Index: head/lib/libc/stdlib/malloc.c =================================================================== --- head/lib/libc/stdlib/malloc.c (revision 204492) +++ head/lib/libc/stdlib/malloc.c (revision 204493) @@ -1,6224 +1,6234 @@ /*- * Copyright (C) 2006-2010 Jason Evans . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************* * * This allocator implementation is designed to provide scalable performance * for multi-threaded programs on multi-processor systems. The following * features are included for this purpose: * * + Multiple arenas are used if there are multiple CPUs, which reduces lock * contention and cache sloshing. * * + Thread-specific caching is used if there are multiple threads, which * reduces the amount of locking. * * + Cache line sharing between arenas is avoided for internal data * structures. * * + Memory is managed in chunks and runs (chunks can be split into runs), * rather than as individual pages. This provides a constant-time * mechanism for associating allocations with particular arenas. * * Allocation requests are rounded up to the nearest size class, and no record * of the original request size is maintained. Allocations are broken into * categories according to size class. Assuming runtime defaults, 4 KiB pages * and a 16 byte quantum on a 32-bit system, the size classes in each category * are as follows: * * |========================================| * | Category | Subcategory | Size | * |========================================| * | Small | Tiny | 2 | * | | | 4 | * | | | 8 | * | |------------------+----------| * | | Quantum-spaced | 16 | * | | | 32 | * | | | 48 | * | | | ... | * | | | 96 | * | | | 112 | * | | | 128 | * | |------------------+----------| * | | Cacheline-spaced | 192 | * | | | 256 | * | | | 320 | * | | | 384 | * | | | 448 | * | | | 512 | * | |------------------+----------| * | | Sub-page | 760 | * | | | 1024 | * | | | 1280 | * | | | ... | * | | | 3328 | * | | | 3584 | * | | | 3840 | * |========================================| * | Medium | 4 KiB | * | | 6 KiB | * | | 8 KiB | * | | ... | * | | 28 KiB | * | | 30 KiB | * | | 32 KiB | * |========================================| * | Large | 36 KiB | * | | 40 KiB | * | | 44 KiB | * | | ... | * | | 1012 KiB | * | | 1016 KiB | * | | 1020 KiB | * |========================================| * | Huge | 1 MiB | * | | 2 MiB | * | | 3 MiB | * | | ... | * |========================================| * * Different mechanisms are used accoding to category: * * Small/medium : Each size class is segregated into its own set of runs. * Each run maintains a bitmap of which regions are * free/allocated. * * Large : Each allocation is backed by a dedicated run. Metadata are stored * in the associated arena chunk header maps. * * Huge : Each allocation is backed by a dedicated contiguous set of chunks. * Metadata are stored in a separate red-black tree. * ******************************************************************************* */ /* * MALLOC_PRODUCTION disables assertions and statistics gathering. It also * defaults the A and J runtime options to off. These settings are appropriate * for production systems. */ /* #define MALLOC_PRODUCTION */ #ifndef MALLOC_PRODUCTION /* * MALLOC_DEBUG enables assertions and other sanity checks, and disables * inline functions. */ # define MALLOC_DEBUG /* MALLOC_STATS enables statistics calculation. */ # define MALLOC_STATS #endif /* * MALLOC_TINY enables support for tiny objects, which are smaller than one * quantum. */ #define MALLOC_TINY /* * MALLOC_TCACHE enables a thread-specific caching layer for small and medium * objects. This makes it possible to allocate/deallocate objects without any * locking when the cache is in the steady state. */ #define MALLOC_TCACHE /* * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage * segment (DSS). In an ideal world, this functionality would be completely * unnecessary, but we are burdened by history and the lack of resource limits * for anonymous mapped memory. */ #define MALLOC_DSS #include __FBSDID("$FreeBSD$"); #include "libc_private.h" #ifdef MALLOC_DEBUG # define _LOCK_DEBUG #endif #include "spinlock.h" #include "namespace.h" #include #include #include #include #include #include #include /* Must come after several other sys/ includes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "un-namespace.h" +#define RB_COMPACT #include "rb.h" #if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS)) #include "qr.h" #include "ql.h" #endif #ifdef MALLOC_DEBUG /* Disable inlining to make debugging easier. */ # define inline #endif /* Size of stack-allocated buffer passed to strerror_r(). */ #define STRERROR_BUF 64 /* * Minimum alignment of allocations is 2^LG_QUANTUM bytes. */ #ifdef __i386__ # define LG_QUANTUM 4 # define LG_SIZEOF_PTR 2 # define CPU_SPINWAIT __asm__ volatile("pause") # define TLS_MODEL __attribute__((tls_model("initial-exec"))) #endif #ifdef __ia64__ # define LG_QUANTUM 4 # define LG_SIZEOF_PTR 3 # define TLS_MODEL /* default */ #endif #ifdef __alpha__ # define LG_QUANTUM 4 # define LG_SIZEOF_PTR 3 # define NO_TLS #endif #ifdef __sparc64__ # define LG_QUANTUM 4 # define LG_SIZEOF_PTR 3 # define NO_TLS #endif #ifdef __amd64__ # define LG_QUANTUM 4 # define LG_SIZEOF_PTR 3 # define CPU_SPINWAIT __asm__ volatile("pause") # define TLS_MODEL __attribute__((tls_model("initial-exec"))) #endif #ifdef __arm__ # define LG_QUANTUM 3 # define LG_SIZEOF_PTR 2 # define NO_TLS #endif #ifdef __mips__ # define LG_QUANTUM 3 # define LG_SIZEOF_PTR 2 # define NO_TLS #endif #ifdef __powerpc__ # define LG_QUANTUM 4 # define TLS_MODEL /* default */ #endif #ifdef __s390x__ # define LG_QUANTUM 4 #endif #define QUANTUM ((size_t)(1U << LG_QUANTUM)) #define QUANTUM_MASK (QUANTUM - 1) #define SIZEOF_PTR (1U << LG_SIZEOF_PTR) /* sizeof(int) == (1U << LG_SIZEOF_INT). */ #ifndef LG_SIZEOF_INT # define LG_SIZEOF_INT 2 #endif /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ #if (!defined(PIC) && !defined(NO_TLS)) # define NO_TLS #endif #ifdef NO_TLS /* MALLOC_TCACHE requires TLS. */ # ifdef MALLOC_TCACHE # undef MALLOC_TCACHE # endif #endif /* * Size and alignment of memory chunks that are allocated by the OS's virtual * memory system. */ #define LG_CHUNK_DEFAULT 22 /* * The minimum ratio of active:dirty pages per arena is computed as: * * (nactive >> opt_lg_dirty_mult) >= ndirty * * So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32 * times as many active pages as dirty pages. */ #define LG_DIRTY_MULT_DEFAULT 5 /* * Maximum size of L1 cache line. This is used to avoid cache line aliasing. * In addition, this controls the spacing of cacheline-spaced size classes. */ #define LG_CACHELINE 6 #define CACHELINE ((size_t)(1U << LG_CACHELINE)) #define CACHELINE_MASK (CACHELINE - 1) /* * Subpages are an artificially designated partitioning of pages. Their only * purpose is to support subpage-spaced size classes. * * There must be at least 4 subpages per page, due to the way size classes are * handled. */ #define LG_SUBPAGE 8 #define SUBPAGE ((size_t)(1U << LG_SUBPAGE)) #define SUBPAGE_MASK (SUBPAGE - 1) #ifdef MALLOC_TINY /* Smallest size class to support. */ # define LG_TINY_MIN 1 #endif /* * Maximum size class that is a multiple of the quantum, but not (necessarily) * a power of 2. Above this size, allocations are rounded up to the nearest * power of 2. */ #define LG_QSPACE_MAX_DEFAULT 7 /* * Maximum size class that is a multiple of the cacheline, but not (necessarily) * a power of 2. Above this size, allocations are rounded up to the nearest * power of 2. */ #define LG_CSPACE_MAX_DEFAULT 9 /* * Maximum medium size class. This must not be more than 1/4 of a chunk * (LG_MEDIUM_MAX_DEFAULT <= LG_CHUNK_DEFAULT - 2). */ #define LG_MEDIUM_MAX_DEFAULT 15 /* * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized * as small as possible such that this setting is still honored, without * violating other constraints. The goal is to make runs as small as possible * without exceeding a per run external fragmentation threshold. * * We use binary fixed point math for overhead computations, where the binary * point is implicitly RUN_BFP bits to the left. * * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be * honored for some/all object sizes, since there is one bit of header overhead * per object (plus a constant). This constraint is relaxed (ignored) for runs * that are so small that the per-region overhead is greater than: * * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) */ #define RUN_BFP 12 /* \/ Implicit binary fixed point. */ #define RUN_MAX_OVRHD 0x0000003dU #define RUN_MAX_OVRHD_RELAX 0x00001800U /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */ #define RUN_MAX_SMALL \ (arena_maxclass <= (1U << (CHUNK_MAP_LG_PG_RANGE + PAGE_SHIFT)) \ ? arena_maxclass : (1U << (CHUNK_MAP_LG_PG_RANGE + \ PAGE_SHIFT))) /* * Hyper-threaded CPUs may need a special instruction inside spin loops in * order to yield to another virtual CPU. If no such instruction is defined * above, make CPU_SPINWAIT a no-op. */ #ifndef CPU_SPINWAIT # define CPU_SPINWAIT #endif /* * Adaptive spinning must eventually switch to blocking, in order to avoid the * potential for priority inversion deadlock. Backing off past a certain point * can actually waste time. */ #define LG_SPIN_LIMIT 11 #ifdef MALLOC_TCACHE /* * Default number of cache slots for each bin in the thread cache (0: * disabled). */ # define LG_TCACHE_NSLOTS_DEFAULT 7 /* * (1U << opt_lg_tcache_gc_sweep) is the approximate number of * allocation events between full GC sweeps (-1: disabled). Integer * rounding may cause the actual number to be slightly higher, since GC is * performed incrementally. */ # define LG_TCACHE_GC_SWEEP_DEFAULT 13 #endif /******************************************************************************/ /* * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all * places, because they require malloc()ed memory, which causes bootstrapping * issues in some cases. */ typedef struct { spinlock_t lock; } malloc_mutex_t; /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; /* Used to avoid initialization races. */ static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER}; /******************************************************************************/ /* * Statistics data structures. */ #ifdef MALLOC_STATS #ifdef MALLOC_TCACHE typedef struct tcache_bin_stats_s tcache_bin_stats_t; struct tcache_bin_stats_s { /* * Number of allocation requests that corresponded to the size of this * bin. */ uint64_t nrequests; }; #endif typedef struct malloc_bin_stats_s malloc_bin_stats_t; struct malloc_bin_stats_s { /* * Number of allocation requests that corresponded to the size of this * bin. */ uint64_t nrequests; #ifdef MALLOC_TCACHE /* Number of tcache fills from this bin. */ uint64_t nfills; /* Number of tcache flushes to this bin. */ uint64_t nflushes; #endif /* Total number of runs created for this bin's size class. */ uint64_t nruns; /* * Total number of runs reused by extracting them from the runs tree for * this bin's size class. */ uint64_t reruns; /* High-water mark for this bin. */ size_t highruns; /* Current number of runs in this bin. */ size_t curruns; }; typedef struct malloc_large_stats_s malloc_large_stats_t; struct malloc_large_stats_s { /* * Number of allocation requests that corresponded to this size class. */ uint64_t nrequests; /* High-water mark for this size class. */ size_t highruns; /* Current number of runs of this size class. */ size_t curruns; }; typedef struct arena_stats_s arena_stats_t; struct arena_stats_s { /* Number of bytes currently mapped. */ size_t mapped; /* * Total number of purge sweeps, total number of madvise calls made, * and total pages purged in order to keep dirty unused memory under * control. */ uint64_t npurge; uint64_t nmadvise; uint64_t purged; /* Per-size-category statistics. */ size_t allocated_small; uint64_t nmalloc_small; uint64_t ndalloc_small; size_t allocated_medium; uint64_t nmalloc_medium; uint64_t ndalloc_medium; size_t allocated_large; uint64_t nmalloc_large; uint64_t ndalloc_large; /* * One element for each possible size class, including sizes that * overlap with bin size classes. This is necessary because ipalloc() * sometimes has to use such large objects in order to assure proper * alignment. */ malloc_large_stats_t *lstats; }; typedef struct chunk_stats_s chunk_stats_t; struct chunk_stats_s { /* Number of chunks that were allocated. */ uint64_t nchunks; /* High-water mark for number of chunks allocated. */ size_t highchunks; /* * Current number of chunks allocated. This value isn't maintained for * any other purpose, so keep track of it in order to be able to set * highchunks. */ size_t curchunks; }; #endif /* #ifdef MALLOC_STATS */ /******************************************************************************/ /* * Extent data structures. */ /* Tree of extents. */ typedef struct extent_node_s extent_node_t; struct extent_node_s { #ifdef MALLOC_DSS /* Linkage for the size/address-ordered tree. */ rb_node(extent_node_t) link_szad; #endif /* Linkage for the address-ordered tree. */ rb_node(extent_node_t) link_ad; /* Pointer to the extent that this tree node is responsible for. */ void *addr; /* Total region size. */ size_t size; }; typedef rb_tree(extent_node_t) extent_tree_t; /******************************************************************************/ /* * Arena data structures. */ typedef struct arena_s arena_t; typedef struct arena_bin_s arena_bin_t; /* Each element of the chunk map corresponds to one page within the chunk. */ typedef struct arena_chunk_map_s arena_chunk_map_t; struct arena_chunk_map_s { /* * Linkage for run trees. There are two disjoint uses: * * 1) arena_t's runs_avail tree. * 2) arena_run_t conceptually uses this linkage for in-use non-full * runs, rather than directly embedding linkage. */ rb_node(arena_chunk_map_t) link; /* * Run address (or size) and various flags are stored together. The bit * layout looks like (assuming 32-bit system): * * ???????? ???????? ????cccc ccccdzla * * ? : Unallocated: Run address for first/last pages, unset for internal * pages. * Small/medium: Don't care. * Large: Run size for first page, unset for trailing pages. * - : Unused. * c : refcount (could overflow for PAGE_SIZE >= 128 KiB) * d : dirty? * z : zeroed? * l : large? * a : allocated? * * Following are example bit patterns for the three types of runs. * * p : run page offset * s : run size * x : don't care * - : 0 * [dzla] : bit set * * Unallocated: * ssssssss ssssssss ssss---- -------- * xxxxxxxx xxxxxxxx xxxx---- ----d--- * ssssssss ssssssss ssss---- -----z-- * * Small/medium: * pppppppp ppppcccc cccccccc cccc---a * pppppppp ppppcccc cccccccc cccc---a * pppppppp ppppcccc cccccccc cccc---a * * Large: * ssssssss ssssssss ssss---- ------la * -------- -------- -------- ------la * -------- -------- -------- ------la */ size_t bits; #define CHUNK_MAP_PG_MASK ((size_t)0xfff00000U) #define CHUNK_MAP_PG_SHIFT 20 #define CHUNK_MAP_LG_PG_RANGE 12 #define CHUNK_MAP_RC_MASK ((size_t)0xffff0U) #define CHUNK_MAP_RC_ONE ((size_t)0x00010U) #define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU) #define CHUNK_MAP_DIRTY ((size_t)0x8U) #define CHUNK_MAP_ZEROED ((size_t)0x4U) #define CHUNK_MAP_LARGE ((size_t)0x2U) #define CHUNK_MAP_ALLOCATED ((size_t)0x1U) #define CHUNK_MAP_KEY (CHUNK_MAP_DIRTY | CHUNK_MAP_ALLOCATED) }; typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t; typedef rb_tree(arena_chunk_map_t) arena_run_tree_t; /* Arena chunk header. */ typedef struct arena_chunk_s arena_chunk_t; struct arena_chunk_s { /* Arena that owns the chunk. */ arena_t *arena; /* Linkage for the arena's chunks_dirty tree. */ rb_node(arena_chunk_t) link_dirty; /* * True if the chunk is currently in the chunks_dirty tree, due to * having at some point contained one or more dirty pages. Removal * from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible. */ bool dirtied; /* Number of dirty pages. */ size_t ndirty; /* Map of pages within chunk that keeps track of free/large/small. */ arena_chunk_map_t map[1]; /* Dynamically sized. */ }; typedef rb_tree(arena_chunk_t) arena_chunk_tree_t; typedef struct arena_run_s arena_run_t; struct arena_run_s { #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_RUN_MAGIC 0x384adf93 #endif /* Bin this run is associated with. */ arena_bin_t *bin; /* Index of first element that might have a free region. */ unsigned regs_minelm; /* Number of free regions in run. */ unsigned nfree; /* Bitmask of in-use regions (0: in use, 1: free). */ unsigned regs_mask[1]; /* Dynamically sized. */ }; struct arena_bin_s { /* * Current run being used to service allocations of this bin's size * class. */ arena_run_t *runcur; /* * Tree of non-full runs. This tree is used when looking for an * existing run when runcur is no longer usable. We choose the * non-full run that is lowest in memory; this policy tends to keep * objects packed well, and it can also help reduce the number of * almost-empty chunks. */ arena_run_tree_t runs; /* Size of regions in a run for this bin's size class. */ size_t reg_size; /* Total size of a run for this bin's size class. */ size_t run_size; /* Total number of regions in a run for this bin's size class. */ uint32_t nregs; /* Number of elements in a run's regs_mask for this bin's size class. */ uint32_t regs_mask_nelms; /* Offset of first region in a run for this bin's size class. */ uint32_t reg0_offset; #ifdef MALLOC_STATS /* Bin statistics. */ malloc_bin_stats_t stats; #endif }; #ifdef MALLOC_TCACHE typedef struct tcache_s tcache_t; #endif struct arena_s { #ifdef MALLOC_DEBUG uint32_t magic; # define ARENA_MAGIC 0x947d3d24 #endif /* All operations on this arena require that lock be locked. */ pthread_mutex_t lock; #ifdef MALLOC_STATS arena_stats_t stats; # ifdef MALLOC_TCACHE /* * List of tcaches for extant threads associated with this arena. * Stats from these are merged incrementally, and at exit. */ ql_head(tcache_t) tcache_ql; # endif #endif /* Tree of dirty-page-containing chunks this arena manages. */ arena_chunk_tree_t chunks_dirty; /* * In order to avoid rapid chunk allocation/deallocation when an arena * oscillates right on the cusp of needing a new chunk, cache the most * recently freed chunk. The spare is left in the arena's chunk trees * until it is deleted. * * There is one spare chunk per arena, rather than one spare total, in * order to avoid interactions between multiple threads that could make * a single spare inadequate. */ arena_chunk_t *spare; /* Number of pages in active runs. */ size_t nactive; /* * Current count of pages within unused runs that are potentially * dirty, and for which madvise(... MADV_FREE) has not been called. By * tracking this, we can institute a limit on how much dirty unused * memory is mapped for each arena. */ size_t ndirty; /* * Size/address-ordered tree of this arena's available runs. This tree * is used for first-best-fit run allocation. */ arena_avail_tree_t runs_avail; /* * bins is used to store trees of free regions of the following sizes, * assuming a 16-byte quantum, 4 KiB page size, and default * MALLOC_OPTIONS. * * bins[i] | size | * --------+--------+ * 0 | 2 | * 1 | 4 | * 2 | 8 | * --------+--------+ * 3 | 16 | * 4 | 32 | * 5 | 48 | * : : * 8 | 96 | * 9 | 112 | * 10 | 128 | * --------+--------+ * 11 | 192 | * 12 | 256 | * 13 | 320 | * 14 | 384 | * 15 | 448 | * 16 | 512 | * --------+--------+ * 17 | 768 | * 18 | 1024 | * 19 | 1280 | * : : * 27 | 3328 | * 28 | 3584 | * 29 | 3840 | * --------+--------+ * 30 | 4 KiB | * 31 | 6 KiB | * 33 | 8 KiB | * : : * 43 | 28 KiB | * 44 | 30 KiB | * 45 | 32 KiB | * --------+--------+ */ arena_bin_t bins[1]; /* Dynamically sized. */ }; /******************************************************************************/ /* * Thread cache data structures. */ #ifdef MALLOC_TCACHE typedef struct tcache_bin_s tcache_bin_t; struct tcache_bin_s { # ifdef MALLOC_STATS tcache_bin_stats_t tstats; # endif unsigned low_water; /* Min # cached since last GC. */ unsigned high_water; /* Max # cached since last GC. */ unsigned ncached; /* # of cached objects. */ void *slots[1]; /* Dynamically sized. */ }; struct tcache_s { # ifdef MALLOC_STATS ql_elm(tcache_t) link; /* Used for aggregating stats. */ # endif arena_t *arena; /* This thread's arena. */ unsigned ev_cnt; /* Event count since incremental GC. */ unsigned next_gc_bin; /* Next bin to GC. */ tcache_bin_t *tbins[1]; /* Dynamically sized. */ }; #endif /******************************************************************************/ /* * Data. */ /* Number of CPUs. */ static unsigned ncpus; /* Various bin-related settings. */ #ifdef MALLOC_TINY /* Number of (2^n)-spaced tiny bins. */ # define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN)) #else # define ntbins 0 #endif static unsigned nqbins; /* Number of quantum-spaced bins. */ static unsigned ncbins; /* Number of cacheline-spaced bins. */ static unsigned nsbins; /* Number of subpage-spaced bins. */ static unsigned nmbins; /* Number of medium bins. */ static unsigned nbins; static unsigned mbin0; /* mbin offset (nbins - nmbins). */ #ifdef MALLOC_TINY # define tspace_max ((size_t)(QUANTUM >> 1)) #endif #define qspace_min QUANTUM static size_t qspace_max; static size_t cspace_min; static size_t cspace_max; static size_t sspace_min; static size_t sspace_max; #define small_maxclass sspace_max #define medium_min PAGE_SIZE static size_t medium_max; #define bin_maxclass medium_max /* * Soft limit on the number of medium size classes. Spacing between medium * size classes never exceeds pagesize, which can force more than NBINS_MAX * medium size classes. */ #define NMBINS_MAX 16 /* Spacing between medium size classes. */ static size_t lg_mspace; static size_t mspace_mask; static uint8_t const *small_size2bin; /* * const_small_size2bin is a static constant lookup table that in the common * case can be used as-is for small_size2bin. For dynamically linked programs, * this avoids a page of memory overhead per process. */ #define S2B_1(i) i, #define S2B_2(i) S2B_1(i) S2B_1(i) #define S2B_4(i) S2B_2(i) S2B_2(i) #define S2B_8(i) S2B_4(i) S2B_4(i) #define S2B_16(i) S2B_8(i) S2B_8(i) #define S2B_32(i) S2B_16(i) S2B_16(i) #define S2B_64(i) S2B_32(i) S2B_32(i) #define S2B_128(i) S2B_64(i) S2B_64(i) #define S2B_256(i) S2B_128(i) S2B_128(i) static const uint8_t const_small_size2bin[PAGE_SIZE - 255] = { S2B_1(0xffU) /* 0 */ #if (LG_QUANTUM == 4) /* 64-bit system ************************/ # ifdef MALLOC_TINY S2B_2(0) /* 2 */ S2B_2(1) /* 4 */ S2B_4(2) /* 8 */ S2B_8(3) /* 16 */ # define S2B_QMIN 3 # else S2B_16(0) /* 16 */ # define S2B_QMIN 0 # endif S2B_16(S2B_QMIN + 1) /* 32 */ S2B_16(S2B_QMIN + 2) /* 48 */ S2B_16(S2B_QMIN + 3) /* 64 */ S2B_16(S2B_QMIN + 4) /* 80 */ S2B_16(S2B_QMIN + 5) /* 96 */ S2B_16(S2B_QMIN + 6) /* 112 */ S2B_16(S2B_QMIN + 7) /* 128 */ # define S2B_CMIN (S2B_QMIN + 8) #else /* 32-bit system ************************/ # ifdef MALLOC_TINY S2B_2(0) /* 2 */ S2B_2(1) /* 4 */ S2B_4(2) /* 8 */ # define S2B_QMIN 2 # else S2B_8(0) /* 8 */ # define S2B_QMIN 0 # endif S2B_8(S2B_QMIN + 1) /* 16 */ S2B_8(S2B_QMIN + 2) /* 24 */ S2B_8(S2B_QMIN + 3) /* 32 */ S2B_8(S2B_QMIN + 4) /* 40 */ S2B_8(S2B_QMIN + 5) /* 48 */ S2B_8(S2B_QMIN + 6) /* 56 */ S2B_8(S2B_QMIN + 7) /* 64 */ S2B_8(S2B_QMIN + 8) /* 72 */ S2B_8(S2B_QMIN + 9) /* 80 */ S2B_8(S2B_QMIN + 10) /* 88 */ S2B_8(S2B_QMIN + 11) /* 96 */ S2B_8(S2B_QMIN + 12) /* 104 */ S2B_8(S2B_QMIN + 13) /* 112 */ S2B_8(S2B_QMIN + 14) /* 120 */ S2B_8(S2B_QMIN + 15) /* 128 */ # define S2B_CMIN (S2B_QMIN + 16) #endif /****************************************/ S2B_64(S2B_CMIN + 0) /* 192 */ S2B_64(S2B_CMIN + 1) /* 256 */ S2B_64(S2B_CMIN + 2) /* 320 */ S2B_64(S2B_CMIN + 3) /* 384 */ S2B_64(S2B_CMIN + 4) /* 448 */ S2B_64(S2B_CMIN + 5) /* 512 */ # define S2B_SMIN (S2B_CMIN + 6) S2B_256(S2B_SMIN + 0) /* 768 */ S2B_256(S2B_SMIN + 1) /* 1024 */ S2B_256(S2B_SMIN + 2) /* 1280 */ S2B_256(S2B_SMIN + 3) /* 1536 */ S2B_256(S2B_SMIN + 4) /* 1792 */ S2B_256(S2B_SMIN + 5) /* 2048 */ S2B_256(S2B_SMIN + 6) /* 2304 */ S2B_256(S2B_SMIN + 7) /* 2560 */ S2B_256(S2B_SMIN + 8) /* 2816 */ S2B_256(S2B_SMIN + 9) /* 3072 */ S2B_256(S2B_SMIN + 10) /* 3328 */ S2B_256(S2B_SMIN + 11) /* 3584 */ S2B_256(S2B_SMIN + 12) /* 3840 */ #if (PAGE_SHIFT == 13) S2B_256(S2B_SMIN + 13) /* 4096 */ S2B_256(S2B_SMIN + 14) /* 4352 */ S2B_256(S2B_SMIN + 15) /* 4608 */ S2B_256(S2B_SMIN + 16) /* 4864 */ S2B_256(S2B_SMIN + 17) /* 5120 */ S2B_256(S2B_SMIN + 18) /* 5376 */ S2B_256(S2B_SMIN + 19) /* 5632 */ S2B_256(S2B_SMIN + 20) /* 5888 */ S2B_256(S2B_SMIN + 21) /* 6144 */ S2B_256(S2B_SMIN + 22) /* 6400 */ S2B_256(S2B_SMIN + 23) /* 6656 */ S2B_256(S2B_SMIN + 24) /* 6912 */ S2B_256(S2B_SMIN + 25) /* 7168 */ S2B_256(S2B_SMIN + 26) /* 7424 */ S2B_256(S2B_SMIN + 27) /* 7680 */ S2B_256(S2B_SMIN + 28) /* 7936 */ #endif }; #undef S2B_1 #undef S2B_2 #undef S2B_4 #undef S2B_8 #undef S2B_16 #undef S2B_32 #undef S2B_64 #undef S2B_128 #undef S2B_256 #undef S2B_QMIN #undef S2B_CMIN #undef S2B_SMIN /* Various chunk-related settings. */ static size_t chunksize; static size_t chunksize_mask; /* (chunksize - 1). */ static size_t chunk_npages; static size_t arena_chunk_header_npages; static size_t arena_maxclass; /* Max size class for arenas. */ /********/ /* * Chunks. */ /* Protects chunk-related data structures. */ static malloc_mutex_t huge_mtx; /* Tree of chunks that are stand-alone huge allocations. */ static extent_tree_t huge; #ifdef MALLOC_DSS /* * Protects sbrk() calls. This avoids malloc races among threads, though it * does not protect against races with threads that call sbrk() directly. */ static malloc_mutex_t dss_mtx; /* Base address of the DSS. */ static void *dss_base; /* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */ static void *dss_prev; /* Current upper limit on DSS addresses. */ static void *dss_max; /* * Trees of chunks that were previously allocated (trees differ only in node * ordering). These are used when allocating chunks, in an attempt to re-use * address space. Depending on function, different tree orderings are needed, * which is why there are two trees with the same contents. */ static extent_tree_t dss_chunks_szad; static extent_tree_t dss_chunks_ad; #endif #ifdef MALLOC_STATS /* Huge allocation statistics. */ static uint64_t huge_nmalloc; static uint64_t huge_ndalloc; static size_t huge_allocated; #endif /****************************/ /* * base (internal allocation). */ /* * Current pages that are being used for internal memory allocations. These * pages are carved up in cacheline-size quanta, so that there is no chance of * false cache line sharing. */ static void *base_pages; static void *base_next_addr; static void *base_past_addr; /* Addr immediately past base_pages. */ static extent_node_t *base_nodes; static malloc_mutex_t base_mtx; #ifdef MALLOC_STATS static size_t base_mapped; #endif /********/ /* * Arenas. */ /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. */ static arena_t **arenas; static unsigned narenas; #ifndef NO_TLS static unsigned next_arena; #endif static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */ #ifndef NO_TLS /* * Map of _pthread_self() --> arenas[???], used for selecting an arena to use * for allocations. */ static __thread arena_t *arenas_map TLS_MODEL; #endif #ifdef MALLOC_TCACHE /* Map of thread-specific caches. */ static __thread tcache_t *tcache_tls TLS_MODEL; /* * Number of cache slots for each bin in the thread cache, or 0 if tcache is * disabled. */ size_t tcache_nslots; /* Number of tcache allocation/deallocation events between incremental GCs. */ unsigned tcache_gc_incr; #endif /* * Used by chunk_alloc_mmap() to decide whether to attempt the fast path and * potentially avoid some system calls. We can get away without TLS here, * since the state of mmap_unaligned only affects performance, rather than * correct function. */ #ifndef NO_TLS static __thread bool mmap_unaligned TLS_MODEL; #else static bool mmap_unaligned; #endif #ifdef MALLOC_STATS static malloc_mutex_t chunks_mtx; /* Chunk statistics. */ static chunk_stats_t stats_chunks; #endif /*******************************/ /* * Runtime configuration options. */ const char *_malloc_options; #ifndef MALLOC_PRODUCTION static bool opt_abort = true; static bool opt_junk = true; #else static bool opt_abort = false; static bool opt_junk = false; #endif #ifdef MALLOC_TCACHE static size_t opt_lg_tcache_nslots = LG_TCACHE_NSLOTS_DEFAULT; static ssize_t opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT; #endif #ifdef MALLOC_DSS static bool opt_dss = true; static bool opt_mmap = true; #endif static ssize_t opt_lg_dirty_mult = LG_DIRTY_MULT_DEFAULT; static bool opt_stats_print = false; static size_t opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT; static size_t opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT; static size_t opt_lg_medium_max = LG_MEDIUM_MAX_DEFAULT; static size_t opt_lg_chunk = LG_CHUNK_DEFAULT; static bool opt_utrace = false; static bool opt_sysv = false; static bool opt_xmalloc = false; static bool opt_zero = false; static int opt_narenas_lshift = 0; typedef struct { void *p; size_t s; void *r; } malloc_utrace_t; #define UTRACE(a, b, c) \ if (opt_utrace) { \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ } /******************************************************************************/ /* * Begin function prototypes for non-inline static functions. */ static void malloc_mutex_init(malloc_mutex_t *mutex); static bool malloc_spin_init(pthread_mutex_t *lock); #ifdef MALLOC_TINY static size_t pow2_ceil(size_t x); #endif static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4); #ifdef MALLOC_STATS static void malloc_printf(const char *format, ...); #endif static char *umax2s(uintmax_t x, unsigned base, char *s); #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize); #endif static bool base_pages_alloc_mmap(size_t minsize); static bool base_pages_alloc(size_t minsize); static void *base_alloc(size_t size); static void *base_calloc(size_t number, size_t size); static extent_node_t *base_node_alloc(void); static void base_node_dealloc(extent_node_t *node); static void *pages_map(void *addr, size_t size); static void pages_unmap(void *addr, size_t size); #ifdef MALLOC_DSS static void *chunk_alloc_dss(size_t size, bool *zero); static void *chunk_recycle_dss(size_t size, bool *zero); #endif static void *chunk_alloc_mmap_slow(size_t size, bool unaligned); static void *chunk_alloc_mmap(size_t size); static void *chunk_alloc(size_t size, bool *zero); #ifdef MALLOC_DSS static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size); static bool chunk_dealloc_dss(void *chunk, size_t size); #endif static void chunk_dealloc_mmap(void *chunk, size_t size); static void chunk_dealloc(void *chunk, size_t size); #ifndef NO_TLS static arena_t *choose_arena_hard(void); #endif static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, bool zero); static arena_chunk_t *arena_chunk_alloc(arena_t *arena); static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk); static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero); static void arena_purge(arena_t *arena); static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty); static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize); static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty); static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin); static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin); static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size); #ifdef MALLOC_TCACHE static void tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin, size_t binind); static void *tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind); #endif static void *arena_malloc_medium(arena_t *arena, size_t size, bool zero); static void *arena_malloc_large(arena_t *arena, size_t size, bool zero); static void *arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size); static bool arena_is_large(const void *ptr); static size_t arena_salloc(const void *ptr); static void arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, arena_bin_t *bin); #ifdef MALLOC_STATS static void arena_stats_print(arena_t *arena); #endif static void stats_print_atexit(void); #ifdef MALLOC_TCACHE static void tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem); #endif static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr); #ifdef MALLOC_TCACHE static void arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr, arena_chunk_map_t *mapelm, tcache_t *tcache); #endif static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize); static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize); static void *arena_ralloc(void *ptr, size_t size, size_t oldsize); static bool arena_new(arena_t *arena, unsigned ind); static arena_t *arenas_extend(unsigned ind); #ifdef MALLOC_TCACHE static tcache_bin_t *tcache_bin_create(arena_t *arena); static void tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind); # ifdef MALLOC_STATS static void tcache_stats_merge(tcache_t *tcache, arena_t *arena); # endif static tcache_t *tcache_create(arena_t *arena); static void tcache_destroy(tcache_t *tcache); #endif static void *huge_malloc(size_t size, bool zero); static void *huge_palloc(size_t alignment, size_t size); static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); static void huge_dalloc(void *ptr); static void malloc_stats_print(void); #ifdef MALLOC_DEBUG static void small_size2bin_validate(void); #endif static bool small_size2bin_init(void); static bool small_size2bin_init_hard(void); static unsigned malloc_ncpus(void); static bool malloc_init_hard(void); /* * End function prototypes. */ /******************************************************************************/ static void wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) { if (_write(STDERR_FILENO, p1, strlen(p1)) < 0 || _write(STDERR_FILENO, p2, strlen(p2)) < 0 || _write(STDERR_FILENO, p3, strlen(p3)) < 0 || _write(STDERR_FILENO, p4, strlen(p4)) < 0) return; } void (*_malloc_message)(const char *p1, const char *p2, const char *p3, const char *p4) = wrtmessage; /* * We don't want to depend on vsnprintf() for production builds, since that can * cause unnecessary bloat for static binaries. umax2s() provides minimal * integer printing functionality, so that malloc_printf() use can be limited to * MALLOC_STATS code. */ #define UMAX2S_BUFSIZE 65 static char * umax2s(uintmax_t x, unsigned base, char *s) { unsigned i; i = UMAX2S_BUFSIZE - 1; s[i] = '\0'; switch (base) { case 10: do { i--; s[i] = "0123456789"[x % 10]; x /= 10; } while (x > 0); break; case 16: do { i--; s[i] = "0123456789abcdef"[x & 0xf]; x >>= 4; } while (x > 0); break; default: do { i--; s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base]; x /= base; } while (x > 0); } return (&s[i]); } /* * Define a custom assert() in order to reduce the chances of deadlock during * assertion failure. */ #ifdef MALLOC_DEBUG # define assert(e) do { \ if (!(e)) { \ char line_buf[UMAX2S_BUFSIZE]; \ _malloc_message(_getprogname(), ": (malloc) ", \ __FILE__, ":"); \ _malloc_message(umax2s(__LINE__, 10, line_buf), \ ": Failed assertion: ", "\"", #e); \ _malloc_message("\"\n", "", "", ""); \ abort(); \ } \ } while (0) #else #define assert(e) #endif #ifdef MALLOC_STATS /* * Print to stderr in such a way as to (hopefully) avoid memory allocation. */ static void malloc_printf(const char *format, ...) { char buf[4096]; va_list ap; va_start(ap, format); vsnprintf(buf, sizeof(buf), format, ap); va_end(ap); _malloc_message(buf, "", "", ""); } #endif /******************************************************************************/ /* * Begin mutex. We can't use normal pthread mutexes in all places, because * they require malloc()ed memory, which causes bootstrapping issues in some * cases. */ static void malloc_mutex_init(malloc_mutex_t *mutex) { static const spinlock_t lock = _SPINLOCK_INITIALIZER; mutex->lock = lock; } static inline void malloc_mutex_lock(malloc_mutex_t *mutex) { if (__isthreaded) _SPINLOCK(&mutex->lock); } static inline void malloc_mutex_unlock(malloc_mutex_t *mutex) { if (__isthreaded) _SPINUNLOCK(&mutex->lock); } /* * End mutex. */ /******************************************************************************/ /* * Begin spin lock. Spin locks here are actually adaptive mutexes that block * after a period of spinning, because unbounded spinning would allow for * priority inversion. */ /* * We use an unpublished interface to initialize pthread mutexes with an * allocation callback, in order to avoid infinite recursion. */ int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)); __weak_reference(_pthread_mutex_init_calloc_cb_stub, _pthread_mutex_init_calloc_cb); int _pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)) { return (0); } static bool malloc_spin_init(pthread_mutex_t *lock) { if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0) return (true); return (false); } static inline void malloc_spin_lock(pthread_mutex_t *lock) { if (__isthreaded) { if (_pthread_mutex_trylock(lock) != 0) { /* Exponentially back off if there are multiple CPUs. */ if (ncpus > 1) { unsigned i; volatile unsigned j; for (i = 1; i <= LG_SPIN_LIMIT; i++) { for (j = 0; j < (1U << i); j++) { CPU_SPINWAIT; } if (_pthread_mutex_trylock(lock) == 0) return; } } /* * Spinning failed. Block until the lock becomes * available, in order to avoid indefinite priority * inversion. */ _pthread_mutex_lock(lock); } } } static inline void malloc_spin_unlock(pthread_mutex_t *lock) { if (__isthreaded) _pthread_mutex_unlock(lock); } /* * End spin lock. */ /******************************************************************************/ /* * Begin Utility functions/macros. */ /* Return the chunk address for allocation address a. */ #define CHUNK_ADDR2BASE(a) \ ((void *)((uintptr_t)(a) & ~chunksize_mask)) /* Return the chunk offset of address a. */ #define CHUNK_ADDR2OFFSET(a) \ ((size_t)((uintptr_t)(a) & chunksize_mask)) /* Return the smallest chunk multiple that is >= s. */ #define CHUNK_CEILING(s) \ (((s) + chunksize_mask) & ~chunksize_mask) /* Return the smallest quantum multiple that is >= a. */ #define QUANTUM_CEILING(a) \ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK) /* Return the smallest cacheline multiple that is >= s. */ #define CACHELINE_CEILING(s) \ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK) /* Return the smallest subpage multiple that is >= s. */ #define SUBPAGE_CEILING(s) \ (((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK) /* Return the smallest medium size class that is >= s. */ #define MEDIUM_CEILING(s) \ (((s) + mspace_mask) & ~mspace_mask) /* Return the smallest pagesize multiple that is >= s. */ #define PAGE_CEILING(s) \ (((s) + PAGE_MASK) & ~PAGE_MASK) #ifdef MALLOC_TINY /* Compute the smallest power of 2 that is >= x. */ static size_t pow2_ceil(size_t x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; #if (SIZEOF_PTR == 8) x |= x >> 32; #endif x++; return (x); } #endif /******************************************************************************/ #ifdef MALLOC_DSS static bool base_pages_alloc_dss(size_t minsize) { /* * Do special DSS allocation here, since base allocations don't need to * be chunk-aligned. */ malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; size_t csize = CHUNK_CEILING(minsize); do { /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. Don't worry about * dss_max not being chunk-aligned though. */ incr = (intptr_t)chunksize - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); assert(incr >= 0); if ((size_t)incr < minsize) incr += csize; dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); base_pages = dss_prev; base_next_addr = base_pages; base_past_addr = dss_max; #ifdef MALLOC_STATS base_mapped += incr; #endif malloc_mutex_unlock(&dss_mtx); return (false); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (true); } #endif static bool base_pages_alloc_mmap(size_t minsize) { size_t csize; assert(minsize != 0); csize = PAGE_CEILING(minsize); base_pages = pages_map(NULL, csize); if (base_pages == NULL) return (true); base_next_addr = base_pages; base_past_addr = (void *)((uintptr_t)base_pages + csize); #ifdef MALLOC_STATS base_mapped += csize; #endif return (false); } static bool base_pages_alloc(size_t minsize) { #ifdef MALLOC_DSS if (opt_mmap && minsize != 0) #endif { if (base_pages_alloc_mmap(minsize) == false) return (false); } #ifdef MALLOC_DSS if (opt_dss) { if (base_pages_alloc_dss(minsize) == false) return (false); } #endif return (true); } static void * base_alloc(size_t size) { void *ret; size_t csize; /* Round size up to nearest multiple of the cacheline size. */ csize = CACHELINE_CEILING(size); malloc_mutex_lock(&base_mtx); /* Make sure there's enough space for the allocation. */ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { if (base_pages_alloc(csize)) { malloc_mutex_unlock(&base_mtx); return (NULL); } } /* Allocate. */ ret = base_next_addr; base_next_addr = (void *)((uintptr_t)base_next_addr + csize); malloc_mutex_unlock(&base_mtx); return (ret); } static void * base_calloc(size_t number, size_t size) { void *ret; ret = base_alloc(number * size); if (ret != NULL) memset(ret, 0, number * size); return (ret); } static extent_node_t * base_node_alloc(void) { extent_node_t *ret; malloc_mutex_lock(&base_mtx); if (base_nodes != NULL) { ret = base_nodes; base_nodes = *(extent_node_t **)ret; malloc_mutex_unlock(&base_mtx); } else { malloc_mutex_unlock(&base_mtx); ret = (extent_node_t *)base_alloc(sizeof(extent_node_t)); } return (ret); } static void base_node_dealloc(extent_node_t *node) { malloc_mutex_lock(&base_mtx); *(extent_node_t **)node = base_nodes; base_nodes = node; malloc_mutex_unlock(&base_mtx); } /* * End Utility functions/macros. */ /******************************************************************************/ /* * Begin extent tree code. */ #ifdef MALLOC_DSS static inline int extent_szad_comp(extent_node_t *a, extent_node_t *b) { int ret; size_t a_size = a->size; size_t b_size = b->size; ret = (a_size > b_size) - (a_size < b_size); if (ret == 0) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; ret = (a_addr > b_addr) - (a_addr < b_addr); } return (ret); } /* Wrap red-black tree macros in functions. */ -rb_wrap(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t, +rb_gen(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t, link_szad, extent_szad_comp) #endif static inline int extent_ad_comp(extent_node_t *a, extent_node_t *b) { uintptr_t a_addr = (uintptr_t)a->addr; uintptr_t b_addr = (uintptr_t)b->addr; return ((a_addr > b_addr) - (a_addr < b_addr)); } /* Wrap red-black tree macros in functions. */ -rb_wrap(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad, +rb_gen(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad, extent_ad_comp) /* * End extent tree code. */ /******************************************************************************/ /* * Begin chunk management functions. */ static void * pages_map(void *addr, size_t size) { void *ret; /* * We don't use MAP_FIXED here, because it can cause the *replacement* * of existing mappings, and we only want to create new mappings. */ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); assert(ret != NULL); if (ret == MAP_FAILED) ret = NULL; else if (addr != NULL && ret != addr) { /* * We succeeded in mapping memory, but not in the right place. */ if (munmap(ret, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } ret = NULL; } assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL && ret == addr)); return (ret); } static void pages_unmap(void *addr, size_t size) { if (munmap(addr, size) == -1) { char buf[STRERROR_BUF]; strerror_r(errno, buf, sizeof(buf)); _malloc_message(_getprogname(), ": (malloc) Error in munmap(): ", buf, "\n"); if (opt_abort) abort(); } } #ifdef MALLOC_DSS static void * chunk_alloc_dss(size_t size, bool *zero) { void *ret; ret = chunk_recycle_dss(size, zero); if (ret != NULL) return (ret); /* * sbrk() uses a signed increment argument, so take care not to * interpret a huge allocation request as a negative increment. */ if ((intptr_t)size < 0) return (NULL); malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { intptr_t incr; /* * The loop is necessary to recover from races with other * threads that are using the DSS for something other than * malloc. */ do { /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. */ incr = (intptr_t)size - (intptr_t)CHUNK_ADDR2OFFSET(dss_max); if (incr == (intptr_t)size) ret = dss_max; else { ret = (void *)((intptr_t)dss_max + incr); incr += size; } dss_prev = sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev + incr); malloc_mutex_unlock(&dss_mtx); *zero = true; return (ret); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (NULL); } static void * chunk_recycle_dss(size_t size, bool *zero) { extent_node_t *node, key; key.addr = NULL; key.size = size; malloc_mutex_lock(&dss_mtx); node = extent_tree_szad_nsearch(&dss_chunks_szad, &key); if (node != NULL) { void *ret = node->addr; /* Remove node from the tree. */ extent_tree_szad_remove(&dss_chunks_szad, node); if (node->size == size) { extent_tree_ad_remove(&dss_chunks_ad, node); base_node_dealloc(node); } else { /* * Insert the remainder of node's address range as a * smaller chunk. Its position within dss_chunks_ad * does not change. */ assert(node->size > size); node->addr = (void *)((uintptr_t)node->addr + size); node->size -= size; extent_tree_szad_insert(&dss_chunks_szad, node); } malloc_mutex_unlock(&dss_mtx); if (*zero) memset(ret, 0, size); return (ret); } malloc_mutex_unlock(&dss_mtx); return (NULL); } #endif static void * chunk_alloc_mmap_slow(size_t size, bool unaligned) { void *ret; size_t offset; /* Beware size_t wrap-around. */ if (size + chunksize <= size) return (NULL); ret = pages_map(NULL, size + chunksize); if (ret == NULL) return (NULL); /* Clean up unneeded leading/trailing space. */ offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { /* Note that mmap() returned an unaligned mapping. */ unaligned = true; /* Leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); /* Trailing space. */ pages_unmap((void *)((uintptr_t)ret + size), offset); } else { /* Trailing space only. */ pages_unmap((void *)((uintptr_t)ret + size), chunksize); } /* * If mmap() returned an aligned mapping, reset mmap_unaligned so that * the next chunk_alloc_mmap() execution tries the fast allocation * method. */ if (unaligned == false) mmap_unaligned = false; return (ret); } static void * chunk_alloc_mmap(size_t size) { void *ret; /* * Ideally, there would be a way to specify alignment to mmap() (like * NetBSD has), but in the absence of such a feature, we have to work * hard to efficiently create aligned mappings. The reliable, but * slow method is to create a mapping that is over-sized, then trim the * excess. However, that always results in at least one call to * pages_unmap(). * * A more optimistic approach is to try mapping precisely the right * amount, then try to append another mapping if alignment is off. In * practice, this works out well as long as the application is not * interleaving mappings via direct mmap() calls. If we do run into a * situation where there is an interleaved mapping and we are unable to * extend an unaligned mapping, our best option is to switch to the * slow method until mmap() returns another aligned mapping. This will * tend to leave a gap in the memory map that is too small to cause * later problems for the optimistic method. * * Another possible confounding factor is address space layout * randomization (ASLR), which causes mmap(2) to disregard the * requested address. mmap_unaligned tracks whether the previous * chunk_alloc_mmap() execution received any unaligned or relocated * mappings, and if so, the current execution will immediately fall * back to the slow method. However, we keep track of whether the fast * method would have succeeded, and if so, we make a note to try the * fast method next time. */ if (mmap_unaligned == false) { size_t offset; ret = pages_map(NULL, size); if (ret == NULL) return (NULL); offset = CHUNK_ADDR2OFFSET(ret); if (offset != 0) { mmap_unaligned = true; /* Try to extend chunk boundary. */ if (pages_map((void *)((uintptr_t)ret + size), chunksize - offset) == NULL) { /* * Extension failed. Clean up, then revert to * the reliable-but-expensive method. */ pages_unmap(ret, size); ret = chunk_alloc_mmap_slow(size, true); } else { /* Clean up unneeded leading space. */ pages_unmap(ret, chunksize - offset); ret = (void *)((uintptr_t)ret + (chunksize - offset)); } } } else ret = chunk_alloc_mmap_slow(size, false); return (ret); } /* * If the caller specifies (*zero == false), it is still possible to receive * zeroed memory, in which case *zero is toggled to true. arena_chunk_alloc() * takes advantage of this to avoid demanding zeroed chunks, but taking * advantage of them if they are returned. */ static void * chunk_alloc(size_t size, bool *zero) { void *ret; assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_DSS if (opt_mmap) #endif { ret = chunk_alloc_mmap(size); if (ret != NULL) { *zero = true; goto RETURN; } } #ifdef MALLOC_DSS if (opt_dss) { ret = chunk_alloc_dss(size, zero); if (ret != NULL) goto RETURN; } #endif /* All strategies for allocation failed. */ ret = NULL; RETURN: #ifdef MALLOC_STATS if (ret != NULL) { malloc_mutex_lock(&chunks_mtx); stats_chunks.nchunks += (size / chunksize); stats_chunks.curchunks += (size / chunksize); if (stats_chunks.curchunks > stats_chunks.highchunks) stats_chunks.highchunks = stats_chunks.curchunks; malloc_mutex_unlock(&chunks_mtx); } #endif assert(CHUNK_ADDR2BASE(ret) == ret); return (ret); } #ifdef MALLOC_DSS static extent_node_t * chunk_dealloc_dss_record(void *chunk, size_t size) { extent_node_t *node, *prev, key; key.addr = (void *)((uintptr_t)chunk + size); node = extent_tree_ad_nsearch(&dss_chunks_ad, &key); /* Try to coalesce forward. */ if (node != NULL && node->addr == key.addr) { /* * Coalesce chunk with the following address range. This does * not change the position within dss_chunks_ad, so only * remove/insert from/into dss_chunks_szad. */ extent_tree_szad_remove(&dss_chunks_szad, node); node->addr = chunk; node->size += size; extent_tree_szad_insert(&dss_chunks_szad, node); } else { /* * Coalescing forward failed, so insert a new node. Drop * dss_mtx during node allocation, since it is possible that a * new base chunk will be allocated. */ malloc_mutex_unlock(&dss_mtx); node = base_node_alloc(); malloc_mutex_lock(&dss_mtx); if (node == NULL) return (NULL); node->addr = chunk; node->size = size; extent_tree_ad_insert(&dss_chunks_ad, node); extent_tree_szad_insert(&dss_chunks_szad, node); } /* Try to coalesce backward. */ prev = extent_tree_ad_prev(&dss_chunks_ad, node); if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) == chunk) { /* * Coalesce chunk with the previous address range. This does * not change the position within dss_chunks_ad, so only * remove/insert node from/into dss_chunks_szad. */ extent_tree_szad_remove(&dss_chunks_szad, prev); extent_tree_ad_remove(&dss_chunks_ad, prev); extent_tree_szad_remove(&dss_chunks_szad, node); node->addr = prev->addr; node->size += prev->size; extent_tree_szad_insert(&dss_chunks_szad, node); base_node_dealloc(prev); } return (node); } static bool chunk_dealloc_dss(void *chunk, size_t size) { bool ret; malloc_mutex_lock(&dss_mtx); if ((uintptr_t)chunk >= (uintptr_t)dss_base && (uintptr_t)chunk < (uintptr_t)dss_max) { extent_node_t *node; /* Try to coalesce with other unused chunks. */ node = chunk_dealloc_dss_record(chunk, size); if (node != NULL) { chunk = node->addr; size = node->size; } /* Get the current end of the DSS. */ dss_max = sbrk(0); /* * Try to shrink the DSS if this chunk is at the end of the * DSS. The sbrk() call here is subject to a race condition * with threads that use brk(2) or sbrk(2) directly, but the * alternative would be to leak memory for the sake of poorly * designed multi-threaded programs. */ if ((void *)((uintptr_t)chunk + size) == dss_max && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) { /* Success. */ dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size); if (node != NULL) { extent_tree_szad_remove(&dss_chunks_szad, node); extent_tree_ad_remove(&dss_chunks_ad, node); base_node_dealloc(node); } } else madvise(chunk, size, MADV_FREE); ret = false; goto RETURN; } ret = true; RETURN: malloc_mutex_unlock(&dss_mtx); return (ret); } #endif static void chunk_dealloc_mmap(void *chunk, size_t size) { pages_unmap(chunk, size); } static void chunk_dealloc(void *chunk, size_t size) { assert(chunk != NULL); assert(CHUNK_ADDR2BASE(chunk) == chunk); assert(size != 0); assert((size & chunksize_mask) == 0); #ifdef MALLOC_STATS malloc_mutex_lock(&chunks_mtx); stats_chunks.curchunks -= (size / chunksize); malloc_mutex_unlock(&chunks_mtx); #endif #ifdef MALLOC_DSS if (opt_dss) { if (chunk_dealloc_dss(chunk, size) == false) return; } if (opt_mmap) #endif chunk_dealloc_mmap(chunk, size); } /* * End chunk management functions. */ /******************************************************************************/ /* * Begin arena. */ /* * Choose an arena based on a per-thread value (fast-path code, calls slow-path * code if necessary). */ static inline arena_t * choose_arena(void) { arena_t *ret; /* * We can only use TLS if this is a PIC library, since for the static * library version, libc's malloc is used by TLS allocation, which * introduces a bootstrapping issue. */ #ifndef NO_TLS if (__isthreaded == false) { /* Avoid the overhead of TLS for single-threaded operation. */ return (arenas[0]); } ret = arenas_map; if (ret == NULL) { ret = choose_arena_hard(); assert(ret != NULL); } #else if (__isthreaded && narenas > 1) { unsigned long ind; /* * Hash _pthread_self() to one of the arenas. There is a prime * number of arenas, so this has a reasonable chance of * working. Even so, the hashing can be easily thwarted by * inconvenient _pthread_self() values. Without specific * knowledge of how _pthread_self() calculates values, we can't * easily do much better than this. */ ind = (unsigned long) _pthread_self() % narenas; /* * Optimistially assume that arenas[ind] has been initialized. * At worst, we find out that some other thread has already * done so, after acquiring the lock in preparation. Note that * this lazy locking also has the effect of lazily forcing * cache coherency; without the lock acquisition, there's no * guarantee that modification of arenas[ind] by another thread * would be seen on this CPU for an arbitrary amount of time. * * In general, this approach to modifying a synchronized value * isn't a good idea, but in this case we only ever modify the * value once, so things work out well. */ ret = arenas[ind]; if (ret == NULL) { /* * Avoid races with another thread that may have already * initialized arenas[ind]. */ malloc_spin_lock(&arenas_lock); if (arenas[ind] == NULL) ret = arenas_extend((unsigned)ind); else ret = arenas[ind]; malloc_spin_unlock(&arenas_lock); } } else ret = arenas[0]; #endif assert(ret != NULL); return (ret); } #ifndef NO_TLS /* * Choose an arena based on a per-thread value (slow-path code only, called * only by choose_arena()). */ static arena_t * choose_arena_hard(void) { arena_t *ret; assert(__isthreaded); if (narenas > 1) { malloc_spin_lock(&arenas_lock); if ((ret = arenas[next_arena]) == NULL) ret = arenas_extend(next_arena); next_arena = (next_arena + 1) % narenas; malloc_spin_unlock(&arenas_lock); } else ret = arenas[0]; arenas_map = ret; return (ret); } #endif static inline int arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) { uintptr_t a_chunk = (uintptr_t)a; uintptr_t b_chunk = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_chunk > b_chunk) - (a_chunk < b_chunk)); } /* Wrap red-black tree macros in functions. */ -rb_wrap(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t, +rb_gen(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t, arena_chunk_t, link_dirty, arena_chunk_comp) static inline int arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) { uintptr_t a_mapelm = (uintptr_t)a; uintptr_t b_mapelm = (uintptr_t)b; assert(a != NULL); assert(b != NULL); return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm)); } /* Wrap red-black tree macros in functions. */ -rb_wrap(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, +rb_gen(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link, arena_run_comp) static inline int arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) { int ret; size_t a_size = a->bits & ~PAGE_MASK; size_t b_size = b->bits & ~PAGE_MASK; ret = (a_size > b_size) - (a_size < b_size); if (ret == 0) { uintptr_t a_mapelm, b_mapelm; if ((a->bits & CHUNK_MAP_KEY) != CHUNK_MAP_KEY) a_mapelm = (uintptr_t)a; else { /* * Treat keys as though they are lower than anything * else. */ a_mapelm = 0; } b_mapelm = (uintptr_t)b; ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm); } return (ret); } /* Wrap red-black tree macros in functions. */ -rb_wrap(__unused static, arena_avail_tree_, arena_avail_tree_t, +rb_gen(__unused static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link, arena_avail_comp) static inline void arena_run_rc_incr(arena_run_t *run, arena_bin_t *bin, const void *ptr) { arena_chunk_t *chunk; arena_t *arena; size_t pagebeg, pageend, i; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) - (uintptr_t)chunk) >> PAGE_SHIFT; for (i = pagebeg; i <= pageend; i++) { size_t mapbits = chunk->map[i].bits; if (mapbits & CHUNK_MAP_DIRTY) { assert((mapbits & CHUNK_MAP_RC_MASK) == 0); chunk->ndirty--; arena->ndirty--; mapbits ^= CHUNK_MAP_DIRTY; } assert((mapbits & CHUNK_MAP_RC_MASK) != CHUNK_MAP_RC_MASK); mapbits += CHUNK_MAP_RC_ONE; chunk->map[i].bits = mapbits; } } static inline void arena_run_rc_decr(arena_run_t *run, arena_bin_t *bin, const void *ptr) { arena_chunk_t *chunk; arena_t *arena; size_t pagebeg, pageend, mapbits, i; bool dirtier = false; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) - (uintptr_t)chunk) >> PAGE_SHIFT; /* First page. */ mapbits = chunk->map[pagebeg].bits; mapbits -= CHUNK_MAP_RC_ONE; if ((mapbits & CHUNK_MAP_RC_MASK) == 0) { dirtier = true; assert((mapbits & CHUNK_MAP_DIRTY) == 0); mapbits |= CHUNK_MAP_DIRTY; chunk->ndirty++; arena->ndirty++; } chunk->map[pagebeg].bits = mapbits; if (pageend - pagebeg >= 1) { /* * Interior pages are completely consumed by the object being * deallocated, which means that the pages can be * unconditionally marked dirty. */ for (i = pagebeg + 1; i < pageend; i++) { mapbits = chunk->map[i].bits; mapbits -= CHUNK_MAP_RC_ONE; assert((mapbits & CHUNK_MAP_RC_MASK) == 0); dirtier = true; assert((mapbits & CHUNK_MAP_DIRTY) == 0); mapbits |= CHUNK_MAP_DIRTY; chunk->ndirty++; arena->ndirty++; chunk->map[i].bits = mapbits; } /* Last page. */ mapbits = chunk->map[pageend].bits; mapbits -= CHUNK_MAP_RC_ONE; if ((mapbits & CHUNK_MAP_RC_MASK) == 0) { dirtier = true; assert((mapbits & CHUNK_MAP_DIRTY) == 0); mapbits |= CHUNK_MAP_DIRTY; chunk->ndirty++; arena->ndirty++; } chunk->map[pageend].bits = mapbits; } if (dirtier) { if (chunk->dirtied == false) { arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk); chunk->dirtied = true; } /* Enforce opt_lg_dirty_mult. */ if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) < arena->ndirty) arena_purge(arena); } } static inline void * arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) { void *ret; unsigned i, mask, bit, regind; assert(run->magic == ARENA_RUN_MAGIC); assert(run->regs_minelm < bin->regs_mask_nelms); /* * Move the first check outside the loop, so that run->regs_minelm can * be updated unconditionally, without the possibility of updating it * multiple times. */ i = run->regs_minelm; mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (LG_SIZEOF_INT + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; arena_run_rc_incr(run, bin, ret); return (ret); } for (i++; i < bin->regs_mask_nelms; i++) { mask = run->regs_mask[i]; if (mask != 0) { /* Usable allocation found. */ bit = ffs((int)mask) - 1; regind = ((i << (LG_SIZEOF_INT + 3)) + bit); assert(regind < bin->nregs); ret = (void *)(((uintptr_t)run) + bin->reg0_offset + (bin->reg_size * regind)); /* Clear bit. */ mask ^= (1U << bit); run->regs_mask[i] = mask; /* * Make a note that nothing before this element * contains a free region. */ run->regs_minelm = i; /* Low payoff: + (mask == 0); */ arena_run_rc_incr(run, bin, ret); return (ret); } } /* Not reached. */ assert(0); return (NULL); } static inline void arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size) { unsigned shift, diff, regind, elm, bit; assert(run->magic == ARENA_RUN_MAGIC); /* * Avoid doing division with a variable divisor if possible. Using * actual division here can reduce allocator throughput by over 20%! */ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset); /* Rescale (factor powers of 2 out of the numerator and denominator). */ shift = ffs(size) - 1; diff >>= shift; size >>= shift; if (size == 1) { /* The divisor was a power of 2. */ regind = diff; } else { /* * To divide by a number D that is not a power of two we * multiply by (2^21 / D) and then right shift by 21 positions. * * X / D * * becomes * * (X * size_invs[D - 3]) >> SIZE_INV_SHIFT * * We can omit the first three elements, because we never * divide by 0, and 1 and 2 are both powers of two, which are * handled above. */ #define SIZE_INV_SHIFT 21 #define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1) static const unsigned size_invs[] = { SIZE_INV(3), SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7), SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11), SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15), SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19), SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23), SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27), SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31) }; if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2)) regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT; else regind = diff / size; #undef SIZE_INV #undef SIZE_INV_SHIFT } assert(diff == regind * size); assert(regind < bin->nregs); elm = regind >> (LG_SIZEOF_INT + 3); if (elm < run->regs_minelm) run->regs_minelm = elm; bit = regind - (elm << (LG_SIZEOF_INT + 3)); assert((run->regs_mask[elm] & (1U << bit)) == 0); run->regs_mask[elm] |= (1U << bit); arena_run_rc_decr(run, bin, ptr); } static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, bool zero) { arena_chunk_t *chunk; size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); old_ndirty = chunk->ndirty; run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT); total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >> PAGE_SHIFT; need_pages = (size >> PAGE_SHIFT); assert(need_pages > 0); assert(need_pages <= total_pages); rem_pages = total_pages - need_pages; arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); arena->nactive += need_pages; /* Keep track of trailing unused pages for later use. */ if (rem_pages > 0) { chunk->map[run_ind+need_pages].bits = (rem_pages << PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits & CHUNK_MAP_FLAGS_MASK); chunk->map[run_ind+total_pages-1].bits = (rem_pages << PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits & CHUNK_MAP_FLAGS_MASK); arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind+need_pages]); } for (i = 0; i < need_pages; i++) { /* Zero if necessary. */ if (zero) { if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED) == 0) { memset((void *)((uintptr_t)chunk + ((run_ind + i) << PAGE_SHIFT)), 0, PAGE_SIZE); /* CHUNK_MAP_ZEROED is cleared below. */ } } /* Update dirty page accounting. */ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) { chunk->ndirty--; arena->ndirty--; /* CHUNK_MAP_DIRTY is cleared below. */ } /* Initialize the chunk map. */ if (large) { chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; } else { chunk->map[run_ind + i].bits = (i << CHUNK_MAP_PG_SHIFT) | CHUNK_MAP_ALLOCATED; } } if (large) { /* * Set the run size only in the first element for large runs. * This is primarily a debugging aid, since the lack of size * info for trailing pages only matters if the application * tries to operate on an interior pointer. */ chunk->map[run_ind].bits |= size; } else { /* * Initialize the first page's refcount to 1, so that the run * header is protected from dirty page purging. */ chunk->map[run_ind].bits += CHUNK_MAP_RC_ONE; } } static arena_chunk_t * arena_chunk_alloc(arena_t *arena) { arena_chunk_t *chunk; size_t i; if (arena->spare != NULL) { chunk = arena->spare; arena->spare = NULL; } else { bool zero; size_t zeroed; zero = false; chunk = (arena_chunk_t *)chunk_alloc(chunksize, &zero); if (chunk == NULL) return (NULL); #ifdef MALLOC_STATS arena->stats.mapped += chunksize; #endif chunk->arena = arena; chunk->dirtied = false; /* * Claim that no pages are in use, since the header is merely * overhead. */ chunk->ndirty = 0; /* * Initialize the map to contain one maximal free untouched run. * Mark the pages as zeroed iff chunk_alloc() returned a zeroed * chunk. */ zeroed = zero ? CHUNK_MAP_ZEROED : 0; for (i = 0; i < arena_chunk_header_npages; i++) chunk->map[i].bits = 0; chunk->map[i].bits = arena_maxclass | zeroed; for (i++; i < chunk_npages-1; i++) chunk->map[i].bits = zeroed; chunk->map[chunk_npages-1].bits = arena_maxclass | zeroed; } /* Insert the run into the runs_avail tree. */ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[arena_chunk_header_npages]); return (chunk); } static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk) { if (arena->spare != NULL) { if (arena->spare->dirtied) { arena_chunk_tree_dirty_remove( &chunk->arena->chunks_dirty, arena->spare); arena->ndirty -= arena->spare->ndirty; } chunk_dealloc((void *)arena->spare, chunksize); #ifdef MALLOC_STATS arena->stats.mapped -= chunksize; #endif } /* * Remove run from runs_avail, regardless of whether this chunk * will be cached, so that the arena does not use it. Dirty page * flushing only uses the chunks_dirty tree, so leaving this chunk in * the chunks_* trees is sufficient for that purpose. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[arena_chunk_header_npages]); arena->spare = chunk; } static arena_run_t * arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero) { arena_chunk_t *chunk; arena_run_t *run; arena_chunk_map_t *mapelm, key; assert(size <= arena_maxclass); assert((size & PAGE_MASK) == 0); /* Search the arena's chunks for the lowest best fit. */ key.bits = size | CHUNK_MAP_KEY; mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key); if (mapelm != NULL) { arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm); size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map) / sizeof(arena_chunk_map_t); run = (arena_run_t *)((uintptr_t)run_chunk + (pageind << PAGE_SHIFT)); arena_run_split(arena, run, size, large, zero); return (run); } /* * No usable runs. Create a new chunk from which to allocate the run. */ chunk = arena_chunk_alloc(arena); if (chunk == NULL) return (NULL); run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages << PAGE_SHIFT)); /* Update page map. */ arena_run_split(arena, run, size, large, zero); return (run); } +#ifdef MALLOC_DEBUG +static arena_chunk_t * +chunks_dirty_iter_cb(arena_chunk_tree_t *tree, arena_chunk_t *chunk, void *arg) +{ + size_t *ndirty = (size_t *)arg; + + assert(chunk->dirtied); + *ndirty += chunk->ndirty; + return (NULL); +} +#endif + static void arena_purge(arena_t *arena) { arena_chunk_t *chunk; size_t i, npages; #ifdef MALLOC_DEBUG size_t ndirty = 0; - rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty, - chunk) { - assert(chunk->dirtied); - ndirty += chunk->ndirty; - } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk) + arena_chunk_tree_dirty_iter(&arena->chunks_dirty, NULL, + chunks_dirty_iter_cb, (void *)&ndirty); assert(ndirty == arena->ndirty); #endif assert((arena->nactive >> opt_lg_dirty_mult) < arena->ndirty); #ifdef MALLOC_STATS arena->stats.npurge++; #endif /* * Iterate downward through chunks until enough dirty memory has been * purged. Terminate as soon as possible in order to minimize the * number of system calls, even if a chunk has only been partially * purged. */ while ((arena->nactive >> (opt_lg_dirty_mult + 1)) < arena->ndirty) { chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty); assert(chunk != NULL); for (i = chunk_npages - 1; chunk->ndirty > 0; i--) { assert(i >= arena_chunk_header_npages); if (chunk->map[i].bits & CHUNK_MAP_DIRTY) { chunk->map[i].bits ^= CHUNK_MAP_DIRTY; /* Find adjacent dirty run(s). */ for (npages = 1; i > arena_chunk_header_npages && (chunk->map[i - 1].bits & CHUNK_MAP_DIRTY); npages++) { i--; chunk->map[i].bits ^= CHUNK_MAP_DIRTY; } chunk->ndirty -= npages; arena->ndirty -= npages; madvise((void *)((uintptr_t)chunk + (i << PAGE_SHIFT)), (npages << PAGE_SHIFT), MADV_FREE); #ifdef MALLOC_STATS arena->stats.nmadvise++; arena->stats.purged += npages; #endif if ((arena->nactive >> (opt_lg_dirty_mult + 1)) >= arena->ndirty) break; } } if (chunk->ndirty == 0) { arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk); chunk->dirtied = false; } } } static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) { arena_chunk_t *chunk; size_t size, run_ind, run_pages; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT); assert(run_ind >= arena_chunk_header_npages); assert(run_ind < chunk_npages); if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) size = chunk->map[run_ind].bits & ~PAGE_MASK; else size = run->bin->run_size; run_pages = (size >> PAGE_SHIFT); arena->nactive -= run_pages; /* Mark pages as unallocated in the chunk map. */ if (dirty) { size_t i; for (i = 0; i < run_pages; i++) { /* * When (dirty == true), *all* pages within the run * need to have their dirty bits set, because only * small runs can create a mixture of clean/dirty * pages, but such runs are passed to this function * with (dirty == false). */ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) == 0); chunk->ndirty++; arena->ndirty++; chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY; } } else { size_t i; for (i = 0; i < run_pages; i++) { chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED); } } chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & CHUNK_MAP_FLAGS_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK); /* Try to coalesce forward. */ if (run_ind + run_pages < chunk_npages && (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) { size_t nrun_size = chunk->map[run_ind+run_pages].bits & ~PAGE_MASK; /* * Remove successor from runs_avail; the coalesced run is * inserted later. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind+run_pages]); size += nrun_size; run_pages = size >> PAGE_SHIFT; assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK) == nrun_size); chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & CHUNK_MAP_FLAGS_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK); } /* Try to coalesce backward. */ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits & CHUNK_MAP_ALLOCATED) == 0) { size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK; run_ind -= prun_size >> PAGE_SHIFT; /* * Remove predecessor from runs_avail; the coalesced run is * inserted later. */ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); size += prun_size; run_pages = size >> PAGE_SHIFT; assert((chunk->map[run_ind].bits & ~PAGE_MASK) == prun_size); chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & CHUNK_MAP_FLAGS_MASK); chunk->map[run_ind+run_pages-1].bits = size | (chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK); } /* Insert into runs_avail, now that coalescing is complete. */ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]); /* * Deallocate chunk if it is now completely unused. The bit * manipulation checks whether the first run is unallocated and extends * to the end of the chunk. */ if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK | CHUNK_MAP_ALLOCATED)) == arena_maxclass) arena_chunk_dealloc(arena, chunk); /* * It is okay to do dirty page processing even if the chunk was * deallocated above, since in that case it is the spare. Waiting * until after possible chunk deallocation to do dirty processing * allows for an old spare to be fully deallocated, thus decreasing the * chances of spuriously crossing the dirty page purging threshold. */ if (dirty) { if (chunk->dirtied == false) { arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk); chunk->dirtied = true; } /* Enforce opt_lg_dirty_mult. */ if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) < arena->ndirty) arena_purge(arena); } } static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize) { size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT; size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT; assert(oldsize > newsize); /* * Update the chunk map so that arena_run_dalloc() can treat the * leading run as separately allocated. */ assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; assert((chunk->map[pageind+head_npages].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; arena_run_dalloc(arena, run, false); } static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, size_t oldsize, size_t newsize, bool dirty) { size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT; size_t npages = newsize >> PAGE_SHIFT; assert(oldsize > newsize); /* * Update the chunk map so that arena_run_dalloc() can treat the * trailing run as separately allocated. */ assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; assert((chunk->map[pageind+npages].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize), dirty); } static arena_run_t * arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin) { arena_chunk_map_t *mapelm; arena_run_t *run; unsigned i, remainder; /* Look for a usable run. */ mapelm = arena_run_tree_first(&bin->runs); if (mapelm != NULL) { arena_chunk_t *chunk; size_t pageind; /* run is guaranteed to have available space. */ arena_run_tree_remove(&bin->runs, mapelm); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mapelm); pageind = (((uintptr_t)mapelm - (uintptr_t)chunk->map) / sizeof(arena_chunk_map_t)); run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind - ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT)); #ifdef MALLOC_STATS bin->stats.reruns++; #endif return (run); } /* No existing runs have any space available. */ /* Allocate a new run. */ run = arena_run_alloc(arena, bin->run_size, false, false); if (run == NULL) return (NULL); /* Initialize run internals. */ run->bin = bin; for (i = 0; i < bin->regs_mask_nelms - 1; i++) run->regs_mask[i] = UINT_MAX; remainder = bin->nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1); if (remainder == 0) run->regs_mask[i] = UINT_MAX; else { /* The last element has spare bits that need to be unset. */ run->regs_mask[i] = (UINT_MAX >> ((1U << (LG_SIZEOF_INT + 3)) - remainder)); } run->regs_minelm = 0; run->nfree = bin->nregs; #ifdef MALLOC_DEBUG run->magic = ARENA_RUN_MAGIC; #endif #ifdef MALLOC_STATS bin->stats.nruns++; bin->stats.curruns++; if (bin->stats.curruns > bin->stats.highruns) bin->stats.highruns = bin->stats.curruns; #endif return (run); } /* bin->runcur must have space available before this function is called. */ static inline void * arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run) { void *ret; assert(run->magic == ARENA_RUN_MAGIC); assert(run->nfree > 0); ret = arena_run_reg_alloc(run, bin); assert(ret != NULL); run->nfree--; return (ret); } /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ static void * arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin) { bin->runcur = arena_bin_nonfull_run_get(arena, bin); if (bin->runcur == NULL) return (NULL); assert(bin->runcur->magic == ARENA_RUN_MAGIC); assert(bin->runcur->nfree > 0); return (arena_bin_malloc_easy(arena, bin, bin->runcur)); } /* * Calculate bin->run_size such that it meets the following constraints: * * *) bin->run_size >= min_run_size * *) bin->run_size <= arena_maxclass * *) bin->run_size <= RUN_MAX_SMALL * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed). * *) run header size < PAGE_SIZE * * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are * also calculated here, since these settings are all interdependent. */ static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size) { size_t try_run_size, good_run_size; unsigned good_nregs, good_mask_nelms, good_reg0_offset; unsigned try_nregs, try_mask_nelms, try_reg0_offset; assert(min_run_size >= PAGE_SIZE); assert(min_run_size <= arena_maxclass); assert(min_run_size <= RUN_MAX_SMALL); /* * Calculate known-valid settings before entering the run_size * expansion loop, so that the first part of the loop always copies * valid settings. * * The do..while loop iteratively reduces the number of regions until * the run header and the regions no longer overlap. A closed formula * would be quite messy, since there is an interdependency between the * header's mask length and the number of regions. */ try_run_size = min_run_size; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) + ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); /* run_size expansion loop. */ do { /* * Copy valid settings before trying more aggressive settings. */ good_run_size = try_run_size; good_nregs = try_nregs; good_mask_nelms = try_mask_nelms; good_reg0_offset = try_reg0_offset; /* Try more aggressive settings. */ try_run_size += PAGE_SIZE; try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ do { try_nregs--; try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) + ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ? 1 : 0); try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) > try_reg0_offset); } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size && (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))) < PAGE_SIZE); assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1)) <= good_reg0_offset); assert((good_mask_nelms << (LG_SIZEOF_INT + 3)) >= good_nregs); /* Copy final settings. */ bin->run_size = good_run_size; bin->nregs = good_nregs; bin->regs_mask_nelms = good_mask_nelms; bin->reg0_offset = good_reg0_offset; return (good_run_size); } #ifdef MALLOC_TCACHE static inline void tcache_event(tcache_t *tcache) { if (tcache_gc_incr == 0) return; tcache->ev_cnt++; assert(tcache->ev_cnt <= tcache_gc_incr); if (tcache->ev_cnt >= tcache_gc_incr) { size_t binind = tcache->next_gc_bin; tcache_bin_t *tbin = tcache->tbins[binind]; if (tbin != NULL) { if (tbin->high_water == 0) { /* * This bin went completely unused for an * entire GC cycle, so throw away the tbin. */ assert(tbin->ncached == 0); tcache_bin_destroy(tcache, tbin, binind); tcache->tbins[binind] = NULL; } else { if (tbin->low_water > 0) { /* * Flush (ceiling) half of the objects * below the low water mark. */ tcache_bin_flush(tbin, binind, tbin->ncached - (tbin->low_water >> 1) - (tbin->low_water & 1)); } tbin->low_water = tbin->ncached; tbin->high_water = tbin->ncached; } } tcache->next_gc_bin++; if (tcache->next_gc_bin == nbins) tcache->next_gc_bin = 0; tcache->ev_cnt = 0; } } static inline void * tcache_bin_alloc(tcache_bin_t *tbin) { if (tbin->ncached == 0) return (NULL); tbin->ncached--; if (tbin->ncached < tbin->low_water) tbin->low_water = tbin->ncached; return (tbin->slots[tbin->ncached]); } static void tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin, size_t binind) { arena_t *arena; arena_bin_t *bin; arena_run_t *run; void *ptr; unsigned i; assert(tbin->ncached == 0); arena = tcache->arena; bin = &arena->bins[binind]; malloc_spin_lock(&arena->lock); for (i = 0; i < (tcache_nslots >> 1); i++) { if ((run = bin->runcur) != NULL && run->nfree > 0) ptr = arena_bin_malloc_easy(arena, bin, run); else ptr = arena_bin_malloc_hard(arena, bin); if (ptr == NULL) break; /* * Fill tbin such that the objects lowest in memory are used * first. */ tbin->slots[(tcache_nslots >> 1) - 1 - i] = ptr; } #ifdef MALLOC_STATS bin->stats.nfills++; bin->stats.nrequests += tbin->tstats.nrequests; if (bin->reg_size <= small_maxclass) { arena->stats.nmalloc_small += (i - tbin->ncached); arena->stats.allocated_small += (i - tbin->ncached) * bin->reg_size; arena->stats.nmalloc_small += tbin->tstats.nrequests; } else { arena->stats.nmalloc_medium += (i - tbin->ncached); arena->stats.allocated_medium += (i - tbin->ncached) * bin->reg_size; arena->stats.nmalloc_medium += tbin->tstats.nrequests; } tbin->tstats.nrequests = 0; #endif malloc_spin_unlock(&arena->lock); tbin->ncached = i; if (tbin->ncached > tbin->high_water) tbin->high_water = tbin->ncached; } static inline void * tcache_alloc(tcache_t *tcache, size_t size, bool zero) { void *ret; tcache_bin_t *tbin; size_t binind; if (size <= small_maxclass) binind = small_size2bin[size]; else { binind = mbin0 + ((MEDIUM_CEILING(size) - medium_min) >> lg_mspace); } assert(binind < nbins); tbin = tcache->tbins[binind]; if (tbin == NULL) { tbin = tcache_bin_create(tcache->arena); if (tbin == NULL) return (NULL); tcache->tbins[binind] = tbin; } ret = tcache_bin_alloc(tbin); if (ret == NULL) { ret = tcache_alloc_hard(tcache, tbin, binind); if (ret == NULL) return (NULL); } if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } else memset(ret, 0, size); #ifdef MALLOC_STATS tbin->tstats.nrequests++; #endif tcache_event(tcache); return (ret); } static void * tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind) { void *ret; tcache_bin_fill(tcache, tbin, binind); ret = tcache_bin_alloc(tbin); return (ret); } #endif static inline void * arena_malloc_small(arena_t *arena, size_t size, bool zero) { void *ret; arena_bin_t *bin; arena_run_t *run; size_t binind; binind = small_size2bin[size]; assert(binind < mbin0); bin = &arena->bins[binind]; size = bin->reg_size; malloc_spin_lock(&arena->lock); if ((run = bin->runcur) != NULL && run->nfree > 0) ret = arena_bin_malloc_easy(arena, bin, run); else ret = arena_bin_malloc_hard(arena, bin); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS # ifdef MALLOC_TCACHE if (__isthreaded == false) { # endif bin->stats.nrequests++; arena->stats.nmalloc_small++; # ifdef MALLOC_TCACHE } # endif arena->stats.allocated_small += size; #endif malloc_spin_unlock(&arena->lock); if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } else memset(ret, 0, size); return (ret); } static void * arena_malloc_medium(arena_t *arena, size_t size, bool zero) { void *ret; arena_bin_t *bin; arena_run_t *run; size_t binind; size = MEDIUM_CEILING(size); binind = mbin0 + ((size - medium_min) >> lg_mspace); assert(binind < nbins); bin = &arena->bins[binind]; assert(bin->reg_size == size); malloc_spin_lock(&arena->lock); if ((run = bin->runcur) != NULL && run->nfree > 0) ret = arena_bin_malloc_easy(arena, bin, run); else ret = arena_bin_malloc_hard(arena, bin); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS # ifdef MALLOC_TCACHE if (__isthreaded == false) { # endif bin->stats.nrequests++; arena->stats.nmalloc_medium++; # ifdef MALLOC_TCACHE } # endif arena->stats.allocated_medium += size; #endif malloc_spin_unlock(&arena->lock); if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } else memset(ret, 0, size); return (ret); } static void * arena_malloc_large(arena_t *arena, size_t size, bool zero) { void *ret; /* Large allocation. */ size = PAGE_CEILING(size); malloc_spin_lock(&arena->lock); ret = (void *)arena_run_alloc(arena, size, true, zero); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++; if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns > arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) { arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns = arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns; } #endif malloc_spin_unlock(&arena->lock); if (zero == false) { if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); } return (ret); } static inline void * arena_malloc(size_t size, bool zero) { assert(size != 0); assert(QUANTUM_CEILING(size) <= arena_maxclass); if (size <= bin_maxclass) { #ifdef MALLOC_TCACHE if (__isthreaded && tcache_nslots) { tcache_t *tcache = tcache_tls; if ((uintptr_t)tcache > (uintptr_t)1) return (tcache_alloc(tcache, size, zero)); else if (tcache == NULL) { tcache = tcache_create(choose_arena()); if (tcache == NULL) return (NULL); return (tcache_alloc(tcache, size, zero)); } } #endif if (size <= small_maxclass) { return (arena_malloc_small(choose_arena(), size, zero)); } else { return (arena_malloc_medium(choose_arena(), size, zero)); } } else return (arena_malloc_large(choose_arena(), size, zero)); } static inline void * imalloc(size_t size) { assert(size != 0); if (size <= arena_maxclass) return (arena_malloc(size, false)); else return (huge_malloc(size, false)); } static inline void * icalloc(size_t size) { if (size <= arena_maxclass) return (arena_malloc(size, true)); else return (huge_malloc(size, true)); } /* Only handles large allocations that require more than page alignment. */ static void * arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size) { void *ret; size_t offset; arena_chunk_t *chunk; assert((size & PAGE_MASK) == 0); assert((alignment & PAGE_MASK) == 0); malloc_spin_lock(&arena->lock); ret = (void *)arena_run_alloc(arena, alloc_size, true, false); if (ret == NULL) { malloc_spin_unlock(&arena->lock); return (NULL); } chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret); offset = (uintptr_t)ret & (alignment - 1); assert((offset & PAGE_MASK) == 0); assert(offset < alloc_size); if (offset == 0) arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false); else { size_t leadsize, trailsize; leadsize = alignment - offset; if (leadsize > 0) { arena_run_trim_head(arena, chunk, ret, alloc_size, alloc_size - leadsize); ret = (void *)((uintptr_t)ret + leadsize); } trailsize = alloc_size - leadsize - size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); arena_run_trim_tail(arena, chunk, ret, size + trailsize, size, false); } } #ifdef MALLOC_STATS arena->stats.nmalloc_large++; arena->stats.allocated_large += size; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++; if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns > arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) { arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns = arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns; } #endif malloc_spin_unlock(&arena->lock); if (opt_junk) memset(ret, 0xa5, size); else if (opt_zero) memset(ret, 0, size); return (ret); } static inline void * ipalloc(size_t alignment, size_t size) { void *ret; size_t ceil_size; /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each small * size class, every object is aligned at the smallest power of two * that is non-zero in the base two representation of the size. For * example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 * * Depending on runtime settings, it is possible that arena_malloc() * will further round up to a power of two, but that never causes * correctness issues. */ ceil_size = (size + (alignment - 1)) & (-alignment); /* * (ceil_size < size) protects against the combination of maximal * alignment and size greater than maximal alignment. */ if (ceil_size < size) { /* size_t overflow. */ return (NULL); } if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE && ceil_size <= arena_maxclass)) ret = arena_malloc(ceil_size, false); else { size_t run_size; /* * We can't achieve subpage alignment, so round up alignment * permanently; it makes later calculations simpler. */ alignment = PAGE_CEILING(alignment); ceil_size = PAGE_CEILING(size); /* * (ceil_size < size) protects against very large sizes within * PAGE_SIZE of SIZE_T_MAX. * * (ceil_size + alignment < ceil_size) protects against the * combination of maximal alignment and ceil_size large enough * to cause overflow. This is similar to the first overflow * check above, but it needs to be repeated due to the new * ceil_size value, which may now be *equal* to maximal * alignment, whereas before we only detected overflow if the * original size was *greater* than maximal alignment. */ if (ceil_size < size || ceil_size + alignment < ceil_size) { /* size_t overflow. */ return (NULL); } /* * Calculate the size of the over-size run that arena_palloc() * would need to allocate in order to guarantee the alignment. */ if (ceil_size >= alignment) run_size = ceil_size + alignment - PAGE_SIZE; else { /* * It is possible that (alignment << 1) will cause * overflow, but it doesn't matter because we also * subtract PAGE_SIZE, which in the case of overflow * leaves us with a very large run_size. That causes * the first conditional below to fail, which means * that the bogus run_size value never gets used for * anything important. */ run_size = (alignment << 1) - PAGE_SIZE; } if (run_size <= arena_maxclass) { ret = arena_palloc(choose_arena(), alignment, ceil_size, run_size); } else if (alignment <= chunksize) ret = huge_malloc(ceil_size, false); else ret = huge_palloc(alignment, ceil_size); } assert(((uintptr_t)ret & (alignment - 1)) == 0); return (ret); } static bool arena_is_large(const void *ptr) { arena_chunk_t *chunk; size_t pageind, mapbits; assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapbits = chunk->map[pageind].bits; assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); return ((mapbits & CHUNK_MAP_LARGE) != 0); } /* Return the size of the allocation pointed to by ptr. */ static size_t arena_salloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; size_t pageind, mapbits; assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapbits = chunk->map[pageind].bits; assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); if ((mapbits & CHUNK_MAP_LARGE) == 0) { arena_run_t *run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind - ((mapbits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT)); assert(run->magic == ARENA_RUN_MAGIC); ret = run->bin->reg_size; } else { ret = mapbits & ~PAGE_MASK; assert(ret != 0); } return (ret); } static inline size_t isalloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) { /* Region. */ assert(chunk->arena->magic == ARENA_MAGIC); ret = arena_salloc(ptr); } else { extent_node_t *node, key; /* Chunk (huge allocation). */ malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = extent_tree_ad_search(&huge, &key); assert(node != NULL); ret = node->size; malloc_mutex_unlock(&huge_mtx); } return (ret); } static inline void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr, arena_chunk_map_t *mapelm) { size_t pageind; arena_run_t *run; arena_bin_t *bin; size_t size; pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind - ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT)); assert(run->magic == ARENA_RUN_MAGIC); bin = run->bin; size = bin->reg_size; if (opt_junk) memset(ptr, 0x5a, size); arena_run_reg_dalloc(run, bin, ptr, size); run->nfree++; if (run->nfree == bin->nregs) arena_dalloc_bin_run(arena, chunk, run, bin); else if (run->nfree == 1 && run != bin->runcur) { /* * Make sure that bin->runcur always refers to the lowest * non-full run, if one exists. */ if (bin->runcur == NULL) bin->runcur = run; else if ((uintptr_t)run < (uintptr_t)bin->runcur) { /* Switch runcur. */ if (bin->runcur->nfree > 0) { arena_chunk_t *runcur_chunk = CHUNK_ADDR2BASE(bin->runcur); size_t runcur_pageind = (((uintptr_t)bin->runcur - (uintptr_t)runcur_chunk)) >> PAGE_SHIFT; arena_chunk_map_t *runcur_mapelm = &runcur_chunk->map[runcur_pageind]; /* Insert runcur. */ arena_run_tree_insert(&bin->runs, runcur_mapelm); } bin->runcur = run; } else { size_t run_pageind = (((uintptr_t)run - (uintptr_t)chunk)) >> PAGE_SHIFT; arena_chunk_map_t *run_mapelm = &chunk->map[run_pageind]; assert(arena_run_tree_search(&bin->runs, run_mapelm) == NULL); arena_run_tree_insert(&bin->runs, run_mapelm); } } #ifdef MALLOC_STATS if (size <= small_maxclass) { arena->stats.allocated_small -= size; arena->stats.ndalloc_small++; } else { arena->stats.allocated_medium -= size; arena->stats.ndalloc_medium++; } #endif } static void arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, arena_bin_t *bin) { size_t run_ind; /* Deallocate run. */ if (run == bin->runcur) bin->runcur = NULL; else if (bin->nregs != 1) { size_t run_pageind = (((uintptr_t)run - (uintptr_t)chunk)) >> PAGE_SHIFT; arena_chunk_map_t *run_mapelm = &chunk->map[run_pageind]; /* * This block's conditional is necessary because if the * run only contains one region, then it never gets * inserted into the non-full runs tree. */ arena_run_tree_remove(&bin->runs, run_mapelm); } /* * Mark the first page as dirty. The dirty bit for every other page in * the run is already properly set, which means we can call * arena_run_dalloc(..., false), thus potentially avoiding the needless * creation of many dirty pages. */ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT); assert((chunk->map[run_ind].bits & CHUNK_MAP_DIRTY) == 0); chunk->map[run_ind].bits |= CHUNK_MAP_DIRTY; chunk->ndirty++; arena->ndirty++; #ifdef MALLOC_DEBUG run->magic = 0; #endif arena_run_dalloc(arena, run, false); #ifdef MALLOC_STATS bin->stats.curruns--; #endif if (chunk->dirtied == false) { arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk); chunk->dirtied = true; } /* Enforce opt_lg_dirty_mult. */ if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) < arena->ndirty) arena_purge(arena); } #ifdef MALLOC_STATS static void arena_stats_print(arena_t *arena) { malloc_printf("dirty pages: %zu:%zu active:dirty, %"PRIu64" sweep%s," " %"PRIu64" madvise%s, %"PRIu64" purged\n", arena->nactive, arena->ndirty, arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", arena->stats.purged); malloc_printf(" allocated nmalloc ndalloc\n"); malloc_printf("small: %12zu %12"PRIu64" %12"PRIu64"\n", arena->stats.allocated_small, arena->stats.nmalloc_small, arena->stats.ndalloc_small); malloc_printf("medium: %12zu %12"PRIu64" %12"PRIu64"\n", arena->stats.allocated_medium, arena->stats.nmalloc_medium, arena->stats.ndalloc_medium); malloc_printf("large: %12zu %12"PRIu64" %12"PRIu64"\n", arena->stats.allocated_large, arena->stats.nmalloc_large, arena->stats.ndalloc_large); malloc_printf("total: %12zu %12"PRIu64" %12"PRIu64"\n", arena->stats.allocated_small + arena->stats.allocated_medium + arena->stats.allocated_large, arena->stats.nmalloc_small + arena->stats.nmalloc_medium + arena->stats.nmalloc_large, arena->stats.ndalloc_small + arena->stats.ndalloc_medium + arena->stats.ndalloc_large); malloc_printf("mapped: %12zu\n", arena->stats.mapped); if (arena->stats.nmalloc_small + arena->stats.nmalloc_medium > 0) { unsigned i, gap_start; #ifdef MALLOC_TCACHE malloc_printf("bins: bin size regs pgs requests " "nfills nflushes newruns reruns maxruns curruns\n"); #else malloc_printf("bins: bin size regs pgs requests " "newruns reruns maxruns curruns\n"); #endif for (i = 0, gap_start = UINT_MAX; i < nbins; i++) { if (arena->bins[i].stats.nruns == 0) { if (gap_start == UINT_MAX) gap_start = i; } else { if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* * Gap of more than one size * class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } gap_start = UINT_MAX; } malloc_printf( "%13u %1s %5u %4u %3u %9"PRIu64" %9"PRIu64 #ifdef MALLOC_TCACHE " %9"PRIu64" %9"PRIu64 #endif " %9"PRIu64" %7zu %7zu\n", i, i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : i < ntbins + nqbins + ncbins ? "C" : i < ntbins + nqbins + ncbins + nsbins ? "S" : "M", arena->bins[i].reg_size, arena->bins[i].nregs, arena->bins[i].run_size >> PAGE_SHIFT, arena->bins[i].stats.nrequests, #ifdef MALLOC_TCACHE arena->bins[i].stats.nfills, arena->bins[i].stats.nflushes, #endif arena->bins[i].stats.nruns, arena->bins[i].stats.reruns, arena->bins[i].stats.highruns, arena->bins[i].stats.curruns); } } if (gap_start != UINT_MAX) { if (i > gap_start + 1) { /* Gap of more than one size class. */ malloc_printf("[%u..%u]\n", gap_start, i - 1); } else { /* Gap of one size class. */ malloc_printf("[%u]\n", gap_start); } } } if (arena->stats.nmalloc_large > 0) { size_t i; ssize_t gap_start; size_t nlclasses = (chunksize - PAGE_SIZE) >> PAGE_SHIFT; malloc_printf( "large: size pages nrequests maxruns curruns\n"); for (i = 0, gap_start = -1; i < nlclasses; i++) { if (arena->stats.lstats[i].nrequests == 0) { if (gap_start == -1) gap_start = i; } else { if (gap_start != -1) { malloc_printf("[%zu]\n", i - gap_start); gap_start = -1; } malloc_printf( "%13zu %5zu %9"PRIu64" %9zu %9zu\n", (i+1) << PAGE_SHIFT, i+1, arena->stats.lstats[i].nrequests, arena->stats.lstats[i].highruns, arena->stats.lstats[i].curruns); } } if (gap_start != -1) malloc_printf("[%zu]\n", i - gap_start); } } #endif static void stats_print_atexit(void) { #if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS)) unsigned i; /* * Merge stats from extant threads. This is racy, since individual * threads do not lock when recording tcache stats events. As a * consequence, the final stats may be slightly out of date by the time * they are reported, if other threads continue to allocate. */ for (i = 0; i < narenas; i++) { arena_t *arena = arenas[i]; if (arena != NULL) { tcache_t *tcache; malloc_spin_lock(&arena->lock); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tcache, arena); } malloc_spin_unlock(&arena->lock); } } #endif malloc_stats_print(); } #ifdef MALLOC_TCACHE static void tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem) { arena_chunk_t *chunk; arena_t *arena; void *ptr; unsigned i, ndeferred, ncached; for (ndeferred = tbin->ncached - rem; ndeferred > 0;) { ncached = ndeferred; /* Lock the arena associated with the first object. */ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(tbin->slots[0]); arena = chunk->arena; malloc_spin_lock(&arena->lock); /* Deallocate every object that belongs to the locked arena. */ for (i = ndeferred = 0; i < ncached; i++) { ptr = tbin->slots[i]; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk->arena == arena) { size_t pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); arena_chunk_map_t *mapelm = &chunk->map[pageind]; arena_dalloc_bin(arena, chunk, ptr, mapelm); } else { /* * This object was allocated via a different * arena than the one that is currently locked. * Stash the object, so that it can be handled * in a future pass. */ tbin->slots[ndeferred] = ptr; ndeferred++; } } #ifdef MALLOC_STATS arena->bins[binind].stats.nflushes++; { arena_bin_t *bin = &arena->bins[binind]; bin->stats.nrequests += tbin->tstats.nrequests; if (bin->reg_size <= small_maxclass) { arena->stats.nmalloc_small += tbin->tstats.nrequests; } else { arena->stats.nmalloc_medium += tbin->tstats.nrequests; } tbin->tstats.nrequests = 0; } #endif malloc_spin_unlock(&arena->lock); } if (rem > 0) { /* * Shift the remaining valid pointers to the base of the slots * array. */ memmove(&tbin->slots[0], &tbin->slots[tbin->ncached - rem], rem * sizeof(void *)); } tbin->ncached = rem; } static inline void tcache_dalloc(tcache_t *tcache, void *ptr) { arena_t *arena; arena_chunk_t *chunk; arena_run_t *run; arena_bin_t *bin; tcache_bin_t *tbin; size_t pageind, binind; arena_chunk_map_t *mapelm; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind - ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT)); assert(run->magic == ARENA_RUN_MAGIC); bin = run->bin; binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) / sizeof(arena_bin_t); assert(binind < nbins); if (opt_junk) memset(ptr, 0x5a, arena->bins[binind].reg_size); tbin = tcache->tbins[binind]; if (tbin == NULL) { tbin = tcache_bin_create(choose_arena()); if (tbin == NULL) { malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); return; } tcache->tbins[binind] = tbin; } if (tbin->ncached == tcache_nslots) tcache_bin_flush(tbin, binind, (tcache_nslots >> 1)); assert(tbin->ncached < tcache_nslots); tbin->slots[tbin->ncached] = ptr; tbin->ncached++; if (tbin->ncached > tbin->high_water) tbin->high_water = tbin->ncached; tcache_event(tcache); } #endif static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) { /* Large allocation. */ malloc_spin_lock(&arena->lock); #ifndef MALLOC_STATS if (opt_junk) #endif { size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; size_t size = chunk->map[pageind].bits & ~PAGE_MASK; #ifdef MALLOC_STATS if (opt_junk) #endif memset(ptr, 0x5a, size); #ifdef MALLOC_STATS arena->stats.ndalloc_large++; arena->stats.allocated_large -= size; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns--; #endif } arena_run_dalloc(arena, (arena_run_t *)ptr, true); malloc_spin_unlock(&arena->lock); } static inline void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) { size_t pageind; arena_chunk_map_t *mapelm; assert(arena != NULL); assert(arena->magic == ARENA_MAGIC); assert(chunk->arena == arena); assert(ptr != NULL); assert(CHUNK_ADDR2BASE(ptr) != ptr); pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0); if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { /* Small allocation. */ #ifdef MALLOC_TCACHE if (__isthreaded && tcache_nslots) { tcache_t *tcache = tcache_tls; if ((uintptr_t)tcache > (uintptr_t)1) tcache_dalloc(tcache, ptr); else { arena_dalloc_hard(arena, chunk, ptr, mapelm, tcache); } } else { #endif malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); #ifdef MALLOC_TCACHE } #endif } else arena_dalloc_large(arena, chunk, ptr); } #ifdef MALLOC_TCACHE static void arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr, arena_chunk_map_t *mapelm, tcache_t *tcache) { if (tcache == NULL) { tcache = tcache_create(arena); if (tcache == NULL) { malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); } else tcache_dalloc(tcache, ptr); } else { /* This thread is currently exiting, so directly deallocate. */ assert(tcache == (void *)(uintptr_t)1); malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, ptr, mapelm); malloc_spin_unlock(&arena->lock); } } #endif static inline void idalloc(void *ptr) { arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) arena_dalloc(chunk->arena, chunk, ptr); else huge_dalloc(ptr); } static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { assert(size < oldsize); /* * Shrink the run, and make trailing pages available for other * allocations. */ malloc_spin_lock(&arena->lock); arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size, true); #ifdef MALLOC_STATS arena->stats.ndalloc_large++; arena->stats.allocated_large -= oldsize; arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--; arena->stats.nmalloc_large++; arena->stats.allocated_large += size; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++; if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns > arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) { arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns = arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns; } #endif malloc_spin_unlock(&arena->lock); } static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, size_t size, size_t oldsize) { size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT; size_t npages = oldsize >> PAGE_SHIFT; assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK)); /* Try to extend the run. */ assert(size > oldsize); malloc_spin_lock(&arena->lock); if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits & ~PAGE_MASK) >= size - oldsize) { /* * The next run is available and sufficiently large. Split the * following run, then merge the first part with the existing * allocation. */ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk + ((pageind+npages) << PAGE_SHIFT)), size - oldsize, true, false); chunk->map[pageind].bits = size | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED; #ifdef MALLOC_STATS arena->stats.ndalloc_large++; arena->stats.allocated_large -= oldsize; arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--; arena->stats.nmalloc_large++; arena->stats.allocated_large += size; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++; arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++; if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns > arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) { arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns = arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns; } #endif malloc_spin_unlock(&arena->lock); return (false); } malloc_spin_unlock(&arena->lock); return (true); } /* * Try to resize a large allocation, in order to avoid copying. This will * always fail if growing an object, and the following run is already in use. */ static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize) { size_t psize; psize = PAGE_CEILING(size); if (psize == oldsize) { /* Same size class. */ if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } return (false); } else { arena_chunk_t *chunk; arena_t *arena; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); arena = chunk->arena; assert(arena->magic == ARENA_MAGIC); if (psize < oldsize) { /* Fill before shrinking in order avoid a race. */ if (opt_junk) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } arena_ralloc_large_shrink(arena, chunk, ptr, psize, oldsize); return (false); } else { bool ret = arena_ralloc_large_grow(arena, chunk, ptr, psize, oldsize); if (ret == false && opt_zero) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } return (ret); } } } static void * arena_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* * Try to avoid moving the allocation. * * posix_memalign() can cause allocation of "large" objects that are * smaller than bin_maxclass (in order to meet alignment requirements). * Therefore, do not assume that (oldsize <= bin_maxclass) indicates * ptr refers to a bin-allocated object. */ if (oldsize <= arena_maxclass) { if (arena_is_large(ptr) == false ) { if (size <= small_maxclass) { if (oldsize <= small_maxclass && small_size2bin[size] == small_size2bin[oldsize]) goto IN_PLACE; } else if (size <= bin_maxclass) { if (small_maxclass < oldsize && oldsize <= bin_maxclass && MEDIUM_CEILING(size) == MEDIUM_CEILING(oldsize)) goto IN_PLACE; } } else { assert(size <= arena_maxclass); if (size > bin_maxclass) { if (arena_ralloc_large(ptr, size, oldsize) == false) return (ptr); } } } /* Try to avoid moving the allocation. */ if (size <= small_maxclass) { if (oldsize <= small_maxclass && small_size2bin[size] == small_size2bin[oldsize]) goto IN_PLACE; } else if (size <= bin_maxclass) { if (small_maxclass < oldsize && oldsize <= bin_maxclass && MEDIUM_CEILING(size) == MEDIUM_CEILING(oldsize)) goto IN_PLACE; } else { if (bin_maxclass < oldsize && oldsize <= arena_maxclass) { assert(size > bin_maxclass); if (arena_ralloc_large(ptr, size, oldsize) == false) return (ptr); } } /* * If we get here, then size and oldsize are different enough that we * need to move the object. In that case, fall back to allocating new * space and copying. */ ret = arena_malloc(size, false); if (ret == NULL) return (NULL); /* Junk/zero-filling were already done by arena_malloc(). */ copysize = (size < oldsize) ? size : oldsize; memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); IN_PLACE: if (opt_junk && size < oldsize) memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); else if (opt_zero && size > oldsize) memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); return (ptr); } static inline void * iralloc(void *ptr, size_t size) { size_t oldsize; assert(ptr != NULL); assert(size != 0); oldsize = isalloc(ptr); if (size <= arena_maxclass) return (arena_ralloc(ptr, size, oldsize)); else return (huge_ralloc(ptr, size, oldsize)); } static bool arena_new(arena_t *arena, unsigned ind) { unsigned i; arena_bin_t *bin; size_t prev_run_size; if (malloc_spin_init(&arena->lock)) return (true); #ifdef MALLOC_STATS memset(&arena->stats, 0, sizeof(arena_stats_t)); arena->stats.lstats = (malloc_large_stats_t *)base_alloc( sizeof(malloc_large_stats_t) * ((chunksize - PAGE_SIZE) >> PAGE_SHIFT)); if (arena->stats.lstats == NULL) return (true); memset(arena->stats.lstats, 0, sizeof(malloc_large_stats_t) * ((chunksize - PAGE_SIZE) >> PAGE_SHIFT)); # ifdef MALLOC_TCACHE ql_new(&arena->tcache_ql); # endif #endif /* Initialize chunks. */ arena_chunk_tree_dirty_new(&arena->chunks_dirty); arena->spare = NULL; arena->nactive = 0; arena->ndirty = 0; arena_avail_tree_new(&arena->runs_avail); /* Initialize bins. */ prev_run_size = PAGE_SIZE; i = 0; #ifdef MALLOC_TINY /* (2^n)-spaced tiny bins. */ for (; i < ntbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = (1U << (LG_TINY_MIN + i)); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } #endif /* Quantum-spaced bins. */ for (; i < ntbins + nqbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = (i - ntbins + 1) << LG_QUANTUM; prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Cacheline-spaced bins. */ for (; i < ntbins + nqbins + ncbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) << LG_CACHELINE); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Subpage-spaced bins. */ for (; i < ntbins + nqbins + ncbins + nsbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins)) << LG_SUBPAGE); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } /* Medium bins. */ for (; i < nbins; i++) { bin = &arena->bins[i]; bin->runcur = NULL; arena_run_tree_new(&bin->runs); bin->reg_size = medium_min + ((i - (ntbins + nqbins + ncbins + nsbins)) << lg_mspace); prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); #ifdef MALLOC_STATS memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); #endif } #ifdef MALLOC_DEBUG arena->magic = ARENA_MAGIC; #endif return (false); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arenas_extend(unsigned ind) { arena_t *ret; /* Allocate enough space for trailing bins. */ ret = (arena_t *)base_alloc(sizeof(arena_t) + (sizeof(arena_bin_t) * (nbins - 1))); if (ret != NULL && arena_new(ret, ind) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ _malloc_message(_getprogname(), ": (malloc) Error initializing arena\n", "", ""); if (opt_abort) abort(); return (arenas[0]); } #ifdef MALLOC_TCACHE static tcache_bin_t * tcache_bin_create(arena_t *arena) { tcache_bin_t *ret; size_t tsize; tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1)); if (tsize <= small_maxclass) ret = (tcache_bin_t *)arena_malloc_small(arena, tsize, false); else if (tsize <= bin_maxclass) ret = (tcache_bin_t *)arena_malloc_medium(arena, tsize, false); else ret = (tcache_bin_t *)imalloc(tsize); if (ret == NULL) return (NULL); #ifdef MALLOC_STATS memset(&ret->tstats, 0, sizeof(tcache_bin_stats_t)); #endif ret->low_water = 0; ret->high_water = 0; ret->ncached = 0; return (ret); } static void tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind) { arena_t *arena; arena_chunk_t *chunk; size_t pageind, tsize; arena_chunk_map_t *mapelm; chunk = CHUNK_ADDR2BASE(tbin); arena = chunk->arena; pageind = (((uintptr_t)tbin - (uintptr_t)chunk) >> PAGE_SHIFT); mapelm = &chunk->map[pageind]; #ifdef MALLOC_STATS if (tbin->tstats.nrequests != 0) { arena_t *arena = tcache->arena; arena_bin_t *bin = &arena->bins[binind]; malloc_spin_lock(&arena->lock); bin->stats.nrequests += tbin->tstats.nrequests; if (bin->reg_size <= small_maxclass) arena->stats.nmalloc_small += tbin->tstats.nrequests; else arena->stats.nmalloc_medium += tbin->tstats.nrequests; malloc_spin_unlock(&arena->lock); } #endif assert(tbin->ncached == 0); tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1)); if (tsize <= bin_maxclass) { malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, tbin, mapelm); malloc_spin_unlock(&arena->lock); } else idalloc(tbin); } #ifdef MALLOC_STATS static void tcache_stats_merge(tcache_t *tcache, arena_t *arena) { unsigned i; /* Merge and reset tcache stats. */ for (i = 0; i < mbin0; i++) { arena_bin_t *bin = &arena->bins[i]; tcache_bin_t *tbin = tcache->tbins[i]; if (tbin != NULL) { bin->stats.nrequests += tbin->tstats.nrequests; arena->stats.nmalloc_small += tbin->tstats.nrequests; tbin->tstats.nrequests = 0; } } for (; i < nbins; i++) { arena_bin_t *bin = &arena->bins[i]; tcache_bin_t *tbin = tcache->tbins[i]; if (tbin != NULL) { bin->stats.nrequests += tbin->tstats.nrequests; arena->stats.nmalloc_medium += tbin->tstats.nrequests; tbin->tstats.nrequests = 0; } } } #endif static tcache_t * tcache_create(arena_t *arena) { tcache_t *tcache; if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <= small_maxclass) { tcache = (tcache_t *)arena_malloc_small(arena, sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)), true); } else if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <= bin_maxclass) { tcache = (tcache_t *)arena_malloc_medium(arena, sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)), true); } else { tcache = (tcache_t *)icalloc(sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1))); } if (tcache == NULL) return (NULL); #ifdef MALLOC_STATS /* Link into list of extant tcaches. */ malloc_spin_lock(&arena->lock); ql_elm_new(tcache, link); ql_tail_insert(&arena->tcache_ql, tcache, link); malloc_spin_unlock(&arena->lock); #endif tcache->arena = arena; tcache_tls = tcache; return (tcache); } static void tcache_destroy(tcache_t *tcache) { unsigned i; #ifdef MALLOC_STATS /* Unlink from list of extant tcaches. */ malloc_spin_lock(&tcache->arena->lock); ql_remove(&tcache->arena->tcache_ql, tcache, link); tcache_stats_merge(tcache, tcache->arena); malloc_spin_unlock(&tcache->arena->lock); #endif for (i = 0; i < nbins; i++) { tcache_bin_t *tbin = tcache->tbins[i]; if (tbin != NULL) { tcache_bin_flush(tbin, i, 0); tcache_bin_destroy(tcache, tbin, i); } } if (arena_salloc(tcache) <= bin_maxclass) { arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache); arena_t *arena = chunk->arena; size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >> PAGE_SHIFT); arena_chunk_map_t *mapelm = &chunk->map[pageind]; malloc_spin_lock(&arena->lock); arena_dalloc_bin(arena, chunk, tcache, mapelm); malloc_spin_unlock(&arena->lock); } else idalloc(tcache); } #endif /* * End arena. */ /******************************************************************************/ /* * Begin general internal functions. */ static void * huge_malloc(size_t size, bool zero) { void *ret; size_t csize; extent_node_t *node; /* Allocate one or more contiguous chunks for this request. */ csize = CHUNK_CEILING(size); if (csize == 0) { /* size is large enough to cause size_t wrap-around. */ return (NULL); } /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); ret = chunk_alloc(csize, &zero); if (ret == NULL) { base_node_dealloc(node); return (NULL); } /* Insert node into huge. */ node->addr = ret; node->size = csize; malloc_mutex_lock(&huge_mtx); extent_tree_ad_insert(&huge, node); #ifdef MALLOC_STATS huge_nmalloc++; huge_allocated += csize; #endif malloc_mutex_unlock(&huge_mtx); if (zero == false) { if (opt_junk) memset(ret, 0xa5, csize); else if (opt_zero) memset(ret, 0, csize); } return (ret); } /* Only handles large allocations that require more than chunk alignment. */ static void * huge_palloc(size_t alignment, size_t size) { void *ret; size_t alloc_size, chunk_size, offset; extent_node_t *node; bool zero; /* * This allocation requires alignment that is even larger than chunk * alignment. This means that huge_malloc() isn't good enough. * * Allocate almost twice as many chunks as are demanded by the size or * alignment, in order to assure the alignment can be achieved, then * unmap leading and trailing chunks. */ assert(alignment >= chunksize); chunk_size = CHUNK_CEILING(size); if (size >= alignment) alloc_size = chunk_size + alignment - chunksize; else alloc_size = (alignment << 1) - chunksize; /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); zero = false; ret = chunk_alloc(alloc_size, &zero); if (ret == NULL) { base_node_dealloc(node); return (NULL); } offset = (uintptr_t)ret & (alignment - 1); assert((offset & chunksize_mask) == 0); assert(offset < alloc_size); if (offset == 0) { /* Trim trailing space. */ chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size - chunk_size); } else { size_t trailsize; /* Trim leading space. */ chunk_dealloc(ret, alignment - offset); ret = (void *)((uintptr_t)ret + (alignment - offset)); trailsize = alloc_size - (alignment - offset) - chunk_size; if (trailsize != 0) { /* Trim trailing space. */ assert(trailsize < alloc_size); chunk_dealloc((void *)((uintptr_t)ret + chunk_size), trailsize); } } /* Insert node into huge. */ node->addr = ret; node->size = chunk_size; malloc_mutex_lock(&huge_mtx); extent_tree_ad_insert(&huge, node); #ifdef MALLOC_STATS huge_nmalloc++; huge_allocated += chunk_size; #endif malloc_mutex_unlock(&huge_mtx); if (opt_junk) memset(ret, 0xa5, chunk_size); else if (opt_zero) memset(ret, 0, chunk_size); return (ret); } static void * huge_ralloc(void *ptr, size_t size, size_t oldsize) { void *ret; size_t copysize; /* Avoid moving the allocation if the size class would not change. */ if (oldsize > arena_maxclass && CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) { if (opt_junk && size < oldsize) { memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); } else if (opt_zero && size > oldsize) { memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); } return (ptr); } /* * If we get here, then size and oldsize are different enough that we * need to use a different size class. In that case, fall back to * allocating new space and copying. */ ret = huge_malloc(size, false); if (ret == NULL) return (NULL); copysize = (size < oldsize) ? size : oldsize; memcpy(ret, ptr, copysize); idalloc(ptr); return (ret); } static void huge_dalloc(void *ptr) { extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = ptr; node = extent_tree_ad_search(&huge, &key); assert(node != NULL); assert(node->addr == ptr); extent_tree_ad_remove(&huge, node); #ifdef MALLOC_STATS huge_ndalloc++; huge_allocated -= node->size; #endif malloc_mutex_unlock(&huge_mtx); /* Unmap chunk. */ #ifdef MALLOC_DSS if (opt_dss && opt_junk) memset(node->addr, 0x5a, node->size); #endif chunk_dealloc(node->addr, node->size); base_node_dealloc(node); } static void malloc_stats_print(void) { char s[UMAX2S_BUFSIZE]; _malloc_message("___ Begin malloc statistics ___\n", "", "", ""); _malloc_message("Assertions ", #ifdef NDEBUG "disabled", #else "enabled", #endif "\n", ""); _malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", ""); #ifdef MALLOC_DSS _malloc_message(opt_dss ? "D" : "d", "", "", ""); #endif _malloc_message(opt_junk ? "J" : "j", "", "", ""); #ifdef MALLOC_DSS _malloc_message(opt_mmap ? "M" : "m", "", "", ""); #endif _malloc_message("P", "", "", ""); _malloc_message(opt_utrace ? "U" : "u", "", "", ""); _malloc_message(opt_sysv ? "V" : "v", "", "", ""); _malloc_message(opt_xmalloc ? "X" : "x", "", "", ""); _malloc_message(opt_zero ? "Z" : "z", "", "", ""); _malloc_message("\n", "", "", ""); _malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", ""); _malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n", ""); _malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s), "\n", ""); _malloc_message("Quantum size: ", umax2s(QUANTUM, 10, s), "\n", ""); _malloc_message("Cacheline size (assumed): ", umax2s(CACHELINE, 10, s), "\n", ""); _malloc_message("Subpage spacing: ", umax2s(SUBPAGE, 10, s), "\n", ""); _malloc_message("Medium spacing: ", umax2s((1U << lg_mspace), 10, s), "\n", ""); #ifdef MALLOC_TINY _malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U << LG_TINY_MIN), 10, s), "..", ""); _malloc_message(umax2s((qspace_min >> 1), 10, s), "]\n", "", ""); #endif _malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min, 10, s), "..", ""); _malloc_message(umax2s(qspace_max, 10, s), "]\n", "", ""); _malloc_message("Cacheline-spaced sizes: [", umax2s(cspace_min, 10, s), "..", ""); _malloc_message(umax2s(cspace_max, 10, s), "]\n", "", ""); _malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min, 10, s), "..", ""); _malloc_message(umax2s(sspace_max, 10, s), "]\n", "", ""); _malloc_message("Medium sizes: [", umax2s(medium_min, 10, s), "..", ""); _malloc_message(umax2s(medium_max, 10, s), "]\n", "", ""); if (opt_lg_dirty_mult >= 0) { _malloc_message("Min active:dirty page ratio per arena: ", umax2s((1U << opt_lg_dirty_mult), 10, s), ":1\n", ""); } else { _malloc_message("Min active:dirty page ratio per arena: N/A\n", "", "", ""); } #ifdef MALLOC_TCACHE _malloc_message("Thread cache slots per size class: ", tcache_nslots ? umax2s(tcache_nslots, 10, s) : "N/A", "\n", ""); _malloc_message("Thread cache GC sweep interval: ", (tcache_nslots && tcache_gc_incr > 0) ? umax2s((1U << opt_lg_tcache_gc_sweep), 10, s) : "N/A", "", ""); _malloc_message(" (increment interval: ", (tcache_nslots && tcache_gc_incr > 0) ? umax2s(tcache_gc_incr, 10, s) : "N/A", ")\n", ""); #endif _malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "", ""); _malloc_message(" (2^", umax2s(opt_lg_chunk, 10, s), ")\n", ""); #ifdef MALLOC_STATS { size_t allocated, mapped; unsigned i; arena_t *arena; /* Calculate and print allocated/mapped stats. */ /* arenas. */ for (i = 0, allocated = 0; i < narenas; i++) { if (arenas[i] != NULL) { malloc_spin_lock(&arenas[i]->lock); allocated += arenas[i]->stats.allocated_small; allocated += arenas[i]->stats.allocated_large; malloc_spin_unlock(&arenas[i]->lock); } } /* huge/base. */ malloc_mutex_lock(&huge_mtx); allocated += huge_allocated; mapped = stats_chunks.curchunks * chunksize; malloc_mutex_unlock(&huge_mtx); malloc_mutex_lock(&base_mtx); mapped += base_mapped; malloc_mutex_unlock(&base_mtx); malloc_printf("Allocated: %zu, mapped: %zu\n", allocated, mapped); /* Print chunk stats. */ { chunk_stats_t chunks_stats; malloc_mutex_lock(&huge_mtx); chunks_stats = stats_chunks; malloc_mutex_unlock(&huge_mtx); malloc_printf("chunks: nchunks " "highchunks curchunks\n"); malloc_printf(" %13"PRIu64"%13zu%13zu\n", chunks_stats.nchunks, chunks_stats.highchunks, chunks_stats.curchunks); } /* Print chunk stats. */ malloc_printf( "huge: nmalloc ndalloc allocated\n"); malloc_printf(" %12"PRIu64" %12"PRIu64" %12zu\n", huge_nmalloc, huge_ndalloc, huge_allocated); /* Print stats for each arena. */ for (i = 0; i < narenas; i++) { arena = arenas[i]; if (arena != NULL) { malloc_printf("\narenas[%u]:\n", i); malloc_spin_lock(&arena->lock); arena_stats_print(arena); malloc_spin_unlock(&arena->lock); } } } #endif /* #ifdef MALLOC_STATS */ _malloc_message("--- End malloc statistics ---\n", "", "", ""); } #ifdef MALLOC_DEBUG static void small_size2bin_validate(void) { size_t i, size, binind; assert(small_size2bin[0] == 0xffU); i = 1; # ifdef MALLOC_TINY /* Tiny. */ for (; i < (1U << LG_TINY_MIN); i++) { size = pow2_ceil(1U << LG_TINY_MIN); binind = ffs((int)(size >> (LG_TINY_MIN + 1))); assert(small_size2bin[i] == binind); } for (; i < qspace_min; i++) { size = pow2_ceil(i); binind = ffs((int)(size >> (LG_TINY_MIN + 1))); assert(small_size2bin[i] == binind); } # endif /* Quantum-spaced. */ for (; i <= qspace_max; i++) { size = QUANTUM_CEILING(i); binind = ntbins + (size >> LG_QUANTUM) - 1; assert(small_size2bin[i] == binind); } /* Cacheline-spaced. */ for (; i <= cspace_max; i++) { size = CACHELINE_CEILING(i); binind = ntbins + nqbins + ((size - cspace_min) >> LG_CACHELINE); assert(small_size2bin[i] == binind); } /* Sub-page. */ for (; i <= sspace_max; i++) { size = SUBPAGE_CEILING(i); binind = ntbins + nqbins + ncbins + ((size - sspace_min) >> LG_SUBPAGE); assert(small_size2bin[i] == binind); } } #endif static bool small_size2bin_init(void) { if (opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT || sizeof(const_small_size2bin) != small_maxclass + 1) return (small_size2bin_init_hard()); small_size2bin = const_small_size2bin; #ifdef MALLOC_DEBUG assert(sizeof(const_small_size2bin) == small_maxclass + 1); small_size2bin_validate(); #endif return (false); } static bool small_size2bin_init_hard(void) { size_t i, size, binind; uint8_t *custom_small_size2bin; assert(opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT || sizeof(const_small_size2bin) != small_maxclass + 1); custom_small_size2bin = (uint8_t *)base_alloc(small_maxclass + 1); if (custom_small_size2bin == NULL) return (true); custom_small_size2bin[0] = 0xffU; i = 1; #ifdef MALLOC_TINY /* Tiny. */ for (; i < (1U << LG_TINY_MIN); i++) { size = pow2_ceil(1U << LG_TINY_MIN); binind = ffs((int)(size >> (LG_TINY_MIN + 1))); custom_small_size2bin[i] = binind; } for (; i < qspace_min; i++) { size = pow2_ceil(i); binind = ffs((int)(size >> (LG_TINY_MIN + 1))); custom_small_size2bin[i] = binind; } #endif /* Quantum-spaced. */ for (; i <= qspace_max; i++) { size = QUANTUM_CEILING(i); binind = ntbins + (size >> LG_QUANTUM) - 1; custom_small_size2bin[i] = binind; } /* Cacheline-spaced. */ for (; i <= cspace_max; i++) { size = CACHELINE_CEILING(i); binind = ntbins + nqbins + ((size - cspace_min) >> LG_CACHELINE); custom_small_size2bin[i] = binind; } /* Sub-page. */ for (; i <= sspace_max; i++) { size = SUBPAGE_CEILING(i); binind = ntbins + nqbins + ncbins + ((size - sspace_min) >> LG_SUBPAGE); custom_small_size2bin[i] = binind; } small_size2bin = custom_small_size2bin; #ifdef MALLOC_DEBUG small_size2bin_validate(); #endif return (false); } static unsigned malloc_ncpus(void) { unsigned ret; size_t retlen = sizeof(ret); int mib[] = {CTL_HW, HW_NCPU}; if (sysctl(mib, sizeof(mib) / sizeof(int), &ret, &retlen, (void *)0, 0) == -1) { /* Error. */ ret = 1; } return (ret); } /* * FreeBSD's pthreads implementation calls malloc(3), so the malloc * implementation has to take pains to avoid infinite recursion during * initialization. */ static inline bool malloc_init(void) { if (malloc_initialized == false) return (malloc_init_hard()); return (false); } static bool malloc_init_hard(void) { unsigned i; int linklen; char buf[PATH_MAX + 1]; const char *opts; malloc_mutex_lock(&init_lock); if (malloc_initialized) { /* * Another thread initialized the allocator before this one * acquired init_lock. */ malloc_mutex_unlock(&init_lock); return (false); } /* Get number of CPUs. */ ncpus = malloc_ncpus(); /* * Increase the chunk size to the largest page size that is greater * than the default chunk size and less than or equal to 4MB. */ { size_t pagesizes[MAXPAGESIZES]; int k, nsizes; nsizes = getpagesizes(pagesizes, MAXPAGESIZES); for (k = 0; k < nsizes; k++) if (pagesizes[k] <= (1LU << 22)) while ((1LU << opt_lg_chunk) < pagesizes[k]) opt_lg_chunk++; } for (i = 0; i < 3; i++) { unsigned j; /* Get runtime configuration. */ switch (i) { case 0: if ((linklen = readlink("/etc/malloc.conf", buf, sizeof(buf) - 1)) != -1) { /* * Use the contents of the "/etc/malloc.conf" * symbolic link's name. */ buf[linklen] = '\0'; opts = buf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: if (issetugid() == 0 && (opts = getenv("MALLOC_OPTIONS")) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_OPTIONS environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 2: if (_malloc_options != NULL) { /* * Use options that were compiled into the * program. */ opts = _malloc_options; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; default: /* NOTREACHED */ assert(false); buf[0] = '\0'; opts = buf; } for (j = 0; opts[j] != '\0'; j++) { unsigned k, nreps; bool nseen; /* Parse repetition count, if any. */ for (nreps = 0, nseen = false;; j++, nseen = true) { switch (opts[j]) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': nreps *= 10; nreps += opts[j] - '0'; break; default: goto MALLOC_OUT; } } MALLOC_OUT: if (nseen == false) nreps = 1; for (k = 0; k < nreps; k++) { switch (opts[j]) { case 'a': opt_abort = false; break; case 'A': opt_abort = true; break; case 'c': if (opt_lg_cspace_max - 1 > opt_lg_qspace_max && opt_lg_cspace_max > LG_CACHELINE) opt_lg_cspace_max--; break; case 'C': if (opt_lg_cspace_max < PAGE_SHIFT - 1) opt_lg_cspace_max++; break; case 'd': #ifdef MALLOC_DSS opt_dss = false; #endif break; case 'D': #ifdef MALLOC_DSS opt_dss = true; #endif break; case 'e': if (opt_lg_medium_max > PAGE_SHIFT) opt_lg_medium_max--; break; case 'E': if (opt_lg_medium_max + 1 < opt_lg_chunk) opt_lg_medium_max++; break; case 'f': if (opt_lg_dirty_mult + 1 < (sizeof(size_t) << 3)) opt_lg_dirty_mult++; break; case 'F': if (opt_lg_dirty_mult >= 0) opt_lg_dirty_mult--; break; #ifdef MALLOC_TCACHE case 'g': if (opt_lg_tcache_gc_sweep >= 0) opt_lg_tcache_gc_sweep--; break; case 'G': if (opt_lg_tcache_gc_sweep + 1 < (sizeof(size_t) << 3)) opt_lg_tcache_gc_sweep++; break; case 'h': if (opt_lg_tcache_nslots > 0) opt_lg_tcache_nslots--; break; case 'H': if (opt_lg_tcache_nslots + 1 < (sizeof(size_t) << 3)) opt_lg_tcache_nslots++; break; #endif case 'j': opt_junk = false; break; case 'J': opt_junk = true; break; case 'k': /* * Chunks always require at least one * header page, plus enough room to * hold a run for the largest medium * size class (one page more than the * size). */ if ((1U << (opt_lg_chunk - 1)) >= (2U << PAGE_SHIFT) + (1U << opt_lg_medium_max)) opt_lg_chunk--; break; case 'K': if (opt_lg_chunk + 1 < (sizeof(size_t) << 3)) opt_lg_chunk++; break; case 'm': #ifdef MALLOC_DSS opt_mmap = false; #endif break; case 'M': #ifdef MALLOC_DSS opt_mmap = true; #endif break; case 'n': opt_narenas_lshift--; break; case 'N': opt_narenas_lshift++; break; case 'p': opt_stats_print = false; break; case 'P': opt_stats_print = true; break; case 'q': if (opt_lg_qspace_max > LG_QUANTUM) opt_lg_qspace_max--; break; case 'Q': if (opt_lg_qspace_max + 1 < opt_lg_cspace_max) opt_lg_qspace_max++; break; case 'u': opt_utrace = false; break; case 'U': opt_utrace = true; break; case 'v': opt_sysv = false; break; case 'V': opt_sysv = true; break; case 'x': opt_xmalloc = false; break; case 'X': opt_xmalloc = true; break; case 'z': opt_zero = false; break; case 'Z': opt_zero = true; break; default: { char cbuf[2]; cbuf[0] = opts[j]; cbuf[1] = '\0'; _malloc_message(_getprogname(), ": (malloc) Unsupported character " "in malloc options: '", cbuf, "'\n"); } } } } } #ifdef MALLOC_DSS /* Make sure that there is some method for acquiring memory. */ if (opt_dss == false && opt_mmap == false) opt_mmap = true; #endif if (opt_stats_print) { /* Print statistics at exit. */ atexit(stats_print_atexit); } /* Set variables according to the value of opt_lg_[qc]space_max. */ qspace_max = (1U << opt_lg_qspace_max); cspace_min = CACHELINE_CEILING(qspace_max); if (cspace_min == qspace_max) cspace_min += CACHELINE; cspace_max = (1U << opt_lg_cspace_max); sspace_min = SUBPAGE_CEILING(cspace_max); if (sspace_min == cspace_max) sspace_min += SUBPAGE; assert(sspace_min < PAGE_SIZE); sspace_max = PAGE_SIZE - SUBPAGE; medium_max = (1U << opt_lg_medium_max); #ifdef MALLOC_TINY assert(LG_QUANTUM >= LG_TINY_MIN); #endif assert(ntbins <= LG_QUANTUM); nqbins = qspace_max >> LG_QUANTUM; ncbins = ((cspace_max - cspace_min) >> LG_CACHELINE) + 1; nsbins = ((sspace_max - sspace_min) >> LG_SUBPAGE) + 1; /* * Compute medium size class spacing and the number of medium size * classes. Limit spacing to no more than pagesize, but if possible * use the smallest spacing that does not exceed NMBINS_MAX medium size * classes. */ lg_mspace = LG_SUBPAGE; nmbins = ((medium_max - medium_min) >> lg_mspace) + 1; while (lg_mspace < PAGE_SHIFT && nmbins > NMBINS_MAX) { lg_mspace = lg_mspace + 1; nmbins = ((medium_max - medium_min) >> lg_mspace) + 1; } mspace_mask = (1U << lg_mspace) - 1U; mbin0 = ntbins + nqbins + ncbins + nsbins; nbins = mbin0 + nmbins; /* * The small_size2bin lookup table uses uint8_t to encode each bin * index, so we cannot support more than 256 small size classes. This * limit is difficult to exceed (not even possible with 16B quantum and * 4KiB pages), and such configurations are impractical, but * nonetheless we need to protect against this case in order to avoid * undefined behavior. */ if (mbin0 > 256) { char line_buf[UMAX2S_BUFSIZE]; _malloc_message(_getprogname(), ": (malloc) Too many small size classes (", umax2s(mbin0, 10, line_buf), " > max 256)\n"); abort(); } if (small_size2bin_init()) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef MALLOC_TCACHE if (opt_lg_tcache_nslots > 0) { tcache_nslots = (1U << opt_lg_tcache_nslots); /* Compute incremental GC event threshold. */ if (opt_lg_tcache_gc_sweep >= 0) { tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) / nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins == 0) ? 0 : 1); } else tcache_gc_incr = 0; } else tcache_nslots = 0; #endif /* Set variables according to the value of opt_lg_chunk. */ chunksize = (1LU << opt_lg_chunk); chunksize_mask = chunksize - 1; chunk_npages = (chunksize >> PAGE_SHIFT); { size_t header_size; /* * Compute the header size such that it is large enough to * contain the page map. */ header_size = sizeof(arena_chunk_t) + (sizeof(arena_chunk_map_t) * (chunk_npages - 1)); arena_chunk_header_npages = (header_size >> PAGE_SHIFT) + ((header_size & PAGE_MASK) != 0); } arena_maxclass = chunksize - (arena_chunk_header_npages << PAGE_SHIFT); UTRACE((void *)(intptr_t)(-1), 0, 0); #ifdef MALLOC_STATS malloc_mutex_init(&chunks_mtx); memset(&stats_chunks, 0, sizeof(chunk_stats_t)); #endif /* Various sanity checks that regard configuration. */ assert(chunksize >= PAGE_SIZE); /* Initialize chunks data. */ malloc_mutex_init(&huge_mtx); extent_tree_ad_new(&huge); #ifdef MALLOC_DSS malloc_mutex_init(&dss_mtx); dss_base = sbrk(0); dss_prev = dss_base; dss_max = dss_base; extent_tree_szad_new(&dss_chunks_szad); extent_tree_ad_new(&dss_chunks_ad); #endif #ifdef MALLOC_STATS huge_nmalloc = 0; huge_ndalloc = 0; huge_allocated = 0; #endif /* Initialize base allocation data structures. */ #ifdef MALLOC_STATS base_mapped = 0; #endif #ifdef MALLOC_DSS /* * Allocate a base chunk here, since it doesn't actually have to be * chunk-aligned. Doing this before allocating any other chunks allows * the use of space that would otherwise be wasted. */ if (opt_dss) base_pages_alloc(0); #endif base_nodes = NULL; malloc_mutex_init(&base_mtx); if (ncpus > 1) { /* * For SMP systems, create more than one arena per CPU by * default. */ #ifdef MALLOC_TCACHE if (tcache_nslots) { /* * Only large object allocation/deallocation is * guaranteed to acquire an arena mutex, so we can get * away with fewer arenas than without thread caching. */ opt_narenas_lshift += 1; } else { #endif /* * All allocations must acquire an arena mutex, so use * plenty of arenas. */ opt_narenas_lshift += 2; #ifdef MALLOC_TCACHE } #endif } /* Determine how many arenas to use. */ narenas = ncpus; if (opt_narenas_lshift > 0) { if ((narenas << opt_narenas_lshift) > narenas) narenas <<= opt_narenas_lshift; /* * Make sure not to exceed the limits of what base_alloc() can * handle. */ if (narenas * sizeof(arena_t *) > chunksize) narenas = chunksize / sizeof(arena_t *); } else if (opt_narenas_lshift < 0) { if ((narenas >> -opt_narenas_lshift) < narenas) narenas >>= -opt_narenas_lshift; /* Make sure there is at least one arena. */ if (narenas == 0) narenas = 1; } #ifdef NO_TLS if (narenas > 1) { static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263}; unsigned nprimes, parenas; /* * Pick a prime number of hash arenas that is more than narenas * so that direct hashing of pthread_self() pointers tends to * spread allocations evenly among the arenas. */ assert((narenas & 1) == 0); /* narenas must be even. */ nprimes = (sizeof(primes) >> LG_SIZEOF_INT); parenas = primes[nprimes - 1]; /* In case not enough primes. */ for (i = 1; i < nprimes; i++) { if (primes[i] > narenas) { parenas = primes[i]; break; } } narenas = parenas; } #endif #ifndef NO_TLS next_arena = 0; #endif /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); if (arenas == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { malloc_mutex_unlock(&init_lock); return (true); } #ifndef NO_TLS /* * Assign the initial arena to the initial thread, in order to avoid * spurious creation of an extra arena if the application switches to * threaded mode. */ arenas_map = arenas[0]; #endif malloc_spin_init(&arenas_lock); malloc_initialized = true; malloc_mutex_unlock(&init_lock); return (false); } /* * End general internal functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ void * malloc(size_t size) { void *ret; if (malloc_init()) { ret = NULL; goto OOM; } if (size == 0) { if (opt_sysv == false) size = 1; else { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in malloc(): " "invalid size 0\n", "", ""); abort(); } ret = NULL; goto RETURN; } } ret = imalloc(size); OOM: if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in malloc(): out of memory\n", "", ""); abort(); } errno = ENOMEM; } RETURN: UTRACE(0, size, ret); return (ret); } int posix_memalign(void **memptr, size_t alignment, size_t size) { int ret; void *result; if (malloc_init()) result = NULL; else { if (size == 0) { if (opt_sysv == false) size = 1; else { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in " "posix_memalign(): invalid " "size 0\n", "", ""); abort(); } result = NULL; *memptr = NULL; ret = 0; goto RETURN; } } /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in posix_memalign(): " "invalid alignment\n", "", ""); abort(); } result = NULL; ret = EINVAL; goto RETURN; } result = ipalloc(alignment, size); } if (result == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in posix_memalign(): out of memory\n", "", ""); abort(); } ret = ENOMEM; goto RETURN; } *memptr = result; ret = 0; RETURN: UTRACE(0, size, result); return (ret); } void * calloc(size_t num, size_t size) { void *ret; size_t num_size; if (malloc_init()) { num_size = 0; ret = NULL; goto RETURN; } num_size = num * size; if (num_size == 0) { if ((opt_sysv == false) && ((num == 0) || (size == 0))) num_size = 1; else { ret = NULL; goto RETURN; } /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto RETURN; } ret = icalloc(num_size); RETURN: if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in calloc(): out of memory\n", "", ""); abort(); } errno = ENOMEM; } UTRACE(0, num_size, ret); return (ret); } void * realloc(void *ptr, size_t size) { void *ret; if (size == 0) { if (opt_sysv == false) size = 1; else { if (ptr != NULL) idalloc(ptr); ret = NULL; goto RETURN; } } if (ptr != NULL) { assert(malloc_initialized); ret = iralloc(ptr, size); if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } errno = ENOMEM; } } else { if (malloc_init()) ret = NULL; else ret = imalloc(size); if (ret == NULL) { if (opt_xmalloc) { _malloc_message(_getprogname(), ": (malloc) Error in realloc(): out of " "memory\n", "", ""); abort(); } errno = ENOMEM; } } RETURN: UTRACE(ptr, size, ret); return (ret); } void free(void *ptr) { UTRACE(ptr, 0, 0); if (ptr != NULL) { assert(malloc_initialized); idalloc(ptr); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ size_t malloc_usable_size(const void *ptr) { assert(ptr != NULL); return (isalloc(ptr)); } /* * End non-standard functions. */ /******************************************************************************/ /* * Begin library-private functions. */ /* * We provide an unpublished interface in order to receive notifications from * the pthreads library whenever a thread exits. This allows us to clean up * thread caches. */ void _malloc_thread_cleanup(void) { #ifdef MALLOC_TCACHE tcache_t *tcache = tcache_tls; if (tcache != NULL) { assert(tcache != (void *)(uintptr_t)1); tcache_destroy(tcache); tcache_tls = (void *)(uintptr_t)1; } #endif } /* * The following functions are used by threading libraries for protection of * malloc during fork(). These functions are only called if the program is * running in threaded mode, so there is no need to check whether the program * is threaded here. */ void _malloc_prefork(void) { unsigned i; /* Acquire all mutexes in a safe order. */ malloc_spin_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_spin_lock(&arenas[i]->lock); } malloc_mutex_lock(&base_mtx); malloc_mutex_lock(&huge_mtx); #ifdef MALLOC_DSS malloc_mutex_lock(&dss_mtx); #endif } void _malloc_postfork(void) { unsigned i; /* Release all mutexes, now that fork() has completed. */ #ifdef MALLOC_DSS malloc_mutex_unlock(&dss_mtx); #endif malloc_mutex_unlock(&huge_mtx); malloc_mutex_unlock(&base_mtx); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_spin_unlock(&arenas[i]->lock); } malloc_spin_unlock(&arenas_lock); } /* * End library-private functions. */ /******************************************************************************/ Index: head/lib/libc/stdlib/rb.h =================================================================== --- head/lib/libc/stdlib/rb.h (revision 204492) +++ head/lib/libc/stdlib/rb.h (revision 204493) @@ -1,947 +1,1002 @@ -/****************************************************************************** +/*- + ******************************************************************************* * - * Copyright (C) 2008 Jason Evans . + * Copyright (C) 2008-2010 Jason Evans . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer * unmodified other than the allowable addition of one or more * copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** * - * cpp macro implementation of left-leaning red-black trees. + * cpp macro implementation of left-leaning 2-3 red-black trees. Parent + * pointers are not used, and color bits are stored in the least significant + * bit of right-child pointers (if RB_COMPACT is defined), thus making node + * linkage as compact as is possible for red-black trees. * * Usage: * - * (Optional, see assert(3).) - * #define NDEBUG - * - * (Required.) + * #include + * #include + * #define NDEBUG // (Optional, see assert(3).) * #include + * #define RB_COMPACT // (Optional, embed color bits in right-child pointers.) * #include * ... * - * All operations are done non-recursively. Parent pointers are not used, and - * color bits are stored in the least significant bit of right-child pointers, - * thus making node linkage as compact as is possible for red-black trees. - * - * Some macros use a comparison function pointer, which is expected to have the - * following prototype: - * - * int (a_cmp *)(a_type *a_node, a_type *a_other); - * ^^^^^^ - * or a_key - * - * Interpretation of comparision function return values: - * - * -1 : a_node < a_other - * 0 : a_node == a_other - * 1 : a_node > a_other - * - * In all cases, the a_node or a_key macro argument is the first argument to the - * comparison function, which makes it possible to write comparison functions - * that treat the first argument specially. - * - ******************************************************************************/ + ******************************************************************************* + */ #ifndef RB_H_ #define RB_H_ #include __FBSDID("$FreeBSD$"); +#ifdef RB_COMPACT /* Node structure. */ #define rb_node(a_type) \ struct { \ a_type *rbn_left; \ a_type *rbn_right_red; \ } +#else +#define rb_node(a_type) \ +struct { \ + a_type *rbn_left; \ + a_type *rbn_right; \ + bool rbn_red; \ +} +#endif /* Root structure. */ #define rb_tree(a_type) \ struct { \ a_type *rbt_root; \ a_type rbt_nil; \ } /* Left accessors. */ -#define rbp_left_get(a_type, a_field, a_node) \ +#define rbtn_left_get(a_type, a_field, a_node) \ ((a_node)->a_field.rbn_left) -#define rbp_left_set(a_type, a_field, a_node, a_left) do { \ +#define rbtn_left_set(a_type, a_field, a_node, a_left) do { \ (a_node)->a_field.rbn_left = a_left; \ } while (0) +#ifdef RB_COMPACT /* Right accessors. */ -#define rbp_right_get(a_type, a_field, a_node) \ +#define rbtn_right_get(a_type, a_field, a_node) \ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \ & ((ssize_t)-2))) -#define rbp_right_set(a_type, a_field, a_node, a_right) do { \ +#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \ } while (0) /* Color accessors. */ -#define rbp_red_get(a_type, a_field, a_node) \ +#define rbtn_red_get(a_type, a_field, a_node) \ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \ & ((size_t)1))) -#define rbp_color_set(a_type, a_field, a_node, a_red) do { \ +#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \ | ((ssize_t)a_red)); \ } while (0) -#define rbp_red_set(a_type, a_field, a_node) do { \ +#define rbtn_red_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \ } while (0) -#define rbp_black_set(a_type, a_field, a_node) do { \ +#define rbtn_black_set(a_type, a_field, a_node) do { \ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \ } while (0) +#else +/* Right accessors. */ +#define rbtn_right_get(a_type, a_field, a_node) \ + ((a_node)->a_field.rbn_right) +#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \ + (a_node)->a_field.rbn_right = a_right; \ +} while (0) +/* Color accessors. */ +#define rbtn_red_get(a_type, a_field, a_node) \ + ((a_node)->a_field.rbn_red) +#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \ + (a_node)->a_field.rbn_red = (a_red); \ +} while (0) +#define rbtn_red_set(a_type, a_field, a_node) do { \ + (a_node)->a_field.rbn_red = true; \ +} while (0) +#define rbtn_black_set(a_type, a_field, a_node) do { \ + (a_node)->a_field.rbn_red = false; \ +} while (0) +#endif + /* Node initializer. */ -#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \ - rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ - rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ - rbp_red_set(a_type, a_field, (a_node)); \ +#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \ + rbtn_left_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \ + rbtn_right_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \ + rbtn_red_set(a_type, a_field, (a_node)); \ } while (0) /* Tree initializer. */ -#define rb_new(a_type, a_field, a_tree) do { \ - (a_tree)->rbt_root = &(a_tree)->rbt_nil; \ - rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \ +#define rb_new(a_type, a_field, a_rbt) do { \ + (a_rbt)->rbt_root = &(a_rbt)->rbt_nil; \ + rbt_node_new(a_type, a_field, a_rbt, &(a_rbt)->rbt_nil); \ + rbtn_black_set(a_type, a_field, &(a_rbt)->rbt_nil); \ } while (0) -/* Tree operations. */ -#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \ - a_type *rbp_bh_t; \ - for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \ - rbp_bh_t != &(a_tree)->rbt_nil; \ - rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \ - if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \ - (r_height)++; \ +/* Internal utility macros. */ +#define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \ + (r_node) = (a_root); \ + if ((r_node) != &(a_rbt)->rbt_nil) { \ + for (; \ + rbtn_left_get(a_type, a_field, (r_node)) != &(a_rbt)->rbt_nil;\ + (r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \ } \ } \ } while (0) -#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \ - for ((r_node) = (a_root); \ - rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ - (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \ +#define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \ + (r_node) = (a_root); \ + if ((r_node) != &(a_rbt)->rbt_nil) { \ + for (; rbtn_right_get(a_type, a_field, (r_node)) != \ + &(a_rbt)->rbt_nil; (r_node) = rbtn_right_get(a_type, a_field, \ + (r_node))) { \ + } \ } \ } while (0) -#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \ - for ((r_node) = (a_root); \ - rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ - (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \ - } \ +#define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \ + (r_node) = rbtn_right_get(a_type, a_field, (a_node)); \ + rbtn_right_set(a_type, a_field, (a_node), \ + rbtn_left_get(a_type, a_field, (r_node))); \ + rbtn_left_set(a_type, a_field, (r_node), (a_node)); \ } while (0) -#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - if (rbp_right_get(a_type, a_field, (a_node)) \ - != &(a_tree)->rbt_nil) { \ - rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \ - a_field, (a_node)), (r_node)); \ +#define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \ + (r_node) = rbtn_left_get(a_type, a_field, (a_node)); \ + rbtn_left_set(a_type, a_field, (a_node), \ + rbtn_right_get(a_type, a_field, (r_node))); \ + rbtn_right_set(a_type, a_field, (r_node), (a_node)); \ +} while (0) + +/* + * The rb_proto() macro generates function prototypes that correspond to the + * functions generated by an equivalently parameterized call to rb_gen(). + */ + +#define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \ +a_attr void \ +a_prefix##new(a_rbt_type *rbtree); \ +a_attr a_type * \ +a_prefix##first(a_rbt_type *rbtree); \ +a_attr a_type * \ +a_prefix##last(a_rbt_type *rbtree); \ +a_attr a_type * \ +a_prefix##next(a_rbt_type *rbtree, a_type *node); \ +a_attr a_type * \ +a_prefix##prev(a_rbt_type *rbtree, a_type *node); \ +a_attr a_type * \ +a_prefix##search(a_rbt_type *rbtree, a_type *key); \ +a_attr a_type * \ +a_prefix##nsearch(a_rbt_type *rbtree, a_type *key); \ +a_attr a_type * \ +a_prefix##psearch(a_rbt_type *rbtree, a_type *key); \ +a_attr void \ +a_prefix##insert(a_rbt_type *rbtree, a_type *node); \ +a_attr void \ +a_prefix##remove(a_rbt_type *rbtree, a_type *node); \ +a_attr a_type * \ +a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \ + a_rbt_type *, a_type *, void *), void *arg); \ +a_attr a_type * \ +a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \ + a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg); + +/* + * The rb_gen() macro generates a type-specific red-black tree implementation, + * based on the above cpp macros. + * + * Arguments: + * + * a_attr : Function attribute for generated functions (ex: static). + * a_prefix : Prefix for generated functions (ex: extree_). + * a_rb_type : Type for red-black tree data structure (ex: extree_t). + * a_type : Type for red-black tree node data structure (ex: + * extree_node_t). + * a_field : Name of red-black tree node linkage (ex: extree_link). + * a_cmp : Node comparison function name, with the following prototype: + * int (a_cmp *)(a_type *a_node, a_type *a_other); + * ^^^^^^ + * or a_key + * Interpretation of comparision function return values: + * -1 : a_node < a_other + * 0 : a_node == a_other + * 1 : a_node > a_other + * In all cases, the a_node or a_key macro argument is the first + * argument to the comparison function, which makes it possible + * to write comparison functions that treat the first argument + * specially. + * + * Assuming the following setup: + * + * typedef struct ex_node_s ex_node_t; + * struct ex_node_s { + * rb_node(ex_node_t) ex_link; + * }; + * typedef rb(ex_node_t) ex_t; + * rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp, 1297, 1301) + * + * The following API is generated: + * + * static void + * ex_new(ex_t *extree); + * Description: Initialize a red-black tree structure. + * Args: + * extree: Pointer to an uninitialized red-black tree object. + * + * static ex_node_t * + * ex_first(ex_t *extree); + * static ex_node_t * + * ex_last(ex_t *extree); + * Description: Get the first/last node in extree. + * Args: + * extree: Pointer to an initialized red-black tree object. + * Ret: First/last node in extree, or NULL if extree is empty. + * + * static ex_node_t * + * ex_next(ex_t *extree, ex_node_t *node); + * static ex_node_t * + * ex_prev(ex_t *extree, ex_node_t *node); + * Description: Get node's successor/predecessor. + * Args: + * extree: Pointer to an initialized red-black tree object. + * node : A node in extree. + * Ret: node's successor/predecessor in extree, or NULL if node is + * last/first. + * + * static ex_node_t * + * ex_search(ex_t *extree, ex_node_t *key); + * Description: Search for node that matches key. + * Args: + * extree: Pointer to an initialized red-black tree object. + * key : Search key. + * Ret: Node in extree that matches key, or NULL if no match. + * + * static ex_node_t * + * ex_nsearch(ex_t *extree, ex_node_t *key); + * static ex_node_t * + * ex_psearch(ex_t *extree, ex_node_t *key); + * Description: Search for node that matches key. If no match is found, + * return what would be key's successor/predecessor, were + * key in extree. + * Args: + * extree: Pointer to an initialized red-black tree object. + * key : Search key. + * Ret: Node in extree that matches key, or if no match, hypothetical + * node's successor/predecessor (NULL if no successor/predecessor). + * + * static void + * ex_insert(ex_t *extree, ex_node_t *node); + * Description: Insert node into extree. + * Args: + * extree: Pointer to an initialized red-black tree object. + * node : Node to be inserted into extree. + * + * static void + * ex_remove(ex_t *extree, ex_node_t *node); + * Description: Remove node from extree. + * Args: + * extree: Pointer to an initialized red-black tree object. + * node : Node in extree to be removed. + * + * static ex_node_t * + * ex_iter(ex_t *extree, ex_node_t *start, ex_node_t *(*cb)(ex_t *, + * ex_node_t *, void *), void *arg); + * static ex_node_t * + * ex_reverse_iter(ex_t *extree, ex_node_t *start, ex_node *(*cb)(ex_t *, + * ex_node_t *, void *), void *arg); + * Description: Iterate forward/backward over extree, starting at node. + * If extree is modified, iteration must be immediately + * terminated by the callback function that causes the + * modification. + * Args: + * extree: Pointer to an initialized red-black tree object. + * start : Node at which to start iteration, or NULL to start at + * first/last node. + * cb : Callback function, which is called for each node during + * iteration. Under normal circumstances the callback function + * should return NULL, which causes iteration to continue. If a + * callback function returns non-NULL, iteration is immediately + * terminated and the non-NULL return value is returned by the + * iterator. This is useful for re-starting iteration after + * modifying extree. + * arg : Opaque pointer passed to cb(). + * Ret: NULL if iteration completed, or the non-NULL callback return value + * that caused termination of the iteration. + */ +#define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \ +a_attr void \ +a_prefix##new(a_rbt_type *rbtree) { \ + rb_new(a_type, a_field, rbtree); \ +} \ +a_attr a_type * \ +a_prefix##first(a_rbt_type *rbtree) { \ + a_type *ret; \ + rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \ + if (ret == &rbtree->rbt_nil) { \ + ret = NULL; \ + } \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##last(a_rbt_type *rbtree) { \ + a_type *ret; \ + rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \ + if (ret == &rbtree->rbt_nil) { \ + ret = NULL; \ + } \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##next(a_rbt_type *rbtree, a_type *node) { \ + a_type *ret; \ + if (rbtn_right_get(a_type, a_field, node) != &rbtree->rbt_nil) { \ + rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \ + a_field, node), ret); \ } else { \ - a_type *rbp_n_t = (a_tree)->rbt_root; \ - assert(rbp_n_t != &(a_tree)->rbt_nil); \ - (r_node) = &(a_tree)->rbt_nil; \ + a_type *tnode = rbtree->rbt_root; \ + assert(tnode != &rbtree->rbt_nil); \ + ret = &rbtree->rbt_nil; \ while (true) { \ - int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \ - if (rbp_n_cmp < 0) { \ - (r_node) = rbp_n_t; \ - rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \ - } else if (rbp_n_cmp > 0) { \ - rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \ + int cmp = (a_cmp)(node, tnode); \ + if (cmp < 0) { \ + ret = tnode; \ + tnode = rbtn_left_get(a_type, a_field, tnode); \ + } else if (cmp > 0) { \ + tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ break; \ } \ - assert(rbp_n_t != &(a_tree)->rbt_nil); \ + assert(tnode != &rbtree->rbt_nil); \ } \ } \ -} while (0) - -#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\ - rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \ - a_field, (a_node)), (r_node)); \ + if (ret == &rbtree->rbt_nil) { \ + ret = (NULL); \ + } \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \ + a_type *ret; \ + if (rbtn_left_get(a_type, a_field, node) != &rbtree->rbt_nil) { \ + rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \ + a_field, node), ret); \ } else { \ - a_type *rbp_p_t = (a_tree)->rbt_root; \ - assert(rbp_p_t != &(a_tree)->rbt_nil); \ - (r_node) = &(a_tree)->rbt_nil; \ + a_type *tnode = rbtree->rbt_root; \ + assert(tnode != &rbtree->rbt_nil); \ + ret = &rbtree->rbt_nil; \ while (true) { \ - int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \ - if (rbp_p_cmp < 0) { \ - rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \ - } else if (rbp_p_cmp > 0) { \ - (r_node) = rbp_p_t; \ - rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \ + int cmp = (a_cmp)(node, tnode); \ + if (cmp < 0) { \ + tnode = rbtn_left_get(a_type, a_field, tnode); \ + } else if (cmp > 0) { \ + ret = tnode; \ + tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ break; \ } \ - assert(rbp_p_t != &(a_tree)->rbt_nil); \ + assert(tnode != &rbtree->rbt_nil); \ } \ } \ -} while (0) - -#define rb_first(a_type, a_field, a_tree, r_node) do { \ - rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ + if (ret == &rbtree->rbt_nil) { \ + ret = (NULL); \ } \ -} while (0) - -#define rb_last(a_type, a_field, a_tree, r_node) do { \ - rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - int rbp_se_cmp; \ - (r_node) = (a_tree)->rbt_root; \ - while ((r_node) != &(a_tree)->rbt_nil \ - && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \ - if (rbp_se_cmp < 0) { \ - (r_node) = rbp_left_get(a_type, a_field, (r_node)); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##search(a_rbt_type *rbtree, a_type *key) { \ + a_type *ret; \ + int cmp; \ + ret = rbtree->rbt_root; \ + while (ret != &rbtree->rbt_nil \ + && (cmp = (a_cmp)(key, ret)) != 0) { \ + if (cmp < 0) { \ + ret = rbtn_left_get(a_type, a_field, ret); \ } else { \ - (r_node) = rbp_right_get(a_type, a_field, (r_node)); \ + ret = rbtn_right_get(a_type, a_field, ret); \ } \ } \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ + if (ret == &rbtree->rbt_nil) { \ + ret = (NULL); \ } \ -} while (0) - -/* - * Find a match if it exists. Otherwise, find the next greater node, if one - * exists. - */ -#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - a_type *rbp_ns_t = (a_tree)->rbt_root; \ - (r_node) = NULL; \ - while (rbp_ns_t != &(a_tree)->rbt_nil) { \ - int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \ - if (rbp_ns_cmp < 0) { \ - (r_node) = rbp_ns_t; \ - rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \ - } else if (rbp_ns_cmp > 0) { \ - rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##nsearch(a_rbt_type *rbtree, a_type *key) { \ + a_type *ret; \ + a_type *tnode = rbtree->rbt_root; \ + ret = &rbtree->rbt_nil; \ + while (tnode != &rbtree->rbt_nil) { \ + int cmp = (a_cmp)(key, tnode); \ + if (cmp < 0) { \ + ret = tnode; \ + tnode = rbtn_left_get(a_type, a_field, tnode); \ + } else if (cmp > 0) { \ + tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ - (r_node) = rbp_ns_t; \ + ret = tnode; \ break; \ } \ } \ -} while (0) - -/* - * Find a match if it exists. Otherwise, find the previous lesser node, if one - * exists. - */ -#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - a_type *rbp_ps_t = (a_tree)->rbt_root; \ - (r_node) = NULL; \ - while (rbp_ps_t != &(a_tree)->rbt_nil) { \ - int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \ - if (rbp_ps_cmp < 0) { \ - rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \ - } else if (rbp_ps_cmp > 0) { \ - (r_node) = rbp_ps_t; \ - rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \ + if (ret == &rbtree->rbt_nil) { \ + ret = (NULL); \ + } \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##psearch(a_rbt_type *rbtree, a_type *key) { \ + a_type *ret; \ + a_type *tnode = rbtree->rbt_root; \ + ret = &rbtree->rbt_nil; \ + while (tnode != &rbtree->rbt_nil) { \ + int cmp = (a_cmp)(key, tnode); \ + if (cmp < 0) { \ + tnode = rbtn_left_get(a_type, a_field, tnode); \ + } else if (cmp > 0) { \ + ret = tnode; \ + tnode = rbtn_right_get(a_type, a_field, tnode); \ } else { \ - (r_node) = rbp_ps_t; \ + ret = tnode; \ break; \ } \ } \ -} while (0) - -#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \ - (r_node) = rbp_right_get(a_type, a_field, (a_node)); \ - rbp_right_set(a_type, a_field, (a_node), \ - rbp_left_get(a_type, a_field, (r_node))); \ - rbp_left_set(a_type, a_field, (r_node), (a_node)); \ -} while (0) - -#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \ - (r_node) = rbp_left_get(a_type, a_field, (a_node)); \ - rbp_left_set(a_type, a_field, (a_node), \ - rbp_right_get(a_type, a_field, (r_node))); \ - rbp_right_set(a_type, a_field, (r_node), (a_node)); \ -} while (0) - -#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \ - bool rbp_ll_red; \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \ - rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \ - rbp_red_set(a_type, a_field, (a_node)); \ -} while (0) - -#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \ - bool rbp_lr_red; \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \ - rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \ - rbp_red_set(a_type, a_field, (a_node)); \ -} while (0) - -#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \ - a_type *rbp_mrl_t, *rbp_mrl_u; \ - rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \ - rbp_red_set(a_type, a_field, rbp_mrl_t); \ - rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ - rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \ - if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \ - rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \ - rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ - if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \ - rbp_black_set(a_type, a_field, rbp_mrl_t); \ - rbp_red_set(a_type, a_field, (a_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \ - rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \ - } else { \ - rbp_black_set(a_type, a_field, (a_node)); \ - } \ - } else { \ - rbp_red_set(a_type, a_field, (a_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ + if (ret == &rbtree->rbt_nil) { \ + ret = (NULL); \ } \ -} while (0) - -#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \ - a_type *rbp_mrr_t; \ - rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ - a_type *rbp_mrr_u, *rbp_mrr_v; \ - rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \ - rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \ - rbp_color_set(a_type, a_field, rbp_mrr_u, \ - rbp_red_get(a_type, a_field, (a_node))); \ - rbp_black_set(a_type, a_field, rbp_mrr_v); \ - rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \ - rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ + return (ret); \ +} \ +a_attr void \ +a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \ + struct { \ + a_type *node; \ + int cmp; \ + } path[sizeof(void *) << 4], *pathp; \ + rbt_node_new(a_type, a_field, rbtree, node); \ + /* Wind. */ \ + path->node = rbtree->rbt_root; \ + for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \ + int cmp = pathp->cmp = a_cmp(node, pathp->node); \ + assert(cmp != 0); \ + if (cmp < 0) { \ + pathp[1].node = rbtn_left_get(a_type, a_field, \ + pathp->node); \ } else { \ - rbp_color_set(a_type, a_field, rbp_mrr_t, \ - rbp_red_get(a_type, a_field, (a_node))); \ - rbp_red_set(a_type, a_field, rbp_mrr_u); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ + pathp[1].node = rbtn_right_get(a_type, a_field, \ + pathp->node); \ } \ - rbp_red_set(a_type, a_field, (a_node)); \ - } else { \ - rbp_red_set(a_type, a_field, rbp_mrr_t); \ - rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ - rbp_black_set(a_type, a_field, rbp_mrr_t); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ - } else { \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - } \ } \ -} while (0) - -#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \ - a_type rbp_i_s; \ - a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \ - int rbp_i_cmp = 0; \ - rbp_i_g = &(a_tree)->rbt_nil; \ - rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \ - rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &rbp_i_s); \ - rbp_i_p = &rbp_i_s; \ - rbp_i_c = (a_tree)->rbt_root; \ - /* Iteratively search down the tree for the insertion point, */\ - /* splitting 4-nodes as they are encountered. At the end of each */\ - /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\ - /* the tree, assuming a sufficiently deep tree. */\ - while (rbp_i_c != &(a_tree)->rbt_nil) { \ - rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \ - rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ - if (rbp_red_get(a_type, a_field, rbp_i_t) \ - && rbp_red_get(a_type, a_field, rbp_i_u)) { \ - /* rbp_i_c is the top of a logical 4-node, so split it. */\ - /* This iteration does not move down the tree, due to the */\ - /* disruptiveness of node splitting. */\ - /* */\ - /* Rotate right. */\ - rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \ - /* Pass red links up one level. */\ - rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ - rbp_black_set(a_type, a_field, rbp_i_u); \ - if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \ - rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \ - rbp_i_c = rbp_i_t; \ + pathp->node = node; \ + /* Unwind. */ \ + for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \ + a_type *cnode = pathp->node; \ + if (pathp->cmp < 0) { \ + a_type *left = pathp[1].node; \ + rbtn_left_set(a_type, a_field, cnode, left); \ + if (rbtn_red_get(a_type, a_field, left)) { \ + a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ + if (rbtn_red_get(a_type, a_field, leftleft)) { \ + /* Fix up 4-node. */ \ + a_type *tnode; \ + rbtn_black_set(a_type, a_field, leftleft); \ + rbtn_rotate_right(a_type, a_field, cnode, tnode); \ + cnode = tnode; \ + } \ } else { \ - /* rbp_i_c was the right child of rbp_i_p, so rotate */\ - /* left in order to maintain the left-leaning */\ - /* invariant. */\ - assert(rbp_right_get(a_type, a_field, rbp_i_p) \ - == rbp_i_c); \ - rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \ - rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \ - if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ - rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \ + return; \ + } \ + } else { \ + a_type *right = pathp[1].node; \ + rbtn_right_set(a_type, a_field, cnode, right); \ + if (rbtn_red_get(a_type, a_field, right)) { \ + a_type *left = rbtn_left_get(a_type, a_field, cnode); \ + if (rbtn_red_get(a_type, a_field, left)) { \ + /* Split 4-node. */ \ + rbtn_black_set(a_type, a_field, left); \ + rbtn_black_set(a_type, a_field, right); \ + rbtn_red_set(a_type, a_field, cnode); \ } else { \ - assert(rbp_right_get(a_type, a_field, rbp_i_g) \ - == rbp_i_p); \ - rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \ + /* Lean left. */ \ + a_type *tnode; \ + bool tred = rbtn_red_get(a_type, a_field, cnode); \ + rbtn_rotate_left(a_type, a_field, cnode, tnode); \ + rbtn_color_set(a_type, a_field, tnode, tred); \ + rbtn_red_set(a_type, a_field, cnode); \ + cnode = tnode; \ } \ - rbp_i_p = rbp_i_u; \ - rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \ - if (rbp_i_cmp < 0) { \ - rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \ - } else { \ - assert(rbp_i_cmp > 0); \ - rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \ - } \ - continue; \ + } else { \ + return; \ } \ } \ - rbp_i_g = rbp_i_p; \ - rbp_i_p = rbp_i_c; \ - rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \ - if (rbp_i_cmp < 0) { \ - rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \ + pathp->node = cnode; \ + } \ + /* Set root, and make it black. */ \ + rbtree->rbt_root = path->node; \ + rbtn_black_set(a_type, a_field, rbtree->rbt_root); \ +} \ +a_attr void \ +a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \ + struct { \ + a_type *node; \ + int cmp; \ + } *pathp, *nodep, path[sizeof(void *) << 4]; \ + /* Wind. */ \ + nodep = NULL; /* Silence compiler warning. */ \ + path->node = rbtree->rbt_root; \ + for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \ + int cmp = pathp->cmp = a_cmp(node, pathp->node); \ + if (cmp < 0) { \ + pathp[1].node = rbtn_left_get(a_type, a_field, \ + pathp->node); \ } else { \ - assert(rbp_i_cmp > 0); \ - rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \ + pathp[1].node = rbtn_right_get(a_type, a_field, \ + pathp->node); \ + if (cmp == 0) { \ + /* Find node's successor, in preparation for swap. */ \ + pathp->cmp = 1; \ + nodep = pathp; \ + for (pathp++; pathp->node != &rbtree->rbt_nil; \ + pathp++) { \ + pathp->cmp = -1; \ + pathp[1].node = rbtn_left_get(a_type, a_field, \ + pathp->node); \ + } \ + break; \ + } \ } \ } \ - /* rbp_i_p now refers to the node under which to insert. */\ - rbp_node_new(a_type, a_field, a_tree, (a_node)); \ - if (rbp_i_cmp > 0) { \ - rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \ - rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \ - if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \ - rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \ - } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ - rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \ - } \ - } else { \ - rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \ - } \ - /* Update the root and make sure that it is black. */\ - (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \ - rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \ -} while (0) - -#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \ - a_type rbp_r_s; \ - a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \ - int rbp_r_cmp; \ - rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \ - rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &rbp_r_s); \ - rbp_r_p = &rbp_r_s; \ - rbp_r_c = (a_tree)->rbt_root; \ - rbp_r_xp = &(a_tree)->rbt_nil; \ - /* Iterate down the tree, but always transform 2-nodes to 3- or */\ - /* 4-nodes in order to maintain the invariant that the current */\ - /* node is not a 2-node. This allows simple deletion once a leaf */\ - /* is reached. Handle the root specially though, since there may */\ - /* be no way to convert it from a 2-node to a 3-node. */\ - rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ - if (rbp_r_cmp < 0) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ - && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - /* Apply standard transform to prepare for left move. */\ - rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \ - rbp_black_set(a_type, a_field, rbp_r_t); \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - rbp_r_c = rbp_r_t; \ + assert(nodep->node == node); \ + pathp--; \ + if (pathp->node != node) { \ + /* Swap node with its successor. */ \ + bool tred = rbtn_red_get(a_type, a_field, pathp->node); \ + rbtn_color_set(a_type, a_field, pathp->node, \ + rbtn_red_get(a_type, a_field, node)); \ + rbtn_left_set(a_type, a_field, pathp->node, \ + rbtn_left_get(a_type, a_field, node)); \ + /* If node's successor is its right child, the following code */\ + /* will do the wrong thing for the right child pointer. */\ + /* However, it doesn't matter, because the pointer will be */\ + /* properly set when the successor is pruned. */\ + rbtn_right_set(a_type, a_field, pathp->node, \ + rbtn_right_get(a_type, a_field, node)); \ + rbtn_color_set(a_type, a_field, node, tred); \ + /* The pruned leaf node's child pointers are never accessed */\ + /* again, so don't bother setting them to nil. */\ + nodep->node = pathp->node; \ + pathp->node = node; \ + if (nodep == path) { \ + rbtree->rbt_root = nodep->node; \ } else { \ - /* Move left. */\ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ + if (nodep[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, nodep[-1].node, \ + nodep->node); \ + } else { \ + rbtn_right_set(a_type, a_field, nodep[-1].node, \ + nodep->node); \ + } \ } \ } else { \ - if (rbp_r_cmp == 0) { \ - assert((a_node) == rbp_r_c); \ - if (rbp_right_get(a_type, a_field, rbp_r_c) \ - == &(a_tree)->rbt_nil) { \ - /* Delete root node (which is also a leaf node). */\ - if (rbp_left_get(a_type, a_field, rbp_r_c) \ - != &(a_tree)->rbt_nil) { \ - rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - &(a_tree)->rbt_nil); \ + a_type *left = rbtn_left_get(a_type, a_field, node); \ + if (left != &rbtree->rbt_nil) { \ + /* node has no successor, but it has a left child. */\ + /* Splice node out, without losing the left child. */\ + assert(rbtn_red_get(a_type, a_field, node) == false); \ + assert(rbtn_red_get(a_type, a_field, left)); \ + rbtn_black_set(a_type, a_field, left); \ + if (pathp == path) { \ + rbtree->rbt_root = left; \ + } else { \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, pathp[-1].node, \ + left); \ } else { \ - rbp_r_t = &(a_tree)->rbt_nil; \ + rbtn_right_set(a_type, a_field, pathp[-1].node, \ + left); \ } \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - } else { \ - /* This is the node we want to delete, but we will */\ - /* instead swap it with its successor and delete the */\ - /* successor. Record enough information to do the */\ - /* swap later. rbp_r_xp is the a_node's parent. */\ - rbp_r_xp = rbp_r_p; \ - rbp_r_cmp = 1; /* Note that deletion is incomplete. */\ } \ + return; \ + } else if (pathp == path) { \ + /* The tree only contained one node. */ \ + rbtree->rbt_root = &rbtree->rbt_nil; \ + return; \ } \ - if (rbp_r_cmp == 1) { \ - if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \ - a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \ - == false) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - if (rbp_red_get(a_type, a_field, rbp_r_t)) { \ - /* Standard transform. */\ - rbp_move_red_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ + } \ + if (rbtn_red_get(a_type, a_field, pathp->node)) { \ + /* Prune red node, which requires no fixup. */ \ + assert(pathp[-1].cmp < 0); \ + rbtn_left_set(a_type, a_field, pathp[-1].node, \ + &rbtree->rbt_nil); \ + return; \ + } \ + /* The node to be pruned is black, so unwind until balance is */\ + /* restored. */\ + pathp->node = &rbtree->rbt_nil; \ + for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \ + assert(pathp->cmp != 0); \ + if (pathp->cmp < 0) { \ + rbtn_left_set(a_type, a_field, pathp->node, \ + pathp[1].node); \ + assert(rbtn_red_get(a_type, a_field, pathp[1].node) \ + == false); \ + if (rbtn_red_get(a_type, a_field, pathp->node)) { \ + a_type *right = rbtn_right_get(a_type, a_field, \ + pathp->node); \ + a_type *rightleft = rbtn_left_get(a_type, a_field, \ + right); \ + a_type *tnode; \ + if (rbtn_red_get(a_type, a_field, rightleft)) { \ + /* In the following diagrams, ||, //, and \\ */\ + /* indicate the path to the removed node. */\ + /* */\ + /* || */\ + /* pathp(r) */\ + /* // \ */\ + /* (b) (b) */\ + /* / */\ + /* (r) */\ + /* */\ + rbtn_black_set(a_type, a_field, pathp->node); \ + rbtn_rotate_right(a_type, a_field, right, tnode); \ + rbtn_right_set(a_type, a_field, pathp->node, tnode);\ + rbtn_rotate_left(a_type, a_field, pathp->node, \ + tnode); \ } else { \ - /* Root-specific transform. */\ - rbp_red_set(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_u)) { \ - rbp_black_set(a_type, a_field, rbp_r_u); \ - rbp_rotate_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - rbp_rotate_left(a_type, a_field, rbp_r_c, \ - rbp_r_u); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - rbp_r_u); \ + /* || */\ + /* pathp(r) */\ + /* // \ */\ + /* (b) (b) */\ + /* / */\ + /* (b) */\ + /* */\ + rbtn_rotate_left(a_type, a_field, pathp->node, \ + tnode); \ + } \ + /* Balance restored, but rotation modified subtree */\ + /* root. */\ + assert((uintptr_t)pathp > (uintptr_t)path); \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, pathp[-1].node, \ + tnode); \ + } else { \ + rbtn_right_set(a_type, a_field, pathp[-1].node, \ + tnode); \ + } \ + return; \ + } else { \ + a_type *right = rbtn_right_get(a_type, a_field, \ + pathp->node); \ + a_type *rightleft = rbtn_left_get(a_type, a_field, \ + right); \ + if (rbtn_red_get(a_type, a_field, rightleft)) { \ + /* || */\ + /* pathp(b) */\ + /* // \ */\ + /* (b) (b) */\ + /* / */\ + /* (r) */\ + a_type *tnode; \ + rbtn_black_set(a_type, a_field, rightleft); \ + rbtn_rotate_right(a_type, a_field, right, tnode); \ + rbtn_right_set(a_type, a_field, pathp->node, tnode);\ + rbtn_rotate_left(a_type, a_field, pathp->node, \ + tnode); \ + /* Balance restored, but rotation modified */\ + /* subree root, which may actually be the tree */\ + /* root. */\ + if (pathp == path) { \ + /* Set root. */ \ + rbtree->rbt_root = tnode; \ } else { \ - rbp_red_set(a_type, a_field, rbp_r_t); \ - rbp_rotate_left(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, \ + pathp[-1].node, tnode); \ + } else { \ + rbtn_right_set(a_type, a_field, \ + pathp[-1].node, tnode); \ + } \ } \ + return; \ + } else { \ + /* || */\ + /* pathp(b) */\ + /* // \ */\ + /* (b) (b) */\ + /* / */\ + /* (b) */\ + a_type *tnode; \ + rbtn_red_set(a_type, a_field, pathp->node); \ + rbtn_rotate_left(a_type, a_field, pathp->node, \ + tnode); \ + pathp->node = tnode; \ } \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - rbp_r_c = rbp_r_t; \ - } else { \ - /* Move right. */\ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ } \ - } \ - } \ - if (rbp_r_cmp != 0) { \ - while (true) { \ - assert(rbp_r_p != &(a_tree)->rbt_nil); \ - rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ - if (rbp_r_cmp < 0) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - if (rbp_r_t == &(a_tree)->rbt_nil) { \ - /* rbp_r_c now refers to the successor node to */\ - /* relocate, and rbp_r_xp/a_node refer to the */\ - /* context for the relocation. */\ - if (rbp_left_get(a_type, a_field, rbp_r_xp) \ - == (a_node)) { \ - rbp_left_set(a_type, a_field, rbp_r_xp, \ - rbp_r_c); \ + } else { \ + a_type *left; \ + rbtn_right_set(a_type, a_field, pathp->node, \ + pathp[1].node); \ + left = rbtn_left_get(a_type, a_field, pathp->node); \ + if (rbtn_red_get(a_type, a_field, left)) { \ + a_type *tnode; \ + a_type *leftright = rbtn_right_get(a_type, a_field, \ + left); \ + a_type *leftrightleft = rbtn_left_get(a_type, a_field, \ + leftright); \ + if (rbtn_red_get(a_type, a_field, leftrightleft)) { \ + /* || */\ + /* pathp(b) */\ + /* / \\ */\ + /* (r) (b) */\ + /* \ */\ + /* (b) */\ + /* / */\ + /* (r) */\ + a_type *unode; \ + rbtn_black_set(a_type, a_field, leftrightleft); \ + rbtn_rotate_right(a_type, a_field, pathp->node, \ + unode); \ + rbtn_rotate_right(a_type, a_field, pathp->node, \ + tnode); \ + rbtn_right_set(a_type, a_field, unode, tnode); \ + rbtn_rotate_left(a_type, a_field, unode, tnode); \ + } else { \ + /* || */\ + /* pathp(b) */\ + /* / \\ */\ + /* (r) (b) */\ + /* \ */\ + /* (b) */\ + /* / */\ + /* (b) */\ + assert(leftright != &rbtree->rbt_nil); \ + rbtn_red_set(a_type, a_field, leftright); \ + rbtn_rotate_right(a_type, a_field, pathp->node, \ + tnode); \ + rbtn_black_set(a_type, a_field, tnode); \ + } \ + /* Balance restored, but rotation modified subtree */\ + /* root, which may actually be the tree root. */\ + if (pathp == path) { \ + /* Set root. */ \ + rbtree->rbt_root = tnode; \ + } else { \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, pathp[-1].node, \ + tnode); \ } else { \ - assert(rbp_right_get(a_type, a_field, \ - rbp_r_xp) == (a_node)); \ - rbp_right_set(a_type, a_field, rbp_r_xp, \ - rbp_r_c); \ + rbtn_right_set(a_type, a_field, pathp[-1].node, \ + tnode); \ } \ - rbp_left_set(a_type, a_field, rbp_r_c, \ - rbp_left_get(a_type, a_field, (a_node))); \ - rbp_right_set(a_type, a_field, rbp_r_c, \ - rbp_right_get(a_type, a_field, (a_node))); \ - rbp_color_set(a_type, a_field, rbp_r_c, \ - rbp_red_get(a_type, a_field, (a_node))); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, \ - &(a_tree)->rbt_nil); \ - } else { \ - assert(rbp_right_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c); \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - &(a_tree)->rbt_nil); \ - } \ - break; \ } \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ - && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - rbp_move_red_left(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ + return; \ + } else if (rbtn_red_get(a_type, a_field, pathp->node)) { \ + a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ + if (rbtn_red_get(a_type, a_field, leftleft)) { \ + /* || */\ + /* pathp(r) */\ + /* / \\ */\ + /* (b) (b) */\ + /* / */\ + /* (r) */\ + a_type *tnode; \ + rbtn_black_set(a_type, a_field, pathp->node); \ + rbtn_red_set(a_type, a_field, left); \ + rbtn_black_set(a_type, a_field, leftleft); \ + rbtn_rotate_right(a_type, a_field, pathp->node, \ + tnode); \ + /* Balance restored, but rotation modified */\ + /* subtree root. */\ + assert((uintptr_t)pathp > (uintptr_t)path); \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, pathp[-1].node, \ + tnode); \ } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ + rbtn_right_set(a_type, a_field, pathp[-1].node, \ + tnode); \ } \ - rbp_r_c = rbp_r_t; \ + return; \ } else { \ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ + /* || */\ + /* pathp(r) */\ + /* / \\ */\ + /* (b) (b) */\ + /* / */\ + /* (b) */\ + rbtn_red_set(a_type, a_field, left); \ + rbtn_black_set(a_type, a_field, pathp->node); \ + /* Balance restored. */ \ + return; \ } \ } else { \ - /* Check whether to delete this node (it has to be */\ - /* the correct node and a leaf node). */\ - if (rbp_r_cmp == 0) { \ - assert((a_node) == rbp_r_c); \ - if (rbp_right_get(a_type, a_field, rbp_r_c) \ - == &(a_tree)->rbt_nil) { \ - /* Delete leaf node. */\ - if (rbp_left_get(a_type, a_field, rbp_r_c) \ - != &(a_tree)->rbt_nil) { \ - rbp_lean_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - &(a_tree)->rbt_nil); \ + a_type *leftleft = rbtn_left_get(a_type, a_field, left);\ + if (rbtn_red_get(a_type, a_field, leftleft)) { \ + /* || */\ + /* pathp(b) */\ + /* / \\ */\ + /* (b) (b) */\ + /* / */\ + /* (r) */\ + a_type *tnode; \ + rbtn_black_set(a_type, a_field, leftleft); \ + rbtn_rotate_right(a_type, a_field, pathp->node, \ + tnode); \ + /* Balance restored, but rotation modified */\ + /* subtree root, which may actually be the tree */\ + /* root. */\ + if (pathp == path) { \ + /* Set root. */ \ + rbtree->rbt_root = tnode; \ + } else { \ + if (pathp[-1].cmp < 0) { \ + rbtn_left_set(a_type, a_field, \ + pathp[-1].node, tnode); \ } else { \ - rbp_r_t = &(a_tree)->rbt_nil; \ + rbtn_right_set(a_type, a_field, \ + pathp[-1].node, tnode); \ } \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } \ - break; \ - } else { \ - /* This is the node we want to delete, but we */\ - /* will instead swap it with its successor */\ - /* and delete the successor. Record enough */\ - /* information to do the swap later. */\ - /* rbp_r_xp is a_node's parent. */\ - rbp_r_xp = rbp_r_p; \ } \ - } \ - rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - rbp_move_red_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ - } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } \ - rbp_r_c = rbp_r_t; \ + return; \ } else { \ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ + /* || */\ + /* pathp(b) */\ + /* / \\ */\ + /* (b) (b) */\ + /* / */\ + /* (b) */\ + rbtn_red_set(a_type, a_field, left); \ } \ } \ } \ } \ - /* Update root. */\ - (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \ -} while (0) - -/* - * The rb_wrap() macro provides a convenient way to wrap functions around the - * cpp macros. The main benefits of wrapping are that 1) repeated macro - * expansion can cause code bloat, especially for rb_{insert,remove)(), and - * 2) type, linkage, comparison functions, etc. need not be specified at every - * call point. - */ - -#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \ -a_attr void \ -a_prefix##new(a_tree_type *tree) { \ - rb_new(a_type, a_field, tree); \ + /* Set root. */ \ + rbtree->rbt_root = path->node; \ + assert(rbtn_red_get(a_type, a_field, rbtree->rbt_root) == false); \ } \ a_attr a_type * \ -a_prefix##first(a_tree_type *tree) { \ - a_type *ret; \ - rb_first(a_type, a_field, tree, ret); \ - return (ret); \ +a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \ + a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ + if (node == &rbtree->rbt_nil) { \ + return (&rbtree->rbt_nil); \ + } else { \ + a_type *ret; \ + if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \ + a_field, node), cb, arg)) != &rbtree->rbt_nil \ + || (ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ + a_field, node), cb, arg)); \ + } \ } \ a_attr a_type * \ -a_prefix##last(a_tree_type *tree) { \ - a_type *ret; \ - rb_last(a_type, a_field, tree, ret); \ - return (ret); \ +a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \ + a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ + int cmp = a_cmp(start, node); \ + if (cmp < 0) { \ + a_type *ret; \ + if ((ret = a_prefix##iter_start(rbtree, start, \ + rbtn_left_get(a_type, a_field, node), cb, arg)) != \ + &rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ + a_field, node), cb, arg)); \ + } else if (cmp > 0) { \ + return (a_prefix##iter_start(rbtree, start, \ + rbtn_right_get(a_type, a_field, node), cb, arg)); \ + } else { \ + a_type *ret; \ + if ((ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \ + a_field, node), cb, arg)); \ + } \ } \ a_attr a_type * \ -a_prefix##next(a_tree_type *tree, a_type *node) { \ +a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \ + a_rbt_type *, a_type *, void *), void *arg) { \ a_type *ret; \ - rb_next(a_type, a_field, a_cmp, tree, node, ret); \ + if (start != NULL) { \ + ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \ + cb, arg); \ + } else { \ + ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\ + } \ + if (ret == &rbtree->rbt_nil) { \ + ret = NULL; \ + } \ return (ret); \ } \ a_attr a_type * \ -a_prefix##prev(a_tree_type *tree, a_type *node) { \ - a_type *ret; \ - rb_prev(a_type, a_field, a_cmp, tree, node, ret); \ - return (ret); \ +a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \ + a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ + if (node == &rbtree->rbt_nil) { \ + return (&rbtree->rbt_nil); \ + } else { \ + a_type *ret; \ + if ((ret = a_prefix##reverse_iter_recurse(rbtree, \ + rbtn_right_get(a_type, a_field, node), cb, arg)) != \ + &rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##reverse_iter_recurse(rbtree, \ + rbtn_left_get(a_type, a_field, node), cb, arg)); \ + } \ } \ a_attr a_type * \ -a_prefix##search(a_tree_type *tree, a_type *key) { \ - a_type *ret; \ - rb_search(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ +a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \ + a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \ + void *arg) { \ + int cmp = a_cmp(start, node); \ + if (cmp > 0) { \ + a_type *ret; \ + if ((ret = a_prefix##reverse_iter_start(rbtree, start, \ + rbtn_right_get(a_type, a_field, node), cb, arg)) != \ + &rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##reverse_iter_recurse(rbtree, \ + rbtn_left_get(a_type, a_field, node), cb, arg)); \ + } else if (cmp < 0) { \ + return (a_prefix##reverse_iter_start(rbtree, start, \ + rbtn_left_get(a_type, a_field, node), cb, arg)); \ + } else { \ + a_type *ret; \ + if ((ret = cb(rbtree, node, arg)) != NULL) { \ + return (ret); \ + } \ + return (a_prefix##reverse_iter_recurse(rbtree, \ + rbtn_left_get(a_type, a_field, node), cb, arg)); \ + } \ } \ a_attr a_type * \ -a_prefix##nsearch(a_tree_type *tree, a_type *key) { \ +a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \ + a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \ a_type *ret; \ - rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##psearch(a_tree_type *tree, a_type *key) { \ - a_type *ret; \ - rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ -} \ -a_attr void \ -a_prefix##insert(a_tree_type *tree, a_type *node) { \ - rb_insert(a_type, a_field, a_cmp, tree, node); \ -} \ -a_attr void \ -a_prefix##remove(a_tree_type *tree, a_type *node) { \ - rb_remove(a_type, a_field, a_cmp, tree, node); \ -} - -/* - * The iterators simulate recursion via an array of pointers that store the - * current path. This is critical to performance, since a series of calls to - * rb_{next,prev}() would require time proportional to (n lg n), whereas this - * implementation only requires time proportional to (n). - * - * Since the iterators cache a path down the tree, any tree modification may - * cause the cached path to become invalid. In order to continue iteration, - * use something like the following sequence: - * - * { - * a_type *node, *tnode; - * - * rb_foreach_begin(a_type, a_field, a_tree, node) { - * ... - * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode); - * rb_remove(a_type, a_field, a_cmp, a_tree, node); - * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode); - * ... - * } rb_foreach_end(a_type, a_field, a_tree, node) - * } - * - * Note that this idiom is not advised if every iteration modifies the tree, - * since in that case there is no algorithmic complexity improvement over a - * series of rb_{next,prev}() calls, thus making the setup overhead wasted - * effort. - */ - -#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \ - /* Compute the maximum possible tree depth (3X the black height). */\ - unsigned rbp_f_height; \ - rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \ - rbp_f_height *= 3; \ - { \ - /* Initialize the path to contain the left spine. */\ - a_type *rbp_f_path[rbp_f_height]; \ - a_type *rbp_f_node; \ - bool rbp_f_synced = false; \ - unsigned rbp_f_depth = 0; \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ - rbp_f_depth++; \ - while ((rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } \ - /* While the path is non-empty, iterate. */\ - while (rbp_f_depth > 0) { \ - (a_var) = rbp_f_path[rbp_f_depth-1]; - -/* Only use if modifying the tree during iteration. */ -#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \ - /* Re-initialize the path to contain the path to a_node. */\ - rbp_f_depth = 0; \ - if (a_node != NULL) { \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ - rbp_f_depth++; \ - rbp_f_node = rbp_f_path[0]; \ - while (true) { \ - int rbp_f_cmp = (a_cmp)((a_node), \ - rbp_f_path[rbp_f_depth-1]); \ - if (rbp_f_cmp < 0) { \ - rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]); \ - } else if (rbp_f_cmp > 0) { \ - rbp_f_node = rbp_right_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]); \ - } else { \ - break; \ - } \ - assert(rbp_f_node != &(a_tree)->rbt_nil); \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } \ - } \ - rbp_f_synced = true; - -#define rb_foreach_end(a_type, a_field, a_tree, a_var) \ - if (rbp_f_synced) { \ - rbp_f_synced = false; \ - continue; \ - } \ - /* Find the successor. */\ - if ((rbp_f_node = rbp_right_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - /* The successor is the left-most node in the right */\ - /* subtree. */\ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - while ((rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } else { \ - /* The successor is above the current node. Unwind */\ - /* until a left-leaning edge is removed from the */\ - /* path, or the path is empty. */\ - for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \ - if (rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]) \ - == rbp_f_path[rbp_f_depth]) { \ - break; \ - } \ - } \ - } \ - } \ + if (start != NULL) { \ + ret = a_prefix##reverse_iter_start(rbtree, start, \ + rbtree->rbt_root, cb, arg); \ + } else { \ + ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \ + cb, arg); \ } \ -} - -#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \ - /* Compute the maximum possible tree depth (3X the black height). */\ - unsigned rbp_fr_height; \ - rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \ - rbp_fr_height *= 3; \ - { \ - /* Initialize the path to contain the right spine. */\ - a_type *rbp_fr_path[rbp_fr_height]; \ - a_type *rbp_fr_node; \ - bool rbp_fr_synced = false; \ - unsigned rbp_fr_depth = 0; \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ - rbp_fr_depth++; \ - while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } \ - /* While the path is non-empty, iterate. */\ - while (rbp_fr_depth > 0) { \ - (a_var) = rbp_fr_path[rbp_fr_depth-1]; - -/* Only use if modifying the tree during iteration. */ -#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \ - /* Re-initialize the path to contain the path to a_node. */\ - rbp_fr_depth = 0; \ - if (a_node != NULL) { \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ - rbp_fr_depth++; \ - rbp_fr_node = rbp_fr_path[0]; \ - while (true) { \ - int rbp_fr_cmp = (a_cmp)((a_node), \ - rbp_fr_path[rbp_fr_depth-1]); \ - if (rbp_fr_cmp < 0) { \ - rbp_fr_node = rbp_left_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1]); \ - } else if (rbp_fr_cmp > 0) { \ - rbp_fr_node = rbp_right_get(a_type, a_field,\ - rbp_fr_path[rbp_fr_depth-1]); \ - } else { \ - break; \ - } \ - assert(rbp_fr_node != &(a_tree)->rbt_nil); \ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } \ - } \ - rbp_fr_synced = true; - -#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \ - if (rbp_fr_synced) { \ - rbp_fr_synced = false; \ - continue; \ - } \ - if (rbp_fr_depth == 0) { \ - /* rb_foreach_reverse_sync() was called with a NULL */\ - /* a_node. */\ - break; \ - } \ - /* Find the predecessor. */\ - if ((rbp_fr_node = rbp_left_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ - /* The predecessor is the right-most node in the left */\ - /* subtree. */\ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } else { \ - /* The predecessor is above the current node. Unwind */\ - /* until a right-leaning edge is removed from the */\ - /* path, or the path is empty. */\ - for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\ - if (rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1]) \ - == rbp_fr_path[rbp_fr_depth]) { \ - break; \ - } \ - } \ - } \ - } \ + if (ret == &rbtree->rbt_nil) { \ + ret = NULL; \ } \ + return (ret); \ } #endif /* RB_H_ */