Index: user/attilio/vmobj-rwlock/bin/sh/eval.c =================================================================== --- user/attilio/vmobj-rwlock/bin/sh/eval.c (revision 247226) +++ user/attilio/vmobj-rwlock/bin/sh/eval.c (revision 247227) @@ -1,1381 +1,1381 @@ /*- * Copyright (c) 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Kenneth Almquist. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)eval.c 8.9 (Berkeley) 6/8/95"; #endif #endif /* not lint */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include /* For WIFSIGNALED(status) */ #include /* * Evaluate a command. */ #include "shell.h" #include "nodes.h" #include "syntax.h" #include "expand.h" #include "parser.h" #include "jobs.h" #include "eval.h" #include "builtins.h" #include "options.h" #include "exec.h" #include "redir.h" #include "input.h" #include "output.h" #include "trap.h" #include "var.h" #include "memalloc.h" #include "error.h" #include "show.h" #include "mystring.h" #ifndef NO_HISTORY #include "myhistedit.h" #endif int evalskip; /* set if we are skipping commands */ int skipcount; /* number of levels to skip */ MKINIT int loopnest; /* current loop nesting level */ int funcnest; /* depth of function calls */ static int builtin_flags; /* evalcommand flags for builtins */ char *commandname; struct strlist *cmdenviron; int exitstatus; /* exit status of last command */ int oexitstatus; /* saved exit status */ static void evalloop(union node *, int); static void evalfor(union node *, int); static union node *evalcase(union node *); static void evalsubshell(union node *, int); static void evalredir(union node *, int); static void exphere(union node *, struct arglist *); static void expredir(union node *); static void evalpipe(union node *); static int is_valid_fast_cmdsubst(union node *n); static void evalcommand(union node *, int, struct backcmd *); static void prehash(union node *); /* * Called to reset things after an exception. */ #ifdef mkinit INCLUDE "eval.h" RESET { evalskip = 0; loopnest = 0; funcnest = 0; } #endif /* * The eval command. */ int evalcmd(int argc, char **argv) { char *p; char *concat; char **ap; if (argc > 1) { p = argv[1]; if (argc > 2) { STARTSTACKSTR(concat); ap = argv + 2; for (;;) { STPUTS(p, concat); if ((p = *ap++) == NULL) break; STPUTC(' ', concat); } STPUTC('\0', concat); p = grabstackstr(concat); } evalstring(p, builtin_flags); } else exitstatus = 0; return exitstatus; } /* * Execute a command or commands contained in a string. */ void evalstring(char *s, int flags) { union node *n; struct stackmark smark; int flags_exit; int any; flags_exit = flags & EV_EXIT; flags &= ~EV_EXIT; any = 0; setstackmark(&smark); setinputstring(s, 1); while ((n = parsecmd(0)) != NEOF) { if (n != NULL && !nflag) { if (flags_exit && preadateof()) evaltree(n, flags | EV_EXIT); else evaltree(n, flags); any = 1; } popstackmark(&smark); setstackmark(&smark); } popfile(); popstackmark(&smark); if (!any) exitstatus = 0; if (flags_exit) exraise(EXEXIT); } /* * Evaluate a parse tree. The value is left in the global variable * exitstatus. */ void evaltree(union node *n, int flags) { int do_etest; union node *next; struct stackmark smark; setstackmark(&smark); do_etest = 0; if (n == NULL) { TRACE(("evaltree(NULL) called\n")); exitstatus = 0; goto out; } do { next = NULL; #ifndef NO_HISTORY displayhist = 1; /* show history substitutions done with fc */ #endif TRACE(("evaltree(%p: %d) called\n", (void *)n, n->type)); switch (n->type) { case NSEMI: evaltree(n->nbinary.ch1, flags & ~EV_EXIT); if (evalskip) goto out; next = n->nbinary.ch2; break; case NAND: evaltree(n->nbinary.ch1, EV_TESTED); if (evalskip || exitstatus != 0) { goto out; } next = n->nbinary.ch2; break; case NOR: evaltree(n->nbinary.ch1, EV_TESTED); if (evalskip || exitstatus == 0) goto out; next = n->nbinary.ch2; break; case NREDIR: evalredir(n, flags); break; case NSUBSHELL: evalsubshell(n, flags); do_etest = !(flags & EV_TESTED); break; case NBACKGND: evalsubshell(n, flags); break; case NIF: { evaltree(n->nif.test, EV_TESTED); if (evalskip) goto out; if (exitstatus == 0) next = n->nif.ifpart; else if (n->nif.elsepart) next = n->nif.elsepart; else exitstatus = 0; break; } case NWHILE: case NUNTIL: evalloop(n, flags & ~EV_EXIT); break; case NFOR: evalfor(n, flags & ~EV_EXIT); break; case NCASE: next = evalcase(n); break; case NCLIST: next = n->nclist.body; break; case NCLISTFALLTHRU: if (n->nclist.body) { evaltree(n->nclist.body, flags & ~EV_EXIT); if (evalskip) goto out; } next = n->nclist.next; break; case NDEFUN: defun(n->narg.text, n->narg.next); exitstatus = 0; break; case NNOT: evaltree(n->nnot.com, EV_TESTED); exitstatus = !exitstatus; break; case NPIPE: evalpipe(n); do_etest = !(flags & EV_TESTED); break; case NCMD: evalcommand(n, flags, (struct backcmd *)NULL); do_etest = !(flags & EV_TESTED); break; default: out1fmt("Node type = %d\n", n->type); flushout(&output); break; } n = next; popstackmark(&smark); setstackmark(&smark); } while (n != NULL); out: popstackmark(&smark); - if (pendingsigs) + if (pendingsig) dotrap(); if (eflag && exitstatus != 0 && do_etest) exitshell(exitstatus); if (flags & EV_EXIT) exraise(EXEXIT); } static void evalloop(union node *n, int flags) { int status; loopnest++; status = 0; for (;;) { evaltree(n->nbinary.ch1, EV_TESTED); if (evalskip) { skipping: if (evalskip == SKIPCONT && --skipcount <= 0) { evalskip = 0; continue; } if (evalskip == SKIPBREAK && --skipcount <= 0) evalskip = 0; if (evalskip == SKIPFUNC || evalskip == SKIPFILE) status = exitstatus; break; } if (n->type == NWHILE) { if (exitstatus != 0) break; } else { if (exitstatus == 0) break; } evaltree(n->nbinary.ch2, flags); status = exitstatus; if (evalskip) goto skipping; } loopnest--; exitstatus = status; } static void evalfor(union node *n, int flags) { struct arglist arglist; union node *argp; struct strlist *sp; int status; arglist.lastp = &arglist.list; for (argp = n->nfor.args ; argp ; argp = argp->narg.next) { oexitstatus = exitstatus; expandarg(argp, &arglist, EXP_FULL | EXP_TILDE); } *arglist.lastp = NULL; loopnest++; status = 0; for (sp = arglist.list ; sp ; sp = sp->next) { setvar(n->nfor.var, sp->text, 0); evaltree(n->nfor.body, flags); status = exitstatus; if (evalskip) { if (evalskip == SKIPCONT && --skipcount <= 0) { evalskip = 0; continue; } if (evalskip == SKIPBREAK && --skipcount <= 0) evalskip = 0; break; } } loopnest--; exitstatus = status; } /* * Evaluate a case statement, returning the selected tree. * * The exit status needs care to get right. */ static union node * evalcase(union node *n) { union node *cp; union node *patp; struct arglist arglist; arglist.lastp = &arglist.list; oexitstatus = exitstatus; expandarg(n->ncase.expr, &arglist, EXP_TILDE); for (cp = n->ncase.cases ; cp ; cp = cp->nclist.next) { for (patp = cp->nclist.pattern ; patp ; patp = patp->narg.next) { if (casematch(patp, arglist.list->text)) { while (cp->nclist.next && cp->type == NCLISTFALLTHRU && cp->nclist.body == NULL) cp = cp->nclist.next; if (cp->nclist.next && cp->type == NCLISTFALLTHRU) return (cp); if (cp->nclist.body == NULL) exitstatus = 0; return (cp->nclist.body); } } } exitstatus = 0; return (NULL); } /* * Kick off a subshell to evaluate a tree. */ static void evalsubshell(union node *n, int flags) { struct job *jp; int backgnd = (n->type == NBACKGND); oexitstatus = exitstatus; expredir(n->nredir.redirect); if ((!backgnd && flags & EV_EXIT && !have_traps()) || forkshell(jp = makejob(n, 1), n, backgnd) == 0) { if (backgnd) flags &=~ EV_TESTED; redirect(n->nredir.redirect, 0); evaltree(n->nredir.n, flags | EV_EXIT); /* never returns */ } else if (! backgnd) { INTOFF; exitstatus = waitforjob(jp, (int *)NULL); INTON; } else exitstatus = 0; } /* * Evaluate a redirected compound command. */ static void evalredir(union node *n, int flags) { struct jmploc jmploc; struct jmploc *savehandler; volatile int in_redirect = 1; oexitstatus = exitstatus; expredir(n->nredir.redirect); savehandler = handler; if (setjmp(jmploc.loc)) { int e; handler = savehandler; e = exception; popredir(); if (e == EXERROR || e == EXEXEC) { if (in_redirect) { exitstatus = 2; return; } } longjmp(handler->loc, 1); } else { INTOFF; handler = &jmploc; redirect(n->nredir.redirect, REDIR_PUSH); in_redirect = 0; INTON; evaltree(n->nredir.n, flags); } INTOFF; handler = savehandler; popredir(); INTON; } static void exphere(union node *redir, struct arglist *fn) { struct jmploc jmploc; struct jmploc *savehandler; struct localvar *savelocalvars; int need_longjmp = 0; redir->nhere.expdoc = nullstr; savelocalvars = localvars; localvars = NULL; forcelocal++; savehandler = handler; if (setjmp(jmploc.loc)) need_longjmp = exception != EXERROR && exception != EXEXEC; else { handler = &jmploc; expandarg(redir->nhere.doc, fn, 0); redir->nhere.expdoc = fn->list->text; INTOFF; } handler = savehandler; forcelocal--; poplocalvars(); localvars = savelocalvars; if (need_longjmp) longjmp(handler->loc, 1); INTON; } /* * Compute the names of the files in a redirection list. */ static void expredir(union node *n) { union node *redir; for (redir = n ; redir ; redir = redir->nfile.next) { struct arglist fn; fn.lastp = &fn.list; switch (redir->type) { case NFROM: case NTO: case NFROMTO: case NAPPEND: case NCLOBBER: expandarg(redir->nfile.fname, &fn, EXP_TILDE | EXP_REDIR); redir->nfile.expfname = fn.list->text; break; case NFROMFD: case NTOFD: if (redir->ndup.vname) { expandarg(redir->ndup.vname, &fn, EXP_TILDE | EXP_REDIR); fixredir(redir, fn.list->text, 1); } break; case NXHERE: exphere(redir, &fn); break; } } } /* * Evaluate a pipeline. All the processes in the pipeline are children * of the process creating the pipeline. (This differs from some versions * of the shell, which make the last process in a pipeline the parent * of all the rest.) */ static void evalpipe(union node *n) { struct job *jp; struct nodelist *lp; int pipelen; int prevfd; int pip[2]; TRACE(("evalpipe(%p) called\n", (void *)n)); pipelen = 0; for (lp = n->npipe.cmdlist ; lp ; lp = lp->next) pipelen++; INTOFF; jp = makejob(n, pipelen); prevfd = -1; for (lp = n->npipe.cmdlist ; lp ; lp = lp->next) { prehash(lp->n); pip[1] = -1; if (lp->next) { if (pipe(pip) < 0) { close(prevfd); error("Pipe call failed: %s", strerror(errno)); } } if (forkshell(jp, lp->n, n->npipe.backgnd) == 0) { INTON; if (prevfd > 0) { dup2(prevfd, 0); close(prevfd); } if (pip[1] >= 0) { if (!(prevfd >= 0 && pip[0] == 0)) close(pip[0]); if (pip[1] != 1) { dup2(pip[1], 1); close(pip[1]); } } evaltree(lp->n, EV_EXIT); } if (prevfd >= 0) close(prevfd); prevfd = pip[0]; if (pip[1] != -1) close(pip[1]); } INTON; if (n->npipe.backgnd == 0) { INTOFF; exitstatus = waitforjob(jp, (int *)NULL); TRACE(("evalpipe: job done exit status %d\n", exitstatus)); INTON; } else exitstatus = 0; } static int is_valid_fast_cmdsubst(union node *n) { return (n->type == NCMD); } /* * Execute a command inside back quotes. If it's a builtin command, we * want to save its output in a block obtained from malloc. Otherwise * we fork off a subprocess and get the output of the command via a pipe. * Should be called with interrupts off. */ void evalbackcmd(union node *n, struct backcmd *result) { int pip[2]; struct job *jp; struct stackmark smark; struct jmploc jmploc; struct jmploc *savehandler; struct localvar *savelocalvars; setstackmark(&smark); result->fd = -1; result->buf = NULL; result->nleft = 0; result->jp = NULL; if (n == NULL) { exitstatus = 0; goto out; } exitstatus = oexitstatus; if (is_valid_fast_cmdsubst(n)) { savelocalvars = localvars; localvars = NULL; forcelocal++; savehandler = handler; if (setjmp(jmploc.loc)) { if (exception == EXERROR || exception == EXEXEC) exitstatus = 2; else if (exception != 0) { handler = savehandler; forcelocal--; poplocalvars(); localvars = savelocalvars; longjmp(handler->loc, 1); } } else { handler = &jmploc; evalcommand(n, EV_BACKCMD, result); } handler = savehandler; forcelocal--; poplocalvars(); localvars = savelocalvars; } else { if (pipe(pip) < 0) error("Pipe call failed: %s", strerror(errno)); jp = makejob(n, 1); if (forkshell(jp, n, FORK_NOJOB) == 0) { FORCEINTON; close(pip[0]); if (pip[1] != 1) { dup2(pip[1], 1); close(pip[1]); } evaltree(n, EV_EXIT); } close(pip[1]); result->fd = pip[0]; result->jp = jp; } out: popstackmark(&smark); TRACE(("evalbackcmd done: fd=%d buf=%p nleft=%d jp=%p\n", result->fd, result->buf, result->nleft, result->jp)); } static int mustexpandto(const char *argtext, const char *mask) { for (;;) { if (*argtext == CTLQUOTEMARK || *argtext == CTLQUOTEEND) { argtext++; continue; } if (*argtext == CTLESC) argtext++; else if (BASESYNTAX[(int)*argtext] == CCTL) return (0); if (*argtext != *mask) return (0); if (*argtext == '\0') return (1); argtext++; mask++; } } static int isdeclarationcmd(struct narg *arg) { int have_command = 0; if (arg == NULL) return (0); while (mustexpandto(arg->text, "command")) { have_command = 1; arg = &arg->next->narg; if (arg == NULL) return (0); /* * To also allow "command -p" and "command --" as part of * a declaration command, add code here. * We do not do this, as ksh does not do it either and it * is not required by POSIX. */ } return (mustexpandto(arg->text, "export") || mustexpandto(arg->text, "readonly") || (mustexpandto(arg->text, "local") && (have_command || !isfunc("local")))); } /* * Check if a builtin can safely be executed in the same process, * even though it should be in a subshell (command substitution). * Note that jobid, jobs, times and trap can show information not * available in a child process; this is deliberate. * The arguments should already have been expanded. */ static int safe_builtin(int idx, int argc, char **argv) { if (idx == BLTINCMD || idx == COMMANDCMD || idx == ECHOCMD || idx == FALSECMD || idx == JOBIDCMD || idx == JOBSCMD || idx == KILLCMD || idx == PRINTFCMD || idx == PWDCMD || idx == TESTCMD || idx == TIMESCMD || idx == TRUECMD || idx == TYPECMD) return (1); if (idx == EXPORTCMD || idx == TRAPCMD || idx == ULIMITCMD || idx == UMASKCMD) return (argc <= 1 || (argc == 2 && argv[1][0] == '-')); if (idx == SETCMD) return (argc <= 1 || (argc == 2 && (argv[1][0] == '-' || argv[1][0] == '+') && argv[1][1] == 'o' && argv[1][2] == '\0')); return (0); } /* * Execute a simple command. * Note: This may or may not return if (flags & EV_EXIT). */ static void evalcommand(union node *cmd, int flags, struct backcmd *backcmd) { union node *argp; struct arglist arglist; struct arglist varlist; char **argv; int argc; char **envp; int varflag; struct strlist *sp; int mode; int pip[2]; struct cmdentry cmdentry; struct job *jp; struct jmploc jmploc; struct jmploc *savehandler; char *savecmdname; struct shparam saveparam; struct localvar *savelocalvars; struct parsefile *savetopfile; volatile int e; char *lastarg; int realstatus; int do_clearcmdentry; const char *path = pathval(); /* First expand the arguments. */ TRACE(("evalcommand(%p, %d) called\n", (void *)cmd, flags)); arglist.lastp = &arglist.list; varlist.lastp = &varlist.list; varflag = 1; jp = NULL; do_clearcmdentry = 0; oexitstatus = exitstatus; exitstatus = 0; for (argp = cmd->ncmd.args ; argp ; argp = argp->narg.next) { if (varflag && isassignment(argp->narg.text)) { expandarg(argp, varflag == 1 ? &varlist : &arglist, EXP_VARTILDE); continue; } else if (varflag == 1) varflag = isdeclarationcmd(&argp->narg) ? 2 : 0; expandarg(argp, &arglist, EXP_FULL | EXP_TILDE); } *arglist.lastp = NULL; *varlist.lastp = NULL; expredir(cmd->ncmd.redirect); argc = 0; for (sp = arglist.list ; sp ; sp = sp->next) argc++; /* Add one slot at the beginning for tryexec(). */ argv = stalloc(sizeof (char *) * (argc + 2)); argv++; for (sp = arglist.list ; sp ; sp = sp->next) { TRACE(("evalcommand arg: %s\n", sp->text)); *argv++ = sp->text; } *argv = NULL; lastarg = NULL; if (iflag && funcnest == 0 && argc > 0) lastarg = argv[-1]; argv -= argc; /* Print the command if xflag is set. */ if (xflag) { char sep = 0; const char *p, *ps4; ps4 = expandstr(ps4val()); out2str(ps4 != NULL ? ps4 : ps4val()); for (sp = varlist.list ; sp ; sp = sp->next) { if (sep != 0) out2c(' '); p = strchr(sp->text, '='); if (p != NULL) { p++; outbin(sp->text, p - sp->text, out2); out2qstr(p); } else out2qstr(sp->text); sep = ' '; } for (sp = arglist.list ; sp ; sp = sp->next) { if (sep != 0) out2c(' '); /* Disambiguate command looking like assignment. */ if (sp == arglist.list && strchr(sp->text, '=') != NULL && strchr(sp->text, '\'') == NULL) { out2c('\''); out2str(sp->text); out2c('\''); } else out2qstr(sp->text); sep = ' '; } out2c('\n'); flushout(&errout); } /* Now locate the command. */ if (argc == 0) { /* Variable assignment(s) without command */ cmdentry.cmdtype = CMDBUILTIN; cmdentry.u.index = BLTINCMD; cmdentry.special = 0; } else { static const char PATH[] = "PATH="; int cmd_flags = 0, bltinonly = 0; /* * Modify the command lookup path, if a PATH= assignment * is present */ for (sp = varlist.list ; sp ; sp = sp->next) if (strncmp(sp->text, PATH, sizeof(PATH) - 1) == 0) { path = sp->text + sizeof(PATH) - 1; /* * On `PATH=... command`, we need to make * sure that the command isn't using the * non-updated hash table of the outer PATH * setting and we need to make sure that * the hash table isn't filled with items * from the temporary setting. * * It would be better to forbit using and * updating the table while this command * runs, by the command finding mechanism * is heavily integrated with hash handling, * so we just delete the hash before and after * the command runs. Partly deleting like * changepatch() does doesn't seem worth the * bookinging effort, since most such runs add * directories in front of the new PATH. */ clearcmdentry(); do_clearcmdentry = 1; } for (;;) { if (bltinonly) { cmdentry.u.index = find_builtin(*argv, &cmdentry.special); if (cmdentry.u.index < 0) { cmdentry.u.index = BLTINCMD; argv--; argc++; break; } } else find_command(argv[0], &cmdentry, cmd_flags, path); /* implement the bltin and command builtins here */ if (cmdentry.cmdtype != CMDBUILTIN) break; if (cmdentry.u.index == BLTINCMD) { if (argc == 1) break; argv++; argc--; bltinonly = 1; } else if (cmdentry.u.index == COMMANDCMD) { if (argc == 1) break; if (!strcmp(argv[1], "-p")) { if (argc == 2) break; if (argv[2][0] == '-') { if (strcmp(argv[2], "--")) break; if (argc == 3) break; argv += 3; argc -= 3; } else { argv += 2; argc -= 2; } path = _PATH_STDPATH; clearcmdentry(); do_clearcmdentry = 1; } else if (!strcmp(argv[1], "--")) { if (argc == 2) break; argv += 2; argc -= 2; } else if (argv[1][0] == '-') break; else { argv++; argc--; } cmd_flags |= DO_NOFUNC; bltinonly = 0; } else break; } /* * Special builtins lose their special properties when * called via 'command'. */ if (cmd_flags & DO_NOFUNC) cmdentry.special = 0; } /* Fork off a child process if necessary. */ if (((cmdentry.cmdtype == CMDNORMAL || cmdentry.cmdtype == CMDUNKNOWN) && ((flags & EV_EXIT) == 0 || have_traps())) || ((flags & EV_BACKCMD) != 0 && (cmdentry.cmdtype != CMDBUILTIN || !safe_builtin(cmdentry.u.index, argc, argv)))) { jp = makejob(cmd, 1); mode = FORK_FG; if (flags & EV_BACKCMD) { mode = FORK_NOJOB; if (pipe(pip) < 0) error("Pipe call failed: %s", strerror(errno)); } if (cmdentry.cmdtype == CMDNORMAL && cmd->ncmd.redirect == NULL && varlist.list == NULL && (mode == FORK_FG || mode == FORK_NOJOB) && !disvforkset() && !iflag && !mflag) { vforkexecshell(jp, argv, environment(), path, cmdentry.u.index, flags & EV_BACKCMD ? pip : NULL); goto parent; } if (forkshell(jp, cmd, mode) != 0) goto parent; /* at end of routine */ if (flags & EV_BACKCMD) { FORCEINTON; close(pip[0]); if (pip[1] != 1) { dup2(pip[1], 1); close(pip[1]); } flags &= ~EV_BACKCMD; } flags |= EV_EXIT; } /* This is the child process if a fork occurred. */ /* Execute the command. */ if (cmdentry.cmdtype == CMDFUNCTION) { #ifdef DEBUG trputs("Shell function: "); trargs(argv); #endif saveparam = shellparam; shellparam.malloc = 0; shellparam.reset = 1; shellparam.nparam = argc - 1; shellparam.p = argv + 1; shellparam.optnext = NULL; INTOFF; savelocalvars = localvars; localvars = NULL; reffunc(cmdentry.u.func); savehandler = handler; if (setjmp(jmploc.loc)) { freeparam(&shellparam); shellparam = saveparam; popredir(); unreffunc(cmdentry.u.func); poplocalvars(); localvars = savelocalvars; funcnest--; handler = savehandler; longjmp(handler->loc, 1); } handler = &jmploc; funcnest++; redirect(cmd->ncmd.redirect, REDIR_PUSH); INTON; for (sp = varlist.list ; sp ; sp = sp->next) mklocal(sp->text); exitstatus = oexitstatus; evaltree(getfuncnode(cmdentry.u.func), flags & (EV_TESTED | EV_EXIT)); INTOFF; unreffunc(cmdentry.u.func); poplocalvars(); localvars = savelocalvars; freeparam(&shellparam); shellparam = saveparam; handler = savehandler; funcnest--; popredir(); INTON; if (evalskip == SKIPFUNC) { evalskip = 0; skipcount = 0; } if (jp) exitshell(exitstatus); } else if (cmdentry.cmdtype == CMDBUILTIN) { #ifdef DEBUG trputs("builtin command: "); trargs(argv); #endif mode = (cmdentry.u.index == EXECCMD)? 0 : REDIR_PUSH; if (flags == EV_BACKCMD) { memout.nleft = 0; memout.nextc = memout.buf; memout.bufsize = 64; mode |= REDIR_BACKQ; } savecmdname = commandname; savetopfile = getcurrentfile(); cmdenviron = varlist.list; e = -1; savehandler = handler; if (setjmp(jmploc.loc)) { e = exception; if (e == EXINT) exitstatus = SIGINT+128; else if (e != EXEXIT) exitstatus = 2; goto cmddone; } handler = &jmploc; redirect(cmd->ncmd.redirect, mode); outclearerror(out1); /* * If there is no command word, redirection errors should * not be fatal but assignment errors should. */ if (argc == 0) cmdentry.special = 1; listsetvar(cmdenviron, cmdentry.special ? 0 : VNOSET); if (argc > 0) bltinsetlocale(); commandname = argv[0]; argptr = argv + 1; nextopt_optptr = NULL; /* initialize nextopt */ builtin_flags = flags; exitstatus = (*builtinfunc[cmdentry.u.index])(argc, argv); flushall(); if (outiserror(out1)) { warning("write error on stdout"); if (exitstatus == 0 || exitstatus == 1) exitstatus = 2; } cmddone: if (argc > 0) bltinunsetlocale(); cmdenviron = NULL; out1 = &output; out2 = &errout; freestdout(); handler = savehandler; commandname = savecmdname; if (jp) exitshell(exitstatus); if (flags == EV_BACKCMD) { backcmd->buf = memout.buf; backcmd->nleft = memout.nextc - memout.buf; memout.buf = NULL; } if (cmdentry.u.index != EXECCMD) popredir(); if (e != -1) { if ((e != EXERROR && e != EXEXEC) || cmdentry.special) exraise(e); popfilesupto(savetopfile); if (flags != EV_BACKCMD) FORCEINTON; } } else { #ifdef DEBUG trputs("normal command: "); trargs(argv); #endif redirect(cmd->ncmd.redirect, 0); for (sp = varlist.list ; sp ; sp = sp->next) setvareq(sp->text, VEXPORT|VSTACK); envp = environment(); shellexec(argv, envp, path, cmdentry.u.index); /*NOTREACHED*/ } goto out; parent: /* parent process gets here (if we forked) */ if (mode == FORK_FG) { /* argument to fork */ INTOFF; exitstatus = waitforjob(jp, &realstatus); INTON; if (iflag && loopnest > 0 && WIFSIGNALED(realstatus)) { evalskip = SKIPBREAK; skipcount = loopnest; } } else if (mode == FORK_NOJOB) { backcmd->fd = pip[0]; close(pip[1]); backcmd->jp = jp; } out: if (lastarg) setvar("_", lastarg, 0); if (do_clearcmdentry) clearcmdentry(); } /* * Search for a command. This is called before we fork so that the * location of the command will be available in the parent as well as * the child. The check for "goodname" is an overly conservative * check that the name will not be subject to expansion. */ static void prehash(union node *n) { struct cmdentry entry; if (n && n->type == NCMD && n->ncmd.args) if (goodname(n->ncmd.args->narg.text)) find_command(n->ncmd.args->narg.text, &entry, 0, pathval()); } /* * Builtin commands. Builtin commands whose functions are closely * tied to evaluation are implemented here. */ /* * No command given, a bltin command with no arguments, or a bltin command * with an invalid name. */ int bltincmd(int argc, char **argv) { if (argc > 1) { out2fmt_flush("%s: not found\n", argv[1]); return 127; } /* * Preserve exitstatus of a previous possible redirection * as POSIX mandates */ return exitstatus; } /* * Handle break and continue commands. Break, continue, and return are * all handled by setting the evalskip flag. The evaluation routines * above all check this flag, and if it is set they start skipping * commands rather than executing them. The variable skipcount is * the number of loops to break/continue, or the number of function * levels to return. (The latter is always 1.) It should probably * be an error to break out of more loops than exist, but it isn't * in the standard shell so we don't make it one here. */ int breakcmd(int argc, char **argv) { int n = argc > 1 ? number(argv[1]) : 1; if (n > loopnest) n = loopnest; if (n > 0) { evalskip = (**argv == 'c')? SKIPCONT : SKIPBREAK; skipcount = n; } return 0; } /* * The `command' command. */ int commandcmd(int argc __unused, char **argv __unused) { const char *path; int ch; int cmd = -1; path = bltinlookup("PATH", 1); while ((ch = nextopt("pvV")) != '\0') { switch (ch) { case 'p': path = _PATH_STDPATH; break; case 'v': cmd = TYPECMD_SMALLV; break; case 'V': cmd = TYPECMD_BIGV; break; } } if (cmd != -1) { if (*argptr == NULL || argptr[1] != NULL) error("wrong number of arguments"); return typecmd_impl(2, argptr - 1, cmd, path); } if (*argptr != NULL) error("commandcmd bad call"); /* * Do nothing successfully if no command was specified; * ksh also does this. */ return 0; } /* * The return command. */ int returncmd(int argc, char **argv) { int ret = argc > 1 ? number(argv[1]) : oexitstatus; if (funcnest) { evalskip = SKIPFUNC; skipcount = 1; } else { /* skip the rest of the file */ evalskip = SKIPFILE; skipcount = 1; } return ret; } int falsecmd(int argc __unused, char **argv __unused) { return 1; } int truecmd(int argc __unused, char **argv __unused) { return 0; } int execcmd(int argc, char **argv) { /* * Because we have historically not supported any options, * only treat "--" specially. */ if (argc > 1 && strcmp(argv[1], "--") == 0) argc--, argv++; if (argc > 1) { struct strlist *sp; iflag = 0; /* exit on error */ mflag = 0; optschanged(); for (sp = cmdenviron; sp ; sp = sp->next) setvareq(sp->text, VEXPORT|VSTACK); shellexec(argv + 1, environment(), pathval(), 0); } return 0; } int timescmd(int argc __unused, char **argv __unused) { struct rusage ru; long shumins, shsmins, chumins, chsmins; double shusecs, shssecs, chusecs, chssecs; if (getrusage(RUSAGE_SELF, &ru) < 0) return 1; shumins = ru.ru_utime.tv_sec / 60; shusecs = ru.ru_utime.tv_sec % 60 + ru.ru_utime.tv_usec / 1000000.; shsmins = ru.ru_stime.tv_sec / 60; shssecs = ru.ru_stime.tv_sec % 60 + ru.ru_stime.tv_usec / 1000000.; if (getrusage(RUSAGE_CHILDREN, &ru) < 0) return 1; chumins = ru.ru_utime.tv_sec / 60; chusecs = ru.ru_utime.tv_sec % 60 + ru.ru_utime.tv_usec / 1000000.; chsmins = ru.ru_stime.tv_sec / 60; chssecs = ru.ru_stime.tv_sec % 60 + ru.ru_stime.tv_usec / 1000000.; out1fmt("%ldm%.3fs %ldm%.3fs\n%ldm%.3fs %ldm%.3fs\n", shumins, shusecs, shsmins, shssecs, chumins, chusecs, chsmins, chssecs); return 0; } Index: user/attilio/vmobj-rwlock/bin/sh/jobs.c =================================================================== --- user/attilio/vmobj-rwlock/bin/sh/jobs.c (revision 247226) +++ user/attilio/vmobj-rwlock/bin/sh/jobs.c (revision 247227) @@ -1,1433 +1,1433 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Kenneth Almquist. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)jobs.c 8.5 (Berkeley) 5/4/95"; #endif #endif /* not lint */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include "shell.h" #if JOBS #include #undef CEOF /* syntax.h redefines this */ #endif #include "redir.h" #include "exec.h" #include "show.h" #include "main.h" #include "parser.h" #include "nodes.h" #include "jobs.h" #include "options.h" #include "trap.h" #include "syntax.h" #include "input.h" #include "output.h" #include "memalloc.h" #include "error.h" #include "mystring.h" #include "var.h" #include "builtins.h" static struct job *jobtab; /* array of jobs */ static int njobs; /* size of array */ MKINIT pid_t backgndpid = -1; /* pid of last background process */ MKINIT struct job *bgjob = NULL; /* last background process */ #if JOBS static struct job *jobmru; /* most recently used job list */ static pid_t initialpgrp; /* pgrp of shell on invocation */ #endif int in_waitcmd = 0; /* are we in waitcmd()? */ volatile sig_atomic_t breakwaitcmd = 0; /* should wait be terminated? */ static int ttyfd = -1; /* mode flags for dowait */ #define DOWAIT_BLOCK 0x1 /* wait until a child exits */ #define DOWAIT_SIG 0x2 /* if DOWAIT_BLOCK, abort on signals */ #if JOBS static void restartjob(struct job *); #endif static void freejob(struct job *); static struct job *getjob(char *); pid_t getjobpgrp(char *); static pid_t dowait(int, struct job *); static void checkzombies(void); static void cmdtxt(union node *); static void cmdputs(const char *); #if JOBS static void setcurjob(struct job *); static void deljob(struct job *); static struct job *getcurjob(struct job *); #endif static void printjobcmd(struct job *); static void showjob(struct job *, int); /* * Turn job control on and off. */ MKINIT int jobctl; #if JOBS void setjobctl(int on) { int i; if (on == jobctl || rootshell == 0) return; if (on) { if (ttyfd != -1) close(ttyfd); if ((ttyfd = open(_PATH_TTY, O_RDWR)) < 0) { i = 0; while (i <= 2 && !isatty(i)) i++; if (i > 2 || (ttyfd = fcntl(i, F_DUPFD, 10)) < 0) goto out; } if (ttyfd < 10) { /* * Keep our TTY file descriptor out of the way of * the user's redirections. */ if ((i = fcntl(ttyfd, F_DUPFD, 10)) < 0) { close(ttyfd); ttyfd = -1; goto out; } close(ttyfd); ttyfd = i; } if (fcntl(ttyfd, F_SETFD, FD_CLOEXEC) < 0) { close(ttyfd); ttyfd = -1; goto out; } do { /* while we are in the background */ initialpgrp = tcgetpgrp(ttyfd); if (initialpgrp < 0) { out: out2fmt_flush("sh: can't access tty; job control turned off\n"); mflag = 0; return; } if (initialpgrp != getpgrp()) { kill(0, SIGTTIN); continue; } } while (0); setsignal(SIGTSTP); setsignal(SIGTTOU); setsignal(SIGTTIN); setpgid(0, rootpid); tcsetpgrp(ttyfd, rootpid); } else { /* turning job control off */ setpgid(0, initialpgrp); tcsetpgrp(ttyfd, initialpgrp); close(ttyfd); ttyfd = -1; setsignal(SIGTSTP); setsignal(SIGTTOU); setsignal(SIGTTIN); } jobctl = on; } #endif #if JOBS int fgcmd(int argc __unused, char **argv) { struct job *jp; pid_t pgrp; int status; jp = getjob(argv[1]); if (jp->jobctl == 0) error("job not created under job control"); printjobcmd(jp); flushout(&output); pgrp = jp->ps[0].pid; tcsetpgrp(ttyfd, pgrp); restartjob(jp); jp->foreground = 1; INTOFF; status = waitforjob(jp, (int *)NULL); INTON; return status; } int bgcmd(int argc, char **argv) { struct job *jp; do { jp = getjob(*++argv); if (jp->jobctl == 0) error("job not created under job control"); if (jp->state == JOBDONE) continue; restartjob(jp); jp->foreground = 0; out1fmt("[%td] ", jp - jobtab + 1); printjobcmd(jp); } while (--argc > 1); return 0; } static void restartjob(struct job *jp) { struct procstat *ps; int i; if (jp->state == JOBDONE) return; setcurjob(jp); INTOFF; kill(-jp->ps[0].pid, SIGCONT); for (ps = jp->ps, i = jp->nprocs ; --i >= 0 ; ps++) { if (WIFSTOPPED(ps->status)) { ps->status = -1; jp->state = 0; } } INTON; } #endif int jobscmd(int argc __unused, char *argv[] __unused) { char *id; int ch, mode; mode = SHOWJOBS_DEFAULT; while ((ch = nextopt("lps")) != '\0') { switch (ch) { case 'l': mode = SHOWJOBS_VERBOSE; break; case 'p': mode = SHOWJOBS_PGIDS; break; case 's': mode = SHOWJOBS_PIDS; break; } } if (*argptr == NULL) showjobs(0, mode); else while ((id = *argptr++) != NULL) showjob(getjob(id), mode); return (0); } static void printjobcmd(struct job *jp) { struct procstat *ps; int i; for (ps = jp->ps, i = jp->nprocs ; --i >= 0 ; ps++) { out1str(ps->cmd); if (i > 0) out1str(" | "); } out1c('\n'); } static void showjob(struct job *jp, int mode) { char s[64]; char statestr[64]; const char *sigstr; struct procstat *ps; struct job *j; int col, curr, i, jobno, prev, procno; char c; procno = (mode == SHOWJOBS_PGIDS) ? 1 : jp->nprocs; jobno = jp - jobtab + 1; curr = prev = 0; #if JOBS if ((j = getcurjob(NULL)) != NULL) { curr = j - jobtab + 1; if ((j = getcurjob(j)) != NULL) prev = j - jobtab + 1; } #endif ps = jp->ps + jp->nprocs - 1; if (jp->state == 0) { strcpy(statestr, "Running"); #if JOBS } else if (jp->state == JOBSTOPPED) { while (!WIFSTOPPED(ps->status) && ps > jp->ps) ps--; if (WIFSTOPPED(ps->status)) i = WSTOPSIG(ps->status); else i = -1; sigstr = strsignal(i); if (sigstr != NULL) strcpy(statestr, sigstr); else strcpy(statestr, "Suspended"); #endif } else if (WIFEXITED(ps->status)) { if (WEXITSTATUS(ps->status) == 0) strcpy(statestr, "Done"); else fmtstr(statestr, 64, "Done(%d)", WEXITSTATUS(ps->status)); } else { i = WTERMSIG(ps->status); sigstr = strsignal(i); if (sigstr != NULL) strcpy(statestr, sigstr); else strcpy(statestr, "Unknown signal"); if (WCOREDUMP(ps->status)) strcat(statestr, " (core dumped)"); } for (ps = jp->ps ; ; ps++) { /* for each process */ if (mode == SHOWJOBS_PIDS || mode == SHOWJOBS_PGIDS) { out1fmt("%d\n", (int)ps->pid); goto skip; } if (mode != SHOWJOBS_VERBOSE && ps != jp->ps) goto skip; if (jobno == curr && ps == jp->ps) c = '+'; else if (jobno == prev && ps == jp->ps) c = '-'; else c = ' '; if (ps == jp->ps) fmtstr(s, 64, "[%d] %c ", jobno, c); else fmtstr(s, 64, " %c ", c); out1str(s); col = strlen(s); if (mode == SHOWJOBS_VERBOSE) { fmtstr(s, 64, "%d ", (int)ps->pid); out1str(s); col += strlen(s); } if (ps == jp->ps) { out1str(statestr); col += strlen(statestr); } do { out1c(' '); col++; } while (col < 30); if (mode == SHOWJOBS_VERBOSE) { out1str(ps->cmd); out1c('\n'); } else printjobcmd(jp); skip: if (--procno <= 0) break; } } /* * Print a list of jobs. If "change" is nonzero, only print jobs whose * statuses have changed since the last call to showjobs. * * If the shell is interrupted in the process of creating a job, the * result may be a job structure containing zero processes. Such structures * will be freed here. */ void showjobs(int change, int mode) { int jobno; struct job *jp; TRACE(("showjobs(%d) called\n", change)); checkzombies(); for (jobno = 1, jp = jobtab ; jobno <= njobs ; jobno++, jp++) { if (! jp->used) continue; if (jp->nprocs == 0) { freejob(jp); continue; } if (change && ! jp->changed) continue; showjob(jp, mode); jp->changed = 0; /* Hack: discard jobs for which $! has not been referenced * in interactive mode when they terminate. */ if (jp->state == JOBDONE && !jp->remembered && (iflag || jp != bgjob)) { freejob(jp); } } } /* * Mark a job structure as unused. */ static void freejob(struct job *jp) { struct procstat *ps; int i; INTOFF; if (bgjob == jp) bgjob = NULL; for (i = jp->nprocs, ps = jp->ps ; --i >= 0 ; ps++) { if (ps->cmd != nullstr) ckfree(ps->cmd); } if (jp->ps != &jp->ps0) ckfree(jp->ps); jp->used = 0; #if JOBS deljob(jp); #endif INTON; } int waitcmd(int argc, char **argv) { struct job *job; int status, retval; struct job *jp; if (argc > 1) { job = getjob(argv[1]); } else { job = NULL; } /* * Loop until a process is terminated or stopped, or a SIGINT is * received. */ in_waitcmd++; do { if (job != NULL) { if (job->state) { status = job->ps[job->nprocs - 1].status; if (WIFEXITED(status)) retval = WEXITSTATUS(status); #if JOBS else if (WIFSTOPPED(status)) retval = WSTOPSIG(status) + 128; #endif else retval = WTERMSIG(status) + 128; if (! iflag || ! job->changed) freejob(job); else { job->remembered = 0; if (job == bgjob) bgjob = NULL; } in_waitcmd--; return retval; } } else { for (jp = jobtab ; jp < jobtab + njobs; jp++) if (jp->used && jp->state == JOBDONE) { if (! iflag || ! jp->changed) freejob(jp); else { jp->remembered = 0; if (jp == bgjob) bgjob = NULL; } } for (jp = jobtab ; ; jp++) { if (jp >= jobtab + njobs) { /* no running procs */ in_waitcmd--; return 0; } if (jp->used && jp->state == 0) break; } } } while (dowait(DOWAIT_BLOCK | DOWAIT_SIG, (struct job *)NULL) != -1); in_waitcmd--; - return 0; + return pendingsig + 128; } int jobidcmd(int argc __unused, char **argv) { struct job *jp; int i; jp = getjob(argv[1]); for (i = 0 ; i < jp->nprocs ; ) { out1fmt("%d", (int)jp->ps[i].pid); out1c(++i < jp->nprocs? ' ' : '\n'); } return 0; } /* * Convert a job name to a job structure. */ static struct job * getjob(char *name) { int jobno; struct job *found, *jp; pid_t pid; int i; if (name == NULL) { #if JOBS currentjob: if ((jp = getcurjob(NULL)) == NULL) error("No current job"); return (jp); #else error("No current job"); #endif } else if (name[0] == '%') { if (is_digit(name[1])) { jobno = number(name + 1); if (jobno > 0 && jobno <= njobs && jobtab[jobno - 1].used != 0) return &jobtab[jobno - 1]; #if JOBS } else if (name[1] == '%' && name[2] == '\0') { goto currentjob; } else if (name[1] == '+' && name[2] == '\0') { goto currentjob; } else if (name[1] == '-' && name[2] == '\0') { if ((jp = getcurjob(NULL)) == NULL || (jp = getcurjob(jp)) == NULL) error("No previous job"); return (jp); #endif } else if (name[1] == '?') { found = NULL; for (jp = jobtab, i = njobs ; --i >= 0 ; jp++) { if (jp->used && jp->nprocs > 0 && strstr(jp->ps[0].cmd, name + 2) != NULL) { if (found) error("%s: ambiguous", name); found = jp; } } if (found != NULL) return (found); } else { found = NULL; for (jp = jobtab, i = njobs ; --i >= 0 ; jp++) { if (jp->used && jp->nprocs > 0 && prefix(name + 1, jp->ps[0].cmd)) { if (found) error("%s: ambiguous", name); found = jp; } } if (found) return found; } } else if (is_number(name)) { pid = (pid_t)number(name); for (jp = jobtab, i = njobs ; --i >= 0 ; jp++) { if (jp->used && jp->nprocs > 0 && jp->ps[jp->nprocs - 1].pid == pid) return jp; } } error("No such job: %s", name); /*NOTREACHED*/ return NULL; } pid_t getjobpgrp(char *name) { struct job *jp; jp = getjob(name); return -jp->ps[0].pid; } /* * Return a new job structure, */ struct job * makejob(union node *node __unused, int nprocs) { int i; struct job *jp; for (i = njobs, jp = jobtab ; ; jp++) { if (--i < 0) { INTOFF; if (njobs == 0) { jobtab = ckmalloc(4 * sizeof jobtab[0]); #if JOBS jobmru = NULL; #endif } else { jp = ckmalloc((njobs + 4) * sizeof jobtab[0]); memcpy(jp, jobtab, njobs * sizeof jp[0]); #if JOBS /* Relocate `next' pointers and list head */ if (jobmru != NULL) jobmru = &jp[jobmru - jobtab]; for (i = 0; i < njobs; i++) if (jp[i].next != NULL) jp[i].next = &jp[jp[i].next - jobtab]; #endif if (bgjob != NULL) bgjob = &jp[bgjob - jobtab]; /* Relocate `ps' pointers */ for (i = 0; i < njobs; i++) if (jp[i].ps == &jobtab[i].ps0) jp[i].ps = &jp[i].ps0; ckfree(jobtab); jobtab = jp; } jp = jobtab + njobs; for (i = 4 ; --i >= 0 ; jobtab[njobs++].used = 0); INTON; break; } if (jp->used == 0) break; } INTOFF; jp->state = 0; jp->used = 1; jp->changed = 0; jp->nprocs = 0; jp->foreground = 0; jp->remembered = 0; #if JOBS jp->jobctl = jobctl; jp->next = NULL; #endif if (nprocs > 1) { jp->ps = ckmalloc(nprocs * sizeof (struct procstat)); } else { jp->ps = &jp->ps0; } INTON; TRACE(("makejob(%p, %d) returns %%%td\n", (void *)node, nprocs, jp - jobtab + 1)); return jp; } #if JOBS static void setcurjob(struct job *cj) { struct job *jp, *prev; for (prev = NULL, jp = jobmru; jp != NULL; prev = jp, jp = jp->next) { if (jp == cj) { if (prev != NULL) prev->next = jp->next; else jobmru = jp->next; jp->next = jobmru; jobmru = cj; return; } } cj->next = jobmru; jobmru = cj; } static void deljob(struct job *j) { struct job *jp, *prev; for (prev = NULL, jp = jobmru; jp != NULL; prev = jp, jp = jp->next) { if (jp == j) { if (prev != NULL) prev->next = jp->next; else jobmru = jp->next; return; } } } /* * Return the most recently used job that isn't `nj', and preferably one * that is stopped. */ static struct job * getcurjob(struct job *nj) { struct job *jp; /* Try to find a stopped one.. */ for (jp = jobmru; jp != NULL; jp = jp->next) if (jp->used && jp != nj && jp->state == JOBSTOPPED) return (jp); /* Otherwise the most recently used job that isn't `nj' */ for (jp = jobmru; jp != NULL; jp = jp->next) if (jp->used && jp != nj) return (jp); return (NULL); } #endif /* * Fork of a subshell. If we are doing job control, give the subshell its * own process group. Jp is a job structure that the job is to be added to. * N is the command that will be evaluated by the child. Both jp and n may * be NULL. The mode parameter can be one of the following: * FORK_FG - Fork off a foreground process. * FORK_BG - Fork off a background process. * FORK_NOJOB - Like FORK_FG, but don't give the process its own * process group even if job control is on. * * When job control is turned off, background processes have their standard * input redirected to /dev/null (except for the second and later processes * in a pipeline). */ pid_t forkshell(struct job *jp, union node *n, int mode) { pid_t pid; pid_t pgrp; TRACE(("forkshell(%%%td, %p, %d) called\n", jp - jobtab, (void *)n, mode)); INTOFF; if (mode == FORK_BG && (jp == NULL || jp->nprocs == 0)) checkzombies(); flushall(); pid = fork(); if (pid == -1) { TRACE(("Fork failed, errno=%d\n", errno)); INTON; error("Cannot fork: %s", strerror(errno)); } if (pid == 0) { struct job *p; int wasroot; int i; TRACE(("Child shell %d\n", (int)getpid())); wasroot = rootshell; rootshell = 0; handler = &main_handler; closescript(); INTON; forcelocal = 0; clear_traps(); #if JOBS jobctl = 0; /* do job control only in root shell */ if (wasroot && mode != FORK_NOJOB && mflag) { if (jp == NULL || jp->nprocs == 0) pgrp = getpid(); else pgrp = jp->ps[0].pid; if (setpgid(0, pgrp) == 0 && mode == FORK_FG) { /*** this causes superfluous TIOCSPGRPS ***/ if (tcsetpgrp(ttyfd, pgrp) < 0) error("tcsetpgrp failed, errno=%d", errno); } setsignal(SIGTSTP); setsignal(SIGTTOU); } else if (mode == FORK_BG) { ignoresig(SIGINT); ignoresig(SIGQUIT); if ((jp == NULL || jp->nprocs == 0) && ! fd0_redirected_p ()) { close(0); if (open(_PATH_DEVNULL, O_RDONLY) != 0) error("cannot open %s: %s", _PATH_DEVNULL, strerror(errno)); } } #else if (mode == FORK_BG) { ignoresig(SIGINT); ignoresig(SIGQUIT); if ((jp == NULL || jp->nprocs == 0) && ! fd0_redirected_p ()) { close(0); if (open(_PATH_DEVNULL, O_RDONLY) != 0) error("cannot open %s: %s", _PATH_DEVNULL, strerror(errno)); } } #endif INTOFF; for (i = njobs, p = jobtab ; --i >= 0 ; p++) if (p->used) freejob(p); INTON; if (wasroot && iflag) { setsignal(SIGINT); setsignal(SIGQUIT); setsignal(SIGTERM); } return pid; } if (rootshell && mode != FORK_NOJOB && mflag) { if (jp == NULL || jp->nprocs == 0) pgrp = pid; else pgrp = jp->ps[0].pid; setpgid(pid, pgrp); } if (mode == FORK_BG) { if (bgjob != NULL && bgjob->state == JOBDONE && !bgjob->remembered && !iflag) freejob(bgjob); backgndpid = pid; /* set $! */ bgjob = jp; } if (jp) { struct procstat *ps = &jp->ps[jp->nprocs++]; ps->pid = pid; ps->status = -1; ps->cmd = nullstr; if (iflag && rootshell && n) ps->cmd = commandtext(n); jp->foreground = mode == FORK_FG; #if JOBS setcurjob(jp); #endif } INTON; TRACE(("In parent shell: child = %d\n", (int)pid)); return pid; } pid_t vforkexecshell(struct job *jp, char **argv, char **envp, const char *path, int idx, int pip[2]) { pid_t pid; struct jmploc jmploc; struct jmploc *savehandler; TRACE(("vforkexecshell(%%%td, %s, %p) called\n", jp - jobtab, argv[0], (void *)pip)); INTOFF; flushall(); savehandler = handler; pid = vfork(); if (pid == -1) { TRACE(("Vfork failed, errno=%d\n", errno)); INTON; error("Cannot fork: %s", strerror(errno)); } if (pid == 0) { TRACE(("Child shell %d\n", (int)getpid())); if (setjmp(jmploc.loc)) _exit(exception == EXEXEC ? exerrno : 2); if (pip != NULL) { close(pip[0]); if (pip[1] != 1) { dup2(pip[1], 1); close(pip[1]); } } handler = &jmploc; shellexec(argv, envp, path, idx); } handler = savehandler; if (jp) { struct procstat *ps = &jp->ps[jp->nprocs++]; ps->pid = pid; ps->status = -1; ps->cmd = nullstr; jp->foreground = 1; #if JOBS setcurjob(jp); #endif } INTON; TRACE(("In parent shell: child = %d\n", (int)pid)); return pid; } /* * Wait for job to finish. * * Under job control we have the problem that while a child process is * running interrupts generated by the user are sent to the child but not * to the shell. This means that an infinite loop started by an inter- * active user may be hard to kill. With job control turned off, an * interactive user may place an interactive program inside a loop. If * the interactive program catches interrupts, the user doesn't want * these interrupts to also abort the loop. The approach we take here * is to have the shell ignore interrupt signals while waiting for a * foreground process to terminate, and then send itself an interrupt * signal if the child process was terminated by an interrupt signal. * Unfortunately, some programs want to do a bit of cleanup and then * exit on interrupt; unless these processes terminate themselves by * sending a signal to themselves (instead of calling exit) they will * confuse this approach. */ int waitforjob(struct job *jp, int *origstatus) { #if JOBS pid_t mypgrp = getpgrp(); int propagate_int = jp->jobctl && jp->foreground; #endif int status; int st; INTOFF; TRACE(("waitforjob(%%%td) called\n", jp - jobtab + 1)); while (jp->state == 0) if (dowait(DOWAIT_BLOCK | (Tflag ? DOWAIT_SIG : 0), jp) == -1) dotrap(); #if JOBS if (jp->jobctl) { if (tcsetpgrp(ttyfd, mypgrp) < 0) error("tcsetpgrp failed, errno=%d\n", errno); } if (jp->state == JOBSTOPPED) setcurjob(jp); #endif status = jp->ps[jp->nprocs - 1].status; if (origstatus != NULL) *origstatus = status; /* convert to 8 bits */ if (WIFEXITED(status)) st = WEXITSTATUS(status); #if JOBS else if (WIFSTOPPED(status)) st = WSTOPSIG(status) + 128; #endif else st = WTERMSIG(status) + 128; if (! JOBS || jp->state == JOBDONE) freejob(jp); if (int_pending()) { if (!WIFSIGNALED(status) || WTERMSIG(status) != SIGINT) CLEAR_PENDING_INT; } #if JOBS else if (rootshell && iflag && propagate_int && WIFSIGNALED(status) && WTERMSIG(status) == SIGINT) kill(getpid(), SIGINT); #endif INTON; return st; } static void dummy_handler(int sig) { } /* * Wait for a process to terminate. */ static pid_t dowait(int mode, struct job *job) { struct sigaction sa, osa; sigset_t mask, omask; pid_t pid; int status; struct procstat *sp; struct job *jp; struct job *thisjob; const char *sigstr; int done; int stopped; int sig; int coredump; int wflags; int restore_sigchld; TRACE(("dowait(%d, %p) called\n", mode, job)); restore_sigchld = 0; if ((mode & DOWAIT_SIG) != 0) { sigfillset(&mask); sigprocmask(SIG_BLOCK, &mask, &omask); INTOFF; if (!issigchldtrapped()) { restore_sigchld = 1; sa.sa_handler = dummy_handler; sa.sa_flags = 0; sigemptyset(&sa.sa_mask); sigaction(SIGCHLD, &sa, &osa); } } do { #if JOBS if (iflag) wflags = WUNTRACED | WCONTINUED; else #endif wflags = 0; if ((mode & (DOWAIT_BLOCK | DOWAIT_SIG)) != DOWAIT_BLOCK) wflags |= WNOHANG; pid = wait3(&status, wflags, (struct rusage *)NULL); TRACE(("wait returns %d, status=%d\n", (int)pid, status)); if (pid == 0 && (mode & DOWAIT_SIG) != 0) { sigsuspend(&omask); pid = -1; if (int_pending()) break; } } while (pid == -1 && errno == EINTR && breakwaitcmd == 0); if (pid == -1 && errno == ECHILD && job != NULL) job->state = JOBDONE; if ((mode & DOWAIT_SIG) != 0) { if (restore_sigchld) sigaction(SIGCHLD, &osa, NULL); sigprocmask(SIG_SETMASK, &omask, NULL); INTON; } if (breakwaitcmd != 0) { breakwaitcmd = 0; if (pid <= 0) return -1; } if (pid <= 0) return pid; INTOFF; thisjob = NULL; for (jp = jobtab ; jp < jobtab + njobs ; jp++) { if (jp->used && jp->nprocs > 0) { done = 1; stopped = 1; for (sp = jp->ps ; sp < jp->ps + jp->nprocs ; sp++) { if (sp->pid == -1) continue; if (sp->pid == pid) { TRACE(("Changing status of proc %d from 0x%x to 0x%x\n", (int)pid, sp->status, status)); if (WIFCONTINUED(status)) { sp->status = -1; jp->state = 0; } else sp->status = status; thisjob = jp; } if (sp->status == -1) stopped = 0; else if (WIFSTOPPED(sp->status)) done = 0; } if (stopped) { /* stopped or done */ int state = done? JOBDONE : JOBSTOPPED; if (jp->state != state) { TRACE(("Job %td: changing state from %d to %d\n", jp - jobtab + 1, jp->state, state)); jp->state = state; if (jp != job) { if (done && !jp->remembered && !iflag && jp != bgjob) freejob(jp); #if JOBS else if (done) deljob(jp); #endif } } } } } INTON; if (!thisjob || thisjob->state == 0) ; else if ((!rootshell || !iflag || thisjob == job) && thisjob->foreground && thisjob->state != JOBSTOPPED) { sig = 0; coredump = 0; for (sp = thisjob->ps; sp < thisjob->ps + thisjob->nprocs; sp++) if (WIFSIGNALED(sp->status)) { sig = WTERMSIG(sp->status); coredump = WCOREDUMP(sp->status); } if (sig > 0 && sig != SIGINT && sig != SIGPIPE) { sigstr = strsignal(sig); if (sigstr != NULL) out2str(sigstr); else out2str("Unknown signal"); if (coredump) out2str(" (core dumped)"); out2c('\n'); flushout(out2); } } else { TRACE(("Not printing status, rootshell=%d, job=%p\n", rootshell, job)); thisjob->changed = 1; } return pid; } /* * return 1 if there are stopped jobs, otherwise 0 */ int job_warning = 0; int stoppedjobs(void) { int jobno; struct job *jp; if (job_warning) return (0); for (jobno = 1, jp = jobtab; jobno <= njobs; jobno++, jp++) { if (jp->used == 0) continue; if (jp->state == JOBSTOPPED) { out2fmt_flush("You have stopped jobs.\n"); job_warning = 2; return (1); } } return (0); } static void checkzombies(void) { while (njobs > 0 && dowait(0, NULL) > 0) ; } int backgndpidset(void) { return backgndpid != -1; } pid_t backgndpidval(void) { if (bgjob != NULL && !forcelocal) bgjob->remembered = 1; return backgndpid; } /* * Return a string identifying a command (to be printed by the * jobs command. */ static char *cmdnextc; static int cmdnleft; #define MAXCMDTEXT 200 char * commandtext(union node *n) { char *name; cmdnextc = name = ckmalloc(MAXCMDTEXT); cmdnleft = MAXCMDTEXT - 4; cmdtxt(n); *cmdnextc = '\0'; return name; } static void cmdtxt(union node *n) { union node *np; struct nodelist *lp; const char *p; int i; char s[2]; if (n == NULL) return; switch (n->type) { case NSEMI: cmdtxt(n->nbinary.ch1); cmdputs("; "); cmdtxt(n->nbinary.ch2); break; case NAND: cmdtxt(n->nbinary.ch1); cmdputs(" && "); cmdtxt(n->nbinary.ch2); break; case NOR: cmdtxt(n->nbinary.ch1); cmdputs(" || "); cmdtxt(n->nbinary.ch2); break; case NPIPE: for (lp = n->npipe.cmdlist ; lp ; lp = lp->next) { cmdtxt(lp->n); if (lp->next) cmdputs(" | "); } break; case NSUBSHELL: cmdputs("("); cmdtxt(n->nredir.n); cmdputs(")"); break; case NREDIR: case NBACKGND: cmdtxt(n->nredir.n); break; case NIF: cmdputs("if "); cmdtxt(n->nif.test); cmdputs("; then "); cmdtxt(n->nif.ifpart); cmdputs("..."); break; case NWHILE: cmdputs("while "); goto until; case NUNTIL: cmdputs("until "); until: cmdtxt(n->nbinary.ch1); cmdputs("; do "); cmdtxt(n->nbinary.ch2); cmdputs("; done"); break; case NFOR: cmdputs("for "); cmdputs(n->nfor.var); cmdputs(" in ..."); break; case NCASE: cmdputs("case "); cmdputs(n->ncase.expr->narg.text); cmdputs(" in ..."); break; case NDEFUN: cmdputs(n->narg.text); cmdputs("() ..."); break; case NNOT: cmdputs("! "); cmdtxt(n->nnot.com); break; case NCMD: for (np = n->ncmd.args ; np ; np = np->narg.next) { cmdtxt(np); if (np->narg.next) cmdputs(" "); } for (np = n->ncmd.redirect ; np ; np = np->nfile.next) { cmdputs(" "); cmdtxt(np); } break; case NARG: cmdputs(n->narg.text); break; case NTO: p = ">"; i = 1; goto redir; case NAPPEND: p = ">>"; i = 1; goto redir; case NTOFD: p = ">&"; i = 1; goto redir; case NCLOBBER: p = ">|"; i = 1; goto redir; case NFROM: p = "<"; i = 0; goto redir; case NFROMTO: p = "<>"; i = 0; goto redir; case NFROMFD: p = "<&"; i = 0; goto redir; redir: if (n->nfile.fd != i) { s[0] = n->nfile.fd + '0'; s[1] = '\0'; cmdputs(s); } cmdputs(p); if (n->type == NTOFD || n->type == NFROMFD) { if (n->ndup.dupfd >= 0) s[0] = n->ndup.dupfd + '0'; else s[0] = '-'; s[1] = '\0'; cmdputs(s); } else { cmdtxt(n->nfile.fname); } break; case NHERE: case NXHERE: cmdputs("<<..."); break; default: cmdputs("???"); break; } } static void cmdputs(const char *s) { const char *p; char *q; char c; int subtype = 0; if (cmdnleft <= 0) return; p = s; q = cmdnextc; while ((c = *p++) != '\0') { if (c == CTLESC) *q++ = *p++; else if (c == CTLVAR) { *q++ = '$'; if (--cmdnleft > 0) *q++ = '{'; subtype = *p++; if ((subtype & VSTYPE) == VSLENGTH && --cmdnleft > 0) *q++ = '#'; } else if (c == '=' && subtype != 0) { *q = "}-+?=##%%\0X"[(subtype & VSTYPE) - VSNORMAL]; if (*q) q++; else cmdnleft++; if (((subtype & VSTYPE) == VSTRIMLEFTMAX || (subtype & VSTYPE) == VSTRIMRIGHTMAX) && --cmdnleft > 0) *q = q[-1], q++; subtype = 0; } else if (c == CTLENDVAR) { *q++ = '}'; } else if (c == CTLBACKQ || c == CTLBACKQ+CTLQUOTE) { cmdnleft -= 5; if (cmdnleft > 0) { *q++ = '$'; *q++ = '('; *q++ = '.'; *q++ = '.'; *q++ = '.'; *q++ = ')'; } } else if (c == CTLARI) { cmdnleft -= 2; if (cmdnleft > 0) { *q++ = '$'; *q++ = '('; *q++ = '('; } p++; } else if (c == CTLENDARI) { if (--cmdnleft > 0) { *q++ = ')'; *q++ = ')'; } } else if (c == CTLQUOTEMARK || c == CTLQUOTEEND) cmdnleft++; /* ignore */ else *q++ = c; if (--cmdnleft <= 0) { *q++ = '.'; *q++ = '.'; *q++ = '.'; break; } } cmdnextc = q; } Index: user/attilio/vmobj-rwlock/bin/sh/main.c =================================================================== --- user/attilio/vmobj-rwlock/bin/sh/main.c (revision 247226) +++ user/attilio/vmobj-rwlock/bin/sh/main.c (revision 247227) @@ -1,340 +1,340 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Kenneth Almquist. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char const copyright[] = "@(#) Copyright (c) 1991, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint #if 0 static char sccsid[] = "@(#)main.c 8.6 (Berkeley) 5/28/95"; #endif #endif /* not lint */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "shell.h" #include "main.h" #include "mail.h" #include "options.h" #include "output.h" #include "parser.h" #include "nodes.h" #include "expand.h" #include "eval.h" #include "jobs.h" #include "input.h" #include "trap.h" #include "var.h" #include "show.h" #include "memalloc.h" #include "error.h" #include "init.h" #include "mystring.h" #include "exec.h" #include "cd.h" #include "builtins.h" int rootpid; int rootshell; struct jmploc main_handler; int localeisutf8, initial_localeisutf8; static void cmdloop(int); static void read_profile(char *); static char *find_dot_file(char *); /* * Main routine. We initialize things, parse the arguments, execute * profiles if we're a login shell, and then call cmdloop to execute * commands. The setjmp call sets up the location to jump to when an * exception occurs. When an exception occurs the variable "state" * is used to figure out how far we had gotten. */ int main(int argc, char *argv[]) { struct stackmark smark, smark2; volatile int state; char *shinit; (void) setlocale(LC_ALL, ""); initcharset(); state = 0; if (setjmp(main_handler.loc)) { switch (exception) { case EXEXEC: exitstatus = exerrno; break; case EXERROR: exitstatus = 2; break; default: break; } if (state == 0 || iflag == 0 || ! rootshell || exception == EXEXIT) exitshell(exitstatus); reset(); if (exception == EXINT) out2fmt_flush("\n"); popstackmark(&smark); FORCEINTON; /* enable interrupts */ if (state == 1) goto state1; else if (state == 2) goto state2; else if (state == 3) goto state3; else goto state4; } handler = &main_handler; #ifdef DEBUG opentrace(); trputs("Shell args: "); trargs(argv); #endif rootpid = getpid(); rootshell = 1; initvar(); setstackmark(&smark); setstackmark(&smark2); procargs(argc, argv); pwd_init(iflag); if (iflag) chkmail(1); if (argv[0] && argv[0][0] == '-') { state = 1; read_profile("/etc/profile"); state1: state = 2; if (privileged == 0) read_profile("${HOME-}/.profile"); else read_profile("/etc/suid_profile"); } state2: state = 3; if (!privileged && iflag) { if ((shinit = lookupvar("ENV")) != NULL && *shinit != '\0') { state = 3; read_profile(shinit); } } state3: state = 4; popstackmark(&smark2); if (minusc) { evalstring(minusc, sflag ? 0 : EV_EXIT); } if (sflag || minusc == NULL) { state4: /* XXX ??? - why isn't this before the "if" statement */ cmdloop(1); } exitshell(exitstatus); /*NOTREACHED*/ return 0; } /* * Read and execute commands. "Top" is nonzero for the top level command * loop; it turns on prompting if the shell is interactive. */ static void cmdloop(int top) { union node *n; struct stackmark smark; int inter; int numeof = 0; TRACE(("cmdloop(%d) called\n", top)); setstackmark(&smark); for (;;) { - if (pendingsigs) + if (pendingsig) dotrap(); inter = 0; if (iflag && top) { inter++; showjobs(1, SHOWJOBS_DEFAULT); chkmail(0); flushout(&output); } n = parsecmd(inter); /* showtree(n); DEBUG */ if (n == NEOF) { if (!top || numeof >= 50) break; if (!stoppedjobs()) { if (!Iflag) break; out2fmt_flush("\nUse \"exit\" to leave shell.\n"); } numeof++; } else if (n != NULL && nflag == 0) { job_warning = (job_warning == 2) ? 1 : 0; numeof = 0; evaltree(n, 0); } popstackmark(&smark); setstackmark(&smark); if (evalskip != 0) { if (evalskip == SKIPFILE) evalskip = 0; break; } } popstackmark(&smark); } /* * Read /etc/profile or .profile. Return on error. */ static void read_profile(char *name) { int fd; const char *expandedname; expandedname = expandstr(name); if (expandedname == NULL) return; INTOFF; if ((fd = open(expandedname, O_RDONLY)) >= 0) setinputfd(fd, 1); INTON; if (fd < 0) return; cmdloop(0); popfile(); } /* * Read a file containing shell functions. */ void readcmdfile(const char *name) { setinputfile(name, 1); cmdloop(0); popfile(); } /* * Take commands from a file. To be compatible we should do a path * search for the file, which is necessary to find sub-commands. */ static char * find_dot_file(char *basename) { char *fullname; const char *path = pathval(); struct stat statb; /* don't try this for absolute or relative paths */ if( strchr(basename, '/')) return basename; while ((fullname = padvance(&path, basename)) != NULL) { if ((stat(fullname, &statb) == 0) && S_ISREG(statb.st_mode)) { /* * Don't bother freeing here, since it will * be freed by the caller. */ return fullname; } stunalloc(fullname); } return basename; } int dotcmd(int argc, char **argv) { char *filename, *fullname; if (argc < 2) error("missing filename"); exitstatus = 0; /* * Because we have historically not supported any options, * only treat "--" specially. */ filename = argc > 2 && strcmp(argv[1], "--") == 0 ? argv[2] : argv[1]; fullname = find_dot_file(filename); setinputfile(fullname, 1); commandname = fullname; cmdloop(0); popfile(); return exitstatus; } int exitcmd(int argc, char **argv) { if (stoppedjobs()) return 0; if (argc > 1) exitshell(number(argv[1])); else exitshell_savedstatus(); } Index: user/attilio/vmobj-rwlock/bin/sh/trap.c =================================================================== --- user/attilio/vmobj-rwlock/bin/sh/trap.c (revision 247226) +++ user/attilio/vmobj-rwlock/bin/sh/trap.c (revision 247227) @@ -1,562 +1,565 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Kenneth Almquist. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)trap.c 8.5 (Berkeley) 6/5/95"; #endif #endif /* not lint */ #include __FBSDID("$FreeBSD$"); #include #include #include #include "shell.h" #include "main.h" #include "nodes.h" /* for other headers */ #include "eval.h" #include "jobs.h" #include "show.h" #include "options.h" #include "syntax.h" #include "output.h" #include "memalloc.h" #include "error.h" #include "trap.h" #include "mystring.h" #include "builtins.h" #include "myhistedit.h" /* * Sigmode records the current value of the signal handlers for the various * modes. A value of zero means that the current handler is not known. * S_HARD_IGN indicates that the signal was ignored on entry to the shell, */ #define S_DFL 1 /* default signal handling (SIG_DFL) */ #define S_CATCH 2 /* signal is caught */ #define S_IGN 3 /* signal is ignored (SIG_IGN) */ #define S_HARD_IGN 4 /* signal is ignored permanently */ #define S_RESET 5 /* temporary - to reset a hard ignored sig */ MKINIT char sigmode[NSIG]; /* current value of signal */ -int pendingsigs; /* indicates some signal received */ +volatile sig_atomic_t pendingsig; /* indicates some signal received */ int in_dotrap; /* do we execute in a trap handler? */ static char *volatile trap[NSIG]; /* trap handler commands */ static volatile sig_atomic_t gotsig[NSIG]; /* indicates specified signal received */ static int ignore_sigchld; /* Used while handling SIGCHLD traps. */ volatile sig_atomic_t gotwinch; static int last_trapsig; static int exiting; /* exitshell() has been called */ static int exiting_exitstatus; /* value passed to exitshell() */ static int getsigaction(int, sig_t *); /* * Map a string to a signal number. * * Note: the signal number may exceed NSIG. */ static int sigstring_to_signum(char *sig) { if (is_number(sig)) { int signo; signo = atoi(sig); return ((signo >= 0 && signo < NSIG) ? signo : (-1)); } else if (strcasecmp(sig, "EXIT") == 0) { return (0); } else { int n; if (strncasecmp(sig, "SIG", 3) == 0) sig += 3; for (n = 1; n < sys_nsig; n++) if (sys_signame[n] && strcasecmp(sys_signame[n], sig) == 0) return (n); } return (-1); } /* * Print a list of valid signal names. */ static void printsignals(void) { int n, outlen; outlen = 0; for (n = 1; n < sys_nsig; n++) { if (sys_signame[n]) { out1fmt("%s", sys_signame[n]); outlen += strlen(sys_signame[n]); } else { out1fmt("%d", n); outlen += 3; /* good enough */ } ++outlen; if (outlen > 71 || n == sys_nsig - 1) { out1str("\n"); outlen = 0; } else { out1c(' '); } } } /* * The trap builtin. */ int trapcmd(int argc, char **argv) { char *action; int signo; int errors = 0; int i; while ((i = nextopt("l")) != '\0') { switch (i) { case 'l': printsignals(); return (0); } } argv = argptr; if (*argv == NULL) { for (signo = 0 ; signo < sys_nsig ; signo++) { if (signo < NSIG && trap[signo] != NULL) { out1str("trap -- "); out1qstr(trap[signo]); if (signo == 0) { out1str(" EXIT\n"); } else if (sys_signame[signo]) { out1fmt(" %s\n", sys_signame[signo]); } else { out1fmt(" %d\n", signo); } } } return 0; } action = NULL; if (*argv && sigstring_to_signum(*argv) == -1) { if (strcmp(*argv, "-") == 0) argv++; else { action = *argv; argv++; } } for (; *argv; argv++) { if ((signo = sigstring_to_signum(*argv)) == -1) { warning("bad signal %s", *argv); errors = 1; continue; } INTOFF; if (action) action = savestr(action); if (trap[signo]) ckfree(trap[signo]); trap[signo] = action; if (signo != 0) setsignal(signo); INTON; } return errors; } /* * Clear traps on a fork. */ void clear_traps(void) { char *volatile *tp; for (tp = trap ; tp <= &trap[NSIG - 1] ; tp++) { if (*tp && **tp) { /* trap not NULL or SIG_IGN */ INTOFF; ckfree(*tp); *tp = NULL; if (tp != &trap[0]) setsignal(tp - trap); INTON; } } } /* * Check if we have any traps enabled. */ int have_traps(void) { char *volatile *tp; for (tp = trap ; tp <= &trap[NSIG - 1] ; tp++) { if (*tp && **tp) /* trap not NULL or SIG_IGN */ return 1; } return 0; } /* * Set the signal handler for the specified signal. The routine figures * out what it should be set to. */ void setsignal(int signo) { int action; sig_t sigact = SIG_DFL; struct sigaction sa; char *t; if ((t = trap[signo]) == NULL) action = S_DFL; else if (*t != '\0') action = S_CATCH; else action = S_IGN; if (action == S_DFL) { switch (signo) { case SIGINT: action = S_CATCH; break; case SIGQUIT: #ifdef DEBUG { extern int debug; if (debug) break; } #endif action = S_CATCH; break; case SIGTERM: if (rootshell && iflag) action = S_IGN; break; #if JOBS case SIGTSTP: case SIGTTOU: if (rootshell && mflag) action = S_IGN; break; #endif #ifndef NO_HISTORY case SIGWINCH: if (rootshell && iflag) action = S_CATCH; break; #endif } } t = &sigmode[signo]; if (*t == 0) { /* * current setting unknown */ if (!getsigaction(signo, &sigact)) { /* * Pretend it worked; maybe we should give a warning * here, but other shells don't. We don't alter * sigmode, so that we retry every time. */ return; } if (sigact == SIG_IGN) { if (mflag && (signo == SIGTSTP || signo == SIGTTIN || signo == SIGTTOU)) { *t = S_IGN; /* don't hard ignore these */ } else *t = S_HARD_IGN; } else { *t = S_RESET; /* force to be set */ } } if (*t == S_HARD_IGN || *t == action) return; switch (action) { case S_DFL: sigact = SIG_DFL; break; case S_CATCH: sigact = onsig; break; case S_IGN: sigact = SIG_IGN; break; } *t = action; sa.sa_handler = sigact; sa.sa_flags = 0; sigemptyset(&sa.sa_mask); sigaction(signo, &sa, NULL); } /* * Return the current setting for sig w/o changing it. */ static int getsigaction(int signo, sig_t *sigact) { struct sigaction sa; if (sigaction(signo, (struct sigaction *)0, &sa) == -1) return 0; *sigact = (sig_t) sa.sa_handler; return 1; } /* * Ignore a signal. */ void ignoresig(int signo) { if (sigmode[signo] != S_IGN && sigmode[signo] != S_HARD_IGN) { signal(signo, SIG_IGN); } sigmode[signo] = S_HARD_IGN; } int issigchldtrapped(void) { return (trap[SIGCHLD] != NULL && *trap[SIGCHLD] != '\0'); } /* * Signal handler. */ void onsig(int signo) { if (signo == SIGINT && trap[SIGINT] == NULL) { onint(); return; } - if (signo != SIGCHLD || !ignore_sigchld) - gotsig[signo] = 1; - pendingsigs++; - /* If we are currently in a wait builtin, prepare to break it */ - if ((signo == SIGINT || signo == SIGQUIT) && in_waitcmd != 0) + if ((signo == SIGINT || signo == SIGQUIT) && in_waitcmd != 0) { breakwaitcmd = 1; - /* - * If a trap is set, not ignored and not the null command, we need - * to make sure traps are executed even when a child blocks signals. - */ - if (Tflag && - trap[signo] != NULL && - ! (trap[signo][0] == '\0') && - ! (trap[signo][0] == ':' && trap[signo][1] == '\0')) - breakwaitcmd = 1; + pendingsig = signo; + } + if (trap[signo] != NULL && trap[signo][0] != '\0' && + (signo != SIGCHLD || !ignore_sigchld)) { + gotsig[signo] = 1; + pendingsig = signo; + + /* + * If a trap is set, not ignored and not the null command, we + * need to make sure traps are executed even when a child + * blocks signals. + */ + if (Tflag && !(trap[signo][0] == ':' && trap[signo][1] == '\0')) + breakwaitcmd = 1; + } + #ifndef NO_HISTORY if (signo == SIGWINCH) gotwinch = 1; #endif } /* * Called to execute a trap. Perhaps we should avoid entering new trap * handlers while we are executing a trap handler. */ void dotrap(void) { int i; int savestatus, prev_evalskip, prev_skipcount; in_dotrap++; for (;;) { - pendingsigs = 0; + pendingsig = 0; for (i = 1; i < NSIG; i++) { if (gotsig[i]) { gotsig[i] = 0; if (trap[i]) { /* * Ignore SIGCHLD to avoid infinite * recursion if the trap action does * a fork. */ if (i == SIGCHLD) ignore_sigchld++; /* * Backup current evalskip * state and reset it before * executing a trap, so that the * trap is not disturbed by an * ongoing break/continue/return * statement. */ prev_evalskip = evalskip; prev_skipcount = skipcount; evalskip = 0; last_trapsig = i; savestatus = exitstatus; evalstring(trap[i], 0); exitstatus = savestatus; /* * If such a command was not * already in progress, allow a * break/continue/return in the * trap action to have an effect * outside of it. */ if (prev_evalskip != 0) { evalskip = prev_evalskip; skipcount = prev_skipcount; } if (i == SIGCHLD) ignore_sigchld--; } break; } } if (i >= NSIG) break; } in_dotrap--; } /* * Controls whether the shell is interactive or not. */ void setinteractive(int on) { static int is_interactive = -1; if (on == is_interactive) return; setsignal(SIGINT); setsignal(SIGQUIT); setsignal(SIGTERM); #ifndef NO_HISTORY setsignal(SIGWINCH); #endif is_interactive = on; } /* * Called to exit the shell. */ void exitshell(int status) { TRACE(("exitshell(%d) pid=%d\n", status, getpid())); exiting = 1; exiting_exitstatus = status; exitshell_savedstatus(); } void exitshell_savedstatus(void) { struct jmploc loc1, loc2; char *p; int sig = 0; sigset_t sigs; if (!exiting) { if (in_dotrap && last_trapsig) { sig = last_trapsig; exiting_exitstatus = sig + 128; } else exiting_exitstatus = oexitstatus; } exitstatus = oexitstatus = exiting_exitstatus; if (setjmp(loc1.loc)) { goto l1; } if (setjmp(loc2.loc)) { goto l2; } handler = &loc1; if ((p = trap[0]) != NULL && *p != '\0') { /* * Reset evalskip, or the trap on EXIT could be * interrupted if the last command was a "return". */ evalskip = 0; trap[0] = NULL; evalstring(p, 0); } l1: handler = &loc2; /* probably unnecessary */ flushall(); #if JOBS setjobctl(0); #endif l2: if (sig != 0 && sig != SIGSTOP && sig != SIGTSTP && sig != SIGTTIN && sig != SIGTTOU) { signal(sig, SIG_DFL); sigemptyset(&sigs); sigaddset(&sigs, sig); sigprocmask(SIG_UNBLOCK, &sigs, NULL); kill(getpid(), sig); /* If the default action is to ignore, fall back to _exit(). */ } _exit(exiting_exitstatus); } Index: user/attilio/vmobj-rwlock/bin/sh/trap.h =================================================================== --- user/attilio/vmobj-rwlock/bin/sh/trap.h (revision 247226) +++ user/attilio/vmobj-rwlock/bin/sh/trap.h (revision 247227) @@ -1,49 +1,49 @@ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Kenneth Almquist. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)trap.h 8.3 (Berkeley) 6/5/95 * $FreeBSD$ */ -extern int pendingsigs; +extern volatile sig_atomic_t pendingsig; extern int in_dotrap; extern volatile sig_atomic_t gotwinch; void clear_traps(void); int have_traps(void); void setsignal(int); void ignoresig(int); int issigchldtrapped(void); void onsig(int); void dotrap(void); void setinteractive(int); void exitshell(int) __dead2; void exitshell_savedstatus(void) __dead2; Index: user/attilio/vmobj-rwlock/contrib/llvm/lib/Target/X86/X86InstrCompiler.td =================================================================== --- user/attilio/vmobj-rwlock/contrib/llvm/lib/Target/X86/X86InstrCompiler.td (revision 247226) +++ user/attilio/vmobj-rwlock/contrib/llvm/lib/Target/X86/X86InstrCompiler.td (revision 247227) @@ -1,1824 +1,1826 @@ //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the various pseudo instructions used by the compiler, // as well as Pat patterns used during instruction selection. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pattern Matching Support def GetLo32XForm : SDNodeXFormgetZExtValue()); }]>; def GetLo8XForm : SDNodeXFormgetZExtValue()); }]>; //===----------------------------------------------------------------------===// // Random Pseudo Instructions. // PIC base construction. This expands to code that looks like this: // call $next_inst // popl %destreg" let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), "", []>; // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [ESP, EFLAGS], Uses = [ESP] in { def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In32BitMode]>; def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In32BitMode]>; } // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [RSP, EFLAGS], Uses = [RSP] in { def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In64BitMode]>; def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In64BitMode]>; } // x86-64 va_start lowering magic. let usesCustomInserter = 1 in { def VASTART_SAVE_XMM_REGS : I<0, Pseudo, (outs), (ins GR8:$al, i64imm:$regsavefi, i64imm:$offset, variable_ops), "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", [(X86vastart_save_xmm_regs GR8:$al, imm:$regsavefi, imm:$offset)]>; // The VAARG_64 pseudo-instruction takes the address of the va_list, // and places the address of the next argument into a register. let Defs = [EFLAGS] in def VAARG_64 : I<0, Pseudo, (outs GR64:$dst), (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), "#VAARG_64 $dst, $ap, $size, $mode, $align", [(set GR64:$dst, (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), (implicit EFLAGS)]>; // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows // targets. These calls are needed to probe the stack when allocating more than // 4k bytes in one go. Touching the stack at 4K increments is necessary to // ensure that the guard pages used by the OS virtual memory manager are // allocated in correct sequence. // The main point of having separate instruction are extra unmodelled effects // (compared to ordinary calls) like stack pointer change. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), "# dynamic stack allocation", [(X86WinAlloca)]>; // When using segmented stacks these are lowered into instructions which first // check if the current stacklet has enough free memory. If it does, memory is // allocated by bumping the stack pointer. Otherwise memory is allocated from // the heap. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), "# variable sized alloca for segmented stacks", [(set GR32:$dst, (X86SegAlloca GR32:$size))]>, Requires<[In32BitMode]>; let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), "# variable sized alloca for segmented stacks", [(set GR64:$dst, (X86SegAlloca GR64:$size))]>, Requires<[In64BitMode]>; } // The MSVC runtime contains an _ftol2 routine for converting floating-point // to integer values. It has a strange calling convention: the input is // popped from the x87 stack, and the return value is given in EDX:EAX. No // other registers (aside from flags) are touched. // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 // variant is unnecessary. let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in { def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), "# win32 fptoui", [(X86WinFTOL RFP32:$src)]>, Requires<[In32BitMode]>; def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), "# win32 fptoui", [(X86WinFTOL RFP64:$src)]>, Requires<[In32BitMode]>; } //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR32:$addr)], IIC_RET>; } let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR64:$addr)], IIC_RET>; } let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), "#EH_SJLJ_SETJMP32", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[In32BitMode]>; def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), "#EH_SJLJ_SETJMP64", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[In64BitMode]>; let isTerminator = 1 in { def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), "#EH_SJLJ_LONGJMP32", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[In32BitMode]>; def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), "#EH_SJLJ_LONGJMP64", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[In64BitMode]>; } } let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), "#EH_SjLj_Setup\t$dst", []>; } //===----------------------------------------------------------------------===// // Pseudo instructions used by segmented stacks. // // This is lowered into a RET instruction by MCInstLower. We need // this so that we don't have to have a MachineBasicBlock which ends // with a RET and also has successors. let isPseudo = 1 in { def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; // This instruction is lowered to a RET followed by a MOV. The two // instructions are not generated on a higher level since then the // verifier sees a MachineBasicBlock ending with a non-terminator. def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; } //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map movr0 to xor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. // FIXME: Set encoding to pseudo. let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in { def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "", [(set GR8:$dst, 0)], IIC_ALU_NONMEM>; // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller // encoding and avoids a partial-register update sometimes, but doing so // at isel time interferes with rematerialization in the current register // allocator. For now, this is rewritten when the instruction is lowered // to an MCInst. def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins), "", [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize; // FIXME: Set encoding to pseudo. def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", [(set GR32:$dst, 0)], IIC_ALU_NONMEM>; } // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a // smaller encoding, but doing so at isel time interferes with rematerialization // in the current register allocator. For now, this is rewritten when the // instruction is lowered to an MCInst. // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove // when we have a better way to specify isel priority. let Defs = [EFLAGS], isCodeGenOnly=1, AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "", [(set GR64:$dst, 0)], IIC_ALU_NONMEM>; // Materialize i64 constant where top 32-bits are zero. This could theoretically // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however // that would make it more difficult to rematerialize. let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src), "", [(set GR64:$dst, i64immZExt32:$src)], IIC_ALU_NONMEM>; // Use sbb to materialize carry bit. let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1 in { // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. // However, Pat<> can't replicate the destination reg into the inputs of the // result. def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; } // isCodeGenOnly def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and // will be eliminated and that the sbb can be extended up to a wider type. When // this happens, it is great. However, if we are left with an 8-bit sbb and an // and, we might as well just match it as a setb. def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), (SETBr)>; // (add OP, SETB) -> (adc OP, 0) def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), (ADC8ri GR8:$op, 0)>; def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), (ADC32ri8 GR32:$op, 0)>; def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), (ADC64ri8 GR64:$op, 0)>; // (sub OP, SETB) -> (sbb OP, 0) def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB64ri8 GR64:$op, 0)>; // (sub OP, SETCC_CARRY) -> (adc OP, 0) def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), (ADC8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), (ADC32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), (ADC64ri8 GR64:$op, 0)>; //===----------------------------------------------------------------------===// // String Pseudo Instructions // let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[In32BitMode]>; def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, Requires<[In32BitMode]>; def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, Requires<[In32BitMode]>; } let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, Requires<[In64BitMode]>; def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", [(X86rep_movs i64)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; } // FIXME: Should use "(X86rep_stos AL)" as the pattern. let Defs = [ECX,EDI], isCodeGenOnly = 1 in { let Uses = [AL,ECX,EDI] in def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[In32BitMode]>; let Uses = [AX,ECX,EDI] in def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, Requires<[In32BitMode]>; let Uses = [EAX,ECX,EDI] in def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, Requires<[In32BitMode]>; } let Defs = [RCX,RDI], isCodeGenOnly = 1 in { let Uses = [AL,RCX,RDI] in def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; let Uses = [AX,RCX,RDI] in def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", [(X86rep_stos i64)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; } //===----------------------------------------------------------------------===// // Thread Local Storage Instructions // // ELF TLS Support // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in { def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_addr32", [(X86tlsaddr tls32addr:$sym)]>, Requires<[In32BitMode]>; def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_base_addr32", [(X86tlsbaseaddr tls32baseaddr:$sym)]>, Requires<[In32BitMode]>; } // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [RSP] in { def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_addr64", [(X86tlsaddr tls64addr:$sym)]>, Requires<[In64BitMode]>; def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_base_addr64", [(X86tlsbaseaddr tls64baseaddr:$sym)]>, Requires<[In64BitMode]>; } // Darwin TLS Support // For i386, the address of the thunk is passed on the stack, on return the // address of the variable is in %eax. %ecx is trashed during the function // call. All other registers are preserved. let Defs = [EAX, ECX, EFLAGS], Uses = [ESP], usesCustomInserter = 1 in def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLSCall_32", [(X86TLSCall addr:$sym)]>, Requires<[In32BitMode]>; // For x86_64, the address of the thunk is passed in %rdi, on return // the address of the variable is in %rax. All other registers are preserved. let Defs = [RAX, EFLAGS], Uses = [RSP, RDI], usesCustomInserter = 1 in def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLSCall_64", [(X86TLSCall addr:$sym)]>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // Conditional Move Pseudo Instructions // X86 doesn't have 8-bit conditional moves. Use a customInserter to // emit control flow. An alternative to this is to mark i8 SELECT as Promote, // however that requires promoting the operands, and can induce additional // i8 register pressure. let usesCustomInserter = 1, Uses = [EFLAGS] in { def CMOV_GR8 : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), "#CMOV_GR8 PSEUDO!", [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, imm:$cond, EFLAGS))]>; let Predicates = [NoCMov] in { def CMOV_GR32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), "#CMOV_GR32* PSEUDO!", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; def CMOV_GR16 : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), "#CMOV_GR16* PSEUDO!", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; } // Predicates = [NoCMov] // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no // SSE1. let Predicates = [FPStackf32] in def CMOV_RFP32 : I<0, Pseudo, (outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), "#CMOV_RFP32 PSEUDO!", [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, EFLAGS))]>; // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no // SSE2. let Predicates = [FPStackf64] in def CMOV_RFP64 : I<0, Pseudo, (outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), "#CMOV_RFP64 PSEUDO!", [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP80 : I<0, Pseudo, (outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), "#CMOV_RFP80 PSEUDO!", [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, EFLAGS))]>; } // UsesCustomInserter = 1, Uses = [EFLAGS] //===----------------------------------------------------------------------===// // Atomic Instruction Pseudo Instructions //===----------------------------------------------------------------------===// // Pseudo atomic instructions multiclass PSEUDO_ATOMIC_LOAD_BINOP { let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in { def #NAME#8 : I<0, Pseudo, (outs GR8:$dst), (ins i8mem:$ptr, GR8:$val), !strconcat(mnemonic, "8 PSEUDO!"), []>; def #NAME#16 : I<0, Pseudo,(outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), !strconcat(mnemonic, "16 PSEUDO!"), []>; def #NAME#32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), !strconcat(mnemonic, "32 PSEUDO!"), []>; def #NAME#64 : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val), !strconcat(mnemonic, "64 PSEUDO!"), []>; } } multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS { def : Pat<(!cast(frag # "_8") addr:$ptr, GR8:$val), (!cast(name # "8") addr:$ptr, GR8:$val)>; def : Pat<(!cast(frag # "_16") addr:$ptr, GR16:$val), (!cast(name # "16") addr:$ptr, GR16:$val)>; def : Pat<(!cast(frag # "_32") addr:$ptr, GR32:$val), (!cast(name # "32") addr:$ptr, GR32:$val)>; def : Pat<(!cast(frag # "_64") addr:$ptr, GR64:$val), (!cast(name # "64") addr:$ptr, GR64:$val)>; } // Atomic exchange, and, or, xor defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">; defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">; defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">; defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">; defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">; defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">; defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">; defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">; multiclass PSEUDO_ATOMIC_LOAD_BINOP6432 { let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in def #NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), !strconcat(mnemonic, "6432 PSEUDO!"), []>; } defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">; defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">; defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">; defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">; defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">; defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">; defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">; defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">; defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">; defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">; defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">; //===----------------------------------------------------------------------===// // Normal-Instructions-With-Lock-Prefix Pseudo Instructions //===----------------------------------------------------------------------===// // FIXME: Use normal instructions and add lock prefix dynamically. // Memory barriers // TODO: Get this to fold the constant into the instruction. let isCodeGenOnly = 1, Defs = [EFLAGS] in def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), "or{l}\t{$zero, $dst|$dst, $zero}", [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK; let hasSideEffects = 1 in def Int_MemBarrier : I<0, Pseudo, (outs), (ins), "#MEMBARRIER", [(X86MemBarrier)]>; // RegOpc corresponds to the mr version of the instruction // ImmOpc corresponds to the mi version of the instruction // ImmOpc8 corresponds to the mi8 version of the instruction // ImmMod corresponds to the instruction format of the mi and mi8 versions multiclass LOCK_ArithBinOp RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, Format ImmMod, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { def #NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def #NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, OpSize, LOCK; def #NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def #NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def #NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def #NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, OpSize, LOCK; def #NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def #NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def #NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, OpSize, LOCK; def #NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def #NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; } } defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; // Optimized codegen when the non-memory output is not used. multiclass LOCK_ArithUnOp Opc8, bits<8> Opc, Format Form, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { def #NAME#8m : I, LOCK; def #NAME#16m : I, OpSize, LOCK; def #NAME#32m : I, LOCK; def #NAME#64m : RI, LOCK; } } defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; // Atomic compare and swap. multiclass LCMPXCHG_UnOp Opc, Format Form, string mnemonic, SDPatternOperator frag, X86MemOperand x86memop, InstrItinClass itin> { let isCodeGenOnly = 1 in { def #NAME# : I, TB, LOCK; } } multiclass LCMPXCHG_BinOp Opc8, bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, InstrItinClass itin8, InstrItinClass itin> { let isCodeGenOnly = 1 in { let Defs = [AL, EFLAGS], Uses = [AL] in def #NAME#8 : I, TB, LOCK; let Defs = [AX, EFLAGS], Uses = [AX] in def #NAME#16 : I, TB, OpSize, LOCK; let Defs = [EAX, EFLAGS], Uses = [EAX] in def #NAME#32 : I, TB, LOCK; let Defs = [RAX, EFLAGS], Uses = [RAX] in def #NAME#64 : RI, TB, LOCK; } } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in { defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem, IIC_CMPX_LOCK_8B>; } let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], Predicates = [HasCmpxchg16b] in { defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", X86cas16, i128mem, IIC_CMPX_LOCK_16B>, REX_W; } defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; // Atomic exchange and add multiclass ATOMIC_LOAD_BINOP opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin8, InstrItinClass itin> { let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in { def #NAME#8 : I(frag # "_8") addr:$ptr, GR8:$val))], itin8>; def #NAME#16 : I(frag # "_16") addr:$ptr, GR16:$val))], itin>, OpSize; def #NAME#32 : I(frag # "_32") addr:$ptr, GR32:$val))], itin>; def #NAME#64 : RI(frag # "_64") addr:$ptr, GR64:$val))], itin>; } } defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, TB, LOCK; def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), "#ACQUIRE_MOV PSEUDO!", [(set GR8:$dst, (atomic_load_8 addr:$src))]>; def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR16:$dst, (atomic_load_16 addr:$src))]>; def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR32:$dst, (atomic_load_32 addr:$src))]>; def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR64:$dst, (atomic_load_64 addr:$src))]>; def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_8 addr:$dst, GR8 :$src)]>; def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_16 addr:$dst, GR16:$src)]>; def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_32 addr:$dst, GR32:$src)]>; def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_64 addr:$dst, GR64:$src)]>; //===----------------------------------------------------------------------===// // Conditional Move Pseudo Instructions. //===----------------------------------------------------------------------===// // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after // instruction selection into a branch sequence. let Uses = [EFLAGS], usesCustomInserter = 1 in { def CMOV_FR32 : I<0, Pseudo, (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), "#CMOV_FR32 PSEUDO!", [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, EFLAGS))]>; def CMOV_FR64 : I<0, Pseudo, (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), "#CMOV_FR64 PSEUDO!", [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, EFLAGS))]>; def CMOV_V4F32 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V4F32 PSEUDO!", [(set VR128:$dst, (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2F64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2F64 PSEUDO!", [(set VR128:$dst, (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2I64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2I64 PSEUDO!", [(set VR128:$dst, (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V8F32 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V8F32 PSEUDO!", [(set VR256:$dst, (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; def CMOV_V4F64 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V4F64 PSEUDO!", [(set VR256:$dst, (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; def CMOV_V4I64 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V4I64 PSEUDO!", [(set VR256:$dst, (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; } //===----------------------------------------------------------------------===// // DAG Pattern Matching Rules //===----------------------------------------------------------------------===// // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), (ADD32ri GR32:$src1, tconstpool:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), (ADD32ri GR32:$src1, tjumptable:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), (ADD32ri GR32:$src1, tglobaladdr:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), (ADD32ri GR32:$src1, texternalsym:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), (ADD32ri GR32:$src1, tblockaddress:$src2)>; def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV32mi addr:$dst, tglobaladdr:$src)>; def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV32mi addr:$dst, texternalsym:$src)>; def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV32mi addr:$dst, tblockaddress:$src)>; // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small // code model mode, should use 'movabs'. FIXME: This is really a hack, the // 'movabs' predicate should handle this sort of thing. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; // In static codegen with small code model, we can get the address of a label // into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri64i32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>; // In kernel code model, we can get the address of a label // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; // If we have small model and -static mode, it is safe to store global addresses // directly as immediates. FIXME: This is really a hack, the 'imm' predicate // for MOV64mi32 should handle this sort of thing. def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), (MOV64mi32 addr:$dst, tconstpool:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), (MOV64mi32 addr:$dst, tjumptable:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV64mi32 addr:$dst, tglobaladdr:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV64mi32 addr:$dst, texternalsym:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV64mi32 addr:$dst, tblockaddress:$src)>, Requires<[NearData, IsStatic]>; // Calls // tls has some funny stuff here... // This corresponds to movabs $foo@tpoff, %rax def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), (MOV64ri tglobaltlsaddr :$dst)>; // This corresponds to add $foo@tpoff, %rax def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; // This corresponds to mov foo@tpoff(%rbx), %eax def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))), (MOV64rm tglobaltlsaddr :$dst)>; // Direct PC relative function call for small code model. 32-bit displacement // sign extended to 64-bit. def : Pat<(X86call (i64 tglobaladdr:$dst)), (CALL64pcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i64 texternalsym:$dst)), (CALL64pcrel32 texternalsym:$dst)>; // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they // can never use callee-saved registers. That is the purpose of the GR64_TC // register classes. // // The only volatile register that is never used by the calling convention is // %r11. This happens when calling a vararg function with 6 arguments. // // Match an X86tcret that uses less than 7 volatile registers. def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), (X86tcret node:$ptr, node:$off), [{ // X86tcret args: (*chain, ptr, imm, regs..., glue) unsigned NumRegs = 0; for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) if (isa(N->getOperand(i)) && ++NumRegs > 6) return false; return true; }]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, Requires<[In32BitMode]>; // FIXME: This is disabled for 32-bit PIC mode because the global base // register which is part of the address mode may be assigned a // callee-saved register. def : Pat<(X86tcret (load addr:$dst), imm:$off), (TCRETURNmi addr:$dst, imm:$off)>, Requires<[In32BitMode, IsNotPIC]>; def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, Requires<[In64BitMode]>; // Don't fold loads into X86tcret requiring more than 6 regs. // There wouldn't be enough scratch registers for base+index. def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), (TCRETURNmi64 addr:$dst, imm:$off)>, Requires<[In64BitMode]>; def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, Requires<[In64BitMode]>; def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>, Requires<[In64BitMode]>; // Normal calls, with various flavors of addresses. def : Pat<(X86call (i32 tglobaladdr:$dst)), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i32 texternalsym:$dst)), (CALLpcrel32 texternalsym:$dst)>; def : Pat<(X86call (i32 imm:$dst)), (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(X86cmp GR8:$src1, 0), (TEST8rr GR8:$src1, GR8:$src1)>; def : Pat<(X86cmp GR16:$src1, 0), (TEST16rr GR16:$src1, GR16:$src1)>; def : Pat<(X86cmp GR32:$src1, 0), (TEST32rr GR32:$src1, GR32:$src1)>; def : Pat<(X86cmp GR64:$src1, 0), (TEST64rr GR64:$src1, GR64:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. multiclass CMOVmr { - def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), - (Inst16 GR16:$src2, addr:$src1)>; - def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), - (Inst32 GR32:$src2, addr:$src1)>; - def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), - (Inst64 GR64:$src2, addr:$src1)>; + let Predicates = [HasCMov] in { + def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), + (Inst16 GR16:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), + (Inst32 GR32:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), + (Inst64 GR64:$src2, addr:$src1)>; + } } defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; defm : CMOVmr; // zextload bool -> zextload byte def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; // extload bool -> extload byte // When extloading from 16-bit and smaller memory locations into 64-bit // registers, use zero-extending loads so that the entire 64-bit register is // defined, avoiding partial-register updates. def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>; // For other extloads, use subregs, since the high contents of the register are // defined after an extload. def : Pat<(extloadi64i32 addr:$src), (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; // anyext. Define these to do an explicit zero-extend to // avoid partial-register updates. def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8 :$src), sub_16bit)>; def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. def : Pat<(i32 (anyext GR16:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>; def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>; def : Pat<(i64 (anyext GR32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; // Any instruction that defines a 32-bit result leaves the high half of the // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may // be copying from a truncate. And x86's cmov doesn't do anything if the // condition is false. But any other 32-bit operation will zero-extend // up to 64 bits. def def32 : PatLeaf<(i32 GR32:$src), [{ return N->getOpcode() != ISD::TRUNCATE && N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && N->getOpcode() != ISD::CopyFromReg && N->getOpcode() != X86ISD::CMOV; }]>; // In the case of a 32-bit def that is known to implicitly zero-extend, // we can use a SUBREG_TO_REG. def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; //===----------------------------------------------------------------------===// // Pattern match OR as ADD //===----------------------------------------------------------------------===// // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be // 3-addressified into an LEA instruction to avoid copies. However, we also // want to finally emit these instructions as an or at the end of the code // generator to make the generated code easier to read. To do this, we select // into "disjoint bits" pseudo ops. // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); APInt KnownZero0, KnownOne0; CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0); APInt KnownZero1, KnownOne1; CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0); return (~KnownZero0 & ~KnownZero1) == 0; }]>; // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. let AddedComplexity = 5 in { // Try this before the selecting to OR let isConvertibleToThreeAddress = 1, Constraints = "$src1 = $dst", Defs = [EFLAGS] in { let isCommutable = 1 in { def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "", // orw/addw REG, REG [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "", // orl/addl REG, REG [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "", // orq/addq REG, REG [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; } // isCommutable // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def ADD16ri8_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "", // orw/addw REG, imm8 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "", // orw/addw REG, imm [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; def ADD32ri8_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "", // orl/addl REG, imm8 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "", // orl/addl REG, imm [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; def ADD64ri8_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "", // orq/addq REG, imm8 [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt8:$src2))]>; def ADD64ri32_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "", // orq/addq REG, imm [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt32:$src2))]>; } } // AddedComplexity //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR16:$src1, 128), (SUB16ri8 GR16:$src1, -128)>; def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), (SUB16mi8 addr:$dst, -128)>; def : Pat<(add GR32:$src1, 128), (SUB32ri8 GR32:$src1, -128)>; def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), (SUB32mi8 addr:$dst, -128)>; def : Pat<(add GR64:$src1, 128), (SUB64ri8 GR64:$src1, -128)>; def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), (SUB64mi8 addr:$dst, -128)>; // The same trick applies for 32-bit immediate fields in 64-bit // instructions. def : Pat<(add GR64:$src1, 0x0000000080000000), (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), (SUB64mi32 addr:$dst, 0xffffffff80000000)>; // To avoid needing to materialize an immediate in a register, use a 32-bit and // with implicit zero-extension instead of a 64-bit and if the immediate has at // least 32 bits of leading zeros. If in addition the last 32 bits can be // represented with a sign extension of a 8 bit constant, use that. def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), (SUBREG_TO_REG (i64 0), (AND32ri8 (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo8XForm imm:$imm))), sub_32bit)>; def : Pat<(and GR64:$src, i64immZExt32:$imm), (SUBREG_TO_REG (i64 0), (AND32ri (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo32XForm imm:$imm))), sub_32bit)>; // r & (2^16-1) ==> movz def : Pat<(and GR32:$src1, 0xffff), (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), sub_16bit)>, Requires<[In32BitMode]>; // r & (2^32-1) ==> movz def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; // r & (2^16-1) ==> movz def : Pat<(and GR64:$src, 0xffff), (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR64:$src, 0xff), (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, Requires<[In64BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, Requires<[In64BitMode]>; // sext_inreg patterns def : Pat<(sext_inreg GR32:$src, i16), (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), sub_16bit)>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR64:$src, i32), (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; def : Pat<(sext_inreg GR64:$src, i16), (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; def : Pat<(sext_inreg GR64:$src, i8), (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, Requires<[In64BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, Requires<[In64BitMode]>; // sext, sext_load, zext, zext_load def: Pat<(i16 (sext GR8:$src)), (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; def: Pat<(sextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; def: Pat<(i16 (zext GR8:$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; def: Pat<(zextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; // trunc patterns def : Pat<(i16 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_16bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_32bit)>; def : Pat<(i16 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_16bit)>; def : Pat<(i8 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_8bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_8bit)>, Requires<[In64BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG GR16:$src, sub_8bit)>, Requires<[In64BitMode]>; // h-register tricks def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; // h-register tricks. // For now, be conservative on x86-64 and use an h-register extract only if the // value is immediately zero-extended or stored, which are somewhat common // cases. This uses a bunch of code to prevent a register requiring a REX prefix // from being allocated in the same instruction as the h register, as there's // currently no way to describe this requirement to the register allocator. // h-register extract and zero-extend. def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In64BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; // h-register extract and store. def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi))>; def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; // (shl x, 1) ==> (add x, x) // Note that if x is undef (immediate or otherwise), we could theoretically // end up with the two uses of x getting different values, producing a result // where the least significant bit is not 0. However, the probability of this // happening is considered low enough that this is officially not a // "real problem". def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; // Helper imms that check if a mask doesn't change significant shift bits. def immShift32 : ImmLeaf= 5; }]>; def immShift64 : ImmLeaf= 6; }]>; // (shl x (and y, 31)) ==> (shl x, y) def : Pat<(shl GR8:$src1, (and CL, immShift32)), (SHL8rCL GR8:$src1)>; def : Pat<(shl GR16:$src1, (and CL, immShift32)), (SHL16rCL GR16:$src1)>; def : Pat<(shl GR32:$src1, (and CL, immShift32)), (SHL32rCL GR32:$src1)>; def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL8mCL addr:$dst)>; def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL16mCL addr:$dst)>; def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL32mCL addr:$dst)>; def : Pat<(srl GR8:$src1, (and CL, immShift32)), (SHR8rCL GR8:$src1)>; def : Pat<(srl GR16:$src1, (and CL, immShift32)), (SHR16rCL GR16:$src1)>; def : Pat<(srl GR32:$src1, (and CL, immShift32)), (SHR32rCL GR32:$src1)>; def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR8mCL addr:$dst)>; def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR16mCL addr:$dst)>; def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR32mCL addr:$dst)>; def : Pat<(sra GR8:$src1, (and CL, immShift32)), (SAR8rCL GR8:$src1)>; def : Pat<(sra GR16:$src1, (and CL, immShift32)), (SAR16rCL GR16:$src1)>; def : Pat<(sra GR32:$src1, (and CL, immShift32)), (SAR32rCL GR32:$src1)>; def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR8mCL addr:$dst)>; def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR16mCL addr:$dst)>; def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR32mCL addr:$dst)>; // (shl x (and y, 63)) ==> (shl x, y) def : Pat<(shl GR64:$src1, (and CL, immShift64)), (SHL64rCL GR64:$src1)>; def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SHL64mCL addr:$dst)>; def : Pat<(srl GR64:$src1, (and CL, immShift64)), (SHR64rCL GR64:$src1)>; def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SHR64mCL addr:$dst)>; def : Pat<(sra GR64:$src1, (and CL, immShift64)), (SAR64rCL GR64:$src1)>; def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SAR64mCL addr:$dst)>; // (anyext (setcc_carry)) -> (setcc_carry) def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // add reg, reg def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; // add reg, mem def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), (ADD8rm GR8:$src1, addr:$src2)>; def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), (ADD16rm GR16:$src1, addr:$src2)>; def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; // add reg, imm def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(add GR16:$src1, i16immSExt8:$src2), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(add GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub reg, reg def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; // sub reg, mem def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), (SUB8rm GR8:$src1, addr:$src2)>; def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), (SUB16rm GR16:$src1, addr:$src2)>; def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; // sub reg, imm def : Pat<(sub GR8:$src1, imm:$src2), (SUB8ri GR8:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, imm:$src2), (SUB16ri GR16:$src1, imm:$src2)>; def : Pat<(sub GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, i16immSExt8:$src2), (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(sub GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub 0, reg def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; // mul reg, reg def : Pat<(mul GR16:$src1, GR16:$src2), (IMUL16rr GR16:$src1, GR16:$src2)>; def : Pat<(mul GR32:$src1, GR32:$src2), (IMUL32rr GR32:$src1, GR32:$src2)>; // mul reg, mem def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), (IMUL16rm GR16:$src1, addr:$src2)>; def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), (IMUL32rm GR32:$src1, addr:$src2)>; // mul reg, imm def : Pat<(mul GR16:$src1, imm:$src2), (IMUL16rri GR16:$src1, imm:$src2)>; def : Pat<(mul GR32:$src1, imm:$src2), (IMUL32rri GR32:$src1, imm:$src2)>; def : Pat<(mul GR16:$src1, i16immSExt8:$src2), (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(mul GR32:$src1, i32immSExt8:$src2), (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; // reg = mul mem, imm def : Pat<(mul (loadi16 addr:$src1), imm:$src2), (IMUL16rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi32 addr:$src1), imm:$src2), (IMUL32rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; // Patterns for nodes that do not produce flags, for instructions that do. // addition def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; def : Pat<(add GR64:$src1, i64immSExt8:$src2), (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(add GR64:$src1, i64immSExt32:$src2), (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), (ADD64rm GR64:$src1, addr:$src2)>; // subtraction def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), (SUB64rm GR64:$src1, addr:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt8:$src2), (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt32:$src2), (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; // Multiply def : Pat<(mul GR64:$src1, GR64:$src2), (IMUL64rr GR64:$src1, GR64:$src2)>; def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), (IMUL64rm GR64:$src1, addr:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt8:$src2), (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt32:$src2), (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; // Increment reg. def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>; def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; // Decrement reg. def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>; def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; // or reg/reg. def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; // or reg/mem def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), (OR8rm GR8:$src1, addr:$src2)>; def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), (OR16rm GR16:$src1, addr:$src2)>; def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), (OR32rm GR32:$src1, addr:$src2)>; def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), (OR64rm GR64:$src1, addr:$src2)>; // or reg/imm def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; def : Pat<(or GR16:$src1, i16immSExt8:$src2), (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(or GR32:$src1, i32immSExt8:$src2), (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt8:$src2), (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt32:$src2), (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; // xor reg/reg def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; // xor reg/mem def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), (XOR8rm GR8:$src1, addr:$src2)>; def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), (XOR16rm GR16:$src1, addr:$src2)>; def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), (XOR32rm GR32:$src1, addr:$src2)>; def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), (XOR64rm GR64:$src1, addr:$src2)>; // xor reg/imm def : Pat<(xor GR8:$src1, imm:$src2), (XOR8ri GR8:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, imm:$src2), (XOR16ri GR16:$src1, imm:$src2)>; def : Pat<(xor GR32:$src1, imm:$src2), (XOR32ri GR32:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, i16immSExt8:$src2), (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(xor GR32:$src1, i32immSExt8:$src2), (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt8:$src2), (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt32:$src2), (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; // and reg/reg def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; // and reg/mem def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), (AND8rm GR8:$src1, addr:$src2)>; def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), (AND16rm GR16:$src1, addr:$src2)>; def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), (AND32rm GR32:$src1, addr:$src2)>; def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), (AND64rm GR64:$src1, addr:$src2)>; // and reg/imm def : Pat<(and GR8:$src1, imm:$src2), (AND8ri GR8:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, imm:$src2), (AND16ri GR16:$src1, imm:$src2)>; def : Pat<(and GR32:$src1, imm:$src2), (AND32ri GR32:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, i16immSExt8:$src2), (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(and GR32:$src1, i32immSExt8:$src2), (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt8:$src2), (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt32:$src2), (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; // Bit scan instruction patterns to match explicit zero-undef behavior. def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; Index: user/attilio/vmobj-rwlock/contrib/llvm =================================================================== --- user/attilio/vmobj-rwlock/contrib/llvm (revision 247226) +++ user/attilio/vmobj-rwlock/contrib/llvm (revision 247227) Property changes on: user/attilio/vmobj-rwlock/contrib/llvm ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/contrib/llvm:r247192-247226 Index: user/attilio/vmobj-rwlock/lib/libelf/elf_update.c =================================================================== --- user/attilio/vmobj-rwlock/lib/libelf/elf_update.c (revision 247226) +++ user/attilio/vmobj-rwlock/lib/libelf/elf_update.c (revision 247227) @@ -1,914 +1,968 @@ /*- * Copyright (c) 2006-2008 Joseph Koshy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "_libelf.h" /* - * Update the internal data structures associated with an ELF object. - * Returns the size in bytes the ELF object would occupy in its file - * representation. + * Layout strategy: * - * After a successful call to this function, the following structures - * are updated: + * - Case 1: ELF_F_LAYOUT is asserted + * In this case the application has full control over where the + * section header table, program header table, and section data + * will reside. The library only perform error checks. * - * - The ELF header is updated. - * - All sections are sorted in order of ascending addresses and their - * section header table entries updated. An error is signalled - * if an overlap was detected among sections. - * - All data descriptors associated with a section are sorted in order - * of ascending addresses. Overlaps, if detected, are signalled as - * errors. Other sanity checks for alignments, section types etc. are - * made. + * - Case 2: ELF_F_LAYOUT is not asserted * - * After a resync_elf() successfully returns, the ELF descriptor is - * ready for being handed over to _libelf_write_elf(). + * The library will do the object layout using the following + * ordering: + * - The executable header is placed first, are required by the + * ELF specification. + * - The program header table is placed immediately following the + * executable header. + * - Section data, if any, is placed after the program header + * table, aligned appropriately. + * - The section header table, if needed, is placed last. * - * File alignments: - * PHDR - Addr - * SHDR - Addr + * There are two sub-cases to be taken care of: * - * XXX: how do we handle 'flags'. + * - Case 2a: e->e_cmd == ELF_C_READ or ELF_C_RDWR + * + * In this sub-case, the underlying ELF object may already have + * content in it, which the application may have modified. The + * library will retrieve content from the existing object as + * needed. + * + * - Case 2b: e->e_cmd == ELF_C_WRITE + * + * The ELF object is being created afresh in this sub-case; + * there is no pre-existing content in the underlying ELF + * object. */ /* * Compute the extents of a section, by looking at the data - * descriptors associated with it. The function returns zero if an - * error was detected. `*rc' holds the maximum file extent seen so - * far. + * descriptors associated with it. The function returns 1 if + * successful, or zero if an error was detected. */ static int -_libelf_compute_section_extents(Elf *e, Elf_Scn *s, off_t *rc) +_libelf_compute_section_extents(Elf *e, Elf_Scn *s, off_t rc) { int ec; - Elf_Data *d, *td; + size_t fsz, msz; + Elf_Data *d; + Elf32_Shdr *shdr32; + Elf64_Shdr *shdr64; unsigned int elftype; uint32_t sh_type; uint64_t d_align; uint64_t sh_align, sh_entsize, sh_offset, sh_size; uint64_t scn_size, scn_alignment; - /* - * We need to recompute library private data structures if one - * or more of the following is true: - * - The underlying Shdr structure has been marked `dirty'. Significant - * fields include: `sh_offset', `sh_type', `sh_size', `sh_addralign'. - * - The Elf_Data structures part of this section have been marked - * `dirty'. Affected members include `d_align', `d_offset', `d_type', - * and `d_size'. - * - The section as a whole is `dirty', e.g., it has been allocated - * using elf_newscn(), or if a new Elf_Data structure was added using - * elf_newdata(). - * - * Each of these conditions would result in the ELF_F_DIRTY bit being - * set on the section descriptor's `s_flags' field. - */ - ec = e->e_class; + shdr32 = &s->s_shdr.s_shdr32; + shdr64 = &s->s_shdr.s_shdr64; if (ec == ELFCLASS32) { - sh_type = s->s_shdr.s_shdr32.sh_type; - sh_align = (uint64_t) s->s_shdr.s_shdr32.sh_addralign; - sh_entsize = (uint64_t) s->s_shdr.s_shdr32.sh_entsize; - sh_offset = (uint64_t) s->s_shdr.s_shdr32.sh_offset; - sh_size = (uint64_t) s->s_shdr.s_shdr32.sh_size; + sh_type = shdr32->sh_type; + sh_align = (uint64_t) shdr32->sh_addralign; + sh_entsize = (uint64_t) shdr32->sh_entsize; + sh_offset = (uint64_t) shdr32->sh_offset; + sh_size = (uint64_t) shdr32->sh_size; } else { - sh_type = s->s_shdr.s_shdr64.sh_type; - sh_align = s->s_shdr.s_shdr64.sh_addralign; - sh_entsize = s->s_shdr.s_shdr64.sh_entsize; - sh_offset = s->s_shdr.s_shdr64.sh_offset; - sh_size = s->s_shdr.s_shdr64.sh_size; + sh_type = shdr64->sh_type; + sh_align = shdr64->sh_addralign; + sh_entsize = shdr64->sh_entsize; + sh_offset = shdr64->sh_offset; + sh_size = shdr64->sh_size; } - if (sh_type == SHT_NULL || sh_type == SHT_NOBITS) - return (1); + assert(sh_type != SHT_NULL && sh_type != SHT_NOBITS); - if ((s->s_flags & ELF_F_DIRTY) == 0) { - if ((size_t) *rc < sh_offset + sh_size) - *rc = sh_offset + sh_size; - return (1); - } - elftype = _libelf_xlate_shtype(sh_type); if (elftype > ELF_T_LAST) { LIBELF_SET_ERROR(SECTION, 0); return (0); } - /* - * Compute the extent of the data descriptors associated with - * this section. - */ - scn_alignment = 0; if (sh_align == 0) sh_align = _libelf_falign(elftype, ec); - /* Compute the section alignment. */ + /* + * Check the section's data buffers for sanity and compute the + * section's alignment. + * Compute the section's size and alignment using the data + * descriptors associated with the section. + */ + if (STAILQ_EMPTY(&s->s_data)) { + /* + * The section's content (if any) has not been read in + * yet. If section is not dirty marked dirty, we can + * reuse the values in the 'sh_size' and 'sh_offset' + * fields of the section header. + */ + if ((s->s_flags & ELF_F_DIRTY) == 0) { + /* + * If the library is doing the layout, then we + * compute the new start offset for the + * section based on the current offset and the + * section's alignment needs. + * + * If the application is doing the layout, we + * can use the value in the 'sh_offset' field + * in the section header directly. + */ + if (e->e_flags & ELF_F_LAYOUT) + goto updatedescriptor; + else + goto computeoffset; + } + + /* + * Otherwise, we need to bring in the section's data + * from the underlying ELF object. + */ + if (e->e_cmd != ELF_C_WRITE && elf_getdata(s, NULL) == NULL) + return (0); + } + + /* + * Loop through the section's data descriptors. + */ + scn_size = 0L; + scn_alignment = 0L; STAILQ_FOREACH(d, &s->s_data, d_next) { if (d->d_type > ELF_T_LAST) { LIBELF_SET_ERROR(DATA, 0); return (0); } if (d->d_version != e->e_version) { LIBELF_SET_ERROR(VERSION, 0); return (0); } if ((d_align = d->d_align) == 0 || (d_align & (d_align - 1))) { LIBELF_SET_ERROR(DATA, 0); return (0); } - if (d_align > scn_alignment) - scn_alignment = d_align; - } - scn_size = 0L; + /* + * The buffer's size should be a multiple of the + * memory size of the underlying type. + */ + msz = _libelf_msize(d->d_type, ec, e->e_version); + if (d->d_size % msz) { + LIBELF_SET_ERROR(DATA, 0); + return (0); + } - STAILQ_FOREACH_SAFE(d, &s->s_data, d_next, td) { + /* + * Compute the section's size. + */ if (e->e_flags & ELF_F_LAYOUT) { if ((uint64_t) d->d_off + d->d_size > scn_size) scn_size = d->d_off + d->d_size; } else { scn_size = roundup2(scn_size, d->d_align); d->d_off = scn_size; - scn_size += d->d_size; + fsz = _libelf_fsize(d->d_type, ec, d->d_version, + d->d_size / msz); + scn_size += fsz; } + + /* + * The section's alignment is the maximum alignment + * needed for its data buffers. + */ + if (d_align > scn_alignment) + scn_alignment = d_align; } + /* * If the application is requesting full control over the layout * of the section, check its values for sanity. */ if (e->e_flags & ELF_F_LAYOUT) { if (scn_alignment > sh_align || sh_offset % sh_align || sh_size < scn_size) { LIBELF_SET_ERROR(LAYOUT, 0); return (0); } - } else { - /* - * Otherwise compute the values in the section header. - */ + goto updatedescriptor; + } - if (scn_alignment > sh_align) - sh_align = scn_alignment; + /* + * Otherwise compute the values in the section header. + * + * The section alignment is the maximum alignment for any of + * its contained data descriptors. + */ + if (scn_alignment > sh_align) + sh_align = scn_alignment; - /* - * If the section entry size is zero, try and fill in an - * appropriate entry size. Per the elf(5) manual page - * sections without fixed-size entries should have their - * 'sh_entsize' field set to zero. - */ - if (sh_entsize == 0 && - (sh_entsize = _libelf_fsize(elftype, ec, e->e_version, - (size_t) 1)) == 1) - sh_entsize = 0; + /* + * If the section entry size is zero, try and fill in an + * appropriate entry size. Per the elf(5) manual page + * sections without fixed-size entries should have their + * 'sh_entsize' field set to zero. + */ + if (sh_entsize == 0 && + (sh_entsize = _libelf_fsize(elftype, ec, e->e_version, + (size_t) 1)) == 1) + sh_entsize = 0; - sh_size = scn_size; - sh_offset = roundup(*rc, sh_align); + sh_size = scn_size; - if (ec == ELFCLASS32) { - s->s_shdr.s_shdr32.sh_addralign = (uint32_t) sh_align; - s->s_shdr.s_shdr32.sh_entsize = (uint32_t) sh_entsize; - s->s_shdr.s_shdr32.sh_offset = (uint32_t) sh_offset; - s->s_shdr.s_shdr32.sh_size = (uint32_t) sh_size; - } else { - s->s_shdr.s_shdr64.sh_addralign = sh_align; - s->s_shdr.s_shdr64.sh_entsize = sh_entsize; - s->s_shdr.s_shdr64.sh_offset = sh_offset; - s->s_shdr.s_shdr64.sh_size = sh_size; - } +computeoffset: + /* + * Compute the new offset for the section based on + * the section's alignment needs. + */ + sh_offset = roundup(rc, sh_align); + + /* + * Update the section header. + */ + if (ec == ELFCLASS32) { + shdr32->sh_addralign = (uint32_t) sh_align; + shdr32->sh_entsize = (uint32_t) sh_entsize; + shdr32->sh_offset = (uint32_t) sh_offset; + shdr32->sh_size = (uint32_t) sh_size; + } else { + shdr64->sh_addralign = sh_align; + shdr64->sh_entsize = sh_entsize; + shdr64->sh_offset = sh_offset; + shdr64->sh_size = sh_size; } - if ((size_t) *rc < sh_offset + sh_size) - *rc = sh_offset + sh_size; - +updatedescriptor: + /* + * Update the section descriptor. + */ s->s_size = sh_size; s->s_offset = sh_offset; + return (1); } /* * Insert a section in ascending order in the list */ static int _libelf_insert_section(Elf *e, Elf_Scn *s) { Elf_Scn *t, *prevt; uint64_t smax, smin, tmax, tmin; smin = s->s_offset; smax = smin + s->s_size; prevt = NULL; STAILQ_FOREACH(t, &e->e_u.e_elf.e_scn, s_next) { tmin = t->s_offset; tmax = tmin + t->s_size; if (tmax <= smin) { /* * 't' lies entirely before 's': ...| t |...| s |... */ prevt = t; continue; } else if (smax <= tmin) /* * 's' lies entirely before 't', and after 'prevt': * ...| prevt |...| s |...| t |... */ break; else { /* 's' and 't' overlap. */ LIBELF_SET_ERROR(LAYOUT, 0); return (0); } } if (prevt) STAILQ_INSERT_AFTER(&e->e_u.e_elf.e_scn, prevt, s, s_next); else STAILQ_INSERT_HEAD(&e->e_u.e_elf.e_scn, s, s_next); return (1); } +/* + * Recompute section layout. + */ + static off_t _libelf_resync_sections(Elf *e, off_t rc) { int ec; - off_t nrc; + Elf_Scn *s; size_t sh_type, shdr_start, shdr_end; - Elf_Scn *s, *ts; ec = e->e_class; /* * Make a pass through sections, computing the extent of each * section. Order in increasing order of addresses. */ - - nrc = rc; - STAILQ_FOREACH(s, &e->e_u.e_elf.e_scn, s_next) - if (_libelf_compute_section_extents(e, s, &nrc) == 0) - return ((off_t) -1); - - STAILQ_FOREACH_SAFE(s, &e->e_u.e_elf.e_scn, s_next, ts) { + STAILQ_FOREACH(s, &e->e_u.e_elf.e_scn, s_next) { if (ec == ELFCLASS32) sh_type = s->s_shdr.s_shdr32.sh_type; else sh_type = s->s_shdr.s_shdr64.sh_type; if (sh_type == SHT_NOBITS || sh_type == SHT_NULL) continue; - if (s->s_offset < (uint64_t) rc) { - if (s->s_offset + s->s_size < (uint64_t) rc) { - /* - * Try insert this section in the - * correct place in the list, - * detecting overlaps if any. - */ - STAILQ_REMOVE(&e->e_u.e_elf.e_scn, s, _Elf_Scn, - s_next); - if (_libelf_insert_section(e, s) == 0) - return ((off_t) -1); - } else { - LIBELF_SET_ERROR(LAYOUT, 0); + if (_libelf_compute_section_extents(e, s, rc) == 0) + return ((off_t) -1); + + if (s->s_size == 0) + continue; + + if (s->s_offset + s->s_size < (size_t) rc) { + /* + * Try insert this section in the + * correct place in the list, + * detecting overlaps if any. + */ + STAILQ_REMOVE(&e->e_u.e_elf.e_scn, s, _Elf_Scn, + s_next); + if (_libelf_insert_section(e, s) == 0) return ((off_t) -1); - } } else rc = s->s_offset + s->s_size; } /* * If the application is controlling file layout, check for an * overlap between this section's extents and the SHDR table. */ if (e->e_flags & ELF_F_LAYOUT) { if (e->e_class == ELFCLASS32) shdr_start = e->e_u.e_elf.e_ehdr.e_ehdr32->e_shoff; else shdr_start = e->e_u.e_elf.e_ehdr.e_ehdr64->e_shoff; shdr_end = shdr_start + _libelf_fsize(ELF_T_SHDR, e->e_class, e->e_version, e->e_u.e_elf.e_nscn); STAILQ_FOREACH(s, &e->e_u.e_elf.e_scn, s_next) { if (s->s_offset >= shdr_end || s->s_offset + s->s_size <= shdr_start) continue; LIBELF_SET_ERROR(LAYOUT, 0); return ((off_t) -1); } } - - assert(nrc == rc); return (rc); } static off_t _libelf_resync_elf(Elf *e) { int ec, eh_class, eh_type; unsigned int eh_byteorder, eh_version; size_t align, fsz; size_t phnum, shnum; off_t rc, phoff, shoff; void *ehdr; Elf32_Ehdr *eh32; Elf64_Ehdr *eh64; rc = 0; ec = e->e_class; assert(ec == ELFCLASS32 || ec == ELFCLASS64); /* * Prepare the EHDR. */ if ((ehdr = _libelf_ehdr(e, ec, 0)) == NULL) return ((off_t) -1); eh32 = ehdr; eh64 = ehdr; if (ec == ELFCLASS32) { eh_byteorder = eh32->e_ident[EI_DATA]; eh_class = eh32->e_ident[EI_CLASS]; phoff = (uint64_t) eh32->e_phoff; shoff = (uint64_t) eh32->e_shoff; eh_type = eh32->e_type; eh_version = eh32->e_version; } else { eh_byteorder = eh64->e_ident[EI_DATA]; eh_class = eh64->e_ident[EI_CLASS]; phoff = eh64->e_phoff; shoff = eh64->e_shoff; eh_type = eh64->e_type; eh_version = eh64->e_version; } if (eh_version == EV_NONE) eh_version = EV_CURRENT; if (eh_version != e->e_version) { /* always EV_CURRENT */ LIBELF_SET_ERROR(VERSION, 0); return ((off_t) -1); } if (eh_class != e->e_class) { LIBELF_SET_ERROR(CLASS, 0); return ((off_t) -1); } if (e->e_cmd != ELF_C_WRITE && eh_byteorder != e->e_byteorder) { LIBELF_SET_ERROR(HEADER, 0); return ((off_t) -1); } shnum = e->e_u.e_elf.e_nscn; phnum = e->e_u.e_elf.e_nphdr; e->e_byteorder = eh_byteorder; #define INITIALIZE_EHDR(E,EC,V) do { \ (E)->e_ident[EI_MAG0] = ELFMAG0; \ (E)->e_ident[EI_MAG1] = ELFMAG1; \ (E)->e_ident[EI_MAG2] = ELFMAG2; \ (E)->e_ident[EI_MAG3] = ELFMAG3; \ (E)->e_ident[EI_CLASS] = (EC); \ (E)->e_ident[EI_VERSION] = (V); \ (E)->e_ehsize = _libelf_fsize(ELF_T_EHDR, (EC), (V), \ (size_t) 1); \ (E)->e_phentsize = (phnum == 0) ? 0 : _libelf_fsize( \ ELF_T_PHDR, (EC), (V), (size_t) 1); \ (E)->e_shentsize = _libelf_fsize(ELF_T_SHDR, (EC), (V), \ (size_t) 1); \ } while (0) if (ec == ELFCLASS32) INITIALIZE_EHDR(eh32, ec, eh_version); else INITIALIZE_EHDR(eh64, ec, eh_version); (void) elf_flagehdr(e, ELF_C_SET, ELF_F_DIRTY); rc += _libelf_fsize(ELF_T_EHDR, ec, eh_version, (size_t) 1); /* * Compute the layout the program header table, if one is * present. The program header table needs to be aligned to a * `natural' boundary. */ if (phnum) { fsz = _libelf_fsize(ELF_T_PHDR, ec, eh_version, phnum); align = _libelf_falign(ELF_T_PHDR, ec); if (e->e_flags & ELF_F_LAYOUT) { /* * Check offsets for sanity. */ if (rc > phoff) { LIBELF_SET_ERROR(HEADER, 0); return ((off_t) -1); } if (phoff % align) { LIBELF_SET_ERROR(LAYOUT, 0); return ((off_t) -1); } } else phoff = roundup(rc, align); rc = phoff + fsz; } else phoff = 0; /* * Compute the layout of the sections associated with the * file. */ if (e->e_cmd != ELF_C_WRITE && (e->e_flags & LIBELF_F_SHDRS_LOADED) == 0 && _libelf_load_scn(e, ehdr) == 0) return ((off_t) -1); if ((rc = _libelf_resync_sections(e, rc)) < 0) return ((off_t) -1); /* * Compute the space taken up by the section header table, if * one is needed. If ELF_F_LAYOUT is asserted, the * application may have placed the section header table in * between existing sections, so the net size of the file need * not increase due to the presence of the section header * table. */ if (shnum) { fsz = _libelf_fsize(ELF_T_SHDR, ec, eh_version, (size_t) 1); align = _libelf_falign(ELF_T_SHDR, ec); if (e->e_flags & ELF_F_LAYOUT) { if (shoff % align) { LIBELF_SET_ERROR(LAYOUT, 0); return ((off_t) -1); } } else shoff = roundup(rc, align); if (shoff + fsz * shnum > (size_t) rc) rc = shoff + fsz * shnum; } else shoff = 0; /* * Set the fields of the Executable Header that could potentially use * extended numbering. */ _libelf_setphnum(e, ehdr, ec, phnum); _libelf_setshnum(e, ehdr, ec, shnum); /* * Update the `e_phoff' and `e_shoff' fields if the library is * doing the layout. */ if ((e->e_flags & ELF_F_LAYOUT) == 0) { if (ec == ELFCLASS32) { eh32->e_phoff = (uint32_t) phoff; eh32->e_shoff = (uint32_t) shoff; } else { eh64->e_phoff = (uint64_t) phoff; eh64->e_shoff = (uint64_t) shoff; } } return (rc); } /* * Write out the contents of a section. */ static off_t _libelf_write_scn(Elf *e, char *nf, Elf_Scn *s, off_t rc) { int ec; size_t fsz, msz, nobjects; uint32_t sh_type; uint64_t sh_off, sh_size; int elftype; Elf_Data *d, dst; if ((ec = e->e_class) == ELFCLASS32) { sh_type = s->s_shdr.s_shdr32.sh_type; sh_size = (uint64_t) s->s_shdr.s_shdr32.sh_size; } else { sh_type = s->s_shdr.s_shdr64.sh_type; sh_size = s->s_shdr.s_shdr64.sh_size; } /* * Ignore sections that do not allocate space in the file. */ if (sh_type == SHT_NOBITS || sh_type == SHT_NULL || sh_size == 0) return (rc); elftype = _libelf_xlate_shtype(sh_type); assert(elftype >= ELF_T_FIRST && elftype <= ELF_T_LAST); sh_off = s->s_offset; assert(sh_off % _libelf_falign(elftype, ec) == 0); /* * If the section has a `rawdata' descriptor, and the section * contents have not been modified, use its contents directly. * The `s_rawoff' member contains the offset into the original * file, while `s_offset' contains its new location in the * destination. */ if (STAILQ_EMPTY(&s->s_data)) { if ((d = elf_rawdata(s, NULL)) == NULL) return ((off_t) -1); STAILQ_FOREACH(d, &s->s_rawdata, d_next) { if ((uint64_t) rc < sh_off + d->d_off) (void) memset(nf + rc, LIBELF_PRIVATE(fillchar), sh_off + d->d_off - rc); rc = sh_off + d->d_off; assert(d->d_buf != NULL); assert(d->d_type == ELF_T_BYTE); assert(d->d_version == e->e_version); (void) memcpy(nf + rc, e->e_rawfile + s->s_rawoff + d->d_off, d->d_size); rc += d->d_size; } return (rc); } /* * Iterate over the set of data descriptors for this section. * The prior call to _libelf_resync_elf() would have setup the * descriptors for this step. */ dst.d_version = e->e_version; STAILQ_FOREACH(d, &s->s_data, d_next) { msz = _libelf_msize(d->d_type, ec, e->e_version); if ((uint64_t) rc < sh_off + d->d_off) (void) memset(nf + rc, LIBELF_PRIVATE(fillchar), sh_off + d->d_off - rc); rc = sh_off + d->d_off; assert(d->d_buf != NULL); assert(d->d_version == e->e_version); assert(d->d_size % msz == 0); nobjects = d->d_size / msz; fsz = _libelf_fsize(d->d_type, ec, e->e_version, nobjects); dst.d_buf = nf + rc; dst.d_size = fsz; if (_libelf_xlate(&dst, d, e->e_byteorder, ec, ELF_TOFILE) == NULL) return ((off_t) -1); rc += fsz; } return ((off_t) rc); } /* * Write out the file image. * * The original file could have been mapped in with an ELF_C_RDWR * command and the application could have added new content or * re-arranged its sections before calling elf_update(). Consequently * its not safe to work `in place' on the original file. So we * malloc() the required space for the updated ELF object and build * the object there and write it out to the underlying file at the * end. Note that the application may have opened the underlying file * in ELF_C_RDWR and only retrieved/modified a few sections. We take * care to avoid translating file sections unnecessarily. * * Gaps in the coverage of the file by the file's sections will be * filled with the fill character set by elf_fill(3). */ static off_t _libelf_write_elf(Elf *e, off_t newsize) { int ec; off_t maxrc, rc; size_t fsz, msz, phnum, shnum; uint64_t phoff, shoff; void *ehdr; char *newfile; Elf_Data dst, src; Elf_Scn *scn, *tscn; Elf32_Ehdr *eh32; Elf64_Ehdr *eh64; assert(e->e_kind == ELF_K_ELF); assert(e->e_cmd != ELF_C_READ); assert(e->e_fd >= 0); if ((newfile = malloc((size_t) newsize)) == NULL) { LIBELF_SET_ERROR(RESOURCE, errno); return ((off_t) -1); } ec = e->e_class; ehdr = _libelf_ehdr(e, ec, 0); assert(ehdr != NULL); phnum = e->e_u.e_elf.e_nphdr; if (ec == ELFCLASS32) { eh32 = (Elf32_Ehdr *) ehdr; phoff = (uint64_t) eh32->e_phoff; shnum = eh32->e_shnum; shoff = (uint64_t) eh32->e_shoff; } else { eh64 = (Elf64_Ehdr *) ehdr; phoff = eh64->e_phoff; shnum = eh64->e_shnum; shoff = eh64->e_shoff; } fsz = _libelf_fsize(ELF_T_EHDR, ec, e->e_version, (size_t) 1); msz = _libelf_msize(ELF_T_EHDR, ec, e->e_version); (void) memset(&dst, 0, sizeof(dst)); (void) memset(&src, 0, sizeof(src)); src.d_buf = ehdr; src.d_size = msz; src.d_type = ELF_T_EHDR; src.d_version = dst.d_version = e->e_version; rc = 0; dst.d_buf = newfile + rc; dst.d_size = fsz; if (_libelf_xlate(&dst, &src, e->e_byteorder, ec, ELF_TOFILE) == NULL) goto error; rc += fsz; /* * Write the program header table if present. */ if (phnum != 0 && phoff != 0) { assert((unsigned) rc <= phoff); fsz = _libelf_fsize(ELF_T_PHDR, ec, e->e_version, phnum); assert(phoff % _libelf_falign(ELF_T_PHDR, ec) == 0); assert(fsz > 0); src.d_buf = _libelf_getphdr(e, ec); src.d_version = dst.d_version = e->e_version; src.d_type = ELF_T_PHDR; src.d_size = phnum * _libelf_msize(ELF_T_PHDR, ec, e->e_version); dst.d_size = fsz; if ((uint64_t) rc < phoff) (void) memset(newfile + rc, LIBELF_PRIVATE(fillchar), phoff - rc); dst.d_buf = newfile + rc; if (_libelf_xlate(&dst, &src, e->e_byteorder, ec, ELF_TOFILE) == NULL) goto error; rc = phoff + fsz; } /* * Write out individual sections. */ STAILQ_FOREACH(scn, &e->e_u.e_elf.e_scn, s_next) if ((rc = _libelf_write_scn(e, newfile, scn, rc)) < 0) goto error; /* * Write out the section header table, if required. Note that * if flag ELF_F_LAYOUT has been set the section header table * could reside in between byte ranges mapped by section * descriptors. */ if (shnum != 0 && shoff != 0) { if ((uint64_t) rc < shoff) (void) memset(newfile + rc, LIBELF_PRIVATE(fillchar), shoff - rc); maxrc = rc; rc = shoff; assert(rc % _libelf_falign(ELF_T_SHDR, ec) == 0); src.d_type = ELF_T_SHDR; src.d_size = _libelf_msize(ELF_T_SHDR, ec, e->e_version); src.d_version = dst.d_version = e->e_version; fsz = _libelf_fsize(ELF_T_SHDR, ec, e->e_version, (size_t) 1); STAILQ_FOREACH(scn, &e->e_u.e_elf.e_scn, s_next) { if (ec == ELFCLASS32) src.d_buf = &scn->s_shdr.s_shdr32; else src.d_buf = &scn->s_shdr.s_shdr64; dst.d_size = fsz; dst.d_buf = newfile + rc + scn->s_ndx * fsz; if (_libelf_xlate(&dst, &src, e->e_byteorder, ec, ELF_TOFILE) != &dst) goto error; } rc += e->e_u.e_elf.e_nscn * fsz; if (maxrc > rc) rc = maxrc; } assert(rc == newsize); /* * Write out the constructed contents and remap the file in * read-only. */ if (e->e_rawfile && munmap(e->e_rawfile, e->e_rawsize) < 0) { LIBELF_SET_ERROR(IO, errno); goto error; } if (write(e->e_fd, newfile, (size_t) newsize) != newsize || lseek(e->e_fd, (off_t) 0, SEEK_SET) < 0) { LIBELF_SET_ERROR(IO, errno); goto error; } if (e->e_cmd != ELF_C_WRITE) { if ((e->e_rawfile = mmap(NULL, (size_t) newsize, PROT_READ, MAP_PRIVATE, e->e_fd, (off_t) 0)) == MAP_FAILED) { LIBELF_SET_ERROR(IO, errno); goto error; } e->e_rawsize = newsize; } /* * Reset flags, remove existing section descriptors and * {E,P}HDR pointers so that a subsequent elf_get{e,p}hdr() * and elf_getscn() will function correctly. */ e->e_flags &= ~ELF_F_DIRTY; STAILQ_FOREACH_SAFE(scn, &e->e_u.e_elf.e_scn, s_next, tscn) _libelf_release_scn(scn); if (ec == ELFCLASS32) { free(e->e_u.e_elf.e_ehdr.e_ehdr32); if (e->e_u.e_elf.e_phdr.e_phdr32) free(e->e_u.e_elf.e_phdr.e_phdr32); e->e_u.e_elf.e_ehdr.e_ehdr32 = NULL; e->e_u.e_elf.e_phdr.e_phdr32 = NULL; } else { free(e->e_u.e_elf.e_ehdr.e_ehdr64); if (e->e_u.e_elf.e_phdr.e_phdr64) free(e->e_u.e_elf.e_phdr.e_phdr64); e->e_u.e_elf.e_ehdr.e_ehdr64 = NULL; e->e_u.e_elf.e_phdr.e_phdr64 = NULL; } free(newfile); return (rc); error: free(newfile); return ((off_t) -1); } off_t elf_update(Elf *e, Elf_Cmd c) { int ec; off_t rc; rc = (off_t) -1; if (e == NULL || e->e_kind != ELF_K_ELF || (c != ELF_C_NULL && c != ELF_C_WRITE)) { LIBELF_SET_ERROR(ARGUMENT, 0); return (rc); } if ((ec = e->e_class) != ELFCLASS32 && ec != ELFCLASS64) { LIBELF_SET_ERROR(CLASS, 0); return (rc); } if (e->e_version == EV_NONE) e->e_version = EV_CURRENT; if (c == ELF_C_WRITE && e->e_cmd == ELF_C_READ) { LIBELF_SET_ERROR(MODE, 0); return (rc); } if ((rc = _libelf_resync_elf(e)) < 0) return (rc); if (c == ELF_C_NULL) return (rc); if (e->e_cmd == ELF_C_READ) { /* * This descriptor was opened in read-only mode or by * elf_memory(). */ if (e->e_fd) LIBELF_SET_ERROR(MODE, 0); else LIBELF_SET_ERROR(ARGUMENT, 0); return ((off_t) -1); } if (e->e_fd < 0) { LIBELF_SET_ERROR(SEQUENCE, 0); return ((off_t) -1); } return (_libelf_write_elf(e, rc)); } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/dir.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/dir.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/dir.c (revision 247227) @@ -1,713 +1,713 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char sccsid[] = "@(#)dir.c 8.8 (Berkeley) 4/28/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include "fsck.h" const char *lfname = "lost+found"; int lfmode = 0700; struct dirtemplate emptydir = { 0, DIRBLKSIZ, DT_UNKNOWN, 0, "", 0, 0, DT_UNKNOWN, 0, "" }; struct dirtemplate dirhead = { 0, 12, DT_DIR, 1, ".", 0, DIRBLKSIZ - 12, DT_DIR, 2, ".." }; struct odirtemplate odirhead = { 0, 12, 1, ".", 0, DIRBLKSIZ - 12, 2, ".." }; static int chgino(struct inodesc *); static int dircheck(struct inodesc *, struct direct *); static int expanddir(union dinode *dp, char *name); static void freedir(ino_t ino, ino_t parent); static struct direct *fsck_readdir(struct inodesc *); static struct bufarea *getdirblk(ufs2_daddr_t blkno, long size); static int lftempname(char *bufp, ino_t ino); static int mkentry(struct inodesc *); /* * Propagate connected state through the tree. */ void propagate(void) { struct inoinfo **inpp, *inp; struct inoinfo **inpend; long change; inpend = &inpsort[inplast]; do { change = 0; for (inpp = inpsort; inpp < inpend; inpp++) { inp = *inpp; if (inp->i_parent == 0) continue; if (inoinfo(inp->i_parent)->ino_state == DFOUND && INO_IS_DUNFOUND(inp->i_number)) { inoinfo(inp->i_number)->ino_state = DFOUND; change++; } } } while (change > 0); } /* * Scan each entry in a directory block. */ int dirscan(struct inodesc *idesc) { struct direct *dp; struct bufarea *bp; u_int dsize, n; long blksiz; char dbuf[DIRBLKSIZ]; if (idesc->id_type != DATA) errx(EEXIT, "wrong type to dirscan %d", idesc->id_type); if (idesc->id_entryno == 0 && (idesc->id_filesize & (DIRBLKSIZ - 1)) != 0) idesc->id_filesize = roundup(idesc->id_filesize, DIRBLKSIZ); blksiz = idesc->id_numfrags * sblock.fs_fsize; if (chkrange(idesc->id_blkno, idesc->id_numfrags)) { idesc->id_filesize -= blksiz; return (SKIP); } idesc->id_loc = 0; for (dp = fsck_readdir(idesc); dp != NULL; dp = fsck_readdir(idesc)) { dsize = dp->d_reclen; if (dsize > sizeof(dbuf)) dsize = sizeof(dbuf); memmove(dbuf, dp, (size_t)dsize); idesc->id_dirp = (struct direct *)dbuf; if ((n = (*idesc->id_func)(idesc)) & ALTERED) { bp = getdirblk(idesc->id_blkno, blksiz); memmove(bp->b_un.b_buf + idesc->id_loc - dsize, dbuf, (size_t)dsize); dirty(bp); sbdirty(); } if (n & STOP) return (n); } return (idesc->id_filesize > 0 ? KEEPON : STOP); } /* * get next entry in a directory. */ static struct direct * fsck_readdir(struct inodesc *idesc) { struct direct *dp, *ndp; struct bufarea *bp; long size, blksiz, fix, dploc; blksiz = idesc->id_numfrags * sblock.fs_fsize; bp = getdirblk(idesc->id_blkno, blksiz); if (idesc->id_loc % DIRBLKSIZ == 0 && idesc->id_filesize > 0 && idesc->id_loc < blksiz) { dp = (struct direct *)(bp->b_un.b_buf + idesc->id_loc); if (dircheck(idesc, dp)) goto dpok; if (idesc->id_fix == IGNORE) return (0); fix = dofix(idesc, "DIRECTORY CORRUPTED"); bp = getdirblk(idesc->id_blkno, blksiz); dp = (struct direct *)(bp->b_un.b_buf + idesc->id_loc); dp->d_reclen = DIRBLKSIZ; dp->d_ino = 0; dp->d_type = 0; dp->d_namlen = 0; dp->d_name[0] = '\0'; if (fix) dirty(bp); idesc->id_loc += DIRBLKSIZ; idesc->id_filesize -= DIRBLKSIZ; return (dp); } dpok: if (idesc->id_filesize <= 0 || idesc->id_loc >= blksiz) return NULL; dploc = idesc->id_loc; dp = (struct direct *)(bp->b_un.b_buf + dploc); idesc->id_loc += dp->d_reclen; idesc->id_filesize -= dp->d_reclen; if ((idesc->id_loc % DIRBLKSIZ) == 0) return (dp); ndp = (struct direct *)(bp->b_un.b_buf + idesc->id_loc); if (idesc->id_loc < blksiz && idesc->id_filesize > 0 && dircheck(idesc, ndp) == 0) { size = DIRBLKSIZ - (idesc->id_loc % DIRBLKSIZ); idesc->id_loc += size; idesc->id_filesize -= size; if (idesc->id_fix == IGNORE) return (0); fix = dofix(idesc, "DIRECTORY CORRUPTED"); bp = getdirblk(idesc->id_blkno, blksiz); dp = (struct direct *)(bp->b_un.b_buf + dploc); dp->d_reclen += size; if (fix) dirty(bp); } return (dp); } /* * Verify that a directory entry is valid. * This is a superset of the checks made in the kernel. */ static int dircheck(struct inodesc *idesc, struct direct *dp) { size_t size; char *cp; u_char type; u_int8_t namlen; int spaceleft; spaceleft = DIRBLKSIZ - (idesc->id_loc % DIRBLKSIZ); if (dp->d_reclen == 0 || dp->d_reclen > spaceleft || (dp->d_reclen & 0x3) != 0) goto bad; if (dp->d_ino == 0) return (1); size = DIRSIZ(0, dp); namlen = dp->d_namlen; type = dp->d_type; if (dp->d_reclen < size || idesc->id_filesize < size || namlen == 0 || type > 15) goto bad; for (cp = dp->d_name, size = 0; size < namlen; size++) if (*cp == '\0' || (*cp++ == '/')) goto bad; if (*cp != '\0') goto bad; return (1); bad: if (debug) printf("Bad dir: ino %d reclen %d namlen %d type %d name %s\n", dp->d_ino, dp->d_reclen, dp->d_namlen, dp->d_type, dp->d_name); return (0); } void direrror(ino_t ino, const char *errmesg) { fileerror(ino, ino, errmesg); } void fileerror(ino_t cwd, ino_t ino, const char *errmesg) { union dinode *dp; char pathbuf[MAXPATHLEN + 1]; pwarn("%s ", errmesg); pinode(ino); printf("\n"); getpathname(pathbuf, cwd, ino); if (ino < ROOTINO || ino > maxino) { pfatal("NAME=%s\n", pathbuf); return; } dp = ginode(ino); if (ftypeok(dp)) pfatal("%s=%s\n", (DIP(dp, di_mode) & IFMT) == IFDIR ? "DIR" : "FILE", pathbuf); else pfatal("NAME=%s\n", pathbuf); } void adjust(struct inodesc *idesc, int lcnt) { union dinode *dp; int saveresolved; dp = ginode(idesc->id_number); if (DIP(dp, di_nlink) == lcnt) { /* * If we have not hit any unresolved problems, are running * in preen mode, and are on a file system using soft updates, * then just toss any partially allocated files. */ if (resolved && (preen || bkgrdflag) && usedsoftdep) { clri(idesc, "UNREF", 1); return; } else { /* * The file system can be marked clean even if * a file is not linked up, but is cleared. * Hence, resolved should not be cleared when * linkup is answered no, but clri is answered yes. */ saveresolved = resolved; if (linkup(idesc->id_number, (ino_t)0, NULL) == 0) { resolved = saveresolved; clri(idesc, "UNREF", 0); return; } /* * Account for the new reference created by linkup(). */ dp = ginode(idesc->id_number); lcnt--; } } if (lcnt != 0) { pwarn("LINK COUNT %s", (lfdir == idesc->id_number) ? lfname : ((DIP(dp, di_mode) & IFMT) == IFDIR ? "DIR" : "FILE")); pinode(idesc->id_number); printf(" COUNT %d SHOULD BE %d", DIP(dp, di_nlink), DIP(dp, di_nlink) - lcnt); if (preen || usedsoftdep) { if (lcnt < 0) { printf("\n"); pfatal("LINK COUNT INCREASING"); } if (preen) printf(" (ADJUSTED)\n"); } if (preen || reply("ADJUST") == 1) { if (bkgrdflag == 0) { DIP_SET(dp, di_nlink, DIP(dp, di_nlink) - lcnt); inodirty(); } else { cmd.value = idesc->id_number; cmd.size = -lcnt; if (debug) printf("adjrefcnt ino %ld amt %lld\n", (long)cmd.value, (long long)cmd.size); if (sysctl(adjrefcnt, MIBSIZE, 0, 0, &cmd, sizeof cmd) == -1) rwerror("ADJUST INODE", cmd.value); } } } } static int mkentry(struct inodesc *idesc) { struct direct *dirp = idesc->id_dirp; struct direct newent; int newlen, oldlen; newent.d_namlen = strlen(idesc->id_name); newlen = DIRSIZ(0, &newent); if (dirp->d_ino != 0) oldlen = DIRSIZ(0, dirp); else oldlen = 0; if (dirp->d_reclen - oldlen < newlen) return (KEEPON); newent.d_reclen = dirp->d_reclen - oldlen; dirp->d_reclen = oldlen; dirp = (struct direct *)(((char *)dirp) + oldlen); dirp->d_ino = idesc->id_parent; /* ino to be entered is in id_parent */ dirp->d_reclen = newent.d_reclen; dirp->d_type = inoinfo(idesc->id_parent)->ino_type; dirp->d_namlen = newent.d_namlen; memmove(dirp->d_name, idesc->id_name, (size_t)newent.d_namlen + 1); return (ALTERED|STOP); } static int chgino(struct inodesc *idesc) { struct direct *dirp = idesc->id_dirp; if (memcmp(dirp->d_name, idesc->id_name, (int)dirp->d_namlen + 1)) return (KEEPON); dirp->d_ino = idesc->id_parent; dirp->d_type = inoinfo(idesc->id_parent)->ino_type; return (ALTERED|STOP); } int linkup(ino_t orphan, ino_t parentdir, char *name) { union dinode *dp; int lostdir; ino_t oldlfdir; struct inodesc idesc; char tempname[BUFSIZ]; memset(&idesc, 0, sizeof(struct inodesc)); dp = ginode(orphan); lostdir = (DIP(dp, di_mode) & IFMT) == IFDIR; pwarn("UNREF %s ", lostdir ? "DIR" : "FILE"); pinode(orphan); if (preen && DIP(dp, di_size) == 0) return (0); if (cursnapshot != 0) { pfatal("FILE LINKUP IN SNAPSHOT"); return (0); } if (preen) printf(" (RECONNECTED)\n"); else if (reply("RECONNECT") == 0) return (0); if (lfdir == 0) { dp = ginode(ROOTINO); idesc.id_name = strdup(lfname); idesc.id_type = DATA; idesc.id_func = findino; idesc.id_number = ROOTINO; if ((ckinode(dp, &idesc) & FOUND) != 0) { lfdir = idesc.id_parent; } else { pwarn("NO lost+found DIRECTORY"); if (preen || reply("CREATE")) { lfdir = allocdir(ROOTINO, (ino_t)0, lfmode); if (lfdir != 0) { if (makeentry(ROOTINO, lfdir, lfname) != 0) { numdirs++; if (preen) printf(" (CREATED)\n"); } else { freedir(lfdir, ROOTINO); lfdir = 0; if (preen) printf("\n"); } } } } if (lfdir == 0) { pfatal("SORRY. CANNOT CREATE lost+found DIRECTORY"); printf("\n\n"); return (0); } } dp = ginode(lfdir); if ((DIP(dp, di_mode) & IFMT) != IFDIR) { pfatal("lost+found IS NOT A DIRECTORY"); if (reply("REALLOCATE") == 0) return (0); oldlfdir = lfdir; if ((lfdir = allocdir(ROOTINO, (ino_t)0, lfmode)) == 0) { pfatal("SORRY. CANNOT CREATE lost+found DIRECTORY\n\n"); return (0); } if ((changeino(ROOTINO, lfname, lfdir) & ALTERED) == 0) { pfatal("SORRY. CANNOT CREATE lost+found DIRECTORY\n\n"); return (0); } inodirty(); idesc.id_type = ADDR; idesc.id_func = pass4check; idesc.id_number = oldlfdir; adjust(&idesc, inoinfo(oldlfdir)->ino_linkcnt + 1); inoinfo(oldlfdir)->ino_linkcnt = 0; dp = ginode(lfdir); } if (inoinfo(lfdir)->ino_state != DFOUND) { pfatal("SORRY. NO lost+found DIRECTORY\n\n"); return (0); } (void)lftempname(tempname, orphan); if (makeentry(lfdir, orphan, (name ? name : tempname)) == 0) { pfatal("SORRY. NO SPACE IN lost+found DIRECTORY"); printf("\n\n"); return (0); } inoinfo(orphan)->ino_linkcnt--; if (lostdir) { if ((changeino(orphan, "..", lfdir) & ALTERED) == 0 && parentdir != (ino_t)-1) (void)makeentry(orphan, lfdir, ".."); dp = ginode(lfdir); DIP_SET(dp, di_nlink, DIP(dp, di_nlink) + 1); inodirty(); inoinfo(lfdir)->ino_linkcnt++; pwarn("DIR I=%lu CONNECTED. ", (u_long)orphan); if (parentdir != (ino_t)-1) { printf("PARENT WAS I=%lu\n", (u_long)parentdir); /* * The parent directory, because of the ordering * guarantees, has had the link count incremented * for the child, but no entry was made. This * fixes the parent link count so that fsck does * not need to be rerun. */ inoinfo(parentdir)->ino_linkcnt++; } if (preen == 0) printf("\n"); } return (1); } /* * fix an entry in a directory. */ int changeino(ino_t dir, const char *name, ino_t newnum) { struct inodesc idesc; memset(&idesc, 0, sizeof(struct inodesc)); idesc.id_type = DATA; idesc.id_func = chgino; idesc.id_number = dir; idesc.id_fix = DONTKNOW; idesc.id_name = strdup(name); idesc.id_parent = newnum; /* new value for name */ return (ckinode(ginode(dir), &idesc)); } /* * make an entry in a directory */ int makeentry(ino_t parent, ino_t ino, const char *name) { union dinode *dp; struct inodesc idesc; char pathbuf[MAXPATHLEN + 1]; if (parent < ROOTINO || parent >= maxino || ino < ROOTINO || ino >= maxino) return (0); memset(&idesc, 0, sizeof(struct inodesc)); idesc.id_type = DATA; idesc.id_func = mkentry; idesc.id_number = parent; idesc.id_parent = ino; /* this is the inode to enter */ idesc.id_fix = DONTKNOW; idesc.id_name = strdup(name); dp = ginode(parent); if (DIP(dp, di_size) % DIRBLKSIZ) { DIP_SET(dp, di_size, roundup(DIP(dp, di_size), DIRBLKSIZ)); inodirty(); } if ((ckinode(dp, &idesc) & ALTERED) != 0) return (1); getpathname(pathbuf, parent, parent); dp = ginode(parent); if (expanddir(dp, pathbuf) == 0) return (0); return (ckinode(dp, &idesc) & ALTERED); } /* * Attempt to expand the size of a directory */ static int expanddir(union dinode *dp, char *name) { ufs2_daddr_t lastbn, newblk; struct bufarea *bp; char *cp, firstblk[DIRBLKSIZ]; lastbn = lblkno(&sblock, DIP(dp, di_size)); if (lastbn >= NDADDR - 1 || DIP(dp, di_db[lastbn]) == 0 || DIP(dp, di_size) == 0) return (0); if ((newblk = allocblk(sblock.fs_frag)) == 0) return (0); DIP_SET(dp, di_db[lastbn + 1], DIP(dp, di_db[lastbn])); DIP_SET(dp, di_db[lastbn], newblk); DIP_SET(dp, di_size, DIP(dp, di_size) + sblock.fs_bsize); DIP_SET(dp, di_blocks, DIP(dp, di_blocks) + btodb(sblock.fs_bsize)); bp = getdirblk(DIP(dp, di_db[lastbn + 1]), sblksize(&sblock, DIP(dp, di_size), lastbn + 1)); if (bp->b_errs) goto bad; memmove(firstblk, bp->b_un.b_buf, DIRBLKSIZ); bp = getdirblk(newblk, sblock.fs_bsize); if (bp->b_errs) goto bad; memmove(bp->b_un.b_buf, firstblk, DIRBLKSIZ); for (cp = &bp->b_un.b_buf[DIRBLKSIZ]; cp < &bp->b_un.b_buf[sblock.fs_bsize]; cp += DIRBLKSIZ) memmove(cp, &emptydir, sizeof emptydir); dirty(bp); bp = getdirblk(DIP(dp, di_db[lastbn + 1]), sblksize(&sblock, DIP(dp, di_size), lastbn + 1)); if (bp->b_errs) goto bad; memmove(bp->b_un.b_buf, &emptydir, sizeof emptydir); pwarn("NO SPACE LEFT IN %s", name); if (preen) printf(" (EXPANDED)\n"); else if (reply("EXPAND") == 0) goto bad; dirty(bp); inodirty(); return (1); bad: DIP_SET(dp, di_db[lastbn], DIP(dp, di_db[lastbn + 1])); DIP_SET(dp, di_db[lastbn + 1], 0); DIP_SET(dp, di_size, DIP(dp, di_size) - sblock.fs_bsize); DIP_SET(dp, di_blocks, DIP(dp, di_blocks) - btodb(sblock.fs_bsize)); freeblk(newblk, sblock.fs_frag); return (0); } /* * allocate a new directory */ ino_t allocdir(ino_t parent, ino_t request, int mode) { ino_t ino; char *cp; union dinode *dp; struct bufarea *bp; struct inoinfo *inp; struct dirtemplate *dirp; ino = allocino(request, IFDIR|mode); dirp = &dirhead; dirp->dot_ino = ino; dirp->dotdot_ino = parent; dp = ginode(ino); bp = getdirblk(DIP(dp, di_db[0]), sblock.fs_fsize); if (bp->b_errs) { freeino(ino); return (0); } memmove(bp->b_un.b_buf, dirp, sizeof(struct dirtemplate)); for (cp = &bp->b_un.b_buf[DIRBLKSIZ]; cp < &bp->b_un.b_buf[sblock.fs_fsize]; cp += DIRBLKSIZ) memmove(cp, &emptydir, sizeof emptydir); dirty(bp); DIP_SET(dp, di_nlink, 2); inodirty(); if (ino == ROOTINO) { inoinfo(ino)->ino_linkcnt = DIP(dp, di_nlink); cacheino(dp, ino); return(ino); } if (!INO_IS_DVALID(parent)) { freeino(ino); return (0); } cacheino(dp, ino); inp = getinoinfo(ino); inp->i_parent = parent; inp->i_dotdot = parent; inoinfo(ino)->ino_state = inoinfo(parent)->ino_state; if (inoinfo(ino)->ino_state == DSTATE) { inoinfo(ino)->ino_linkcnt = DIP(dp, di_nlink); inoinfo(parent)->ino_linkcnt++; } dp = ginode(parent); DIP_SET(dp, di_nlink, DIP(dp, di_nlink) + 1); inodirty(); return (ino); } /* * free a directory inode */ static void freedir(ino_t ino, ino_t parent) { union dinode *dp; if (ino != parent) { dp = ginode(parent); DIP_SET(dp, di_nlink, DIP(dp, di_nlink) - 1); inodirty(); } freeino(ino); } /* * generate a temporary name for the lost+found directory. */ static int lftempname(char *bufp, ino_t ino) { ino_t in; char *cp; int namlen; cp = bufp + 2; for (in = maxino; in > 0; in /= 10) cp++; *--cp = 0; namlen = cp - bufp; in = ino; while (cp > bufp) { *--cp = (in % 10) + '0'; in /= 10; } *cp = '#'; return (namlen); } /* * Get a directory block. * Insure that it is held until another is requested. */ static struct bufarea * getdirblk(ufs2_daddr_t blkno, long size) { if (pdirbp != 0) pdirbp->b_flags &= ~B_INUSE; - pdirbp = getdatablk(blkno, size); + pdirbp = getdatablk(blkno, size, BT_DIRDATA); return (pdirbp); } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/ea.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/ea.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/ea.c (revision 247227) @@ -1,85 +1,85 @@ /* * Copyright (c) 2002 Poul-Henning Kamp * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Poul-Henning Kamp * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include "fsck.h" /* * Scan each entry in an ea block. */ int eascan(struct inodesc *idesc, struct ufs2_dinode *dp) { #if 1 return (0); #else struct bufarea *bp; u_int dsize, n; u_char *cp; long blksiz; char dbuf[DIRBLKSIZ]; printf("Inode %ju extsize %ju\n", (intmax_t)idesc->id_number, (intmax_t)dp->di_extsize); if (dp->di_extsize == 0) return 0; if (dp->di_extsize <= sblock.fs_fsize) blksiz = sblock.fs_fsize; else blksiz = sblock.fs_bsize; printf("blksiz = %ju\n", (intmax_t)blksiz); - bp = getdatablk(dp->di_extb[0], blksiz); + bp = getdatablk(dp->di_extb[0], blksiz, BT_EXTATTR); cp = (u_char *)bp->b_un.b_buf; for (n = 0; n < blksiz; n++) { printf("%02x", cp[n]); if ((n & 31) == 31) printf("\n"); } return (STOP); #endif } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsck.h =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsck.h (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsck.h (revision 247227) @@ -1,403 +1,437 @@ /* * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fsck.h 8.4 (Berkeley) 5/9/95 * $FreeBSD$ */ #ifndef _FSCK_H_ #define _FSCK_H_ #include #include #include #include #define MAXDUP 10 /* limit on dup blks (per inode) */ #define MAXBAD 10 /* limit on bad blks (per inode) */ #define MINBUFS 10 /* minimum number of buffers required */ #define MAXBUFS 40 /* maximum space to allocate to buffers */ #define INOBUFSIZE 64*1024 /* size of buffer to read inodes in pass1 */ union dinode { struct ufs1_dinode dp1; struct ufs2_dinode dp2; }; #define DIP(dp, field) \ ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ (dp)->dp1.field : (dp)->dp2.field) #define DIP_SET(dp, field, val) do { \ if (sblock.fs_magic == FS_UFS1_MAGIC) \ (dp)->dp1.field = (val); \ else \ (dp)->dp2.field = (val); \ } while (0) /* * Each inode on the file system is described by the following structure. * The linkcnt is initially set to the value in the inode. Each time it * is found during the descent in passes 2, 3, and 4 the count is * decremented. Any inodes whose count is non-zero after pass 4 needs to * have its link count adjusted by the value remaining in ino_linkcnt. */ struct inostat { char ino_state; /* state of inode, see below */ char ino_type; /* type of inode */ short ino_linkcnt; /* number of links not found */ }; /* * Inode states. */ #define USTATE 0x1 /* inode not allocated */ #define FSTATE 0x2 /* inode is file */ #define FZLINK 0x3 /* inode is file with a link count of zero */ #define DSTATE 0x4 /* inode is directory */ #define DZLINK 0x5 /* inode is directory with a zero link count */ #define DFOUND 0x6 /* directory found during descent */ /* 0x7 UNUSED - see S_IS_DVALID() definition */ #define DCLEAR 0x8 /* directory is to be cleared */ #define FCLEAR 0x9 /* file is to be cleared */ /* DUNFOUND === (state == DSTATE || state == DZLINK) */ #define S_IS_DUNFOUND(state) (((state) & ~0x1) == DSTATE) /* DVALID === (state == DSTATE || state == DZLINK || state == DFOUND) */ #define S_IS_DVALID(state) (((state) & ~0x3) == DSTATE) #define INO_IS_DUNFOUND(ino) S_IS_DUNFOUND(inoinfo(ino)->ino_state) #define INO_IS_DVALID(ino) S_IS_DVALID(inoinfo(ino)->ino_state) /* * Inode state information is contained on per cylinder group lists * which are described by the following structure. */ struct inostatlist { long il_numalloced; /* number of inodes allocated in this cg */ struct inostat *il_stat;/* inostat info for this cylinder group */ } *inostathead; /* * buffer cache structure. */ struct bufarea { TAILQ_ENTRY(bufarea) b_list; /* buffer list */ ufs2_daddr_t b_bno; int b_size; int b_errs; int b_flags; + int b_type; union { char *b_buf; /* buffer space */ ufs1_daddr_t *b_indir1; /* UFS1 indirect block */ ufs2_daddr_t *b_indir2; /* UFS2 indirect block */ struct fs *b_fs; /* super block */ struct cg *b_cg; /* cylinder group */ struct ufs1_dinode *b_dinode1; /* UFS1 inode block */ struct ufs2_dinode *b_dinode2; /* UFS2 inode block */ } b_un; char b_dirty; }; #define IBLK(bp, i) \ ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ (bp)->b_un.b_indir1[i] : (bp)->b_un.b_indir2[i]) #define IBLK_SET(bp, i, val) do { \ if (sblock.fs_magic == FS_UFS1_MAGIC) \ (bp)->b_un.b_indir1[i] = (val); \ else \ (bp)->b_un.b_indir2[i] = (val); \ } while (0) /* * Buffer flags */ #define B_INUSE 0x00000001 /* Buffer is in use */ +/* + * Type of data in buffer + */ +#define BT_UNKNOWN 0 /* Buffer holds a superblock */ +#define BT_SUPERBLK 1 /* Buffer holds a superblock */ +#define BT_CYLGRP 2 /* Buffer holds a cylinder group map */ +#define BT_LEVEL1 3 /* Buffer holds single level indirect */ +#define BT_LEVEL2 4 /* Buffer holds double level indirect */ +#define BT_LEVEL3 5 /* Buffer holds triple level indirect */ +#define BT_EXTATTR 6 /* Buffer holds external attribute data */ +#define BT_INODES 7 /* Buffer holds external attribute data */ +#define BT_DIRDATA 8 /* Buffer holds directory data */ +#define BT_DATA 9 /* Buffer holds user data */ +#define BT_NUMBUFTYPES 10 +#define BT_NAMES { \ + "unknown", \ + "Superblock", \ + "Cylinder Group", \ + "Single Level Indirect", \ + "Double Level Indirect", \ + "Triple Level Indirect", \ + "External Attribute", \ + "Inode Block", \ + "Directory Contents", \ + "User Data" } +long readcnt[BT_NUMBUFTYPES]; +long totalreadcnt[BT_NUMBUFTYPES]; +struct timespec readtime[BT_NUMBUFTYPES]; +struct timespec totalreadtime[BT_NUMBUFTYPES]; +struct timespec startprog; struct bufarea sblk; /* file system superblock */ struct bufarea cgblk; /* cylinder group blocks */ struct bufarea *pdirbp; /* current directory contents */ struct bufarea *pbp; /* current inode block */ #define dirty(bp) do { \ if (fswritefd < 0) \ pfatal("SETTING DIRTY FLAG IN READ_ONLY MODE\n"); \ else \ (bp)->b_dirty = 1; \ } while (0) -#define initbarea(bp) do { \ +#define initbarea(bp, type) do { \ (bp)->b_dirty = 0; \ (bp)->b_bno = (ufs2_daddr_t)-1; \ (bp)->b_flags = 0; \ + (bp)->b_type = type; \ } while (0) #define sbdirty() dirty(&sblk) #define cgdirty() dirty(&cgblk) #define sblock (*sblk.b_un.b_fs) #define cgrp (*cgblk.b_un.b_cg) enum fixstate {DONTKNOW, NOFIX, FIX, IGNORE}; ino_t cursnapshot; struct inodesc { enum fixstate id_fix; /* policy on fixing errors */ int (*id_func)(struct inodesc *); /* function to be applied to blocks of inode */ ino_t id_number; /* inode number described */ ino_t id_parent; /* for DATA nodes, their parent */ ufs_lbn_t id_lbn; /* logical block number of current block */ ufs2_daddr_t id_blkno; /* current block number being examined */ int id_numfrags; /* number of frags contained in block */ off_t id_filesize; /* for DATA nodes, the size of the directory */ ufs2_daddr_t id_entryno;/* for DATA nodes, current entry number */ int id_loc; /* for DATA nodes, current location in dir */ struct direct *id_dirp; /* for DATA nodes, ptr to current entry */ char *id_name; /* for DATA nodes, name to find or enter */ char id_type; /* type of descriptor, DATA or ADDR */ }; /* file types */ #define DATA 1 /* a directory */ #define SNAP 2 /* a snapshot */ #define ADDR 3 /* anything but a directory or a snapshot */ /* * Linked list of duplicate blocks. * * The list is composed of two parts. The first part of the * list (from duplist through the node pointed to by muldup) * contains a single copy of each duplicate block that has been * found. The second part of the list (from muldup to the end) * contains duplicate blocks that have been found more than once. * To check if a block has been found as a duplicate it is only * necessary to search from duplist through muldup. To find the * total number of times that a block has been found as a duplicate * the entire list must be searched for occurrences of the block * in question. The following diagram shows a sample list where * w (found twice), x (found once), y (found three times), and z * (found once) are duplicate block numbers: * * w -> y -> x -> z -> y -> w -> y * ^ ^ * | | * duplist muldup */ struct dups { struct dups *next; ufs2_daddr_t dup; }; struct dups *duplist; /* head of dup list */ struct dups *muldup; /* end of unique duplicate dup block numbers */ /* * Inode cache data structures. */ struct inoinfo { struct inoinfo *i_nexthash; /* next entry in hash chain */ ino_t i_number; /* inode number of this entry */ ino_t i_parent; /* inode number of parent */ ino_t i_dotdot; /* inode number of `..' */ size_t i_isize; /* size of inode */ u_int i_numblks; /* size of block array in bytes */ ufs2_daddr_t i_blks[1]; /* actually longer */ } **inphead, **inpsort; long numdirs, dirhash, listmax, inplast; long countdirs; /* number of directories we actually found */ #define MIBSIZE 3 /* size of fsck sysctl MIBs */ int adjrefcnt[MIBSIZE]; /* MIB command to adjust inode reference cnt */ int adjblkcnt[MIBSIZE]; /* MIB command to adjust inode block count */ int adjndir[MIBSIZE]; /* MIB command to adjust number of directories */ int adjnbfree[MIBSIZE]; /* MIB command to adjust number of free blocks */ int adjnifree[MIBSIZE]; /* MIB command to adjust number of free inodes */ int adjnffree[MIBSIZE]; /* MIB command to adjust number of free frags */ int adjnumclusters[MIBSIZE]; /* MIB command to adjust number of free clusters */ int freefiles[MIBSIZE]; /* MIB command to free a set of files */ int freedirs[MIBSIZE]; /* MIB command to free a set of directories */ int freeblks[MIBSIZE]; /* MIB command to free a set of data blocks */ struct fsck_cmd cmd; /* sysctl file system update commands */ char snapname[BUFSIZ]; /* when doing snapshots, the name of the file */ char *cdevname; /* name of device being checked */ long dev_bsize; /* computed value of DEV_BSIZE */ long secsize; /* actual disk sector size */ u_int real_dev_bsize; /* actual disk sector size, not overriden */ char nflag; /* assume a no response */ char yflag; /* assume a yes response */ int bkgrdflag; /* use a snapshot to run on an active system */ int bflag; /* location of alternate super block */ int debug; /* output debugging info */ int Eflag; /* zero out empty data blocks */ int inoopt; /* trim out unused inodes */ char ckclean; /* only do work if not cleanly unmounted */ int cvtlevel; /* convert to newer file system format */ int bkgrdcheck; /* determine if background check is possible */ int bkgrdsumadj; /* whether the kernel have ability to adjust superblock summary */ char usedsoftdep; /* just fix soft dependency inconsistencies */ char preen; /* just fix normal inconsistencies */ char rerun; /* rerun fsck. Only used in non-preen mode */ int returntosingle; /* 1 => return to single user mode on exit */ char resolved; /* cleared if unresolved changes => not clean */ char havesb; /* superblock has been read */ char skipclean; /* skip clean file systems if preening */ int fsmodified; /* 1 => write done to file system */ int fsreadfd; /* file descriptor for reading file system */ int fswritefd; /* file descriptor for writing file system */ ufs2_daddr_t maxfsblock; /* number of blocks in the file system */ char *blockmap; /* ptr to primary blk allocation map */ ino_t maxino; /* number of inodes in file system */ ino_t lfdir; /* lost & found directory inode number */ const char *lfname; /* lost & found directory name */ int lfmode; /* lost & found directory creation mode */ ufs2_daddr_t n_blks; /* number of blocks in use */ ino_t n_files; /* number of files in use */ volatile sig_atomic_t got_siginfo; /* received a SIGINFO */ volatile sig_atomic_t got_sigalarm; /* received a SIGALRM */ #define clearinode(dp) \ if (sblock.fs_magic == FS_UFS1_MAGIC) { \ (dp)->dp1 = ufs1_zino; \ } else { \ (dp)->dp2 = ufs2_zino; \ } struct ufs1_dinode ufs1_zino; struct ufs2_dinode ufs2_zino; #define setbmap(blkno) setbit(blockmap, blkno) #define testbmap(blkno) isset(blockmap, blkno) #define clrbmap(blkno) clrbit(blockmap, blkno) #define STOP 0x01 #define SKIP 0x02 #define KEEPON 0x04 #define ALTERED 0x08 #define FOUND 0x10 #define EEXIT 8 /* Standard error exit. */ struct fstab; void adjust(struct inodesc *, int lcnt); ufs2_daddr_t allocblk(long frags); ino_t allocdir(ino_t parent, ino_t request, int mode); ino_t allocino(ino_t request, int type); void blkerror(ino_t ino, const char *type, ufs2_daddr_t blk); char *blockcheck(char *name); int blread(int fd, char *buf, ufs2_daddr_t blk, long size); void bufinit(void); void blwrite(int fd, char *buf, ufs2_daddr_t blk, ssize_t size); void blerase(int fd, ufs2_daddr_t blk, long size); void cacheino(union dinode *dp, ino_t inumber); void catch(int); void catchquit(int); int changeino(ino_t dir, const char *name, ino_t newnum); int check_cgmagic(int cg, struct cg *cgp); int chkrange(ufs2_daddr_t blk, int cnt); void ckfini(int markclean); int ckinode(union dinode *dp, struct inodesc *); void clri(struct inodesc *, const char *type, int flag); int clearentry(struct inodesc *); void direrror(ino_t ino, const char *errmesg); int dirscan(struct inodesc *); int dofix(struct inodesc *, const char *msg); int eascan(struct inodesc *, struct ufs2_dinode *dp); void fileerror(ino_t cwd, ino_t ino, const char *errmesg); +void finalIOstats(void); int findino(struct inodesc *); int findname(struct inodesc *); void flush(int fd, struct bufarea *bp); void freeblk(ufs2_daddr_t blkno, long frags); void freeino(ino_t ino); void freeinodebuf(void); int ftypeok(union dinode *dp); void getblk(struct bufarea *bp, ufs2_daddr_t blk, long size); -struct bufarea *getdatablk(ufs2_daddr_t blkno, long size); +struct bufarea *getdatablk(ufs2_daddr_t blkno, long size, int type); struct inoinfo *getinoinfo(ino_t inumber); union dinode *getnextinode(ino_t inumber, int rebuildcg); void getpathname(char *namebuf, ino_t curdir, ino_t ino); union dinode *ginode(ino_t inumber); void infohandler(int sig); void alarmhandler(int sig); void inocleanup(void); void inodirty(void); struct inostat *inoinfo(ino_t inum); +void IOstats(char *what); int linkup(ino_t orphan, ino_t parentdir, char *name); int makeentry(ino_t parent, ino_t ino, const char *name); void panic(const char *fmt, ...) __printflike(1, 2); void pass1(void); void pass1b(void); int pass1check(struct inodesc *); void pass2(void); void pass3(void); void pass4(void); int pass4check(struct inodesc *); void pass5(void); void pfatal(const char *fmt, ...) __printflike(1, 2); void pinode(ino_t ino); void propagate(void); void pwarn(const char *fmt, ...) __printflike(1, 2); int readsb(int listerr); int reply(const char *question); void rwerror(const char *mesg, ufs2_daddr_t blk); void sblock_init(void); void setinodebuf(ino_t); int setup(char *dev); void gjournal_check(const char *filesys); int suj_check(const char *filesys); void update_maps(struct cg *, struct cg*, int); #endif /* !_FSCK_H_ */ Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsutil.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsutil.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/fsutil.c (revision 247227) @@ -1,796 +1,919 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char sccsid[] = "@(#)utilities.c 8.6 (Berkeley) 5/19/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include "fsck.h" static void slowio_start(void); static void slowio_end(void); +static void printIOstats(void); -long diskreads, totalreads; /* Disk cache statistics */ +static long diskreads, totaldiskreads, totalreads; /* Disk cache statistics */ +static struct timespec startpass, finishpass; struct timeval slowio_starttime; int slowio_delay_usec = 10000; /* Initial IO delay for background fsck */ int slowio_pollcnt; static TAILQ_HEAD(buflist, bufarea) bufhead; /* head of buffer cache list */ static int numbufs; /* size of buffer cache */ +static char *buftype[BT_NUMBUFTYPES] = BT_NAMES; int ftypeok(union dinode *dp) { switch (DIP(dp, di_mode) & IFMT) { case IFDIR: case IFREG: case IFBLK: case IFCHR: case IFLNK: case IFSOCK: case IFIFO: return (1); default: if (debug) printf("bad file type 0%o\n", DIP(dp, di_mode)); return (0); } } int reply(const char *question) { int persevere; char c; if (preen) pfatal("INTERNAL ERROR: GOT TO reply()"); persevere = !strcmp(question, "CONTINUE"); printf("\n"); if (!persevere && (nflag || (fswritefd < 0 && bkgrdflag == 0))) { printf("%s? no\n\n", question); resolved = 0; return (0); } if (yflag || (persevere && nflag)) { printf("%s? yes\n\n", question); return (1); } do { printf("%s? [yn] ", question); (void) fflush(stdout); c = getc(stdin); while (c != '\n' && getc(stdin) != '\n') { if (feof(stdin)) { resolved = 0; return (0); } } } while (c != 'y' && c != 'Y' && c != 'n' && c != 'N'); printf("\n"); if (c == 'y' || c == 'Y') return (1); resolved = 0; return (0); } /* * Look up state information for an inode. */ struct inostat * inoinfo(ino_t inum) { static struct inostat unallocated = { USTATE, 0, 0 }; struct inostatlist *ilp; int iloff; if (inum > maxino) errx(EEXIT, "inoinfo: inumber %ju out of range", (uintmax_t)inum); ilp = &inostathead[inum / sblock.fs_ipg]; iloff = inum % sblock.fs_ipg; if (iloff >= ilp->il_numalloced) return (&unallocated); return (&ilp->il_stat[iloff]); } /* * Malloc buffers and set up cache. */ void bufinit(void) { struct bufarea *bp; long bufcnt, i; char *bufp; pbp = pdirbp = (struct bufarea *)0; bufp = malloc((unsigned int)sblock.fs_bsize); if (bufp == 0) errx(EEXIT, "cannot allocate buffer pool"); cgblk.b_un.b_buf = bufp; - initbarea(&cgblk); + initbarea(&cgblk, BT_CYLGRP); TAILQ_INIT(&bufhead); bufcnt = MAXBUFS; if (bufcnt < MINBUFS) bufcnt = MINBUFS; for (i = 0; i < bufcnt; i++) { bp = (struct bufarea *)malloc(sizeof(struct bufarea)); bufp = malloc((unsigned int)sblock.fs_bsize); if (bp == NULL || bufp == NULL) { if (i >= MINBUFS) break; errx(EEXIT, "cannot allocate buffer pool"); } bp->b_un.b_buf = bufp; TAILQ_INSERT_HEAD(&bufhead, bp, b_list); - initbarea(bp); + initbarea(bp, BT_UNKNOWN); } numbufs = i; /* save number of buffers */ + for (i = 0; i < BT_NUMBUFTYPES; i++) { + readtime[i].tv_sec = totalreadtime[i].tv_sec = 0; + readtime[i].tv_nsec = totalreadtime[i].tv_nsec = 0; + readcnt[i] = totalreadcnt[i] = 0; + } } /* * Manage a cache of directory blocks. */ struct bufarea * -getdatablk(ufs2_daddr_t blkno, long size) +getdatablk(ufs2_daddr_t blkno, long size, int type) { struct bufarea *bp; TAILQ_FOREACH(bp, &bufhead, b_list) if (bp->b_bno == fsbtodb(&sblock, blkno)) goto foundit; TAILQ_FOREACH_REVERSE(bp, &bufhead, buflist, b_list) if ((bp->b_flags & B_INUSE) == 0) break; if (bp == NULL) errx(EEXIT, "deadlocked buffer pool"); + bp->b_type = type; getblk(bp, blkno, size); /* fall through */ foundit: + if (debug && bp->b_type != type) + printf("Buffer type changed from %s to %s\n", + buftype[bp->b_type], buftype[type]); TAILQ_REMOVE(&bufhead, bp, b_list); TAILQ_INSERT_HEAD(&bufhead, bp, b_list); bp->b_flags |= B_INUSE; return (bp); } +/* + * Timespec operations (from ). + */ +#define timespecsub(vvp, uvp) \ + do { \ + (vvp)->tv_sec -= (uvp)->tv_sec; \ + (vvp)->tv_nsec -= (uvp)->tv_nsec; \ + if ((vvp)->tv_nsec < 0) { \ + (vvp)->tv_sec--; \ + (vvp)->tv_nsec += 1000000000; \ + } \ + } while (0) +#define timespecadd(vvp, uvp) \ + do { \ + (vvp)->tv_sec += (uvp)->tv_sec; \ + (vvp)->tv_nsec += (uvp)->tv_nsec; \ + if ((vvp)->tv_nsec >= 1000000000) { \ + (vvp)->tv_sec++; \ + (vvp)->tv_nsec -= 1000000000; \ + } \ + } while (0) + void getblk(struct bufarea *bp, ufs2_daddr_t blk, long size) { ufs2_daddr_t dblk; + struct timespec start, finish; - totalreads++; dblk = fsbtodb(&sblock, blk); - if (bp->b_bno != dblk) { + if (bp->b_bno == dblk) { + totalreads++; + } else { flush(fswritefd, bp); - diskreads++; + if (debug) { + readcnt[bp->b_type]++; + clock_gettime(CLOCK_REALTIME_PRECISE, &start); + } bp->b_errs = blread(fsreadfd, bp->b_un.b_buf, dblk, size); + if (debug) { + clock_gettime(CLOCK_REALTIME_PRECISE, &finish); + timespecsub(&finish, &start); + timespecadd(&readtime[bp->b_type], &finish); + } bp->b_bno = dblk; bp->b_size = size; } } void flush(int fd, struct bufarea *bp) { int i, j; if (!bp->b_dirty) return; bp->b_dirty = 0; if (fswritefd < 0) { pfatal("WRITING IN READ_ONLY MODE.\n"); return; } if (bp->b_errs != 0) pfatal("WRITING %sZERO'ED BLOCK %lld TO DISK\n", (bp->b_errs == bp->b_size / dev_bsize) ? "" : "PARTIALLY ", (long long)bp->b_bno); bp->b_errs = 0; blwrite(fd, bp->b_un.b_buf, bp->b_bno, bp->b_size); if (bp != &sblk) return; for (i = 0, j = 0; i < sblock.fs_cssize; i += sblock.fs_bsize, j++) { blwrite(fswritefd, (char *)sblock.fs_csp + i, fsbtodb(&sblock, sblock.fs_csaddr + j * sblock.fs_frag), sblock.fs_cssize - i < sblock.fs_bsize ? sblock.fs_cssize - i : sblock.fs_bsize); } } void rwerror(const char *mesg, ufs2_daddr_t blk) { if (bkgrdcheck) exit(EEXIT); if (preen == 0) printf("\n"); pfatal("CANNOT %s: %ld", mesg, (long)blk); if (reply("CONTINUE") == 0) exit(EEXIT); } void ckfini(int markclean) { struct bufarea *bp, *nbp; int ofsmodified, cnt; if (bkgrdflag) { unlink(snapname); if ((!(sblock.fs_flags & FS_UNCLEAN)) != markclean) { cmd.value = FS_UNCLEAN; cmd.size = markclean ? -1 : 1; if (sysctlbyname("vfs.ffs.setflags", 0, 0, &cmd, sizeof cmd) == -1) rwerror("SET FILE SYSTEM FLAGS", FS_UNCLEAN); if (!preen) { printf("\n***** FILE SYSTEM MARKED %s *****\n", markclean ? "CLEAN" : "DIRTY"); if (!markclean) rerun = 1; } } else if (!preen && !markclean) { printf("\n***** FILE SYSTEM STILL DIRTY *****\n"); rerun = 1; } } if (debug && totalreads > 0) printf("cache with %d buffers missed %ld of %ld (%d%%)\n", - numbufs, diskreads, totalreads, - (int)(diskreads * 100 / totalreads)); + numbufs, totaldiskreads, totalreads, + (int)(totaldiskreads * 100 / totalreads)); if (fswritefd < 0) { (void)close(fsreadfd); return; } flush(fswritefd, &sblk); if (havesb && cursnapshot == 0 && sblock.fs_magic == FS_UFS2_MAGIC && sblk.b_bno != sblock.fs_sblockloc / dev_bsize && !preen && reply("UPDATE STANDARD SUPERBLOCK")) { sblk.b_bno = sblock.fs_sblockloc / dev_bsize; sbdirty(); flush(fswritefd, &sblk); } flush(fswritefd, &cgblk); free(cgblk.b_un.b_buf); cnt = 0; TAILQ_FOREACH_REVERSE_SAFE(bp, &bufhead, buflist, b_list, nbp) { TAILQ_REMOVE(&bufhead, bp, b_list); cnt++; flush(fswritefd, bp); free(bp->b_un.b_buf); free((char *)bp); } if (numbufs != cnt) errx(EEXIT, "panic: lost %d buffers", numbufs - cnt); pbp = pdirbp = (struct bufarea *)0; if (cursnapshot == 0 && sblock.fs_clean != markclean) { if ((sblock.fs_clean = markclean) != 0) { sblock.fs_flags &= ~(FS_UNCLEAN | FS_NEEDSFSCK); sblock.fs_pendingblocks = 0; sblock.fs_pendinginodes = 0; } sbdirty(); ofsmodified = fsmodified; flush(fswritefd, &sblk); fsmodified = ofsmodified; if (!preen) { printf("\n***** FILE SYSTEM MARKED %s *****\n", markclean ? "CLEAN" : "DIRTY"); if (!markclean) rerun = 1; } } else if (!preen) { if (markclean) { printf("\n***** FILE SYSTEM IS CLEAN *****\n"); } else { printf("\n***** FILE SYSTEM STILL DIRTY *****\n"); rerun = 1; } } (void)close(fsreadfd); (void)close(fswritefd); } +/* + * Print out I/O statistics. + */ +void +IOstats(char *what) +{ + int i; + + if (debug == 0) + return; + if (diskreads == 0) { + printf("%s: no I/O\n\n", what); + return; + } + if (startpass.tv_sec == 0) + startpass = startprog; + printf("%s: I/O statistics\n", what); + printIOstats(); + totaldiskreads += diskreads; + diskreads = 0; + for (i = 0; i < BT_NUMBUFTYPES; i++) { + timespecadd(&totalreadtime[i], &readtime[i]); + totalreadcnt[i] += readcnt[i]; + readtime[i].tv_sec = readtime[i].tv_nsec = 0; + readcnt[i] = 0; + } + clock_gettime(CLOCK_REALTIME_PRECISE, &startpass); +} + +void +finalIOstats(void) +{ + int i; + + if (debug == 0) + return; + printf("Final I/O statistics\n"); + totaldiskreads += diskreads; + diskreads = totaldiskreads; + startpass = startprog; + for (i = 0; i < BT_NUMBUFTYPES; i++) { + timespecadd(&totalreadtime[i], &readtime[i]); + totalreadcnt[i] += readcnt[i]; + readtime[i] = totalreadtime[i]; + readcnt[i] = totalreadcnt[i]; + } + printIOstats(); +} + +static void printIOstats(void) +{ + long long msec, totalmsec; + int i; + + clock_gettime(CLOCK_REALTIME_PRECISE, &finishpass); + timespecsub(&finishpass, &startpass); + printf("Running time: %ld msec\n", + finishpass.tv_sec * 1000 + finishpass.tv_nsec / 1000000); + printf("buffer reads by type:\n"); + for (totalmsec = 0, i = 0; i < BT_NUMBUFTYPES; i++) + totalmsec += readtime[i].tv_sec * 1000 + + readtime[i].tv_nsec / 1000000; + if (totalmsec == 0) + totalmsec = 1; + for (i = 0; i < BT_NUMBUFTYPES; i++) { + if (readcnt[i] == 0) + continue; + msec = readtime[i].tv_sec * 1000 + readtime[i].tv_nsec / 1000000; + printf("%21s:%8ld %2ld.%ld%% %8lld msec %2lld.%lld%%\n", + buftype[i], readcnt[i], readcnt[i] * 100 / diskreads, + (readcnt[i] * 1000 / diskreads) % 10, msec, + msec * 100 / totalmsec, (msec * 1000 / totalmsec) % 10); + } + printf("\n"); +} + int blread(int fd, char *buf, ufs2_daddr_t blk, long size) { char *cp; int i, errs; off_t offset; offset = blk; offset *= dev_bsize; if (bkgrdflag) slowio_start(); + totalreads++; + diskreads++; if (lseek(fd, offset, 0) < 0) rwerror("SEEK BLK", blk); else if (read(fd, buf, (int)size) == size) { if (bkgrdflag) slowio_end(); return (0); } rwerror("READ BLK", blk); if (lseek(fd, offset, 0) < 0) rwerror("SEEK BLK", blk); errs = 0; memset(buf, 0, (size_t)size); printf("THE FOLLOWING DISK SECTORS COULD NOT BE READ:"); for (cp = buf, i = 0; i < size; i += secsize, cp += secsize) { if (read(fd, cp, (int)secsize) != secsize) { (void)lseek(fd, offset + i + secsize, 0); if (secsize != dev_bsize && dev_bsize != 1) printf(" %jd (%jd),", (intmax_t)(blk * dev_bsize + i) / secsize, (intmax_t)blk + i / dev_bsize); else printf(" %jd,", (intmax_t)blk + i / dev_bsize); errs++; } } printf("\n"); if (errs) resolved = 0; return (errs); } void blwrite(int fd, char *buf, ufs2_daddr_t blk, ssize_t size) { int i; char *cp; off_t offset; if (fd < 0) return; offset = blk; offset *= dev_bsize; if (lseek(fd, offset, 0) < 0) rwerror("SEEK BLK", blk); else if (write(fd, buf, size) == size) { fsmodified = 1; return; } resolved = 0; rwerror("WRITE BLK", blk); if (lseek(fd, offset, 0) < 0) rwerror("SEEK BLK", blk); printf("THE FOLLOWING SECTORS COULD NOT BE WRITTEN:"); for (cp = buf, i = 0; i < size; i += dev_bsize, cp += dev_bsize) if (write(fd, cp, dev_bsize) != dev_bsize) { (void)lseek(fd, offset + i + dev_bsize, 0); printf(" %jd,", (intmax_t)blk + i / dev_bsize); } printf("\n"); return; } void blerase(int fd, ufs2_daddr_t blk, long size) { off_t ioarg[2]; if (fd < 0) return; ioarg[0] = blk * dev_bsize; ioarg[1] = size; ioctl(fd, DIOCGDELETE, ioarg); /* we don't really care if we succeed or not */ return; } /* * Verify cylinder group's magic number and other parameters. If the * test fails, offer an option to rebuild the whole cylinder group. */ int check_cgmagic(int cg, struct cg *cgp) { /* * Extended cylinder group checks. */ if (cg_chkmagic(cgp) && ((sblock.fs_magic == FS_UFS1_MAGIC && cgp->cg_old_niblk == sblock.fs_ipg && cgp->cg_ndblk <= sblock.fs_fpg && cgp->cg_old_ncyl <= sblock.fs_old_cpg) || (sblock.fs_magic == FS_UFS2_MAGIC && cgp->cg_niblk == sblock.fs_ipg && cgp->cg_ndblk <= sblock.fs_fpg && cgp->cg_initediblk <= sblock.fs_ipg))) { return (1); } pfatal("CYLINDER GROUP %d: BAD MAGIC NUMBER", cg); if (!reply("REBUILD CYLINDER GROUP")) { printf("YOU WILL NEED TO RERUN FSCK.\n"); rerun = 1; return (1); } /* * Zero out the cylinder group and then initialize critical fields. * Bit maps and summaries will be recalculated by later passes. */ memset(cgp, 0, (size_t)sblock.fs_cgsize); cgp->cg_magic = CG_MAGIC; cgp->cg_cgx = cg; cgp->cg_niblk = sblock.fs_ipg; cgp->cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? sblock.fs_ipg : 2 * INOPB(&sblock); if (cgbase(&sblock, cg) + sblock.fs_fpg < sblock.fs_size) cgp->cg_ndblk = sblock.fs_fpg; else cgp->cg_ndblk = sblock.fs_size - cgbase(&sblock, cg); cgp->cg_iusedoff = &cgp->cg_space[0] - (u_char *)(&cgp->cg_firstfield); if (sblock.fs_magic == FS_UFS1_MAGIC) { cgp->cg_niblk = 0; cgp->cg_initediblk = 0; cgp->cg_old_ncyl = sblock.fs_old_cpg; cgp->cg_old_niblk = sblock.fs_ipg; cgp->cg_old_btotoff = cgp->cg_iusedoff; cgp->cg_old_boff = cgp->cg_old_btotoff + sblock.fs_old_cpg * sizeof(int32_t); cgp->cg_iusedoff = cgp->cg_old_boff + sblock.fs_old_cpg * sizeof(u_int16_t); } cgp->cg_freeoff = cgp->cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); cgp->cg_nextfreeoff = cgp->cg_freeoff + howmany(sblock.fs_fpg,CHAR_BIT); if (sblock.fs_contigsumsize > 0) { cgp->cg_nclusterblks = cgp->cg_ndblk / sblock.fs_frag; cgp->cg_clustersumoff = roundup(cgp->cg_nextfreeoff, sizeof(u_int32_t)); cgp->cg_clustersumoff -= sizeof(u_int32_t); cgp->cg_clusteroff = cgp->cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); cgp->cg_nextfreeoff = cgp->cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); } cgdirty(); return (0); } /* * allocate a data block with the specified number of fragments */ ufs2_daddr_t allocblk(long frags) { int i, j, k, cg, baseblk; struct cg *cgp = &cgrp; if (frags <= 0 || frags > sblock.fs_frag) return (0); for (i = 0; i < maxfsblock - sblock.fs_frag; i += sblock.fs_frag) { for (j = 0; j <= sblock.fs_frag - frags; j++) { if (testbmap(i + j)) continue; for (k = 1; k < frags; k++) if (testbmap(i + j + k)) break; if (k < frags) { j += k; continue; } cg = dtog(&sblock, i + j); getblk(&cgblk, cgtod(&sblock, cg), sblock.fs_cgsize); if (!check_cgmagic(cg, cgp)) return (0); baseblk = dtogd(&sblock, i + j); for (k = 0; k < frags; k++) { setbmap(i + j + k); clrbit(cg_blksfree(cgp), baseblk + k); } n_blks += frags; if (frags == sblock.fs_frag) cgp->cg_cs.cs_nbfree--; else cgp->cg_cs.cs_nffree -= frags; cgdirty(); return (i + j); } } return (0); } /* * Free a previously allocated block */ void freeblk(ufs2_daddr_t blkno, long frags) { struct inodesc idesc; idesc.id_blkno = blkno; idesc.id_numfrags = frags; (void)pass4check(&idesc); } /* Slow down IO so as to leave some disk bandwidth for other processes */ void slowio_start() { /* Delay one in every 8 operations */ slowio_pollcnt = (slowio_pollcnt + 1) & 7; if (slowio_pollcnt == 0) { gettimeofday(&slowio_starttime, NULL); } } void slowio_end() { struct timeval tv; int delay_usec; if (slowio_pollcnt != 0) return; /* Update the slowdown interval. */ gettimeofday(&tv, NULL); delay_usec = (tv.tv_sec - slowio_starttime.tv_sec) * 1000000 + (tv.tv_usec - slowio_starttime.tv_usec); if (delay_usec < 64) delay_usec = 64; if (delay_usec > 2500000) delay_usec = 2500000; slowio_delay_usec = (slowio_delay_usec * 63 + delay_usec) >> 6; /* delay by 8 times the average IO delay */ if (slowio_delay_usec > 64) usleep(slowio_delay_usec * 8); } /* * Find a pathname */ void getpathname(char *namebuf, ino_t curdir, ino_t ino) { int len; char *cp; struct inodesc idesc; static int busy = 0; if (curdir == ino && ino == ROOTINO) { (void)strcpy(namebuf, "/"); return; } if (busy || !INO_IS_DVALID(curdir)) { (void)strcpy(namebuf, "?"); return; } busy = 1; memset(&idesc, 0, sizeof(struct inodesc)); idesc.id_type = DATA; idesc.id_fix = IGNORE; cp = &namebuf[MAXPATHLEN - 1]; *cp = '\0'; if (curdir != ino) { idesc.id_parent = curdir; goto namelookup; } while (ino != ROOTINO) { idesc.id_number = ino; idesc.id_func = findino; idesc.id_name = strdup(".."); if ((ckinode(ginode(ino), &idesc) & FOUND) == 0) break; namelookup: idesc.id_number = idesc.id_parent; idesc.id_parent = ino; idesc.id_func = findname; idesc.id_name = namebuf; if ((ckinode(ginode(idesc.id_number), &idesc)&FOUND) == 0) break; len = strlen(namebuf); cp -= len; memmove(cp, namebuf, (size_t)len); *--cp = '/'; if (cp < &namebuf[MAXNAMLEN]) break; ino = idesc.id_number; } busy = 0; if (ino != ROOTINO) *--cp = '?'; memmove(namebuf, cp, (size_t)(&namebuf[MAXPATHLEN] - cp)); } void catch(int sig __unused) { ckfini(0); exit(12); } /* * When preening, allow a single quit to signal * a special exit after file system checks complete * so that reboot sequence may be interrupted. */ void catchquit(int sig __unused) { printf("returning to single-user after file system check\n"); returntosingle = 1; (void)signal(SIGQUIT, SIG_DFL); } /* * determine whether an inode should be fixed. */ int dofix(struct inodesc *idesc, const char *msg) { switch (idesc->id_fix) { case DONTKNOW: if (idesc->id_type == DATA) direrror(idesc->id_number, msg); else pwarn("%s", msg); if (preen) { printf(" (SALVAGED)\n"); idesc->id_fix = FIX; return (ALTERED); } if (reply("SALVAGE") == 0) { idesc->id_fix = NOFIX; return (0); } idesc->id_fix = FIX; return (ALTERED); case FIX: return (ALTERED); case NOFIX: case IGNORE: return (0); default: errx(EEXIT, "UNKNOWN INODESC FIX MODE %d", idesc->id_fix); } /* NOTREACHED */ return (0); } #include /* * An unexpected inconsistency occurred. * Die if preening or file system is running with soft dependency protocol, * otherwise just print message and continue. */ void pfatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (!preen) { (void)vfprintf(stdout, fmt, ap); va_end(ap); if (usedsoftdep) (void)fprintf(stdout, "\nUNEXPECTED SOFT UPDATE INCONSISTENCY\n"); /* * Force foreground fsck to clean up inconsistency. */ if (bkgrdflag) { cmd.value = FS_NEEDSFSCK; cmd.size = 1; if (sysctlbyname("vfs.ffs.setflags", 0, 0, &cmd, sizeof cmd) == -1) pwarn("CANNOT SET FS_NEEDSFSCK FLAG\n"); fprintf(stdout, "CANNOT RUN IN BACKGROUND\n"); ckfini(0); exit(EEXIT); } return; } if (cdevname == NULL) cdevname = strdup("fsck"); (void)fprintf(stdout, "%s: ", cdevname); (void)vfprintf(stdout, fmt, ap); (void)fprintf(stdout, "\n%s: UNEXPECTED%sINCONSISTENCY; RUN fsck MANUALLY.\n", cdevname, usedsoftdep ? " SOFT UPDATE " : " "); /* * Force foreground fsck to clean up inconsistency. */ if (bkgrdflag) { cmd.value = FS_NEEDSFSCK; cmd.size = 1; if (sysctlbyname("vfs.ffs.setflags", 0, 0, &cmd, sizeof cmd) == -1) pwarn("CANNOT SET FS_NEEDSFSCK FLAG\n"); } ckfini(0); exit(EEXIT); } /* * Pwarn just prints a message when not preening or running soft dependency * protocol, or a warning (preceded by filename) when preening. */ void pwarn(const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (preen) (void)fprintf(stdout, "%s: ", cdevname); (void)vfprintf(stdout, fmt, ap); va_end(ap); } /* * Stub for routines from kernel. */ void panic(const char *fmt, ...) { va_list ap; va_start(ap, fmt); pfatal("INTERNAL INCONSISTENCY:"); (void)vfprintf(stdout, fmt, ap); va_end(ap); exit(EEXIT); } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/inode.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/inode.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/inode.c (revision 247227) @@ -1,731 +1,732 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char sccsid[] = "@(#)inode.c 8.8 (Berkeley) 4/28/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include "fsck.h" static ino_t startinum; -static int iblock(struct inodesc *, long ilevel, off_t isize); +static int iblock(struct inodesc *, long ilevel, off_t isize, int type); int ckinode(union dinode *dp, struct inodesc *idesc) { off_t remsize, sizepb; int i, offset, ret; union dinode dino; ufs2_daddr_t ndb; mode_t mode; char pathbuf[MAXPATHLEN + 1]; if (idesc->id_fix != IGNORE) idesc->id_fix = DONTKNOW; idesc->id_lbn = -1; idesc->id_entryno = 0; idesc->id_filesize = DIP(dp, di_size); mode = DIP(dp, di_mode) & IFMT; if (mode == IFBLK || mode == IFCHR || (mode == IFLNK && DIP(dp, di_size) < (unsigned)sblock.fs_maxsymlinklen)) return (KEEPON); if (sblock.fs_magic == FS_UFS1_MAGIC) dino.dp1 = dp->dp1; else dino.dp2 = dp->dp2; ndb = howmany(DIP(&dino, di_size), sblock.fs_bsize); for (i = 0; i < NDADDR; i++) { idesc->id_lbn++; if (--ndb == 0 && (offset = blkoff(&sblock, DIP(&dino, di_size))) != 0) idesc->id_numfrags = numfrags(&sblock, fragroundup(&sblock, offset)); else idesc->id_numfrags = sblock.fs_frag; if (DIP(&dino, di_db[i]) == 0) { if (idesc->id_type == DATA && ndb >= 0) { /* An empty block in a directory XXX */ getpathname(pathbuf, idesc->id_number, idesc->id_number); pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS", pathbuf); if (reply("ADJUST LENGTH") == 1) { dp = ginode(idesc->id_number); DIP_SET(dp, di_size, i * sblock.fs_bsize); printf( "YOU MUST RERUN FSCK AFTERWARDS\n"); rerun = 1; inodirty(); } } continue; } idesc->id_blkno = DIP(&dino, di_db[i]); if (idesc->id_type != DATA) ret = (*idesc->id_func)(idesc); else ret = dirscan(idesc); if (ret & STOP) return (ret); } idesc->id_numfrags = sblock.fs_frag; remsize = DIP(&dino, di_size) - sblock.fs_bsize * NDADDR; sizepb = sblock.fs_bsize; for (i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); if (DIP(&dino, di_ib[i])) { idesc->id_blkno = DIP(&dino, di_ib[i]); - ret = iblock(idesc, i + 1, remsize); + ret = iblock(idesc, i + 1, remsize, BT_LEVEL1 + i); if (ret & STOP) return (ret); } else { idesc->id_lbn += sizepb / sblock.fs_bsize; if (idesc->id_type == DATA && remsize > 0) { /* An empty block in a directory XXX */ getpathname(pathbuf, idesc->id_number, idesc->id_number); pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS", pathbuf); if (reply("ADJUST LENGTH") == 1) { dp = ginode(idesc->id_number); DIP_SET(dp, di_size, DIP(dp, di_size) - remsize); remsize = 0; printf( "YOU MUST RERUN FSCK AFTERWARDS\n"); rerun = 1; inodirty(); break; } } } remsize -= sizepb; } return (KEEPON); } static int -iblock(struct inodesc *idesc, long ilevel, off_t isize) +iblock(struct inodesc *idesc, long ilevel, off_t isize, int type) { struct bufarea *bp; int i, n, (*func)(struct inodesc *), nif; off_t sizepb; char buf[BUFSIZ]; char pathbuf[MAXPATHLEN + 1]; union dinode *dp; if (idesc->id_type != DATA) { func = idesc->id_func; if (((n = (*func)(idesc)) & KEEPON) == 0) return (n); } else func = dirscan; if (chkrange(idesc->id_blkno, idesc->id_numfrags)) return (SKIP); - bp = getdatablk(idesc->id_blkno, sblock.fs_bsize); + bp = getdatablk(idesc->id_blkno, sblock.fs_bsize, type); ilevel--; for (sizepb = sblock.fs_bsize, i = 0; i < ilevel; i++) sizepb *= NINDIR(&sblock); if (howmany(isize, sizepb) > NINDIR(&sblock)) nif = NINDIR(&sblock); else nif = howmany(isize, sizepb); if (idesc->id_func == pass1check && nif < NINDIR(&sblock)) { for (i = nif; i < NINDIR(&sblock); i++) { if (IBLK(bp, i) == 0) continue; (void)sprintf(buf, "PARTIALLY TRUNCATED INODE I=%lu", (u_long)idesc->id_number); if (preen) { pfatal("%s", buf); } else if (dofix(idesc, buf)) { IBLK_SET(bp, i, 0); dirty(bp); } } flush(fswritefd, bp); } for (i = 0; i < nif; i++) { if (ilevel == 0) idesc->id_lbn++; if (IBLK(bp, i)) { idesc->id_blkno = IBLK(bp, i); if (ilevel == 0) n = (*func)(idesc); else - n = iblock(idesc, ilevel, isize); + n = iblock(idesc, ilevel, isize, type); if (n & STOP) { bp->b_flags &= ~B_INUSE; return (n); } } else { if (idesc->id_type == DATA && isize > 0) { /* An empty block in a directory XXX */ getpathname(pathbuf, idesc->id_number, idesc->id_number); pfatal("DIRECTORY %s: CONTAINS EMPTY BLOCKS", pathbuf); if (reply("ADJUST LENGTH") == 1) { dp = ginode(idesc->id_number); DIP_SET(dp, di_size, DIP(dp, di_size) - isize); isize = 0; printf( "YOU MUST RERUN FSCK AFTERWARDS\n"); rerun = 1; inodirty(); bp->b_flags &= ~B_INUSE; return(STOP); } } } isize -= sizepb; } bp->b_flags &= ~B_INUSE; return (KEEPON); } /* * Check that a block in a legal block number. * Return 0 if in range, 1 if out of range. */ int chkrange(ufs2_daddr_t blk, int cnt) { int c; if (cnt <= 0 || blk <= 0 || blk > maxfsblock || cnt - 1 > maxfsblock - blk) return (1); if (cnt > sblock.fs_frag || fragnum(&sblock, blk) + cnt > sblock.fs_frag) { if (debug) printf("bad size: blk %ld, offset %i, size %d\n", (long)blk, (int)fragnum(&sblock, blk), cnt); return (1); } c = dtog(&sblock, blk); if (blk < cgdmin(&sblock, c)) { if ((blk + cnt) > cgsblock(&sblock, c)) { if (debug) { printf("blk %ld < cgdmin %ld;", (long)blk, (long)cgdmin(&sblock, c)); printf(" blk + cnt %ld > cgsbase %ld\n", (long)(blk + cnt), (long)cgsblock(&sblock, c)); } return (1); } } else { if ((blk + cnt) > cgbase(&sblock, c+1)) { if (debug) { printf("blk %ld >= cgdmin %ld;", (long)blk, (long)cgdmin(&sblock, c)); printf(" blk + cnt %ld > sblock.fs_fpg %ld\n", (long)(blk + cnt), (long)sblock.fs_fpg); } return (1); } } return (0); } /* * General purpose interface for reading inodes. */ union dinode * ginode(ino_t inumber) { ufs2_daddr_t iblk; if (inumber < ROOTINO || inumber > maxino) errx(EEXIT, "bad inode number %ju to ginode", (uintmax_t)inumber); if (startinum == 0 || inumber < startinum || inumber >= startinum + INOPB(&sblock)) { iblk = ino_to_fsba(&sblock, inumber); if (pbp != 0) pbp->b_flags &= ~B_INUSE; - pbp = getdatablk(iblk, sblock.fs_bsize); + pbp = getdatablk(iblk, sblock.fs_bsize, BT_INODES); startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock); } if (sblock.fs_magic == FS_UFS1_MAGIC) return ((union dinode *) &pbp->b_un.b_dinode1[inumber % INOPB(&sblock)]); return ((union dinode *)&pbp->b_un.b_dinode2[inumber % INOPB(&sblock)]); } /* * Special purpose version of ginode used to optimize first pass * over all the inodes in numerical order. */ static ino_t nextino, lastinum, lastvalidinum; -static long readcnt, readpercg, fullcnt, inobufsize, partialcnt, partialsize; -static caddr_t inodebuf; +static long readcount, readpercg, fullcnt, inobufsize, partialcnt, partialsize; +static struct bufarea inobuf; union dinode * getnextinode(ino_t inumber, int rebuildcg) { int j; long size; mode_t mode; - ufs2_daddr_t ndb, dblk; + ufs2_daddr_t ndb, blk; union dinode *dp; static caddr_t nextinop; if (inumber != nextino++ || inumber > lastvalidinum) errx(EEXIT, "bad inode number %ju to nextinode", (uintmax_t)inumber); if (inumber >= lastinum) { - readcnt++; - dblk = fsbtodb(&sblock, ino_to_fsba(&sblock, lastinum)); - if (readcnt % readpercg == 0) { + readcount++; + blk = ino_to_fsba(&sblock, lastinum); + if (readcount % readpercg == 0) { size = partialsize; lastinum += partialcnt; } else { size = inobufsize; lastinum += fullcnt; } /* - * If blread returns an error, it will already have zeroed + * If getblk encounters an error, it will already have zeroed * out the buffer, so we do not need to do so here. */ - (void)blread(fsreadfd, inodebuf, dblk, size); - nextinop = inodebuf; + getblk(&inobuf, blk, size); + nextinop = inobuf.b_un.b_buf; } dp = (union dinode *)nextinop; - if (rebuildcg && nextinop == inodebuf) { + if (rebuildcg && nextinop == inobuf.b_un.b_buf) { /* * Try to determine if we have reached the end of the * allocated inodes. */ mode = DIP(dp, di_mode) & IFMT; if (mode == 0) { if (memcmp(dp->dp2.di_db, ufs2_zino.di_db, NDADDR * sizeof(ufs2_daddr_t)) || memcmp(dp->dp2.di_ib, ufs2_zino.di_ib, NIADDR * sizeof(ufs2_daddr_t)) || dp->dp2.di_mode || dp->dp2.di_size) return (NULL); goto inodegood; } if (!ftypeok(dp)) return (NULL); ndb = howmany(DIP(dp, di_size), sblock.fs_bsize); if (ndb < 0) return (NULL); if (mode == IFBLK || mode == IFCHR) ndb++; if (mode == IFLNK) { /* * Fake ndb value so direct/indirect block checks below * will detect any garbage after symlink string. */ if (DIP(dp, di_size) < (off_t)sblock.fs_maxsymlinklen) { ndb = howmany(DIP(dp, di_size), sizeof(ufs2_daddr_t)); if (ndb > NDADDR) { j = ndb - NDADDR; for (ndb = 1; j > 1; j--) ndb *= NINDIR(&sblock); ndb += NDADDR; } } } for (j = ndb; ndb < NDADDR && j < NDADDR; j++) if (DIP(dp, di_db[j]) != 0) return (NULL); for (j = 0, ndb -= NDADDR; ndb > 0; j++) ndb /= NINDIR(&sblock); for (; j < NIADDR; j++) if (DIP(dp, di_ib[j]) != 0) return (NULL); } inodegood: if (sblock.fs_magic == FS_UFS1_MAGIC) nextinop += sizeof(struct ufs1_dinode); else nextinop += sizeof(struct ufs2_dinode); return (dp); } void setinodebuf(ino_t inum) { if (inum % sblock.fs_ipg != 0) errx(EEXIT, "bad inode number %ju to setinodebuf", (uintmax_t)inum); lastvalidinum = inum + sblock.fs_ipg - 1; startinum = 0; nextino = inum; lastinum = inum; - readcnt = 0; - if (inodebuf != NULL) + readcount = 0; + if (inobuf.b_un.b_buf != NULL) return; inobufsize = blkroundup(&sblock, INOBUFSIZE); fullcnt = inobufsize / ((sblock.fs_magic == FS_UFS1_MAGIC) ? sizeof(struct ufs1_dinode) : sizeof(struct ufs2_dinode)); readpercg = sblock.fs_ipg / fullcnt; partialcnt = sblock.fs_ipg % fullcnt; partialsize = partialcnt * ((sblock.fs_magic == FS_UFS1_MAGIC) ? sizeof(struct ufs1_dinode) : sizeof(struct ufs2_dinode)); if (partialcnt != 0) { readpercg++; } else { partialcnt = fullcnt; partialsize = inobufsize; } - if ((inodebuf = malloc((unsigned)inobufsize)) == NULL) + initbarea(&inobuf, BT_INODES); + if ((inobuf.b_un.b_buf = malloc((unsigned)inobufsize)) == NULL) errx(EEXIT, "cannot allocate space for inode buffer"); } void freeinodebuf(void) { - if (inodebuf != NULL) - free((char *)inodebuf); - inodebuf = NULL; + if (inobuf.b_un.b_buf != NULL) + free((char *)inobuf.b_un.b_buf); + inobuf.b_un.b_buf = NULL; } /* * Routines to maintain information about directory inodes. * This is built during the first pass and used during the * second and third passes. * * Enter inodes into the cache. */ void cacheino(union dinode *dp, ino_t inumber) { struct inoinfo *inp, **inpp; int i, blks; if (howmany(DIP(dp, di_size), sblock.fs_bsize) > NDADDR) blks = NDADDR + NIADDR; else blks = howmany(DIP(dp, di_size), sblock.fs_bsize); inp = (struct inoinfo *) malloc(sizeof(*inp) + (blks - 1) * sizeof(ufs2_daddr_t)); if (inp == NULL) errx(EEXIT, "cannot increase directory list"); inpp = &inphead[inumber % dirhash]; inp->i_nexthash = *inpp; *inpp = inp; inp->i_parent = inumber == ROOTINO ? ROOTINO : (ino_t)0; inp->i_dotdot = (ino_t)0; inp->i_number = inumber; inp->i_isize = DIP(dp, di_size); inp->i_numblks = blks; for (i = 0; i < (blks < NDADDR ? blks : NDADDR); i++) inp->i_blks[i] = DIP(dp, di_db[i]); if (blks > NDADDR) for (i = 0; i < NIADDR; i++) inp->i_blks[NDADDR + i] = DIP(dp, di_ib[i]); if (inplast == listmax) { listmax += 100; inpsort = (struct inoinfo **)realloc((char *)inpsort, (unsigned)listmax * sizeof(struct inoinfo *)); if (inpsort == NULL) errx(EEXIT, "cannot increase directory list"); } inpsort[inplast++] = inp; } /* * Look up an inode cache structure. */ struct inoinfo * getinoinfo(ino_t inumber) { struct inoinfo *inp; for (inp = inphead[inumber % dirhash]; inp; inp = inp->i_nexthash) { if (inp->i_number != inumber) continue; return (inp); } errx(EEXIT, "cannot find inode %ju", (uintmax_t)inumber); return ((struct inoinfo *)0); } /* * Clean up all the inode cache structure. */ void inocleanup(void) { struct inoinfo **inpp; if (inphead == NULL) return; for (inpp = &inpsort[inplast - 1]; inpp >= inpsort; inpp--) free((char *)(*inpp)); free((char *)inphead); free((char *)inpsort); inphead = inpsort = NULL; } void inodirty(void) { dirty(pbp); } void clri(struct inodesc *idesc, const char *type, int flag) { union dinode *dp; dp = ginode(idesc->id_number); if (flag == 1) { pwarn("%s %s", type, (DIP(dp, di_mode) & IFMT) == IFDIR ? "DIR" : "FILE"); pinode(idesc->id_number); } if (preen || reply("CLEAR") == 1) { if (preen) printf(" (CLEARED)\n"); n_files--; if (bkgrdflag == 0) { (void)ckinode(dp, idesc); inoinfo(idesc->id_number)->ino_state = USTATE; clearinode(dp); inodirty(); } else { cmd.value = idesc->id_number; cmd.size = -DIP(dp, di_nlink); if (debug) printf("adjrefcnt ino %ld amt %lld\n", (long)cmd.value, (long long)cmd.size); if (sysctl(adjrefcnt, MIBSIZE, 0, 0, &cmd, sizeof cmd) == -1) rwerror("ADJUST INODE", cmd.value); } } } int findname(struct inodesc *idesc) { struct direct *dirp = idesc->id_dirp; if (dirp->d_ino != idesc->id_parent || idesc->id_entryno < 2) { idesc->id_entryno++; return (KEEPON); } memmove(idesc->id_name, dirp->d_name, (size_t)dirp->d_namlen + 1); return (STOP|FOUND); } int findino(struct inodesc *idesc) { struct direct *dirp = idesc->id_dirp; if (dirp->d_ino == 0) return (KEEPON); if (strcmp(dirp->d_name, idesc->id_name) == 0 && dirp->d_ino >= ROOTINO && dirp->d_ino <= maxino) { idesc->id_parent = dirp->d_ino; return (STOP|FOUND); } return (KEEPON); } int clearentry(struct inodesc *idesc) { struct direct *dirp = idesc->id_dirp; if (dirp->d_ino != idesc->id_parent || idesc->id_entryno < 2) { idesc->id_entryno++; return (KEEPON); } dirp->d_ino = 0; return (STOP|FOUND|ALTERED); } void pinode(ino_t ino) { union dinode *dp; char *p; struct passwd *pw; time_t t; printf(" I=%lu ", (u_long)ino); if (ino < ROOTINO || ino > maxino) return; dp = ginode(ino); printf(" OWNER="); if ((pw = getpwuid((int)DIP(dp, di_uid))) != 0) printf("%s ", pw->pw_name); else printf("%u ", (unsigned)DIP(dp, di_uid)); printf("MODE=%o\n", DIP(dp, di_mode)); if (preen) printf("%s: ", cdevname); printf("SIZE=%ju ", (uintmax_t)DIP(dp, di_size)); t = DIP(dp, di_mtime); p = ctime(&t); printf("MTIME=%12.12s %4.4s ", &p[4], &p[20]); } void blkerror(ino_t ino, const char *type, ufs2_daddr_t blk) { pfatal("%jd %s I=%ju", (intmax_t)blk, type, (uintmax_t)ino); printf("\n"); switch (inoinfo(ino)->ino_state) { case FSTATE: case FZLINK: inoinfo(ino)->ino_state = FCLEAR; return; case DSTATE: case DZLINK: inoinfo(ino)->ino_state = DCLEAR; return; case FCLEAR: case DCLEAR: return; default: errx(EEXIT, "BAD STATE %d TO BLKERR", inoinfo(ino)->ino_state); /* NOTREACHED */ } } /* * allocate an unused inode */ ino_t allocino(ino_t request, int type) { ino_t ino; union dinode *dp; struct cg *cgp = &cgrp; int cg; if (request == 0) request = ROOTINO; else if (inoinfo(request)->ino_state != USTATE) return (0); for (ino = request; ino < maxino; ino++) if (inoinfo(ino)->ino_state == USTATE) break; if (ino == maxino) return (0); cg = ino_to_cg(&sblock, ino); getblk(&cgblk, cgtod(&sblock, cg), sblock.fs_cgsize); if (!check_cgmagic(cg, cgp)) return (0); setbit(cg_inosused(cgp), ino % sblock.fs_ipg); cgp->cg_cs.cs_nifree--; switch (type & IFMT) { case IFDIR: inoinfo(ino)->ino_state = DSTATE; cgp->cg_cs.cs_ndir++; break; case IFREG: case IFLNK: inoinfo(ino)->ino_state = FSTATE; break; default: return (0); } cgdirty(); dp = ginode(ino); DIP_SET(dp, di_db[0], allocblk((long)1)); if (DIP(dp, di_db[0]) == 0) { inoinfo(ino)->ino_state = USTATE; return (0); } DIP_SET(dp, di_mode, type); DIP_SET(dp, di_flags, 0); DIP_SET(dp, di_atime, time(NULL)); DIP_SET(dp, di_ctime, DIP(dp, di_atime)); DIP_SET(dp, di_mtime, DIP(dp, di_ctime)); DIP_SET(dp, di_mtimensec, 0); DIP_SET(dp, di_ctimensec, 0); DIP_SET(dp, di_atimensec, 0); DIP_SET(dp, di_size, sblock.fs_fsize); DIP_SET(dp, di_blocks, btodb(sblock.fs_fsize)); n_files++; inodirty(); inoinfo(ino)->ino_type = IFTODT(type); return (ino); } /* * deallocate an inode */ void freeino(ino_t ino) { struct inodesc idesc; union dinode *dp; memset(&idesc, 0, sizeof(struct inodesc)); idesc.id_type = ADDR; idesc.id_func = pass4check; idesc.id_number = ino; dp = ginode(ino); (void)ckinode(dp, &idesc); clearinode(dp); inodirty(); inoinfo(ino)->ino_state = USTATE; n_files--; } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/main.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/main.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/main.c (revision 247227) @@ -1,640 +1,648 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char copyright[] = "@(#) Copyright (c) 1980, 1986, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint static char sccsid[] = "@(#)main.c 8.6 (Berkeley) 5/14/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsck.h" static void usage(void) __dead2; static int argtoi(int flag, const char *req, const char *str, int base); static int checkfilesys(char *filesys); static int chkdoreload(struct statfs *mntp); static struct statfs *getmntpt(const char *); int main(int argc, char *argv[]) { int ch; struct rlimit rlimit; struct itimerval itimerval; int ret = 0; sync(); skipclean = 1; inoopt = 0; while ((ch = getopt(argc, argv, "b:Bc:CdEfFm:npry")) != -1) { switch (ch) { case 'b': skipclean = 0; bflag = argtoi('b', "number", optarg, 10); printf("Alternate super block location: %d\n", bflag); break; case 'B': bkgrdflag = 1; break; case 'c': skipclean = 0; cvtlevel = argtoi('c', "conversion level", optarg, 10); if (cvtlevel < 3) errx(EEXIT, "cannot do level %d conversion", cvtlevel); break; case 'd': debug++; break; case 'E': Eflag++; break; case 'f': skipclean = 0; break; case 'F': bkgrdcheck = 1; break; case 'm': lfmode = argtoi('m', "mode", optarg, 8); if (lfmode &~ 07777) errx(EEXIT, "bad mode to -m: %o", lfmode); printf("** lost+found creation mode %o\n", lfmode); break; case 'n': nflag++; yflag = 0; break; case 'p': preen++; /*FALLTHROUGH*/ case 'C': ckclean++; break; case 'r': inoopt++; break; case 'y': yflag++; nflag = 0; break; default: usage(); } } argc -= optind; argv += optind; if (!argc) usage(); if (signal(SIGINT, SIG_IGN) != SIG_IGN) (void)signal(SIGINT, catch); if (ckclean) (void)signal(SIGQUIT, catchquit); signal(SIGINFO, infohandler); if (bkgrdflag) { signal(SIGALRM, alarmhandler); itimerval.it_interval.tv_sec = 5; itimerval.it_interval.tv_usec = 0; itimerval.it_value.tv_sec = 5; itimerval.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &itimerval, NULL); } /* * Push up our allowed memory limit so we can cope * with huge file systems. */ if (getrlimit(RLIMIT_DATA, &rlimit) == 0) { rlimit.rlim_cur = rlimit.rlim_max; (void)setrlimit(RLIMIT_DATA, &rlimit); } while (argc-- > 0) (void)checkfilesys(*argv++); if (returntosingle) ret = 2; exit(ret); } static int argtoi(int flag, const char *req, const char *str, int base) { char *cp; int ret; ret = (int)strtol(str, &cp, base); if (cp == str || *cp) errx(EEXIT, "-%c flag requires a %s", flag, req); return (ret); } /* * Check the specified file system. */ /* ARGSUSED */ static int checkfilesys(char *filesys) { ufs2_daddr_t n_ffree, n_bfree; struct dups *dp; struct statfs *mntp; struct stat snapdir; struct group *grp; struct iovec *iov; char errmsg[255]; int iovlen; int cylno; intmax_t blks, files; size_t size; iov = NULL; iovlen = 0; errmsg[0] = '\0'; cdevname = filesys; if (debug && ckclean) pwarn("starting\n"); /* * Make best effort to get the disk name. Check first to see * if it is listed among the mounted file systems. Failing that * check to see if it is listed in /etc/fstab. */ mntp = getmntpt(filesys); if (mntp != NULL) filesys = mntp->f_mntfromname; else filesys = blockcheck(filesys); /* * If -F flag specified, check to see whether a background check * is possible and needed. If possible and needed, exit with * status zero. Otherwise exit with status non-zero. A non-zero * exit status will cause a foreground check to be run. */ sblock_init(); if (bkgrdcheck) { if ((fsreadfd = open(filesys, O_RDONLY)) < 0 || readsb(0) == 0) exit(3); /* Cannot read superblock */ close(fsreadfd); /* Earlier background failed or journaled */ if (sblock.fs_flags & (FS_NEEDSFSCK | FS_SUJ)) exit(4); if ((sblock.fs_flags & FS_DOSOFTDEP) == 0) exit(5); /* Not running soft updates */ size = MIBSIZE; if (sysctlnametomib("vfs.ffs.adjrefcnt", adjrefcnt, &size) < 0) exit(6); /* Lacks kernel support */ if ((mntp == NULL && sblock.fs_clean == 1) || (mntp != NULL && (sblock.fs_flags & FS_UNCLEAN) == 0)) exit(7); /* Filesystem clean, report it now */ exit(0); } if (ckclean && skipclean) { /* * If file system is gjournaled, check it here. */ if ((fsreadfd = open(filesys, O_RDONLY)) < 0 || readsb(0) == 0) exit(3); /* Cannot read superblock */ close(fsreadfd); if ((sblock.fs_flags & FS_GJOURNAL) != 0) { //printf("GJournaled file system detected on %s.\n", // filesys); if (sblock.fs_clean == 1) { pwarn("FILE SYSTEM CLEAN; SKIPPING CHECKS\n"); exit(0); } if ((sblock.fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) { gjournal_check(filesys); if (chkdoreload(mntp) == 0) exit(0); exit(4); } else { pfatal( "UNEXPECTED INCONSISTENCY, CANNOT RUN FAST FSCK\n"); } } } /* * If we are to do a background check: * Get the mount point information of the file system * create snapshot file * return created snapshot file * if not found, clear bkgrdflag and proceed with normal fsck */ if (bkgrdflag) { if (mntp == NULL) { bkgrdflag = 0; pfatal("NOT MOUNTED, CANNOT RUN IN BACKGROUND\n"); } else if ((mntp->f_flags & MNT_SOFTDEP) == 0) { bkgrdflag = 0; pfatal( "NOT USING SOFT UPDATES, CANNOT RUN IN BACKGROUND\n"); } else if ((mntp->f_flags & MNT_RDONLY) != 0) { bkgrdflag = 0; pfatal("MOUNTED READ-ONLY, CANNOT RUN IN BACKGROUND\n"); } else if ((fsreadfd = open(filesys, O_RDONLY)) >= 0) { if (readsb(0) != 0) { if (sblock.fs_flags & (FS_NEEDSFSCK | FS_SUJ)) { bkgrdflag = 0; pfatal( "UNEXPECTED INCONSISTENCY, CANNOT RUN IN BACKGROUND\n"); } if ((sblock.fs_flags & FS_UNCLEAN) == 0 && skipclean && ckclean) { /* * file system is clean; * skip snapshot and report it clean */ pwarn( "FILE SYSTEM CLEAN; SKIPPING CHECKS\n"); goto clean; } } close(fsreadfd); } if (bkgrdflag) { snprintf(snapname, sizeof snapname, "%s/.snap", mntp->f_mntonname); if (stat(snapname, &snapdir) < 0) { if (errno != ENOENT) { bkgrdflag = 0; pfatal( "CANNOT FIND SNAPSHOT DIRECTORY %s: %s, CANNOT RUN IN BACKGROUND\n", snapname, strerror(errno)); } else if ((grp = getgrnam("operator")) == 0 || mkdir(snapname, 0770) < 0 || chown(snapname, -1, grp->gr_gid) < 0 || chmod(snapname, 0770) < 0) { bkgrdflag = 0; pfatal( "CANNOT CREATE SNAPSHOT DIRECTORY %s: %s, CANNOT RUN IN BACKGROUND\n", snapname, strerror(errno)); } } else if (!S_ISDIR(snapdir.st_mode)) { bkgrdflag = 0; pfatal( "%s IS NOT A DIRECTORY, CANNOT RUN IN BACKGROUND\n", snapname); } } if (bkgrdflag) { snprintf(snapname, sizeof snapname, "%s/.snap/fsck_snapshot", mntp->f_mntonname); build_iovec(&iov, &iovlen, "fstype", "ffs", 4); build_iovec(&iov, &iovlen, "from", snapname, (size_t)-1); build_iovec(&iov, &iovlen, "fspath", mntp->f_mntonname, (size_t)-1); build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg)); build_iovec(&iov, &iovlen, "update", NULL, 0); build_iovec(&iov, &iovlen, "snapshot", NULL, 0); while (nmount(iov, iovlen, mntp->f_flags) < 0) { if (errno == EEXIST && unlink(snapname) == 0) continue; bkgrdflag = 0; pfatal("CANNOT CREATE SNAPSHOT %s: %s %s\n", snapname, strerror(errno), errmsg); break; } if (bkgrdflag != 0) filesys = snapname; } } switch (setup(filesys)) { case 0: if (preen) pfatal("CAN'T CHECK FILE SYSTEM."); return (0); case -1: clean: pwarn("clean, %ld free ", (long)(sblock.fs_cstotal.cs_nffree + sblock.fs_frag * sblock.fs_cstotal.cs_nbfree)); printf("(%jd frags, %jd blocks, %.1f%% fragmentation)\n", (intmax_t)sblock.fs_cstotal.cs_nffree, (intmax_t)sblock.fs_cstotal.cs_nbfree, sblock.fs_cstotal.cs_nffree * 100.0 / sblock.fs_dsize); return (0); } /* * Determine if we can and should do journal recovery. */ if ((sblock.fs_flags & FS_SUJ) == FS_SUJ) { if ((sblock.fs_flags & FS_NEEDSFSCK) != FS_NEEDSFSCK && skipclean) { if (preen || reply("USE JOURNAL")) { if (suj_check(filesys) == 0) { printf("\n***** FILE SYSTEM MARKED CLEAN *****\n"); if (chkdoreload(mntp) == 0) exit(0); exit(4); } } printf("** Skipping journal, falling through to full fsck\n\n"); } /* * Write the superblock so we don't try to recover the * journal on another pass. */ sblock.fs_mtime = time(NULL); sbdirty(); } /* * Cleared if any questions answered no. Used to decide if * the superblock should be marked clean. */ resolved = 1; /* * 1: scan inodes tallying blocks used */ if (preen == 0) { printf("** Last Mounted on %s\n", sblock.fs_fsmnt); if (mntp != NULL && mntp->f_flags & MNT_ROOTFS) printf("** Root file system\n"); printf("** Phase 1 - Check Blocks and Sizes\n"); } + clock_gettime(CLOCK_REALTIME_PRECISE, &startprog); pass1(); + IOstats("Pass1"); /* * 1b: locate first references to duplicates, if any */ if (duplist) { if (preen || usedsoftdep) pfatal("INTERNAL ERROR: dups with %s%s%s", preen ? "-p" : "", (preen && usedsoftdep) ? " and " : "", usedsoftdep ? "softupdates" : ""); printf("** Phase 1b - Rescan For More DUPS\n"); pass1b(); + IOstats("Pass1b"); } /* * 2: traverse directories from root to mark all connected directories */ if (preen == 0) printf("** Phase 2 - Check Pathnames\n"); pass2(); + IOstats("Pass2"); /* * 3: scan inodes looking for disconnected directories */ if (preen == 0) printf("** Phase 3 - Check Connectivity\n"); pass3(); + IOstats("Pass3"); /* * 4: scan inodes looking for disconnected files; check reference counts */ if (preen == 0) printf("** Phase 4 - Check Reference Counts\n"); pass4(); + IOstats("Pass4"); /* * 5: check and repair resource counts in cylinder groups */ if (preen == 0) printf("** Phase 5 - Check Cyl groups\n"); pass5(); + IOstats("Pass5"); /* * print out summary statistics */ n_ffree = sblock.fs_cstotal.cs_nffree; n_bfree = sblock.fs_cstotal.cs_nbfree; files = maxino - ROOTINO - sblock.fs_cstotal.cs_nifree - n_files; blks = n_blks + sblock.fs_ncg * (cgdmin(&sblock, 0) - cgsblock(&sblock, 0)); blks += cgsblock(&sblock, 0) - cgbase(&sblock, 0); blks += howmany(sblock.fs_cssize, sblock.fs_fsize); blks = maxfsblock - (n_ffree + sblock.fs_frag * n_bfree) - blks; if (bkgrdflag && (files > 0 || blks > 0)) { countdirs = sblock.fs_cstotal.cs_ndir - countdirs; pwarn("Reclaimed: %ld directories, %jd files, %jd fragments\n", countdirs, files - countdirs, blks); } pwarn("%ld files, %jd used, %ju free ", (long)n_files, (intmax_t)n_blks, (uintmax_t)n_ffree + sblock.fs_frag * n_bfree); printf("(%ju frags, %ju blocks, %.1f%% fragmentation)\n", (uintmax_t)n_ffree, (uintmax_t)n_bfree, n_ffree * 100.0 / sblock.fs_dsize); if (debug) { if (files < 0) printf("%jd inodes missing\n", -files); if (blks < 0) printf("%jd blocks missing\n", -blks); if (duplist != NULL) { printf("The following duplicate blocks remain:"); for (dp = duplist; dp; dp = dp->next) printf(" %jd,", (intmax_t)dp->dup); printf("\n"); } } duplist = (struct dups *)0; muldup = (struct dups *)0; inocleanup(); if (fsmodified) { sblock.fs_time = time(NULL); sbdirty(); } if (cvtlevel && sblk.b_dirty) { /* * Write out the duplicate super blocks */ for (cylno = 0; cylno < sblock.fs_ncg; cylno++) blwrite(fswritefd, (char *)&sblock, fsbtodb(&sblock, cgsblock(&sblock, cylno)), SBLOCKSIZE); } if (rerun) resolved = 0; + finalIOstats(); /* * Check to see if the file system is mounted read-write. */ if (bkgrdflag == 0 && mntp != NULL && (mntp->f_flags & MNT_RDONLY) == 0) resolved = 0; ckfini(resolved); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) if (inostathead[cylno].il_stat != NULL) free((char *)inostathead[cylno].il_stat); free((char *)inostathead); inostathead = NULL; if (fsmodified && !preen) printf("\n***** FILE SYSTEM WAS MODIFIED *****\n"); if (rerun) printf("\n***** PLEASE RERUN FSCK *****\n"); if (chkdoreload(mntp) != 0) { if (!fsmodified) return (0); if (!preen) printf("\n***** REBOOT NOW *****\n"); sync(); return (4); } return (0); } static int chkdoreload(struct statfs *mntp) { struct iovec *iov; int iovlen; char errmsg[255]; if (mntp == NULL) return (0); iov = NULL; iovlen = 0; errmsg[0] = '\0'; /* * We modified a mounted file system. Do a mount update on * it unless it is read-write, so we can continue using it * as safely as possible. */ if (mntp->f_flags & MNT_RDONLY) { build_iovec(&iov, &iovlen, "fstype", "ffs", 4); build_iovec(&iov, &iovlen, "from", mntp->f_mntfromname, (size_t)-1); build_iovec(&iov, &iovlen, "fspath", mntp->f_mntonname, (size_t)-1); build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg)); build_iovec(&iov, &iovlen, "update", NULL, 0); build_iovec(&iov, &iovlen, "reload", NULL, 0); /* * XX: We need the following line until we clean up * nmount parsing of root mounts and NFS root mounts. */ build_iovec(&iov, &iovlen, "ro", NULL, 0); if (nmount(iov, iovlen, mntp->f_flags) == 0) { return (0); } pwarn("mount reload of '%s' failed: %s %s\n\n", mntp->f_mntonname, strerror(errno), errmsg); return (1); } return (0); } /* * Get the mount point information for name. */ static struct statfs * getmntpt(const char *name) { struct stat devstat, mntdevstat; char device[sizeof(_PATH_DEV) - 1 + MNAMELEN]; char *ddevname; struct statfs *mntbuf, *statfsp; int i, mntsize, isdev; if (stat(name, &devstat) != 0) return (NULL); if (S_ISCHR(devstat.st_mode) || S_ISBLK(devstat.st_mode)) isdev = 1; else isdev = 0; mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); for (i = 0; i < mntsize; i++) { statfsp = &mntbuf[i]; ddevname = statfsp->f_mntfromname; if (*ddevname != '/') { strcpy(device, _PATH_DEV); strcat(device, ddevname); strcpy(statfsp->f_mntfromname, device); } if (isdev == 0) { if (strcmp(name, statfsp->f_mntonname)) continue; return (statfsp); } if (stat(ddevname, &mntdevstat) == 0 && mntdevstat.st_rdev == devstat.st_rdev) return (statfsp); } statfsp = NULL; return (statfsp); } static void usage(void) { (void) fprintf(stderr, "usage: %s [-BEFfnpry] [-b block] [-c level] [-m mode] filesystem ...\n", getprogname()); exit(1); } Index: user/attilio/vmobj-rwlock/sbin/fsck_ffs/setup.c =================================================================== --- user/attilio/vmobj-rwlock/sbin/fsck_ffs/setup.c (revision 247226) +++ user/attilio/vmobj-rwlock/sbin/fsck_ffs/setup.c (revision 247227) @@ -1,533 +1,536 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char sccsid[] = "@(#)setup.c 8.10 (Berkeley) 5/9/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #define FSTYPENAMES #include #include #include #include #include #include #include #include #include #include #include #include "fsck.h" struct bufarea asblk; #define altsblock (*asblk.b_un.b_fs) #define POWEROF2(num) (((num) & ((num) - 1)) == 0) static void badsb(int listerr, const char *s); static int calcsb(char *dev, int devfd, struct fs *fs); static struct disklabel *getdisklabel(char *s, int fd); /* * Read in a superblock finding an alternate if necessary. * Return 1 if successful, 0 if unsuccessful, -1 if file system * is already clean (ckclean and preen mode only). */ int setup(char *dev) { long cg, asked, i, j; long bmapsize; struct stat statb; struct fs proto; size_t size; havesb = 0; fswritefd = -1; cursnapshot = 0; if (stat(dev, &statb) < 0) { printf("Can't stat %s: %s\n", dev, strerror(errno)); if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } return (0); } if ((statb.st_mode & S_IFMT) != S_IFCHR && (statb.st_mode & S_IFMT) != S_IFBLK) { if (bkgrdflag != 0 && (statb.st_flags & SF_SNAPSHOT) == 0) { unlink(snapname); printf("background fsck lacks a snapshot\n"); exit(EEXIT); } if ((statb.st_flags & SF_SNAPSHOT) != 0 && cvtlevel == 0) { cursnapshot = statb.st_ino; } else { if (cvtlevel == 0 || (statb.st_flags & SF_SNAPSHOT) == 0) { if (preen && bkgrdflag) { unlink(snapname); bkgrdflag = 0; } pfatal("%s is not a disk device", dev); if (reply("CONTINUE") == 0) { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } return (0); } } else { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } pfatal("cannot convert a snapshot"); exit(EEXIT); } } } if ((fsreadfd = open(dev, O_RDONLY)) < 0) { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } printf("Can't open %s: %s\n", dev, strerror(errno)); return (0); } if (bkgrdflag) { unlink(snapname); size = MIBSIZE; if (sysctlnametomib("vfs.ffs.adjrefcnt", adjrefcnt, &size) < 0|| sysctlnametomib("vfs.ffs.adjblkcnt", adjblkcnt, &size) < 0|| sysctlnametomib("vfs.ffs.freefiles", freefiles, &size) < 0|| sysctlnametomib("vfs.ffs.freedirs", freedirs, &size) < 0 || sysctlnametomib("vfs.ffs.freeblks", freeblks, &size) < 0) { pfatal("kernel lacks background fsck support\n"); exit(EEXIT); } /* * When kernel is lack of runtime bgfsck superblock summary * adjustment functionality, it does not mean we can not * continue, as old kernels will recompute the summary at * mount time. However, it will be an unexpected softupdates * inconsistency if it turns out that the summary is still * incorrect. Set a flag so subsequent operation can know * this. */ bkgrdsumadj = 1; if (sysctlnametomib("vfs.ffs.adjndir", adjndir, &size) < 0 || sysctlnametomib("vfs.ffs.adjnbfree", adjnbfree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnifree", adjnifree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnffree", adjnffree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnumclusters", adjnumclusters, &size) < 0) { bkgrdsumadj = 0; pwarn("kernel lacks runtime superblock summary adjustment support"); } cmd.version = FFS_CMD_VERSION; cmd.handle = fsreadfd; fswritefd = -1; } if (preen == 0) printf("** %s", dev); if (bkgrdflag == 0 && (nflag || (fswritefd = open(dev, O_WRONLY)) < 0)) { fswritefd = -1; if (preen) pfatal("NO WRITE ACCESS"); printf(" (NO WRITE)"); } if (preen == 0) printf("\n"); /* * Read in the superblock, looking for alternates if necessary */ if (readsb(1) == 0) { skipclean = 0; if (bflag || preen || calcsb(dev, fsreadfd, &proto) == 0) return(0); if (reply("LOOK FOR ALTERNATE SUPERBLOCKS") == 0) return (0); for (cg = 0; cg < proto.fs_ncg; cg++) { bflag = fsbtodb(&proto, cgsblock(&proto, cg)); if (readsb(0) != 0) break; } if (cg >= proto.fs_ncg) { printf("%s %s\n%s %s\n%s %s\n", "SEARCH FOR ALTERNATE SUPER-BLOCK", "FAILED. YOU MUST USE THE", "-b OPTION TO FSCK TO SPECIFY THE", "LOCATION OF AN ALTERNATE", "SUPER-BLOCK TO SUPPLY NEEDED", "INFORMATION; SEE fsck_ffs(8)."); bflag = 0; return(0); } pwarn("USING ALTERNATE SUPERBLOCK AT %d\n", bflag); bflag = 0; } if (skipclean && ckclean && sblock.fs_clean) { pwarn("FILE SYSTEM CLEAN; SKIPPING CHECKS\n"); return (-1); } maxfsblock = sblock.fs_size; maxino = sblock.fs_ncg * sblock.fs_ipg; /* * Check and potentially fix certain fields in the super block. */ if (sblock.fs_optim != FS_OPTTIME && sblock.fs_optim != FS_OPTSPACE) { pfatal("UNDEFINED OPTIMIZATION IN SUPERBLOCK"); if (reply("SET TO DEFAULT") == 1) { sblock.fs_optim = FS_OPTTIME; sbdirty(); } } if ((sblock.fs_minfree < 0 || sblock.fs_minfree > 99)) { pfatal("IMPOSSIBLE MINFREE=%d IN SUPERBLOCK", sblock.fs_minfree); if (reply("SET TO DEFAULT") == 1) { sblock.fs_minfree = 10; sbdirty(); } } if (sblock.fs_magic == FS_UFS1_MAGIC && sblock.fs_old_inodefmt < FS_44INODEFMT) { pwarn("Format of file system is too old.\n"); pwarn("Must update to modern format using a version of fsck\n"); pfatal("from before 2002 with the command ``fsck -c 2''\n"); exit(EEXIT); } if (asblk.b_dirty && !bflag) { memmove(&altsblock, &sblock, (size_t)sblock.fs_sbsize); flush(fswritefd, &asblk); } /* * read in the summary info. */ asked = 0; sblock.fs_csp = calloc(1, sblock.fs_cssize); if (sblock.fs_csp == NULL) { printf("cannot alloc %u bytes for cg summary info\n", (unsigned)sblock.fs_cssize); goto badsb; } for (i = 0, j = 0; i < sblock.fs_cssize; i += sblock.fs_bsize, j++) { size = sblock.fs_cssize - i < sblock.fs_bsize ? sblock.fs_cssize - i : sblock.fs_bsize; + readcnt[sblk.b_type]++; if (blread(fsreadfd, (char *)sblock.fs_csp + i, fsbtodb(&sblock, sblock.fs_csaddr + j * sblock.fs_frag), size) != 0 && !asked) { pfatal("BAD SUMMARY INFORMATION"); if (reply("CONTINUE") == 0) { ckfini(0); exit(EEXIT); } asked++; } } /* * allocate and initialize the necessary maps */ bmapsize = roundup(howmany(maxfsblock, CHAR_BIT), sizeof(short)); blockmap = calloc((unsigned)bmapsize, sizeof (char)); if (blockmap == NULL) { printf("cannot alloc %u bytes for blockmap\n", (unsigned)bmapsize); goto badsb; } inostathead = calloc((unsigned)(sblock.fs_ncg), sizeof(struct inostatlist)); if (inostathead == NULL) { printf("cannot alloc %u bytes for inostathead\n", (unsigned)(sizeof(struct inostatlist) * (sblock.fs_ncg))); goto badsb; } numdirs = MAX(sblock.fs_cstotal.cs_ndir, 128); dirhash = numdirs; inplast = 0; listmax = numdirs + 10; inpsort = (struct inoinfo **)calloc((unsigned)listmax, sizeof(struct inoinfo *)); inphead = (struct inoinfo **)calloc((unsigned)numdirs, sizeof(struct inoinfo *)); if (inpsort == NULL || inphead == NULL) { printf("cannot alloc %ju bytes for inphead\n", (uintmax_t)numdirs * sizeof(struct inoinfo *)); goto badsb; } bufinit(); if (sblock.fs_flags & FS_DOSOFTDEP) usedsoftdep = 1; else usedsoftdep = 0; return (1); badsb: ckfini(0); return (0); } /* * Possible superblock locations ordered from most to least likely. */ static int sblock_try[] = SBLOCKSEARCH; #define BAD_MAGIC_MSG \ "The previous newfs operation on this volume did not complete.\n" \ "You must complete newfs before mounting this volume.\n" /* * Read in the super block and its summary info. */ int readsb(int listerr) { ufs2_daddr_t super; int i; if (bflag) { super = bflag; + readcnt[sblk.b_type]++; if ((blread(fsreadfd, (char *)&sblock, super, (long)SBLOCKSIZE))) return (0); if (sblock.fs_magic == FS_BAD_MAGIC) { fprintf(stderr, BAD_MAGIC_MSG); exit(11); } if (sblock.fs_magic != FS_UFS1_MAGIC && sblock.fs_magic != FS_UFS2_MAGIC) { fprintf(stderr, "%d is not a file system superblock\n", bflag); return (0); } } else { for (i = 0; sblock_try[i] != -1; i++) { super = sblock_try[i] / dev_bsize; + readcnt[sblk.b_type]++; if ((blread(fsreadfd, (char *)&sblock, super, (long)SBLOCKSIZE))) return (0); if (sblock.fs_magic == FS_BAD_MAGIC) { fprintf(stderr, BAD_MAGIC_MSG); exit(11); } if ((sblock.fs_magic == FS_UFS1_MAGIC || (sblock.fs_magic == FS_UFS2_MAGIC && sblock.fs_sblockloc == sblock_try[i])) && sblock.fs_ncg >= 1 && sblock.fs_bsize >= MINBSIZE && sblock.fs_sbsize >= roundup(sizeof(struct fs), dev_bsize)) break; } if (sblock_try[i] == -1) { fprintf(stderr, "Cannot find file system superblock\n"); return (0); } } /* * Compute block size that the file system is based on, * according to fsbtodb, and adjust superblock block number * so we can tell if this is an alternate later. */ super *= dev_bsize; dev_bsize = sblock.fs_fsize / fsbtodb(&sblock, 1); sblk.b_bno = super / dev_bsize; sblk.b_size = SBLOCKSIZE; if (bflag) goto out; /* * Compare all fields that should not differ in alternate super block. * When an alternate super-block is specified this check is skipped. */ getblk(&asblk, cgsblock(&sblock, sblock.fs_ncg - 1), sblock.fs_sbsize); if (asblk.b_errs) return (0); if (altsblock.fs_sblkno != sblock.fs_sblkno || altsblock.fs_cblkno != sblock.fs_cblkno || altsblock.fs_iblkno != sblock.fs_iblkno || altsblock.fs_dblkno != sblock.fs_dblkno || altsblock.fs_ncg != sblock.fs_ncg || altsblock.fs_bsize != sblock.fs_bsize || altsblock.fs_fsize != sblock.fs_fsize || altsblock.fs_frag != sblock.fs_frag || altsblock.fs_bmask != sblock.fs_bmask || altsblock.fs_fmask != sblock.fs_fmask || altsblock.fs_bshift != sblock.fs_bshift || altsblock.fs_fshift != sblock.fs_fshift || altsblock.fs_fragshift != sblock.fs_fragshift || altsblock.fs_fsbtodb != sblock.fs_fsbtodb || altsblock.fs_sbsize != sblock.fs_sbsize || altsblock.fs_nindir != sblock.fs_nindir || altsblock.fs_inopb != sblock.fs_inopb || altsblock.fs_cssize != sblock.fs_cssize || altsblock.fs_ipg != sblock.fs_ipg || altsblock.fs_fpg != sblock.fs_fpg || altsblock.fs_magic != sblock.fs_magic) { badsb(listerr, "VALUES IN SUPER BLOCK DISAGREE WITH THOSE IN FIRST ALTERNATE"); return (0); } out: /* * If not yet done, update UFS1 superblock with new wider fields. */ if (sblock.fs_magic == FS_UFS1_MAGIC && sblock.fs_maxbsize != sblock.fs_bsize) { sblock.fs_maxbsize = sblock.fs_bsize; sblock.fs_time = sblock.fs_old_time; sblock.fs_size = sblock.fs_old_size; sblock.fs_dsize = sblock.fs_old_dsize; sblock.fs_csaddr = sblock.fs_old_csaddr; sblock.fs_cstotal.cs_ndir = sblock.fs_old_cstotal.cs_ndir; sblock.fs_cstotal.cs_nbfree = sblock.fs_old_cstotal.cs_nbfree; sblock.fs_cstotal.cs_nifree = sblock.fs_old_cstotal.cs_nifree; sblock.fs_cstotal.cs_nffree = sblock.fs_old_cstotal.cs_nffree; } havesb = 1; return (1); } static void badsb(int listerr, const char *s) { if (!listerr) return; if (preen) printf("%s: ", cdevname); pfatal("BAD SUPER BLOCK: %s\n", s); } void sblock_init(void) { struct disklabel *lp; fswritefd = -1; fsmodified = 0; lfdir = 0; - initbarea(&sblk); - initbarea(&asblk); + initbarea(&sblk, BT_SUPERBLK); + initbarea(&asblk, BT_SUPERBLK); sblk.b_un.b_buf = malloc(SBLOCKSIZE); asblk.b_un.b_buf = malloc(SBLOCKSIZE); if (sblk.b_un.b_buf == NULL || asblk.b_un.b_buf == NULL) errx(EEXIT, "cannot allocate space for superblock"); if ((lp = getdisklabel(NULL, fsreadfd))) real_dev_bsize = dev_bsize = secsize = lp->d_secsize; else dev_bsize = secsize = DEV_BSIZE; } /* * Calculate a prototype superblock based on information in the disk label. * When done the cgsblock macro can be calculated and the fs_ncg field * can be used. Do NOT attempt to use other macros without verifying that * their needed information is available! */ static int calcsb(char *dev, int devfd, struct fs *fs) { struct disklabel *lp; struct partition *pp; char *cp; int i, nspf; cp = strchr(dev, '\0') - 1; if (cp == (char *)-1 || ((*cp < 'a' || *cp > 'h') && !isdigit(*cp))) { pfatal("%s: CANNOT FIGURE OUT FILE SYSTEM PARTITION\n", dev); return (0); } lp = getdisklabel(dev, devfd); if (isdigit(*cp)) pp = &lp->d_partitions[0]; else pp = &lp->d_partitions[*cp - 'a']; if (pp->p_fstype != FS_BSDFFS) { pfatal("%s: NOT LABELED AS A BSD FILE SYSTEM (%s)\n", dev, pp->p_fstype < FSMAXTYPES ? fstypenames[pp->p_fstype] : "unknown"); return (0); } if (pp->p_fsize == 0 || pp->p_frag == 0 || pp->p_cpg == 0 || pp->p_size == 0) { pfatal("%s: %s: type %s fsize %d, frag %d, cpg %d, size %d\n", dev, "INCOMPLETE LABEL", fstypenames[pp->p_fstype], pp->p_fsize, pp->p_frag, pp->p_cpg, pp->p_size); return (0); } memset(fs, 0, sizeof(struct fs)); fs->fs_fsize = pp->p_fsize; fs->fs_frag = pp->p_frag; fs->fs_size = pp->p_size; fs->fs_sblkno = roundup( howmany(lp->d_bbsize + lp->d_sbsize, fs->fs_fsize), fs->fs_frag); nspf = fs->fs_fsize / lp->d_secsize; for (fs->fs_fsbtodb = 0, i = nspf; i > 1; i >>= 1) fs->fs_fsbtodb++; dev_bsize = lp->d_secsize; if (fs->fs_magic == FS_UFS2_MAGIC) { fs->fs_fpg = pp->p_cpg; fs->fs_ncg = howmany(fs->fs_size, fs->fs_fpg); } else /* if (fs->fs_magic == FS_UFS1_MAGIC) */ { fs->fs_old_cpg = pp->p_cpg; fs->fs_old_cgmask = 0xffffffff; for (i = lp->d_ntracks; i > 1; i >>= 1) fs->fs_old_cgmask <<= 1; if (!POWEROF2(lp->d_ntracks)) fs->fs_old_cgmask <<= 1; fs->fs_old_cgoffset = roundup(howmany(lp->d_nsectors, nspf), fs->fs_frag); fs->fs_fpg = (fs->fs_old_cpg * lp->d_secpercyl) / nspf; fs->fs_ncg = howmany(fs->fs_size / lp->d_secpercyl, fs->fs_old_cpg); } return (1); } static struct disklabel * getdisklabel(char *s, int fd) { static struct disklabel lab; if (ioctl(fd, DIOCGDINFO, (char *)&lab) < 0) { if (s == NULL) return ((struct disklabel *)NULL); pwarn("ioctl (GCINFO): %s\n", strerror(errno)); errx(EEXIT, "%s: can't read disk label", s); } return (&lab); } Index: user/attilio/vmobj-rwlock/sbin =================================================================== --- user/attilio/vmobj-rwlock/sbin (revision 247226) +++ user/attilio/vmobj-rwlock/sbin (revision 247227) Property changes on: user/attilio/vmobj-rwlock/sbin ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/sbin:r247139-247226 Index: user/attilio/vmobj-rwlock/sys/arm/arm/machdep.c =================================================================== --- user/attilio/vmobj-rwlock/sys/arm/arm/machdep.c (revision 247226) +++ user/attilio/vmobj-rwlock/sys/arm/arm/machdep.c (revision 247227) @@ -1,1496 +1,1503 @@ /* $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $ */ /*- * Copyright (c) 2004 Olivier Houchard * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependant functions for kernel setup * * Created : 17/09/94 * Updated : 18/04/01 updated for new wscons */ #include "opt_compat.h" #include "opt_ddb.h" #include "opt_platform.h" +#include "opt_sched.h" #include "opt_timer.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif struct pcpu __pcpu[MAXCPU]; struct pcpu *pcpup = &__pcpu[0]; static struct trapframe proc0_tf; uint32_t cpu_reset_address = 0; int cold = 1; vm_offset_t vector_page; long realmem = 0; int (*_arm_memcpy)(void *, void *, int, int) = NULL; int (*_arm_bzero)(void *, int, int) = NULL; int _min_memcpy_size = 0; int _min_bzero_size = 0; extern int *end; #ifdef DDB extern vm_offset_t ksym_start, ksym_end; #endif #ifdef FDT /* * This is the number of L2 page tables required for covering max * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf, * stacks etc.), uprounded to be divisible by 4. */ #define KERNEL_PT_MAX 78 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX]; vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; vm_paddr_t pmap_pa; struct pv_addr systempage; static struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; static struct pv_addr kernelstack; const struct pmap_devmap *pmap_devmap_bootstrap_table; #endif #if defined(LINUX_BOOT_ABI) #define LBABI_MAX_BANKS 10 uint32_t board_id; struct arm_lbabi_tag *atag_list; char linux_command_line[LBABI_MAX_COMMAND_LINE + 1]; char atags[LBABI_MAX_COMMAND_LINE * 2]; uint32_t memstart[LBABI_MAX_BANKS]; uint32_t memsize[LBABI_MAX_BANKS]; uint32_t membanks; #endif static uint32_t board_revision; /* hex representation of uint64_t */ static char board_serial[32]; SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD, 0, "Board attributes"); SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD, &board_revision, 0, "Board revision"); SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD, board_serial, 0, "Board serial"); void board_set_serial(uint64_t serial) { snprintf(board_serial, sizeof(board_serial)-1, "%016jx", serial); } void board_set_revision(uint32_t revision) { board_revision = revision; } void sendsig(catcher, ksi, mask) sig_t catcher; ksiginfo_t *ksi; sigset_t *mask; { struct thread *td; struct proc *p; struct trapframe *tf; struct sigframe *fp, frame; struct sigacts *psp; int onstack; int sig; int code; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; code = ksi->ksi_code; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; onstack = sigonstack(tf->tf_usr_sp); CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct sigframe *)(td->td_sigstk.ss_sp + td->td_sigstk.ss_size); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else fp = (struct sigframe *)td->td_frame->tf_usr_sp; /* make room on the stack */ fp--; /* make the stack aligned */ fp = (struct sigframe *)STACKALIGN(fp); /* Populate the siginfo frame. */ get_mcontext(td, &frame.sf_uc.uc_mcontext, 0); frame.sf_si = ksi->ksi_info; frame.sf_uc.uc_sigmask = *mask; frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK ) ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE; frame.sf_uc.uc_stack = td->td_sigstk; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(td->td_proc); /* Copy the sigframe out to the user's stack. */ if (copyout(&frame, fp, sizeof(*fp)) != 0) { /* Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp); PROC_LOCK(p); sigexit(td, SIGILL); } /* Translate the signal if appropriate. */ if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; /* * Build context to run handler in. We invoke the handler * directly, only returning via the trampoline. Note the * trampoline version numbers are coordinated with machine- * dependent code in libc. */ tf->tf_r0 = sig; tf->tf_r1 = (register_t)&fp->sf_si; tf->tf_r2 = (register_t)&fp->sf_uc; /* the trampoline uses r5 as the uc address */ tf->tf_r5 = (register_t)&fp->sf_uc; tf->tf_pc = (register_t)catcher; tf->tf_usr_sp = (register_t)fp; tf->tf_usr_lr = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode)); CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr, tf->tf_usr_sp); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } struct kva_md_info kmi; /* * arm32_vector_init: * * Initialize the vector page, and select whether or not to * relocate the vectors. * * NOTE: We expect the vector page to be mapped at its expected * destination. */ extern unsigned int page0[], page0_data[]; void arm_vector_init(vm_offset_t va, int which) { unsigned int *vectors = (int *) va; unsigned int *vectors_data = vectors + (page0_data - page0); int vec; /* * Loop through the vectors we're taking over, and copy the * vector's insn and data word. */ for (vec = 0; vec < ARM_NVEC; vec++) { if ((which & (1 << vec)) == 0) { /* Don't want to take over this vector. */ continue; } vectors[vec] = page0[vec]; vectors_data[vec] = page0_data[vec]; } /* Now sync the vectors. */ cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int)); vector_page = va; if (va == ARM_VECTORS_HIGH) { /* * Assume the MD caller knows what it's doing here, and * really does want the vector page relocated. * * Note: This has to be done here (and not just in * cpu_setup()) because the vector page needs to be * accessible *before* cpu_startup() is called. * Think ddb(9) ... * * NOTE: If the CPU control register is not readable, * this will totally fail! We'll just assume that * any system that has high vector support has a * readable CPU control register, for now. If we * ever encounter one that does not, we'll have to * rethink this. */ cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC); } } static void cpu_startup(void *dummy) { struct pcb *pcb = thread0.td_pcb; #ifdef ARM_TP_ADDRESS #ifndef ARM_CACHE_LOCK_ENABLE vm_page_t m; #endif #endif cpu_setup(""); identify_arm_cpu(); printf("real memory = %ju (%ju MB)\n", (uintmax_t)ptoa(physmem), (uintmax_t)ptoa(physmem) / 1048576); realmem = physmem; /* * Display the RAM layout. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size; size = phys_avail[indx + 1] - phys_avail[indx]; printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n", (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", (uintmax_t)ptoa(cnt.v_free_count), (uintmax_t)ptoa(cnt.v_free_count) / 1048576); bufinit(); vm_pager_bufferinit(); pcb->un_32.pcb32_und_sp = (u_int)thread0.td_kstack + USPACE_UNDEF_STACK_TOP; pcb->un_32.pcb32_sp = (u_int)thread0.td_kstack + USPACE_SVC_STACK_TOP; vector_page_setprot(VM_PROT_READ); pmap_set_pcb_pagedir(pmap_kernel(), pcb); pmap_postinit(); #ifdef ARM_TP_ADDRESS #ifdef ARM_CACHE_LOCK_ENABLE pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS); arm_lock_cache_line(ARM_TP_ADDRESS); #else m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO); pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m)); #endif *(uint32_t *)ARM_RAS_START = 0; *(uint32_t *)ARM_RAS_END = 0xffffffff; #endif } SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { cpu_dcache_wb_range((uintptr_t)ptr, len); cpu_l2cache_wb_range((uintptr_t)ptr, len); } /* Get current clock frequency for the given cpu id. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { return (ENXIO); } void cpu_idle(int busy) { + CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", + busy, curcpu); #ifndef NO_EVENTTIMERS if (!busy) { critical_enter(); cpu_idleclock(); } #endif - cpu_sleep(0); + if (!sched_runnable()) + cpu_sleep(0); #ifndef NO_EVENTTIMERS if (!busy) { cpu_activeclock(); critical_exit(); } #endif + CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", + busy, curcpu); } int cpu_idle_wakeup(int cpu) { return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *tf = td->td_frame; bcopy(&tf->tf_r0, regs->r, sizeof(regs->r)); regs->r_sp = tf->tf_usr_sp; regs->r_lr = tf->tf_usr_lr; regs->r_pc = tf->tf_pc; regs->r_cpsr = tf->tf_spsr; return (0); } int fill_fpregs(struct thread *td, struct fpreg *regs) { bzero(regs, sizeof(*regs)); return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *tf = td->td_frame; bcopy(regs->r, &tf->tf_r0, sizeof(regs->r)); tf->tf_usr_sp = regs->r_sp; tf->tf_usr_lr = regs->r_lr; tf->tf_pc = regs->r_pc; tf->tf_spsr &= ~PSR_FLAGS; tf->tf_spsr |= regs->r_cpsr & PSR_FLAGS; return (0); } int set_fpregs(struct thread *td, struct fpreg *regs) { return (0); } int fill_dbregs(struct thread *td, struct dbreg *regs) { return (0); } int set_dbregs(struct thread *td, struct dbreg *regs) { return (0); } static int ptrace_read_int(struct thread *td, vm_offset_t addr, u_int32_t *v) { struct iovec iov; struct uio uio; PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED); iov.iov_base = (caddr_t) v; iov.iov_len = sizeof(u_int32_t); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)addr; uio.uio_resid = sizeof(u_int32_t); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; return proc_rwmem(td->td_proc, &uio); } static int ptrace_write_int(struct thread *td, vm_offset_t addr, u_int32_t v) { struct iovec iov; struct uio uio; PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED); iov.iov_base = (caddr_t) &v; iov.iov_len = sizeof(u_int32_t); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)addr; uio.uio_resid = sizeof(u_int32_t); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; uio.uio_td = td; return proc_rwmem(td->td_proc, &uio); } int ptrace_single_step(struct thread *td) { struct proc *p; int error; KASSERT(td->td_md.md_ptrace_instr == 0, ("Didn't clear single step")); p = td->td_proc; PROC_UNLOCK(p); error = ptrace_read_int(td, td->td_frame->tf_pc + 4, &td->td_md.md_ptrace_instr); if (error) goto out; error = ptrace_write_int(td, td->td_frame->tf_pc + 4, PTRACE_BREAKPOINT); if (error) td->td_md.md_ptrace_instr = 0; td->td_md.md_ptrace_addr = td->td_frame->tf_pc + 4; out: PROC_LOCK(p); return (error); } int ptrace_clear_single_step(struct thread *td) { struct proc *p; if (td->td_md.md_ptrace_instr) { p = td->td_proc; PROC_UNLOCK(p); ptrace_write_int(td, td->td_md.md_ptrace_addr, td->td_md.md_ptrace_instr); PROC_LOCK(p); td->td_md.md_ptrace_instr = 0; } return (0); } int ptrace_set_pc(struct thread *td, unsigned long addr) { td->td_frame->tf_pc = addr; return (0); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { } void spinlock_enter(void) { struct thread *td; register_t cspr; td = curthread; if (td->td_md.md_spinlock_count == 0) { cspr = disable_interrupts(I32_bit | F32_bit); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_cspr = cspr; } else td->td_md.md_spinlock_count++; critical_enter(); } void spinlock_exit(void) { struct thread *td; register_t cspr; td = curthread; critical_exit(); cspr = td->td_md.md_saved_cspr; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) restore_interrupts(cspr); } /* * Clear registers on exec */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf = td->td_frame; memset(tf, 0, sizeof(*tf)); tf->tf_usr_sp = stack; tf->tf_usr_lr = imgp->entry_addr; tf->tf_svc_lr = 0x77777777; tf->tf_pc = imgp->entry_addr; tf->tf_spsr = PSR_USR32_MODE; } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret) { struct trapframe *tf = td->td_frame; __greg_t *gr = mcp->__gregs; if (clear_ret & GET_MC_CLEAR_RET) gr[_REG_R0] = 0; else gr[_REG_R0] = tf->tf_r0; gr[_REG_R1] = tf->tf_r1; gr[_REG_R2] = tf->tf_r2; gr[_REG_R3] = tf->tf_r3; gr[_REG_R4] = tf->tf_r4; gr[_REG_R5] = tf->tf_r5; gr[_REG_R6] = tf->tf_r6; gr[_REG_R7] = tf->tf_r7; gr[_REG_R8] = tf->tf_r8; gr[_REG_R9] = tf->tf_r9; gr[_REG_R10] = tf->tf_r10; gr[_REG_R11] = tf->tf_r11; gr[_REG_R12] = tf->tf_r12; gr[_REG_SP] = tf->tf_usr_sp; gr[_REG_LR] = tf->tf_usr_lr; gr[_REG_PC] = tf->tf_pc; gr[_REG_CPSR] = tf->tf_spsr; return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, const mcontext_t *mcp) { struct trapframe *tf = td->td_frame; const __greg_t *gr = mcp->__gregs; tf->tf_r0 = gr[_REG_R0]; tf->tf_r1 = gr[_REG_R1]; tf->tf_r2 = gr[_REG_R2]; tf->tf_r3 = gr[_REG_R3]; tf->tf_r4 = gr[_REG_R4]; tf->tf_r5 = gr[_REG_R5]; tf->tf_r6 = gr[_REG_R6]; tf->tf_r7 = gr[_REG_R7]; tf->tf_r8 = gr[_REG_R8]; tf->tf_r9 = gr[_REG_R9]; tf->tf_r10 = gr[_REG_R10]; tf->tf_r11 = gr[_REG_R11]; tf->tf_r12 = gr[_REG_R12]; tf->tf_usr_sp = gr[_REG_SP]; tf->tf_usr_lr = gr[_REG_LR]; tf->tf_pc = gr[_REG_PC]; tf->tf_spsr = gr[_REG_CPSR]; return (0); } /* * MPSAFE */ int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { struct sigframe sf; struct trapframe *tf; int spsr; if (uap == NULL) return (EFAULT); if (copyin(uap->sigcntxp, &sf, sizeof(sf))) return (EFAULT); /* * Make sure the processor mode has not been tampered with and * interrupts have not been disabled. */ spsr = sf.sf_uc.uc_mcontext.__gregs[_REG_CPSR]; if ((spsr & PSR_MODE) != PSR_USR32_MODE || (spsr & (I32_bit | F32_bit)) != 0) return (EINVAL); /* Restore register context. */ tf = td->td_frame; set_mcontext(td, &sf.sf_uc.uc_mcontext); /* Restore signal mask. */ kern_sigprocmask(td, SIG_SETMASK, &sf.sf_uc.uc_sigmask, NULL, 0); return (EJUSTRETURN); } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->un_32.pcb32_r8 = tf->tf_r8; pcb->un_32.pcb32_r9 = tf->tf_r9; pcb->un_32.pcb32_r10 = tf->tf_r10; pcb->un_32.pcb32_r11 = tf->tf_r11; pcb->un_32.pcb32_r12 = tf->tf_r12; pcb->un_32.pcb32_pc = tf->tf_pc; pcb->un_32.pcb32_lr = tf->tf_usr_lr; pcb->un_32.pcb32_sp = tf->tf_usr_sp; } /* * Make a standard dump_avail array. Can't make the phys_avail * since we need to do that after we call pmap_bootstrap, but this * is needed before pmap_boostrap. * * ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before * calling pmap_bootstrap. */ void arm_dump_avail_init(vm_offset_t ramsize, size_t max) { #ifdef LINUX_BOOT_ABI /* * Linux boot loader passes us the actual banks of memory, so use them * to construct the dump_avail array. */ if (membanks > 0) { int i, j; if (max < (membanks + 1) * 2) panic("dump_avail[%d] too small for %d banks\n", max, membanks); for (j = 0, i = 0; i < membanks; i++) { dump_avail[j++] = round_page(memstart[i]); dump_avail[j++] = trunc_page(memstart[i] + memsize[i]); } dump_avail[j++] = 0; dump_avail[j++] = 0; return; } #endif if (max < 4) panic("dump_avail too small\n"); dump_avail[0] = round_page(PHYSADDR); dump_avail[1] = trunc_page(PHYSADDR + ramsize); dump_avail[2] = 0; dump_avail[3] = 0; } /* * Fake up a boot descriptor table */ vm_offset_t fake_preload_metadata(struct arm_boot_params *abp __unused) { #ifdef DDB vm_offset_t zstart = 0, zend = 0; #endif vm_offset_t lastaddr; int i = 0; static uint32_t fake_preload[35]; fake_preload[i++] = MODINFO_NAME; fake_preload[i++] = strlen("kernel") + 1; strcpy((char*)&fake_preload[i++], "kernel"); i += 1; fake_preload[i++] = MODINFO_TYPE; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_ADDR; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = KERNVIRTADDR; fake_preload[i++] = MODINFO_SIZE; fake_preload[i++] = sizeof(uint32_t); fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR; #ifdef DDB if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) { fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4); fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8); lastaddr = *(uint32_t *)(KERNVIRTADDR + 8); zend = lastaddr; zstart = *(uint32_t *)(KERNVIRTADDR + 4); ksym_start = zstart; ksym_end = zend; } else #endif lastaddr = (vm_offset_t)&end; fake_preload[i++] = 0; fake_preload[i] = 0; preload_metadata = (void *)fake_preload; return (lastaddr); } void pcpu0_init(void) { #if ARM_ARCH_6 || ARM_ARCH_7A || defined(CPU_MV_PJ4B) set_pcpu(pcpup); #endif pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); #ifdef ARM_VFP_SUPPORT PCPU_SET(cpu, 0); #endif } #if defined(LINUX_BOOT_ABI) vm_offset_t linux_parse_boot_param(struct arm_boot_params *abp) { struct arm_lbabi_tag *walker; uint32_t revision; uint64_t serial; /* * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2 * is atags or dtb pointer. If all of these aren't satisfied, * then punt. */ if (!(abp->abp_r0 == 0 && abp->abp_r1 != 0 && abp->abp_r2 != 0)) return 0; board_id = abp->abp_r1; walker = (struct arm_lbabi_tag *) (abp->abp_r2 + KERNVIRTADDR - KERNPHYSADDR); /* xxx - Need to also look for binary device tree */ if (ATAG_TAG(walker) != ATAG_CORE) return 0; atag_list = walker; while (ATAG_TAG(walker) != ATAG_NONE) { switch (ATAG_TAG(walker)) { case ATAG_CORE: break; case ATAG_MEM: if (membanks < LBABI_MAX_BANKS) { memstart[membanks] = walker->u.tag_mem.start; memsize[membanks] = walker->u.tag_mem.size; } membanks++; break; case ATAG_INITRD2: break; case ATAG_SERIAL: serial = walker->u.tag_sn.low | ((uint64_t)walker->u.tag_sn.high << 32); board_set_serial(serial); break; case ATAG_REVISION: revision = walker->u.tag_rev.rev; board_set_revision(revision); break; case ATAG_CMDLINE: /* XXX open question: Parse this for boothowto? */ bcopy(walker->u.tag_cmd.command, linux_command_line, ATAG_SIZE(walker)); break; default: break; } walker = ATAG_NEXT(walker); } /* Save a copy for later */ bcopy(atag_list, atags, (char *)walker - (char *)atag_list + ATAG_SIZE(walker)); return fake_preload_metadata(abp); } #endif #if defined(FREEBSD_BOOT_LOADER) vm_offset_t freebsd_parse_boot_param(struct arm_boot_params *abp) { vm_offset_t lastaddr = 0; void *mdp; void *kmdp; /* * Mask metadata pointer: it is supposed to be on page boundary. If * the first argument (mdp) doesn't point to a valid address the * bootloader must have passed us something else than the metadata * ptr, so we give up. Also give up if we cannot find metadta section * the loader creates that we get all this data out of. */ if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL) return 0; preload_metadata = mdp; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) return 0; boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); #endif preload_addr_relocate = KERNVIRTADDR - KERNPHYSADDR; return lastaddr; } #endif vm_offset_t default_parse_boot_param(struct arm_boot_params *abp) { vm_offset_t lastaddr; #if defined(LINUX_BOOT_ABI) if ((lastaddr = linux_parse_boot_param(abp)) != 0) return lastaddr; #endif #if defined(FREEBSD_BOOT_LOADER) if ((lastaddr = freebsd_parse_boot_param(abp)) != 0) return lastaddr; #endif /* Fall back to hardcoded metadata. */ lastaddr = fake_preload_metadata(abp); return lastaddr; } /* * Stub version of the boot parameter parsing routine. We are * called early in initarm, before even VM has been initialized. * This routine needs to preserve any data that the boot loader * has passed in before the kernel starts to grow past the end * of the BSS, traditionally the place boot-loaders put this data. * * Since this is called so early, things that depend on the vm system * being setup (including access to some SoC's serial ports), about * all that can be done in this routine is to copy the arguments. * * This is the default boot parameter parsing routine. Individual * kernels/boards can override this weak function with one of their * own. We just fake metadata... */ __weak_reference(default_parse_boot_param, parse_boot_param); /* * Initialize proc0 */ void init_proc0(vm_offset_t kstack) { proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_pcb = (struct pcb *) (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; } void set_stackptrs(int cpu) { set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_UND32_MODE, undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); } #ifdef FDT static char * kenv_next(char *cp) { if (cp != NULL) { while (*cp != 0) cp++; cp++; if (*cp == 0) cp = NULL; } return (cp); } static void print_kenv(void) { int len; char *cp; debugf("loader passed (static) kenv:\n"); if (kern_envp == NULL) { debugf(" no env, null ptr\n"); return; } debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp); len = 0; for (cp = kern_envp; cp != NULL; cp = kenv_next(cp)) debugf(" %x %s\n", (uint32_t)cp, cp); } static void physmap_init(struct mem_region *availmem_regions, int availmem_regions_sz) { int i, j, cnt; vm_offset_t phys_kernelend, kernload; uint32_t s, e, sz; struct mem_region *mp, *mp1; phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR); kernload = KERNPHYSADDR; /* * Remove kernel physical address range from avail * regions list. Page align all regions. * Non-page aligned memory isn't very interesting to us. * Also, sort the entries for ascending addresses. */ sz = 0; cnt = availmem_regions_sz; debugf("processing avail regions:\n"); for (mp = availmem_regions; mp->mr_size; mp++) { s = mp->mr_start; e = mp->mr_start + mp->mr_size; debugf(" %08x-%08x -> ", s, e); /* Check whether this region holds all of the kernel. */ if (s < kernload && e > phys_kernelend) { availmem_regions[cnt].mr_start = phys_kernelend; availmem_regions[cnt++].mr_size = e - phys_kernelend; e = kernload; } /* Look whether this regions starts within the kernel. */ if (s >= kernload && s < phys_kernelend) { if (e <= phys_kernelend) goto empty; s = phys_kernelend; } /* Now look whether this region ends within the kernel. */ if (e > kernload && e <= phys_kernelend) { if (s >= kernload) { goto empty; } e = kernload; } /* Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; debugf("%08x-%08x = %x\n", s, e, sz); /* Check whether some memory is left here. */ if (sz == 0) { empty: printf("skipping\n"); bcopy(mp + 1, mp, (cnt - (mp - availmem_regions)) * sizeof(*mp)); cnt--; mp--; continue; } /* Do an insertion sort. */ for (mp1 = availmem_regions; mp1 < mp; mp1++) if (s < mp1->mr_start) break; if (mp1 < mp) { bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1); mp1->mr_start = s; mp1->mr_size = sz; } else { mp->mr_start = s; mp->mr_size = sz; } } availmem_regions_sz = cnt; /* Fill in phys_avail table, based on availmem_regions */ debugf("fill in phys_avail:\n"); for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { debugf(" region: 0x%08x - 0x%08x (0x%08x)\n", availmem_regions[i].mr_start, availmem_regions[i].mr_start + availmem_regions[i].mr_size, availmem_regions[i].mr_size); /* * We should not map the page at PA 0x0000000, the VM can't * handle it, as pmap_extract() == 0 means failure. */ if (availmem_regions[i].mr_start > 0 || availmem_regions[i].mr_size > PAGE_SIZE) { phys_avail[j] = availmem_regions[i].mr_start; if (phys_avail[j] == 0) phys_avail[j] += PAGE_SIZE; phys_avail[j + 1] = availmem_regions[i].mr_start + availmem_regions[i].mr_size; } else j -= 2; } phys_avail[j] = 0; phys_avail[j + 1] = 0; } void * initarm(struct arm_boot_params *abp) { struct mem_region memory_regions[FDT_MEM_REGIONS]; struct mem_region availmem_regions[FDT_MEM_REGIONS]; struct mem_region reserved_regions[FDT_MEM_REGIONS]; struct pv_addr kernel_l1pt; struct pv_addr dpcpu; vm_offset_t dtbp, freemempos, l2_start, lastaddr; uint32_t memsize, l2size; char *env; void *kmdp; u_int l1pagetable; int i = 0, j = 0, err_devmap = 0; int memory_regions_sz; int availmem_regions_sz; int reserved_regions_sz; vm_offset_t start, end; vm_offset_t rstart, rend; int curr; lastaddr = parse_boot_param(abp); memsize = 0; set_cpufuncs(); /* * Find the dtb passed in by the boot loader. */ kmdp = preload_search_by_type("elf kernel"); if (kmdp != NULL) dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); else dtbp = (vm_offset_t)NULL; #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not retrieved (from metadata) try * to use the statically embedded one. */ if (dtbp == (vm_offset_t)NULL) dtbp = (vm_offset_t)&fdt_static_dtb; #endif if (OF_install(OFW_FDT, 0) == FALSE) while (1); if (OF_init((void *)dtbp) != 0) while (1); /* Grab physical memory regions information from device tree. */ if (fdt_get_mem_regions(memory_regions, &memory_regions_sz, &memsize) != 0) while(1); /* Grab physical memory regions information from device tree. */ if (fdt_get_reserved_regions(reserved_regions, &reserved_regions_sz) != 0) reserved_regions_sz = 0; /* * Now exclude all the reserved regions */ curr = 0; for (i = 0; i < memory_regions_sz; i++) { start = memory_regions[i].mr_start; end = start + memory_regions[i].mr_size; for (j = 0; j < reserved_regions_sz; j++) { rstart = reserved_regions[j].mr_start; rend = rstart + reserved_regions[j].mr_size; /* * Restricted region is before available * Skip restricted region */ if (rend <= start) continue; /* * Restricted region is behind available * No further processing required */ if (rstart >= end) break; /* * Restricted region includes memory region * skip availble region */ if ((start >= rstart) && (rend >= end)) { start = rend; end = rend; break; } /* * Memory region includes restricted region */ if ((rstart > start) && (end > rend)) { availmem_regions[curr].mr_start = start; availmem_regions[curr++].mr_size = rstart - start; start = rend; break; } /* * Memory region partially overlaps with restricted */ if ((rstart >= start) && (rstart <= end)) { end = rstart; } else if ((rend >= start) && (rend <= end)) { start = rend; } } if (end > start) { availmem_regions[curr].mr_start = start; availmem_regions[curr++].mr_size = end - start; } } availmem_regions_sz = curr; /* Platform-specific initialisation */ vm_max_kernel_address = initarm_lastaddr(); pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); /* Calculate number of L2 tables needed for mapping vm_page_array */ l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page); l2size = (l2size >> L1_S_SHIFT) + 1; /* * Add one table for end of kernel map, one for stacks, msgbuf and * L1 and L2 tables map and one for vectors map. */ l2size += 3; /* Make it divisible by 4 */ l2size = (l2size + 3) & ~3; freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (i = 0; i < l2size; ++i) { if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[i], L2_TABLE_SIZE / PAGE_SIZE); j = i; } else { kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va + L2_TABLE_SIZE_REAL * (i - j); kernel_pt_table[i].pv_pa = kernel_pt_table[i].pv_va - KERNVIRTADDR + KERNPHYSADDR; } } /* * Allocate a page for the system page mapped to 0x00000000 * or 0xffff0000. This page will just contain the system vectors * and can be shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU); valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU); valloc_pages(undstack, UND_STACK_SIZE * MAXCPU); valloc_pages(kernelstack, KSTACK_PAGES * MAXCPU); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* * Try to map as much as possible of kernel text and data using * 1MB section mapping and for the rest of initial kernel address * space use L2 coarse tables. * * Link L2 tables for mapping remainder of kernel (modulo 1MB) * and kernel structures */ l2_start = lastaddr & ~(L1_S_OFFSET); for (i = 0 ; i < l2size - 1; i++) pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE, &kernel_pt_table[i]); pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE; /* Map kernel code and data */ pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR, (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map L1 directory and allocated L2 page tables */ pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va, kernel_pt_table[0].pv_pa, L2_TABLE_SIZE_REAL * l2size, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map allocated DPCPU, stacks and msgbuf */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, freemempos - dpcpu.pv_va, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Link and map the vector page */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[l2size - 1]); pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE); /* Map pmap_devmap[] entries */ err_devmap = platform_devmap_init(); pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT); pmap_pa = kernel_l1pt.pv_pa; setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)); /* * Only after the SOC registers block is mapped we can perform device * tree fixups, as they may attempt to read parameters from hardware. */ OF_interpret("perform-fixup", 0); initarm_gpio_init(); cninit(); physmem = memsize / PAGE_SIZE; debugf("initarm: console initialized\n"); debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp); debugf(" boothowto = 0x%08x\n", boothowto); debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp); print_kenv(); env = getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); if (err_devmap != 0) printf("WARNING: could not fully configure devmap, error=%d\n", err_devmap); initarm_late_init(); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); arm_intrnames_init(); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0])); pmap_bootstrap(freemempos, &kernel_l1pt); msgbufp = (void *)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); /* * Prepare map of physical memory regions available to vm subsystem. */ physmap_init(availmem_regions, availmem_regions_sz); init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); } #endif Index: user/attilio/vmobj-rwlock/sys/arm/broadcom/bcm2835/bcm2835_vcbus.h =================================================================== --- user/attilio/vmobj-rwlock/sys/arm/broadcom/bcm2835/bcm2835_vcbus.h (revision 247226) +++ user/attilio/vmobj-rwlock/sys/arm/broadcom/bcm2835/bcm2835_vcbus.h (revision 247227) @@ -1,52 +1,66 @@ /*- * Copyright (c) 2012 Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Defines for converting physical address to VideoCore bus address and back */ #ifndef _BCM2835_VCBUS_H_ #define _BCM2835_VCBUS_H_ #define BCM2835_VCBUS_SDRAM_CACHED 0x40000000 +#define BCM2835_VCBUS_IO_BASE 0x7E000000 #define BCM2835_VCBUS_SDRAM_UNCACHED 0xC0000000 +#define BCM2835_ARM_IO_BASE 0x20000000 +#define BCM2835_ARM_IO_SIZE 0x02000000 + /* * Convert physical address to VC bus address. Should be used * when submitting address over mailbox interface */ #define PHYS_TO_VCBUS(pa) ((pa) + BCM2835_VCBUS_SDRAM_CACHED) + +/* Check whether pa bellong top IO window */ +#define BCM2835_ARM_IS_IO(pa) (((pa) >= BCM2835_ARM_IO_BASE) && \ + ((pa) < BCM2835_ARM_IO_BASE + BCM2835_ARM_IO_SIZE)) + +/* + * Convert physical address in IO space to VC bus address. + */ +#define IO_TO_VCBUS(pa) ((pa - BCM2835_ARM_IO_BASE) + \ + BCM2835_VCBUS_IO_BASE) /* * Convert address from VC bus space to physical. Should be used * when address is returned by VC over mailbox interface. e.g. * framebuffer base */ #define VCBUS_TO_PHYS(vca) ((vca) - BCM2835_VCBUS_SDRAM_CACHED) #endif /* _BCM2835_VCBUS_H_ */ Index: user/attilio/vmobj-rwlock/sys/boot/fdt/dts/bcm2835-rpi-b.dts =================================================================== --- user/attilio/vmobj-rwlock/sys/boot/fdt/dts/bcm2835-rpi-b.dts (revision 247226) +++ user/attilio/vmobj-rwlock/sys/boot/fdt/dts/bcm2835-rpi-b.dts (revision 247227) @@ -1,582 +1,579 @@ /* * $FreeBSD$ */ /dts-v1/; /memreserve/ 0x08000000 0x08000000; /* Set by VideoCore */ / { model = "Raspberry Pi Model B (BCM2835)"; #address-cells = <1>; #size-cells = <1>; compatible = "raspberrypi,model-b", "broadcom,bcm2835-vc", "broadcom,bcm2708-vc"; system { revision = <0>; /* Set by VideoCore */ serial = <0 0>; /* Set by VideoCore */ }; cpus { cpu@0 { compatible = "arm,1176jzf-s"; }; }; axi { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <1>; reg = <0x20000000 0x01000000>; ranges = <0 0x20000000 0x01000000>; intc: interrupt-controller { compatible = "broadcom,bcm2835-armctrl-ic", "broadcom,bcm2708-armctrl-ic"; reg = <0xB200 0x200>; interrupt-controller; #interrupt-cells = <1>; /* Bank 0 * 0: ARM_TIMER * 1: ARM_MAILBOX * 2: ARM_DOORBELL_0 * 3: ARM_DOORBELL_1 * 4: VPU0_HALTED * 5: VPU1_HALTED * 6: ILLEGAL_TYPE0 * 7: ILLEGAL_TYPE1 */ /* Bank 1 * 0: TIMER0 16: DMA0 * 1: TIMER1 17: DMA1 * 2: TIMER2 18: VC_DMA2 * 3: TIMER3 19: VC_DMA3 * 4: CODEC0 20: DMA4 * 5: CODEC1 21: DMA5 * 6: CODEC2 22: DMA6 * 7: VC_JPEG 23: DMA7 * 8: ISP 24: DMA8 * 9: VC_USB 25: DMA9 * 10: VC_3D 26: DMA10 * 11: TRANSPOSER 27: DMA11 * 12: MULTICORESYNC0 28: DMA12 * 13: MULTICORESYNC1 29: AUX * 14: MULTICORESYNC2 30: ARM * 15: MULTICORESYNC3 31: VPUDMA */ /* Bank 2 * 0: HOSTPORT 16: SMI * 1: VIDEOSCALER 17: GPIO0 * 2: CCP2TX 18: GPIO1 * 3: SDC 19: GPIO2 * 4: DSI0 20: GPIO3 * 5: AVE 21: VC_I2C * 6: CAM0 22: VC_SPI * 7: CAM1 23: VC_I2SPCM * 8: HDMI0 24: VC_SDIO * 9: HDMI1 25: VC_UART * 10: PIXELVALVE1 26: SLIMBUS * 11: I2CSPISLV 27: VEC * 12: DSI1 28: CPG * 13: PWA0 29: RNG * 14: PWA1 30: VC_ARASANSDIO * 15: CPR 31: AVSPMON */ }; timer { compatible = "broadcom,bcm2835-system-timer", "broadcom,bcm2708-system-timer"; reg = <0x3000 0x1000>; interrupts = <8 9 10 11>; interrupt-parent = <&intc>; clock-frequency = <1000000>; }; - dma: dma { - compatible = "broadcom,bcm2835-dma", "broadcom,bcm2708-dma"; - reg = <0x7000 0x1000>, <0xE05000 0x1000>; - interrupts = < - 26 /* 2 */ - 27 /* 3 */ - >; - interrupt-parent = <&intc>; - - broadcom,channels = <0>; /* Set by VideoCore */ - }; - - sdhci { - compatible = "broadcom,bcm2835-sdhci", "broadcom,bcm2708-sdhci"; - reg = <0x300000 0x100>; - interrupts = <70>; - interrupt-parent = <&intc>; - - clock-frequency = <50000000>; /* Set by VideoCore */ - }; - armtimer { /* Not AMBA compatible */ compatible = "broadcom,bcm2835-sp804", "arm,sp804"; reg = <0xB400 0x24>; interrupts = <0>; interrupt-parent = <&intc>; }; - vc_mbox: mbox { - compatible = "broadcom,bcm2835-mbox", "broadcom,bcm2708-mbox"; - reg = <0xB880 0x40>; - interrupts = <1>; - interrupt-parent = <&intc>; - - /* Channels - * 0: Power - * 1: Frame buffer - * 2: Virtual UART - * 3: VCHIQ - * 4: LEDs - * 5: Buttons - * 6: Touch screen - */ - }; - watchdog0 { compatible = "broadcom,bcm2835-wdt", "broadcom,bcm2708-wdt"; reg = <0x10001c 0x0c>; /* 0x1c, 0x20, 0x24 */ }; gpio: gpio { compatible = "broadcom,bcm2835-gpio", "broadcom,bcm2708-gpio"; reg = <0x200000 0xb0>; /* Unusual arrangement of interrupts (determined by testing) * 17: Bank 0 (GPIOs 0-31) * 19: Bank 1 (GPIOs 32-53) * 18: Bank 2 * 20: All banks (GPIOs 0-53) */ interrupts = <57 59 58 60>; interrupt-parent = <&intc>; gpio-controller; #gpio-cells = <2>; interrupt-controller; #interrupt-cells = <1>; pinctrl-names = "default"; pinctrl-0 = <&pins_reserved>; /* pins that can short 3.3V to GND in output mode: 46-47 * pins used by VideoCore: 48-53 */ broadcom,read-only = <46>, <47>, <48>, <49>, <50>, <51>, <52>, <53>; /* BSC0 */ pins_bsc0_a: bsc0_a { broadcom,pins = <0>, <1>; broadcom,function = "ALT0"; }; pins_bsc0_b: bsc0_b { broadcom,pins = <28>, <29>; broadcom,function = "ALT0"; }; pins_bsc0_c: bsc0_c { broadcom,pins = <44>, <45>; broadcom,function = "ALT1"; }; /* BSC1 */ pins_bsc1_a: bsc1_a { broadcom,pins = <2>, <3>; broadcom,function = "ALT0"; }; pins_bsc1_b: bsc1_b { broadcom,pins = <44>, <45>; broadcom,function = "ALT2"; }; /* GPCLK0 */ pins_gpclk0_a: gpclk0_a { broadcom,pins = <4>; broadcom,function = "ALT0"; }; pins_gpclk0_b: gpclk0_b { broadcom,pins = <20>; broadcom,function = "ALT5"; }; pins_gpclk0_c: gpclk0_c { broadcom,pins = <32>; broadcom,function = "ALT0"; }; pins_gpclk0_d: gpclk0_d { broadcom,pins = <34>; broadcom,function = "ALT0"; }; /* GPCLK1 */ pins_gpclk1_a: gpclk1_a { broadcom,pins = <5>; broadcom,function = "ALT0"; }; pins_gpclk1_b: gpclk1_b { broadcom,pins = <21>; broadcom,function = "ALT5"; }; pins_gpclk1_c: gpclk1_c { broadcom,pins = <42>; broadcom,function = "ALT0"; }; pins_gpclk1_d: gpclk1_d { broadcom,pins = <44>; broadcom,function = "ALT0"; }; /* GPCLK2 */ pins_gpclk2_a: gpclk2_a { broadcom,pins = <6>; broadcom,function = "ALT0"; }; pins_gpclk2_b: gpclk2_b { broadcom,pins = <43>; broadcom,function = "ALT0"; }; /* SPI0 */ pins_spi0_a: spi0_a { broadcom,pins = <7>, <8>, <9>, <10>, <11>; broadcom,function = "ALT0"; }; pins_spi0_b: spi0_b { broadcom,pins = <35>, <36>, <37>, <38>, <39>; broadcom,function = "ALT0"; }; /* PWM */ pins_pwm0_a: pwm0_a { broadcom,pins = <12>; broadcom,function = "ALT0"; }; pins_pwm0_b: pwm0_b { broadcom,pins = <18>; broadcom,function = "ALT5"; }; pins_pwm0_c: pwm0_c { broadcom,pins = <40>; broadcom,function = "ALT0"; }; pins_pwm1_a: pwm1_a { broadcom,pins = <13>; broadcom,function = "ALT0"; }; pins_pwm1_b: pwm1_b { broadcom,pins = <19>; broadcom,function = "ALT5"; }; pins_pwm1_c: pwm1_c { broadcom,pins = <41>; broadcom,function = "ALT0"; }; pins_pwm1_d: pwm1_d { broadcom,pins = <45>; broadcom,function = "ALT0"; }; /* UART0 */ pins_uart0_a: uart0_a { broadcom,pins = <14>, <15>; broadcom,function = "ALT0"; }; pins_uart0_b: uart0_b { broadcom,pins = <32>, <33>; broadcom,function = "ALT3"; }; pins_uart0_c: uart0_c { broadcom,pins = <36>, <37>; broadcom,function = "ALT2"; }; pins_uart0_fc_a: uart0_fc_a { broadcom,pins = <16>, <17>; broadcom,function = "ALT3"; }; pins_uart0_fc_b: uart0_fc_b { broadcom,pins = <30>, <31>; broadcom,function = "ALT3"; }; pins_uart0_fc_c: uart0_fc_c { broadcom,pins = <39>, <38>; broadcom,function = "ALT2"; }; /* PCM */ pins_pcm_a: pcm_a { broadcom,pins = <18>, <19>, <20>, <21>; broadcom,function = "ALT0"; }; pins_pcm_b: pcm_b { broadcom,pins = <28>, <29>, <30>, <31>; broadcom,function = "ALT2"; }; /* Secondary Address Bus */ pins_sm_addr_a: sm_addr_a { broadcom,pins = <5>, <4>, <3>, <2>, <1>, <0>; broadcom,function = "ALT1"; }; pins_sm_addr_b: sm_addr_b { broadcom,pins = <33>, <32>, <31>, <30>, <29>, <28>; broadcom,function = "ALT1"; }; pins_sm_ctl_a: sm_ctl_a { broadcom,pins = <6>, <7>; broadcom,function = "ALT1"; }; pins_sm_ctl_b: sm_ctl_b { broadcom,pins = <34>, <35>; broadcom,function = "ALT1"; }; pins_sm_data_8bit_a: sm_data_8bit_a { broadcom,pins = <8>, <9>, <10>, <11>, <12>, <13>, <14>, <15>; broadcom,function = "ALT1"; }; pins_sm_data_8bit_b: sm_data_8bit_b { broadcom,pins = <36>, <37>, <38>, <39>, <40>, <41>, <42>, <43>; broadcom,function = "ALT1"; }; pins_sm_data_16bit: sm_data_16bit { broadcom,pins = <16>, <17>, <18>, <19>, <20>, <21>, <22>, <23>; broadcom,function = "ALT1"; }; pins_sm_data_18bit: sm_data_18bit { broadcom,pins = <24>, <25>; broadcom,function = "ALT1"; }; /* BSCSL */ pins_bscsl: bscsl { broadcom,pins = <18>, <19>; broadcom,function = "ALT3"; }; /* SPISL */ pins_spisl: spisl { broadcom,pins = <18>, <19>, <20>, <21>; broadcom,function = "ALT3"; }; /* SPI1 */ pins_spi1: spi1 { broadcom,pins = <16>, <17>, <18>, <19>, <20>, <21>; broadcom,function = "ALT4"; }; /* UART1 */ pins_uart1_a: uart1_a { broadcom,pins = <14>, <15>; broadcom,function = "ALT5"; }; pins_uart1_b: uart1_b { broadcom,pins = <32>, <33>; broadcom,function = "ALT5"; }; pins_uart1_c: uart1_c { broadcom,pins = <40>, <41>; broadcom,function = "ALT5"; }; pins_uart1_fc_a: uart1_fc_a { broadcom,pins = <16>, <17>; broadcom,function = "ALT5"; }; pins_uart1_fc_b: uart1_fc_b { broadcom,pins = <30>, <31>; broadcom,function = "ALT5"; }; pins_uart1_fc_c: uart1_fc_c { broadcom,pins = <43>, <42>; broadcom,function = "ALT5"; }; /* SPI2 */ pins_spi2: spi2 { broadcom,pins = <40>, <41>, <42>, <43>, <44>, <45>; broadcom,function = "ALT4"; }; /* ARM JTAG */ pins_arm_jtag_trst: arm_jtag_trst { broadcom,pins = <22>; broadcom,function = "ALT4"; }; pins_arm_jtag_a: arm_jtag_a { broadcom,pins = <4>, <5>, <6>, <12>, <13>; broadcom,function = "ALT5"; }; pins_arm_jtag_b: arm_jtag_b { broadcom,pins = <23>, <24>, <25>, <26>, <27>; broadcom,function = "ALT4"; }; /* Reserved */ pins_reserved: reserved { broadcom,pins = <48>, <49>, <50>, <51>, <52>, <53>; broadcom,function = "ALT3"; }; + }; + + dma: dma { + compatible = "broadcom,bcm2835-dma", "broadcom,bcm2708-dma"; + reg = <0x7000 0x1000>, <0xE05000 0x1000>; + interrupts = <24 25 26 27 28 29 30 31 32 33 34 35 36>; + interrupt-parent = <&intc>; + + broadcom,channels = <0>; /* Set by VideoCore */ + }; + + vc_mbox: mbox { + compatible = "broadcom,bcm2835-mbox", "broadcom,bcm2708-mbox"; + reg = <0xB880 0x40>; + interrupts = <1>; + interrupt-parent = <&intc>; + + /* Channels + * 0: Power + * 1: Frame buffer + * 2: Virtual UART + * 3: VCHIQ + * 4: LEDs + * 5: Buttons + * 6: Touch screen + */ + }; + + sdhci { + compatible = "broadcom,bcm2835-sdhci", "broadcom,bcm2708-sdhci"; + reg = <0x300000 0x100>; + interrupts = <70>; + interrupt-parent = <&intc>; + + clock-frequency = <50000000>; /* Set by VideoCore */ }; uart0: uart0 { compatible = "broadcom,bcm2835-uart", "broadcom,bcm2708-uart", "arm,pl011", "arm,primecell"; reg = <0x201000 0x1000>; interrupts = <65>; interrupt-parent = <&intc>; clock-frequency = <3000000>; /* Set by VideoCore */ reg-shift = <2>; }; vchiq { compatible = "broadcom,bcm2835-vchiq"; reg = <0xB800 0x50>; interrupts = <2>; interrupt-parent = <&intc>; }; usb { compatible = "broadcom,bcm2835-usb", "broadcom,bcm2708-usb", "synopsys,designware-hs-otg2"; reg = <0x980000 0x20000>; interrupts = <17>; interrupt-parent = <&intc>; #address-cells = <1>; #size-cells = <0>; hub { compatible = "usb,hub", "usb,device"; reg = <0x00000001>; #address-cells = <1>; #size-cells = <0>; ethernet { compatible = "net,ethernet", "usb,device"; reg = <0x00000001>; mac-address = [00 00 00 00 00 00]; }; }; }; }; memory { device_type = "memory"; reg = <0 0x08000000>; /* 128MB */ }; display { compatible = "broadcom,bcm2835-fb", "broadcom,bcm2708-fb"; broadcom,vc-mailbox = <&vc_mbox>; broadcom,vc-channel = <1>; broadcom,width = <0>; /* Set by VideoCore */ broadcom,height = <0>; /* Set by VideoCore */ broadcom,depth = <0>; /* Set by VideoCore */ }; leds { compatible = "gpio-leds"; ok { label = "ok"; gpios = <&gpio 16 1>; /* Don't change this - it configures * how the led driver determines if * the led is on or off when it loads. */ default-state = "keep"; /* This is the real default state. */ linux,default-trigger = "default-on"; }; }; power: regulator { compatible = "broadcom,bcm2835-power-mgr", "broadcom,bcm2708-power-mgr", "simple-bus"; #address-cells = <1>; #size-cells = <0>; broadcom,vc-mailbox = <&vc_mbox>; broadcom,vc-channel = <0>; regulator-name = "VideoCore"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; regulator-always-on = <1>; sd_card_power: regulator@0 { compatible = "broadcom,bcm2835-power-dev", "broadcom,bcm2708-power-dev"; reg = <0>; vin-supply = <&power>; regulator-name = "SD Card"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; }; /* This is for the controller itself, not the root port */ usb_hcd_power: regulator@3 { compatible = "broadcom,bcm2835-power-dev", "broadcom,bcm2708-power-dev"; reg = <3>; vin-supply = <&power>; regulator-name = "USB HCD"; regulator-min-microvolt = <5000000>; regulator-max-microvolt = <5000000>; }; }; aliases { uart0 = &uart0; }; chosen { bootargs = ""; /* Set by VideoCore */ stdin = "uart0"; stdout = "uart0"; }; }; Index: user/attilio/vmobj-rwlock/sys/boot/fdt/fdt_loader_cmd.c =================================================================== --- user/attilio/vmobj-rwlock/sys/boot/fdt/fdt_loader_cmd.c (revision 247226) +++ user/attilio/vmobj-rwlock/sys/boot/fdt/fdt_loader_cmd.c (revision 247227) @@ -1,1625 +1,1640 @@ /*- * Copyright (c) 2009-2010 The FreeBSD Foundation * All rights reserved. * * This software was developed by Semihalf under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include "bootstrap.h" #include "glue.h" #ifdef DEBUG #define debugf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define debugf(fmt, args...) #endif #define FDT_CWD_LEN 256 #define FDT_MAX_DEPTH 6 #define FDT_PROP_SEP " = " #define STR(number) #number #define STRINGIFY(number) STR(number) #define COPYOUT(s,d,l) archsw.arch_copyout(s, d, l) #define COPYIN(s,d,l) archsw.arch_copyin(s, d, l) #define FDT_STATIC_DTB_SYMBOL "fdt_static_dtb" #define CMD_REQUIRES_BLOB 0x01 -/* Local copy of FDT */ +/* Location of FDT yet to be loaded. */ +static struct fdt_header *fdt_to_load = NULL; +/* Local copy of FDT on heap. */ static struct fdt_header *fdtp = NULL; /* Size of FDT blob */ static size_t fdtp_size = 0; /* Location of FDT in kernel or module */ static vm_offset_t fdtp_va = 0; static int fdt_load_dtb(vm_offset_t va); static int fdt_cmd_nyi(int argc, char *argv[]); static int fdt_cmd_addr(int argc, char *argv[]); static int fdt_cmd_mkprop(int argc, char *argv[]); static int fdt_cmd_cd(int argc, char *argv[]); static int fdt_cmd_hdr(int argc, char *argv[]); static int fdt_cmd_ls(int argc, char *argv[]); static int fdt_cmd_prop(int argc, char *argv[]); static int fdt_cmd_pwd(int argc, char *argv[]); static int fdt_cmd_rm(int argc, char *argv[]); static int fdt_cmd_mknode(int argc, char *argv[]); static int fdt_cmd_mres(int argc, char *argv[]); typedef int cmdf_t(int, char *[]); struct cmdtab { char *name; cmdf_t *handler; int flags; }; static const struct cmdtab commands[] = { { "addr", &fdt_cmd_addr, 0 }, { "alias", &fdt_cmd_nyi, 0 }, { "cd", &fdt_cmd_cd, CMD_REQUIRES_BLOB }, { "header", &fdt_cmd_hdr, CMD_REQUIRES_BLOB }, { "ls", &fdt_cmd_ls, CMD_REQUIRES_BLOB }, { "mknode", &fdt_cmd_mknode, CMD_REQUIRES_BLOB }, { "mkprop", &fdt_cmd_mkprop, CMD_REQUIRES_BLOB }, { "mres", &fdt_cmd_mres, CMD_REQUIRES_BLOB }, { "prop", &fdt_cmd_prop, CMD_REQUIRES_BLOB }, { "pwd", &fdt_cmd_pwd, CMD_REQUIRES_BLOB }, { "rm", &fdt_cmd_rm, CMD_REQUIRES_BLOB }, { NULL, NULL } }; static char cwd[FDT_CWD_LEN] = "/"; static vm_offset_t fdt_find_static_dtb() { Elf_Dyn dyn; Elf_Sym sym; vm_offset_t dyntab, esym, strtab, symtab, fdt_start; uint64_t offs; struct preloaded_file *kfp; struct file_metadata *md; char *strp; int sym_count; symtab = strtab = dyntab = esym = 0; strp = NULL; offs = __elfN(relocation_offset); kfp = file_findfile(NULL, NULL); if (kfp == NULL) return (0); md = file_findmetadata(kfp, MODINFOMD_ESYM); if (md == NULL) return (0); bcopy(md->md_data, &esym, sizeof(esym)); /* esym is already offset */ md = file_findmetadata(kfp, MODINFOMD_DYNAMIC); if (md == NULL) return (0); bcopy(md->md_data, &dyntab, sizeof(dyntab)); dyntab += offs; /* Locate STRTAB and DYNTAB */ for (;;) { COPYOUT(dyntab, &dyn, sizeof(dyn)); if (dyn.d_tag == DT_STRTAB) { strtab = (vm_offset_t)(dyn.d_un.d_ptr) + offs; } else if (dyn.d_tag == DT_SYMTAB) { symtab = (vm_offset_t)(dyn.d_un.d_ptr) + offs; } else if (dyn.d_tag == DT_NULL) { break; } dyntab += sizeof(dyn); } if (symtab == 0 || strtab == 0) { /* * No symtab? No strtab? That should not happen here, * and should have been verified during __elfN(loadimage). * This must be some kind of a bug. */ return (0); } sym_count = (int)(esym - symtab) / sizeof(Elf_Sym); /* * The most efficent way to find a symbol would be to calculate a * hash, find proper bucket and chain, and thus find a symbol. * However, that would involve code duplication (e.g. for hash * function). So we're using simpler and a bit slower way: we're * iterating through symbols, searching for the one which name is * 'equal' to 'fdt_static_dtb'. To speed up the process a little bit, * we are eliminating symbols type of which is not STT_NOTYPE, or(and) * those which binding attribute is not STB_GLOBAL. */ fdt_start = 0; while (sym_count > 0 && fdt_start == 0) { COPYOUT(symtab, &sym, sizeof(sym)); symtab += sizeof(sym); --sym_count; if (ELF_ST_BIND(sym.st_info) != STB_GLOBAL || ELF_ST_TYPE(sym.st_info) != STT_NOTYPE) continue; strp = strdupout(strtab + sym.st_name); if (strcmp(strp, FDT_STATIC_DTB_SYMBOL) == 0) fdt_start = (vm_offset_t)sym.st_value + offs; free(strp); } printf("fdt_start: 0x%08jX\n", (intmax_t)fdt_start); return (fdt_start); } static int fdt_load_dtb(vm_offset_t va) { struct fdt_header header; int err; COPYOUT(va, &header, sizeof(header)); err = fdt_check_header(&header); if (err < 0) { if (err == -FDT_ERR_BADVERSION) sprintf(command_errbuf, "incompatible blob version: %d, should be: %d", fdt_version(fdtp), FDT_LAST_SUPPORTED_VERSION); else sprintf(command_errbuf, "error validating blob: %s", fdt_strerror(err)); return (1); } /* * Release previous blob */ if (fdtp) free(fdtp); fdtp_size = fdt_totalsize(&header); fdtp = malloc(fdtp_size); if (fdtp == NULL) { command_errmsg = "can't allocate memory for device tree copy"; return (1); } fdtp_va = va; COPYOUT(va, fdtp, fdtp_size); debugf("DTB blob found at 0x%jx, size: 0x%jx\n", (uintmax_t)va, (uintmax_t)fdtp_size); return (0); } static int fdt_load_dtb_addr(struct fdt_header *header) { struct preloaded_file *bfp; bfp = mem_load_raw("dtb", "memory.dtb", header, fdt_totalsize(header)); if (bfp == NULL) { command_errmsg = "unable to copy DTB into module directory"; return (1); } return fdt_load_dtb(bfp->f_addr); } static int fdt_setup_fdtp() { struct preloaded_file *bfp; struct fdt_header *hdr; - const char *s, *p; + const char *s; + char *p; vm_offset_t va; if ((bfp = file_findfile(NULL, "dtb")) != NULL) { printf("Using DTB from loaded file.\n"); return fdt_load_dtb(bfp->f_addr); - } + } + if (fdt_to_load != NULL) { + printf("Using DTB from memory address 0x%08X.\n", + (unsigned int)fdt_to_load); + return fdt_load_dtb_addr(fdt_to_load); + } + s = ub_env_get("fdtaddr"); if (s != NULL && *s != '\0') { hdr = (struct fdt_header *)strtoul(s, &p, 16); if (*p == '\0') { printf("Using DTB provided by U-Boot.\n"); return fdt_load_dtb_addr(hdr); } } if ((va = fdt_find_static_dtb()) != 0) { printf("Using DTB compiled into kernel.\n"); return (fdt_load_dtb(va)); } command_errmsg = "no device tree blob found!"; return (1); } #define fdt_strtovect(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \ (cellbuf), (lim), (cellsize), 0); /* Force using base 16 */ #define fdt_strtovectx(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \ (cellbuf), (lim), (cellsize), 16); static int _fdt_strtovect(char *str, void *cellbuf, int lim, unsigned char cellsize, uint8_t base) { char *buf = str; char *end = str + strlen(str) - 2; uint32_t *u32buf = NULL; uint8_t *u8buf = NULL; int cnt = 0; if (cellsize == sizeof(uint32_t)) u32buf = (uint32_t *)cellbuf; else u8buf = (uint8_t *)cellbuf; if (lim == 0) return (0); while (buf < end) { /* Skip white whitespace(s)/separators */ while (!isxdigit(*buf) && buf < end) buf++; if (u32buf != NULL) u32buf[cnt] = cpu_to_fdt32((uint32_t)strtol(buf, NULL, base)); else u8buf[cnt] = (uint8_t)strtol(buf, NULL, base); if (cnt + 1 <= lim - 1) cnt++; else break; buf++; /* Find another number */ while ((isxdigit(*buf) || *buf == 'x') && buf < end) buf++; } return (cnt); } #define TMP_MAX_ETH 8 void fixup_ethernet(const char *env, char *ethstr, int *eth_no, int len) { char *end, *str; uint8_t tmp_addr[6]; int i, n; /* Extract interface number */ i = strtol(env + 3, &end, 10); if (end == (env + 3)) /* 'ethaddr' means interface 0 address */ n = 0; else n = i; if (n > TMP_MAX_ETH) return; str = ub_env_get(env); /* Convert macaddr string into a vector of uints */ fdt_strtovectx(str, &tmp_addr, 6, sizeof(uint8_t)); if (n != 0) { i = strlen(env) - 7; strncpy(ethstr + 8, env + 3, i); } /* Set actual property to a value from vect */ fdt_setprop(fdtp, fdt_path_offset(fdtp, ethstr), "local-mac-address", &tmp_addr, 6 * sizeof(uint8_t)); /* Clear ethernet..XXXX.. string */ bzero(ethstr + 8, len - 8); if (n + 1 > *eth_no) *eth_no = n + 1; } void fixup_cpubusfreqs(unsigned long cpufreq, unsigned long busfreq) { int lo, o = 0, o2, maxo = 0, depth; const uint32_t zero = 0; /* We want to modify every subnode of /cpus */ o = fdt_path_offset(fdtp, "/cpus"); if (o < 0) return; /* maxo should contain offset of node next to /cpus */ depth = 0; maxo = o; while (depth != -1) maxo = fdt_next_node(fdtp, maxo, &depth); /* Find CPU frequency properties */ o = fdt_node_offset_by_prop_value(fdtp, o, "clock-frequency", &zero, sizeof(uint32_t)); o2 = fdt_node_offset_by_prop_value(fdtp, o, "bus-frequency", &zero, sizeof(uint32_t)); lo = MIN(o, o2); while (o != -FDT_ERR_NOTFOUND && o2 != -FDT_ERR_NOTFOUND) { o = fdt_node_offset_by_prop_value(fdtp, lo, "clock-frequency", &zero, sizeof(uint32_t)); o2 = fdt_node_offset_by_prop_value(fdtp, lo, "bus-frequency", &zero, sizeof(uint32_t)); /* We're only interested in /cpus subnode(s) */ if (lo > maxo) break; fdt_setprop_inplace_cell(fdtp, lo, "clock-frequency", (uint32_t)cpufreq); fdt_setprop_inplace_cell(fdtp, lo, "bus-frequency", (uint32_t)busfreq); lo = MIN(o, o2); } } int fdt_reg_valid(uint32_t *reg, int len, int addr_cells, int size_cells) { int cells_in_tuple, i, tuples, tuple_size; uint32_t cur_start, cur_size; cells_in_tuple = (addr_cells + size_cells); tuple_size = cells_in_tuple * sizeof(uint32_t); tuples = len / tuple_size; if (tuples == 0) return (EINVAL); for (i = 0; i < tuples; i++) { if (addr_cells == 2) cur_start = fdt64_to_cpu(reg[i * cells_in_tuple]); else cur_start = fdt32_to_cpu(reg[i * cells_in_tuple]); if (size_cells == 2) cur_size = fdt64_to_cpu(reg[i * cells_in_tuple + 2]); else cur_size = fdt32_to_cpu(reg[i * cells_in_tuple + 1]); if (cur_size == 0) return (EINVAL); debugf(" reg#%d (start: 0x%0x size: 0x%0x) valid!\n", i, cur_start, cur_size); } return (0); } void fixup_memory(struct sys_info *si) { struct mem_region *curmr; uint32_t addr_cells, size_cells; uint32_t *addr_cellsp, *reg, *size_cellsp; int err, i, len, memory, realmrno, root; uint8_t *buf, *sb; uint64_t rstart, rsize; int reserved; root = fdt_path_offset(fdtp, "/"); if (root < 0) { sprintf(command_errbuf, "Could not find root node !"); return; } memory = fdt_path_offset(fdtp, "/memory"); if (memory <= 0) { /* Create proper '/memory' node. */ memory = fdt_add_subnode(fdtp, root, "memory"); if (memory <= 0) { sprintf(command_errbuf, "Could not fixup '/memory' " "node, error code : %d!\n", memory); return; } err = fdt_setprop(fdtp, memory, "device_type", "memory", sizeof("memory")); if (err < 0) return; } addr_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#address-cells", NULL); size_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#size-cells", NULL); if (addr_cellsp == NULL || size_cellsp == NULL) { sprintf(command_errbuf, "Could not fixup '/memory' node : " "%s %s property not found in root node!\n", (!addr_cellsp) ? "#address-cells" : "", (!size_cellsp) ? "#size-cells" : ""); return; } addr_cells = fdt32_to_cpu(*addr_cellsp); size_cells = fdt32_to_cpu(*size_cellsp); /* * Convert memreserve data to memreserve property * Check if property already exists */ reserved = fdt_num_mem_rsv(fdtp); if (reserved && (fdt_getprop(fdtp, root, "memreserve", NULL) == NULL)) { len = (addr_cells + size_cells) * reserved * sizeof(uint32_t); sb = buf = (uint8_t *)malloc(len); if (!buf) return; bzero(buf, len); for (i = 0; i < reserved; i++) { curmr = &si->mr[i]; if (fdt_get_mem_rsv(fdtp, i, &rstart, &rsize)) break; if (rsize) { /* Ensure endianess, and put cells into a buffer */ if (addr_cells == 2) *(uint64_t *)buf = cpu_to_fdt64(rstart); else *(uint32_t *)buf = cpu_to_fdt32(rstart); buf += sizeof(uint32_t) * addr_cells; if (size_cells == 2) *(uint64_t *)buf = cpu_to_fdt64(rsize); else *(uint32_t *)buf = cpu_to_fdt32(rsize); buf += sizeof(uint32_t) * size_cells; } } /* Set property */ if ((err = fdt_setprop(fdtp, root, "memreserve", sb, len)) < 0) printf("Could not fixup 'memreserve' property.\n"); free(sb); } /* Count valid memory regions entries in sysinfo. */ realmrno = si->mr_no; for (i = 0; i < si->mr_no; i++) if (si->mr[i].start == 0 && si->mr[i].size == 0) realmrno--; if (realmrno == 0) { sprintf(command_errbuf, "Could not fixup '/memory' node : " "sysinfo doesn't contain valid memory regions info!\n"); return; } if ((reg = (uint32_t *)fdt_getprop(fdtp, memory, "reg", &len)) != NULL) { if (fdt_reg_valid(reg, len, addr_cells, size_cells) == 0) /* * Do not apply fixup if existing 'reg' property * seems to be valid. */ return; } len = (addr_cells + size_cells) * realmrno * sizeof(uint32_t); sb = buf = (uint8_t *)malloc(len); if (!buf) return; bzero(buf, len); for (i = 0; i < si->mr_no; i++) { curmr = &si->mr[i]; if (curmr->size != 0) { /* Ensure endianess, and put cells into a buffer */ if (addr_cells == 2) *(uint64_t *)buf = cpu_to_fdt64(curmr->start); else *(uint32_t *)buf = cpu_to_fdt32(curmr->start); buf += sizeof(uint32_t) * addr_cells; if (size_cells == 2) *(uint64_t *)buf = cpu_to_fdt64(curmr->size); else *(uint32_t *)buf = cpu_to_fdt32(curmr->size); buf += sizeof(uint32_t) * size_cells; } } /* Set property */ if ((err = fdt_setprop(fdtp, memory, "reg", sb, len)) < 0) sprintf(command_errbuf, "Could not fixup '/memory' node.\n"); free(sb); } void fixup_stdout(const char *env) { const char *str; char *ptr; int serialno; int len, no, sero; const struct fdt_property *prop; char *tmp[10]; str = ub_env_get(env); ptr = (char *)str + strlen(str) - 1; while (ptr > str && isdigit(*(str - 1))) str--; if (ptr == str) return; serialno = (int)strtol(ptr, NULL, 0); no = fdt_path_offset(fdtp, "/chosen"); if (no < 0) return; prop = fdt_get_property(fdtp, no, "stdout", &len); /* If /chosen/stdout does not extist, create it */ if (prop == NULL || (prop != NULL && len == 0)) { bzero(tmp, 10 * sizeof(char)); strcpy((char *)&tmp, "serial"); if (strlen(ptr) > 3) /* Serial number too long */ return; strncpy((char *)tmp + 6, ptr, 3); sero = fdt_path_offset(fdtp, (const char *)tmp); if (sero < 0) /* * If serial device we're trying to assign * stdout to doesn't exist in DT -- return. */ return; fdt_setprop(fdtp, no, "stdout", &tmp, strlen((char *)&tmp) + 1); fdt_setprop(fdtp, no, "stdin", &tmp, strlen((char *)&tmp) + 1); } } /* * Locate the blob, fix it up and return its location. */ static vm_offset_t fdt_fixup(void) { const char *env; char *ethstr; int chosen, err, eth_no, len; struct sys_info *si; env = NULL; eth_no = 0; ethstr = NULL; len = 0; if (fdtp == NULL) { err = fdt_setup_fdtp(); if (err) { sprintf(command_errbuf, "No valid device tree blob found!"); return (0); } } /* Create /chosen node (if not exists) */ if ((chosen = fdt_subnode_offset(fdtp, 0, "chosen")) == -FDT_ERR_NOTFOUND) chosen = fdt_add_subnode(fdtp, 0, "chosen"); /* Value assigned to fixup-applied does not matter. */ if (fdt_getprop(fdtp, chosen, "fixup-applied", NULL)) goto success; /* Acquire sys_info */ si = ub_get_sys_info(); while ((env = ub_env_enum(env)) != NULL) { if (strncmp(env, "eth", 3) == 0 && strncmp(env + (strlen(env) - 4), "addr", 4) == 0) { /* * Handle Ethernet addrs: parse uboot env eth%daddr */ if (!eth_no) { /* * Check how many chars we will need to store * maximal eth iface number. */ len = strlen(STRINGIFY(TMP_MAX_ETH)) + strlen("ethernet"); /* * Reserve mem for string "ethernet" and len * chars for iface no. */ ethstr = (char *)malloc(len * sizeof(char)); bzero(ethstr, len * sizeof(char)); strcpy(ethstr, "ethernet0"); } /* Modify blob */ fixup_ethernet(env, ethstr, ð_no, len); } else if (strcmp(env, "consoledev") == 0) fixup_stdout(env); } /* Modify cpu(s) and bus clock frequenties in /cpus node [Hz] */ fixup_cpubusfreqs(si->clk_cpu, si->clk_bus); /* Fixup memory regions */ fixup_memory(si); fdt_setprop(fdtp, chosen, "fixup-applied", NULL, 0); success: /* Overwrite the FDT with the fixed version. */ COPYIN(fdtp, fdtp_va, fdtp_size); return (fdtp_va); } /* * Copy DTB blob to specified location and its return size */ int fdt_copy(vm_offset_t va) { int err; if (fdtp == NULL) { err = fdt_setup_fdtp(); if (err) { printf("No valid device tree blob found!"); return (0); } } if (fdt_fixup() == 0) return (0); COPYIN(fdtp, va, fdtp_size); return (fdtp_size); } int command_fdt_internal(int argc, char *argv[]) { cmdf_t *cmdh; int flags; char *cmd; int i, err; if (argc < 2) { command_errmsg = "usage is 'fdt []"; return (CMD_ERROR); } /* * Validate fdt . */ cmd = strdup(argv[1]); i = 0; cmdh = NULL; while (!(commands[i].name == NULL)) { if (strcmp(cmd, commands[i].name) == 0) { /* found it */ cmdh = commands[i].handler; flags = commands[i].flags; break; } i++; } if (cmdh == NULL) { command_errmsg = "unknown command"; return (CMD_ERROR); } if (flags & CMD_REQUIRES_BLOB) { /* * Check if uboot env vars were parsed already. If not, do it now. */ if (fdt_fixup() == 0) return (CMD_ERROR); } /* * Call command handler. */ err = (*cmdh)(argc, argv); return (err); } static int fdt_cmd_addr(int argc, char *argv[]) { + struct preloaded_file *fp; struct fdt_header *hdr; - const char *addr, *cp; + const char *addr; + char *cp; + fdt_to_load = NULL; + if (argc > 2) addr = argv[2]; else { sprintf(command_errbuf, "no address specified"); return (CMD_ERROR); } - hdr = (struct fdt_header *)strtoul(addr, &cp, 0); + hdr = (struct fdt_header *)strtoul(addr, &cp, 16); if (cp == addr) { sprintf(command_errbuf, "Invalid address: %s", addr); return (CMD_ERROR); } - if (fdt_load_dtb_addr(hdr) != 0) - return (CMD_ERROR); + while ((fp = file_findfile(NULL, "dtb")) != NULL) { + file_discard(fp); + } + fdt_to_load = hdr; return (CMD_OK); } static int fdt_cmd_cd(int argc, char *argv[]) { char *path; char tmp[FDT_CWD_LEN]; int len, o; path = (argc > 2) ? argv[2] : "/"; if (path[0] == '/') { len = strlen(path); if (len >= FDT_CWD_LEN) goto fail; } else { /* Handle path specification relative to cwd */ len = strlen(cwd) + strlen(path) + 1; if (len >= FDT_CWD_LEN) goto fail; strcpy(tmp, cwd); strcat(tmp, "/"); strcat(tmp, path); path = tmp; } o = fdt_path_offset(fdtp, path); if (o < 0) { sprintf(command_errbuf, "could not find node: '%s'", path); return (CMD_ERROR); } strcpy(cwd, path); return (CMD_OK); fail: sprintf(command_errbuf, "path too long: %d, max allowed: %d", len, FDT_CWD_LEN - 1); return (CMD_ERROR); } static int fdt_cmd_hdr(int argc __unused, char *argv[] __unused) { char line[80]; int ver; if (fdtp == NULL) { command_errmsg = "no device tree blob pointer?!"; return (CMD_ERROR); } ver = fdt_version(fdtp); pager_open(); sprintf(line, "\nFlattened device tree header (%p):\n", fdtp); pager_output(line); sprintf(line, " magic = 0x%08x\n", fdt_magic(fdtp)); pager_output(line); sprintf(line, " size = %d\n", fdt_totalsize(fdtp)); pager_output(line); sprintf(line, " off_dt_struct = 0x%08x\n", fdt_off_dt_struct(fdtp)); pager_output(line); sprintf(line, " off_dt_strings = 0x%08x\n", fdt_off_dt_strings(fdtp)); pager_output(line); sprintf(line, " off_mem_rsvmap = 0x%08x\n", fdt_off_mem_rsvmap(fdtp)); pager_output(line); sprintf(line, " version = %d\n", ver); pager_output(line); sprintf(line, " last compatible version = %d\n", fdt_last_comp_version(fdtp)); pager_output(line); if (ver >= 2) { sprintf(line, " boot_cpuid = %d\n", fdt_boot_cpuid_phys(fdtp)); pager_output(line); } if (ver >= 3) { sprintf(line, " size_dt_strings = %d\n", fdt_size_dt_strings(fdtp)); pager_output(line); } if (ver >= 17) { sprintf(line, " size_dt_struct = %d\n", fdt_size_dt_struct(fdtp)); pager_output(line); } pager_close(); return (CMD_OK); } static int fdt_cmd_ls(int argc, char *argv[]) { const char *prevname[FDT_MAX_DEPTH] = { NULL }; const char *name; char *path; int i, o, depth, len; path = (argc > 2) ? argv[2] : NULL; if (path == NULL) path = cwd; o = fdt_path_offset(fdtp, path); if (o < 0) { sprintf(command_errbuf, "could not find node: '%s'", path); return (CMD_ERROR); } for (depth = 0; (o >= 0) && (depth >= 0); o = fdt_next_node(fdtp, o, &depth)) { name = fdt_get_name(fdtp, o, &len); if (depth > FDT_MAX_DEPTH) { printf("max depth exceeded: %d\n", depth); continue; } prevname[depth] = name; /* Skip root (i = 1) when printing devices */ for (i = 1; i <= depth; i++) { if (prevname[i] == NULL) break; if (strcmp(cwd, "/") == 0) printf("/"); printf("%s", prevname[i]); } printf("\n"); } return (CMD_OK); } static __inline int isprint(int c) { return (c >= ' ' && c <= 0x7e); } static int fdt_isprint(const void *data, int len, int *count) { const char *d; char ch; int yesno, i; if (len == 0) return (0); d = (const char *)data; if (d[len - 1] != '\0') return (0); *count = 0; yesno = 1; for (i = 0; i < len; i++) { ch = *(d + i); if (isprint(ch) || (ch == '\0' && i > 0)) { /* Count strings */ if (ch == '\0') (*count)++; continue; } yesno = 0; break; } return (yesno); } static int fdt_data_str(const void *data, int len, int count, char **buf) { char *b, *tmp; const char *d; int buf_len, i, l; /* * Calculate the length for the string and allocate memory. * * Note that 'len' already includes at least one terminator. */ buf_len = len; if (count > 1) { /* * Each token had already a terminator buried in 'len', but we * only need one eventually, don't count space for these. */ buf_len -= count - 1; /* Each consecutive token requires a ", " separator. */ buf_len += count * 2; } /* Add some space for surrounding double quotes. */ buf_len += count * 2; /* Note that string being put in 'tmp' may be as big as 'buf_len'. */ b = (char *)malloc(buf_len); tmp = (char *)malloc(buf_len); if (b == NULL) goto error; if (tmp == NULL) { free(b); goto error; } b[0] = '\0'; /* * Now that we have space, format the string. */ i = 0; do { d = (const char *)data + i; l = strlen(d) + 1; sprintf(tmp, "\"%s\"%s", d, (i + l) < len ? ", " : ""); strcat(b, tmp); i += l; } while (i < len); *buf = b; free(tmp); return (0); error: return (1); } static int fdt_data_cell(const void *data, int len, char **buf) { char *b, *tmp; const uint32_t *c; int count, i, l; /* Number of cells */ count = len / 4; /* * Calculate the length for the string and allocate memory. */ /* Each byte translates to 2 output characters */ l = len * 2; if (count > 1) { /* Each consecutive cell requires a " " separator. */ l += (count - 1) * 1; } /* Each cell will have a "0x" prefix */ l += count * 2; /* Space for surrounding <> and terminator */ l += 3; b = (char *)malloc(l); tmp = (char *)malloc(l); if (b == NULL) goto error; if (tmp == NULL) { free(b); goto error; } b[0] = '\0'; strcat(b, "<"); for (i = 0; i < len; i += 4) { c = (const uint32_t *)((const uint8_t *)data + i); sprintf(tmp, "0x%08x%s", fdt32_to_cpu(*c), i < (len - 4) ? " " : ""); strcat(b, tmp); } strcat(b, ">"); *buf = b; free(tmp); return (0); error: return (1); } static int fdt_data_bytes(const void *data, int len, char **buf) { char *b, *tmp; const char *d; int i, l; /* * Calculate the length for the string and allocate memory. */ /* Each byte translates to 2 output characters */ l = len * 2; if (len > 1) /* Each consecutive byte requires a " " separator. */ l += (len - 1) * 1; /* Each byte will have a "0x" prefix */ l += len * 2; /* Space for surrounding [] and terminator. */ l += 3; b = (char *)malloc(l); tmp = (char *)malloc(l); if (b == NULL) goto error; if (tmp == NULL) { free(b); goto error; } b[0] = '\0'; strcat(b, "["); for (i = 0, d = data; i < len; i++) { sprintf(tmp, "0x%02x%s", d[i], i < len - 1 ? " " : ""); strcat(b, tmp); } strcat(b, "]"); *buf = b; free(tmp); return (0); error: return (1); } static int fdt_data_fmt(const void *data, int len, char **buf) { int count; if (len == 0) { *buf = NULL; return (1); } if (fdt_isprint(data, len, &count)) return (fdt_data_str(data, len, count, buf)); else if ((len % 4) == 0) return (fdt_data_cell(data, len, buf)); else return (fdt_data_bytes(data, len, buf)); } static int fdt_prop(int offset) { char *line, *buf; const struct fdt_property *prop; const char *name; const void *data; int len, rv; line = NULL; prop = fdt_offset_ptr(fdtp, offset, sizeof(*prop)); if (prop == NULL) return (1); name = fdt_string(fdtp, fdt32_to_cpu(prop->nameoff)); len = fdt32_to_cpu(prop->len); rv = 0; buf = NULL; if (len == 0) { /* Property without value */ line = (char *)malloc(strlen(name) + 2); if (line == NULL) { rv = 2; goto out2; } sprintf(line, "%s\n", name); goto out1; } /* * Process property with value */ data = prop->data; if (fdt_data_fmt(data, len, &buf) != 0) { rv = 3; goto out2; } line = (char *)malloc(strlen(name) + strlen(FDT_PROP_SEP) + strlen(buf) + 2); if (line == NULL) { sprintf(command_errbuf, "could not allocate space for string"); rv = 4; goto out2; } sprintf(line, "%s" FDT_PROP_SEP "%s\n", name, buf); out1: pager_open(); pager_output(line); pager_close(); out2: if (buf) free(buf); if (line) free(line); return (rv); } static int fdt_modprop(int nodeoff, char *propname, void *value, char mode) { uint32_t cells[100]; char *buf; int len, rv; const struct fdt_property *p; p = fdt_get_property(fdtp, nodeoff, propname, NULL); if (p != NULL) { if (mode == 1) { /* Adding inexistant value in mode 1 is forbidden */ sprintf(command_errbuf, "property already exists!"); return (CMD_ERROR); } } else if (mode == 0) { sprintf(command_errbuf, "property does not exist!"); return (CMD_ERROR); } len = strlen(value); rv = 0; buf = (char *)value; switch (*buf) { case '&': /* phandles */ break; case '<': /* Data cells */ len = fdt_strtovect(buf, (void *)&cells, 100, sizeof(uint32_t)); rv = fdt_setprop(fdtp, nodeoff, propname, &cells, len * sizeof(uint32_t)); break; case '[': /* Data bytes */ len = fdt_strtovect(buf, (void *)&cells, 100, sizeof(uint8_t)); rv = fdt_setprop(fdtp, nodeoff, propname, &cells, len * sizeof(uint8_t)); break; case '"': default: /* Default -- string */ rv = fdt_setprop_string(fdtp, nodeoff, propname, value); break; } if (rv != 0) { if (rv == -FDT_ERR_NOSPACE) sprintf(command_errbuf, "Device tree blob is too small!\n"); else sprintf(command_errbuf, "Could not add/modify property!\n"); } else { COPYIN(fdtp, fdtp_va, fdtp_size); } return (rv); } /* Merge strings from argv into a single string */ static int fdt_merge_strings(int argc, char *argv[], int start, char **buffer) { char *buf; int i, idx, sz; *buffer = NULL; sz = 0; for (i = start; i < argc; i++) sz += strlen(argv[i]); /* Additional bytes for whitespaces between args */ sz += argc - start; buf = (char *)malloc(sizeof(char) * sz); bzero(buf, sizeof(char) * sz); if (buf == NULL) { sprintf(command_errbuf, "could not allocate space " "for string"); return (1); } idx = 0; for (i = start, idx = 0; i < argc; i++) { strcpy(buf + idx, argv[i]); idx += strlen(argv[i]); buf[idx] = ' '; idx++; } buf[sz - 1] = '\0'; *buffer = buf; return (0); } /* Extract offset and name of node/property from a given path */ static int fdt_extract_nameloc(char **pathp, char **namep, int *nodeoff) { int o; char *path = *pathp, *name = NULL, *subpath = NULL; subpath = strrchr(path, '/'); if (subpath == NULL) { o = fdt_path_offset(fdtp, cwd); name = path; path = (char *)&cwd; } else { *subpath = '\0'; if (strlen(path) == 0) path = cwd; name = subpath + 1; o = fdt_path_offset(fdtp, path); } if (strlen(name) == 0) { sprintf(command_errbuf, "name not specified"); return (1); } if (o < 0) { sprintf(command_errbuf, "could not find node: '%s'", path); return (1); } *namep = name; *nodeoff = o; *pathp = path; return (0); } static int fdt_cmd_prop(int argc, char *argv[]) { char *path, *propname, *value; int o, next, depth, rv; uint32_t tag; path = (argc > 2) ? argv[2] : NULL; value = NULL; if (argc > 3) { /* Merge property value strings into one */ if (fdt_merge_strings(argc, argv, 3, &value) != 0) return (CMD_ERROR); } else value = NULL; if (path == NULL) path = cwd; rv = CMD_OK; if (value) { /* If value is specified -- try to modify prop. */ if (fdt_extract_nameloc(&path, &propname, &o) != 0) return (CMD_ERROR); rv = fdt_modprop(o, propname, value, 0); if (rv) return (CMD_ERROR); return (CMD_OK); } /* User wants to display properties */ o = fdt_path_offset(fdtp, path); if (o < 0) { sprintf(command_errbuf, "could not find node: '%s'", path); rv = CMD_ERROR; goto out; } depth = 0; while (depth >= 0) { tag = fdt_next_tag(fdtp, o, &next); switch (tag) { case FDT_NOP: break; case FDT_PROP: if (depth > 1) /* Don't process properties of nested nodes */ break; if (fdt_prop(o) != 0) { sprintf(command_errbuf, "could not process " "property"); rv = CMD_ERROR; goto out; } break; case FDT_BEGIN_NODE: depth++; if (depth > FDT_MAX_DEPTH) { printf("warning: nesting too deep: %d\n", depth); goto out; } break; case FDT_END_NODE: depth--; if (depth == 0) /* * This is the end of our starting node, force * the loop finish. */ depth--; break; } o = next; } out: return (rv); } static int fdt_cmd_mkprop(int argc, char *argv[]) { int o; char *path, *propname, *value; path = (argc > 2) ? argv[2] : NULL; value = NULL; if (argc > 3) { /* Merge property value strings into one */ if (fdt_merge_strings(argc, argv, 3, &value) != 0) return (CMD_ERROR); } else value = NULL; if (fdt_extract_nameloc(&path, &propname, &o) != 0) return (CMD_ERROR); if (fdt_modprop(o, propname, value, 1)) return (CMD_ERROR); COPYIN(fdtp, fdtp_va, fdtp_size); return (CMD_OK); } static int fdt_cmd_rm(int argc, char *argv[]) { int o, rv; char *path = NULL, *propname; if (argc > 2) path = argv[2]; else { sprintf(command_errbuf, "no node/property name specified"); return (CMD_ERROR); } o = fdt_path_offset(fdtp, path); if (o < 0) { /* If node not found -- try to find & delete property */ if (fdt_extract_nameloc(&path, &propname, &o) != 0) return (CMD_ERROR); if ((rv = fdt_delprop(fdtp, o, propname)) != 0) { sprintf(command_errbuf, "could not delete" "%s\n", (rv == -FDT_ERR_NOTFOUND) ? "(property/node does not exist)" : ""); return (CMD_ERROR); } else return (CMD_OK); } /* If node exists -- remove node */ rv = fdt_del_node(fdtp, o); if (rv) { sprintf(command_errbuf, "could not delete node"); return (CMD_ERROR); } else { COPYIN(fdtp, fdtp_va, fdtp_size); } return (CMD_OK); } static int fdt_cmd_mknode(int argc, char *argv[]) { int o, rv; char *path = NULL, *nodename = NULL; if (argc > 2) path = argv[2]; else { sprintf(command_errbuf, "no node name specified"); return (CMD_ERROR); } if (fdt_extract_nameloc(&path, &nodename, &o) != 0) return (CMD_ERROR); rv = fdt_add_subnode(fdtp, o, nodename); if (rv < 0) { if (rv == -FDT_ERR_NOSPACE) sprintf(command_errbuf, "Device tree blob is too small!\n"); else sprintf(command_errbuf, "Could not add node!\n"); return (CMD_ERROR); } else { COPYIN(fdtp, fdtp_va, fdtp_size); } return (CMD_OK); } static int fdt_cmd_pwd(int argc, char *argv[]) { char line[FDT_CWD_LEN]; pager_open(); sprintf(line, "%s\n", cwd); pager_output(line); pager_close(); return (CMD_OK); } static int fdt_cmd_mres(int argc, char *argv[]) { uint64_t start, size; int i, total; char line[80]; pager_open(); total = fdt_num_mem_rsv(fdtp); if (total > 0) { pager_output("Reserved memory regions:\n"); for (i = 0; i < total; i++) { fdt_get_mem_rsv(fdtp, i, &start, &size); sprintf(line, "reg#%d: (start: 0x%jx, size: 0x%jx)\n", i, start, size); pager_output(line); } } else pager_output("No reserved memory regions\n"); pager_close(); return (CMD_OK); } static int fdt_cmd_nyi(int argc, char *argv[]) { printf("command not yet implemented\n"); return (CMD_ERROR); } Index: user/attilio/vmobj-rwlock/sys/boot/uboot/lib/elf_freebsd.c =================================================================== --- user/attilio/vmobj-rwlock/sys/boot/uboot/lib/elf_freebsd.c (revision 247226) +++ user/attilio/vmobj-rwlock/sys/boot/uboot/lib/elf_freebsd.c (revision 247227) @@ -1,96 +1,96 @@ /*- * Copyright (c) 2001 Benno Rice * Copyright (c) 2007 Semihalf, Rafal Jaworowski * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include "bootstrap.h" #include "libuboot.h" extern vm_offset_t md_load(char *, vm_offset_t *); int __elfN(uboot_load)(char *filename, u_int64_t dest, struct preloaded_file **result) { int r; r = __elfN(loadfile)(filename, dest, result); if (r != 0) return (r); #if defined(__powerpc__) /* * No need to sync the icache for modules: this will * be done by the kernel after relocation. */ if (!strcmp((*result)->f_type, "elf kernel")) __syncicache((void *) (*result)->f_addr, (*result)->f_size); #endif return (0); } int __elfN(uboot_exec)(struct preloaded_file *fp) { struct file_metadata *fmp; vm_offset_t mdp; Elf_Ehdr *e; int error; void (*entry)(void *); if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == NULL) return (EFTYPE); e = (Elf_Ehdr *)&fmp->md_data; if ((error = md_load(fp->f_args, &mdp)) != 0) return (error); entry = uboot_vm_translate(e->e_entry); printf("Kernel entry at 0x%x...\n", (unsigned)entry); - printf("Kernel args: %s\n", fp->f_args); dev_cleanup(); + printf("Kernel args: %s\n", fp->f_args); (*entry)((void *)mdp); panic("exec returned"); } struct file_format uboot_elf = { __elfN(uboot_load), __elfN(uboot_exec) }; Index: user/attilio/vmobj-rwlock/sys/boot =================================================================== --- user/attilio/vmobj-rwlock/sys/boot (revision 247226) +++ user/attilio/vmobj-rwlock/sys/boot (revision 247227) Property changes on: user/attilio/vmobj-rwlock/sys/boot ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/sys/boot:r247097-247226 Index: user/attilio/vmobj-rwlock/sys/dev/fdt/fdt_common.h =================================================================== --- user/attilio/vmobj-rwlock/sys/dev/fdt/fdt_common.h (revision 247226) +++ user/attilio/vmobj-rwlock/sys/dev/fdt/fdt_common.h (revision 247227) @@ -1,116 +1,116 @@ /*- * Copyright (c) 2009-2010 The FreeBSD Foundation * All rights reserved. * * This software was developed by Semihalf under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _FDT_COMMON_H_ #define _FDT_COMMON_H_ #include #include #include #include #define FDT_MEM_REGIONS 8 -#define DI_MAX_INTR_NUM 8 +#define DI_MAX_INTR_NUM 32 struct fdt_pci_range { u_long base_pci; u_long base_parent; u_long len; }; struct fdt_pci_intr { int addr_cells; int intr_cells; int map_len; pcell_t *map; pcell_t *mask; }; struct fdt_sense_level { enum intr_trigger trig; enum intr_polarity pol; }; typedef int (*fdt_pic_decode_t)(phandle_t, pcell_t *, int *, int *, int *); extern fdt_pic_decode_t fdt_pic_table[]; typedef void (*fdt_fixup_t)(phandle_t); struct fdt_fixup_entry { char *model; fdt_fixup_t handler; }; extern struct fdt_fixup_entry fdt_fixup_table[]; extern vm_paddr_t fdt_immr_pa; extern vm_offset_t fdt_immr_va; extern vm_offset_t fdt_immr_size; struct fdt_pm_mask_entry { char *compat; uint32_t mask; }; extern struct fdt_pm_mask_entry fdt_pm_mask_table[]; #if defined(FDT_DTB_STATIC) extern u_char fdt_static_dtb; #endif int fdt_addrsize_cells(phandle_t, int *, int *); u_long fdt_data_get(void *, int); int fdt_data_to_res(pcell_t *, int, int, u_long *, u_long *); int fdt_data_verify(void *, int); phandle_t fdt_find_compatible(phandle_t, const char *, int); int fdt_get_mem_regions(struct mem_region *, int *, uint32_t *); int fdt_get_reserved_regions(struct mem_region *, int *); int fdt_get_phyaddr(phandle_t, device_t, int *, void **); int fdt_get_range(phandle_t, int, u_long *, u_long *); int fdt_immr_addr(vm_offset_t); int fdt_regsize(phandle_t, u_long *, u_long *); int fdt_intr_decode(phandle_t, pcell_t *, int *, int *, int *); int fdt_intr_to_rl(phandle_t, struct resource_list *, struct fdt_sense_level *); int fdt_is_compatible(phandle_t, const char *); int fdt_is_compatible_strict(phandle_t, const char *); int fdt_is_enabled(phandle_t); int fdt_pm_is_enabled(phandle_t); int fdt_is_type(phandle_t, const char *); int fdt_parent_addr_cells(phandle_t); int fdt_pci_intr_info(phandle_t, struct fdt_pci_intr *); int fdt_pci_ranges(phandle_t, struct fdt_pci_range *, struct fdt_pci_range *); int fdt_pci_ranges_decode(phandle_t, struct fdt_pci_range *, struct fdt_pci_range *); int fdt_pci_route_intr(int, int, int, int, struct fdt_pci_intr *, int *); int fdt_ranges_verify(pcell_t *, int, int, int, int); int fdt_reg_to_rl(phandle_t, struct resource_list *); int fdt_pm(phandle_t); int fdt_get_unit(device_t); #endif /* _FDT_COMMON_H_ */ Index: user/attilio/vmobj-rwlock/sys/ia64/conf/GENERIC =================================================================== --- user/attilio/vmobj-rwlock/sys/ia64/conf/GENERIC (revision 247226) +++ user/attilio/vmobj-rwlock/sys/ia64/conf/GENERIC (revision 247227) @@ -1,209 +1,209 @@ # # GENERIC -- Generic kernel configuration file for FreeBSD/ia64 # # For more information on this file, please read the handbook section on # Kernel Configuration Files: # # http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-config.html # # The handbook is also available locally in /usr/share/doc/handbook # if you've installed the doc distribution, otherwise always see the # FreeBSD World Wide Web server (http://www.FreeBSD.org/) for the # latest information. # # An exhaustive list of options and more detailed explanations of the # device lines is also present in the ../../conf/NOTES and NOTES files. # If you are in doubt as to the purpose or necessity of a line, check # first in NOTES. # # For hardware specific information check HARDWARE.TXT # # $FreeBSD$ cpu ITANIUM2 ident GENERIC makeoptions DEBUG=-g # Build kernel with debug information. options AUDIT # Security event auditing options CAPABILITY_MODE # Capsicum capability mode options CAPABILITIES # Capsicum capabilities options CD9660 # ISO 9660 Filesystem options COMPAT_FREEBSD7 # Compatible with FreeBSD7 options FFS # Berkeley Fast Filesystem options GEOM_LABEL # Provides labelization options INCLUDE_CONFIG_FILE # Include this file in kernel options INET # InterNETworking options INET6 # IPv6 communications protocols options KTRACE # ktrace(1) syscall trace support options MAC # TrustedBSD MAC Framework options MD_ROOT # MD usable as root device options MSDOSFS # MSDOS Filesystem options NFSCL # New Network Filesystem Client options NFSLOCKD # Network Lock Manager options NFSD # New Network Filesystem Server options NFS_ROOT # NFS usable as root device options P1003_1B_SEMAPHORES # POSIX-style semaphores -#options PREEMPTION # Enable kernel thread preemption +options PREEMPTION # Enable kernel thread preemption options PRINTF_BUFR_SIZE=128 # Printf buffering to limit interspersion options PROCFS # Process filesystem (/proc) options PSEUDOFS # Pseudo-filesystem framework options SCHED_ULE # ULE scheduler options SCSI_DELAY=5000 # Delay (in ms) before probing SCSI options SCTP # Stream Control Transmission Protocol options SMP # Symmetric Multi-Processor support options SOFTUPDATES # Enable FFS soft updates support options STACK # stack(9) support options SYSVMSG # SYSV-style message queues options SYSVSEM # SYSV-style semaphores options SYSVSHM # SYSV-style shared memory options UFS_ACL # Support for access control lists options UFS_DIRHASH # Hash-based directory lookup scheme options UFS_GJOURNAL # Enable gjournal-based UFS journaling options QUOTA # Enable disk quotas for UFS options _KPOSIX_PRIORITY_SCHEDULING # Posix P1003_1B RT extensions # Debugging support. Always need this: options KDB # Enable kernel debugger support. # For minimum debugger support (stable branch) use: #options KDB_TRACE # Print a stack trace for a panic. # For full debugger support use this instead: options DDB # Support DDB options GDB # Support remote GDB options DEADLKRES # Enable the deadlock resolver options INVARIANTS # Enable calls of extra sanity checking options INVARIANT_SUPPORT # required by INVARIANTS options WITNESS # Enable checks to detect deadlocks and cycles options WITNESS_SKIPSPIN # Don't run witness on spinlocks for speed options MALLOC_DEBUG_MAXZONES=8 # Separate malloc(9) zones # Various "busses" device miibus # MII bus support (Ethernet) device pci # PCI bus support device scbus # SCSI bus (required for ATA/SCSI) device usb # USB Bus (required for USB) # ATA controllers device ahci # AHCI-compatible SATA controllers device ata # Legacy ATA/SATA controllers options ATA_CAM # Handle legacy controllers with CAM device mvs # Marvell 88SX50XX/88SX60XX/88SX70XX/SoC SATA device siis # SiliconImage SiI3124/SiI3132/SiI3531 SATA # SCSI Controllers device ahc # AHA2940 and AIC7xxx devices device ahd # AHA39320/29320 and AIC79xx devices device hptiop # Highpoint RocketRaid 3xxx series device isp # Qlogic family device mpt # LSI-Logic MPT-Fusion device sym # NCR/Symbios Logic # RAID controllers interfaced to the SCSI subsystem device amr # AMI MegaRAID device ciss # Compaq Smart RAID 5* device dpt # DPT Smartcache III, IV device iir # Intel Integrated RAID device ips # IBM (Adaptec) ServeRAID device mly # Mylex AcceleRAID/eXtremeRAID device twa # 3ware 9000 series PATA/SATA RAID # ATA/SCSI peripherals device cd # CD-ROM, DVD-ROM etc. device ch # Media changer device da # Direct Access (ie disk) device pass # Passthrough (direct ATA/SCSI access) device sa # Sequential Access (ie tape) device ses # Enclosure Services (SES and SAF-TE) device ctl # CAM Target Layer # RAID controllers device aac # Adaptec FSA RAID device aacp # SCSI passthrough for aac (requires CAM) device ida # Compaq Smart RAID device mlx # Mylex DAC960 family # USB host controllers and peripherals options USB_DEBUG # enable debug msgs device ehci # EHCI host controller device ohci # OHCI PCI->USB interface device uhci # UHCI PCI->USB interface device uhid # Human Interface Devices device ukbd # Keyboard device ulpt # Printer device umass # Disks/Mass storage (need scbus & da) device ums # Mouse # PCI Ethernet NICs. device de # DEC/Intel DC21x4x (``Tulip'') device em # Intel PRO/1000 Gigabit Ethernet Family device igb # Intel PRO/1000 PCIE Server Gigabit Family device ixgbe # Intel PRO/10GbE PCIE Ethernet Family device txp # 3Com 3cR990 (``Typhoon'') # PCI Ethernet NICs that use the common MII bus controller code. device ae # Attansic/Atheros L2 FastEthernet device age # Attansic/Atheros L1 Gigabit Ethernet device alc # Atheros AR8131/AR8132 Ethernet device ale # Atheros AR8121/AR8113/AR8114 Ethernet device bce # Broadcom BCM5706/BCM5708 Gigabit Ethernet device bfe # Broadcom BCM440x 10/100 Ethernet device bge # Broadcom BCM570xx Gigabit Ethernet device et # Agere ET1310 10/100/Gigabit Ethernet device jme # JMicron JMC250 Gigabit/JMC260 Fast Ethernet device msk # Marvell/SysKonnect Yukon II Gigabit Ethernet device nge # NatSemi DP83820 gigabit Ethernet device fxp # Intel EtherExpress PRO/100B (82557, 82558) device re # RealTek 8139C+/8169/8169S/8110S device sf # Adaptec AIC-6915 (``Starfire'') device sk # SysKonnect SK-984x & SK-982x gigabit Ethernet device ste # Sundance ST201 (D-Link DFE-550TX) device stge # Sundance/Tamarack TC9021 gigabit Ethernet device tx # SMC EtherPower II (83c170 ``EPIC'') device vge # VIA VT612x gigabit Ethernet device xl # 3Com 3c90x ("Boomerang", "Cyclone") # USB Ethernet device aue # ADMtek USB Ethernet device axe # ASIX Electronics USB Ethernet device cdce # Generic USB over Ethernet device cue # CATC USB Ethernet device kue # Kawasaki LSI USB Ethernet device rue # RealTek RTL8150 USB Ethernet device udav # Davicom DM9601E USB # USB Serial device uark # Technologies ARK3116 based serial adapters device ubsa # Belkin F5U103 and compatible serial adapters device uftdi # For FTDI usb serial adapters device uipaq # Some WinCE based devices device uplcom # Prolific PL-2303 serial adapters device uslcom # SI Labs CP2101/CP2102 serial adapters device uvisor # Visor and Palm devices device uvscom # USB serial support for DDI pocket's PHS # Wireless NIC cards. # The wlan(4) module assumes this, so just define it so it # at least correctly loads. options IEEE80211_SUPPORT_MESH # The ath(4) and ath_hal(4) code requires this. The module currently # builds everything including AR5416 (and later 11n NIC) support. options AH_SUPPORT_AR5416 # Various (pseudo) devices device ether # Ethernet support device faith # IPv6-to-IPv4 relaying (translation) device gif # IPv6 and IPv4 tunneling device loop # Network loopback device md # Memory "disks" device puc # Multi I/O cards and multi-channel UARTs device random # Entropy device device tun # Packet tunnel. device uart # Serial port (UART) device vlan # 802.1Q VLAN support device firmware # firmware assist module # The `bpf' device enables the Berkeley Packet Filter. # Be aware of the administrative consequences of enabling this! # Note that 'bpf' is required for DHCP. device bpf # Berkeley packet filter Index: user/attilio/vmobj-rwlock/sys =================================================================== --- user/attilio/vmobj-rwlock/sys (revision 247226) +++ user/attilio/vmobj-rwlock/sys (revision 247227) Property changes on: user/attilio/vmobj-rwlock/sys ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head/sys:r247192-247226 Index: user/attilio/vmobj-rwlock/tools/regression/bin/sh/builtins/wait4.0 =================================================================== --- user/attilio/vmobj-rwlock/tools/regression/bin/sh/builtins/wait4.0 (nonexistent) +++ user/attilio/vmobj-rwlock/tools/regression/bin/sh/builtins/wait4.0 (revision 247227) @@ -0,0 +1,12 @@ +# $FreeBSD$ + +T=`mktemp -d ${TMPDIR:-/tmp}/sh-test.XXXXXX` +trap 'rm -rf $T' 0 +cd $T || exit 3 +mkfifo fifo1 +trapped= +trap trapped=1 QUIT +{ kill -QUIT $$; sleep 1; exit 4; } >fifo1 & +wait $! fifo1 & +wait