dmu_recv_cookie_t drc; boolean_t force = (boolean_t)zc->zc_guid; int fd; int error = 0; int props_error = 0; nvlist_t *errors; offset_t off; nvlist_t *props = NULL; /* sent properties */ nvlist_t *origprops = NULL; /* existing properties */ char *origin = NULL; char *tosnap; char tofs[ZFS_MAXNAMELEN]; boolean_t first_recvd_props = B_FALSE; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); (void) strcpy(tofs, zc->zc_value); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != NULL && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) != 0) return (error); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) { nvlist_free(props); return (SET_ERROR(EBADF)); } VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (zc->zc_string[0]) origin = zc->zc_string; error = dmu_recv_begin(tofs, tosnap, &zc->zc_begin_record, force, origin, &drc); if (error != 0) goto out; /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (props != NULL && !drc.drc_newfs) { if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= SPA_VERSION_RECVD_PROPS && !dsl_prop_get_hasrecvd(tofs)) first_recvd_props = B_TRUE; /* * If new received properties are supplied, they are to * completely replace the existing received properties, so stash * away the existing ones. */ if (dsl_prop_get_received(tofs, &origprops) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(props, origprops); if (zfs_check_clearable(tofs, origprops, &errlist) != 0) (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); if (clear_received_props(tofs, origprops, first_recvd_props ? NULL : props) != 0) zc->zc_obj |= ZPROP_ERR_NOCLEAR; } else { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } } if (props != NULL) { props_error = dsl_prop_set_hasrecvd(tofs); if (props_error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, props, errors); } } if (zc->zc_nvlist_dst_size != 0 && (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || put_nvlist(zc, errors) != 0)) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ props_error = SET_ERROR(EINVAL); } off = fp->f_offset; error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd, &zc->zc_action_handle); if (error == 0) { zfsvfs_t *zfsvfs = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ int end_err; error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc, zfsvfs); if (error == 0) error = zfs_resume_fs(zfsvfs, tofs); error = error ? error : end_err; VFS_RELE(zfsvfs->z_vfs); } else { error = dmu_recv_end(&drc, NULL); } } zc->zc_cookie = off - fp->f_offset; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; #ifdef DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error != 0 && props != NULL && !drc.drc_newfs) { if (clear_received_props(tofs, props, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(tofs); } if (origprops == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explictly if we're restoring local properties cleared in the * first new-style receive. */ if (origprops != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origprops, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } } out: nvlist_free(props); nvlist_free(origprops); nvlist_free(errors); releasef(fd); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * zc_guid if set, estimate size of stream only. zc_cookie is ignored. * output size in zc_objset_type. - * zc_flags if =1, WRITE_EMBEDDED records are permitted + * zc_flags lzc_send_flags * * outputs: * zc_objset_type estimated size, if zc_guid is set */ static int zfs_ioc_send(zfs_cmd_t *zc) { int error; offset_t off; boolean_t estimate = (zc->zc_guid != 0); boolean_t embedok = (zc->zc_flags & 0x1); + boolean_t large_block_ok = (zc->zc_flags & 0x2); if (zc->zc_obj != 0) { dsl_pool_t *dp; dsl_dataset_t *tosnap; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (dsl_dir_is_clone(tosnap->ds_dir)) zc->zc_fromobj = tosnap->ds_dir->dd_phys->dd_origin_obj; dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } if (estimate) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (zc->zc_fromobj != 0) { error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate(tosnap, fromsnap, &zc->zc_objset_type); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } else { file_t *fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, - zc->zc_fromobj, embedok, zc->zc_cookie, fp->f_vnode, &off); + zc->zc_fromobj, embedok, large_block_ok, + zc->zc_cookie, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); } return (error); } /* * inputs: * zc_name name of snapshot on which to report progress * zc_cookie file descriptor of send stream * * outputs: * zc_cookie number of bytes written in send stream thus far */ static int zfs_ioc_send_progress(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds; dmu_sendarg_t *dsp = NULL; int error; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } mutex_enter(&ds->ds_sendstream_lock); /* * Iterate over all the send streams currently active on this dataset. * If there's one which matches the specified file descriptor _and_ the * stream was started by the current process, return the progress of * that stream. */ for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; dsp = list_next(&ds->ds_sendstreams, dsp)) { if (dsp->dsa_outfd == zc->zc_cookie && dsp->dsa_proc == curproc) break; } if (dsp != NULL) zc->zc_cookie = *(dsp->dsa_off); else error = SET_ERROR(ENOENT); mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EIO)); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == NULL) return (SET_ERROR(EINVAL)); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { (void) spa_vdev_state_exit(spa, NULL, ENODEV); spa_close(spa, FTAG); return (SET_ERROR(ENODEV)); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, NULL, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = SET_ERROR(EIO); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_reopen(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); /* * If a resilver is already in progress then set the * spa_scrub_reopen flag to B_TRUE so that we don't restart * the scan as a side effect of the reopen. Otherwise, let * vdev_open() decided if a resilver is required. */ spa->spa_scrub_reopen = dsl_scan_resilvering(spa->spa_dsl_pool); vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (0); } /* * inputs: * zc_name name of filesystem * zc_value name of origin snapshot * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { char *cp; /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(zc->zc_value, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(zc->zc_value, zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (SET_ERROR(ENOMEM)); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); void *buf = kmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } kmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { objset_t *os; int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ error = zfs_suspend_fs(zfsvfs); if (error == 0) { dmu_objset_refresh_ownership(zfsvfs->z_os, zfsvfs); error = zfs_resume_fs(zfsvfs, zc->zc_name); } } if (error == 0) error = dmu_objset_userspace_upgrade(zfsvfs->z_os); VFS_RELE(zfsvfs->z_vfs); } else { /* XXX kind of reading contents without owning */ error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_objset_userspace_upgrade(os); dmu_objset_rele(os, FTAG); } return (error); } /* * We don't want to have a hard dependency * against some special symbols in sharefs * nfs, and smbsrv. Determine them if needed when * the first file system is shared. * Neither sharefs, nfs or smbsrv are unloadable modules. */ int (*znfsexport_fs)(void *arg); int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); int (*zsmbexport_fs)(void *arg, boolean_t add_share); int zfs_nfsshare_inited; int zfs_smbshare_inited; ddi_modhandle_t nfs_mod; ddi_modhandle_t sharefs_mod; ddi_modhandle_t smbsrv_mod; kmutex_t zfs_share_lock; static int zfs_init_sharefs() { int error; ASSERT(MUTEX_HELD(&zfs_share_lock)); /* Both NFS and SMB shares also require sharetab support. */ if (sharefs_mod == NULL && ((sharefs_mod = ddi_modopen("fs/sharefs", KRTLD_MODE_FIRST, &error)) == NULL)) { return (SET_ERROR(ENOSYS)); } if (zshare_fs == NULL && ((zshare_fs = (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) { return (SET_ERROR(ENOSYS)); } return (0); } static int zfs_ioc_share(zfs_cmd_t *zc) { int error; int opcode; switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (zfs_nfsshare_inited == 0) { mutex_enter(&zfs_share_lock); if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } if (znfsexport_fs == NULL && ((znfsexport_fs = (int (*)(void *)) ddi_modsym(nfs_mod, "nfs_export", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } error = zfs_init_sharefs(); if (error != 0) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } zfs_nfsshare_inited = 1; mutex_exit(&zfs_share_lock); } break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (zfs_smbshare_inited == 0) { mutex_enter(&zfs_share_lock); if (smbsrv_mod == NULL && ((smbsrv_mod = ddi_modopen("drv/smbsrv", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } if (zsmbexport_fs == NULL && ((zsmbexport_fs = (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod, "smb_server_share", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } error = zfs_init_sharefs(); if (error != 0) { mutex_exit(&zfs_share_lock); return (SET_ERROR(ENOSYS)); } zfs_smbshare_inited = 1; mutex_exit(&zfs_share_lock); } break; default: return (SET_ERROR(EINVAL)); } switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (error = znfsexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata)) return (error); break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (error = zsmbexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata, zc->zc_share.z_sharetype == ZFS_SHARE_SMB ? B_TRUE: B_FALSE)) { return (error); } break; } opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS || zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ? SHAREFS_ADD : SHAREFS_REMOVE; /* * Add or remove share from sharetab */ error = zshare_fs(opcode, (void *)(uintptr_t)zc->zc_share.z_sharedata, zc->zc_share.z_sharemax); return (error); } ace_t full_access[] = { {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} }; /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, os->os_dsl_dataset->ds_phys->ds_prev_snap_txg); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: * zc_value short name of new snapshot */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; char *hold_name; int error; minor_t minor; error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (error != 0) return (error); snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); hold_name = kmem_asprintf("%%%s", zc->zc_value); error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, hold_name); if (error == 0) (void) strcpy(zc->zc_value, snap_name); strfree(snap_name); strfree(hold_name); zfs_onexit_fd_rele(zc->zc_cleanup_fd); return (error); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { file_t *fp; offset_t off; int error; fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); return (error); } /* * Remove all ACL files in shares dir */ static int zfs_smb_acl_purge(znode_t *dzp) { zap_cursor_t zc; zap_attribute_t zap; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int error; for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); (error = zap_cursor_retrieve(&zc, &zap)) == 0; zap_cursor_advance(&zc)) { if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred, NULL, 0)) != 0) break; } zap_cursor_fini(&zc); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { vnode_t *vp; znode_t *dzp; vnode_t *resourcevp = NULL; znode_t *sharedir; zfsvfs_t *zfsvfs; nvlist_t *nvlist; char *src, *target; vattr_t vattr; vsecattr_t vsec; int error = 0; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (SET_ERROR(EINVAL)); } dzp = VTOZ(vp); zfsvfs = dzp->z_zfsvfs; ZFS_ENTER(zfsvfs); /* * Create share dir if its missing. */ mutex_enter(&zfsvfs->z_lock); if (zfsvfs->z_shares_dir == 0) { dmu_tx_t *tx; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE, ZFS_SHARES_DIR); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { error = zfs_create_share_dir(zfsvfs, tx); dmu_tx_commit(tx); } if (error != 0) { mutex_exit(&zfsvfs->z_lock); VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } } mutex_exit(&zfsvfs->z_lock); ASSERT(zfsvfs->z_shares_dir); if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } switch (zc->zc_cookie) { case ZFS_SMB_ACL_ADD: vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VREG; vattr.va_mode = S_IFREG|0777; vattr.va_uid = 0; vattr.va_gid = 0; vsec.vsa_mask = VSA_ACE; vsec.vsa_aclentp = &full_access; vsec.vsa_aclentsz = sizeof (full_access); vsec.vsa_aclcnt = 1; error = VOP_CREATE(ZTOV(sharedir), zc->zc_string, &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec); if (resourcevp) VN_RELE(resourcevp); break; case ZFS_SMB_ACL_REMOVE: error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred, NULL, 0); break; case ZFS_SMB_ACL_RENAME: if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) || nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET, &target)) { VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); nvlist_free(nvlist); return (error); } error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, kcred, NULL, 0); nvlist_free(nvlist); break; case ZFS_SMB_ACL_PURGE: error = zfs_smb_acl_purge(sharedir); break; default: error = SET_ERROR(EINVAL); break; } VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); return (error); } /* * innvl: { * "holds" -> { snapname -> holdname (string), ... } * (optional) "cleanup_fd" -> fd (int32) * } * * outnvl: { * snapname -> error value (int32) * ... * } */ /* ARGSUSED */ static int zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) { nvlist_t *holds; int cleanup_fd = -1; int error; minor_t minor = 0; error = nvlist_lookup_nvlist(args, "holds", &holds); if (error != 0) return (SET_ERROR(EINVAL)); if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { error = zfs_onexit_fd_hold(cleanup_fd, &minor); if (error != 0) return (error); } error = dsl_dataset_user_hold(holds, minor, errlist); if (minor != 0) zfs_onexit_fd_rele(cleanup_fd); return (error); } /* * innvl is not used. * * outnvl: { * holdname -> time added (uint64 seconds since epoch) * ... * } */ /* ARGSUSED */ static int zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) { return (dsl_dataset_get_holds(snapname, outnvl)); } /* * innvl: { * snapname -> { holdname, ... } * ... * } * * outnvl: { * snapname -> error value (int32) * ... * } */ /* ARGSUSED */ static int zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) { return (dsl_dataset_user_release(holds, errlist)); } /* * inputs: * zc_name name of new filesystem or snapshot * zc_value full name of old snapshot * * outputs: * zc_cookie space in bytes * zc_objset_type compressed space in bytes * zc_perm_action uncompressed space in bytes */ static int zfs_ioc_space_written(zfs_cmd_t *zc) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_written(old, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * innvl: { * "firstsnap" -> snapshot name * } * * outnvl: { * "used" -> space in bytes * "compressed" -> compressed space in bytes * "uncompressed" -> uncompressed space in bytes * } */ static int zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; char *firstsnap; uint64_t used, comp, uncomp; if (nvlist_lookup_string(innvl, "firstsnap", &firstsnap) != 0) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(lastsnap, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); fnvlist_add_uint64(outnvl, "used", used); fnvlist_add_uint64(outnvl, "compressed", comp); fnvlist_add_uint64(outnvl, "uncompressed", uncomp); return (error); } /* * innvl: { * "fd" -> file descriptor to write stream to (int32) * (optional) "fromsnap" -> full snap name to send an incremental from + * (optional) "largeblockok" -> (value ignored) + * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * } * * outnvl is unused */ /* ARGSUSED */ static int zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { int error; offset_t off; char *fromname = NULL; int fd; + boolean_t largeblockok; boolean_t embedok; error = nvlist_lookup_int32(innvl, "fd", &fd); if (error != 0) return (SET_ERROR(EINVAL)); (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); + largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); file_t *fp = getf(fd); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; - error = dmu_send(snapname, fromname, embedok, fd, fp->f_vnode, &off); + error = dmu_send(snapname, fromname, embedok, largeblockok, + fd, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(fd); return (error); } /* * Determine approximately how large a zfs send stream will be -- the number * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). * * innvl: { * (optional) "fromsnap" -> full snap name to send an incremental from * } * * outnvl: { * "space" -> bytes of space (uint64) * } */ static int zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { dsl_pool_t *dp; dsl_dataset_t *fromsnap = NULL; dsl_dataset_t *tosnap; int error; char *fromname; uint64_t space; error = dsl_pool_hold(snapname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = nvlist_lookup_string(innvl, "fromsnap", &fromname); if (error == 0) { error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate(tosnap, fromsnap, &space); fnvlist_add_uint64(outnvl, "space", space); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; static void zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); vec->zvec_legacy_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_allow_log = log_history; vec->zvec_pool_check = pool_check; } /* * See the block comment at the beginning of this file for details on * each argument to this function. */ static void zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, boolean_t allow_log) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); /* if we are logging, the name must be valid */ ASSERT(!allow_log || namecheck != NO_NAME); vec->zvec_name = name; vec->zvec_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_pool_check = pool_check; vec->zvec_smush_outnvlist = smush_outnvlist; vec->zvec_allow_log = allow_log; } static void zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, POOL_NAME, log_history, pool_check); } static void zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, pool_check); } static void zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, NO_NAME, B_FALSE, POOL_CHECK_NONE); } static void zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); } static void zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_dataset_read_secpolicy(ioc, func, zfs_secpolicy_read); } static void zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_init(void) { zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE); zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("create", ZFS_IOC_CREATE, zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("clone", ZFS_IOC_CLONE, zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("hold", ZFS_IOC_HOLD, zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("release", ZFS_IOC_RELEASE, zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE); zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE); zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE); /* IOCTLS that use the legacy function signature */ zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, zfs_ioc_pool_scan); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, zfs_ioc_pool_upgrade); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, zfs_ioc_vdev_add); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, zfs_ioc_vdev_remove); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, zfs_ioc_vdev_set_state); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, zfs_ioc_vdev_attach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, zfs_ioc_vdev_detach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, zfs_ioc_vdev_setpath); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, zfs_ioc_vdev_setfru); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, zfs_ioc_pool_set_props); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, zfs_ioc_vdev_split); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, zfs_ioc_pool_reguid); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, zfs_ioc_pool_configs, zfs_secpolicy_none); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, zfs_ioc_pool_tryimport, zfs_secpolicy_config); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, zfs_ioc_inject_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, zfs_ioc_clear_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, zfs_ioc_inject_list_next, zfs_secpolicy_inject); /* * pool destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_export * does the logging of those commands. */ zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, zfs_secpolicy_config, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, zfs_ioc_pool_get_history, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, zfs_secpolicy_config, B_TRUE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, zfs_ioc_space_written); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, zfs_ioc_objset_recvd_props); zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, zfs_ioc_next_obj); zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, zfs_ioc_get_fsacl); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, zfs_ioc_objset_stats); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, zfs_ioc_objset_zplprops); zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, zfs_ioc_dataset_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, zfs_ioc_snapshot_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, zfs_ioc_send_progress); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, zfs_ioc_diff, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, zfs_ioc_obj_to_stats, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, zfs_ioc_obj_to_path, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, zfs_ioc_send, zfs_secpolicy_send); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, zfs_secpolicy_none); zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, zfs_secpolicy_destroy); zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, zfs_secpolicy_rename); zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, zfs_secpolicy_recv); zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, zfs_secpolicy_promote); zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, zfs_secpolicy_set_fsacl); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, zfs_secpolicy_share, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = SET_ERROR(EAGAIN); else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = SET_ERROR(EROFS); spa_close(spa, FTAG); } return (error); } /* * Find a free minor number. */ minor_t zfsdev_minor_alloc(void) { static minor_t last_minor; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (ddi_get_soft_state(zfsdev_state, m) == NULL) { last_minor = m; return (m); } } return (0); } static int zfs_ctldev_init(dev_t *devp) { minor_t minor; zfs_soft_state_t *zs; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(getminor(*devp) == 0); minor = zfsdev_minor_alloc(); if (minor == 0) return (SET_ERROR(ENXIO)); if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) return (SET_ERROR(EAGAIN)); *devp = makedevice(getemajor(*devp), minor); zs = ddi_get_soft_state(zfsdev_state, minor); zs->zss_type = ZSST_CTLDEV; zfs_onexit_init((zfs_onexit_t **)&zs->zss_data); return (0); } static void zfs_ctldev_destroy(zfs_onexit_t *zo, minor_t minor) { ASSERT(MUTEX_HELD(&zfsdev_state_lock)); zfs_onexit_destroy(zo); ddi_soft_state_free(zfsdev_state, minor); } void * zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which) { zfs_soft_state_t *zp; zp = ddi_get_soft_state(zfsdev_state, minor); if (zp == NULL || zp->zss_type != which) return (NULL); return (zp->zss_data); } static int zfsdev_open(dev_t *devp, int flag, int otyp, cred_t *cr) { int error = 0; if (getminor(*devp) != 0) return (zvol_open(devp, flag, otyp, cr)); /* This is the control device. Allocate a new minor if requested. */ if (flag & FEXCL) { mutex_enter(&zfsdev_state_lock); error = zfs_ctldev_init(devp); mutex_exit(&zfsdev_state_lock); } return (error); } static int zfsdev_close(dev_t dev, int flag, int otyp, cred_t *cr) { zfs_onexit_t *zo; minor_t minor = getminor(dev); if (minor == 0) return (0); mutex_enter(&zfsdev_state_lock); zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV); if (zo == NULL) { mutex_exit(&zfsdev_state_lock); return (zvol_close(dev, flag, otyp, cr)); } zfs_ctldev_destroy(zo, minor); mutex_exit(&zfsdev_state_lock); return (0); } static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vecnum; int error, rc, len; minor_t minor = getminor(dev); const zfs_ioc_vec_t *vec; char *saved_poolname = NULL; nvlist_t *innvl = NULL; if (minor != 0 && zfsdev_get_soft_state(minor, ZSST_CTLDEV) == NULL) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vecnum = cmd - ZFS_IOC_FIRST; ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip)); if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (SET_ERROR(EINVAL)); vec = &zfs_ioc_vec[vecnum]; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); if (error != 0) { error = SET_ERROR(EFAULT); goto out; } zc->zc_iflags = flag & FKIOCTL; if (zc->zc_nvlist_src_size != 0) { error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &innvl); if (error != 0) goto out; } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (vec->zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case NO_NAME: break; } if (error == 0 && !(flag & FKIOCTL)) error = vec->zvec_secpolicy(zc, innvl, cr); if (error != 0) goto out; /* legacy ioctls can modify zc_name */ len = strcspn(zc->zc_name, "/@#") + 1; saved_poolname = kmem_alloc(len, KM_SLEEP); (void) strlcpy(saved_poolname, zc->zc_name, len); if (vec->zvec_func != NULL) { nvlist_t *outnvl; int puterror = 0; spa_t *spa; nvlist_t *lognv = NULL; ASSERT(vec->zvec_legacy_func == NULL); /* * Add the innvl to the lognv before calling the func, * in case the func changes the innvl. */ if (vec->zvec_allow_log) { lognv = fnvlist_alloc(); fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, vec->zvec_name); if (!nvlist_empty(innvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, innvl); } } outnvl = fnvlist_alloc(); error = vec->zvec_func(zc->zc_name, innvl, outnvl); if (error == 0 && vec->zvec_allow_log && spa_open(zc->zc_name, &spa, FTAG) == 0) { if (!nvlist_empty(outnvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL, outnvl); } (void) spa_history_log_nvl(spa, lognv); spa_close(spa, FTAG); } fnvlist_free(lognv); if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { int smusherror = 0; if (vec->zvec_smush_outnvlist) { smusherror = nvlist_smush(outnvl, zc->zc_nvlist_dst_size); } if (smusherror == 0) puterror = put_nvlist(zc, outnvl); } if (puterror != 0) error = puterror; nvlist_free(outnvl); } else { error = vec->zvec_legacy_func(zc); } out: nvlist_free(innvl); rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag); if (error == 0 && rc != 0) error = SET_ERROR(EFAULT); if (error == 0 && vec->zvec_allow_log) { char *s = tsd_get(zfs_allow_log_key); if (s != NULL) strfree(s); (void) tsd_set(zfs_allow_log_key, saved_poolname); } else { if (saved_poolname != NULL) strfree(saved_poolname); } kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zfsdev_open, /* open */ zfsdev_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ zvol_dump, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL, /* no bus operations */ NULL, /* power */ ddi_quiesce_not_needed, /* quiesce */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool", &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; static void zfs_allow_log_destroy(void *arg) { char *poolname = arg; strfree(poolname); } int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); zfs_ioctl_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (SET_ERROR(EBUSY)); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); if (zfs_nfsshare_inited) (void) ddi_modclose(nfs_mod); if (zfs_smbshare_inited) (void) ddi_modclose(smbsrv_mod); if (zfs_nfsshare_inited || zfs_smbshare_inited) (void) ddi_modclose(sharefs_mod); tsd_destroy(&zfs_fsyncer_key); ldi_ident_release(zfs_li); zfs_li = NULL; mutex_destroy(&zfs_share_lock); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_log.c (revision 274273) @@ -1,674 +1,674 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These zfs_log_* functions must be called within a dmu tx, in one * of 2 contexts depending on zilog->z_replay: * * Non replay mode * --------------- * We need to record the transaction so that if it is committed to * the Intent Log then it can be replayed. An intent log transaction * structure (itx_t) is allocated and all the information necessary to * possibly replay the transaction is saved in it. The itx is then assigned * a sequence number and inserted in the in-memory list anchored in the zilog. * * Replay mode * ----------- * We need to mark the intent log record as replayed in the log header. * This is done in the same transaction as the replay so that they * commit atomically. */ int zfs_log_create_txtype(zil_create_t type, vsecattr_t *vsecp, vattr_t *vap) { int isxvattr = (vap->va_mask & AT_XVATTR); switch (type) { case Z_FILE: if (vsecp == NULL && !isxvattr) return (TX_CREATE); if (vsecp && isxvattr) return (TX_CREATE_ACL_ATTR); if (vsecp) return (TX_CREATE_ACL); else return (TX_CREATE_ATTR); /*NOTREACHED*/ case Z_DIR: if (vsecp == NULL && !isxvattr) return (TX_MKDIR); if (vsecp && isxvattr) return (TX_MKDIR_ACL_ATTR); if (vsecp) return (TX_MKDIR_ACL); else return (TX_MKDIR_ATTR); case Z_XATTRDIR: return (TX_MKXATTR); } ASSERT(0); return (TX_MAX_TYPE); } /* * build up the log data necessary for logging xvattr_t * First lr_attr_t is initialized. following the lr_attr_t * is the mapsize and attribute bitmap copied from the xvattr_t. * Following the bitmap and bitmapsize two 64 bit words are reserved * for the create time which may be set. Following the create time * records a single 64 bit integer which has the bits to set on * replay for the xvattr. */ static void zfs_log_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { uint32_t *bitmap; uint64_t *attrs; uint64_t *crtime; xoptattr_t *xoap; void *scanstamp; int i; xoap = xva_getxoptattr(xvap); ASSERT(xoap); lrattr->lr_attr_masksize = xvap->xva_mapsize; bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != xvap->xva_mapsize; i++, bitmap++) { *bitmap = xvap->xva_reqattrmap[i]; } /* Now pack the attributes up in a single uint64_t */ attrs = (uint64_t *)bitmap; crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); *attrs = 0; if (XVA_ISSET_REQ(xvap, XAT_READONLY)) *attrs |= (xoap->xoa_readonly == 0) ? 0 : XAT0_READONLY; if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) *attrs |= (xoap->xoa_hidden == 0) ? 0 : XAT0_HIDDEN; if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) *attrs |= (xoap->xoa_system == 0) ? 0 : XAT0_SYSTEM; if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) *attrs |= (xoap->xoa_archive == 0) ? 0 : XAT0_ARCHIVE; if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) *attrs |= (xoap->xoa_immutable == 0) ? 0 : XAT0_IMMUTABLE; if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) *attrs |= (xoap->xoa_nounlink == 0) ? 0 : XAT0_NOUNLINK; if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) *attrs |= (xoap->xoa_appendonly == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) *attrs |= (xoap->xoa_opaque == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) *attrs |= (xoap->xoa_nodump == 0) ? 0 : XAT0_NODUMP; if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) *attrs |= (xoap->xoa_av_quarantined == 0) ? 0 : XAT0_AV_QUARANTINED; if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) *attrs |= (xoap->xoa_av_modified == 0) ? 0 : XAT0_AV_MODIFIED; if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_ENCODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) bcopy(xoap->xoa_av_scanstamp, scanstamp, AV_SCANSTAMP_SZ); if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) *attrs |= (xoap->xoa_reparse == 0) ? 0 : XAT0_REPARSE; if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) *attrs |= (xoap->xoa_offline == 0) ? 0 : XAT0_OFFLINE; if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) *attrs |= (xoap->xoa_sparse == 0) ? 0 : XAT0_SPARSE; } static void * zfs_log_fuid_ids(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_t *zfuid; uint64_t *fuidloc = start; /* First copy in the ACE FUIDs */ for (zfuid = list_head(&fuidp->z_fuids); zfuid; zfuid = list_next(&fuidp->z_fuids, zfuid)) { *fuidloc++ = zfuid->z_logfuid; } return (fuidloc); } static void * zfs_log_fuid_domains(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_domain_t *zdomain; /* now copy in the domain info, if any */ if (fuidp->z_domain_str_sz != 0) { for (zdomain = list_head(&fuidp->z_domains); zdomain; zdomain = list_next(&fuidp->z_domains, zdomain)) { bcopy((void *)zdomain->z_domain, start, strlen(zdomain->z_domain) + 1); start = (caddr_t)start + strlen(zdomain->z_domain) + 1; } } return (start); } /* * Handles TX_CREATE, TX_CREATE_ATTR, TX_MKDIR, TX_MKDIR_ATTR and * TK_MKXATTR transactions. * * TX_CREATE and TX_MKDIR are standard creates, but they may have FUID * domain information appended prior to the name. In this case the * uid/gid in the log record will be a log centric FUID. * * TX_CREATE_ACL_ATTR and TX_MKDIR_ACL_ATTR handle special creates that * may contain attributes, ACL and optional fuid information. * * TX_CREATE_ACL and TX_MKDIR_ACL handle special creates that specify * and ACL and normal users/groups in the ACEs. * * There may be an optional xvattr attribute information similar * to zfs_log_setattr. * * Also, after the file name "domain" strings may be appended. */ void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp, vattr_t *vap) { itx_t *itx; lr_create_t *lr; lr_acl_create_t *lracl; size_t aclsize = (vsecp != NULL) ? vsecp->vsa_aclentsz : 0; size_t xvatsize = 0; size_t txsize; xvattr_t *xvap = (xvattr_t *)vap; void *end; size_t lrsize; size_t namesize = strlen(name) + 1; size_t fuidsz = 0; if (zil_replaying(zilog, tx)) return; /* * If we have FUIDs present then add in space for * domains and ACE fuid's if any. */ if (fuidp) { fuidsz += fuidp->z_domain_str_sz; fuidsz += fuidp->z_fuid_cnt * sizeof (uint64_t); } if (vap->va_mask & AT_XVATTR) xvatsize = ZIL_XVAT_SIZE(xvap->xva_mapsize); if ((int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MKDIR_ATTR || (int)txtype == TX_CREATE || (int)txtype == TX_MKDIR || (int)txtype == TX_MKXATTR) { txsize = sizeof (*lr) + namesize + fuidsz + xvatsize; lrsize = sizeof (*lr); } else { txsize = sizeof (lr_acl_create_t) + namesize + fuidsz + ZIL_ACE_LENGTH(aclsize) + xvatsize; lrsize = sizeof (lr_acl_create_t); } itx = zil_itx_create(txtype, txsize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; lr->lr_mode = zp->z_mode; if (!IS_EPHEMERAL(zp->z_uid)) { lr->lr_uid = (uint64_t)zp->z_uid; } else { lr->lr_uid = fuidp->z_fuid_owner; } if (!IS_EPHEMERAL(zp->z_gid)) { lr->lr_gid = (uint64_t)zp->z_gid; } else { lr->lr_gid = fuidp->z_fuid_group; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); if (sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zp->z_zfsvfs), &lr->lr_rdev, sizeof (lr->lr_rdev)) != 0) lr->lr_rdev = 0; /* * Fill in xvattr info if any */ if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), xvap); end = (caddr_t)lr + lrsize + xvatsize; } else { end = (caddr_t)lr + lrsize; } /* Now fill in any ACL info */ if (vsecp) { lracl = (lr_acl_create_t *)&itx->itx_lr; lracl->lr_aclcnt = vsecp->vsa_aclcnt; lracl->lr_acl_bytes = aclsize; lracl->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lracl->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_aclflags & VSA_ACE_ACLFLAGS) lracl->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lracl->lr_acl_flags = 0; bcopy(vsecp->vsa_aclentp, end, aclsize); end = (caddr_t)end + ZIL_ACE_LENGTH(aclsize); } /* drop in FUID info */ if (fuidp) { end = zfs_log_fuid_ids(fuidp, end); end = zfs_log_fuid_domains(fuidp, end); } /* * Now place file name in log record */ bcopy(name, end, namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles both TX_REMOVE and TX_RMDIR transactions. */ void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, char *name, uint64_t foid) { itx_t *itx; lr_remove_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_remove_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; bcopy(name, (char *)(lr + 1), namesize); itx->itx_oid = foid; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_LINK transactions. */ void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name) { itx_t *itx; lr_link_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_link_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_link_obj = zp->z_id; bcopy(name, (char *)(lr + 1), namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SYMLINK transactions. */ void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, char *link) { itx_t *itx; lr_create_t *lr; size_t namesize = strlen(name) + 1; size_t linksize = strlen(link) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize + linksize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; lr->lr_uid = zp->z_uid; lr->lr_gid = zp->z_gid; lr->lr_mode = zp->z_mode; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); bcopy(name, (char *)(lr + 1), namesize); bcopy(link, (char *)(lr + 1) + namesize, linksize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_RENAME transactions. */ void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp) { itx_t *itx; lr_rename_t *lr; size_t snamesize = strlen(sname) + 1; size_t dnamesize = strlen(dname) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize); lr = (lr_rename_t *)&itx->itx_lr; lr->lr_sdoid = sdzp->z_id; lr->lr_tdoid = tdzp->z_id; bcopy(sname, (char *)(lr + 1), snamesize); bcopy(dname, (char *)(lr + 1) + snamesize, dnamesize); itx->itx_oid = szp->z_id; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_WRITE transactions. */ ssize_t zfs_immediate_write_sz = 32768; void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t resid, int ioflag) { itx_wr_state_t write_state; boolean_t slogging; uintptr_t fsync_cnt; ssize_t immediate_write_sz; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) ? 0 : zfs_immediate_write_sz; slogging = spa_has_slogs(zilog->zl_spa) && (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); if (resid > immediate_write_sz && !slogging && resid <= zp->z_blksz) write_state = WR_INDIRECT; else if (ioflag & (FSYNC | FDSYNC)) write_state = WR_COPIED; else write_state = WR_NEED_COPY; if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0) { (void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1)); } while (resid) { itx_t *itx; lr_write_t *lr; ssize_t len; /* * If the write would overflow the largest block then split it. */ if (write_state != WR_INDIRECT && resid > ZIL_MAX_LOG_DATA) - len = SPA_MAXBLOCKSIZE >> 1; + len = SPA_OLD_MAXBLOCKSIZE >> 1; else len = resid; itx = zil_itx_create(txtype, sizeof (*lr) + (write_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (write_state == WR_COPIED && dmu_read(zp->z_zfsvfs->z_os, zp->z_id, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; write_state = WR_NEED_COPY; } itx->itx_wr_state = write_state; if (write_state == WR_NEED_COPY) itx->itx_sod += len; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zp->z_zfsvfs; if (!(ioflag & (FSYNC | FDSYNC)) && (zp->z_sync_cnt == 0) && (fsync_cnt == 0)) itx->itx_sync = B_FALSE; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } } /* * Handles TX_TRUNCATE transactions. */ void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len) { itx_t *itx; lr_truncate_t *lr; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SETATTR transactions. */ void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_setattr_t *lr; xvattr_t *xvap = (xvattr_t *)vap; size_t recsize = sizeof (lr_setattr_t); void *start; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; /* * If XVATTR set, then log record size needs to allow * for lr_attr_t + xvattr mask, mapsize and create time * plus actual attribute values */ if (vap->va_mask & AT_XVATTR) recsize = sizeof (*lr) + ZIL_XVAT_SIZE(xvap->xva_mapsize); if (fuidp) recsize += fuidp->z_domain_str_sz; itx = zil_itx_create(txtype, recsize); lr = (lr_setattr_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_mask = (uint64_t)mask_applied; lr->lr_mode = (uint64_t)vap->va_mode; if ((mask_applied & AT_UID) && IS_EPHEMERAL(vap->va_uid)) lr->lr_uid = fuidp->z_fuid_owner; else lr->lr_uid = (uint64_t)vap->va_uid; if ((mask_applied & AT_GID) && IS_EPHEMERAL(vap->va_gid)) lr->lr_gid = fuidp->z_fuid_group; else lr->lr_gid = (uint64_t)vap->va_gid; lr->lr_size = (uint64_t)vap->va_size; ZFS_TIME_ENCODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_ENCODE(&vap->va_mtime, lr->lr_mtime); start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)start, xvap); start = (caddr_t)start + ZIL_XVAT_SIZE(xvap->xva_mapsize); } /* * Now stick on domain information if any on end */ if (fuidp) (void) zfs_log_fuid_domains(fuidp, start); itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_ACL transactions. */ void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_acl_v0_t *lrv0; lr_acl_t *lr; int txtype; int lrsize; size_t txsize; size_t aclbytes = vsecp->vsa_aclentsz; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; txtype = (zp->z_zfsvfs->z_version < ZPL_VERSION_FUID) ? TX_ACL_V0 : TX_ACL; if (txtype == TX_ACL) lrsize = sizeof (*lr); else lrsize = sizeof (*lrv0); txsize = lrsize + ((txtype == TX_ACL) ? ZIL_ACE_LENGTH(aclbytes) : aclbytes) + (fuidp ? fuidp->z_domain_str_sz : 0) + sizeof (uint64_t) * (fuidp ? fuidp->z_fuid_cnt : 0); itx = zil_itx_create(txtype, txsize); lr = (lr_acl_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; if (txtype == TX_ACL) { lr->lr_acl_bytes = aclbytes; lr->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lr->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) lr->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lr->lr_acl_flags = 0; } lr->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt; if (txtype == TX_ACL_V0) { lrv0 = (lr_acl_v0_t *)lr; bcopy(vsecp->vsa_aclentp, (ace_t *)(lrv0 + 1), aclbytes); } else { void *start = (ace_t *)(lr + 1); bcopy(vsecp->vsa_aclentp, start, aclbytes); start = (caddr_t)start + ZIL_ACE_LENGTH(aclbytes); if (fuidp) { start = zfs_log_fuid_ids(fuidp, start); (void) zfs_log_fuid_domains(fuidp, start); } } itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vfsops.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vfsops.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vfsops.c (revision 274273) @@ -1,2354 +1,2353 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" int zfsfstype; vfsops_t *zfs_vfsops = NULL; static major_t zfs_major; static minor_t zfs_minor; static kmutex_t zfs_dev_mtx; extern int sys_shutdown; static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); static int zfs_root(vfs_t *vfsp, vnode_t **vpp); static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); static void zfs_freevfs(vfs_t *vfsp); static const fs_operation_def_t zfs_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, VFSNAME_ROOT, { .vfs_root = zfs_root }, VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, VFSNAME_SYNC, { .vfs_sync = zfs_sync }, VFSNAME_VGET, { .vfs_vget = zfs_vget }, VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; static const fs_operation_def_t zfs_vfsops_eio_template[] = { VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; /* * We need to keep a count of active fs's. * This is necessary to prevent our module * from being unloaded after a umount -f */ static uint32_t zfs_active_fs_count = 0; static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; /* * MO_DEFAULT is not used since the default value is determined * by the equivalent property. */ static mntopt_t mntopts[] = { { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } }; static mntopts_t zfs_mntopts = { sizeof (mntopts) / sizeof (mntopt_t), mntopts }; /*ARGSUSED*/ int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (panicstr) return (0); /* * SYNC_ATTR is used by fsflush() to force old filesystems like UFS * to sync metadata, which they would otherwise cache indefinitely. * Semantically, the only requirement is that the sync be initiated. * The DMU syncs out txgs frequently, so there's nothing to do. */ if (flag & SYNC_ATTR) return (0); if (vfsp != NULL) { /* * Sync a specific filesystem. */ zfsvfs_t *zfsvfs = vfsp->vfs_data; dsl_pool_t *dp; ZFS_ENTER(zfsvfs); dp = dmu_objset_pool(zfsvfs->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (sys_shutdown && spa_suspended(dp->dp_spa)) { ZFS_EXIT(zfsvfs); return (0); } if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, 0); ZFS_EXIT(zfsvfs); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(1M). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static int zfs_create_unique_device(dev_t *dev) { major_t new_major; do { ASSERT3U(zfs_minor, <=, MAXMIN32); minor_t start = zfs_minor; do { mutex_enter(&zfs_dev_mtx); if (zfs_minor >= MAXMIN32) { /* * If we're still using the real major * keep out of /dev/zfs and /dev/zvol minor * number space. If we're using a getudev()'ed * major number, we can use all of its minors. */ if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) zfs_minor = ZFS_MIN_MINOR; else zfs_minor = 0; } else { zfs_minor++; } *dev = makedevice(zfs_major, zfs_minor); mutex_exit(&zfs_dev_mtx); } while (vfs_devismounted(*dev) && zfs_minor != start); if (zfs_minor == start) { /* * We are using all ~262,000 minor numbers for the * current major number. Create a new major number. */ if ((new_major = getudev()) == (major_t)-1) { cmn_err(CE_WARN, "zfs_mount: Can't get unique major " "device number."); return (-1); } mutex_enter(&zfs_dev_mtx); zfs_major = new_major; zfs_minor = 0; mutex_exit(&zfs_dev_mtx); } else { break; } /* CONSTANTCONDITION */ } while (1); return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { zfsvfs->z_atime = TRUE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); } else { zfsvfs->z_atime = FALSE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); } } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; + ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); + ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); + ASSERT(ISP2(newval)); - if (newval < SPA_MINBLOCKSIZE || - newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) - newval = SPA_MAXBLOCKSIZE; - zfsvfs->z_max_blksz = newval; zfsvfs->z_vfs->vfs_bsize = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); } } static void devices_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); } } static void setuid_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); } } static void exec_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); } } /* * The nbmand mount option can be changed at mount time. * We can't allow it to be toggled on live file systems or incorrect * behavior may be seen from cifs clients * * This property isn't registered via dsl_prop_register(), but this callback * will be called when a file system is first mounted */ static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); } else { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); } } static void snapdir_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_show_ctldir = newval; } static void vscan_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_vscan = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_inherit = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; uint64_t nbmand; boolean_t readonly = B_FALSE; boolean_t do_readonly = B_FALSE; boolean_t setuid = B_FALSE; boolean_t do_setuid = B_FALSE; boolean_t exec = B_FALSE; boolean_t do_exec = B_FALSE; boolean_t devices = B_FALSE; boolean_t do_devices = B_FALSE; boolean_t xattr = B_FALSE; boolean_t do_xattr = B_FALSE; boolean_t atime = B_FALSE; boolean_t do_atime = B_FALSE; int error = 0; ASSERT(vfsp); zfsvfs = vfsp->vfs_data; ASSERT(zfsvfs); os = zfsvfs->z_os; /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || !spa_writeable(dmu_objset_spa(os))) { readonly = B_TRUE; do_readonly = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { readonly = B_FALSE; do_readonly = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { devices = B_FALSE; setuid = B_FALSE; do_devices = B_TRUE; do_setuid = B_TRUE; } else { if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { devices = B_FALSE; do_devices = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { devices = B_TRUE; do_devices = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { setuid = B_FALSE; do_setuid = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { setuid = B_TRUE; do_setuid = B_TRUE; } } if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { exec = B_FALSE; do_exec = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { exec = B_TRUE; do_exec = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { xattr = B_FALSE; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { xattr = B_TRUE; do_xattr = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { atime = B_FALSE; do_atime = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { atime = B_TRUE; do_atime = B_TRUE; } /* * nbmand is a special property. It can only be changed at * mount time. * * This is weird, but it is documented to only be changeable * at mount time. */ if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { nbmand = B_FALSE; } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { nbmand = B_TRUE; } else { char osname[MAXNAMELEN]; dmu_objset_name(os, osname); if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)) { return (error); } } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (do_readonly) readonly_changed_cb(zfsvfs, readonly); if (do_setuid) setuid_changed_cb(zfsvfs, setuid); if (do_exec) exec_changed_cb(zfsvfs, exec); if (do_devices) devices_changed_cb(zfsvfs, devices); if (do_xattr) xattr_changed_cb(zfsvfs, xattr); if (do_atime) atime_changed_cb(zfsvfs, atime); nbmand_changed_cb(zfsvfs, nbmand); return (0); unregister: /* * We may attempt to unregister some callbacks that are not * registered, but this is OK; it will simply return ENOMSG, * which we will ignore. */ (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); return (error); } static int zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, uint64_t *userp, uint64_t *groupp) { /* * Is it a valid type of object to track? */ if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) return (SET_ERROR(ENOENT)); /* * If we have a NULL data pointer * then assume the id's aren't changing and * return EEXIST to the dmu to let it know to * use the same ids */ if (data == NULL) return (SET_ERROR(EEXIST)); if (bonustype == DMU_OT_ZNODE) { znode_phys_t *znp = data; *userp = znp->zp_uid; *groupp = znp->zp_gid; } else { int hdrsize; sa_hdr_phys_t *sap = data; sa_hdr_phys_t sa = *sap; boolean_t swap = B_FALSE; ASSERT(bonustype == DMU_OT_SA); if (sa.sa_magic == 0) { /* * This should only happen for newly created * files that haven't had the znode data filled * in yet. */ *userp = 0; *groupp = 0; return (0); } if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { sa.sa_magic = SA_MAGIC; sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); swap = B_TRUE; } else { VERIFY3U(sa.sa_magic, ==, SA_MAGIC); } hdrsize = sa_hdrsize(&sa); VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET)); *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET)); if (swap) { *userp = BSWAP_64(*userp); *groupp = BSWAP_64(*groupp); } } return (0); } static void fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, char *domainbuf, int buflen, uid_t *ridp) { uint64_t fuid; const char *domain; fuid = strtonum(fuidstr, NULL); domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); if (domain) (void) strlcpy(domainbuf, domain, buflen); else domainbuf[0] = '\0'; *ridp = FUID_RID(fuid); } static uint64_t zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) { switch (type) { case ZFS_PROP_USERUSED: return (DMU_USERUSED_OBJECT); case ZFS_PROP_GROUPUSED: return (DMU_GROUPUSED_OBJECT); case ZFS_PROP_USERQUOTA: return (zfsvfs->z_userquota_obj); case ZFS_PROP_GROUPQUOTA: return (zfsvfs->z_groupquota_obj); } return (0); } int zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) { int error; zap_cursor_t zc; zap_attribute_t za; zfs_useracct_t *buf = vbuf; uint64_t obj; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == 0) { *bufsizep = 0; return (0); } for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > *bufsizep) break; fuidstr_to_sid(zfsvfs, za.za_name, buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); buf->zu_space = za.za_first_integer; buf++; } if (error == ENOENT) error = 0; ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; *cookiep = zap_cursor_serialize(&zc); zap_cursor_fini(&zc); return (error); } /* * buf must be big enough (eg, 32 bytes) */ static int id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, char *buf, boolean_t addok) { uint64_t fuid; int domainid = 0; if (domain && domain[0]) { domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); if (domainid == -1) return (SET_ERROR(ENOENT)); } fuid = FUID_ENCODE(domainid, rid); (void) sprintf(buf, "%llx", (longlong_t)fuid); return (0); } int zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t *valp) { char buf[32]; int err; uint64_t obj; *valp = 0; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == 0) return (0); err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); if (err) return (err); err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); if (err == ENOENT) err = 0; return (err); } int zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t quota) { char buf[32]; int err; dmu_tx_t *tx; uint64_t *objp; boolean_t fuid_dirtied; if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) return (SET_ERROR(EINVAL)); if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) return (SET_ERROR(ENOTSUP)); objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : &zfsvfs->z_groupquota_obj; err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); if (err) return (err); fuid_dirtied = zfsvfs->z_fuid_dirty; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); if (*objp == 0) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, zfs_userquota_prop_prefixes[type]); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&zfsvfs->z_lock); if (*objp == 0) { *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, DMU_OT_NONE, 0, tx); VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); } mutex_exit(&zfsvfs->z_lock); if (quota == 0) { err = zap_remove(zfsvfs->z_os, *objp, buf, tx); if (err == ENOENT) err = 0; } else { err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); } ASSERT(err == 0); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); dmu_tx_commit(tx); return (err); } boolean_t zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) { char buf[32]; uint64_t used, quota, usedobj, quotaobj; int err; usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); (void) sprintf(buf, "%llx", (longlong_t)fuid); err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); if (err != 0) return (B_FALSE); err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); if (err != 0) return (B_FALSE); return (used >= quota); } boolean_t zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) { uint64_t fuid; uint64_t quotaobj; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; fuid = isgroup ? zp->z_gid : zp->z_uid; if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); } int zfsvfs_create(const char *osname, zfsvfs_t **zfvp) { objset_t *os; zfsvfs_t *zfsvfs; uint64_t zval; int i, error; uint64_t sa_obj; zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); /* * We claim to always be readonly so we can open snapshots; * other ZPL code will prevent us from writing to snapshots. */ error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); if (error) { kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } /* * Initialize the zfs-specific filesystem structure. * Should probably make this a kmem cache, shuffle fields, * and just bzero up to z_hold_mtx[]. */ zfsvfs->z_vfs = NULL; zfsvfs->z_parent = zfsvfs; - zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; + zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zfsvfs->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (error) { goto out; } else if (zfsvfs->z_version > zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { (void) printf("Can't mount a version %lld file system " "on a version %lld pool\n. Pool must be upgraded to mount " "this file system.", (u_longlong_t)zfsvfs->z_version, (u_longlong_t)spa_version(dmu_objset_spa(os))); error = SET_ERROR(ENOTSUP); goto out; } if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) goto out; zfsvfs->z_norm = (int)zval; if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) goto out; zfsvfs->z_utf8 = (zval != 0); if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) goto out; zfsvfs->z_case = (uint_t)zval; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || zfsvfs->z_case == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); if (zfsvfs->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error) return (error); } else { /* * Pre SA versions file systems should never touch * either the attribute registration or layout objects. */ sa_obj = 0; } error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); if (error) goto out; if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zfsvfs->z_root); if (error) goto out; ASSERT(zfsvfs->z_root != 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zfsvfs->z_unlinkedobj); if (error) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zfsvfs->z_userquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zfsvfs->z_groupquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zfsvfs->z_shares_dir); if (error && error != ENOENT) goto out; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); *zfvp = zfsvfs; return (0); out: dmu_objset_disown(os, zfsvfs); *zfvp = NULL; kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { int error; error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { boolean_t readonly; /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; if (readonly != 0) zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; else zfs_unlinked_drain(zfsvfs); /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { if (zil_replay_disable) { zil_destroy(zfsvfs->z_log, B_FALSE); } else { zfsvfs->z_replay = B_TRUE; zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); zfsvfs->z_replay = B_FALSE; } } zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ } return (0); } void zfsvfs_free(zfsvfs_t *zfsvfs) { int i; extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ /* * This is a barrier to prevent the filesystem from going away in * zfs_znode_move() until we can safely ensure that the filesystem is * not unmounted. We consider the filesystem valid before the barrier * and invalid after the barrier. */ rw_enter(&zfsvfs_lock, RW_READER); rw_exit(&zfsvfs_lock); zfs_fuid_destroy(zfsvfs); mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_lock); list_destroy(&zfsvfs->z_all_znodes); rrm_destroy(&zfsvfs->z_teardown_lock); rw_destroy(&zfsvfs->z_teardown_inactive_lock); rw_destroy(&zfsvfs->z_fuid_lock); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static void zfs_set_fuid_feature(zfsvfs_t *zfsvfs) { zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); if (zfsvfs->z_vfs) { if (zfsvfs->z_use_fuids) { vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); } else { vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); } } zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); } static int zfs_domount(vfs_t *vfsp, char *osname) { dev_t mount_dev; uint64_t recordsize, fsid_guid; int error = 0; zfsvfs_t *zfsvfs; ASSERT(vfsp); ASSERT(osname); error = zfsvfs_create(osname, &zfsvfs); if (error) return (error); zfsvfs->z_vfs = vfsp; /* Initialize the generic filesystem structure. */ vfsp->vfs_bcount = 0; vfsp->vfs_data = NULL; if (zfs_create_unique_device(&mount_dev) == -1) { error = SET_ERROR(ENODEV); goto out; } ASSERT(vfs_devismounted(mount_dev) == 0); if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL)) goto out; vfsp->vfs_dev = mount_dev; vfsp->vfs_fstype = zfsfstype; vfsp->vfs_bsize = recordsize; vfsp->vfs_flag |= VFS_NOTRUNC; vfsp->vfs_data = zfsvfs; /* * The fsid is 64 bits, composed of an 8-bit fs type, which * separates our fsid from any other filesystem types, and a * 56-bit objset unique ID. The objset unique ID is unique to * all objsets open on this system, provided by unique_create(). * The 8-bit fs type must be put in the low bits of fsid[1] * because that's where other Solaris filesystems put it. */ fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); vfsp->vfs_fsid.val[0] = fsid_guid; vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | zfsfstype & 0xFF; /* * Set features for file system. */ zfs_set_fuid_feature(zfsvfs); if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); } vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) goto out; xattr_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); } else { error = zfsvfs_setup(zfsvfs, B_TRUE); } if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); out: if (error) { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } else { atomic_inc_32(&zfs_active_fs_count); } return (error); } void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; struct dsl_dataset *ds; /* * Unregister properties. */ if (!dmu_objset_is_snapshot(os)) { ds = dmu_objset_ds(os); VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs) == 0); } } /* * Convert a decimal digit string to a uint64_t integer. */ static int str_to_uint64(char *str, uint64_t *objnum) { uint64_t num = 0; while (*str) { if (*str < '0' || *str > '9') return (SET_ERROR(EINVAL)); num = num*10 + *str++ - '0'; } *objnum = num; return (0); } /* * The boot path passed from the boot loader is in the form of * "rootpool-name/root-filesystem-object-number'. Convert this * string to a dataset name: "rootpool-name/root-filesystem-name". */ static int zfs_parse_bootfs(char *bpath, char *outpath) { char *slashp; uint64_t objnum; int error; if (*bpath == 0 || *bpath == '/') return (SET_ERROR(EINVAL)); (void) strcpy(outpath, bpath); slashp = strchr(bpath, '/'); /* if no '/', just return the pool name */ if (slashp == NULL) { return (0); } /* if not a number, just return the root dataset name */ if (str_to_uint64(slashp+1, &objnum)) { return (0); } *slashp = '\0'; error = dsl_dsobj_to_dsname(bpath, objnum, outpath); *slashp = '/'; return (error); } /* * Check that the hex label string is appropriate for the dataset being * mounted into the global_zone proper. * * Return an error if the hex label string is not default or * admin_low/admin_high. For admin_low labels, the corresponding * dataset must be readonly. */ int zfs_check_global_label(const char *dsname, const char *hexsl) { if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); if (strcasecmp(hexsl, ADMIN_HIGH) == 0) return (0); if (strcasecmp(hexsl, ADMIN_LOW) == 0) { /* must be readonly */ uint64_t rdonly; if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) return (SET_ERROR(EACCES)); return (rdonly ? 0 : EACCES); } return (SET_ERROR(EACCES)); } /* * Determine whether the mount is allowed according to MAC check. * by comparing (where appropriate) label of the dataset against * the label of the zone being mounted into. If the dataset has * no label, create one. * * Returns 0 if access allowed, error otherwise (e.g. EACCES) */ static int zfs_mount_label_policy(vfs_t *vfsp, char *osname) { int error, retv; zone_t *mntzone = NULL; ts_label_t *mnt_tsl; bslabel_t *mnt_sl; bslabel_t ds_sl; char ds_hexsl[MAXNAMELEN]; retv = EACCES; /* assume the worst */ /* * Start by getting the dataset label if it exists. */ error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error) return (SET_ERROR(EACCES)); /* * If labeling is NOT enabled, then disallow the mount of datasets * which have a non-default label already. No other label checks * are needed. */ if (!is_system_labeled()) { if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); return (SET_ERROR(EACCES)); } /* * Get the label of the mountpoint. If mounting into the global * zone (i.e. mountpoint is not within an active zone and the * zoned property is off), the label must be default or * admin_low/admin_high only; no other checks are needed. */ mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); if (mntzone->zone_id == GLOBAL_ZONEID) { uint64_t zoned; zone_rele(mntzone); if (dsl_prop_get_integer(osname, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EACCES)); if (!zoned) return (zfs_check_global_label(osname, ds_hexsl)); else /* * This is the case of a zone dataset being mounted * initially, before the zone has been fully created; * allow this mount into global zone. */ return (0); } mnt_tsl = mntzone->zone_slabel; ASSERT(mnt_tsl != NULL); label_hold(mnt_tsl); mnt_sl = label2bslabel(mnt_tsl); if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { /* * The dataset doesn't have a real label, so fabricate one. */ char *str = NULL; if (l_to_str_internal(mnt_sl, &str) == 0 && dsl_prop_set_string(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), ZPROP_SRC_LOCAL, str) == 0) retv = 0; if (str != NULL) kmem_free(str, strlen(str) + 1); } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { /* * Now compare labels to complete the MAC check. If the * labels are equal then allow access. If the mountpoint * label dominates the dataset label, allow readonly access. * Otherwise, access is denied. */ if (blequal(mnt_sl, &ds_sl)) retv = 0; else if (bldominates(mnt_sl, &ds_sl)) { vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); retv = 0; } } label_rele(mnt_tsl); zone_rele(mntzone); return (retv); } static int zfs_mountroot(vfs_t *vfsp, enum whymountroot why) { int error = 0; static int zfsrootdone = 0; zfsvfs_t *zfsvfs = NULL; znode_t *zp = NULL; vnode_t *vp = NULL; char *zfs_bootfs; char *zfs_devid; ASSERT(vfsp); /* * The filesystem that we mount as root is defined in the * boot property "zfs-bootfs" with a format of * "poolname/root-dataset-objnum". */ if (why == ROOT_INIT) { if (zfsrootdone++) return (SET_ERROR(EBUSY)); /* * the process of doing a spa_load will require the * clock to be set before we could (for example) do * something better by looking at the timestamp on * an uberblock, so just set it to -1. */ clkset(-1); if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { cmn_err(CE_NOTE, "spa_get_bootfs: can not get " "bootfs name"); return (SET_ERROR(EINVAL)); } zfs_devid = spa_get_bootprop("diskdevid"); error = spa_import_rootpool(rootfs.bo_name, zfs_devid); if (zfs_devid) spa_free_bootprop(zfs_devid); if (error) { spa_free_bootprop(zfs_bootfs); cmn_err(CE_NOTE, "spa_import_rootpool: error %d", error); return (error); } if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { spa_free_bootprop(zfs_bootfs); cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", error); return (error); } spa_free_bootprop(zfs_bootfs); if (error = vfs_lock(vfsp)) return (error); if (error = zfs_domount(vfsp, rootfs.bo_name)) { cmn_err(CE_NOTE, "zfs_domount: error %d", error); goto out; } zfsvfs = (zfsvfs_t *)vfsp->vfs_data; ASSERT(zfsvfs); if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { cmn_err(CE_NOTE, "zfs_zget: error %d", error); goto out; } vp = ZTOV(zp); mutex_enter(&vp->v_lock); vp->v_flag |= VROOT; mutex_exit(&vp->v_lock); rootvp = vp; /* * Leave rootvp held. The root file system is never unmounted. */ vfs_add((struct vnode *)0, vfsp, (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); out: vfs_unlock(vfsp); return (error); } else if (why == ROOT_REMOUNT) { readonly_changed_cb(vfsp->vfs_data, B_FALSE); vfsp->vfs_flag |= VFS_REMOUNT; /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); return (zfs_register_callbacks(vfsp)); } else if (why == ROOT_UNMOUNT) { zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); (void) zfs_sync(vfsp, 0, 0); return (0); } /* * if "why" is equal to anything else other than ROOT_INIT, * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. */ return (SET_ERROR(ENOTSUP)); } /*ARGSUSED*/ static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { char *osname; pathname_t spn; int error = 0; uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE; int canwrite; if (mvp->v_type != VDIR) return (SET_ERROR(ENOTDIR)); mutex_enter(&mvp->v_lock); if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); return (SET_ERROR(EBUSY)); } mutex_exit(&mvp->v_lock); /* * ZFS does not support passing unparsed data in via MS_DATA. * Users should use the MS_OPTIONSTR interface; this means * that all option parsing is already done and the options struct * can be interrogated. */ if ((uap->flags & MS_DATA) && uap->datalen > 0) return (SET_ERROR(EINVAL)); /* * Get the objset name (the "special" mount argument). */ if (error = pn_get(uap->spec, fromspace, &spn)) return (error); osname = spn.pn_path; /* * Check for mount privilege? * * If we don't have privilege then see if * we have local permission to allow it */ error = secpolicy_fs_mount(cr, mvp, vfsp); if (error) { if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { vattr_t vattr; /* * Make sure user is the owner of the mount point * or has sufficient privileges. */ vattr.va_mask = AT_UID; if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { goto out; } if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { goto out; } secpolicy_fs_mount_clearopts(cr, vfsp); } else { goto out; } } /* * Refuse to mount a filesystem if we are in a local zone and the * dataset is not visible. */ if (!INGLOBALZONE(curproc) && (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { error = SET_ERROR(EPERM); goto out; } error = zfs_mount_label_policy(vfsp, osname); if (error) goto out; /* * When doing a remount, we simply refresh our temporary properties * according to those options set in the current VFS options. */ if (uap->flags & MS_REMOUNT) { /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); error = zfs_register_callbacks(vfsp); goto out; } error = zfs_domount(vfsp, osname); /* * Add an extra VFS_HOLD on our parent vfs so that it can't * disappear due to a forced unmount. */ if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) VFS_HOLD(mvp->v_vfsp); out: pn_free(&spn); return (error); } static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; dev32_t d32; uint64_t refdbytes, availbytes, usedobjs, availobjs; ZFS_ENTER(zfsvfs); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); /* * The underlying storage pool actually uses multiple block sizes. * We report the fragsize as the smallest block size we support, * and we report our blocksize as the filesystem's maximum blocksize. */ statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; statp->f_bsize = zfsvfs->z_max_blksz; /* * The following report "total" blocks of various kinds in the * file system, but reported in terms of f_frsize - the * "fragment" size. */ statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, statp->f_bfree); statp->f_favail = statp->f_ffree; /* no "root reservation" */ statp->f_files = statp->f_ffree + usedobjs; (void) cmpldev(&d32, vfsp->vfs_dev); statp->f_fsid = d32; /* * We're a zfs filesystem. */ (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); statp->f_flag = vf_to_stf(vfsp->vfs_flag); statp->f_namemax = ZFS_MAXNAMELEN; /* * We have all of 32 characters to stuff a string here. * Is there anything useful we could/should provide? */ bzero(statp->f_fstr, sizeof (statp->f_fstr)); ZFS_EXIT(zfsvfs); return (0); } static int zfs_root(vfs_t *vfsp, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *rootzp; int error; ZFS_ENTER(zfsvfs); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *vpp = ZTOV(rootzp); ZFS_EXIT(zfsvfs); return (error); } /* * Teardown the zfsvfs::z_os. * * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); if (!unmounting) { /* * We purge the parent filesystem's vfsp as the parent * filesystem and all of its snapshots have their vnode's * v_vfsp set to the parent's filesystem's vfsp. Note, * 'z_parent' is self referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { rw_exit(&zfsvfs->z_teardown_inactive_lock); rrm_exit(&zfsvfs->z_teardown_lock, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no vops active, and any new vops will * fail with EIO since we have z_teardown_lock for writer (only * relavent for forced unmount). * * Release all holds on dbufs. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) if (zp->z_sa_hdl) { ASSERT(ZTOV(zp)->v_count > 0); zfs_znode_dmu_fini(zp); } mutex_exit(&zfsvfs->z_znodes_lock); /* * If we are unmounting, set the unmounted flag and let new vops * unblock. zfs_inactive will have the unmounted behavior, and all * other vops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; rrm_exit(&zfsvfs->z_teardown_lock, FTAG); rw_exit(&zfsvfs->z_teardown_inactive_lock); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); dmu_objset_evict_dbufs(zfsvfs->z_os); return (0); } /*ARGSUSED*/ static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) { zfsvfs_t *zfsvfs = vfsp->vfs_data; objset_t *os; int ret; ret = secpolicy_fs_unmount(cr, vfsp); if (ret) { if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), ZFS_DELEG_PERM_MOUNT, cr)) return (ret); } /* * We purge the parent filesystem's vfsp as the parent filesystem * and all of its snapshots have their vnode's v_vfsp set to the * parent's filesystem's vfsp. Note, 'z_parent' is self * referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); /* * Unmount any snapshots mounted under .zfs before unmounting the * dataset itself. */ if (zfsvfs->z_ctldir != NULL && (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { return (ret); } if (!(fflag & MS_FORCE)) { /* * Check the number of active vnodes in the file system. * Our count is maintained in the vfs structure, but the * number is off by 1 to indicate a hold on the vfs * structure itself. * * The '.zfs' directory maintains a reference of its * own, and any active references underneath are * reflected in the vnode count. */ if (zfsvfs->z_ctldir == NULL) { if (vfsp->vfs_count > 1) return (SET_ERROR(EBUSY)); } else { if (vfsp->vfs_count > 2 || zfsvfs->z_ctldir->v_count > 1) return (SET_ERROR(EBUSY)); } } vfsp->vfs_flag |= VFS_UNMOUNTED; VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); os = zfsvfs->z_os; /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, zfsvfs); } /* * We can now safely destroy the '.zfs' directory node. */ if (zfsvfs->z_ctldir != NULL) zfsctl_destroy(zfsvfs); return (0); } static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *vpp = NULL; ZFS_ENTER(zfsvfs); if (fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; uint64_t setgen = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); ZFS_EXIT(zfsvfs); err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); if (err) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* A zero fid_gen means we are in the .zfs control directories */ if (fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { *vpp = zfsvfs->z_ctldir; ASSERT(*vpp != NULL); if (object == ZFSCTL_INO_SNAPDIR) { VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 0, NULL, NULL, NULL, NULL, NULL) == 0); } else { VN_HOLD(*vpp); } ZFS_EXIT(zfsvfs); return (0); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); if (err = zfs_zget(zfsvfs, object, &zp)) { ZFS_EXIT(zfsvfs); return (err); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); VN_RELE(ZTOV(zp)); ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } *vpp = ZTOV(zp); ZFS_EXIT(zfsvfs); return (0); } /* * Block out VOPs and close zfsvfs_t::z_os * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); return (0); } /* * Rebuild SA and release VOPs. Note that ownership of the underlying dataset * is an invariant across any of the operations that can be performed while the * filesystem was suspended. Whether it succeeded or failed, the preconditions * are the same: the relevant objset and associated dataset are owned by * zfsvfs, held, and long held on entry. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) { int err; znode_t *zp; uint64_t sa_obj = 0; ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); dmu_objset_rele(zfsvfs->z_os, zfsvfs); /* * Make sure version hasn't changed */ err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (err) goto bail; err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (err && zfsvfs->z_version >= ZPL_VERSION_SA) goto bail; if ((err = sa_setup(zfsvfs->z_os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) goto bail; if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(zfsvfs->z_os, zfs_sa_upgrade); VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); zfs_set_fuid_feature(zfsvfs); /* * Attempt to re-establish all the active znodes with * their dbufs. If a zfs_rezget() fails, then we'll let * any potential callers discover that via ZFS_ENTER_VERIFY_VP * when they try to use their znode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { (void) zfs_rezget(zp); } mutex_exit(&zfsvfs->z_znodes_lock); bail: /* release the VOPs */ rw_exit(&zfsvfs->z_teardown_inactive_lock); rrm_exit(&zfsvfs->z_teardown_lock, FTAG); if (err) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); } return (err); } static void zfs_freevfs(vfs_t *vfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * If this is a snapshot, we have an extra VFS_HOLD on our parent * from zfs_mount(). Release it here. If we came through * zfs_mountroot() instead, we didn't grab an extra hold, so * skip the VFS_RELE for rootvfs. */ if (zfsvfs->z_issnap && (vfsp != rootvfs)) VFS_RELE(zfsvfs->z_parent->z_vfs); zfsvfs_free(zfsvfs); atomic_dec_32(&zfs_active_fs_count); } /* * VFS_INIT() initialization. Note that there is no VFS_FINI(), * so we can't safely do any non-idempotent initialization here. * Leave that to zfs_init() and zfs_fini(), which are called * from the module's _init() and _fini() entry points. */ /*ARGSUSED*/ static int zfs_vfsinit(int fstype, char *name) { int error; zfsfstype = fstype; /* * Setup vfsops and vnodeops tables. */ error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); if (error != 0) { cmn_err(CE_WARN, "zfs: bad vfs ops template"); } error = zfs_create_op_tables(); if (error) { zfs_remove_op_tables(); cmn_err(CE_WARN, "zfs: bad vnode ops template"); (void) vfs_freevfsops_by_type(zfsfstype); return (error); } mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); /* * Unique major number for all zfs mounts. * If we run out of 32-bit minors, we'll getudev() another major. */ zfs_major = ddi_name_to_major(ZFS_DRIVER); zfs_minor = ZFS_MIN_MINOR; return (0); } void zfs_init(void) { /* * Initialize .zfs directory structures */ zfsctl_init(); /* * Initialize znode cache, vnode ops, etc... */ zfs_znode_init(); dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); } void zfs_fini(void) { zfsctl_fini(); zfs_znode_fini(); } int zfs_busy(void) { return (zfs_active_fs_count != 0); } int zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) { int error; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zfsvfs->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zfsvfs->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY(0 == sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %llu to %llu", zfsvfs->z_version, newvers); dmu_tx_commit(tx); zfsvfs->z_version = newvers; zfs_set_fuid_feature(zfsvfs); return (0); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { const char *pname; int error = ENOENT; /* * Look up the file system's value for the property. For the * version property, we look up a slightly different string. */ if (prop == ZFS_PROP_VERSION) pname = ZPL_VERSION_STR; else pname = zfs_prop_to_name(prop); if (os != NULL) error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; default: return (error); } error = 0; } return (error); } static vfsdef_t vfw = { VFSDEF_VERSION, MNTTYPE_ZFS, zfs_vfsinit, VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| VSW_XID|VSW_ZMOUNT, &zfs_mntopts }; struct modlfs zfs_modlfs = { &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw }; Index: vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vnops.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vnops.c (revision 274272) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/zfs_vnops.c (revision 274273) @@ -1,5306 +1,5312 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include /* * Programming rules. * * Each vnode op performs some logical unit of work. To do this, the ZPL must * properly lock its in-core state, create a DMU transaction, do the work, * record this work in the intent log (ZIL), commit the DMU transaction, * and wait for the intent log to commit if it is a synchronous operation. * Moreover, the vnode ops must work in both normal and log replay context. * The ordering of events is important to avoid deadlocks and references * to freed memory. The example below illustrates the following Big Rules: * * (1) A check must be made in each zfs thread for a mounted file system. * This is done avoiding races using ZFS_ENTER(zfsvfs). * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros * can return EIO from the calling function. * * (2) VN_RELE() should always be the last thing except for zil_commit() * (if necessary) and ZFS_EXIT(). This is for 3 reasons: * First, if it's the last reference, the vnode/znode * can be freed, so the zp may point to freed memory. Second, the last * reference will call zfs_zinactive(), which may induce a lot of work -- * pushing cached pages (which acquires range locks) and syncing out * cached atime changes. Third, zfs_zinactive() may require a new tx, * which could deadlock the system if you were already holding one. * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). * * (3) All range locks must be grabbed before calling dmu_tx_assign(), * as they can span dmu_tx_assign() calls. * * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to * dmu_tx_assign(). This is critical because we don't want to block * while holding locks. * * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This * reduces lock contention and CPU usage when we must wait (note that if * throughput is constrained by the storage, nearly every transaction * must wait). * * Note, in particular, that if a lock is sometimes acquired before * the tx assigns, and sometimes after (e.g. z_lock), then failing * to use a non-blocking assign can deadlock the system. The scenario: * * Thread A has grabbed a lock before calling dmu_tx_assign(). * Thread B is in an already-assigned tx, and blocks for this lock. * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() * forever, because the previous txg can't quiesce until B's tx commits. * * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, * then drop all locks, call dmu_tx_wait(), and try again. On subsequent * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, * to indicate that this operation has already called dmu_tx_wait(). * This will ensure that we don't retry forever, waiting a short bit * each time. * * (5) If the operation succeeded, generate the intent log entry for it * before dropping locks. This ensures that the ordering of events * in the intent log matches the order in which they actually occurred. * During ZIL replay the zfs_log_* functions will update the sequence * number to indicate the zil transaction has replayed. * * (6) At the end of each vnode op, the DMU tx must always commit, * regardless of whether there were any errors. * * (7) After dropping all locks, invoke zil_commit(zilog, foid) * to ensure that synchronous semantics are provided when necessary. * * In general, this is how things should be ordered in each vnode op: * * ZFS_ENTER(zfsvfs); // exit if unmounted * top: * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) * rw_enter(...); // grab any other locks you need * tx = dmu_tx_create(...); // get DMU tx * dmu_tx_hold_*(); // hold each object you might modify * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); * if (error) { * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * if (error == ERESTART) { * waited = B_TRUE; * dmu_tx_wait(tx); * dmu_tx_abort(tx); * goto top; * } * dmu_tx_abort(tx); // abort DMU tx * ZFS_EXIT(zfsvfs); // finished in zfs * return (error); // really out of space * } * error = do_real_work(); // do whatever this VOP does * if (error == 0) * zfs_log_*(...); // on success, make ZIL entry * dmu_tx_commit(tx); // commit DMU tx -- error or not * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * VN_RELE(...); // release held vnodes * zil_commit(zilog, foid); // synchronous when necessary * ZFS_EXIT(zfsvfs); // finished in zfs * return (error); // done, report error */ /* ARGSUSED */ static int zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(*vpp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && ((flag & FAPPEND) == 0)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && ZTOV(zp)->v_type == VREG && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { if (fs_vscan(*vpp, cr, 0) != 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EACCES)); } } /* Keep a count of the synchronous opens in the znode */ if (flag & (FSYNC | FDSYNC)) atomic_inc_32(&zp->z_sync_cnt); ZFS_EXIT(zfsvfs); return (0); } /* ARGSUSED */ static int zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; /* * Clean up any locks held by this process on the vp. */ cleanlocks(vp, ddi_get_pid(), 0); cleanshares(vp, ddi_get_pid()); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* Decrement the synchronous opens in the znode */ if ((flag & (FSYNC | FDSYNC)) && (count == 1)) atomic_dec_32(&zp->z_sync_cnt); if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && ZTOV(zp)->v_type == VREG && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) VERIFY(fs_vscan(vp, cr, 1) == 0); ZFS_EXIT(zfsvfs); return (0); } /* * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. */ static int zfs_holey(vnode_t *vp, int cmd, offset_t *off) { znode_t *zp = VTOZ(vp); uint64_t noff = (uint64_t)*off; /* new offset */ uint64_t file_sz; int error; boolean_t hole; file_sz = zp->z_size; if (noff >= file_sz) { return (SET_ERROR(ENXIO)); } if (cmd == _FIO_SEEK_HOLE) hole = B_TRUE; else hole = B_FALSE; error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); if (error == ESRCH) return (SET_ERROR(ENXIO)); /* * We could find a hole that begins after the logical end-of-file, * because dmu_offset_next() only works on whole blocks. If the * EOF falls mid-block, then indicate that the "virtual hole" * at the end of the file begins at the logical EOF, rather than * at the end of the last block. */ if (noff > file_sz) { ASSERT(hole); noff = file_sz; } if (noff < *off) return (error); *off = noff; return (error); } /* ARGSUSED */ static int zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, int *rvalp, caller_context_t *ct) { offset_t off; int error; zfsvfs_t *zfsvfs; znode_t *zp; switch (com) { case _FIOFFS: return (zfs_sync(vp->v_vfsp, 0, cred)); /* * The following two ioctls are used by bfu. Faking out, * necessary to avoid bfu errors. */ case _FIOGDIO: case _FIOSDIO: return (0); case _FIO_SEEK_DATA: case _FIO_SEEK_HOLE: if (ddi_copyin((void *)data, &off, sizeof (off), flag)) return (SET_ERROR(EFAULT)); zp = VTOZ(vp); zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* offset parameter is in/out */ error = zfs_holey(vp, com, &off); ZFS_EXIT(zfsvfs); if (error) return (error); if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) return (SET_ERROR(EFAULT)); return (0); } return (SET_ERROR(ENOTTY)); } /* * Utility functions to map and unmap a single physical page. These * are used to manage the mappable copies of ZFS file data, and therefore * do not update ref/mod bits. */ caddr_t zfs_map_page(page_t *pp, enum seg_rw rw) { if (kpm_enable) return (hat_kpm_mapin(pp, 0)); ASSERT(rw == S_READ || rw == S_WRITE); return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), (caddr_t)-1)); } void zfs_unmap_page(page_t *pp, caddr_t addr) { if (kpm_enable) { hat_kpm_mapout(pp, 0, addr); } else { ppmapout(addr); } } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Write: If we find a memory mapped page, we write to *both* * the page and the dmu buffer. */ static void update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) { int64_t off; off = start & PAGEOFFSET; for (start &= PAGEMASK; len > 0; start += PAGESIZE) { page_t *pp; uint64_t nbytes = MIN(PAGESIZE - off, len); if (pp = page_lookup(vp, start, SE_SHARED)) { caddr_t va; va = zfs_map_page(pp, S_WRITE); (void) dmu_read(os, oid, start+off, nbytes, va+off, DMU_READ_PREFETCH); zfs_unmap_page(pp, va); page_unlock(pp); } len -= nbytes; off = 0; } } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Read: We "read" preferentially from memory mapped pages, * else we default from the dmu buffer. * * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when * the file is memory mapped. */ static int mappedread(vnode_t *vp, int nbytes, uio_t *uio) { znode_t *zp = VTOZ(vp); int64_t start, off; int len = nbytes; int error = 0; start = uio->uio_loffset; off = start & PAGEOFFSET; for (start &= PAGEMASK; len > 0; start += PAGESIZE) { page_t *pp; uint64_t bytes = MIN(PAGESIZE - off, len); if (pp = page_lookup(vp, start, SE_SHARED)) { caddr_t va; va = zfs_map_page(pp, S_READ); error = uiomove(va + off, bytes, UIO_READ, uio); zfs_unmap_page(pp, va); page_unlock(pp); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, bytes); } len -= bytes; off = 0; if (error) break; } return (error); } offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ /* * Read bytes from specified file into supplied buffer. * * IN: vp - vnode of file to be read from. * uio - structure supplying read location, range info, * and return buffer. * ioflag - SYNC flags; used to provide FRSYNC semantics. * cr - credentials of caller. * ct - caller context * * OUT: uio - updated offset and range, buffer filled. * * RETURN: 0 on success, error code on failure. * * Side Effects: * vp - atime updated if byte count > 0 */ /* ARGSUSED */ static int zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ssize_t n, nbytes; int error = 0; rl_t *rl; xuio_t *xuio = NULL; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (zp->z_pflags & ZFS_AV_QUARANTINED) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EACCES)); } /* * Validate file offset */ if (uio->uio_loffset < (offset_t)0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Fasttrack empty reads */ if (uio->uio_resid == 0) { ZFS_EXIT(zfsvfs); return (0); } /* * Check for mandatory locks */ if (MANDMODE(zp->z_mode)) { if (error = chklock(vp, FREAD, uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { ZFS_EXIT(zfsvfs); return (error); } } /* * If we're in FRSYNC mode, sync out this znode before reading it. */ if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zfsvfs->z_log, zp->z_id); /* * Lock the range against changes. */ rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); /* * If we are reading past end-of-file we can skip * to the end; but we might still need to set atime. */ if (uio->uio_loffset >= zp->z_size) { error = 0; goto out; } ASSERT(uio->uio_loffset < zp->z_size); n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { int nblk; int blksz = zp->z_blksz; uint64_t offset = uio->uio_loffset; xuio = (xuio_t *)uio; if ((ISP2(blksz))) { nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, blksz)) / blksz; } else { ASSERT(offset + n <= blksz); nblk = 1; } (void) dmu_xuio_init(xuio, nblk); if (vn_has_cached_data(vp)) { /* * For simplicity, we always allocate a full buffer * even if we only expect to read a portion of a block. */ while (--nblk >= 0) { (void) dmu_xuio_add(xuio, dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz), 0, blksz); } } } while (n > 0) { nbytes = MIN(n, zfs_read_chunk_size - P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); if (vn_has_cached_data(vp)) { error = mappedread(vp, nbytes, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes); } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } n -= nbytes; } out: zfs_range_unlock(rl); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); ZFS_EXIT(zfsvfs); return (error); } /* * Write the bytes to a file. * * IN: vp - vnode of file to be written to. * uio - structure supplying write location, range info, * and data buffer. * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is * set if in append mode. * cr - credentials of caller. * ct - caller context (NFS/CIFS fem monitor only) * * OUT: uio - updated offset and range. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime|mtime updated if byte count > 0 */ /* ARGSUSED */ static int zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); rlim64_t limit = uio->uio_llimit; ssize_t start_resid = uio->uio_resid; ssize_t tx_bytes; uint64_t end_size; dmu_tx_t *tx; zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog; offset_t woff; ssize_t n, nbytes; rl_t *rl; int max_blksz = zfsvfs->z_max_blksz; int error = 0; arc_buf_t *abuf; iovec_t *aiov = NULL; xuio_t *xuio = NULL; int i_iov = 0; int iovcnt = uio->uio_iovcnt; iovec_t *iovp = uio->uio_iov; int write_eof; int count = 0; sa_bulk_attr_t bulk[4]; uint64_t mtime[2], ctime[2]; /* * Fasttrack empty write */ n = start_resid; if (n == 0) return (0); if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) limit = MAXOFFSET_T; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); /* * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our * callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EROFS)); } /* * If immutable or not appending then return EPERM */ if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && (uio->uio_loffset < zp->z_size))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } zilog = zfsvfs->z_log; /* * Validate file offset */ woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; if (woff < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Check for mandatory locks before calling zfs_range_lock() * in order to prevent a deadlock with locks set via fcntl(). */ if (MANDMODE((mode_t)zp->z_mode) && (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * Pre-fault the pages to ensure slow (eg NFS) pages * don't hold up txg. * Skip this if uio contains loaned arc_buf. */ if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) xuio = (xuio_t *)uio; else uio_prefaultpages(MIN(n, max_blksz), uio); /* * If in append mode, set the io offset pointer to eof. */ if (ioflag & FAPPEND) { /* * Obtain an appending range lock to guarantee file append * semantics. We reset the write offset once we have the lock. */ rl = zfs_range_lock(zp, 0, n, RL_APPEND); woff = rl->r_off; if (rl->r_len == UINT64_MAX) { /* * We overlocked the file because this write will cause * the file block size to increase. * Note that zp_size cannot change with this lock held. */ woff = zp->z_size; } uio->uio_loffset = woff; } else { /* * Note that if the file block size will change as a result of * this write, then this range lock will lock the entire file * so that we can re-write the block safely. */ rl = zfs_range_lock(zp, woff, n, RL_WRITER); } if (woff >= limit) { zfs_range_unlock(rl); ZFS_EXIT(zfsvfs); return (SET_ERROR(EFBIG)); } if ((woff + n) > limit || woff > (limit - n)) n = limit - woff; /* Will this write extend the file length? */ write_eof = (woff + n > zp->z_size); end_size = MAX(zp->z_size, woff + n); /* * Write the file in reasonable size chunks. Each chunk is written * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (n > 0) { abuf = NULL; woff = uio->uio_loffset; if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { if (abuf != NULL) dmu_return_arcbuf(abuf); error = SET_ERROR(EDQUOT); break; } if (xuio && abuf == NULL) { ASSERT(i_iov < iovcnt); aiov = &iovp[i_iov]; abuf = dmu_xuio_arcbuf(xuio, i_iov); dmu_xuio_clear(xuio, i_iov); DTRACE_PROBE3(zfs_cp_write, int, i_iov, iovec_t *, aiov, arc_buf_t *, abuf); ASSERT((aiov->iov_base == abuf->b_data) || ((char *)aiov->iov_base - (char *)abuf->b_data + aiov->iov_len == arc_buf_size(abuf))); i_iov++; } else if (abuf == NULL && n >= max_blksz && woff >= zp->z_size && P2PHASE(woff, max_blksz) == 0 && zp->z_blksz == max_blksz) { /* * This write covers a full block. "Borrow" a buffer * from the dmu so that we can fill it before we enter * a transaction. This avoids the possibility of * holding up the transaction if the data copy hangs * up on a pagefault (e.g., from an NFS server mapping). */ size_t cbytes; abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), max_blksz); ASSERT(abuf != NULL); ASSERT(arc_buf_size(abuf) == max_blksz); if (error = uiocopy(abuf->b_data, max_blksz, UIO_WRITE, uio, &cbytes)) { dmu_return_arcbuf(abuf); break; } ASSERT(cbytes == max_blksz); } /* * Start a transaction. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); if (abuf != NULL) dmu_return_arcbuf(abuf); break; } /* * If zfs_range_lock() over-locked we grow the blocksize * and then reduce the lock range. This will only happen * on the first iteration since zfs_range_reduce() will * shrink down r_len to the appropriate size. */ if (rl->r_len == UINT64_MAX) { uint64_t new_blksz; if (zp->z_blksz > max_blksz) { + /* + * File's blocksize is already larger than the + * "recordsize" property. Only let it grow to + * the next power of 2. + */ ASSERT(!ISP2(zp->z_blksz)); - new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); + new_blksz = MIN(end_size, + 1 << highbit64(zp->z_blksz)); } else { new_blksz = MIN(end_size, max_blksz); } zfs_grow_blocksize(zp, new_blksz, tx); zfs_range_reduce(rl, woff, n); } /* * XXX - should we really limit each write to z_max_blksz? * Perhaps we should use SPA_MAXBLOCKSIZE chunks? */ nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); if (abuf == NULL) { tx_bytes = uio->uio_resid; error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes, tx); tx_bytes -= uio->uio_resid; } else { tx_bytes = nbytes; ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); /* * If this is not a full block write, but we are * extending the file past EOF and this data starts * block-aligned, use assign_arcbuf(). Otherwise, * write via dmu_write(). */ if (tx_bytes < max_blksz && (!write_eof || aiov->iov_base != abuf->b_data)) { ASSERT(xuio); dmu_write(zfsvfs->z_os, zp->z_id, woff, aiov->iov_len, aiov->iov_base, tx); dmu_return_arcbuf(abuf); xuio_stat_wbuf_copied(); } else { ASSERT(xuio || tx_bytes == max_blksz); dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), woff, abuf, tx); } ASSERT(tx_bytes <= uio->uio_resid); uioskip(uio, tx_bytes); } if (tx_bytes && vn_has_cached_data(vp)) { update_pages(vp, woff, tx_bytes, zfsvfs->z_os, zp->z_id); } /* * If we made no progress, we're done. If we made even * partial progress, update the znode and ZIL accordingly. */ if (tx_bytes == 0) { (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), (void *)&zp->z_size, sizeof (uint64_t), tx); dmu_tx_commit(tx); ASSERT(error != 0); break; } /* * Clear Set-UID/Set-GID bits on successful write if not * privileged and at least one of the excute bits is set. * * It would be nice to to this after all writes have * been done, but that would still expose the ISUID/ISGID * to another app after the partial write is committed. * * Note: we don't call zfs_fuid_map_id() here because * user 0 is not an ephemeral uid. */ mutex_enter(&zp->z_acl_lock); if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && secpolicy_vnode_setid_retain(cr, (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { uint64_t newmode; zp->z_mode &= ~(S_ISUID | S_ISGID); newmode = zp->z_mode; (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), (void *)&newmode, sizeof (uint64_t), tx); } mutex_exit(&zp->z_acl_lock); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((end_size = zp->z_size) < uio->uio_loffset) { (void) atomic_cas_64(&zp->z_size, end_size, uio->uio_loffset); ASSERT(error == 0); } /* * If we are replaying and eof is non zero then force * the file size to the specified eof. Note, there's no * concurrency during replay. */ if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) zp->z_size = zfsvfs->z_replay_eof; error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); dmu_tx_commit(tx); if (error != 0) break; ASSERT(tx_bytes == nbytes); n -= nbytes; if (!xuio && n > 0) uio_prefaultpages(MIN(n, max_blksz), uio); } zfs_range_unlock(rl); /* * If we're in replay mode, or we made no progress, return error. * Otherwise, it's at least a partial write, so it's successful. */ if (zfsvfs->z_replay || uio->uio_resid == start_resid) { ZFS_EXIT(zfsvfs); return (error); } if (ioflag & (FSYNC | FDSYNC) || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, zp->z_id); ZFS_EXIT(zfsvfs); return (0); } void zfs_get_done(zgd_t *zgd, int error) { znode_t *zp = zgd->zgd_private; objset_t *os = zp->z_zfsvfs->z_os; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } #ifdef DEBUG static int zil_fault_io = 0; #endif /* * Get data to generate a TX_WRITE intent log record. */ int zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { zfsvfs_t *zfsvfs = arg; objset_t *os = zfsvfs->z_os; znode_t *zp; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; blkptr_t *bp = &lr->lr_blkptr; dmu_buf_t *db; zgd_t *zgd; int error = 0; ASSERT(zio != NULL); ASSERT(size != 0); /* * Nothing to do if the file has been removed */ if (zfs_zget(zfsvfs, object, &zp) != 0) return (SET_ERROR(ENOENT)); if (zp->z_unlinked) { /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); return (SET_ERROR(ENOENT)); } zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_zilog = zfsvfs->z_log; zgd->zgd_private = zp; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); /* test for truncation needs to be done while range locked */ if (offset >= zp->z_size) { error = SET_ERROR(ENOENT); } else { error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } ASSERT(error == 0 || error == ENOENT); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's * written out and it's checksum is being calculated * that no one can change the data. We need to re-check * blocksize after we get the lock in case it's changed! */ for (;;) { uint64_t blkoff; size = zp->z_blksz; blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; offset -= blkoff; zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); if (zp->z_blksz == size) break; offset += blkoff; zfs_range_unlock(zgd->zgd_rl); } /* test for truncation needs to be done while range locked */ if (lr->lr_offset >= zp->z_size) error = SET_ERROR(ENOENT); #ifdef DEBUG if (zil_fault_io) { error = SET_ERROR(EIO); zil_fault_io = 0; } #endif if (error == 0) error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *obp = dmu_buf_get_blkptr(db); if (obp) { ASSERT(BP_IS_HOLE(bp)); *bp = *obp; } zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zfs_get_done, zgd); ASSERT(error || lr->lr_length <= zp->z_blksz); /* * On success, we need to wait for the write I/O * initiated by dmu_sync() to complete before we can * release this dbuf. We will finish everything up * in the zfs_get_done() callback. */ if (error == 0) return (0); if (error == EALREADY) { lr->lr_common.lrc_txtype = TX_WRITE2; error = 0; } } } zfs_get_done(zgd, error); return (error); } /*ARGSUSED*/ static int zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (flag & V_ACE_MASK) error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); else error = zfs_zaccess_rwx(zp, mode, flag, cr); ZFS_EXIT(zfsvfs); return (error); } /* * If vnode is for a device return a specfs vnode instead. */ static int specvp_check(vnode_t **vpp, cred_t *cr) { int error = 0; if (IS_DEVVP(*vpp)) { struct vnode *svp; svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); VN_RELE(*vpp); if (svp == NULL) error = SET_ERROR(ENOSYS); *vpp = svp; } return (error); } /* * Lookup an entry in a directory, or an extended attribute directory. * If it exists, return a held vnode reference for it. * * IN: dvp - vnode of directory to search. * nm - name of entry to lookup. * pnp - full pathname to lookup [UNUSED]. * flags - LOOKUP_XATTR set if looking for an attribute. * rdir - root directory vnode [UNUSED]. * cr - credentials of caller. * ct - caller context * direntflags - directory lookup flags * realpnp - returned pathname. * * OUT: vpp - vnode of located entry, NULL if not found. * * RETURN: 0 on success, error code on failure. * * Timestamps: * NA */ /* ARGSUSED */ static int zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, int *direntflags, pathname_t *realpnp) { znode_t *zdp = VTOZ(dvp); zfsvfs_t *zfsvfs = zdp->z_zfsvfs; int error = 0; /* fast path */ if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { if (dvp->v_type != VDIR) { return (SET_ERROR(ENOTDIR)); } else if (zdp->z_sa_hdl == NULL) { return (SET_ERROR(EIO)); } if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { error = zfs_fastaccesschk_execute(zdp, cr); if (!error) { *vpp = dvp; VN_HOLD(*vpp); return (0); } return (error); } else { vnode_t *tvp = dnlc_lookup(dvp, nm); if (tvp) { error = zfs_fastaccesschk_execute(zdp, cr); if (error) { VN_RELE(tvp); return (error); } if (tvp == DNLC_NO_VNODE) { VN_RELE(tvp); return (SET_ERROR(ENOENT)); } else { *vpp = tvp; return (specvp_check(vpp, cr)); } } } } DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zdp); *vpp = NULL; if (flags & LOOKUP_XATTR) { /* * If the xattr property is off, refuse the lookup request. */ if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * We don't allow recursive attributes.. * Maybe someday we will. */ if (zdp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { ZFS_EXIT(zfsvfs); return (error); } /* * Do we have permission to get into attribute directory? */ if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, B_FALSE, cr)) { VN_RELE(*vpp); *vpp = NULL; } ZFS_EXIT(zfsvfs); return (error); } if (dvp->v_type != VDIR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENOTDIR)); } /* * Check accessibility of directory. */ if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { ZFS_EXIT(zfsvfs); return (error); } if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); if (error == 0) error = specvp_check(vpp, cr); ZFS_EXIT(zfsvfs); return (error); } /* * Attempt to create a new entry in a directory. If the entry * already exists, truncate the file if permissible, else return * an error. Return the vp of the created or trunc'd file. * * IN: dvp - vnode of directory to put new file entry in. * name - name of new file entry. * vap - attributes of new file. * excl - flag indicating exclusive or non-exclusive mode. * mode - mode to open file with. * cr - credentials of caller. * flag - large file flag [UNUSED]. * ct - caller context * vsecp - ACL to be set * * OUT: vpp - vnode of created or trunc'd entry. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated if new entry created * vp - ctime|mtime always, atime if new */ /* ARGSUSED */ static int zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, vsecattr_t *vsecp) { znode_t *zp, *dzp = VTOZ(dvp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; objset_t *os; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; ksid_t *ksid; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t have_acl = B_FALSE; boolean_t waited = B_FALSE; /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ ksid = crgetsid(cr, KSID_OWNER); if (ksid) uid = ksid_getid(ksid); else uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); os = zfsvfs->z_os; zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { ZFS_EXIT(zfsvfs); return (error); } } top: *vpp = NULL; if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) vap->va_mode &= ~VSVTX; if (*name == '\0') { /* * Null component name refers to the directory itself. */ VN_HOLD(dvp); zp = dzp; dl = NULL; error = 0; } else { /* possible VN_HOLD(zp) */ int zflg = 0; if (flag & FIGNORECASE) zflg |= ZCILOOK; error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { if (have_acl) zfs_acl_ids_free(&acl_ids); if (strcmp(name, "..") == 0) error = SET_ERROR(EISDIR); ZFS_EXIT(zfsvfs); return (error); } } if (zp == NULL) { uint64_t txtype; /* * Create a new file object and update the directory * to reference it. */ if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { if (have_acl) zfs_acl_ids_free(&acl_ids); goto out; } /* * We only support the creation of regular files in * extended attribute directories. */ if ((dzp->z_pflags & ZFS_XATTR) && (vap->va_type != VREG)) { if (have_acl) zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EINVAL); goto out; } if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids)) != 0) goto out; have_acl = B_TRUE; if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); (void) zfs_link_create(dl, zp, tx, ZNEW); txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); if (flag & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, name, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); } else { int aflags = (flag & FAPPEND) ? V_APPEND : 0; if (have_acl) zfs_acl_ids_free(&acl_ids); have_acl = B_FALSE; /* * A directory entry already exists for this name. */ /* * Can't truncate an existing file if in exclusive mode. */ if (excl == EXCL) { error = SET_ERROR(EEXIST); goto out; } /* * Can't open a directory for writing. */ if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { error = SET_ERROR(EISDIR); goto out; } /* * Verify requested access to file. */ if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { goto out; } mutex_enter(&dzp->z_lock); dzp->z_seq++; mutex_exit(&dzp->z_lock); /* * Truncate regular files if requested. */ if ((ZTOV(zp)->v_type == VREG) && (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { /* we can't hold any locks when calling zfs_freesp() */ zfs_dirent_unlock(dl); dl = NULL; error = zfs_freesp(zp, 0, 0, mode, TRUE); if (error == 0) { vnevent_create(ZTOV(zp), ct); } } } out: if (dl) zfs_dirent_unlock(dl); if (error) { if (zp) VN_RELE(ZTOV(zp)); } else { *vpp = ZTOV(zp); error = specvp_check(vpp, cr); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Remove an entry from a directory. * * IN: dvp - vnode of directory to remove entry from. * name - name of entry to remove. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime * vp - ctime (if nlink > 0) */ uint64_t null_xattr = 0; /*ARGSUSED*/ static int zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, int flags) { znode_t *zp, *dzp = VTOZ(dvp); znode_t *xzp; vnode_t *vp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t acl_obj, xattr_obj; uint64_t xattr_obj_unlinked = 0; uint64_t obj = 0; zfs_dirlock_t *dl; dmu_tx_t *tx; boolean_t may_delete_now, delete_now = FALSE; boolean_t unlinked, toobig = FALSE; uint64_t txtype; pathname_t *realnmp = NULL; pathname_t realnm; int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (flags & FIGNORECASE) { zflg |= ZCILOOK; pn_alloc(&realnm); realnmp = &realnm; } top: xattr_obj = 0; xzp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, realnmp)) { if (realnmp) pn_free(realnmp); ZFS_EXIT(zfsvfs); return (error); } vp = ZTOV(zp); if (error = zfs_zaccess_delete(dzp, zp, cr)) { goto out; } /* * Need to use rmdir for removing directories. */ if (vp->v_type == VDIR) { error = SET_ERROR(EPERM); goto out; } vnevent_remove(vp, dvp, name, ct); if (realnmp) dnlc_remove(dvp, realnmp->pn_buf); else dnlc_remove(dvp, name); mutex_enter(&vp->v_lock); may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); mutex_exit(&vp->v_lock); /* * We may delete the znode now, or we may put it in the unlinked set; * it depends on whether we're the last link, and on whether there are * other holds on the vnode. So we dmu_tx_hold() the right things to * allow for either case. */ obj = zp->z_id; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); if (may_delete_now) { toobig = zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; /* if the file is too big, only hold_free a token amount */ dmu_tx_hold_free(tx, zp->z_id, 0, (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); } /* are there any extended attributes? */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (error == 0 && xattr_obj) { error = zfs_zget(zfsvfs, xattr_obj, &xzp); ASSERT0(error); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); } mutex_enter(&zp->z_lock); if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); mutex_exit(&zp->z_lock); /* charge as an update -- would be nice not to charge at all */ dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); /* * Mark this transaction as typically resulting in a net free of * space, unless object removal will be delayed indefinitely * (due to active holds on the vnode due to the file being open). */ if (may_delete_now) dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); VN_RELE(vp); if (xzp) VN_RELE(ZTOV(xzp)); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } if (realnmp) pn_free(realnmp); dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } /* * Remove the directory entry. */ error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); if (error) { dmu_tx_commit(tx); goto out; } if (unlinked) { /* * Hold z_lock so that we can make sure that the ACL obj * hasn't changed. Could have been deleted due to * zfs_sa_upgrade(). */ mutex_enter(&zp->z_lock); mutex_enter(&vp->v_lock); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); delete_now = may_delete_now && !toobig && vp->v_count == 1 && !vn_has_cached_data(vp) && xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == acl_obj; mutex_exit(&vp->v_lock); } if (delete_now) { if (xattr_obj_unlinked) { ASSERT3U(xzp->z_links, ==, 2); mutex_enter(&xzp->z_lock); xzp->z_unlinked = 1; xzp->z_links = 0; error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), &xzp->z_links, sizeof (xzp->z_links), tx); ASSERT3U(error, ==, 0); mutex_exit(&xzp->z_lock); zfs_unlinked_add(xzp, tx); if (zp->z_is_sa) error = sa_remove(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), tx); else error = sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &null_xattr, sizeof (uint64_t), tx); ASSERT0(error); } mutex_enter(&vp->v_lock); vp->v_count--; ASSERT0(vp->v_count); mutex_exit(&vp->v_lock); mutex_exit(&zp->z_lock); zfs_znode_delete(zp, tx); } else if (unlinked) { mutex_exit(&zp->z_lock); zfs_unlinked_add(zp, tx); } txtype = TX_REMOVE; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_remove(zilog, tx, txtype, dzp, name, obj); dmu_tx_commit(tx); out: if (realnmp) pn_free(realnmp); zfs_dirent_unlock(dl); if (!delete_now) VN_RELE(vp); if (xzp) VN_RELE(ZTOV(xzp)); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Create a new directory and insert it into dvp using the name * provided. Return a pointer to the inserted directory. * * IN: dvp - vnode of directory to add subdir to. * dirname - name of new directory. * vap - attributes of new directory. * cr - credentials of caller. * ct - caller context * flags - case flags * vsecp - ACL to be set * * OUT: vpp - vnode of created directory. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated * vp - ctime|mtime|atime updated */ /*ARGSUSED*/ static int zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp) { znode_t *zp, *dzp = VTOZ(dvp); zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; zfs_dirlock_t *dl; uint64_t txtype; dmu_tx_t *tx; int error; int zf = ZNEW; ksid_t *ksid; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t waited = B_FALSE; ASSERT(vap->va_type == VDIR); /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ ksid = crgetsid(cr, KSID_OWNER); if (ksid) uid = ksid_getid(ksid); else uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (dzp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (zfsvfs->z_utf8 && u8_validate(dirname, strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zf |= ZCILOOK; if (vap->va_mask & AT_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_type)) != 0) { ZFS_EXIT(zfsvfs); return (error); } } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * First make sure the new directory doesn't exist. * * Existence is checked first to make sure we don't return * EACCES instead of EEXIST which can cause some applications * to fail. */ top: *vpp = NULL; if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, NULL, NULL)) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zfsvfs); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zfsvfs); return (SET_ERROR(EDQUOT)); } /* * Add a new entry to the directory. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } /* * Create new node. */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); /* * Now put new name in parent dir. */ (void) zfs_link_create(dl, zp, tx, ZNEW); *vpp = ZTOV(zp); txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (0); } /* * Remove a directory subdir entry. If the current working * directory is the same as the subdir to be removed, the * remove will fail. * * IN: dvp - vnode of directory to remove from. * name - name of directory to be removed. * cwd - vnode of current working directory. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, caller_context_t *ct, int flags) { znode_t *dzp = VTOZ(dvp); znode_t *zp; vnode_t *vp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (flags & FIGNORECASE) zflg |= ZCILOOK; top: zp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL)) { ZFS_EXIT(zfsvfs); return (error); } vp = ZTOV(zp); if (error = zfs_zaccess_delete(dzp, zp, cr)) { goto out; } if (vp->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto out; } if (vp == cwd) { error = SET_ERROR(EINVAL); goto out; } vnevent_rmdir(vp, dvp, name, ct); /* * Grab a lock on the directory to make sure that noone is * trying to add (or lookup) entries while we are removing it. */ rw_enter(&zp->z_name_lock, RW_WRITER); /* * Grab a lock on the parent pointer to make sure we play well * with the treewalk and directory rename code. */ rw_enter(&zp->z_parent_lock, RW_WRITER); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); zfs_dirent_unlock(dl); VN_RELE(vp); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } error = zfs_link_destroy(dl, zp, tx, zflg, NULL); if (error == 0) { uint64_t txtype = TX_RMDIR; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); } dmu_tx_commit(tx); rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); out: zfs_dirent_unlock(dl); VN_RELE(vp); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Read as many directory entries as will fit into the provided * buffer from the given directory cursor position (specified in * the uio structure). * * IN: vp - vnode of directory to read. * uio - structure supplying read location, range info, * and return buffer. * cr - credentials of caller. * ct - caller context * flags - case flags * * OUT: uio - updated offset and range, buffer filled. * eofp - set to true if end-of-file detected. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated * * Note that the low 4 bits of the cookie returned by zap is always zero. * This allows us to use the low range for "special" directory entries: * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, * we use the offset 2 for the '.zfs' directory. */ /* ARGSUSED */ static int zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, caller_context_t *ct, int flags) { znode_t *zp = VTOZ(vp); iovec_t *iovp; edirent_t *eodp; dirent64_t *odp; zfsvfs_t *zfsvfs = zp->z_zfsvfs; objset_t *os; caddr_t outbuf; size_t bufsize; zap_cursor_t zc; zap_attribute_t zap; uint_t bytes_wanted; uint64_t offset; /* must be unsigned; checks for < 1 */ uint64_t parent; int local_eof; int outcount; int error; uint8_t prefetch; boolean_t check_sysattrs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * If we are not given an eof variable, * use a local one. */ if (eofp == NULL) eofp = &local_eof; /* * Check for valid iov_len. */ if (uio->uio_iov->iov_len <= 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Quit if directory has been removed (posix) */ if ((*eofp = zp->z_unlinked) != 0) { ZFS_EXIT(zfsvfs); return (0); } error = 0; os = zfsvfs->z_os; offset = uio->uio_loffset; prefetch = zp->z_zn_prefetch; /* * Initialize the iterator cursor. */ if (offset <= 3) { /* * Start iteration from the beginning of the directory. */ zap_cursor_init(&zc, os, zp->z_id); } else { /* * The offset is a serialized cursor. */ zap_cursor_init_serialized(&zc, os, zp->z_id, offset); } /* * Get space to change directory entries into fs independent format. */ iovp = uio->uio_iov; bytes_wanted = iovp->iov_len; if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { bufsize = bytes_wanted; outbuf = kmem_alloc(bufsize, KM_SLEEP); odp = (struct dirent64 *)outbuf; } else { bufsize = bytes_wanted; outbuf = NULL; odp = (struct dirent64 *)iovp->iov_base; } eodp = (struct edirent *)odp; /* * If this VFS supports the system attribute view interface; and * we're looking at an extended attribute directory; and we care * about normalization conflicts on this vfs; then we must check * for normalization conflicts with the sysattr name space. */ check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && (flags & V_RDDIR_ENTFLAGS); /* * Transform to file-system independent format */ outcount = 0; while (outcount < bytes_wanted) { ino64_t objnum; ushort_t reclen; off64_t *next = NULL; /* * Special case `.', `..', and `.zfs'. */ if (offset == 0) { (void) strcpy(zap.za_name, "."); zap.za_normalization_conflict = 0; objnum = zp->z_id; } else if (offset == 1) { (void) strcpy(zap.za_name, ".."); zap.za_normalization_conflict = 0; objnum = parent; } else if (offset == 2 && zfs_show_ctldir(zp)) { (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); zap.za_normalization_conflict = 0; objnum = ZFSCTL_INO_ROOT; } else { /* * Grab next entry. */ if (error = zap_cursor_retrieve(&zc, &zap)) { if ((*eofp = (error == ENOENT)) != 0) break; else goto update; } if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { cmn_err(CE_WARN, "zap_readdir: bad directory " "entry, obj = %lld, offset = %lld\n", (u_longlong_t)zp->z_id, (u_longlong_t)offset); error = SET_ERROR(ENXIO); goto update; } objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); /* * MacOS X can extract the object type here such as: * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); */ if (check_sysattrs && !zap.za_normalization_conflict) { zap.za_normalization_conflict = xattr_sysattr_casechk(zap.za_name); } } if (flags & V_RDDIR_ACCFILTER) { /* * If we have no access at all, don't include * this entry in the returned information */ znode_t *ezp; if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) goto skip_entry; if (!zfs_has_access(ezp, cr)) { VN_RELE(ZTOV(ezp)); goto skip_entry; } VN_RELE(ZTOV(ezp)); } if (flags & V_RDDIR_ENTFLAGS) reclen = EDIRENT_RECLEN(strlen(zap.za_name)); else reclen = DIRENT64_RECLEN(strlen(zap.za_name)); /* * Will this entry fit in the buffer? */ if (outcount + reclen > bufsize) { /* * Did we manage to fit anything in the buffer? */ if (!outcount) { error = SET_ERROR(EINVAL); goto update; } break; } if (flags & V_RDDIR_ENTFLAGS) { /* * Add extended flag entry: */ eodp->ed_ino = objnum; eodp->ed_reclen = reclen; /* NOTE: ed_off is the offset for the *next* entry */ next = &(eodp->ed_off); eodp->ed_eflags = zap.za_normalization_conflict ? ED_CASE_CONFLICT : 0; (void) strncpy(eodp->ed_name, zap.za_name, EDIRENT_NAMELEN(reclen)); eodp = (edirent_t *)((intptr_t)eodp + reclen); } else { /* * Add normal entry: */ odp->d_ino = objnum; odp->d_reclen = reclen; /* NOTE: d_off is the offset for the *next* entry */ next = &(odp->d_off); (void) strncpy(odp->d_name, zap.za_name, DIRENT64_NAMELEN(reclen)); odp = (dirent64_t *)((intptr_t)odp + reclen); } outcount += reclen; ASSERT(outcount <= bufsize); /* Prefetch znode */ if (prefetch) dmu_prefetch(os, objnum, 0, 0); skip_entry: /* * Move to the next entry, fill in the previous offset. */ if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { zap_cursor_advance(&zc); offset = zap_cursor_serialize(&zc); } else { offset += 1; } if (next) *next = offset; } zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { iovp->iov_base += outcount; iovp->iov_len -= outcount; uio->uio_resid -= outcount; } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { /* * Reset the pointer. */ offset = uio->uio_loffset; } update: zap_cursor_fini(&zc); if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) kmem_free(outbuf, bufsize); if (error == ENOENT) error = 0; ZFS_ACCESSTIME_STAMP(zfsvfs, zp); uio->uio_loffset = offset; ZFS_EXIT(zfsvfs); return (error); } ulong_t zfs_fsync_sync_cnt = 4; static int zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; /* * Regardless of whether this is required for standards conformance, * this is the logical behavior when fsync() is called on a file with * dirty pages. We use B_ASYNC since the ZIL transactions are already * going to be pushed out as part of the zil_commit(). */ if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && (vp->v_type == VREG) && !(IS_SWAPVP(vp))) (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zil_commit(zfsvfs->z_log, zp->z_id); ZFS_EXIT(zfsvfs); } return (0); } /* * Get the requested file attributes and place them in the provided * vattr structure. * * IN: vp - vnode of file. * vap - va_mask identifies requested attributes. * If AT_XVATTR set, then optional attrs are requested * flags - ATTR_NOACLCHECK (CIFS server context) * cr - credentials of caller. * ct - caller context * * OUT: vap - attribute values. * * RETURN: 0 (always succeeds). */ /* ARGSUSED */ static int zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error = 0; uint64_t links; uint64_t mtime[2], ctime[2]; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap = NULL; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; sa_bulk_attr_t bulk[2]; int count = 0; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { ZFS_EXIT(zfsvfs); return (error); } /* * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. * Also, if we are the owner don't bother, since owner should * always be allowed to read basic attributes of file. */ if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (vap->va_uid != crgetuid(cr))) { if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, skipaclchk, cr)) { ZFS_EXIT(zfsvfs); return (error); } } /* * Return all attributes. It's cheaper to provide the answer * than to determine whether we were asked the question. */ mutex_enter(&zp->z_lock); vap->va_type = vp->v_type; vap->va_mode = zp->z_mode & MODEMASK; vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; vap->va_nodeid = zp->z_id; if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) links = zp->z_links + 1; else links = zp->z_links; vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ vap->va_size = zp->z_size; vap->va_rdev = vp->v_rdev; vap->va_seq = zp->z_seq; /* * Add in any requested optional attributes and the create time. * Also set the corresponding bits in the returned attribute bitmap. */ if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { xoap->xoa_archive = ((zp->z_pflags & ZFS_ARCHIVE) != 0); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { xoap->xoa_readonly = ((zp->z_pflags & ZFS_READONLY) != 0); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { xoap->xoa_system = ((zp->z_pflags & ZFS_SYSTEM) != 0); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { xoap->xoa_hidden = ((zp->z_pflags & ZFS_HIDDEN) != 0); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { xoap->xoa_nounlink = ((zp->z_pflags & ZFS_NOUNLINK) != 0); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { xoap->xoa_immutable = ((zp->z_pflags & ZFS_IMMUTABLE) != 0); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { xoap->xoa_appendonly = ((zp->z_pflags & ZFS_APPENDONLY) != 0); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { xoap->xoa_nodump = ((zp->z_pflags & ZFS_NODUMP) != 0); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { xoap->xoa_opaque = ((zp->z_pflags & ZFS_OPAQUE) != 0); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { xoap->xoa_av_quarantined = ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { xoap->xoa_av_modified = ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && vp->v_type == VREG) { zfs_sa_get_scanstamp(zp, xvap); } if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { uint64_t times[2]; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), times, sizeof (times)); ZFS_TIME_DECODE(&xoap->xoa_createtime, times); XVA_SET_RTN(xvap, XAT_CREATETIME); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_GEN)) { xoap->xoa_generation = zp->z_gen; XVA_SET_RTN(xvap, XAT_GEN); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { xoap->xoa_offline = ((zp->z_pflags & ZFS_OFFLINE) != 0); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { xoap->xoa_sparse = ((zp->z_pflags & ZFS_SPARSE) != 0); XVA_SET_RTN(xvap, XAT_SPARSE); } } ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); ZFS_TIME_DECODE(&vap->va_mtime, mtime); ZFS_TIME_DECODE(&vap->va_ctime, ctime); mutex_exit(&zp->z_lock); sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); if (zp->z_blksz == 0) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ vap->va_blksize = zfsvfs->z_max_blksz; } ZFS_EXIT(zfsvfs); return (0); } /* * Set the file attributes to the values contained in the * vattr structure. * * IN: vp - vnode of file to be modified. * vap - new attribute values. * If AT_XVATTR set, then optional attrs are being set * flags - ATTR_UTIME set if non-default time values provided. * - ATTR_NOACLCHECK (CIFS context only). * cr - credentials of caller. * ct - caller context * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime updated, mtime updated if size changed. */ /* ARGSUSED */ static int zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; zilog_t *zilog; dmu_tx_t *tx; vattr_t oldva; xvattr_t tmpxvattr; uint_t mask = vap->va_mask; uint_t saved_mask = 0; int trim_mask = 0; uint64_t new_mode; uint64_t new_uid, new_gid; uint64_t xattr_obj; uint64_t mtime[2], ctime[2]; znode_t *attrzp; int need_policy = FALSE; int err, err2; zfs_fuid_info_t *fuidp = NULL; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap; zfs_acl_t *aclp; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; boolean_t fuid_dirtied = B_FALSE; sa_bulk_attr_t bulk[7], xattr_bulk[7]; int count = 0, xattr_count = 0; if (mask == 0) return (0); if (mask & AT_NOSET) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); zilog = zfsvfs->z_log; /* * Make sure that if we have ephemeral uid/gid or xvattr specified * that file system is at proper version level */ if (zfsvfs->z_use_fuids == B_FALSE && (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || (mask & AT_XVATTR))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } if (mask & AT_SIZE && vp->v_type == VDIR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EISDIR)); } if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * If this is an xvattr_t, then get a pointer to the structure of * optional attributes. If this is NULL, then we have a vattr_t. */ xoap = xva_getxoptattr(xvap); xva_init(&tmpxvattr); /* * Immutable files can only alter immutable bit and atime */ if ((zp->z_pflags & ZFS_IMMUTABLE) && ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } /* * Verify timestamps doesn't overflow 32 bits. * ZFS can handle large timestamps, but 32bit syscalls can't * handle times greater than 2039. This check should be removed * once large timestamps are fully supported. */ if (mask & (AT_ATIME | AT_MTIME)) { if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EOVERFLOW)); } } top: attrzp = NULL; aclp = NULL; /* Can this be moved to before the top label? */ if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EROFS)); } /* * First validate permissions */ if (mask & AT_SIZE) { err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); if (err) { ZFS_EXIT(zfsvfs); return (err); } /* * XXX - Note, we are not providing any open * mode flags here (like FNDELAY), so we may * block if there are locks present... this * should be addressed in openat(). */ /* XXX - would it be OK to generate a log record here? */ err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); if (err) { ZFS_EXIT(zfsvfs); return (err); } if (vap->va_size == 0) vnevent_truncate(ZTOV(zp), ct); } if (mask & (AT_ATIME|AT_MTIME) || ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || XVA_ISSET_REQ(xvap, XAT_READONLY) || XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || XVA_ISSET_REQ(xvap, XAT_OFFLINE) || XVA_ISSET_REQ(xvap, XAT_SPARSE) || XVA_ISSET_REQ(xvap, XAT_CREATETIME) || XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, skipaclchk, cr); } if (mask & (AT_UID|AT_GID)) { int idmask = (mask & (AT_UID|AT_GID)); int take_owner; int take_group; /* * NOTE: even if a new mode is being set, * we may clear S_ISUID/S_ISGID bits. */ if (!(mask & AT_MODE)) vap->va_mode = zp->z_mode; /* * Take ownership or chgrp to group we are a member of */ take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); take_group = (mask & AT_GID) && zfs_groupmember(zfsvfs, vap->va_gid, cr); /* * If both AT_UID and AT_GID are set then take_owner and * take_group must both be set in order to allow taking * ownership. * * Otherwise, send the check through secpolicy_vnode_setattr() * */ if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || ((idmask == AT_UID) && take_owner) || ((idmask == AT_GID) && take_group)) { if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, skipaclchk, cr) == 0) { /* * Remove setuid/setgid for non-privileged users */ secpolicy_setid_clear(vap, cr); trim_mask = (mask & (AT_UID|AT_GID)); } else { need_policy = TRUE; } } else { need_policy = TRUE; } } mutex_enter(&zp->z_lock); oldva.va_mode = zp->z_mode; zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); if (mask & AT_XVATTR) { /* * Update xvattr mask to include only those attributes * that are actually changing. * * the bits will be restored prior to actually setting * the attributes so the caller thinks they were set. */ if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { if (xoap->xoa_appendonly != ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_APPENDONLY); XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); } } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { if (xoap->xoa_nounlink != ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NOUNLINK); XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); } } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { if (xoap->xoa_immutable != ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_IMMUTABLE); XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); } } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { if (xoap->xoa_nodump != ((zp->z_pflags & ZFS_NODUMP) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NODUMP); XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); } } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { if (xoap->xoa_av_modified != ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); } } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { if ((vp->v_type != VREG && xoap->xoa_av_quarantined) || xoap->xoa_av_quarantined != ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); } } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { mutex_exit(&zp->z_lock); ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (need_policy == FALSE && (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { need_policy = TRUE; } } mutex_exit(&zp->z_lock); if (mask & AT_MODE) { if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { err = secpolicy_setid_setsticky_clear(vp, vap, &oldva, cr); if (err) { ZFS_EXIT(zfsvfs); return (err); } trim_mask |= AT_MODE; } else { need_policy = TRUE; } } if (need_policy) { /* * If trim_mask is set then take ownership * has been granted or write_acl is present and user * has the ability to modify mode. In that case remove * UID|GID and or MODE from mask so that * secpolicy_vnode_setattr() doesn't revoke it. */ if (trim_mask) { saved_mask = vap->va_mask; vap->va_mask &= ~trim_mask; } err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); if (err) { ZFS_EXIT(zfsvfs); return (err); } if (trim_mask) vap->va_mask |= saved_mask; } /* * secpolicy_vnode_setattr, or take ownership may have * changed va_mask */ mask = vap->va_mask; if ((mask & (AT_UID | AT_GID))) { err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (err == 0 && xattr_obj) { err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); if (err) goto out2; } if (mask & AT_UID) { new_uid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); if (new_uid != zp->z_uid && zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { if (attrzp) VN_RELE(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } if (mask & AT_GID) { new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); if (new_gid != zp->z_gid && zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { if (attrzp) VN_RELE(ZTOV(attrzp)); err = SET_ERROR(EDQUOT); goto out2; } } } tx = dmu_tx_create(zfsvfs->z_os); if (mask & AT_MODE) { uint64_t pmode = zp->z_mode; uint64_t acl_obj; new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { err = SET_ERROR(EPERM); goto out; } if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) goto out; mutex_enter(&zp->z_lock); if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { /* * Are we upgrading ACL from old V0 format * to V1 format? */ if (zfsvfs->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) == ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } mutex_exit(&zp->z_lock); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); } else { if ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); } if (attrzp) { dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); } fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err) goto out; count = 0; /* * Set each attribute requested. * We group settings according to the locks they need to acquire. * * Note: you cannot set ctime directly, although it will be * updated as a side-effect of calling this function. */ if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&zp->z_acl_lock); mutex_enter(&zp->z_lock); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_enter(&attrzp->z_acl_lock); mutex_enter(&attrzp->z_lock); SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, sizeof (attrzp->z_pflags)); } if (mask & (AT_UID|AT_GID)) { if (mask & AT_UID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); zp->z_uid = new_uid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); attrzp->z_uid = new_uid; } } if (mask & AT_GID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); zp->z_gid = new_gid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); attrzp->z_gid = new_gid; } } if (!(mask & AT_MODE)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); new_mode = zp->z_mode; } err = zfs_acl_chown_setattr(zp); ASSERT(err == 0); if (attrzp) { err = zfs_acl_chown_setattr(attrzp); ASSERT(err == 0); } } if (mask & AT_MODE) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); zp->z_mode = new_mode; ASSERT3U((uintptr_t)aclp, !=, NULL); err = zfs_aclset_common(zp, aclp, cr, tx); ASSERT0(err); if (zp->z_acl_cached) zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = aclp; aclp = NULL; } if (mask & AT_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &zp->z_atime, sizeof (zp->z_atime)); } if (mask & AT_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); } /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ if (mask & AT_SIZE && !(mask & AT_MTIME)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); } else if (mask != 0) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, B_TRUE); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(attrzp, STATE_CHANGED, mtime, ctime, B_TRUE); } } /* * Do this after setting timestamps to prevent timestamp * update from toggling bit */ if (xoap && (mask & AT_XVATTR)) { /* * restore trimmed off masks * so that return masks can be set for caller. */ if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { XVA_SET_REQ(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { XVA_SET_REQ(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { XVA_SET_REQ(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { XVA_SET_REQ(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { XVA_SET_REQ(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ASSERT(vp->v_type == VREG); zfs_xvattr_set(zp, xvap, tx); } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (mask != 0) zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); mutex_exit(&zp->z_lock); if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&zp->z_acl_lock); if (attrzp) { if (mask & (AT_UID|AT_GID|AT_MODE)) mutex_exit(&attrzp->z_acl_lock); mutex_exit(&attrzp->z_lock); } out: if (err == 0 && attrzp) { err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, xattr_count, tx); ASSERT(err2 == 0); } if (attrzp) VN_RELE(ZTOV(attrzp)); if (aclp) zfs_acl_free(aclp); if (fuidp) { zfs_fuid_info_free(fuidp); fuidp = NULL; } if (err) { dmu_tx_abort(tx); if (err == ERESTART) goto top; } else { err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); } out2: if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (err); } typedef struct zfs_zlock { krwlock_t *zl_rwlock; /* lock we acquired */ znode_t *zl_znode; /* znode we held */ struct zfs_zlock *zl_next; /* next in list */ } zfs_zlock_t; /* * Drop locks and release vnodes that were held by zfs_rename_lock(). */ static void zfs_rename_unlock(zfs_zlock_t **zlpp) { zfs_zlock_t *zl; while ((zl = *zlpp) != NULL) { if (zl->zl_znode != NULL) VN_RELE(ZTOV(zl->zl_znode)); rw_exit(zl->zl_rwlock); *zlpp = zl->zl_next; kmem_free(zl, sizeof (*zl)); } } /* * Search back through the directory tree, using the ".." entries. * Lock each directory in the chain to prevent concurrent renames. * Fail any attempt to move a directory into one of its own descendants. * XXX - z_parent_lock can overlap with map or grow locks */ static int zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) { zfs_zlock_t *zl; znode_t *zp = tdzp; uint64_t rootid = zp->z_zfsvfs->z_root; uint64_t oidp = zp->z_id; krwlock_t *rwlp = &szp->z_parent_lock; krw_t rw = RW_WRITER; /* * First pass write-locks szp and compares to zp->z_id. * Later passes read-lock zp and compare to zp->z_parent. */ do { if (!rw_tryenter(rwlp, rw)) { /* * Another thread is renaming in this path. * Note that if we are a WRITER, we don't have any * parent_locks held yet. */ if (rw == RW_READER && zp->z_id > szp->z_id) { /* * Drop our locks and restart */ zfs_rename_unlock(&zl); *zlpp = NULL; zp = tdzp; oidp = zp->z_id; rwlp = &szp->z_parent_lock; rw = RW_WRITER; continue; } else { /* * Wait for other thread to drop its locks */ rw_enter(rwlp, rw); } } zl = kmem_alloc(sizeof (*zl), KM_SLEEP); zl->zl_rwlock = rwlp; zl->zl_znode = NULL; zl->zl_next = *zlpp; *zlpp = zl; if (oidp == szp->z_id) /* We're a descendant of szp */ return (SET_ERROR(EINVAL)); if (oidp == rootid) /* We've hit the top */ return (0); if (rw == RW_READER) { /* i.e. not the first pass */ int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); if (error) return (error); zl->zl_znode = zp; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), &oidp, sizeof (oidp)); rwlp = &zp->z_parent_lock; rw = RW_READER; } while (zp->z_id != sdzp->z_id); return (0); } /* * Move an entry from the provided source directory to the target * directory. Change the entry name as indicated. * * IN: sdvp - Source directory containing the "old entry". * snm - Old entry name. * tdvp - Target directory to contain the "new entry". * tnm - New entry name. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * sdvp,tdvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, caller_context_t *ct, int flags) { znode_t *tdzp, *szp, *tzp; znode_t *sdzp = VTOZ(sdvp); zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; zilog_t *zilog; vnode_t *realvp; zfs_dirlock_t *sdl, *tdl; dmu_tx_t *tx; zfs_zlock_t *zl; int cmp, serr, terr; int error = 0; int zflg = 0; boolean_t waited = B_FALSE; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(sdzp); zilog = zfsvfs->z_log; /* * Make sure we have the real vp for the target directory. */ if (VOP_REALVP(tdvp, &realvp, ct) == 0) tdvp = realvp; tdzp = VTOZ(tdvp); ZFS_VERIFY_ZP(tdzp); /* * We check z_zfsvfs rather than v_vfsp here, because snapshots and the * ctldir appear to have the same v_vfsp. */ if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EXDEV)); } if (zfsvfs->z_utf8 && u8_validate(tnm, strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; top: szp = NULL; tzp = NULL; zl = NULL; /* * This is to prevent the creation of links into attribute space * by renaming a linked file into/outof an attribute directory. * See the comment in zfs_link() for why this is considered bad. */ if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* * Lock source and target directory entries. To prevent deadlock, * a lock ordering must be defined. We lock the directory with * the smallest object id first, or if it's a tie, the one with * the lexically first name. */ if (sdzp->z_id < tdzp->z_id) { cmp = -1; } else if (sdzp->z_id > tdzp->z_id) { cmp = 1; } else { /* * First compare the two name arguments without * considering any case folding. */ int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); ASSERT(error == 0 || !zfsvfs->z_utf8); if (cmp == 0) { /* * POSIX: "If the old argument and the new argument * both refer to links to the same existing file, * the rename() function shall return successfully * and perform no other action." */ ZFS_EXIT(zfsvfs); return (0); } /* * If the file system is case-folding, then we may * have some more checking to do. A case-folding file * system is either supporting mixed case sensitivity * access or is completely case-insensitive. Note * that the file system is always case preserving. * * In mixed sensitivity mode case sensitive behavior * is the default. FIGNORECASE must be used to * explicitly request case insensitive behavior. * * If the source and target names provided differ only * by case (e.g., a request to rename 'tim' to 'Tim'), * we will treat this as a special case in the * case-insensitive mode: as long as the source name * is an exact match, we will allow this to proceed as * a name-change request. */ if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || (zfsvfs->z_case == ZFS_CASE_MIXED && flags & FIGNORECASE)) && u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, &error) == 0) { /* * case preserving rename request, require exact * name matches */ zflg |= ZCIEXACT; zflg &= ~ZCILOOK; } } /* * If the source and destination directories are the same, we should * grab the z_name_lock of that directory only once. */ if (sdzp == tdzp) { zflg |= ZHAVELOCK; rw_enter(&sdzp->z_name_lock, RW_READER); } if (cmp < 0) { serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | zflg, NULL, NULL); terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); } else { terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, zflg, NULL, NULL); serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, NULL, NULL); } if (serr) { /* * Source entry invalid or not there. */ if (!terr) { zfs_dirent_unlock(tdl); if (tzp) VN_RELE(ZTOV(tzp)); } if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(snm, "..") == 0) serr = SET_ERROR(EINVAL); ZFS_EXIT(zfsvfs); return (serr); } if (terr) { zfs_dirent_unlock(sdl); VN_RELE(ZTOV(szp)); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(tnm, "..") == 0) terr = SET_ERROR(EINVAL); ZFS_EXIT(zfsvfs); return (terr); } /* * Must have write access at the source to remove the old entry * and write access at the target to create the new entry. * Note that if target and source are the same, this can be * done in a single check. */ if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) goto out; if (ZTOV(szp)->v_type == VDIR) { /* * Check to make sure rename is valid. * Can't do a move like this: /usr/a/b to /usr/a/b/c/d */ if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) goto out; } /* * Does target exist? */ if (tzp) { /* * Source and target must be the same type. */ if (ZTOV(szp)->v_type == VDIR) { if (ZTOV(tzp)->v_type != VDIR) { error = SET_ERROR(ENOTDIR); goto out; } } else { if (ZTOV(tzp)->v_type == VDIR) { error = SET_ERROR(EISDIR); goto out; } } /* * POSIX dictates that when the source and target * entries refer to the same file object, rename * must do nothing and exit without error. */ if (szp->z_id == tzp->z_id) { error = 0; goto out; } } vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); if (tzp) vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); /* * notify the target directory if it is not the same * as source directory. */ if (tdvp != sdvp) { vnevent_rename_dest_dir(tdvp, ct); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); if (sdzp != tdzp) { dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tdzp); } if (tzp) { dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tzp); } zfs_sa_upgrade_txholds(tx, szp); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); VN_RELE(ZTOV(szp)); if (tzp) VN_RELE(ZTOV(tzp)); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } if (tzp) /* Attempt to remove the existing target */ error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); if (error == 0) { error = zfs_link_create(tdl, szp, tx, ZRENAMING); if (error == 0) { szp->z_pflags |= ZFS_AV_MODIFIED; error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), (void *)&szp->z_pflags, sizeof (uint64_t), tx); ASSERT0(error); error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); if (error == 0) { zfs_log_rename(zilog, tx, TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); /* * Update path information for the target vnode */ vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); } else { /* * At this point, we have successfully created * the target name, but have failed to remove * the source name. Since the create was done * with the ZRENAMING flag, there are * complications; for one, the link count is * wrong. The easiest way to deal with this * is to remove the newly created target, and * return the original error. This must * succeed; fortunately, it is very unlikely to * fail, since we just created it. */ VERIFY3U(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL), ==, 0); } } } dmu_tx_commit(tx); out: if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); VN_RELE(ZTOV(szp)); if (tzp) VN_RELE(ZTOV(tzp)); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Insert the indicated symbolic reference entry into the directory. * * IN: dvp - Directory to contain new symbolic link. * link - Name for new symlink entry. * vap - Attributes of new entry. * cr - credentials of caller. * ct - caller context * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dvp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, caller_context_t *ct, int flags) { znode_t *zp, *dzp = VTOZ(dvp); zfs_dirlock_t *dl; dmu_tx_t *tx; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; uint64_t len = strlen(link); int error; int zflg = ZNEW; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype = TX_SYMLINK; boolean_t waited = B_FALSE; ASSERT(vap->va_type == VLNK); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; if (len > MAXPATHLEN) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENAMETOOLONG)); } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)) != 0) { ZFS_EXIT(zfsvfs); return (error); } top: /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zfsvfs); return (error); } if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zfsvfs); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zfsvfs); return (SET_ERROR(EDQUOT)); } tx = dmu_tx_create(zfsvfs->z_os); fuid_dirtied = zfsvfs->z_fuid_dirty; dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE + len); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } /* * Create a new object for the symlink. * for version 4 ZPL datsets the symlink will be an SA attribute */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), link, len, tx); else zfs_sa_symlink(zp, link, len, tx); mutex_exit(&zp->z_lock); zp->z_size = len; (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), &zp->z_size, sizeof (zp->z_size), tx); /* * Insert the new object into the directory. */ (void) zfs_link_create(dl, zp, tx, ZNEW); if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); VN_RELE(ZTOV(zp)); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * Return, in the buffer contained in the provided uio structure, * the symbolic path referred to by vp. * * IN: vp - vnode of symbolic link. * uio - structure to contain the link path. * cr - credentials of caller. * ct - caller context * * OUT: uio - structure containing the link path. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ /* ARGSUSED */ static int zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_lookup_uio(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), uio); else error = zfs_sa_readlink(zp, uio); mutex_exit(&zp->z_lock); ZFS_ACCESSTIME_STAMP(zfsvfs, zp); ZFS_EXIT(zfsvfs); return (error); } /* * Insert a new entry into directory tdvp referencing svp. * * IN: tdvp - Directory to contain new entry. * svp - vnode of new entry. * name - name of new entry. * cr - credentials of caller. * ct - caller context * * RETURN: 0 on success, error code on failure. * * Timestamps: * tdvp - ctime|mtime updated * svp - ctime updated */ /* ARGSUSED */ static int zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, caller_context_t *ct, int flags) { znode_t *dzp = VTOZ(tdvp); znode_t *tzp, *szp; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; vnode_t *realvp; int error; int zf = ZNEW; uint64_t parent; uid_t owner; boolean_t waited = B_FALSE; ASSERT(tdvp->v_type == VDIR); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(dzp); zilog = zfsvfs->z_log; if (VOP_REALVP(svp, &realvp, ct) == 0) svp = realvp; /* * POSIX dictates that we return EPERM here. * Better choices include ENOTSUP or EISDIR. */ if (svp->v_type == VDIR) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } szp = VTOZ(svp); ZFS_VERIFY_ZP(szp); /* * We check z_zfsvfs rather than v_vfsp here, because snapshots and the * ctldir appear to have the same v_vfsp. */ if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EXDEV)); } /* Prevent links to .zfs/shares files */ if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (uint64_t))) != 0) { ZFS_EXIT(zfsvfs); return (error); } if (parent == zfsvfs->z_shares_dir) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zf |= ZCILOOK; /* * We do not support links between attributes and non-attributes * because of the potential security risk of creating links * into "normal" file space in order to circumvent restrictions * imposed in attribute space. */ if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { ZFS_EXIT(zfsvfs); return (error); } top: /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); if (error) { ZFS_EXIT(zfsvfs); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); zfs_sa_upgrade_txholds(tx, szp); zfs_sa_upgrade_txholds(tx, dzp); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zfsvfs); return (error); } error = zfs_link_create(dl, szp, tx, 0); if (error == 0) { uint64_t txtype = TX_LINK; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_link(zilog, tx, txtype, dzp, szp, name); } dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (error == 0) { vnevent_link(svp, ct); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zfsvfs); return (error); } /* * zfs_null_putapage() is used when the file system has been force * unmounted. It just drops the pages. */ /* ARGSUSED */ static int zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); return (0); } /* * Push a page out to disk, klustering if possible. * * IN: vp - file to push page to. * pp - page to push. * flags - additional flags. * cr - credentials of caller. * * OUT: offp - start of range pushed. * lenp - len of range pushed. * * RETURN: 0 on success, error code on failure. * * NOTE: callers must have locked the page to be pushed. On * exit, the page (and all other pages in the kluster) must be * unlocked. */ /* ARGSUSED */ static int zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, int flags, cred_t *cr) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; dmu_tx_t *tx; u_offset_t off, koff; size_t len, klen; int err; off = pp->p_offset; len = PAGESIZE; /* * If our blocksize is bigger than the page size, try to kluster * multiple pages so that we write a full block (thus avoiding * a read-modify-write). */ if (off < zp->z_size && zp->z_blksz > PAGESIZE) { klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; ASSERT(koff <= zp->z_size); if (koff + klen > zp->z_size) klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); } ASSERT3U(btop(len), ==, btopr(len)); /* * Can't push pages past end-of-file. */ if (off >= zp->z_size) { /* ignore all pages */ err = 0; goto out; } else if (off + len > zp->z_size) { int npages = btopr(zp->z_size - off); page_t *trunc; page_list_break(&pp, &trunc, npages); /* ignore pages past end of file */ if (trunc) pvn_write_done(trunc, flags); len = zp->z_size - off; } if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { err = SET_ERROR(EDQUOT); goto out; } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_write(tx, zp->z_id, off, len); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); goto out; } if (zp->z_blksz <= PAGESIZE) { caddr_t va = zfs_map_page(pp, S_READ); ASSERT3U(len, <=, PAGESIZE); dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); zfs_unmap_page(pp, va); } else { err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); } if (err == 0) { uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); } dmu_tx_commit(tx); out: pvn_write_done(pp, (err ? B_ERROR : 0) | flags); if (offp) *offp = off; if (lenp) *lenp = len; return (err); } /* * Copy the portion of the file indicated from pages into the file. * The pages are stored in a page list attached to the files vnode. * * IN: vp - vnode of file to push page data to. * off - position in file to put data. * len - amount of data to write. * flags - flags to control the operation. * cr - credentials of caller. * ct - caller context. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - ctime|mtime updated */ /*ARGSUSED*/ static int zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; page_t *pp; size_t io_len; u_offset_t io_off; uint_t blksz; rl_t *rl; int error = 0; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* * There's nothing to do if no data is cached. */ if (!vn_has_cached_data(vp)) { ZFS_EXIT(zfsvfs); return (0); } /* * Align this request to the file block size in case we kluster. * XXX - this can result in pretty aggresive locking, which can * impact simultanious read/write access. One option might be * to break up long requests (len == 0) into block-by-block * operations to get narrower locking. */ blksz = zp->z_blksz; if (ISP2(blksz)) io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); else io_off = 0; if (len > 0 && ISP2(blksz)) io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); else io_len = 0; if (io_len == 0) { /* * Search the entire vp list for pages >= io_off. */ rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); goto out; } rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); if (off > zp->z_size) { /* past end of file */ zfs_range_unlock(rl); ZFS_EXIT(zfsvfs); return (0); } len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); for (off = io_off; io_off < off + len; io_off += io_len) { if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { pp = page_lookup(vp, io_off, (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); } else { pp = page_lookup_nowait(vp, io_off, (flags & B_FREE) ? SE_EXCL : SE_SHARED); } if (pp != NULL && pvn_getdirty(pp, flags)) { int err; /* * Found a dirty page to push */ err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); if (err) error = err; } else { io_len = PAGESIZE; } } out: zfs_range_unlock(rl); if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zfsvfs->z_log, zp->z_id); ZFS_EXIT(zfsvfs); return (error); } /*ARGSUSED*/ void zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; int error; rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); if (zp->z_sa_hdl == NULL) { /* * The fs has been unmounted, or we did a * suspend/resume and this file no longer exists. */ if (vn_has_cached_data(vp)) { (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, B_INVAL, cr); } mutex_enter(&zp->z_lock); mutex_enter(&vp->v_lock); ASSERT(vp->v_count == 1); vp->v_count = 0; mutex_exit(&vp->v_lock); mutex_exit(&zp->z_lock); rw_exit(&zfsvfs->z_teardown_inactive_lock); zfs_znode_free(zp); return; } /* * Attempt to push any data in the page cache. If this fails * we will get kicked out later in zfs_zinactive(). */ if (vn_has_cached_data(vp)) { (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, cr); } if (zp->z_atime_dirty && zp->z_unlinked == 0) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { mutex_enter(&zp->z_lock); (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), (void *)&zp->z_atime, sizeof (zp->z_atime), tx); zp->z_atime_dirty = 0; mutex_exit(&zp->z_lock); dmu_tx_commit(tx); } } zfs_zinactive(zp); rw_exit(&zfsvfs->z_teardown_inactive_lock); } /* * Bounds-check the seek operation. * * IN: vp - vnode seeking within * ooff - old file offset * noffp - pointer to new file offset * ct - caller context * * RETURN: 0 on success, EINVAL if new offset invalid. */ /* ARGSUSED */ static int zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) { if (vp->v_type == VDIR) return (0); return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); } /* * Pre-filter the generic locking function to trap attempts to place * a mandatory lock on a memory mapped file. */ static int zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); /* * We are following the UFS semantics with respect to mapcnt * here: If we see that the file is mapped already, then we will * return an error, but we don't worry about races between this * function and zfs_map(). */ if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EAGAIN)); } ZFS_EXIT(zfsvfs); return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); } /* * If we can't find a page in the cache, we will create a new page * and fill it with file data. For efficiency, we may try to fill * multiple pages at once (klustering) to fill up the supplied page * list. Note that the pages to be filled are held with an exclusive * lock to prevent access by other threads while they are being filled. */ static int zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) { znode_t *zp = VTOZ(vp); page_t *pp, *cur_pp; objset_t *os = zp->z_zfsvfs->z_os; u_offset_t io_off, total; size_t io_len; int err; if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { /* * We only have a single page, don't bother klustering */ io_off = off; io_len = PAGESIZE; pp = page_create_va(vp, io_off, io_len, PG_EXCL | PG_WAIT, seg, addr); } else { /* * Try to find enough pages to fill the page list */ pp = pvn_read_kluster(vp, off, seg, addr, &io_off, &io_len, off, plsz, 0); } if (pp == NULL) { /* * The page already exists, nothing to do here. */ *pl = NULL; return (0); } /* * Fill the pages in the kluster. */ cur_pp = pp; for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { caddr_t va; ASSERT3U(io_off, ==, cur_pp->p_offset); va = zfs_map_page(cur_pp, S_WRITE); err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, DMU_READ_PREFETCH); zfs_unmap_page(cur_pp, va); if (err) { /* On error, toss the entire kluster */ pvn_read_done(pp, B_ERROR); /* convert checksum errors into IO errors */ if (err == ECKSUM) err = SET_ERROR(EIO); return (err); } cur_pp = cur_pp->p_next; } /* * Fill in the page list array from the kluster starting * from the desired offset `off'. * NOTE: the page list will always be null terminated. */ pvn_plist_init(pp, pl, plsz, off, io_len, rw); ASSERT(pl == NULL || (*pl)->p_offset == off); return (0); } /* * Return pointers to the pages for the file region [off, off + len] * in the pl array. If plsz is greater than len, this function may * also return page pointers from after the specified region * (i.e. the region [off, off + plsz]). These additional pages are * only returned if they are already in the cache, or were created as * part of a klustered read. * * IN: vp - vnode of file to get data from. * off - position in file to get data from. * len - amount of data to retrieve. * plsz - length of provided page list. * seg - segment to obtain pages for. * addr - virtual address of fault. * rw - mode of created pages. * cr - credentials of caller. * ct - caller context. * * OUT: protp - protection mode of created pages. * pl - list of pages created. * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ /* ARGSUSED */ static int zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; page_t **pl0 = pl; int err = 0; /* we do our own caching, faultahead is unnecessary */ if (pl == NULL) return (0); else if (len > plsz) len = plsz; else len = P2ROUNDUP(len, PAGESIZE); ASSERT(plsz >= len); ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if (protp) *protp = PROT_ALL; /* * Loop through the requested range [off, off + len) looking * for pages. If we don't find a page, we will need to create * a new page and fill it with data from the file. */ while (len > 0) { if (*pl = page_lookup(vp, off, SE_SHARED)) *(pl+1) = NULL; else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) goto out; while (*pl) { ASSERT3U((*pl)->p_offset, ==, off); off += PAGESIZE; addr += PAGESIZE; if (len > 0) { ASSERT3U(len, >=, PAGESIZE); len -= PAGESIZE; } ASSERT3U(plsz, >=, PAGESIZE); plsz -= PAGESIZE; pl++; } } /* * Fill out the page array with any pages already in the cache. */ while (plsz > 0 && (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { off += PAGESIZE; plsz -= PAGESIZE; } out: if (err) { /* * Release any pages we have previously locked. */ while (pl > pl0) page_unlock(*--pl); } else { ZFS_ACCESSTIME_STAMP(zfsvfs, zp); } *pl = NULL; ZFS_EXIT(zfsvfs); return (err); } /* * Request a memory map for a section of a file. This code interacts * with common code and the VM system as follows: * * - common code calls mmap(), which ends up in smmap_common() * - this calls VOP_MAP(), which takes you into (say) zfs * - zfs_map() calls as_map(), passing segvn_create() as the callback * - segvn_create() creates the new segment and calls VOP_ADDMAP() * - zfs_addmap() updates z_mapcnt */ /*ARGSUSED*/ static int zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { znode_t *zp = VTOZ(vp); zfsvfs_t *zfsvfs = zp->z_zfsvfs; segvn_crargs_t vn_a; int error; ZFS_ENTER(zfsvfs); ZFS_VERIFY_ZP(zp); if ((prot & PROT_WRITE) && (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EPERM)); } if ((prot & (PROT_READ | PROT_EXEC)) && (zp->z_pflags & ZFS_AV_QUARANTINED)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EACCES)); } if (vp->v_flag & VNOMAP) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENOSYS)); } if (off < 0 || len > MAXOFFSET_T - off) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENXIO)); } if (vp->v_type != VREG) { ZFS_EXIT(zfsvfs); return (SET_ERROR(ENODEV)); } /* * If file is locked, disallow mapping. */ if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { ZFS_EXIT(zfsvfs); return (SET_ERROR(EAGAIN)); } as_rangelock(as); error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); if (error != 0) { as_rangeunlock(as); ZFS_EXIT(zfsvfs); return (error); } vn_a.vp = vp; vn_a.offset = (u_offset_t)off; vn_a.type = flags & MAP_TYPE; vn_a.prot = prot; vn_a.maxprot = maxprot; vn_a.cred = cr; vn_a.amp = NULL; vn_a.flags = flags & ~MAP_TYPE; vn_a.szc = 0; vn_a.lgrp_mem_policy_flags = 0; error = as_map(as, *addrp, len, segvn_create, &vn_a); as_rangeunlock(as); ZFS_EXIT(zfsvfs); return (error); } /* ARGSUSED */ static int zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { uint64_t pages = btopr(len); atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); return (0); } /* * The reason we push dirty pages as part of zfs_delmap() is so that we get a * more accurate mtime for the associated file. Since we don't have a way of * detecting when the data was actually modified, we have to resort to * heuristics. If an explicit msync() is done, then we mark the mtime when the * last page is pushed. The problem occurs when the msync() call is omitted, * which by far the most common case: * * open() * mmap() * * munmap() * close() *