diff --git a/sys/netinet/in_pcb.c b/sys/netinet/in_pcb.c index 3b8931a90262..c6c5ca4d2281 100644 --- a/sys/netinet/in_pcb.c +++ b/sys/netinet/in_pcb.c @@ -1,3282 +1,3355 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * Copyright (c) 2021-2022 Gleb Smirnoff * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include +#include #include #include +#include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #ifdef INET #include #include #endif #include #ifdef INET6 #include #include #include #include #endif /* INET6 */ #include #endif #include #include #define INPCBLBGROUP_SIZMIN 8 #define INPCBLBGROUP_SIZMAX 256 #define INP_FREED 0x00000200 /* See in_pcb.h. */ /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Enable random ephemeral port allocation by default. */ VNET_DEFINE(int, ipport_randomized) = 1; #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, uint8_t numa_domain); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); #ifdef RATELIMIT counter_u64_t rate_limit_new; counter_u64_t rate_limit_chg; counter_u64_t rate_limit_active; counter_u64_t rate_limit_alloc_fail; counter_u64_t rate_limit_set_ok; static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IP Rate Limiting"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, &rate_limit_active, "Active rate limited connections"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, &rate_limit_alloc_fail, "Rate limited connection failures"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, &rate_limit_set_ok, "Rate limited setting succeeded"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, &rate_limit_new, "Total Rate limit new attempts"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, &rate_limit_chg, "Total Rate limited change attempts"); #endif /* RATELIMIT */ #endif /* INET */ VNET_DEFINE(uint32_t, in_pcbhashseed); static void in_pcbhashseed_init(void) { V_in_pcbhashseed = arc4random(); } VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, in_pcbhashseed_init, 0); static void in_pcbremhash(struct inpcb *); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ static struct inpcblbgroup * in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, uint8_t numa_domain) { struct inpcblbgroup *grp; size_t bytes; bytes = __offsetof(struct inpcblbgroup, il_inp[size]); grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); if (grp == NULL) return (NULL); grp->il_cred = crhold(cred); grp->il_vflag = vflag; grp->il_lport = port; grp->il_numa_domain = numa_domain; grp->il_dependladdr = *addr; grp->il_inpsiz = size; CK_LIST_INSERT_HEAD(hdr, grp, il_list); return (grp); } static void in_pcblbgroup_free_deferred(epoch_context_t ctx) { struct inpcblbgroup *grp; grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); crfree(grp->il_cred); free(grp, M_PCB); } static void in_pcblbgroup_free(struct inpcblbgroup *grp) { CK_LIST_REMOVE(grp, il_list); NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); } static struct inpcblbgroup * in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, struct inpcblbgroup *old_grp, int size) { struct inpcblbgroup *grp; int i; grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, old_grp->il_lport, &old_grp->il_dependladdr, size, old_grp->il_numa_domain); if (grp == NULL) return (NULL); KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, ("invalid new local group size %d and old local group count %d", grp->il_inpsiz, old_grp->il_inpcnt)); for (i = 0; i < old_grp->il_inpcnt; ++i) grp->il_inp[i] = old_grp->il_inp[i]; grp->il_inpcnt = old_grp->il_inpcnt; in_pcblbgroup_free(old_grp); return (grp); } /* * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] * and shrink group if possible. */ static void in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, int i) { struct inpcblbgroup *grp, *new_grp; grp = *grpp; for (; i + 1 < grp->il_inpcnt; ++i) grp->il_inp[i] = grp->il_inp[i + 1]; grp->il_inpcnt--; if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && grp->il_inpcnt <= grp->il_inpsiz / 4) { /* Shrink this group. */ new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); if (new_grp != NULL) *grpp = new_grp; } } /* * Add PCB to load balance group for SO_REUSEPORT_LB option. */ static int in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) { const static struct timeval interval = { 60, 0 }; static struct timeval lastprint; struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; uint32_t idx; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); #ifdef INET6 /* * Don't allow IPv4 mapped INET6 wild socket. */ if ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr == INADDR_ANY && INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { return (0); } #endif idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; CK_LIST_FOREACH(grp, hdr, il_list) { if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && grp->il_vflag == inp->inp_vflag && grp->il_lport == inp->inp_lport && grp->il_numa_domain == numa_domain && memcmp(&grp->il_dependladdr, &inp->inp_inc.inc_ie.ie_dependladdr, sizeof(grp->il_dependladdr)) == 0) { break; } } if (grp == NULL) { /* Create new load balance group. */ grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, INPCBLBGROUP_SIZMIN, numa_domain); if (grp == NULL) return (ENOBUFS); } else if (grp->il_inpcnt == grp->il_inpsiz) { if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { if (ratecheck(&lastprint, &interval)) printf("lb group port %d, limit reached\n", ntohs(grp->il_lport)); return (0); } /* Expand this local group. */ grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); if (grp == NULL) return (ENOBUFS); } KASSERT(grp->il_inpcnt < grp->il_inpsiz, ("invalid local group size %d and count %d", grp->il_inpsiz, grp->il_inpcnt)); grp->il_inp[grp->il_inpcnt] = inp; grp->il_inpcnt++; return (0); } /* * Remove PCB from load balance group. */ static void in_pcbremlbgrouphash(struct inpcb *inp) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int i; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_inpcnt == 1) { /* We are the last, free this local group. */ in_pcblbgroup_free(grp); } else { /* Pull up inpcbs, shrink group if possible. */ in_pcblbgroup_reorder(hdr, &grp, i); } return; } } } int in_pcblbgroup_numa(struct inpcb *inp, int arg) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int err, i; uint8_t numa_domain; switch (arg) { case TCP_REUSPORT_LB_NUMA_NODOM: numa_domain = M_NODOM; break; case TCP_REUSPORT_LB_NUMA_CURDOM: numa_domain = PCPU_GET(domain); break; default: if (arg < 0 || arg >= vm_ndomains) return (EINVAL); numa_domain = arg; } err = 0; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_numa_domain == numa_domain) { goto abort_with_hash_wlock; } /* Remove it from the old group. */ in_pcbremlbgrouphash(inp); /* Add it to the new group based on numa domain. */ in_pcbinslbgrouphash(inp, numa_domain); goto abort_with_hash_wlock; } } err = ENOENT; abort_with_hash_wlock: INP_HASH_WUNLOCK(pcbinfo); return (err); } /* Make sure it is safe to use hashinit(9) on CK_LIST. */ CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); /* * Initialize an inpcbinfo - a per-VNET instance of connections db. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, u_int hash_nelements, u_int porthash_nelements) { mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, NULL, MTX_DEF); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif CK_LIST_INIT(&pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; - pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, + pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, + &pcbinfo->ipi_hashmask); + pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_lbgrouphashmask); pcbinfo->ipi_zone = pcbstor->ips_zone; pcbinfo->ipi_portzone = pcbstor->ips_portzone; pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); - hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); + hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); + hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, pcbinfo->ipi_lbgrouphashmask); mtx_destroy(&pcbinfo->ipi_hash_lock); mtx_destroy(&pcbinfo->ipi_lock); } /* * Initialize a pcbstorage - per protocol zones to allocate inpcbs. */ static void inpcb_dtor(void *, int, void *); static void inpcb_fini(void *, int); void in_pcbstorage_init(void *arg) { struct inpcbstorage *pcbstor = arg; pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_zone_set_smr(pcbstor->ips_portzone, uma_zone_get_smr(pcbstor->ips_zone)); } /* * Destroy a pcbstorage - used by unloadable protocols. */ void in_pcbstorage_destroy(void *arg) { struct inpcbstorage *pcbstor = arg; uma_zdestroy(pcbstor->ips_zone); uma_zdestroy(pcbstor->ips_portzone); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) int error; #endif inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(&inp->inp_start_zero, inp_zero_size); #ifdef NUMA inp->inp_numa_domain = M_NODOM; #endif inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) error = ipsec_init_pcbpolicy(inp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; #ifdef INET else inp->inp_vflag |= INP_IPV4; #endif if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; inp->in6p_hops = -1; /* use kernel default */ } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET inp->inp_vflag |= INP_IPV4; #endif + inp->inp_smr = SMR_SEQ_INVALID; + /* * Routes in inpcb's can cache L2 as well; they are guaranteed * to be cleaned up. */ inp->inp_route.ro_flags = RT_LLE_CACHE; refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ INP_WLOCK(inp); INP_INFO_WLOCK(pcbinfo); pcbinfo->ipi_count++; inp->inp_gencnt = ++pcbinfo->ipi_gencnt; CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); INP_INFO_WUNLOCK(pcbinfo); so->so_pcb = inp; return (0); #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) out: uma_zfree_smr(pcbinfo->ipi_zone, inp); return (error); #endif } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) { int anonport, error; KASSERT(sin == NULL || sin->sin_family == AF_INET, ("%s: invalid address family for %p", __func__, sin)); KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), ("%s: invalid address length for %p", __func__, sin)); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = sin == NULL || sin->sin_port == 0; error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif #if defined(INET) || defined(INET6) /* * Assign a local port like in_pcb_lport(), but also used with connect() * and a foreign address and port. If fsa is non-NULL, choose a local port * that is unused with those, otherwise one that is completely unused. * lsa can be NULL for IPv6. */ int in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr, faddr; #endif #ifdef INET6 struct in6_addr *laddr6, *faddr6; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { if (lsa != NULL) laddr = ((struct sockaddr_in *)lsa)->sin_addr; if (fsa != NULL) faddr = ((struct sockaddr_in *)fsa)->sin_addr; } #endif #ifdef INET6 laddr6 = NULL; if ((inp->inp_vflag & INP_IPV6) != 0) { if (lsa != NULL) laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; if (fsa != NULL) faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; } #endif tmpinp = NULL; lport = *lportp; if (V_ipport_randomized) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); if (fsa != NULL) { #ifdef INET if (lsa->sa_family == AF_INET) { tmpinp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags, M_NODOM); } #endif #ifdef INET6 if (lsa->sa_family == AF_INET6) { tmpinp = in6_pcblookup_hash_locked(pcbinfo, faddr6, fport, laddr6, lport, lookupflags, M_NODOM); } #endif } else { #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) { tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #ifdef INET if (tmpinp == NULL && (inp->inp_vflag & INP_IPV4)) tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } } while (tmpinp != NULL); *lportp = lport; return (0); } /* * Select a local port (number) to use. */ int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct sockaddr_in laddr; if (laddrp) { bzero(&laddr, sizeof(laddr)); laddr.sin_family = AF_INET; laddr.sin_addr = *laddrp; } return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : NULL, lportp, NULL, 0, cred, lookupflags)); } /* * Return cached socket options. */ int inp_so_options(const struct inpcb *inp) { int so_options; so_options = 0; if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) so_options |= SO_REUSEPORT_LB; if ((inp->inp_flags2 & INP_REUSEPORT) != 0) so_options |= SO_REUSEPORT; if ((inp->inp_flags2 & INP_REUSEADDR) != 0) so_options |= SO_REUSEADDR; return (so_options); } #endif /* INET || INET6 */ #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here * so that we don't have to add to the (already messy) code below. */ int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); laddr.s_addr = *laddrp; if (sin != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (sin == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { KASSERT(sin->sin_family == AF_INET, ("%s: invalid family for address %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid length for address %p", __func__, sin)); error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; /* * XXX: How to deal with SO_REUSEPORT_LB here? * Treat same as SO_REUSEPORT for now. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t != NULL && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_flags2 & INP_REUSEPORT) || (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t != NULL && (reuseport & inp_so_options(t)) == 0 && (reuseport_lb & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, - bool rehash) + bool rehash __unused) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); + KASSERT(in_nullhost(inp->inp_faddr), + ("%s: inp is already connected", __func__)); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, cred); if (error) return (error); + inp->inp_faddr.s_addr = faddr; + inp->inp_fport = fport; + /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { - KASSERT(rehash == true, - ("Rehashing required for unbound inps")); inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { - inp->inp_laddr.s_addr = INADDR_ANY; - inp->inp_lport = 0; + inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = + INADDR_ANY; + inp->inp_lport = inp->inp_fport = 0; return (EAGAIN); } - } - - /* Commit the remaining changes. */ - inp->inp_lport = lport; - inp->inp_laddr.s_addr = laddr; - inp->inp_faddr.s_addr = faddr; - inp->inp_fport = fport; - if (rehash) { - in_pcbrehash(inp); } else { - in_pcbinshash(inp); + inp->inp_lport = lport; + inp->inp_laddr.s_addr = laddr; + if ((inp->inp_flags & INP_INHASHLIST) != 0) + in_pcbrehash(inp); + else + in_pcbinshash(inp); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin, dst; struct nhop_object *nh; int error; NET_EPOCH_ASSERT(); KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (!prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; nh = NULL; bzero(&dst, sizeof(dst)); sin = &dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 0, NHR_NONE, 0); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (nh == NULL || nh->nh_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) { ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); } if (ia == NULL) { error = ENETUNREACH; goto done; } if (!prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (!prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = nh->nh_ifp; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { struct in_ifaddr *ia; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); if (!prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: if (error == 0 && laddr->s_addr == INADDR_ANY) return (EHOSTUNREACH); return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct ucred *cred) { struct in_ifaddr *ia; struct in_addr laddr, faddr; u_short lport, fport; int error; KASSERT(sin->sin_family == AF_INET, ("%s: invalid address family for %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid address length for %p", __func__, sin)); /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ NET_EPOCH_ASSERT(); INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_val, hash_type; hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, inp->inp_socket->so_proto->pr_protocol, &hash_type); inp->inp_flowid = hash_val; inp->inp_flowtype = hash_type; } #endif if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { faddr = IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; if ((error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&CK_STAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifp == ifp && prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } } } if (error) return (error); } if (lport != 0) { if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, M_NODOM) != NULL) return (EADDRINUSE); } else { struct sockaddr_in lsin, fsin; bzero(&lsin, sizeof(lsin)); bzero(&fsin, sizeof(fsin)); lsin.sin_family = AF_INET; lsin.sin_addr = laddr; fsin.sin_family = AF_INET; fsin.sin_addr = faddr; error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, &lport, (struct sockaddr *)& fsin, fport, cred, INPLOOKUP_WILDCARD); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); + KASSERT(inp->inp_smr == SMR_SEQ_INVALID, + ("%s: inp %p was already disconnected", __func__, inp)); + + in_pcbremhash_locked(inp); + /* See the comment in in_pcbinshash(). */ + inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; - in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); #ifdef RATELIMIT if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); #endif inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * inpcb hash lookups are protected by SMR section. * * Once desired pcb has been found, switching from SMR section to a pcb * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK * here because SMR is a critical section. * In 99%+ cases inp_smr_lock() would obtain the lock immediately. */ static inline void inp_lock(struct inpcb *inp, const inp_lookup_t lock) { lock == INPLOOKUP_RLOCKPCB ? rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); } static inline void inp_unlock(struct inpcb *inp, const inp_lookup_t lock) { lock == INPLOOKUP_RLOCKPCB ? rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); } static inline int inp_trylock(struct inpcb *inp, const inp_lookup_t lock) { return (lock == INPLOOKUP_RLOCKPCB ? rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); } static inline bool in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) { return (lock == INPLOOKUP_RLOCKPCB ? in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); } static inline bool _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) { MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); if (__predict_true(inp_trylock(inp, lock))) { if (__predict_false(inp->inp_flags & ignflags)) { smr_exit(inp->inp_pcbinfo->ipi_smr); inp_unlock(inp, lock); return (false); } smr_exit(inp->inp_pcbinfo->ipi_smr); return (true); } if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { smr_exit(inp->inp_pcbinfo->ipi_smr); inp_lock(inp, lock); if (__predict_false(in_pcbrele(inp, lock))) return (false); /* * inp acquired through refcount & lock for sure didn't went * through uma_zfree(). However, it may have already went * through in_pcbfree() and has another reference, that * prevented its release by our in_pcbrele(). */ if (__predict_false(inp->inp_flags & ignflags)) { inp_unlock(inp, lock); return (false); } return (true); } else { smr_exit(inp->inp_pcbinfo->ipi_smr); return (false); } } bool inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) { /* * in_pcblookup() family of functions ignore not only freed entries, * that may be found due to lockless access to the hash, but dropped * entries, too. */ return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); } /* * inp_next() - inpcb hash/list traversal iterator * * Requires initialized struct inpcb_iterator for context. * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). * * - Iterator can have either write-lock or read-lock semantics, that can not * be changed later. * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through * a single hash slot. Note: only rip_input() does the latter. * - Iterator may have optional bool matching function. The matching function * will be executed for each inpcb in the SMR context, so it can not acquire * locks and can safely access only immutable fields of inpcb. * * A fresh initialized iterator has NULL inpcb in its context and that * means that inp_next() call would return the very first inpcb on the list * locked with desired semantic. In all following calls the context pointer * shall hold the current inpcb pointer. The KPI user is not supposed to * unlock the current inpcb! Upon end of traversal inp_next() will return NULL * and write NULL to its context. After end of traversal an iterator can be * reused. * * List traversals have the following features/constraints: * - New entries won't be seen, as they are always added to the head of a list. * - Removed entries won't stop traversal as long as they are not added to * a different list. This is violated by in_pcbrehash(). */ #define II_LIST_FIRST(ipi, hash) \ (((hash) == INP_ALL_LIST) ? \ CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ - CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) + CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) #define II_LIST_NEXT(inp, hash) \ (((hash) == INP_ALL_LIST) ? \ CK_LIST_NEXT((inp), inp_list) : \ - CK_LIST_NEXT((inp), inp_hash)) + CK_LIST_NEXT((inp), inp_hash_exact)) #define II_LOCK_ASSERT(inp, lock) \ rw_assert(&(inp)->inp_lock, \ (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) struct inpcb * inp_next(struct inpcb_iterator *ii) { const struct inpcbinfo *ipi = ii->ipi; inp_match_t *match = ii->match; void *ctx = ii->ctx; inp_lookup_t lock = ii->lock; int hash = ii->hash; struct inpcb *inp; if (ii->inp == NULL) { /* First call. */ smr_enter(ipi->ipi_smr); /* This is unrolled CK_LIST_FOREACH(). */ for (inp = II_LIST_FIRST(ipi, hash); inp != NULL; inp = II_LIST_NEXT(inp, hash)) { if (match != NULL && (match)(inp, ctx) == false) continue; if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) break; else { smr_enter(ipi->ipi_smr); MPASS(inp != II_LIST_FIRST(ipi, hash)); inp = II_LIST_FIRST(ipi, hash); if (inp == NULL) break; } } if (inp == NULL) smr_exit(ipi->ipi_smr); else ii->inp = inp; return (inp); } /* Not a first call. */ smr_enter(ipi->ipi_smr); restart: inp = ii->inp; II_LOCK_ASSERT(inp, lock); next: inp = II_LIST_NEXT(inp, hash); if (inp == NULL) { smr_exit(ipi->ipi_smr); goto found; } if (match != NULL && (match)(inp, ctx) == false) goto next; if (__predict_true(inp_trylock(inp, lock))) { if (__predict_false(inp->inp_flags & INP_FREED)) { /* * Entries are never inserted in middle of a list, thus * as long as we are in SMR, we can continue traversal. * Jump to 'restart' should yield in the same result, * but could produce unnecessary looping. Could this * looping be unbound? */ inp_unlock(inp, lock); goto next; } else { smr_exit(ipi->ipi_smr); goto found; } } /* * Can't obtain lock immediately, thus going hard. Once we exit the * SMR section we can no longer jump to 'next', and our only stable * anchoring point is ii->inp, which we keep locked for this case, so * we jump to 'restart'. */ if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { smr_exit(ipi->ipi_smr); inp_lock(inp, lock); if (__predict_false(in_pcbrele(inp, lock))) { smr_enter(ipi->ipi_smr); goto restart; } /* * See comment in inp_smr_lock(). */ if (__predict_false(inp->inp_flags & INP_FREED)) { inp_unlock(inp, lock); smr_enter(ipi->ipi_smr); goto restart; } } else goto next; found: inp_unlock(ii->inp, lock); ii->inp = inp; return (ii->inp); } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released or * SMR section exited. * * To free a reference later in_pcbrele_(r|w)locked() must be performed. */ void in_pcbref(struct inpcb *inp) { u_int old __diagused; old = refcount_acquire(&inp->inp_refcount); KASSERT(old > 0, ("%s: refcount 0", __func__)); } /* * Drop a refcount on an inpcb elevated using in_pcbref(), potentially * freeing the pcb, if the reference was very last. */ bool in_pcbrele_rlocked(struct inpcb *inp) { INP_RLOCK_ASSERT(inp); if (!refcount_release(&inp->inp_refcount)) return (false); MPASS(inp->inp_flags & INP_FREED); MPASS(inp->inp_socket == NULL); MPASS(inp->inp_in_hpts == 0); INP_RUNLOCK(inp); uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); return (true); } bool in_pcbrele_wlocked(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); if (!refcount_release(&inp->inp_refcount)) return (false); MPASS(inp->inp_flags & INP_FREED); MPASS(inp->inp_socket == NULL); MPASS(inp->inp_in_hpts == 0); INP_WUNLOCK(inp); uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); return (true); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. * Almost all work, including removal from global lists, is done in this * context, where the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #ifdef INET struct ip_moptions *imo; #endif #ifdef INET6 struct ip6_moptions *im6o; #endif INP_WLOCK_ASSERT(inp); KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); KASSERT((inp->inp_flags & INP_FREED) == 0, ("%s: called twice for pcb %p", __func__, inp)); inp->inp_flags |= INP_FREED; INP_INFO_WLOCK(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; pcbinfo->ipi_count--; CK_LIST_REMOVE(inp, inp_list); INP_INFO_WUNLOCK(pcbinfo); if (inp->inp_flags & INP_INHASHLIST) in_pcbremhash(inp); RO_INVALIDATE_CACHE(&inp->inp_route); #ifdef MAC mac_inpcb_destroy(inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif #ifdef INET if (inp->inp_options) (void)m_free(inp->inp_options); imo = inp->inp_moptions; #endif #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); im6o = inp->in6p_moptions; } else im6o = NULL; #endif if (__predict_false(in_pcbrele_wlocked(inp) == false)) { INP_WUNLOCK(inp); } #ifdef INET6 ip6_freemoptions(im6o); #endif #ifdef INET inp_freemoptions(imo); #endif /* Destruction is finalized in inpcb_dtor(). */ } static void inpcb_dtor(void *mem, int size, void *arg) { struct inpcb *inp = mem; crfree(inp->inp_cred); #ifdef INVARIANTS inp->inp_cred = NULL; #endif } /* * Different protocols initialize their inpcbs differently - giving * different name to the lock. But they all are disposed the same. */ static void inpcb_fini(void *mem, int size) { struct inpcb *inp = mem; INP_LOCK_DESTROY(inp); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); #ifdef INVARIANTS if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) MPASS(inp->inp_refcount > 1); #endif inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) in_pcbremhash(inp); } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } static bool inp_v4_multi_match(const struct inpcb *inp, void *v __unused) { if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) return (true); else return (false); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, inp_v4_multi_match, NULL); struct inpcb *inp; struct in_multi *inm; struct in_mfilter *imf; struct ip_moptions *imo; IN_MULTI_LOCK_ASSERT(); while ((inp = inp_next(&inpi)) != NULL) { INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. * * XXX This can all be deferred to an epoch_call */ restart: IP_MFILTER_FOREACH(imf, &imo->imo_head) { if ((inm = imf->imf_inm) == NULL) continue; if (inm->inm_ifp != ifp) continue; ip_mfilter_remove(&imo->imo_head, imf); in_leavegroup_locked(inm, NULL); ip_mfilter_free(imf); goto restart; } } } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ - head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, + head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_wild) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; CK_LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (!prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST static bool in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) { return (domain == M_NODOM || domain == grp->il_numa_domain); } static struct inpcb * in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, uint16_t lport, int domain) { const struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; INP_HASH_LOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; /* * Search for an LB group match based on the following criteria: * - prefer jailed groups to non-jailed groups * - prefer exact source address matches to wildcard matches * - prefer groups bound to the specified NUMA domain */ jail_exact = jail_wild = local_exact = local_wild = NULL; CK_LIST_FOREACH(grp, hdr, il_list) { bool injail; #ifdef INET6 if (!(grp->il_vflag & INP_IPV4)) continue; #endif if (grp->il_lport != lport) continue; injail = prison_flag(grp->il_cred, PR_IP4) != 0; if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, laddr) != 0) continue; if (grp->il_laddr.s_addr == laddr->s_addr) { if (injail) { jail_exact = grp; if (in_pcblookup_lb_numa_match(grp, domain)) /* This is a perfect match. */ goto out; } else if (local_exact == NULL || in_pcblookup_lb_numa_match(grp, domain)) { local_exact = grp; } } else if (grp->il_laddr.s_addr == INADDR_ANY) { if (injail) { if (jail_wild == NULL || in_pcblookup_lb_numa_match(grp, domain)) jail_wild = grp; } else if (local_wild == NULL || in_pcblookup_lb_numa_match(grp, domain)) { local_wild = grp; } } } if (jail_exact != NULL) grp = jail_exact; else if (jail_wild != NULL) grp = jail_wild; else if (local_exact != NULL) grp = local_exact; else grp = local_wild; if (grp == NULL) return (NULL); out: return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % grp->il_inpcnt]); } static struct inpcb * in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_short fport, struct in_addr laddr, u_short lport) { struct inpcbhead *head; struct inpcb *inp, *match; INP_HASH_LOCK_ASSERT(pcbinfo); match = NULL; - head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, + head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, pcbinfo->ipi_hashmask)]; - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_exact) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) return (inp); } return (match); } static struct inpcb * in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_short fport, struct in_addr laddr, u_short lport) { struct inpcbhead *head; struct inpcb *inp, *local_wild, *local_exact, *jail_wild; #ifdef INET6 struct inpcb *local_wild_mapped; #endif INP_HASH_LOCK_ASSERT(pcbinfo); /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ - head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, + head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; local_wild = local_exact = jail_wild = NULL; #ifdef INET6 local_wild_mapped = NULL; #endif - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_wild) { bool injail; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4) != 0; if (injail) { if (prison_check_ip4_locked(inp->inp_cred->cr_prison, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has either locked the hash list, which usually happens * for bind(2) operations, or is in SMR section, which happens when sorting * out incoming packets. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, uint8_t numa_domain) { struct inpcb *inp; const u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT(faddr.s_addr != INADDR_ANY, ("%s: invalid foreign address", __func__)); KASSERT(laddr.s_addr != INADDR_ANY, ("%s: invalid local address", __func__)); INP_HASH_LOCK_ASSERT(pcbinfo); inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); if (inp != NULL) return (inp); if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, &laddr, lport, numa_domain); if (inp == NULL) { inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, fport, laddr, lport); } } return (inp); } static struct inpcb * in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, uint8_t numa_domain) { struct inpcb *inp; KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); smr_enter(pcbinfo->ipi_smr); inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags & INPLOOKUP_WILDCARD, numa_domain); if (inp != NULL) { if (__predict_false(inp_smr_lock(inp, (lookupflags & INPLOOKUP_LOCKMASK)) == false)) inp = NULL; } else smr_exit(pcbinfo->ipi_smr); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp __unused) { return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, lookupflags, M_NODOM)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp __unused, struct mbuf *m) { return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, lookupflags, m->m_pkthdr.numa_domain)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ int in_pcbinshash(struct inpcb *inp) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; + uint32_t hash; + bool connected; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); - KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 - if (inp->inp_vflag & INP_IPV6) - pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, - inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; - else + if (inp->inp_vflag & INP_IPV6) { + hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, + inp->inp_fport, pcbinfo->ipi_hashmask); + connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); + } else #endif - pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, - inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; + { + hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, + inp->inp_fport, pcbinfo->ipi_hashmask); + connected = !in_nullhost(inp->inp_faddr); + } + + if (connected) + pcbhash = &pcbinfo->ipi_hash_exact[hash]; + else + pcbhash = &pcbinfo->ipi_hash_wild[hash]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Add entry to load balance group. * Only do this if SO_REUSEPORT_LB is set. */ if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { int error = in_pcbinslbgrouphash(inp, M_NODOM); if (error != 0) return (error); } /* * Go through port list and look for a head for this lport. */ CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); if (phd == NULL) { if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) in_pcbremlbgrouphash(inp); return (ENOMEM); } phd->phd_port = inp->inp_lport; CK_LIST_INIT(&phd->phd_pcblist); CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); - CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); + + /* + * The PCB may have been disconnected in the past. Before we can safely + * make it visible in the hash table, we must wait for all readers which + * may be traversing this PCB to finish. + */ + if (inp->inp_smr != SMR_SEQ_INVALID) { + smr_wait(pcbinfo->ipi_smr, inp->inp_smr); + inp->inp_smr = SMR_SEQ_INVALID; + } + + if (connected) + CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); + else + CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); inp->inp_flags |= INP_INHASHLIST; return (0); } -static void -in_pcbremhash(struct inpcb *inp) +void +in_pcbremhash_locked(struct inpcb *inp) { struct inpcbport *phd = inp->inp_phd; INP_WLOCK_ASSERT(inp); + INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); MPASS(inp->inp_flags & INP_INHASHLIST); - INP_HASH_WLOCK(inp->inp_pcbinfo); if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) in_pcbremlbgrouphash(inp); - CK_LIST_REMOVE(inp, inp_hash); +#ifdef INET6 + if (inp->inp_vflag & INP_IPV6) { + if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) + CK_LIST_REMOVE(inp, inp_hash_wild); + else + CK_LIST_REMOVE(inp, inp_hash_exact); + } else +#endif + { + if (in_nullhost(inp->inp_faddr)) + CK_LIST_REMOVE(inp, inp_hash_wild); + else + CK_LIST_REMOVE(inp, inp_hash_exact); + } CK_LIST_REMOVE(inp, inp_portlist); if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { CK_LIST_REMOVE(phd, phd_hash); uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); } - INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } +static void +in_pcbremhash(struct inpcb *inp) +{ + INP_HASH_WLOCK(inp->inp_pcbinfo); + in_pcbremhash_locked(inp); + INP_HASH_WUNLOCK(inp->inp_pcbinfo); +} + /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. - * - * XXXGL: a race between this function and SMR-protected hash iterator - * will lead to iterator traversing a possibly wrong hash list. However, - * this race should have been here since change from rwlock to epoch. */ void in_pcbrehash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; + uint32_t hash; + bool connected; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); - KASSERT(inp->inp_flags & INP_INHASHLIST, - ("in_pcbrehash: !INP_INHASHLIST")); + ("%s: !INP_INHASHLIST", __func__)); + KASSERT(inp->inp_smr == SMR_SEQ_INVALID, + ("%s: inp was disconnected", __func__)); #ifdef INET6 - if (inp->inp_vflag & INP_IPV6) - head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, - inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; - else + if (inp->inp_vflag & INP_IPV6) { + hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, + inp->inp_fport, pcbinfo->ipi_hashmask); + connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); + } else #endif - head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, - inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; + { + hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, + inp->inp_fport, pcbinfo->ipi_hashmask); + connected = !in_nullhost(inp->inp_faddr); + } - CK_LIST_REMOVE(inp, inp_hash); - CK_LIST_INSERT_HEAD(head, inp, inp_hash); + /* + * When rehashing, the caller must ensure that either the new or the old + * foreign address was unspecified. + */ + if (connected) + CK_LIST_REMOVE(inp, inp_hash_wild); + else + CK_LIST_REMOVE(inp, inp_hash_exact); + + if (connected) { + head = &pcbinfo->ipi_hash_exact[hash]; + CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); + } else { + head = &pcbinfo->ipi_hash_wild[hash]; + CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); + } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { RO_INVALIDATE_CACHE(&inp->inp_route); return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(struct inpcbinfo *pcbinfo, void (*func)(struct inpcb *, void *), void *arg) { struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB); struct inpcb *inp; while ((inp = inp_next(&inpi)) != NULL) func(inp, arg); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } /* * Create an external-format (``xinpcb'') structure using the information in * the kernel-format in_pcb structure pointed to by inp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) { bzero(xi, sizeof(*xi)); xi->xi_len = sizeof(struct xinpcb); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi->xi_socket); bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); xi->inp_gencnt = inp->inp_gencnt; xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; xi->inp_flow = inp->inp_flow; xi->inp_flowid = inp->inp_flowid; xi->inp_flowtype = inp->inp_flowtype; xi->inp_flags = inp->inp_flags; xi->inp_flags2 = inp->inp_flags2; xi->in6p_cksum = inp->in6p_cksum; xi->in6p_hops = inp->in6p_hops; xi->inp_ip_tos = inp->inp_ip_tos; xi->inp_vflag = inp->inp_vflag; xi->inp_ip_ttl = inp->inp_ip_ttl; xi->inp_ip_p = inp->inp_ip_p; xi->inp_ip_minttl = inp->inp_ip_minttl; } int sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, int (*ctloutput_set)(struct inpcb *, struct sockopt *)) { struct sockopt sopt; struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB); struct inpcb *inp; struct sockopt_parameters *params; struct socket *so; int error; char buf[1024]; if (req->oldptr != NULL || req->oldlen != 0) return (EINVAL); if (req->newptr == NULL) return (EPERM); if (req->newlen > sizeof(buf)) return (ENOMEM); error = SYSCTL_IN(req, buf, req->newlen); if (error != 0) return (error); if (req->newlen < sizeof(struct sockopt_parameters)) return (EINVAL); params = (struct sockopt_parameters *)buf; sopt.sopt_level = params->sop_level; sopt.sopt_name = params->sop_optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = params->sop_optval; sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); sopt.sopt_td = NULL; #ifdef INET6 if (params->sop_inc.inc_flags & INC_ISIPV6) { if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) params->sop_inc.inc6_laddr.s6_addr16[1] = htons(params->sop_inc.inc6_zoneid & 0xffff); if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) params->sop_inc.inc6_faddr.s6_addr16[1] = htons(params->sop_inc.inc6_zoneid & 0xffff); } #endif if (params->sop_inc.inc_lport != htons(0)) { if (params->sop_inc.inc_fport == htons(0)) inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, pcbinfo->ipi_hashmask); else #ifdef INET6 if (params->sop_inc.inc_flags & INC_ISIPV6) inpi.hash = INP6_PCBHASH( ¶ms->sop_inc.inc6_faddr, params->sop_inc.inc_lport, params->sop_inc.inc_fport, pcbinfo->ipi_hashmask); else #endif inpi.hash = INP_PCBHASH( ¶ms->sop_inc.inc_faddr, params->sop_inc.inc_lport, params->sop_inc.inc_fport, pcbinfo->ipi_hashmask); } while ((inp = inp_next(&inpi)) != NULL) if (inp->inp_gencnt == params->sop_id) { if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); return (ECONNRESET); } so = inp->inp_socket; KASSERT(so != NULL, ("inp_socket == NULL")); soref(so); error = (*ctloutput_set)(inp, &sopt); sorele(so); break; } if (inp == NULL) error = ESRCH; return (error); } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ORIGDSTADDR) { db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ #ifdef RATELIMIT /* * Modify TX rate limit based on the existing "inp->inp_snd_tag", * if any. */ int in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) { union if_snd_tag_modify_params params = { .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_modify == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_modify(mst, ¶ms); } return (error); } /* * Query existing TX rate limit based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_max_pacing_rate != NULL) *p_max_pacing_rate = params.rate_limit.max_rate; } return (error); } /* * Query existing TX queue level based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) return (EOPNOTSUPP); error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_txqueue_level != NULL) *p_txqueue_level = params.rate_limit.queue_level; return (error); } /* * Allocate a new TX rate limit send tag from the network interface * given by the "ifp" argument and save it in "inp->inp_snd_tag": */ int in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) { union if_snd_tag_alloc_params params = { .rate_limit.hdr.type = (max_pacing_rate == -1U) ? IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, .rate_limit.hdr.flowid = flowid, .rate_limit.hdr.flowtype = flowtype, .rate_limit.hdr.numa_domain = inp->inp_numa_domain, .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; int error; INP_WLOCK_ASSERT(inp); /* * If there is already a send tag, or the INP is being torn * down, allocating a new send tag is not allowed. Else send * tags may leak. */ if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) return (EINVAL); error = m_snd_tag_alloc(ifp, ¶ms, st); #ifdef INET if (error == 0) { counter_u64_add(rate_limit_set_ok, 1); counter_u64_add(rate_limit_active, 1); } else if (error != EOPNOTSUPP) counter_u64_add(rate_limit_alloc_fail, 1); #endif return (error); } void in_pcbdetach_tag(struct m_snd_tag *mst) { m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } /* * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", * if any: */ void in_pcbdetach_txrtlmt(struct inpcb *inp) { struct m_snd_tag *mst; INP_WLOCK_ASSERT(inp); mst = inp->inp_snd_tag; inp->inp_snd_tag = NULL; if (mst == NULL) return; m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } int in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) { int error; /* * If the existing send tag is for the wrong interface due to * a route change, first drop the existing tag. Set the * CHANGED flag so that we will keep trying to allocate a new * tag if we fail to allocate one this time. */ if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { in_pcbdetach_txrtlmt(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; } /* * NOTE: When attaching to a network interface a reference is * made to ensure the network interface doesn't go away until * all ratelimit connections are gone. The network interface * pointers compared below represent valid network interfaces, * except when comparing towards NULL. */ if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { error = 0; } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); error = 0; } else if (inp->inp_snd_tag == NULL) { /* * In order to utilize packet pacing with RSS, we need * to wait until there is a valid RSS hash before we * can proceed: */ if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { error = EAGAIN; } else { error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); } } else { error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); } if (error == 0 || error == EOPNOTSUPP) inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; return (error); } /* * This function should be called when the INP_RATE_LIMIT_CHANGED flag * is set in the fast path and will attach/detach/modify the TX rate * limit send tag based on the socket's so_max_pacing_rate value. */ void in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) { struct socket *socket; uint32_t max_pacing_rate; bool did_upgrade; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* * NOTE: The so_max_pacing_rate value is read unlocked, * because atomic updates are not required since the variable * is checked at every mbuf we send. It is assumed that the * variable read itself will be atomic. */ max_pacing_rate = socket->so_max_pacing_rate; in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); if (did_upgrade) INP_DOWNGRADE(inp); } /* * Track route changes for TX rate limiting. */ void in_pcboutput_eagain(struct inpcb *inp) { bool did_upgrade; if (inp == NULL) return; if (inp->inp_snd_tag == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* detach rate limiting */ in_pcbdetach_txrtlmt(inp); /* make sure new mbuf send tag allocation is made */ inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } #ifdef INET static void rl_init(void *st) { rate_limit_new = counter_u64_alloc(M_WAITOK); rate_limit_chg = counter_u64_alloc(M_WAITOK); rate_limit_active = counter_u64_alloc(M_WAITOK); rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); rate_limit_set_ok = counter_u64_alloc(M_WAITOK); } SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); #endif #endif /* RATELIMIT */ diff --git a/sys/netinet/in_pcb.h b/sys/netinet/in_pcb.h index f8a2a311cf4e..179d706381a7 100644 --- a/sys/netinet/in_pcb.h +++ b/sys/netinet/in_pcb.h @@ -1,817 +1,821 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET_IN_PCB_H_ #define _NETINET_IN_PCB_H_ #include #include #include #include #include +#include #include #ifdef _KERNEL #include #include #include -#include #include #include #include #endif #include /* * struct inpcb is the common protocol control block structure used in most * IP transport protocols. * * Pointers to local and foreign host table entries, local and foreign socket * numbers, and pointers up (to a socket structure) and down (to a * protocol-specific control block) are stored here. */ CK_LIST_HEAD(inpcbhead, inpcb); CK_LIST_HEAD(inpcbporthead, inpcbport); CK_LIST_HEAD(inpcblbgrouphead, inpcblbgroup); typedef uint64_t inp_gen_t; /* * PCB with AF_INET6 null bind'ed laddr can receive AF_INET input packet. * So, AF_INET6 null laddr is also used as AF_INET null laddr, by utilizing * the following structure. This requires padding always be zeroed out, * which is done right after inpcb allocation and stays through its lifetime. */ struct in_addr_4in6 { u_int32_t ia46_pad32[3]; struct in_addr ia46_addr4; }; union in_dependaddr { struct in_addr_4in6 id46_addr; struct in6_addr id6_addr; }; /* * NOTE: ipv6 addrs should be 64-bit aligned, per RFC 2553. in_conninfo has * some extra padding to accomplish this. * NOTE 2: tcp_syncache.c uses first 5 32-bit words, which identify fport, * lport, faddr to generate hash, so these fields shouldn't be moved. */ struct in_endpoints { u_int16_t ie_fport; /* foreign port */ u_int16_t ie_lport; /* local port */ /* protocol dependent part, local and foreign addr */ union in_dependaddr ie_dependfaddr; /* foreign host table entry */ union in_dependaddr ie_dependladdr; /* local host table entry */ #define ie_faddr ie_dependfaddr.id46_addr.ia46_addr4 #define ie_laddr ie_dependladdr.id46_addr.ia46_addr4 #define ie6_faddr ie_dependfaddr.id6_addr #define ie6_laddr ie_dependladdr.id6_addr u_int32_t ie6_zoneid; /* scope zone id */ }; /* * XXX The defines for inc_* are hacks and should be changed to direct * references. */ struct in_conninfo { u_int8_t inc_flags; u_int8_t inc_len; u_int16_t inc_fibnum; /* XXX was pad, 16 bits is plenty */ /* protocol dependent part */ struct in_endpoints inc_ie; }; /* * Flags for inc_flags. */ #define INC_ISIPV6 0x01 #define INC_IPV6MINMTU 0x02 #define inc_fport inc_ie.ie_fport #define inc_lport inc_ie.ie_lport #define inc_faddr inc_ie.ie_faddr #define inc_laddr inc_ie.ie_laddr #define inc6_faddr inc_ie.ie6_faddr #define inc6_laddr inc_ie.ie6_laddr #define inc6_zoneid inc_ie.ie6_zoneid #if defined(_KERNEL) || defined(_WANT_INPCB) /* * struct inpcb captures the network layer state for TCP, UDP, and raw IPv4 and * IPv6 sockets. In the case of TCP and UDP, further per-connection state is * hung off of inp_ppcb most of the time. Almost all fields of struct inpcb * are static after creation or protected by a per-inpcb rwlock, inp_lock. * * A inpcb database is indexed by addresses/ports hash as well as list of * all pcbs that belong to a certain proto. Database lookups or list traversals * are be performed inside SMR section. Once desired PCB is found its own * lock is to be obtained and SMR section exited. * * Key: * (b) - Protected by the hpts lock. * (c) - Constant after initialization * (e) - Protected by the SMR section * (i) - Protected by the inpcb lock * (p) - Protected by the pcbinfo lock for the inpcb * (h) - Protected by the pcbhash lock for the inpcb * (s) - Protected by another subsystem's locks * (x) - Undefined locking * * Notes on the tcp_hpts: * * First Hpts lock order is * 1) INP_WLOCK() * 2) HPTS_LOCK() i.e. hpts->pmtx * * To insert a TCB on the hpts you *must* be holding the INP_WLOCK(). * You may check the inp->inp_in_hpts flag without the hpts lock. * The hpts is the only one that will clear this flag holding * only the hpts lock. This means that in your tcp_output() * routine when you test for the inp_in_hpts flag to be 1 * it may be transitioning to 0 (by the hpts). * That's ok since that will just mean an extra call to tcp_output * that most likely will find the call you executed * (when the mis-match occurred) will have put the TCB back * on the hpts and it will return. If your * call did not add the inp back to the hpts then you will either * over-send or the cwnd will block you from sending more. * * Note you should also be holding the INP_WLOCK() when you * call the remove from the hpts as well. Though usually * you are either doing this from a timer, where you need and have * the INP_WLOCK() or from destroying your TCB where again * you should already have the INP_WLOCK(). * * The inp_hpts_cpu, inp_hpts_cpu_set, inp_input_cpu and * inp_input_cpu_set fields are controlled completely by * the hpts. Do not ever set these. The inp_hpts_cpu_set * and inp_input_cpu_set fields indicate if the hpts has * setup the respective cpu field. It is advised if this * field is 0, to enqueue the packet with the appropriate * hpts_immediate() call. If the _set field is 1, then * you may compare the inp_*_cpu field to the curcpu and * may want to again insert onto the hpts if these fields * are not equal (i.e. you are not on the expected CPU). * * A note on inp_hpts_calls and inp_input_calls, these * flags are set when the hpts calls either the output * or do_segment routines respectively. If the routine * being called wants to use this, then it needs to * clear the flag before returning. The hpts will not * clear the flag. The flags can be used to tell if * the hpts is the function calling the respective * routine. * * A few other notes: * * When a read lock is held, stability of the field is guaranteed; to write * to a field, a write lock must generally be held. * * netinet/netinet6-layer code should not assume that the inp_socket pointer * is safe to dereference without inp_lock being held, there may be * close(2)-related races. * * The inp_vflag field is overloaded, and would otherwise ideally be (c). */ struct icmp6_filter; struct inpcbpolicy; struct m_snd_tag; struct inpcb { /* Cache line #1 (amd64) */ - CK_LIST_ENTRY(inpcb) inp_hash; /* (w:h/r:e) hash list */ + CK_LIST_ENTRY(inpcb) inp_hash_exact; /* hash table linkage */ + CK_LIST_ENTRY(inpcb) inp_hash_wild; /* hash table linkage */ struct rwlock inp_lock; /* Cache line #2 (amd64) */ #define inp_start_zero inp_hpts #define inp_zero_size (sizeof(struct inpcb) - \ offsetof(struct inpcb, inp_start_zero)) TAILQ_ENTRY(inpcb) inp_hpts; /* pacing out queue next lock(b) */ uint32_t inp_hpts_gencnt; /* XXXGL */ uint32_t inp_hpts_request; /* Current hpts request, zero if * fits in the pacing window (i&b). */ /* * Note the next fields are protected by a * different lock (hpts-lock). This means that * they must correspond in size to the smallest * protectable bit field (uint8_t on x86, and * other platfomrs potentially uint32_t?). Also * since CPU switches can occur at different times the two * fields can *not* be collapsed into a signal bit field. */ #if defined(__amd64__) || defined(__i386__) uint8_t inp_in_hpts; /* on output hpts (lock b) */ #else uint32_t inp_in_hpts; /* on output hpts (lock b) */ #endif volatile uint16_t inp_hpts_cpu; /* Lock (i) */ volatile uint16_t inp_irq_cpu; /* Set by LRO in behalf of or the driver */ u_int inp_refcount; /* (i) refcount */ int inp_flags; /* (i) generic IP/datagram flags */ int inp_flags2; /* (i) generic IP/datagram flags #2*/ uint8_t inp_hpts_cpu_set :1, /* on output hpts (i) */ inp_hpts_calls :1, /* (i) from output hpts */ inp_irq_cpu_set :1, /* (i) from LRO/Driver */ inp_spare_bits2 : 3; uint8_t inp_numa_domain; /* numa domain */ void *inp_ppcb; /* (i) pointer to per-protocol pcb */ struct socket *inp_socket; /* (i) back pointer to socket */ int32_t inp_hptsslot; /* Hpts wheel slot this tcb is Lock(i&b) */ uint32_t inp_hpts_drop_reas; /* reason we are dropping the PCB (lock i&b) */ struct inpcbinfo *inp_pcbinfo; /* (c) PCB list info */ struct ucred *inp_cred; /* (c) cache of socket cred */ u_int32_t inp_flow; /* (i) IPv6 flow information */ u_char inp_vflag; /* (i) IP version flag (v4/v6) */ u_char inp_ip_ttl; /* (i) time to live proto */ u_char inp_ip_p; /* (c) protocol proto */ u_char inp_ip_minttl; /* (i) minimum TTL or drop */ uint32_t inp_flowid; /* (x) flow id / queue id */ + smr_seq_t inp_smr; /* (i) sequence number at disconnect */ struct m_snd_tag *inp_snd_tag; /* (i) send tag for outgoing mbufs */ uint32_t inp_flowtype; /* (x) M_HASHTYPE value */ /* Local and foreign ports, local and foreign addr. */ - struct in_conninfo inp_inc; /* (i) list for PCB's local port */ + struct in_conninfo inp_inc; /* (i,h) list for PCB's local port */ /* MAC and IPSEC policy information. */ struct label *inp_label; /* (i) MAC label */ struct inpcbpolicy *inp_sp; /* (s) for IPSEC */ /* Protocol-dependent part; options. */ struct { u_char inp_ip_tos; /* (i) type of service proto */ struct mbuf *inp_options; /* (i) IP options */ struct ip_moptions *inp_moptions; /* (i) mcast options */ }; struct { /* (i) IP options */ struct mbuf *in6p_options; /* (i) IP6 options for outgoing packets */ struct ip6_pktopts *in6p_outputopts; /* (i) IP multicast options */ struct ip6_moptions *in6p_moptions; /* (i) ICMPv6 code type filter */ struct icmp6_filter *in6p_icmp6filt; /* (i) IPV6_CHECKSUM setsockopt */ int in6p_cksum; short in6p_hops; }; CK_LIST_ENTRY(inpcb) inp_portlist; /* (r:e/w:h) port list */ struct inpcbport *inp_phd; /* (r:e/w:h) head of this list */ inp_gen_t inp_gencnt; /* (c) generation count */ void *spare_ptr; /* Spare pointer. */ rt_gen_t inp_rt_cookie; /* generation for route entry */ union { /* cached L3 information */ struct route inp_route; struct route_in6 inp_route6; }; CK_LIST_ENTRY(inpcb) inp_list; /* (r:e/w:p) all PCBs for proto */ }; #endif /* _KERNEL */ #define inp_fport inp_inc.inc_fport #define inp_lport inp_inc.inc_lport #define inp_faddr inp_inc.inc_faddr #define inp_laddr inp_inc.inc_laddr #define in6p_faddr inp_inc.inc6_faddr #define in6p_laddr inp_inc.inc6_laddr #define in6p_zoneid inp_inc.inc6_zoneid #define inp_vnet inp_pcbinfo->ipi_vnet /* * The range of the generation count, as used in this implementation, is 9e19. * We would have to create 300 billion connections per second for this number * to roll over in a year. This seems sufficiently unlikely that we simply * don't concern ourselves with that possibility. */ /* * Interface exported to userland by various protocols which use inpcbs. Hack * alert -- only define if struct xsocket is in scope. * Fields prefixed with "xi_" are unique to this structure, and the rest * match fields in the struct inpcb, to ease coding and porting. * * Legend: * (s) - used by userland utilities in src * (p) - used by utilities in ports * (3) - is known to be used by third party software not in ports * (n) - no known usage */ #ifdef _SYS_SOCKETVAR_H_ struct xinpcb { ksize_t xi_len; /* length of this structure */ struct xsocket xi_socket; /* (s,p) */ struct in_conninfo inp_inc; /* (s,p) */ uint64_t inp_gencnt; /* (s,p) */ kvaddr_t inp_ppcb; /* (s) netstat(1) */ int64_t inp_spare64[4]; uint32_t inp_flow; /* (s) */ uint32_t inp_flowid; /* (s) */ uint32_t inp_flowtype; /* (s) */ int32_t inp_flags; /* (s,p) */ int32_t inp_flags2; /* (s) */ uint32_t inp_unused; int32_t in6p_cksum; /* (n) */ int32_t inp_spare32[4]; uint16_t in6p_hops; /* (n) */ uint8_t inp_ip_tos; /* (n) */ int8_t pad8; uint8_t inp_vflag; /* (s,p) */ uint8_t inp_ip_ttl; /* (n) */ uint8_t inp_ip_p; /* (n) */ uint8_t inp_ip_minttl; /* (n) */ int8_t inp_spare8[4]; } __aligned(8); struct xinpgen { ksize_t xig_len; /* length of this structure */ u_int xig_count; /* number of PCBs at this time */ uint32_t _xig_spare32; inp_gen_t xig_gen; /* generation count at this time */ so_gen_t xig_sogen; /* socket generation count this time */ uint64_t _xig_spare64[4]; } __aligned(8); struct sockopt_parameters { struct in_conninfo sop_inc; uint64_t sop_id; int sop_level; int sop_optname; char sop_optval[]; }; #ifdef _KERNEL int sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, int (*ctloutput_set)(struct inpcb *, struct sockopt *)); void in_pcbtoxinpcb(const struct inpcb *, struct xinpcb *); #endif #endif /* _SYS_SOCKETVAR_H_ */ #ifdef _KERNEL /* * Per-VNET pcb database for each high-level protocol (UDP, TCP, ...) in both * IPv4 and IPv6. * * The pcbs are protected with SMR section and thus all lists in inpcbinfo * are CK-lists. Locking is required to insert a pcb into database. Two * locks are provided: one for the hash and one for the global list of pcbs, * as well as overall count and generation count. * * Locking key: * * (c) Constant or nearly constant after initialisation * (e) Protected by SMR section * (g) Locked by ipi_lock * (h) Locked by ipi_hash_lock */ struct inpcbinfo { /* * Global lock protecting inpcb list modification */ struct mtx ipi_lock; struct inpcbhead ipi_listhead; /* (r:e/w:g) */ u_int ipi_count; /* (g) */ /* * Generation count -- incremented each time a connection is allocated * or freed. */ u_quad_t ipi_gencnt; /* (g) */ /* * Fields associated with port lookup and allocation. */ u_short ipi_lastport; /* (h) */ u_short ipi_lastlow; /* (h) */ u_short ipi_lasthi; /* (h) */ /* * UMA zone from which inpcbs are allocated for this protocol. */ uma_zone_t ipi_zone; /* (c) */ uma_zone_t ipi_portzone; /* (c) */ smr_t ipi_smr; /* (c) */ /* * Global hash of inpcbs, hashed by local and foreign addresses and - * port numbers. + * port numbers. The "exact" hash holds PCBs connected to a foreign + * address, and "wild" holds the rest. */ struct mtx ipi_hash_lock; - struct inpcbhead *ipi_hashbase; /* (r:e/w:h) */ + struct inpcbhead *ipi_hash_exact; /* (r:e/w:h) */ + struct inpcbhead *ipi_hash_wild; /* (r:e/w:h) */ u_long ipi_hashmask; /* (c) */ /* * Global hash of inpcbs, hashed by only local port number. */ struct inpcbporthead *ipi_porthashbase; /* (h) */ u_long ipi_porthashmask; /* (h) */ /* * Load balance groups used for the SO_REUSEPORT_LB option, * hashed by local port. */ struct inpcblbgrouphead *ipi_lbgrouphashbase; /* (r:e/w:h) */ u_long ipi_lbgrouphashmask; /* (h) */ /* * Pointer to network stack instance */ struct vnet *ipi_vnet; /* (c) */ }; /* * Global allocation storage for each high-level protocol (UDP, TCP, ...). * Each corresponding per-VNET inpcbinfo points into this one. */ struct inpcbstorage { uma_zone_t ips_zone; uma_zone_t ips_portzone; uma_init ips_pcbinit; size_t ips_size; const char * ips_zone_name; const char * ips_portzone_name; const char * ips_infolock_name; const char * ips_hashlock_name; }; #define INPCBSTORAGE_DEFINE(prot, ppcb, lname, zname, iname, hname) \ static int \ prot##_inpcb_init(void *mem, int size __unused, int flags __unused) \ { \ struct inpcb *inp = mem; \ \ rw_init_flags(&inp->inp_lock, lname, RW_RECURSE | RW_DUPOK); \ return (0); \ } \ static struct inpcbstorage prot = { \ .ips_size = sizeof(struct ppcb), \ .ips_pcbinit = prot##_inpcb_init, \ .ips_zone_name = zname, \ .ips_portzone_name = zname " ports", \ .ips_infolock_name = iname, \ .ips_hashlock_name = hname, \ }; \ SYSINIT(prot##_inpcbstorage_init, SI_SUB_PROTO_DOMAIN, \ SI_ORDER_SECOND, in_pcbstorage_init, &prot); \ SYSUNINIT(prot##_inpcbstorage_uninit, SI_SUB_PROTO_DOMAIN, \ SI_ORDER_SECOND, in_pcbstorage_destroy, &prot) /* * Load balance groups used for the SO_REUSEPORT_LB socket option. Each group * (or unique address:port combination) can be re-used at most * INPCBLBGROUP_SIZMAX (256) times. The inpcbs are stored in il_inp which * is dynamically resized as processes bind/unbind to that specific group. */ struct inpcblbgroup { CK_LIST_ENTRY(inpcblbgroup) il_list; struct epoch_context il_epoch_ctx; struct ucred *il_cred; uint16_t il_lport; /* (c) */ u_char il_vflag; /* (c) */ uint8_t il_numa_domain; uint32_t il_pad2; union in_dependaddr il_dependladdr; /* (c) */ #define il_laddr il_dependladdr.id46_addr.ia46_addr4 #define il6_laddr il_dependladdr.id6_addr uint32_t il_inpsiz; /* max count in il_inp[] (h) */ uint32_t il_inpcnt; /* cur count in il_inp[] (h) */ struct inpcb *il_inp[]; /* (h) */ }; #define INP_LOCK_DESTROY(inp) rw_destroy(&(inp)->inp_lock) #define INP_RLOCK(inp) rw_rlock(&(inp)->inp_lock) #define INP_WLOCK(inp) rw_wlock(&(inp)->inp_lock) #define INP_TRY_RLOCK(inp) rw_try_rlock(&(inp)->inp_lock) #define INP_TRY_WLOCK(inp) rw_try_wlock(&(inp)->inp_lock) #define INP_RUNLOCK(inp) rw_runlock(&(inp)->inp_lock) #define INP_WUNLOCK(inp) rw_wunlock(&(inp)->inp_lock) #define INP_UNLOCK(inp) rw_unlock(&(inp)->inp_lock) #define INP_TRY_UPGRADE(inp) rw_try_upgrade(&(inp)->inp_lock) #define INP_DOWNGRADE(inp) rw_downgrade(&(inp)->inp_lock) #define INP_WLOCKED(inp) rw_wowned(&(inp)->inp_lock) #define INP_LOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_LOCKED) #define INP_RLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_RLOCKED) #define INP_WLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_WLOCKED) #define INP_UNLOCK_ASSERT(inp) rw_assert(&(inp)->inp_lock, RA_UNLOCKED) /* * These locking functions are for inpcb consumers outside of sys/netinet, * more specifically, they were added for the benefit of TOE drivers. The * macros are reserved for use by the stack. */ void inp_wlock(struct inpcb *); void inp_wunlock(struct inpcb *); void inp_rlock(struct inpcb *); void inp_runlock(struct inpcb *); #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *); void inp_unlock_assert(struct inpcb *); #else #define inp_lock_assert(inp) do {} while (0) #define inp_unlock_assert(inp) do {} while (0) #endif void inp_apply_all(struct inpcbinfo *, void (*func)(struct inpcb *, void *), void *arg); int inp_ip_tos_get(const struct inpcb *inp); void inp_ip_tos_set(struct inpcb *inp, int val); struct socket * inp_inpcbtosocket(struct inpcb *inp); struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp); void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp); int inp_so_options(const struct inpcb *inp); #endif /* _KERNEL */ #define INP_INFO_WLOCK(ipi) mtx_lock(&(ipi)->ipi_lock) #define INP_INFO_WLOCKED(ipi) mtx_owned(&(ipi)->ipi_lock) #define INP_INFO_WUNLOCK(ipi) mtx_unlock(&(ipi)->ipi_lock) #define INP_INFO_LOCK_ASSERT(ipi) MPASS(SMR_ENTERED((ipi)->ipi_smr) || \ mtx_owned(&(ipi)->ipi_lock)) #define INP_INFO_WLOCK_ASSERT(ipi) mtx_assert(&(ipi)->ipi_lock, MA_OWNED) #define INP_INFO_WUNLOCK_ASSERT(ipi) \ mtx_assert(&(ipi)->ipi_lock, MA_NOTOWNED) #define INP_HASH_WLOCK(ipi) mtx_lock(&(ipi)->ipi_hash_lock) #define INP_HASH_WUNLOCK(ipi) mtx_unlock(&(ipi)->ipi_hash_lock) #define INP_HASH_LOCK_ASSERT(ipi) MPASS(SMR_ENTERED((ipi)->ipi_smr) || \ mtx_owned(&(ipi)->ipi_hash_lock)) #define INP_HASH_WLOCK_ASSERT(ipi) mtx_assert(&(ipi)->ipi_hash_lock, \ MA_OWNED) /* * Wildcard matching hash is not just a microoptimisation! The hash for * wildcard IPv4 and wildcard IPv6 must be the same, otherwise AF_INET6 * wildcard bound pcb won't be able to receive AF_INET connections, while: * jenkins_hash(&zeroes, 1, s) != jenkins_hash(&zeroes, 4, s) * See also comment above struct in_addr_4in6. */ #define IN_ADDR_JHASH32(addr) \ ((addr)->s_addr == INADDR_ANY ? V_in_pcbhashseed : \ jenkins_hash32((&(addr)->s_addr), 1, V_in_pcbhashseed)) #define IN6_ADDR_JHASH32(addr) \ (memcmp((addr), &in6addr_any, sizeof(in6addr_any)) == 0 ? \ V_in_pcbhashseed : \ jenkins_hash32((addr)->__u6_addr.__u6_addr32, \ nitems((addr)->__u6_addr.__u6_addr32), V_in_pcbhashseed)) #define INP_PCBHASH(faddr, lport, fport, mask) \ ((IN_ADDR_JHASH32(faddr) ^ ntohs((lport) ^ (fport))) & (mask)) #define INP6_PCBHASH(faddr, lport, fport, mask) \ ((IN6_ADDR_JHASH32(faddr) ^ ntohs((lport) ^ (fport))) & (mask)) #define INP_PCBHASH_WILD(lport, mask) \ ((V_in_pcbhashseed ^ ntohs(lport)) & (mask)) #define INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) \ (IN_ADDR_JHASH32(faddr) ^ ntohs((lport) ^ (fport))) #define INP6_PCBLBGROUP_PKTHASH(faddr, lport, fport) \ (IN6_ADDR_JHASH32(faddr) ^ ntohs((lport) ^ (fport))) #define INP_PCBPORTHASH(lport, mask) (ntohs((lport)) & (mask)) /* * Flags for inp_vflags -- historically version flags only */ #define INP_IPV4 0x1 #define INP_IPV6 0x2 #define INP_IPV6PROTO 0x4 /* opened under IPv6 protocol */ /* * Flags for inp_flags. */ #define INP_RECVOPTS 0x00000001 /* receive incoming IP options */ #define INP_RECVRETOPTS 0x00000002 /* receive IP options for reply */ #define INP_RECVDSTADDR 0x00000004 /* receive IP dst address */ #define INP_HDRINCL 0x00000008 /* user supplies entire IP header */ #define INP_HIGHPORT 0x00000010 /* user wants "high" port binding */ #define INP_LOWPORT 0x00000020 /* user wants "low" port binding */ #define INP_ANONPORT 0x00000040 /* read by netstat(1) */ #define INP_RECVIF 0x00000080 /* receive incoming interface */ #define INP_MTUDISC 0x00000100 /* user can do MTU discovery */ /* INP_FREED 0x00000200 private to in_pcb.c */ #define INP_RECVTTL 0x00000400 /* receive incoming IP TTL */ #define INP_DONTFRAG 0x00000800 /* don't fragment packet */ #define INP_BINDANY 0x00001000 /* allow bind to any address */ #define INP_INHASHLIST 0x00002000 /* in_pcbinshash() has been called */ #define INP_RECVTOS 0x00004000 /* receive incoming IP TOS */ #define IN6P_IPV6_V6ONLY 0x00008000 /* restrict AF_INET6 socket for v6 */ #define IN6P_PKTINFO 0x00010000 /* receive IP6 dst and I/F */ #define IN6P_HOPLIMIT 0x00020000 /* receive hoplimit */ #define IN6P_HOPOPTS 0x00040000 /* receive hop-by-hop options */ #define IN6P_DSTOPTS 0x00080000 /* receive dst options after rthdr */ #define IN6P_RTHDR 0x00100000 /* receive routing header */ #define IN6P_RTHDRDSTOPTS 0x00200000 /* receive dstoptions before rthdr */ #define IN6P_TCLASS 0x00400000 /* receive traffic class value */ #define IN6P_AUTOFLOWLABEL 0x00800000 /* attach flowlabel automatically */ -/* was INP_TIMEWAIT 0x01000000 */ #define INP_ONESBCAST 0x02000000 /* send all-ones broadcast */ #define INP_DROPPED 0x04000000 /* protocol drop flag */ #define INP_SOCKREF 0x08000000 /* strong socket reference */ #define INP_RESERVED_0 0x10000000 /* reserved field */ #define INP_RESERVED_1 0x20000000 /* reserved field */ #define IN6P_RFC2292 0x40000000 /* used RFC2292 API on the socket */ #define IN6P_MTU 0x80000000 /* receive path MTU */ #define INP_CONTROLOPTS (INP_RECVOPTS|INP_RECVRETOPTS|INP_RECVDSTADDR|\ INP_RECVIF|INP_RECVTTL|INP_RECVTOS|\ IN6P_PKTINFO|IN6P_HOPLIMIT|IN6P_HOPOPTS|\ IN6P_DSTOPTS|IN6P_RTHDR|IN6P_RTHDRDSTOPTS|\ IN6P_TCLASS|IN6P_AUTOFLOWLABEL|IN6P_RFC2292|\ IN6P_MTU) /* * Flags for inp_flags2. */ #define INP_MBUF_L_ACKS 0x00000001 /* We need large mbufs for ack compression */ #define INP_MBUF_ACKCMP 0x00000002 /* TCP mbuf ack compression ok */ /* 0x00000004 */ #define INP_REUSEPORT 0x00000008 /* SO_REUSEPORT option is set */ /* 0x00000010 */ #define INP_REUSEADDR 0x00000020 /* SO_REUSEADDR option is set */ /* 0x00000040 */ /* 0x00000080 */ #define INP_RECVFLOWID 0x00000100 /* populate recv datagram with flow info */ #define INP_RECVRSSBUCKETID 0x00000200 /* populate recv datagram with bucket id */ #define INP_RATE_LIMIT_CHANGED 0x00000400 /* rate limit needs attention */ #define INP_ORIGDSTADDR 0x00000800 /* receive IP dst address/port */ #define INP_CANNOT_DO_ECN 0x00001000 /* The stack does not do ECN */ #define INP_REUSEPORT_LB 0x00002000 /* SO_REUSEPORT_LB option is set */ #define INP_SUPPORTS_MBUFQ 0x00004000 /* Supports the mbuf queue method of LRO */ #define INP_MBUF_QUEUE_READY 0x00008000 /* The transport is pacing, inputs can be queued */ #define INP_DONT_SACK_QUEUE 0x00010000 /* If a sack arrives do not wake me */ #define INP_2PCP_SET 0x00020000 /* If the Eth PCP should be set explicitly */ #define INP_2PCP_BIT0 0x00040000 /* Eth PCP Bit 0 */ #define INP_2PCP_BIT1 0x00080000 /* Eth PCP Bit 1 */ #define INP_2PCP_BIT2 0x00100000 /* Eth PCP Bit 2 */ #define INP_2PCP_BASE INP_2PCP_BIT0 #define INP_2PCP_MASK (INP_2PCP_BIT0 | INP_2PCP_BIT1 | INP_2PCP_BIT2) #define INP_2PCP_SHIFT 18 /* shift PCP field in/out of inp_flags2 */ /* * Flags passed to in_pcblookup*(), inp_smr_lock() and inp_next(). */ typedef enum { INPLOOKUP_WILDCARD = 0x00000001, /* Allow wildcard sockets. */ INPLOOKUP_RLOCKPCB = 0x00000002, /* Return inpcb read-locked. */ INPLOOKUP_WLOCKPCB = 0x00000004, /* Return inpcb write-locked. */ } inp_lookup_t; #define INPLOOKUP_MASK (INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB | \ INPLOOKUP_WLOCKPCB) #define INPLOOKUP_LOCKMASK (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB) #define sotoinpcb(so) ((struct inpcb *)(so)->so_pcb) #define INP_SOCKAF(so) so->so_proto->pr_domain->dom_family #define INP_CHECK_SOCKAF(so, af) (INP_SOCKAF(so) == af) #ifdef _KERNEL VNET_DECLARE(int, ipport_reservedhigh); VNET_DECLARE(int, ipport_reservedlow); VNET_DECLARE(int, ipport_lowfirstauto); VNET_DECLARE(int, ipport_lowlastauto); VNET_DECLARE(int, ipport_firstauto); VNET_DECLARE(int, ipport_lastauto); VNET_DECLARE(int, ipport_hifirstauto); VNET_DECLARE(int, ipport_hilastauto); VNET_DECLARE(int, ipport_randomized); #define V_ipport_reservedhigh VNET(ipport_reservedhigh) #define V_ipport_reservedlow VNET(ipport_reservedlow) #define V_ipport_lowfirstauto VNET(ipport_lowfirstauto) #define V_ipport_lowlastauto VNET(ipport_lowlastauto) #define V_ipport_firstauto VNET(ipport_firstauto) #define V_ipport_lastauto VNET(ipport_lastauto) #define V_ipport_hifirstauto VNET(ipport_hifirstauto) #define V_ipport_hilastauto VNET(ipport_hilastauto) #define V_ipport_randomized VNET(ipport_randomized) void in_pcbinfo_init(struct inpcbinfo *, struct inpcbstorage *, u_int, u_int); void in_pcbinfo_destroy(struct inpcbinfo *); void in_pcbstorage_init(void *); void in_pcbstorage_destroy(void *); void in_pcbpurgeif0(struct inpcbinfo *, struct ifnet *); int in_pcballoc(struct socket *, struct inpcbinfo *); int in_pcbbind(struct inpcb *, struct sockaddr_in *, struct ucred *); int in_pcbbind_setup(struct inpcb *, struct sockaddr_in *, in_addr_t *, u_short *, struct ucred *); int in_pcbconnect(struct inpcb *, struct sockaddr_in *, struct ucred *, bool); int in_pcbconnect_setup(struct inpcb *, struct sockaddr_in *, in_addr_t *, u_short *, in_addr_t *, u_short *, struct ucred *); void in_pcbdetach(struct inpcb *); void in_pcbdisconnect(struct inpcb *); void in_pcbdrop(struct inpcb *); void in_pcbfree(struct inpcb *); int in_pcbinshash(struct inpcb *); int in_pcbladdr(struct inpcb *, struct in_addr *, struct in_addr *, struct ucred *); int in_pcblbgroup_numa(struct inpcb *, int arg); struct inpcb * in_pcblookup(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *); struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *, struct in_addr, u_int, struct in_addr, u_int, int, struct ifnet *, struct mbuf *); void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr, int, struct inpcb *(*)(struct inpcb *, int)); void in_pcbref(struct inpcb *); void in_pcbrehash(struct inpcb *); +void in_pcbremhash_locked(struct inpcb *); bool in_pcbrele_rlocked(struct inpcb *); bool in_pcbrele_wlocked(struct inpcb *); typedef bool inp_match_t(const struct inpcb *, void *); struct inpcb_iterator { const struct inpcbinfo *ipi; struct inpcb *inp; inp_match_t *match; void *ctx; int hash; #define INP_ALL_LIST -1 const inp_lookup_t lock; }; /* Note: sparse initializers guarantee .inp = NULL. */ #define INP_ITERATOR(_ipi, _lock, _match, _ctx) \ { \ .ipi = (_ipi), \ .lock = (_lock), \ .hash = INP_ALL_LIST, \ .match = (_match), \ .ctx = (_ctx), \ } #define INP_ALL_ITERATOR(_ipi, _lock) \ { \ .ipi = (_ipi), \ .lock = (_lock), \ .hash = INP_ALL_LIST, \ } struct inpcb *inp_next(struct inpcb_iterator *); void in_losing(struct inpcb *); void in_pcbsetsolabel(struct socket *so); int in_getpeeraddr(struct socket *so, struct sockaddr **nam); int in_getsockaddr(struct socket *so, struct sockaddr **nam); struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr); void in_pcbsosetlabel(struct socket *so); #ifdef RATELIMIT int in_pcboutput_txrtlmt_locked(struct inpcb *, struct ifnet *, struct mbuf *, uint32_t); int in_pcbattach_txrtlmt(struct inpcb *, struct ifnet *, uint32_t, uint32_t, uint32_t, struct m_snd_tag **); void in_pcbdetach_txrtlmt(struct inpcb *); void in_pcbdetach_tag(struct m_snd_tag *); int in_pcbmodify_txrtlmt(struct inpcb *, uint32_t); int in_pcbquery_txrtlmt(struct inpcb *, uint32_t *); int in_pcbquery_txrlevel(struct inpcb *, uint32_t *); void in_pcboutput_txrtlmt(struct inpcb *, struct ifnet *, struct mbuf *); void in_pcboutput_eagain(struct inpcb *); #endif #endif /* _KERNEL */ #endif /* !_NETINET_IN_PCB_H_ */ diff --git a/sys/netinet/raw_ip.c b/sys/netinet/raw_ip.c index 39f40fcebff1..7fc5ca2ec712 100644 --- a/sys/netinet/raw_ip.c +++ b/sys/netinet/raw_ip.c @@ -1,1091 +1,1091 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern ipproto_input_t *ip_protox[]; VNET_DEFINE(int, ip_defttl) = IPDEFTTL; SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_defttl), 0, "Maximum TTL on IP packets"); VNET_DEFINE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) /* * Control and data hooks for ipfw, dummynet, divert and so on. * The data hooks are not used here but it is convenient * to keep them all in one place. */ VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; int (*ip_dn_ctl_ptr)(struct sockopt *); int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *); void (*ip_divert_ptr)(struct mbuf *, bool); int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool); #ifdef INET /* * Hooks for multicast routing. They all default to NULL, so leave them not * initialized and rely on BSS being set to 0. */ /* * The socket used to communicate with the multicast routing daemon. */ VNET_DEFINE(struct socket *, ip_mrouter); /* * The various mrouter and rsvp functions. */ int (*ip_mrouter_set)(struct socket *, struct sockopt *); int (*ip_mrouter_get)(struct socket *, struct sockopt *); int (*ip_mrouter_done)(void); int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int (*mrt_ioctl)(u_long, caddr_t, int); int (*legal_vif_num)(int); u_long (*ip_mcast_src)(int); int (*rsvp_input_p)(struct mbuf **, int *, int); int (*ip_rsvp_vif)(struct socket *, struct sockopt *); void (*ip_rsvp_force_done)(struct socket *); #endif /* INET */ u_long rip_sendspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); u_long rip_recvspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); /* * Hash functions */ #define INP_PCBHASH_RAW_SIZE 256 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ (((proto) + (laddr) + (faddr)) % (mask) + 1) #ifdef INET static void rip_inshash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *pcbhash; int hash; INP_HASH_WLOCK_ASSERT(pcbinfo); INP_WLOCK_ASSERT(inp); if (inp->inp_ip_p != 0 && inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != INADDR_ANY) { hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); } else hash = 0; - pcbhash = &pcbinfo->ipi_hashbase[hash]; - CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); + pcbhash = &pcbinfo->ipi_hash_exact[hash]; + CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); } static void rip_delhash(struct inpcb *inp) { INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); INP_WLOCK_ASSERT(inp); - CK_LIST_REMOVE(inp, inp_hash); + CK_LIST_REMOVE(inp, inp_hash_exact); } #endif /* INET */ INPCBSTORAGE_DEFINE(ripcbstor, inpcb, "rawinp", "ripcb", "rip", "riphash"); static void rip_init(void *arg __unused) { in_pcbinfo_init(&V_ripcbinfo, &ripcbstor, INP_PCBHASH_RAW_SIZE, 1); } VNET_SYSINIT(rip_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rip_init, NULL); #ifdef VIMAGE static void rip_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ripcbinfo); } VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL); #endif #ifdef INET static int rip_append(struct inpcb *inp, struct ip *ip, struct mbuf *m, struct sockaddr_in *ripsrc) { struct socket *so = inp->inp_socket; struct mbuf *n, *opts = NULL; INP_LOCK_ASSERT(inp); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) return (0); #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, m) != 0) return (0); #endif /* Check the minimum TTL for socket. */ if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) return (0); if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) == NULL) return (0); if ((inp->inp_flags & INP_CONTROLOPTS) || (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) ip_savecontrol(inp, &opts, ip, n); SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)ripsrc, n, opts) == 0) { soroverflow_locked(so); m_freem(n); if (opts) m_freem(opts); return (0); } sorwakeup_locked(so); return (1); } struct rip_inp_match_ctx { struct ip *ip; int proto; }; static bool rip_inp_match1(const struct inpcb *inp, void *v) { struct rip_inp_match_ctx *ctx = v; if (inp->inp_ip_p != ctx->proto) return (false); #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) return (false); #endif if (inp->inp_laddr.s_addr != ctx->ip->ip_dst.s_addr) return (false); if (inp->inp_faddr.s_addr != ctx->ip->ip_src.s_addr) return (false); return (true); } static bool rip_inp_match2(const struct inpcb *inp, void *v) { struct rip_inp_match_ctx *ctx = v; if (inp->inp_ip_p && inp->inp_ip_p != ctx->proto) return (false); #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) return (false); #endif if (!in_nullhost(inp->inp_laddr) && !in_hosteq(inp->inp_laddr, ctx->ip->ip_dst)) return (false); if (!in_nullhost(inp->inp_faddr) && !in_hosteq(inp->inp_faddr, ctx->ip->ip_src)) return (false); return (true); } /* * Setup generic address and protocol structures for raw_input routine, then * pass them along with mbuf chain. */ int rip_input(struct mbuf **mp, int *offp, int proto) { struct rip_inp_match_ctx ctx = { .ip = mtod(*mp, struct ip *), .proto = proto, }; struct inpcb_iterator inpi = INP_ITERATOR(&V_ripcbinfo, INPLOOKUP_RLOCKPCB, rip_inp_match1, &ctx); struct ifnet *ifp; struct mbuf *m = *mp; struct inpcb *inp; struct sockaddr_in ripsrc; int appended; *mp = NULL; appended = 0; bzero(&ripsrc, sizeof(ripsrc)); ripsrc.sin_len = sizeof(ripsrc); ripsrc.sin_family = AF_INET; ripsrc.sin_addr = ctx.ip->ip_src; ifp = m->m_pkthdr.rcvif; inpi.hash = INP_PCBHASH_RAW(proto, ctx.ip->ip_src.s_addr, ctx.ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); if (jailed_without_vnet(inp->inp_cred) && prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0) { /* * XXX: If faddr was bound to multicast group, * jailed raw socket will drop datagram. */ continue; } appended += rip_append(inp, ctx.ip, m, &ripsrc); } inpi.hash = 0; inpi.match = rip_inp_match2; MPASS(inpi.inp == NULL); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); if (jailed_without_vnet(inp->inp_cred) && !IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr)) && prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0) /* * Allow raw socket in jail to receive multicast; * assume process had PRIV_NETINET_RAW at attach, * and fall through into normal filter path if so. */ continue; /* * If this raw socket has multicast state, and we * have received a multicast, check if this socket * should receive it, as multicast filtering is now * the responsibility of the transport layer. */ if (inp->inp_moptions != NULL && IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr))) { /* * If the incoming datagram is for IGMP, allow it * through unconditionally to the raw socket. * * In the case of IGMPv2, we may not have explicitly * joined the group, and may have set IFF_ALLMULTI * on the interface. imo_multi_filter() may discard * control traffic we actually need to see. * * Userland multicast routing daemons should continue * filter the control traffic appropriately. */ int blocked; blocked = MCAST_PASS; if (proto != IPPROTO_IGMP) { struct sockaddr_in group; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ctx.ip->ip_dst; blocked = imo_multi_filter(inp->inp_moptions, ifp, (struct sockaddr *)&group, (struct sockaddr *)&ripsrc); } if (blocked != MCAST_PASS) { IPSTAT_INC(ips_notmember); continue; } } appended += rip_append(inp, ctx.ip, m, &ripsrc); } if (appended == 0 && ip_protox[ctx.ip->ip_p] == rip_input) { IPSTAT_INC(ips_noproto); IPSTAT_DEC(ips_delivered); icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0); } else m_freem(m); return (IPPROTO_DONE); } /* * Generate IP header and pass packet to ip_output. Tack on options user may * have setup with control call. */ static int rip_send(struct socket *so, int pruflags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct epoch_tracker et; struct ip *ip; struct inpcb *inp; in_addr_t *dst; int error, flags, cnt, hlen; u_char opttype, optlen, *cp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_send: inp == NULL")); if (control != NULL) { m_freem(control); control = NULL; } if (so->so_state & SS_ISCONNECTED) { if (nam) { error = EISCONN; m_freem(m); return (error); } dst = &inp->inp_faddr.s_addr; } else { if (nam == NULL) error = ENOTCONN; else if (nam->sa_family != AF_INET) error = EAFNOSUPPORT; else if (nam->sa_len != sizeof(struct sockaddr_in)) error = EINVAL; else error = 0; if (error != 0) { m_freem(m); return (error); } dst = &((struct sockaddr_in *)nam)->sin_addr.s_addr; } flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST; /* * If the user handed us a complete IP packet, use it. Otherwise, * allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) return(ENOBUFS); INP_RLOCK(inp); ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; if (inp->inp_flags & INP_DONTFRAG) ip->ip_off = htons(IP_DF); else ip->ip_off = htons(0); ip->ip_p = inp->inp_ip_p; ip->ip_len = htons(m->m_pkthdr.len); ip->ip_src = inp->inp_laddr; ip->ip_dst.s_addr = *dst; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_src, ip->ip_dst, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif if (jailed(inp->inp_cred)) { /* * prison_local_ip4() would be good enough but would * let a source of INADDR_ANY pass, which we do not * want to see from jails. */ if (ip->ip_src.s_addr == INADDR_ANY) { NET_EPOCH_ENTER(et); error = in_pcbladdr(inp, &ip->ip_dst, &ip->ip_src, inp->inp_cred); NET_EPOCH_EXIT(et); } else { error = prison_local_ip4(inp->inp_cred, &ip->ip_src); } if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } } ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return (EMSGSIZE); } if (m->m_pkthdr.len < sizeof(*ip)) { m_freem(m); return (EINVAL); } m = m_pullup(m, sizeof(*ip)); if (m == NULL) return (ENOMEM); ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; if (m->m_len < hlen) { m = m_pullup(m, hlen); if (m == NULL) return (EINVAL); ip = mtod(m, struct ip *); } #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_dst, ip->ip_src, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif INP_RLOCK(inp); /* * Don't allow both user specified and setsockopt options, * and don't allow packet length sizes that will crash. */ if ((hlen < sizeof (*ip)) || ((hlen > sizeof (*ip)) && inp->inp_options) || (ntohs(ip->ip_len) != m->m_pkthdr.len)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } error = prison_check_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Don't allow IP options which do not have the required * structure as specified in section 3.1 of RFC 791 on * pages 15-23. */ cp = (u_char *)(ip + 1); cnt = hlen - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opttype = cp[IPOPT_OPTVAL]; if (opttype == IPOPT_EOL) break; if (opttype == IPOPT_NOP) { optlen = 1; continue; } if (cnt < IPOPT_OLEN + sizeof(u_char)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(u_char) || optlen > cnt) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } } /* * This doesn't allow application to specify ID of zero, * but we got this limitation from the beginning of history. */ if (ip->ip_id == 0) ip_fillid(ip); /* * XXX prevent ip_output from overwriting header fields. */ flags |= IP_RAWOUTPUT; IPSTAT_INC(ips_rawout); } if (inp->inp_flags & INP_ONESBCAST) flags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif NET_EPOCH_ENTER(et); error = ip_output(m, inp->inp_options, NULL, flags, inp->inp_moptions, inp); NET_EPOCH_EXIT(et); INP_RUNLOCK(inp); return (error); } /* * Raw IP socket option processing. * * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could * only be created by a privileged process, and as such, socket option * operations to manage system properties on any raw socket were allowed to * take place without explicit additional access control checks. However, * raw sockets can now also be created in jail(), and therefore explicit * checks are now required. Likewise, raw sockets can be used by a process * after it gives up privilege, so some caution is required. For options * passed down to the IP layer via ip_ctloutput(), checks are assumed to be * performed in ip_ctloutput() and therefore no check occurs here. * Unilaterally checking priv_check() here breaks normal IP socket option * operations on raw sockets. * * When adding new socket options here, make sure to add access control * checks here as necessary. * * XXX-BZ inp locking? */ int rip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; if (sopt->sopt_level != IPPROTO_IP) { if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp->inp_inc.inc_fibnum = so->so_fibnum; return (0); } return (EINVAL); } error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: /* ADD actually returns the body... */ case IP_FW_GET: case IP_FW_TABLE_GETSIZE: case IP_FW_TABLE_LIST: case IP_FW_NAT_GET_CONFIG: case IP_FW_NAT_GET_LOG: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_GET: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); if (inp->inp_ip_p != IPPROTO_IGMP) return (EOPNOTSUPP); error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: case IP_FW_TABLE_FLUSH: case IP_FW_NAT_CFG: case IP_FW_NAT_DEL: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; case IP_RSVP_ON: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); if (inp->inp_ip_p != IPPROTO_RSVP) return (EOPNOTSUPP); error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_done(); break; case IP_RSVP_VIF_ON: case IP_RSVP_VIF_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); if (inp->inp_ip_p != IPPROTO_RSVP) return (EOPNOTSUPP); error = ip_rsvp_vif ? ip_rsvp_vif(so, sopt) : EINVAL; break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); if (inp->inp_ip_p != IPPROTO_IGMP) return (EOPNOTSUPP); error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } void rip_ctlinput(struct icmp *icmp) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) IPSEC_CTLINPUT(ipv4, icmp); #endif } static int rip_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("rip_attach: inp != NULL")); error = priv_check(td, PRIV_NETINET_RAW); if (error) return (error); if (proto >= IPPROTO_MAX || proto < 0) return EPROTONOSUPPORT; error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return (error); error = in_pcballoc(so, &V_ripcbinfo); if (error) return (error); inp = (struct inpcb *)so->so_pcb; inp->inp_ip_p = proto; inp->inp_ip_ttl = V_ip_defttl; INP_HASH_WLOCK(&V_ripcbinfo); rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static void rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("rip_detach: not closed")); /* Disable mrouter first */ if (so == V_ip_mrouter && ip_mrouter_done) ip_mrouter_done(); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); if (ip_rsvp_force_done) ip_rsvp_force_done(so); if (so == V_ip_rsvpd) ip_rsvp_done(); in_pcbdetach(inp); in_pcbfree(inp); } static void rip_dodisconnect(struct socket *so, struct inpcb *inp) { struct inpcbinfo *pcbinfo; pcbinfo = inp->inp_pcbinfo; INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); rip_delhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; rip_inshash(inp); INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); INP_WUNLOCK(inp); } static void rip_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_abort: inp == NULL")); rip_dodisconnect(so, inp); } static void rip_close(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_close: inp == NULL")); rip_dodisconnect(so, inp); } static int rip_disconnect(struct socket *so) { struct inpcb *inp; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); rip_dodisconnect(so, inp); return (0); } static int rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; int error; if (nam->sa_family != AF_INET) return (EAFNOSUPPORT); if (nam->sa_len != sizeof(*addr)) return (EINVAL); error = prison_check_ip4(td->td_ucred, &addr->sin_addr); if (error != 0) return (error); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_bind: inp == NULL")); if (CK_STAILQ_EMPTY(&V_ifnet) || (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || (addr->sin_addr.s_addr && (inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) return (EADDRNOTAVAIL); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); inp->inp_laddr = addr->sin_addr; rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static int rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; if (nam->sa_len != sizeof(*addr)) return (EINVAL); if (CK_STAILQ_EMPTY(&V_ifnet)) return (EADDRNOTAVAIL); if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_connect: inp == NULL")); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); inp->inp_faddr = addr->sin_addr; rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); soisconnected(so); INP_WUNLOCK(inp); return (0); } static int rip_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } #endif /* INET */ static int rip_pcblist(SYSCTL_HANDLER_ARGS) { struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_ripcbinfo, INPLOOKUP_RLOCKPCB); struct xinpgen xig; struct inpcb *inp; int error; if (req->newptr != 0) return (EPERM); if (req->oldptr == 0) { int n; n = V_ripcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if ((error = sysctl_wire_old_buffer(req, 0)) != 0) return (error); bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = V_ripcbinfo.ipi_count; xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); while ((inp = inp_next(&inpi)) != NULL) { if (inp->inp_gencnt <= xig.xig_gen && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); error = SYSCTL_OUT(req, &xi, sizeof xi); if (error) { INP_RUNLOCK(inp); break; } } } if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_ripcbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } return (error); } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); #ifdef INET struct protosw rip_protosw = { .pr_type = SOCK_RAW, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_ctloutput = rip_ctloutput, .pr_abort = rip_abort, .pr_attach = rip_attach, .pr_bind = rip_bind, .pr_connect = rip_connect, .pr_control = in_control, .pr_detach = rip_detach, .pr_disconnect = rip_disconnect, .pr_peeraddr = in_getpeeraddr, .pr_send = rip_send, .pr_shutdown = rip_shutdown, .pr_sockaddr = in_getsockaddr, .pr_sosetlabel = in_pcbsosetlabel, .pr_close = rip_close }; #endif /* INET */ diff --git a/sys/netinet6/in6_pcb.c b/sys/netinet6/in6_pcb.c index 81a3fd49a93d..6a5fbe93b58a 100644 --- a/sys/netinet6/in6_pcb.c +++ b/sys/netinet6/in6_pcb.c @@ -1,1125 +1,1125 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_pcb.c,v 1.31 2001/05/21 05:45:10 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include +#include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct ucred *cred) { struct socket *so = inp->inp_socket; u_int16_t lport = 0; int error, lookupflags = 0; #ifdef INVARIANTS struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #endif INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); error = prison_local_ip6(cred, laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0)); if (error) return(error); /* XXX: this is redundant when called from in6_pcbbind */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; inp->inp_flags |= INP_ANONPORT; error = in_pcb_lport(inp, NULL, &lport, cred, lookupflags); if (error != 0) return (error); inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } return (0); } int in6_pcbbind(struct inpcb *inp, struct sockaddr_in6 *sin6, struct ucred *cred) { struct socket *so = inp->inp_socket; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int error, lookupflags = 0; int reuseport = (so->so_options & SO_REUSEPORT); /* * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here * so that we don't have to add to the (already messy) code below. */ int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (sin6 == NULL) { if ((error = prison_local_ip6(cred, &inp->in6p_laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); } else { KASSERT(sin6->sin6_family == AF_INET6, ("%s: invalid address family for %p", __func__, sin6)); KASSERT(sin6->sin6_len == sizeof(*sin6), ("%s: invalid address length for %p", __func__, sin6)); if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if ((error = prison_local_ip6(cred, &sin6->sin6_addr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); lport = sin6->sin6_port; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow compepte duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; /* * XXX: How to deal with SO_REUSEPORT_LB here? * Treat same as SO_REUSEPORT for now. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct epoch_tracker et; struct ifaddr *ifa; sin6->sin6_port = 0; /* yech... */ NET_EPOCH_ENTER(et); if ((ifa = ifa_ifwithaddr((struct sockaddr *)sin6)) == NULL && (inp->inp_flags & INP_BINDANY) == 0) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } /* * XXX: bind to an anycast address might accidentally * cause sending a packet with anycast source address. * We should allow to bind to a deprecated address, since * the application dares to use it. */ if (ifa != NULL && ((struct in6_ifaddr *)ifa)->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY|IN6_IFF_DETACHED)) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } NET_EPOCH_EXIT(et); } if (lport) { struct inpcb *t; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) return (EACCES); if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, INPLOOKUP_WILDCARD, cred); if (t != NULL && (so->so_type != SOCK_STREAM || IN6_IS_ADDR_UNSPECIFIED(&t->in6p_faddr)) && (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || !IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) || (t->inp_flags2 & INP_REUSEPORT) || (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, lport, INPLOOKUP_WILDCARD, cred); if (t != NULL && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); } #endif } t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, lookupflags, cred); if (t && (reuseport & inp_so_options(t)) == 0 && (reuseport_lb & inp_so_options(t)) == 0) { return (EADDRINUSE); } #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, lport, lookupflags, cred); if (t && (reuseport & inp_so_options(t)) == 0 && (reuseport_lb & inp_so_options(t)) == 0 && (ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_vflag & INP_IPV6PROTO) != 0)) { return (EADDRINUSE); } } #endif } inp->in6p_laddr = sin6->sin6_addr; } if (lport == 0) { if ((error = in6_pcbsetport(&inp->in6p_laddr, inp, cred)) != 0) { /* Undo an address bind that may have occurred. */ inp->in6p_laddr = in6addr_any; return (error); } } else { inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } } return (0); } /* * Transform old in6_pcbconnect() into an inner subroutine for new * in6_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in6_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ static int in6_pcbladdr(struct inpcb *inp, struct sockaddr_in6 *sin6, struct in6_addr *plocal_addr6) { int error = 0; int scope_ambiguous = 0; struct in6_addr in6a; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); /* XXXRW: why? */ if (sin6->sin6_port == 0) return (EADDRNOTAVAIL); if (sin6->sin6_scope_id == 0 && !V_ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if (!CK_STAILQ_EMPTY(&V_in6_ifaddrhead)) { /* * If the destination address is UNSPECIFIED addr, * use the loopback addr, e.g ::1. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = in6addr_loopback; } if ((error = prison_remote_ip6(inp->inp_cred, &sin6->sin6_addr)) != 0) return (error); error = in6_selectsrc_socket(sin6, inp->in6p_outputopts, inp, inp->inp_cred, scope_ambiguous, &in6a, NULL); if (error) return (error); if (IN6_IS_ADDR_UNSPECIFIED(&in6a)) return (EHOSTUNREACH); /* * Do not update this earlier, in case we return with an error. * * XXX: this in6_selectsrc_socket result might replace the bound local * address with the address specified by setsockopt(IPV6_PKTINFO). * Is it the intended behavior? */ *plocal_addr6 = in6a; /* * Don't do pcblookup call here; return interface in * plocal_addr6 * and exit to caller, that will do the lookup. */ return (0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in6_pcbconnect(struct inpcb *inp, struct sockaddr_in6 *sin6, struct ucred *cred, - bool rehash) + bool rehash __unused) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct sockaddr_in6 laddr6; int error; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(sin6->sin6_family == AF_INET6, ("%s: invalid address family for %p", __func__, sin6)); KASSERT(sin6->sin6_len == sizeof(*sin6), ("%s: invalid address length for %p", __func__, sin6)); + KASSERT(IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr), + ("%s: inp is already connected", __func__)); bzero(&laddr6, sizeof(laddr6)); laddr6.sin6_family = AF_INET6; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib6_calc_software_hash(&inp->in6p_laddr, &sin6->sin6_addr, 0, sin6->sin6_port, inp->inp_socket->so_proto->pr_protocol, &hash_type); inp->inp_flowid = hash_val; inp->inp_flowtype = hash_type; } #endif /* * Call inner routine, to assign local interface address. * in6_pcbladdr() may automatically fill in sin6_scope_id. */ if ((error = in6_pcbladdr(inp, sin6, &laddr6.sin6_addr)) != 0) return (error); if (in6_pcblookup_hash_locked(pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &laddr6.sin6_addr : &inp->in6p_laddr, inp->inp_lport, 0, M_NODOM) != NULL) return (EADDRINUSE); if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (inp->inp_lport == 0) { - /* - * rehash was required to be true in the past for - * this case; retain that convention. However, - * we now call in_pcb_lport_dest rather than - * in6_pcbbind; the former does not insert into - * the hash table, the latter does. Change rehash - * to false to do the in_pcbinshash below. - */ - KASSERT(rehash == true, - ("Rehashing required for unbound inps")); - rehash = false; error = in_pcb_lport_dest(inp, (struct sockaddr *) &laddr6, &inp->inp_lport, (struct sockaddr *) sin6, sin6->sin6_port, cred, INPLOOKUP_WILDCARD); if (error) return (error); } inp->in6p_laddr = laddr6.sin6_addr; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; /* update flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; if (inp->inp_flags & IN6P_AUTOFLOWLABEL) inp->inp_flow |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); - if (rehash) { + if ((inp->inp_flags & INP_INHASHLIST) != 0) { in_pcbrehash(inp); } else { in_pcbinshash(inp); } return (0); } void in6_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); + KASSERT(inp->inp_smr == SMR_SEQ_INVALID, + ("%s: inp %p was already disconnected", __func__, inp)); + + in_pcbremhash_locked(inp); + + /* See the comment in in_pcbinshash(). */ + inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); + /* XXX-MJ torn writes are visible to SMR lookup */ memset(&inp->in6p_laddr, 0, sizeof(inp->in6p_laddr)); memset(&inp->in6p_faddr, 0, sizeof(inp->in6p_faddr)); inp->inp_fport = 0; /* clear flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; - in_pcbrehash(inp); } struct sockaddr * in6_sockaddr(in_port_t port, struct in6_addr *addr_p) { struct sockaddr_in6 *sin6; sin6 = malloc(sizeof *sin6, M_SONAME, M_WAITOK); bzero(sin6, sizeof *sin6); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = port; sin6->sin6_addr = *addr_p; (void)sa6_recoverscope(sin6); /* XXX: should catch errors */ return (struct sockaddr *)sin6; } struct sockaddr * in6_v4mapsin6_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in sin; struct sockaddr_in6 *sin6_p; bzero(&sin, sizeof sin); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = port; sin.sin_addr = *addr_p; sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); in6_sin_2_v4mapsin6(&sin, sin6_p); return (struct sockaddr *)sin6_p; } int in6_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->in6p_laddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->in6p_faddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_sockaddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getsockaddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif { /* scope issues will be handled in in6_getsockaddr(). */ error = in6_getsockaddr(so, nam); } return error; } int in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_peeraddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getpeeraddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif /* scope issues will be handled in in6_getpeeraddr(). */ error = in6_getpeeraddr(so, nam); return error; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. */ static bool inp_match6(const struct inpcb *inp, void *v __unused) { return ((inp->inp_vflag & INP_IPV6) != 0); } void in6_pcbnotify(struct inpcbinfo *pcbinfo, struct sockaddr_in6 *sa6_dst, u_int fport_arg, const struct sockaddr_in6 *src, u_int lport_arg, int errno, void *cmdarg, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, inp_match6, NULL); struct inpcb *inp; struct sockaddr_in6 sa6_src; u_short fport = fport_arg, lport = lport_arg; u_int32_t flowinfo; if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr)) return; /* * note that src can be NULL when we get notify by local fragmentation. */ sa6_src = (src == NULL) ? sa6_any : *src; flowinfo = sa6_src.sin6_flowinfo; while ((inp = inp_next(&inpi)) != NULL) { INP_WLOCK_ASSERT(inp); /* * If the error designates a new path MTU for a destination * and the application (associated with this socket) wanted to * know the value, notify. * XXX: should we avoid to notify the value to TCP sockets? */ if (errno == EMSGSIZE && cmdarg != NULL) ip6_notify_pmtu(inp, sa6_dst, *(uint32_t *)cmdarg); /* * Detect if we should notify the error. If no source and * destination ports are specified, but non-zero flowinfo and * local address match, notify the error. This is the case * when the error is delivered with an encrypted buffer * by ESP. Otherwise, just compare addresses and ports * as usual. */ if (lport == 0 && fport == 0 && flowinfo && inp->inp_socket != NULL && flowinfo == (inp->inp_flow & IPV6_FLOWLABEL_MASK) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) goto do_notify; else if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &sa6_dst->sin6_addr) || inp->inp_socket == 0 || (lport && inp->inp_lport != lport) || (!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) || (fport && inp->inp_fport != fport)) { continue; } do_notify: if (notify) (*notify)(inp, errno); } } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ struct inpcb * in6_pcblookup_local(struct inpcbinfo *pcbinfo, struct in6_addr *laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; int matchwild = 3, wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ - head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, + head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_wild) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_lport == lport) { /* Found. */ if (prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; CK_LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (!prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) continue; /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) wildcard++; if (!IN6_IS_ADDR_UNSPECIFIED( &inp->in6p_laddr)) { if (IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; else if (!IN6_ARE_ADDR_EQUAL( &inp->in6p_laddr, laddr)) continue; } else { if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } static bool in6_multi_match(const struct inpcb *inp, void *v __unused) { if ((inp->inp_vflag & INP_IPV6) && inp->in6p_moptions != NULL) return (true); else return (false); } void in6_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_RLOCKPCB, in6_multi_match, NULL); struct inpcb *inp; struct in6_multi *inm; struct in6_mfilter *imf; struct ip6_moptions *im6o; IN6_MULTI_LOCK_ASSERT(); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); im6o = inp->in6p_moptions; /* * Unselect the outgoing ifp for multicast if it * is being detached. */ if (im6o->im6o_multicast_ifp == ifp) im6o->im6o_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ restart: IP6_MFILTER_FOREACH(imf, &im6o->im6o_head) { if ((inm = imf->im6f_in6m) == NULL) continue; if (inm->in6m_ifp != ifp) continue; ip6_mfilter_remove(&im6o->im6o_head, imf); in6_leavegroup_locked(inm, NULL); ip6_mfilter_free(imf); goto restart; } } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in6_losing(struct inpcb *inp) { RO_INVALIDATE_CACHE(&inp->inp_route6); } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ struct inpcb * in6_rtchange(struct inpcb *inp, int errno __unused) { RO_INVALIDATE_CACHE(&inp->inp_route6); return inp; } static bool in6_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) { return (domain == M_NODOM || domain == grp->il_numa_domain); } static struct inpcb * in6_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, const struct in6_addr *faddr, uint16_t fport, const struct in6_addr *laddr, uint16_t lport, uint8_t domain) { const struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; INP_HASH_LOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; /* * Search for an LB group match based on the following criteria: * - prefer jailed groups to non-jailed groups * - prefer exact source address matches to wildcard matches * - prefer groups bound to the specified NUMA domain */ jail_exact = jail_wild = local_exact = local_wild = NULL; CK_LIST_FOREACH(grp, hdr, il_list) { bool injail; #ifdef INET if (!(grp->il_vflag & INP_IPV6)) continue; #endif if (grp->il_lport != lport) continue; injail = prison_flag(grp->il_cred, PR_IP6) != 0; if (injail && prison_check_ip6_locked(grp->il_cred->cr_prison, laddr) != 0) continue; if (IN6_ARE_ADDR_EQUAL(&grp->il6_laddr, laddr)) { if (injail) { jail_exact = grp; if (in6_pcblookup_lb_numa_match(grp, domain)) /* This is a perfect match. */ goto out; } else if (local_exact == NULL || in6_pcblookup_lb_numa_match(grp, domain)) { local_exact = grp; } } else if (IN6_IS_ADDR_UNSPECIFIED(&grp->il6_laddr)) { if (injail) { if (jail_wild == NULL || in6_pcblookup_lb_numa_match(grp, domain)) jail_wild = grp; } else if (local_wild == NULL || in6_pcblookup_lb_numa_match(grp, domain)) { local_wild = grp; } } } if (jail_exact != NULL) grp = jail_exact; else if (jail_wild != NULL) grp = jail_wild; else if (local_exact != NULL) grp = local_exact; else grp = local_wild; if (grp == NULL) return (NULL); out: return (grp->il_inp[INP6_PCBLBGROUP_PKTHASH(faddr, lport, fport) % grp->il_inpcnt]); } static struct inpcb * in6_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_short fport, struct in6_addr *laddr, u_short lport) { struct inpcbhead *head; struct inpcb *inp, *match; INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ match = NULL; - head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(faddr, lport, fport, + head = &pcbinfo->ipi_hash_exact[INP6_PCBHASH(faddr, lport, fport, pcbinfo->ipi_hashmask)]; - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_exact) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) return (inp); } return (match); } static struct inpcb * in6_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_short fport, struct in6_addr *laddr, u_short lport) { struct inpcbhead *head; struct inpcb *inp, *jail_wild, *local_exact, *local_wild; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ - head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, + head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, pcbinfo->ipi_hashmask)]; local_wild = local_exact = jail_wild = NULL; - CK_LIST_FOREACH(inp, head, inp_hash) { + CK_LIST_FOREACH(inp, head, inp_hash_wild) { bool injail; /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6) != 0; if (injail) { if (prison_check_ip6_locked( inp->inp_cred->cr_prison, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) return (inp); else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); return (NULL); } struct inpcb * in6_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport_arg, struct in6_addr *laddr, u_int lport_arg, int lookupflags, uint8_t numa_domain) { struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT(!IN6_IS_ADDR_UNSPECIFIED(faddr), ("%s: invalid foreign address", __func__)); KASSERT(!IN6_IS_ADDR_UNSPECIFIED(laddr), ("%s: invalid local address", __func__)); INP_HASH_LOCK_ASSERT(pcbinfo); inp = in6_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); if (inp != NULL) return (inp); if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { inp = in6_pcblookup_lbgroup(pcbinfo, faddr, fport, laddr, lport, numa_domain); if (inp == NULL) { inp = in6_pcblookup_hash_wild_locked(pcbinfo, faddr, fport, laddr, lport); } } return (inp); } static struct inpcb * in6_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, uint8_t numa_domain) { struct inpcb *inp; KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); smr_enter(pcbinfo->ipi_smr); inp = in6_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags & INPLOOKUP_WILDCARD, numa_domain); if (inp != NULL) { if (__predict_false(inp_smr_lock(inp, (lookupflags & INPLOOKUP_LOCKMASK)) == false)) inp = NULL; } else smr_exit(pcbinfo->ipi_smr); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. */ struct inpcb * in6_pcblookup(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp __unused) { return (in6_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, lookupflags, M_NODOM)); } struct inpcb * in6_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp __unused, struct mbuf *m) { return (in6_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, lookupflags, m->m_pkthdr.numa_domain)); } void init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m, int srcordst) { struct ip6_hdr *ip; ip = mtod(m, struct ip6_hdr *); bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = AF_INET6; sin6->sin6_addr = srcordst ? ip->ip6_dst : ip->ip6_src; (void)sa6_recoverscope(sin6); /* XXX: should catch errors... */ return; }