Index: head/sys/cam/ata/ata_da.c =================================================================== --- head/sys/cam/ata/ata_da.c (revision 249105) +++ head/sys/cam/ata/ata_da.c (revision 249106) @@ -1,1976 +1,1976 @@ /*- * Copyright (c) 2009 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ada.h" #include "opt_ata.h" #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #ifndef _KERNEL #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #include /* geometry translation */ #ifdef _KERNEL #define ATA_MAX_28BIT_LBA 268435455UL typedef enum { ADA_STATE_RAHEAD, ADA_STATE_WCACHE, ADA_STATE_NORMAL } ada_state; typedef enum { ADA_FLAG_PACK_INVALID = 0x001, ADA_FLAG_CAN_48BIT = 0x002, ADA_FLAG_CAN_FLUSHCACHE = 0x004, ADA_FLAG_CAN_NCQ = 0x008, ADA_FLAG_CAN_DMA = 0x010, ADA_FLAG_NEED_OTAG = 0x020, ADA_FLAG_WENT_IDLE = 0x040, ADA_FLAG_CAN_TRIM = 0x080, ADA_FLAG_OPEN = 0x100, ADA_FLAG_SCTX_INIT = 0x200, ADA_FLAG_CAN_CFA = 0x400, ADA_FLAG_CAN_POWERMGT = 0x800 } ada_flags; typedef enum { ADA_Q_NONE = 0x00, ADA_Q_4K = 0x01, } ada_quirks; typedef enum { ADA_CCB_RAHEAD = 0x01, ADA_CCB_WCACHE = 0x02, ADA_CCB_BUFFER_IO = 0x03, ADA_CCB_WAITING = 0x04, ADA_CCB_DUMP = 0x05, ADA_CCB_TRIM = 0x06, ADA_CCB_TYPE_MASK = 0x0F, } ada_ccb_state; /* Offsets into our private area for storing information */ #define ccb_state ppriv_field0 #define ccb_bp ppriv_ptr1 struct disk_params { u_int8_t heads; u_int8_t secs_per_track; u_int32_t cylinders; u_int32_t secsize; /* Number of bytes/logical sector */ u_int64_t sectors; /* Total number sectors */ }; #define TRIM_MAX_BLOCKS 8 #define TRIM_MAX_RANGES (TRIM_MAX_BLOCKS * 64) #define TRIM_MAX_BIOS (TRIM_MAX_RANGES * 4) struct trim_request { uint8_t data[TRIM_MAX_RANGES * 8]; struct bio *bps[TRIM_MAX_BIOS]; }; struct ada_softc { struct bio_queue_head bio_queue; struct bio_queue_head trim_queue; ada_state state; ada_flags flags; ada_quirks quirks; int sort_io_queue; int ordered_tag_count; int outstanding_cmds; int trim_max_ranges; int trim_running; int read_ahead; int write_cache; #ifdef ADA_TEST_FAILURE int force_read_error; int force_write_error; int periodic_read_error; int periodic_read_count; #endif struct disk_params params; struct disk *disk; struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; struct callout sendordered_c; struct trim_request trim_req; }; struct ada_quirk_entry { struct scsi_inquiry_pattern inq_pat; ada_quirks quirks; }; static struct ada_quirk_entry ada_quirk_table[] = { { /* Hitachi Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "Hitachi H??????????E3*", "*" }, /*quirks*/ADA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD155UI*", "*" }, /*quirks*/ADA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "SAMSUNG HD204UI*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST????DL*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Barracuda Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST???DM*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Barracuda Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST????DM*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9500423AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9500424AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9640423AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9640424AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750420AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750422AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST9750423AS*", "*" }, /*quirks*/ADA_Q_4K }, { /* Seagate Momentus Thin Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "ST???LT*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????RS*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD????RX*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD??????RS*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD??????RX*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD???PKT*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD?????PKT*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD???PVT*", "*" }, /*quirks*/ADA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "WDC WD?????PVT*", "*" }, /*quirks*/ADA_Q_4K }, { /* * Corsair Force 2 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair CSSD-F*", "*" }, /*quirks*/ADA_Q_4K }, { /* * Corsair Force 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair Force 3*", "*" }, /*quirks*/ADA_Q_4K }, { /* * OCZ Agility 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-AGILITY3*", "*" }, /*quirks*/ADA_Q_4K }, { /* * OCZ Vertex 2 SSDs (inc pro series) * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ?VERTEX2*", "*" }, /*quirks*/ADA_Q_4K }, { /* * OCZ Vertex 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-VERTEX3*", "*" }, /*quirks*/ADA_Q_4K }, { /* * SuperTalent TeraDrive CT SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "FTM??CT25H*", "*" }, /*quirks*/ADA_Q_4K }, { /* * Crucial RealSSD C300 SSDs * 4k optimised * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "C300-CTFDDAC???MAG*", "*" }, /*quirks*/ADA_Q_4K }, { /* * XceedIOPS SATA SSDs * 4k optimised * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "SG9XCS2D*", "*" }, /*quirks*/ADA_Q_4K }, { /* * Intel 330 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "INTEL SSDSC2ct*", "*" }, /*quirks*/ADA_Q_4K }, { /* * OCZ Deneva R Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "DENRSTE251M45*", "*" }, /*quirks*/ADA_Q_4K }, { /* * Kingston HyperX 3k SSDs * 4k optimised & trim only works in 4k requests + 4k aligned * Submitted by: Steven Hartland * PR: 169974 */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "KINGSTON SH103S3*", "*" }, /*quirks*/ADA_Q_4K }, { /* Default */ { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, /*vendor*/"*", /*product*/"*", /*revision*/"*" }, /*quirks*/0 }, }; static disk_strategy_t adastrategy; static dumper_t adadump; static periph_init_t adainit; static void adaasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void adasysctlinit(void *context, int pending); static periph_ctor_t adaregister; static periph_dtor_t adacleanup; static periph_start_t adastart; static periph_oninv_t adaoninvalidate; static void adadone(struct cam_periph *periph, union ccb *done_ccb); static int adaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static void adagetparams(struct cam_periph *periph, struct ccb_getdev *cgd); static timeout_t adasendorderedtag; static void adashutdown(void *arg, int howto); static void adasuspend(void *arg); static void adaresume(void *arg); #ifndef ADA_DEFAULT_LEGACY_ALIASES #define ADA_DEFAULT_LEGACY_ALIASES 1 #endif #ifndef ADA_DEFAULT_TIMEOUT #define ADA_DEFAULT_TIMEOUT 30 /* Timeout in seconds */ #endif #ifndef ADA_DEFAULT_RETRY #define ADA_DEFAULT_RETRY 4 #endif #ifndef ADA_DEFAULT_SEND_ORDERED #define ADA_DEFAULT_SEND_ORDERED 1 #endif #ifndef ADA_DEFAULT_SPINDOWN_SHUTDOWN #define ADA_DEFAULT_SPINDOWN_SHUTDOWN 1 #endif #ifndef ADA_DEFAULT_SPINDOWN_SUSPEND #define ADA_DEFAULT_SPINDOWN_SUSPEND 1 #endif #ifndef ADA_DEFAULT_READ_AHEAD #define ADA_DEFAULT_READ_AHEAD 1 #endif #ifndef ADA_DEFAULT_WRITE_CACHE #define ADA_DEFAULT_WRITE_CACHE 1 #endif #define ADA_RA (softc->read_ahead >= 0 ? \ softc->read_ahead : ada_read_ahead) #define ADA_WC (softc->write_cache >= 0 ? \ softc->write_cache : ada_write_cache) #define ADA_SIO (softc->sort_io_queue >= 0 ? \ softc->sort_io_queue : cam_sort_io_queues) /* * Most platforms map firmware geometry to actual, but some don't. If * not overridden, default to nothing. */ #ifndef ata_disk_firmware_geom_adjust #define ata_disk_firmware_geom_adjust(disk) #endif static int ada_legacy_aliases = ADA_DEFAULT_LEGACY_ALIASES; static int ada_retry_count = ADA_DEFAULT_RETRY; static int ada_default_timeout = ADA_DEFAULT_TIMEOUT; static int ada_send_ordered = ADA_DEFAULT_SEND_ORDERED; static int ada_spindown_shutdown = ADA_DEFAULT_SPINDOWN_SHUTDOWN; static int ada_spindown_suspend = ADA_DEFAULT_SPINDOWN_SUSPEND; static int ada_read_ahead = ADA_DEFAULT_READ_AHEAD; static int ada_write_cache = ADA_DEFAULT_WRITE_CACHE; static SYSCTL_NODE(_kern_cam, OID_AUTO, ada, CTLFLAG_RD, 0, "CAM Direct Access Disk driver"); SYSCTL_INT(_kern_cam_ada, OID_AUTO, legacy_aliases, CTLFLAG_RW, &ada_legacy_aliases, 0, "Create legacy-like device aliases"); TUNABLE_INT("kern.cam.ada.legacy_aliases", &ada_legacy_aliases); SYSCTL_INT(_kern_cam_ada, OID_AUTO, retry_count, CTLFLAG_RW, &ada_retry_count, 0, "Normal I/O retry count"); TUNABLE_INT("kern.cam.ada.retry_count", &ada_retry_count); SYSCTL_INT(_kern_cam_ada, OID_AUTO, default_timeout, CTLFLAG_RW, &ada_default_timeout, 0, "Normal I/O timeout (in seconds)"); TUNABLE_INT("kern.cam.ada.default_timeout", &ada_default_timeout); SYSCTL_INT(_kern_cam_ada, OID_AUTO, send_ordered, CTLFLAG_RW, &ada_send_ordered, 0, "Send Ordered Tags"); TUNABLE_INT("kern.cam.ada.send_ordered", &ada_send_ordered); SYSCTL_INT(_kern_cam_ada, OID_AUTO, spindown_shutdown, CTLFLAG_RW, &ada_spindown_shutdown, 0, "Spin down upon shutdown"); TUNABLE_INT("kern.cam.ada.spindown_shutdown", &ada_spindown_shutdown); SYSCTL_INT(_kern_cam_ada, OID_AUTO, spindown_suspend, CTLFLAG_RW, &ada_spindown_suspend, 0, "Spin down upon suspend"); TUNABLE_INT("kern.cam.ada.spindown_suspend", &ada_spindown_suspend); SYSCTL_INT(_kern_cam_ada, OID_AUTO, read_ahead, CTLFLAG_RW, &ada_read_ahead, 0, "Enable disk read-ahead"); TUNABLE_INT("kern.cam.ada.read_ahead", &ada_read_ahead); SYSCTL_INT(_kern_cam_ada, OID_AUTO, write_cache, CTLFLAG_RW, &ada_write_cache, 0, "Enable disk write cache"); TUNABLE_INT("kern.cam.ada.write_cache", &ada_write_cache); /* * ADA_ORDEREDTAG_INTERVAL determines how often, relative * to the default timeout, we check to see whether an ordered * tagged transaction is appropriate to prevent simple tag * starvation. Since we'd like to ensure that there is at least * 1/2 of the timeout length left for a starved transaction to * complete after we've sent an ordered tag, we must poll at least * four times in every timeout period. This takes care of the worst * case where a starved transaction starts during an interval that * meets the requirement "don't send an ordered tag" test so it takes * us two intervals to determine that a tag must be sent. */ #ifndef ADA_ORDEREDTAG_INTERVAL #define ADA_ORDEREDTAG_INTERVAL 4 #endif static struct periph_driver adadriver = { adainit, "ada", TAILQ_HEAD_INITIALIZER(adadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(ada, adadriver); static MALLOC_DEFINE(M_ATADA, "ata_da", "ata_da buffers"); static int adaopen(struct disk *dp) { struct cam_periph *periph; struct ada_softc *softc; int error; periph = (struct cam_periph *)dp->d_drv1; if (cam_periph_acquire(periph) != CAM_REQ_CMP) { return(ENXIO); } cam_periph_lock(periph); if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } softc = (struct ada_softc *)periph->softc; softc->flags |= ADA_FLAG_OPEN; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("adaopen\n")); if ((softc->flags & ADA_FLAG_PACK_INVALID) != 0) { /* Invalidate our pack information. */ softc->flags &= ~ADA_FLAG_PACK_INVALID; } cam_periph_unhold(periph); cam_periph_unlock(periph); return (0); } static int adaclose(struct disk *dp) { struct cam_periph *periph; struct ada_softc *softc; union ccb *ccb; periph = (struct cam_periph *)dp->d_drv1; cam_periph_lock(periph); if (cam_periph_hold(periph, PRIBIO) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (0); } softc = (struct ada_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("adaclose\n")); /* We only sync the cache if the drive is capable of it. */ if ((softc->flags & ADA_FLAG_CAN_FLUSHCACHE) != 0 && (softc->flags & ADA_FLAG_PACK_INVALID) == 0) { ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); cam_fill_ataio(&ccb->ataio, 1, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (softc->flags & ADA_FLAG_CAN_48BIT) ata_48bit_cmd(&ccb->ataio, ATA_FLUSHCACHE48, 0, 0, 0); else ata_28bit_cmd(&ccb->ataio, ATA_FLUSHCACHE, 0, 0, 0); cam_periph_runccb(ccb, adaerror, /*cam_flags*/0, /*sense_flags*/0, softc->disk->d_devstat); if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) xpt_print(periph->path, "Synchronize cache failed\n"); xpt_release_ccb(ccb); } softc->flags &= ~ADA_FLAG_OPEN; cam_periph_unhold(periph); cam_periph_unlock(periph); cam_periph_release(periph); return (0); } static void adaschedule(struct cam_periph *periph) { struct ada_softc *softc = (struct ada_softc *)periph->softc; uint32_t prio; /* Check if cam_periph_getccb() was called. */ prio = periph->immediate_priority; /* Check if we have more work to do. */ if (bioq_first(&softc->bio_queue) || (!softc->trim_running && bioq_first(&softc->trim_queue))) { prio = CAM_PRIORITY_NORMAL; } /* Schedule CCB if any of above is true. */ if (prio != CAM_PRIORITY_NONE) xpt_schedule(periph, prio); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void adastrategy(struct bio *bp) { struct cam_periph *periph; struct ada_softc *softc; periph = (struct cam_periph *)bp->bio_disk->d_drv1; softc = (struct ada_softc *)periph->softc; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("adastrategy(%p)\n", bp)); /* * If the device has been made invalid, error out */ if ((softc->flags & ADA_FLAG_PACK_INVALID)) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } /* * Place it in the queue of disk activities for this disk */ if (bp->bio_cmd == BIO_DELETE && (softc->flags & ADA_FLAG_CAN_TRIM)) { if (ADA_SIO) bioq_disksort(&softc->trim_queue, bp); else bioq_insert_tail(&softc->trim_queue, bp); } else { if (ADA_SIO) bioq_disksort(&softc->bio_queue, bp); else bioq_insert_tail(&softc->bio_queue, bp); } /* * Schedule ourselves for performing the work. */ adaschedule(periph); cam_periph_unlock(periph); return; } static int adadump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct cam_periph *periph; struct ada_softc *softc; u_int secsize; union ccb ccb; struct disk *dp; uint64_t lba; uint16_t count; int error = 0; dp = arg; periph = dp->d_drv1; softc = (struct ada_softc *)periph->softc; cam_periph_lock(periph); secsize = softc->params.secsize; lba = offset / secsize; count = length / secsize; if ((softc->flags & ADA_FLAG_PACK_INVALID) != 0) { cam_periph_unlock(periph); return (ENXIO); } if (length > 0) { xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); ccb.ccb_h.ccb_state = ADA_CCB_DUMP; cam_fill_ataio(&ccb.ataio, 0, adadone, CAM_DIR_OUT, 0, (u_int8_t *) virtual, length, ada_default_timeout*1000); if ((softc->flags & ADA_FLAG_CAN_48BIT) && (lba + count >= ATA_MAX_28BIT_LBA || count >= 256)) { ata_48bit_cmd(&ccb.ataio, ATA_WRITE_DMA48, 0, lba, count); } else { ata_28bit_cmd(&ccb.ataio, ATA_WRITE_DMA, 0, lba, count); } xpt_polled_action(&ccb); error = cam_periph_error(&ccb, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(ccb.ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); if (error != 0) printf("Aborting dump due to I/O error.\n"); cam_periph_unlock(periph); return (error); } if (softc->flags & ADA_FLAG_CAN_FLUSHCACHE) { xpt_setup_ccb(&ccb.ccb_h, periph->path, CAM_PRIORITY_NORMAL); ccb.ccb_h.ccb_state = ADA_CCB_DUMP; cam_fill_ataio(&ccb.ataio, 0, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (softc->flags & ADA_FLAG_CAN_48BIT) ata_48bit_cmd(&ccb.ataio, ATA_FLUSHCACHE48, 0, 0, 0); else ata_28bit_cmd(&ccb.ataio, ATA_FLUSHCACHE, 0, 0, 0); xpt_polled_action(&ccb); error = cam_periph_error(&ccb, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(ccb.ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); } cam_periph_unlock(periph); return (error); } static void adainit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, adaasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("ada: Failed to attach master async callback " "due to status 0x%x!\n", status); } else if (ada_send_ordered) { /* Register our event handlers */ if ((EVENTHANDLER_REGISTER(power_suspend, adasuspend, NULL, EVENTHANDLER_PRI_LAST)) == NULL) printf("adainit: power event registration failed!\n"); if ((EVENTHANDLER_REGISTER(power_resume, adaresume, NULL, EVENTHANDLER_PRI_LAST)) == NULL) printf("adainit: power event registration failed!\n"); if ((EVENTHANDLER_REGISTER(shutdown_post_sync, adashutdown, NULL, SHUTDOWN_PRI_DEFAULT)) == NULL) printf("adainit: shutdown event registration failed!\n"); } } static void adaoninvalidate(struct cam_periph *periph) { struct ada_softc *softc; softc = (struct ada_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, adaasync, periph, periph->path); softc->flags |= ADA_FLAG_PACK_INVALID; /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ bioq_flush(&softc->bio_queue, NULL, ENXIO); bioq_flush(&softc->trim_queue, NULL, ENXIO); disk_gone(softc->disk); xpt_print(periph->path, "lost device\n"); } static void adacleanup(struct cam_periph *periph) { struct ada_softc *softc; softc = (struct ada_softc *)periph->softc; xpt_print(periph->path, "removing device entry\n"); cam_periph_unlock(periph); /* * If we can't free the sysctl tree, oh well... */ if ((softc->flags & ADA_FLAG_SCTX_INIT) != 0 && sysctl_ctx_free(&softc->sysctl_ctx) != 0) { xpt_print(periph->path, "can't remove sysctl context\n"); } disk_destroy(softc->disk); callout_drain(&softc->sendordered_c); free(softc, M_DEVBUF); cam_periph_lock(periph); } static void adaasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct ccb_getdev cgd; struct cam_periph *periph; struct ada_softc *softc; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_ATA) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(adaregister, adaoninvalidate, adacleanup, adastart, "ada", CAM_PERIPH_BIO, cgd->ccb_h.path, adaasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("adaasync: Unable to attach to new device " "due to status 0x%x\n", status); break; } case AC_GETDEV_CHANGED: { softc = (struct ada_softc *)periph->softc; xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if ((cgd.ident_data.capabilities1 & ATA_SUPPORT_DMA) && (cgd.inq_flags & SID_DMA)) softc->flags |= ADA_FLAG_CAN_DMA; else softc->flags &= ~ADA_FLAG_CAN_DMA; if ((cgd.ident_data.satacapabilities & ATA_SUPPORT_NCQ) && (cgd.inq_flags & SID_DMA) && (cgd.inq_flags & SID_CmdQue)) softc->flags |= ADA_FLAG_CAN_NCQ; else softc->flags &= ~ADA_FLAG_CAN_NCQ; if ((cgd.ident_data.support_dsm & ATA_SUPPORT_DSM_TRIM) && (cgd.inq_flags & SID_DMA)) softc->flags |= ADA_FLAG_CAN_TRIM; else softc->flags &= ~ADA_FLAG_CAN_TRIM; cam_periph_async(periph, code, path, arg); break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct ada_softc *softc; softc = periph->softc; disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); } break; } case AC_SENT_BDR: case AC_BUS_RESET: { softc = (struct ada_softc *)periph->softc; cam_periph_async(periph, code, path, arg); if (softc->state != ADA_STATE_NORMAL) break; xpt_setup_ccb(&cgd.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if (ADA_RA >= 0 && cgd.ident_data.support.command1 & ATA_SUPPORT_LOOKAHEAD) softc->state = ADA_STATE_RAHEAD; else if (ADA_WC >= 0 && cgd.ident_data.support.command1 & ATA_SUPPORT_WRITECACHE) softc->state = ADA_STATE_WCACHE; else break; cam_periph_acquire(periph); cam_freeze_devq_arg(periph->path, RELSIM_RELEASE_RUNLEVEL, CAM_RL_DEV + 1); xpt_schedule(periph, CAM_PRIORITY_DEV); } default: cam_periph_async(periph, code, path, arg); break; } } static void adasysctlinit(void *context, int pending) { struct cam_periph *periph; struct ada_softc *softc; char tmpstr[80], tmpstr2[80]; periph = (struct cam_periph *)context; /* periph was held for us when this task was enqueued */ if (periph->flags & CAM_PERIPH_INVALID) { cam_periph_release(periph); return; } softc = (struct ada_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM ADA unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); softc->flags |= ADA_FLAG_SCTX_INIT; softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_ada), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr); if (softc->sysctl_tree == NULL) { printf("adasysctlinit: unable to allocate sysctl tree\n"); cam_periph_release(periph); return; } SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "read_ahead", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->read_ahead, 0, "Enable disk read ahead."); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "write_cache", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->write_cache, 0, "Enable disk write cache."); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->sort_io_queue, 0, "Sort IO queue to try and optimise disk access patterns"); #ifdef ADA_TEST_FAILURE /* * Add a 'door bell' sysctl which allows one to set it from userland * and cause something bad to happen. For the moment, we only allow * whacking the next read or write. */ SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "force_read_error", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->force_read_error, 0, "Force a read error for the next N reads."); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "force_write_error", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->force_write_error, 0, "Force a write error for the next N writes."); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "periodic_read_error", CTLFLAG_RW | CTLFLAG_MPSAFE, &softc->periodic_read_error, 0, "Force a read error every N reads (don't set too low)."); #endif cam_periph_release(periph); } static int adagetattr(struct bio *bp) { int ret; struct cam_periph *periph; periph = (struct cam_periph *)bp->bio_disk->d_drv1; cam_periph_lock(periph); ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute, periph->path); cam_periph_unlock(periph); if (ret == 0) bp->bio_completed = bp->bio_length; return ret; } static cam_status adaregister(struct cam_periph *periph, void *arg) { struct ada_softc *softc; struct ccb_pathinq cpi; struct ccb_getdev *cgd; char announce_buf[80], buf1[32]; struct disk_params *dp; caddr_t match; u_int maxio; int legacy_id, quirks; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("adaregister: no getdev CCB, can't register device\n"); return(CAM_REQ_CMP_ERR); } softc = (struct ada_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (softc == NULL) { printf("adaregister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } bioq_init(&softc->bio_queue); bioq_init(&softc->trim_queue); if ((cgd->ident_data.capabilities1 & ATA_SUPPORT_DMA) && (cgd->inq_flags & SID_DMA)) softc->flags |= ADA_FLAG_CAN_DMA; if (cgd->ident_data.support.command2 & ATA_SUPPORT_ADDRESS48) softc->flags |= ADA_FLAG_CAN_48BIT; if (cgd->ident_data.support.command2 & ATA_SUPPORT_FLUSHCACHE) softc->flags |= ADA_FLAG_CAN_FLUSHCACHE; if (cgd->ident_data.support.command1 & ATA_SUPPORT_POWERMGT) softc->flags |= ADA_FLAG_CAN_POWERMGT; if ((cgd->ident_data.satacapabilities & ATA_SUPPORT_NCQ) && (cgd->inq_flags & SID_DMA) && (cgd->inq_flags & SID_CmdQue)) softc->flags |= ADA_FLAG_CAN_NCQ; if ((cgd->ident_data.support_dsm & ATA_SUPPORT_DSM_TRIM) && (cgd->inq_flags & SID_DMA)) { softc->flags |= ADA_FLAG_CAN_TRIM; softc->trim_max_ranges = TRIM_MAX_RANGES; if (cgd->ident_data.max_dsm_blocks != 0) { softc->trim_max_ranges = min(cgd->ident_data.max_dsm_blocks * 64, softc->trim_max_ranges); } } if (cgd->ident_data.support.command2 & ATA_SUPPORT_CFA) softc->flags |= ADA_FLAG_CAN_CFA; periph->softc = softc; /* * See if this device has any quirks. */ match = cam_quirkmatch((caddr_t)&cgd->ident_data, (caddr_t)ada_quirk_table, sizeof(ada_quirk_table)/sizeof(*ada_quirk_table), sizeof(*ada_quirk_table), ata_identify_match); if (match != NULL) softc->quirks = ((struct ada_quirk_entry *)match)->quirks; else softc->quirks = ADA_Q_NONE; bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); TASK_INIT(&softc->sysctl_task, 0, adasysctlinit, periph); /* * Register this media as a disk */ (void)cam_periph_hold(periph, PRIBIO); - mtx_unlock(periph->sim->mtx); + cam_periph_unlock(periph); snprintf(announce_buf, sizeof(announce_buf), "kern.cam.ada.%d.quirks", periph->unit_number); quirks = softc->quirks; TUNABLE_INT_FETCH(announce_buf, &quirks); softc->quirks = quirks; softc->read_ahead = -1; snprintf(announce_buf, sizeof(announce_buf), "kern.cam.ada.%d.read_ahead", periph->unit_number); TUNABLE_INT_FETCH(announce_buf, &softc->read_ahead); softc->write_cache = -1; snprintf(announce_buf, sizeof(announce_buf), "kern.cam.ada.%d.write_cache", periph->unit_number); TUNABLE_INT_FETCH(announce_buf, &softc->write_cache); softc->sort_io_queue = -1; adagetparams(periph, cgd); softc->disk = disk_alloc(); softc->disk->d_devstat = devstat_new_entry(periph->periph_name, periph->unit_number, softc->params.secsize, DEVSTAT_ALL_SUPPORTED, DEVSTAT_TYPE_DIRECT | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_DISK); softc->disk->d_open = adaopen; softc->disk->d_close = adaclose; softc->disk->d_strategy = adastrategy; softc->disk->d_getattr = adagetattr; softc->disk->d_dump = adadump; softc->disk->d_name = "ada"; softc->disk->d_drv1 = periph; maxio = cpi.maxio; /* Honor max I/O size of SIM */ if (maxio == 0) maxio = DFLTPHYS; /* traditional default */ else if (maxio > MAXPHYS) maxio = MAXPHYS; /* for safety */ if (softc->flags & ADA_FLAG_CAN_48BIT) maxio = min(maxio, 65536 * softc->params.secsize); else /* 28bit ATA command limit */ maxio = min(maxio, 256 * softc->params.secsize); softc->disk->d_maxsize = maxio; softc->disk->d_unit = periph->unit_number; softc->disk->d_flags = 0; if (softc->flags & ADA_FLAG_CAN_FLUSHCACHE) softc->disk->d_flags |= DISKFLAG_CANFLUSHCACHE; if ((softc->flags & ADA_FLAG_CAN_TRIM) || ((softc->flags & ADA_FLAG_CAN_CFA) && !(softc->flags & ADA_FLAG_CAN_48BIT))) softc->disk->d_flags |= DISKFLAG_CANDELETE; if ((cpi.hba_misc & PIM_UNMAPPED) != 0) softc->disk->d_flags |= DISKFLAG_UNMAPPED_BIO; strlcpy(softc->disk->d_descr, cgd->ident_data.model, MIN(sizeof(softc->disk->d_descr), sizeof(cgd->ident_data.model))); strlcpy(softc->disk->d_ident, cgd->ident_data.serial, MIN(sizeof(softc->disk->d_ident), sizeof(cgd->ident_data.serial))); softc->disk->d_hba_vendor = cpi.hba_vendor; softc->disk->d_hba_device = cpi.hba_device; softc->disk->d_hba_subvendor = cpi.hba_subvendor; softc->disk->d_hba_subdevice = cpi.hba_subdevice; softc->disk->d_sectorsize = softc->params.secsize; softc->disk->d_mediasize = (off_t)softc->params.sectors * softc->params.secsize; if (ata_physical_sector_size(&cgd->ident_data) != softc->params.secsize) { softc->disk->d_stripesize = ata_physical_sector_size(&cgd->ident_data); softc->disk->d_stripeoffset = (softc->disk->d_stripesize - ata_logical_sector_offset(&cgd->ident_data)) % softc->disk->d_stripesize; } else if (softc->quirks & ADA_Q_4K) { softc->disk->d_stripesize = 4096; softc->disk->d_stripeoffset = 0; } softc->disk->d_fwsectors = softc->params.secs_per_track; softc->disk->d_fwheads = softc->params.heads; ata_disk_firmware_geom_adjust(softc->disk); if (ada_legacy_aliases) { #ifdef ATA_STATIC_ID legacy_id = xpt_path_legacy_ata_id(periph->path); #else legacy_id = softc->disk->d_unit; #endif if (legacy_id >= 0) { snprintf(announce_buf, sizeof(announce_buf), "kern.devalias.%s%d", softc->disk->d_name, softc->disk->d_unit); snprintf(buf1, sizeof(buf1), "ad%d", legacy_id); setenv(announce_buf, buf1); } } else legacy_id = -1; disk_create(softc->disk, DISK_VERSION); - mtx_lock(periph->sim->mtx); + cam_periph_lock(periph); cam_periph_unhold(periph); dp = &softc->params; snprintf(announce_buf, sizeof(announce_buf), "%juMB (%ju %u byte sectors: %dH %dS/T %dC)", (uintmax_t)(((uintmax_t)dp->secsize * dp->sectors) / (1024*1024)), (uintmax_t)dp->sectors, dp->secsize, dp->heads, dp->secs_per_track, dp->cylinders); xpt_announce_periph(periph, announce_buf); if (legacy_id >= 0) printf("%s%d: Previously was known as ad%d\n", periph->periph_name, periph->unit_number, legacy_id); /* * Create our sysctl variables, now that we know * we have successfully attached. */ cam_periph_acquire(periph); taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task); /* * Add async callbacks for bus reset and * bus device reset calls. I don't bother * checking if this fails as, in most cases, * the system will function just fine without * them and the only alternative would be to * not attach the device on failure. */ xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE | AC_GETDEV_CHANGED | AC_ADVINFO_CHANGED, adaasync, periph, periph->path); /* * Schedule a periodic event to occasionally send an * ordered tag to a device. */ callout_init_mtx(&softc->sendordered_c, periph->sim->mtx, 0); callout_reset(&softc->sendordered_c, (ada_default_timeout * hz) / ADA_ORDEREDTAG_INTERVAL, adasendorderedtag, softc); if (ADA_RA >= 0 && cgd->ident_data.support.command1 & ATA_SUPPORT_LOOKAHEAD) { softc->state = ADA_STATE_RAHEAD; cam_periph_acquire(periph); cam_freeze_devq_arg(periph->path, RELSIM_RELEASE_RUNLEVEL, CAM_RL_DEV + 1); xpt_schedule(periph, CAM_PRIORITY_DEV); } else if (ADA_WC >= 0 && cgd->ident_data.support.command1 & ATA_SUPPORT_WRITECACHE) { softc->state = ADA_STATE_WCACHE; cam_periph_acquire(periph); cam_freeze_devq_arg(periph->path, RELSIM_RELEASE_RUNLEVEL, CAM_RL_DEV + 1); xpt_schedule(periph, CAM_PRIORITY_DEV); } else softc->state = ADA_STATE_NORMAL; return(CAM_REQ_CMP); } static void adastart(struct cam_periph *periph, union ccb *start_ccb) { struct ada_softc *softc = (struct ada_softc *)periph->softc; struct ccb_ataio *ataio = &start_ccb->ataio; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("adastart\n")); switch (softc->state) { case ADA_STATE_NORMAL: { struct bio *bp; u_int8_t tag_code; /* Execute immediate CCB if waiting. */ if (periph->immediate_priority <= periph->pinfo.priority) { CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("queuing for immediate ccb\n")); start_ccb->ccb_h.ccb_state = ADA_CCB_WAITING; SLIST_INSERT_HEAD(&periph->ccb_list, &start_ccb->ccb_h, periph_links.sle); periph->immediate_priority = CAM_PRIORITY_NONE; wakeup(&periph->ccb_list); /* Have more work to do, so ensure we stay scheduled */ adaschedule(periph); break; } /* Run TRIM if not running yet. */ if (!softc->trim_running && (bp = bioq_first(&softc->trim_queue)) != 0) { struct trim_request *req = &softc->trim_req; struct bio *bp1; uint64_t lastlba = (uint64_t)-1; int bps = 0, c, lastcount = 0, off, ranges = 0; softc->trim_running = 1; bzero(req, sizeof(*req)); bp1 = bp; do { uint64_t lba = bp1->bio_pblkno; int count = bp1->bio_bcount / softc->params.secsize; bioq_remove(&softc->trim_queue, bp1); /* Try to extend the previous range. */ if (lba == lastlba) { c = min(count, 0xffff - lastcount); lastcount += c; off = (ranges - 1) * 8; req->data[off + 6] = lastcount & 0xff; req->data[off + 7] = (lastcount >> 8) & 0xff; count -= c; lba += c; } while (count > 0) { c = min(count, 0xffff); off = ranges * 8; req->data[off + 0] = lba & 0xff; req->data[off + 1] = (lba >> 8) & 0xff; req->data[off + 2] = (lba >> 16) & 0xff; req->data[off + 3] = (lba >> 24) & 0xff; req->data[off + 4] = (lba >> 32) & 0xff; req->data[off + 5] = (lba >> 40) & 0xff; req->data[off + 6] = c & 0xff; req->data[off + 7] = (c >> 8) & 0xff; lba += c; count -= c; lastcount = c; ranges++; } lastlba = lba; req->bps[bps++] = bp1; bp1 = bioq_first(&softc->trim_queue); if (bps >= TRIM_MAX_BIOS || bp1 == NULL || bp1->bio_bcount / softc->params.secsize > (softc->trim_max_ranges - ranges) * 0xffff) break; } while (1); cam_fill_ataio(ataio, ada_retry_count, adadone, CAM_DIR_OUT, 0, req->data, ((ranges + 63) / 64) * 512, ada_default_timeout * 1000); ata_48bit_cmd(ataio, ATA_DATA_SET_MANAGEMENT, ATA_DSM_TRIM, 0, (ranges + 63) / 64); start_ccb->ccb_h.ccb_state = ADA_CCB_TRIM; goto out; } /* Run regular command. */ bp = bioq_first(&softc->bio_queue); if (bp == NULL) { xpt_release_ccb(start_ccb); break; } bioq_remove(&softc->bio_queue, bp); if ((bp->bio_flags & BIO_ORDERED) != 0 || (softc->flags & ADA_FLAG_NEED_OTAG) != 0) { softc->flags &= ~ADA_FLAG_NEED_OTAG; softc->ordered_tag_count++; tag_code = 0; } else { tag_code = 1; } switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: { uint64_t lba = bp->bio_pblkno; uint16_t count = bp->bio_bcount / softc->params.secsize; #ifdef ADA_TEST_FAILURE int fail = 0; /* * Support the failure ioctls. If the command is a * read, and there are pending forced read errors, or * if a write and pending write errors, then fail this * operation with EIO. This is useful for testing * purposes. Also, support having every Nth read fail. * * This is a rather blunt tool. */ if (bp->bio_cmd == BIO_READ) { if (softc->force_read_error) { softc->force_read_error--; fail = 1; } if (softc->periodic_read_error > 0) { if (++softc->periodic_read_count >= softc->periodic_read_error) { softc->periodic_read_count = 0; fail = 1; } } } else { if (softc->force_write_error) { softc->force_write_error--; fail = 1; } } if (fail) { bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; biodone(bp); xpt_release_ccb(start_ccb); adaschedule(periph); return; } #endif KASSERT((bp->bio_flags & BIO_UNMAPPED) == 0 || round_page(bp->bio_bcount + bp->bio_ma_offset) / PAGE_SIZE == bp->bio_ma_n, ("Short bio %p", bp)); cam_fill_ataio(ataio, ada_retry_count, adadone, (bp->bio_cmd == BIO_READ ? CAM_DIR_IN : CAM_DIR_OUT) | ((bp->bio_flags & BIO_UNMAPPED) != 0 ? CAM_DATA_BIO : 0), tag_code, ((bp->bio_flags & BIO_UNMAPPED) != 0) ? (void *)bp : bp->bio_data, bp->bio_bcount, ada_default_timeout*1000); if ((softc->flags & ADA_FLAG_CAN_NCQ) && tag_code) { if (bp->bio_cmd == BIO_READ) { ata_ncq_cmd(ataio, ATA_READ_FPDMA_QUEUED, lba, count); } else { ata_ncq_cmd(ataio, ATA_WRITE_FPDMA_QUEUED, lba, count); } } else if ((softc->flags & ADA_FLAG_CAN_48BIT) && (lba + count >= ATA_MAX_28BIT_LBA || count > 256)) { if (softc->flags & ADA_FLAG_CAN_DMA) { if (bp->bio_cmd == BIO_READ) { ata_48bit_cmd(ataio, ATA_READ_DMA48, 0, lba, count); } else { ata_48bit_cmd(ataio, ATA_WRITE_DMA48, 0, lba, count); } } else { if (bp->bio_cmd == BIO_READ) { ata_48bit_cmd(ataio, ATA_READ_MUL48, 0, lba, count); } else { ata_48bit_cmd(ataio, ATA_WRITE_MUL48, 0, lba, count); } } } else { if (count == 256) count = 0; if (softc->flags & ADA_FLAG_CAN_DMA) { if (bp->bio_cmd == BIO_READ) { ata_28bit_cmd(ataio, ATA_READ_DMA, 0, lba, count); } else { ata_28bit_cmd(ataio, ATA_WRITE_DMA, 0, lba, count); } } else { if (bp->bio_cmd == BIO_READ) { ata_28bit_cmd(ataio, ATA_READ_MUL, 0, lba, count); } else { ata_28bit_cmd(ataio, ATA_WRITE_MUL, 0, lba, count); } } } break; } case BIO_DELETE: { uint64_t lba = bp->bio_pblkno; uint16_t count = bp->bio_bcount / softc->params.secsize; cam_fill_ataio(ataio, ada_retry_count, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (count >= 256) count = 0; ata_28bit_cmd(ataio, ATA_CFA_ERASE, 0, lba, count); break; } case BIO_FLUSH: cam_fill_ataio(ataio, 1, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (softc->flags & ADA_FLAG_CAN_48BIT) ata_48bit_cmd(ataio, ATA_FLUSHCACHE48, 0, 0, 0); else ata_28bit_cmd(ataio, ATA_FLUSHCACHE, 0, 0, 0); break; } start_ccb->ccb_h.ccb_state = ADA_CCB_BUFFER_IO; out: start_ccb->ccb_h.ccb_bp = bp; softc->outstanding_cmds++; xpt_action(start_ccb); /* May have more work to do, so ensure we stay scheduled */ adaschedule(periph); break; } case ADA_STATE_RAHEAD: case ADA_STATE_WCACHE: { if (softc->flags & ADA_FLAG_PACK_INVALID) { softc->state = ADA_STATE_NORMAL; xpt_release_ccb(start_ccb); cam_release_devq(periph->path, RELSIM_RELEASE_RUNLEVEL, 0, CAM_RL_DEV + 1, FALSE); adaschedule(periph); cam_periph_release_locked(periph); return; } cam_fill_ataio(ataio, 1, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (softc->state == ADA_STATE_RAHEAD) { ata_28bit_cmd(ataio, ATA_SETFEATURES, ADA_RA ? ATA_SF_ENAB_RCACHE : ATA_SF_DIS_RCACHE, 0, 0); start_ccb->ccb_h.ccb_state = ADA_CCB_RAHEAD; } else { ata_28bit_cmd(ataio, ATA_SETFEATURES, ADA_WC ? ATA_SF_ENAB_WCACHE : ATA_SF_DIS_WCACHE, 0, 0); start_ccb->ccb_h.ccb_state = ADA_CCB_WCACHE; } xpt_action(start_ccb); break; } } } static void adadone(struct cam_periph *periph, union ccb *done_ccb) { struct ada_softc *softc; struct ccb_ataio *ataio; struct ccb_getdev *cgd; softc = (struct ada_softc *)periph->softc; ataio = &done_ccb->ataio; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("adadone\n")); switch (ataio->ccb_h.ccb_state & ADA_CCB_TYPE_MASK) { case ADA_CCB_BUFFER_IO: case ADA_CCB_TRIM: { struct bio *bp; bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { int error; error = adaerror(done_ccb, 0, 0); if (error == ERESTART) { /* A retry was scheduled, so just return. */ return; } if (error != 0) { if (error == ENXIO && (softc->flags & ADA_FLAG_PACK_INVALID) == 0) { /* * Catastrophic error. Mark our pack as * invalid. */ /* * XXX See if this is really a media * XXX change first? */ xpt_print(periph->path, "Invalidating pack\n"); softc->flags |= ADA_FLAG_PACK_INVALID; } bp->bio_error = error; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; } else { bp->bio_resid = ataio->resid; bp->bio_error = 0; if (bp->bio_resid != 0) bp->bio_flags |= BIO_ERROR; } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } else { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) panic("REQ_CMP with QFRZN"); bp->bio_resid = ataio->resid; if (ataio->resid > 0) bp->bio_flags |= BIO_ERROR; } softc->outstanding_cmds--; if (softc->outstanding_cmds == 0) softc->flags |= ADA_FLAG_WENT_IDLE; if ((ataio->ccb_h.ccb_state & ADA_CCB_TYPE_MASK) == ADA_CCB_TRIM) { struct trim_request *req = (struct trim_request *)ataio->data_ptr; int i; for (i = 1; i < TRIM_MAX_BIOS && req->bps[i]; i++) { struct bio *bp1 = req->bps[i]; bp1->bio_resid = bp->bio_resid; bp1->bio_error = bp->bio_error; if (bp->bio_flags & BIO_ERROR) bp1->bio_flags |= BIO_ERROR; biodone(bp1); } softc->trim_running = 0; biodone(bp); adaschedule(periph); } else biodone(bp); break; } case ADA_CCB_RAHEAD: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (adaerror(done_ccb, 0, 0) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } /* * Since our peripheral may be invalidated by an error * above or an external event, we must release our CCB * before releasing the reference on the peripheral. * The peripheral will only go away once the last reference * is removed, and we need it around for the CCB release * operation. */ cgd = (struct ccb_getdev *)done_ccb; xpt_setup_ccb(&cgd->ccb_h, periph->path, CAM_PRIORITY_NORMAL); cgd->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)cgd); if (ADA_WC >= 0 && cgd->ident_data.support.command1 & ATA_SUPPORT_WRITECACHE) { softc->state = ADA_STATE_WCACHE; xpt_release_ccb(done_ccb); xpt_schedule(periph, CAM_PRIORITY_DEV); return; } softc->state = ADA_STATE_NORMAL; xpt_release_ccb(done_ccb); cam_release_devq(periph->path, RELSIM_RELEASE_RUNLEVEL, 0, CAM_RL_DEV + 1, FALSE); adaschedule(periph); cam_periph_release_locked(periph); return; } case ADA_CCB_WCACHE: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (adaerror(done_ccb, 0, 0) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } softc->state = ADA_STATE_NORMAL; /* * Since our peripheral may be invalidated by an error * above or an external event, we must release our CCB * before releasing the reference on the peripheral. * The peripheral will only go away once the last reference * is removed, and we need it around for the CCB release * operation. */ xpt_release_ccb(done_ccb); cam_release_devq(periph->path, RELSIM_RELEASE_RUNLEVEL, 0, CAM_RL_DEV + 1, FALSE); adaschedule(periph); cam_periph_release_locked(periph); return; } case ADA_CCB_WAITING: { /* Caller will release the CCB */ wakeup(&done_ccb->ccb_h.cbfcnp); return; } case ADA_CCB_DUMP: /* No-op. We're polling */ return; default: break; } xpt_release_ccb(done_ccb); } static int adaerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { return(cam_periph_error(ccb, cam_flags, sense_flags, NULL)); } static void adagetparams(struct cam_periph *periph, struct ccb_getdev *cgd) { struct ada_softc *softc = (struct ada_softc *)periph->softc; struct disk_params *dp = &softc->params; u_int64_t lbasize48; u_int32_t lbasize; dp->secsize = ata_logical_sector_size(&cgd->ident_data); if ((cgd->ident_data.atavalid & ATA_FLAG_54_58) && cgd->ident_data.current_heads && cgd->ident_data.current_sectors) { dp->heads = cgd->ident_data.current_heads; dp->secs_per_track = cgd->ident_data.current_sectors; dp->cylinders = cgd->ident_data.cylinders; dp->sectors = (u_int32_t)cgd->ident_data.current_size_1 | ((u_int32_t)cgd->ident_data.current_size_2 << 16); } else { dp->heads = cgd->ident_data.heads; dp->secs_per_track = cgd->ident_data.sectors; dp->cylinders = cgd->ident_data.cylinders; dp->sectors = cgd->ident_data.cylinders * dp->heads * dp->secs_per_track; } lbasize = (u_int32_t)cgd->ident_data.lba_size_1 | ((u_int32_t)cgd->ident_data.lba_size_2 << 16); /* use the 28bit LBA size if valid or bigger than the CHS mapping */ if (cgd->ident_data.cylinders == 16383 || dp->sectors < lbasize) dp->sectors = lbasize; /* use the 48bit LBA size if valid */ lbasize48 = ((u_int64_t)cgd->ident_data.lba_size48_1) | ((u_int64_t)cgd->ident_data.lba_size48_2 << 16) | ((u_int64_t)cgd->ident_data.lba_size48_3 << 32) | ((u_int64_t)cgd->ident_data.lba_size48_4 << 48); if ((cgd->ident_data.support.command2 & ATA_SUPPORT_ADDRESS48) && lbasize48 > ATA_MAX_28BIT_LBA) dp->sectors = lbasize48; } static void adasendorderedtag(void *arg) { struct ada_softc *softc = arg; if (ada_send_ordered) { if ((softc->ordered_tag_count == 0) && ((softc->flags & ADA_FLAG_WENT_IDLE) == 0)) { softc->flags |= ADA_FLAG_NEED_OTAG; } if (softc->outstanding_cmds > 0) softc->flags &= ~ADA_FLAG_WENT_IDLE; softc->ordered_tag_count = 0; } /* Queue us up again */ callout_reset(&softc->sendordered_c, (ada_default_timeout * hz) / ADA_ORDEREDTAG_INTERVAL, adasendorderedtag, softc); } /* * Step through all ADA peripheral drivers, and if the device is still open, * sync the disk cache to physical media. */ static void adaflush(void) { struct cam_periph *periph; struct ada_softc *softc; union ccb *ccb; int error; CAM_PERIPH_FOREACH(periph, &adadriver) { /* If we paniced with lock held - not recurse here. */ if (cam_periph_owned(periph)) continue; cam_periph_lock(periph); softc = (struct ada_softc *)periph->softc; /* * We only sync the cache if the drive is still open, and * if the drive is capable of it.. */ if (((softc->flags & ADA_FLAG_OPEN) == 0) || (softc->flags & ADA_FLAG_CAN_FLUSHCACHE) == 0) { cam_periph_unlock(periph); continue; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); cam_fill_ataio(&ccb->ataio, 0, adadone, CAM_DIR_NONE, 0, NULL, 0, ada_default_timeout*1000); if (softc->flags & ADA_FLAG_CAN_48BIT) ata_48bit_cmd(&ccb->ataio, ATA_FLUSHCACHE48, 0, 0, 0); else ata_28bit_cmd(&ccb->ataio, ATA_FLUSHCACHE, 0, 0, 0); error = cam_periph_runccb(ccb, adaerror, /*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); xpt_release_ccb(ccb); cam_periph_unlock(periph); } } static void adaspindown(uint8_t cmd, int flags) { struct cam_periph *periph; struct ada_softc *softc; union ccb *ccb; int error; CAM_PERIPH_FOREACH(periph, &adadriver) { /* If we paniced with lock held - not recurse here. */ if (cam_periph_owned(periph)) continue; cam_periph_lock(periph); softc = (struct ada_softc *)periph->softc; /* * We only spin-down the drive if it is capable of it.. */ if ((softc->flags & ADA_FLAG_CAN_POWERMGT) == 0) { cam_periph_unlock(periph); continue; } if (bootverbose) xpt_print(periph->path, "spin-down\n"); ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); cam_fill_ataio(&ccb->ataio, 0, adadone, CAM_DIR_NONE | flags, 0, NULL, 0, ada_default_timeout*1000); ata_28bit_cmd(&ccb->ataio, cmd, 0, 0, 0); error = cam_periph_runccb(ccb, adaerror, /*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Spin-down disk failed\n"); xpt_release_ccb(ccb); cam_periph_unlock(periph); } } static void adashutdown(void *arg, int howto) { adaflush(); if (ada_spindown_shutdown != 0 && (howto & (RB_HALT | RB_POWEROFF)) != 0) adaspindown(ATA_STANDBY_IMMEDIATE, 0); } static void adasuspend(void *arg) { adaflush(); if (ada_spindown_suspend != 0) adaspindown(ATA_SLEEP, CAM_DEV_QFREEZE); } static void adaresume(void *arg) { struct cam_periph *periph; struct ada_softc *softc; if (ada_spindown_suspend == 0) return; CAM_PERIPH_FOREACH(periph, &adadriver) { cam_periph_lock(periph); softc = (struct ada_softc *)periph->softc; /* * We only spin-down the drive if it is capable of it.. */ if ((softc->flags & ADA_FLAG_CAN_POWERMGT) == 0) { cam_periph_unlock(periph); continue; } if (bootverbose) xpt_print(periph->path, "resume\n"); /* * Drop freeze taken due to CAM_DEV_QFREEZE flag set on * sleep request. */ cam_release_devq(periph->path, /*relsim_flags*/0, /*openings*/0, /*timeout*/0, /*getcount_only*/0); cam_periph_unlock(periph); } } #endif /* _KERNEL */ Index: head/sys/cam/scsi/scsi_cd.c =================================================================== --- head/sys/cam/scsi/scsi_cd.c (revision 249105) +++ head/sys/cam/scsi/scsi_cd.c (revision 249106) @@ -1,4395 +1,4395 @@ /*- * Copyright (c) 1997 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Portions of this driver taken from the original FreeBSD cd driver. * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 * * from: cd.c,v 1.83 1997/05/04 15:24:22 joerg Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_cd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LEADOUT 0xaa /* leadout toc entry */ struct cd_params { u_int32_t blksize; u_long disksize; }; typedef enum { CD_Q_NONE = 0x00, CD_Q_NO_TOUCH = 0x01, CD_Q_BCD_TRACKS = 0x02, CD_Q_NO_CHANGER = 0x04, CD_Q_CHANGER = 0x08, CD_Q_10_BYTE_ONLY = 0x10 } cd_quirks; typedef enum { CD_FLAG_INVALID = 0x0001, CD_FLAG_NEW_DISC = 0x0002, CD_FLAG_DISC_LOCKED = 0x0004, CD_FLAG_DISC_REMOVABLE = 0x0008, CD_FLAG_SAW_MEDIA = 0x0010, CD_FLAG_CHANGER = 0x0040, CD_FLAG_ACTIVE = 0x0080, CD_FLAG_SCHED_ON_COMP = 0x0100, CD_FLAG_RETRY_UA = 0x0200, CD_FLAG_VALID_MEDIA = 0x0400, CD_FLAG_VALID_TOC = 0x0800, CD_FLAG_SCTX_INIT = 0x1000 } cd_flags; typedef enum { CD_CCB_PROBE = 0x01, CD_CCB_BUFFER_IO = 0x02, CD_CCB_WAITING = 0x03, CD_CCB_TUR = 0x04, CD_CCB_TYPE_MASK = 0x0F, CD_CCB_RETRY_UA = 0x10 } cd_ccb_state; typedef enum { CHANGER_TIMEOUT_SCHED = 0x01, CHANGER_SHORT_TMOUT_SCHED = 0x02, CHANGER_MANUAL_CALL = 0x04, CHANGER_NEED_TIMEOUT = 0x08 } cd_changer_flags; #define ccb_state ppriv_field0 #define ccb_bp ppriv_ptr1 struct cd_tocdata { struct ioc_toc_header header; struct cd_toc_entry entries[100]; }; struct cd_toc_single { struct ioc_toc_header header; struct cd_toc_entry entry; }; typedef enum { CD_STATE_PROBE, CD_STATE_NORMAL } cd_state; struct cd_softc { cam_pinfo pinfo; cd_state state; volatile cd_flags flags; struct bio_queue_head bio_queue; LIST_HEAD(, ccb_hdr) pending_ccbs; struct cd_params params; union ccb saved_ccb; cd_quirks quirks; STAILQ_ENTRY(cd_softc) changer_links; struct cdchanger *changer; int bufs_left; struct cam_periph *periph; int minimum_command_size; int outstanding_cmds; int tur; struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; STAILQ_HEAD(, cd_mode_params) mode_queue; struct cd_tocdata toc; struct disk *disk; struct callout mediapoll_c; }; struct cd_page_sizes { int page; int page_size; }; static struct cd_page_sizes cd_page_size_table[] = { { AUDIO_PAGE, sizeof(struct cd_audio_page)} }; struct cd_quirk_entry { struct scsi_inquiry_pattern inq_pat; cd_quirks quirks; }; /* * The changer quirk entries aren't strictly necessary. Basically, what * they do is tell cdregister() up front that a device is a changer. * Otherwise, it will figure that fact out once it sees a LUN on the device * that is greater than 0. If it is known up front that a device is a changer, * all I/O to the device will go through the changer scheduling routines, as * opposed to the "normal" CD code. * * NOTE ON 10_BYTE_ONLY quirks: Any 10_BYTE_ONLY quirks MUST be because * your device hangs when it gets a 10 byte command. Adding a quirk just * to get rid of the informative diagnostic message is not acceptable. All * 10_BYTE_ONLY quirks must be documented in full in a PR (which should be * referenced in a comment along with the quirk) , and must be approved by * ken@FreeBSD.org. Any quirks added that don't adhere to this policy may * be removed until the submitter can explain why they are needed. * 10_BYTE_ONLY quirks will be removed (as they will no longer be necessary) * when the CAM_NEW_TRAN_CODE work is done. */ static struct cd_quirk_entry cd_quirk_table[] = { { { T_CDROM, SIP_MEDIA_REMOVABLE, "NRC", "MBR-7", "*"}, /*quirks*/ CD_Q_CHANGER }, { { T_CDROM, SIP_MEDIA_REMOVABLE, "PIONEER", "CD-ROM DRM*", "*"}, /* quirks */ CD_Q_CHANGER }, { { T_CDROM, SIP_MEDIA_REMOVABLE, "NAKAMICH", "MJ-*", "*"}, /* quirks */ CD_Q_CHANGER }, { { T_CDROM, SIP_MEDIA_REMOVABLE, "CHINON", "CD-ROM CDS-535","*"}, /* quirks */ CD_Q_BCD_TRACKS } }; static disk_open_t cdopen; static disk_close_t cdclose; static disk_ioctl_t cdioctl; static disk_strategy_t cdstrategy; static periph_init_t cdinit; static periph_ctor_t cdregister; static periph_dtor_t cdcleanup; static periph_start_t cdstart; static periph_oninv_t cdoninvalidate; static void cdasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static int cdcmdsizesysctl(SYSCTL_HANDLER_ARGS); static void cdshorttimeout(void *arg); static void cdschedule(struct cam_periph *periph, int priority); static void cdrunchangerqueue(void *arg); static void cdchangerschedule(struct cd_softc *softc); static int cdrunccb(union ccb *ccb, int (*error_routine)(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags), u_int32_t cam_flags, u_int32_t sense_flags); static union ccb *cdgetccb(struct cam_periph *periph, u_int32_t priority); static void cddone(struct cam_periph *periph, union ccb *start_ccb); static union cd_pages *cdgetpage(struct cd_mode_params *mode_params); static int cdgetpagesize(int page_num); static void cdprevent(struct cam_periph *periph, int action); static int cdcheckmedia(struct cam_periph *periph); static int cdsize(struct cam_periph *periph, u_int32_t *size); static int cd6byteworkaround(union ccb *ccb); static int cderror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static int cdreadtoc(struct cam_periph *periph, u_int32_t mode, u_int32_t start, u_int8_t *data, u_int32_t len, u_int32_t sense_flags); static int cdgetmode(struct cam_periph *periph, struct cd_mode_params *data, u_int32_t page); static int cdsetmode(struct cam_periph *periph, struct cd_mode_params *data); static int cdplay(struct cam_periph *periph, u_int32_t blk, u_int32_t len); static int cdreadsubchannel(struct cam_periph *periph, u_int32_t mode, u_int32_t format, int track, struct cd_sub_channel_info *data, u_int32_t len); static int cdplaymsf(struct cam_periph *periph, u_int32_t startm, u_int32_t starts, u_int32_t startf, u_int32_t endm, u_int32_t ends, u_int32_t endf); static int cdplaytracks(struct cam_periph *periph, u_int32_t strack, u_int32_t sindex, u_int32_t etrack, u_int32_t eindex); static int cdpause(struct cam_periph *periph, u_int32_t go); static int cdstopunit(struct cam_periph *periph, u_int32_t eject); static int cdstartunit(struct cam_periph *periph, int load); static int cdsetspeed(struct cam_periph *periph, u_int32_t rdspeed, u_int32_t wrspeed); static int cdreportkey(struct cam_periph *periph, struct dvd_authinfo *authinfo); static int cdsendkey(struct cam_periph *periph, struct dvd_authinfo *authinfo); static int cdreaddvdstructure(struct cam_periph *periph, struct dvd_struct *dvdstruct); static timeout_t cdmediapoll; static struct periph_driver cddriver = { cdinit, "cd", TAILQ_HEAD_INITIALIZER(cddriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(cd, cddriver); #ifndef CD_DEFAULT_POLL_PERIOD #define CD_DEFAULT_POLL_PERIOD 3 #endif #ifndef CD_DEFAULT_RETRY #define CD_DEFAULT_RETRY 4 #endif #ifndef CD_DEFAULT_TIMEOUT #define CD_DEFAULT_TIMEOUT 30000 #endif #ifndef CHANGER_MIN_BUSY_SECONDS #define CHANGER_MIN_BUSY_SECONDS 5 #endif #ifndef CHANGER_MAX_BUSY_SECONDS #define CHANGER_MAX_BUSY_SECONDS 15 #endif static int cd_poll_period = CD_DEFAULT_POLL_PERIOD; static int cd_retry_count = CD_DEFAULT_RETRY; static int cd_timeout = CD_DEFAULT_TIMEOUT; static int changer_min_busy_seconds = CHANGER_MIN_BUSY_SECONDS; static int changer_max_busy_seconds = CHANGER_MAX_BUSY_SECONDS; static SYSCTL_NODE(_kern_cam, OID_AUTO, cd, CTLFLAG_RD, 0, "CAM CDROM driver"); static SYSCTL_NODE(_kern_cam_cd, OID_AUTO, changer, CTLFLAG_RD, 0, "CD Changer"); SYSCTL_INT(_kern_cam_cd, OID_AUTO, poll_period, CTLFLAG_RW, &cd_poll_period, 0, "Media polling period in seconds"); TUNABLE_INT("kern.cam.cd.poll_period", &cd_poll_period); SYSCTL_INT(_kern_cam_cd, OID_AUTO, retry_count, CTLFLAG_RW, &cd_retry_count, 0, "Normal I/O retry count"); TUNABLE_INT("kern.cam.cd.retry_count", &cd_retry_count); SYSCTL_INT(_kern_cam_cd, OID_AUTO, timeout, CTLFLAG_RW, &cd_timeout, 0, "Timeout, in us, for read operations"); TUNABLE_INT("kern.cam.cd.timeout", &cd_timeout); SYSCTL_INT(_kern_cam_cd_changer, OID_AUTO, min_busy_seconds, CTLFLAG_RW, &changer_min_busy_seconds, 0, "Minimum changer scheduling quantum"); TUNABLE_INT("kern.cam.cd.changer.min_busy_seconds", &changer_min_busy_seconds); SYSCTL_INT(_kern_cam_cd_changer, OID_AUTO, max_busy_seconds, CTLFLAG_RW, &changer_max_busy_seconds, 0, "Maximum changer scheduling quantum"); TUNABLE_INT("kern.cam.cd.changer.max_busy_seconds", &changer_max_busy_seconds); struct cdchanger { path_id_t path_id; target_id_t target_id; int num_devices; struct camq devq; struct timeval start_time; struct cd_softc *cur_device; struct callout short_handle; struct callout long_handle; volatile cd_changer_flags flags; STAILQ_ENTRY(cdchanger) changer_links; STAILQ_HEAD(chdevlist, cd_softc) chluns; }; static struct mtx changerq_mtx; static STAILQ_HEAD(changerlist, cdchanger) changerq; static int num_changers; static MALLOC_DEFINE(M_SCSICD, "scsi_cd", "scsi_cd buffers"); static void cdinit(void) { cam_status status; mtx_init(&changerq_mtx, "cdchangerq", "SCSI CD Changer List", MTX_DEF); STAILQ_INIT(&changerq); /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, cdasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("cd: Failed to attach master async callback " "due to status 0x%x!\n", status); } } /* * Callback from GEOM, called when it has finished cleaning up its * resources. */ static void cddiskgonecb(struct disk *dp) { struct cam_periph *periph; periph = (struct cam_periph *)dp->d_drv1; cam_periph_release(periph); } static void cdoninvalidate(struct cam_periph *periph) { struct cd_softc *softc; softc = (struct cd_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, cdasync, periph, periph->path); softc->flags |= CD_FLAG_INVALID; /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ bioq_flush(&softc->bio_queue, NULL, ENXIO); /* * If this device is part of a changer, and it was scheduled * to run, remove it from the run queue since we just nuked * all of its scheduled I/O. */ if ((softc->flags & CD_FLAG_CHANGER) && (softc->pinfo.index != CAM_UNQUEUED_INDEX)) camq_remove(&softc->changer->devq, softc->pinfo.index); disk_gone(softc->disk); xpt_print(periph->path, "lost device, %d refs\n", periph->refcount); } static void cdcleanup(struct cam_periph *periph) { struct cd_softc *softc; softc = (struct cd_softc *)periph->softc; xpt_print(periph->path, "removing device entry\n"); /* * In the queued, non-active case, the device in question * has already been removed from the changer run queue. Since this * device is active, we need to de-activate it, and schedule * another device to run. (if there is another one to run) */ if ((softc->flags & CD_FLAG_CHANGER) && (softc->flags & CD_FLAG_ACTIVE)) { /* * The purpose of the short timeout is soley to determine * whether the current device has finished or not. Well, * since we're removing the active device, we know that it * is finished. So, get rid of the short timeout. * Otherwise, if we're in the time period before the short * timeout fires, and there are no other devices in the * queue to run, there won't be any other device put in the * active slot. i.e., when we call cdrunchangerqueue() * below, it won't do anything. Then, when the short * timeout fires, it'll look at the "current device", which * we are free below, and possibly panic the kernel on a * bogus pointer reference. * * The long timeout doesn't really matter, since we * decrement the qfrozen_cnt to indicate that there is * nothing in the active slot now. Therefore, there won't * be any bogus pointer references there. */ if (softc->changer->flags & CHANGER_SHORT_TMOUT_SCHED) { callout_stop(&softc->changer->short_handle); softc->changer->flags &= ~CHANGER_SHORT_TMOUT_SCHED; } softc->changer->devq.qfrozen_cnt[0]--; softc->changer->flags |= CHANGER_MANUAL_CALL; cdrunchangerqueue(softc->changer); } /* * If we're removing the last device on the changer, go ahead and * remove the changer device structure. */ if ((softc->flags & CD_FLAG_CHANGER) && (--softc->changer->num_devices == 0)) { /* * Theoretically, there shouldn't be any timeouts left, but * I'm not completely sure that that will be the case. So, * it won't hurt to check and see if there are any left. */ if (softc->changer->flags & CHANGER_TIMEOUT_SCHED) { callout_stop(&softc->changer->long_handle); softc->changer->flags &= ~CHANGER_TIMEOUT_SCHED; } if (softc->changer->flags & CHANGER_SHORT_TMOUT_SCHED) { callout_stop(&softc->changer->short_handle); softc->changer->flags &= ~CHANGER_SHORT_TMOUT_SCHED; } mtx_lock(&changerq_mtx); STAILQ_REMOVE(&changerq, softc->changer, cdchanger, changer_links); num_changers--; mtx_unlock(&changerq_mtx); xpt_print(periph->path, "removing changer entry\n"); free(softc->changer, M_DEVBUF); } cam_periph_unlock(periph); if ((softc->flags & CD_FLAG_SCTX_INIT) != 0 && sysctl_ctx_free(&softc->sysctl_ctx) != 0) { xpt_print(periph->path, "can't remove sysctl context\n"); } callout_drain(&softc->mediapoll_c); disk_destroy(softc->disk); free(softc, M_DEVBUF); cam_periph_lock(periph); } static void cdasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; struct cd_softc *softc; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_SCSI) break; if (SID_TYPE(&cgd->inq_data) != T_CDROM && SID_TYPE(&cgd->inq_data) != T_WORM) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(cdregister, cdoninvalidate, cdcleanup, cdstart, "cd", CAM_PERIPH_BIO, cgd->ccb_h.path, cdasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("cdasync: Unable to attach new device " "due to status 0x%x\n", status); break; } case AC_UNIT_ATTENTION: { union ccb *ccb; int error_code, sense_key, asc, ascq; softc = (struct cd_softc *)periph->softc; ccb = (union ccb *)arg; /* * Handle all media change UNIT ATTENTIONs except * our own, as they will be handled by cderror(). */ if (xpt_path_periph(ccb->ccb_h.path) != periph && scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (asc == 0x28 && ascq == 0x00) disk_media_changed(softc->disk, M_NOWAIT); } cam_periph_async(periph, code, path, arg); break; } case AC_SCSI_AEN: softc = (struct cd_softc *)periph->softc; if (softc->state == CD_STATE_NORMAL && !softc->tur) { if (cam_periph_acquire(periph) == CAM_REQ_CMP) { softc->tur = 1; xpt_schedule(periph, CAM_PRIORITY_NORMAL); } } /* FALLTHROUGH */ case AC_SENT_BDR: case AC_BUS_RESET: { struct ccb_hdr *ccbh; softc = (struct cd_softc *)periph->softc; /* * Don't fail on the expected unit attention * that will occur. */ softc->flags |= CD_FLAG_RETRY_UA; LIST_FOREACH(ccbh, &softc->pending_ccbs, periph_links.le) ccbh->ccb_state |= CD_CCB_RETRY_UA; /* FALLTHROUGH */ } default: cam_periph_async(periph, code, path, arg); break; } } static void cdsysctlinit(void *context, int pending) { struct cam_periph *periph; struct cd_softc *softc; char tmpstr[80], tmpstr2[80]; periph = (struct cam_periph *)context; if (cam_periph_acquire(periph) != CAM_REQ_CMP) return; softc = (struct cd_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM CD unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); softc->flags |= CD_FLAG_SCTX_INIT; softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_cd), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr); if (softc->sysctl_tree == NULL) { printf("cdsysctlinit: unable to allocate sysctl tree\n"); cam_periph_release(periph); return; } /* * Now register the sysctl handler, so the user can the value on * the fly. */ SYSCTL_ADD_PROC(&softc->sysctl_ctx,SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "minimum_cmd_size", CTLTYPE_INT | CTLFLAG_RW, &softc->minimum_command_size, 0, cdcmdsizesysctl, "I", "Minimum CDB size"); cam_periph_release(periph); } /* * We have a handler function for this so we can check the values when the * user sets them, instead of every time we look at them. */ static int cdcmdsizesysctl(SYSCTL_HANDLER_ARGS) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); /* * The only real values we can have here are 6 or 10. I don't * really forsee having 12 be an option at any time in the future. * So if the user sets something less than or equal to 6, we'll set * it to 6. If he sets something greater than 6, we'll set it to 10. * * I suppose we could just return an error here for the wrong values, * but I don't think it's necessary to do so, as long as we can * determine the user's intent without too much trouble. */ if (value < 6) value = 6; else if (value > 6) value = 10; *(int *)arg1 = value; return (0); } static cam_status cdregister(struct cam_periph *periph, void *arg) { struct cd_softc *softc; struct ccb_pathinq cpi; struct ccb_getdev *cgd; char tmpstr[80]; caddr_t match; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("cdregister: no getdev CCB, can't register device\n"); return(CAM_REQ_CMP_ERR); } softc = (struct cd_softc *)malloc(sizeof(*softc),M_DEVBUF, M_NOWAIT | M_ZERO); if (softc == NULL) { printf("cdregister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } LIST_INIT(&softc->pending_ccbs); STAILQ_INIT(&softc->mode_queue); softc->state = CD_STATE_PROBE; bioq_init(&softc->bio_queue); if (SID_IS_REMOVABLE(&cgd->inq_data)) softc->flags |= CD_FLAG_DISC_REMOVABLE; periph->softc = softc; softc->periph = periph; /* * See if this device has any quirks. */ match = cam_quirkmatch((caddr_t)&cgd->inq_data, (caddr_t)cd_quirk_table, sizeof(cd_quirk_table)/sizeof(*cd_quirk_table), sizeof(*cd_quirk_table), scsi_inquiry_match); if (match != NULL) softc->quirks = ((struct cd_quirk_entry *)match)->quirks; else softc->quirks = CD_Q_NONE; /* Check if the SIM does not want 6 byte commands */ bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status == CAM_REQ_CMP && (cpi.hba_misc & PIM_NO_6_BYTE)) softc->quirks |= CD_Q_10_BYTE_ONLY; TASK_INIT(&softc->sysctl_task, 0, cdsysctlinit, periph); /* The default is 6 byte commands, unless quirked otherwise */ if (softc->quirks & CD_Q_10_BYTE_ONLY) softc->minimum_command_size = 10; else softc->minimum_command_size = 6; /* * Refcount and block open attempts until we are setup * Can't block */ (void)cam_periph_hold(periph, PRIBIO); cam_periph_unlock(periph); /* * Load the user's default, if any. */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.cd.%d.minimum_cmd_size", periph->unit_number); TUNABLE_INT_FETCH(tmpstr, &softc->minimum_command_size); /* 6 and 10 are the only permissible values here. */ if (softc->minimum_command_size < 6) softc->minimum_command_size = 6; else if (softc->minimum_command_size > 6) softc->minimum_command_size = 10; /* * We need to register the statistics structure for this device, * but we don't have the blocksize yet for it. So, we register * the structure and indicate that we don't have the blocksize * yet. Unlike other SCSI peripheral drivers, we explicitly set * the device type here to be CDROM, rather than just ORing in * the device type. This is because this driver can attach to either * CDROM or WORM devices, and we want this peripheral driver to * show up in the devstat list as a CD peripheral driver, not a * WORM peripheral driver. WORM drives will also have the WORM * driver attached to them. */ softc->disk = disk_alloc(); softc->disk->d_devstat = devstat_new_entry("cd", periph->unit_number, 0, DEVSTAT_BS_UNAVAILABLE, DEVSTAT_TYPE_CDROM | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_CD); softc->disk->d_open = cdopen; softc->disk->d_close = cdclose; softc->disk->d_strategy = cdstrategy; softc->disk->d_gone = cddiskgonecb; softc->disk->d_ioctl = cdioctl; softc->disk->d_name = "cd"; cam_strvis(softc->disk->d_descr, cgd->inq_data.vendor, sizeof(cgd->inq_data.vendor), sizeof(softc->disk->d_descr)); strlcat(softc->disk->d_descr, " ", sizeof(softc->disk->d_descr)); cam_strvis(&softc->disk->d_descr[strlen(softc->disk->d_descr)], cgd->inq_data.product, sizeof(cgd->inq_data.product), sizeof(softc->disk->d_descr) - strlen(softc->disk->d_descr)); softc->disk->d_unit = periph->unit_number; softc->disk->d_drv1 = periph; if (cpi.maxio == 0) softc->disk->d_maxsize = DFLTPHYS; /* traditional default */ else if (cpi.maxio > MAXPHYS) softc->disk->d_maxsize = MAXPHYS; /* for safety */ else softc->disk->d_maxsize = cpi.maxio; softc->disk->d_flags = 0; softc->disk->d_hba_vendor = cpi.hba_vendor; softc->disk->d_hba_device = cpi.hba_device; softc->disk->d_hba_subvendor = cpi.hba_subvendor; softc->disk->d_hba_subdevice = cpi.hba_subdevice; /* * Acquire a reference to the periph before we register with GEOM. * We'll release this reference once GEOM calls us back (via * dadiskgonecb()) telling us that our provider has been freed. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } disk_create(softc->disk, DISK_VERSION); cam_periph_lock(periph); /* * Add an async callback so that we get * notified if this device goes away. */ xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE | AC_SCSI_AEN | AC_UNIT_ATTENTION, cdasync, periph, periph->path); /* * If the target lun is greater than 0, we most likely have a CD * changer device. Check the quirk entries as well, though, just * in case someone has a CD tower with one lun per drive or * something like that. Also, if we know up front that a * particular device is a changer, we can mark it as such starting * with lun 0, instead of lun 1. It shouldn't be necessary to have * a quirk entry to define something as a changer, however. */ if (((cgd->ccb_h.target_lun > 0) && ((softc->quirks & CD_Q_NO_CHANGER) == 0)) || ((softc->quirks & CD_Q_CHANGER) != 0)) { struct cdchanger *nchanger; struct cam_periph *nperiph; struct cam_path *path; cam_status status; int found; /* Set the changer flag in the current device's softc */ softc->flags |= CD_FLAG_CHANGER; /* * Now, look around for an existing changer device with the * same path and target ID as the current device. */ mtx_lock(&changerq_mtx); for (found = 0, nchanger = (struct cdchanger *)STAILQ_FIRST(&changerq); nchanger != NULL; nchanger = STAILQ_NEXT(nchanger, changer_links)){ if ((nchanger->path_id == cgd->ccb_h.path_id) && (nchanger->target_id == cgd->ccb_h.target_id)) { found = 1; break; } } mtx_unlock(&changerq_mtx); /* * If we found a matching entry, just add this device to * the list of devices on this changer. */ if (found == 1) { struct chdevlist *chlunhead; chlunhead = &nchanger->chluns; /* * XXX KDM look at consolidating this code with the * code below in a separate function. */ /* * Create a path with lun id 0, and see if we can * find a matching device */ status = xpt_create_path(&path, /*periph*/ periph, cgd->ccb_h.path_id, cgd->ccb_h.target_id, 0); if ((status == CAM_REQ_CMP) && ((nperiph = cam_periph_find(path, "cd")) != NULL)){ struct cd_softc *nsoftc; nsoftc = (struct cd_softc *)nperiph->softc; if ((nsoftc->flags & CD_FLAG_CHANGER) == 0){ nsoftc->flags |= CD_FLAG_CHANGER; nchanger->num_devices++; if (camq_resize(&nchanger->devq, nchanger->num_devices)!=CAM_REQ_CMP){ printf("cdregister: " "camq_resize " "failed, changer " "support may " "be messed up\n"); } nsoftc->changer = nchanger; nsoftc->pinfo.index =CAM_UNQUEUED_INDEX; STAILQ_INSERT_TAIL(&nchanger->chluns, nsoftc,changer_links); } xpt_free_path(path); } else if (status == CAM_REQ_CMP) xpt_free_path(path); else { printf("cdregister: unable to allocate path\n" "cdregister: changer support may be " "broken\n"); } nchanger->num_devices++; softc->changer = nchanger; softc->pinfo.index = CAM_UNQUEUED_INDEX; if (camq_resize(&nchanger->devq, nchanger->num_devices) != CAM_REQ_CMP) { printf("cdregister: camq_resize " "failed, changer support may " "be messed up\n"); } STAILQ_INSERT_TAIL(chlunhead, softc, changer_links); } /* * In this case, we don't already have an entry for this * particular changer, so we need to create one, add it to * the queue, and queue this device on the list for this * changer. Before we queue this device, however, we need * to search for lun id 0 on this target, and add it to the * queue first, if it exists. (and if it hasn't already * been marked as part of the changer.) */ else { nchanger = malloc(sizeof(struct cdchanger), M_DEVBUF, M_NOWAIT | M_ZERO); if (nchanger == NULL) { softc->flags &= ~CD_FLAG_CHANGER; printf("cdregister: unable to malloc " "changer structure\ncdregister: " "changer support disabled\n"); /* * Yes, gotos can be gross but in this case * I think it's justified.. */ goto cdregisterexit; } if (camq_init(&nchanger->devq, 1) != 0) { softc->flags &= ~CD_FLAG_CHANGER; printf("cdregister: changer support " "disabled\n"); goto cdregisterexit; } nchanger->path_id = cgd->ccb_h.path_id; nchanger->target_id = cgd->ccb_h.target_id; /* this is superfluous, but it makes things clearer */ nchanger->num_devices = 0; STAILQ_INIT(&nchanger->chluns); callout_init_mtx(&nchanger->long_handle, periph->sim->mtx, 0); callout_init_mtx(&nchanger->short_handle, periph->sim->mtx, 0); mtx_lock(&changerq_mtx); num_changers++; STAILQ_INSERT_TAIL(&changerq, nchanger, changer_links); mtx_unlock(&changerq_mtx); /* * Create a path with lun id 0, and see if we can * find a matching device */ status = xpt_create_path(&path, /*periph*/ periph, cgd->ccb_h.path_id, cgd->ccb_h.target_id, 0); /* * If we were able to allocate the path, and if we * find a matching device and it isn't already * marked as part of a changer, then we add it to * the current changer. */ if ((status == CAM_REQ_CMP) && ((nperiph = cam_periph_find(path, "cd")) != NULL) && ((((struct cd_softc *)periph->softc)->flags & CD_FLAG_CHANGER) == 0)) { struct cd_softc *nsoftc; nsoftc = (struct cd_softc *)nperiph->softc; nsoftc->flags |= CD_FLAG_CHANGER; nchanger->num_devices++; if (camq_resize(&nchanger->devq, nchanger->num_devices) != CAM_REQ_CMP) { printf("cdregister: camq_resize " "failed, changer support may " "be messed up\n"); } nsoftc->changer = nchanger; nsoftc->pinfo.index = CAM_UNQUEUED_INDEX; STAILQ_INSERT_TAIL(&nchanger->chluns, nsoftc, changer_links); xpt_free_path(path); } else if (status == CAM_REQ_CMP) xpt_free_path(path); else { printf("cdregister: unable to allocate path\n" "cdregister: changer support may be " "broken\n"); } softc->changer = nchanger; softc->pinfo.index = CAM_UNQUEUED_INDEX; nchanger->num_devices++; if (camq_resize(&nchanger->devq, nchanger->num_devices) != CAM_REQ_CMP) { printf("cdregister: camq_resize " "failed, changer support may " "be messed up\n"); } STAILQ_INSERT_TAIL(&nchanger->chluns, softc, changer_links); } } /* * Schedule a periodic media polling events. */ callout_init_mtx(&softc->mediapoll_c, periph->sim->mtx, 0); if ((softc->flags & CD_FLAG_DISC_REMOVABLE) && (softc->flags & CD_FLAG_CHANGER) == 0 && (cgd->inq_flags & SID_AEN) == 0 && cd_poll_period != 0) callout_reset(&softc->mediapoll_c, cd_poll_period * hz, cdmediapoll, periph); cdregisterexit: if ((softc->flags & CD_FLAG_CHANGER) == 0) xpt_schedule(periph, CAM_PRIORITY_DEV); else cdschedule(periph, CAM_PRIORITY_DEV); return(CAM_REQ_CMP); } static int cdopen(struct disk *dp) { struct cam_periph *periph; struct cd_softc *softc; int error; periph = (struct cam_periph *)dp->d_drv1; softc = (struct cd_softc *)periph->softc; if (cam_periph_acquire(periph) != CAM_REQ_CMP) return(ENXIO); cam_periph_lock(periph); if (softc->flags & CD_FLAG_INVALID) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(ENXIO); } if ((error = cam_periph_hold(periph, PRIBIO | PCATCH)) != 0) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return (error); } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("cdopen\n")); /* * Check for media, and set the appropriate flags. We don't bail * if we don't have media, but then we don't allow anything but the * CDIOCEJECT/CDIOCCLOSE ioctls if there is no media. */ cdcheckmedia(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("leaving cdopen\n")); cam_periph_unhold(periph); cam_periph_unlock(periph); return (0); } static int cdclose(struct disk *dp) { struct cam_periph *periph; struct cd_softc *softc; periph = (struct cam_periph *)dp->d_drv1; softc = (struct cd_softc *)periph->softc; cam_periph_lock(periph); if (cam_periph_hold(periph, PRIBIO) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (0); } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("cdclose\n")); if ((softc->flags & CD_FLAG_DISC_REMOVABLE) != 0) cdprevent(periph, PR_ALLOW); /* * Since we're closing this CD, mark the blocksize as unavailable. * It will be marked as available when the CD is opened again. */ softc->disk->d_devstat->flags |= DEVSTAT_BS_UNAVAILABLE; /* * We'll check the media and toc again at the next open(). */ softc->flags &= ~(CD_FLAG_VALID_MEDIA|CD_FLAG_VALID_TOC); cam_periph_unhold(periph); cam_periph_release_locked(periph); cam_periph_unlock(periph); return (0); } static void cdshorttimeout(void *arg) { struct cdchanger *changer; changer = (struct cdchanger *)arg; /* Always clear the short timeout flag, since that's what we're in */ changer->flags &= ~CHANGER_SHORT_TMOUT_SCHED; /* * Check to see if there is any more pending or outstanding I/O for * this device. If not, move it out of the active slot. */ if ((bioq_first(&changer->cur_device->bio_queue) == NULL) && (changer->cur_device->outstanding_cmds == 0)) { changer->flags |= CHANGER_MANUAL_CALL; cdrunchangerqueue(changer); } } /* * This is a wrapper for xpt_schedule. It only applies to changers. */ static void cdschedule(struct cam_periph *periph, int priority) { struct cd_softc *softc; softc = (struct cd_softc *)periph->softc; /* * If this device isn't currently queued, and if it isn't * the active device, then we queue this device and run the * changer queue if there is no timeout scheduled to do it. * If this device is the active device, just schedule it * to run again. If this device is queued, there should be * a timeout in place already that will make sure it runs. */ if ((softc->pinfo.index == CAM_UNQUEUED_INDEX) && ((softc->flags & CD_FLAG_ACTIVE) == 0)) { /* * We don't do anything with the priority here. * This is strictly a fifo queue. */ softc->pinfo.priority = CAM_PRIORITY_NORMAL; softc->pinfo.generation = ++softc->changer->devq.generation; camq_insert(&softc->changer->devq, (cam_pinfo *)softc); /* * Since we just put a device in the changer queue, * check and see if there is a timeout scheduled for * this changer. If so, let the timeout handle * switching this device into the active slot. If * not, manually call the timeout routine to * bootstrap things. */ if (((softc->changer->flags & CHANGER_TIMEOUT_SCHED)==0) && ((softc->changer->flags & CHANGER_NEED_TIMEOUT)==0) && ((softc->changer->flags & CHANGER_SHORT_TMOUT_SCHED)==0)){ softc->changer->flags |= CHANGER_MANUAL_CALL; cdrunchangerqueue(softc->changer); } } else if ((softc->flags & CD_FLAG_ACTIVE) && ((softc->flags & CD_FLAG_SCHED_ON_COMP) == 0)) xpt_schedule(periph, priority); } static void cdrunchangerqueue(void *arg) { struct cd_softc *softc; struct cdchanger *changer; int called_from_timeout; changer = (struct cdchanger *)arg; /* * If we have NOT been called from cdstrategy() or cddone(), and * instead from a timeout routine, go ahead and clear the * timeout flag. */ if ((changer->flags & CHANGER_MANUAL_CALL) == 0) { changer->flags &= ~CHANGER_TIMEOUT_SCHED; called_from_timeout = 1; } else called_from_timeout = 0; /* Always clear the manual call flag */ changer->flags &= ~CHANGER_MANUAL_CALL; /* nothing to do if the queue is empty */ if (changer->devq.entries <= 0) { return; } /* * If the changer queue is frozen, that means we have an active * device. */ if (changer->devq.qfrozen_cnt[0] > 0) { /* * We always need to reset the frozen count and clear the * active flag. */ changer->devq.qfrozen_cnt[0]--; changer->cur_device->flags &= ~CD_FLAG_ACTIVE; changer->cur_device->flags &= ~CD_FLAG_SCHED_ON_COMP; if (changer->cur_device->outstanding_cmds > 0) { changer->cur_device->flags |= CD_FLAG_SCHED_ON_COMP; changer->cur_device->bufs_left = changer->cur_device->outstanding_cmds; if (called_from_timeout) { callout_reset(&changer->long_handle, changer_max_busy_seconds * hz, cdrunchangerqueue, changer); changer->flags |= CHANGER_TIMEOUT_SCHED; } return; } /* * Check to see whether the current device has any I/O left * to do. If so, requeue it at the end of the queue. If * not, there is no need to requeue it. */ if (bioq_first(&changer->cur_device->bio_queue) != NULL) { changer->cur_device->pinfo.generation = ++changer->devq.generation; camq_insert(&changer->devq, (cam_pinfo *)changer->cur_device); } } softc = (struct cd_softc *)camq_remove(&changer->devq, CAMQ_HEAD); changer->cur_device = softc; changer->devq.qfrozen_cnt[0]++; softc->flags |= CD_FLAG_ACTIVE; /* Just in case this device is waiting */ wakeup(&softc->changer); xpt_schedule(softc->periph, CAM_PRIORITY_NORMAL); /* * Get rid of any pending timeouts, and set a flag to schedule new * ones so this device gets its full time quantum. */ if (changer->flags & CHANGER_TIMEOUT_SCHED) { callout_stop(&changer->long_handle); changer->flags &= ~CHANGER_TIMEOUT_SCHED; } if (changer->flags & CHANGER_SHORT_TMOUT_SCHED) { callout_stop(&changer->short_handle); changer->flags &= ~CHANGER_SHORT_TMOUT_SCHED; } /* * We need to schedule timeouts, but we only do this after the * first transaction has completed. This eliminates the changer * switch time. */ changer->flags |= CHANGER_NEED_TIMEOUT; } static void cdchangerschedule(struct cd_softc *softc) { struct cdchanger *changer; changer = softc->changer; /* * If this is a changer, and this is the current device, * and this device has at least the minimum time quantum to * run, see if we can switch it out. */ if ((softc->flags & CD_FLAG_ACTIVE) && ((changer->flags & CHANGER_SHORT_TMOUT_SCHED) == 0) && ((changer->flags & CHANGER_NEED_TIMEOUT) == 0)) { /* * We try three things here. The first is that we * check to see whether the schedule on completion * flag is set. If it is, we decrement the number * of buffers left, and if it's zero, we reschedule. * Next, we check to see whether the pending buffer * queue is empty and whether there are no * outstanding transactions. If so, we reschedule. * Next, we see if the pending buffer queue is empty. * If it is, we set the number of buffers left to * the current active buffer count and set the * schedule on complete flag. */ if (softc->flags & CD_FLAG_SCHED_ON_COMP) { if (--softc->bufs_left == 0) { softc->changer->flags |= CHANGER_MANUAL_CALL; softc->flags &= ~CD_FLAG_SCHED_ON_COMP; cdrunchangerqueue(softc->changer); } } else if ((bioq_first(&softc->bio_queue) == NULL) && (softc->outstanding_cmds == 0)) { softc->changer->flags |= CHANGER_MANUAL_CALL; cdrunchangerqueue(softc->changer); } } else if ((softc->changer->flags & CHANGER_NEED_TIMEOUT) && (softc->flags & CD_FLAG_ACTIVE)) { /* * Now that the first transaction to this * particular device has completed, we can go ahead * and schedule our timeouts. */ if ((changer->flags & CHANGER_TIMEOUT_SCHED) == 0) { callout_reset(&changer->long_handle, changer_max_busy_seconds * hz, cdrunchangerqueue, changer); changer->flags |= CHANGER_TIMEOUT_SCHED; } else printf("cdchangerschedule: already have a long" " timeout!\n"); if ((changer->flags & CHANGER_SHORT_TMOUT_SCHED) == 0) { callout_reset(&changer->short_handle, changer_min_busy_seconds * hz, cdshorttimeout, changer); changer->flags |= CHANGER_SHORT_TMOUT_SCHED; } else printf("cdchangerschedule: already have a short " "timeout!\n"); /* * We just scheduled timeouts, no need to schedule * more. */ changer->flags &= ~CHANGER_NEED_TIMEOUT; } } static int cdrunccb(union ccb *ccb, int (*error_routine)(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags), u_int32_t cam_flags, u_int32_t sense_flags) { struct cd_softc *softc; struct cam_periph *periph; int error; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct cd_softc *)periph->softc; error = cam_periph_runccb(ccb, error_routine, cam_flags, sense_flags, softc->disk->d_devstat); if (softc->flags & CD_FLAG_CHANGER) cdchangerschedule(softc); return(error); } static union ccb * cdgetccb(struct cam_periph *periph, u_int32_t priority) { struct cd_softc *softc; softc = (struct cd_softc *)periph->softc; if (softc->flags & CD_FLAG_CHANGER) { /* * This should work the first time this device is woken up, * but just in case it doesn't, we use a while loop. */ while ((softc->flags & CD_FLAG_ACTIVE) == 0) { /* * If this changer isn't already queued, queue it up. */ if (softc->pinfo.index == CAM_UNQUEUED_INDEX) { softc->pinfo.priority = CAM_PRIORITY_NORMAL; softc->pinfo.generation = ++softc->changer->devq.generation; camq_insert(&softc->changer->devq, (cam_pinfo *)softc); } if (((softc->changer->flags & CHANGER_TIMEOUT_SCHED)==0) && ((softc->changer->flags & CHANGER_NEED_TIMEOUT)==0) && ((softc->changer->flags & CHANGER_SHORT_TMOUT_SCHED)==0)) { softc->changer->flags |= CHANGER_MANUAL_CALL; cdrunchangerqueue(softc->changer); } else - msleep(&softc->changer, periph->sim->mtx, + cam_periph_sleep(periph, &softc->changer, PRIBIO, "cgticb", 0); } } return(cam_periph_getccb(periph, priority)); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void cdstrategy(struct bio *bp) { struct cam_periph *periph; struct cd_softc *softc; periph = (struct cam_periph *)bp->bio_disk->d_drv1; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cdstrategy(%p)\n", bp)); softc = (struct cd_softc *)periph->softc; /* * If the device has been made invalid, error out */ if ((softc->flags & CD_FLAG_INVALID)) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } /* * If we don't have valid media, look for it before trying to * schedule the I/O. */ if ((softc->flags & CD_FLAG_VALID_MEDIA) == 0) { int error; error = cdcheckmedia(periph); if (error != 0) { cam_periph_unlock(periph); biofinish(bp, NULL, error); return; } } /* * Place it in the queue of disk activities for this disk */ bioq_disksort(&softc->bio_queue, bp); /* * Schedule ourselves for performing the work. We do things * differently for changers. */ if ((softc->flags & CD_FLAG_CHANGER) == 0) xpt_schedule(periph, CAM_PRIORITY_NORMAL); else cdschedule(periph, CAM_PRIORITY_NORMAL); cam_periph_unlock(periph); return; } static void cdstart(struct cam_periph *periph, union ccb *start_ccb) { struct cd_softc *softc; struct bio *bp; struct ccb_scsiio *csio; struct scsi_read_capacity_data *rcap; softc = (struct cd_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdstart\n")); switch (softc->state) { case CD_STATE_NORMAL: { bp = bioq_first(&softc->bio_queue); if (periph->immediate_priority <= periph->pinfo.priority) { start_ccb->ccb_h.ccb_state = CD_CCB_WAITING; SLIST_INSERT_HEAD(&periph->ccb_list, &start_ccb->ccb_h, periph_links.sle); periph->immediate_priority = CAM_PRIORITY_NONE; wakeup(&periph->ccb_list); } else if (bp == NULL) { if (softc->tur) { softc->tur = 0; csio = &start_ccb->csio; scsi_test_unit_ready(csio, /*retries*/ cd_retry_count, cddone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, cd_timeout); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = CD_CCB_TUR; xpt_action(start_ccb); } else xpt_release_ccb(start_ccb); } else { if (softc->tur) { softc->tur = 0; cam_periph_release_locked(periph); } bioq_remove(&softc->bio_queue, bp); scsi_read_write(&start_ccb->csio, /*retries*/ cd_retry_count, /* cbfcnp */ cddone, MSG_SIMPLE_Q_TAG, /* read */bp->bio_cmd == BIO_READ ? SCSI_RW_READ : SCSI_RW_WRITE, /* byte2 */ 0, /* minimum_cmd_size */ 10, /* lba */ bp->bio_offset / softc->params.blksize, bp->bio_bcount / softc->params.blksize, /* data_ptr */ bp->bio_data, /* dxfer_len */ bp->bio_bcount, /* sense_len */ cd_retry_count ? SSD_FULL_SIZE : SF_NO_PRINT, /* timeout */ cd_timeout); /* Use READ CD command for audio tracks. */ if (softc->params.blksize == 2352) { start_ccb->csio.cdb_io.cdb_bytes[0] = READ_CD; start_ccb->csio.cdb_io.cdb_bytes[9] = 0xf8; start_ccb->csio.cdb_io.cdb_bytes[10] = 0; start_ccb->csio.cdb_io.cdb_bytes[11] = 0; start_ccb->csio.cdb_len = 12; } start_ccb->ccb_h.ccb_state = CD_CCB_BUFFER_IO; LIST_INSERT_HEAD(&softc->pending_ccbs, &start_ccb->ccb_h, periph_links.le); softc->outstanding_cmds++; /* We expect a unit attention from this device */ if ((softc->flags & CD_FLAG_RETRY_UA) != 0) { start_ccb->ccb_h.ccb_state |= CD_CCB_RETRY_UA; softc->flags &= ~CD_FLAG_RETRY_UA; } start_ccb->ccb_h.ccb_bp = bp; bp = bioq_first(&softc->bio_queue); xpt_action(start_ccb); } if (bp != NULL || softc->tur || periph->immediate_priority != CAM_PRIORITY_NONE) { /* Have more work to do, so ensure we stay scheduled */ xpt_schedule(periph, min(CAM_PRIORITY_NORMAL, periph->immediate_priority)); } break; } case CD_STATE_PROBE: { rcap = (struct scsi_read_capacity_data *)malloc(sizeof(*rcap), M_SCSICD, M_NOWAIT | M_ZERO); if (rcap == NULL) { xpt_print(periph->path, "cdstart: Couldn't malloc read_capacity data\n"); /* cd_free_periph??? */ break; } csio = &start_ccb->csio; scsi_read_capacity(csio, /*retries*/ cd_retry_count, cddone, MSG_SIMPLE_Q_TAG, rcap, SSD_FULL_SIZE, /*timeout*/20000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = CD_CCB_PROBE; xpt_action(start_ccb); break; } } } static void cddone(struct cam_periph *periph, union ccb *done_ccb) { struct cd_softc *softc; struct ccb_scsiio *csio; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cddone\n")); softc = (struct cd_softc *)periph->softc; csio = &done_ccb->csio; switch (csio->ccb_h.ccb_state & CD_CCB_TYPE_MASK) { case CD_CCB_BUFFER_IO: { struct bio *bp; int error; bp = (struct bio *)done_ccb->ccb_h.ccb_bp; error = 0; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { int sf; if ((done_ccb->ccb_h.ccb_state & CD_CCB_RETRY_UA) != 0) sf = SF_RETRY_UA; else sf = 0; error = cderror(done_ccb, CAM_RETRY_SELTO, sf); if (error == ERESTART) { /* * A retry was scheuled, so * just return. */ return; } } if (error != 0) { xpt_print(periph->path, "cddone: got error %#x back\n", error); bioq_flush(&softc->bio_queue, NULL, EIO); bp->bio_resid = bp->bio_bcount; bp->bio_error = error; bp->bio_flags |= BIO_ERROR; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } else { bp->bio_resid = csio->resid; bp->bio_error = 0; if (bp->bio_resid != 0) { /* * Short transfer ??? * XXX: not sure this is correct for partial * transfers at EOM */ bp->bio_flags |= BIO_ERROR; } } LIST_REMOVE(&done_ccb->ccb_h, periph_links.le); softc->outstanding_cmds--; if (softc->flags & CD_FLAG_CHANGER) cdchangerschedule(softc); biofinish(bp, NULL, 0); break; } case CD_CCB_PROBE: { struct scsi_read_capacity_data *rdcap; char announce_buf[120]; /* * Currently (9/30/97) the * longest possible announce * buffer is 108 bytes, for the * first error case below. * That is 39 bytes for the * basic string, 16 bytes for the * biggest sense key (hardware * error), 52 bytes for the * text of the largest sense * qualifier valid for a CDROM, * (0x72, 0x03 or 0x04, * 0x03), and one byte for the * null terminating character. * To allow for longer strings, * the announce buffer is 120 * bytes. */ struct cd_params *cdp; int error; cdp = &softc->params; rdcap = (struct scsi_read_capacity_data *)csio->data_ptr; cdp->disksize = scsi_4btoul (rdcap->addr) + 1; cdp->blksize = scsi_4btoul (rdcap->length); /* * Retry any UNIT ATTENTION type errors. They * are expected at boot. */ if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP || (error = cderror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_PRINT)) == 0) { snprintf(announce_buf, sizeof(announce_buf), "cd present [%lu x %lu byte records]", cdp->disksize, (u_long)cdp->blksize); } else { if (error == ERESTART) { /* * A retry was scheuled, so * just return. */ return; } else { int asc, ascq; int sense_key, error_code; int have_sense; cam_status status; struct ccb_getdev cgd; /* Don't wedge this device's queue */ if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); status = done_ccb->ccb_h.status; xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if (scsi_extract_sense_ccb(done_ccb, &error_code, &sense_key, &asc, &ascq)) have_sense = TRUE; else have_sense = FALSE; /* * Attach to anything that claims to be a * CDROM or WORM device, as long as it * doesn't return a "Logical unit not * supported" (0x25) error. */ if ((have_sense) && (asc != 0x25) && (error_code == SSD_CURRENT_ERROR)) { const char *sense_key_desc; const char *asc_desc; scsi_sense_desc(sense_key, asc, ascq, &cgd.inq_data, &sense_key_desc, &asc_desc); snprintf(announce_buf, sizeof(announce_buf), "Attempt to query device " "size failed: %s, %s", sense_key_desc, asc_desc); } else if ((have_sense == 0) && ((status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR) && (csio->scsi_status == SCSI_STATUS_BUSY)) { snprintf(announce_buf, sizeof(announce_buf), "Attempt to query device " "size failed: SCSI Status: %s", scsi_status_string(csio)); } else if (SID_TYPE(&cgd.inq_data) == T_CDROM) { /* * We only print out an error for * CDROM type devices. For WORM * devices, we don't print out an * error since a few WORM devices * don't support CDROM commands. * If we have sense information, go * ahead and print it out. * Otherwise, just say that we * couldn't attach. */ /* * Just print out the error, not * the full probe message, when we * don't attach. */ if (have_sense) scsi_sense_print( &done_ccb->csio); else { xpt_print(periph->path, "got CAM status %#x\n", done_ccb->ccb_h.status); } xpt_print(periph->path, "fatal error, " "failed to attach to device\n"); /* * Invalidate this peripheral. */ cam_periph_invalidate(periph); announce_buf[0] = '\0'; } else { /* * Invalidate this peripheral. */ cam_periph_invalidate(periph); announce_buf[0] = '\0'; } } } free(rdcap, M_SCSICD); if (announce_buf[0] != '\0') { xpt_announce_periph(periph, announce_buf); if (softc->flags & CD_FLAG_CHANGER) cdchangerschedule(softc); /* * Create our sysctl variables, now that we know * we have successfully attached. */ taskqueue_enqueue(taskqueue_thread,&softc->sysctl_task); } softc->state = CD_STATE_NORMAL; /* * Since our peripheral may be invalidated by an error * above or an external event, we must release our CCB * before releasing the probe lock on the peripheral. * The peripheral will only go away once the last lock * is removed, and we need it around for the CCB release * operation. */ xpt_release_ccb(done_ccb); cam_periph_unhold(periph); return; } case CD_CCB_WAITING: { /* Caller will release the CCB */ CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("trying to wakeup ccbwait\n")); wakeup(&done_ccb->ccb_h.cbfcnp); return; } case CD_CCB_TUR: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (cderror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_RECOVERY | SF_NO_PRINT) == ERESTART) return; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } xpt_release_ccb(done_ccb); cam_periph_release_locked(periph); return; } default: break; } xpt_release_ccb(done_ccb); } static union cd_pages * cdgetpage(struct cd_mode_params *mode_params) { union cd_pages *page; if (mode_params->cdb_size == 10) page = (union cd_pages *)find_mode_page_10( (struct scsi_mode_header_10 *)mode_params->mode_buf); else page = (union cd_pages *)find_mode_page_6( (struct scsi_mode_header_6 *)mode_params->mode_buf); return (page); } static int cdgetpagesize(int page_num) { int i; for (i = 0; i < (sizeof(cd_page_size_table)/ sizeof(cd_page_size_table[0])); i++) { if (cd_page_size_table[i].page == page_num) return (cd_page_size_table[i].page_size); } return (-1); } static int cdioctl(struct disk *dp, u_long cmd, void *addr, int flag, struct thread *td) { struct cam_periph *periph; struct cd_softc *softc; int nocopyout, error = 0; periph = (struct cam_periph *)dp->d_drv1; cam_periph_lock(periph); softc = (struct cd_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cdioctl(%#lx)\n", cmd)); if ((error = cam_periph_hold(periph, PRIBIO | PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } /* * If we don't have media loaded, check for it. If still don't * have media loaded, we can only do a load or eject. * * We only care whether media is loaded if this is a cd-specific ioctl * (thus the IOCGROUP check below). Note that this will break if * anyone adds any ioctls into the switch statement below that don't * have their ioctl group set to 'c'. */ if (((softc->flags & CD_FLAG_VALID_MEDIA) == 0) && ((cmd != CDIOCCLOSE) && (cmd != CDIOCEJECT)) && (IOCGROUP(cmd) == 'c')) { error = cdcheckmedia(periph); if (error != 0) { cam_periph_unhold(periph); cam_periph_unlock(periph); return (error); } } /* * Drop the lock here so later mallocs can use WAITOK. The periph * is essentially locked still with the cam_periph_hold call above. */ cam_periph_unlock(periph); nocopyout = 0; switch (cmd) { case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *) addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCPLAYTRACKS\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.flags &= ~CD_PA_SOTC; page->audio.flags |= CD_PA_IMMED; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); if (error) { cam_periph_unlock(periph); break; } /* * This was originally implemented with the PLAY * AUDIO TRACK INDEX command, but that command was * deprecated after SCSI-2. Most (all?) SCSI CDROM * drives support it but ATAPI and ATAPI-derivative * drives don't seem to support it. So we keep a * cache of the table of contents and translate * track numbers to MSF format. */ if (softc->flags & CD_FLAG_VALID_TOC) { union msf_lba *sentry, *eentry; int st, et; if (args->end_track < softc->toc.header.ending_track + 1) args->end_track++; if (args->end_track > softc->toc.header.ending_track + 1) args->end_track = softc->toc.header.ending_track + 1; st = args->start_track - softc->toc.header.starting_track; et = args->end_track - softc->toc.header.starting_track; if ((st < 0) || (et < 0) || (st > (softc->toc.header.ending_track - softc->toc.header.starting_track))) { error = EINVAL; cam_periph_unlock(periph); break; } sentry = &softc->toc.entries[st].addr; eentry = &softc->toc.entries[et].addr; error = cdplaymsf(periph, sentry->msf.minute, sentry->msf.second, sentry->msf.frame, eentry->msf.minute, eentry->msf.second, eentry->msf.frame); } else { /* * If we don't have a valid TOC, try the * play track index command. It is part of * the SCSI-2 spec, but was removed in the * MMC specs. ATAPI and ATAPI-derived * drives don't support it. */ if (softc->quirks & CD_Q_BCD_TRACKS) { args->start_track = bin2bcd(args->start_track); args->end_track = bin2bcd(args->end_track); } error = cdplaytracks(periph, args->start_track, args->start_index, args->end_track, args->end_index); } cam_periph_unlock(periph); } break; case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *) addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCPLAYMSF\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.flags &= ~CD_PA_SOTC; page->audio.flags |= CD_PA_IMMED; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); if (error) { cam_periph_unlock(periph); break; } error = cdplaymsf(periph, args->start_m, args->start_s, args->start_f, args->end_m, args->end_s, args->end_f); cam_periph_unlock(periph); } break; case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *) addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCPLAYBLOCKS\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.flags &= ~CD_PA_SOTC; page->audio.flags |= CD_PA_IMMED; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); if (error) { cam_periph_unlock(periph); break; } error = cdplay(periph, args->blk, args->len); cam_periph_unlock(periph); } break; case CDIOCREADSUBCHANNEL_SYSSPACE: nocopyout = 1; /* Fallthrough */ case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *) addr; struct cd_sub_channel_info *data; u_int32_t len = args->data_len; data = malloc(sizeof(struct cd_sub_channel_info), M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCREADSUBCHANNEL\n")); if ((len > sizeof(struct cd_sub_channel_info)) || (len < sizeof(struct cd_sub_channel_header))) { printf( "scsi_cd: cdioctl: " "cdioreadsubchannel: error, len=%d\n", len); error = EINVAL; free(data, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) args->track = bin2bcd(args->track); error = cdreadsubchannel(periph, args->address_format, args->data_format, args->track, data, len); if (error) { free(data, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) data->what.track_info.track_number = bcd2bin(data->what.track_info.track_number); len = min(len, ((data->header.data_len[0] << 8) + data->header.data_len[1] + sizeof(struct cd_sub_channel_header))); cam_periph_unlock(periph); if (nocopyout == 0) { if (copyout(data, args->data, len) != 0) { error = EFAULT; } } else { bcopy(data, args->data, len); } free(data, M_SCSICD); } break; case CDIOREADTOCHEADER: { struct ioc_toc_header *th; th = malloc(sizeof(struct ioc_toc_header), M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOREADTOCHEADER\n")); error = cdreadtoc(periph, 0, 0, (u_int8_t *)th, sizeof (*th), /*sense_flags*/SF_NO_PRINT); if (error) { free(th, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) { /* we are going to have to convert the BCD * encoding on the cd to what is expected */ th->starting_track = bcd2bin(th->starting_track); th->ending_track = bcd2bin(th->ending_track); } th->len = ntohs(th->len); bcopy(th, addr, sizeof(*th)); free(th, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOREADTOCENTRYS: { struct cd_tocdata *data; struct cd_toc_single *lead; struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *) addr; struct ioc_toc_header *th; u_int32_t len, readlen, idx, num; u_int32_t starting_track = te->starting_track; data = malloc(sizeof(*data), M_SCSICD, M_WAITOK | M_ZERO); lead = malloc(sizeof(*lead), M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOREADTOCENTRYS\n")); if (te->data_len < sizeof(struct cd_toc_entry) || (te->data_len % sizeof(struct cd_toc_entry)) != 0 || (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT)) { error = EINVAL; printf("scsi_cd: error in readtocentries, " "returning EINVAL\n"); free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); break; } th = &data->header; error = cdreadtoc(periph, 0, 0, (u_int8_t *)th, sizeof (*th), /*sense_flags*/0); if (error) { free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) { /* we are going to have to convert the BCD * encoding on the cd to what is expected */ th->starting_track = bcd2bin(th->starting_track); th->ending_track = bcd2bin(th->ending_track); } if (starting_track == 0) starting_track = th->starting_track; else if (starting_track == LEADOUT) starting_track = th->ending_track + 1; else if (starting_track < th->starting_track || starting_track > th->ending_track + 1) { printf("scsi_cd: error in readtocentries, " "returning EINVAL\n"); free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); error = EINVAL; break; } /* calculate reading length without leadout entry */ readlen = (th->ending_track - starting_track + 1) * sizeof(struct cd_toc_entry); /* and with leadout entry */ len = readlen + sizeof(struct cd_toc_entry); if (te->data_len < len) { len = te->data_len; if (readlen > len) readlen = len; } if (len > sizeof(data->entries)) { printf("scsi_cd: error in readtocentries, " "returning EINVAL\n"); error = EINVAL; free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); break; } num = len / sizeof(struct cd_toc_entry); if (readlen > 0) { error = cdreadtoc(periph, te->address_format, starting_track, (u_int8_t *)data, readlen + sizeof (*th), /*sense_flags*/0); if (error) { free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); break; } } /* make leadout entry if needed */ idx = starting_track + num - 1; if (softc->quirks & CD_Q_BCD_TRACKS) th->ending_track = bcd2bin(th->ending_track); if (idx == th->ending_track + 1) { error = cdreadtoc(periph, te->address_format, LEADOUT, (u_int8_t *)lead, sizeof(*lead), /*sense_flags*/0); if (error) { free(data, M_SCSICD); free(lead, M_SCSICD); cam_periph_unlock(periph); break; } data->entries[idx - starting_track] = lead->entry; } if (softc->quirks & CD_Q_BCD_TRACKS) { for (idx = 0; idx < num - 1; idx++) { data->entries[idx].track = bcd2bin(data->entries[idx].track); } } cam_periph_unlock(periph); error = copyout(data->entries, te->data, len); free(data, M_SCSICD); free(lead, M_SCSICD); } break; case CDIOREADTOCENTRY: { struct cd_toc_single *data; struct ioc_read_toc_single_entry *te = (struct ioc_read_toc_single_entry *) addr; struct ioc_toc_header *th; u_int32_t track; data = malloc(sizeof(*data), M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOREADTOCENTRY\n")); if (te->address_format != CD_MSF_FORMAT && te->address_format != CD_LBA_FORMAT) { printf("error in readtocentry, " " returning EINVAL\n"); free(data, M_SCSICD); error = EINVAL; cam_periph_unlock(periph); break; } th = &data->header; error = cdreadtoc(periph, 0, 0, (u_int8_t *)th, sizeof (*th), /*sense_flags*/0); if (error) { free(data, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) { /* we are going to have to convert the BCD * encoding on the cd to what is expected */ th->starting_track = bcd2bin(th->starting_track); th->ending_track = bcd2bin(th->ending_track); } track = te->track; if (track == 0) track = th->starting_track; else if (track == LEADOUT) /* OK */; else if (track < th->starting_track || track > th->ending_track + 1) { printf("error in readtocentry, " " returning EINVAL\n"); free(data, M_SCSICD); error = EINVAL; cam_periph_unlock(periph); break; } error = cdreadtoc(periph, te->address_format, track, (u_int8_t *)data, sizeof(*data), /*sense_flags*/0); if (error) { free(data, M_SCSICD); cam_periph_unlock(periph); break; } if (softc->quirks & CD_Q_BCD_TRACKS) data->entry.track = bcd2bin(data->entry.track); bcopy(&data->entry, &te->entry, sizeof(struct cd_toc_entry)); free(data, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETPATCH\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = arg->patch[0]; page->audio.port[RIGHT_PORT].channels = arg->patch[1]; page->audio.port[2].channels = arg->patch[2]; page->audio.port[3].channels = arg->patch[3]; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCGETVOL\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); arg->vol[LEFT_PORT] = page->audio.port[LEFT_PORT].volume; arg->vol[RIGHT_PORT] = page->audio.port[RIGHT_PORT].volume; arg->vol[2] = page->audio.port[2].volume; arg->vol[3] = page->audio.port[3].volume; free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETVOL\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = CHANNEL_0; page->audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT]; page->audio.port[RIGHT_PORT].channels = CHANNEL_1; page->audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT]; page->audio.port[2].volume = arg->vol[2]; page->audio.port[3].volume = arg->vol[3]; error = cdsetmode(periph, ¶ms); cam_periph_unlock(periph); free(params.mode_buf, M_SCSICD); } break; case CDIOCSETMONO: { struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETMONO\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL; page->audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL; page->audio.port[2].channels = 0; page->audio.port[3].channels = 0; error = cdsetmode(periph, ¶ms); cam_periph_unlock(periph); free(params.mode_buf, M_SCSICD); } break; case CDIOCSETSTEREO: { struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETSTEREO\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = LEFT_CHANNEL; page->audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; page->audio.port[2].channels = 0; page->audio.port[3].channels = 0; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCSETMUTE: { struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETMUTE\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = 0; page->audio.port[RIGHT_PORT].channels = 0; page->audio.port[2].channels = 0; page->audio.port[3].channels = 0; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCSETLEFT: { struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETLEFT\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = LEFT_CHANNEL; page->audio.port[RIGHT_PORT].channels = LEFT_CHANNEL; page->audio.port[2].channels = 0; page->audio.port[3].channels = 0; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCSETRIGHT: { struct cd_mode_params params; union cd_pages *page; params.alloc_len = sizeof(union cd_mode_data_6_10); params.mode_buf = malloc(params.alloc_len, M_SCSICD, M_WAITOK | M_ZERO); cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("trying to do CDIOCSETRIGHT\n")); error = cdgetmode(periph, ¶ms, AUDIO_PAGE); if (error) { free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); break; } page = cdgetpage(¶ms); page->audio.port[LEFT_PORT].channels = RIGHT_CHANNEL; page->audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; page->audio.port[2].channels = 0; page->audio.port[3].channels = 0; error = cdsetmode(periph, ¶ms); free(params.mode_buf, M_SCSICD); cam_periph_unlock(periph); } break; case CDIOCRESUME: cam_periph_lock(periph); error = cdpause(periph, 1); cam_periph_unlock(periph); break; case CDIOCPAUSE: cam_periph_lock(periph); error = cdpause(periph, 0); cam_periph_unlock(periph); break; case CDIOCSTART: cam_periph_lock(periph); error = cdstartunit(periph, 0); cam_periph_unlock(periph); break; case CDIOCCLOSE: cam_periph_lock(periph); error = cdstartunit(periph, 1); cam_periph_unlock(periph); break; case CDIOCSTOP: cam_periph_lock(periph); error = cdstopunit(periph, 0); cam_periph_unlock(periph); break; case CDIOCEJECT: cam_periph_lock(periph); error = cdstopunit(periph, 1); cam_periph_unlock(periph); break; case CDIOCALLOW: cam_periph_lock(periph); cdprevent(periph, PR_ALLOW); cam_periph_unlock(periph); break; case CDIOCPREVENT: cam_periph_lock(periph); cdprevent(periph, PR_PREVENT); cam_periph_unlock(periph); break; case CDIOCSETDEBUG: /* sc_link->flags |= (SDEV_DB1 | SDEV_DB2); */ error = ENOTTY; break; case CDIOCCLRDEBUG: /* sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2); */ error = ENOTTY; break; case CDIOCRESET: /* return (cd_reset(periph)); */ error = ENOTTY; break; case CDRIOCREADSPEED: cam_periph_lock(periph); error = cdsetspeed(periph, *(u_int32_t *)addr, CDR_MAX_SPEED); cam_periph_unlock(periph); break; case CDRIOCWRITESPEED: cam_periph_lock(periph); error = cdsetspeed(periph, CDR_MAX_SPEED, *(u_int32_t *)addr); cam_periph_unlock(periph); break; case CDRIOCGETBLOCKSIZE: *(int *)addr = softc->params.blksize; break; case CDRIOCSETBLOCKSIZE: if (*(int *)addr <= 0) { error = EINVAL; break; } softc->disk->d_sectorsize = softc->params.blksize = *(int *)addr; break; case DVDIOCSENDKEY: case DVDIOCREPORTKEY: { struct dvd_authinfo *authinfo; authinfo = (struct dvd_authinfo *)addr; if (cmd == DVDIOCREPORTKEY) error = cdreportkey(periph, authinfo); else error = cdsendkey(periph, authinfo); break; } case DVDIOCREADSTRUCTURE: { struct dvd_struct *dvdstruct; dvdstruct = (struct dvd_struct *)addr; error = cdreaddvdstructure(periph, dvdstruct); break; } default: cam_periph_lock(periph); error = cam_periph_ioctl(periph, cmd, addr, cderror); cam_periph_unlock(periph); break; } cam_periph_lock(periph); cam_periph_unhold(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("leaving cdioctl\n")); if (error && bootverbose) { printf("scsi_cd.c::ioctl cmd=%08lx error=%d\n", cmd, error); } cam_periph_unlock(periph); return (error); } static void cdprevent(struct cam_periph *periph, int action) { union ccb *ccb; struct cd_softc *softc; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdprevent\n")); softc = (struct cd_softc *)periph->softc; if (((action == PR_ALLOW) && (softc->flags & CD_FLAG_DISC_LOCKED) == 0) || ((action == PR_PREVENT) && (softc->flags & CD_FLAG_DISC_LOCKED) != 0)) { return; } ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_prevent(&ccb->csio, /*retries*/ cd_retry_count, cddone, MSG_SIMPLE_Q_TAG, action, SSD_FULL_SIZE, /* timeout */60000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA|SF_NO_PRINT); xpt_release_ccb(ccb); if (error == 0) { if (action == PR_ALLOW) softc->flags &= ~CD_FLAG_DISC_LOCKED; else softc->flags |= CD_FLAG_DISC_LOCKED; } } /* * XXX: the disk media and sector size is only really able to change * XXX: while the device is closed. */ static int cdcheckmedia(struct cam_periph *periph) { struct cd_softc *softc; struct ioc_toc_header *toch; struct cd_toc_single leadout; u_int32_t size, toclen; int error, num_entries, cdindex; softc = (struct cd_softc *)periph->softc; cdprevent(periph, PR_PREVENT); softc->disk->d_sectorsize = 2048; softc->disk->d_mediasize = 0; /* * Get the disc size and block size. If we can't get it, we don't * have media, most likely. */ if ((error = cdsize(periph, &size)) != 0) { softc->flags &= ~(CD_FLAG_VALID_MEDIA|CD_FLAG_VALID_TOC); cdprevent(periph, PR_ALLOW); return (error); } else { softc->flags |= CD_FLAG_SAW_MEDIA | CD_FLAG_VALID_MEDIA; softc->disk->d_sectorsize = softc->params.blksize; softc->disk->d_mediasize = (off_t)softc->params.blksize * softc->params.disksize; } /* * Now we check the table of contents. This (currently) is only * used for the CDIOCPLAYTRACKS ioctl. It may be used later to do * things like present a separate entry in /dev for each track, * like that acd(4) driver does. */ bzero(&softc->toc, sizeof(softc->toc)); toch = &softc->toc.header; /* * We will get errors here for media that doesn't have a table of * contents. According to the MMC-3 spec: "When a Read TOC/PMA/ATIP * command is presented for a DDCD/CD-R/RW media, where the first TOC * has not been recorded (no complete session) and the Format codes * 0000b, 0001b, or 0010b are specified, this command shall be rejected * with an INVALID FIELD IN CDB. Devices that are not capable of * reading an incomplete session on DDC/CD-R/RW media shall report * CANNOT READ MEDIUM - INCOMPATIBLE FORMAT." * * So this isn't fatal if we can't read the table of contents, it * just means that the user won't be able to issue the play tracks * ioctl, and likely lots of other stuff won't work either. They * need to burn the CD before we can do a whole lot with it. So * we don't print anything here if we get an error back. */ error = cdreadtoc(periph, 0, 0, (u_int8_t *)toch, sizeof(*toch), SF_NO_PRINT); /* * Errors in reading the table of contents aren't fatal, we just * won't have a valid table of contents cached. */ if (error != 0) { error = 0; bzero(&softc->toc, sizeof(softc->toc)); goto bailout; } if (softc->quirks & CD_Q_BCD_TRACKS) { toch->starting_track = bcd2bin(toch->starting_track); toch->ending_track = bcd2bin(toch->ending_track); } /* Number of TOC entries, plus leadout */ num_entries = (toch->ending_track - toch->starting_track) + 2; if (num_entries <= 0) goto bailout; toclen = num_entries * sizeof(struct cd_toc_entry); error = cdreadtoc(periph, CD_MSF_FORMAT, toch->starting_track, (u_int8_t *)&softc->toc, toclen + sizeof(*toch), SF_NO_PRINT); if (error != 0) { error = 0; bzero(&softc->toc, sizeof(softc->toc)); goto bailout; } if (softc->quirks & CD_Q_BCD_TRACKS) { toch->starting_track = bcd2bin(toch->starting_track); toch->ending_track = bcd2bin(toch->ending_track); } /* * XXX KDM is this necessary? Probably only if the drive doesn't * return leadout information with the table of contents. */ cdindex = toch->starting_track + num_entries -1; if (cdindex == toch->ending_track + 1) { error = cdreadtoc(periph, CD_MSF_FORMAT, LEADOUT, (u_int8_t *)&leadout, sizeof(leadout), SF_NO_PRINT); if (error != 0) { error = 0; goto bailout; } softc->toc.entries[cdindex - toch->starting_track] = leadout.entry; } if (softc->quirks & CD_Q_BCD_TRACKS) { for (cdindex = 0; cdindex < num_entries - 1; cdindex++) { softc->toc.entries[cdindex].track = bcd2bin(softc->toc.entries[cdindex].track); } } softc->flags |= CD_FLAG_VALID_TOC; /* If the first track is audio, correct sector size. */ if ((softc->toc.entries[0].control & 4) == 0) { softc->disk->d_sectorsize = softc->params.blksize = 2352; softc->disk->d_mediasize = (off_t)softc->params.blksize * softc->params.disksize; } bailout: /* * We unconditionally (re)set the blocksize each time the * CD device is opened. This is because the CD can change, * and therefore the blocksize might change. * XXX problems here if some slice or partition is still * open with the old size? */ if ((softc->disk->d_devstat->flags & DEVSTAT_BS_UNAVAILABLE) != 0) softc->disk->d_devstat->flags &= ~DEVSTAT_BS_UNAVAILABLE; softc->disk->d_devstat->block_size = softc->params.blksize; return (error); } static int cdsize(struct cam_periph *periph, u_int32_t *size) { struct cd_softc *softc; union ccb *ccb; struct scsi_read_capacity_data *rcap_buf; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdsize\n")); softc = (struct cd_softc *)periph->softc; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); /* XXX Should be M_WAITOK */ rcap_buf = malloc(sizeof(struct scsi_read_capacity_data), M_SCSICD, M_NOWAIT | M_ZERO); if (rcap_buf == NULL) return (ENOMEM); scsi_read_capacity(&ccb->csio, /*retries*/ cd_retry_count, cddone, MSG_SIMPLE_Q_TAG, rcap_buf, SSD_FULL_SIZE, /* timeout */20000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA|SF_NO_PRINT); xpt_release_ccb(ccb); softc->params.disksize = scsi_4btoul(rcap_buf->addr) + 1; softc->params.blksize = scsi_4btoul(rcap_buf->length); /* Make sure we got at least some block size. */ if (error == 0 && softc->params.blksize == 0) error = EIO; /* * SCSI-3 mandates that the reported blocksize shall be 2048. * Older drives sometimes report funny values, trim it down to * 2048, or other parts of the kernel will get confused. * * XXX we leave drives alone that might report 512 bytes, as * well as drives reporting more weird sizes like perhaps 4K. */ if (softc->params.blksize > 2048 && softc->params.blksize <= 2352) softc->params.blksize = 2048; free(rcap_buf, M_SCSICD); *size = softc->params.disksize; return (error); } static int cd6byteworkaround(union ccb *ccb) { u_int8_t *cdb; struct cam_periph *periph; struct cd_softc *softc; struct cd_mode_params *params; int frozen, found; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct cd_softc *)periph->softc; cdb = ccb->csio.cdb_io.cdb_bytes; if ((ccb->ccb_h.flags & CAM_CDB_POINTER) || ((cdb[0] != MODE_SENSE_6) && (cdb[0] != MODE_SELECT_6))) return (0); /* * Because there is no convenient place to stash the overall * cd_mode_params structure pointer, we have to grab it like this. * This means that ALL MODE_SENSE and MODE_SELECT requests in the * cd(4) driver MUST go through cdgetmode() and cdsetmode()! * * XXX It would be nice if, at some point, we could increase the * number of available peripheral private pointers. Both pointers * are currently used in most every peripheral driver. */ found = 0; STAILQ_FOREACH(params, &softc->mode_queue, links) { if (params->mode_buf == ccb->csio.data_ptr) { found = 1; break; } } /* * This shouldn't happen. All mode sense and mode select * operations in the cd(4) driver MUST go through cdgetmode() and * cdsetmode()! */ if (found == 0) { xpt_print(periph->path, "mode buffer not found in mode queue!\n"); return (0); } params->cdb_size = 10; softc->minimum_command_size = 10; xpt_print(ccb->ccb_h.path, "%s(6) failed, increasing minimum CDB size to 10 bytes\n", (cdb[0] == MODE_SENSE_6) ? "MODE_SENSE" : "MODE_SELECT"); if (cdb[0] == MODE_SENSE_6) { struct scsi_mode_sense_10 ms10; struct scsi_mode_sense_6 *ms6; int len; ms6 = (struct scsi_mode_sense_6 *)cdb; bzero(&ms10, sizeof(ms10)); ms10.opcode = MODE_SENSE_10; ms10.byte2 = ms6->byte2; ms10.page = ms6->page; /* * 10 byte mode header, block descriptor, * sizeof(union cd_pages) */ len = sizeof(struct cd_mode_data_10); ccb->csio.dxfer_len = len; scsi_ulto2b(len, ms10.length); ms10.control = ms6->control; bcopy(&ms10, cdb, 10); ccb->csio.cdb_len = 10; } else { struct scsi_mode_select_10 ms10; struct scsi_mode_select_6 *ms6; struct scsi_mode_header_6 *header6; struct scsi_mode_header_10 *header10; struct scsi_mode_page_header *page_header; int blk_desc_len, page_num, page_size, len; ms6 = (struct scsi_mode_select_6 *)cdb; bzero(&ms10, sizeof(ms10)); ms10.opcode = MODE_SELECT_10; ms10.byte2 = ms6->byte2; header6 = (struct scsi_mode_header_6 *)params->mode_buf; header10 = (struct scsi_mode_header_10 *)params->mode_buf; page_header = find_mode_page_6(header6); page_num = page_header->page_code; blk_desc_len = header6->blk_desc_len; page_size = cdgetpagesize(page_num); if (page_size != (page_header->page_length + sizeof(*page_header))) page_size = page_header->page_length + sizeof(*page_header); len = sizeof(*header10) + blk_desc_len + page_size; len = min(params->alloc_len, len); /* * Since the 6 byte parameter header is shorter than the 10 * byte parameter header, we need to copy the actual mode * page data, and the block descriptor, if any, so things wind * up in the right place. The regions will overlap, but * bcopy() does the right thing. */ bcopy(params->mode_buf + sizeof(*header6), params->mode_buf + sizeof(*header10), len - sizeof(*header10)); /* Make sure these fields are set correctly. */ scsi_ulto2b(0, header10->data_length); header10->medium_type = 0; scsi_ulto2b(blk_desc_len, header10->blk_desc_len); ccb->csio.dxfer_len = len; scsi_ulto2b(len, ms10.length); ms10.control = ms6->control; bcopy(&ms10, cdb, 10); ccb->csio.cdb_len = 10; } frozen = (ccb->ccb_h.status & CAM_DEV_QFRZN) != 0; ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_action(ccb); if (frozen) { cam_release_devq(ccb->ccb_h.path, /*relsim_flags*/0, /*openings*/0, /*timeout*/0, /*getcount_only*/0); } return (ERESTART); } static int cderror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct cd_softc *softc; struct cam_periph *periph; int error, error_code, sense_key, asc, ascq; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct cd_softc *)periph->softc; error = 0; /* * We use a status of CAM_REQ_INVALID as shorthand -- if a 6 byte * CDB comes back with this particular error, try transforming it * into the 10 byte version. */ if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID) { error = cd6byteworkaround(ccb); } else if (scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (sense_key == SSD_KEY_ILLEGAL_REQUEST) error = cd6byteworkaround(ccb); else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x28 && ascq == 0x00) disk_media_changed(softc->disk, M_NOWAIT); else if (sense_key == SSD_KEY_NOT_READY && asc == 0x3a && (softc->flags & CD_FLAG_SAW_MEDIA)) { softc->flags &= ~CD_FLAG_SAW_MEDIA; disk_media_gone(softc->disk, M_NOWAIT); } } if (error == ERESTART) return (error); /* * XXX * Until we have a better way of doing pack validation, * don't treat UAs as errors. */ sense_flags |= SF_RETRY_UA; return (cam_periph_error(ccb, cam_flags, sense_flags, &softc->saved_ccb)); } static void cdmediapoll(void *arg) { struct cam_periph *periph = arg; struct cd_softc *softc = periph->softc; if (softc->flags & CD_FLAG_CHANGER) return; if (softc->state == CD_STATE_NORMAL && !softc->tur && softc->outstanding_cmds == 0) { if (cam_periph_acquire(periph) == CAM_REQ_CMP) { softc->tur = 1; xpt_schedule(periph, CAM_PRIORITY_NORMAL); } } /* Queue us up again */ if (cd_poll_period != 0) callout_schedule(&softc->mediapoll_c, cd_poll_period * hz); } /* * Read table of contents */ static int cdreadtoc(struct cam_periph *periph, u_int32_t mode, u_int32_t start, u_int8_t *data, u_int32_t len, u_int32_t sense_flags) { struct scsi_read_toc *scsi_cmd; u_int32_t ntoc; struct ccb_scsiio *csio; union ccb *ccb; int error; ntoc = len; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_IN, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ data, /* dxfer_len */ len, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_read_toc), /* timeout */ 50000); scsi_cmd = (struct scsi_read_toc *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); if (mode == CD_MSF_FORMAT) scsi_cmd->byte2 |= CD_MSF; scsi_cmd->from_track = start; /* scsi_ulto2b(ntoc, (u_int8_t *)scsi_cmd->data_len); */ scsi_cmd->data_len[0] = (ntoc) >> 8; scsi_cmd->data_len[1] = (ntoc) & 0xff; scsi_cmd->op_code = READ_TOC; error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA | sense_flags); xpt_release_ccb(ccb); return(error); } static int cdreadsubchannel(struct cam_periph *periph, u_int32_t mode, u_int32_t format, int track, struct cd_sub_channel_info *data, u_int32_t len) { struct scsi_read_subchannel *scsi_cmd; struct ccb_scsiio *csio; union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_IN, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ (u_int8_t *)data, /* dxfer_len */ len, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_read_subchannel), /* timeout */ 50000); scsi_cmd = (struct scsi_read_subchannel *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = READ_SUBCHANNEL; if (mode == CD_MSF_FORMAT) scsi_cmd->byte1 |= CD_MSF; scsi_cmd->byte2 = SRS_SUBQ; scsi_cmd->subchan_format = format; scsi_cmd->track = track; scsi_ulto2b(len, (u_int8_t *)scsi_cmd->data_len); scsi_cmd->control = 0; error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } /* * All MODE_SENSE requests in the cd(4) driver MUST go through this * routine. See comments in cd6byteworkaround() for details. */ static int cdgetmode(struct cam_periph *periph, struct cd_mode_params *data, u_int32_t page) { struct ccb_scsiio *csio; struct cd_softc *softc; union ccb *ccb; int param_len; int error; softc = (struct cd_softc *)periph->softc; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; data->cdb_size = softc->minimum_command_size; if (data->cdb_size < 10) param_len = sizeof(struct cd_mode_data); else param_len = sizeof(struct cd_mode_data_10); /* Don't say we've got more room than we actually allocated */ param_len = min(param_len, data->alloc_len); scsi_mode_sense_len(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* dbd */ 0, /* page_code */ SMS_PAGE_CTRL_CURRENT, /* page */ page, /* param_buf */ data->mode_buf, /* param_len */ param_len, /* minimum_cmd_size */ softc->minimum_command_size, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); /* * It would be nice not to have to do this, but there's no * available pointer in the CCB that would allow us to stuff the * mode params structure in there and retrieve it in * cd6byteworkaround(), so we can set the cdb size. The cdb size * lets the caller know what CDB size we ended up using, so they * can find the actual mode page offset. */ STAILQ_INSERT_TAIL(&softc->mode_queue, data, links); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); STAILQ_REMOVE(&softc->mode_queue, data, cd_mode_params, links); /* * This is a bit of belt-and-suspenders checking, but if we run * into a situation where the target sends back multiple block * descriptors, we might not have enough space in the buffer to * see the whole mode page. Better to return an error than * potentially access memory beyond our malloced region. */ if (error == 0) { u_int32_t data_len; if (data->cdb_size == 10) { struct scsi_mode_header_10 *hdr10; hdr10 = (struct scsi_mode_header_10 *)data->mode_buf; data_len = scsi_2btoul(hdr10->data_length); data_len += sizeof(hdr10->data_length); } else { struct scsi_mode_header_6 *hdr6; hdr6 = (struct scsi_mode_header_6 *)data->mode_buf; data_len = hdr6->data_length; data_len += sizeof(hdr6->data_length); } /* * Complain if there is more mode data available than we * allocated space for. This could potentially happen if * we miscalculated the page length for some reason, if the * drive returns multiple block descriptors, or if it sets * the data length incorrectly. */ if (data_len > data->alloc_len) { xpt_print(periph->path, "allocated modepage %d length " "%d < returned length %d\n", page, data->alloc_len, data_len); error = ENOSPC; } } return (error); } /* * All MODE_SELECT requests in the cd(4) driver MUST go through this * routine. See comments in cd6byteworkaround() for details. */ static int cdsetmode(struct cam_periph *periph, struct cd_mode_params *data) { struct ccb_scsiio *csio; struct cd_softc *softc; union ccb *ccb; int cdb_size, param_len; int error; softc = (struct cd_softc *)periph->softc; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; error = 0; /* * If the data is formatted for the 10 byte version of the mode * select parameter list, we need to use the 10 byte CDB. * Otherwise, we use whatever the stored minimum command size. */ if (data->cdb_size == 10) cdb_size = data->cdb_size; else cdb_size = softc->minimum_command_size; if (cdb_size >= 10) { struct scsi_mode_header_10 *mode_header; u_int32_t data_len; mode_header = (struct scsi_mode_header_10 *)data->mode_buf; data_len = scsi_2btoul(mode_header->data_length); scsi_ulto2b(0, mode_header->data_length); /* * SONY drives do not allow a mode select with a medium_type * value that has just been returned by a mode sense; use a * medium_type of 0 (Default) instead. */ mode_header->medium_type = 0; /* * Pass back whatever the drive passed to us, plus the size * of the data length field. */ param_len = data_len + sizeof(mode_header->data_length); } else { struct scsi_mode_header_6 *mode_header; mode_header = (struct scsi_mode_header_6 *)data->mode_buf; param_len = mode_header->data_length + 1; mode_header->data_length = 0; /* * SONY drives do not allow a mode select with a medium_type * value that has just been returned by a mode sense; use a * medium_type of 0 (Default) instead. */ mode_header->medium_type = 0; } /* Don't say we've got more room than we actually allocated */ param_len = min(param_len, data->alloc_len); scsi_mode_select_len(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* scsi_page_fmt */ 1, /* save_pages */ 0, /* param_buf */ data->mode_buf, /* param_len */ param_len, /* minimum_cmd_size */ cdb_size, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); /* See comments in cdgetmode() and cd6byteworkaround(). */ STAILQ_INSERT_TAIL(&softc->mode_queue, data, links); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); STAILQ_REMOVE(&softc->mode_queue, data, cd_mode_params, links); return (error); } static int cdplay(struct cam_periph *periph, u_int32_t blk, u_int32_t len) { struct ccb_scsiio *csio; union ccb *ccb; int error; u_int8_t cdb_len; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; /* * Use the smallest possible command to perform the operation. */ if ((len & 0xffff0000) == 0) { /* * We can fit in a 10 byte cdb. */ struct scsi_play_10 *scsi_cmd; scsi_cmd = (struct scsi_play_10 *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = PLAY_10; scsi_ulto4b(blk, (u_int8_t *)scsi_cmd->blk_addr); scsi_ulto2b(len, (u_int8_t *)scsi_cmd->xfer_len); cdb_len = sizeof(*scsi_cmd); } else { struct scsi_play_12 *scsi_cmd; scsi_cmd = (struct scsi_play_12 *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = PLAY_12; scsi_ulto4b(blk, (u_int8_t *)scsi_cmd->blk_addr); scsi_ulto4b(len, (u_int8_t *)scsi_cmd->xfer_len); cdb_len = sizeof(*scsi_cmd); } cam_fill_csio(csio, /*retries*/ cd_retry_count, cddone, /*flags*/CAM_DIR_NONE, MSG_SIMPLE_Q_TAG, /*dataptr*/NULL, /*datalen*/0, /*sense_len*/SSD_FULL_SIZE, cdb_len, /*timeout*/50 * 1000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdplaymsf(struct cam_periph *periph, u_int32_t startm, u_int32_t starts, u_int32_t startf, u_int32_t endm, u_int32_t ends, u_int32_t endf) { struct scsi_play_msf *scsi_cmd; struct ccb_scsiio *csio; union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_NONE, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ NULL, /* dxfer_len */ 0, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_play_msf), /* timeout */ 50000); scsi_cmd = (struct scsi_play_msf *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = PLAY_MSF; scsi_cmd->start_m = startm; scsi_cmd->start_s = starts; scsi_cmd->start_f = startf; scsi_cmd->end_m = endm; scsi_cmd->end_s = ends; scsi_cmd->end_f = endf; error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdplaytracks(struct cam_periph *periph, u_int32_t strack, u_int32_t sindex, u_int32_t etrack, u_int32_t eindex) { struct scsi_play_track *scsi_cmd; struct ccb_scsiio *csio; union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_NONE, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ NULL, /* dxfer_len */ 0, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_play_track), /* timeout */ 50000); scsi_cmd = (struct scsi_play_track *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = PLAY_TRACK; scsi_cmd->start_track = strack; scsi_cmd->start_index = sindex; scsi_cmd->end_track = etrack; scsi_cmd->end_index = eindex; error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdpause(struct cam_periph *periph, u_int32_t go) { struct scsi_pause *scsi_cmd; struct ccb_scsiio *csio; union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_NONE, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ NULL, /* dxfer_len */ 0, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_pause), /* timeout */ 50000); scsi_cmd = (struct scsi_pause *)&csio->cdb_io.cdb_bytes; bzero (scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->op_code = PAUSE; scsi_cmd->resume = go; error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdstartunit(struct cam_periph *periph, int load) { union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_start_stop(&ccb->csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* start */ TRUE, /* load_eject */ load, /* immediate */ FALSE, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdstopunit(struct cam_periph *periph, u_int32_t eject) { union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_start_stop(&ccb->csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* start */ FALSE, /* load_eject */ eject, /* immediate */ FALSE, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdsetspeed(struct cam_periph *periph, u_int32_t rdspeed, u_int32_t wrspeed) { struct scsi_set_speed *scsi_cmd; struct ccb_scsiio *csio; union ccb *ccb; int error; error = 0; ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); csio = &ccb->csio; /* Preserve old behavior: units in multiples of CDROM speed */ if (rdspeed < 177) rdspeed *= 177; if (wrspeed < 177) wrspeed *= 177; cam_fill_csio(csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* flags */ CAM_DIR_NONE, /* tag_action */ MSG_SIMPLE_Q_TAG, /* data_ptr */ NULL, /* dxfer_len */ 0, /* sense_len */ SSD_FULL_SIZE, sizeof(struct scsi_set_speed), /* timeout */ 50000); scsi_cmd = (struct scsi_set_speed *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SET_CD_SPEED; scsi_ulto2b(rdspeed, scsi_cmd->readspeed); scsi_ulto2b(wrspeed, scsi_cmd->writespeed); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); return(error); } static int cdreportkey(struct cam_periph *periph, struct dvd_authinfo *authinfo) { union ccb *ccb; u_int8_t *databuf; u_int32_t lba; int error; int length; error = 0; databuf = NULL; lba = 0; switch (authinfo->format) { case DVD_REPORT_AGID: length = sizeof(struct scsi_report_key_data_agid); break; case DVD_REPORT_CHALLENGE: length = sizeof(struct scsi_report_key_data_challenge); break; case DVD_REPORT_KEY1: length = sizeof(struct scsi_report_key_data_key1_key2); break; case DVD_REPORT_TITLE_KEY: length = sizeof(struct scsi_report_key_data_title); /* The lba field is only set for the title key */ lba = authinfo->lba; break; case DVD_REPORT_ASF: length = sizeof(struct scsi_report_key_data_asf); break; case DVD_REPORT_RPC: length = sizeof(struct scsi_report_key_data_rpc); break; case DVD_INVALIDATE_AGID: length = 0; break; default: return (EINVAL); } if (length != 0) { databuf = malloc(length, M_DEVBUF, M_WAITOK | M_ZERO); } else databuf = NULL; cam_periph_lock(periph); ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_report_key(&ccb->csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* lba */ lba, /* agid */ authinfo->agid, /* key_format */ authinfo->format, /* data_ptr */ databuf, /* dxfer_len */ length, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); if (error != 0) goto bailout; if (ccb->csio.resid != 0) { xpt_print(periph->path, "warning, residual for report key " "command is %d\n", ccb->csio.resid); } switch(authinfo->format) { case DVD_REPORT_AGID: { struct scsi_report_key_data_agid *agid_data; agid_data = (struct scsi_report_key_data_agid *)databuf; authinfo->agid = (agid_data->agid & RKD_AGID_MASK) >> RKD_AGID_SHIFT; break; } case DVD_REPORT_CHALLENGE: { struct scsi_report_key_data_challenge *chal_data; chal_data = (struct scsi_report_key_data_challenge *)databuf; bcopy(chal_data->challenge_key, authinfo->keychal, min(sizeof(chal_data->challenge_key), sizeof(authinfo->keychal))); break; } case DVD_REPORT_KEY1: { struct scsi_report_key_data_key1_key2 *key1_data; key1_data = (struct scsi_report_key_data_key1_key2 *)databuf; bcopy(key1_data->key1, authinfo->keychal, min(sizeof(key1_data->key1), sizeof(authinfo->keychal))); break; } case DVD_REPORT_TITLE_KEY: { struct scsi_report_key_data_title *title_data; title_data = (struct scsi_report_key_data_title *)databuf; authinfo->cpm = (title_data->byte0 & RKD_TITLE_CPM) >> RKD_TITLE_CPM_SHIFT; authinfo->cp_sec = (title_data->byte0 & RKD_TITLE_CP_SEC) >> RKD_TITLE_CP_SEC_SHIFT; authinfo->cgms = (title_data->byte0 & RKD_TITLE_CMGS_MASK) >> RKD_TITLE_CMGS_SHIFT; bcopy(title_data->title_key, authinfo->keychal, min(sizeof(title_data->title_key), sizeof(authinfo->keychal))); break; } case DVD_REPORT_ASF: { struct scsi_report_key_data_asf *asf_data; asf_data = (struct scsi_report_key_data_asf *)databuf; authinfo->asf = asf_data->success & RKD_ASF_SUCCESS; break; } case DVD_REPORT_RPC: { struct scsi_report_key_data_rpc *rpc_data; rpc_data = (struct scsi_report_key_data_rpc *)databuf; authinfo->reg_type = (rpc_data->byte4 & RKD_RPC_TYPE_MASK) >> RKD_RPC_TYPE_SHIFT; authinfo->vend_rsts = (rpc_data->byte4 & RKD_RPC_VENDOR_RESET_MASK) >> RKD_RPC_VENDOR_RESET_SHIFT; authinfo->user_rsts = rpc_data->byte4 & RKD_RPC_USER_RESET_MASK; authinfo->region = rpc_data->region_mask; authinfo->rpc_scheme = rpc_data->rpc_scheme1; break; } case DVD_INVALIDATE_AGID: break; default: /* This should be impossible, since we checked above */ error = EINVAL; goto bailout; break; /* NOTREACHED */ } bailout: xpt_release_ccb(ccb); cam_periph_unlock(periph); if (databuf != NULL) free(databuf, M_DEVBUF); return(error); } static int cdsendkey(struct cam_periph *periph, struct dvd_authinfo *authinfo) { union ccb *ccb; u_int8_t *databuf; int length; int error; error = 0; databuf = NULL; switch(authinfo->format) { case DVD_SEND_CHALLENGE: { struct scsi_report_key_data_challenge *challenge_data; length = sizeof(*challenge_data); challenge_data = malloc(length, M_DEVBUF, M_WAITOK | M_ZERO); databuf = (u_int8_t *)challenge_data; scsi_ulto2b(length - sizeof(challenge_data->data_len), challenge_data->data_len); bcopy(authinfo->keychal, challenge_data->challenge_key, min(sizeof(authinfo->keychal), sizeof(challenge_data->challenge_key))); break; } case DVD_SEND_KEY2: { struct scsi_report_key_data_key1_key2 *key2_data; length = sizeof(*key2_data); key2_data = malloc(length, M_DEVBUF, M_WAITOK | M_ZERO); databuf = (u_int8_t *)key2_data; scsi_ulto2b(length - sizeof(key2_data->data_len), key2_data->data_len); bcopy(authinfo->keychal, key2_data->key1, min(sizeof(authinfo->keychal), sizeof(key2_data->key1))); break; } case DVD_SEND_RPC: { struct scsi_send_key_data_rpc *rpc_data; length = sizeof(*rpc_data); rpc_data = malloc(length, M_DEVBUF, M_WAITOK | M_ZERO); databuf = (u_int8_t *)rpc_data; scsi_ulto2b(length - sizeof(rpc_data->data_len), rpc_data->data_len); rpc_data->region_code = authinfo->region; break; } default: return (EINVAL); } cam_periph_lock(periph); ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_send_key(&ccb->csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* agid */ authinfo->agid, /* key_format */ authinfo->format, /* data_ptr */ databuf, /* dxfer_len */ length, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); xpt_release_ccb(ccb); cam_periph_unlock(periph); if (databuf != NULL) free(databuf, M_DEVBUF); return(error); } static int cdreaddvdstructure(struct cam_periph *periph, struct dvd_struct *dvdstruct) { union ccb *ccb; u_int8_t *databuf; u_int32_t address; int error; int length; error = 0; databuf = NULL; /* The address is reserved for many of the formats */ address = 0; switch(dvdstruct->format) { case DVD_STRUCT_PHYSICAL: length = sizeof(struct scsi_read_dvd_struct_data_physical); break; case DVD_STRUCT_COPYRIGHT: length = sizeof(struct scsi_read_dvd_struct_data_copyright); break; case DVD_STRUCT_DISCKEY: length = sizeof(struct scsi_read_dvd_struct_data_disc_key); break; case DVD_STRUCT_BCA: length = sizeof(struct scsi_read_dvd_struct_data_bca); break; case DVD_STRUCT_MANUFACT: length = sizeof(struct scsi_read_dvd_struct_data_manufacturer); break; case DVD_STRUCT_CMI: return (ENODEV); case DVD_STRUCT_PROTDISCID: length = sizeof(struct scsi_read_dvd_struct_data_prot_discid); break; case DVD_STRUCT_DISCKEYBLOCK: length = sizeof(struct scsi_read_dvd_struct_data_disc_key_blk); break; case DVD_STRUCT_DDS: length = sizeof(struct scsi_read_dvd_struct_data_dds); break; case DVD_STRUCT_MEDIUM_STAT: length = sizeof(struct scsi_read_dvd_struct_data_medium_status); break; case DVD_STRUCT_SPARE_AREA: length = sizeof(struct scsi_read_dvd_struct_data_spare_area); break; case DVD_STRUCT_RMD_LAST: return (ENODEV); case DVD_STRUCT_RMD_RMA: return (ENODEV); case DVD_STRUCT_PRERECORDED: length = sizeof(struct scsi_read_dvd_struct_data_leadin); break; case DVD_STRUCT_UNIQUEID: length = sizeof(struct scsi_read_dvd_struct_data_disc_id); break; case DVD_STRUCT_DCB: return (ENODEV); case DVD_STRUCT_LIST: /* * This is the maximum allocation length for the READ DVD * STRUCTURE command. There's nothing in the MMC3 spec * that indicates a limit in the amount of data that can * be returned from this call, other than the limits * imposed by the 2-byte length variables. */ length = 65535; break; default: return (EINVAL); } if (length != 0) { databuf = malloc(length, M_DEVBUF, M_WAITOK | M_ZERO); } else databuf = NULL; cam_periph_lock(periph); ccb = cdgetccb(periph, CAM_PRIORITY_NORMAL); scsi_read_dvd_structure(&ccb->csio, /* retries */ cd_retry_count, /* cbfcnp */ cddone, /* tag_action */ MSG_SIMPLE_Q_TAG, /* lba */ address, /* layer_number */ dvdstruct->layer_num, /* key_format */ dvdstruct->format, /* agid */ dvdstruct->agid, /* data_ptr */ databuf, /* dxfer_len */ length, /* sense_len */ SSD_FULL_SIZE, /* timeout */ 50000); error = cdrunccb(ccb, cderror, /*cam_flags*/CAM_RETRY_SELTO, /*sense_flags*/SF_RETRY_UA); if (error != 0) goto bailout; switch(dvdstruct->format) { case DVD_STRUCT_PHYSICAL: { struct scsi_read_dvd_struct_data_layer_desc *inlayer; struct dvd_layer *outlayer; struct scsi_read_dvd_struct_data_physical *phys_data; phys_data = (struct scsi_read_dvd_struct_data_physical *)databuf; inlayer = &phys_data->layer_desc; outlayer = (struct dvd_layer *)&dvdstruct->data; dvdstruct->length = sizeof(*inlayer); outlayer->book_type = (inlayer->book_type_version & RDSD_BOOK_TYPE_MASK) >> RDSD_BOOK_TYPE_SHIFT; outlayer->book_version = (inlayer->book_type_version & RDSD_BOOK_VERSION_MASK); outlayer->disc_size = (inlayer->disc_size_max_rate & RDSD_DISC_SIZE_MASK) >> RDSD_DISC_SIZE_SHIFT; outlayer->max_rate = (inlayer->disc_size_max_rate & RDSD_MAX_RATE_MASK); outlayer->nlayers = (inlayer->layer_info & RDSD_NUM_LAYERS_MASK) >> RDSD_NUM_LAYERS_SHIFT; outlayer->track_path = (inlayer->layer_info & RDSD_TRACK_PATH_MASK) >> RDSD_TRACK_PATH_SHIFT; outlayer->layer_type = (inlayer->layer_info & RDSD_LAYER_TYPE_MASK); outlayer->linear_density = (inlayer->density & RDSD_LIN_DENSITY_MASK) >> RDSD_LIN_DENSITY_SHIFT; outlayer->track_density = (inlayer->density & RDSD_TRACK_DENSITY_MASK); outlayer->bca = (inlayer->bca & RDSD_BCA_MASK) >> RDSD_BCA_SHIFT; outlayer->start_sector = scsi_3btoul(inlayer->main_data_start); outlayer->end_sector = scsi_3btoul(inlayer->main_data_end); outlayer->end_sector_l0 = scsi_3btoul(inlayer->end_sector_layer0); break; } case DVD_STRUCT_COPYRIGHT: { struct scsi_read_dvd_struct_data_copyright *copy_data; copy_data = (struct scsi_read_dvd_struct_data_copyright *) databuf; dvdstruct->cpst = copy_data->cps_type; dvdstruct->rmi = copy_data->region_info; dvdstruct->length = 0; break; } default: /* * Tell the user what the overall length is, no matter * what we can actually fit in the data buffer. */ dvdstruct->length = length - ccb->csio.resid - sizeof(struct scsi_read_dvd_struct_data_header); /* * But only actually copy out the smaller of what we read * in or what the structure can take. */ bcopy(databuf + sizeof(struct scsi_read_dvd_struct_data_header), dvdstruct->data, min(sizeof(dvdstruct->data), dvdstruct->length)); break; } bailout: xpt_release_ccb(ccb); cam_periph_unlock(periph); if (databuf != NULL) free(databuf, M_DEVBUF); return(error); } void scsi_report_key(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int32_t lba, u_int8_t agid, u_int8_t key_format, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_report_key *scsi_cmd; scsi_cmd = (struct scsi_report_key *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = REPORT_KEY; scsi_ulto4b(lba, scsi_cmd->lba); scsi_ulto2b(dxfer_len, scsi_cmd->alloc_len); scsi_cmd->agid_keyformat = (agid << RK_KF_AGID_SHIFT) | (key_format & RK_KF_KEYFORMAT_MASK); cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len == 0) ? CAM_DIR_NONE : CAM_DIR_IN, tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_send_key(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t agid, u_int8_t key_format, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_send_key *scsi_cmd; scsi_cmd = (struct scsi_send_key *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = SEND_KEY; scsi_ulto2b(dxfer_len, scsi_cmd->param_len); scsi_cmd->agid_keyformat = (agid << RK_KF_AGID_SHIFT) | (key_format & RK_KF_KEYFORMAT_MASK); cam_fill_csio(csio, retries, cbfcnp, /*flags*/ CAM_DIR_OUT, tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_read_dvd_structure(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int32_t address, u_int8_t layer_number, u_int8_t format, u_int8_t agid, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_read_dvd_structure *scsi_cmd; scsi_cmd = (struct scsi_read_dvd_structure *)&csio->cdb_io.cdb_bytes; bzero(scsi_cmd, sizeof(*scsi_cmd)); scsi_cmd->opcode = READ_DVD_STRUCTURE; scsi_ulto4b(address, scsi_cmd->address); scsi_cmd->layer_number = layer_number; scsi_cmd->format = format; scsi_ulto2b(dxfer_len, scsi_cmd->alloc_len); /* The AGID is the top two bits of this byte */ scsi_cmd->agid = agid << 6; cam_fill_csio(csio, retries, cbfcnp, /*flags*/ CAM_DIR_IN, tag_action, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } Index: head/sys/cam/scsi/scsi_da.c =================================================================== --- head/sys/cam/scsi/scsi_da.c (revision 249105) +++ head/sys/cam/scsi/scsi_da.c (revision 249106) @@ -1,2921 +1,2921 @@ /*- * Implementation of SCSI Direct Access Peripheral driver for CAM. * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #ifndef _KERNEL #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #ifndef _KERNEL #include #endif /* !_KERNEL */ #ifdef _KERNEL typedef enum { DA_STATE_PROBE, DA_STATE_PROBE2, DA_STATE_NORMAL } da_state; typedef enum { DA_FLAG_PACK_INVALID = 0x001, DA_FLAG_NEW_PACK = 0x002, DA_FLAG_PACK_LOCKED = 0x004, DA_FLAG_PACK_REMOVABLE = 0x008, DA_FLAG_SAW_MEDIA = 0x010, DA_FLAG_NEED_OTAG = 0x020, DA_FLAG_WENT_IDLE = 0x040, DA_FLAG_RETRY_UA = 0x080, DA_FLAG_OPEN = 0x100, DA_FLAG_SCTX_INIT = 0x200, DA_FLAG_CAN_RC16 = 0x400, DA_FLAG_PROBED = 0x800 } da_flags; typedef enum { DA_Q_NONE = 0x00, DA_Q_NO_SYNC_CACHE = 0x01, DA_Q_NO_6_BYTE = 0x02, DA_Q_NO_PREVENT = 0x04, DA_Q_4K = 0x08 } da_quirks; typedef enum { DA_CCB_PROBE = 0x01, DA_CCB_PROBE2 = 0x02, DA_CCB_BUFFER_IO = 0x03, DA_CCB_WAITING = 0x04, DA_CCB_DUMP = 0x05, DA_CCB_DELETE = 0x06, DA_CCB_TUR = 0x07, DA_CCB_TYPE_MASK = 0x0F, DA_CCB_RETRY_UA = 0x10 } da_ccb_state; typedef enum { DA_DELETE_NONE, DA_DELETE_DISABLE, DA_DELETE_ZERO, DA_DELETE_WS10, DA_DELETE_WS16, DA_DELETE_UNMAP, DA_DELETE_MAX = DA_DELETE_UNMAP } da_delete_methods; static const char *da_delete_method_names[] = { "NONE", "DISABLE", "ZERO", "WS10", "WS16", "UNMAP" }; /* Offsets into our private area for storing information */ #define ccb_state ppriv_field0 #define ccb_bp ppriv_ptr1 struct disk_params { u_int8_t heads; u_int32_t cylinders; u_int8_t secs_per_track; u_int32_t secsize; /* Number of bytes/sector */ u_int64_t sectors; /* total number sectors */ u_int stripesize; u_int stripeoffset; }; #define UNMAP_MAX_RANGES 512 struct da_softc { struct bio_queue_head bio_queue; struct bio_queue_head delete_queue; struct bio_queue_head delete_run_queue; SLIST_ENTRY(da_softc) links; LIST_HEAD(, ccb_hdr) pending_ccbs; da_state state; da_flags flags; da_quirks quirks; int sort_io_queue; int minimum_cmd_size; int error_inject; int ordered_tag_count; int outstanding_cmds; int unmap_max_ranges; int unmap_max_lba; int delete_running; int tur; da_delete_methods delete_method; struct disk_params params; struct disk *disk; union ccb saved_ccb; struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; struct callout sendordered_c; uint64_t wwpn; uint8_t unmap_buf[UNMAP_MAX_RANGES * 16 + 8]; struct scsi_read_capacity_data_long rcaplong; struct callout mediapoll_c; }; struct da_quirk_entry { struct scsi_inquiry_pattern inq_pat; da_quirks quirks; }; static const char quantum[] = "QUANTUM"; static const char microp[] = "MICROP"; static struct da_quirk_entry da_quirk_table[] = { /* SPI, FC devices */ { /* * Fujitsu M2513A MO drives. * Tested devices: M2513A2 firmware versions 1200 & 1300. * (dip switch selects whether T_DIRECT or T_OPTICAL device) * Reported by: W.Scholten */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FUJITSU", "M2513A", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* See above. */ {T_OPTICAL, SIP_MEDIA_REMOVABLE, "FUJITSU", "M2513A", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This particular Fujitsu drive doesn't like the * synchronize cache command. * Reported by: Tom Jackson */ {T_DIRECT, SIP_MEDIA_FIXED, "FUJITSU", "M2954*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This drive doesn't like the synchronize cache command * either. Reported by: Matthew Jacob * in NetBSD PR kern/6027, August 24, 1998. */ {T_DIRECT, SIP_MEDIA_FIXED, microp, "2217*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This drive doesn't like the synchronize cache command * either. Reported by: Hellmuth Michaelis (hm@kts.org) * (PR 8882). */ {T_DIRECT, SIP_MEDIA_FIXED, microp, "2112*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: Blaz Zupan */ {T_DIRECT, SIP_MEDIA_FIXED, "NEC", "D3847*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: Blaz Zupan */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "MAVERICK 540S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "LPS525S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: walter@pelissero.de */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "LPS540S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't work correctly with 6 byte reads/writes. * Returns illegal request, and points to byte 9 of the * 6-byte CDB. * Reported by: Adam McDougall */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "VIKING 4*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE }, { /* See above. */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "VIKING 2*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE }, { /* * Doesn't like the synchronize cache command. * Reported by: walter@pelissero.de */ {T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CP3500*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * The CISS RAID controllers do not support SYNC_CACHE */ {T_DIRECT, SIP_MEDIA_FIXED, "COMPAQ", "RAID*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, /* USB mass storage devices supported by umass(4) */ { /* * EXATELECOM (Sigmatel) i-Bead 100/105 USB Flash MP3 Player * PR: kern/51675 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "EXATEL", "i-BEAD10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Power Quotient Int. (PQI) USB flash key * PR: kern/53067 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "USB Flash Disk*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Creative Nomad MUVO mp3 player (USB) * PR: kern/53094 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CREATIVE", "NOMAD_MUVO", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * Jungsoft NEXDISK USB flash key * PR: kern/54737 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "JUNGSOFT", "NEXDISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * FreeDik USB Mini Data Drive * PR: kern/54786 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FreeDik*", "Mini Data Drive", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Sigmatel USB Flash MP3 Player * PR: kern/57046 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SigmaTel", "MSCN", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * Neuros USB Digital Audio Computer * PR: kern/63645 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "NEUROS", "dig. audio comp.", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SEAGRAND NP-900 MP3 Player * PR: kern/64563 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SEAGRAND", "NP-900*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * iRiver iFP MP3 player (with UMS Firmware) * PR: kern/54881, i386/63941, kern/66124 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iRiver", "iFP*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Frontier Labs NEX IA+ Digital Audio Player, rev 1.10/0.01 * PR: kern/70158 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FL" , "Nex*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * ZICPlay USB MP3 Player with FM * PR: kern/75057 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "ACTIONS*" , "USB DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * TEAC USB floppy mechanisms */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "TEAC" , "FD-05*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Kingston DataTraveler II+ USB Pen-Drive. * Reported by: Pawel Jakub Dawidek */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston" , "DataTraveler II+", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * USB DISK Pro PMAP * Reported by: jhs * PR: usb/96381 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, " ", "USB DISK Pro", "PMAP"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Motorola E398 Mobile Phone (TransFlash memory card). * Reported by: Wojciech A. Koszek * PR: usb/89889 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Motorola" , "Motorola Phone", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Qware BeatZkey! Pro * PR: usb/79164 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "GENERIC", "USB DISK DEVICE", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Time DPA20B 1GB MP3 Player * PR: usb/81846 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB2.0*", "(FS) FLASH DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Samsung USB key 128Mb * PR: usb/90081 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB-DISK", "FreeDik-FlashUsb", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Kingston DataTraveler 2.0 USB Flash memory. * PR: usb/89196 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston", "DataTraveler 2.0", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Creative MUVO Slim mp3 player (USB) * PR: usb/86131 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CREATIVE", "MuVo Slim", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * United MP5512 Portable MP3 Player (2-in-1 USB DISK/MP3) * PR: usb/80487 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "MUSIC DISK", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SanDisk Micro Cruzer 128MB * PR: usb/75970 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SanDisk" , "Micro Cruzer", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * TOSHIBA TransMemory USB sticks * PR: kern/94660 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "TOSHIBA", "TransMemory", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * PNY USB Flash keys * PR: usb/75578, usb/72344, usb/65436 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "*" , "USB DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Genesys 6-in-1 Card Reader * PR: usb/94647 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "STORAGE DEVICE*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Rekam Digital CAMERA * PR: usb/98713 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CAMERA*", "4MP-9J6*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * iRiver H10 MP3 player * PR: usb/102547 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iriver", "H10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * iRiver U10 MP3 player * PR: usb/92306 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iriver", "U10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * X-Micro Flash Disk * PR: usb/96901 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "X-Micro", "Flash Disk", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * EasyMP3 EM732X USB 2.0 Flash MP3 Player * PR: usb/96546 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "EM732X", "MP3 Player*", "1.00"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Denver MP3 player * PR: usb/107101 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "DENVER", "MP3 PLAYER", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Philips USB Key Audio KEY013 * PR: usb/68412 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "PHILIPS", "Key*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_NO_PREVENT }, { /* * JNC MP3 Player * PR: usb/94439 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "JNC*" , "MP3 Player*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SAMSUNG MP0402H * PR: usb/108427 */ {T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "MP0402H", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * I/O Magic USB flash - Giga Bank * PR: usb/108810 */ {T_DIRECT, SIP_MEDIA_FIXED, "GS-Magic", "stor*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * JoyFly 128mb USB Flash Drive * PR: 96133 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB 2.0", "Flash Disk*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * ChipsBnk usb stick * PR: 103702 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "ChipsBnk", "USB*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Storcase (Kingston) InfoStation IFS FC2/SATA-R 201A * PR: 129858 */ {T_DIRECT, SIP_MEDIA_FIXED, "IFS", "FC2/SATA-R*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Samsung YP-U3 mp3-player * PR: 125398 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Samsung", "YP-U3", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { {T_DIRECT, SIP_MEDIA_REMOVABLE, "Netac", "OnlyDisk*", "2000"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Sony Cyber-Shot DSC cameras * PR: usb/137035 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Sony", "Sony DSC", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_NO_PREVENT }, { {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston", "DataTraveler G3", "1.00"}, /*quirks*/ DA_Q_NO_PREVENT }, /* ATA/SATA devices over SAS/USB/... */ { /* Hitachi Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "Hitachi", "H??????????E3*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG HD155UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HD155UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG HD204UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HD204UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST????DL*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST????DL", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST???DM*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST???DM*", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST????DM*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST????DM", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9500423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST950042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9500424AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST950042", "4AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9640423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST964042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9640424AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST964042", "4AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750420AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "0AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750422AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "2AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Thin Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST???LT*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Thin Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST???LT*", "*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "??RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "??RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD??????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD??????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD???PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "?PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD?????PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "???PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD???PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "?PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD?????PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "???PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* * Olympus FE-210 camera */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "OLYMPUS", "FE210*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * LG UP3S MP3 player */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "LG", "UP3S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Laser MP3-2GA13 MP3 player */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB 2.0", "(HS) Flash Disk", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * LaCie external 250GB Hard drive des by Porsche * Submitted by: Ben Stuyts * PR: 121474 */ {T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HM250JI", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, }; static disk_strategy_t dastrategy; static dumper_t dadump; static periph_init_t dainit; static void daasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void dasysctlinit(void *context, int pending); static int dacmdsizesysctl(SYSCTL_HANDLER_ARGS); static int dadeletemethodsysctl(SYSCTL_HANDLER_ARGS); static int dadeletemethodset(struct da_softc *softc, da_delete_methods delete_method); static periph_ctor_t daregister; static periph_dtor_t dacleanup; static periph_start_t dastart; static periph_oninv_t daoninvalidate; static void dadone(struct cam_periph *periph, union ccb *done_ccb); static int daerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static void daprevent(struct cam_periph *periph, int action); static void dareprobe(struct cam_periph *periph); static void dasetgeom(struct cam_periph *periph, uint32_t block_len, uint64_t maxsector, struct scsi_read_capacity_data_long *rcaplong, size_t rcap_size); static timeout_t dasendorderedtag; static void dashutdown(void *arg, int howto); static timeout_t damediapoll; #ifndef DA_DEFAULT_POLL_PERIOD #define DA_DEFAULT_POLL_PERIOD 3 #endif #ifndef DA_DEFAULT_TIMEOUT #define DA_DEFAULT_TIMEOUT 60 /* Timeout in seconds */ #endif #ifndef DA_DEFAULT_RETRY #define DA_DEFAULT_RETRY 4 #endif #ifndef DA_DEFAULT_SEND_ORDERED #define DA_DEFAULT_SEND_ORDERED 1 #endif #define DA_SIO (softc->sort_io_queue >= 0 ? \ softc->sort_io_queue : cam_sort_io_queues) static int da_poll_period = DA_DEFAULT_POLL_PERIOD; static int da_retry_count = DA_DEFAULT_RETRY; static int da_default_timeout = DA_DEFAULT_TIMEOUT; static int da_send_ordered = DA_DEFAULT_SEND_ORDERED; static SYSCTL_NODE(_kern_cam, OID_AUTO, da, CTLFLAG_RD, 0, "CAM Direct Access Disk driver"); SYSCTL_INT(_kern_cam_da, OID_AUTO, poll_period, CTLFLAG_RW, &da_poll_period, 0, "Media polling period in seconds"); TUNABLE_INT("kern.cam.da.poll_period", &da_poll_period); SYSCTL_INT(_kern_cam_da, OID_AUTO, retry_count, CTLFLAG_RW, &da_retry_count, 0, "Normal I/O retry count"); TUNABLE_INT("kern.cam.da.retry_count", &da_retry_count); SYSCTL_INT(_kern_cam_da, OID_AUTO, default_timeout, CTLFLAG_RW, &da_default_timeout, 0, "Normal I/O timeout (in seconds)"); TUNABLE_INT("kern.cam.da.default_timeout", &da_default_timeout); SYSCTL_INT(_kern_cam_da, OID_AUTO, send_ordered, CTLFLAG_RW, &da_send_ordered, 0, "Send Ordered Tags"); TUNABLE_INT("kern.cam.da.send_ordered", &da_send_ordered); /* * DA_ORDEREDTAG_INTERVAL determines how often, relative * to the default timeout, we check to see whether an ordered * tagged transaction is appropriate to prevent simple tag * starvation. Since we'd like to ensure that there is at least * 1/2 of the timeout length left for a starved transaction to * complete after we've sent an ordered tag, we must poll at least * four times in every timeout period. This takes care of the worst * case where a starved transaction starts during an interval that * meets the requirement "don't send an ordered tag" test so it takes * us two intervals to determine that a tag must be sent. */ #ifndef DA_ORDEREDTAG_INTERVAL #define DA_ORDEREDTAG_INTERVAL 4 #endif static struct periph_driver dadriver = { dainit, "da", TAILQ_HEAD_INITIALIZER(dadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(da, dadriver); static MALLOC_DEFINE(M_SCSIDA, "scsi_da", "scsi_da buffers"); static int daopen(struct disk *dp) { struct cam_periph *periph; struct da_softc *softc; int unit; int error; periph = (struct cam_periph *)dp->d_drv1; if (cam_periph_acquire(periph) != CAM_REQ_CMP) { return (ENXIO); } cam_periph_lock(periph); if ((error = cam_periph_hold(periph, PRIBIO|PCATCH)) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (error); } unit = periph->unit_number; softc = (struct da_softc *)periph->softc; softc->flags |= DA_FLAG_OPEN; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("daopen\n")); if ((softc->flags & DA_FLAG_PACK_INVALID) != 0) { /* Invalidate our pack information. */ softc->flags &= ~DA_FLAG_PACK_INVALID; } dareprobe(periph); /* Wait for the disk size update. */ - error = msleep(&softc->disk->d_mediasize, periph->sim->mtx, PRIBIO, + error = cam_periph_sleep(periph, &softc->disk->d_mediasize, PRIBIO, "dareprobe", 0); if (error != 0) xpt_print(periph->path, "unable to retrieve capacity data"); if (periph->flags & CAM_PERIPH_INVALID || softc->disk->d_sectorsize == 0 || softc->disk->d_mediasize == 0) error = ENXIO; if (error == 0 && (softc->flags & DA_FLAG_PACK_REMOVABLE) != 0 && (softc->quirks & DA_Q_NO_PREVENT) == 0) daprevent(periph, PR_PREVENT); if (error == 0) softc->flags |= DA_FLAG_SAW_MEDIA; cam_periph_unhold(periph); cam_periph_unlock(periph); if (error != 0) { softc->flags &= ~DA_FLAG_OPEN; cam_periph_release(periph); } return (error); } static int daclose(struct disk *dp) { struct cam_periph *periph; struct da_softc *softc; periph = (struct cam_periph *)dp->d_drv1; cam_periph_lock(periph); if (cam_periph_hold(periph, PRIBIO) != 0) { cam_periph_unlock(periph); cam_periph_release(periph); return (0); } softc = (struct da_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("daclose\n")); if ((softc->quirks & DA_Q_NO_SYNC_CACHE) == 0 && (softc->flags & DA_FLAG_PACK_INVALID) == 0) { union ccb *ccb; ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_synchronize_cache(&ccb->csio, /*retries*/1, /*cbfcnp*/dadone, MSG_SIMPLE_Q_TAG, /*begin_lba*/0,/* Cover the whole disk */ /*lb_count*/0, SSD_FULL_SIZE, 5 * 60 * 1000); cam_periph_runccb(ccb, daerror, /*cam_flags*/0, /*sense_flags*/SF_RETRY_UA | SF_QUIET_IR, softc->disk->d_devstat); xpt_release_ccb(ccb); } if ((softc->flags & DA_FLAG_PACK_REMOVABLE) != 0) { if ((softc->quirks & DA_Q_NO_PREVENT) == 0) daprevent(periph, PR_ALLOW); /* * If we've got removeable media, mark the blocksize as * unavailable, since it could change when new media is * inserted. */ softc->disk->d_devstat->flags |= DEVSTAT_BS_UNAVAILABLE; } softc->flags &= ~DA_FLAG_OPEN; cam_periph_unhold(periph); cam_periph_unlock(periph); cam_periph_release(periph); return (0); } static void daschedule(struct cam_periph *periph) { struct da_softc *softc = (struct da_softc *)periph->softc; uint32_t prio; if (softc->state != DA_STATE_NORMAL) return; /* Check if cam_periph_getccb() was called. */ prio = periph->immediate_priority; /* Check if we have more work to do. */ if (bioq_first(&softc->bio_queue) || (!softc->delete_running && bioq_first(&softc->delete_queue)) || softc->tur) { prio = CAM_PRIORITY_NORMAL; } /* Schedule CCB if any of above is true. */ if (prio != CAM_PRIORITY_NONE) xpt_schedule(periph, prio); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void dastrategy(struct bio *bp) { struct cam_periph *periph; struct da_softc *softc; periph = (struct cam_periph *)bp->bio_disk->d_drv1; softc = (struct da_softc *)periph->softc; cam_periph_lock(periph); /* * If the device has been made invalid, error out */ if ((softc->flags & DA_FLAG_PACK_INVALID)) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dastrategy(%p)\n", bp)); /* * Place it in the queue of disk activities for this disk */ if (bp->bio_cmd == BIO_DELETE) { if (bp->bio_bcount == 0) biodone(bp); else if (DA_SIO) bioq_disksort(&softc->delete_queue, bp); else bioq_insert_tail(&softc->delete_queue, bp); } else if (DA_SIO) { bioq_disksort(&softc->bio_queue, bp); } else { bioq_insert_tail(&softc->bio_queue, bp); } /* * Schedule ourselves for performing the work. */ daschedule(periph); cam_periph_unlock(periph); return; } static int dadump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct cam_periph *periph; struct da_softc *softc; u_int secsize; struct ccb_scsiio csio; struct disk *dp; int error = 0; dp = arg; periph = dp->d_drv1; softc = (struct da_softc *)periph->softc; cam_periph_lock(periph); secsize = softc->params.secsize; if ((softc->flags & DA_FLAG_PACK_INVALID) != 0) { cam_periph_unlock(periph); return (ENXIO); } if (length > 0) { xpt_setup_ccb(&csio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); csio.ccb_h.ccb_state = DA_CCB_DUMP; scsi_read_write(&csio, /*retries*/0, dadone, MSG_ORDERED_Q_TAG, /*read*/SCSI_RW_WRITE, /*byte2*/0, /*minimum_cmd_size*/ softc->minimum_cmd_size, offset / secsize, length / secsize, /*data_ptr*/(u_int8_t *) virtual, /*dxfer_len*/length, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); xpt_polled_action((union ccb *)&csio); error = cam_periph_error((union ccb *)&csio, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if ((csio.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(csio.ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); if (error != 0) printf("Aborting dump due to I/O error.\n"); cam_periph_unlock(periph); return (error); } /* * Sync the disk cache contents to the physical media. */ if ((softc->quirks & DA_Q_NO_SYNC_CACHE) == 0) { xpt_setup_ccb(&csio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); csio.ccb_h.ccb_state = DA_CCB_DUMP; scsi_synchronize_cache(&csio, /*retries*/0, /*cbfcnp*/dadone, MSG_SIMPLE_Q_TAG, /*begin_lba*/0,/* Cover the whole disk */ /*lb_count*/0, SSD_FULL_SIZE, 5 * 60 * 1000); xpt_polled_action((union ccb *)&csio); error = cam_periph_error((union ccb *)&csio, 0, SF_NO_RECOVERY | SF_NO_RETRY | SF_QUIET_IR, NULL); if ((csio.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(csio.ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); } cam_periph_unlock(periph); return (error); } static int dagetattr(struct bio *bp) { int ret; struct cam_periph *periph; periph = (struct cam_periph *)bp->bio_disk->d_drv1; cam_periph_lock(periph); ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute, periph->path); cam_periph_unlock(periph); if (ret == 0) bp->bio_completed = bp->bio_length; return ret; } static void dainit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, daasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("da: Failed to attach master async callback " "due to status 0x%x!\n", status); } else if (da_send_ordered) { /* Register our shutdown event handler */ if ((EVENTHANDLER_REGISTER(shutdown_post_sync, dashutdown, NULL, SHUTDOWN_PRI_DEFAULT)) == NULL) printf("dainit: shutdown event registration failed!\n"); } } /* * Callback from GEOM, called when it has finished cleaning up its * resources. */ static void dadiskgonecb(struct disk *dp) { struct cam_periph *periph; periph = (struct cam_periph *)dp->d_drv1; cam_periph_release(periph); } static void daoninvalidate(struct cam_periph *periph) { struct da_softc *softc; softc = (struct da_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, daasync, periph, periph->path); softc->flags |= DA_FLAG_PACK_INVALID; /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ bioq_flush(&softc->bio_queue, NULL, ENXIO); bioq_flush(&softc->delete_queue, NULL, ENXIO); /* * Tell GEOM that we've gone away, we'll get a callback when it is * done cleaning up its resources. */ disk_gone(softc->disk); xpt_print(periph->path, "lost device - %d outstanding, %d refs\n", softc->outstanding_cmds, periph->refcount); } static void dacleanup(struct cam_periph *periph) { struct da_softc *softc; softc = (struct da_softc *)periph->softc; xpt_print(periph->path, "removing device entry\n"); cam_periph_unlock(periph); /* * If we can't free the sysctl tree, oh well... */ if ((softc->flags & DA_FLAG_SCTX_INIT) != 0 && sysctl_ctx_free(&softc->sysctl_ctx) != 0) { xpt_print(periph->path, "can't remove sysctl context\n"); } callout_drain(&softc->mediapoll_c); disk_destroy(softc->disk); callout_drain(&softc->sendordered_c); free(softc, M_DEVBUF); cam_periph_lock(periph); } static void daasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; struct da_softc *softc; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_SCSI) break; if (SID_TYPE(&cgd->inq_data) != T_DIRECT && SID_TYPE(&cgd->inq_data) != T_RBC && SID_TYPE(&cgd->inq_data) != T_OPTICAL) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(daregister, daoninvalidate, dacleanup, dastart, "da", CAM_PERIPH_BIO, cgd->ccb_h.path, daasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("daasync: Unable to attach to new device " "due to status 0x%x\n", status); return; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct da_softc *softc; softc = periph->softc; disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); } break; } case AC_UNIT_ATTENTION: { union ccb *ccb; int error_code, sense_key, asc, ascq; softc = (struct da_softc *)periph->softc; ccb = (union ccb *)arg; /* * Handle all UNIT ATTENTIONs except our own, * as they will be handled by daerror(). */ if (xpt_path_periph(ccb->ccb_h.path) != periph && scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (asc == 0x2A && ascq == 0x09) { xpt_print(ccb->ccb_h.path, "capacity data has changed\n"); dareprobe(periph); } else if (asc == 0x28 && ascq == 0x00) disk_media_changed(softc->disk, M_NOWAIT); } cam_periph_async(periph, code, path, arg); break; } case AC_SCSI_AEN: softc = (struct da_softc *)periph->softc; if (!softc->tur) { if (cam_periph_acquire(periph) == CAM_REQ_CMP) { softc->tur = 1; daschedule(periph); } } /* FALLTHROUGH */ case AC_SENT_BDR: case AC_BUS_RESET: { struct ccb_hdr *ccbh; softc = (struct da_softc *)periph->softc; /* * Don't fail on the expected unit attention * that will occur. */ softc->flags |= DA_FLAG_RETRY_UA; LIST_FOREACH(ccbh, &softc->pending_ccbs, periph_links.le) ccbh->ccb_state |= DA_CCB_RETRY_UA; break; } default: break; } cam_periph_async(periph, code, path, arg); } static void dasysctlinit(void *context, int pending) { struct cam_periph *periph; struct da_softc *softc; char tmpstr[80], tmpstr2[80]; struct ccb_trans_settings cts; periph = (struct cam_periph *)context; /* * periph was held for us when this task was enqueued */ if (periph->flags & CAM_PERIPH_INVALID) { cam_periph_release(periph); return; } softc = (struct da_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM DA unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); softc->flags |= DA_FLAG_SCTX_INIT; softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_da), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr); if (softc->sysctl_tree == NULL) { printf("dasysctlinit: unable to allocate sysctl tree\n"); cam_periph_release(periph); return; } /* * Now register the sysctl handler, so the user can change the value on * the fly. */ SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "delete_method", CTLTYPE_STRING | CTLFLAG_RW, softc, 0, dadeletemethodsysctl, "A", "BIO_DELETE execution method"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "minimum_cmd_size", CTLTYPE_INT | CTLFLAG_RW, &softc->minimum_cmd_size, 0, dacmdsizesysctl, "I", "Minimum CDB size"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "sort_io_queue", CTLFLAG_RW, &softc->sort_io_queue, 0, "Sort IO queue to try and optimise disk access patterns"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "error_inject", CTLFLAG_RW, &softc->error_inject, 0, "error_inject leaf"); /* * Add some addressing info. */ memset(&cts, 0, sizeof (cts)); xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE); cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; cam_periph_lock(periph); xpt_action((union ccb *)&cts); cam_periph_unlock(periph); if (cts.ccb_h.status != CAM_REQ_CMP) { cam_periph_release(periph); return; } if (cts.protocol == PROTO_SCSI && cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_WWPN) { softc->wwpn = fc->wwpn; SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "wwpn", CTLFLAG_RD, &softc->wwpn, "World Wide Port Name"); } } cam_periph_release(periph); } static int dacmdsizesysctl(SYSCTL_HANDLER_ARGS) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); /* * Acceptable values here are 6, 10, 12 or 16. */ if (value < 6) value = 6; else if ((value > 6) && (value <= 10)) value = 10; else if ((value > 10) && (value <= 12)) value = 12; else if (value > 12) value = 16; *(int *)arg1 = value; return (0); } static int dadeletemethodset(struct da_softc *softc, da_delete_methods delete_method) { if (delete_method < 0 || delete_method > DA_DELETE_MAX) return (EINVAL); softc->delete_method = delete_method; if (softc->delete_method > DA_DELETE_DISABLE) softc->disk->d_flags |= DISKFLAG_CANDELETE; else softc->disk->d_flags &= ~DISKFLAG_CANDELETE; return (0); } static int dadeletemethodsysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; const char *p; struct da_softc *softc; int i, error, value; softc = (struct da_softc *)arg1; value = softc->delete_method; if (value < 0 || value > DA_DELETE_MAX) p = "UNKNOWN"; else p = da_delete_method_names[value]; strncpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); for (i = 0; i <= DA_DELETE_MAX; i++) { if (strcmp(buf, da_delete_method_names[i]) != 0) continue; return dadeletemethodset(softc, i); } return (EINVAL); } static cam_status daregister(struct cam_periph *periph, void *arg) { struct da_softc *softc; struct ccb_pathinq cpi; struct ccb_getdev *cgd; char tmpstr[80]; caddr_t match; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("daregister: no getdev CCB, can't register device\n"); return(CAM_REQ_CMP_ERR); } softc = (struct da_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (softc == NULL) { printf("daregister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } LIST_INIT(&softc->pending_ccbs); softc->state = DA_STATE_PROBE; bioq_init(&softc->bio_queue); bioq_init(&softc->delete_queue); bioq_init(&softc->delete_run_queue); if (SID_IS_REMOVABLE(&cgd->inq_data)) softc->flags |= DA_FLAG_PACK_REMOVABLE; softc->unmap_max_ranges = UNMAP_MAX_RANGES; softc->unmap_max_lba = 1024*1024*2; softc->sort_io_queue = -1; periph->softc = softc; /* * See if this device has any quirks. */ match = cam_quirkmatch((caddr_t)&cgd->inq_data, (caddr_t)da_quirk_table, sizeof(da_quirk_table)/sizeof(*da_quirk_table), sizeof(*da_quirk_table), scsi_inquiry_match); if (match != NULL) softc->quirks = ((struct da_quirk_entry *)match)->quirks; else softc->quirks = DA_Q_NONE; /* Check if the SIM does not want 6 byte commands */ bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status == CAM_REQ_CMP && (cpi.hba_misc & PIM_NO_6_BYTE)) softc->quirks |= DA_Q_NO_6_BYTE; TASK_INIT(&softc->sysctl_task, 0, dasysctlinit, periph); /* * Take an exclusive refcount on the periph while dastart is called * to finish the probe. The reference will be dropped in dadone at * the end of probe. */ (void)cam_periph_hold(periph, PRIBIO); /* * Schedule a periodic event to occasionally send an * ordered tag to a device. */ callout_init_mtx(&softc->sendordered_c, periph->sim->mtx, 0); callout_reset(&softc->sendordered_c, (da_default_timeout * hz) / DA_ORDEREDTAG_INTERVAL, dasendorderedtag, softc); - mtx_unlock(periph->sim->mtx); + cam_periph_unlock(periph); /* * RBC devices don't have to support READ(6), only READ(10). */ if (softc->quirks & DA_Q_NO_6_BYTE || SID_TYPE(&cgd->inq_data) == T_RBC) softc->minimum_cmd_size = 10; else softc->minimum_cmd_size = 6; /* * Load the user's default, if any. */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.da.%d.minimum_cmd_size", periph->unit_number); TUNABLE_INT_FETCH(tmpstr, &softc->minimum_cmd_size); /* * 6, 10, 12 and 16 are the currently permissible values. */ if (softc->minimum_cmd_size < 6) softc->minimum_cmd_size = 6; else if ((softc->minimum_cmd_size > 6) && (softc->minimum_cmd_size <= 10)) softc->minimum_cmd_size = 10; else if ((softc->minimum_cmd_size > 10) && (softc->minimum_cmd_size <= 12)) softc->minimum_cmd_size = 12; else if (softc->minimum_cmd_size > 12) softc->minimum_cmd_size = 16; /* Predict whether device may support READ CAPACITY(16). */ if (SID_ANSI_REV(&cgd->inq_data) >= SCSI_REV_SPC3) { softc->flags |= DA_FLAG_CAN_RC16; softc->state = DA_STATE_PROBE2; } /* * Register this media as a disk. */ softc->disk = disk_alloc(); softc->disk->d_devstat = devstat_new_entry(periph->periph_name, periph->unit_number, 0, DEVSTAT_BS_UNAVAILABLE, SID_TYPE(&cgd->inq_data) | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_DISK); softc->disk->d_open = daopen; softc->disk->d_close = daclose; softc->disk->d_strategy = dastrategy; softc->disk->d_dump = dadump; softc->disk->d_getattr = dagetattr; softc->disk->d_gone = dadiskgonecb; softc->disk->d_name = "da"; softc->disk->d_drv1 = periph; if (cpi.maxio == 0) softc->disk->d_maxsize = DFLTPHYS; /* traditional default */ else if (cpi.maxio > MAXPHYS) softc->disk->d_maxsize = MAXPHYS; /* for safety */ else softc->disk->d_maxsize = cpi.maxio; softc->disk->d_unit = periph->unit_number; softc->disk->d_flags = 0; if ((softc->quirks & DA_Q_NO_SYNC_CACHE) == 0) softc->disk->d_flags |= DISKFLAG_CANFLUSHCACHE; if ((cpi.hba_misc & PIM_UNMAPPED) != 0) softc->disk->d_flags |= DISKFLAG_UNMAPPED_BIO; cam_strvis(softc->disk->d_descr, cgd->inq_data.vendor, sizeof(cgd->inq_data.vendor), sizeof(softc->disk->d_descr)); strlcat(softc->disk->d_descr, " ", sizeof(softc->disk->d_descr)); cam_strvis(&softc->disk->d_descr[strlen(softc->disk->d_descr)], cgd->inq_data.product, sizeof(cgd->inq_data.product), sizeof(softc->disk->d_descr) - strlen(softc->disk->d_descr)); softc->disk->d_hba_vendor = cpi.hba_vendor; softc->disk->d_hba_device = cpi.hba_device; softc->disk->d_hba_subvendor = cpi.hba_subvendor; softc->disk->d_hba_subdevice = cpi.hba_subdevice; /* * Acquire a reference to the periph before we register with GEOM. * We'll release this reference once GEOM calls us back (via * dadiskgonecb()) telling us that our provider has been freed. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); - mtx_lock(periph->sim->mtx); + cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } disk_create(softc->disk, DISK_VERSION); - mtx_lock(periph->sim->mtx); + cam_periph_lock(periph); /* * Add async callbacks for events of interest. * I don't bother checking if this fails as, * in most cases, the system will function just * fine without them and the only alternative * would be to not attach the device on failure. */ xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE | AC_ADVINFO_CHANGED | AC_SCSI_AEN | AC_UNIT_ATTENTION, daasync, periph, periph->path); /* * Emit an attribute changed notification just in case * physical path information arrived before our async * event handler was registered, but after anyone attaching * to our disk device polled it. */ disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); /* * Schedule a periodic media polling events. */ callout_init_mtx(&softc->mediapoll_c, periph->sim->mtx, 0); if ((softc->flags & DA_FLAG_PACK_REMOVABLE) && (cgd->inq_flags & SID_AEN) == 0 && da_poll_period != 0) callout_reset(&softc->mediapoll_c, da_poll_period * hz, damediapoll, periph); xpt_schedule(periph, CAM_PRIORITY_DEV); return(CAM_REQ_CMP); } static void dastart(struct cam_periph *periph, union ccb *start_ccb) { struct da_softc *softc; softc = (struct da_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dastart\n")); switch (softc->state) { case DA_STATE_NORMAL: { struct bio *bp, *bp1; uint8_t tag_code; /* Execute immediate CCB if waiting. */ if (periph->immediate_priority <= periph->pinfo.priority) { CAM_DEBUG(periph->path, CAM_DEBUG_SUBTRACE, ("queuing for immediate ccb\n")); start_ccb->ccb_h.ccb_state = DA_CCB_WAITING; SLIST_INSERT_HEAD(&periph->ccb_list, &start_ccb->ccb_h, periph_links.sle); periph->immediate_priority = CAM_PRIORITY_NONE; wakeup(&periph->ccb_list); /* May have more work to do, so ensure we stay scheduled */ daschedule(periph); break; } /* Run BIO_DELETE if not running yet. */ if (!softc->delete_running && (bp = bioq_first(&softc->delete_queue)) != NULL) { uint64_t lba; u_int count; if (softc->delete_method == DA_DELETE_UNMAP) { uint8_t *buf = softc->unmap_buf; uint64_t lastlba = (uint64_t)-1; uint32_t lastcount = 0; int blocks = 0, off, ranges = 0; softc->delete_running = 1; bzero(softc->unmap_buf, sizeof(softc->unmap_buf)); bp1 = bp; do { bioq_remove(&softc->delete_queue, bp1); if (bp1 != bp) bioq_insert_tail(&softc->delete_run_queue, bp1); lba = bp1->bio_pblkno; count = bp1->bio_bcount / softc->params.secsize; /* Try to extend the previous range. */ if (lba == lastlba) { lastcount += count; off = (ranges - 1) * 16 + 8; scsi_ulto4b(lastcount, &buf[off + 8]); } else if (count > 0) { off = ranges * 16 + 8; scsi_u64to8b(lba, &buf[off + 0]); scsi_ulto4b(count, &buf[off + 8]); lastcount = count; ranges++; } blocks += count; lastlba = lba + count; bp1 = bioq_first(&softc->delete_queue); if (bp1 == NULL || ranges >= softc->unmap_max_ranges || blocks + bp1->bio_bcount / softc->params.secsize > softc->unmap_max_lba) break; } while (1); scsi_ulto2b(ranges * 16 + 6, &buf[0]); scsi_ulto2b(ranges * 16, &buf[2]); scsi_unmap(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/MSG_SIMPLE_Q_TAG, /*byte2*/0, /*data_ptr*/ buf, /*dxfer_len*/ ranges * 16 + 8, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); start_ccb->ccb_h.ccb_state = DA_CCB_DELETE; goto out; } else if (softc->delete_method == DA_DELETE_ZERO || softc->delete_method == DA_DELETE_WS10 || softc->delete_method == DA_DELETE_WS16) { softc->delete_running = 1; lba = bp->bio_pblkno; count = 0; bp1 = bp; do { bioq_remove(&softc->delete_queue, bp1); if (bp1 != bp) bioq_insert_tail(&softc->delete_run_queue, bp1); count += bp1->bio_bcount / softc->params.secsize; bp1 = bioq_first(&softc->delete_queue); if (bp1 == NULL || lba + count != bp1->bio_pblkno || count + bp1->bio_bcount / softc->params.secsize > 0xffff) break; } while (1); scsi_write_same(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/MSG_SIMPLE_Q_TAG, /*byte2*/softc->delete_method == DA_DELETE_ZERO ? 0 : SWS_UNMAP, softc->delete_method == DA_DELETE_WS16 ? 16 : 10, /*lba*/lba, /*block_count*/count, /*data_ptr*/ __DECONST(void *, zero_region), /*dxfer_len*/ softc->params.secsize, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); start_ccb->ccb_h.ccb_state = DA_CCB_DELETE; goto out; } else { bioq_flush(&softc->delete_queue, NULL, 0); /* FALLTHROUGH */ } } /* Run regular command. */ bp = bioq_takefirst(&softc->bio_queue); if (bp == NULL) { if (softc->tur) { softc->tur = 0; scsi_test_unit_ready(&start_ccb->csio, /*retries*/ da_retry_count, dadone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_TUR; xpt_action(start_ccb); } else xpt_release_ccb(start_ccb); break; } if (softc->tur) { softc->tur = 0; cam_periph_release_locked(periph); } if ((bp->bio_flags & BIO_ORDERED) != 0 || (softc->flags & DA_FLAG_NEED_OTAG) != 0) { softc->flags &= ~DA_FLAG_NEED_OTAG; softc->ordered_tag_count++; tag_code = MSG_ORDERED_Q_TAG; } else { tag_code = MSG_SIMPLE_Q_TAG; } switch (bp->bio_cmd) { case BIO_READ: case BIO_WRITE: scsi_read_write(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/tag_code, /*read_op*/(bp->bio_cmd == BIO_READ ? SCSI_RW_READ : SCSI_RW_WRITE) | ((bp->bio_flags & BIO_UNMAPPED) != 0 ? SCSI_RW_BIO : 0), /*byte2*/0, softc->minimum_cmd_size, /*lba*/bp->bio_pblkno, /*block_count*/bp->bio_bcount / softc->params.secsize, /*data_ptr*/ (bp->bio_flags & BIO_UNMAPPED) != 0 ? (void *)bp : bp->bio_data, /*dxfer_len*/ bp->bio_bcount, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); break; case BIO_FLUSH: /* * BIO_FLUSH doesn't currently communicate * range data, so we synchronize the cache * over the whole disk. We also force * ordered tag semantics the flush applies * to all previously queued I/O. */ scsi_synchronize_cache(&start_ccb->csio, /*retries*/1, /*cbfcnp*/dadone, MSG_ORDERED_Q_TAG, /*begin_lba*/0, /*lb_count*/0, SSD_FULL_SIZE, da_default_timeout*1000); break; } start_ccb->ccb_h.ccb_state = DA_CCB_BUFFER_IO; out: /* * Block out any asyncronous callbacks * while we touch the pending ccb list. */ LIST_INSERT_HEAD(&softc->pending_ccbs, &start_ccb->ccb_h, periph_links.le); softc->outstanding_cmds++; /* We expect a unit attention from this device */ if ((softc->flags & DA_FLAG_RETRY_UA) != 0) { start_ccb->ccb_h.ccb_state |= DA_CCB_RETRY_UA; softc->flags &= ~DA_FLAG_RETRY_UA; } start_ccb->ccb_h.ccb_bp = bp; xpt_action(start_ccb); /* May have more work to do, so ensure we stay scheduled */ daschedule(periph); break; } case DA_STATE_PROBE: { struct scsi_read_capacity_data *rcap; rcap = (struct scsi_read_capacity_data *) malloc(sizeof(*rcap), M_SCSIDA, M_NOWAIT|M_ZERO); if (rcap == NULL) { printf("dastart: Couldn't malloc read_capacity data\n"); /* da_free_periph??? */ break; } scsi_read_capacity(&start_ccb->csio, /*retries*/da_retry_count, dadone, MSG_SIMPLE_Q_TAG, rcap, SSD_FULL_SIZE, /*timeout*/5000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE; xpt_action(start_ccb); break; } case DA_STATE_PROBE2: { struct scsi_read_capacity_data_long *rcaplong; rcaplong = (struct scsi_read_capacity_data_long *) malloc(sizeof(*rcaplong), M_SCSIDA, M_NOWAIT|M_ZERO); if (rcaplong == NULL) { printf("dastart: Couldn't malloc read_capacity data\n"); /* da_free_periph??? */ break; } scsi_read_capacity_16(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*lba*/ 0, /*reladr*/ 0, /*pmi*/ 0, /*rcap_buf*/ (uint8_t *)rcaplong, /*rcap_buf_len*/ sizeof(*rcaplong), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE2; xpt_action(start_ccb); break; } } } static int cmd6workaround(union ccb *ccb) { struct scsi_rw_6 cmd6; struct scsi_rw_10 *cmd10; struct da_softc *softc; u_int8_t *cdb; struct bio *bp; int frozen; cdb = ccb->csio.cdb_io.cdb_bytes; softc = (struct da_softc *)xpt_path_periph(ccb->ccb_h.path)->softc; if (ccb->ccb_h.ccb_state == DA_CCB_DELETE) { if (softc->delete_method == DA_DELETE_UNMAP) { xpt_print(ccb->ccb_h.path, "UNMAP is not supported, " "switching to WRITE SAME(16) with UNMAP.\n"); dadeletemethodset(softc, DA_DELETE_WS16); } else if (softc->delete_method == DA_DELETE_WS16) { xpt_print(ccb->ccb_h.path, "WRITE SAME(16) with UNMAP is not supported, " "disabling BIO_DELETE.\n"); dadeletemethodset(softc, DA_DELETE_DISABLE); } else if (softc->delete_method == DA_DELETE_WS10) { xpt_print(ccb->ccb_h.path, "WRITE SAME(10) with UNMAP is not supported, " "disabling BIO_DELETE.\n"); dadeletemethodset(softc, DA_DELETE_DISABLE); } else if (softc->delete_method == DA_DELETE_ZERO) { xpt_print(ccb->ccb_h.path, "WRITE SAME(10) is not supported, " "disabling BIO_DELETE.\n"); dadeletemethodset(softc, DA_DELETE_DISABLE); } else dadeletemethodset(softc, DA_DELETE_DISABLE); if (DA_SIO) { while ((bp = bioq_takefirst(&softc->delete_run_queue)) != NULL) bioq_disksort(&softc->delete_queue, bp); } else { while ((bp = bioq_takefirst(&softc->delete_run_queue)) != NULL) bioq_insert_tail(&softc->delete_queue, bp); } bioq_insert_tail(&softc->delete_queue, (struct bio *)ccb->ccb_h.ccb_bp); ccb->ccb_h.ccb_bp = NULL; return (0); } /* Translation only possible if CDB is an array and cmd is R/W6 */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0 || (*cdb != READ_6 && *cdb != WRITE_6)) return 0; xpt_print(ccb->ccb_h.path, "READ(6)/WRITE(6) not supported, " "increasing minimum_cmd_size to 10.\n"); softc->minimum_cmd_size = 10; bcopy(cdb, &cmd6, sizeof(struct scsi_rw_6)); cmd10 = (struct scsi_rw_10 *)cdb; cmd10->opcode = (cmd6.opcode == READ_6) ? READ_10 : WRITE_10; cmd10->byte2 = 0; scsi_ulto4b(scsi_3btoul(cmd6.addr), cmd10->addr); cmd10->reserved = 0; scsi_ulto2b(cmd6.length, cmd10->length); cmd10->control = cmd6.control; ccb->csio.cdb_len = sizeof(*cmd10); /* Requeue request, unfreezing queue if necessary */ frozen = (ccb->ccb_h.status & CAM_DEV_QFRZN) != 0; ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_action(ccb); if (frozen) { cam_release_devq(ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } return (ERESTART); } static void dadone(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; da_ccb_state state; softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone\n")); csio = &done_ccb->csio; state = csio->ccb_h.ccb_state & DA_CCB_TYPE_MASK; switch (state) { case DA_CCB_BUFFER_IO: case DA_CCB_DELETE: { struct bio *bp, *bp1; bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { int error; int sf; if ((csio->ccb_h.ccb_state & DA_CCB_RETRY_UA) != 0) sf = SF_RETRY_UA; else sf = 0; error = daerror(done_ccb, CAM_RETRY_SELTO, sf); if (error == ERESTART) { /* * A retry was scheuled, so * just return. */ return; } bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if (error != 0) { int queued_error; /* * return all queued I/O with EIO, so that * the client can retry these I/Os in the * proper order should it attempt to recover. */ queued_error = EIO; if (error == ENXIO && (softc->flags & DA_FLAG_PACK_INVALID)== 0) { /* * Catastrophic error. Mark our pack as * invalid. */ /* * XXX See if this is really a media * XXX change first? */ xpt_print(periph->path, "Invalidating pack\n"); softc->flags |= DA_FLAG_PACK_INVALID; queued_error = ENXIO; } bioq_flush(&softc->bio_queue, NULL, queued_error); if (bp != NULL) { bp->bio_error = error; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; } } else if (bp != NULL) { bp->bio_resid = csio->resid; bp->bio_error = 0; if (bp->bio_resid != 0) bp->bio_flags |= BIO_ERROR; } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } else if (bp != NULL) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) panic("REQ_CMP with QFRZN"); bp->bio_resid = csio->resid; if (csio->resid > 0) bp->bio_flags |= BIO_ERROR; if (softc->error_inject != 0) { bp->bio_error = softc->error_inject; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; softc->error_inject = 0; } } /* * Block out any asyncronous callbacks * while we touch the pending ccb list. */ LIST_REMOVE(&done_ccb->ccb_h, periph_links.le); softc->outstanding_cmds--; if (softc->outstanding_cmds == 0) softc->flags |= DA_FLAG_WENT_IDLE; if ((softc->flags & DA_FLAG_PACK_INVALID) != 0) { xpt_print(periph->path, "oustanding %d\n", softc->outstanding_cmds); } if (state == DA_CCB_DELETE) { while ((bp1 = bioq_takefirst(&softc->delete_run_queue)) != NULL) { bp1->bio_resid = bp->bio_resid; bp1->bio_error = bp->bio_error; if (bp->bio_flags & BIO_ERROR) bp1->bio_flags |= BIO_ERROR; biodone(bp1); } softc->delete_running = 0; if (bp != NULL) biodone(bp); daschedule(periph); } else if (bp != NULL) biodone(bp); break; } case DA_CCB_PROBE: case DA_CCB_PROBE2: { struct scsi_read_capacity_data *rdcap; struct scsi_read_capacity_data_long *rcaplong; char announce_buf[80]; rdcap = NULL; rcaplong = NULL; if (state == DA_CCB_PROBE) rdcap =(struct scsi_read_capacity_data *)csio->data_ptr; else rcaplong = (struct scsi_read_capacity_data_long *) csio->data_ptr; if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { struct disk_params *dp; uint32_t block_size; uint64_t maxsector; u_int lbppbe; /* LB per physical block exponent. */ u_int lalba; /* Lowest aligned LBA. */ if (state == DA_CCB_PROBE) { block_size = scsi_4btoul(rdcap->length); maxsector = scsi_4btoul(rdcap->addr); lbppbe = 0; lalba = 0; /* * According to SBC-2, if the standard 10 * byte READ CAPACITY command returns 2^32, * we should issue the 16 byte version of * the command, since the device in question * has more sectors than can be represented * with the short version of the command. */ if (maxsector == 0xffffffff) { softc->state = DA_STATE_PROBE2; free(rdcap, M_SCSIDA); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } } else { block_size = scsi_4btoul(rcaplong->length); maxsector = scsi_8btou64(rcaplong->addr); lbppbe = rcaplong->prot_lbppbe & SRC16_LBPPBE; lalba = scsi_2btoul(rcaplong->lalba_lbp); } /* * Because GEOM code just will panic us if we * give them an 'illegal' value we'll avoid that * here. */ if (block_size == 0 && maxsector == 0) { snprintf(announce_buf, sizeof(announce_buf), "0MB (no media?)"); } else if (block_size >= MAXPHYS || block_size == 0) { xpt_print(periph->path, "unsupportable block size %ju\n", (uintmax_t) block_size); announce_buf[0] = '\0'; cam_periph_invalidate(periph); } else { /* * We pass rcaplong into dasetgeom(), * because it will only use it if it is * non-NULL. */ dasetgeom(periph, block_size, maxsector, rcaplong, sizeof(*rcaplong)); if ((lalba & SRC16_LBPME_A) && softc->delete_method == DA_DELETE_NONE) dadeletemethodset(softc, DA_DELETE_UNMAP); dp = &softc->params; snprintf(announce_buf, sizeof(announce_buf), "%juMB (%ju %u byte sectors: %dH %dS/T " "%dC)", (uintmax_t) (((uintmax_t)dp->secsize * dp->sectors) / (1024*1024)), (uintmax_t)dp->sectors, dp->secsize, dp->heads, dp->secs_per_track, dp->cylinders); } } else { int error; announce_buf[0] = '\0'; /* * Retry any UNIT ATTENTION type errors. They * are expected at boot. */ error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) { /* * A retry was scheuled, so * just return. */ return; } else if (error != 0) { int asc, ascq; int sense_key, error_code; int have_sense; cam_status status; struct ccb_getdev cgd; /* Don't wedge this device's queue */ status = done_ccb->ccb_h.status; if ((status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if (scsi_extract_sense_ccb(done_ccb, &error_code, &sense_key, &asc, &ascq)) have_sense = TRUE; else have_sense = FALSE; /* * If we tried READ CAPACITY(16) and failed, * fallback to READ CAPACITY(10). */ if ((state == DA_CCB_PROBE2) && (softc->flags & DA_FLAG_CAN_RC16) && (((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID) || ((have_sense) && (error_code == SSD_CURRENT_ERROR) && (sense_key == SSD_KEY_ILLEGAL_REQUEST)))) { softc->flags &= ~DA_FLAG_CAN_RC16; softc->state = DA_STATE_PROBE; free(rdcap, M_SCSIDA); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } else /* * Attach to anything that claims to be a * direct access or optical disk device, * as long as it doesn't return a "Logical * unit not supported" (0x25) error. */ if ((have_sense) && (asc != 0x25) && (error_code == SSD_CURRENT_ERROR)) { const char *sense_key_desc; const char *asc_desc; scsi_sense_desc(sense_key, asc, ascq, &cgd.inq_data, &sense_key_desc, &asc_desc); snprintf(announce_buf, sizeof(announce_buf), "Attempt to query device " "size failed: %s, %s", sense_key_desc, asc_desc); } else { if (have_sense) scsi_sense_print( &done_ccb->csio); else { xpt_print(periph->path, "got CAM status %#x\n", done_ccb->ccb_h.status); } xpt_print(periph->path, "fatal error, " "failed to attach to device\n"); /* * Free up resources. */ cam_periph_invalidate(periph); } } } free(csio->data_ptr, M_SCSIDA); if (announce_buf[0] != '\0' && ((softc->flags & DA_FLAG_PROBED) == 0)) { /* * Create our sysctl variables, now that we know * we have successfully attached. */ /* increase the refcount */ if (cam_periph_acquire(periph) == CAM_REQ_CMP) { taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task); xpt_announce_periph(periph, announce_buf); } else { xpt_print(periph->path, "fatal error, " "could not acquire reference count\n"); } } /* * Since our peripheral may be invalidated by an error * above or an external event, we must release our CCB * before releasing the probe lock on the peripheral. * The peripheral will only go away once the last lock * is removed, and we need it around for the CCB release * operation. */ xpt_release_ccb(done_ccb); softc->state = DA_STATE_NORMAL; daschedule(periph); wakeup(&softc->disk->d_mediasize); if ((softc->flags & DA_FLAG_PROBED) == 0) { softc->flags |= DA_FLAG_PROBED; cam_periph_unhold(periph); } else cam_periph_release_locked(periph); return; } case DA_CCB_WAITING: { /* Caller will release the CCB */ wakeup(&done_ccb->ccb_h.cbfcnp); return; } case DA_CCB_DUMP: /* No-op. We're polling */ return; case DA_CCB_TUR: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_RECOVERY | SF_NO_PRINT) == ERESTART) return; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } xpt_release_ccb(done_ccb); cam_periph_release_locked(periph); return; } default: break; } xpt_release_ccb(done_ccb); } static void dareprobe(struct cam_periph *periph) { struct da_softc *softc; cam_status status; softc = (struct da_softc *)periph->softc; /* Probe in progress; don't interfere. */ if ((softc->flags & DA_FLAG_PROBED) == 0) return; status = cam_periph_acquire(periph); KASSERT(status == CAM_REQ_CMP, ("dareprobe: cam_periph_acquire failed")); if (softc->flags & DA_FLAG_CAN_RC16) softc->state = DA_STATE_PROBE2; else softc->state = DA_STATE_PROBE; xpt_schedule(periph, CAM_PRIORITY_DEV); } static int daerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct da_softc *softc; struct cam_periph *periph; int error, error_code, sense_key, asc, ascq; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct da_softc *)periph->softc; /* * Automatically detect devices that do not support * READ(6)/WRITE(6) and upgrade to using 10 byte cdbs. */ error = 0; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID) { error = cmd6workaround(ccb); } else if (scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (sense_key == SSD_KEY_ILLEGAL_REQUEST) error = cmd6workaround(ccb); /* * If the target replied with CAPACITY DATA HAS CHANGED UA, * query the capacity and notify upper layers. */ else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x2A && ascq == 0x09) { xpt_print(periph->path, "capacity data has changed\n"); dareprobe(periph); sense_flags |= SF_NO_PRINT; } else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x28 && ascq == 0x00) disk_media_changed(softc->disk, M_NOWAIT); else if (sense_key == SSD_KEY_NOT_READY && asc == 0x3a && (softc->flags & DA_FLAG_SAW_MEDIA)) { softc->flags &= ~DA_FLAG_SAW_MEDIA; disk_media_gone(softc->disk, M_NOWAIT); } } if (error == ERESTART) return (ERESTART); /* * XXX * Until we have a better way of doing pack validation, * don't treat UAs as errors. */ sense_flags |= SF_RETRY_UA; return(cam_periph_error(ccb, cam_flags, sense_flags, &softc->saved_ccb)); } static void damediapoll(void *arg) { struct cam_periph *periph = arg; struct da_softc *softc = periph->softc; if (!softc->tur && softc->outstanding_cmds == 0) { if (cam_periph_acquire(periph) == CAM_REQ_CMP) { softc->tur = 1; daschedule(periph); } } /* Queue us up again */ if (da_poll_period != 0) callout_schedule(&softc->mediapoll_c, da_poll_period * hz); } static void daprevent(struct cam_periph *periph, int action) { struct da_softc *softc; union ccb *ccb; int error; softc = (struct da_softc *)periph->softc; if (((action == PR_ALLOW) && (softc->flags & DA_FLAG_PACK_LOCKED) == 0) || ((action == PR_PREVENT) && (softc->flags & DA_FLAG_PACK_LOCKED) != 0)) { return; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_prevent(&ccb->csio, /*retries*/1, /*cbcfp*/dadone, MSG_SIMPLE_Q_TAG, action, SSD_FULL_SIZE, 5000); error = cam_periph_runccb(ccb, daerror, CAM_RETRY_SELTO, SF_RETRY_UA | SF_QUIET_IR, softc->disk->d_devstat); if (error == 0) { if (action == PR_ALLOW) softc->flags &= ~DA_FLAG_PACK_LOCKED; else softc->flags |= DA_FLAG_PACK_LOCKED; } xpt_release_ccb(ccb); } static void dasetgeom(struct cam_periph *periph, uint32_t block_len, uint64_t maxsector, struct scsi_read_capacity_data_long *rcaplong, size_t rcap_len) { struct ccb_calc_geometry ccg; struct da_softc *softc; struct disk_params *dp; u_int lbppbe, lalba; int error; softc = (struct da_softc *)periph->softc; dp = &softc->params; dp->secsize = block_len; dp->sectors = maxsector + 1; if (rcaplong != NULL) { lbppbe = rcaplong->prot_lbppbe & SRC16_LBPPBE; lalba = scsi_2btoul(rcaplong->lalba_lbp); lalba &= SRC16_LALBA_A; } else { lbppbe = 0; lalba = 0; } if (lbppbe > 0) { dp->stripesize = block_len << lbppbe; dp->stripeoffset = (dp->stripesize - block_len * lalba) % dp->stripesize; } else if (softc->quirks & DA_Q_4K) { dp->stripesize = 4096; dp->stripeoffset = 0; } else { dp->stripesize = 0; dp->stripeoffset = 0; } /* * Have the controller provide us with a geometry * for this disk. The only time the geometry * matters is when we boot and the controller * is the only one knowledgeable enough to come * up with something that will make this a bootable * device. */ xpt_setup_ccb(&ccg.ccb_h, periph->path, CAM_PRIORITY_NORMAL); ccg.ccb_h.func_code = XPT_CALC_GEOMETRY; ccg.block_size = dp->secsize; ccg.volume_size = dp->sectors; ccg.heads = 0; ccg.secs_per_track = 0; ccg.cylinders = 0; xpt_action((union ccb*)&ccg); if ((ccg.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { /* * We don't know what went wrong here- but just pick * a geometry so we don't have nasty things like divide * by zero. */ dp->heads = 255; dp->secs_per_track = 255; dp->cylinders = dp->sectors / (255 * 255); if (dp->cylinders == 0) { dp->cylinders = 1; } } else { dp->heads = ccg.heads; dp->secs_per_track = ccg.secs_per_track; dp->cylinders = ccg.cylinders; } /* * If the user supplied a read capacity buffer, and if it is * different than the previous buffer, update the data in the EDT. * If it's the same, we don't bother. This avoids sending an * update every time someone opens this device. */ if ((rcaplong != NULL) && (bcmp(rcaplong, &softc->rcaplong, min(sizeof(softc->rcaplong), rcap_len)) != 0)) { struct ccb_dev_advinfo cdai; xpt_setup_ccb(&cdai.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.buftype = CDAI_TYPE_RCAPLONG; cdai.flags |= CDAI_FLAG_STORE; cdai.bufsiz = rcap_len; cdai.buf = (uint8_t *)rcaplong; xpt_action((union ccb *)&cdai); if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.ccb_h.status != CAM_REQ_CMP) { xpt_print(periph->path, "%s: failed to set read " "capacity advinfo\n", __func__); /* Use cam_error_print() to decode the status */ cam_error_print((union ccb *)&cdai, CAM_ESF_CAM_STATUS, CAM_EPF_ALL); } else { bcopy(rcaplong, &softc->rcaplong, min(sizeof(softc->rcaplong), rcap_len)); } } softc->disk->d_sectorsize = softc->params.secsize; softc->disk->d_mediasize = softc->params.secsize * (off_t)softc->params.sectors; softc->disk->d_stripesize = softc->params.stripesize; softc->disk->d_stripeoffset = softc->params.stripeoffset; /* XXX: these are not actually "firmware" values, so they may be wrong */ softc->disk->d_fwsectors = softc->params.secs_per_track; softc->disk->d_fwheads = softc->params.heads; softc->disk->d_devstat->block_size = softc->params.secsize; softc->disk->d_devstat->flags &= ~DEVSTAT_BS_UNAVAILABLE; if (softc->delete_method > DA_DELETE_DISABLE) softc->disk->d_flags |= DISKFLAG_CANDELETE; else softc->disk->d_flags &= ~DISKFLAG_CANDELETE; error = disk_resize(softc->disk, M_NOWAIT); if (error != 0) xpt_print(periph->path, "disk_resize(9) failed, error = %d\n", error); } static void dasendorderedtag(void *arg) { struct da_softc *softc = arg; if (da_send_ordered) { if ((softc->ordered_tag_count == 0) && ((softc->flags & DA_FLAG_WENT_IDLE) == 0)) { softc->flags |= DA_FLAG_NEED_OTAG; } if (softc->outstanding_cmds > 0) softc->flags &= ~DA_FLAG_WENT_IDLE; softc->ordered_tag_count = 0; } /* Queue us up again */ callout_reset(&softc->sendordered_c, (da_default_timeout * hz) / DA_ORDEREDTAG_INTERVAL, dasendorderedtag, softc); } /* * Step through all DA peripheral drivers, and if the device is still open, * sync the disk cache to physical media. */ static void dashutdown(void * arg, int howto) { struct cam_periph *periph; struct da_softc *softc; union ccb *ccb; int error; CAM_PERIPH_FOREACH(periph, &dadriver) { cam_periph_lock(periph); softc = (struct da_softc *)periph->softc; /* * We only sync the cache if the drive is still open, and * if the drive is capable of it.. */ if (((softc->flags & DA_FLAG_OPEN) == 0) || (softc->quirks & DA_Q_NO_SYNC_CACHE)) { cam_periph_unlock(periph); continue; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_synchronize_cache(&ccb->csio, /*retries*/0, /*cbfcnp*/dadone, MSG_SIMPLE_Q_TAG, /*begin_lba*/0, /* whole disk */ /*lb_count*/0, SSD_FULL_SIZE, 60 * 60 * 1000); error = cam_periph_runccb(ccb, daerror, /*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY | SF_QUIET_IR, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); xpt_release_ccb(ccb); cam_periph_unlock(periph); } } #else /* !_KERNEL */ /* * XXX This is only left out of the kernel build to silence warnings. If, * for some reason this function is used in the kernel, the ifdefs should * be moved so it is included both in the kernel and userland. */ void scsi_format_unit(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int16_t ileave, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_format_unit *scsi_cmd; scsi_cmd = (struct scsi_format_unit *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = FORMAT_UNIT; scsi_cmd->byte2 = byte2; scsi_ulto2b(ileave, scsi_cmd->interleave); cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } #endif /* _KERNEL */ Index: head/sys/cam/scsi/scsi_pass.c =================================================================== --- head/sys/cam/scsi/scsi_pass.c (revision 249105) +++ head/sys/cam/scsi/scsi_pass.c (revision 249106) @@ -1,768 +1,768 @@ /*- * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef enum { PASS_FLAG_OPEN = 0x01, PASS_FLAG_LOCKED = 0x02, PASS_FLAG_INVALID = 0x04, PASS_FLAG_INITIAL_PHYSPATH = 0x08 } pass_flags; typedef enum { PASS_STATE_NORMAL } pass_state; typedef enum { PASS_CCB_BUFFER_IO, PASS_CCB_WAITING } pass_ccb_types; #define ccb_type ppriv_field0 #define ccb_bp ppriv_ptr1 struct pass_softc { pass_state state; pass_flags flags; u_int8_t pd_type; union ccb saved_ccb; int open_count; struct devstat *device_stats; struct cdev *dev; struct cdev *alias_dev; struct task add_physpath_task; }; static d_open_t passopen; static d_close_t passclose; static d_ioctl_t passioctl; static periph_init_t passinit; static periph_ctor_t passregister; static periph_oninv_t passoninvalidate; static periph_dtor_t passcleanup; static periph_start_t passstart; static void pass_add_physpath(void *context, int pending); static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void passdone(struct cam_periph *periph, union ccb *done_ccb); static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb); static struct periph_driver passdriver = { passinit, "pass", TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(pass, passdriver); static struct cdevsw pass_cdevsw = { .d_version = D_VERSION, .d_flags = D_TRACKCLOSE, .d_open = passopen, .d_close = passclose, .d_ioctl = passioctl, .d_name = "pass", }; static void passinit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("pass: Failed to attach master async callback " "due to status 0x%x!\n", status); } } static void passdevgonecb(void *arg) { struct cam_sim *sim; struct cam_periph *periph; struct pass_softc *softc; int i; periph = (struct cam_periph *)arg; sim = periph->sim; softc = (struct pass_softc *)periph->softc; KASSERT(softc->open_count >= 0, ("Negative open count %d", softc->open_count)); mtx_lock(sim->mtx); /* * When we get this callback, we will get no more close calls from * devfs. So if we have any dangling opens, we need to release the * reference held for that particular context. */ for (i = 0; i < softc->open_count; i++) cam_periph_release_locked(periph); softc->open_count = 0; /* * Release the reference held for the device node, it is gone now. */ cam_periph_release_locked(periph); /* * We reference the SIM lock directly here, instead of using * cam_periph_unlock(). The reason is that the final call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. */ mtx_unlock(sim->mtx); } static void passoninvalidate(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, passasync, periph, periph->path); softc->flags |= PASS_FLAG_INVALID; /* * Tell devfs this device has gone away, and ask for a callback * when it has cleaned up its state. */ destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); /* * XXX Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ if (bootverbose) { xpt_print(periph->path, "lost device\n"); } } static void passcleanup(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; if (bootverbose) xpt_print(periph->path, "removing device entry\n"); devstat_remove_entry(softc->device_stats); cam_periph_unlock(periph); taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); cam_periph_lock(periph); free(softc, M_DEVBUF); } static void pass_add_physpath(void *context, int pending) { struct cam_periph *periph; struct pass_softc *softc; char *physpath; /* * If we have one, create a devfs alias for our * physical path. */ periph = context; softc = periph->softc; physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); cam_periph_lock(periph); if (periph->flags & CAM_PERIPH_INVALID) { cam_periph_unlock(periph); goto out; } if (xpt_getattr(physpath, MAXPATHLEN, "GEOM::physpath", periph->path) == 0 && strlen(physpath) != 0) { cam_periph_unlock(periph); make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, softc->dev, softc->alias_dev, physpath); cam_periph_lock(periph); } /* * Now that we've made our alias, we no longer have to have a * reference to the device. */ if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) { softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; cam_periph_unlock(periph); dev_rel(softc->dev); } else cam_periph_unlock(periph); out: free(physpath, M_DEVBUF); } static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(passregister, passoninvalidate, passcleanup, passstart, "pass", CAM_PERIPH_BIO, cgd->ccb_h.path, passasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(status); printf("passasync: Unable to attach new device " "due to status %#x: %s\n", status, entry ? entry->status_text : "Unknown"); } break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); } break; } default: cam_periph_async(periph, code, path, arg); break; } } static cam_status passregister(struct cam_periph *periph, void *arg) { struct pass_softc *softc; struct ccb_getdev *cgd; struct ccb_pathinq cpi; int no_tags; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("%s: no getdev CCB, can't register device\n", __func__); return(CAM_REQ_CMP_ERR); } softc = (struct pass_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT); if (softc == NULL) { printf("%s: Unable to probe new device. " "Unable to allocate softc\n", __func__); return(CAM_REQ_CMP_ERR); } bzero(softc, sizeof(*softc)); softc->state = PASS_STATE_NORMAL; if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) softc->pd_type = SID_TYPE(&cgd->inq_data); else if (cgd->protocol == PROTO_SATAPM) softc->pd_type = T_ENCLOSURE; else softc->pd_type = T_DIRECT; periph->softc = softc; bzero(&cpi, sizeof(cpi)); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); /* * We pass in 0 for a blocksize, since we don't * know what the blocksize of this device is, if * it even has a blocksize. */ - mtx_unlock(periph->sim->mtx); + cam_periph_unlock(periph); no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; softc->device_stats = devstat_new_entry("pass", periph->unit_number, 0, DEVSTAT_NO_BLOCKSIZE | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), softc->pd_type | XPORT_DEVSTAT_TYPE(cpi.transport) | DEVSTAT_TYPE_PASS, DEVSTAT_PRIORITY_PASS); /* * Acquire a reference to the periph before we create the devfs * instance for it. We'll release this reference once the devfs * instance has been freed. */ if (cam_periph_acquire(periph) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } /* Register the device */ softc->dev = make_dev(&pass_cdevsw, periph->unit_number, UID_ROOT, GID_OPERATOR, 0600, "%s%d", periph->periph_name, periph->unit_number); /* * Now that we have made the devfs instance, hold a reference to it * until the task queue has run to setup the physical path alias. * That way devfs won't get rid of the device before we add our * alias. */ dev_ref(softc->dev); - mtx_lock(periph->sim->mtx); + cam_periph_lock(periph); softc->dev->si_drv1 = periph; TASK_INIT(&softc->add_physpath_task, /*priority*/0, pass_add_physpath, periph); /* * See if physical path information is already available. */ taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); /* * Add an async callback so that we get notified if * this device goes away or its physical path * (stored in the advanced info data of the EDT) has * changed. */ xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, passasync, periph, periph->path); if (bootverbose) xpt_announce_periph(periph, NULL); return(CAM_REQ_CMP); } static int passopen(struct cdev *dev, int flags, int fmt, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; periph = (struct cam_periph *)dev->si_drv1; if (cam_periph_acquire(periph) != CAM_REQ_CMP) return (ENXIO); cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; if (softc->flags & PASS_FLAG_INVALID) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(ENXIO); } /* * Don't allow access when we're running at a high securelevel. */ error = securelevel_gt(td->td_ucred, 1); if (error) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(error); } /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EPERM); } /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { xpt_print(periph->path, "can't do nonblocking access\n"); cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EINVAL); } softc->open_count++; cam_periph_unlock(periph); return (error); } static int passclose(struct cdev *dev, int flag, int fmt, struct thread *td) { struct cam_sim *sim; struct cam_periph *periph; struct pass_softc *softc; periph = (struct cam_periph *)dev->si_drv1; if (periph == NULL) return (ENXIO); sim = periph->sim; softc = periph->softc; mtx_lock(sim->mtx); softc->open_count--; cam_periph_release_locked(periph); /* * We reference the SIM lock directly here, instead of using * cam_periph_unlock(). The reason is that the call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. * * cam_periph_release() avoids this problem using the same method, * but we're manually acquiring and dropping the lock here to * protect the open count and avoid another lock acquisition and * release. */ mtx_unlock(sim->mtx); return (0); } static void passstart(struct cam_periph *periph, union ccb *start_ccb) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; switch (softc->state) { case PASS_STATE_NORMAL: start_ccb->ccb_h.ccb_type = PASS_CCB_WAITING; SLIST_INSERT_HEAD(&periph->ccb_list, &start_ccb->ccb_h, periph_links.sle); periph->immediate_priority = CAM_PRIORITY_NONE; wakeup(&periph->ccb_list); break; } } static void passdone(struct cam_periph *periph, union ccb *done_ccb) { struct pass_softc *softc; struct ccb_scsiio *csio; softc = (struct pass_softc *)periph->softc; csio = &done_ccb->csio; switch (csio->ccb_h.ccb_type) { case PASS_CCB_WAITING: /* Caller will release the CCB */ wakeup(&done_ccb->ccb_h.cbfcnp); return; } xpt_release_ccb(done_ccb); } static int passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; uint32_t priority; periph = (struct cam_periph *)dev->si_drv1; if (periph == NULL) return(ENXIO); cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; error = 0; switch (cmd) { case CAMIOCOMMAND: { union ccb *inccb; union ccb *ccb; int ccb_malloced; inccb = (union ccb *)addr; /* * Some CCB types, like scan bus and scan lun can only go * through the transport layer device. */ if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { xpt_print(periph->path, "CCB function code %#x is " "restricted to the XPT device\n", inccb->ccb_h.func_code); error = ENODEV; break; } /* Compatibility for RL/priority-unaware code. */ priority = inccb->ccb_h.pinfo.priority; if (priority < CAM_RL_TO_PRIORITY(CAM_RL_NORMAL)) priority += CAM_RL_TO_PRIORITY(CAM_RL_NORMAL); /* * Non-immediate CCBs need a CCB from the per-device pool * of CCBs, which is scheduled by the transport layer. * Immediate CCBs and user-supplied CCBs should just be * malloced. */ if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { ccb = cam_periph_getccb(periph, priority); ccb_malloced = 0; } else { ccb = xpt_alloc_ccb_nowait(); if (ccb != NULL) xpt_setup_ccb(&ccb->ccb_h, periph->path, priority); ccb_malloced = 1; } if (ccb == NULL) { xpt_print(periph->path, "unable to allocate CCB\n"); error = ENOMEM; break; } error = passsendccb(periph, ccb, inccb); if (ccb_malloced) xpt_free_ccb(ccb); else xpt_release_ccb(ccb); break; } default: error = cam_periph_ioctl(periph, cmd, addr, passerror); break; } cam_periph_unlock(periph); return(error); } /* * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" * should be the CCB that is copied in from the user. */ static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) { struct pass_softc *softc; struct cam_periph_map_info mapinfo; int error, need_unmap; softc = (struct pass_softc *)periph->softc; need_unmap = 0; /* * There are some fields in the CCB header that need to be * preserved, the rest we get from the user. */ xpt_merge_ccb(ccb, inccb); /* * There's no way for the user to have a completion * function, so we put our own completion function in here. */ ccb->ccb_h.cbfcnp = passdone; /* * We only attempt to map the user memory into kernel space * if they haven't passed in a physical memory pointer, * and if there is actually an I/O operation to perform. * cam_periph_mapmem() supports SCSI, ATA, SMP, ADVINFO and device * match CCBs. For the SCSI, ATA and ADVINFO CCBs, we only pass the * CCB in if there's actually data to map. cam_periph_mapmem() will * do the right thing, even if there isn't data to map, but since CCBs * without data are a reasonably common occurance (e.g. test unit * ready), it will save a few cycles if we check for it here. * * XXX What happens if a sg list is supplied? We don't filter that * out. */ if (((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_VADDR) && (((ccb->ccb_h.func_code == XPT_SCSI_IO || ccb->ccb_h.func_code == XPT_ATA_IO) && ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE)) || (ccb->ccb_h.func_code == XPT_DEV_MATCH) || (ccb->ccb_h.func_code == XPT_SMP_IO) || ((ccb->ccb_h.func_code == XPT_DEV_ADVINFO) && (ccb->cdai.bufsiz > 0)))) { bzero(&mapinfo, sizeof(mapinfo)); /* * cam_periph_mapmem calls into proc and vm functions that can * sleep as well as trigger I/O, so we can't hold the lock. * Dropping it here is reasonably safe. */ cam_periph_unlock(periph); error = cam_periph_mapmem(ccb, &mapinfo); cam_periph_lock(periph); /* * cam_periph_mapmem returned an error, we can't continue. * Return the error to the user. */ if (error) return(error); /* * We successfully mapped the memory in, so we need to * unmap it when the transaction is done. */ need_unmap = 1; } /* * If the user wants us to perform any error recovery, then honor * that request. Otherwise, it's up to the user to perform any * error recovery. */ cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO, /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT, softc->device_stats); if (need_unmap != 0) cam_periph_unmapmem(ccb, &mapinfo); ccb->ccb_h.cbfcnp = NULL; ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; bcopy(ccb, inccb, sizeof(union ccb)); return(0); } static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct cam_periph *periph; struct pass_softc *softc; periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct pass_softc *)periph->softc; return(cam_periph_error(ccb, cam_flags, sense_flags, &softc->saved_ccb)); }