Index: vendor/illumos/dist/cmd/zdb/zdb.c =================================================================== --- vendor/illumos/dist/cmd/zdb/zdb.c (revision 247175) +++ vendor/illumos/dist/cmd/zdb/zdb.c (revision 247176) @@ -1,3305 +1,3305 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef ZFS_MAXNAMELEN #undef verify #include #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \ dmu_ot[(idx)].ot_name : DMU_OT_IS_VALID(idx) ? \ dmu_ot_byteswap[DMU_OT_BYTESWAP(idx)].ob_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ (((idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA) ? \ DMU_OT_ZAP_OTHER : DMU_OT_NUMTYPES)) #ifndef lint extern int zfs_recover; #else int zfs_recover; #endif const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); extern void dump_intent_log(zilog_t *); uint64_t *zopt_object = NULL; int zopt_objects = 0; libzfs_handle_t *g_zfs; uint64_t max_inflight = 200; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage: %s [-CumdibcsDvhLXFPA] [-t txg] [-e [-p path...]] " "[-U config] [-M inflight I/Os] poolname [object...]\n" " %s [-divPA] [-e -p path...] [-U config] dataset " "[object...]\n" " %s -m [-LXFPA] [-t txg] [-e [-p path...]] [-U config] " "poolname [vdev [metaslab...]]\n" " %s -R [-A] [-e [-p path...]] poolname " "vdev:offset:size[:flags]\n" " %s -S [-PA] [-e [-p path...]] [-U config] poolname\n" " %s -l [-uA] device\n" " %s -C [-A] [-U config]\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers are specified, only " "those objects are dumped\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -u uberblock\n"); (void) fprintf(stderr, " -d dataset(s)\n"); (void) fprintf(stderr, " -i intent logs\n"); (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); (void) fprintf(stderr, " -h pool history\n"); (void) fprintf(stderr, " -b block statistics\n"); (void) fprintf(stderr, " -m metaslabs\n"); (void) fprintf(stderr, " -c checksum all metadata (twice for " "all data) blocks\n"); (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); (void) fprintf(stderr, " -D dedup statistics\n"); (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v verbose (applies to all others)\n"); (void) fprintf(stderr, " -l dump label contents\n"); (void) fprintf(stderr, " -L disable leak tracking (do not " "load spacemaps)\n"); (void) fprintf(stderr, " -R read and display block from a " "device\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options (except -l):\n"); (void) fprintf(stderr, " -A ignore assertions (-A), enable " "panic recovery (-AA) or both (-AAA)\n"); (void) fprintf(stderr, " -F attempt automatic rewind within " "safe range of transaction groups\n"); (void) fprintf(stderr, " -U -- use alternate " "cachefile\n"); (void) fprintf(stderr, " -X attempt extreme rewind (does not " "work with dataset)\n"); (void) fprintf(stderr, " -e pool is exported/destroyed/" "has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -p -- use one or more with " "-e to specify path to vdev dir\n"); (void) fprintf(stderr, " -P print numbers in parseable form\n"); (void) fprintf(stderr, " -t -- highest txg to use when " "searching for uberblocks\n"); (void) fprintf(stderr, " -M -- " "specify the maximum number of checksumming I/Os [default is 200]"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); exit(1); } /* ARGSUSED */ static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } /* ARGSUSED */ static void dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) { spa_history_phys_t *shp = data; if (shp == NULL) return; (void) printf("\t\tpool_create_len = %llu\n", (u_longlong_t)shp->sh_pool_create_len); (void) printf("\t\tphys_max_off = %llu\n", (u_longlong_t)shp->sh_phys_max_off); (void) printf("\t\tbof = %llu\n", (u_longlong_t)shp->sh_bof); (void) printf("\t\teof = %llu\n", (u_longlong_t)shp->sh_eof); (void) printf("\t\trecords_lost = %llu\n", (u_longlong_t)shp->sh_records_lost); } static void zdb_nicenum(uint64_t num, char *buf) { if (dump_opt['P']) (void) sprintf(buf, "%llu", (longlong_t)num); else nicenum(num, buf); } const char dump_zap_stars[] = "****************************************"; const int dump_zap_width = sizeof (dump_zap_stars) - 1; static void dump_zap_histogram(uint64_t histo[ZAP_HISTOGRAM_SIZE]) { int i; int minidx = ZAP_HISTOGRAM_SIZE - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < ZAP_HISTOGRAM_SIZE; i++) { if (histo[i] > max) max = histo[i]; if (histo[i] > 0 && i > maxidx) maxidx = i; if (histo[i] > 0 && i < minidx) minidx = i; } if (max < dump_zap_width) max = dump_zap_width; for (i = minidx; i <= maxidx; i++) (void) printf("\t\t\t%u: %6llu %s\n", i, (u_longlong_t)histo[i], &dump_zap_stars[(max - histo[i]) * dump_zap_width / max]); } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_zap_histogram(zs.zs_leafs_with_2n_pointers); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_zap_histogram(zs.zs_blocks_with_n5_entries); (void) printf("\t\tBlocks n/10 full:\n"); dump_zap_histogram(zs.zs_blocks_n_tenths_full); (void) printf("\t\tEntries with n chunks:\n"); dump_zap_histogram(zs.zs_entries_using_n_chunks); (void) printf("\t\tBuckets with n entries:\n"); dump_zap_histogram(zs.zs_buckets_with_n_entries); } /*ARGSUSED*/ static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) printf("\tUNKNOWN OBJECT TYPE\n"); } /*ARGSUSED*/ void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; void *prop; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { (void) printf("%s", (char *)prop); } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } /*ARGSUSED*/ static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } static void dump_spacemap(objset_t *os, space_map_obj_t *smo, space_map_t *sm) { uint64_t alloc, offset, entry; uint8_t mapshift = sm->sm_shift; uint64_t mapstart = sm->sm_start; char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (smo->smo_object == 0) return; /* * Print out the freelist entries in both encoded and decoded form. */ alloc = 0; for (offset = 0; offset < smo->smo_objsize; offset += sizeof (entry)) { VERIFY3U(0, ==, dmu_read(os, smo->smo_object, offset, sizeof (entry), &entry, DMU_READ_PREFETCH)); if (SM_DEBUG_DECODE(entry)) { (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n", (u_longlong_t)(offset / sizeof (entry)), ddata[SM_DEBUG_ACTION_DECODE(entry)], (u_longlong_t)SM_DEBUG_TXG_DECODE(entry), (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry)); } else { (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx\n", (u_longlong_t)(offset / sizeof (entry)), SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F', (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + mapstart), (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + mapstart + (SM_RUN_DECODE(entry) << mapshift)), (u_longlong_t)(SM_RUN_DECODE(entry) << mapshift)); if (SM_TYPE_DECODE(entry) == SM_ALLOC) alloc += SM_RUN_DECODE(entry) << mapshift; else alloc -= SM_RUN_DECODE(entry) << mapshift; } } if (alloc != smo->smo_alloc) { (void) printf("space_map_object alloc (%llu) INCONSISTENT " "with space map summary (%llu)\n", (u_longlong_t)smo->smo_alloc, (u_longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; - space_map_t *sm = &msp->ms_map; + space_map_t *sm = msp->ms_map; avl_tree_t *t = sm->sm_pp_root; int free_pct = sm->sm_space * 100 / sm->sm_size; zdb_nicenum(space_map_maxsize(sm), maxbuf); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", avl_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; - space_map_t *sm = &msp->ms_map; + space_map_t *sm = msp->ms_map; space_map_obj_t *smo = &msp->ms_smo; char freebuf[32]; zdb_nicenum(sm->sm_size - smo->smo_alloc, freebuf); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)(sm->sm_start / sm->sm_size), (u_longlong_t)sm->sm_start, (u_longlong_t)smo->smo_object, freebuf); if (dump_opt['m'] > 1 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); space_map_load_wait(sm); if (!sm->sm_loaded) VERIFY(space_map_load(sm, zfs_metaslab_ops, SM_FREE, smo, spa->spa_meta_objset) == 0); dump_metaslab_stats(msp); space_map_unload(sm); mutex_exit(&msp->ms_lock); } if (dump_opt['d'] > 5 || dump_opt['m'] > 2) { ASSERT(sm->sm_size == (1ULL << vd->vdev_ms_shift)); mutex_enter(&msp->ms_lock); dump_spacemap(spa->spa_meta_objset, smo, sm); mutex_exit(&msp->ms_lock); } } static void print_vdev_metaslab_header(vdev_t *vd) { (void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n", (u_longlong_t)vd->vdev_id, "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %10s\n", "---------------", "-------------------", "---------------", "-------------"); } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_objects > 0) { c = zopt_object[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_objects > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_objects; m++) { if (zopt_object[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_object[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_object[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); sprintf_blkptr(blkbuf, &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); if ((count = ddt_object_count(ddt, type, class)) == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT(error == ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total = { 0 }; ddt_stat_t dds_total = { 0 }; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(space_map_t *sm, uint64_t start, uint64_t size) { char *prefix = (void *)sm; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (int t = 0; t < DTL_TYPES; t++) { space_map_t *sm = &vd->vdev_dtl[t]; if (sm->sm_space == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); mutex_enter(sm->sm_lock); space_map_walk(sm, dump_dtl_seg, (void *)prefix); mutex_exit(sm->sm_lock); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, &vd->vdev_dtl_smo, sm); } for (int c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char buf[SPA_MAXBLOCKSIZE]; uint64_t resid, len, off = 0; uint_t num = 0; int error; time_t tsec; struct tm t; char tbuf[30]; char internalstr[MAXPATHLEN]; do { len = sizeof (buf); if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (int i = 0; i < num; i++) { uint64_t time, txg, ievent; char *cmd, *intstr; boolean_t printed = B_FALSE; if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, &time) != 0) goto next; if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, &cmd) != 0) { if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) goto next; verify(nvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR, &intstr) == 0); if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) goto next; (void) snprintf(internalstr, sizeof (internalstr), "[internal %s txg:%lld] %s", zfs_history_event_names[ievent], txg, intstr); cmd = internalstr; } tsec = time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s\n", tbuf, cmd); printed = B_TRUE; next: if (dump_opt['h'] > 1) { if (!printed) (void) printf("unrecognized record:\n"); dump_nvlist(events[i], 2); } } } /*ARGSUSED*/ static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void sprintf_blkptr_compact(char *blkbuf, const blkptr_t *bp) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; if (dump_opt['b'] >= 5) { sprintf_blkptr(blkbuf, bp); return; } blkbuf[0] = '\0'; for (int i = 0; i < ndvas; i++) (void) sprintf(blkbuf + strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); (void) sprintf(blkbuf + strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)bp->blk_fill, (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); } static void print_indirect(blkptr_t *bp, const zbookmark_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } sprintf_blkptr_compact(blkbuf, bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0) { uint32_t flags = ARC_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += cbp->blk_fill; } if (!err) ASSERT3U(fill, ==, bp->blk_fill); (void) arc_buf_remove_ref(buf, &buf); } return (err); } /*ARGSUSED*/ static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; int j; zbookmark_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } /*ARGSUSED*/ static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO } /*ARGSUSED*/ static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_referenced_bytes, used); zdb_nicenum(ds->ds_compressed_bytes, compressed); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed); zdb_nicenum(ds->ds_unique_bytes, unique); sprintf_blkptr(blkbuf, &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } /* ARGSUSED */ static int dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; if (bp->blk_birth != 0) { sprintf_blkptr(blkbuf, bp); (void) printf("\t%s\n", blkbuf); } return (0); } static void dump_bptree(objset_t *os, uint64_t obj, char *name) { char bytes[32]; bptree_phys_t *bt; dmu_buf_t *db; if (dump_opt['d'] < 3) return; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; zdb_nicenum(bt->bt_bytes, bytes); (void) printf("\n %s: %llu datasets, %s\n", name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); dmu_buf_rele(db, FTAG); if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); } /* ARGSUSED */ static int dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); sprintf_blkptr_compact(blkbuf, bp); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_bpobj(bpobj_t *bpo, char *name) { char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes); if (bpo->bpo_havesubobj) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp); (void) printf("\n %s: %llu local blkptrs, %llu subobjs, " "%s (%s/%s comp)\n", name, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, bytes, comp, uncomp); } else { (void) printf("\n %s: %llu blkptrs, %s\n", name, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); } static void dump_deadlist(dsl_deadlist_t *dl) { dsl_deadlist_entry_t *dle; char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; zdb_nicenum(dl->dl_phys->dl_used, bytes); zdb_nicenum(dl->dl_phys->dl_comp, comp); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp); (void) printf("\n Deadlist: %s (%s/%s comp)\n", bytes, comp, uncomp); if (dump_opt['d'] < 4) return; (void) printf("\n"); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { (void) printf(" mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); if (dump_opt['d'] >= 5) dump_bpobj(&dle->dle_bpobj, ""); } } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static boolean_t sa_loaded; sa_attr_type_t *sa_attr_table; static void fuid_table_destroy() { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the doman-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { char *domain; domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } /*ARGSUSED*/ static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; if (!sa_loaded) { uint64_t sa_attrs = 0; uint64_t version; VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version) == 0); if (version >= ZPL_VERSION_SA) { VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs) == 0); } if ((error = sa_setup(os, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table)) != 0) { (void) printf("sa_setup failed errno %d, can't " "display znode contents\n", error); return; } sa_loaded = B_TRUE; } if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error != 0) { (void) snprintf(path, sizeof (path), "\?\?\?", (u_longlong_t)object); } if (dump_opt['d'] < 3) { (void) printf("\t%s\n", path); (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; (void) printf("\tpath %s\n", path); dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); sa_handle_destroy(hdl); } /*ARGSUSED*/ static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bplist */ dump_none, /* bplist header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_history_offsets, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group used */ dump_zap, /* ZFS user/group quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_none, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static void dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; void *bonus = NULL; size_t bsize = 0; char iblk[32], dblk[32], lsize[32], asize[32], fill[32]; char bonus_size[32]; char aux[50]; int error; if (*print_header) { (void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n", "Object", "lvl", "iblk", "dblk", "dsize", "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } dmu_object_info_from_dnode(dn, &doi); zdb_nicenum(doi.doi_metadata_block_size, iblk); zdb_nicenum(doi.doi_data_block_size, dblk); zdb_nicenum(doi.doi_max_offset, lsize); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize); zdb_nicenum(doi.doi_bonus_size, bonus_size); (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } (void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n", (u_longlong_t)object, doi.doi_indirection, iblk, dblk, asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { (void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n", "", "", "", "", "", bonus_size, "bonus", ZDB_OT_NAME(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); *print_header = 1; } if (verbosity >= 5) dump_indirect(dn); if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } if (db != NULL) dmu_buf_rele(db, FTAG); } static char *objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; static void dump_dir(objset_t *os) { dmu_objset_stats_t dds; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[MAXNAMELEN]; char *type = "UNKNOWN"; int verbosity = dump_opt['d']; int print_header = 1; int i, error; dmu_objset_fast_stat(os, &dds); if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = os->os_rootbp->blk_fill; refdbytes = os->os_spa->spa_dsl_pool-> dp_mos_dir->dd_phys->dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, os->os_rootbp->blk_fill); zdb_nicenum(refdbytes, numbuf); if (verbosity >= 4) { (void) sprintf(blkbuf, ", rootbp "); (void) sprintf_blkptr(blkbuf + strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf); if (zopt_objects != 0) { for (i = 0; i < zopt_objects; i++) dump_object(os, zopt_object[i], verbosity, &print_header); (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) dump_deadlist(&dmu_objset_ds(os)->ds_deadlist); if (verbosity < 2) return; if (os->os_rootbp->blk_birth == 0) return; dump_object(os, 0, verbosity, &print_header); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header); dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header); } object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { dump_object(os, object, verbosity, &print_header); object_count++; } ASSERT3U(object_count, ==, usedobjs); (void) printf("\n"); if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf(header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); if (dump_opt['u'] >= 3) { char blkbuf[BP_SPRINTF_LEN]; sprintf_blkptr(blkbuf, &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf(footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift) { vdev_t vd; vdev_t *vdp = &vd; char header[ZDB_MAX_UB_HEADER_SIZE]; vd.vdev_ashift = ashift; vdp->vdev_top = vdp; for (int i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i); uberblock_t *ub = (void *)((char *)lbl + uoff); if (uberblock_verify(ub)) continue; (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, "Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); } } static void dump_label(const char *dev) { int fd; vdev_label_t label; char *path, *buf = label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist); struct stat64 statbuf; uint64_t psize, ashift; int len = strlen(dev) + 1; if (strncmp(dev, "/dev/dsk/", 9) == 0) { len++; path = malloc(len); (void) snprintf(path, len, "%s%s", "/dev/rdsk/", dev + 9); } else { path = strdup(dev); } if ((fd = open64(path, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", path, strerror(errno)); free(path); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", path, strerror(errno)); free(path); (void) close(fd); exit(1); } if (S_ISBLK(statbuf.st_mode)) { (void) printf("cannot use '%s': character device required\n", path); free(path); (void) close(fd); exit(1); } psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); for (int l = 0; l < VDEV_LABELS; l++) { nvlist_t *config = NULL; (void) printf("--------------------------------------------\n"); (void) printf("LABEL %d\n", l); (void) printf("--------------------------------------------\n"); if (pread64(fd, &label, sizeof (label), vdev_label_offset(psize, l, 0)) != sizeof (label)) { (void) printf("failed to read label %d\n", l); continue; } if (nvlist_unpack(buf, buflen, &config, 0) != 0) { (void) printf("failed to unpack label %d\n", l); ashift = SPA_MINBLOCKSHIFT; } else { nvlist_t *vdev_tree = NULL; dump_nvlist(config, 4); if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; nvlist_free(config); } if (dump_opt['u']) dump_label_uberblocks(&label, ashift); } free(path); (void) close(fd); } /*ARGSUSED*/ static int dump_one_dir(const char *dsname, void *arg) { int error; objset_t *os; error = dmu_objset_own(dsname, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) { (void) printf("Could not open %s, error %d\n", dsname, error); return (0); } dump_dir(os); dmu_objset_disown(os, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; return (0); } /* * Block statistics. */ typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) static char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "other", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; } zdb_cb_t; static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; for (int i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; } if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_first_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } static void zdb_blkptr_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; int ioerr = zio->io_error; zdb_cb_t *zcb = zio->io_private; zbookmark_t *zb = &zio->io_bookmark; zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { char blkbuf[BP_SPRINTF_LEN]; zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) sprintf_blkptr(blkbuf, bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } mutex_exit(&spa->spa_scrub_lock); } static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; char blkbuf[BP_SPRINTF_LEN]; dmu_object_type_t type; boolean_t is_metadata; if (bp == NULL) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); if (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata)) { size_t size = BP_GET_PSIZE(bp); void *data = zio_data_buf_alloc(size); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > max_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, data, size, zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); } zcb->zcb_readfails = 0; if (dump_opt['b'] >= 4) { sprintf_blkptr(blkbuf, bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } return (0); } static void zdb_leak(space_map_t *sm, uint64_t start, uint64_t size) { vdev_t *vd = sm->sm_ppd; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } /* ARGSUSED */ static void zdb_space_map_load(space_map_t *sm) { } static void zdb_space_map_unload(space_map_t *sm) { space_map_vacate(sm, zdb_leak, sm); } /* ARGSUSED */ static void zdb_space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) { } static space_map_ops_t zdb_space_map_ops = { zdb_space_map_load, zdb_space_map_unload, NULL, /* alloc */ zdb_space_map_claim, NULL, /* free */ NULL /* maxsize */ }; static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb = { 0 }; ddt_entry_t dde; int error; while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } if (!dump_opt['L']) { ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } } ASSERT(error == ENOENT); } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); - space_map_unload(&msp->ms_map); - VERIFY(space_map_load(&msp->ms_map, + space_map_unload(msp->ms_map); + VERIFY(space_map_load(msp->ms_map, &zdb_space_map_ops, SM_ALLOC, &msp->ms_smo, spa->spa_meta_objset) == 0); - msp->ms_map.sm_ppd = vd; + msp->ms_map->sm_ppd = vd; mutex_exit(&msp->ms_lock); } } } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static void zdb_leak_fini(spa_t *spa) { if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); - space_map_unload(&msp->ms_map); + space_map_unload(msp->ms_map); mutex_exit(&msp->ms_lock); } } } } /* ARGSUSED */ static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 4) { char blkbuf[BP_SPRINTF_LEN]; sprintf_blkptr(blkbuf, bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } static int dump_block_stats(spa_t *spa) { zdb_cb_t zcb = { 0 }; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD; int leaks = 0; (void) printf("\nTraversing all blocks %s%s%s%s%s...\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * Load all space maps as SM_ALLOC maps, then traverse the pool * claiming each block we discover. If the pool is perfectly * consistent, the space maps will be empty when we're done. * Anything left over is a leak; any block we can't claim (because * it's not part of any space map) is a double allocation, * reference to a freed block, or an unclaimed log block. */ zdb_leak_init(spa, &zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, count_block_cb, &zcb, NULL); (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, count_block_cb, &zcb, NULL); if (spa_feature_is_active(spa, &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) { VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, &zcb, NULL)); } if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); /* * If we've traversed the data blocks then we need to wait for those * I/Os to complete. We leverage "The Godfather" zio to wait on * all async I/Os to complete. */ if (dump_opt['c']) { (void) zio_wait(spa->spa_async_zio_root); spa->spa_async_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } if (zcb.zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (int e = 0; e < 256; e++) { if (zcb.zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb.zcb_errors[e]); } } } /* * Report any leaked segments. */ zdb_leak_fini(spa); tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)); total_found = tzb->zb_asize - zcb.zcb_dedup_asize; if (total_found == total_alloc) { if (!dump_opt['L']) (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = 1; } if (tzb->zb_count == 0) return (2); (void) printf("\n"); (void) printf("\tbp count: %10llu\n", (u_longlong_t)tzb->zb_count); (void) printf("\tbp logical: %10llu avg: %6llu\n", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\tbp physical: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\tbp allocated: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\tbp deduped: %10llu ref>1:" " %6llu deduplication: %6.2f\n", (u_longlong_t)zcb.zcb_dedup_asize, (u_longlong_t)zcb.zcb_dedup_blocks, (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); if (dump_opt['b'] >= 2) { int l, t, level; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= ZDB_OT_TOTAL; t++) { char csize[32], lsize[32], psize[32], asize[32]; char avg[32]; char *typename; if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb.zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb.zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize); zdb_nicenum(zb->zb_lsize, lsize); zdb_nicenum(zb->zb_psize, psize); zdb_nicenum(zb->zb_asize, asize); zdb_nicenum(zb->zb_asize / zb->zb_count, avg); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); } } } (void) printf("\n"); if (leaks) return (2); if (zcb.zcb_haderrors) return (3); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; /* ARGSUSED */ static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) { avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (bp == NULL) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)bp->blk_fill, avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total = { 0 }; ddt_stat_t dds_total = { 0 }; avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['d'] || dump_opt['i']) { dump_dir(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dump_bpobj(&spa->spa_deferred_bpobj, "Deferred frees"); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_bpobj(&spa->spa_dsl_pool->dp_free_bpobj, "Pool snapshot frees"); } if (spa_feature_is_active(spa, &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) { dump_bptree(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, "Pool dataset frees"); } dump_dtl(spa->spa_root_vdev, 0); } (void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } if (dump_opt['b'] || dump_opt['c']) rc = dump_block_stats(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc != 0) exit(rc); } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_PHYS 0x0020 #define ZDB_FLAG_RAW 0x0040 #define ZDB_FLAG_PRINT_BLKPTR 0x0080 int flagbits[256]; static void zdb_print_blkptr(blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); sprintf_blkptr(blkbuf, bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); (void) write(1, buf, size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; int nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); int i, j; char *hdr, *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the heirarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, char *path) { char *s, *p, *q; int i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = (int)strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i < 0 || i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (*s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:size[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * *c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * p: Do I/O to physical offset * r: Dump raw data to stdout * * * = not yet implemented */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; void *pbuf, *lbuf, *buf; char *s, *p, *dup, *vdev, *flagstr; int i, error; dup = strdup(thing); s = strtok(dup, ":"); vdev = s ? s : ""; s = strtok(NULL, ":"); offset = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); size = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); flagstr = s ? s : ""; s = NULL; if (size == 0) s = "size must not be zero"; if (!IS_P2ALIGNED(size, DEV_BSIZE)) s = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) s = "offset must be a multiple of sector size"; if (s) { (void) printf("Invalid block specifier: %s - %s\n", thing, s); free(dup); return; } for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { for (i = 0; flagstr[i]; i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Invalid flag: %c\n", flagstr[i]); continue; } flags |= bit; /* If it's not something with an argument, keep going */ if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_PRINT_BLKPTR)) == 0) continue; p = &flagstr[i + 1]; if (bit == ZDB_FLAG_PRINT_BLKPTR) blkptr_offset = strtoull(p, &p, 16); if (*p != ':' && *p != '\0') { (void) printf("***Invalid flag arg: '%s'\n", s); free(dup); return; } } } vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); free(dup); return; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } psize = size; lsize = size; pbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pbuf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pbuf, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } if (flags & ZDB_FLAG_DECOMPRESS) { /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ enum zio_compress c; void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); bcopy(pbuf, pbuf2, psize); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf + psize, SPA_MAXBLOCKSIZE - psize) == 0); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize, SPA_MAXBLOCKSIZE - psize) == 0); for (lsize = SPA_MAXBLOCKSIZE; lsize > psize; lsize -= SPA_MINBLOCKSIZE) { for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) { if (zio_decompress_data(c, pbuf, lbuf, psize, lsize) == 0 && zio_decompress_data(c, pbuf2, lbuf2, psize, lsize) == 0 && bcmp(lbuf, lbuf2, lsize) == 0) break; } if (c != ZIO_COMPRESS_FUNCTIONS) break; lsize -= SPA_MINBLOCKSIZE; } umem_free(pbuf2, SPA_MAXBLOCKSIZE); umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize <= psize) { (void) printf("Decompress of %s failed\n", thing); goto out; } buf = lbuf; size = lsize; } else { buf = pbuf; size = psize; } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, size, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, size, flags); out: umem_free(pbuf, SPA_MAXBLOCKSIZE); umem_free(lbuf, SPA_MAXBLOCKSIZE); free(dup); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } static char * find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv) { nvlist_t *pools; nvlist_t *match = NULL; char *name = NULL; char *sepp = NULL; char sep; int count = 0; importargs_t args = { 0 }; args.paths = dirc; args.path = dirv; args.can_be_active = B_TRUE; if ((sepp = strpbrk(*target, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(g_zfs, &args); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, configp) == 0); if (pool_match(*configp, *target)) { count++; if (match != NULL) { /* print previously found config */ if (name != NULL) { (void) printf("%s\n", name); dump_nvlist(match, 8); name = NULL; } (void) printf("%s\n", nvpair_name(elem)); dump_nvlist(*configp, 8); } else { match = *configp; name = nvpair_name(elem); } } } } if (count > 1) (void) fatal("\tMatched %d pools - use pool GUID " "instead of pool name or \n" "\tpool name part of a dataset name to select pool", count); if (sepp) *sepp = sep; /* * If pool GUID was specified for pool id, replace it with pool name */ if (name && (strstr(*target, name) != *target)) { int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0); *target = umem_alloc(sz, UMEM_NOFAIL); (void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : ""); } *configp = name ? match : NULL; return (name); } int main(int argc, char **argv) { int i, c; struct rlimit rl = { 1024, 1024 }; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int rewind = ZPOOL_NEVER_REWIND; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); dprintf_setup(&argc, argv); while ((c = getopt(argc, argv, "bcdhilmM:suCDRSAFLXevp:t:U:P")) != -1) { switch (c) { case 'b': case 'c': case 'd': case 'h': case 'i': case 'l': case 'm': case 's': case 'u': case 'C': case 'D': case 'R': case 'S': dump_opt[c]++; dump_all = 0; break; case 'A': case 'F': case 'L': case 'X': case 'e': case 'P': dump_opt[c]++; break; case 'v': verbose++; break; case 'M': max_inflight = strtoull(optarg, NULL, 0); if (max_inflight == 0) { (void) fprintf(stderr, "maximum number " "of inflight I/Os must be greater " "than 0\n"); usage(); } break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } kernel_init(FREAD); g_zfs = libzfs_init(); ASSERT(g_zfs != NULL); if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && !strchr("elAFLRSXP", c)) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) { dump_label(argv[0]); return (0); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (dump_opt['e']) { nvlist_t *cfg = NULL; char *name = find_zpool(&target, &cfg, nsearch, searchdirs); error = ENOENT; if (name) { if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } if (nvlist_add_nvlist(cfg, ZPOOL_REWIND_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } if ((error = spa_import(name, cfg, NULL, ZFS_IMPORT_MISSING_LOG)) != 0) { error = spa_import(name, cfg, NULL, ZFS_IMPORT_VERBATIM); } } } if (error == 0) { if (strpbrk(target, "/@") == NULL || dump_opt['R']) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else { error = dmu_objset_own(target, DMU_OST_ANY, B_TRUE, FTAG, &os); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); argv++; argc--; if (!dump_opt['R']) { if (argc > 0) { zopt_objects = argc; zopt_object = calloc(zopt_objects, sizeof (uint64_t)); for (i = 0; i < zopt_objects; i++) { errno = 0; zopt_object[i] = strtoull(argv[i], NULL, 0); if (zopt_object[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } if (os != NULL) { dump_dir(os); } else if (zopt_objects > 0 && !dump_opt['m']) { dump_dir(spa->spa_meta_objset); } else { dump_zpool(spa); } } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['p'] = ZDB_FLAG_PHYS; flagbits['r'] = ZDB_FLAG_RAW; for (i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } (os != NULL) ? dmu_objset_disown(os, FTAG) : spa_close(spa, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; libzfs_fini(g_zfs); kernel_fini(); return (0); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c (revision 247175) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/metaslab.c (revision 247176) @@ -1,1665 +1,1845 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ #include #include #include #include #include #include #include /* * Allow allocations to switch to gang blocks quickly. We do this to * avoid having to load lots of space_maps in a given txg. There are, * however, some cases where we want to avoid "fast" ganging and instead * we want to do an exhaustive search of all metaslabs on this device. * Currently we don't allow any gang, zil, or dump device related allocations * to "fast" gang. */ #define CAN_FASTGANG(flags) \ (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \ METASLAB_GANG_AVOID))) uint64_t metaslab_aliquot = 512ULL << 10; uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ /* + * The in-core space map representation is more compact than its on-disk form. + * The zfs_condense_pct determines how much more compact the in-core + * space_map representation must be before we compact it on-disk. + * Values should be greater than or equal to 100. + */ +int zfs_condense_pct = 200; + +/* * This value defines the number of allowed allocation failures per vdev. * If a device reaches this threshold in a given txg then we consider skipping * allocations on that device. */ int zfs_mg_alloc_failures; /* * Metaslab debugging: when set, keeps all space maps in core to verify frees. */ static int metaslab_debug = 0; /* * Minimum size which forces the dynamic allocator to change * it's allocation strategy. Once the space map cannot satisfy * an allocation of this size then it switches to using more * aggressive strategy (i.e search by size rather than offset). */ uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE; /* * The minimum free space, in percent, which must be available * in a space map to continue allocations in a first-fit fashion. * Once the space_map's free space drops below this level we dynamically * switch to using best-fit allocations. */ int metaslab_df_free_pct = 4; /* * A metaslab is considered "free" if it contains a contiguous * segment which is greater than metaslab_min_alloc_size. */ uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; /* * Max number of space_maps to prefetch. */ int metaslab_prefetch_limit = SPA_DVAS_PER_BP; /* * Percentage bonus multiplier for metaslabs that are in the bonus area. */ int metaslab_smo_bonus_pct = 150; /* * Should we be willing to write data to degraded vdevs? */ boolean_t zfs_write_to_degraded = B_FALSE; /* * ========================================================================== * Metaslab classes * ========================================================================== */ metaslab_class_t * metaslab_class_create(spa_t *spa, space_map_ops_t *ops) { metaslab_class_t *mc; mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); mc->mc_spa = spa; mc->mc_rotor = NULL; mc->mc_ops = ops; return (mc); } void metaslab_class_destroy(metaslab_class_t *mc) { ASSERT(mc->mc_rotor == NULL); ASSERT(mc->mc_alloc == 0); ASSERT(mc->mc_deferred == 0); ASSERT(mc->mc_space == 0); ASSERT(mc->mc_dspace == 0); kmem_free(mc, sizeof (metaslab_class_t)); } int metaslab_class_validate(metaslab_class_t *mc) { metaslab_group_t *mg; vdev_t *vd; /* * Must hold one of the spa_config locks. */ ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); if ((mg = mc->mc_rotor) == NULL) return (0); do { vd = mg->mg_vd; ASSERT(vd->vdev_mg != NULL); ASSERT3P(vd->vdev_top, ==, vd); ASSERT3P(mg->mg_class, ==, mc); ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); } while ((mg = mg->mg_next) != mc->mc_rotor); return (0); } void metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) { atomic_add_64(&mc->mc_alloc, alloc_delta); atomic_add_64(&mc->mc_deferred, defer_delta); atomic_add_64(&mc->mc_space, space_delta); atomic_add_64(&mc->mc_dspace, dspace_delta); } uint64_t metaslab_class_get_alloc(metaslab_class_t *mc) { return (mc->mc_alloc); } uint64_t metaslab_class_get_deferred(metaslab_class_t *mc) { return (mc->mc_deferred); } uint64_t metaslab_class_get_space(metaslab_class_t *mc) { return (mc->mc_space); } uint64_t metaslab_class_get_dspace(metaslab_class_t *mc) { return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); } /* * ========================================================================== * Metaslab groups * ========================================================================== */ static int metaslab_compare(const void *x1, const void *x2) { const metaslab_t *m1 = x1; const metaslab_t *m2 = x2; if (m1->ms_weight < m2->ms_weight) return (1); if (m1->ms_weight > m2->ms_weight) return (-1); /* * If the weights are identical, use the offset to force uniqueness. */ - if (m1->ms_map.sm_start < m2->ms_map.sm_start) + if (m1->ms_map->sm_start < m2->ms_map->sm_start) return (-1); - if (m1->ms_map.sm_start > m2->ms_map.sm_start) + if (m1->ms_map->sm_start > m2->ms_map->sm_start) return (1); ASSERT3P(m1, ==, m2); return (0); } metaslab_group_t * metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) { metaslab_group_t *mg; mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&mg->mg_metaslab_tree, metaslab_compare, sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); mg->mg_vd = vd; mg->mg_class = mc; mg->mg_activation_count = 0; return (mg); } void metaslab_group_destroy(metaslab_group_t *mg) { ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); /* * We may have gone below zero with the activation count * either because we never activated in the first place or * because we're done, and possibly removing the vdev. */ ASSERT(mg->mg_activation_count <= 0); avl_destroy(&mg->mg_metaslab_tree); mutex_destroy(&mg->mg_lock); kmem_free(mg, sizeof (metaslab_group_t)); } void metaslab_group_activate(metaslab_group_t *mg) { metaslab_class_t *mc = mg->mg_class; metaslab_group_t *mgprev, *mgnext; ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); ASSERT(mc->mc_rotor != mg); ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); ASSERT(mg->mg_activation_count <= 0); if (++mg->mg_activation_count <= 0) return; mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); if ((mgprev = mc->mc_rotor) == NULL) { mg->mg_prev = mg; mg->mg_next = mg; } else { mgnext = mgprev->mg_next; mg->mg_prev = mgprev; mg->mg_next = mgnext; mgprev->mg_next = mg; mgnext->mg_prev = mg; } mc->mc_rotor = mg; } void metaslab_group_passivate(metaslab_group_t *mg) { metaslab_class_t *mc = mg->mg_class; metaslab_group_t *mgprev, *mgnext; ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER)); if (--mg->mg_activation_count != 0) { ASSERT(mc->mc_rotor != mg); ASSERT(mg->mg_prev == NULL); ASSERT(mg->mg_next == NULL); ASSERT(mg->mg_activation_count < 0); return; } mgprev = mg->mg_prev; mgnext = mg->mg_next; if (mg == mgnext) { mc->mc_rotor = NULL; } else { mc->mc_rotor = mgnext; mgprev->mg_next = mgnext; mgnext->mg_prev = mgprev; } mg->mg_prev = NULL; mg->mg_next = NULL; } static void metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) { mutex_enter(&mg->mg_lock); ASSERT(msp->ms_group == NULL); msp->ms_group = mg; msp->ms_weight = 0; avl_add(&mg->mg_metaslab_tree, msp); mutex_exit(&mg->mg_lock); } static void metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) { mutex_enter(&mg->mg_lock); ASSERT(msp->ms_group == mg); avl_remove(&mg->mg_metaslab_tree, msp); msp->ms_group = NULL; mutex_exit(&mg->mg_lock); } static void metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) { /* * Although in principle the weight can be any value, in * practice we do not use values in the range [1, 510]. */ ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0); ASSERT(MUTEX_HELD(&msp->ms_lock)); mutex_enter(&mg->mg_lock); ASSERT(msp->ms_group == mg); avl_remove(&mg->mg_metaslab_tree, msp); msp->ms_weight = weight; avl_add(&mg->mg_metaslab_tree, msp); mutex_exit(&mg->mg_lock); } /* * ========================================================================== * Common allocator routines * ========================================================================== */ static int metaslab_segsize_compare(const void *x1, const void *x2) { const space_seg_t *s1 = x1; const space_seg_t *s2 = x2; uint64_t ss_size1 = s1->ss_end - s1->ss_start; uint64_t ss_size2 = s2->ss_end - s2->ss_start; if (ss_size1 < ss_size2) return (-1); if (ss_size1 > ss_size2) return (1); if (s1->ss_start < s2->ss_start) return (-1); if (s1->ss_start > s2->ss_start) return (1); return (0); } /* * This is a helper function that can be used by the allocator to find * a suitable block to allocate. This will search the specified AVL * tree looking for a block that matches the specified criteria. */ static uint64_t metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, uint64_t align) { space_seg_t *ss, ssearch; avl_index_t where; ssearch.ss_start = *cursor; ssearch.ss_end = *cursor + size; ss = avl_find(t, &ssearch, &where); if (ss == NULL) ss = avl_nearest(t, where, AVL_AFTER); while (ss != NULL) { uint64_t offset = P2ROUNDUP(ss->ss_start, align); if (offset + size <= ss->ss_end) { *cursor = offset + size; return (offset); } ss = AVL_NEXT(t, ss); } /* * If we know we've searched the whole map (*cursor == 0), give up. * Otherwise, reset the cursor to the beginning and try again. */ if (*cursor == 0) return (-1ULL); *cursor = 0; return (metaslab_block_picker(t, cursor, size, align)); } static void metaslab_pp_load(space_map_t *sm) { space_seg_t *ss; ASSERT(sm->sm_ppd == NULL); sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); avl_create(sm->sm_pp_root, metaslab_segsize_compare, sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node)); for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) avl_add(sm->sm_pp_root, ss); } static void metaslab_pp_unload(space_map_t *sm) { void *cookie = NULL; kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); sm->sm_ppd = NULL; while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) { /* tear down the tree */ } avl_destroy(sm->sm_pp_root); kmem_free(sm->sm_pp_root, sizeof (avl_tree_t)); sm->sm_pp_root = NULL; } /* ARGSUSED */ static void metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size) { /* No need to update cursor */ } /* ARGSUSED */ static void metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size) { /* No need to update cursor */ } /* * Return the maximum contiguous segment within the metaslab. */ uint64_t metaslab_pp_maxsize(space_map_t *sm) { avl_tree_t *t = sm->sm_pp_root; space_seg_t *ss; if (t == NULL || (ss = avl_last(t)) == NULL) return (0ULL); return (ss->ss_end - ss->ss_start); } /* * ========================================================================== * The first-fit block allocator * ========================================================================== */ static uint64_t metaslab_ff_alloc(space_map_t *sm, uint64_t size) { avl_tree_t *t = &sm->sm_root; uint64_t align = size & -size; uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; return (metaslab_block_picker(t, cursor, size, align)); } /* ARGSUSED */ boolean_t metaslab_ff_fragmented(space_map_t *sm) { return (B_TRUE); } static space_map_ops_t metaslab_ff_ops = { metaslab_pp_load, metaslab_pp_unload, metaslab_ff_alloc, metaslab_pp_claim, metaslab_pp_free, metaslab_pp_maxsize, metaslab_ff_fragmented }; /* * ========================================================================== * Dynamic block allocator - * Uses the first fit allocation scheme until space get low and then * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold * and metaslab_df_free_pct to determine when to switch the allocation scheme. * ========================================================================== */ static uint64_t metaslab_df_alloc(space_map_t *sm, uint64_t size) { avl_tree_t *t = &sm->sm_root; uint64_t align = size & -size; uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; uint64_t max_size = metaslab_pp_maxsize(sm); int free_pct = sm->sm_space * 100 / sm->sm_size; ASSERT(MUTEX_HELD(sm->sm_lock)); ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); if (max_size < size) return (-1ULL); /* * If we're running low on space switch to using the size * sorted AVL tree (best-fit). */ if (max_size < metaslab_df_alloc_threshold || free_pct < metaslab_df_free_pct) { t = sm->sm_pp_root; *cursor = 0; } return (metaslab_block_picker(t, cursor, size, 1ULL)); } static boolean_t metaslab_df_fragmented(space_map_t *sm) { uint64_t max_size = metaslab_pp_maxsize(sm); int free_pct = sm->sm_space * 100 / sm->sm_size; if (max_size >= metaslab_df_alloc_threshold && free_pct >= metaslab_df_free_pct) return (B_FALSE); return (B_TRUE); } static space_map_ops_t metaslab_df_ops = { metaslab_pp_load, metaslab_pp_unload, metaslab_df_alloc, metaslab_pp_claim, metaslab_pp_free, metaslab_pp_maxsize, metaslab_df_fragmented }; /* * ========================================================================== * Other experimental allocators * ========================================================================== */ static uint64_t metaslab_cdf_alloc(space_map_t *sm, uint64_t size) { avl_tree_t *t = &sm->sm_root; uint64_t *cursor = (uint64_t *)sm->sm_ppd; uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1; uint64_t max_size = metaslab_pp_maxsize(sm); uint64_t rsize = size; uint64_t offset = 0; ASSERT(MUTEX_HELD(sm->sm_lock)); ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); if (max_size < size) return (-1ULL); ASSERT3U(*extent_end, >=, *cursor); /* * If we're running low on space switch to using the size * sorted AVL tree (best-fit). */ if ((*cursor + size) > *extent_end) { t = sm->sm_pp_root; *cursor = *extent_end = 0; if (max_size > 2 * SPA_MAXBLOCKSIZE) rsize = MIN(metaslab_min_alloc_size, max_size); offset = metaslab_block_picker(t, extent_end, rsize, 1ULL); if (offset != -1) *cursor = offset + size; } else { offset = metaslab_block_picker(t, cursor, rsize, 1ULL); } ASSERT3U(*cursor, <=, *extent_end); return (offset); } static boolean_t metaslab_cdf_fragmented(space_map_t *sm) { uint64_t max_size = metaslab_pp_maxsize(sm); if (max_size > (metaslab_min_alloc_size * 10)) return (B_FALSE); return (B_TRUE); } static space_map_ops_t metaslab_cdf_ops = { metaslab_pp_load, metaslab_pp_unload, metaslab_cdf_alloc, metaslab_pp_claim, metaslab_pp_free, metaslab_pp_maxsize, metaslab_cdf_fragmented }; uint64_t metaslab_ndf_clump_shift = 4; static uint64_t metaslab_ndf_alloc(space_map_t *sm, uint64_t size) { avl_tree_t *t = &sm->sm_root; avl_index_t where; space_seg_t *ss, ssearch; uint64_t hbit = highbit(size); uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1; uint64_t max_size = metaslab_pp_maxsize(sm); ASSERT(MUTEX_HELD(sm->sm_lock)); ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); if (max_size < size) return (-1ULL); ssearch.ss_start = *cursor; ssearch.ss_end = *cursor + size; ss = avl_find(t, &ssearch, &where); if (ss == NULL || (ss->ss_start + size > ss->ss_end)) { t = sm->sm_pp_root; ssearch.ss_start = 0; ssearch.ss_end = MIN(max_size, 1ULL << (hbit + metaslab_ndf_clump_shift)); ss = avl_find(t, &ssearch, &where); if (ss == NULL) ss = avl_nearest(t, where, AVL_AFTER); ASSERT(ss != NULL); } if (ss != NULL) { if (ss->ss_start + size <= ss->ss_end) { *cursor = ss->ss_start + size; return (ss->ss_start); } } return (-1ULL); } static boolean_t metaslab_ndf_fragmented(space_map_t *sm) { uint64_t max_size = metaslab_pp_maxsize(sm); if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift)) return (B_FALSE); return (B_TRUE); } static space_map_ops_t metaslab_ndf_ops = { metaslab_pp_load, metaslab_pp_unload, metaslab_ndf_alloc, metaslab_pp_claim, metaslab_pp_free, metaslab_pp_maxsize, metaslab_ndf_fragmented }; space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops; /* * ========================================================================== * Metaslabs * ========================================================================== */ metaslab_t * metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, uint64_t start, uint64_t size, uint64_t txg) { vdev_t *vd = mg->mg_vd; metaslab_t *msp; msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); msp->ms_smo_syncing = *smo; /* * We create the main space map here, but we don't create the * allocmaps and freemaps until metaslab_sync_done(). This serves * two purposes: it allows metaslab_sync_done() to detect the * addition of new space; and for debugging, it ensures that we'd * data fault on any attempt to use this metaslab before it's ready. */ - space_map_create(&msp->ms_map, start, size, + msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_SLEEP); + space_map_create(msp->ms_map, start, size, vd->vdev_ashift, &msp->ms_lock); metaslab_group_add(mg, msp); if (metaslab_debug && smo->smo_object != 0) { mutex_enter(&msp->ms_lock); - VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops, + VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops, SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0); mutex_exit(&msp->ms_lock); } /* * If we're opening an existing pool (txg == 0) or creating * a new one (txg == TXG_INITIAL), all space is available now. * If we're adding space to an existing pool, the new space * does not become available until after this txg has synced. */ if (txg <= TXG_INITIAL) metaslab_sync_done(msp, 0); if (txg != 0) { vdev_dirty(vd, 0, NULL, txg); vdev_dirty(vd, VDD_METASLAB, msp, txg); } return (msp); } void metaslab_fini(metaslab_t *msp) { metaslab_group_t *mg = msp->ms_group; vdev_space_update(mg->mg_vd, - -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size); + -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size); metaslab_group_remove(mg, msp); mutex_enter(&msp->ms_lock); - space_map_unload(&msp->ms_map); - space_map_destroy(&msp->ms_map); + space_map_unload(msp->ms_map); + space_map_destroy(msp->ms_map); + kmem_free(msp->ms_map, sizeof (*msp->ms_map)); for (int t = 0; t < TXG_SIZE; t++) { - space_map_destroy(&msp->ms_allocmap[t]); - space_map_destroy(&msp->ms_freemap[t]); + space_map_destroy(msp->ms_allocmap[t]); + space_map_destroy(msp->ms_freemap[t]); + kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t])); + kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t])); } - for (int t = 0; t < TXG_DEFER_SIZE; t++) - space_map_destroy(&msp->ms_defermap[t]); + for (int t = 0; t < TXG_DEFER_SIZE; t++) { + space_map_destroy(msp->ms_defermap[t]); + kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t])); + } ASSERT0(msp->ms_deferspace); mutex_exit(&msp->ms_lock); mutex_destroy(&msp->ms_lock); kmem_free(msp, sizeof (metaslab_t)); } #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) #define METASLAB_ACTIVE_MASK \ (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) static uint64_t metaslab_weight(metaslab_t *msp) { metaslab_group_t *mg = msp->ms_group; - space_map_t *sm = &msp->ms_map; + space_map_t *sm = msp->ms_map; space_map_obj_t *smo = &msp->ms_smo; vdev_t *vd = mg->mg_vd; uint64_t weight, space; ASSERT(MUTEX_HELD(&msp->ms_lock)); /* * The baseline weight is the metaslab's free space. */ space = sm->sm_size - smo->smo_alloc; weight = space; /* * Modern disks have uniform bit density and constant angular velocity. * Therefore, the outer recording zones are faster (higher bandwidth) * than the inner zones by the ratio of outer to inner track diameter, * which is typically around 2:1. We account for this by assigning * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). * In effect, this means that we'll select the metaslab with the most * free bandwidth rather than simply the one with the most free space. */ weight = 2 * weight - ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; ASSERT(weight >= space && weight <= 2 * space); /* * For locality, assign higher weight to metaslabs which have * a lower offset than what we've already activated. */ if (sm->sm_start <= mg->mg_bonus_area) weight *= (metaslab_smo_bonus_pct / 100); ASSERT(weight >= space && weight <= 2 * (metaslab_smo_bonus_pct / 100) * space); if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) { /* * If this metaslab is one we're actively using, adjust its * weight to make it preferable to any inactive metaslab so * we'll polish it off. */ weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); } return (weight); } static void metaslab_prefetch(metaslab_group_t *mg) { spa_t *spa = mg->mg_vd->vdev_spa; metaslab_t *msp; avl_tree_t *t = &mg->mg_metaslab_tree; int m; mutex_enter(&mg->mg_lock); /* * Prefetch the next potential metaslabs */ for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) { - space_map_t *sm = &msp->ms_map; + space_map_t *sm = msp->ms_map; space_map_obj_t *smo = &msp->ms_smo; /* If we have reached our prefetch limit then we're done */ if (m >= metaslab_prefetch_limit) break; if (!sm->sm_loaded && smo->smo_object != 0) { mutex_exit(&mg->mg_lock); dmu_prefetch(spa_meta_objset(spa), smo->smo_object, 0ULL, smo->smo_objsize); mutex_enter(&mg->mg_lock); } } mutex_exit(&mg->mg_lock); } static int metaslab_activate(metaslab_t *msp, uint64_t activation_weight) { metaslab_group_t *mg = msp->ms_group; - space_map_t *sm = &msp->ms_map; + space_map_t *sm = msp->ms_map; space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops; ASSERT(MUTEX_HELD(&msp->ms_lock)); if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { space_map_load_wait(sm); if (!sm->sm_loaded) { space_map_obj_t *smo = &msp->ms_smo; int error = space_map_load(sm, sm_ops, SM_FREE, smo, spa_meta_objset(msp->ms_group->mg_vd->vdev_spa)); if (error) { metaslab_group_sort(msp->ms_group, msp, 0); return (error); } for (int t = 0; t < TXG_DEFER_SIZE; t++) - space_map_walk(&msp->ms_defermap[t], + space_map_walk(msp->ms_defermap[t], space_map_claim, sm); } /* * Track the bonus area as we activate new metaslabs. */ if (sm->sm_start > mg->mg_bonus_area) { mutex_enter(&mg->mg_lock); mg->mg_bonus_area = sm->sm_start; mutex_exit(&mg->mg_lock); } metaslab_group_sort(msp->ms_group, msp, msp->ms_weight | activation_weight); } ASSERT(sm->sm_loaded); ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); return (0); } static void metaslab_passivate(metaslab_t *msp, uint64_t size) { /* * If size < SPA_MINBLOCKSIZE, then we will not allocate from * this metaslab again. In that case, it had better be empty, * or we would be leaving space on the table. */ - ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0); + ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0); metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); } /* + * Determine if the in-core space map representation can be condensed on-disk. + * We would like to use the following criteria to make our decision: + * + * 1. The size of the space map object should not dramatically increase as a + * result of writing out our in-core free map. + * + * 2. The minimal on-disk space map representation is zfs_condense_pct/100 + * times the size than the in-core representation (i.e. zfs_condense_pct = 110 + * and in-core = 1MB, minimal = 1.1.MB). + * + * Checking the first condition is tricky since we don't want to walk + * the entire AVL tree calculating the estimated on-disk size. Instead we + * use the size-ordered AVL tree in the space map and calculate the + * size required for the largest segment in our in-core free map. If the + * size required to represent that segment on disk is larger than the space + * map object then we avoid condensing this map. + * + * To determine the second criterion we use a best-case estimate and assume + * each segment can be represented on-disk as a single 64-bit entry. We refer + * to this best-case estimate as the space map's minimal form. + */ +static boolean_t +metaslab_should_condense(metaslab_t *msp) +{ + space_map_t *sm = msp->ms_map; + space_map_obj_t *smo = &msp->ms_smo_syncing; + space_seg_t *ss; + uint64_t size, entries, segsz; + + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT(sm->sm_loaded); + + /* + * Use the sm_pp_root AVL tree, which is ordered by size, to obtain + * the largest segment in the in-core free map. If the tree is + * empty then we should condense the map. + */ + ss = avl_last(sm->sm_pp_root); + if (ss == NULL) + return (B_TRUE); + + /* + * Calculate the number of 64-bit entries this segment would + * require when written to disk. If this single segment would be + * larger on-disk than the entire current on-disk structure, then + * clearly condensing will increase the on-disk structure size. + */ + size = (ss->ss_end - ss->ss_start) >> sm->sm_shift; + entries = size / (MIN(size, SM_RUN_MAX)); + segsz = entries * sizeof (uint64_t); + + return (segsz <= smo->smo_objsize && + smo->smo_objsize >= (zfs_condense_pct * + sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100); +} + +/* + * Condense the on-disk space map representation to its minimized form. + * The minimized form consists of a small number of allocations followed by + * the in-core free map. + */ +static void +metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) +{ + spa_t *spa = msp->ms_group->mg_vd->vdev_spa; + space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK]; + space_map_t condense_map; + space_map_t *sm = msp->ms_map; + objset_t *mos = spa_meta_objset(spa); + space_map_obj_t *smo = &msp->ms_smo_syncing; + + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT3U(spa_sync_pass(spa), ==, 1); + ASSERT(sm->sm_loaded); + + spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, " + "smo size %llu, segments %lu", txg, + (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, + smo->smo_objsize, avl_numnodes(&sm->sm_root)); + + /* + * Create an map that is a 100% allocated map. We remove segments + * that have been freed in this txg, any deferred frees that exist, + * and any allocation in the future. Removing segments should be + * a relatively inexpensive operation since we expect these maps to + * a small number of nodes. + */ + space_map_create(&condense_map, sm->sm_start, sm->sm_size, + sm->sm_shift, sm->sm_lock); + space_map_add(&condense_map, condense_map.sm_start, + condense_map.sm_size); + + /* + * Remove what's been freed in this txg from the condense_map. + * Since we're in sync_pass 1, we know that all the frees from + * this txg are in the freemap. + */ + space_map_walk(freemap, space_map_remove, &condense_map); + + for (int t = 0; t < TXG_DEFER_SIZE; t++) + space_map_walk(msp->ms_defermap[t], + space_map_remove, &condense_map); + + for (int t = 1; t < TXG_CONCURRENT_STATES; t++) + space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK], + space_map_remove, &condense_map); + + /* + * We're about to drop the metaslab's lock thus allowing + * other consumers to change it's content. Set the + * space_map's sm_condensing flag to ensure that + * allocations on this metaslab do not occur while we're + * in the middle of committing it to disk. This is only critical + * for the ms_map as all other space_maps use per txg + * views of their content. + */ + sm->sm_condensing = B_TRUE; + + mutex_exit(&msp->ms_lock); + space_map_truncate(smo, mos, tx); + mutex_enter(&msp->ms_lock); + + /* + * While we would ideally like to create a space_map representation + * that consists only of allocation records, doing so can be + * prohibitively expensive because the in-core free map can be + * large, and therefore computationally expensive to subtract + * from the condense_map. Instead we sync out two maps, a cheap + * allocation only map followed by the in-core free map. While not + * optimal, this is typically close to optimal, and much cheaper to + * compute. + */ + space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx); + space_map_vacate(&condense_map, NULL, NULL); + space_map_destroy(&condense_map); + + space_map_sync(sm, SM_FREE, smo, mos, tx); + sm->sm_condensing = B_FALSE; + + spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, " + "smo size %llu", txg, + (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, + smo->smo_objsize); +} + +/* * Write a metaslab to disk in the context of the specified transaction group. */ void metaslab_sync(metaslab_t *msp, uint64_t txg) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; objset_t *mos = spa_meta_objset(spa); - space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; - space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; - space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; - space_map_t *sm = &msp->ms_map; + space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK]; + space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK]; + space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; + space_map_t *sm = msp->ms_map; space_map_obj_t *smo = &msp->ms_smo_syncing; dmu_buf_t *db; dmu_tx_t *tx; ASSERT(!vd->vdev_ishole); - if (allocmap->sm_space == 0 && freemap->sm_space == 0) + /* + * This metaslab has just been added so there's no work to do now. + */ + if (*freemap == NULL) { + ASSERT3P(allocmap, ==, NULL); return; + } + ASSERT3P(allocmap, !=, NULL); + ASSERT3P(*freemap, !=, NULL); + ASSERT3P(*freed_map, !=, NULL); + + if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0) + return; + /* * The only state that can actually be changing concurrently with * metaslab_sync() is the metaslab's ms_map. No other thread can * be modifying this txg's allocmap, freemap, freed_map, or smo. * Therefore, we only hold ms_lock to satify space_map ASSERTs. * We drop it whenever we call into the DMU, because the DMU * can call down to us (e.g. via zio_free()) at any time. */ tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); if (smo->smo_object == 0) { ASSERT(smo->smo_objsize == 0); ASSERT(smo->smo_alloc == 0); smo->smo_object = dmu_object_alloc(mos, DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); ASSERT(smo->smo_object != 0); dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * (sm->sm_start >> vd->vdev_ms_shift), sizeof (uint64_t), &smo->smo_object, tx); } mutex_enter(&msp->ms_lock); - space_map_walk(freemap, space_map_add, freed_map); + if (sm->sm_loaded && spa_sync_pass(spa) == 1 && + metaslab_should_condense(msp)) { + metaslab_condense(msp, txg, tx); + } else { + space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); + space_map_sync(*freemap, SM_FREE, smo, mos, tx); + } - if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= - 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { - /* - * The in-core space map representation is twice as compact - * as the on-disk one, so it's time to condense the latter - * by generating a pure allocmap from first principles. - * - * This metaslab is 100% allocated, - * minus the content of the in-core map (sm), - * minus what's been freed this txg (freed_map), - * minus deferred frees (ms_defermap[]), - * minus allocations from txgs in the future - * (because they haven't been committed yet). - */ - space_map_vacate(allocmap, NULL, NULL); - space_map_vacate(freemap, NULL, NULL); + space_map_vacate(allocmap, NULL, NULL); - space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); - - space_map_walk(sm, space_map_remove, allocmap); - space_map_walk(freed_map, space_map_remove, allocmap); - - for (int t = 0; t < TXG_DEFER_SIZE; t++) - space_map_walk(&msp->ms_defermap[t], - space_map_remove, allocmap); - - for (int t = 1; t < TXG_CONCURRENT_STATES; t++) - space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], - space_map_remove, allocmap); - - mutex_exit(&msp->ms_lock); - space_map_truncate(smo, mos, tx); - mutex_enter(&msp->ms_lock); + /* + * For sync pass 1, we avoid walking the entire space map and + * instead will just swap the pointers for freemap and + * freed_map. We can safely do this since the freed_map is + * guaranteed to be empty on the initial pass. + */ + if (spa_sync_pass(spa) == 1) { + ASSERT0((*freed_map)->sm_space); + ASSERT0(avl_numnodes(&(*freed_map)->sm_root)); + space_map_swap(freemap, freed_map); + } else { + space_map_vacate(*freemap, space_map_add, *freed_map); } - space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); - space_map_sync(freemap, SM_FREE, smo, mos, tx); + ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space); + ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space); mutex_exit(&msp->ms_lock); - VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); + VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, sizeof (*smo)); bcopy(smo, db->db_data, sizeof (*smo)); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } /* * Called after a transaction group has completely synced to mark * all of the metaslab's free space as usable. */ void metaslab_sync_done(metaslab_t *msp, uint64_t txg) { space_map_obj_t *smo = &msp->ms_smo; space_map_obj_t *smosync = &msp->ms_smo_syncing; - space_map_t *sm = &msp->ms_map; - space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; - space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE]; + space_map_t *sm = msp->ms_map; + space_map_t *freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; + space_map_t *defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE]; metaslab_group_t *mg = msp->ms_group; vdev_t *vd = mg->mg_vd; int64_t alloc_delta, defer_delta; ASSERT(!vd->vdev_ishole); mutex_enter(&msp->ms_lock); /* * If this metaslab is just becoming available, initialize its - * allocmaps and freemaps and add its capacity to the vdev. + * allocmaps, freemaps, and defermap and add its capacity to the vdev. */ - if (freed_map->sm_size == 0) { + if (freed_map == NULL) { + ASSERT(defer_map == NULL); for (int t = 0; t < TXG_SIZE; t++) { - space_map_create(&msp->ms_allocmap[t], sm->sm_start, + msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t), + KM_SLEEP); + space_map_create(msp->ms_allocmap[t], sm->sm_start, sm->sm_size, sm->sm_shift, sm->sm_lock); - space_map_create(&msp->ms_freemap[t], sm->sm_start, + msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t), + KM_SLEEP); + space_map_create(msp->ms_freemap[t], sm->sm_start, sm->sm_size, sm->sm_shift, sm->sm_lock); } - for (int t = 0; t < TXG_DEFER_SIZE; t++) - space_map_create(&msp->ms_defermap[t], sm->sm_start, + for (int t = 0; t < TXG_DEFER_SIZE; t++) { + msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t), + KM_SLEEP); + space_map_create(msp->ms_defermap[t], sm->sm_start, sm->sm_size, sm->sm_shift, sm->sm_lock); + } + freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; + defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE]; + vdev_space_update(vd, 0, 0, sm->sm_size); } alloc_delta = smosync->smo_alloc - smo->smo_alloc; defer_delta = freed_map->sm_space - defer_map->sm_space; vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); - ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); - ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); + ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0); + ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0); /* * If there's a space_map_load() in progress, wait for it to complete * so that we have a consistent view of the in-core space map. * Then, add defer_map (oldest deferred frees) to this map and * transfer freed_map (this txg's frees) to defer_map. */ space_map_load_wait(sm); space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm); space_map_vacate(freed_map, space_map_add, defer_map); *smo = *smosync; msp->ms_deferspace += defer_delta; ASSERT3S(msp->ms_deferspace, >=, 0); ASSERT3S(msp->ms_deferspace, <=, sm->sm_size); if (msp->ms_deferspace != 0) { /* * Keep syncing this metaslab until all deferred frees * are back in circulation. */ vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); } /* * If the map is loaded but no longer active, evict it as soon as all * future allocations have synced. (If we unloaded it now and then * loaded a moment later, the map wouldn't reflect those allocations.) */ if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { int evictable = 1; for (int t = 1; t < TXG_CONCURRENT_STATES; t++) - if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) + if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space) evictable = 0; if (evictable && !metaslab_debug) space_map_unload(sm); } metaslab_group_sort(mg, msp, metaslab_weight(msp)); mutex_exit(&msp->ms_lock); } void metaslab_sync_reassess(metaslab_group_t *mg) { vdev_t *vd = mg->mg_vd; int64_t failures = mg->mg_alloc_failures; /* * Re-evaluate all metaslabs which have lower offsets than the * bonus area. */ for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; - if (msp->ms_map.sm_start > mg->mg_bonus_area) + if (msp->ms_map->sm_start > mg->mg_bonus_area) break; mutex_enter(&msp->ms_lock); metaslab_group_sort(mg, msp, metaslab_weight(msp)); mutex_exit(&msp->ms_lock); } atomic_add_64(&mg->mg_alloc_failures, -failures); /* * Prefetch the next potential metaslabs */ metaslab_prefetch(mg); } static uint64_t metaslab_distance(metaslab_t *msp, dva_t *dva) { uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; - uint64_t start = msp->ms_map.sm_start >> ms_shift; + uint64_t start = msp->ms_map->sm_start >> ms_shift; if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) return (1ULL << 63); if (offset < start) return ((start - offset) << ms_shift); if (offset > start) return ((offset - start) << ms_shift); return (0); } static uint64_t metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags) { spa_t *spa = mg->mg_vd->vdev_spa; metaslab_t *msp = NULL; uint64_t offset = -1ULL; avl_tree_t *t = &mg->mg_metaslab_tree; uint64_t activation_weight; uint64_t target_distance; int i; activation_weight = METASLAB_WEIGHT_PRIMARY; for (i = 0; i < d; i++) { if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { activation_weight = METASLAB_WEIGHT_SECONDARY; break; } } for (;;) { boolean_t was_active; mutex_enter(&mg->mg_lock); for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { if (msp->ms_weight < asize) { spa_dbgmsg(spa, "%s: failed to meet weight " "requirement: vdev %llu, txg %llu, mg %p, " "msp %p, psize %llu, asize %llu, " "failures %llu, weight %llu", spa_name(spa), mg->mg_vd->vdev_id, txg, mg, msp, psize, asize, mg->mg_alloc_failures, msp->ms_weight); mutex_exit(&mg->mg_lock); return (-1ULL); } was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; if (activation_weight == METASLAB_WEIGHT_PRIMARY) break; target_distance = min_distance + (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); for (i = 0; i < d; i++) if (metaslab_distance(msp, &dva[i]) < target_distance) break; if (i == d) break; } mutex_exit(&mg->mg_lock); if (msp == NULL) return (-1ULL); /* * If we've already reached the allowable number of failed * allocation attempts on this metaslab group then we * consider skipping it. We skip it only if we're allowed * to "fast" gang, the physical size is larger than * a gang block, and we're attempting to allocate from * the primary metaslab. */ if (mg->mg_alloc_failures > zfs_mg_alloc_failures && CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE && activation_weight == METASLAB_WEIGHT_PRIMARY) { spa_dbgmsg(spa, "%s: skipping metaslab group: " "vdev %llu, txg %llu, mg %p, psize %llu, " "asize %llu, failures %llu", spa_name(spa), mg->mg_vd->vdev_id, txg, mg, psize, asize, mg->mg_alloc_failures); return (-1ULL); } mutex_enter(&msp->ms_lock); /* + * If this metaslab is currently condensing then pick again as + * we can't manipulate this metaslab until it's committed + * to disk. + */ + if (msp->ms_map->sm_condensing) { + mutex_exit(&msp->ms_lock); + continue; + } + + /* * Ensure that the metaslab we have selected is still * capable of handling our request. It's possible that * another thread may have changed the weight while we * were blocked on the metaslab lock. */ if (msp->ms_weight < asize || (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK) && activation_weight == METASLAB_WEIGHT_PRIMARY)) { mutex_exit(&msp->ms_lock); continue; } if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && activation_weight == METASLAB_WEIGHT_PRIMARY) { metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); mutex_exit(&msp->ms_lock); continue; } if (metaslab_activate(msp, activation_weight) != 0) { mutex_exit(&msp->ms_lock); continue; } - if ((offset = space_map_alloc(&msp->ms_map, asize)) != -1ULL) + if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL) break; atomic_inc_64(&mg->mg_alloc_failures); - metaslab_passivate(msp, space_map_maxsize(&msp->ms_map)); + metaslab_passivate(msp, space_map_maxsize(msp->ms_map)); mutex_exit(&msp->ms_lock); } - if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) + if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); - space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, asize); + space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize); mutex_exit(&msp->ms_lock); return (offset); } /* * Allocate a block for the specified i/o. */ static int metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags) { metaslab_group_t *mg, *rotor; vdev_t *vd; int dshift = 3; int all_zero; int zio_lock = B_FALSE; boolean_t allocatable; uint64_t offset = -1ULL; uint64_t asize; uint64_t distance; ASSERT(!DVA_IS_VALID(&dva[d])); /* * For testing, make some blocks above a certain size be gang blocks. */ if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) return (ENOSPC); /* * Start at the rotor and loop through all mgs until we find something. * Note that there's no locking on mc_rotor or mc_aliquot because * nothing actually breaks if we miss a few updates -- we just won't * allocate quite as evenly. It all balances out over time. * * If we are doing ditto or log blocks, try to spread them across * consecutive vdevs. If we're forced to reuse a vdev before we've * allocated all of our ditto blocks, then try and spread them out on * that vdev as much as possible. If it turns out to not be possible, * gradually lower our standards until anything becomes acceptable. * Also, allocating on consecutive vdevs (as opposed to random vdevs) * gives us hope of containing our fault domains to something we're * able to reason about. Otherwise, any two top-level vdev failures * will guarantee the loss of data. With consecutive allocation, * only two adjacent top-level vdev failures will result in data loss. * * If we are doing gang blocks (hintdva is non-NULL), try to keep * ourselves on the same vdev as our gang block header. That * way, we can hope for locality in vdev_cache, plus it makes our * fault domains something tractable. */ if (hintdva) { vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); /* * It's possible the vdev we're using as the hint no * longer exists (i.e. removed). Consult the rotor when * all else fails. */ if (vd != NULL) { mg = vd->vdev_mg; if (flags & METASLAB_HINTBP_AVOID && mg->mg_next != NULL) mg = mg->mg_next; } else { mg = mc->mc_rotor; } } else if (d != 0) { vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); mg = vd->vdev_mg->mg_next; } else { mg = mc->mc_rotor; } /* * If the hint put us into the wrong metaslab class, or into a * metaslab group that has been passivated, just follow the rotor. */ if (mg->mg_class != mc || mg->mg_activation_count <= 0) mg = mc->mc_rotor; rotor = mg; top: all_zero = B_TRUE; do { ASSERT(mg->mg_activation_count == 1); vd = mg->mg_vd; /* * Don't allocate from faulted devices. */ if (zio_lock) { spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); allocatable = vdev_allocatable(vd); spa_config_exit(spa, SCL_ZIO, FTAG); } else { allocatable = vdev_allocatable(vd); } if (!allocatable) goto next; /* * Avoid writing single-copy data to a failing vdev * unless the user instructs us that it is okay. */ if ((vd->vdev_stat.vs_write_errors > 0 || vd->vdev_state < VDEV_STATE_HEALTHY) && d == 0 && dshift == 3 && !(zfs_write_to_degraded && vd->vdev_state == VDEV_STATE_DEGRADED)) { all_zero = B_FALSE; goto next; } ASSERT(mg->mg_class == mc); distance = vd->vdev_asize >> dshift; if (distance <= (1ULL << vd->vdev_ms_shift)) distance = 0; else all_zero = B_FALSE; asize = vdev_psize_to_asize(vd, psize); ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); offset = metaslab_group_alloc(mg, psize, asize, txg, distance, dva, d, flags); if (offset != -1ULL) { /* * If we've just selected this metaslab group, * figure out whether the corresponding vdev is * over- or under-used relative to the pool, * and set an allocation bias to even it out. */ if (mc->mc_aliquot == 0) { vdev_stat_t *vs = &vd->vdev_stat; int64_t vu, cu; vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); /* * Calculate how much more or less we should * try to allocate from this device during * this iteration around the rotor. * For example, if a device is 80% full * and the pool is 20% full then we should * reduce allocations by 60% on this device. * * mg_bias = (20 - 80) * 512K / 100 = -307K * * This reduces allocations by 307K for this * iteration. */ mg->mg_bias = ((cu - vu) * (int64_t)mg->mg_aliquot) / 100; } if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= mg->mg_aliquot + mg->mg_bias) { mc->mc_rotor = mg->mg_next; mc->mc_aliquot = 0; } DVA_SET_VDEV(&dva[d], vd->vdev_id); DVA_SET_OFFSET(&dva[d], offset); DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); DVA_SET_ASIZE(&dva[d], asize); return (0); } next: mc->mc_rotor = mg->mg_next; mc->mc_aliquot = 0; } while ((mg = mg->mg_next) != rotor); if (!all_zero) { dshift++; ASSERT(dshift < 64); goto top; } if (!allocatable && !zio_lock) { dshift = 3; zio_lock = B_TRUE; goto top; } bzero(&dva[d], sizeof (dva_t)); return (ENOSPC); } /* * Free the block represented by DVA in the context of the specified * transaction group. */ static void metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) { uint64_t vdev = DVA_GET_VDEV(dva); uint64_t offset = DVA_GET_OFFSET(dva); uint64_t size = DVA_GET_ASIZE(dva); vdev_t *vd; metaslab_t *msp; ASSERT(DVA_IS_VALID(dva)); if (txg > spa_freeze_txg(spa)) return; if ((vd = vdev_lookup_top(spa, vdev)) == NULL || (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", (u_longlong_t)vdev, (u_longlong_t)offset); ASSERT(0); return; } msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (DVA_GET_GANG(dva)) size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); mutex_enter(&msp->ms_lock); if (now) { - space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], + space_map_remove(msp->ms_allocmap[txg & TXG_MASK], offset, size); - space_map_free(&msp->ms_map, offset, size); + space_map_free(msp->ms_map, offset, size); } else { - if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) + if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); - space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); + space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size); } mutex_exit(&msp->ms_lock); } /* * Intent log support: upon opening the pool after a crash, notify the SPA * of blocks that the intent log has allocated for immediate write, but * which are still considered free by the SPA because the last transaction * group didn't commit yet. */ static int metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) { uint64_t vdev = DVA_GET_VDEV(dva); uint64_t offset = DVA_GET_OFFSET(dva); uint64_t size = DVA_GET_ASIZE(dva); vdev_t *vd; metaslab_t *msp; int error = 0; ASSERT(DVA_IS_VALID(dva)); if ((vd = vdev_lookup_top(spa, vdev)) == NULL || (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) return (ENXIO); msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; if (DVA_GET_GANG(dva)) size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); mutex_enter(&msp->ms_lock); - if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded) + if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded) error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); - if (error == 0 && !space_map_contains(&msp->ms_map, offset, size)) + if (error == 0 && !space_map_contains(msp->ms_map, offset, size)) error = ENOENT; if (error || txg == 0) { /* txg == 0 indicates dry run */ mutex_exit(&msp->ms_lock); return (error); } - space_map_claim(&msp->ms_map, offset, size); + space_map_claim(msp->ms_map, offset, size); if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ - if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) + if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); - space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); + space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size); } mutex_exit(&msp->ms_lock); return (0); } int metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, int ndvas, uint64_t txg, blkptr_t *hintbp, int flags) { dva_t *dva = bp->blk_dva; dva_t *hintdva = hintbp->blk_dva; int error = 0; ASSERT(bp->blk_birth == 0); ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); if (mc->mc_rotor == NULL) { /* no vdevs in this class */ spa_config_exit(spa, SCL_ALLOC, FTAG); return (ENOSPC); } ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); ASSERT(BP_GET_NDVAS(bp) == 0); ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); for (int d = 0; d < ndvas; d++) { error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, txg, flags); if (error) { for (d--; d >= 0; d--) { metaslab_free_dva(spa, &dva[d], txg, B_TRUE); bzero(&dva[d], sizeof (dva_t)); } spa_config_exit(spa, SCL_ALLOC, FTAG); return (error); } } ASSERT(error == 0); ASSERT(BP_GET_NDVAS(bp) == ndvas); spa_config_exit(spa, SCL_ALLOC, FTAG); BP_SET_BIRTH(bp, txg, txg); return (0); } void metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) { const dva_t *dva = bp->blk_dva; int ndvas = BP_GET_NDVAS(bp); ASSERT(!BP_IS_HOLE(bp)); ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); for (int d = 0; d < ndvas; d++) metaslab_free_dva(spa, &dva[d], txg, now); spa_config_exit(spa, SCL_FREE, FTAG); } int metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) { const dva_t *dva = bp->blk_dva; int ndvas = BP_GET_NDVAS(bp); int error = 0; ASSERT(!BP_IS_HOLE(bp)); if (txg != 0) { /* * First do a dry run to make sure all DVAs are claimable, * so we don't have to unwind from partial failures below. */ if ((error = metaslab_claim(spa, bp, 0)) != 0) return (error); } spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); for (int d = 0; d < ndvas; d++) if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) break; spa_config_exit(spa, SCL_ALLOC, FTAG); ASSERT(error == 0 || txg == 0); return (error); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/space_map.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/space_map.c (revision 247175) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/space_map.c (revision 247176) @@ -1,645 +1,660 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include static kmem_cache_t *space_seg_cache; void space_map_init(void) { ASSERT(space_seg_cache == NULL); space_seg_cache = kmem_cache_create("space_seg_cache", sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void space_map_fini(void) { kmem_cache_destroy(space_seg_cache); space_seg_cache = NULL; } /* * Space map routines. * NOTE: caller is responsible for all locking. */ static int space_map_seg_compare(const void *x1, const void *x2) { const space_seg_t *s1 = x1; const space_seg_t *s2 = x2; if (s1->ss_start < s2->ss_start) { if (s1->ss_end > s2->ss_start) return (0); return (-1); } if (s1->ss_start > s2->ss_start) { if (s1->ss_start < s2->ss_end) return (0); return (1); } return (0); } void space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp) { bzero(sm, sizeof (*sm)); cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL); avl_create(&sm->sm_root, space_map_seg_compare, sizeof (space_seg_t), offsetof(struct space_seg, ss_node)); sm->sm_start = start; sm->sm_size = size; sm->sm_shift = shift; sm->sm_lock = lp; } void space_map_destroy(space_map_t *sm) { ASSERT(!sm->sm_loaded && !sm->sm_loading); VERIFY0(sm->sm_space); avl_destroy(&sm->sm_root); cv_destroy(&sm->sm_load_cv); } void space_map_add(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; space_seg_t ssearch, *ss_before, *ss_after, *ss; uint64_t end = start + size; int merge_before, merge_after; ASSERT(MUTEX_HELD(sm->sm_lock)); + VERIFY(!sm->sm_condensing); VERIFY(size != 0); VERIFY3U(start, >=, sm->sm_start); VERIFY3U(end, <=, sm->sm_start + sm->sm_size); VERIFY(sm->sm_space + size <= sm->sm_size); VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); ssearch.ss_start = start; ssearch.ss_end = end; ss = avl_find(&sm->sm_root, &ssearch, &where); if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) { zfs_panic_recover("zfs: allocating allocated segment" "(offset=%llu size=%llu)\n", (longlong_t)start, (longlong_t)size); return; } /* Make sure we don't overlap with either of our neighbors */ VERIFY(ss == NULL); ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE); ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER); merge_before = (ss_before != NULL && ss_before->ss_end == start); merge_after = (ss_after != NULL && ss_after->ss_start == end); if (merge_before && merge_after) { avl_remove(&sm->sm_root, ss_before); if (sm->sm_pp_root) { avl_remove(sm->sm_pp_root, ss_before); avl_remove(sm->sm_pp_root, ss_after); } ss_after->ss_start = ss_before->ss_start; kmem_cache_free(space_seg_cache, ss_before); ss = ss_after; } else if (merge_before) { ss_before->ss_end = end; if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss_before); ss = ss_before; } else if (merge_after) { ss_after->ss_start = start; if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss_after); ss = ss_after; } else { ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP); ss->ss_start = start; ss->ss_end = end; avl_insert(&sm->sm_root, ss, where); } if (sm->sm_pp_root) avl_add(sm->sm_pp_root, ss); sm->sm_space += size; } void space_map_remove(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; space_seg_t ssearch, *ss, *newseg; uint64_t end = start + size; int left_over, right_over; ASSERT(MUTEX_HELD(sm->sm_lock)); + VERIFY(!sm->sm_condensing); VERIFY(size != 0); VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); ssearch.ss_start = start; ssearch.ss_end = end; ss = avl_find(&sm->sm_root, &ssearch, &where); /* Make sure we completely overlap with someone */ if (ss == NULL) { zfs_panic_recover("zfs: freeing free segment " "(offset=%llu size=%llu)", (longlong_t)start, (longlong_t)size); return; } VERIFY3U(ss->ss_start, <=, start); VERIFY3U(ss->ss_end, >=, end); VERIFY(sm->sm_space - size <= sm->sm_size); left_over = (ss->ss_start != start); right_over = (ss->ss_end != end); if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss); if (left_over && right_over) { newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP); newseg->ss_start = end; newseg->ss_end = ss->ss_end; ss->ss_end = start; avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER); if (sm->sm_pp_root) avl_add(sm->sm_pp_root, newseg); } else if (left_over) { ss->ss_end = start; } else if (right_over) { ss->ss_start = end; } else { avl_remove(&sm->sm_root, ss); kmem_cache_free(space_seg_cache, ss); ss = NULL; } if (sm->sm_pp_root && ss != NULL) avl_add(sm->sm_pp_root, ss); sm->sm_space -= size; } boolean_t space_map_contains(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; space_seg_t ssearch, *ss; uint64_t end = start + size; ASSERT(MUTEX_HELD(sm->sm_lock)); VERIFY(size != 0); VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); ssearch.ss_start = start; ssearch.ss_end = end; ss = avl_find(&sm->sm_root, &ssearch, &where); return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end); } void +space_map_swap(space_map_t **msrc, space_map_t **mdst) +{ + space_map_t *sm; + + ASSERT(MUTEX_HELD((*msrc)->sm_lock)); + ASSERT0((*mdst)->sm_space); + ASSERT0(avl_numnodes(&(*mdst)->sm_root)); + + sm = *msrc; + *msrc = *mdst; + *mdst = sm; +} + +void space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) { space_seg_t *ss; void *cookie = NULL; ASSERT(MUTEX_HELD(sm->sm_lock)); while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { if (func != NULL) func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); kmem_cache_free(space_seg_cache, ss); } sm->sm_space = 0; } void space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) { space_seg_t *ss; ASSERT(MUTEX_HELD(sm->sm_lock)); for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); } /* * Wait for any in-progress space_map_load() to complete. */ void space_map_load_wait(space_map_t *sm) { ASSERT(MUTEX_HELD(sm->sm_lock)); while (sm->sm_loading) { ASSERT(!sm->sm_loaded); cv_wait(&sm->sm_load_cv, sm->sm_lock); } } /* * Note: space_map_load() will drop sm_lock across dmu_read() calls. * The caller must be OK with this. */ int space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype, space_map_obj_t *smo, objset_t *os) { uint64_t *entry, *entry_map, *entry_map_end; uint64_t bufsize, size, offset, end, space; uint64_t mapstart = sm->sm_start; int error = 0; ASSERT(MUTEX_HELD(sm->sm_lock)); ASSERT(!sm->sm_loaded); ASSERT(!sm->sm_loading); sm->sm_loading = B_TRUE; end = smo->smo_objsize; space = smo->smo_alloc; ASSERT(sm->sm_ops == NULL); VERIFY0(sm->sm_space); if (maptype == SM_FREE) { space_map_add(sm, sm->sm_start, sm->sm_size); space = sm->sm_size - space; } bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT; entry_map = zio_buf_alloc(bufsize); mutex_exit(sm->sm_lock); if (end > bufsize) dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize); mutex_enter(sm->sm_lock); for (offset = 0; offset < end; offset += bufsize) { size = MIN(end - offset, bufsize); VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); VERIFY(size != 0); dprintf("object=%llu offset=%llx size=%llx\n", smo->smo_object, offset, size); mutex_exit(sm->sm_lock); error = dmu_read(os, smo->smo_object, offset, size, entry_map, DMU_READ_PREFETCH); mutex_enter(sm->sm_lock); if (error != 0) break; entry_map_end = entry_map + (size / sizeof (uint64_t)); for (entry = entry_map; entry < entry_map_end; entry++) { uint64_t e = *entry; if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ continue; (SM_TYPE_DECODE(e) == maptype ? space_map_add : space_map_remove)(sm, (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart, SM_RUN_DECODE(e) << sm->sm_shift); } } if (error == 0) { VERIFY3U(sm->sm_space, ==, space); sm->sm_loaded = B_TRUE; sm->sm_ops = ops; if (ops != NULL) ops->smop_load(sm); } else { space_map_vacate(sm, NULL, NULL); } zio_buf_free(entry_map, bufsize); sm->sm_loading = B_FALSE; cv_broadcast(&sm->sm_load_cv); return (error); } void space_map_unload(space_map_t *sm) { ASSERT(MUTEX_HELD(sm->sm_lock)); if (sm->sm_loaded && sm->sm_ops != NULL) sm->sm_ops->smop_unload(sm); sm->sm_loaded = B_FALSE; sm->sm_ops = NULL; space_map_vacate(sm, NULL, NULL); } uint64_t space_map_maxsize(space_map_t *sm) { ASSERT(sm->sm_ops != NULL); return (sm->sm_ops->smop_max(sm)); } uint64_t space_map_alloc(space_map_t *sm, uint64_t size) { uint64_t start; start = sm->sm_ops->smop_alloc(sm, size); if (start != -1ULL) space_map_remove(sm, start, size); return (start); } void space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) { sm->sm_ops->smop_claim(sm, start, size); space_map_remove(sm, start, size); } void space_map_free(space_map_t *sm, uint64_t start, uint64_t size) { space_map_add(sm, start, size); sm->sm_ops->smop_free(sm, start, size); } /* * Note: space_map_sync() will drop sm_lock across dmu_write() calls. */ void space_map_sync(space_map_t *sm, uint8_t maptype, space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); - void *cookie = NULL; + avl_tree_t *t = &sm->sm_root; space_seg_t *ss; - uint64_t bufsize, start, size, run_len, delta, sm_space; + uint64_t bufsize, start, size, run_len, total, sm_space, nodes; uint64_t *entry, *entry_map, *entry_map_end; ASSERT(MUTEX_HELD(sm->sm_lock)); if (sm->sm_space == 0) return; dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n", smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa), maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root), sm->sm_space); if (maptype == SM_ALLOC) smo->smo_alloc += sm->sm_space; else smo->smo_alloc -= sm->sm_space; bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t); bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT); entry_map = zio_buf_alloc(bufsize); entry_map_end = entry_map + (bufsize / sizeof (uint64_t)); entry = entry_map; *entry++ = SM_DEBUG_ENCODE(1) | SM_DEBUG_ACTION_ENCODE(maptype) | SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); - delta = 0; + total = 0; + nodes = avl_numnodes(&sm->sm_root); sm_space = sm->sm_space; - while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { + for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) { size = ss->ss_end - ss->ss_start; start = (ss->ss_start - sm->sm_start) >> sm->sm_shift; - delta += size; + total += size; size >>= sm->sm_shift; while (size) { run_len = MIN(size, SM_RUN_MAX); if (entry == entry_map_end) { mutex_exit(sm->sm_lock); dmu_write(os, smo->smo_object, smo->smo_objsize, bufsize, entry_map, tx); mutex_enter(sm->sm_lock); smo->smo_objsize += bufsize; entry = entry_map; } *entry++ = SM_OFFSET_ENCODE(start) | SM_TYPE_ENCODE(maptype) | SM_RUN_ENCODE(run_len); start += run_len; size -= run_len; } - kmem_cache_free(space_seg_cache, ss); } if (entry != entry_map) { size = (entry - entry_map) * sizeof (uint64_t); mutex_exit(sm->sm_lock); dmu_write(os, smo->smo_object, smo->smo_objsize, size, entry_map, tx); mutex_enter(sm->sm_lock); smo->smo_objsize += size; } /* * Ensure that the space_map's accounting wasn't changed * while we were in the middle of writing it out. */ + VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root)); VERIFY3U(sm->sm_space, ==, sm_space); + VERIFY3U(sm->sm_space, ==, total); zio_buf_free(entry_map, bufsize); - - sm->sm_space -= delta; - VERIFY0(sm->sm_space); } void space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) { VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0); smo->smo_objsize = 0; smo->smo_alloc = 0; } /* * Space map reference trees. * * A space map is a collection of integers. Every integer is either * in the map, or it's not. A space map reference tree generalizes * the idea: it allows its members to have arbitrary reference counts, * as opposed to the implicit reference count of 0 or 1 in a space map. * This representation comes in handy when computing the union or * intersection of multiple space maps. For example, the union of * N space maps is the subset of the reference tree with refcnt >= 1. * The intersection of N space maps is the subset with refcnt >= N. * * [It's very much like a Fourier transform. Unions and intersections * are hard to perform in the 'space map domain', so we convert the maps * into the 'reference count domain', where it's trivial, then invert.] * * vdev_dtl_reassess() uses computations of this form to determine * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev * has an outage wherever refcnt >= vdev_children. */ static int space_map_ref_compare(const void *x1, const void *x2) { const space_ref_t *sr1 = x1; const space_ref_t *sr2 = x2; if (sr1->sr_offset < sr2->sr_offset) return (-1); if (sr1->sr_offset > sr2->sr_offset) return (1); if (sr1 < sr2) return (-1); if (sr1 > sr2) return (1); return (0); } void space_map_ref_create(avl_tree_t *t) { avl_create(t, space_map_ref_compare, sizeof (space_ref_t), offsetof(space_ref_t, sr_node)); } void space_map_ref_destroy(avl_tree_t *t) { space_ref_t *sr; void *cookie = NULL; while ((sr = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(sr, sizeof (*sr)); avl_destroy(t); } static void space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt) { space_ref_t *sr; sr = kmem_alloc(sizeof (*sr), KM_SLEEP); sr->sr_offset = offset; sr->sr_refcnt = refcnt; avl_add(t, sr); } void space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end, int64_t refcnt) { space_map_ref_add_node(t, start, refcnt); space_map_ref_add_node(t, end, -refcnt); } /* * Convert (or add) a space map into a reference tree. */ void space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt) { space_seg_t *ss; ASSERT(MUTEX_HELD(sm->sm_lock)); for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt); } /* * Convert a reference tree into a space map. The space map will contain * all members of the reference tree for which refcnt >= minref. */ void space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref) { uint64_t start = -1ULL; int64_t refcnt = 0; space_ref_t *sr; ASSERT(MUTEX_HELD(sm->sm_lock)); space_map_vacate(sm, NULL, NULL); for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) { refcnt += sr->sr_refcnt; if (refcnt >= minref) { if (start == -1ULL) { start = sr->sr_offset; } } else { if (start != -1ULL) { uint64_t end = sr->sr_offset; ASSERT(start <= end); if (end > start) space_map_add(sm, start, end - start); start = -1ULL; } } } ASSERT(refcnt == 0); ASSERT(start == -1ULL); } Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/metaslab_impl.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/metaslab_impl.h (revision 247175) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/metaslab_impl.h (revision 247176) @@ -1,94 +1,112 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #ifndef _SYS_METASLAB_IMPL_H #define _SYS_METASLAB_IMPL_H #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct metaslab_class { spa_t *mc_spa; metaslab_group_t *mc_rotor; space_map_ops_t *mc_ops; uint64_t mc_aliquot; uint64_t mc_alloc; /* total allocated space */ uint64_t mc_deferred; /* total deferred frees */ uint64_t mc_space; /* total space (alloc + free) */ uint64_t mc_dspace; /* total deflated space */ }; struct metaslab_group { kmutex_t mg_lock; avl_tree_t mg_metaslab_tree; uint64_t mg_aliquot; uint64_t mg_bonus_area; uint64_t mg_alloc_failures; int64_t mg_bias; int64_t mg_activation_count; metaslab_class_t *mg_class; vdev_t *mg_vd; metaslab_group_t *mg_prev; metaslab_group_t *mg_next; }; /* - * Each metaslab's free space is tracked in space map object in the MOS, - * which is only updated in syncing context. Each time we sync a txg, + * Each metaslab maintains an in-core free map (ms_map) that contains the + * current list of free segments. As blocks are allocated, the allocated + * segment is removed from the ms_map and added to a per txg allocation map. + * As blocks are freed, they are added to the per txg free map. These per + * txg maps allow us to process all allocations and frees in syncing context + * where it is safe to update the on-disk space maps. + * + * Each metaslab's free space is tracked in a space map object in the MOS, + * which is only updated in syncing context. Each time we sync a txg, * we append the allocs and frees from that txg to the space map object. * When the txg is done syncing, metaslab_sync_done() updates ms_smo - * to ms_smo_syncing. Everything in ms_smo is always safe to allocate. + * to ms_smo_syncing. Everything in ms_smo is always safe to allocate. + * + * To load the in-core free map we read the space map object from disk. + * This object contains a series of alloc and free records that are + * combined to make up the list of all free segments in this metaslab. These + * segments are represented in-core by the ms_map and are stored in an + * AVL tree. + * + * As the space map objects grows (as a result of the appends) it will + * eventually become space-inefficient. When the space map object is + * zfs_condense_pct/100 times the size of the minimal on-disk representation, + * we rewrite it in its minimized form. */ struct metaslab { kmutex_t ms_lock; /* metaslab lock */ space_map_obj_t ms_smo; /* synced space map object */ space_map_obj_t ms_smo_syncing; /* syncing space map object */ - space_map_t ms_allocmap[TXG_SIZE]; /* allocated this txg */ - space_map_t ms_freemap[TXG_SIZE]; /* freed this txg */ - space_map_t ms_defermap[TXG_DEFER_SIZE]; /* deferred frees */ - space_map_t ms_map; /* in-core free space map */ + space_map_t *ms_allocmap[TXG_SIZE]; /* allocated this txg */ + space_map_t *ms_freemap[TXG_SIZE]; /* freed this txg */ + space_map_t *ms_defermap[TXG_DEFER_SIZE]; /* deferred frees */ + space_map_t *ms_map; /* in-core free space map */ int64_t ms_deferspace; /* sum of ms_defermap[] space */ uint64_t ms_weight; /* weight vs. others in group */ metaslab_group_t *ms_group; /* metaslab group */ avl_node_t ms_group_node; /* node in metaslab group tree */ txg_node_t ms_txg_node; /* per-txg dirty metaslab links */ }; #ifdef __cplusplus } #endif #endif /* _SYS_METASLAB_IMPL_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/sys/space_map.h =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/sys/space_map.h (revision 247175) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/sys/space_map.h (revision 247176) @@ -1,185 +1,186 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #ifndef _SYS_SPACE_MAP_H #define _SYS_SPACE_MAP_H #include #include #ifdef __cplusplus extern "C" { #endif typedef struct space_map_ops space_map_ops_t; typedef struct space_map { - avl_tree_t sm_root; /* AVL tree of map segments */ + avl_tree_t sm_root; /* offset-ordered segment AVL tree */ uint64_t sm_space; /* sum of all segments in the map */ uint64_t sm_start; /* start of map */ uint64_t sm_size; /* size of map */ uint8_t sm_shift; /* unit shift */ - uint8_t sm_pad[3]; /* unused */ uint8_t sm_loaded; /* map loaded? */ uint8_t sm_loading; /* map loading? */ + uint8_t sm_condensing; /* map condensing? */ kcondvar_t sm_load_cv; /* map load completion */ space_map_ops_t *sm_ops; /* space map block picker ops vector */ - avl_tree_t *sm_pp_root; /* picker-private AVL tree */ + avl_tree_t *sm_pp_root; /* size-ordered, picker-private tree */ void *sm_ppd; /* picker-private data */ kmutex_t *sm_lock; /* pointer to lock that protects map */ } space_map_t; typedef struct space_seg { avl_node_t ss_node; /* AVL node */ avl_node_t ss_pp_node; /* AVL picker-private node */ uint64_t ss_start; /* starting offset of this segment */ uint64_t ss_end; /* ending offset (non-inclusive) */ } space_seg_t; typedef struct space_ref { avl_node_t sr_node; /* AVL node */ uint64_t sr_offset; /* offset (start or end) */ int64_t sr_refcnt; /* associated reference count */ } space_ref_t; typedef struct space_map_obj { uint64_t smo_object; /* on-disk space map object */ uint64_t smo_objsize; /* size of the object */ uint64_t smo_alloc; /* space allocated from the map */ } space_map_obj_t; struct space_map_ops { void (*smop_load)(space_map_t *sm); void (*smop_unload)(space_map_t *sm); uint64_t (*smop_alloc)(space_map_t *sm, uint64_t size); void (*smop_claim)(space_map_t *sm, uint64_t start, uint64_t size); void (*smop_free)(space_map_t *sm, uint64_t start, uint64_t size); uint64_t (*smop_max)(space_map_t *sm); boolean_t (*smop_fragmented)(space_map_t *sm); }; /* * debug entry * * 1 3 10 50 * ,---+--------+------------+---------------------------------. * | 1 | action | syncpass | txg (lower bits) | * `---+--------+------------+---------------------------------' * 63 62 60 59 50 49 0 * * * * non-debug entry * * 1 47 1 15 * ,-----------------------------------------------------------. * | 0 | offset (sm_shift units) | type | run | * `-----------------------------------------------------------' * 63 62 17 16 15 0 */ /* All this stuff takes and returns bytes */ #define SM_RUN_DECODE(x) (BF64_DECODE(x, 0, 15) + 1) #define SM_RUN_ENCODE(x) BF64_ENCODE((x) - 1, 0, 15) #define SM_TYPE_DECODE(x) BF64_DECODE(x, 15, 1) #define SM_TYPE_ENCODE(x) BF64_ENCODE(x, 15, 1) #define SM_OFFSET_DECODE(x) BF64_DECODE(x, 16, 47) #define SM_OFFSET_ENCODE(x) BF64_ENCODE(x, 16, 47) #define SM_DEBUG_DECODE(x) BF64_DECODE(x, 63, 1) #define SM_DEBUG_ENCODE(x) BF64_ENCODE(x, 63, 1) #define SM_DEBUG_ACTION_DECODE(x) BF64_DECODE(x, 60, 3) #define SM_DEBUG_ACTION_ENCODE(x) BF64_ENCODE(x, 60, 3) #define SM_DEBUG_SYNCPASS_DECODE(x) BF64_DECODE(x, 50, 10) #define SM_DEBUG_SYNCPASS_ENCODE(x) BF64_ENCODE(x, 50, 10) #define SM_DEBUG_TXG_DECODE(x) BF64_DECODE(x, 0, 50) #define SM_DEBUG_TXG_ENCODE(x) BF64_ENCODE(x, 0, 50) #define SM_RUN_MAX SM_RUN_DECODE(~0ULL) #define SM_ALLOC 0x0 #define SM_FREE 0x1 /* * The data for a given space map can be kept on blocks of any size. * Larger blocks entail fewer i/o operations, but they also cause the * DMU to keep more data in-core, and also to waste more i/o bandwidth * when only a few blocks have changed since the last transaction group. * This could use a lot more research, but for now, set the freelist * block size to 4k (2^12). */ #define SPACE_MAP_BLOCKSHIFT 12 typedef void space_map_func_t(space_map_t *sm, uint64_t start, uint64_t size); extern void space_map_init(void); extern void space_map_fini(void); extern void space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp); extern void space_map_destroy(space_map_t *sm); extern void space_map_add(space_map_t *sm, uint64_t start, uint64_t size); extern void space_map_remove(space_map_t *sm, uint64_t start, uint64_t size); extern boolean_t space_map_contains(space_map_t *sm, uint64_t start, uint64_t size); +extern void space_map_swap(space_map_t **msrc, space_map_t **mdest); extern void space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest); extern void space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest); extern void space_map_load_wait(space_map_t *sm); extern int space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype, space_map_obj_t *smo, objset_t *os); extern void space_map_unload(space_map_t *sm); extern uint64_t space_map_alloc(space_map_t *sm, uint64_t size); extern void space_map_claim(space_map_t *sm, uint64_t start, uint64_t size); extern void space_map_free(space_map_t *sm, uint64_t start, uint64_t size); extern uint64_t space_map_maxsize(space_map_t *sm); extern void space_map_sync(space_map_t *sm, uint8_t maptype, space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx); extern void space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx); extern void space_map_ref_create(avl_tree_t *t); extern void space_map_ref_destroy(avl_tree_t *t); extern void space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end, int64_t refcnt); extern void space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt); extern void space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref); #ifdef __cplusplus } #endif #endif /* _SYS_SPACE_MAP_H */ Index: vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c =================================================================== --- vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c (revision 247175) +++ vendor-sys/illumos/dist/uts/common/fs/zfs/vdev.c (revision 247176) @@ -1,3194 +1,3195 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual device management. */ static vdev_ops_t *vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, &vdev_disk_ops, &vdev_file_ops, &vdev_missing_ops, &vdev_hole_ops, NULL }; /* maximum scrub/resilver I/O queue per leaf vdev */ int zfs_scrub_limit = 10; /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, **opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; for (int c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } /* * Get the minimum allocatable size. We define the allocatable size as * the vdev's asize rounded to the nearest metaslab. This allows us to * replace or attach devices which don't have the same physical size but * can still satisfy the same number of allocations. */ uint64_t vdev_get_min_asize(vdev_t *vd) { vdev_t *pvd = vd->vdev_parent; /* * If our parent is NULL (inactive spare or cache) or is the root, * just return our own asize. */ if (pvd == NULL) return (vd->vdev_asize); /* * The top-level vdev just returns the allocatable size rounded * to the nearest metaslab. */ if (vd == vd->vdev_top) return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); /* * The allocatable space for a raidz vdev is N * sizeof(smallest child), * so each child must provide at least 1/Nth of its asize. */ if (pvd->vdev_ops == &vdev_raidz_ops) return (pvd->vdev_min_asize / pvd->vdev_children); return (pvd->vdev_min_asize); } void vdev_set_min_asize(vdev_t *vd) { vd->vdev_min_asize = vdev_get_min_asize(vd); for (int c = 0; c < vd->vdev_children; c++) vdev_set_min_asize(vd->vdev_child[c]); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (vdev < rvd->vdev_children) { ASSERT(rvd->vdev_child[vdev] != NULL); return (rvd->vdev_child[vdev]); } return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_zalloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { bcopy(pvd->vdev_child, newchild, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc; ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); for (int c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); for (int c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; spa->spa_load_guid = spa_generate_guid(NULL); } if (guid == 0 && ops != &vdev_hole_ops) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ guid = spa_generate_guid(NULL); } else { /* * Any other vdev's guid must be unique within the pool. */ guid = spa_generate_guid(spa); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_ishole = (ops == &vdev_hole_ops); mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); for (int t = 0; t < DTL_TYPES; t++) { space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, &vd->vdev_dtl_lock); } txg_list_create(&vd->vdev_ms_list, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); vdev_queue_init(vd); vdev_cache_init(vd); return (vd); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; char *type; uint64_t guid = 0, islog, nparity; vdev_t *vd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (EINVAL); if ((ops = vdev_getops(type)) == NULL) return (EINVAL); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (EINVAL); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_L2CACHE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (EINVAL); /* * Determine whether we're a log vdev. */ islog = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); if (islog && spa_version(spa) < SPA_VERSION_SLOGS) return (ENOTSUP); if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) return (ENOTSUP); /* * Set the nparity property for RAID-Z vdevs. */ nparity = -1ULL; if (ops == &vdev_raidz_ops) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) return (EINVAL); /* * Previous versions could only support 1 or 2 parity * device. */ if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) return (ENOTSUP); if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) return (ENOTSUP); } else { /* * We require the parity to be specified for SPAs that * support multiple parity levels. */ if (spa_version(spa) >= SPA_VERSION_RAIDZ2) return (EINVAL); /* * Otherwise, we default to 1 parity device for RAID-Z. */ nparity = 1; } } else { nparity = 0; } ASSERT(nparity != -1ULL); vd = vdev_alloc_common(spa, id, guid, ops); vd->vdev_islog = islog; vd->vdev_nparity = nparity; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) vd->vdev_path = spa_strdup(vd->vdev_path); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) vd->vdev_devid = spa_strdup(vd->vdev_devid); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &vd->vdev_physpath) == 0) vd->vdev_physpath = spa_strdup(vd->vdev_physpath); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) vd->vdev_fru = spa_strdup(vd->vdev_fru); /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * Retrieve the vdev creation time. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, &vd->vdev_crtxg); /* * If we're a top-level vdev, try to load the allocation parameters. */ if (parent && !parent->vdev_parent && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, &vd->vdev_removing); } if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { ASSERT(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_ADD || alloctype == VDEV_ALLOC_SPLIT || alloctype == VDEV_ALLOC_ROOTPOOL); vd->vdev_mg = metaslab_group_create(islog ? spa_log_class(spa) : spa_normal_class(spa), vd); } /* * If we're a leaf vdev, try to load the DTL object and other state. */ if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || alloctype == VDEV_ALLOC_ROOTPOOL)) { if (alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl_smo.smo_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, &vd->vdev_unspare); } if (alloctype == VDEV_ALLOC_ROOTPOOL) { uint64_t spare = 0; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare) == 0 && spare) spa_spare_add(vd); } (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, &vd->vdev_resilvering); /* * When importing a pool, we want to ignore the persistent fault * state, as the diagnosis made on another system may not be * valid in the current context. Local vdevs will * remain in the faulted state. */ if (spa_load_state(spa) == SPA_LOAD_OPEN) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &vd->vdev_faulted); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &vd->vdev_degraded); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &vd->vdev_removed); if (vd->vdev_faulted || vd->vdev_degraded) { char *aux; vd->vdev_label_aux = VDEV_AUX_ERR_EXCEEDED; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && strcmp(aux, "external") == 0) vd->vdev_label_aux = VDEV_AUX_EXTERNAL; } } } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { spa_t *spa = vd->vdev_spa; /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); /* * Free all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); /* * Discard allocation state. */ if (vd->vdev_mg != NULL) { vdev_metaslab_fini(vd); metaslab_group_destroy(vd->vdev_mg); } ASSERT0(vd->vdev_stat.vs_space); ASSERT0(vd->vdev_stat.vs_dspace); ASSERT0(vd->vdev_stat.vs_alloc); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); /* * Clean up vdev structure. */ vdev_queue_fini(vd); vdev_cache_fini(vd); if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); if (vd->vdev_fru) spa_strfree(vd->vdev_fru); if (vd->vdev_isspare) spa_spare_remove(vd); if (vd->vdev_isl2cache) spa_l2cache_remove(vd); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { space_map_unload(&vd->vdev_dtl[t]); space_map_destroy(&vd->vdev_dtl[t]); } mutex_exit(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_stat_lock); mutex_destroy(&vd->vdev_probe_lock); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; if (tvd->vdev_mg) ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); tvd->vdev_mg = svd->vdev_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_config_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } if (list_link_active(&svd->vdev_state_dirty_node)) { vdev_state_clean(svd); vdev_state_dirty(tvd); } tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; tvd->vdev_islog = svd->vdev_islog; svd->vdev_islog = 0; } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { if (vd == NULL) return; vd->vdev_top = tvd; for (int c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_min_asize = cvd->vdev_min_asize; mvd->vdev_max_asize = cvd->vdev_max_asize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_state = cvd->vdev_state; mvd->vdev_crtxg = cvd->vdev_crtxg; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); /* * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. * Otherwise, we could have detached an offline device, and when we * go to import the pool we'll think we have two top-level vdevs, * instead of a different version of the same top-level vdev. */ if (mvd->vdev_top == mvd) { uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; cvd->vdev_orig_guid = cvd->vdev_guid; cvd->vdev_guid += guid_delta; cvd->vdev_guid_sum += guid_delta; } cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; uint64_t m; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); /* * This vdev is not being allocated from yet or is a hole. */ if (vd->vdev_ms_shift == 0) return (0); ASSERT(!vd->vdev_ishole); /* * Compute the raidz-deflation ratio. Note, we hard-code * in 128k (1 << 17) because it is the current "typical" blocksize. * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, * or we will inconsistently account for existing bp's. */ vd->vdev_deflate_ratio = (1 << 17) / (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); ASSERT(oldc <= newc); mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (oldc != 0) { bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (m = oldc; m < newc; m++) { space_map_obj_t smo = { 0, 0, 0 }; if (txg == 0) { uint64_t object = 0; error = dmu_read(mos, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object, DMU_READ_PREFETCH); if (error) return (error); if (object != 0) { dmu_buf_t *db; error = dmu_bonus_hold(mos, object, FTAG, &db); if (error) return (error); ASSERT3U(db->db_size, >=, sizeof (smo)); bcopy(db->db_data, &smo, sizeof (smo)); ASSERT3U(smo.smo_object, ==, object); dmu_buf_rele(db, FTAG); } } vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); } if (txg == 0) spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); /* * If the vdev is being removed we don't activate * the metaslabs since we want to ensure that no new * allocations are performed on this device. */ if (oldc == 0 && !vd->vdev_removing) metaslab_group_activate(vd->vdev_mg); if (txg == 0) spa_config_exit(spa, SCL_ALLOC, FTAG); return (0); } void vdev_metaslab_fini(vdev_t *vd) { uint64_t m; uint64_t count = vd->vdev_ms_count; if (vd->vdev_ms != NULL) { metaslab_group_passivate(vd->vdev_mg); for (m = 0; m < count; m++) if (vd->vdev_ms[m] != NULL) metaslab_fini(vd->vdev_ms[m]); kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; } } typedef struct vdev_probe_stats { boolean_t vps_readable; boolean_t vps_writeable; int vps_flags; } vdev_probe_stats_t; static void vdev_probe_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; vdev_probe_stats_t *vps = zio->io_private; ASSERT(vd->vdev_probe_zio != NULL); if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_error == 0) vps->vps_readable = 1; if (zio->io_error == 0 && spa_writeable(spa)) { zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, zio->io_offset, zio->io_size, zio->io_data, ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); } else { zio_buf_free(zio->io_data, zio->io_size); } } else if (zio->io_type == ZIO_TYPE_WRITE) { if (zio->io_error == 0) vps->vps_writeable = 1; zio_buf_free(zio->io_data, zio->io_size); } else if (zio->io_type == ZIO_TYPE_NULL) { zio_t *pio; vd->vdev_cant_read |= !vps->vps_readable; vd->vdev_cant_write |= !vps->vps_writeable; if (vdev_readable(vd) && (vdev_writeable(vd) || !spa_writeable(spa))) { zio->io_error = 0; } else { ASSERT(zio->io_error != 0); zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, spa, vd, NULL, 0, 0); zio->io_error = ENXIO; } mutex_enter(&vd->vdev_probe_lock); ASSERT(vd->vdev_probe_zio == zio); vd->vdev_probe_zio = NULL; mutex_exit(&vd->vdev_probe_lock); while ((pio = zio_walk_parents(zio)) != NULL) if (!vdev_accessible(vd, pio)) pio->io_error = ENXIO; kmem_free(vps, sizeof (*vps)); } } /* * Determine whether this device is accessible by reading and writing * to several known locations: the pad regions of each vdev label * but the first (which we leave alone in case it contains a VTOC). */ zio_t * vdev_probe(vdev_t *vd, zio_t *zio) { spa_t *spa = vd->vdev_spa; vdev_probe_stats_t *vps = NULL; zio_t *pio; ASSERT(vd->vdev_ops->vdev_op_leaf); /* * Don't probe the probe. */ if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) return (NULL); /* * To prevent 'probe storms' when a device fails, we create * just one probe i/o at a time. All zios that want to probe * this vdev will become parents of the probe io. */ mutex_enter(&vd->vdev_probe_lock); if ((pio = vd->vdev_probe_zio) == NULL) { vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { /* * vdev_cant_read and vdev_cant_write can only * transition from TRUE to FALSE when we have the * SCL_ZIO lock as writer; otherwise they can only * transition from FALSE to TRUE. This ensures that * any zio looking at these values can assume that * failures persist for the life of the I/O. That's * important because when a device has intermittent * connectivity problems, we want to ensure that * they're ascribed to the device (ENXIO) and not * the zio (EIO). * * Since we hold SCL_ZIO as writer here, clear both * values so the probe can reevaluate from first * principles. */ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; } vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, vdev_probe_done, vps, vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); /* * We can't change the vdev state in this context, so we * kick off an async task to do it on our behalf. */ if (zio != NULL) { vd->vdev_probe_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_PROBE); } } if (zio != NULL) zio_add_child(zio, pio); mutex_exit(&vd->vdev_probe_lock); if (vps == NULL) { ASSERT(zio != NULL); return (NULL); } for (int l = 1; l < VDEV_LABELS; l++) { zio_nowait(zio_read_phys(pio, vd, vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); } if (zio == NULL) return (pio); zio_nowait(pio); return (NULL); } static void vdev_open_child(void *arg) { vdev_t *vd = arg; vd->vdev_open_thread = curthread; vd->vdev_open_error = vdev_open(vd); vd->vdev_open_thread = NULL; } boolean_t vdev_uses_zvols(vdev_t *vd) { if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, strlen(ZVOL_DIR)) == 0) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_uses_zvols(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } void vdev_open_children(vdev_t *vd) { taskq_t *tq; int children = vd->vdev_children; /* * in order to handle pools on top of zvols, do the opens * in a single thread so that the same thread holds the * spa_namespace_lock */ if (vdev_uses_zvols(vd)) { for (int c = 0; c < children; c++) vd->vdev_child[c]->vdev_open_error = vdev_open(vd->vdev_child[c]); return; } tq = taskq_create("vdev_open", children, minclsyspri, children, children, TASKQ_PREPOPULATE); for (int c = 0; c < children; c++) VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], TQ_SLEEP) != NULL); taskq_destroy(tq); } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int error; uint64_t osize = 0; uint64_t max_osize = 0; uint64_t asize, max_asize, psize; uint64_t ashift = 0; ASSERT(vd->vdev_open_thread == curthread || spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); vd->vdev_stat.vs_aux = VDEV_AUX_NONE; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vd->vdev_min_asize = vdev_get_min_asize(vd); /* * If this vdev is not removed, check its fault status. If it's * faulted, bail out of the open. */ if (!vd->vdev_removed && vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (ENXIO); } else if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (ENXIO); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); /* * Reset the vdev_reopening flag so that we actually close * the vdev on error. */ vd->vdev_reopening = B_FALSE; if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, NULL, ENXIO); if (error) { if (vd->vdev_removed && vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) vd->vdev_removed = B_FALSE; vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, vd->vdev_stat.vs_aux); return (error); } vd->vdev_removed = B_FALSE; /* * Recheck the faulted flag now that we have confirmed that * the vdev is accessible. If we're faulted, bail. */ if (vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || vd->vdev_label_aux == VDEV_AUX_EXTERNAL); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, vd->vdev_label_aux); return (ENXIO); } if (vd->vdev_degraded) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } else { vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); } /* * For hole or missing vdevs we just return success. */ if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) return (0); for (int c = 0; c < vd->vdev_children; c++) { if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); max_asize = max_osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = 0; asize = osize; max_asize = max_osize; } vd->vdev_psize = psize; /* * Make sure the allocatable size hasn't shrunk. */ if (asize < vd->vdev_min_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For testing purposes, a higher ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_max_asize = max_asize; vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); } else { /* * Detect if the alignment requirement has increased. * We don't want to make the pool unavailable, just * issue a warning instead. */ if (ashift > vd->vdev_top->vdev_ashift && vd->vdev_ops->vdev_op_leaf) { cmn_err(CE_WARN, "Disk, '%s', has a block alignment that is " "larger than the pool's alignment\n", vd->vdev_path); } vd->vdev_max_asize = max_asize; } /* * If all children are healthy and the asize has increased, * then we've experienced dynamic LUN growth. If automatic * expansion is enabled then use the additional space. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && (vd->vdev_expanding || spa->spa_autoexpand)) vd->vdev_asize = asize; vdev_set_min_asize(vd); /* * Ensure we can issue some IO before declaring the * vdev open for business. */ if (vd->vdev_ops->vdev_op_leaf && (error = zio_wait(vdev_probe(vd, NULL))) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); return (error); } /* * If a leaf vdev has a DTL, and seems healthy, then kick off a * resilver. But don't do this if we are doing a reopen for a scrub, * since this would just restart the scrub we are already doing. */ if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && vdev_resilver_needed(vd, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); return (0); } /* * Called once the vdevs are all opened, this routine validates the label * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device. * * If 'strict' is false ignore the spa guid check. This is necessary because * if the machine crashed during a re-guid the new guid might have been written * to all of the vdev labels, but not the cached config. The strict check * will be performed when the pool is opened again using the mos config. * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int vdev_validate(vdev_t *vd, boolean_t strict) { spa_t *spa = vd->vdev_spa; nvlist_t *label; uint64_t guid = 0, top_guid; uint64_t state; for (int c = 0; c < vd->vdev_children; c++) if (vdev_validate(vd->vdev_child[c], strict) != 0) return (EBADF); /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { uint64_t aux_guid = 0; nvlist_t *nvl; uint64_t txg = spa_last_synced_txg(spa) != 0 ? spa_last_synced_txg(spa) : -1ULL; if ((label = vdev_label_read_config(vd, txg)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (0); } /* * Determine if this vdev has been split off into another * pool. If so, then refuse to open it. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, &aux_guid) == 0 && aux_guid == spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_SPLIT_POOL); nvlist_free(label); return (0); } if (strict && (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != spa_guid(spa))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, &aux_guid) != 0) aux_guid = 0; /* * If this vdev just became a top-level vdev because its * sibling was detached, it will have adopted the parent's * vdev guid -- but the label may or may not be on disk yet. * Fortunately, either version of the label will have the * same top guid, so if we're a top-level vdev, we can * safely compare to that instead. * * If we split this vdev off instead, then we also check the * original pool's guid. We don't want to consider the vdev * corrupt if it is partway through a split operation. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } nvlist_free(label); /* * If this is a verbatim import, no need to check the * state of the pool. */ if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && spa_load_state(spa) == SPA_LOAD_OPEN && state != POOL_STATE_ACTIVE) return (EBADF); /* * If we were able to open and validate a vdev that was * previously marked permanently unavailable, clear that state * now. */ if (vd->vdev_not_present) vd->vdev_not_present = 0; } return (0); } /* * Close a virtual device. */ void vdev_close(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *pvd = vd->vdev_parent; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* * If our parent is reopening, then we are as well, unless we are * going offline. */ if (pvd != NULL && pvd->vdev_reopening) vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); vd->vdev_ops->vdev_op_close(vd); vdev_cache_purge(vd); /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_hold(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); if (spa->spa_state == POOL_STATE_UNINITIALIZED) return; for (int c = 0; c < vd->vdev_children; c++) vdev_hold(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_hold(vd); } void vdev_rele(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_is_root(spa)); for (int c = 0; c < vd->vdev_children; c++) vdev_rele(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_rele(vd); } /* * Reopen all interior vdevs and any unopened leaves. We don't actually * reopen leaf vdevs which had previously been opened as they might deadlock * on the spa_config_lock. Instead we only obtain the leaf's physical size. * If the leaf has never been opened then open it, as usual. */ void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); /* set the reopening flag unless we're taking the vdev offline */ vd->vdev_reopening = !vd->vdev_offline; vdev_close(vd); (void) vdev_open(vd); /* * Call vdev_validate() here to make sure we have the same device. * Otherwise, a device with an invalid label could be successfully * opened in response to vdev_reopen(). */ if (vd->vdev_aux) { (void) vdev_validate_aux(vd); if (vdev_readable(vd) && vdev_writeable(vd) && vd->vdev_aux == &spa->spa_l2cache && !l2arc_vdev_present(vd)) l2arc_add_vdev(spa, vd); } else { (void) vdev_validate(vd, B_TRUE); } /* * Reassess parent vdev's health. */ vdev_propagate_state(vd); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : ENXIO); } /* * Recursively initialize all labels. */ if ((error = vdev_label_init(vd, txg, isreplacing ? VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { vdev_close(vd); return (error); } return (0); } void vdev_metaslab_set_size(vdev_t *vd) { /* * Aim for roughly 200 metaslabs per vdev. */ vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); ASSERT(!vd->vdev_ishole); ASSERT(ISP2(flags)); ASSERT(spa_writeable(vd->vdev_spa)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } /* * DTLs. * * A vdev's DTL (dirty time log) is the set of transaction groups for which * the vdev has less than perfect replication. There are four kinds of DTL: * * DTL_MISSING: txgs for which the vdev has no valid copies of the data * * DTL_PARTIAL: txgs for which data is available, but not fully replicated * * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of * txgs that was scrubbed. * * DTL_OUTAGE: txgs which cannot currently be read, whether due to * persistent errors or just some device being offline. * Unlike the other three, the DTL_OUTAGE map is not generally * maintained; it's only computed when needed, typically to * determine whether a device can be detached. * * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device * either has the data or it doesn't. * * For interior vdevs such as mirror and RAID-Z the picture is more complex. * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because * if any child is less than fully replicated, then so is its parent. * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, * comprising only those txgs which appear in 'maxfaults' or more children; * those are the txgs we don't have enough replication to read. For example, * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); * thus, its DTL_MISSING consists of the set of txgs that appear in more than * two child DTL_MISSING maps. * * It should be clear from the above that to compute the DTLs and outage maps * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. * Therefore, that is all we keep on disk. When loading the pool, or after * a configuration change, we generate all other DTLs from first principles. */ void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { space_map_t *sm = &vd->vdev_dtl[t]; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); ASSERT(spa_writeable(vd->vdev_spa)); mutex_enter(sm->sm_lock); if (!space_map_contains(sm, txg, size)) space_map_add(sm, txg, size); mutex_exit(sm->sm_lock); } boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { space_map_t *sm = &vd->vdev_dtl[t]; boolean_t dirty = B_FALSE; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); mutex_enter(sm->sm_lock); if (sm->sm_space != 0) dirty = space_map_contains(sm, txg, size); mutex_exit(sm->sm_lock); return (dirty); } boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) { space_map_t *sm = &vd->vdev_dtl[t]; boolean_t empty; mutex_enter(sm->sm_lock); empty = (sm->sm_space == 0); mutex_exit(sm->sm_lock); return (empty); } /* * Reassess DTLs after a config change or scrub completion. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) { spa_t *spa = vd->vdev_spa; avl_tree_t reftree; int minref; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); for (int c = 0; c < vd->vdev_children; c++) vdev_dtl_reassess(vd->vdev_child[c], txg, scrub_txg, scrub_done); if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) return; if (vd->vdev_ops->vdev_op_leaf) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; mutex_enter(&vd->vdev_dtl_lock); if (scrub_txg != 0 && (spa->spa_scrub_started || (scn && scn->scn_phys.scn_errors == 0))) { /* * We completed a scrub up to scrub_txg. If we * did it without rebooting, then the scrub dtl * will be valid, so excise the old region and * fold in the scrub dtl. Otherwise, leave the * dtl as-is if there was an error. * * There's little trick here: to excise the beginning * of the DTL_MISSING map, we put it into a reference * tree and then add a segment with refcnt -1 that * covers the range [0, scrub_txg). This means * that each txg in that range has refcnt -1 or 0. * We then add DTL_SCRUB with a refcnt of 2, so that * entries in the range [0, scrub_txg) will have a * positive refcnt -- either 1 or 2. We then convert * the reference tree into the new DTL_MISSING map. */ space_map_ref_create(&reftree); space_map_ref_add_map(&reftree, &vd->vdev_dtl[DTL_MISSING], 1); space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); space_map_ref_add_map(&reftree, &vd->vdev_dtl[DTL_SCRUB], 2); space_map_ref_generate_map(&reftree, &vd->vdev_dtl[DTL_MISSING], 1); space_map_ref_destroy(&reftree); } space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); space_map_walk(&vd->vdev_dtl[DTL_MISSING], space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); if (scrub_done) space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); if (!vdev_readable(vd)) space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); else space_map_walk(&vd->vdev_dtl[DTL_MISSING], space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { /* account for child's outage in parent's missing map */ int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; if (t == DTL_SCRUB) continue; /* leaf vdevs only */ if (t == DTL_PARTIAL) minref = 1; /* i.e. non-zero */ else if (vd->vdev_nparity != 0) minref = vd->vdev_nparity + 1; /* RAID-Z */ else minref = vd->vdev_children; /* any kind of mirror */ space_map_ref_create(&reftree); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; mutex_enter(&cvd->vdev_dtl_lock); space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); mutex_exit(&cvd->vdev_dtl_lock); } space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); space_map_ref_destroy(&reftree); } mutex_exit(&vd->vdev_dtl_lock); } static int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl_smo; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *db; int error; ASSERT(vd->vdev_children == 0); if (smo->smo_object == 0) return (0); ASSERT(!vd->vdev_ishole); if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) return (error); ASSERT3U(db->db_size, >=, sizeof (*smo)); bcopy(db->db_data, smo, sizeof (*smo)); dmu_buf_rele(db, FTAG); mutex_enter(&vd->vdev_dtl_lock); error = space_map_load(&vd->vdev_dtl[DTL_MISSING], NULL, SM_ALLOC, smo, mos); mutex_exit(&vd->vdev_dtl_lock); return (error); } void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl_smo; space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; objset_t *mos = spa->spa_meta_objset; space_map_t smsync; kmutex_t smlock; dmu_buf_t *db; dmu_tx_t *tx; ASSERT(!vd->vdev_ishole); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached) { if (smo->smo_object != 0) { int err = dmu_object_free(mos, smo->smo_object, tx); ASSERT0(err); smo->smo_object = 0; } dmu_tx_commit(tx); return; } if (smo->smo_object == 0) { ASSERT(smo->smo_objsize == 0); ASSERT(smo->smo_alloc == 0); smo->smo_object = dmu_object_alloc(mos, DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); ASSERT(smo->smo_object != 0); vdev_config_dirty(vd->vdev_top); } mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, &smlock); mutex_enter(&smlock); mutex_enter(&vd->vdev_dtl_lock); space_map_walk(sm, space_map_add, &smsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(smo, mos, tx); space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); + space_map_vacate(&smsync, NULL, NULL); space_map_destroy(&smsync); mutex_exit(&smlock); mutex_destroy(&smlock); VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, sizeof (*smo)); bcopy(smo, db->db_data, sizeof (*smo)); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } /* * Determine whether the specified vdev can be offlined/detached/removed * without losing data. */ boolean_t vdev_dtl_required(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint8_t cant_read = vd->vdev_cant_read; boolean_t required; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == spa->spa_root_vdev || vd == tvd) return (B_TRUE); /* * Temporarily mark the device as unreadable, and then determine * whether this results in any DTL outages in the top-level vdev. * If not, we can safely offline/detach/remove the device. */ vd->vdev_cant_read = B_TRUE; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); required = !vdev_dtl_empty(tvd, DTL_OUTAGE); vd->vdev_cant_read = cant_read; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); if (!required && zio_injection_enabled) required = !!zio_handle_device_injection(vd, NULL, ECHILD); return (required); } /* * Determine if resilver is needed, and if so the txg range. */ boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) { boolean_t needed = B_FALSE; uint64_t thismin = UINT64_MAX; uint64_t thismax = 0; if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && vdev_writeable(vd)) { space_seg_t *ss; ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); thismin = ss->ss_start - 1; ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); thismax = ss->ss_end; needed = B_TRUE; } mutex_exit(&vd->vdev_dtl_lock); } else { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; uint64_t cmin, cmax; if (vdev_resilver_needed(cvd, &cmin, &cmax)) { thismin = MIN(thismin, cmin); thismax = MAX(thismax, cmax); needed = B_TRUE; } } } if (needed && minp) { *minp = thismin; *maxp = thismax; } return (needed); } void vdev_load(vdev_t *vd) { /* * Recursively load all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_load(vd->vdev_child[c]); /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && !vd->vdev_ishole && (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || vdev_metaslab_init(vd, 0) != 0)) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } /* * The special vdev case is used for hot spares and l2cache devices. Its * sole purpose it to set the vdev state for the associated vdev. To do this, * we make sure that we can open the underlying device, then try to read the * label, and make sure that the label is sane and that it hasn't been * repurposed to another pool. */ int vdev_validate_aux(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if (!vdev_readable(vd)) return (0); if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || !SPA_VERSION_IS_SUPPORTED(version) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } void vdev_remove(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); if (vd->vdev_dtl_smo.smo_object) { ASSERT0(vd->vdev_dtl_smo.smo_alloc); (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); vd->vdev_dtl_smo.smo_object = 0; } if (vd->vdev_ms != NULL) { for (int m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; if (msp == NULL || msp->ms_smo.smo_object == 0) continue; ASSERT0(msp->ms_smo.smo_alloc); (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); msp->ms_smo.smo_object = 0; } } if (vd->vdev_ms_array) { (void) dmu_object_free(mos, vd->vdev_ms_array, tx); vd->vdev_ms_array = 0; vd->vdev_ms_shift = 0; } dmu_tx_commit(tx); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); ASSERT(!vd->vdev_ishole); while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) metaslab_sync_done(msp, txg); if (reassess) metaslab_sync_reassess(vd->vdev_mg); } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; dmu_tx_t *tx; ASSERT(!vd->vdev_ishole); if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { ASSERT(vd == vd->vdev_top); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); dmu_tx_commit(tx); } /* * Remove the metadata associated with this vdev once it's empty. */ if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) vdev_remove(vd, txg); while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } /* * Mark the given vdev faulted. A faulted vdev behaves as if the device could * not be opened, and no I/O is attempted. */ int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd, *tvd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; /* * We don't directly use the aux state here, but if we do a * vdev_reopen(), we need this value to be present to remember why we * were faulted. */ vd->vdev_label_aux = aux; /* * Faulted state takes precedence over degraded. */ vd->vdev_delayed_close = B_FALSE; vd->vdev_faulted = 1ULL; vd->vdev_degraded = 0ULL; vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); /* * If this device has the only valid copy of the data, then * back off and simply mark the vdev as degraded instead. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { vd->vdev_degraded = 1ULL; vd->vdev_faulted = 0ULL; /* * If we reopen the device and it's not dead, only then do we * mark it degraded. */ vdev_reopen(tvd); if (vdev_readable(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); } return (spa_vdev_state_exit(spa, vd, 0)); } /* * Mark the given vdev degraded. A degraded vdev is purely an indication to the * user that something is wrong. The vdev continues to operate as normal as far * as I/O is concerned. */ int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) { vdev_t *vd; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * If the vdev is already faulted, then don't do anything. */ if (vd->vdev_faulted || vd->vdev_degraded) return (spa_vdev_state_exit(spa, NULL, 0)); vd->vdev_degraded = 1ULL; if (!vdev_is_dead(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Online the given vdev. If 'unspare' is set, it implies two things. First, * any attached spare device should be detached when the device finishes * resilvering. Second, the online should be treated like a 'test' online case, * so no FMA events are generated if the device fails to open. */ int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) { vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; spa_vdev_state_enter(spa, SCL_NONE); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); /* XXX - L2ARC 1.0 does not support expansion */ if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); } vdev_reopen(tvd); vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; if (!vd->vdev_aux) { for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) pvd->vdev_expanding = B_FALSE; } if (newstate) *newstate = vd->vdev_state; if ((flags & ZFS_ONLINE_UNSPARE) && !vdev_is_dead(vd) && vd->vdev_parent && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { /* XXX - L2ARC 1.0 does not support expansion */ if (vd->vdev_aux) return (spa_vdev_state_exit(spa, vd, ENOTSUP)); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } return (spa_vdev_state_exit(spa, vd, 0)); } static int vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) { vdev_t *vd, *tvd; int error = 0; uint64_t generation; metaslab_group_t *mg; top: spa_vdev_state_enter(spa, SCL_ALLOC); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); tvd = vd->vdev_top; mg = tvd->vdev_mg; generation = spa->spa_config_generation + 1; /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device has the only valid copy of some data, * don't allow it to be offlined. Log devices are always * expendable. */ if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) return (spa_vdev_state_exit(spa, NULL, EBUSY)); /* * If the top-level is a slog and it has had allocations * then proceed. We check that the vdev's metaslab group * is not NULL since it's possible that we may have just * added this vdev but not yet initialized its metaslabs. */ if (tvd->vdev_islog && mg != NULL) { /* * Prevent any future allocations. */ metaslab_group_passivate(mg); (void) spa_vdev_state_exit(spa, vd, 0); error = spa_offline_log(spa); spa_vdev_state_enter(spa, SCL_ALLOC); /* * Check to see if the config has changed. */ if (error || generation != spa->spa_config_generation) { metaslab_group_activate(mg); if (error) return (spa_vdev_state_exit(spa, vd, error)); (void) spa_vdev_state_exit(spa, vd, 0); goto top; } ASSERT0(tvd->vdev_stat.vs_alloc); } /* * Offline this device and reopen its top-level vdev. * If the top-level vdev is a log device then just offline * it. Otherwise, if this action results in the top-level * vdev becoming unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(tvd); if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_is_dead(tvd)) { vd->vdev_offline = B_FALSE; vdev_reopen(tvd); return (spa_vdev_state_exit(spa, NULL, EBUSY)); } /* * Add the device back into the metaslab rotor so that * once we online the device it's open for business. */ if (tvd->vdev_islog && mg != NULL) metaslab_group_activate(mg); } vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) { int error; mutex_enter(&spa->spa_vdev_top_lock); error = vdev_offline_locked(spa, guid, flags); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == NULL) vd = rvd; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; for (int c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); /* * If we're in the FAULTED state or have experienced failed I/O, then * clear the persistent state and attempt to reopen the device. We * also mark the vdev config dirty, so that the new faulted state is * written out to disk. */ if (vd->vdev_faulted || vd->vdev_degraded || !vdev_readable(vd) || !vdev_writeable(vd)) { /* * When reopening in reponse to a clear event, it may be due to * a fmadm repair request. In this case, if the device is * still broken, we want to still post the ereport again. */ vd->vdev_forcefault = B_TRUE; vd->vdev_faulted = vd->vdev_degraded = 0ULL; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vdev_reopen(vd == rvd ? rvd : vd->vdev_top); vd->vdev_forcefault = B_FALSE; if (vd != rvd && vdev_writeable(vd->vdev_top)) vdev_state_dirty(vd->vdev_top); if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) spa_async_request(spa, SPA_ASYNC_RESILVER); spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); } /* * When clearing a FMA-diagnosed fault, we always want to * unspare the device, as we assume that the original spare was * done in response to the FMA fault. */ if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; } boolean_t vdev_is_dead(vdev_t *vd) { /* * Holes and missing devices are always considered "dead". * This simplifies the code since we don't have to check for * these types of devices in the various code paths. * Instead we rely on the fact that we skip over dead devices * before issuing I/O to them. */ return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops); } boolean_t vdev_readable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_read); } boolean_t vdev_writeable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_write); } boolean_t vdev_allocatable(vdev_t *vd) { uint64_t state = vd->vdev_state; /* * We currently allow allocations from vdevs which may be in the * process of reopening (i.e. VDEV_STATE_CLOSED). If the device * fails to reopen then we'll catch it later when we're holding * the proper locks. Note that we have to get the vdev state * in a local variable because although it changes atomically, * we're asking two separate questions about it. */ return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && !vd->vdev_cant_write && !vd->vdev_ishole); } boolean_t vdev_accessible(vdev_t *vd, zio_t *zio) { ASSERT(zio->io_vd == vd); if (vdev_is_dead(vd) || vd->vdev_remove_wanted) return (B_FALSE); if (zio->io_type == ZIO_TYPE_READ) return (!vd->vdev_cant_read); if (zio->io_type == ZIO_TYPE_WRITE) return (!vd->vdev_cant_write); return (B_TRUE); } /* * Get statistics for the given vdev. */ void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { vdev_t *rvd = vd->vdev_spa->spa_root_vdev; mutex_enter(&vd->vdev_stat_lock); bcopy(&vd->vdev_stat, vs, sizeof (*vs)); vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_min_asize(vd); if (vd->vdev_ops->vdev_op_leaf) vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; mutex_exit(&vd->vdev_stat_lock); /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (vd == rvd) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; mutex_enter(&vd->vdev_stat_lock); for (int t = 0; t < ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } cvs->vs_scan_removing = cvd->vdev_removing; mutex_exit(&vd->vdev_stat_lock); } } } void vdev_clear_stats(vdev_t *vd) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space = 0; vd->vdev_stat.vs_dspace = 0; vd->vdev_stat.vs_alloc = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_scan_stat_init(vdev_t *vd) { vdev_stat_t *vs = &vd->vdev_stat; for (int c = 0; c < vd->vdev_children; c++) vdev_scan_stat_init(vd->vdev_child[c]); mutex_enter(&vd->vdev_stat_lock); vs->vs_scan_processed = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_stat_update(zio_t *zio, uint64_t psize) { spa_t *spa = zio->io_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; vdev_t *pvd; uint64_t txg = zio->io_txg; vdev_stat_t *vs = &vd->vdev_stat; zio_type_t type = zio->io_type; int flags = zio->io_flags; /* * If this i/o is a gang leader, it didn't do any actual work. */ if (zio->io_gang_tree) return; if (zio->io_error == 0) { /* * If this is a root i/o, don't count it -- we've already * counted the top-level vdevs, and vdev_get_stats() will * aggregate them when asked. This reduces contention on * the root vdev_stat_lock and implicitly handles blocks * that compress away to holes, for which there is no i/o. * (Holes never create vdev children, so all the counters * remain zero, which is what we want.) * * Note: this only applies to successful i/o (io_error == 0) * because unlike i/o counts, errors are not additive. * When reading a ditto block, for example, failure of * one top-level vdev does not imply a root-level error. */ if (vd == rvd) return; ASSERT(vd == zio->io_vd); if (flags & ZIO_FLAG_IO_BYPASS) return; mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_IO_REPAIR) { if (flags & ZIO_FLAG_SCAN_THREAD) { dsl_scan_phys_t *scn_phys = &spa->spa_dsl_pool->dp_scan->scn_phys; uint64_t *processed = &scn_phys->scn_processed; /* XXX cleanup? */ if (vd->vdev_ops->vdev_op_leaf) atomic_add_64(processed, psize); vs->vs_scan_processed += psize; } if (flags & ZIO_FLAG_SELF_HEAL) vs->vs_self_healed += psize; } vs->vs_ops[type]++; vs->vs_bytes[type] += psize; mutex_exit(&vd->vdev_stat_lock); return; } if (flags & ZIO_FLAG_SPECULATIVE) return; /* * If this is an I/O error that is going to be retried, then ignore the * error. Otherwise, the user may interpret B_FAILFAST I/O errors as * hard errors, when in reality they can happen for any number of * innocuous reasons (bus resets, MPxIO link failure, etc). */ if (zio->io_error == EIO && !(zio->io_flags & ZIO_FLAG_IO_RETRY)) return; /* * Intent logs writes won't propagate their error to the root * I/O so don't mark these types of failures as pool-level * errors. */ if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) return; mutex_enter(&vd->vdev_stat_lock); if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { if (zio->io_error == ECKSUM) vs->vs_checksum_errors++; else vs->vs_read_errors++; } if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) vs->vs_write_errors++; mutex_exit(&vd->vdev_stat_lock); if (type == ZIO_TYPE_WRITE && txg != 0 && (!(flags & ZIO_FLAG_IO_REPAIR) || (flags & ZIO_FLAG_SCAN_THREAD) || spa->spa_claiming)) { /* * This is either a normal write (not a repair), or it's * a repair induced by the scrub thread, or it's a repair * made by zil_claim() during spa_load() in the first txg. * In the normal case, we commit the DTL change in the same * txg as the block was born. In the scrub-induced repair * case, we know that scrubs run in first-pass syncing context, * so we commit the DTL change in spa_syncing_txg(spa). * In the zil_claim() case, we commit in spa_first_txg(spa). * * We currently do not make DTL entries for failed spontaneous * self-healing writes triggered by normal (non-scrubbing) * reads, because we have no transactional context in which to * do so -- and it's not clear that it'd be desirable anyway. */ if (vd->vdev_ops->vdev_op_leaf) { uint64_t commit_txg = txg; if (flags & ZIO_FLAG_SCAN_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); ASSERT(spa_sync_pass(spa) == 1); vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); commit_txg = spa_syncing_txg(spa); } else if (spa->spa_claiming) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); commit_txg = spa_first_txg(spa); } ASSERT(commit_txg >= spa_syncing_txg(spa)); if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) return; for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); } if (vd != rvd) vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); } } /* * Update the in-core space usage stats for this vdev, its metaslab class, * and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, int64_t space_delta) { int64_t dspace_delta = space_delta; spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; metaslab_group_t *mg = vd->vdev_mg; metaslab_class_t *mc = mg ? mg->mg_class : NULL; ASSERT(vd == vd->vdev_top); /* * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion * factor. We must calculate this here and not at the root vdev * because the root vdev's psize-to-asize is simply the max of its * childrens', thus not accurate enough for us. */ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); if (mc == spa_normal_class(spa)) { mutex_enter(&rvd->vdev_stat_lock); rvd->vdev_stat.vs_alloc += alloc_delta; rvd->vdev_stat.vs_space += space_delta; rvd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&rvd->vdev_stat_lock); } if (mc != NULL) { ASSERT(rvd == vd->vdev_parent); ASSERT(vd->vdev_ms_count != 0); metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, dspace_delta); } } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_writeable(spa)); /* * If this is an aux vdev (as with l2cache and spare devices), then we * update the vdev config manually and set the sync flag. */ if (vd->vdev_aux != NULL) { spa_aux_vdev_t *sav = vd->vdev_aux; nvlist_t **aux; uint_t naux; for (c = 0; c < sav->sav_count; c++) { if (sav->sav_vdevs[c] == vd) break; } if (c == sav->sav_count) { /* * We're being removed. There's nothing more to do. */ ASSERT(sav->sav_sync == B_TRUE); return; } sav->sav_sync = B_TRUE; if (nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); } ASSERT(c < naux); /* * Setting the nvlist in the middle if the array is a little * sketchy, but it will work. */ nvlist_free(aux[c]); aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); return; } /* * The dirty list is protected by the SCL_CONFIG lock. The caller * must either hold SCL_CONFIG as writer, or must be the sync thread * (which holds SCL_CONFIG as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_config_dirty_node) && !vd->vdev_ishole) list_insert_head(&spa->spa_config_dirty_list, vd); } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); ASSERT(list_link_active(&vd->vdev_config_dirty_node)); list_remove(&spa->spa_config_dirty_list, vd); } /* * Mark a top-level vdev's state as dirty, so that the next pass of * spa_sync() can convert this into vdev_config_dirty(). We distinguish * the state changes from larger config changes because they require * much less locking, and are often needed for administrative actions. */ void vdev_state_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_writeable(spa)); ASSERT(vd == vd->vdev_top); /* * The state list is protected by the SCL_STATE lock. The caller * must either hold SCL_STATE as writer, or must be the sync thread * (which holds SCL_STATE as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) list_insert_head(&spa->spa_state_dirty_list, vd); } void vdev_state_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); ASSERT(list_link_active(&vd->vdev_state_dirty_node)); list_remove(&spa->spa_state_dirty_list, vd); } /* * Propagate vdev state up from children to parent. */ void vdev_propagate_state(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; vdev_t *child; if (vd->vdev_children > 0) { for (int c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; /* * Don't factor holes into the decision. */ if (child->vdev_ishole) continue; if (!vdev_readable(child) || (!vdev_writeable(child) && spa_writeable(spa))) { /* * Root special: if there is a top-level log * device, treat the root vdev as if it were * degraded. */ if (child->vdev_islog && vd == rvd) degraded++; else faulted++; } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { degraded++; } if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a top-level vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } if (vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; spa_t *spa = vd->vdev_spa; if (state == vd->vdev_state) { vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; /* * If we are setting the vdev state to anything but an open state, then * always close the underlying device unless the device has requested * a delayed close (i.e. we're about to remove or fault the device). * Otherwise, we keep accessible but invalid devices open forever. * We don't call vdev_close() itself, because that implies some extra * checks (offline, etc) that we don't want here. This is limited to * leaf devices, because otherwise closing the device will affect other * children. */ if (!vd->vdev_delayed_close && vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_close(vd); /* * If we have brought this vdev back into service, we need * to notify fmd so that it can gracefully repair any outstanding * cases due to a missing device. We do this in all cases, even those * that probably don't correlate to a repaired fault. This is sure to * catch all cases, and we let the zfs-retire agent sort it out. If * this is a transient state it's OK, as the retire agent will * double-check the state of the vdev before repairing it. */ if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && vd->vdev_prevstate != state) zfs_post_state_change(spa, vd); if (vd->vdev_removed && state == VDEV_STATE_CANT_OPEN && (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { /* * If the previous state is set to VDEV_STATE_REMOVED, then this * device was previously marked removed and someone attempted to * reopen it. If this failed due to a nonexistent device, then * keep the device in the REMOVED state. We also let this be if * it is one of our special test online cases, which is only * attempting to online the device and shouldn't generate an FMA * fault. */ vd->vdev_state = VDEV_STATE_REMOVED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } else if (state == VDEV_STATE_REMOVED) { vd->vdev_removed = B_TRUE; } else if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import or recovery, we * mark it as "not available", which signifies that it was * never there to begin with. Failure to open such a device * is not considered an error. */ if ((spa_load_state(spa) == SPA_LOAD_IMPORT || spa_load_state(spa) == SPA_LOAD_RECOVER) && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. * * If the 'checkremove' flag is set, then this is an attempt to * online the device in response to an insertion event. If we * hit this case, then we have detected an insertion event for a * faulted or offline device that wasn't in the removed state. * In this scenario, we don't post an ereport because we are * about to replace the device, or attempt an online with * vdev_forcefault, which will generate the fault for us. */ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && !vd->vdev_not_present && !vd->vdev_checkremove && vd != spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } zfs_ereport_post(class, spa, vd, NULL, save_state, 0); } /* Erase any notion of persistent removed state */ vd->vdev_removed = B_FALSE; } else { vd->vdev_removed = B_FALSE; } if (!isopen && vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Check the vdev configuration to ensure that it's capable of supporting * a root pool. Currently, we do not support RAID-Z or partial configuration. * In addition, only a single top-level vdev is allowed and none of the leaves * can be wholedisks. */ boolean_t vdev_is_bootable(vdev_t *vd) { if (!vd->vdev_ops->vdev_op_leaf) { char *vdev_type = vd->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && vd->vdev_children > 1) { return (B_FALSE); } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { return (B_FALSE); } } else if (vd->vdev_wholedisk == 1) { return (B_FALSE); } for (int c = 0; c < vd->vdev_children; c++) { if (!vdev_is_bootable(vd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } /* * Load the state from the original vdev tree (ovd) which * we've retrieved from the MOS config object. If the original * vdev was offline or faulted then we transfer that state to the * device in the current vdev tree (nvd). */ void vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) { spa_t *spa = nvd->vdev_spa; ASSERT(nvd->vdev_top->vdev_islog); ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); for (int c = 0; c < nvd->vdev_children; c++) vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); if (nvd->vdev_ops->vdev_op_leaf) { /* * Restore the persistent vdev state */ nvd->vdev_offline = ovd->vdev_offline; nvd->vdev_faulted = ovd->vdev_faulted; nvd->vdev_degraded = ovd->vdev_degraded; nvd->vdev_removed = ovd->vdev_removed; } } /* * Determine if a log device has valid content. If the vdev was * removed or faulted in the MOS config then we know that * the content on the log device has already been written to the pool. */ boolean_t vdev_log_state_valid(vdev_t *vd) { if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && !vd->vdev_removed) return (B_TRUE); for (int c = 0; c < vd->vdev_children; c++) if (vdev_log_state_valid(vd->vdev_child[c])) return (B_TRUE); return (B_FALSE); } /* * Expand a vdev if possible. */ void vdev_expand(vdev_t *vd, uint64_t txg) { ASSERT(vd->vdev_top == vd); ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { VERIFY(vdev_metaslab_init(vd, txg) == 0); vdev_config_dirty(vd); } } /* * Split a vdev. */ void vdev_split(vdev_t *vd) { vdev_t *cvd, *pvd = vd->vdev_parent; vdev_remove_child(pvd, vd); vdev_compact_children(pvd); cvd = pvd->vdev_child[0]; if (pvd->vdev_children == 1) { vdev_remove_parent(cvd); cvd->vdev_splitting = B_TRUE; } vdev_propagate_state(cvd); } void vdev_deadman(vdev_t *vd) { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; vdev_deadman(cvd); } if (vd->vdev_ops->vdev_op_leaf) { vdev_queue_t *vq = &vd->vdev_queue; mutex_enter(&vq->vq_lock); if (avl_numnodes(&vq->vq_pending_tree) > 0) { spa_t *spa = vd->vdev_spa; zio_t *fio; uint64_t delta; /* * Look at the head of all the pending queues, * if any I/O has been outstanding for longer than * the spa_deadman_synctime we panic the system. */ fio = avl_first(&vq->vq_pending_tree); delta = ddi_get_lbolt64() - fio->io_timestamp; if (delta > NSEC_TO_TICK(spa_deadman_synctime(spa))) { zfs_dbgmsg("SLOW IO: zio timestamp %llu, " "delta %llu, last io %llu", fio->io_timestamp, delta, vq->vq_io_complete_ts); fm_panic("I/O to pool '%s' appears to be " "hung.", spa_name(spa)); } } mutex_exit(&vq->vq_lock); } }