Index: projects/bhyve_svm/sys/amd64/vmm/amd/svm.c =================================================================== --- projects/bhyve_svm/sys/amd64/vmm/amd/svm.c (revision 271418) +++ projects/bhyve_svm/sys/amd64/vmm/amd/svm.c (revision 271419) @@ -1,1986 +1,1966 @@ /*- * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_lapic.h" #include "vmm_msr.h" #include "vmm_stat.h" #include "vmm_ktr.h" #include "vmm_ioport.h" #include "vatpic.h" #include "vlapic.h" #include "vlapic_priv.h" #include "x86.h" #include "vmcb.h" #include "svm.h" #include "svm_softc.h" #include "npt.h" /* * SVM CPUID function 0x8000_000A, edx bit decoding. */ #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ VMCB_CACHE_IOPM | \ VMCB_CACHE_I | \ VMCB_CACHE_TPR | \ VMCB_CACHE_NP) MALLOC_DEFINE(M_SVM, "svm", "svm"); MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); /* Per-CPU context area. */ extern struct pcpu __pcpu[]; static int svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc); static uint32_t svm_feature; /* AMD SVM features. */ /* Maximum ASIDs supported by the processor */ static uint32_t nasid; /* Current ASID generation for each host cpu */ static struct asid asid[MAXCPU]; /* * SVM host state saved area of size 4KB for each core. */ static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); /* * S/w saved host context. */ static struct svm_regctx host_ctx[MAXCPU]; static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); /* * Common function to enable or disabled SVM for a CPU. */ static int cpu_svm_enable_disable(boolean_t enable) { uint64_t efer_msr; efer_msr = rdmsr(MSR_EFER); if (enable) efer_msr |= EFER_SVM; else efer_msr &= ~EFER_SVM; wrmsr(MSR_EFER, efer_msr); return(0); } /* * Disable SVM on a CPU. */ static void svm_disable(void *arg __unused) { (void)cpu_svm_enable_disable(FALSE); } /* * Disable SVM for all CPUs. */ static int svm_cleanup(void) { smp_rendezvous(NULL, svm_disable, NULL, NULL); return (0); } /* * Check for required BHyVe SVM features in a CPU. */ static int svm_cpuid_features(void) { u_int regs[4]; /* CPUID Fn8000_000A is for SVM */ do_cpuid(0x8000000A, regs); svm_feature = regs[3]; printf("SVM rev: 0x%x NASID:0x%x\n", regs[0] & 0xFF, regs[1]); nasid = regs[1]; KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid)); printf("SVM Features:0x%b\n", svm_feature, "\020" "\001NP" /* Nested paging */ "\002LbrVirt" /* LBR virtualization */ "\003SVML" /* SVM lock */ "\004NRIPS" /* NRIP save */ "\005TscRateMsr" /* MSR based TSC rate control */ "\006VmcbClean" /* VMCB clean bits */ "\007FlushByAsid" /* Flush by ASID */ "\010DecodeAssist" /* Decode assist */ "\011" "\012" "\013PauseFilter" "\014" "\015PauseFilterThreshold" "\016AVIC" ); /* SVM Lock */ if (!(svm_feature & AMD_CPUID_SVM_SVML)) { printf("SVM is disabled by BIOS, please enable in BIOS.\n"); return (ENXIO); } /* * bhyve need RVI to work. */ if (!(svm_feature & AMD_CPUID_SVM_NP)) { printf("Missing Nested paging or RVI SVM support in processor.\n"); return (EIO); } if (svm_feature & AMD_CPUID_SVM_NRIP_SAVE) return (0); return (EIO); } static __inline int flush_by_asid(void) { return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID); } /* * Enable SVM for a CPU. */ static void svm_enable(void *arg __unused) { uint64_t hsave_pa; (void)cpu_svm_enable_disable(TRUE); hsave_pa = vtophys(hsave[curcpu]); wrmsr(MSR_VM_HSAVE_PA, hsave_pa); if (rdmsr(MSR_VM_HSAVE_PA) != hsave_pa) { panic("VM_HSAVE_PA is wrong on CPU%d\n", curcpu); } } /* * Check if a processor support SVM. */ static int is_svm_enabled(void) { uint64_t msr; /* Section 15.4 Enabling SVM from APM2. */ if ((amd_feature2 & AMDID2_SVM) == 0) { printf("SVM is not supported on this processor.\n"); return (ENXIO); } msr = rdmsr(MSR_VM_CR); /* Make sure SVM is not disabled by BIOS. */ if ((msr & VM_CR_SVMDIS) == 0) { return svm_cpuid_features(); } printf("SVM disabled by Key, consult TPM/BIOS manual.\n"); return (ENXIO); } /* * Enable SVM on CPU and initialize nested page table h/w. */ static int svm_init(int ipinum) { int err, cpu; err = is_svm_enabled(); if (err) return (err); for (cpu = 0; cpu < MAXCPU; cpu++) { /* * Initialize the host ASIDs to their "highest" valid values. * * The next ASID allocation will rollover both 'gen' and 'num' * and start off the sequence at {1,1}. */ asid[cpu].gen = ~0UL; asid[cpu].num = nasid - 1; } svm_npt_init(ipinum); /* Start SVM on all CPUs */ smp_rendezvous(NULL, svm_enable, NULL, NULL); return (0); } static void svm_restore(void) { svm_enable(NULL); } /* * Get index and bit position for a MSR in MSR permission * bitmap. Two bits are used for each MSR, lower bit is * for read and higher bit is for write. */ static int svm_msr_index(uint64_t msr, int *index, int *bit) { uint32_t base, off; /* Pentium compatible MSRs */ #define MSR_PENTIUM_START 0 #define MSR_PENTIUM_END 0x1FFF /* AMD 6th generation and Intel compatible MSRs */ #define MSR_AMD6TH_START 0xC0000000UL #define MSR_AMD6TH_END 0xC0001FFFUL /* AMD 7th and 8th generation compatible MSRs */ #define MSR_AMD7TH_START 0xC0010000UL #define MSR_AMD7TH_END 0xC0011FFFUL *index = -1; *bit = (msr % 4) * 2; base = 0; if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { *index = msr / 4; return (0); } base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { off = (msr - MSR_AMD6TH_START); *index = (off + base) / 4; return (0); } base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { off = (msr - MSR_AMD7TH_START); *index = (off + base) / 4; return (0); } return (EIO); } /* * Give virtual cpu the complete access to MSR(read & write). */ static int svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) { int index, bit, err; err = svm_msr_index(msr, &index, &bit); if (err) { ERR("MSR 0x%lx is not writeable by guest.\n", msr); return (err); } if (index < 0 || index > (SVM_MSR_BITMAP_SIZE)) { ERR("MSR 0x%lx index out of range(%d).\n", msr, index); return (EINVAL); } if (bit < 0 || bit > 8) { ERR("MSR 0x%lx bit out of range(%d).\n", msr, bit); return (EINVAL); } /* Disable intercept for read and write. */ if (read) perm_bitmap[index] &= ~(1UL << bit); if (write) perm_bitmap[index] &= ~(2UL << bit); CTR2(KTR_VMM, "Guest has control:0x%x on SVM:MSR(0x%lx).\n", (perm_bitmap[index] >> bit) & 0x3, msr); return (0); } static int svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) { return svm_msr_perm(perm_bitmap, msr, true, true); } static int svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) { return svm_msr_perm(perm_bitmap, msr, true, false); } static __inline void vcpu_set_dirty(struct svm_softc *sc, int vcpu, uint32_t dirtybits) { struct svm_vcpu *vcpustate; vcpustate = svm_get_vcpu(sc, vcpu); vcpustate->dirty |= dirtybits; } static __inline int svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) { struct vmcb_ctrl *ctrl; KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); ctrl = svm_get_vmcb_ctrl(sc, vcpu); return (ctrl->intercept[idx] & bitmask ? 1 : 0); } static __inline void svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, int enabled) { struct vmcb_ctrl *ctrl; uint32_t oldval; KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx)); ctrl = svm_get_vmcb_ctrl(sc, vcpu); oldval = ctrl->intercept[idx]; if (enabled) ctrl->intercept[idx] |= bitmask; else ctrl->intercept[idx] &= ~bitmask; if (ctrl->intercept[idx] != oldval) { vcpu_set_dirty(sc, vcpu, VMCB_CACHE_I); VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified " "from %#x to %#x", idx, oldval, ctrl->intercept[idx]); } } static __inline void svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) { svm_set_intercept(sc, vcpu, off, bitmask, 0); } static __inline void svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) { svm_set_intercept(sc, vcpu, off, bitmask, 1); } static void vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, uint64_t msrpm_base_pa, uint64_t np_pml4) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; uint32_t mask; int n; ctrl = svm_get_vmcb_ctrl(sc, vcpu); state = svm_get_vmcb_state(sc, vcpu); ctrl->iopm_base_pa = iopm_base_pa; ctrl->msrpm_base_pa = msrpm_base_pa; /* Enable nested paging */ ctrl->np_enable = 1; ctrl->n_cr3 = np_pml4; /* * Intercept accesses to the control registers that are not shadowed * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. */ for (n = 0; n < 16; n++) { mask = (BIT(n) << 16) | BIT(n); if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); else svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); } /* Intercept Machine Check exceptions. */ svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_FERR_FREEZE); /* * From section "Canonicalization and Consistency Checks" in APMv2 * the VMRUN intercept bit must be set to pass the consistency check. */ svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); /* * The ASID will be set to a non-zero value just before VMRUN. */ ctrl->asid = 0; /* * Section 15.21.1, Interrupt Masking in EFLAGS * Section 15.21.2, Virtualizing APIC.TPR * * This must be set for %rflag and %cr8 isolation of guest and host. */ ctrl->v_intr_masking = 1; /* Enable Last Branch Record aka LBR for debugging */ ctrl->lbr_virt_en = 1; state->dbgctl = BIT(0); /* EFER_SVM must always be set when the guest is executing */ state->efer = EFER_SVM; /* Set up the PAT to power-on state */ state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | PAT_VALUE(1, PAT_WRITE_THROUGH) | PAT_VALUE(2, PAT_UNCACHED) | PAT_VALUE(3, PAT_UNCACHEABLE) | PAT_VALUE(4, PAT_WRITE_BACK) | PAT_VALUE(5, PAT_WRITE_THROUGH) | PAT_VALUE(6, PAT_UNCACHED) | PAT_VALUE(7, PAT_UNCACHEABLE); } /* * Initialise a virtual machine. */ static void * svm_vminit(struct vm *vm, pmap_t pmap) { struct svm_softc *svm_sc; struct svm_vcpu *vcpu; vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; int i; svm_sc = (struct svm_softc *)malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO); svm_sc->vm = vm; svm_sc->svm_feature = svm_feature; svm_sc->vcpu_cnt = VM_MAXCPU; svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); /* * Intercept MSR access to all MSRs except GSBASE, FSBASE,... etc. */ memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap)); /* * Following MSR can be completely controlled by virtual machines * since access to following are translated to access to VMCB. */ svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); /* For Nested Paging/RVI only. */ svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); /* Intercept access to all I/O ports. */ memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap)); /* Cache physical address for multiple vcpus. */ iopm_pa = vtophys(svm_sc->iopm_bitmap); msrpm_pa = vtophys(svm_sc->msr_bitmap); pml4_pa = svm_sc->nptp; for (i = 0; i < svm_sc->vcpu_cnt; i++) { vcpu = svm_get_vcpu(svm_sc, i); vcpu->lastcpu = NOCPU; vcpu->vmcb_pa = vtophys(&vcpu->vmcb); vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); } return (svm_sc); } static int svm_cpl(struct vmcb_state *state) { /* * From APMv2: * "Retrieve the CPL from the CPL field in the VMCB, not * from any segment DPL" */ return (state->cpl); } static enum vm_cpu_mode svm_vcpu_mode(struct vmcb *vmcb) { struct vmcb_segment *seg; struct vmcb_state *state; state = &vmcb->state; if (state->efer & EFER_LMA) { seg = vmcb_seg(vmcb, VM_REG_GUEST_CS); /* * Section 4.8.1 for APM2, check if Code Segment has * Long attribute set in descriptor. */ if (seg->attrib & VMCB_CS_ATTRIB_L) return (CPU_MODE_64BIT); else return (CPU_MODE_COMPATIBILITY); } else if (state->cr0 & CR0_PE) { return (CPU_MODE_PROTECTED); } else { return (CPU_MODE_REAL); } } static enum vm_paging_mode svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) { if ((cr0 & CR0_PG) == 0) return (PAGING_MODE_FLAT); if ((cr4 & CR4_PAE) == 0) return (PAGING_MODE_32); if (efer & EFER_LME) return (PAGING_MODE_64); else return (PAGING_MODE_PAE); } /* * ins/outs utility routines */ static uint64_t svm_inout_str_index(struct svm_regctx *regs, int in) { uint64_t val; val = in ? regs->e.g.sctx_rdi : regs->e.g.sctx_rsi; return (val); } static uint64_t svm_inout_str_count(struct svm_regctx *regs, int rep) { uint64_t val; val = rep ? regs->sctx_rcx : 1; return (val); } static void svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, int in, struct vm_inout_str *vis) { int error, s; if (in) { vis->seg_name = VM_REG_GUEST_ES; } else { /* The segment field has standard encoding */ s = (info1 >> 10) & 0x7; vis->seg_name = vm_segment_name(s); } error = svm_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); } static int svm_inout_str_addrsize(uint64_t info1) { uint32_t size; size = (info1 >> 7) & 0x7; switch (size) { case 1: return (2); /* 16 bit */ case 2: return (4); /* 32 bit */ case 4: return (8); /* 64 bit */ default: panic("%s: invalid size encoding %d", __func__, size); } } static void svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) { struct vmcb_state *state; state = &vmcb->state; paging->cr3 = state->cr3; paging->cpl = svm_cpl(state); paging->cpu_mode = svm_vcpu_mode(vmcb); paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, state->efer); } /* * Handle guest I/O intercept. */ static bool svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; struct svm_regctx *regs; struct vm_inout_str *vis; uint64_t info1; state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); regs = svm_get_guest_regctx(svm_sc, vcpu); info1 = ctrl->exitinfo1; vmexit->exitcode = VM_EXITCODE_INOUT; vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; vmexit->u.inout.string = (info1 & BIT(2)) ? 1 : 0; vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; vmexit->u.inout.bytes = (info1 >> 4) & 0x7; vmexit->u.inout.port = (uint16_t)(info1 >> 16); vmexit->u.inout.eax = (uint32_t)(state->rax); if (vmexit->u.inout.string) { vmexit->exitcode = VM_EXITCODE_INOUT_STR; vis = &vmexit->u.inout_str; svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); vis->rflags = state->rflags; vis->cr0 = state->cr0; vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); vis->addrsize = svm_inout_str_addrsize(info1); svm_inout_str_seginfo(svm_sc, vcpu, info1, vmexit->u.inout.in, vis); } return (false); } static int svm_npf_paging(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_W) return (VM_PROT_WRITE); return (VM_PROT_READ); } static bool svm_npf_emul_fault(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_ID) { return (false); } if (exitinfo1 & VMCB_NPF_INFO1_GPT) { return (false); } if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { return (false); } return (true); } static void svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) { struct vm_guest_paging *paging; struct vmcb_segment *seg; paging = &vmexit->u.inst_emul.paging; vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->u.inst_emul.gpa = gpa; vmexit->u.inst_emul.gla = VIE_INVALID_GLA; svm_paging_info(vmcb, paging); /* * If DecodeAssist SVM feature doesn't exist, we don't have NPF * instuction length. RIP will be calculated based on the length * determined by instruction emulation. */ vmexit->inst_length = VIE_INST_SIZE; seg = vmcb_seg(vmcb, VM_REG_GUEST_CS); switch(paging->cpu_mode) { case CPU_MODE_PROTECTED: case CPU_MODE_COMPATIBILITY: /* * Section 4.8.1 of APM2, Default Operand Size or D bit. */ vmexit->u.inst_emul.cs_d = (seg->attrib & VMCB_CS_ATTRIB_D) ? 1 : 0; break; default: vmexit->u.inst_emul.cs_d = 0; break; } } /* * Intercept access to MSR_EFER to prevent the guest from clearing the * SVM enable bit. */ static void svm_write_efer(struct svm_softc *sc, int vcpu, uint32_t edx, uint32_t eax) { struct vmcb_state *state; uint64_t oldval; state = svm_get_vmcb_state(sc, vcpu); oldval = state->efer; state->efer = (uint64_t)edx << 32 | eax | EFER_SVM; if (state->efer != oldval) { VCPU_CTR2(sc->vm, vcpu, "Guest EFER changed from %#lx to %#lx", oldval, state->efer); vcpu_set_dirty(sc, vcpu, VMCB_CACHE_CR); } } #ifdef KTR static const char * intrtype_to_str(int intr_type) { switch (intr_type) { case VMCB_EVENTINJ_TYPE_INTR: return ("hwintr"); case VMCB_EVENTINJ_TYPE_NMI: return ("nmi"); case VMCB_EVENTINJ_TYPE_INTn: return ("swintr"); case VMCB_EVENTINJ_TYPE_EXCEPTION: return ("exception"); default: panic("%s: unknown intr_type %d", __func__, intr_type); } } #endif /* * Inject an event to vcpu as described in section 15.20, "Event injection". */ static void svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector, uint32_t error, bool ec_valid) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event already pending %#lx", __func__, ctrl->eventinj)); KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d", __func__, vector)); switch (intr_type) { case VMCB_EVENTINJ_TYPE_INTR: case VMCB_EVENTINJ_TYPE_NMI: case VMCB_EVENTINJ_TYPE_INTn: break; case VMCB_EVENTINJ_TYPE_EXCEPTION: if (vector >= 0 && vector <= 31 && vector != 2) break; /* FALLTHROUGH */ default: panic("%s: invalid intr_type/vector: %d/%d", __func__, intr_type, vector); } ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID; if (ec_valid) { ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; ctrl->eventinj |= (uint64_t)error << 32; VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x", intrtype_to_str(intr_type), vector, error); } else { VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d", intrtype_to_str(intr_type), vector); } } static void svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) { struct vmcb_ctrl *ctrl; uint64_t intinfo; ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); intinfo = ctrl->exitintinfo; if (!VMCB_EXITINTINFO_VALID(intinfo)) return; /* * From APMv2, Section "Intercepts during IDT interrupt delivery" * * If a #VMEXIT happened during event delivery then record the event * that was being delivered. */ VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); } static __inline void enable_intr_window_exiting(struct svm_softc *sc, int vcpu) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); if (ctrl->v_irq == 0) { VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting"); ctrl->v_irq = 1; ctrl->v_ign_tpr = 1; vcpu_set_dirty(sc, vcpu, VMCB_CACHE_TPR); svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); } } static __inline void disable_intr_window_exiting(struct svm_softc *sc, int vcpu) { struct vmcb_ctrl *ctrl; ctrl = svm_get_vmcb_ctrl(sc, vcpu); if (ctrl->v_irq) { VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting"); ctrl->v_irq = 0; vcpu_set_dirty(sc, vcpu, VMCB_CACHE_TPR); svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); } } static int nmi_blocked(struct svm_softc *sc, int vcpu) { /* XXX need to track NMI blocking */ return (0); } static void enable_nmi_blocking(struct svm_softc *sc, int vcpu) { /* XXX enable iret intercept */ } #ifdef notyet static void clear_nmi_blocking(struct svm_softc *sc, int vcpu) { /* XXX disable iret intercept */ } #endif #ifdef KTR static const char * exit_reason_to_str(uint64_t reason) { static char reasonbuf[32]; switch (reason) { case VMCB_EXIT_INVALID: return ("invalvmcb"); case VMCB_EXIT_SHUTDOWN: return ("shutdown"); case VMCB_EXIT_NPF: return ("nptfault"); case VMCB_EXIT_PAUSE: return ("pause"); case VMCB_EXIT_HLT: return ("hlt"); case VMCB_EXIT_CPUID: return ("cpuid"); case VMCB_EXIT_IO: return ("inout"); case VMCB_EXIT_MC: return ("mchk"); case VMCB_EXIT_INTR: return ("extintr"); case VMCB_EXIT_VINTR: return ("vintr"); case VMCB_EXIT_MSR: return ("msr"); default: snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason); return (reasonbuf); } } #endif /* KTR */ /* * Determine the cause of virtual cpu exit and handle VMEXIT. * Return: false - Break vcpu execution loop and handle vmexit * in kernel or user space. * true - Continue vcpu run. */ static bool svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct svm_regctx *ctx; uint64_t code, info1, info2, val; uint32_t eax, ecx, edx; bool update_rip, loop, retu; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); ctx = svm_get_guest_regctx(svm_sc, vcpu); code = ctrl->exitcode; info1 = ctrl->exitinfo1; info2 = ctrl->exitinfo2; update_rip = true; loop = true; vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = 0; vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " "injection valid bit is set %#lx", __func__, ctrl->eventinj)); svm_save_intinfo(svm_sc, vcpu); switch (code) { - case VMCB_EXIT_VINTR: - update_rip = false; - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); + case VMCB_EXIT_VINTR: + update_rip = false; + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); + break; + case VMCB_EXIT_MC: /* Machine Check. */ + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MTRAP, 1); + vmexit->exitcode = VM_EXITCODE_MTRAP; + loop = false; + break; + case VMCB_EXIT_MSR: /* MSR access. */ + eax = state->rax; + ecx = ctx->sctx_rcx; + edx = ctx->e.g.sctx_rdx; + + if (ecx == MSR_EFER) { + KASSERT(info1 != 0, ("rdmsr(MSR_EFER) is not " + "emulated: info1(%#lx) info2(%#lx)", + info1, info2)); + svm_write_efer(svm_sc, vcpu, edx, eax); break; - case VMCB_EXIT_MC: /* Machine Check. */ - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MTRAP, 1); - vmexit->exitcode = VM_EXITCODE_MTRAP; - loop = false; - break; + } - case VMCB_EXIT_MSR: /* MSR access. */ - eax = state->rax; - ecx = ctx->sctx_rcx; - edx = ctx->e.g.sctx_rdx; + retu = false; + if (info1) { + /* VM exited because of write MSR */ + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); + vmexit->exitcode = VM_EXITCODE_WRMSR; + vmexit->u.msr.code = ecx; + val = (uint64_t)edx << 32 | eax; + if (emulate_wrmsr(svm_sc->vm, vcpu, ecx, val, &retu)) { + vmexit->u.msr.wval = val; + loop = false; + } else + loop = retu ? false : true; + VCPU_CTR3(svm_sc->vm, vcpu, + "VMEXIT WRMSR(%s handling) 0x%lx @0x%x", + loop ? "kernel" : "user", val, ecx); + } else { + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); + vmexit->exitcode = VM_EXITCODE_RDMSR; + vmexit->u.msr.code = ecx; + if (emulate_rdmsr(svm_sc->vm, vcpu, ecx, &retu)) + loop = false; + else + loop = retu ? false : true; + VCPU_CTR3(svm_sc->vm, vcpu, "SVM:VMEXIT RDMSR" + " MSB=0x%08x, LSB=%08x @0x%x", + ctx->e.g.sctx_rdx, state->rax, ecx); + } - if (ecx == MSR_EFER) { - KASSERT(info1 != 0, ("rdmsr(MSR_EFER) is not " - "emulated: info1(%#lx) info2(%#lx)", - info1, info2)); - svm_write_efer(svm_sc, vcpu, edx, eax); - break; - } - - retu = false; - if (info1) { - /* VM exited because of write MSR */ - vmm_stat_incr(svm_sc->vm, vcpu, - VMEXIT_WRMSR, 1); - vmexit->exitcode = VM_EXITCODE_WRMSR; - vmexit->u.msr.code = ecx; - val = (uint64_t)edx << 32 | eax; - if (emulate_wrmsr(svm_sc->vm, vcpu, ecx, val, - &retu)) { - vmexit->u.msr.wval = val; - loop = false; - } else - loop = retu ? false : true; - - VCPU_CTR3(svm_sc->vm, vcpu, - "VMEXIT WRMSR(%s handling) 0x%lx @0x%x", - loop ? "kernel" : "user", val, ecx); - } else { - vmm_stat_incr(svm_sc->vm, vcpu, - VMEXIT_RDMSR, 1); - vmexit->exitcode = VM_EXITCODE_RDMSR; - vmexit->u.msr.code = ecx; - if (emulate_rdmsr(svm_sc->vm, vcpu, ecx, - &retu)) { - loop = false; - } else - loop = retu ? false : true; - VCPU_CTR3(svm_sc->vm, vcpu, "SVM:VMEXIT RDMSR" - " MSB=0x%08x, LSB=%08x @0x%x", - ctx->e.g.sctx_rdx, state->rax, ecx); - } - #define MSR_AMDK8_IPM 0xc0010055 - /* - * We can't hide AMD C1E idle capability since its - * based on CPU generation, for now ignore access to - * this MSR by vcpus - * XXX: special handling of AMD C1E - Ignore. - */ - if (ecx == MSR_AMDK8_IPM) - loop = true; + /* + * We can't hide AMD C1E idle capability since its + * based on CPU generation, for now ignore access to + * this MSR by vcpus + * XXX: special handling of AMD C1E - Ignore. + */ + if (ecx == MSR_AMDK8_IPM) + loop = true; + break; + case VMCB_EXIT_INTR: + /* + * Exit on External Interrupt. + * Give host interrupt handler to run and if its guest + * interrupt, local APIC will inject event in guest. + */ + update_rip = false; + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); + break; + case VMCB_EXIT_IO: + loop = svm_handle_io(svm_sc, vcpu, vmexit); + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); + break; + case VMCB_EXIT_CPUID: + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); + loop = x86_emulate_cpuid(svm_sc->vm, vcpu, + (uint32_t *)&state->rax, + (uint32_t *)&ctx->sctx_rbx, + (uint32_t *)&ctx->sctx_rcx, + (uint32_t *)&ctx->e.g.sctx_rdx); + break; + case VMCB_EXIT_HLT: + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); + vmexit->exitcode = VM_EXITCODE_HLT; + vmexit->u.hlt.rflags = state->rflags; + loop = false; + break; + case VMCB_EXIT_PAUSE: + vmexit->exitcode = VM_EXITCODE_PAUSE; + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); + loop = false; + break; + case VMCB_EXIT_NPF: + loop = false; + update_rip = false; + if (info1 & VMCB_NPF_INFO1_RSV) { + VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with " + "reserved bits set: info1(%#lx) info2(%#lx)", + info1, info2); break; + } - case VMCB_EXIT_INTR: - /* - * Exit on External Interrupt. - * Give host interrupt handler to run and if its guest - * interrupt, local APIC will inject event in guest. - */ - update_rip = false; - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); - break; - - case VMCB_EXIT_IO: - loop = svm_handle_io(svm_sc, vcpu, vmexit); - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); - break; - - case VMCB_EXIT_CPUID: - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); - (void)x86_emulate_cpuid(svm_sc->vm, vcpu, - (uint32_t *)&state->rax, - (uint32_t *)&ctx->sctx_rbx, - (uint32_t *)&ctx->sctx_rcx, - (uint32_t *)&ctx->e.g.sctx_rdx); - break; - - case VMCB_EXIT_HLT: - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); - vmexit->exitcode = VM_EXITCODE_HLT; - vmexit->u.hlt.rflags = state->rflags; - loop = false; - break; - - case VMCB_EXIT_PAUSE: - vmexit->exitcode = VM_EXITCODE_PAUSE; - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); - - break; - - case VMCB_EXIT_NPF: - loop = false; - update_rip = false; - - if (info1 & VMCB_NPF_INFO1_RSV) { - VCPU_CTR2(svm_sc->vm, vcpu, "SVM_ERR:NPT" - " reserved bit is set," - "INFO1:0x%lx INFO2:0x%lx .\n", - info1, info2); - break; - } - - /* EXITINFO2 has the physical fault address (GPA). */ - if(vm_mem_allocated(svm_sc->vm, info2)) { - vmexit->exitcode = VM_EXITCODE_PAGING; - vmexit->u.paging.gpa = info2; - vmexit->u.paging.fault_type = - svm_npf_paging(info1); - vmm_stat_incr(svm_sc->vm, vcpu, - VMEXIT_NESTED_FAULT, 1); - VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " - "on gpa %#lx/%#lx at rip %#lx", - info2, info1, state->rip); - } else if (svm_npf_emul_fault(info1)) { - svm_handle_inst_emul(svm_get_vmcb(svm_sc, vcpu), - info2, vmexit); - vmm_stat_incr(svm_sc->vm, vcpu, - VMEXIT_INST_EMUL, 1); - VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " - "for gpa %#lx/%#lx at rip %#lx", - info2, info1, state->rip); - } - break; - - case VMCB_EXIT_SHUTDOWN: - loop = false; - break; - - case VMCB_EXIT_INVALID: - loop = false; - break; - - default: - /* Return to user space. */ - loop = false; - update_rip = false; - VCPU_CTR3(svm_sc->vm, vcpu, "VMEXIT=0x%lx" - " EXITINFO1: 0x%lx EXITINFO2:0x%lx\n", - ctrl->exitcode, info1, info2); - VCPU_CTR3(svm_sc->vm, vcpu, "SVM:RIP: 0x%lx nRIP:0x%lx" - " Inst decoder len:%d\n", state->rip, - ctrl->nrip, ctrl->inst_decode_size); - vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); - break; + /* EXITINFO2 has the physical fault address (GPA). */ + if(vm_mem_allocated(svm_sc->vm, info2)) { + vmexit->exitcode = VM_EXITCODE_PAGING; + vmexit->u.paging.gpa = info2; + vmexit->u.paging.fault_type = svm_npf_paging(info1); + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); + VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault " + "on gpa %#lx/%#lx at rip %#lx", + info2, info1, state->rip); + } else if (svm_npf_emul_fault(info1)) { + svm_handle_inst_emul(svm_get_vmcb(svm_sc, vcpu), + info2, vmexit); + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); + VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault " + "for gpa %#lx/%#lx at rip %#lx", + info2, info1, state->rip); + } + break; + case VMCB_EXIT_SHUTDOWN: + loop = false; + break; + case VMCB_EXIT_INVALID: + loop = false; + break; + default: + /* Return to user space. */ + loop = false; + update_rip = false; + VCPU_CTR3(svm_sc->vm, vcpu, "VMEXIT=0x%lx" + " EXITINFO1: 0x%lx EXITINFO2:0x%lx\n", + ctrl->exitcode, info1, info2); + VCPU_CTR3(svm_sc->vm, vcpu, "SVM:RIP: 0x%lx nRIP:0x%lx" + " Inst decoder len:%d\n", state->rip, + ctrl->nrip, ctrl->inst_decode_size); + vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); + break; } VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx nrip %#lx", loop ? "handled" : "unhandled", exit_reason_to_str(code), state->rip, update_rip ? ctrl->nrip : state->rip); vmexit->rip = state->rip; if (update_rip) { if (ctrl->nrip == 0) { VCPU_CTR1(svm_sc->vm, vcpu, "SVM_ERR:nRIP is not set " "for RIP0x%lx.\n", state->rip); vmexit->exitcode = VM_EXITCODE_VMX; } else vmexit->rip = ctrl->nrip; } /* If vcpu execution is continued, update RIP. */ if (loop) { state->rip = vmexit->rip; } return (loop); } static void svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) { uint64_t intinfo; if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) return; KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " "valid: %#lx", __func__, intinfo)); svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo), VMCB_EXITINTINFO_VECTOR(intinfo), VMCB_EXITINTINFO_EC(intinfo), VMCB_EXITINTINFO_EC_VALID(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); } /* * Inject event to virtual cpu. */ static void svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; int extint_pending; int vector, need_intr_window; state = svm_get_vmcb_state(sc, vcpu); ctrl = svm_get_vmcb_ctrl(sc, vcpu); need_intr_window = 0; /* * Inject pending events or exceptions for this vcpu. * * An event might be pending because the previous #VMEXIT happened * during event delivery (i.e. ctrl->exitintinfo). * * An event might also be pending because an exception was injected * by the hypervisor (e.g. #PF during instruction emulation). */ svm_inj_intinfo(sc, vcpu); /* NMI event has priority over interrupts. */ if (vm_nmi_pending(sc->vm, vcpu)) { if (nmi_blocked(sc, vcpu)) { /* * Can't inject another NMI if the guest has not * yet executed an "iret" after the last NMI. */ VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due " "to NMI-blocking"); } else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { /* * If there is already an exception/interrupt pending * then defer the NMI until after that. */ VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to " "eventinj %#lx", ctrl->eventinj); /* * Use self-IPI to trigger a VM-exit as soon as * possible after the event injection is completed. * * This works only if the external interrupt exiting * is at a lower priority than the event injection. * * Although not explicitly specified in APMv2 the * relative priorities were verified empirically. */ ipi_cpu(curcpu, IPI_AST); /* XXX vmm_ipinum? */ } else { vm_nmi_clear(sc->vm, vcpu); /* Inject NMI, vector number is not used */ svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI, IDT_NMI, 0, false); /* virtual NMI blocking is now in effect */ enable_nmi_blocking(sc, vcpu); VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI"); } } extint_pending = vm_extint_pending(sc->vm, vcpu); if (!extint_pending) { /* Ask the local apic for a vector to inject */ if (!vlapic_pending_intr(vlapic, &vector)) { goto done; /* nothing to inject */ } KASSERT(vector >= 16 && vector <= 255, ("invalid vector %d from local APIC", vector)); } else { /* Ask the legacy pic for a vector to inject */ vatpic_pending_intr(sc->vm, &vector); KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d from local APIC", vector)); } /* * If the guest has disabled interrupts or is in an interrupt shadow * then we cannot inject the pending interrupt. */ if ((state->rflags & PSL_I) == 0) { VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " "rflags %#lx", vector, state->rflags); need_intr_window = 1; goto done; } if (ctrl->intr_shadow) { VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to " "interrupt shadow", vector); need_intr_window = 1; goto done; } if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to " "eventinj %#lx", vector, ctrl->eventinj); need_intr_window = 1; goto done; } svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); if (!extint_pending) { /* Update the Local APIC ISR */ vlapic_intr_accepted(vlapic, vector); } else { vm_extint_clear(sc->vm, vcpu); vatpic_intr_accepted(sc->vm, vector); /* * Force a VM-exit as soon as the vcpu is ready to accept * another interrupt. This is done because the PIC might * have another vector that it wants to inject. Also, if * the vlapic has a pending interrupt that was preempted * by the ExtInt then it allows us to inject the APIC * vector as soon as possible. */ need_intr_window = 1; } done: if (need_intr_window) { /* * We use V_IRQ in conjunction with the VINTR intercept to * trap into the hypervisor as soon as a virtual interrupt * can be delivered. * * Since injected events are not subject to intercept checks * we need to ensure that the V_IRQ is not actually going to * be delivered on VM entry. The KASSERT below enforces this. */ KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || (state->rflags & PSL_I) == 0 || ctrl->intr_shadow, ("Bogus intr_window_exiting: eventinj (%#lx), " "intr_shadow (%u), rflags (%#lx)", ctrl->eventinj, ctrl->intr_shadow, state->rflags)); enable_intr_window_exiting(sc, vcpu); } else { disable_intr_window_exiting(sc, vcpu); } } static __inline void restore_host_tss(void) { struct system_segment_descriptor *tss_sd; /* * The TSS descriptor was in use prior to launching the guest so it * has been marked busy. * * 'ltr' requires the descriptor to be marked available so change the * type to "64-bit available TSS". */ tss_sd = PCPU_GET(tss); tss_sd->sd_type = SDT_SYSTSS; ltr(GSEL(GPROC0_SEL, SEL_KPL)); } static void check_asid(struct svm_softc *sc, int vcpuid, pmap_t pmap, u_int thiscpu) { struct svm_vcpu *vcpustate; struct vmcb_ctrl *ctrl; long eptgen; bool alloc_asid; KASSERT(CPU_ISSET(thiscpu, &pmap->pm_active), ("%s: nested pmap not " "active on cpu %u", __func__, thiscpu)); vcpustate = svm_get_vcpu(sc, vcpuid); ctrl = svm_get_vmcb_ctrl(sc, vcpuid); /* * The TLB entries associated with the vcpu's ASID are not valid * if either of the following conditions is true: * * 1. The vcpu's ASID generation is different than the host cpu's * ASID generation. This happens when the vcpu migrates to a new * host cpu. It can also happen when the number of vcpus executing * on a host cpu is greater than the number of ASIDs available. * * 2. The pmap generation number is different than the value cached in * the 'vcpustate'. This happens when the host invalidates pages * belonging to the guest. * * asidgen eptgen Action * mismatch mismatch * 0 0 (a) * 0 1 (b1) or (b2) * 1 0 (c) * 1 1 (d) * * (a) There is no mismatch in eptgen or ASID generation and therefore * no further action is needed. * * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is * retained and the TLB entries associated with this ASID * are flushed by VMRUN. * * (b2) If the cpu does not support FlushByAsid then a new ASID is * allocated. * * (c) A new ASID is allocated. * * (d) A new ASID is allocated. */ alloc_asid = false; eptgen = pmap->pm_eptgen; ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING; if (vcpustate->asid.gen != asid[thiscpu].gen) { alloc_asid = true; /* (c) and (d) */ } else if (vcpustate->eptgen != eptgen) { if (flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* (b1) */ else alloc_asid = true; /* (b2) */ } else { /* * This is the common case (a). */ KASSERT(!alloc_asid, ("ASID allocation not necessary")); KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING, ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl)); } if (alloc_asid) { if (++asid[thiscpu].num >= nasid) { asid[thiscpu].num = 1; if (++asid[thiscpu].gen == 0) asid[thiscpu].gen = 1; /* * If this cpu does not support "flush-by-asid" * then flush the entire TLB on a generation * bump. Subsequent ASID allocation in this * generation can be done without a TLB flush. */ if (!flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL; } vcpustate->asid.gen = asid[thiscpu].gen; vcpustate->asid.num = asid[thiscpu].num; ctrl->asid = vcpustate->asid.num; vcpu_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); /* * If this cpu supports "flush-by-asid" then the TLB * was not flushed after the generation bump. The TLB * is flushed selectively after every new ASID allocation. */ if (flush_by_asid()) ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; } vcpustate->eptgen = eptgen; KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero")); KASSERT(ctrl->asid == vcpustate->asid.num, ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num)); } /* * Start vcpu with specified RIP. */ static int svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, void *rend_cookie, void *suspended_cookie) { struct svm_regctx *hctx, *gctx; struct svm_softc *svm_sc; struct svm_vcpu *vcpustate; struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct vm_exit *vmexit; struct vlapic *vlapic; struct vm *vm; uint64_t vmcb_pa; u_int thiscpu; bool loop; /* Continue vcpu execution loop. */ loop = true; svm_sc = arg; vm = svm_sc->vm; vcpustate = svm_get_vcpu(svm_sc, vcpu); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); vmexit = vm_exitinfo(vm, vcpu); vlapic = vm_lapic(vm, vcpu); /* * Stash 'curcpu' on the stack as 'thiscpu'. * * The per-cpu data area is not accessible until MSR_GSBASE is restored * after the #VMEXIT. Since VMRUN is executed inside a critical section * 'curcpu' and 'thiscpu' are guaranteed to identical. */ thiscpu = curcpu; gctx = svm_get_guest_regctx(svm_sc, vcpu); hctx = &host_ctx[thiscpu]; vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; if (vcpustate->lastcpu != thiscpu) { /* * Force new ASID allocation by invalidating the generation. */ vcpustate->asid.gen = 0; /* * Invalidate the VMCB state cache by marking all fields dirty. */ vcpu_set_dirty(svm_sc, vcpu, 0xffffffff); /* * XXX * Setting 'vcpustate->lastcpu' here is bit premature because * we may return from this function without actually executing * the VMRUN instruction. This could happen if a rendezvous * or an AST is pending on the first time through the loop. * * This works for now but any new side-effects of vcpu * migration should take this case into account. */ vcpustate->lastcpu = thiscpu; vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); } /* Update Guest RIP */ state->rip = rip; do { vmexit->inst_length = 0; /* * Disable global interrupts to guarantee atomicity during * loading of guest state. This includes not only the state * loaded by the "vmrun" instruction but also software state * maintained by the hypervisor: suspended and rendezvous * state, NPT generation number, vlapic interrupts etc. */ disable_gintr(); if (vcpu_suspended(suspended_cookie)) { enable_gintr(); vm_exit_suspended(vm, vcpu, state->rip); break; } if (vcpu_rendezvous_pending(rend_cookie)) { enable_gintr(); vm_exit_rendezvous(vm, vcpu, state->rip); break; } /* We are asked to give the cpu by scheduler. */ if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { enable_gintr(); vm_exit_astpending(vm, vcpu, state->rip); break; } svm_inj_interrupts(svm_sc, vcpu, vlapic); /* Activate the nested pmap on 'thiscpu' */ CPU_SET_ATOMIC_ACQ(thiscpu, &pmap->pm_active); /* * Check the pmap generation and the ASID generation to * ensure that the vcpu does not use stale TLB mappings. */ check_asid(svm_sc, vcpu, pmap, thiscpu); ctrl->vmcb_clean = VMCB_CACHE_DEFAULT & ~vcpustate->dirty; vcpustate->dirty = 0; VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean); /* Launch Virtual Machine. */ VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip); svm_launch(vmcb_pa, gctx, hctx); CPU_CLR_ATOMIC(thiscpu, &pmap->pm_active); /* * Restore MSR_GSBASE to point to the pcpu data area. * * Note that accesses done via PCPU_GET/PCPU_SET will work * only after MSR_GSBASE is restored. * * Also note that we don't bother restoring MSR_KGSBASE * since it is not used in the kernel and will be restored * when the VMRUN ioctl returns to userspace. */ wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[thiscpu]); KASSERT(curcpu == thiscpu, ("thiscpu/curcpu (%u/%u) mismatch", thiscpu, curcpu)); /* * The host GDTR and IDTR is saved by VMRUN and restored * automatically on #VMEXIT. However, the host TSS needs * to be restored explicitly. */ restore_host_tss(); /* #VMEXIT disables interrupts so re-enable them here. */ enable_gintr(); /* Handle #VMEXIT and if required return to user space. */ loop = svm_vmexit(svm_sc, vcpu, vmexit); } while (loop); return (0); } /* * Cleanup for virtual machine. */ static void svm_vmcleanup(void *arg) { struct svm_softc *svm_sc; svm_sc = arg; VCPU_CTR0(svm_sc->vm, 0, "SVM:cleanup\n"); free(svm_sc, M_SVM); } /* * Return pointer to hypervisor saved register state. */ static register_t * swctx_regptr(struct svm_regctx *regctx, int reg) { switch (reg) { case VM_REG_GUEST_RBX: return (®ctx->sctx_rbx); case VM_REG_GUEST_RCX: return (®ctx->sctx_rcx); case VM_REG_GUEST_RDX: return (®ctx->e.g.sctx_rdx); case VM_REG_GUEST_RDI: return (®ctx->e.g.sctx_rdi); case VM_REG_GUEST_RSI: return (®ctx->e.g.sctx_rsi); case VM_REG_GUEST_RBP: return (®ctx->sctx_rbp); case VM_REG_GUEST_R8: return (®ctx->sctx_r8); case VM_REG_GUEST_R9: return (®ctx->sctx_r9); case VM_REG_GUEST_R10: return (®ctx->sctx_r10); case VM_REG_GUEST_R11: return (®ctx->sctx_r11); case VM_REG_GUEST_R12: return (®ctx->sctx_r12); case VM_REG_GUEST_R13: return (®ctx->sctx_r13); case VM_REG_GUEST_R14: return (®ctx->sctx_r14); case VM_REG_GUEST_R15: return (®ctx->sctx_r15); default: ERR("Unknown register requested, reg=%d.\n", reg); break; } return (NULL); } /* * Interface to read guest registers. * This can be SVM h/w saved or hypervisor saved register. */ static int svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) { struct svm_softc *svm_sc; struct vmcb *vmcb; register_t *reg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); if (vmcb_read(vmcb, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *val = *reg; return (0); } ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident); return (EINVAL); } /* * Interface to write to guest registers. * This can be SVM h/w saved or hypervisor saved register. */ static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val) { struct svm_softc *svm_sc; struct vmcb *vmcb; register_t *reg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); if (vmcb_write(vmcb, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *reg = val; return (0); } /* * XXX deal with CR3 and invalidate TLB entries tagged with the * vcpu's ASID. This needs to be treated differently depending on * whether 'running' is true/false. */ ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident); return (EINVAL); } /* * Inteface to set various descriptors. */ static int svm_setdesc(void *arg, int vcpu, int type, struct seg_desc *desc) { struct svm_softc *svm_sc; struct vmcb *vmcb; struct vmcb_segment *seg; uint16_t attrib; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); VCPU_CTR1(svm_sc->vm, vcpu, "SVM:set_desc: Type%d\n", type); seg = vmcb_seg(vmcb, type); if (seg == NULL) { ERR("SVM_ERR:Unsupported segment type%d\n", type); return (EINVAL); } /* Map seg_desc access to VMCB attribute format.*/ attrib = ((desc->access & 0xF000) >> 4) | (desc->access & 0xFF); VCPU_CTR3(svm_sc->vm, vcpu, "SVM:[sel %d attribute 0x%x limit:0x%x]\n", type, desc->access, desc->limit); seg->attrib = attrib; seg->base = desc->base; seg->limit = desc->limit; return (0); } /* * Interface to get guest descriptor. */ static int svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc) { struct svm_softc *svm_sc; struct vmcb_segment *seg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_desc: Type%d\n", type); seg = vmcb_seg(svm_get_vmcb(svm_sc, vcpu), type); if (!seg) { ERR("SVM_ERR:Unsupported segment type%d\n", type); return (EINVAL); } /* Map seg_desc access to VMCB attribute format.*/ desc->access = ((seg->attrib & 0xF00) << 4) | (seg->attrib & 0xFF); desc->base = seg->base; desc->limit = seg->limit; /* * VT-x uses bit 16 (Unusable) to indicate a segment that has been * loaded with a NULL segment selector. The 'desc->access' field is * interpreted in the VT-x format by the processor-independent code. * * SVM uses the 'P' bit to convey the same information so convert it * into the VT-x format. For more details refer to section * "Segment State in the VMCB" in APMv2. */ if (type == VM_REG_GUEST_CS && type == VM_REG_GUEST_TR) desc->access |= 0x80; /* CS and TS always present */ if (!(desc->access & 0x80)) desc->access |= 0x10000; /* Unusable segment */ return (0); } static int svm_setcap(void *arg, int vcpu, int type, int val) { struct svm_softc *sc; int error; sc = arg; error = 0; switch (type) { case VM_CAP_HALT_EXIT: svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT, val); break; case VM_CAP_PAUSE_EXIT: svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PAUSE, val); break; case VM_CAP_UNRESTRICTED_GUEST: /* Unrestricted guest execution cannot be disabled in SVM */ if (val == 0) error = EINVAL; break; default: error = ENOENT; break; } return (error); } static int svm_getcap(void *arg, int vcpu, int type, int *retval) { struct svm_softc *sc; int error; sc = arg; error = 0; switch (type) { case VM_CAP_HALT_EXIT: *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT); break; case VM_CAP_PAUSE_EXIT: *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_PAUSE); break; case VM_CAP_UNRESTRICTED_GUEST: *retval = 1; /* unrestricted guest is always enabled */ break; default: error = ENOENT; break; } return (error); } static struct vlapic * svm_vlapic_init(void *arg, int vcpuid) { struct svm_softc *svm_sc; struct vlapic *vlapic; svm_sc = arg; vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); vlapic->vm = svm_sc->vm; vlapic->vcpuid = vcpuid; vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; vlapic_init(vlapic); return (vlapic); } static void svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) { vlapic_cleanup(vlapic); free(vlapic, M_SVM_VLAPIC); } struct vmm_ops vmm_ops_amd = { svm_init, svm_cleanup, svm_restore, svm_vminit, svm_vmrun, svm_vmcleanup, svm_getreg, svm_setreg, svm_getdesc, svm_setdesc, svm_getcap, svm_setcap, svm_npt_alloc, svm_npt_free, svm_vlapic_init, svm_vlapic_cleanup };