diff --git a/config/kernel-spinlock.m4 b/config/kernel-spinlock.m4 deleted file mode 100644 index d6d6640070b5..000000000000 --- a/config/kernel-spinlock.m4 +++ /dev/null @@ -1,24 +0,0 @@ -dnl # -dnl # 2.6.36 API change, -dnl # The 'struct fs_struct->lock' was changed from a rwlock_t to -dnl # a spinlock_t to improve the fastpath performance. -dnl # -AC_DEFUN([ZFS_AC_KERNEL_FS_STRUCT_SPINLOCK], [ - AC_MSG_CHECKING([whether struct fs_struct uses spinlock_t]) - tmp_flags="$EXTRA_KCFLAGS" - EXTRA_KCFLAGS="-Werror" - ZFS_LINUX_TRY_COMPILE([ - #include - #include - ],[ - static struct fs_struct fs; - spin_lock_init(&fs.lock); - ],[ - AC_MSG_RESULT(yes) - AC_DEFINE(HAVE_FS_STRUCT_SPINLOCK, 1, - [struct fs_struct uses spinlock_t]) - ],[ - AC_MSG_RESULT(no) - ]) - EXTRA_KCFLAGS="$tmp_flags" -]) diff --git a/config/kernel.m4 b/config/kernel.m4 index ef875efa872b..2444b68eff91 100644 --- a/config/kernel.m4 +++ b/config/kernel.m4 @@ -1,682 +1,681 @@ dnl # dnl # Default ZFS kernel configuration dnl # AC_DEFUN([ZFS_AC_CONFIG_KERNEL], [ ZFS_AC_KERNEL ZFS_AC_QAT ZFS_AC_KERNEL_ACCESS_OK_TYPE ZFS_AC_TEST_MODULE ZFS_AC_KERNEL_MISC_MINOR ZFS_AC_KERNEL_OBJTOOL ZFS_AC_KERNEL_CONFIG ZFS_AC_KERNEL_CTL_NAME ZFS_AC_KERNEL_PDE_DATA ZFS_AC_KERNEL_2ARGS_VFS_FSYNC - ZFS_AC_KERNEL_FS_STRUCT_SPINLOCK ZFS_AC_KERNEL_KUIDGID_T ZFS_AC_KERNEL_FALLOCATE ZFS_AC_KERNEL_2ARGS_ZLIB_DEFLATE_WORKSPACESIZE ZFS_AC_KERNEL_RWSEM_SPINLOCK_IS_RAW ZFS_AC_KERNEL_RWSEM_ACTIVITY ZFS_AC_KERNEL_RWSEM_ATOMIC_LONG_COUNT ZFS_AC_KERNEL_SCHED_RT_HEADER ZFS_AC_KERNEL_SCHED_SIGNAL_HEADER ZFS_AC_KERNEL_IO_SCHEDULE_TIMEOUT ZFS_AC_KERNEL_4ARGS_VFS_GETATTR ZFS_AC_KERNEL_3ARGS_VFS_GETATTR ZFS_AC_KERNEL_2ARGS_VFS_GETATTR ZFS_AC_KERNEL_USLEEP_RANGE ZFS_AC_KERNEL_KMEM_CACHE_ALLOCFLAGS ZFS_AC_KERNEL_KMEM_CACHE_CREATE_USERCOPY ZFS_AC_KERNEL_WAIT_ON_BIT ZFS_AC_KERNEL_WAIT_QUEUE_ENTRY_T ZFS_AC_KERNEL_WAIT_QUEUE_HEAD_ENTRY ZFS_AC_KERNEL_INODE_TIMES ZFS_AC_KERNEL_INODE_LOCK ZFS_AC_KERNEL_GROUP_INFO_GID ZFS_AC_KERNEL_WRITE ZFS_AC_KERNEL_READ ZFS_AC_KERNEL_TIMER_SETUP ZFS_AC_KERNEL_DECLARE_EVENT_CLASS ZFS_AC_KERNEL_CURRENT_BIO_TAIL ZFS_AC_KERNEL_SUPER_USER_NS ZFS_AC_KERNEL_SUBMIT_BIO ZFS_AC_KERNEL_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS ZFS_AC_KERNEL_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID ZFS_AC_KERNEL_TYPE_FMODE_T ZFS_AC_KERNEL_BLKDEV_GET_BY_PATH ZFS_AC_KERNEL_BLKDEV_REREAD_PART ZFS_AC_KERNEL_OPEN_BDEV_EXCLUSIVE ZFS_AC_KERNEL_LOOKUP_BDEV ZFS_AC_KERNEL_INVALIDATE_BDEV_ARGS ZFS_AC_KERNEL_BDEV_LOGICAL_BLOCK_SIZE ZFS_AC_KERNEL_BDEV_PHYSICAL_BLOCK_SIZE ZFS_AC_KERNEL_BIO_BVEC_ITER ZFS_AC_KERNEL_BIO_FAILFAST_DTD ZFS_AC_KERNEL_BIO_SET_DEV ZFS_AC_KERNEL_REQ_FAILFAST_MASK ZFS_AC_KERNEL_REQ_OP_DISCARD ZFS_AC_KERNEL_REQ_OP_SECURE_ERASE ZFS_AC_KERNEL_REQ_OP_FLUSH ZFS_AC_KERNEL_BIO_BI_OPF ZFS_AC_KERNEL_BIO_END_IO_T_ARGS ZFS_AC_KERNEL_BIO_BI_STATUS ZFS_AC_KERNEL_BIO_RW_BARRIER ZFS_AC_KERNEL_BIO_RW_DISCARD ZFS_AC_KERNEL_BLK_QUEUE_BDI ZFS_AC_KERNEL_BLK_QUEUE_FLAG_CLEAR ZFS_AC_KERNEL_BLK_QUEUE_FLAG_SET ZFS_AC_KERNEL_BLK_QUEUE_FLUSH ZFS_AC_KERNEL_BLK_QUEUE_MAX_HW_SECTORS ZFS_AC_KERNEL_BLK_QUEUE_MAX_SEGMENTS ZFS_AC_KERNEL_BLK_QUEUE_HAVE_BIO_RW_UNPLUG ZFS_AC_KERNEL_BLK_QUEUE_HAVE_BLK_PLUG ZFS_AC_KERNEL_GET_DISK_AND_MODULE ZFS_AC_KERNEL_GET_DISK_RO ZFS_AC_KERNEL_HAVE_BIO_SET_OP_ATTRS ZFS_AC_KERNEL_GENERIC_READLINK_GLOBAL ZFS_AC_KERNEL_DISCARD_GRANULARITY ZFS_AC_KERNEL_CONST_XATTR_HANDLER ZFS_AC_KERNEL_XATTR_HANDLER_NAME ZFS_AC_KERNEL_XATTR_HANDLER_GET ZFS_AC_KERNEL_XATTR_HANDLER_SET ZFS_AC_KERNEL_XATTR_HANDLER_LIST ZFS_AC_KERNEL_INODE_OWNER_OR_CAPABLE ZFS_AC_KERNEL_POSIX_ACL_FROM_XATTR_USERNS ZFS_AC_KERNEL_POSIX_ACL_RELEASE ZFS_AC_KERNEL_SET_CACHED_ACL_USABLE ZFS_AC_KERNEL_POSIX_ACL_CHMOD ZFS_AC_KERNEL_POSIX_ACL_EQUIV_MODE_WANTS_UMODE_T ZFS_AC_KERNEL_POSIX_ACL_VALID_WITH_NS ZFS_AC_KERNEL_INODE_OPERATIONS_PERMISSION ZFS_AC_KERNEL_INODE_OPERATIONS_PERMISSION_WITH_NAMEIDATA ZFS_AC_KERNEL_INODE_OPERATIONS_CHECK_ACL ZFS_AC_KERNEL_INODE_OPERATIONS_CHECK_ACL_WITH_FLAGS ZFS_AC_KERNEL_INODE_OPERATIONS_GET_ACL ZFS_AC_KERNEL_INODE_OPERATIONS_SET_ACL ZFS_AC_KERNEL_INODE_OPERATIONS_GETATTR ZFS_AC_KERNEL_INODE_SET_FLAGS ZFS_AC_KERNEL_INODE_SET_IVERSION ZFS_AC_KERNEL_GET_ACL_HANDLE_CACHE ZFS_AC_KERNEL_SHOW_OPTIONS ZFS_AC_KERNEL_FILE_INODE ZFS_AC_KERNEL_FILE_DENTRY ZFS_AC_KERNEL_FSYNC ZFS_AC_KERNEL_EVICT_INODE ZFS_AC_KERNEL_DIRTY_INODE_WITH_FLAGS ZFS_AC_KERNEL_NR_CACHED_OBJECTS ZFS_AC_KERNEL_FREE_CACHED_OBJECTS ZFS_AC_KERNEL_FALLOCATE ZFS_AC_KERNEL_AIO_FSYNC ZFS_AC_KERNEL_MKDIR_UMODE_T ZFS_AC_KERNEL_LOOKUP_NAMEIDATA ZFS_AC_KERNEL_CREATE_NAMEIDATA ZFS_AC_KERNEL_GET_LINK ZFS_AC_KERNEL_PUT_LINK ZFS_AC_KERNEL_TMPFILE ZFS_AC_KERNEL_TRUNCATE_RANGE ZFS_AC_KERNEL_AUTOMOUNT ZFS_AC_KERNEL_ENCODE_FH_WITH_INODE ZFS_AC_KERNEL_COMMIT_METADATA ZFS_AC_KERNEL_CLEAR_INODE ZFS_AC_KERNEL_SETATTR_PREPARE ZFS_AC_KERNEL_INSERT_INODE_LOCKED ZFS_AC_KERNEL_D_MAKE_ROOT ZFS_AC_KERNEL_D_OBTAIN_ALIAS ZFS_AC_KERNEL_D_PRUNE_ALIASES ZFS_AC_KERNEL_D_SET_D_OP ZFS_AC_KERNEL_D_REVALIDATE_NAMEIDATA ZFS_AC_KERNEL_CONST_DENTRY_OPERATIONS ZFS_AC_KERNEL_TRUNCATE_SETSIZE ZFS_AC_KERNEL_6ARGS_SECURITY_INODE_INIT_SECURITY ZFS_AC_KERNEL_CALLBACK_SECURITY_INODE_INIT_SECURITY ZFS_AC_KERNEL_FST_MOUNT ZFS_AC_KERNEL_SHRINK ZFS_AC_KERNEL_SHRINK_CONTROL_HAS_NID ZFS_AC_KERNEL_SHRINK_CONTROL_STRUCT ZFS_AC_KERNEL_SHRINKER_CALLBACK ZFS_AC_KERNEL_S_INSTANCES_LIST_HEAD ZFS_AC_KERNEL_S_D_OP ZFS_AC_KERNEL_BDI ZFS_AC_KERNEL_SET_NLINK ZFS_AC_KERNEL_ELEVATOR_CHANGE ZFS_AC_KERNEL_5ARG_SGET ZFS_AC_KERNEL_LSEEK_EXECUTE ZFS_AC_KERNEL_VFS_ITERATE ZFS_AC_KERNEL_VFS_RW_ITERATE ZFS_AC_KERNEL_VFS_DIRECT_IO ZFS_AC_KERNEL_GENERIC_WRITE_CHECKS ZFS_AC_KERNEL_KMAP_ATOMIC_ARGS ZFS_AC_KERNEL_FOLLOW_DOWN_ONE ZFS_AC_KERNEL_MAKE_REQUEST_FN ZFS_AC_KERNEL_GENERIC_IO_ACCT_3ARG ZFS_AC_KERNEL_GENERIC_IO_ACCT_4ARG ZFS_AC_KERNEL_FPU ZFS_AC_KERNEL_KUID_HELPERS ZFS_AC_KERNEL_MODULE_PARAM_CALL_CONST ZFS_AC_KERNEL_RENAME_WANTS_FLAGS ZFS_AC_KERNEL_HAVE_GENERIC_SETXATTR ZFS_AC_KERNEL_CURRENT_TIME ZFS_AC_KERNEL_GLOBAL_PAGE_STATE ZFS_AC_KERNEL_ACL_HAS_REFCOUNT ZFS_AC_KERNEL_USERNS_CAPABILITIES ZFS_AC_KERNEL_IN_COMPAT_SYSCALL ZFS_AC_KERNEL_KTIME_GET_COARSE_REAL_TS64 ZFS_AC_KERNEL_TOTALRAM_PAGES_FUNC ZFS_AC_KERNEL_TOTALHIGH_PAGES ZFS_AC_KERNEL_BLK_QUEUE_DISCARD ZFS_AC_KERNEL_BLK_QUEUE_SECURE_ERASE ZFS_AC_KERNEL_KSTRTOUL AS_IF([test "$LINUX_OBJ" != "$LINUX"], [ KERNEL_MAKE="$KERNEL_MAKE O=$LINUX_OBJ" ]) AC_SUBST(KERNEL_MAKE) ]) dnl # dnl # Detect name used for Module.symvers file in kernel dnl # AC_DEFUN([ZFS_AC_MODULE_SYMVERS], [ modpost=$LINUX/scripts/Makefile.modpost AC_MSG_CHECKING([kernel file name for module symbols]) AS_IF([test "x$enable_linux_builtin" != xyes -a -f "$modpost"], [ AS_IF([grep -q Modules.symvers $modpost], [ LINUX_SYMBOLS=Modules.symvers ], [ LINUX_SYMBOLS=Module.symvers ]) AS_IF([test ! -f "$LINUX_OBJ/$LINUX_SYMBOLS"], [ AC_MSG_ERROR([ *** Please make sure the kernel devel package for your distribution *** is installed. If you are building with a custom kernel, make sure the *** kernel is configured, built, and the '--with-linux=PATH' configure *** option refers to the location of the kernel source.]) ]) ], [ LINUX_SYMBOLS=NONE ]) AC_MSG_RESULT($LINUX_SYMBOLS) AC_SUBST(LINUX_SYMBOLS) ]) dnl # dnl # Detect the kernel to be built against dnl # AC_DEFUN([ZFS_AC_KERNEL], [ AC_ARG_WITH([linux], AS_HELP_STRING([--with-linux=PATH], [Path to kernel source]), [kernelsrc="$withval"]) AC_ARG_WITH(linux-obj, AS_HELP_STRING([--with-linux-obj=PATH], [Path to kernel build objects]), [kernelbuild="$withval"]) AC_MSG_CHECKING([kernel source directory]) AS_IF([test -z "$kernelsrc"], [ AS_IF([test -e "/lib/modules/$(uname -r)/source"], [ headersdir="/lib/modules/$(uname -r)/source" sourcelink=$(readlink -f "$headersdir") ], [test -e "/lib/modules/$(uname -r)/build"], [ headersdir="/lib/modules/$(uname -r)/build" sourcelink=$(readlink -f "$headersdir") ], [ sourcelink=$(ls -1d /usr/src/kernels/* \ /usr/src/linux-* \ 2>/dev/null | grep -v obj | tail -1) ]) AS_IF([test -n "$sourcelink" && test -e ${sourcelink}], [ kernelsrc=`readlink -f ${sourcelink}` ], [ kernelsrc="[Not found]" ]) ], [ AS_IF([test "$kernelsrc" = "NONE"], [ kernsrcver=NONE ]) withlinux=yes ]) AC_MSG_RESULT([$kernelsrc]) AS_IF([test ! -d "$kernelsrc"], [ AC_MSG_ERROR([ *** Please make sure the kernel devel package for your distribution *** is installed and then try again. If that fails, you can specify the *** location of the kernel source with the '--with-linux=PATH' option.]) ]) AC_MSG_CHECKING([kernel build directory]) AS_IF([test -z "$kernelbuild"], [ AS_IF([test x$withlinux != xyes -a -e "/lib/modules/$(uname -r)/build"], [ kernelbuild=`readlink -f /lib/modules/$(uname -r)/build` ], [test -d ${kernelsrc}-obj/${target_cpu}/${target_cpu}], [ kernelbuild=${kernelsrc}-obj/${target_cpu}/${target_cpu} ], [test -d ${kernelsrc}-obj/${target_cpu}/default], [ kernelbuild=${kernelsrc}-obj/${target_cpu}/default ], [test -d `dirname ${kernelsrc}`/build-${target_cpu}], [ kernelbuild=`dirname ${kernelsrc}`/build-${target_cpu} ], [ kernelbuild=${kernelsrc} ]) ]) AC_MSG_RESULT([$kernelbuild]) AC_MSG_CHECKING([kernel source version]) utsrelease1=$kernelbuild/include/linux/version.h utsrelease2=$kernelbuild/include/linux/utsrelease.h utsrelease3=$kernelbuild/include/generated/utsrelease.h AS_IF([test -r $utsrelease1 && fgrep -q UTS_RELEASE $utsrelease1], [ utsrelease=linux/version.h ], [test -r $utsrelease2 && fgrep -q UTS_RELEASE $utsrelease2], [ utsrelease=linux/utsrelease.h ], [test -r $utsrelease3 && fgrep -q UTS_RELEASE $utsrelease3], [ utsrelease=generated/utsrelease.h ]) AS_IF([test "$utsrelease"], [ kernsrcver=`(echo "#include <$utsrelease>"; echo "kernsrcver=UTS_RELEASE") | ${CPP} -I $kernelbuild/include - | grep "^kernsrcver=" | cut -d \" -f 2` AS_IF([test -z "$kernsrcver"], [ AC_MSG_RESULT([Not found]) AC_MSG_ERROR([*** Cannot determine kernel version.]) ]) ], [ AC_MSG_RESULT([Not found]) if test "x$enable_linux_builtin" != xyes; then AC_MSG_ERROR([*** Cannot find UTS_RELEASE definition.]) else AC_MSG_ERROR([ *** Cannot find UTS_RELEASE definition. *** Please run 'make prepare' inside the kernel source tree.]) fi ]) AC_MSG_RESULT([$kernsrcver]) LINUX=${kernelsrc} LINUX_OBJ=${kernelbuild} LINUX_VERSION=${kernsrcver} AC_SUBST(LINUX) AC_SUBST(LINUX_OBJ) AC_SUBST(LINUX_VERSION) ZFS_AC_MODULE_SYMVERS ]) dnl # dnl # Detect the QAT module to be built against dnl # QAT provides hardware acceleration for data compression: dnl # https://01.org/intel-quickassist-technology dnl # * Download and install QAT driver from the above link dnl # * Start QAT driver in your system: dnl # service qat_service start dnl # * Enable QAT in ZFS, e.g.: dnl # ./configure --with-qat=/QAT1.6 dnl # make dnl # * Set GZIP compression in ZFS dataset: dnl # zfs set compression = gzip dnl # Then the data written to this ZFS pool is compressed dnl # by QAT accelerator automatically, and de-compressed by dnl # QAT when read from the pool. dnl # * Get QAT hardware statistics by: dnl # cat /proc/icp_dh895xcc_dev/qat dnl # * To disable QAT: dnl # insmod zfs.ko zfs_qat_disable=1 dnl # AC_DEFUN([ZFS_AC_QAT], [ AC_ARG_WITH([qat], AS_HELP_STRING([--with-qat=PATH], [Path to qat source]), AS_IF([test "$withval" = "yes"], AC_MSG_ERROR([--with-qat=PATH requires a PATH]), [qatsrc="$withval"])) AC_ARG_WITH([qat-obj], AS_HELP_STRING([--with-qat-obj=PATH], [Path to qat build objects]), [qatbuild="$withval"]) AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat source directory]) AC_MSG_RESULT([$qatsrc]) QAT_SRC="${qatsrc}/quickassist" AS_IF([ test ! -e "$QAT_SRC/include/cpa.h"], [ AC_MSG_ERROR([ *** Please make sure the qat driver package is installed *** and specify the location of the qat source with the *** '--with-qat=PATH' option then try again. Failed to *** find cpa.h in: ${QAT_SRC}/include]) ]) ]) AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat build directory]) AS_IF([test -z "$qatbuild"], [ qatbuild="${qatsrc}/build" ]) AC_MSG_RESULT([$qatbuild]) QAT_OBJ=${qatbuild} AS_IF([ ! test -e "$QAT_OBJ/icp_qa_al.ko" && ! test -e "$QAT_OBJ/qat_api.ko"], [ AC_MSG_ERROR([ *** Please make sure the qat driver is installed then try again. *** Failed to find icp_qa_al.ko or qat_api.ko in: $QAT_OBJ]) ]) AC_SUBST(QAT_SRC) AC_SUBST(QAT_OBJ) AC_DEFINE(HAVE_QAT, 1, [qat is enabled and existed]) ]) dnl # dnl # Detect the name used for the QAT Module.symvers file. dnl # AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat file for module symbols]) QAT_SYMBOLS=$QAT_SRC/lookaside/access_layer/src/Module.symvers AS_IF([test -r $QAT_SYMBOLS], [ AC_MSG_RESULT([$QAT_SYMBOLS]) AC_SUBST(QAT_SYMBOLS) ],[ AC_MSG_ERROR([ *** Please make sure the qat driver is installed then try again. *** Failed to find Module.symvers in: $QAT_SYMBOLS]) ]) ]) ]) ]) dnl # dnl # Basic toolchain sanity check. dnl # AC_DEFUN([ZFS_AC_TEST_MODULE], [ AC_MSG_CHECKING([whether modules can be built]) ZFS_LINUX_TRY_COMPILE([],[],[ AC_MSG_RESULT([yes]) ],[ AC_MSG_RESULT([no]) if test "x$enable_linux_builtin" != xyes; then AC_MSG_ERROR([*** Unable to build an empty module.]) else AC_MSG_ERROR([ *** Unable to build an empty module. *** Please run 'make scripts' inside the kernel source tree.]) fi ]) ]) dnl # dnl # Certain kernel build options are not supported. These must be dnl # detected at configure time and cause a build failure. Otherwise dnl # modules may be successfully built that behave incorrectly. dnl # AC_DEFUN([ZFS_AC_KERNEL_CONFIG], [ AS_IF([test "x$cross_compiling" != xyes], [ AC_RUN_IFELSE([ AC_LANG_PROGRAM([ #include "$LINUX/include/linux/license.h" ], [ return !license_is_gpl_compatible("$ZFS_META_LICENSE"); ]) ], [ AC_DEFINE([ZFS_IS_GPL_COMPATIBLE], [1], [Define to 1 if GPL-only symbols can be used]) ], [ ]) ]) ZFS_AC_KERNEL_CONFIG_THREAD_SIZE ZFS_AC_KERNEL_CONFIG_DEBUG_LOCK_ALLOC ZFS_AC_KERNEL_CONFIG_TRIM_UNUSED_KSYMS ZFS_AC_KERNEL_CONFIG_ZLIB_INFLATE ZFS_AC_KERNEL_CONFIG_ZLIB_DEFLATE ]) dnl # dnl # Check configured THREAD_SIZE dnl # dnl # The stack size will vary by architecture, but as of Linux 3.15 on x86_64 dnl # the default thread stack size was increased to 16K from 8K. Therefore, dnl # on newer kernels and some architectures stack usage optimizations can be dnl # conditionally applied to improve performance without negatively impacting dnl # stability. dnl # AC_DEFUN([ZFS_AC_KERNEL_CONFIG_THREAD_SIZE], [ AC_MSG_CHECKING([whether kernel was built with 16K or larger stacks]) ZFS_LINUX_TRY_COMPILE([ #include ],[ #if (THREAD_SIZE < 16384) #error "THREAD_SIZE is less than 16K" #endif ],[ AC_MSG_RESULT([yes]) AC_DEFINE(HAVE_LARGE_STACKS, 1, [kernel has large stacks]) ],[ AC_MSG_RESULT([no]) ]) ]) dnl # dnl # Check CONFIG_DEBUG_LOCK_ALLOC dnl # dnl # This is typically only set for debug kernels because it comes with dnl # a performance penalty. However, when it is set it maps the non-GPL dnl # symbol mutex_lock() to the GPL-only mutex_lock_nested() symbol. dnl # This will cause a failure at link time which we'd rather know about dnl # at compile time. dnl # dnl # Since we plan to pursue making mutex_lock_nested() a non-GPL symbol dnl # with the upstream community we add a check to detect this case. dnl # AC_DEFUN([ZFS_AC_KERNEL_CONFIG_DEBUG_LOCK_ALLOC], [ ZFS_LINUX_CONFIG([DEBUG_LOCK_ALLOC], [ AC_MSG_CHECKING([whether mutex_lock() is GPL-only]) tmp_flags="$EXTRA_KCFLAGS" ZFS_LINUX_TRY_COMPILE([ #include #include MODULE_LICENSE("$ZFS_META_LICENSE"); ],[ struct mutex lock; mutex_init(&lock); mutex_lock(&lock); mutex_unlock(&lock); ],[ AC_MSG_RESULT(no) ],[ AC_MSG_RESULT(yes) AC_MSG_ERROR([ *** Kernel built with CONFIG_DEBUG_LOCK_ALLOC which is incompatible *** with the CDDL license and will prevent the module linking stage *** from succeeding. You must rebuild your kernel without this *** option enabled.]) ]) EXTRA_KCFLAGS="$tmp_flags" ], []) ]) dnl # dnl # Check CONFIG_TRIM_UNUSED_KSYMS dnl # dnl # Verify the kernel has CONFIG_TRIM_UNUSED_KSYMS disabled. dnl # AC_DEFUN([ZFS_AC_KERNEL_CONFIG_TRIM_UNUSED_KSYMS], [ AC_MSG_CHECKING([whether CONFIG_TRIM_UNUSED_KSYM is disabled]) ZFS_LINUX_TRY_COMPILE([ #if defined(CONFIG_TRIM_UNUSED_KSYMS) #error CONFIG_TRIM_UNUSED_KSYMS not defined #endif ],[ ],[ AC_MSG_RESULT([yes]) ],[ AC_MSG_RESULT([no]) AC_MSG_ERROR([ *** This kernel has unused symbols trimming enabled, please disable. *** Rebuild the kernel with CONFIG_TRIM_UNUSED_KSYMS=n set.]) ]) ]) dnl # dnl # ZFS_LINUX_CONFTEST_H dnl # AC_DEFUN([ZFS_LINUX_CONFTEST_H], [ cat - <<_ACEOF >conftest.h $1 _ACEOF ]) dnl # dnl # ZFS_LINUX_CONFTEST_C dnl # AC_DEFUN([ZFS_LINUX_CONFTEST_C], [ cat confdefs.h - <<_ACEOF >conftest.c $1 _ACEOF ]) dnl # dnl # ZFS_LANG_PROGRAM(C)([PROLOGUE], [BODY]) dnl # m4_define([ZFS_LANG_PROGRAM], [ $1 int main (void) { dnl Do *not* indent the following line: there may be CPP directives. dnl Don't move the `;' right after for the same reason. $2 ; return 0; } ]) dnl # dnl # ZFS_LINUX_COMPILE_IFELSE / like AC_COMPILE_IFELSE dnl # AC_DEFUN([ZFS_LINUX_COMPILE_IFELSE], [ m4_ifvaln([$1], [ZFS_LINUX_CONFTEST_C([$1])]) m4_ifvaln([$6], [ZFS_LINUX_CONFTEST_H([$6])], [ZFS_LINUX_CONFTEST_H([])]) rm -Rf build && mkdir -p build && touch build/conftest.mod.c echo "obj-m := conftest.o" >build/Makefile modpost_flag='' test "x$enable_linux_builtin" = xyes && modpost_flag='modpost=true' # fake modpost stage AS_IF( [AC_TRY_COMMAND(cp conftest.c conftest.h build && make [$2] -C $LINUX_OBJ EXTRA_CFLAGS="-Werror $FRAME_LARGER_THAN $EXTRA_KCFLAGS" $ARCH_UM M=$PWD/build $modpost_flag) >/dev/null && AC_TRY_COMMAND([$3])], [$4], [_AC_MSG_LOG_CONFTEST m4_ifvaln([$5],[$5])] ) rm -Rf build ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE like AC_TRY_COMPILE dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE], [ZFS_LINUX_COMPILE_IFELSE( [AC_LANG_SOURCE([ZFS_LANG_PROGRAM([[$1]], [[$2]])])], [modules], [test -s build/conftest.o], [$3], [$4]) ]) dnl # dnl # ZFS_LINUX_CONFIG dnl # AC_DEFUN([ZFS_LINUX_CONFIG], [AC_MSG_CHECKING([whether kernel was built with CONFIG_$1]) ZFS_LINUX_TRY_COMPILE([ #include ],[ #ifndef CONFIG_$1 #error CONFIG_$1 not #defined #endif ],[ AC_MSG_RESULT([yes]) $2 ],[ AC_MSG_RESULT([no]) $3 ]) ]) dnl # dnl # ZFS_CHECK_SYMBOL_EXPORT dnl # check symbol exported or not dnl # AC_DEFUN([ZFS_CHECK_SYMBOL_EXPORT], [ grep -q -E '[[[:space:]]]$1[[[:space:]]]' \ $LINUX_OBJ/$LINUX_SYMBOLS 2>/dev/null rc=$? if test $rc -ne 0; then export=0 for file in $2; do grep -q -E "EXPORT_SYMBOL.*($1)" \ "$LINUX/$file" 2>/dev/null rc=$? if test $rc -eq 0; then export=1 break; fi done if test $export -eq 0; then : $4 else : $3 fi else : $3 fi ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE_SYMBOL dnl # like ZFS_LINUX_TRY_COMPILE, except ZFS_CHECK_SYMBOL_EXPORT dnl # is called if not compiling for builtin dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE_SYMBOL], [ ZFS_LINUX_TRY_COMPILE([$1], [$2], [rc=0], [rc=1]) if test $rc -ne 0; then : $6 else if test "x$enable_linux_builtin" != xyes; then ZFS_CHECK_SYMBOL_EXPORT([$3], [$4], [rc=0], [rc=1]) fi if test $rc -ne 0; then : $6 else : $5 fi fi ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE_HEADER dnl # like ZFS_LINUX_TRY_COMPILE, except the contents conftest.h are dnl # provided via the fifth parameter dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE_HEADER], [ZFS_LINUX_COMPILE_IFELSE( [AC_LANG_SOURCE([ZFS_LANG_PROGRAM([[$1]], [[$2]])])], [modules], [test -s build/conftest.o], [$3], [$4], [$5]) ]) diff --git a/include/spl/sys/vnode.h b/include/spl/sys/vnode.h index 71278b08c867..7bd278e4e13b 100644 --- a/include/spl/sys/vnode.h +++ b/include/spl/sys/vnode.h @@ -1,203 +1,202 @@ /* * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . */ #ifndef _SPL_VNODE_H #define _SPL_VNODE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Prior to linux-2.6.33 only O_DSYNC semantics were implemented and * they used the O_SYNC flag. As of linux-2.6.33 the this behavior * was properly split in to O_SYNC and O_DSYNC respectively. */ #ifndef O_DSYNC #define O_DSYNC O_SYNC #endif #define FREAD 1 #define FWRITE 2 #define FCREAT O_CREAT #define FTRUNC O_TRUNC #define FOFFMAX O_LARGEFILE #define FSYNC O_SYNC #define FDSYNC O_DSYNC #define FEXCL O_EXCL #define FDIRECT O_DIRECT #define FAPPEND O_APPEND #define FNODSYNC 0x10000 /* fsync pseudo flag */ #define FNOFOLLOW 0x20000 /* don't follow symlinks */ #define F_FREESP 11 /* Free file space */ /* * The vnode AT_ flags are mapped to the Linux ATTR_* flags. * This allows them to be used safely with an iattr structure. * The AT_XVATTR flag has been added and mapped to the upper * bit range to avoid conflicting with the standard Linux set. */ #undef AT_UID #undef AT_GID #define AT_MODE ATTR_MODE #define AT_UID ATTR_UID #define AT_GID ATTR_GID #define AT_SIZE ATTR_SIZE #define AT_ATIME ATTR_ATIME #define AT_MTIME ATTR_MTIME #define AT_CTIME ATTR_CTIME #define ATTR_XVATTR (1U << 31) #define AT_XVATTR ATTR_XVATTR #define ATTR_IATTR_MASK (ATTR_MODE | ATTR_UID | ATTR_GID | ATTR_SIZE | \ ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_FILE) #define CRCREAT 0x01 #define RMFILE 0x02 #define B_INVAL 0x01 #define B_TRUNC 0x02 #define LOOKUP_DIR 0x01 #define LOOKUP_XATTR 0x02 #define CREATE_XATTR_DIR 0x04 #define ATTR_NOACLCHECK 0x20 typedef enum vtype { VNON = 0, VREG = 1, VDIR = 2, VBLK = 3, VCHR = 4, VLNK = 5, VFIFO = 6, VDOOR = 7, VPROC = 8, VSOCK = 9, VPORT = 10, VBAD = 11 } vtype_t; typedef struct vattr { enum vtype va_type; /* vnode type */ uint32_t va_mask; /* attribute bit-mask */ ushort_t va_mode; /* acc mode */ uid_t va_uid; /* owner uid */ gid_t va_gid; /* owner gid */ long va_fsid; /* fs id */ long va_nodeid; /* node # */ uint32_t va_nlink; /* # links */ uint64_t va_size; /* file size */ inode_timespec_t va_atime; /* last acc */ inode_timespec_t va_mtime; /* last mod */ inode_timespec_t va_ctime; /* last chg */ dev_t va_rdev; /* dev */ uint64_t va_nblocks; /* space used */ uint32_t va_blksize; /* block size */ uint32_t va_seq; /* sequence */ struct dentry *va_dentry; /* dentry to wire */ } vattr_t; typedef struct vnode { struct file *v_file; kmutex_t v_lock; /* protects vnode fields */ uint_t v_flag; /* vnode flags (see below) */ uint_t v_count; /* reference count */ void *v_data; /* private data for fs */ struct vfs *v_vfsp; /* ptr to containing VFS */ struct stdata *v_stream; /* associated stream */ enum vtype v_type; /* vnode type */ dev_t v_rdev; /* device (VCHR, VBLK) */ gfp_t v_gfp_mask; /* original mapping gfp mask */ } vnode_t; typedef struct vn_file { int f_fd; /* linux fd for lookup */ struct task_struct *f_task; /* linux task this fd belongs to */ struct file *f_file; /* linux file struct */ atomic_t f_ref; /* ref count */ kmutex_t f_lock; /* struct lock */ loff_t f_offset; /* offset */ vnode_t *f_vnode; /* vnode */ struct list_head f_list; /* list referenced file_t's */ } file_t; extern vnode_t *vn_alloc(int flag); void vn_free(vnode_t *vp); extern vtype_t vn_mode_to_vtype(mode_t); extern mode_t vn_vtype_to_mode(vtype_t); extern int vn_open(const char *path, uio_seg_t seg, int flags, int mode, vnode_t **vpp, int x1, void *x2); extern int vn_openat(const char *path, uio_seg_t seg, int flags, int mode, vnode_t **vpp, int x1, void *x2, vnode_t *vp, int fd); extern int vn_rdwr(uio_rw_t uio, vnode_t *vp, void *addr, ssize_t len, offset_t off, uio_seg_t seg, int x1, rlim64_t x2, void *x3, ssize_t *residp); extern int vn_close(vnode_t *vp, int flags, int x1, int x2, void *x3, void *x4); extern int vn_seek(vnode_t *vp, offset_t o, offset_t *op, void *ct); extern int vn_getattr(vnode_t *vp, vattr_t *vap, int flags, void *x3, void *x4); extern int vn_fsync(vnode_t *vp, int flags, void *x3, void *x4); extern int vn_space(vnode_t *vp, int cmd, struct flock *bfp, int flag, offset_t offset, void *x6, void *x7); extern file_t *vn_getf(int fd); extern void vn_releasef(int fd); extern void vn_areleasef(int fd, uf_info_t *fip); -extern int vn_set_pwd(const char *filename); int spl_vn_init(void); void spl_vn_fini(void); #define VOP_CLOSE vn_close #define VOP_SEEK vn_seek #define VOP_GETATTR vn_getattr #define VOP_FSYNC vn_fsync #define VOP_SPACE vn_space #define VOP_PUTPAGE(vp, o, s, f, x1, x2) ((void)0) #define vn_is_readonly(vp) 0 #define getf vn_getf #define releasef vn_releasef #define areleasef vn_areleasef extern vnode_t *rootdir; #endif /* SPL_VNODE_H */ diff --git a/module/spl/spl-vnode.c b/module/spl/spl-vnode.c index 11b5e4e5a2f2..d9056c964e5a 100644 --- a/module/spl/spl-vnode.c +++ b/module/spl/spl-vnode.c @@ -1,777 +1,719 @@ /* * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . * * Solaris Porting Layer (SPL) Vnode Implementation. */ #include #include #include #include #include #include #ifdef HAVE_FDTABLE_HEADER #include #endif vnode_t *rootdir = (vnode_t *)0xabcd1234; EXPORT_SYMBOL(rootdir); static spl_kmem_cache_t *vn_cache; static spl_kmem_cache_t *vn_file_cache; static spinlock_t vn_file_lock; static LIST_HEAD(vn_file_list); static int spl_filp_fallocate(struct file *fp, int mode, loff_t offset, loff_t len) { int error = -EOPNOTSUPP; #ifdef HAVE_FILE_FALLOCATE if (fp->f_op->fallocate) error = fp->f_op->fallocate(fp, mode, offset, len); #else #ifdef HAVE_INODE_FALLOCATE if (fp->f_dentry && fp->f_dentry->d_inode && fp->f_dentry->d_inode->i_op->fallocate) error = fp->f_dentry->d_inode->i_op->fallocate( fp->f_dentry->d_inode, mode, offset, len); #endif /* HAVE_INODE_FALLOCATE */ #endif /* HAVE_FILE_FALLOCATE */ return (error); } static int spl_filp_fsync(struct file *fp, int sync) { #ifdef HAVE_2ARGS_VFS_FSYNC return (vfs_fsync(fp, sync)); #else return (vfs_fsync(fp, (fp)->f_dentry, sync)); #endif /* HAVE_2ARGS_VFS_FSYNC */ } static ssize_t spl_kernel_write(struct file *file, const void *buf, size_t count, loff_t *pos) { #if defined(HAVE_KERNEL_WRITE_PPOS) return (kernel_write(file, buf, count, pos)); #else mm_segment_t saved_fs; ssize_t ret; saved_fs = get_fs(); set_fs(KERNEL_DS); ret = vfs_write(file, (__force const char __user *)buf, count, pos); set_fs(saved_fs); return (ret); #endif } static ssize_t spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) { #if defined(HAVE_KERNEL_READ_PPOS) return (kernel_read(file, buf, count, pos)); #else mm_segment_t saved_fs; ssize_t ret; saved_fs = get_fs(); set_fs(KERNEL_DS); ret = vfs_read(file, (void __user *)buf, count, pos); set_fs(saved_fs); return (ret); #endif } vtype_t vn_mode_to_vtype(mode_t mode) { if (S_ISREG(mode)) return (VREG); if (S_ISDIR(mode)) return (VDIR); if (S_ISCHR(mode)) return (VCHR); if (S_ISBLK(mode)) return (VBLK); if (S_ISFIFO(mode)) return (VFIFO); if (S_ISLNK(mode)) return (VLNK); if (S_ISSOCK(mode)) return (VSOCK); return (VNON); } /* vn_mode_to_vtype() */ EXPORT_SYMBOL(vn_mode_to_vtype); mode_t vn_vtype_to_mode(vtype_t vtype) { if (vtype == VREG) return (S_IFREG); if (vtype == VDIR) return (S_IFDIR); if (vtype == VCHR) return (S_IFCHR); if (vtype == VBLK) return (S_IFBLK); if (vtype == VFIFO) return (S_IFIFO); if (vtype == VLNK) return (S_IFLNK); if (vtype == VSOCK) return (S_IFSOCK); return (VNON); } /* vn_vtype_to_mode() */ EXPORT_SYMBOL(vn_vtype_to_mode); vnode_t * vn_alloc(int flag) { vnode_t *vp; vp = kmem_cache_alloc(vn_cache, flag); if (vp != NULL) { vp->v_file = NULL; vp->v_type = 0; } return (vp); } /* vn_alloc() */ EXPORT_SYMBOL(vn_alloc); void vn_free(vnode_t *vp) { kmem_cache_free(vn_cache, vp); } /* vn_free() */ EXPORT_SYMBOL(vn_free); int vn_open(const char *path, uio_seg_t seg, int flags, int mode, vnode_t **vpp, int x1, void *x2) { struct file *fp; struct kstat stat; int rc, saved_umask = 0; gfp_t saved_gfp; vnode_t *vp; ASSERT(flags & (FWRITE | FREAD)); ASSERT(seg == UIO_SYSSPACE); ASSERT(vpp); *vpp = NULL; if (!(flags & FCREAT) && (flags & FWRITE)) flags |= FEXCL; /* * Note for filp_open() the two low bits must be remapped to mean: * 01 - read-only -> 00 read-only * 10 - write-only -> 01 write-only * 11 - read-write -> 10 read-write */ flags--; if (flags & FCREAT) saved_umask = xchg(¤t->fs->umask, 0); fp = filp_open(path, flags, mode); if (flags & FCREAT) (void) xchg(¤t->fs->umask, saved_umask); if (IS_ERR(fp)) return (-PTR_ERR(fp)); #if defined(HAVE_4ARGS_VFS_GETATTR) rc = vfs_getattr(&fp->f_path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); #elif defined(HAVE_2ARGS_VFS_GETATTR) rc = vfs_getattr(&fp->f_path, &stat); #else rc = vfs_getattr(fp->f_path.mnt, fp->f_dentry, &stat); #endif if (rc) { filp_close(fp, 0); return (-rc); } vp = vn_alloc(KM_SLEEP); if (!vp) { filp_close(fp, 0); return (ENOMEM); } saved_gfp = mapping_gfp_mask(fp->f_mapping); mapping_set_gfp_mask(fp->f_mapping, saved_gfp & ~(__GFP_IO|__GFP_FS)); mutex_enter(&vp->v_lock); vp->v_type = vn_mode_to_vtype(stat.mode); vp->v_file = fp; vp->v_gfp_mask = saved_gfp; *vpp = vp; mutex_exit(&vp->v_lock); return (0); } /* vn_open() */ EXPORT_SYMBOL(vn_open); int vn_openat(const char *path, uio_seg_t seg, int flags, int mode, vnode_t **vpp, int x1, void *x2, vnode_t *vp, int fd) { char *realpath; int len, rc; ASSERT(vp == rootdir); len = strlen(path) + 2; realpath = kmalloc(len, kmem_flags_convert(KM_SLEEP)); if (!realpath) return (ENOMEM); (void) snprintf(realpath, len, "/%s", path); rc = vn_open(realpath, seg, flags, mode, vpp, x1, x2); kfree(realpath); return (rc); } /* vn_openat() */ EXPORT_SYMBOL(vn_openat); int vn_rdwr(uio_rw_t uio, vnode_t *vp, void *addr, ssize_t len, offset_t off, uio_seg_t seg, int ioflag, rlim64_t x2, void *x3, ssize_t *residp) { struct file *fp = vp->v_file; loff_t offset = off; int rc; ASSERT(uio == UIO_WRITE || uio == UIO_READ); ASSERT(seg == UIO_SYSSPACE); ASSERT((ioflag & ~FAPPEND) == 0); if (ioflag & FAPPEND) offset = fp->f_pos; if (uio & UIO_WRITE) rc = spl_kernel_write(fp, addr, len, &offset); else rc = spl_kernel_read(fp, addr, len, &offset); fp->f_pos = offset; if (rc < 0) return (-rc); if (residp) { *residp = len - rc; } else { if (rc != len) return (EIO); } return (0); } /* vn_rdwr() */ EXPORT_SYMBOL(vn_rdwr); int vn_close(vnode_t *vp, int flags, int x1, int x2, void *x3, void *x4) { int rc; ASSERT(vp); ASSERT(vp->v_file); mapping_set_gfp_mask(vp->v_file->f_mapping, vp->v_gfp_mask); rc = filp_close(vp->v_file, 0); vn_free(vp); return (-rc); } /* vn_close() */ EXPORT_SYMBOL(vn_close); /* * vn_seek() does not actually seek it only performs bounds checking on the * proposed seek. We perform minimal checking and allow vn_rdwr() to catch * anything more serious. */ int vn_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, void *ct) { return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); } EXPORT_SYMBOL(vn_seek); int vn_getattr(vnode_t *vp, vattr_t *vap, int flags, void *x3, void *x4) { struct file *fp; struct kstat stat; int rc; ASSERT(vp); ASSERT(vp->v_file); ASSERT(vap); fp = vp->v_file; #if defined(HAVE_4ARGS_VFS_GETATTR) rc = vfs_getattr(&fp->f_path, &stat, STATX_BASIC_STATS, AT_STATX_SYNC_AS_STAT); #elif defined(HAVE_2ARGS_VFS_GETATTR) rc = vfs_getattr(&fp->f_path, &stat); #else rc = vfs_getattr(fp->f_path.mnt, fp->f_dentry, &stat); #endif if (rc) return (-rc); vap->va_type = vn_mode_to_vtype(stat.mode); vap->va_mode = stat.mode; vap->va_uid = KUID_TO_SUID(stat.uid); vap->va_gid = KGID_TO_SGID(stat.gid); vap->va_fsid = 0; vap->va_nodeid = stat.ino; vap->va_nlink = stat.nlink; vap->va_size = stat.size; vap->va_blksize = stat.blksize; vap->va_atime = stat.atime; vap->va_mtime = stat.mtime; vap->va_ctime = stat.ctime; vap->va_rdev = stat.rdev; vap->va_nblocks = stat.blocks; return (0); } EXPORT_SYMBOL(vn_getattr); int vn_fsync(vnode_t *vp, int flags, void *x3, void *x4) { int datasync = 0; int error; int fstrans; ASSERT(vp); ASSERT(vp->v_file); if (flags & FDSYNC) datasync = 1; /* * May enter XFS which generates a warning when PF_FSTRANS is set. * To avoid this the flag is cleared over vfs_sync() and then reset. */ fstrans = __spl_pf_fstrans_check(); if (fstrans) current->flags &= ~(__SPL_PF_FSTRANS); error = -spl_filp_fsync(vp->v_file, datasync); if (fstrans) current->flags |= __SPL_PF_FSTRANS; return (error); } /* vn_fsync() */ EXPORT_SYMBOL(vn_fsync); int vn_space(vnode_t *vp, int cmd, struct flock *bfp, int flag, offset_t offset, void *x6, void *x7) { int error = EOPNOTSUPP; #ifdef FALLOC_FL_PUNCH_HOLE int fstrans; #endif if (cmd != F_FREESP || bfp->l_whence != SEEK_SET) return (EOPNOTSUPP); ASSERT(vp); ASSERT(vp->v_file); ASSERT(bfp->l_start >= 0 && bfp->l_len > 0); #ifdef FALLOC_FL_PUNCH_HOLE /* * May enter XFS which generates a warning when PF_FSTRANS is set. * To avoid this the flag is cleared over vfs_sync() and then reset. */ fstrans = __spl_pf_fstrans_check(); if (fstrans) current->flags &= ~(__SPL_PF_FSTRANS); /* * When supported by the underlying file system preferentially * use the fallocate() callback to preallocate the space. */ error = -spl_filp_fallocate(vp->v_file, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, bfp->l_start, bfp->l_len); if (fstrans) current->flags |= __SPL_PF_FSTRANS; if (error == 0) return (0); #endif #ifdef HAVE_INODE_TRUNCATE_RANGE if (vp->v_file->f_dentry && vp->v_file->f_dentry->d_inode && vp->v_file->f_dentry->d_inode->i_op && vp->v_file->f_dentry->d_inode->i_op->truncate_range) { off_t end = bfp->l_start + bfp->l_len; /* * Judging from the code in shmem_truncate_range(), * it seems the kernel expects the end offset to be * inclusive and aligned to the end of a page. */ if (end % PAGE_SIZE != 0) { end &= ~(off_t)(PAGE_SIZE - 1); if (end <= bfp->l_start) return (0); } --end; vp->v_file->f_dentry->d_inode->i_op->truncate_range( vp->v_file->f_dentry->d_inode, bfp->l_start, end); return (0); } #endif return (error); } EXPORT_SYMBOL(vn_space); /* Function must be called while holding the vn_file_lock */ static file_t * file_find(int fd, struct task_struct *task) { file_t *fp; list_for_each_entry(fp, &vn_file_list, f_list) { if (fd == fp->f_fd && fp->f_task == task) { ASSERT(atomic_read(&fp->f_ref) != 0); return (fp); } } return (NULL); } /* file_find() */ file_t * vn_getf(int fd) { struct kstat stat; struct file *lfp; file_t *fp; vnode_t *vp; int rc = 0; if (fd < 0) return (NULL); /* Already open just take an extra reference */ spin_lock(&vn_file_lock); fp = file_find(fd, current); if (fp) { lfp = fget(fd); fput(fp->f_file); /* * areleasef() can cause us to see a stale reference when * userspace has reused a file descriptor before areleasef() * has run. fput() the stale reference and replace it. We * retain the original reference count such that the concurrent * areleasef() will decrement its reference and terminate. */ if (lfp != fp->f_file) { fp->f_file = lfp; fp->f_vnode->v_file = lfp; } atomic_inc(&fp->f_ref); spin_unlock(&vn_file_lock); return (fp); } spin_unlock(&vn_file_lock); /* File was not yet opened create the object and setup */ fp = kmem_cache_alloc(vn_file_cache, KM_SLEEP); if (fp == NULL) goto out; mutex_enter(&fp->f_lock); fp->f_fd = fd; fp->f_task = current; fp->f_offset = 0; atomic_inc(&fp->f_ref); lfp = fget(fd); if (lfp == NULL) goto out_mutex; vp = vn_alloc(KM_SLEEP); if (vp == NULL) goto out_fget; #if defined(HAVE_4ARGS_VFS_GETATTR) rc = vfs_getattr(&lfp->f_path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); #elif defined(HAVE_2ARGS_VFS_GETATTR) rc = vfs_getattr(&lfp->f_path, &stat); #else rc = vfs_getattr(lfp->f_path.mnt, lfp->f_dentry, &stat); #endif if (rc) goto out_vnode; mutex_enter(&vp->v_lock); vp->v_type = vn_mode_to_vtype(stat.mode); vp->v_file = lfp; mutex_exit(&vp->v_lock); fp->f_vnode = vp; fp->f_file = lfp; /* Put it on the tracking list */ spin_lock(&vn_file_lock); list_add(&fp->f_list, &vn_file_list); spin_unlock(&vn_file_lock); mutex_exit(&fp->f_lock); return (fp); out_vnode: vn_free(vp); out_fget: fput(lfp); out_mutex: mutex_exit(&fp->f_lock); kmem_cache_free(vn_file_cache, fp); out: return (NULL); } /* getf() */ EXPORT_SYMBOL(getf); static void releasef_locked(file_t *fp) { ASSERT(fp->f_file); ASSERT(fp->f_vnode); /* Unlinked from list, no refs, safe to free outside mutex */ fput(fp->f_file); vn_free(fp->f_vnode); kmem_cache_free(vn_file_cache, fp); } void vn_releasef(int fd) { areleasef(fd, P_FINFO(current)); } EXPORT_SYMBOL(releasef); void vn_areleasef(int fd, uf_info_t *fip) { file_t *fp; struct task_struct *task = (struct task_struct *)fip; if (fd < 0) return; spin_lock(&vn_file_lock); fp = file_find(fd, task); if (fp) { atomic_dec(&fp->f_ref); if (atomic_read(&fp->f_ref) > 0) { spin_unlock(&vn_file_lock); return; } list_del(&fp->f_list); releasef_locked(fp); } spin_unlock(&vn_file_lock); } /* releasef() */ EXPORT_SYMBOL(areleasef); - -static void -vn_set_fs_pwd(struct fs_struct *fs, struct path *path) -{ - struct path old_pwd; - -#ifdef HAVE_FS_STRUCT_SPINLOCK - spin_lock(&fs->lock); - old_pwd = fs->pwd; - fs->pwd = *path; - path_get(path); - spin_unlock(&fs->lock); -#else - write_lock(&fs->lock); - old_pwd = fs->pwd; - fs->pwd = *path; - path_get(path); - write_unlock(&fs->lock); -#endif /* HAVE_FS_STRUCT_SPINLOCK */ - - if (old_pwd.dentry) - path_put(&old_pwd); -} - -int -vn_set_pwd(const char *filename) -{ - struct path path; - mm_segment_t saved_fs; - int rc; - - /* - * user_path_dir() and __user_walk() both expect 'filename' to be - * a user space address so we must briefly increase the data segment - * size to ensure strncpy_from_user() does not fail with -EFAULT. - */ - saved_fs = get_fs(); - set_fs(KERNEL_DS); - - rc = user_path_dir(filename, &path); - if (rc) - goto out; - - rc = inode_permission(path.dentry->d_inode, MAY_EXEC | MAY_ACCESS); - if (rc) - goto dput_and_out; - - vn_set_fs_pwd(current->fs, &path); - -dput_and_out: - path_put(&path); -out: - set_fs(saved_fs); - - return (-rc); -} /* vn_set_pwd() */ -EXPORT_SYMBOL(vn_set_pwd); - static int vn_cache_constructor(void *buf, void *cdrarg, int kmflags) { struct vnode *vp = buf; mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /* vn_cache_constructor() */ static void vn_cache_destructor(void *buf, void *cdrarg) { struct vnode *vp = buf; mutex_destroy(&vp->v_lock); } /* vn_cache_destructor() */ static int vn_file_cache_constructor(void *buf, void *cdrarg, int kmflags) { file_t *fp = buf; atomic_set(&fp->f_ref, 0); mutex_init(&fp->f_lock, NULL, MUTEX_DEFAULT, NULL); INIT_LIST_HEAD(&fp->f_list); return (0); } /* vn_file_cache_constructor() */ static void vn_file_cache_destructor(void *buf, void *cdrarg) { file_t *fp = buf; mutex_destroy(&fp->f_lock); } /* vn_file_cache_destructor() */ int spl_vn_init(void) { spin_lock_init(&vn_file_lock); vn_cache = kmem_cache_create("spl_vn_cache", sizeof (struct vnode), 64, vn_cache_constructor, vn_cache_destructor, NULL, NULL, NULL, 0); vn_file_cache = kmem_cache_create("spl_vn_file_cache", sizeof (file_t), 64, vn_file_cache_constructor, vn_file_cache_destructor, NULL, NULL, NULL, 0); return (0); } /* spl_vn_init() */ void spl_vn_fini(void) { file_t *fp, *next_fp; int leaked = 0; spin_lock(&vn_file_lock); list_for_each_entry_safe(fp, next_fp, &vn_file_list, f_list) { list_del(&fp->f_list); releasef_locked(fp); leaked++; } spin_unlock(&vn_file_lock); if (leaked > 0) printk(KERN_WARNING "WARNING: %d vnode files leaked\n", leaked); kmem_cache_destroy(vn_file_cache); kmem_cache_destroy(vn_cache); } /* spl_vn_fini() */ diff --git a/module/zfs/spa_config.c b/module/zfs/spa_config.c index 8616abda37bd..6c0894338e25 100644 --- a/module/zfs/spa_config.c +++ b/module/zfs/spa_config.c @@ -1,628 +1,627 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2017 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #endif /* * Pool configuration repository. * * Pool configuration is stored as a packed nvlist on the filesystem. By * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot * (when the ZFS module is loaded). Pools can also have the 'cachefile' * property set that allows them to be stored in an alternate location until * the control of external software. * * For each cache file, we have a single nvlist which holds all the * configuration information. When the module loads, we read this information * from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is * maintained independently in spa.c. Whenever the namespace is modified, or * the configuration of a pool is changed, we call spa_write_cachefile(), which * walks through all the active pools and writes the configuration to disk. */ static uint64_t spa_config_generation = 1; /* * This can be overridden in userland to preserve an alternate namespace for * userland pools when doing testing. */ char *spa_config_path = ZPOOL_CACHE; int zfs_autoimport_disable = 1; /* * Called when the module is first loaded, this routine loads the configuration * file into the SPA namespace. It does not actually open or load the pools; it * only populates the namespace. */ void spa_config_load(void) { void *buf = NULL; nvlist_t *nvlist, *child; nvpair_t *nvpair; char *pathname; struct _buf *file; uint64_t fsize; #ifdef _KERNEL if (zfs_autoimport_disable) return; #endif /* * Open the configuration file. */ pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); - (void) snprintf(pathname, MAXPATHLEN, "%s%s", - (rootdir != NULL) ? "./" : "", spa_config_path); + (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path); file = kobj_open_file(pathname); kmem_free(pathname, MAXPATHLEN); if (file == (struct _buf *)-1) return; if (kobj_get_filesize(file, &fsize) != 0) goto out; buf = kmem_alloc(fsize, KM_SLEEP); /* * Read the nvlist from the file. */ if (kobj_read_file(file, buf, fsize, 0) < 0) goto out; /* * Unpack the nvlist. */ if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0) goto out; /* * Iterate over all elements in the nvlist, creating a new spa_t for * each one with the specified configuration. */ mutex_enter(&spa_namespace_lock); nvpair = NULL; while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) { if (nvpair_type(nvpair) != DATA_TYPE_NVLIST) continue; child = fnvpair_value_nvlist(nvpair); if (spa_lookup(nvpair_name(nvpair)) != NULL) continue; (void) spa_add(nvpair_name(nvpair), child, NULL); } mutex_exit(&spa_namespace_lock); nvlist_free(nvlist); out: if (buf != NULL) kmem_free(buf, fsize); kobj_close_file(file); } static int spa_config_remove(spa_config_dirent_t *dp) { #if defined(__linux__) && defined(_KERNEL) int error, flags = FWRITE | FTRUNC; uio_seg_t seg = UIO_SYSSPACE; vnode_t *vp; error = vn_open(dp->scd_path, seg, flags, 0644, &vp, 0, 0); if (error == 0) { (void) VOP_FSYNC(vp, FSYNC, kcred, NULL); (void) VOP_CLOSE(vp, 0, 1, 0, kcred, NULL); } return (error); #else return (vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE)); #endif } static int spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl) { size_t buflen; char *buf; vnode_t *vp; int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX; char *temp; int err; /* * If the nvlist is empty (NULL), then remove the old cachefile. */ if (nvl == NULL) { err = spa_config_remove(dp); if (err == ENOENT) err = 0; return (err); } /* * Pack the configuration into a buffer. */ buf = fnvlist_pack(nvl, &buflen); temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP); #if defined(__linux__) && defined(_KERNEL) /* * Write the configuration to disk. Due to the complexity involved * in performing a rename and remove from within the kernel the file * is instead truncated and overwritten in place. This way we always * have a consistent view of the data or a zero length file. */ err = vn_open(dp->scd_path, UIO_SYSSPACE, oflags, 0644, &vp, 0, 0); if (err == 0) { err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL); if (err == 0) err = VOP_FSYNC(vp, FSYNC, kcred, NULL); (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); if (err) (void) spa_config_remove(dp); } #else /* * Write the configuration to disk. We need to do the traditional * 'write to temporary file, sync, move over original' to make sure we * always have a consistent view of the data. */ (void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path); err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0); if (err == 0) { err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, NULL); if (err == 0) err = VOP_FSYNC(vp, FSYNC, kcred, NULL); if (err == 0) err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE); (void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL); } (void) vn_remove(temp, UIO_SYSSPACE, RMFILE); #endif fnvlist_pack_free(buf, buflen); kmem_free(temp, MAXPATHLEN); return (err); } /* * Synchronize pool configuration to disk. This must be called with the * namespace lock held. Synchronizing the pool cache is typically done after * the configuration has been synced to the MOS. This exposes a window where * the MOS config will have been updated but the cache file has not. If * the system were to crash at that instant then the cached config may not * contain the correct information to open the pool and an explicit import * would be required. */ void spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent) { spa_config_dirent_t *dp, *tdp; nvlist_t *nvl; char *pool_name; boolean_t ccw_failure; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (rootdir == NULL || !(spa_mode_global & FWRITE)) return; /* * Iterate over all cachefiles for the pool, past or present. When the * cachefile is changed, the new one is pushed onto this list, allowing * us to update previous cachefiles that no longer contain this pool. */ ccw_failure = B_FALSE; for (dp = list_head(&target->spa_config_list); dp != NULL; dp = list_next(&target->spa_config_list, dp)) { spa_t *spa = NULL; if (dp->scd_path == NULL) continue; /* * Iterate over all pools, adding any matching pools to 'nvl'. */ nvl = NULL; while ((spa = spa_next(spa)) != NULL) { /* * Skip over our own pool if we're about to remove * ourselves from the spa namespace or any pool that * is readonly. Since we cannot guarantee that a * readonly pool would successfully import upon reboot, * we don't allow them to be written to the cache file. */ if ((spa == target && removing) || !spa_writeable(spa)) continue; mutex_enter(&spa->spa_props_lock); tdp = list_head(&spa->spa_config_list); if (spa->spa_config == NULL || tdp == NULL || tdp->scd_path == NULL || strcmp(tdp->scd_path, dp->scd_path) != 0) { mutex_exit(&spa->spa_props_lock); continue; } if (nvl == NULL) nvl = fnvlist_alloc(); if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) pool_name = fnvlist_lookup_string( spa->spa_config, ZPOOL_CONFIG_POOL_NAME); else pool_name = spa_name(spa); fnvlist_add_nvlist(nvl, pool_name, spa->spa_config); mutex_exit(&spa->spa_props_lock); } error = spa_config_write(dp, nvl); if (error != 0) ccw_failure = B_TRUE; nvlist_free(nvl); } if (ccw_failure) { /* * Keep trying so that configuration data is * written if/when any temporary filesystem * resource issues are resolved. */ if (target->spa_ccw_fail_time == 0) { zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE, target, NULL, NULL, NULL, 0, 0); } target->spa_ccw_fail_time = gethrtime(); spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE); } else { /* * Do not rate limit future attempts to update * the config cache. */ target->spa_ccw_fail_time = 0; } /* * Remove any config entries older than the current one. */ dp = list_head(&target->spa_config_list); while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) { list_remove(&target->spa_config_list, tdp); if (tdp->scd_path != NULL) spa_strfree(tdp->scd_path); kmem_free(tdp, sizeof (spa_config_dirent_t)); } spa_config_generation++; if (postsysevent) spa_event_notify(target, NULL, NULL, ESC_ZFS_CONFIG_SYNC); } /* * Sigh. Inside a local zone, we don't have access to /etc/zfs/zpool.cache, * and we don't want to allow the local zone to see all the pools anyway. * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration * information for all pool visible within the zone. */ nvlist_t * spa_all_configs(uint64_t *generation) { nvlist_t *pools; spa_t *spa = NULL; if (*generation == spa_config_generation) return (NULL); pools = fnvlist_alloc(); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (INGLOBALZONE(curproc) || zone_dataset_visible(spa_name(spa), NULL)) { mutex_enter(&spa->spa_props_lock); fnvlist_add_nvlist(pools, spa_name(spa), spa->spa_config); mutex_exit(&spa->spa_props_lock); } } *generation = spa_config_generation; mutex_exit(&spa_namespace_lock); return (pools); } void spa_config_set(spa_t *spa, nvlist_t *config) { mutex_enter(&spa->spa_props_lock); if (spa->spa_config != NULL && spa->spa_config != config) nvlist_free(spa->spa_config); spa->spa_config = config; mutex_exit(&spa->spa_props_lock); } /* * Generate the pool's configuration based on the current in-core state. * * We infer whether to generate a complete config or just one top-level config * based on whether vd is the root vdev. */ nvlist_t * spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats) { nvlist_t *config, *nvroot; vdev_t *rvd = spa->spa_root_vdev; unsigned long hostid = 0; boolean_t locked = B_FALSE; uint64_t split_guid; char *pool_name; if (vd == NULL) { vd = rvd; locked = B_TRUE; spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) == (SCL_CONFIG | SCL_STATE)); /* * If txg is -1, report the current value of spa->spa_config_txg. */ if (txg == -1ULL) txg = spa->spa_config_txg; /* * Originally, users had to handle spa namespace collisions by either * exporting the already imported pool or by specifying a new name for * the pool with a conflicting name. In the case of root pools from * virtual guests, neither approach to collision resolution is * reasonable. This is addressed by extending the new name syntax with * an option to specify that the new name is temporary. When specified, * ZFS_IMPORT_TEMP_NAME will be set in spa->spa_import_flags to tell us * to use the previous name, which we do below. */ if (spa->spa_import_flags & ZFS_IMPORT_TEMP_NAME) { VERIFY0(nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, &pool_name)); } else pool_name = spa_name(spa); config = fnvlist_alloc(); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, pool_name); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, spa_state(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, txg); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata); if (spa->spa_comment != NULL) fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, spa->spa_comment); hostid = spa_get_hostid(); if (hostid != 0) fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, utsname()->nodename); int config_gen_flags = 0; if (vd != rvd) { fnvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid); fnvlist_add_uint64(config, ZPOOL_CONFIG_GUID, vd->vdev_guid); if (vd->vdev_isspare) fnvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE, 1ULL); if (vd->vdev_islog) fnvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG, 1ULL); vd = vd->vdev_top; /* label contains top config */ } else { /* * Only add the (potentially large) split information * in the mos config, and not in the vdev labels */ if (spa->spa_config_splitting != NULL) fnvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT, spa->spa_config_splitting); fnvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS); config_gen_flags |= VDEV_CONFIG_MOS; } /* * Add the top-level config. We even add this on pools which * don't support holes in the namespace. */ vdev_top_config_generate(spa, config); /* * If we're splitting, record the original pool's guid. */ if (spa->spa_config_splitting != NULL && nvlist_lookup_uint64(spa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID, split_guid); } nvroot = vdev_config_generate(spa, vd, getstats, config_gen_flags); fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot); nvlist_free(nvroot); /* * Store what's necessary for reading the MOS in the label. */ fnvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, spa->spa_label_features); if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)); kmem_free(ddh, sizeof (ddt_histogram_t)); ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP); ddt_get_dedup_object_stats(spa, ddo); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)); kmem_free(ddo, sizeof (ddt_object_t)); dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP); ddt_get_dedup_stats(spa, dds); fnvlist_add_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)); kmem_free(dds, sizeof (ddt_stat_t)); } if (locked) spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (config); } /* * Update all disk labels, generate a fresh config based on the current * in-core state, and sync the global config cache (do not sync the config * cache if this is a booting rootpool). */ void spa_config_update(spa_t *spa, int what) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg; int c; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); txg = spa_last_synced_txg(spa) + 1; if (what == SPA_CONFIG_UPDATE_POOL) { vdev_config_dirty(rvd); } else { /* * If we have top-level vdevs that were added but have * not yet been prepared for allocation, do that now. * (It's safe now because the config cache is up to date, * so it will be able to translate the new DVAs.) * See comments in spa_vdev_add() for full details. */ for (c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; /* * Explicitly skip vdevs that are indirect or * log vdevs that are being removed. The reason * is that both of those can have vdev_ms_array * set to 0 and we wouldn't want to change their * metaslab size nor call vdev_expand() on them. */ if (!vdev_is_concrete(tvd) || (tvd->vdev_islog && tvd->vdev_removing)) continue; if (tvd->vdev_ms_array == 0) vdev_metaslab_set_size(tvd); vdev_expand(tvd, txg); } } spa_config_exit(spa, SCL_ALL, FTAG); /* * Wait for the mosconfig to be regenerated and synced. */ txg_wait_synced(spa->spa_dsl_pool, txg); /* * Update the global config cache to reflect the new mosconfig. */ if (!spa->spa_is_root) { spa_write_cachefile(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL); } if (what == SPA_CONFIG_UPDATE_POOL) spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS); } #if defined(_KERNEL) EXPORT_SYMBOL(spa_config_load); EXPORT_SYMBOL(spa_all_configs); EXPORT_SYMBOL(spa_config_set); EXPORT_SYMBOL(spa_config_generate); EXPORT_SYMBOL(spa_config_update); module_param(spa_config_path, charp, 0444); MODULE_PARM_DESC(spa_config_path, "SPA config file (/etc/zfs/zpool.cache)"); module_param(zfs_autoimport_disable, int, 0644); MODULE_PARM_DESC(zfs_autoimport_disable, "Disable pool import at module load"); #endif diff --git a/module/zfs/zfs_ioctl.c b/module/zfs/zfs_ioctl.c index f30d0a894414..c6b55d24f7ef 100644 --- a/module/zfs/zfs_ioctl.c +++ b/module/zfs/zfs_ioctl.c @@ -1,7453 +1,7446 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. * Portions Copyright 2012 Pawel Jakub Dawidek * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2018, loli10K . All rights reserved. * Copyright 2017 RackTop Systems. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. * Copyright (c) 2019 Datto Inc. */ /* * ZFS ioctls. * * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. * * There are two ways that we handle ioctls: the legacy way where almost * all of the logic is in the ioctl callback, and the new way where most * of the marshalling is handled in the common entry point, zfsdev_ioctl(). * * Non-legacy ioctls should be registered by calling * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked * from userland by lzc_ioctl(). * * The registration arguments are as follows: * * const char *name * The name of the ioctl. This is used for history logging. If the * ioctl returns successfully (the callback returns 0), and allow_log * is true, then a history log entry will be recorded with the input & * output nvlists. The log entry can be printed with "zpool history -i". * * zfs_ioc_t ioc * The ioctl request number, which userland will pass to ioctl(2). * We want newer versions of libzfs and libzfs_core to run against * existing zfs kernel modules (i.e. a deferred reboot after an update). * Therefore the ioctl numbers cannot change from release to release. * * zfs_secpolicy_func_t *secpolicy * This function will be called before the zfs_ioc_func_t, to * determine if this operation is permitted. It should return EPERM * on failure, and 0 on success. Checks include determining if the * dataset is visible in this zone, and if the user has either all * zfs privileges in the zone (SYS_MOUNT), or has been granted permission * to do this operation on this dataset with "zfs allow". * * zfs_ioc_namecheck_t namecheck * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool * name, a dataset name, or nothing. If the name is not well-formed, * the ioctl will fail and the callback will not be called. * Therefore, the callback can assume that the name is well-formed * (e.g. is null-terminated, doesn't have more than one '@' character, * doesn't have invalid characters). * * zfs_ioc_poolcheck_t pool_check * This specifies requirements on the pool state. If the pool does * not meet them (is suspended or is readonly), the ioctl will fail * and the callback will not be called. If any checks are specified * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | * POOL_CHECK_READONLY). * * zfs_ioc_key_t *nvl_keys * The list of expected/allowable innvl input keys. This list is used * to validate the nvlist input to the ioctl. * * boolean_t smush_outnvlist * If smush_outnvlist is true, then the output is presumed to be a * list of errors, and it will be "smushed" down to fit into the * caller's buffer, by removing some entries and replacing them with a * single "N_MORE_ERRORS" entry indicating how many were removed. See * nvlist_smush() for details. If smush_outnvlist is false, and the * outnvlist does not fit into the userland-provided buffer, then the * ioctl will fail with ENOMEM. * * zfs_ioc_func_t *func * The callback function that will perform the operation. * * The callback should return 0 on success, or an error number on * failure. If the function fails, the userland ioctl will return -1, * and errno will be set to the callback's return value. The callback * will be called with the following arguments: * * const char *name * The name of the pool or dataset to operate on, from * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the * expected type (pool, dataset, or none). * * nvlist_t *innvl * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or * NULL if no input nvlist was provided. Changes to this nvlist are * ignored. If the input nvlist could not be deserialized, the * ioctl will fail and the callback will not be called. * * nvlist_t *outnvl * The output nvlist, initially empty. The callback can fill it in, * and it will be returned to userland by serializing it into * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization * fails (e.g. because the caller didn't supply a large enough * buffer), then the overall ioctl will fail. See the * 'smush_nvlist' argument above for additional behaviors. * * There are two typical uses of the output nvlist: * - To return state, e.g. property values. In this case, * smush_outnvlist should be false. If the buffer was not large * enough, the caller will reallocate a larger buffer and try * the ioctl again. * * - To return multiple errors from an ioctl which makes on-disk * changes. In this case, smush_outnvlist should be true. * Ioctls which make on-disk modifications should generally not * use the outnvl if they succeed, because the caller can not * distinguish between the operation failing, and * deserialization failing. * * IOCTL Interface Errors * * The following ioctl input errors can be returned: * ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel * ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel * ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing * ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" #include #include /* * Limit maximum nvlist size. We don't want users passing in insane values * for zc->zc_nvlist_src_size, since we will need to allocate that much memory. */ #define MAX_NVLIST_SRC_SIZE KMALLOC_MAX_SIZE kmutex_t zfsdev_state_lock; zfsdev_state_t *zfsdev_state_list; extern void zfs_init(void); extern void zfs_fini(void); uint_t zfs_fsyncer_key; extern uint_t rrw_tsd_key; static uint_t zfs_allow_log_key; typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *); typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *); /* * IOC Keys are used to document and validate user->kernel interface inputs. * See zfs_keys_recv_new for an example declaration. Any key name that is not * listed will be rejected as input. * * The keyname 'optional' is always allowed, and must be an nvlist if present. * Arguments which older kernels can safely ignore can be placed under the * "optional" key. * * When adding new keys to an existing ioc for new functionality, consider: * - adding an entry into zfs_sysfs.c zfs_features[] list * - updating the libzfs_input_check.c test utility * * Note: in the ZK_WILDCARDLIST case, the name serves as documentation * for the expected name (bookmark, snapshot, property, etc) but there * is no validation in the preflight zfs_check_input_nvpairs() check. */ typedef enum { ZK_OPTIONAL = 1 << 0, /* pair is optional */ ZK_WILDCARDLIST = 1 << 1, /* one or more unspecified key names */ } ioc_key_flag_t; /* DATA_TYPE_ANY is used when zkey_type can vary. */ #define DATA_TYPE_ANY DATA_TYPE_UNKNOWN typedef struct zfs_ioc_key { const char *zkey_name; data_type_t zkey_type; ioc_key_flag_t zkey_flags; } zfs_ioc_key_t; typedef enum { NO_NAME, POOL_NAME, DATASET_NAME } zfs_ioc_namecheck_t; typedef enum { POOL_CHECK_NONE = 1 << 0, POOL_CHECK_SUSPENDED = 1 << 1, POOL_CHECK_READONLY = 1 << 2, } zfs_ioc_poolcheck_t; typedef struct zfs_ioc_vec { zfs_ioc_legacy_func_t *zvec_legacy_func; zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_allow_log; zfs_ioc_poolcheck_t zvec_pool_check; boolean_t zvec_smush_outnvlist; const char *zvec_name; const zfs_ioc_key_t *zvec_nvl_keys; size_t zvec_nvl_key_count; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_PERM_USEROBJUSED, ZFS_DELEG_PERM_USEROBJQUOTA, ZFS_DELEG_PERM_GROUPOBJUSED, ZFS_DELEG_PERM_GROUPOBJQUOTA, ZFS_DELEG_PERM_PROJECTUSED, ZFS_DELEG_PERM_PROJECTQUOTA, ZFS_DELEG_PERM_PROJECTOBJUSED, ZFS_DELEG_PERM_PROJECTOBJQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == 0) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Check to see if the named dataset is currently defined as bootable */ static boolean_t zfs_is_bootfs(const char *name) { objset_t *os; if (dmu_objset_hold(name, FTAG, &os) == 0) { boolean_t ret; ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os))); dmu_objset_rele(os, FTAG); return (ret); } return (B_FALSE); } /* * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (SET_ERROR(ENOENT)); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (SET_ERROR(ENOENT)); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (SET_ERROR(EPERM)); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (SET_ERROR(EPERM)); /* must be writable by this zone */ if (!writable) return (SET_ERROR(EPERM)); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_int_ds(ds, "zoned", &zoned)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error != 0) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } static int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; dsl_dataset_t *ds; dsl_pool_t *dp; /* * First do a quick check for root in the global zone, which * is allowed to do all write_perms. This ensures that zfs_ioc_* * will get to handle nonexistent datasets. */ if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) return (0); error = dsl_pool_hold(name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr) { #ifdef HAVE_MLSLABEL char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error != 0) return (SET_ERROR(EPERM)); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (SET_ERROR(EINVAL)); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (SET_ERROR(EPERM)); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EPERM)); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (SET_ERROR(EPERM)); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs_t; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE, setsl_tag, &os); if (error != 0) return (SET_ERROR(EPERM)); dmu_objset_disown(os, B_TRUE, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (SET_ERROR(EPERM)); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); #else return (SET_ERROR(ENOTSUP)); #endif /* HAVE_MLSLABEL */ } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { default: break; case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); break; case ZFS_PROP_QUOTA: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[ZFS_MAX_DATASET_NAME_LEN]; /* * Unprivileged users are allowed to modify the * limit on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, "zoned", &zoned, setpoint)) return (SET_ERROR(EPERM)); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (SET_ERROR(EPERM)); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (SET_ERROR(EPERM)); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } /* ARGSUSED */ static int zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error != 0) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } /* ARGSUSED */ static int zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } /* ARGSUSED */ static int zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *ds; char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (SET_ERROR(ENOTSUP)); } int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (SET_ERROR(ENOTSUP)); } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (SET_ERROR(ENOENT)); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } /* ARGSUSED */ static int zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendant mount and destroy permissions. */ /* ARGSUSED */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; nvpair_t *pair, *nextpair; int error = 0; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nextpair) { nextpair = nvlist_next_nvpair(snaps, pair); error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); if (error == ENOENT) { /* * Ignore any snapshots that don't exist (we consider * them "already destroyed"). Remove the name from the * nvl here in case the snapshot is created between * now and when we try to destroy it (in which case * we don't want to destroy it since we haven't * checked for permission). */ fnvlist_remove_nvpair(snaps, pair); error = 0; } if (error != 0) break; } return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } /* ARGSUSED */ static int zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } /* ARGSUSED */ static int zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { dsl_pool_t *dp; dsl_dataset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error != 0) return (error); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); if (error == 0) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_t *origin = NULL; dsl_dir_t *dd; dd = clone->ds_dir; error = dsl_dataset_hold_obj(dd->dd_pool, dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); if (error != 0) { dsl_dataset_rele(clone, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(origin, parentname); if (error == 0) { error = zfs_secpolicy_write_perms_ds(parentname, origin, ZFS_DELEG_PERM_PROMOTE, cr); } dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(origin, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } /* ARGSUSED */ static int zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } /* ARGSUSED */ static int zfs_secpolicy_recv_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_recv(zc, innvl, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } /* * Check for permission to create each snapshot in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvlist_t *snaps; int error = 0; nvpair_t *pair; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char *name = nvpair_name(pair); char *atp = strchr(name, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } *atp = '\0'; error = zfs_secpolicy_snapshot_perms(name, cr); *atp = '@'; if (error != 0) break; } return (error); } /* * Check for permission to create each bookmark in the nvlist. */ /* ARGSUSED */ static int zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error = 0; for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_BOOKMARK, cr); *hashp = '#'; if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_remap(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_REMAP, cr)); } /* ARGSUSED */ static int zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair, *nextpair; int error = 0; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nextpair) { char *name = nvpair_name(pair); char *hashp = strchr(name, '#'); nextpair = nvlist_next_nvpair(innvl, pair); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr); *hashp = '#'; if (error == ENOENT) { /* * Ignore any filesystems that don't exist (we consider * their bookmarks "already destroyed"). Remove * the name from the nvl here in case the filesystem * is created between now and when we try to destroy * the bookmark (in which case we don't want to * destroy it since we haven't checked for permission). */ fnvlist_remove_nvpair(innvl, pair); error = 0; } if (error != 0) break; } return (error); } /* ARGSUSED */ static int zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * Even root must have a proper TSD so that we know what pool * to log to. */ if (tsd_get(zfs_allow_log_key) == NULL) return (SET_ERROR(EPERM)); return (0); } static int zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; char *origin; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && (error = zfs_secpolicy_write_perms(origin, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (SET_ERROR(EPERM)); return (0); } /* * Policy for object to name lookups. */ /* ARGSUSED */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int error; if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (secpolicy_zinject(cr)); } /* ARGSUSED */ static int zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA || zc->zc_objset_type == ZFS_PROP_USEROBJUSED || zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED || zc->zc_objset_type == ZFS_PROP_GROUPQUOTA || zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED || zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) { if (groupmember(zc->zc_guid, cr)) return (0); } /* else is for project quota/used */ } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } /* ARGSUSED */ static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } /* ARGSUSED */ static int zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; nvlist_t *holds; int error; holds = fnvlist_lookup_nvlist(innvl, "holds"); for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_HOLD, cr); if (error != 0) return (error); } return (0); } /* ARGSUSED */ static int zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { nvpair_t *pair; int error; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_RELEASE, cr); if (error != 0) return (error); } return (0); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr)) == 0) return (0); error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); if (innvl != NULL) { if (error == 0) error = zfs_secpolicy_hold(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_release(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_destroy(zc, innvl, cr); } return (error); } static int zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_LOAD_KEY, cr)); } static int zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CHANGE_KEY, cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (SET_ERROR(EINVAL)); packed = vmem_alloc(size, KM_SLEEP); if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag)) != 0) { vmem_free(packed, size); return (SET_ERROR(EFAULT)); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { vmem_free(packed, size); return (error); } vmem_free(packed, size); *nvp = list; return (0); } /* * Reduce the size of this nvlist until it can be serialized in 'max' bytes. * Entries will be removed from the end of the nvlist, and one int32 entry * named "N_MORE_ERRORS" will be added indicating how many entries were * removed. */ static int nvlist_smush(nvlist_t *errors, size_t max) { size_t size; size = fnvlist_size(errors); if (size > max) { nvpair_t *more_errors; int n = 0; if (max < 1024) return (SET_ERROR(ENOMEM)); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); more_errors = nvlist_prev_nvpair(errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(errors, more_errors); fnvlist_remove_nvpair(errors, pair); n++; size = fnvlist_size(errors); } while (size > max); fnvlist_remove_nvpair(errors, more_errors); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); ASSERT3U(fnvlist_size(errors), <=, max); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; size = fnvlist_size(nvl); if (size > zc->zc_nvlist_dst_size) { error = SET_ERROR(ENOMEM); } else { packed = fnvlist_pack(nvl, &size); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = SET_ERROR(EFAULT); fnvlist_pack_free(packed, size); } zc->zc_nvlist_dst_size = size; zc->zc_nvlist_dst_filled = B_TRUE; return (error); } int getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) { int error = 0; if (dmu_objset_type(os) != DMU_OST_ZFS) { return (SET_ERROR(EINVAL)); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); /* bump s_active only when non-zero to prevent umount race */ if (*zfvp == NULL || (*zfvp)->z_sb == NULL || !atomic_inc_not_zero(&((*zfvp)->z_sb->s_active))) { error = SET_ERROR(ESRCH); } mutex_exit(&os->os_user_ptr_lock); return (error); } int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, zfvp); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_sb will be NULL, and it will be opened as the owner. * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, * which prevents all inode ops from running. */ static int zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, B_FALSE, zfvp); if (error == 0) { rrm_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER : RW_READER, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ rrm_exit(&(*zfvp)->z_teardown_lock, tag); return (SET_ERROR(EBUSY)); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag) { rrm_exit(&zfsvfs->z_teardown_lock, tag); if (zfsvfs->z_sb) { deactivate_super(zfsvfs->z_sb); } else { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; dsl_crypto_params_t *dcp = NULL; char *spa_name = zc->zc_name; boolean_t unload_wkey = B_TRUE; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; nvlist_t *hidden_args = NULL; uint64_t version = SPA_VERSION; char *tname; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (!SPA_VERSION_IS_SUPPORTED(version)) { error = SET_ERROR(EINVAL); goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } (void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS, &hidden_args); error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, rootprops, hidden_args, &dcp); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS); VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error != 0) goto pool_props_bad; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) spa_name = tname; } error = spa_create(zc->zc_name, config, props, zplprops, dcp); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(spa_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) { (void) spa_destroy(spa_name); unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */ } pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); dsl_crypto_params_free(dcp, unload_wkey && !!error); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = SET_ERROR(EINVAL); else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (SET_ERROR(EEXIST)); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } /* * inputs: * zc_name name of the pool * * outputs: * zc_cookie real errno * zc_nvlist_dst config nvlist * zc_nvlist_dst_size size of config nvlist */ static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config = NULL; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (SET_ERROR(EINVAL)); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_flags == POOL_SCRUB_PAUSE) error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); else if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } hist_buf = vmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); vmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_reguid(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { error = spa_change_guid(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_guid guid of vdev to remove * zc_cookie cancel removal */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); if (zc->zc_cookie != 0) { error = spa_vdev_remove_cancel(spa); } else { error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL && zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; default: error = SET_ERROR(EINVAL); } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading with out owning */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) { error = zvol_get_stats(os, nv); if (error == EIO) { nvlist_free(nv); return (error); } VERIFY0(error); } if (error == 0) error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error == 0) { error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { int error = 0; nvlist_t *nv; /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(zc->zc_name)) return (SET_ERROR(ENOTSUP)); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os))) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != 0 && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = SET_ERROR(ENOENT); } dmu_objset_rele(os, FTAG); return (err); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) { if (error == ENOENT) error = SET_ERROR(ESRCH); return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = SET_ERROR(ESRCH); } while (error == 0 && zfs_dataset_name_hidden(zc->zc_name)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_src iteration range nvlist * zc_nvlist_src_size size of iteration range nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { int error; objset_t *os, *ossnap; dsl_dataset_t *ds; uint64_t min_txg = 0, max_txg = 0; if (zc->zc_nvlist_src_size != 0) { nvlist_t *props = NULL; error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props); if (error != 0) return (error); (void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG, &min_txg); (void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG, &max_txg); nvlist_free(props); } error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) { return (error == ENOENT ? ESRCH : error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= ZFS_MAX_DATASET_NAME_LEN) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ESRCH)); } while (error == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { error = SET_ERROR(EINTR); break; } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == ENOENT) { error = SET_ERROR(ESRCH); break; } else if (error != 0) { break; } error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj, FTAG, &ds); if (error != 0) break; if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) || (max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) { dsl_dataset_rele(ds, FTAG); /* undo snapshot name append */ *(strchr(zc->zc_name, '@') + 1) = '\0'; /* skip snapshot */ continue; } if (zc->zc_simple) { dsl_dataset_rele(ds, FTAG); break; } if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } dsl_dataset_rele(ds, FTAG); break; } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error != 0) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *domain; char *dash; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (SET_ERROR(EINVAL)); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (SET_ERROR(EINVAL)); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval = 0; char *strval = NULL; int err = -1; if (prop == ZPROP_INVAL) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* all special properties are numeric except for keylocation */ if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) { strval = fnvpair_value_string(pair); } else { intval = fnvpair_value_uint64(pair); } switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_refquota(dsname, source, intval); break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (intval == UINT64_MAX) { /* clearing the limit, just do it */ err = 0; } else { err = dsl_dir_activate_fs_ss_limit(dsname); } /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_KEYLOCATION: err = dsl_crypto_can_set_keylocation(dsname, strval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_refreservation(dsname, source, intval); break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, intval); break; case ZFS_PROP_SNAPDEV: err = zvol_set_snapdev(dsname, source, intval); break; case ZFS_PROP_VOLMODE: err = zvol_set_volmode(dsname, source, intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dsname); (void) zfs_ioc_userspace_upgrade(zc); (void) zfs_ioc_id_quota_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the last error * encountered. If the caller provides a non-NULL errlist, it will be filled in * with the list of names of all the properties that failed along with the * corresponding error numbers. * * If every property is set successfully, zero is returned and errlist is not * modified. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t *errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; uint64_t intval; char *strval; nvlist_t *genericnvl = fnvlist_alloc(); nvlist_t *retrynvl = fnvlist_alloc(); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); int err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = SET_ERROR(EINVAL); } /* Validate value type */ if (err == 0 && source == ZPROP_SRC_INHERITED) { /* inherited properties are expected to be booleans */ if (nvpair_type(propval) != DATA_TYPE_BOOLEAN) err = SET_ERROR(EINVAL); } else if (err == 0 && prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = SET_ERROR(EINVAL); } else { err = SET_ERROR(EINVAL); } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; intval = fnvpair_value_uint64(propval); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = SET_ERROR(EINVAL); break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = SET_ERROR(EINVAL); break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = SET_ERROR(EINVAL); } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { if (source == ZPROP_SRC_INHERITED) err = -1; /* does not need special handling */ else err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) { if (errlist != NULL) fnvlist_add_int32(errlist, propname, err); rv = err; } } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (!nvlist_empty(genericnvl) && dsl_props_set(dsname, source, genericnvl) != 0) { /* * If this fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); int err = 0; propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); } if (nvpair_type(propval) == DATA_TYPE_STRING) { strval = fnvpair_value_string(propval); err = dsl_prop_set_string(dsname, propname, source, strval); } else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) { err = dsl_prop_inherit(dsname, propname, source); } else { intval = fnvpair_value_uint64(propval); err = dsl_prop_set_int(dsname, propname, source, intval); } if (err != 0) { if (errlist != NULL) { fnvlist_add_int32(errlist, propname, err); } rv = err; } } } nvlist_free(genericnvl); nvlist_free(retrynvl); return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(const char *fsname, nvlist_t *nvl) { nvpair_t *pair = NULL; int error = 0; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (SET_ERROR(EINVAL)); if ((error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_USERPROP, CRED()))) return (error); if (strlen(propname) >= ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) return (SET_ERROR(E2BIG)); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(const char *dsname, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { (void) clear_received_props(zc->zc_name, origprops, nvl); nvlist_free(origprops); } error = dsl_prop_set_hasrecvd(zc->zc_name); } errors = fnvlist_alloc(); if (error == 0) error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); if (zc->zc_nvlist_dst != 0 && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; if (!received) { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop)) return (SET_ERROR(EINVAL)); } if (prop == ZPROP_INVAL) { if (!zfs_prop_user(propname)) return (SET_ERROR(EINVAL)); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (SET_ERROR(EINVAL)); } else { type = zfs_prop_get_type(prop); } /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ dummy = fnvlist_alloc(); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: err = SET_ERROR(EINVAL); goto errout; } pair = nvlist_next_nvpair(dummy, NULL); if (pair == NULL) { err = SET_ERROR(EINVAL); } else { err = zfs_prop_set_special(zc->zc_name, source, pair); if (err == -1) /* property is not "special", needs handling */ err = dsl_prop_inherit(zc->zc_name, zc->zc_value, source); } errout: nvlist_free(dummy); return (err); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != 0) error = put_nvlist(zc, nvp); else error = SET_ERROR(EFAULT); nvlist_free(nvp); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (SET_ERROR(EINVAL)); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error != 0) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * os parent objset pointer (NULL if root fs) * fuids_ok fuids allowed in this version of the spa? * sa_ok SAs allowed in this version of the spa? * createprops list of properties requested by creator * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; int error; ASSERT(zplprops != NULL); /* parent dataset must be a filesystem */ if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (SET_ERROR(ENOTSUP)); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[ZFS_MAX_DATASET_NAME_LEN]; spa_t *spa; uint64_t spa_vers; int error; zfs_get_parent(dataset, parentname, sizeof (parentname)); if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * innvl: { * "type" -> dmu_objset_type_t (int32) * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_create[] = { {"type", DATA_TYPE_INT32, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; zfs_creat_t zct = { 0 }; nvlist_t *nvprops = NULL; nvlist_t *hidden_args = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type; boolean_t is_insensitive = B_FALSE; dsl_crypto_params_t *dcp = NULL; type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); zct.zct_props = nvprops; if (cbfunc == NULL) return (SET_ERROR(EINVAL)); if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) return (SET_ERROR(EINVAL)); if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) return (SET_ERROR(EINVAL)); if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize(fsname, volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) return (error); } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(fsname, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } } error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops, hidden_args, &dcp); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } error = dmu_objset_create(fsname, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct); nvlist_free(zct.zct_zplprops); dsl_crypto_params_free(dcp, !!error); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) { spa_t *spa; int error2; /* * Volumes will return EBUSY and cannot be destroyed * until all asynchronous minor handling has completed. * Wait for the spa_zvol_taskq to drain then retry. */ error2 = dsl_destroy_head(fsname); while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) { error2 = spa_open(fsname, &spa, FTAG); if (error2 == 0) { taskq_wait(spa->spa_zvol_taskq); spa_close(spa, FTAG); } error2 = dsl_destroy_head(fsname); } } } return (error); } /* * innvl: { * "origin" -> name of origin snapshot * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outputs: * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_clone[] = { {"origin", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; nvlist_t *nvprops = NULL; char *origin_name; origin_name = fnvlist_lookup_string(innvl, "origin"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); if (dataset_namecheck(origin_name, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); error = dmu_objset_clone(fsname, origin_name); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } static const zfs_ioc_key_t zfs_keys_remap[] = { /* no nvl keys */ }; /* ARGSUSED */ static int zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); return (dmu_objset_remap_indirects(fsname)); } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional) "props" -> { prop -> value (string) } * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_snapshot[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvlist_t *props = NULL; int error, poollen; nvpair_t *pair; (void) nvlist_lookup_nvlist(innvl, "props", &props); if ((error = zfs_check_userprops(poolname, props)) != 0) return (error); if (!nvlist_empty(props) && zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) return (SET_ERROR(ENOTSUP)); snaps = fnvlist_lookup_nvlist(innvl, "snaps"); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The snap must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); /* This must be the only snap of this fs. */ for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { if (strncmp(name, nvpair_name(pair2), cp - name + 1) == 0) { return (SET_ERROR(EXDEV)); } } } error = dsl_dataset_snapshot(snaps, props, outnvl); return (error); } /* * innvl: "message" -> string */ static const zfs_ioc_key_t zfs_keys_log_history[] = { {"message", DATA_TYPE_STRING, 0}, }; /* ARGSUSED */ static int zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) { char *message; spa_t *spa; int error; char *poolname; /* * The poolname in the ioctl is not set, we get it from the TSD, * which was set at the end of the last successful ioctl that allows * logging. The secpolicy func already checked that it is set. * Only one log ioctl is allowed after each successful ioctl, so * we clear the TSD here. */ poolname = tsd_get(zfs_allow_log_key); if (poolname == NULL) return (SET_ERROR(EINVAL)); (void) tsd_set(zfs_allow_log_key, NULL); error = spa_open(poolname, &spa, FTAG); strfree(poolname); if (error != 0) return (error); message = fnvlist_lookup_string(innvl, "message"); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } error = spa_history_log(spa, message); spa_close(spa, FTAG); return (error); } /* * The dp_config_rwlock must not be held when calling this, because the * unmount may need to write out data. * * This function is best-effort. Callers must deal gracefully if it * remains mounted (or is remounted after this call). * * Returns 0 if the argument is not a snapshot, or it is not currently a * filesystem, or we were able to unmount it. Returns error code otherwise. */ void zfs_unmount_snap(const char *snapname) { if (strchr(snapname, '@') == NULL) return; (void) zfsctl_snapshot_unmount((char *)snapname, MNT_FORCE); } /* ARGSUSED */ static int zfs_unmount_snap_cb(const char *snapname, void *arg) { zfs_unmount_snap(snapname); return (0); } /* * When a clone is destroyed, its origin may also need to be destroyed, * in which case it must be unmounted. This routine will do that unmount * if necessary. */ void zfs_destroy_unmount_origin(const char *fsname) { int error; objset_t *os; dsl_dataset_t *ds; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) return; ds = dmu_objset_ds(os); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { char originname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds->ds_prev, originname); dmu_objset_rele(os, FTAG); zfs_unmount_snap(originname); } else { dmu_objset_rele(os, FTAG); } } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional boolean) "defer" * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvpair_t *pair; boolean_t defer; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); defer = nvlist_exists(innvl, "defer"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { zfs_unmount_snap(nvpair_name(pair)); } return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); } /* * Create bookmarks. Bookmark names are of the form #. * All bookmarks must be in the same pool. * * innvl: { * bookmark1 -> snapshot1, bookmark2 -> snapshot2 * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_bookmark[] = { {"...", DATA_TYPE_STRING, ZK_WILDCARDLIST}, }; /* ARGSUSED */ static int zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *snap_name; /* * Verify the snapshot argument. */ if (nvpair_value_string(pair, &snap_name) != 0) return (SET_ERROR(EINVAL)); /* Verify that the keys (bookmarks) are unique */ for (nvpair_t *pair2 = nvlist_next_nvpair(innvl, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(innvl, pair2)) { if (strcmp(nvpair_name(pair), nvpair_name(pair2)) == 0) return (SET_ERROR(EINVAL)); } } return (dsl_bookmark_create(innvl, outnvl)); } /* * innvl: { * property 1, property 2, ... * } * * outnvl: { * bookmark name 1 -> { property 1, property 2, ... }, * bookmark name 2 -> { property 1, property 2, ... } * } * */ static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL}, }; static int zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { return (dsl_get_bookmarks(fsname, innvl, outnvl)); } /* * innvl: { * bookmark name 1, bookmark name 2 * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST}, }; static int zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int error, poollen; poollen = strlen(poolname); for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '#'); /* * The bookmark name must contain an #, and the part after it * must contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The bookmark must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '#')) return (SET_ERROR(EXDEV)); } error = dsl_bookmark_destroy(innvl, outnvl); return (error); } static const zfs_ioc_key_t zfs_keys_channel_program[] = { {"program", DATA_TYPE_STRING, 0}, {"arg", DATA_TYPE_ANY, 0}, {"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, {"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { char *program; uint64_t instrlimit, memlimit; boolean_t sync_flag; nvpair_t *nvarg = NULL; program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM); if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { sync_flag = B_TRUE; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { instrlimit = ZCP_DEFAULT_INSTRLIMIT; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { memlimit = ZCP_DEFAULT_MEMLIMIT; } nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST); if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) return (EINVAL); if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) return (EINVAL); return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, nvarg, outnvl)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = { /* no nvl keys */ }; /* ARGSUSED */ static int zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { return (spa_checkpoint(poolname)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = { /* no nvl keys */ }; /* ARGSUSED */ static int zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { return (spa_checkpoint_discard(poolname)); } /* * inputs: * zc_name name of dataset to destroy * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; int err; err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); if (ost == DMU_OST_ZFS) zfs_unmount_snap(zc->zc_name); if (strchr(zc->zc_name, '@')) { err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); } else { err = dsl_destroy_head(zc->zc_name); if (err == EEXIST) { /* * It is possible that the given DS may have * hidden child (%recv) datasets - "leftovers" * resulting from the previously interrupted * 'zfs receive'. * * 6 extra bytes for /%recv */ char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6]; if (snprintf(namebuf, sizeof (namebuf), "%s/%s", zc->zc_name, recv_clone_name) >= sizeof (namebuf)) return (SET_ERROR(EINVAL)); /* * Try to remove the hidden child (%recv) and after * that try to remove the target dataset. * If the hidden child (%recv) does not exist * the original error (EEXIST) will be returned */ err = dsl_destroy_head(namebuf); if (err == 0) err = dsl_destroy_head(zc->zc_name); else if (err == ENOENT) err = SET_ERROR(EEXIST); } } return (err); } /* * innvl: { * "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64) * "initialize_vdevs": { -> guids to initialize (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * } * * outnvl: { * "initialize_vdevs": { -> initialization errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_initialize[] = { {ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0} }; static int zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, &cmd_type) != 0) { return (SET_ERROR(EINVAL)); } if (!(cmd_type == POOL_INITIALIZE_CANCEL || cmd_type == POOL_INITIALIZE_START || cmd_type == POOL_INITIALIZE_SUSPEND)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, &vdev_guids) != 0) { return (SET_ERROR(EINVAL)); } for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) { fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, vdev_errlist); } fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? EINVAL : 0); } /* * innvl: { * "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64) * "trim_vdevs": { -> guids to TRIM (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * "trim_rate" -> Target TRIM rate in bytes/sec. * "trim_secure" -> Set to request a secure TRIM. * } * * outnvl: { * "trim_vdevs": { -> TRIM errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_trim[] = { {ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0}, {ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL}, {ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, }; static int zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0) return (SET_ERROR(EINVAL)); if (!(cmd_type == POOL_TRIM_CANCEL || cmd_type == POOL_TRIM_START || cmd_type == POOL_TRIM_SUSPEND)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0) return (SET_ERROR(EINVAL)); for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } /* Optional, defaults to maximum rate when not provided */ uint64_t rate; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0) rate = 0; /* Optional, defaults to standard TRIM when not provided */ boolean_t secure; if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE, &secure) != 0) { secure = B_FALSE; } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type, rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist); fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? EINVAL : 0); } /* * fsname is name of dataset to rollback (to most recent snapshot) * * innvl may contain name of expected target snapshot * * outnvl: "target" -> name of most recent snapshot * } */ static const zfs_ioc_key_t zfs_keys_rollback[] = { {"target", DATA_TYPE_STRING, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { zfsvfs_t *zfsvfs; zvol_state_t *zv; char *target = NULL; int error; (void) nvlist_lookup_string(innvl, "target", &target); if (target != NULL) { const char *cp = strchr(target, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); } if (getzfsvfs(fsname, &zfsvfs) == 0) { dsl_dataset_t *ds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; error = dsl_dataset_rollback(fsname, target, zfsvfs, outnvl); resume_err = zfs_resume_fs(zfsvfs, ds); error = error ? error : resume_err; } deactivate_super(zfsvfs->z_sb); } else if ((zv = zvol_suspend(fsname)) != NULL) { error = dsl_dataset_rollback(fsname, target, zvol_tag(zv), outnvl); zvol_resume(zv); } else { error = dsl_dataset_rollback(fsname, target, NULL, outnvl); } return (error); } static int recursive_unmount(const char *fsname, void *arg) { const char *snapname = arg; char *fullname; fullname = kmem_asprintf("%s@%s", fsname, snapname); zfs_unmount_snap(fullname); strfree(fullname); return (0); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; boolean_t recursive = zc->zc_cookie & 1; char *at; int err; /* "zfs rename" from and to ...%recv datasets should both fail */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); at = strchr(zc->zc_name, '@'); if (at != NULL) { /* snaps must be in same fs */ int error; if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) return (SET_ERROR(EXDEV)); *at = '\0'; if (ost == DMU_OST_ZFS) { error = dmu_objset_find(zc->zc_name, recursive_unmount, at + 1, recursive ? DS_FIND_CHILDREN : 0); if (error != 0) { *at = '@'; return (error); } } error = dsl_dataset_rename_snapshot(zc->zc_name, at + 1, strchr(zc->zc_value, '@') + 1, recursive); *at = '@'; return (error); } else { return (dsl_dir_rename(zc->zc_name, zc->zc_value)); } } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if ((err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr))) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; const char *uiq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA]; const char *giq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA]; const char *pq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA]; const char *piq_prefix = zfs_userquota_prop_prefixes[\ ZFS_PROP_PROJECTOBJQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, uiq_prefix, strlen(uiq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USEROBJQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else if (strncmp(propname, giq_prefix, strlen(giq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPOBJQUOTA; } else if (strncmp(propname, pq_prefix, strlen(pq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTQUOTA; } else if (strncmp(propname, piq_prefix, strlen(piq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA; } else { /* {USER|GROUP|PROJECT}USED are read-only */ return (SET_ERROR(EINVAL)); } if ((err = zfs_secpolicy_write_perms(dsname, perm, cr))) return (err); return (0); } return (SET_ERROR(EINVAL)); } if (issnap) return (SET_ERROR(EINVAL)); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_value_uint64(pair, &intval) == 0) { if (intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (SET_ERROR(ENOTSUP)); } if (intval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (SET_ERROR(ENOTSUP)); if (intval == ZIO_COMPRESS_LZ4) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } /* * If this is a bootable dataset then * verify that the compression algorithm * is supported for booting. We must return * something other than ENOTSUP since it * implies a downrev pool version. */ if (zfs_is_bootfs(dsname) && !BOOTFS_COMPRESS_VALID(intval)) { return (SET_ERROR(ERANGE)); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_VOLBLOCKSIZE: case ZFS_PROP_RECORDSIZE: /* Record sizes above 128k need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (intval > zfs_max_recordsize || intval > SPA_MAXBLOCKSIZE) return (SET_ERROR(ERANGE)); if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_DNODESIZE: /* Dnode sizes above 512 need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval != ZFS_DNSIZE_LEGACY) { spa_t *spa; /* * If this is a bootable dataset then * we don't allow large (>512B) dnodes, * because GRUB doesn't support them. */ if (zfs_is_bootfs(dsname) && intval != ZFS_DNSIZE_LEGACY) { return (SET_ERROR(EDOM)); } if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_SPECIAL_SMALL_BLOCKS: /* * This property could require the allocation classes * feature to be active for setting, however we allow * it so that tests of settable properties succeed. * The CLI will issue a warning in this case. */ break; case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (SET_ERROR(ENOTSUP)); } break; case ZFS_PROP_CHECKSUM: case ZFS_PROP_DEDUP: { spa_feature_t feature; spa_t *spa; int err; /* dedup feature version checks */ if (prop == ZFS_PROP_DEDUP && zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (SET_ERROR(ENOTSUP)); if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { /* check prop value is enabled in features */ feature = zio_checksum_to_feature( intval & ZIO_CHECKSUM_MASK); if (feature == SPA_FEATURE_NONE) break; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, feature)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; } default: break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name)); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strlcpy(zc->zc_value, nvpair_name(pair), sizeof (zc->zc_value)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } /* * Extract properties that cannot be set PRIOR to the receipt of a dataset. * For example, refquota cannot be set until after the receipt of a dataset, * because in replication streams, an older/earlier snapshot may exceed the * refquota. We want to receive the older/earlier snapshot, but setting * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent * the older/earlier snapshot from being received (with EDQUOT). * * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. * * libzfs will need to be judicious handling errors encountered by props * extracted by this function. */ static nvlist_t * extract_delay_props(nvlist_t *props) { nvlist_t *delayprops; nvpair_t *nvp, *tmp; static const zfs_prop_t delayable[] = { ZFS_PROP_REFQUOTA, ZFS_PROP_KEYLOCATION, 0 }; int i; VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; nvp = nvlist_next_nvpair(props, nvp)) { /* * strcmp() is safe because zfs_prop_to_name() always returns * a bounded string. */ for (i = 0; delayable[i] != 0; i++) { if (strcmp(zfs_prop_to_name(delayable[i]), nvpair_name(nvp)) == 0) { break; } } if (delayable[i] != 0) { tmp = nvlist_prev_nvpair(props, nvp); VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); VERIFY(nvlist_remove_nvpair(props, nvp) == 0); nvp = tmp; } } if (nvlist_empty(delayprops)) { nvlist_free(delayprops); delayprops = NULL; } return (delayprops); } #ifdef DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * nvlist 'errors' is always allocated. It will contain descriptions of * encountered errors, if any. It's the callers responsibility to free. */ static int zfs_ioc_recv_impl(char *tofs, char *tosnap, char *origin, nvlist_t *recvprops, nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force, boolean_t resumable, int input_fd, dmu_replay_record_t *begin_record, int cleanup_fd, uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle, nvlist_t **errors) { dmu_recv_cookie_t drc; int error = 0; int props_error = 0; offset_t off; nvlist_t *local_delayprops = NULL; nvlist_t *recv_delayprops = NULL; nvlist_t *origprops = NULL; /* existing properties */ nvlist_t *origrecvd = NULL; /* existing received properties */ boolean_t first_recvd_props = B_FALSE; file_t *input_fp; *read_bytes = 0; *errflags = 0; *errors = fnvlist_alloc(); input_fp = getf(input_fd); if (input_fp == NULL) return (SET_ERROR(EBADF)); error = dmu_recv_begin(tofs, tosnap, begin_record, force, resumable, localprops, hidden_args, origin, &drc); if (error != 0) goto out; /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (recvprops != NULL && !drc.drc_newfs) { if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= SPA_VERSION_RECVD_PROPS && !dsl_prop_get_hasrecvd(tofs)) first_recvd_props = B_TRUE; /* * If new received properties are supplied, they are to * completely replace the existing received properties, * so stash away the existing ones. */ if (dsl_prop_get_received(tofs, &origrecvd) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(recvprops, origrecvd); if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0) (void) nvlist_merge(*errors, errlist, 0); nvlist_free(errlist); if (clear_received_props(tofs, origrecvd, first_recvd_props ? NULL : recvprops) != 0) *errflags |= ZPROP_ERR_NOCLEAR; } else { *errflags |= ZPROP_ERR_NOCLEAR; } } /* * Stash away existing properties so we can restore them on error unless * we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which * case "origrecvd" will take care of that. */ if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) { objset_t *os; if (dmu_objset_hold(tofs, FTAG, &os) == 0) { if (dsl_prop_get_all(os, &origprops) != 0) { *errflags |= ZPROP_ERR_NOCLEAR; } dmu_objset_rele(os, FTAG); } else { *errflags |= ZPROP_ERR_NOCLEAR; } } if (recvprops != NULL) { props_error = dsl_prop_set_hasrecvd(tofs); if (props_error == 0) { recv_delayprops = extract_delay_props(recvprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recvprops, *errors); } } if (localprops != NULL) { nvlist_t *oprops = fnvlist_alloc(); nvlist_t *xprops = fnvlist_alloc(); nvpair_t *nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) { /* -x property */ const char *name = nvpair_name(nvp); zfs_prop_t prop = zfs_name_to_prop(name); if (prop != ZPROP_INVAL) { if (!zfs_prop_inheritable(prop)) continue; } else if (!zfs_prop_user(name)) continue; fnvlist_add_boolean(xprops, name); } else { /* -o property=value */ fnvlist_add_nvpair(oprops, nvp); } } local_delayprops = extract_delay_props(oprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, oprops, *errors); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, xprops, *errors); nvlist_free(oprops); nvlist_free(xprops); } off = input_fp->f_offset; error = dmu_recv_stream(&drc, input_fp->f_vnode, &off, cleanup_fd, action_handle); if (error == 0) { zfsvfs_t *zfsvfs = NULL; zvol_state_t *zv = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ dsl_dataset_t *ds; int end_err; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc, zfsvfs); if (error == 0) error = zfs_resume_fs(zfsvfs, ds); error = error ? error : end_err; deactivate_super(zfsvfs->z_sb); } else if ((zv = zvol_suspend(tofs)) != NULL) { error = dmu_recv_end(&drc, zvol_tag(zv)); zvol_resume(zv); } else { error = dmu_recv_end(&drc, NULL); } /* Set delayed properties now, after we're done receiving. */ if (recv_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recv_delayprops, *errors); } if (local_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, local_delayprops, *errors); } } /* * Merge delayed props back in with initial props, in case * we're DEBUG and zfs_ioc_recv_inject_err is set (which means * we have to make sure clear_received_props() includes * the delayed properties). * * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, * using ASSERT() will be just like a VERIFY. */ if (recv_delayprops != NULL) { ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0); nvlist_free(recv_delayprops); } if (local_delayprops != NULL) { ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0); nvlist_free(local_delayprops); } *read_bytes = off - input_fp->f_offset; if (VOP_SEEK(input_fp->f_vnode, input_fp->f_offset, &off, NULL) == 0) input_fp->f_offset = off; #ifdef DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error != 0 && recvprops != NULL && !drc.drc_newfs) { if (clear_received_props(tofs, recvprops, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ *errflags |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(tofs); } if (origrecvd == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explicitly if we're restoring local properties cleared in the * first new-style receive. */ if (origrecvd != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origrecvd, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ *errflags |= ZPROP_ERR_NORESTORE; } } if (error != 0 && localprops != NULL && !drc.drc_newfs && !first_recvd_props) { nvlist_t *setprops; nvlist_t *inheritprops; nvpair_t *nvp; if (origprops == NULL) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; goto out; } /* Restore original props */ setprops = fnvlist_alloc(); inheritprops = fnvlist_alloc(); nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { const char *name = nvpair_name(nvp); const char *source; nvlist_t *attrs; if (!nvlist_exists(origprops, name)) { /* * Property was not present or was explicitly * inherited before the receive, restore this. */ fnvlist_add_boolean(inheritprops, name); continue; } attrs = fnvlist_lookup_nvlist(origprops, name); source = fnvlist_lookup_string(attrs, ZPROP_SOURCE); /* Skip received properties */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) continue; if (strcmp(source, tofs) == 0) { /* Property was locally set */ fnvlist_add_nvlist(setprops, name, attrs); } else { /* Property was implicitly inherited */ fnvlist_add_boolean(inheritprops, name); } } if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; nvlist_free(setprops); nvlist_free(inheritprops); } out: releasef(input_fd); nvlist_free(origrecvd); nvlist_free(origprops); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of containing filesystem (unused) * zc_nvlist_src{_size} nvlist of properties to apply * zc_nvlist_conf{_size} nvlist of properties to exclude * (DATA_TYPE_BOOLEAN) and override (everything else) * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * zc_cleanup_fd cleanup-on-exit file descriptor * zc_action_handle handle for this guid/ds mapping (or zero on first call) * * outputs: * zc_cookie number of bytes read * zc_obj zprop_errflags_t * zc_action_handle handle for this guid/ds mapping * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_recv(zfs_cmd_t *zc) { dmu_replay_record_t begin_record; nvlist_t *errors = NULL; nvlist_t *recvdprops = NULL; nvlist_t *localprops = NULL; char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; int error = 0; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); (void) strlcpy(tofs, zc->zc_value, sizeof (tofs)); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &recvdprops)) != 0) return (error); if (zc->zc_nvlist_conf != 0 && (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &localprops)) != 0) return (error); if (zc->zc_string[0]) origin = zc->zc_string; begin_record.drr_type = DRR_BEGIN; begin_record.drr_payloadlen = 0; begin_record.drr_u.drr_begin = zc->zc_begin_record; error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops, NULL, zc->zc_guid, B_FALSE, zc->zc_cookie, &begin_record, zc->zc_cleanup_fd, &zc->zc_cookie, &zc->zc_obj, &zc->zc_action_handle, &errors); nvlist_free(recvdprops); nvlist_free(localprops); /* * Now that all props, initial and delayed, are set, report the prop * errors to the caller. */ if (zc->zc_nvlist_dst_size != 0 && errors != NULL && (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || put_nvlist(zc, errors) != 0)) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ error = SET_ERROR(EINVAL); } nvlist_free(errors); return (error); } /* * innvl: { * "snapname" -> full name of the snapshot to create * (optional) "props" -> received properties to set (nvlist) * (optional) "localprops" -> override and exclude properties (nvlist) * (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE) * "begin_record" -> non-byteswapped dmu_replay_record_t * "input_fd" -> file descriptor to read stream from (int32) * (optional) "force" -> force flag (value ignored) * (optional) "resumable" -> resumable flag (value ignored) * (optional) "cleanup_fd" -> cleanup-on-exit file descriptor * (optional) "action_handle" -> handle for this guid/ds mapping * (optional) "hidden_args" -> { "wkeydata" -> value } * } * * outnvl: { * "read_bytes" -> number of bytes read * "error_flags" -> zprop_errflags_t * "action_handle" -> handle for this guid/ds mapping * "errors" -> error for each unapplied received property (nvlist) * } */ static const zfs_ioc_key_t zfs_keys_recv_new[] = { {"snapname", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"origin", DATA_TYPE_STRING, ZK_OPTIONAL}, {"begin_record", DATA_TYPE_BYTE_ARRAY, 0}, {"input_fd", DATA_TYPE_INT32, 0}, {"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, {"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { dmu_replay_record_t *begin_record; uint_t begin_record_size; nvlist_t *errors = NULL; nvlist_t *recvprops = NULL; nvlist_t *localprops = NULL; nvlist_t *hidden_args = NULL; char *snapname; char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; boolean_t force; boolean_t resumable; uint64_t action_handle = 0; uint64_t read_bytes = 0; uint64_t errflags = 0; int input_fd = -1; int cleanup_fd = -1; int error; snapname = fnvlist_lookup_string(innvl, "snapname"); if (dataset_namecheck(snapname, NULL, NULL) != 0 || strchr(snapname, '@') == NULL || strchr(snapname, '%')) return (SET_ERROR(EINVAL)); (void) strcpy(tofs, snapname); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; error = nvlist_lookup_string(innvl, "origin", &origin); if (error && error != ENOENT) return (error); error = nvlist_lookup_byte_array(innvl, "begin_record", (uchar_t **)&begin_record, &begin_record_size); if (error != 0 || begin_record_size != sizeof (*begin_record)) return (SET_ERROR(EINVAL)); input_fd = fnvlist_lookup_int32(innvl, "input_fd"); force = nvlist_exists(innvl, "force"); resumable = nvlist_exists(innvl, "resumable"); error = nvlist_lookup_int32(innvl, "cleanup_fd", &cleanup_fd); if (error && error != ENOENT) return (error); error = nvlist_lookup_uint64(innvl, "action_handle", &action_handle); if (error && error != ENOENT) return (error); /* we still use "props" here for backwards compatibility */ error = nvlist_lookup_nvlist(innvl, "props", &recvprops); if (error && error != ENOENT) return (error); error = nvlist_lookup_nvlist(innvl, "localprops", &localprops); if (error && error != ENOENT) return (error); error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); if (error && error != ENOENT) return (error); error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops, hidden_args, force, resumable, input_fd, begin_record, cleanup_fd, &read_bytes, &errflags, &action_handle, &errors); fnvlist_add_uint64(outnvl, "read_bytes", read_bytes); fnvlist_add_uint64(outnvl, "error_flags", errflags); fnvlist_add_uint64(outnvl, "action_handle", action_handle); fnvlist_add_nvlist(outnvl, "errors", errors); nvlist_free(errors); nvlist_free(recvprops); nvlist_free(localprops); return (error); } /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * zc_guid if set, estimate size of stream only. zc_cookie is ignored. * output size in zc_objset_type. * zc_flags lzc_send_flags * * outputs: * zc_objset_type estimated size, if zc_guid is set * * NOTE: This is no longer the preferred interface, any new functionality * should be added to zfs_ioc_send_new() instead. */ static int zfs_ioc_send(zfs_cmd_t *zc) { int error; offset_t off; boolean_t estimate = (zc->zc_guid != 0); boolean_t embedok = (zc->zc_flags & 0x1); boolean_t large_block_ok = (zc->zc_flags & 0x2); boolean_t compressok = (zc->zc_flags & 0x4); boolean_t rawok = (zc->zc_flags & 0x8); if (zc->zc_obj != 0) { dsl_pool_t *dp; dsl_dataset_t *tosnap; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (dsl_dir_is_clone(tosnap->ds_dir)) zc->zc_fromobj = dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } if (estimate) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (zc->zc_fromobj != 0) { error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate(tosnap, fromsnap, compressok || rawok, &zc->zc_objset_type); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } else { file_t *fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, zc->zc_fromobj, embedok, large_block_ok, compressok, rawok, zc->zc_cookie, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); } return (error); } /* * inputs: * zc_name name of snapshot on which to report progress * zc_cookie file descriptor of send stream * * outputs: * zc_cookie number of bytes written in send stream thus far */ static int zfs_ioc_send_progress(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds; dmu_sendarg_t *dsp = NULL; int error; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } mutex_enter(&ds->ds_sendstream_lock); /* * Iterate over all the send streams currently active on this dataset. * If there's one which matches the specified file descriptor _and_ the * stream was started by the current process, return the progress of * that stream. */ for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; dsp = list_next(&ds->ds_sendstreams, dsp)) { if (dsp->dsa_outfd == zc->zc_cookie && dsp->dsa_proc->group_leader == curproc->group_leader) break; } if (dsp != NULL) zc->zc_cookie = *(dsp->dsa_off); else error = SET_ERROR(ENOENT); mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EIO)); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == 0) return (SET_ERROR(EINVAL)); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error != 0) return (error); /* * If multihost is enabled, resuming I/O is unsafe as another * host may have imported the pool. */ if (spa_multihost(spa) && spa_suspended(spa)) return (SET_ERROR(EINVAL)); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { (void) spa_vdev_state_exit(spa, NULL, ENODEV); spa_close(spa, FTAG); return (SET_ERROR(ENODEV)); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, spa_suspended(spa) ? NULL : spa->spa_root_vdev, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = SET_ERROR(EIO); spa_close(spa, FTAG); return (error); } /* * Reopen all the vdevs associated with the pool. * * innvl: { * "scrub_restart" -> when true and scrub is running, allow to restart * scrub as the side effect of the reopen (boolean). * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_reopen[] = { {"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, 0}, }; /* ARGSUSED */ static int zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; boolean_t scrub_restart = B_TRUE; if (innvl) { scrub_restart = fnvlist_lookup_boolean_value(innvl, "scrub_restart"); } error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); /* * If the scrub_restart flag is B_FALSE and a scrub is already * in progress then set spa_scrub_reopen flag to B_TRUE so that * we don't restart the scrub as a side effect of the reopen. * Otherwise, let vdev_open() decided if a resilver is required. */ spa->spa_scrub_reopen = (!scrub_restart && dsl_scan_scrubbing(spa->spa_dsl_pool)); vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (0); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds, *ods; char origin[ZFS_MAX_DATASET_NAME_LEN]; char *cp; int error; zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || strchr(zc->zc_name, '%')) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_dataset_hold_obj(dp, dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); if (error != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ods, origin); dsl_dataset_rele(ods, FTAG); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(origin, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(origin, zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group|project}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (SET_ERROR(ENOMEM)); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); void *buf = vmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } vmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { objset_t *os; int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ dsl_dataset_t *ds, *newds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { dmu_objset_refresh_ownership(ds, &newds, B_TRUE, zfsvfs); error = zfs_resume_fs(zfsvfs, newds); } } if (error == 0) error = dmu_objset_userspace_upgrade(zfsvfs->z_os); deactivate_super(zfsvfs->z_sb); } else { /* XXX kind of reading contents without owning */ error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); error = dmu_objset_userspace_upgrade(os); dmu_objset_rele_flags(os, B_TRUE, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); if (dmu_objset_userobjspace_upgradable(os) || dmu_objset_projectquota_upgradable(os)) { mutex_enter(&os->os_upgrade_lock); if (os->os_upgrade_id == 0) { /* clear potential error code and retry */ os->os_upgrade_status = 0; mutex_exit(&os->os_upgrade_lock); dmu_objset_id_quota_upgrade(os); } else { mutex_exit(&os->os_upgrade_lock); } dsl_pool_rele(dmu_objset_pool(os), FTAG); taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); error = os->os_upgrade_status; } else { dsl_pool_rele(dmu_objset_pool(os), FTAG); } dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); return (error); } static int zfs_ioc_share(zfs_cmd_t *zc) { return (SET_ERROR(ENOSYS)); } ace_t full_access[] = { {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} }; /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: * zc_value short name of new snapshot */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; char *hold_name; int error; minor_t minor; error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (error != 0) return (error); snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); hold_name = kmem_asprintf("%%%s", zc->zc_value); error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, hold_name); if (error == 0) (void) strlcpy(zc->zc_value, snap_name, sizeof (zc->zc_value)); strfree(snap_name); strfree(hold_name); zfs_onexit_fd_rele(zc->zc_cleanup_fd); return (error); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { file_t *fp; offset_t off; int error; fp = getf(zc->zc_cookie); if (fp == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { return (SET_ERROR(ENOTSUP)); } /* * innvl: { * "holds" -> { snapname -> holdname (string), ... } * (optional) "cleanup_fd" -> fd (int32) * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_hold[] = { {"holds", DATA_TYPE_NVLIST, 0}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) { nvpair_t *pair; nvlist_t *holds; int cleanup_fd = -1; int error; minor_t minor = 0; holds = fnvlist_lookup_nvlist(args, "holds"); /* make sure the user didn't pass us any invalid (empty) tags */ for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char *htag; error = nvpair_value_string(pair, &htag); if (error != 0) return (SET_ERROR(error)); if (strlen(htag) == 0) return (SET_ERROR(EINVAL)); } if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { error = zfs_onexit_fd_hold(cleanup_fd, &minor); if (error != 0) return (error); } error = dsl_dataset_user_hold(holds, minor, errlist); if (minor != 0) zfs_onexit_fd_rele(cleanup_fd); return (error); } /* * innvl is not used. * * outnvl: { * holdname -> time added (uint64 seconds since epoch) * ... * } */ static const zfs_ioc_key_t zfs_keys_get_holds[] = { /* no nvl keys */ }; /* ARGSUSED */ static int zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) { return (dsl_dataset_get_holds(snapname, outnvl)); } /* * innvl: { * snapname -> { holdname, ... } * ... * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_release[] = { {"...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST}, }; /* ARGSUSED */ static int zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) { return (dsl_dataset_user_release(holds, errlist)); } /* * inputs: * zc_guid flags (ZEVENT_NONBLOCK) * zc_cleanup_fd zevent file descriptor * * outputs: * zc_nvlist_dst next nvlist event * zc_cookie dropped events since last get */ static int zfs_ioc_events_next(zfs_cmd_t *zc) { zfs_zevent_t *ze; nvlist_t *event = NULL; minor_t minor; uint64_t dropped = 0; int error; error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (error != 0) return (error); do { error = zfs_zevent_next(ze, &event, &zc->zc_nvlist_dst_size, &dropped); if (event != NULL) { zc->zc_cookie = dropped; error = put_nvlist(zc, event); nvlist_free(event); } if (zc->zc_guid & ZEVENT_NONBLOCK) break; if ((error == 0) || (error != ENOENT)) break; error = zfs_zevent_wait(ze); if (error != 0) break; } while (1); zfs_zevent_fd_rele(zc->zc_cleanup_fd); return (error); } /* * outputs: * zc_cookie cleared events count */ static int zfs_ioc_events_clear(zfs_cmd_t *zc) { int count; zfs_zevent_drain_all(&count); zc->zc_cookie = count; return (0); } /* * inputs: * zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END * zc_cleanup zevent file descriptor */ static int zfs_ioc_events_seek(zfs_cmd_t *zc) { zfs_zevent_t *ze; minor_t minor; int error; error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (error != 0) return (error); error = zfs_zevent_seek(ze, zc->zc_guid); zfs_zevent_fd_rele(zc->zc_cleanup_fd); return (error); } /* * inputs: * zc_name name of new filesystem or snapshot * zc_value full name of old snapshot * * outputs: * zc_cookie space in bytes * zc_objset_type compressed space in bytes * zc_perm_action uncompressed space in bytes */ static int zfs_ioc_space_written(zfs_cmd_t *zc) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_written(old, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * innvl: { * "firstsnap" -> snapshot name * } * * outnvl: { * "used" -> space in bytes * "compressed" -> compressed space in bytes * "uncompressed" -> uncompressed space in bytes * } */ static const zfs_ioc_key_t zfs_keys_space_snaps[] = { {"firstsnap", DATA_TYPE_STRING, 0}, }; static int zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; char *firstsnap; uint64_t used, comp, uncomp; firstsnap = fnvlist_lookup_string(innvl, "firstsnap"); error = dsl_pool_hold(lastsnap, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); if (error == 0 && !new->ds_is_snapshot) { dsl_dataset_rele(new, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); if (error == 0 && !old->ds_is_snapshot) { dsl_dataset_rele(old, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); fnvlist_add_uint64(outnvl, "used", used); fnvlist_add_uint64(outnvl, "compressed", comp); fnvlist_add_uint64(outnvl, "uncompressed", uncomp); return (error); } /* * innvl: { * "fd" -> file descriptor to write stream to (int32) * (optional) "fromsnap" -> full snap name to send an incremental from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_send_new[] = { {"fd", DATA_TYPE_INT32, 0}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { int error; offset_t off; char *fromname = NULL; int fd; file_t *fp; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; boolean_t rawok; uint64_t resumeobj = 0; uint64_t resumeoff = 0; fd = fnvlist_lookup_int32(innvl, "fd"); (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); if ((fp = getf(fd)) == NULL) return (SET_ERROR(EBADF)); off = fp->f_offset; error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, rawok, fd, resumeobj, resumeoff, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(fd); return (error); } /* * Determine approximately how large a zfs send stream will be -- the number * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). * * innvl: { * (optional) "from" -> full snap or bookmark name to send an incremental * from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * } * * outnvl: { * "space" -> bytes of space (uint64) * } */ static const zfs_ioc_key_t zfs_keys_send_space[] = { {"from", DATA_TYPE_STRING, ZK_OPTIONAL}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; static int zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { dsl_pool_t *dp; dsl_dataset_t *tosnap; int error; char *fromname; boolean_t compressok; boolean_t rawok; uint64_t space; error = dsl_pool_hold(snapname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); error = nvlist_lookup_string(innvl, "from", &fromname); if (error == 0) { if (strchr(fromname, '@') != NULL) { /* * If from is a snapshot, hold it and use the more * efficient dmu_send_estimate to estimate send space * size using deadlists. */ dsl_dataset_t *fromsnap; error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); if (error != 0) goto out; error = dmu_send_estimate(tosnap, fromsnap, compressok || rawok, &space); dsl_dataset_rele(fromsnap, FTAG); } else if (strchr(fromname, '#') != NULL) { /* * If from is a bookmark, fetch the creation TXG of the * snapshot it was created from and use that to find * blocks that were born after it. */ zfs_bookmark_phys_t frombm; error = dsl_bookmark_lookup(dp, fromname, tosnap, &frombm); if (error != 0) goto out; error = dmu_send_estimate_from_txg(tosnap, frombm.zbm_creation_txg, compressok || rawok, &space); } else { /* * from is not properly formatted as a snapshot or * bookmark */ error = SET_ERROR(EINVAL); goto out; } } else { /* * If estimating the size of a full send, use dmu_send_estimate. */ error = dmu_send_estimate(tosnap, NULL, compressok || rawok, &space); } fnvlist_add_uint64(outnvl, "space", space); out: dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Sync the currently open TXG to disk for the specified pool. * This is somewhat similar to 'zfs_sync()'. * For cases that do not result in error this ioctl will wait for * the currently open TXG to commit before returning back to the caller. * * innvl: { * "force" -> when true, force uberblock update even if there is no dirty data. * In addition this will cause the vdev configuration to be written * out including updating the zpool cache file. (boolean_t) * } * * onvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_sync[] = { {"force", DATA_TYPE_BOOLEAN_VALUE, 0}, }; /* ARGSUSED */ static int zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl) { int err; boolean_t force = B_FALSE; spa_t *spa; if ((err = spa_open(pool, &spa, FTAG)) != 0) return (err); if (innvl) force = fnvlist_lookup_boolean_value(innvl, "force"); if (force) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER); vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } txg_wait_synced(spa_get_dsl(spa), 0); spa_close(spa, FTAG); return (err); } /* * Load a user's wrapping key into the kernel. * innvl: { * "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * (optional) "noop" -> (value ignored) * presence indicated key should only be verified, not loaded * } */ static const zfs_ioc_key_t zfs_keys_load_key[] = { {"hidden_args", DATA_TYPE_NVLIST, 0}, {"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { int ret; dsl_crypto_params_t *dcp = NULL; nvlist_t *hidden_args; boolean_t noop = nvlist_exists(innvl, "noop"); if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = SET_ERROR(EINVAL); goto error; } hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS); ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_load_wkey(dsname, dcp, noop); if (ret != 0) goto error; dsl_crypto_params_free(dcp, noop); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } /* * Unload a user's wrapping key from the kernel. * Both innvl and outnvl are unused. */ static const zfs_ioc_key_t zfs_keys_unload_key[] = { /* no nvl keys */ }; /* ARGSUSED */ static int zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { int ret = 0; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto out; } ret = spa_keystore_unload_wkey(dsname); if (ret != 0) goto out; out: return (ret); } /* * Changes a user's wrapping key used to decrypt a dataset. The keyformat, * keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified * here to change how the key is derived in userspace. * * innvl: { * "hidden_args" (optional) -> { "wkeydata" -> value } * raw uint8_t array of new encryption wrapping key data (32 bytes) * "props" (optional) -> { prop -> value } * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_change_key[] = { {"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; /* ARGSUSED */ static int zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { int ret; uint64_t cmd = DCP_CMD_NONE; dsl_crypto_params_t *dcp = NULL; nvlist_t *args = NULL, *hidden_args = NULL; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto error; } (void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd); (void) nvlist_lookup_nvlist(innvl, "props", &args); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_change_key(dsname, dcp); if (ret != 0) goto error; dsl_crypto_params_free(dcp, B_FALSE); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; static void zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); vec->zvec_legacy_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_allow_log = log_history; vec->zvec_pool_check = pool_check; } /* * See the block comment at the beginning of this file for details on * each argument to this function. */ static void zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); /* if we are logging, the name must be valid */ ASSERT(!allow_log || namecheck != NO_NAME); vec->zvec_name = name; vec->zvec_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_pool_check = pool_check; vec->zvec_smush_outnvlist = smush_outnvlist; vec->zvec_allow_log = allow_log; vec->zvec_nvl_keys = nvl_keys; vec->zvec_nvl_key_count = num_keys; } static void zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, POOL_NAME, log_history, pool_check); } static void zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, pool_check); } static void zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, NO_NAME, B_FALSE, POOL_CHECK_NONE); } static void zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); } static void zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_dataset_read_secpolicy(ioc, func, zfs_secpolicy_read); } static void zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_init(void) { zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot)); zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history)); zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps)); zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new)); zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space)); zfs_ioctl_register("create", ZFS_IOC_CREATE, zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_create, ARRAY_SIZE(zfs_keys_create)); zfs_ioctl_register("clone", ZFS_IOC_CLONE, zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone)); zfs_ioctl_register("remap", ZFS_IOC_REMAP, zfs_ioc_remap, zfs_secpolicy_remap, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap)); zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps)); zfs_ioctl_register("hold", ZFS_IOC_HOLD, zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold)); zfs_ioctl_register("release", ZFS_IOC_RELEASE, zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_release, ARRAY_SIZE(zfs_keys_release)); zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds)); zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback)); zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark)); zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks)); zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_bookmarks, ARRAY_SIZE(zfs_keys_destroy_bookmarks)); zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW, zfs_ioc_recv_new, zfs_secpolicy_recv_new, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new)); zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY, zfs_ioc_load_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key)); zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY, zfs_ioc_unload_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key)); zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY, zfs_ioc_change_key, zfs_secpolicy_change_key, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_change_key, ARRAY_SIZE(zfs_keys_change_key)); zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC, zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync)); zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen)); zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, zfs_ioc_channel_program, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_channel_program, ARRAY_SIZE(zfs_keys_channel_program)); zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint)); zfs_ioctl_register("zpool_discard_checkpoint", ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_discard_checkpoint, ARRAY_SIZE(zfs_keys_pool_discard_checkpoint)); zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize)); zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM, zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim)); /* IOCTLS that use the legacy function signature */ zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, zfs_ioc_pool_scan); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, zfs_ioc_pool_upgrade); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, zfs_ioc_vdev_add); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, zfs_ioc_vdev_remove); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, zfs_ioc_vdev_set_state); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, zfs_ioc_vdev_attach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, zfs_ioc_vdev_detach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, zfs_ioc_vdev_setpath); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, zfs_ioc_vdev_setfru); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, zfs_ioc_pool_set_props); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, zfs_ioc_vdev_split); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, zfs_ioc_pool_reguid); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, zfs_ioc_pool_configs, zfs_secpolicy_none); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, zfs_ioc_pool_tryimport, zfs_secpolicy_config); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, zfs_ioc_inject_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, zfs_ioc_clear_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, zfs_ioc_inject_list_next, zfs_secpolicy_inject); /* * pool destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_export * does the logging of those commands. */ zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, zfs_ioc_pool_get_history, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, zfs_ioc_space_written); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, zfs_ioc_objset_recvd_props); zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, zfs_ioc_next_obj); zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, zfs_ioc_get_fsacl); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, zfs_ioc_objset_stats); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, zfs_ioc_objset_zplprops); zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, zfs_ioc_dataset_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, zfs_ioc_snapshot_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, zfs_ioc_send_progress); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, zfs_ioc_diff, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, zfs_ioc_obj_to_stats, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, zfs_ioc_obj_to_path, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, zfs_ioc_send, zfs_secpolicy_send); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, zfs_secpolicy_none); zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, zfs_secpolicy_destroy); zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, zfs_secpolicy_rename); zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, zfs_secpolicy_recv); zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, zfs_secpolicy_promote); zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, zfs_secpolicy_set_fsacl); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, zfs_secpolicy_share, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); /* * ZoL functions */ zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); } /* * Verify that for non-legacy ioctls the input nvlist * pairs match against the expected input. * * Possible errors are: * ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered * ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing * ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair */ static int zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec) { const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys; boolean_t required_keys_found = B_FALSE; /* * examine each input pair */ for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = nvpair_name(pair); data_type_t type = nvpair_type(pair); boolean_t identified = B_FALSE; /* * check pair against the documented names and type */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { /* if not a wild card name, check for an exact match */ if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 && strcmp(nvl_keys[k].zkey_name, name) != 0) continue; identified = B_TRUE; if (nvl_keys[k].zkey_type != DATA_TYPE_ANY && nvl_keys[k].zkey_type != type) { return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE)); } if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; required_keys_found = B_TRUE; break; } /* allow an 'optional' key, everything else is invalid */ if (!identified && (strcmp(name, "optional") != 0 || type != DATA_TYPE_NVLIST)) { return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL)); } } /* verify that all required keys were found */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) { /* at least one non-optionial key is expected here */ if (!required_keys_found) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); continue; } if (!nvlist_exists(innvl, nvl_keys[k].zkey_name)) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); } return (0); } int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = SET_ERROR(EAGAIN); else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = SET_ERROR(EROFS); spa_close(spa, FTAG); } return (error); } static void * zfsdev_get_state_impl(minor_t minor, enum zfsdev_state_type which) { zfsdev_state_t *zs; for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == minor) { smp_rmb(); switch (which) { case ZST_ONEXIT: return (zs->zs_onexit); case ZST_ZEVENT: return (zs->zs_zevent); case ZST_ALL: return (zs); } } } return (NULL); } void * zfsdev_get_state(minor_t minor, enum zfsdev_state_type which) { void *ptr; ptr = zfsdev_get_state_impl(minor, which); return (ptr); } int zfsdev_getminor(struct file *filp, minor_t *minorp) { zfsdev_state_t *zs, *fpd; ASSERT(filp != NULL); ASSERT(!MUTEX_HELD(&zfsdev_state_lock)); fpd = filp->private_data; if (fpd == NULL) return (SET_ERROR(EBADF)); mutex_enter(&zfsdev_state_lock); for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) continue; if (fpd == zs) { *minorp = fpd->zs_minor; mutex_exit(&zfsdev_state_lock); return (0); } } mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EBADF)); } /* * Find a free minor number. The zfsdev_state_list is expected to * be short since it is only a list of currently open file handles. */ minor_t zfsdev_minor_alloc(void) { static minor_t last_minor = 0; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (zfsdev_get_state_impl(m, ZST_ALL) == NULL) { last_minor = m; return (m); } } return (0); } static int zfsdev_state_init(struct file *filp) { zfsdev_state_t *zs, *zsprev = NULL; minor_t minor; boolean_t newzs = B_FALSE; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); minor = zfsdev_minor_alloc(); if (minor == 0) return (SET_ERROR(ENXIO)); for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) break; zsprev = zs; } if (!zs) { zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); newzs = B_TRUE; } zs->zs_file = filp; filp->private_data = zs; zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit); zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent); /* * In order to provide for lock-free concurrent read access * to the minor list in zfsdev_get_state_impl(), new entries * must be completely written before linking them into the * list whereas existing entries are already linked; the last * operation must be updating zs_minor (from -1 to the new * value). */ if (newzs) { zs->zs_minor = minor; smp_wmb(); zsprev->zs_next = zs; } else { smp_wmb(); zs->zs_minor = minor; } return (0); } static int zfsdev_state_destroy(struct file *filp) { zfsdev_state_t *zs; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(filp->private_data != NULL); zs = filp->private_data; zs->zs_minor = -1; zfs_onexit_destroy(zs->zs_onexit); zfs_zevent_destroy(zs->zs_zevent); return (0); } static int zfsdev_open(struct inode *ino, struct file *filp) { int error; mutex_enter(&zfsdev_state_lock); error = zfsdev_state_init(filp); mutex_exit(&zfsdev_state_lock); return (-error); } static int zfsdev_release(struct inode *ino, struct file *filp) { int error; mutex_enter(&zfsdev_state_lock); error = zfsdev_state_destroy(filp); mutex_exit(&zfsdev_state_lock); return (-error); } static long zfsdev_ioctl(struct file *filp, unsigned cmd, unsigned long arg) { zfs_cmd_t *zc; uint_t vecnum; int error, rc, flag = 0; const zfs_ioc_vec_t *vec; char *saved_poolname = NULL; nvlist_t *innvl = NULL; fstrans_cookie_t cookie; vecnum = cmd - ZFS_IOC_FIRST; if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (-SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); vec = &zfs_ioc_vec[vecnum]; /* * The registered ioctl list may be sparse, verify that either * a normal or legacy handler are registered. */ if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL) return (-SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); if (error != 0) { error = SET_ERROR(EFAULT); goto out; } zc->zc_iflags = flag & FKIOCTL; if (zc->zc_nvlist_src_size > MAX_NVLIST_SRC_SIZE) { /* * Make sure the user doesn't pass in an insane value for * zc_nvlist_src_size. We have to check, since we will end * up allocating that much memory inside of get_nvlist(). This * prevents a nefarious user from allocating tons of kernel * memory. * * Also, we return EINVAL instead of ENOMEM here. The reason * being that returning ENOMEM from an ioctl() has a special * connotation; that the user's size value is too small and * needs to be expanded to hold the nvlist. See * zcmd_expand_dst_nvlist() for details. */ error = SET_ERROR(EINVAL); /* User's size too big */ } else if (zc->zc_nvlist_src_size != 0) { error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &innvl); if (error != 0) goto out; } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (vec->zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case NO_NAME: break; } /* * Ensure that all input pairs are valid before we pass them down * to the lower layers. * * The vectored functions can use fnvlist_lookup_{type} for any * required pairs since zfs_check_input_nvpairs() confirmed that * they exist and are of the correct type. */ if (error == 0 && vec->zvec_func != NULL) { error = zfs_check_input_nvpairs(innvl, vec); if (error != 0) goto out; } if (error == 0) { cookie = spl_fstrans_mark(); error = vec->zvec_secpolicy(zc, innvl, CRED()); spl_fstrans_unmark(cookie); } if (error != 0) goto out; /* legacy ioctls can modify zc_name */ saved_poolname = strdup(zc->zc_name); if (saved_poolname == NULL) { error = SET_ERROR(ENOMEM); goto out; } else { saved_poolname[strcspn(saved_poolname, "/@#")] = '\0'; } if (vec->zvec_func != NULL) { nvlist_t *outnvl; int puterror = 0; spa_t *spa; nvlist_t *lognv = NULL; ASSERT(vec->zvec_legacy_func == NULL); /* * Add the innvl to the lognv before calling the func, * in case the func changes the innvl. */ if (vec->zvec_allow_log) { lognv = fnvlist_alloc(); fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, vec->zvec_name); if (!nvlist_empty(innvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, innvl); } } outnvl = fnvlist_alloc(); cookie = spl_fstrans_mark(); error = vec->zvec_func(zc->zc_name, innvl, outnvl); spl_fstrans_unmark(cookie); /* * Some commands can partially execute, modify state, and still * return an error. In these cases, attempt to record what * was modified. */ if ((error == 0 || (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && vec->zvec_allow_log && spa_open(zc->zc_name, &spa, FTAG) == 0) { if (!nvlist_empty(outnvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL, outnvl); } if (error != 0) { fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, error); } (void) spa_history_log_nvl(spa, lognv); spa_close(spa, FTAG); } fnvlist_free(lognv); if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { int smusherror = 0; if (vec->zvec_smush_outnvlist) { smusherror = nvlist_smush(outnvl, zc->zc_nvlist_dst_size); } if (smusherror == 0) puterror = put_nvlist(zc, outnvl); } if (puterror != 0) error = puterror; nvlist_free(outnvl); } else { cookie = spl_fstrans_mark(); error = vec->zvec_legacy_func(zc); spl_fstrans_unmark(cookie); } out: nvlist_free(innvl); rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag); if (error == 0 && rc != 0) error = SET_ERROR(EFAULT); if (error == 0 && vec->zvec_allow_log) { char *s = tsd_get(zfs_allow_log_key); if (s != NULL) strfree(s); (void) tsd_set(zfs_allow_log_key, saved_poolname); } else { if (saved_poolname != NULL) strfree(saved_poolname); } kmem_free(zc, sizeof (zfs_cmd_t)); return (-error); } #ifdef CONFIG_COMPAT static long zfsdev_compat_ioctl(struct file *filp, unsigned cmd, unsigned long arg) { return (zfsdev_ioctl(filp, cmd, arg)); } #else #define zfsdev_compat_ioctl NULL #endif static const struct file_operations zfsdev_fops = { .open = zfsdev_open, .release = zfsdev_release, .unlocked_ioctl = zfsdev_ioctl, .compat_ioctl = zfsdev_compat_ioctl, .owner = THIS_MODULE, }; static struct miscdevice zfs_misc = { .minor = ZFS_DEVICE_MINOR, .name = ZFS_DRIVER, .fops = &zfsdev_fops, }; MODULE_ALIAS_MISCDEV(ZFS_DEVICE_MINOR); MODULE_ALIAS("devname:zfs"); static int zfs_attach(void) { int error; mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); zfsdev_state_list = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); zfsdev_state_list->zs_minor = -1; error = misc_register(&zfs_misc); if (error == -EBUSY) { /* * Fallback to dynamic minor allocation in the event of a * collision with a reserved minor in linux/miscdevice.h. * In this case the kernel modules must be manually loaded. */ printk(KERN_INFO "ZFS: misc_register() with static minor %d " "failed %d, retrying with MISC_DYNAMIC_MINOR\n", ZFS_DEVICE_MINOR, error); zfs_misc.minor = MISC_DYNAMIC_MINOR; error = misc_register(&zfs_misc); } if (error) printk(KERN_INFO "ZFS: misc_register() failed %d\n", error); return (error); } static void zfs_detach(void) { zfsdev_state_t *zs, *zsprev = NULL; misc_deregister(&zfs_misc); mutex_destroy(&zfsdev_state_lock); for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) { if (zsprev) kmem_free(zsprev, sizeof (zfsdev_state_t)); zsprev = zs; } if (zsprev) kmem_free(zsprev, sizeof (zfsdev_state_t)); } static void zfs_allow_log_destroy(void *arg) { char *poolname = arg; if (poolname != NULL) strfree(poolname); } #ifdef DEBUG #define ZFS_DEBUG_STR " (DEBUG mode)" #else #define ZFS_DEBUG_STR "" #endif static int __init _init(void) { int error; - error = -vn_set_pwd("/"); - if (error) { - printk(KERN_NOTICE - "ZFS: Warning unable to set pwd to '/': %d\n", error); - return (error); - } - if ((error = -zvol_init()) != 0) return (error); spa_init(FREAD | FWRITE); zfs_init(); zfs_ioctl_init(); zfs_sysfs_init(); if ((error = zfs_attach()) != 0) goto out; tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); printk(KERN_NOTICE "ZFS: Loaded module v%s-%s%s, " "ZFS pool version %s, ZFS filesystem version %s\n", ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR, SPA_VERSION_STRING, ZPL_VERSION_STRING); #ifndef CONFIG_FS_POSIX_ACL printk(KERN_NOTICE "ZFS: Posix ACLs disabled by kernel\n"); #endif /* CONFIG_FS_POSIX_ACL */ return (0); out: zfs_sysfs_fini(); zfs_fini(); spa_fini(); (void) zvol_fini(); printk(KERN_NOTICE "ZFS: Failed to Load ZFS Filesystem v%s-%s%s" ", rc = %d\n", ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR, error); return (error); } static void __exit _fini(void) { zfs_detach(); zfs_sysfs_fini(); zfs_fini(); spa_fini(); zvol_fini(); tsd_destroy(&zfs_fsyncer_key); tsd_destroy(&rrw_tsd_key); tsd_destroy(&zfs_allow_log_key); printk(KERN_NOTICE "ZFS: Unloaded module v%s-%s%s\n", ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR); } #if defined(_KERNEL) module_init(_init); module_exit(_fini); MODULE_DESCRIPTION("ZFS"); MODULE_AUTHOR(ZFS_META_AUTHOR); MODULE_LICENSE(ZFS_META_LICENSE); MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); #endif