Index: head/math/R-cran-MCMCpack/Makefile =================================================================== --- head/math/R-cran-MCMCpack/Makefile (revision 418526) +++ head/math/R-cran-MCMCpack/Makefile (revision 418527) @@ -1,19 +1,20 @@ # Created by: TAKATSU Tomonari # $FreeBSD$ PORTNAME= MCMCpack -DISTVERSION= 1.3-3 -PORTREVISION= 5 +DISTVERSION= 1.3-6 CATEGORIES= math DISTNAME= ${PORTNAME}_${DISTVERSION} MAINTAINER= tota@FreeBSD.org COMMENT= Markov chain Monte Carlo Package LICENSE= GPLv3 -RUN_DEPENDS= R-cran-coda>0.11.3:math/R-cran-coda +RUN_DEPENDS= R-cran-coda>0.11.3:math/R-cran-coda \ + R-cran-mcmc>0:math/R-cran-mcmc \ + R-cran-quantreg>0:math/R-cran-quantreg USES= cran:auto-plist,compiles .include Index: head/math/R-cran-MCMCpack/distinfo =================================================================== --- head/math/R-cran-MCMCpack/distinfo (revision 418526) +++ head/math/R-cran-MCMCpack/distinfo (revision 418527) @@ -1,2 +1,3 @@ -SHA256 (MCMCpack_1.3-3.tar.gz) = e6e8f790ac109cb62ea78645dff199f25c5a40a5eaa51e1b9f4e5c7c08183268 -SIZE (MCMCpack_1.3-3.tar.gz) = 509352 +TIMESTAMP = 1468488779 +SHA256 (MCMCpack_1.3-6.tar.gz) = d28a7192ace6a6e3c5ccd88dcc14eae4bbaed3abc1afd851e70eab1bdff6de03 +SIZE (MCMCpack_1.3-6.tar.gz) = 544105 Index: head/math/R-cran-MCMCpack/pkg-descr =================================================================== --- head/math/R-cran-MCMCpack/pkg-descr (revision 418526) +++ head/math/R-cran-MCMCpack/pkg-descr (revision 418527) @@ -1,11 +1,10 @@ This package contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return coda mcmc objects that can -then be summarized using the coda package. MCMCpack also contains -some useful utility functions, including some additional density -functions and pseudo-random number generators for statistical -distributions, a general purpose Metropolis sampling algorithm, and -tools for visualization. +then be summarized using the coda package. Some useful utility +functions such as density functions, pseudo-random number generators +for statistical distributions, a general purpose Metropolis sampling +algorithm, and tools for visualization are provided. -WWW: http://cran.r-project.org/web/packages/MCMCpack/ +WWW: https://cran.r-project.org/web/packages/MCMCpack/