Index: head/sys/kern/kern_exit.c =================================================================== --- head/sys/kern/kern_exit.c (revision 1883) +++ head/sys/kern/kern_exit.c (revision 1884) @@ -1,496 +1,500 @@ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 - * $Id$ + * $Id: kern_exit.c,v 1.3 1994/08/02 07:41:59 davidg Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_43 #include #include #endif #include #include __dead void cpu_exit __P((struct proc *)); __dead void exit1 __P((struct proc *, int)); /* * exit -- * Death of process. */ struct rexit_args { int rval; }; __dead void exit(p, uap, retval) struct proc *p; struct rexit_args *uap; int *retval; { exit1(p, W_EXITCODE(uap->rval, 0)); /* NOTREACHED */ while (1); } /* * Exit: deallocate address space and other resources, change proc state * to zombie, and unlink proc from allproc and parent's lists. Save exit * status and rusage for wait(). Check for child processes and orphan them. */ __dead void exit1(p, rv) register struct proc *p; int rv; { register struct proc *q, *nq; register struct proc **pp; register struct vmspace *vm; if (p->p_pid == 1) panic("init died (signal %d, exit %d)", WTERMSIG(rv), WEXITSTATUS(rv)); #ifdef PGINPROF vmsizmon(); #endif if (p->p_flag & P_PROFIL) stopprofclock(p); MALLOC(p->p_ru, struct rusage *, sizeof(struct rusage), M_ZOMBIE, M_WAITOK); /* * If parent is waiting for us to exit or exec, * P_PPWAIT is set; we will wakeup the parent below. */ p->p_flag &= ~(P_TRACED | P_PPWAIT); p->p_flag |= P_WEXIT; p->p_sigignore = ~0; p->p_siglist = 0; untimeout(realitexpire, (caddr_t)p); /* * Close open files and release open-file table. * This may block! */ fdfree(p); /* The next two chunks should probably be moved to vmspace_exit. */ vm = p->p_vmspace; #ifdef SYSVSHM if (vm->vm_shm) shmexit(p); #endif /* * Release user portion of address space. * This releases references to vnodes, * which could cause I/O if the file has been unlinked. * Need to do this early enough that we can still sleep. * Can't free the entire vmspace as the kernel stack * may be mapped within that space also. */ if (vm->vm_refcnt == 1) (void) vm_map_remove(&vm->vm_map, VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); if (SESS_LEADER(p)) { register struct session *sp = p->p_session; if (sp->s_ttyvp) { /* * Controlling process. * Signal foreground pgrp, * drain controlling terminal * and revoke access to controlling terminal. */ if (sp->s_ttyp->t_session == sp) { if (sp->s_ttyp->t_pgrp) pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); (void) ttywait(sp->s_ttyp); /* * The tty could have been revoked * if we blocked. */ if (sp->s_ttyvp) vgoneall(sp->s_ttyvp); } if (sp->s_ttyvp) vrele(sp->s_ttyvp); sp->s_ttyvp = NULL; /* * s_ttyp is not zero'd; we use this to indicate * that the session once had a controlling terminal. * (for logging and informational purposes) */ } sp->s_leader = NULL; } fixjobc(p, p->p_pgrp, 0); p->p_rlimit[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; (void)acct_process(p); #ifdef KTRACE /* * release trace file */ p->p_traceflag = 0; /* don't trace the vrele() */ if (p->p_tracep) vrele(p->p_tracep); #endif /* * Remove proc from allproc queue and pidhash chain. * Place onto zombproc. Unlink from parent's child list. */ if (*p->p_prev = p->p_next) p->p_next->p_prev = p->p_prev; if (p->p_next = zombproc) p->p_next->p_prev = &p->p_next; p->p_prev = &zombproc; zombproc = p; p->p_stat = SZOMB; for (pp = &pidhash[PIDHASH(p->p_pid)]; *pp; pp = &(*pp)->p_hash) if (*pp == p) { *pp = p->p_hash; goto done; } panic("exit"); done: if (p->p_cptr) /* only need this if any child is S_ZOMB */ wakeup((caddr_t) initproc); for (q = p->p_cptr; q != NULL; q = nq) { nq = q->p_osptr; if (nq != NULL) nq->p_ysptr = NULL; if (initproc->p_cptr) initproc->p_cptr->p_ysptr = q; q->p_osptr = initproc->p_cptr; q->p_ysptr = NULL; initproc->p_cptr = q; q->p_pptr = initproc; /* * Traced processes are killed * since their existence means someone is screwing up. */ if (q->p_flag & P_TRACED) { q->p_flag &= ~P_TRACED; psignal(q, SIGKILL); } } p->p_cptr = NULL; /* * Save exit status and final rusage info, adding in child rusage * info and self times. */ p->p_xstat = rv; *p->p_ru = p->p_stats->p_ru; calcru(p, &p->p_ru->ru_utime, &p->p_ru->ru_stime, NULL); ruadd(p->p_ru, &p->p_stats->p_cru); /* * Notify parent that we're gone. */ psignal(p->p_pptr, SIGCHLD); wakeup((caddr_t)p->p_pptr); #if defined(tahoe) /* move this to cpu_exit */ p->p_addr->u_pcb.pcb_savacc.faddr = (float *)NULL; #endif /* * Clear curproc after we've done all operations * that could block, and before tearing down the rest * of the process state that might be used from clock, etc. * Also, can't clear curproc while we're still runnable, * as we're not on a run queue (we are current, just not * a proper proc any longer!). * * Other substructures are freed from wait(). */ curproc = NULL; if (--p->p_limit->p_refcnt == 0) FREE(p->p_limit, M_SUBPROC); /* * Finally, call machine-dependent code to release the remaining * resources including address space, the kernel stack and pcb. * The address space is released by "vmspace_free(p->p_vmspace)"; * This is machine-dependent, as we may have to change stacks * or ensure that the current one isn't reallocated before we * finish. cpu_exit will end with a call to cpu_swtch(), finishing * our execution (pun intended). */ cpu_exit(p); } struct wait_args { int pid; int *status; int options; struct rusage *rusage; #ifdef COMPAT_43 int compat; /* pseudo */ #endif }; #ifdef COMPAT_43 #if defined(hp300) || defined(luna68k) #include #define GETPS(rp) ((struct frame *)(rp))->f_sr #else #define GETPS(rp) (rp)[PS] #endif int owait(p, uap, retval) struct proc *p; register struct wait_args *uap; int *retval; { #ifdef PSL_ALLCC if ((GETPS(p->p_md.md_regs) & PSL_ALLCC) != PSL_ALLCC) { uap->options = 0; uap->rusage = NULL; } else { uap->options = p->p_md.md_regs[R0]; uap->rusage = (struct rusage *)p->p_md.md_regs[R1]; } #else uap->options = 0; uap->rusage = NULL; #endif uap->pid = WAIT_ANY; uap->status = NULL; uap->compat = 1; return (wait1(p, uap, retval)); } int wait4(p, uap, retval) struct proc *p; struct wait_args *uap; int *retval; { uap->compat = 0; return (wait1(p, uap, retval)); } #else #define wait1 wait4 #endif int wait1(q, uap, retval) register struct proc *q; register struct wait_args *uap; int retval[]; { register int nfound; register struct proc *p, *t; int status, error; if (uap->pid == 0) uap->pid = -q->p_pgid; #ifdef notyet if (uap->options &~ (WUNTRACED|WNOHANG)) return (EINVAL); #endif loop: nfound = 0; for (p = q->p_cptr; p; p = p->p_osptr) { if (uap->pid != WAIT_ANY && p->p_pid != uap->pid && p->p_pgid != -uap->pid) continue; nfound++; if (p->p_stat == SZOMB) { + /* charge childs scheduling cpu usage to parent */ + if( curproc->p_pid != 1) + curproc->p_estcpu += p->p_estcpu; + retval[0] = p->p_pid; #ifdef COMPAT_43 if (uap->compat) retval[1] = p->p_xstat; else #endif if (uap->status) { status = p->p_xstat; /* convert to int */ if (error = copyout((caddr_t)&status, (caddr_t)uap->status, sizeof(status))) return (error); } if (uap->rusage && (error = copyout((caddr_t)p->p_ru, (caddr_t)uap->rusage, sizeof (struct rusage)))) return (error); /* * If we got the child via a ptrace 'attach', * we need to give it back to the old parent. */ if (p->p_oppid && (t = pfind(p->p_oppid))) { p->p_oppid = 0; proc_reparent(p, t); psignal(t, SIGCHLD); wakeup((caddr_t)t); return (0); } p->p_xstat = 0; ruadd(&q->p_stats->p_cru, p->p_ru); FREE(p->p_ru, M_ZOMBIE); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(p->p_cred->p_ruid, -1); /* * Free up credentials. */ if (--p->p_cred->p_refcnt == 0) { crfree(p->p_cred->pc_ucred); FREE(p->p_cred, M_SUBPROC); } /* * Release reference to text vnode */ if (p->p_textvp) vrele(p->p_textvp); /* * Finally finished with old proc entry. * Unlink it from its process group and free it. */ leavepgrp(p); if (*p->p_prev = p->p_next) /* off zombproc */ p->p_next->p_prev = p->p_prev; if (q = p->p_ysptr) q->p_osptr = p->p_osptr; if (q = p->p_osptr) q->p_ysptr = p->p_ysptr; if ((q = p->p_pptr)->p_cptr == p) q->p_cptr = p->p_osptr; /* * Give machine-dependent layer a chance * to free anything that cpu_exit couldn't * release while still running in process context. */ cpu_wait(p); FREE(p, M_PROC); nprocs--; return (0); } if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 && (p->p_flag & P_TRACED || uap->options & WUNTRACED)) { p->p_flag |= P_WAITED; retval[0] = p->p_pid; #ifdef COMPAT_43 if (uap->compat) { retval[1] = W_STOPCODE(p->p_xstat); error = 0; } else #endif if (uap->status) { status = W_STOPCODE(p->p_xstat); error = copyout((caddr_t)&status, (caddr_t)uap->status, sizeof(status)); } else error = 0; return (error); } } if (nfound == 0) return (ECHILD); if (uap->options & WNOHANG) { retval[0] = 0; return (0); } if (error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) return (error); goto loop; } /* * make process 'parent' the new parent of process 'child'. */ void proc_reparent(child, parent) register struct proc *child; register struct proc *parent; { register struct proc *o; register struct proc *y; if (child->p_pptr == parent) return; /* fix up the child linkage for the old parent */ o = child->p_osptr; y = child->p_ysptr; if (y) y->p_osptr = o; if (o) o->p_ysptr = y; if (child->p_pptr->p_cptr == child) child->p_pptr->p_cptr = o; /* fix up child linkage for new parent */ o = parent->p_cptr; if (o) o->p_ysptr = child; child->p_osptr = o; child->p_ysptr = NULL; parent->p_cptr = child; child->p_pptr = parent; } Index: head/sys/kern/kern_fork.c =================================================================== --- head/sys/kern/kern_fork.c (revision 1883) +++ head/sys/kern/kern_fork.c (revision 1884) @@ -1,319 +1,325 @@ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 - * $Id$ + * $Id: kern_fork.c,v 1.3 1994/08/02 07:42:00 davidg Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include struct fork_args { int dummy; }; /* ARGSUSED */ int fork(p, uap, retval) struct proc *p; struct fork_args *uap; int retval[]; { return (fork1(p, 0, retval)); } /* ARGSUSED */ int vfork(p, uap, retval) struct proc *p; struct fork_args *uap; int retval[]; { return (fork1(p, 1, retval)); } int nprocs = 1; /* process 0 */ int fork1(p1, isvfork, retval) register struct proc *p1; int isvfork, retval[]; { register struct proc *p2; register uid_t uid; struct proc *newproc; struct proc **hash; int count; static int nextpid, pidchecked = 0; /* * Although process entries are dynamically created, we still keep * a global limit on the maximum number we will create. Don't allow * a nonprivileged user to use the last process; don't let root * exceed the limit. The variable nprocs is the current number of * processes, maxproc is the limit. */ uid = p1->p_cred->p_ruid; if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { tablefull("proc"); return (EAGAIN); } /* * Increment the count of procs running with this uid. Don't allow * a nonprivileged user to exceed their current limit. */ count = chgproccnt(uid, 1); if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) { (void)chgproccnt(uid, -1); return (EAGAIN); } /* Allocate new proc. */ MALLOC(newproc, struct proc *, sizeof(struct proc), M_PROC, M_WAITOK); /* * Find an unused process ID. We remember a range of unused IDs * ready to use (from nextpid+1 through pidchecked-1). */ nextpid++; retry: /* * If the process ID prototype has wrapped around, * restart somewhat above 0, as the low-numbered procs * tend to include daemons that don't exit. */ if (nextpid >= PID_MAX) { nextpid = 100; pidchecked = 0; } if (nextpid >= pidchecked) { int doingzomb = 0; pidchecked = PID_MAX; /* * Scan the active and zombie procs to check whether this pid * is in use. Remember the lowest pid that's greater * than nextpid, so we can avoid checking for a while. */ p2 = (struct proc *)allproc; again: for (; p2 != NULL; p2 = p2->p_next) { while (p2->p_pid == nextpid || p2->p_pgrp->pg_id == nextpid) { nextpid++; if (nextpid >= pidchecked) goto retry; } if (p2->p_pid > nextpid && pidchecked > p2->p_pid) pidchecked = p2->p_pid; if (p2->p_pgrp->pg_id > nextpid && pidchecked > p2->p_pgrp->pg_id) pidchecked = p2->p_pgrp->pg_id; } if (!doingzomb) { doingzomb = 1; p2 = zombproc; goto again; } } /* * Link onto allproc (this should probably be delayed). * Heavy use of volatile here to prevent the compiler from * rearranging code. Yes, it *is* terribly ugly, but at least * it works. */ nprocs++; p2 = newproc; #define Vp2 ((volatile struct proc *)p2) Vp2->p_stat = SIDL; /* protect against others */ Vp2->p_pid = nextpid; /* * This is really: * p2->p_next = allproc; * allproc->p_prev = &p2->p_next; * p2->p_prev = &allproc; * allproc = p2; * The assignment via allproc is legal since it is never NULL. */ *(volatile struct proc **)&Vp2->p_next = allproc; *(volatile struct proc ***)&allproc->p_prev = (volatile struct proc **)&Vp2->p_next; *(volatile struct proc ***)&Vp2->p_prev = &allproc; allproc = Vp2; #undef Vp2 p2->p_forw = p2->p_back = NULL; /* shouldn't be necessary */ /* Insert on the hash chain. */ hash = &pidhash[PIDHASH(p2->p_pid)]; p2->p_hash = *hash; *hash = p2; /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ bzero(&p2->p_startzero, (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero)); bcopy(&p1->p_startcopy, &p2->p_startcopy, (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy)); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. * The p_stats and p_sigacts substructs are set in vm_fork. */ p2->p_flag = P_INMEM; if (p1->p_flag & P_PROFIL) startprofclock(p2); MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred), M_SUBPROC, M_WAITOK); bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred)); p2->p_cred->p_refcnt = 1; crhold(p1->p_ucred); /* bump references to the text vnode (for procfs) */ p2->p_textvp = p1->p_textvp; if (p2->p_textvp) VREF(p2->p_textvp); p2->p_fd = fdcopy(p1); /* * If p_limit is still copy-on-write, bump refcnt, * otherwise get a copy that won't be modified. * (If PL_SHAREMOD is clear, the structure is shared * copy-on-write.) */ if (p1->p_limit->p_lflags & PL_SHAREMOD) p2->p_limit = limcopy(p1->p_limit); else { p2->p_limit = p1->p_limit; p2->p_limit->p_refcnt++; } if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; if (isvfork) p2->p_flag |= P_PPWAIT; p2->p_pgrpnxt = p1->p_pgrpnxt; p1->p_pgrpnxt = p2; p2->p_pptr = p1; p2->p_osptr = p1->p_cptr; if (p1->p_cptr) p1->p_cptr->p_ysptr = p2; p1->p_cptr = p2; #ifdef KTRACE /* * Copy traceflag and tracefile if enabled. * If not inherited, these were zeroed above. */ if (p1->p_traceflag&KTRFAC_INHERIT) { p2->p_traceflag = p1->p_traceflag; if ((p2->p_tracep = p1->p_tracep) != NULL) VREF(p2->p_tracep); } #endif /* + * set priority of child to be that of parent + */ + p2->p_estcpu = p1->p_estcpu; + + /* * This begins the section where we must prevent the parent * from being swapped. */ p1->p_flag |= P_NOSWAP; + /* * Set return values for child before vm_fork, * so they can be copied to child stack. * We return parent pid, and mark as child in retval[1]. * NOTE: the kernel stack may be at a different location in the child * process, and thus addresses of automatic variables (including retval) * may be invalid after vm_fork returns in the child process. */ retval[0] = p1->p_pid; retval[1] = 1; if (vm_fork(p1, p2, isvfork)) { /* * Child process. Set start time and get to work. */ (void) splclock(); p2->p_stats->p_start = time; (void) spl0(); p2->p_acflag = AFORK; return (0); } /* * Make child runnable and add to run queue. */ (void) splhigh(); p2->p_stat = SRUN; setrunqueue(p2); (void) spl0(); /* * Now can be swapped. */ p1->p_flag &= ~P_NOSWAP; /* * Preserve synchronization semantics of vfork. If waiting for * child to exec or exit, set P_PPWAIT on child, and sleep on our * proc (in case of exit). */ if (isvfork) while (p2->p_flag & P_PPWAIT) tsleep(p1, PWAIT, "ppwait", 0); /* * Return child pid to parent process, * marking us as parent via retval[1]. */ retval[0] = p2->p_pid; retval[1] = 0; return (0); }