Index: stable/10/sys/kern/vfs_vnops.c =================================================================== --- stable/10/sys/kern/vfs_vnops.c (revision 273253) +++ stable/10/sys/kern/vfs_vnops.c (revision 273254) @@ -1,2250 +1,2253 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Copyright (c) 2012 Konstantin Belousov * Copyright (c) 2013, 2014 The FreeBSD Foundation * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static fo_rdwr_t vn_read; static fo_rdwr_t vn_write; static fo_rdwr_t vn_io_fault; static fo_truncate_t vn_truncate; static fo_ioctl_t vn_ioctl; static fo_poll_t vn_poll; static fo_kqfilter_t vn_kqfilter; static fo_stat_t vn_statfile; static fo_close_t vn_closefile; struct fileops vnops = { .fo_read = vn_io_fault, .fo_write = vn_io_fault, .fo_truncate = vn_truncate, .fo_ioctl = vn_ioctl, .fo_poll = vn_poll, .fo_kqfilter = vn_kqfilter, .fo_stat = vn_statfile, .fo_close = vn_closefile, .fo_chmod = vn_chmod, .fo_chown = vn_chown, .fo_sendfile = vn_sendfile, .fo_seek = vn_seek, .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE }; static const int io_hold_cnt = 16; static int vn_io_fault_enable = 1; SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); static u_long vn_io_faults_cnt; SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); /* * Returns true if vn_io_fault mode of handling the i/o request should * be used. */ static bool do_vn_io_fault(struct vnode *vp, struct uio *uio) { struct mount *mp; return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && (mp = vp->v_mount) != NULL && (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); } /* * Structure used to pass arguments to vn_io_fault1(), to do either * file- or vnode-based I/O calls. */ struct vn_io_fault_args { enum { VN_IO_FAULT_FOP, VN_IO_FAULT_VOP } kind; struct ucred *cred; int flags; union { struct fop_args_tag { struct file *fp; fo_rdwr_t *doio; } fop_args; struct vop_args_tag { struct vnode *vp; } vop_args; } args; }; static int vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, struct thread *td); int vn_open(ndp, flagp, cmode, fp) struct nameidata *ndp; int *flagp, cmode; struct file *fp; { struct thread *td = ndp->ni_cnd.cn_thread; return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); } /* * Common code for vnode open operations via a name lookup. * Lookup the vnode and invoke VOP_CREATE if needed. * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. * * Note that this does NOT free nameidata for the successful case, * due to the NDINIT being done elsewhere. */ int vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, struct ucred *cred, struct file *fp) { struct vnode *vp; struct mount *mp; struct thread *td = ndp->ni_cnd.cn_thread; struct vattr vat; struct vattr *vap = &vat; int fmode, error; restart: fmode = *flagp; if (fmode & O_CREAT) { ndp->ni_cnd.cn_nameiop = CREATE; ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF; if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) ndp->ni_cnd.cn_flags |= FOLLOW; if (!(vn_open_flags & VN_OPEN_NOAUDIT)) ndp->ni_cnd.cn_flags |= AUDITVNODE1; if (vn_open_flags & VN_OPEN_NOCAPCHECK) ndp->ni_cnd.cn_flags |= NOCAPCHECK; bwillwrite(); if ((error = namei(ndp)) != 0) return (error); if (ndp->ni_vp == NULL) { VATTR_NULL(vap); vap->va_type = VREG; vap->va_mode = cmode; if (fmode & O_EXCL) vap->va_vaflags |= VA_EXCLUSIVE; if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { NDFREE(ndp, NDF_ONLY_PNBUF); vput(ndp->ni_dvp); if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0) return (error); goto restart; } #ifdef MAC error = mac_vnode_check_create(cred, ndp->ni_dvp, &ndp->ni_cnd, vap); if (error == 0) #endif error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, &ndp->ni_cnd, vap); vput(ndp->ni_dvp); vn_finished_write(mp); if (error) { NDFREE(ndp, NDF_ONLY_PNBUF); return (error); } fmode &= ~O_TRUNC; vp = ndp->ni_vp; } else { if (ndp->ni_dvp == ndp->ni_vp) vrele(ndp->ni_dvp); else vput(ndp->ni_dvp); ndp->ni_dvp = NULL; vp = ndp->ni_vp; if (fmode & O_EXCL) { error = EEXIST; goto bad; } fmode &= ~O_CREAT; } } else { ndp->ni_cnd.cn_nameiop = LOOKUP; ndp->ni_cnd.cn_flags = ISOPEN | ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF; if (!(fmode & FWRITE)) ndp->ni_cnd.cn_flags |= LOCKSHARED; if (!(vn_open_flags & VN_OPEN_NOAUDIT)) ndp->ni_cnd.cn_flags |= AUDITVNODE1; if (vn_open_flags & VN_OPEN_NOCAPCHECK) ndp->ni_cnd.cn_flags |= NOCAPCHECK; if ((error = namei(ndp)) != 0) return (error); vp = ndp->ni_vp; } error = vn_open_vnode(vp, fmode, cred, td, fp); if (error) goto bad; *flagp = fmode; return (0); bad: NDFREE(ndp, NDF_ONLY_PNBUF); vput(vp); *flagp = fmode; ndp->ni_vp = NULL; return (error); } /* * Common code for vnode open operations once a vnode is located. * Check permissions, and call the VOP_OPEN routine. */ int vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, struct thread *td, struct file *fp) { struct mount *mp; accmode_t accmode; struct flock lf; int error, have_flock, lock_flags, type; if (vp->v_type == VLNK) return (EMLINK); if (vp->v_type == VSOCK) return (EOPNOTSUPP); if (vp->v_type != VDIR && fmode & O_DIRECTORY) return (ENOTDIR); accmode = 0; if (fmode & (FWRITE | O_TRUNC)) { if (vp->v_type == VDIR) return (EISDIR); accmode |= VWRITE; } if (fmode & FREAD) accmode |= VREAD; if (fmode & FEXEC) accmode |= VEXEC; if ((fmode & O_APPEND) && (fmode & FWRITE)) accmode |= VAPPEND; #ifdef MAC error = mac_vnode_check_open(cred, vp, accmode); if (error) return (error); #endif if ((fmode & O_CREAT) == 0) { if (accmode & VWRITE) { error = vn_writechk(vp); if (error) return (error); } if (accmode) { error = VOP_ACCESS(vp, accmode, cred, td); if (error) return (error); } } if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) vn_lock(vp, LK_UPGRADE | LK_RETRY); if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) return (error); if (fmode & (O_EXLOCK | O_SHLOCK)) { KASSERT(fp != NULL, ("open with flock requires fp")); lock_flags = VOP_ISLOCKED(vp); VOP_UNLOCK(vp, 0); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; if (fmode & O_EXLOCK) lf.l_type = F_WRLCK; else lf.l_type = F_RDLCK; type = F_FLOCK; if ((fmode & FNONBLOCK) == 0) type |= F_WAIT; error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); have_flock = (error == 0); vn_lock(vp, lock_flags | LK_RETRY); if (error == 0 && vp->v_iflag & VI_DOOMED) error = ENOENT; /* * Another thread might have used this vnode as an * executable while the vnode lock was dropped. * Ensure the vnode is still able to be opened for * writing after the lock has been obtained. */ if (error == 0 && accmode & VWRITE) error = vn_writechk(vp); if (error) { VOP_UNLOCK(vp, 0); if (have_flock) { lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); } vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, lock_flags | LK_RETRY); (void)VOP_CLOSE(vp, fmode, cred, td); vn_finished_write(mp); /* Prevent second close from fdrop()->vn_close(). */ if (fp != NULL) fp->f_ops= &badfileops; return (error); } fp->f_flag |= FHASLOCK; } if (fmode & FWRITE) { VOP_ADD_WRITECOUNT(vp, 1); CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", __func__, vp, vp->v_writecount); } ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); return (0); } /* * Check for write permissions on the specified vnode. * Prototype text segments cannot be written. */ int vn_writechk(vp) register struct vnode *vp; { ASSERT_VOP_LOCKED(vp, "vn_writechk"); /* * If there's shared text associated with * the vnode, try to free it up once. If * we fail, we can't allow writing. */ if (VOP_IS_TEXT(vp)) return (ETXTBSY); return (0); } /* * Vnode close call */ int vn_close(vp, flags, file_cred, td) register struct vnode *vp; int flags; struct ucred *file_cred; struct thread *td; { struct mount *mp; int error, lock_flags; if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && MNT_EXTENDED_SHARED(vp->v_mount)) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, lock_flags | LK_RETRY); if (flags & FWRITE) { VNASSERT(vp->v_writecount > 0, vp, ("vn_close: negative writecount")); VOP_ADD_WRITECOUNT(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } error = VOP_CLOSE(vp, flags, file_cred, td); vput(vp); vn_finished_write(mp); return (error); } /* * Heuristic to detect sequential operation. */ static int sequential_heuristic(struct uio *uio, struct file *fp) { ASSERT_VOP_LOCKED(fp->f_vnode, __func__); if (fp->f_flag & FRDAHEAD) return (fp->f_seqcount << IO_SEQSHIFT); /* * Offset 0 is handled specially. open() sets f_seqcount to 1 so * that the first I/O is normally considered to be slightly * sequential. Seeking to offset 0 doesn't change sequentiality * unless previous seeks have reduced f_seqcount to 0, in which * case offset 0 is not special. */ if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || uio->uio_offset == fp->f_nextoff) { /* * f_seqcount is in units of fixed-size blocks so that it * depends mainly on the amount of sequential I/O and not * much on the number of sequential I/O's. The fixed size * of 16384 is hard-coded here since it is (not quite) just * a magic size that works well here. This size is more * closely related to the best I/O size for real disks than * to any block size used by software. */ fp->f_seqcount += howmany(uio->uio_resid, 16384); if (fp->f_seqcount > IO_SEQMAX) fp->f_seqcount = IO_SEQMAX; return (fp->f_seqcount << IO_SEQSHIFT); } /* Not sequential. Quickly draw-down sequentiality. */ if (fp->f_seqcount > 1) fp->f_seqcount = 1; else fp->f_seqcount = 0; return (0); } /* * Package up an I/O request on a vnode into a uio and do it. */ int vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, ssize_t *aresid, struct thread *td) { struct uio auio; struct iovec aiov; struct mount *mp; struct ucred *cred; void *rl_cookie; struct vn_io_fault_args args; int error, lock_flags; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; aiov.iov_base = base; aiov.iov_len = len; auio.uio_resid = len; auio.uio_offset = offset; auio.uio_segflg = segflg; auio.uio_rw = rw; auio.uio_td = td; error = 0; if ((ioflg & IO_NODELOCKED) == 0) { - if (rw == UIO_READ) { - rl_cookie = vn_rangelock_rlock(vp, offset, - offset + len); - } else { - rl_cookie = vn_rangelock_wlock(vp, offset, - offset + len); - } + if ((ioflg & IO_RANGELOCKED) == 0) { + if (rw == UIO_READ) { + rl_cookie = vn_rangelock_rlock(vp, offset, + offset + len); + } else { + rl_cookie = vn_rangelock_wlock(vp, offset, + offset + len); + } + } else + rl_cookie = NULL; mp = NULL; if (rw == UIO_WRITE) { if (vp->v_type != VCHR && (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) goto out; if (MNT_SHARED_WRITES(mp) || ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; } else lock_flags = LK_SHARED; vn_lock(vp, lock_flags | LK_RETRY); } else rl_cookie = NULL; ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); #ifdef MAC if ((ioflg & IO_NOMACCHECK) == 0) { if (rw == UIO_READ) error = mac_vnode_check_read(active_cred, file_cred, vp); else error = mac_vnode_check_write(active_cred, file_cred, vp); } #endif if (error == 0) { if (file_cred != NULL) cred = file_cred; else cred = active_cred; if (do_vn_io_fault(vp, &auio)) { args.kind = VN_IO_FAULT_VOP; args.cred = cred; args.flags = ioflg; args.args.vop_args.vp = vp; error = vn_io_fault1(vp, &auio, &args, td); } else if (rw == UIO_READ) { error = VOP_READ(vp, &auio, ioflg, cred); } else /* if (rw == UIO_WRITE) */ { error = VOP_WRITE(vp, &auio, ioflg, cred); } } if (aresid) *aresid = auio.uio_resid; else if (auio.uio_resid && error == 0) error = EIO; if ((ioflg & IO_NODELOCKED) == 0) { VOP_UNLOCK(vp, 0); if (mp != NULL) vn_finished_write(mp); } out: if (rl_cookie != NULL) vn_rangelock_unlock(vp, rl_cookie); return (error); } /* * Package up an I/O request on a vnode into a uio and do it. The I/O * request is split up into smaller chunks and we try to avoid saturating * the buffer cache while potentially holding a vnode locked, so we * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() * to give other processes a chance to lock the vnode (either other processes * core'ing the same binary, or unrelated processes scanning the directory). */ int vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, file_cred, aresid, td) enum uio_rw rw; struct vnode *vp; void *base; size_t len; off_t offset; enum uio_seg segflg; int ioflg; struct ucred *active_cred; struct ucred *file_cred; size_t *aresid; struct thread *td; { int error = 0; ssize_t iaresid; do { int chunk; /* * Force `offset' to a multiple of MAXBSIZE except possibly * for the first chunk, so that filesystems only need to * write full blocks except possibly for the first and last * chunks. */ chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; if (chunk > len) chunk = len; if (rw != UIO_READ && vp->v_type == VREG) bwillwrite(); iaresid = 0; error = vn_rdwr(rw, vp, base, chunk, offset, segflg, ioflg, active_cred, file_cred, &iaresid, td); len -= chunk; /* aresid calc already includes length */ if (error) break; offset += chunk; base = (char *)base + chunk; kern_yield(PRI_USER); } while (len); if (aresid) *aresid = len + iaresid; return (error); } off_t foffset_lock(struct file *fp, int flags) { struct mtx *mtxp; off_t res; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); #if OFF_MAX <= LONG_MAX /* * Caller only wants the current f_offset value. Assume that * the long and shorter integer types reads are atomic. */ if ((flags & FOF_NOLOCK) != 0) return (fp->f_offset); #endif /* * According to McKusick the vn lock was protecting f_offset here. * It is now protected by the FOFFSET_LOCKED flag. */ mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if ((flags & FOF_NOLOCK) == 0) { while (fp->f_vnread_flags & FOFFSET_LOCKED) { fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; msleep(&fp->f_vnread_flags, mtxp, PUSER -1, "vofflock", 0); } fp->f_vnread_flags |= FOFFSET_LOCKED; } res = fp->f_offset; mtx_unlock(mtxp); return (res); } void foffset_unlock(struct file *fp, off_t val, int flags) { struct mtx *mtxp; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); #if OFF_MAX <= LONG_MAX if ((flags & FOF_NOLOCK) != 0) { if ((flags & FOF_NOUPDATE) == 0) fp->f_offset = val; if ((flags & FOF_NEXTOFF) != 0) fp->f_nextoff = val; return; } #endif mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if ((flags & FOF_NOUPDATE) == 0) fp->f_offset = val; if ((flags & FOF_NEXTOFF) != 0) fp->f_nextoff = val; if ((flags & FOF_NOLOCK) == 0) { KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, ("Lost FOFFSET_LOCKED")); if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) wakeup(&fp->f_vnread_flags); fp->f_vnread_flags = 0; } mtx_unlock(mtxp); } void foffset_lock_uio(struct file *fp, struct uio *uio, int flags) { if ((flags & FOF_OFFSET) == 0) uio->uio_offset = foffset_lock(fp, flags); } void foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) { if ((flags & FOF_OFFSET) == 0) foffset_unlock(fp, uio->uio_offset, flags); } static int get_advice(struct file *fp, struct uio *uio) { struct mtx *mtxp; int ret; ret = POSIX_FADV_NORMAL; if (fp->f_advice == NULL) return (ret); mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if (uio->uio_offset >= fp->f_advice->fa_start && uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) ret = fp->f_advice->fa_advice; mtx_unlock(mtxp); return (ret); } /* * File table vnode read routine. */ static int vn_read(fp, uio, active_cred, flags, td) struct file *fp; struct uio *uio; struct ucred *active_cred; int flags; struct thread *td; { struct vnode *vp; struct mtx *mtxp; int error, ioflag; int advice; off_t offset, start, end; KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", uio->uio_td, td)); KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); vp = fp->f_vnode; ioflag = 0; if (fp->f_flag & FNONBLOCK) ioflag |= IO_NDELAY; if (fp->f_flag & O_DIRECT) ioflag |= IO_DIRECT; advice = get_advice(fp, uio); vn_lock(vp, LK_SHARED | LK_RETRY); switch (advice) { case POSIX_FADV_NORMAL: case POSIX_FADV_SEQUENTIAL: case POSIX_FADV_NOREUSE: ioflag |= sequential_heuristic(uio, fp); break; case POSIX_FADV_RANDOM: /* Disable read-ahead for random I/O. */ break; } offset = uio->uio_offset; #ifdef MAC error = mac_vnode_check_read(active_cred, fp->f_cred, vp); if (error == 0) #endif error = VOP_READ(vp, uio, ioflag, fp->f_cred); fp->f_nextoff = uio->uio_offset; VOP_UNLOCK(vp, 0); if (error == 0 && advice == POSIX_FADV_NOREUSE && offset != uio->uio_offset) { /* * Use POSIX_FADV_DONTNEED to flush clean pages and * buffers for the backing file after a * POSIX_FADV_NOREUSE read(2). To optimize the common * case of using POSIX_FADV_NOREUSE with sequential * access, track the previous implicit DONTNEED * request and grow this request to include the * current read(2) in addition to the previous * DONTNEED. With purely sequential access this will * cause the DONTNEED requests to continously grow to * cover all of the previously read regions of the * file. This allows filesystem blocks that are * accessed by multiple calls to read(2) to be flushed * once the last read(2) finishes. */ start = offset; end = uio->uio_offset - 1; mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if (fp->f_advice != NULL && fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { if (start != 0 && fp->f_advice->fa_prevend + 1 == start) start = fp->f_advice->fa_prevstart; else if (fp->f_advice->fa_prevstart != 0 && fp->f_advice->fa_prevstart == end + 1) end = fp->f_advice->fa_prevend; fp->f_advice->fa_prevstart = start; fp->f_advice->fa_prevend = end; } mtx_unlock(mtxp); error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); } return (error); } /* * File table vnode write routine. */ static int vn_write(fp, uio, active_cred, flags, td) struct file *fp; struct uio *uio; struct ucred *active_cred; int flags; struct thread *td; { struct vnode *vp; struct mount *mp; struct mtx *mtxp; int error, ioflag, lock_flags; int advice; off_t offset, start, end; KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", uio->uio_td, td)); KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); vp = fp->f_vnode; if (vp->v_type == VREG) bwillwrite(); ioflag = IO_UNIT; if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) ioflag |= IO_APPEND; if (fp->f_flag & FNONBLOCK) ioflag |= IO_NDELAY; if (fp->f_flag & O_DIRECT) ioflag |= IO_DIRECT; if ((fp->f_flag & O_FSYNC) || (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) ioflag |= IO_SYNC; mp = NULL; if (vp->v_type != VCHR && (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) goto unlock; advice = get_advice(fp, uio); if (MNT_SHARED_WRITES(mp) || (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { lock_flags = LK_SHARED; } else { lock_flags = LK_EXCLUSIVE; } vn_lock(vp, lock_flags | LK_RETRY); switch (advice) { case POSIX_FADV_NORMAL: case POSIX_FADV_SEQUENTIAL: case POSIX_FADV_NOREUSE: ioflag |= sequential_heuristic(uio, fp); break; case POSIX_FADV_RANDOM: /* XXX: Is this correct? */ break; } offset = uio->uio_offset; #ifdef MAC error = mac_vnode_check_write(active_cred, fp->f_cred, vp); if (error == 0) #endif error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); fp->f_nextoff = uio->uio_offset; VOP_UNLOCK(vp, 0); if (vp->v_type != VCHR) vn_finished_write(mp); if (error == 0 && advice == POSIX_FADV_NOREUSE && offset != uio->uio_offset) { /* * Use POSIX_FADV_DONTNEED to flush clean pages and * buffers for the backing file after a * POSIX_FADV_NOREUSE write(2). To optimize the * common case of using POSIX_FADV_NOREUSE with * sequential access, track the previous implicit * DONTNEED request and grow this request to include * the current write(2) in addition to the previous * DONTNEED. With purely sequential access this will * cause the DONTNEED requests to continously grow to * cover all of the previously written regions of the * file. * * Note that the blocks just written are almost * certainly still dirty, so this only works when * VOP_ADVISE() calls from subsequent writes push out * the data written by this write(2) once the backing * buffers are clean. However, as compared to forcing * IO_DIRECT, this gives much saner behavior. Write * clustering is still allowed, and clean pages are * merely moved to the cache page queue rather than * outright thrown away. This means a subsequent * read(2) can still avoid hitting the disk if the * pages have not been reclaimed. * * This does make POSIX_FADV_NOREUSE largely useless * with non-sequential access. However, sequential * access is the more common use case and the flag is * merely advisory. */ start = offset; end = uio->uio_offset - 1; mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if (fp->f_advice != NULL && fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { if (start != 0 && fp->f_advice->fa_prevend + 1 == start) start = fp->f_advice->fa_prevstart; else if (fp->f_advice->fa_prevstart != 0 && fp->f_advice->fa_prevstart == end + 1) end = fp->f_advice->fa_prevend; fp->f_advice->fa_prevstart = start; fp->f_advice->fa_prevend = end; } mtx_unlock(mtxp); error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); } unlock: return (error); } /* * The vn_io_fault() is a wrapper around vn_read() and vn_write() to * prevent the following deadlock: * * Assume that the thread A reads from the vnode vp1 into userspace * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is * currently not resident, then system ends up with the call chain * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) * which establishes lock order vp1->vn_lock, then vp2->vn_lock. * If, at the same time, thread B reads from vnode vp2 into buffer buf2 * backed by the pages of vnode vp1, and some page in buf2 is not * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. * * To prevent the lock order reversal and deadlock, vn_io_fault() does * not allow page faults to happen during VOP_READ() or VOP_WRITE(). * Instead, it first tries to do the whole range i/o with pagefaults * disabled. If all pages in the i/o buffer are resident and mapped, * VOP will succeed (ignoring the genuine filesystem errors). * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do * i/o in chunks, with all pages in the chunk prefaulted and held * using vm_fault_quick_hold_pages(). * * Filesystems using this deadlock avoidance scheme should use the * array of the held pages from uio, saved in the curthread->td_ma, * instead of doing uiomove(). A helper function * vn_io_fault_uiomove() converts uiomove request into * uiomove_fromphys() over td_ma array. * * Since vnode locks do not cover the whole i/o anymore, rangelocks * make the current i/o request atomic with respect to other i/os and * truncations. */ /* * Decode vn_io_fault_args and perform the corresponding i/o. */ static int vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, struct thread *td) { switch (args->kind) { case VN_IO_FAULT_FOP: return ((args->args.fop_args.doio)(args->args.fop_args.fp, uio, args->cred, args->flags, td)); case VN_IO_FAULT_VOP: if (uio->uio_rw == UIO_READ) { return (VOP_READ(args->args.vop_args.vp, uio, args->flags, args->cred)); } else if (uio->uio_rw == UIO_WRITE) { return (VOP_WRITE(args->args.vop_args.vp, uio, args->flags, args->cred)); } break; } panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind, uio->uio_rw); } /* * Common code for vn_io_fault(), agnostic to the kind of i/o request. * Uses vn_io_fault_doio() to make the call to an actual i/o function. * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request * into args and call vn_io_fault1() to handle faults during the user * mode buffer accesses. */ static int vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, struct thread *td) { vm_page_t ma[io_hold_cnt + 2]; struct uio *uio_clone, short_uio; struct iovec short_iovec[1]; vm_page_t *prev_td_ma; vm_prot_t prot; vm_offset_t addr, end; size_t len, resid; ssize_t adv; int error, cnt, save, saveheld, prev_td_ma_cnt; prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; /* * The UFS follows IO_UNIT directive and replays back both * uio_offset and uio_resid if an error is encountered during the * operation. But, since the iovec may be already advanced, * uio is still in an inconsistent state. * * Cache a copy of the original uio, which is advanced to the redo * point using UIO_NOCOPY below. */ uio_clone = cloneuio(uio); resid = uio->uio_resid; short_uio.uio_segflg = UIO_USERSPACE; short_uio.uio_rw = uio->uio_rw; short_uio.uio_td = uio->uio_td; save = vm_fault_disable_pagefaults(); error = vn_io_fault_doio(args, uio, td); if (error != EFAULT) goto out; atomic_add_long(&vn_io_faults_cnt, 1); uio_clone->uio_segflg = UIO_NOCOPY; uiomove(NULL, resid - uio->uio_resid, uio_clone); uio_clone->uio_segflg = uio->uio_segflg; saveheld = curthread_pflags_set(TDP_UIOHELD); prev_td_ma = td->td_ma; prev_td_ma_cnt = td->td_ma_cnt; while (uio_clone->uio_resid != 0) { len = uio_clone->uio_iov->iov_len; if (len == 0) { KASSERT(uio_clone->uio_iovcnt >= 1, ("iovcnt underflow")); uio_clone->uio_iov++; uio_clone->uio_iovcnt--; continue; } if (len > io_hold_cnt * PAGE_SIZE) len = io_hold_cnt * PAGE_SIZE; addr = (uintptr_t)uio_clone->uio_iov->iov_base; end = round_page(addr + len); if (end < addr) { error = EFAULT; break; } cnt = atop(end - trunc_page(addr)); /* * A perfectly misaligned address and length could cause * both the start and the end of the chunk to use partial * page. +2 accounts for such a situation. */ cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, addr, len, prot, ma, io_hold_cnt + 2); if (cnt == -1) { error = EFAULT; break; } short_uio.uio_iov = &short_iovec[0]; short_iovec[0].iov_base = (void *)addr; short_uio.uio_iovcnt = 1; short_uio.uio_resid = short_iovec[0].iov_len = len; short_uio.uio_offset = uio_clone->uio_offset; td->td_ma = ma; td->td_ma_cnt = cnt; error = vn_io_fault_doio(args, &short_uio, td); vm_page_unhold_pages(ma, cnt); adv = len - short_uio.uio_resid; uio_clone->uio_iov->iov_base = (char *)uio_clone->uio_iov->iov_base + adv; uio_clone->uio_iov->iov_len -= adv; uio_clone->uio_resid -= adv; uio_clone->uio_offset += adv; uio->uio_resid -= adv; uio->uio_offset += adv; if (error != 0 || adv == 0) break; } td->td_ma = prev_td_ma; td->td_ma_cnt = prev_td_ma_cnt; curthread_pflags_restore(saveheld); out: vm_fault_enable_pagefaults(save); free(uio_clone, M_IOV); return (error); } static int vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { fo_rdwr_t *doio; struct vnode *vp; void *rl_cookie; struct vn_io_fault_args args; int error; doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; vp = fp->f_vnode; foffset_lock_uio(fp, uio, flags); if (do_vn_io_fault(vp, uio)) { args.kind = VN_IO_FAULT_FOP; args.args.fop_args.fp = fp; args.args.fop_args.doio = doio; args.cred = active_cred; args.flags = flags | FOF_OFFSET; if (uio->uio_rw == UIO_READ) { rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, uio->uio_offset + uio->uio_resid); } else if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0) { /* For appenders, punt and lock the whole range. */ rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); } else { rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, uio->uio_offset + uio->uio_resid); } error = vn_io_fault1(vp, uio, &args, td); vn_rangelock_unlock(vp, rl_cookie); } else { error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); } foffset_unlock_uio(fp, uio, flags); return (error); } /* * Helper function to perform the requested uiomove operation using * the held pages for io->uio_iov[0].iov_base buffer instead of * copyin/copyout. Access to the pages with uiomove_fromphys() * instead of iov_base prevents page faults that could occur due to * pmap_collect() invalidating the mapping created by * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or * object cleanup revoking the write access from page mappings. * * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() * instead of plain uiomove(). */ int vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) { struct uio transp_uio; struct iovec transp_iov[1]; struct thread *td; size_t adv; int error, pgadv; td = curthread; if ((td->td_pflags & TDP_UIOHELD) == 0 || uio->uio_segflg != UIO_USERSPACE) return (uiomove(data, xfersize, uio)); KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); transp_iov[0].iov_base = data; transp_uio.uio_iov = &transp_iov[0]; transp_uio.uio_iovcnt = 1; if (xfersize > uio->uio_resid) xfersize = uio->uio_resid; transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; transp_uio.uio_offset = 0; transp_uio.uio_segflg = UIO_SYSSPACE; /* * Since transp_iov points to data, and td_ma page array * corresponds to original uio->uio_iov, we need to invert the * direction of the i/o operation as passed to * uiomove_fromphys(). */ switch (uio->uio_rw) { case UIO_WRITE: transp_uio.uio_rw = UIO_READ; break; case UIO_READ: transp_uio.uio_rw = UIO_WRITE; break; } transp_uio.uio_td = uio->uio_td; error = uiomove_fromphys(td->td_ma, ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, xfersize, &transp_uio); adv = xfersize - transp_uio.uio_resid; pgadv = (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); td->td_ma += pgadv; KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, pgadv)); td->td_ma_cnt -= pgadv; uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; uio->uio_iov->iov_len -= adv; uio->uio_resid -= adv; uio->uio_offset += adv; return (error); } int vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, struct uio *uio) { struct thread *td; vm_offset_t iov_base; int cnt, pgadv; td = curthread; if ((td->td_pflags & TDP_UIOHELD) == 0 || uio->uio_segflg != UIO_USERSPACE) return (uiomove_fromphys(ma, offset, xfersize, uio)); KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; iov_base = (vm_offset_t)uio->uio_iov->iov_base; switch (uio->uio_rw) { case UIO_WRITE: pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, offset, cnt); break; case UIO_READ: pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, cnt); break; } pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); td->td_ma += pgadv; KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, pgadv)); td->td_ma_cnt -= pgadv; uio->uio_iov->iov_base = (char *)(iov_base + cnt); uio->uio_iov->iov_len -= cnt; uio->uio_resid -= cnt; uio->uio_offset += cnt; return (0); } /* * File table truncate routine. */ static int vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, struct thread *td) { struct vattr vattr; struct mount *mp; struct vnode *vp; void *rl_cookie; int error; vp = fp->f_vnode; /* * Lock the whole range for truncation. Otherwise split i/o * might happen partly before and partly after the truncation. */ rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error) goto out1; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_type == VDIR) { error = EISDIR; goto out; } #ifdef MAC error = mac_vnode_check_write(active_cred, fp->f_cred, vp); if (error) goto out; #endif error = vn_writechk(vp); if (error == 0) { VATTR_NULL(&vattr); vattr.va_size = length; error = VOP_SETATTR(vp, &vattr, fp->f_cred); } out: VOP_UNLOCK(vp, 0); vn_finished_write(mp); out1: vn_rangelock_unlock(vp, rl_cookie); return (error); } /* * File table vnode stat routine. */ static int vn_statfile(fp, sb, active_cred, td) struct file *fp; struct stat *sb; struct ucred *active_cred; struct thread *td; { struct vnode *vp = fp->f_vnode; int error; vn_lock(vp, LK_SHARED | LK_RETRY); error = vn_stat(vp, sb, active_cred, fp->f_cred, td); VOP_UNLOCK(vp, 0); return (error); } /* * Stat a vnode; implementation for the stat syscall */ int vn_stat(vp, sb, active_cred, file_cred, td) struct vnode *vp; register struct stat *sb; struct ucred *active_cred; struct ucred *file_cred; struct thread *td; { struct vattr vattr; register struct vattr *vap; int error; u_short mode; #ifdef MAC error = mac_vnode_check_stat(active_cred, file_cred, vp); if (error) return (error); #endif vap = &vattr; /* * Initialize defaults for new and unusual fields, so that file * systems which don't support these fields don't need to know * about them. */ vap->va_birthtime.tv_sec = -1; vap->va_birthtime.tv_nsec = 0; vap->va_fsid = VNOVAL; vap->va_rdev = NODEV; error = VOP_GETATTR(vp, vap, active_cred); if (error) return (error); /* * Zero the spare stat fields */ bzero(sb, sizeof *sb); /* * Copy from vattr table */ if (vap->va_fsid != VNOVAL) sb->st_dev = vap->va_fsid; else sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; sb->st_ino = vap->va_fileid; mode = vap->va_mode; switch (vap->va_type) { case VREG: mode |= S_IFREG; break; case VDIR: mode |= S_IFDIR; break; case VBLK: mode |= S_IFBLK; break; case VCHR: mode |= S_IFCHR; break; case VLNK: mode |= S_IFLNK; break; case VSOCK: mode |= S_IFSOCK; break; case VFIFO: mode |= S_IFIFO; break; default: return (EBADF); }; sb->st_mode = mode; sb->st_nlink = vap->va_nlink; sb->st_uid = vap->va_uid; sb->st_gid = vap->va_gid; sb->st_rdev = vap->va_rdev; if (vap->va_size > OFF_MAX) return (EOVERFLOW); sb->st_size = vap->va_size; sb->st_atim = vap->va_atime; sb->st_mtim = vap->va_mtime; sb->st_ctim = vap->va_ctime; sb->st_birthtim = vap->va_birthtime; /* * According to www.opengroup.org, the meaning of st_blksize is * "a filesystem-specific preferred I/O block size for this * object. In some filesystem types, this may vary from file * to file" * Use miminum/default of PAGE_SIZE (e.g. for VCHR). */ sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); sb->st_flags = vap->va_flags; if (priv_check(td, PRIV_VFS_GENERATION)) sb->st_gen = 0; else sb->st_gen = vap->va_gen; sb->st_blocks = vap->va_bytes / S_BLKSIZE; return (0); } /* * File table vnode ioctl routine. */ static int vn_ioctl(fp, com, data, active_cred, td) struct file *fp; u_long com; void *data; struct ucred *active_cred; struct thread *td; { struct vattr vattr; struct vnode *vp; int error; vp = fp->f_vnode; switch (vp->v_type) { case VDIR: case VREG: switch (com) { case FIONREAD: vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, active_cred); VOP_UNLOCK(vp, 0); if (error == 0) *(int *)data = vattr.va_size - fp->f_offset; return (error); case FIONBIO: case FIOASYNC: return (0); default: return (VOP_IOCTL(vp, com, data, fp->f_flag, active_cred, td)); } default: return (ENOTTY); } } /* * File table vnode poll routine. */ static int vn_poll(fp, events, active_cred, td) struct file *fp; int events; struct ucred *active_cred; struct thread *td; { struct vnode *vp; int error; vp = fp->f_vnode; #ifdef MAC vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); VOP_UNLOCK(vp, 0); if (!error) #endif error = VOP_POLL(vp, events, fp->f_cred, td); return (error); } /* * Acquire the requested lock and then check for validity. LK_RETRY * permits vn_lock to return doomed vnodes. */ int _vn_lock(struct vnode *vp, int flags, char *file, int line) { int error; VNASSERT((flags & LK_TYPE_MASK) != 0, vp, ("vn_lock called with no locktype.")); do { #ifdef DEBUG_VFS_LOCKS KASSERT(vp->v_holdcnt != 0, ("vn_lock %p: zero hold count", vp)); #endif error = VOP_LOCK1(vp, flags, file, line); flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ KASSERT((flags & LK_RETRY) == 0 || error == 0, ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", flags, error)); /* * Callers specify LK_RETRY if they wish to get dead vnodes. * If RETRY is not set, we return ENOENT instead. */ if (error == 0 && vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0) { VOP_UNLOCK(vp, 0); error = ENOENT; break; } } while (flags & LK_RETRY && error != 0); return (error); } /* * File table vnode close routine. */ static int vn_closefile(fp, td) struct file *fp; struct thread *td; { struct vnode *vp; struct flock lf; int error; vp = fp->f_vnode; fp->f_ops = &badfileops; if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) vref(vp); error = vn_close(vp, fp->f_flag, fp->f_cred, td); if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); vrele(vp); } return (error); } /* * Preparing to start a filesystem write operation. If the operation is * permitted, then we bump the count of operations in progress and * proceed. If a suspend request is in progress, we wait until the * suspension is over, and then proceed. */ static int vn_start_write_locked(struct mount *mp, int flags) { int error; mtx_assert(MNT_MTX(mp), MA_OWNED); error = 0; /* * Check on status of suspension. */ if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || mp->mnt_susp_owner != curthread) { while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { if (flags & V_NOWAIT) { error = EWOULDBLOCK; goto unlock; } error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | (flags & PCATCH), "suspfs", 0); if (error) goto unlock; } } if (flags & V_XSLEEP) goto unlock; mp->mnt_writeopcount++; unlock: if (error != 0 || (flags & V_XSLEEP) != 0) MNT_REL(mp); MNT_IUNLOCK(mp); return (error); } int vn_start_write(vp, mpp, flags) struct vnode *vp; struct mount **mpp; int flags; { struct mount *mp; int error; error = 0; /* * If a vnode is provided, get and return the mount point that * to which it will write. */ if (vp != NULL) { if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { *mpp = NULL; if (error != EOPNOTSUPP) return (error); return (0); } } if ((mp = *mpp) == NULL) return (0); /* * VOP_GETWRITEMOUNT() returns with the mp refcount held through * a vfs_ref(). * As long as a vnode is not provided we need to acquire a * refcount for the provided mountpoint too, in order to * emulate a vfs_ref(). */ MNT_ILOCK(mp); if (vp == NULL) MNT_REF(mp); return (vn_start_write_locked(mp, flags)); } /* * Secondary suspension. Used by operations such as vop_inactive * routines that are needed by the higher level functions. These * are allowed to proceed until all the higher level functions have * completed (indicated by mnt_writeopcount dropping to zero). At that * time, these operations are halted until the suspension is over. */ int vn_start_secondary_write(vp, mpp, flags) struct vnode *vp; struct mount **mpp; int flags; { struct mount *mp; int error; retry: if (vp != NULL) { if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { *mpp = NULL; if (error != EOPNOTSUPP) return (error); return (0); } } /* * If we are not suspended or have not yet reached suspended * mode, then let the operation proceed. */ if ((mp = *mpp) == NULL) return (0); /* * VOP_GETWRITEMOUNT() returns with the mp refcount held through * a vfs_ref(). * As long as a vnode is not provided we need to acquire a * refcount for the provided mountpoint too, in order to * emulate a vfs_ref(). */ MNT_ILOCK(mp); if (vp == NULL) MNT_REF(mp); if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { mp->mnt_secondary_writes++; mp->mnt_secondary_accwrites++; MNT_IUNLOCK(mp); return (0); } if (flags & V_NOWAIT) { MNT_REL(mp); MNT_IUNLOCK(mp); return (EWOULDBLOCK); } /* * Wait for the suspension to finish. */ error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0); vfs_rel(mp); if (error == 0) goto retry; return (error); } /* * Filesystem write operation has completed. If we are suspending and this * operation is the last one, notify the suspender that the suspension is * now in effect. */ void vn_finished_write(mp) struct mount *mp; { if (mp == NULL) return; MNT_ILOCK(mp); MNT_REL(mp); mp->mnt_writeopcount--; if (mp->mnt_writeopcount < 0) panic("vn_finished_write: neg cnt"); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && mp->mnt_writeopcount <= 0) wakeup(&mp->mnt_writeopcount); MNT_IUNLOCK(mp); } /* * Filesystem secondary write operation has completed. If we are * suspending and this operation is the last one, notify the suspender * that the suspension is now in effect. */ void vn_finished_secondary_write(mp) struct mount *mp; { if (mp == NULL) return; MNT_ILOCK(mp); MNT_REL(mp); mp->mnt_secondary_writes--; if (mp->mnt_secondary_writes < 0) panic("vn_finished_secondary_write: neg cnt"); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && mp->mnt_secondary_writes <= 0) wakeup(&mp->mnt_secondary_writes); MNT_IUNLOCK(mp); } /* * Request a filesystem to suspend write operations. */ int vfs_write_suspend(struct mount *mp, int flags) { int error; MNT_ILOCK(mp); if (mp->mnt_susp_owner == curthread) { MNT_IUNLOCK(mp); return (EALREADY); } while (mp->mnt_kern_flag & MNTK_SUSPEND) msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); /* * Unmount holds a write reference on the mount point. If we * own busy reference and drain for writers, we deadlock with * the reference draining in the unmount path. Callers of * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if * vfs_busy() reference is owned and caller is not in the * unmount context. */ if ((flags & VS_SKIP_UNMOUNT) != 0 && (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { MNT_IUNLOCK(mp); return (EBUSY); } mp->mnt_kern_flag |= MNTK_SUSPEND; mp->mnt_susp_owner = curthread; if (mp->mnt_writeopcount > 0) (void) msleep(&mp->mnt_writeopcount, MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); else MNT_IUNLOCK(mp); if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) vfs_write_resume(mp, 0); return (error); } /* * Request a filesystem to resume write operations. */ void vfs_write_resume(struct mount *mp, int flags) { MNT_ILOCK(mp); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | MNTK_SUSPENDED); mp->mnt_susp_owner = NULL; wakeup(&mp->mnt_writeopcount); wakeup(&mp->mnt_flag); curthread->td_pflags &= ~TDP_IGNSUSP; if ((flags & VR_START_WRITE) != 0) { MNT_REF(mp); mp->mnt_writeopcount++; } MNT_IUNLOCK(mp); if ((flags & VR_NO_SUSPCLR) == 0) VFS_SUSP_CLEAN(mp); } else if ((flags & VR_START_WRITE) != 0) { MNT_REF(mp); vn_start_write_locked(mp, 0); } else { MNT_IUNLOCK(mp); } } /* * Helper loop around vfs_write_suspend() for filesystem unmount VFS * methods. */ int vfs_write_suspend_umnt(struct mount *mp) { int error; KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, ("vfs_write_suspend_umnt: recursed")); /* dounmount() already called vn_start_write(). */ for (;;) { vn_finished_write(mp); error = vfs_write_suspend(mp, 0); if (error != 0) return (error); MNT_ILOCK(mp); if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) break; MNT_IUNLOCK(mp); vn_start_write(NULL, &mp, V_WAIT); } mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); wakeup(&mp->mnt_flag); MNT_IUNLOCK(mp); curthread->td_pflags |= TDP_IGNSUSP; return (0); } /* * Implement kqueues for files by translating it to vnode operation. */ static int vn_kqfilter(struct file *fp, struct knote *kn) { return (VOP_KQFILTER(fp->f_vnode, kn)); } /* * Simplified in-kernel wrapper calls for extended attribute access. * Both calls pass in a NULL credential, authorizing as "kernel" access. * Set IO_NODELOCKED in ioflg if the vnode is already locked. */ int vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int *buflen, char *buf, struct thread *td) { struct uio auio; struct iovec iov; int error; iov.iov_len = *buflen; iov.iov_base = buf; auio.uio_iov = &iov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_offset = 0; auio.uio_resid = *buflen; if ((ioflg & IO_NODELOCKED) == 0) vn_lock(vp, LK_SHARED | LK_RETRY); ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute retrieval as kernel */ error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) VOP_UNLOCK(vp, 0); if (error == 0) { *buflen = *buflen - auio.uio_resid; } return (error); } /* * XXX failure mode if partially written? */ int vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int buflen, char *buf, struct thread *td) { struct uio auio; struct iovec iov; struct mount *mp; int error; iov.iov_len = buflen; iov.iov_base = buf; auio.uio_iov = &iov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_WRITE; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_offset = 0; auio.uio_resid = buflen; if ((ioflg & IO_NODELOCKED) == 0) { if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) return (error); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute setting as kernel */ error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) { vn_finished_write(mp); VOP_UNLOCK(vp, 0); } return (error); } int vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, struct thread *td) { struct mount *mp; int error; if ((ioflg & IO_NODELOCKED) == 0) { if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) return (error); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute removal as kernel */ error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); if (error == EOPNOTSUPP) error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) { vn_finished_write(mp); VOP_UNLOCK(vp, 0); } return (error); } static int vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, struct vnode **rvp) { return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); } int vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) { return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, lkflags, rvp)); } int vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, int lkflags, struct vnode **rvp) { struct mount *mp; int ltype, error; ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); mp = vp->v_mount; ltype = VOP_ISLOCKED(vp); KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, ("vn_vget_ino: vp not locked")); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); VOP_UNLOCK(vp, 0); error = vfs_busy(mp, 0); vn_lock(vp, ltype | LK_RETRY); vfs_rel(mp); if (error != 0) return (ENOENT); if (vp->v_iflag & VI_DOOMED) { vfs_unbusy(mp); return (ENOENT); } } VOP_UNLOCK(vp, 0); error = alloc(mp, alloc_arg, lkflags, rvp); vfs_unbusy(mp); if (*rvp != vp) vn_lock(vp, ltype | LK_RETRY); if (vp->v_iflag & VI_DOOMED) { if (error == 0) { if (*rvp == vp) vunref(vp); else vput(*rvp); } error = ENOENT; } return (error); } int vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, const struct thread *td) { if (vp->v_type != VREG || td == NULL) return (0); PROC_LOCK(td->td_proc); if ((uoff_t)uio->uio_offset + uio->uio_resid > lim_cur(td->td_proc, RLIMIT_FSIZE)) { kern_psignal(td->td_proc, SIGXFSZ); PROC_UNLOCK(td->td_proc); return (EFBIG); } PROC_UNLOCK(td->td_proc); return (0); } int vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) { struct vnode *vp; vp = fp->f_vnode; #ifdef AUDIT vn_lock(vp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(vp); VOP_UNLOCK(vp, 0); #endif return (setfmode(td, active_cred, vp, mode)); } int vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td) { struct vnode *vp; vp = fp->f_vnode; #ifdef AUDIT vn_lock(vp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(vp); VOP_UNLOCK(vp, 0); #endif return (setfown(td, active_cred, vp, uid, gid)); } void vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) { vm_object_t object; if ((object = vp->v_object) == NULL) return; VM_OBJECT_WLOCK(object); vm_object_page_remove(object, start, end, 0); VM_OBJECT_WUNLOCK(object); } int vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) { struct vattr va; daddr_t bn, bnp; uint64_t bsize; off_t noff; int error; KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, ("Wrong command %lu", cmd)); if (vn_lock(vp, LK_SHARED) != 0) return (EBADF); if (vp->v_type != VREG) { error = ENOTTY; goto unlock; } error = VOP_GETATTR(vp, &va, cred); if (error != 0) goto unlock; noff = *off; if (noff >= va.va_size) { error = ENXIO; goto unlock; } bsize = vp->v_mount->mnt_stat.f_iosize; for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); if (error == EOPNOTSUPP) { error = ENOTTY; goto unlock; } if ((bnp == -1 && cmd == FIOSEEKHOLE) || (bnp != -1 && cmd == FIOSEEKDATA)) { noff = bn * bsize; if (noff < *off) noff = *off; goto unlock; } } if (noff > va.va_size) noff = va.va_size; /* noff == va.va_size. There is an implicit hole at the end of file. */ if (cmd == FIOSEEKDATA) error = ENXIO; unlock: VOP_UNLOCK(vp, 0); if (error == 0) *off = noff; return (error); } int vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) { struct ucred *cred; struct vnode *vp; struct vattr vattr; off_t foffset, size; int error, noneg; cred = td->td_ucred; vp = fp->f_vnode; foffset = foffset_lock(fp, 0); noneg = (vp->v_type != VCHR); error = 0; switch (whence) { case L_INCR: if (noneg && (foffset < 0 || (offset > 0 && foffset > OFF_MAX - offset))) { error = EOVERFLOW; break; } offset += foffset; break; case L_XTND: vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, cred); VOP_UNLOCK(vp, 0); if (error) break; /* * If the file references a disk device, then fetch * the media size and use that to determine the ending * offset. */ if (vattr.va_size == 0 && vp->v_type == VCHR && fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) vattr.va_size = size; if (noneg && (vattr.va_size > OFF_MAX || (offset > 0 && vattr.va_size > OFF_MAX - offset))) { error = EOVERFLOW; break; } offset += vattr.va_size; break; case L_SET: break; case SEEK_DATA: error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); break; case SEEK_HOLE: error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); break; default: error = EINVAL; } if (error == 0 && noneg && offset < 0) error = EINVAL; if (error != 0) goto drop; VFS_KNOTE_UNLOCKED(vp, 0); *(off_t *)(td->td_retval) = offset; drop: foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); return (error); } int vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td) { int error; /* * Grant permission if the caller is the owner of the file, or * the super-user, or has ACL_WRITE_ATTRIBUTES permission on * on the file. If the time pointer is null, then write * permission on the file is also sufficient. * * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES * will be allowed to set the times [..] to the current * server time. */ error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) error = VOP_ACCESS(vp, VWRITE, cred, td); return (error); } Index: stable/10/sys/sys/vnode.h =================================================================== --- stable/10/sys/sys/vnode.h (revision 273253) +++ stable/10/sys/sys/vnode.h (revision 273254) @@ -1,857 +1,858 @@ /*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vnode.h 8.7 (Berkeley) 2/4/94 * $FreeBSD$ */ #ifndef _SYS_VNODE_H_ #define _SYS_VNODE_H_ #include #include #include #include #include #include #include #include #include #include /* * The vnode is the focus of all file activity in UNIX. There is a * unique vnode allocated for each active file, each current directory, * each mounted-on file, text file, and the root. */ /* * Vnode types. VNON means no type. */ enum vtype { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO, VBAD, VMARKER }; /* * Each underlying filesystem allocates its own private area and hangs * it from v_data. If non-null, this area is freed in getnewvnode(). */ struct namecache; struct vpollinfo { struct mtx vpi_lock; /* lock to protect below */ struct selinfo vpi_selinfo; /* identity of poller(s) */ short vpi_events; /* what they are looking for */ short vpi_revents; /* what has happened */ }; /* * Reading or writing any of these items requires holding the appropriate lock. * * Lock reference: * c - namecache mutex * f - freelist mutex * i - interlock * m - mount point interlock * p - pollinfo lock * u - Only a reference to the vnode is needed to read. * v - vnode lock * * Vnodes may be found on many lists. The general way to deal with operating * on a vnode that is on a list is: * 1) Lock the list and find the vnode. * 2) Lock interlock so that the vnode does not go away. * 3) Unlock the list to avoid lock order reversals. * 4) vget with LK_INTERLOCK and check for ENOENT, or * 5) Check for DOOMED if the vnode lock is not required. * 6) Perform your operation, then vput(). */ #if defined(_KERNEL) || defined(_KVM_VNODE) struct vnode { /* * Fields which define the identity of the vnode. These fields are * owned by the filesystem (XXX: and vgone() ?) */ const char *v_tag; /* u type of underlying data */ struct vop_vector *v_op; /* u vnode operations vector */ void *v_data; /* u private data for fs */ /* * Filesystem instance stuff */ struct mount *v_mount; /* u ptr to vfs we are in */ TAILQ_ENTRY(vnode) v_nmntvnodes; /* m vnodes for mount point */ /* * Type specific fields, only one applies to any given vnode. * See #defines below for renaming to v_* namespace. */ union { struct mount *vu_mount; /* v ptr to mountpoint (VDIR) */ struct socket *vu_socket; /* v unix domain net (VSOCK) */ struct cdev *vu_cdev; /* v device (VCHR, VBLK) */ struct fifoinfo *vu_fifoinfo; /* v fifo (VFIFO) */ } v_un; /* * vfs_hash: (mount + inode) -> vnode hash. The hash value * itself is grouped with other int fields, to avoid padding. */ LIST_ENTRY(vnode) v_hashlist; /* * VFS_namecache stuff */ LIST_HEAD(, namecache) v_cache_src; /* c Cache entries from us */ TAILQ_HEAD(, namecache) v_cache_dst; /* c Cache entries to us */ struct namecache *v_cache_dd; /* c Cache entry for .. vnode */ /* * Locking */ struct lock v_lock; /* u (if fs don't have one) */ struct mtx v_interlock; /* lock for "i" things */ struct lock *v_vnlock; /* u pointer to vnode lock */ /* * The machinery of being a vnode */ TAILQ_ENTRY(vnode) v_actfreelist; /* f vnode active/free lists */ struct bufobj v_bufobj; /* * Buffer cache object */ /* * Hooks for various subsystems and features. */ struct vpollinfo *v_pollinfo; /* i Poll events, p for *v_pi */ struct label *v_label; /* MAC label for vnode */ struct lockf *v_lockf; /* Byte-level advisory lock list */ struct rangelock v_rl; /* Byte-range lock */ /* * clustering stuff */ daddr_t v_cstart; /* v start block of cluster */ daddr_t v_lasta; /* v last allocation */ daddr_t v_lastw; /* v last write */ int v_clen; /* v length of cur. cluster */ int v_holdcnt; /* i prevents recycling. */ int v_usecount; /* i ref count of users */ u_int v_iflag; /* i vnode flags (see below) */ u_int v_vflag; /* v vnode flags */ int v_writecount; /* v ref count of writers */ u_int v_hash; enum vtype v_type; /* u vnode type */ }; #endif /* defined(_KERNEL) || defined(_KVM_VNODE) */ #define v_mountedhere v_un.vu_mount #define v_socket v_un.vu_socket #define v_rdev v_un.vu_cdev #define v_fifoinfo v_un.vu_fifoinfo /* XXX: These are temporary to avoid a source sweep at this time */ #define v_object v_bufobj.bo_object /* * Userland version of struct vnode, for sysctl. */ struct xvnode { size_t xv_size; /* sizeof(struct xvnode) */ void *xv_vnode; /* address of real vnode */ u_long xv_flag; /* vnode vflags */ int xv_usecount; /* reference count of users */ int xv_writecount; /* reference count of writers */ int xv_holdcnt; /* page & buffer references */ u_long xv_id; /* capability identifier */ void *xv_mount; /* address of parent mount */ long xv_numoutput; /* num of writes in progress */ enum vtype xv_type; /* vnode type */ union { void *xvu_socket; /* socket, if VSOCK */ void *xvu_fifo; /* fifo, if VFIFO */ dev_t xvu_rdev; /* maj/min, if VBLK/VCHR */ struct { dev_t xvu_dev; /* device, if VDIR/VREG/VLNK */ ino_t xvu_ino; /* id, if VDIR/VREG/VLNK */ } xv_uns; } xv_un; }; #define xv_socket xv_un.xvu_socket #define xv_fifo xv_un.xvu_fifo #define xv_rdev xv_un.xvu_rdev #define xv_dev xv_un.xv_uns.xvu_dev #define xv_ino xv_un.xv_uns.xvu_ino /* We don't need to lock the knlist */ #define VN_KNLIST_EMPTY(vp) ((vp)->v_pollinfo == NULL || \ KNLIST_EMPTY(&(vp)->v_pollinfo->vpi_selinfo.si_note)) #define VN_KNOTE(vp, b, a) \ do { \ if (!VN_KNLIST_EMPTY(vp)) \ KNOTE(&vp->v_pollinfo->vpi_selinfo.si_note, (b), \ (a) | KNF_NOKQLOCK); \ } while (0) #define VN_KNOTE_LOCKED(vp, b) VN_KNOTE(vp, b, KNF_LISTLOCKED) #define VN_KNOTE_UNLOCKED(vp, b) VN_KNOTE(vp, b, 0) /* * Vnode flags. * VI flags are protected by interlock and live in v_iflag * VV flags are protected by the vnode lock and live in v_vflag * * VI_DOOMED is doubly protected by the interlock and vnode lock. Both * are required for writing but the status may be checked with either. */ #define VI_MOUNT 0x0020 /* Mount in progress */ #define VI_AGE 0x0040 /* Insert vnode at head of free list */ #define VI_DOOMED 0x0080 /* This vnode is being recycled */ #define VI_FREE 0x0100 /* This vnode is on the freelist */ #define VI_ACTIVE 0x0200 /* This vnode is on the active list */ #define VI_DOINGINACT 0x0800 /* VOP_INACTIVE is in progress */ #define VI_OWEINACT 0x1000 /* Need to call inactive */ #define VV_ROOT 0x0001 /* root of its filesystem */ #define VV_ISTTY 0x0002 /* vnode represents a tty */ #define VV_NOSYNC 0x0004 /* unlinked, stop syncing */ #define VV_ETERNALDEV 0x0008 /* device that is never destroyed */ #define VV_CACHEDLABEL 0x0010 /* Vnode has valid cached MAC label */ #define VV_TEXT 0x0020 /* vnode is a pure text prototype */ #define VV_COPYONWRITE 0x0040 /* vnode is doing copy-on-write */ #define VV_SYSTEM 0x0080 /* vnode being used by kernel */ #define VV_PROCDEP 0x0100 /* vnode is process dependent */ #define VV_NOKNOTE 0x0200 /* don't activate knotes on this vnode */ #define VV_DELETED 0x0400 /* should be removed */ #define VV_MD 0x0800 /* vnode backs the md device */ #define VV_FORCEINSMQ 0x1000 /* force the insmntque to succeed */ /* * Vnode attributes. A field value of VNOVAL represents a field whose value * is unavailable (getattr) or which is not to be changed (setattr). */ struct vattr { enum vtype va_type; /* vnode type (for create) */ u_short va_mode; /* files access mode and type */ short va_nlink; /* number of references to file */ uid_t va_uid; /* owner user id */ gid_t va_gid; /* owner group id */ dev_t va_fsid; /* filesystem id */ long va_fileid; /* file id */ u_quad_t va_size; /* file size in bytes */ long va_blocksize; /* blocksize preferred for i/o */ struct timespec va_atime; /* time of last access */ struct timespec va_mtime; /* time of last modification */ struct timespec va_ctime; /* time file changed */ struct timespec va_birthtime; /* time file created */ u_long va_gen; /* generation number of file */ u_long va_flags; /* flags defined for file */ dev_t va_rdev; /* device the special file represents */ u_quad_t va_bytes; /* bytes of disk space held by file */ u_quad_t va_filerev; /* file modification number */ u_int va_vaflags; /* operations flags, see below */ long va_spare; /* remain quad aligned */ }; /* * Flags for va_vaflags. */ #define VA_UTIMES_NULL 0x01 /* utimes argument was NULL */ #define VA_EXCLUSIVE 0x02 /* exclusive create request */ /* * Flags for ioflag. (high 16 bits used to ask for read-ahead and * help with write clustering) * NB: IO_NDELAY and IO_DIRECT are linked to fcntl.h */ #define IO_UNIT 0x0001 /* do I/O as atomic unit */ #define IO_APPEND 0x0002 /* append write to end */ #define IO_NDELAY 0x0004 /* FNDELAY flag set in file table */ #define IO_NODELOCKED 0x0008 /* underlying node already locked */ #define IO_ASYNC 0x0010 /* bawrite rather then bdwrite */ #define IO_VMIO 0x0020 /* data already in VMIO space */ #define IO_INVAL 0x0040 /* invalidate after I/O */ #define IO_SYNC 0x0080 /* do I/O synchronously */ #define IO_DIRECT 0x0100 /* attempt to bypass buffer cache */ #define IO_EXT 0x0400 /* operate on external attributes */ #define IO_NORMAL 0x0800 /* operate on regular data */ #define IO_NOMACCHECK 0x1000 /* MAC checks unnecessary */ #define IO_BUFLOCKED 0x2000 /* ffs flag; indir buf is locked */ +#define IO_RANGELOCKED 0x4000 /* range locked */ #define IO_SEQMAX 0x7F /* seq heuristic max value */ #define IO_SEQSHIFT 16 /* seq heuristic in upper 16 bits */ /* * Flags for accmode_t. */ #define VEXEC 000000000100 /* execute/search permission */ #define VWRITE 000000000200 /* write permission */ #define VREAD 000000000400 /* read permission */ #define VADMIN 000000010000 /* being the file owner */ #define VAPPEND 000000040000 /* permission to write/append */ /* * VEXPLICIT_DENY makes VOP_ACCESSX(9) return EPERM or EACCES only * if permission was denied explicitly, by a "deny" rule in NFSv4 ACL, * and 0 otherwise. This never happens with ordinary unix access rights * or POSIX.1e ACLs. Obviously, VEXPLICIT_DENY must be OR-ed with * some other V* constant. */ #define VEXPLICIT_DENY 000000100000 #define VREAD_NAMED_ATTRS 000000200000 /* not used */ #define VWRITE_NAMED_ATTRS 000000400000 /* not used */ #define VDELETE_CHILD 000001000000 #define VREAD_ATTRIBUTES 000002000000 /* permission to stat(2) */ #define VWRITE_ATTRIBUTES 000004000000 /* change {m,c,a}time */ #define VDELETE 000010000000 #define VREAD_ACL 000020000000 /* read ACL and file mode */ #define VWRITE_ACL 000040000000 /* change ACL and/or file mode */ #define VWRITE_OWNER 000100000000 /* change file owner */ #define VSYNCHRONIZE 000200000000 /* not used */ /* * Permissions that were traditionally granted only to the file owner. */ #define VADMIN_PERMS (VADMIN | VWRITE_ATTRIBUTES | VWRITE_ACL | \ VWRITE_OWNER) /* * Permissions that were traditionally granted to everyone. */ #define VSTAT_PERMS (VREAD_ATTRIBUTES | VREAD_ACL) /* * Permissions that allow to change the state of the file in any way. */ #define VMODIFY_PERMS (VWRITE | VAPPEND | VADMIN_PERMS | VDELETE_CHILD | \ VDELETE) /* * Token indicating no attribute value yet assigned. */ #define VNOVAL (-1) /* * LK_TIMELOCK timeout for vnode locks (used mainly by the pageout daemon) */ #define VLKTIMEOUT (hz / 20 + 1) #ifdef _KERNEL #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_VNODE); #endif /* * Convert between vnode types and inode formats (since POSIX.1 * defines mode word of stat structure in terms of inode formats). */ extern enum vtype iftovt_tab[]; extern int vttoif_tab[]; #define IFTOVT(mode) (iftovt_tab[((mode) & S_IFMT) >> 12]) #define VTTOIF(indx) (vttoif_tab[(int)(indx)]) #define MAKEIMODE(indx, mode) (int)(VTTOIF(indx) | (mode)) /* * Flags to various vnode functions. */ #define SKIPSYSTEM 0x0001 /* vflush: skip vnodes marked VSYSTEM */ #define FORCECLOSE 0x0002 /* vflush: force file closure */ #define WRITECLOSE 0x0004 /* vflush: only close writable files */ #define EARLYFLUSH 0x0008 /* vflush: early call for ffs_flushfiles */ #define V_SAVE 0x0001 /* vinvalbuf: sync file first */ #define V_ALT 0x0002 /* vinvalbuf: invalidate only alternate bufs */ #define V_NORMAL 0x0004 /* vinvalbuf: invalidate only regular bufs */ #define V_CLEANONLY 0x0008 /* vinvalbuf: invalidate only clean bufs */ #define REVOKEALL 0x0001 /* vop_revoke: revoke all aliases */ #define V_WAIT 0x0001 /* vn_start_write: sleep for suspend */ #define V_NOWAIT 0x0002 /* vn_start_write: don't sleep for suspend */ #define V_XSLEEP 0x0004 /* vn_start_write: just return after sleep */ #define VR_START_WRITE 0x0001 /* vfs_write_resume: start write atomically */ #define VR_NO_SUSPCLR 0x0002 /* vfs_write_resume: do not clear suspension */ #define VS_SKIP_UNMOUNT 0x0001 /* vfs_write_suspend: fail if the filesystem is being unmounted */ #define VREF(vp) vref(vp) #ifdef DIAGNOSTIC #define VATTR_NULL(vap) vattr_null(vap) #else #define VATTR_NULL(vap) (*(vap) = va_null) /* initialize a vattr */ #endif /* DIAGNOSTIC */ #define NULLVP ((struct vnode *)NULL) /* * Global vnode data. */ extern struct vnode *rootvnode; /* root (i.e. "/") vnode */ extern int async_io_version; /* 0 or POSIX version of AIO i'face */ extern int desiredvnodes; /* number of vnodes desired */ extern struct uma_zone *namei_zone; extern struct vattr va_null; /* predefined null vattr structure */ #define VI_LOCK(vp) mtx_lock(&(vp)->v_interlock) #define VI_LOCK_FLAGS(vp, flags) mtx_lock_flags(&(vp)->v_interlock, (flags)) #define VI_TRYLOCK(vp) mtx_trylock(&(vp)->v_interlock) #define VI_UNLOCK(vp) mtx_unlock(&(vp)->v_interlock) #define VI_MTX(vp) (&(vp)->v_interlock) #define VN_LOCK_AREC(vp) lockallowrecurse((vp)->v_vnlock) #define VN_LOCK_ASHARE(vp) lockallowshare((vp)->v_vnlock) #define VN_LOCK_DSHARE(vp) lockdisableshare((vp)->v_vnlock) #endif /* _KERNEL */ /* * Mods for extensibility. */ /* * Flags for vdesc_flags: */ #define VDESC_MAX_VPS 16 /* Low order 16 flag bits are reserved for willrele flags for vp arguments. */ #define VDESC_VP0_WILLRELE 0x0001 #define VDESC_VP1_WILLRELE 0x0002 #define VDESC_VP2_WILLRELE 0x0004 #define VDESC_VP3_WILLRELE 0x0008 #define VDESC_NOMAP_VPP 0x0100 #define VDESC_VPP_WILLRELE 0x0200 /* * A generic structure. * This can be used by bypass routines to identify generic arguments. */ struct vop_generic_args { struct vnodeop_desc *a_desc; /* other random data follows, presumably */ }; typedef int vop_bypass_t(struct vop_generic_args *); /* * VDESC_NO_OFFSET is used to identify the end of the offset list * and in places where no such field exists. */ #define VDESC_NO_OFFSET -1 /* * This structure describes the vnode operation taking place. */ struct vnodeop_desc { char *vdesc_name; /* a readable name for debugging */ int vdesc_flags; /* VDESC_* flags */ vop_bypass_t *vdesc_call; /* Function to call */ /* * These ops are used by bypass routines to map and locate arguments. * Creds and procs are not needed in bypass routines, but sometimes * they are useful to (for example) transport layers. * Nameidata is useful because it has a cred in it. */ int *vdesc_vp_offsets; /* list ended by VDESC_NO_OFFSET */ int vdesc_vpp_offset; /* return vpp location */ int vdesc_cred_offset; /* cred location, if any */ int vdesc_thread_offset; /* thread location, if any */ int vdesc_componentname_offset; /* if any */ }; #ifdef _KERNEL /* * A list of all the operation descs. */ extern struct vnodeop_desc *vnodeop_descs[]; #define VOPARG_OFFSETOF(s_type, field) __offsetof(s_type, field) #define VOPARG_OFFSETTO(s_type, s_offset, struct_p) \ ((s_type)(((char*)(struct_p)) + (s_offset))) #ifdef DEBUG_VFS_LOCKS /* * Support code to aid in debugging VFS locking problems. Not totally * reliable since if the thread sleeps between changing the lock * state and checking it with the assert, some other thread could * change the state. They are good enough for debugging a single * filesystem using a single-threaded test. */ void assert_vi_locked(struct vnode *vp, const char *str); void assert_vi_unlocked(struct vnode *vp, const char *str); void assert_vop_elocked(struct vnode *vp, const char *str); #if 0 void assert_vop_elocked_other(struct vnode *vp, const char *str); #endif void assert_vop_locked(struct vnode *vp, const char *str); #if 0 voi0 assert_vop_slocked(struct vnode *vp, const char *str); #endif void assert_vop_unlocked(struct vnode *vp, const char *str); #define ASSERT_VI_LOCKED(vp, str) assert_vi_locked((vp), (str)) #define ASSERT_VI_UNLOCKED(vp, str) assert_vi_unlocked((vp), (str)) #define ASSERT_VOP_ELOCKED(vp, str) assert_vop_elocked((vp), (str)) #if 0 #define ASSERT_VOP_ELOCKED_OTHER(vp, str) assert_vop_locked_other((vp), (str)) #endif #define ASSERT_VOP_LOCKED(vp, str) assert_vop_locked((vp), (str)) #if 0 #define ASSERT_VOP_SLOCKED(vp, str) assert_vop_slocked((vp), (str)) #endif #define ASSERT_VOP_UNLOCKED(vp, str) assert_vop_unlocked((vp), (str)) #else /* !DEBUG_VFS_LOCKS */ #define ASSERT_VI_LOCKED(vp, str) ((void)0) #define ASSERT_VI_UNLOCKED(vp, str) ((void)0) #define ASSERT_VOP_ELOCKED(vp, str) ((void)0) #if 0 #define ASSERT_VOP_ELOCKED_OTHER(vp, str) #endif #define ASSERT_VOP_LOCKED(vp, str) ((void)0) #if 0 #define ASSERT_VOP_SLOCKED(vp, str) #endif #define ASSERT_VOP_UNLOCKED(vp, str) ((void)0) #endif /* DEBUG_VFS_LOCKS */ /* * This call works for vnodes in the kernel. */ #define VCALL(c) ((c)->a_desc->vdesc_call(c)) #define DOINGASYNC(vp) \ (((vp)->v_mount->mnt_kern_flag & MNTK_ASYNC) != 0 && \ ((curthread->td_pflags & TDP_SYNCIO) == 0)) /* * VMIO support inline */ extern int vmiodirenable; static __inline int vn_canvmio(struct vnode *vp) { if (vp && (vp->v_type == VREG || (vmiodirenable && vp->v_type == VDIR))) return(TRUE); return(FALSE); } /* * Finally, include the default set of vnode operations. */ #include "vnode_if.h" /* vn_open_flags */ #define VN_OPEN_NOAUDIT 0x00000001 #define VN_OPEN_NOCAPCHECK 0x00000002 /* * Public vnode manipulation functions. */ struct componentname; struct file; struct mount; struct nameidata; struct ostat; struct thread; struct proc; struct stat; struct nstat; struct ucred; struct uio; struct vattr; struct vnode; typedef int (*vn_get_ino_t)(struct mount *, void *, int, struct vnode **); /* cache_* may belong in namei.h. */ #define cache_enter(dvp, vp, cnp) \ cache_enter_time(dvp, vp, cnp, NULL, NULL) void cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp); int cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp); void cache_purge(struct vnode *vp); void cache_purge_negative(struct vnode *vp); void cache_purgevfs(struct mount *mp); int change_dir(struct vnode *vp, struct thread *td); int change_root(struct vnode *vp, struct thread *td); void cvtstat(struct stat *st, struct ostat *ost); void cvtnstat(struct stat *sb, struct nstat *nsb); int getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, struct vnode **vpp); void getnewvnode_reserve(u_int count); void getnewvnode_drop_reserve(void); int insmntque1(struct vnode *vp, struct mount *mp, void (*dtr)(struct vnode *, void *), void *dtr_arg); int insmntque(struct vnode *vp, struct mount *mp); u_quad_t init_va_filerev(void); int speedup_syncer(void); int vn_vptocnp(struct vnode **vp, struct ucred *cred, char *buf, u_int *buflen); #define textvp_fullpath(p, rb, rfb) \ vn_fullpath(FIRST_THREAD_IN_PROC(p), (p)->p_textvp, rb, rfb) int vn_fullpath(struct thread *td, struct vnode *vn, char **retbuf, char **freebuf); int vn_fullpath_global(struct thread *td, struct vnode *vn, char **retbuf, char **freebuf); struct vnode * vn_dir_dd_ino(struct vnode *vp); int vn_commname(struct vnode *vn, char *buf, u_int buflen); int vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, u_int pathlen); int vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, accmode_t accmode, struct ucred *cred, int *privused); int vaccess_acl_nfs4(enum vtype type, uid_t file_uid, gid_t file_gid, struct acl *aclp, accmode_t accmode, struct ucred *cred, int *privused); int vaccess_acl_posix1e(enum vtype type, uid_t file_uid, gid_t file_gid, struct acl *acl, accmode_t accmode, struct ucred *cred, int *privused); void vattr_null(struct vattr *vap); int vcount(struct vnode *vp); void vdrop(struct vnode *); void vdropl(struct vnode *); int vflush(struct mount *mp, int rootrefs, int flags, struct thread *td); int vget(struct vnode *vp, int lockflag, struct thread *td); void vgone(struct vnode *vp); void vhold(struct vnode *); void vholdl(struct vnode *); void vinactive(struct vnode *, struct thread *); int vinvalbuf(struct vnode *vp, int save, int slpflag, int slptimeo); int vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize); void vunref(struct vnode *); void vn_printf(struct vnode *vp, const char *fmt, ...) __printflike(2,3); #define vprint(label, vp) vn_printf((vp), "%s\n", (label)) int vrecycle(struct vnode *vp); int vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred); int vn_close(struct vnode *vp, int flags, struct ucred *file_cred, struct thread *td); void vn_finished_write(struct mount *mp); void vn_finished_secondary_write(struct mount *mp); int vn_isdisk(struct vnode *vp, int *errp); int _vn_lock(struct vnode *vp, int flags, char *file, int line); #define vn_lock(vp, flags) _vn_lock(vp, flags, __FILE__, __LINE__) int vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp); int vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, struct ucred *cred, struct file *fp); int vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, struct thread *td, struct file *fp); void vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end); int vn_pollrecord(struct vnode *vp, struct thread *p, int events); int vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, ssize_t *aresid, struct thread *td); int vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, size_t *aresid, struct thread *td); int vn_rlimit_fsize(const struct vnode *vn, const struct uio *uio, const struct thread *td); int vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred, struct ucred *file_cred, struct thread *td); int vn_start_write(struct vnode *vp, struct mount **mpp, int flags); int vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags); int vn_writechk(struct vnode *vp); int vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int *buflen, char *buf, struct thread *td); int vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int buflen, char *buf, struct thread *td); int vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, struct thread *td); int vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp); int vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, int lkflags, struct vnode **rvp); int vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td); int vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio); int vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, struct uio *uio); #define vn_rangelock_unlock(vp, cookie) \ rangelock_unlock(&(vp)->v_rl, (cookie), VI_MTX(vp)) #define vn_rangelock_unlock_range(vp, cookie, start, end) \ rangelock_unlock_range(&(vp)->v_rl, (cookie), (start), (end), \ VI_MTX(vp)) #define vn_rangelock_rlock(vp, start, end) \ rangelock_rlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) #define vn_rangelock_wlock(vp, start, end) \ rangelock_wlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) int vfs_cache_lookup(struct vop_lookup_args *ap); void vfs_timestamp(struct timespec *); void vfs_write_resume(struct mount *mp, int flags); int vfs_write_suspend(struct mount *mp, int flags); int vfs_write_suspend_umnt(struct mount *mp); int vop_stdbmap(struct vop_bmap_args *); int vop_stdfsync(struct vop_fsync_args *); int vop_stdgetwritemount(struct vop_getwritemount_args *); int vop_stdgetpages(struct vop_getpages_args *); int vop_stdinactive(struct vop_inactive_args *); int vop_stdislocked(struct vop_islocked_args *); int vop_stdkqfilter(struct vop_kqfilter_args *); int vop_stdlock(struct vop_lock1_args *); int vop_stdputpages(struct vop_putpages_args *); int vop_stdunlock(struct vop_unlock_args *); int vop_nopoll(struct vop_poll_args *); int vop_stdaccess(struct vop_access_args *ap); int vop_stdaccessx(struct vop_accessx_args *ap); int vop_stdadvise(struct vop_advise_args *ap); int vop_stdadvlock(struct vop_advlock_args *ap); int vop_stdadvlockasync(struct vop_advlockasync_args *ap); int vop_stdadvlockpurge(struct vop_advlockpurge_args *ap); int vop_stdallocate(struct vop_allocate_args *ap); int vop_stdpathconf(struct vop_pathconf_args *); int vop_stdpoll(struct vop_poll_args *); int vop_stdvptocnp(struct vop_vptocnp_args *ap); int vop_stdvptofh(struct vop_vptofh_args *ap); int vop_stdunp_bind(struct vop_unp_bind_args *ap); int vop_stdunp_connect(struct vop_unp_connect_args *ap); int vop_stdunp_detach(struct vop_unp_detach_args *ap); int vop_eopnotsupp(struct vop_generic_args *ap); int vop_ebadf(struct vop_generic_args *ap); int vop_einval(struct vop_generic_args *ap); int vop_enoent(struct vop_generic_args *ap); int vop_enotty(struct vop_generic_args *ap); int vop_null(struct vop_generic_args *ap); int vop_panic(struct vop_generic_args *ap); /* These are called from within the actual VOPS. */ void vop_create_post(void *a, int rc); void vop_deleteextattr_post(void *a, int rc); void vop_link_post(void *a, int rc); void vop_lock_pre(void *a); void vop_lock_post(void *a, int rc); void vop_lookup_post(void *a, int rc); void vop_lookup_pre(void *a); void vop_mkdir_post(void *a, int rc); void vop_mknod_post(void *a, int rc); void vop_remove_post(void *a, int rc); void vop_rename_post(void *a, int rc); void vop_rename_pre(void *a); void vop_rmdir_post(void *a, int rc); void vop_setattr_post(void *a, int rc); void vop_setextattr_post(void *a, int rc); void vop_strategy_pre(void *a); void vop_symlink_post(void *a, int rc); void vop_unlock_post(void *a, int rc); void vop_unlock_pre(void *a); void vop_rename_fail(struct vop_rename_args *ap); #define VOP_WRITE_PRE(ap) \ struct vattr va; \ int error, osize, ooffset, noffset; \ \ osize = ooffset = noffset = 0; \ if (!VN_KNLIST_EMPTY((ap)->a_vp)) { \ error = VOP_GETATTR((ap)->a_vp, &va, (ap)->a_cred); \ if (error) \ return (error); \ ooffset = (ap)->a_uio->uio_offset; \ osize = va.va_size; \ } #define VOP_WRITE_POST(ap, ret) \ noffset = (ap)->a_uio->uio_offset; \ if (noffset > ooffset && !VN_KNLIST_EMPTY((ap)->a_vp)) { \ VFS_KNOTE_LOCKED((ap)->a_vp, NOTE_WRITE \ | (noffset > osize ? NOTE_EXTEND : 0)); \ } #define VOP_LOCK(vp, flags) VOP_LOCK1(vp, flags, __FILE__, __LINE__) void vput(struct vnode *vp); void vrele(struct vnode *vp); void vref(struct vnode *vp); int vrefcnt(struct vnode *vp); void v_addpollinfo(struct vnode *vp); int vnode_create_vobject(struct vnode *vp, off_t size, struct thread *td); void vnode_destroy_vobject(struct vnode *vp); extern struct vop_vector fifo_specops; extern struct vop_vector dead_vnodeops; extern struct vop_vector default_vnodeops; #define VOP_PANIC ((void*)(uintptr_t)vop_panic) #define VOP_NULL ((void*)(uintptr_t)vop_null) #define VOP_EBADF ((void*)(uintptr_t)vop_ebadf) #define VOP_ENOTTY ((void*)(uintptr_t)vop_enotty) #define VOP_EINVAL ((void*)(uintptr_t)vop_einval) #define VOP_ENOENT ((void*)(uintptr_t)vop_enoent) #define VOP_EOPNOTSUPP ((void*)(uintptr_t)vop_eopnotsupp) /* fifo_vnops.c */ int fifo_printinfo(struct vnode *); /* vfs_hash.c */ typedef int vfs_hash_cmp_t(struct vnode *vp, void *arg); int vfs_hash_get(const struct mount *mp, u_int hash, int flags, struct thread *td, struct vnode **vpp, vfs_hash_cmp_t *fn, void *arg); u_int vfs_hash_index(struct vnode *vp); int vfs_hash_insert(struct vnode *vp, u_int hash, int flags, struct thread *td, struct vnode **vpp, vfs_hash_cmp_t *fn, void *arg); void vfs_hash_rehash(struct vnode *vp, u_int hash); void vfs_hash_remove(struct vnode *vp); int vfs_kqfilter(struct vop_kqfilter_args *); void vfs_mark_atime(struct vnode *vp, struct ucred *cred); struct dirent; int vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off); int vfs_unixify_accmode(accmode_t *accmode); void vfs_unp_reclaim(struct vnode *vp); int setfmode(struct thread *td, struct ucred *cred, struct vnode *vp, int mode); int setfown(struct thread *td, struct ucred *cred, struct vnode *vp, uid_t uid, gid_t gid); int vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td); int vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td); #endif /* _KERNEL */ #endif /* !_SYS_VNODE_H_ */ Index: stable/10 =================================================================== --- stable/10 (revision 273253) +++ stable/10 (revision 273254) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r272534