diff --git a/sbin/ipfw/ipfw.8 b/sbin/ipfw/ipfw.8 index 884797304b78..b7a55088c751 100644 --- a/sbin/ipfw/ipfw.8 +++ b/sbin/ipfw/ipfw.8 @@ -1,4916 +1,4958 @@ .\" .\" $FreeBSD$ .\" .Dd April 25, 2023 .Dt IPFW 8 .Os .Sh NAME .Nm ipfw , dnctl .Nd User interface for firewall, traffic shaper, packet scheduler, in-kernel NAT. .Sh SYNOPSIS .Ss FIREWALL CONFIGURATION .Nm .Op Fl cq .Cm add .Ar rule .Nm .Op Fl acdefnNStT .Op Cm set Ar N .Brq Cm list | show .Op Ar rule | first-last ... .Nm .Op Fl f | q .Op Cm set Ar N .Cm flush .Nm .Op Fl q .Op Cm set Ar N .Brq Cm delete | zero | resetlog .Op Ar number ... .Pp .Nm .Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ... .Nm .Cm set move .Op Cm rule .Ar number Cm to Ar number .Nm .Cm set swap Ar number number .Nm .Cm set show .Ss SYSCTL SHORTCUTS .Nm .Cm enable .Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive .Nm .Cm disable .Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive .Ss LOOKUP TABLES .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm create Ar create-options .Nm .Oo Cm set Ar N Oc Cm table .Brq Ar name | all .Cm destroy .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm modify Ar modify-options .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm swap Ar name .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm add Ar table-key Op Ar value .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm add Op Ar table-key Ar value ... .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm atomic add Op Ar table-key Ar value ... .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm delete Op Ar table-key ... .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm lookup Ar addr .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm lock .Nm .Oo Cm set Ar N Oc Cm table Ar name Cm unlock .Nm .Oo Cm set Ar N Oc Cm table .Brq Ar name | all .Cm list .Nm .Oo Cm set Ar N Oc Cm table .Brq Ar name | all .Cm info .Nm .Oo Cm set Ar N Oc Cm table .Brq Ar name | all .Cm detail .Nm .Oo Cm set Ar N Oc Cm table .Brq Ar name | all .Cm flush .Ss DUMMYNET CONFIGURATION (TRAFFIC SHAPER AND PACKET SCHEDULER) .Nm dnctl .Brq Cm pipe | queue | sched .Ar number .Cm config .Ar config-options .Nm dnctl .Op Fl s Op Ar field .Brq Cm pipe | queue | sched .Brq Cm delete | list | show .Op Ar number ... .Ss IN-KERNEL NAT .Nm .Op Fl q .Cm nat .Ar number .Cm config .Ar config-options .Nm .Cm nat .Ar number .Cm show .Brq Cm config | log .Ss STATEFUL IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION .Nm .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm create Ar create-options .Nm .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm config Ar config-options .Nm .Oo Cm set Ar N Oc Cm nat64lsn .Brq Ar name | all .Brq Cm list | show .Op Cm states .Nm .Oo Cm set Ar N Oc Cm nat64lsn .Brq Ar name | all .Cm destroy .Nm .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm stats Op Cm reset .Ss STATELESS IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION .Nm .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm create Ar create-options .Nm .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm config Ar config-options .Nm .Oo Cm set Ar N Oc Cm nat64stl .Brq Ar name | all .Brq Cm list | show .Nm .Oo Cm set Ar N Oc Cm nat64stl .Brq Ar name | all .Cm destroy .Nm .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm stats Op Cm reset .Ss XLAT464 CLAT IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION .Nm .Oo Cm set Ar N Oc Cm nat64clat Ar name Cm create Ar create-options .Nm .Oo Cm set Ar N Oc Cm nat64clat Ar name Cm config Ar config-options .Nm .Oo Cm set Ar N Oc Cm nat64clat .Brq Ar name | all .Brq Cm list | show .Nm .Oo Cm set Ar N Oc Cm nat64clat .Brq Ar name | all .Cm destroy .Nm .Oo Cm set Ar N Oc Cm nat64clat Ar name Cm stats Op Cm reset .Ss IPv6-to-IPv6 NETWORK PREFIX TRANSLATION .Nm .Oo Cm set Ar N Oc Cm nptv6 Ar name Cm create Ar create-options .Nm .Oo Cm set Ar N Oc Cm nptv6 .Brq Ar name | all .Brq Cm list | show .Nm .Oo Cm set Ar N Oc Cm nptv6 .Brq Ar name | all .Cm destroy .Nm .Oo Cm set Ar N Oc Cm nptv6 Ar name Cm stats Op Cm reset .Ss INTERNAL DIAGNOSTICS .Nm .Cm internal iflist .Nm .Cm internal talist .Nm .Cm internal vlist .Ss LIST OF RULES AND PREPROCESSING .Nm .Op Fl cfnNqS .Oo .Fl p Ar preproc .Oo .Ar preproc-flags .Oc .Oc .Ar pathname .Sh DESCRIPTION The .Nm utility is the user interface for controlling the .Xr ipfw 4 firewall, the .Xr dummynet 4 traffic shaper/packet scheduler, and the in-kernel NAT services. .Pp A firewall configuration, or .Em ruleset , is made of a list of .Em rules numbered from 1 to 65535. Packets are passed to the firewall from a number of different places in the protocol stack (depending on the source and destination of the packet, it is possible for the firewall to be invoked multiple times on the same packet). The packet passed to the firewall is compared against each of the rules in the .Em ruleset , in rule-number order (multiple rules with the same number are permitted, in which case they are processed in order of insertion). When a match is found, the action corresponding to the matching rule is performed. .Pp Depending on the action and certain system settings, packets can be reinjected into the firewall at some rule after the matching one for further processing. .Pp A ruleset always includes a .Em default rule (numbered 65535) which cannot be modified or deleted, and matches all packets. The action associated with the .Em default rule can be either .Cm deny or .Cm allow depending on how the kernel is configured. .Pp If the ruleset includes one or more rules with the .Cm keep-state , .Cm record-state , .Cm limit or .Cm set-limit option, the firewall will have a .Em stateful behaviour, i.e., upon a match it will create .Em dynamic rules , i.e., rules that match packets with the same 5-tuple (protocol, source and destination addresses and ports) as the packet which caused their creation. Dynamic rules, which have a limited lifetime, are checked at the first occurrence of a .Cm check-state , .Cm keep-state or .Cm limit rule, and are typically used to open the firewall on-demand to legitimate traffic only. Please note, that .Cm keep-state and .Cm limit imply implicit .Cm check-state for all packets (not only these matched by the rule) but .Cm record-state and .Cm set-limit have no implicit .Cm check-state . See the .Sx STATEFUL FIREWALL and .Sx EXAMPLES Sections below for more information on the stateful behaviour of .Nm . .Pp All rules (including dynamic ones) have a few associated counters: a packet count, a byte count, a log count and a timestamp indicating the time of the last match. Counters can be displayed or reset with .Nm commands. .Pp Each rule belongs to one of 32 different .Em sets , and there are .Nm commands to atomically manipulate sets, such as enable, disable, swap sets, move all rules in a set to another one, delete all rules in a set. These can be useful to install temporary configurations, or to test them. See Section .Sx SETS OF RULES for more information on .Em sets . .Pp Rules can be added with the .Cm add command; deleted individually or in groups with the .Cm delete command, and globally (except those in set 31) with the .Cm flush command; displayed, optionally with the content of the counters, using the .Cm show and .Cm list commands. Finally, counters can be reset with the .Cm zero and .Cm resetlog commands. .Ss COMMAND OPTIONS The following general options are available when invoking .Nm : .Bl -tag -width indent .It Fl a Show counter values when listing rules. The .Cm show command implies this option. .It Fl b Only show the action and the comment, not the body of a rule. Implies .Fl c . .It Fl c When entering or showing rules, print them in compact form, i.e., omitting the "ip from any to any" string when this does not carry any additional information. .It Fl d When listing, show dynamic rules in addition to static ones. .It Fl D When listing, show only dynamic states. When deleting, delete only dynamic states. .It Fl f Run without prompting for confirmation for commands that can cause problems if misused, i.e., .Cm flush . If there is no tty associated with the process, this is implied. The .Cm delete command with this flag ignores possible errors, i.e., nonexistent rule number. And for batched commands execution continues with the next command. .It Fl i When listing a table (see the .Sx LOOKUP TABLES section below for more information on lookup tables), format values as IP addresses. By default, values are shown as integers. .It Fl n Only check syntax of the command strings, without actually passing them to the kernel. .It Fl N Try to resolve addresses and service names in output. .It Fl q Be quiet when executing the .Cm add , .Cm nat , .Cm zero , .Cm resetlog or .Cm flush commands; (implies .Fl f ) . This is useful when updating rulesets by executing multiple .Nm commands in a script (e.g., .Ql sh\ /etc/rc.firewall ) , or by processing a file with many .Nm rules across a remote login session. It also stops a table add or delete from failing if the entry already exists or is not present. .Pp The reason why this option may be important is that for some of these actions, .Nm may print a message; if the action results in blocking the traffic to the remote client, the remote login session will be closed and the rest of the ruleset will not be processed. Access to the console would then be required to recover. .It Fl S When listing rules, show the .Em set each rule belongs to. If this flag is not specified, disabled rules will not be listed. .It Fl s Op Ar field When listing pipes, sort according to one of the four counters (total or current packets or bytes). .It Fl t When listing, show last match timestamp converted with .Fn ctime . .It Fl T When listing, show last match timestamp as seconds from the epoch. This form can be more convenient for postprocessing by scripts. .El .Ss LIST OF RULES AND PREPROCESSING To ease configuration, rules can be put into a file which is processed using .Nm as shown in the last synopsis line. An absolute .Ar pathname must be used. The file will be read line by line and applied as arguments to the .Nm utility. .Pp Optionally, a preprocessor can be specified using .Fl p Ar preproc where .Ar pathname is to be piped through. Useful preprocessors include .Xr cpp 1 and .Xr m4 1 . If .Ar preproc does not start with a slash .Pq Ql / as its first character, the usual .Ev PATH name search is performed. Care should be taken with this in environments where not all file systems are mounted (yet) by the time .Nm is being run (e.g.\& when they are mounted over NFS). Once .Fl p has been specified, any additional arguments are passed on to the preprocessor for interpretation. This allows for flexible configuration files (like conditionalizing them on the local hostname) and the use of macros to centralize frequently required arguments like IP addresses. .Ss TRAFFIC SHAPER CONFIGURATION The .Nm dnctl .Cm pipe , queue and .Cm sched commands are used to configure the traffic shaper and packet scheduler. See the .Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION Section below for details. .Pp If the world and the kernel get out of sync the .Nm ABI may break, preventing you from being able to add any rules. This can adversely affect the booting process. You can use .Nm .Cm disable .Cm firewall to temporarily disable the firewall to regain access to the network, allowing you to fix the problem. .Sh PACKET FLOW A packet is checked against the active ruleset in multiple places in the protocol stack, under control of several sysctl variables. These places and variables are shown below, and it is important to have this picture in mind in order to design a correct ruleset. .Bd -literal -offset indent ^ to upper layers V | | +----------->-----------+ ^ V [ip(6)_input] [ip(6)_output] net.inet(6).ip(6).fw.enable=1 | | ^ V [ether_demux] [ether_output_frame] net.link.ether.ipfw=1 | | +-->--[bdg_forward]-->--+ net.link.bridge.ipfw=1 ^ V | to devices | .Ed .Pp The number of times the same packet goes through the firewall can vary between 0 and 4 depending on packet source and destination, and system configuration. .Pp Note that as packets flow through the stack, headers can be stripped or added to it, and so they may or may not be available for inspection. E.g., incoming packets will include the MAC header when .Nm is invoked from .Cm ether_demux() , but the same packets will have the MAC header stripped off when .Nm is invoked from .Cm ip_input() or .Cm ip6_input() . .Pp Also note that each packet is always checked against the complete ruleset, irrespective of the place where the check occurs, or the source of the packet. If a rule contains some match patterns or actions which are not valid for the place of invocation (e.g.\& trying to match a MAC header within .Cm ip_input or .Cm ip6_input ), the match pattern will not match, but a .Cm not operator in front of such patterns .Em will cause the pattern to .Em always match on those packets. It is thus the responsibility of the programmer, if necessary, to write a suitable ruleset to differentiate among the possible places. .Cm skipto rules can be useful here, as an example: .Bd -literal -offset indent # packets from ether_demux or bdg_forward ipfw add 10 skipto 1000 all from any to any layer2 in # packets from ip_input ipfw add 10 skipto 2000 all from any to any not layer2 in # packets from ip_output ipfw add 10 skipto 3000 all from any to any not layer2 out # packets from ether_output_frame ipfw add 10 skipto 4000 all from any to any layer2 out .Ed .Pp (yes, at the moment there is no way to differentiate between ether_demux and bdg_forward). .Pp Also note that only actions .Cm allow , .Cm deny , .Cm netgraph , .Cm ngtee and related to .Cm dummynet are processed for .Cm layer2 frames and all other actions act as if they were .Cm allow for such frames. Full set of actions is supported for IP packets without .Cm layer2 headers only. For example, .Cm divert action does not divert .Cm layer2 frames. .Sh SYNTAX In general, each keyword or argument must be provided as a separate command line argument, with no leading or trailing spaces. Keywords are case-sensitive, whereas arguments may or may not be case-sensitive depending on their nature (e.g.\& uid's are, hostnames are not). .Pp Some arguments (e.g., port or address lists) are comma-separated lists of values. In this case, spaces after commas ',' are allowed to make the line more readable. You can also put the entire command (including flags) into a single argument. E.g., the following forms are equivalent: .Bd -literal -offset indent ipfw -q add deny src-ip 10.0.0.0/24,127.0.0.1/8 ipfw -q add deny src-ip 10.0.0.0/24, 127.0.0.1/8 ipfw "-q add deny src-ip 10.0.0.0/24, 127.0.0.1/8" .Ed .Sh RULE FORMAT The format of firewall rules is the following: .Bd -ragged -offset indent .Bk -words .Op Ar rule_number .Op Cm set Ar set_number .Op Cm prob Ar match_probability .Ar action .Op Cm log Op Cm logamount Ar number .Op Cm altq Ar queue .Oo .Bro Cm tag | untag .Brc Ar number .Oc .Ar body .Ek .Ed .Pp where the body of the rule specifies which information is used for filtering packets, among the following: .Pp .Bl -tag -width "Source and dest. addresses and ports" -offset XXX -compact .It Layer2 header fields When available .It IPv4 and IPv6 Protocol SCTP, TCP, UDP, ICMP, etc. .It Source and dest. addresses and ports .It Direction See Section .Sx PACKET FLOW .It Transmit and receive interface By name or address .It Misc. IP header fields Version, type of service, datagram length, identification, fragmentation flags, Time To Live .It IP options .It IPv6 Extension headers Fragmentation, Hop-by-Hop options, Routing Headers, Source routing rthdr0, Mobile IPv6 rthdr2, IPSec options. .It IPv6 Flow-ID .It Misc. TCP header fields TCP flags (SYN, FIN, ACK, RST, etc.), sequence number, acknowledgment number, window .It TCP options .It ICMP types for ICMP packets .It ICMP6 types for ICMP6 packets .It User/group ID When the packet can be associated with a local socket. .It Divert status Whether a packet came from a divert socket (e.g., .Xr natd 8 ) . .It Fib annotation state Whether a packet has been tagged for using a specific FIB (routing table) in future forwarding decisions. .El .Pp Note that some of the above information, e.g.\& source MAC or IP addresses and TCP/UDP ports, can be easily spoofed, so filtering on those fields alone might not guarantee the desired results. .Bl -tag -width indent .It Ar rule_number Each rule is associated with a .Ar rule_number in the range 1..65535, with the latter reserved for the .Em default rule. Rules are checked sequentially by rule number. Multiple rules can have the same number, in which case they are checked (and listed) according to the order in which they have been added. If a rule is entered without specifying a number, the kernel will assign one in such a way that the rule becomes the last one before the .Em default rule. Automatic rule numbers are assigned by incrementing the last non-default rule number by the value of the sysctl variable .Ar net.inet.ip.fw.autoinc_step which defaults to 100. If this is not possible (e.g.\& because we would go beyond the maximum allowed rule number), the number of the last non-default value is used instead. .It Cm set Ar set_number Each rule is associated with a .Ar set_number in the range 0..31. Sets can be individually disabled and enabled, so this parameter is of fundamental importance for atomic ruleset manipulation. It can be also used to simplify deletion of groups of rules. If a rule is entered without specifying a set number, set 0 will be used. .br Set 31 is special in that it cannot be disabled, and rules in set 31 are not deleted by the .Nm ipfw flush command (but you can delete them with the .Nm ipfw delete set 31 command). Set 31 is also used for the .Em default rule. .It Cm prob Ar match_probability A match is only declared with the specified probability (floating point number between 0 and 1). This can be useful for a number of applications such as random packet drop or (in conjunction with .Nm dummynet ) to simulate the effect of multiple paths leading to out-of-order packet delivery. .Pp Note: this condition is checked before any other condition, including ones such as .Cm keep-state or .Cm check-state which might have side effects. .It Cm log Op Cm logamount Ar number Packets matching a rule with the .Cm log keyword will be made available for logging in two ways: if the sysctl variable .Va net.inet.ip.fw.verbose is set to 0 (default), one can use .Xr bpf 4 attached to the .Li ipfw0 pseudo interface. This pseudo interface can be created manually after a system boot by using the following command: .Bd -literal -offset indent # ifconfig ipfw0 create .Ed .Pp Or, automatically at boot time by adding the following line to the .Xr rc.conf 5 file: .Bd -literal -offset indent firewall_logif="YES" .Ed .Pp There is zero overhead when no .Xr bpf 4 is attached to the pseudo interface. .Pp If .Va net.inet.ip.fw.verbose is set to 1, packets will be logged to .Xr syslogd 8 with a .Dv LOG_SECURITY facility up to a maximum of .Cm logamount packets. If no .Cm logamount is specified, the limit is taken from the sysctl variable .Va net.inet.ip.fw.verbose_limit . In both cases, a value of 0 means unlimited logging. .Pp Once the limit is reached, logging can be re-enabled by clearing the logging counter or the packet counter for that entry, see the .Cm resetlog command. .Pp Note: logging is done after all other packet matching conditions have been successfully verified, and before performing the final action (accept, deny, etc.) on the packet. .It Cm tag Ar number When a packet matches a rule with the .Cm tag keyword, the numeric tag for the given .Ar number in the range 1..65534 will be attached to the packet. The tag acts as an internal marker (it is not sent out over the wire) that can be used to identify these packets later on. This can be used, for example, to provide trust between interfaces and to start doing policy-based filtering. A packet can have multiple tags at the same time. Tags are "sticky", meaning once a tag is applied to a packet by a matching rule it exists until explicit removal. Tags are kept with the packet everywhere within the kernel, but are -lost when packet leaves the kernel, for example, on transmitting +lost when the packet leaves the kernel, for example, on transmitting packet out to the network or sending packet to a .Xr divert 4 socket. .Pp To check for previously applied tags, use the .Cm tagged rule option. To delete previously applied tag, use the .Cm untag keyword. .Pp Note: since tags are kept with the packet everywhere in kernelspace, they can be set and unset anywhere in the kernel network subsystem (using the .Xr mbuf_tags 9 facility), not only by means of the .Xr ipfw 4 .Cm tag and .Cm untag keywords. For example, there can be a specialized .Xr netgraph 4 node doing traffic analyzing and tagging for later inspecting in firewall. .It Cm untag Ar number When a packet matches a rule with the .Cm untag keyword, the tag with the number .Ar number is searched among the tags attached to this packet and, if found, removed from it. Other tags bound to packet, if present, are left untouched. +.It Cm setmark Ar value | tablearg +When a packet matches a rule with the +.Cm setmark +keyword, a 32-bit numeric mark is assigned to the packet. +The mark is an extension to the tags. +As tags, mark is "sticky" so the value is kept the same within the kernel and +is lost when the packet leaves the kernel. +Unlike tags, mark can be matched as a lookup table key or compared with bitwise +mask applied against another value. +Each packet can have only one mark, so +.Cm setmark +always overwrites the previous mark value. +.Pp +The initial mark value is 0. +To check the current mark value, use the +.Cm mark +rule option. +Mark +.Ar value +can be entered as decimal or hexadecimal (if prefixed by 0x), and they +are always printed as hexadecimal. .It Cm altq Ar queue When a packet matches a rule with the .Cm altq keyword, the ALTQ identifier for the given .Ar queue (see .Xr altq 4 ) will be attached. Note that this ALTQ tag is only meaningful for packets going "out" of IPFW, and not being rejected or going to divert sockets. Note that if there is insufficient memory at the time the packet is processed, it will not be tagged, so it is wise to make your ALTQ "default" queue policy account for this. If multiple .Cm altq rules match a single packet, only the first one adds the ALTQ classification tag. In doing so, traffic may be shaped by using .Cm count Cm altq Ar queue rules for classification early in the ruleset, then later applying the filtering decision. For example, .Cm check-state and .Cm keep-state rules may come later and provide the actual filtering decisions in addition to the fallback ALTQ tag. .Pp You must run .Xr pfctl 8 to set up the queues before IPFW will be able to look them up by name, and if the ALTQ disciplines are rearranged, the rules in containing the queue identifiers in the kernel will likely have gone stale and need to be reloaded. Stale queue identifiers will probably result in misclassification. .Pp All system ALTQ processing can be turned on or off via .Nm .Cm enable Ar altq and .Nm .Cm disable Ar altq . The usage of .Va net.inet.ip.fw.one_pass is irrelevant to ALTQ traffic shaping, as the actual rule action is followed always after adding an ALTQ tag. .El .Ss RULE ACTIONS A rule can be associated with one of the following actions, which will be executed when the packet matches the body of the rule. .Bl -tag -width indent .It Cm allow | accept | pass | permit Allow packets that match rule. The search terminates. .It Cm check-state Op Ar :flowname | Cm :any Checks the packet against the dynamic ruleset. If a match is found, execute the action associated with the rule which generated this dynamic rule, otherwise move to the next rule. .br .Cm Check-state rules do not have a body. If no .Cm check-state rule is found, the dynamic ruleset is checked at the first .Cm keep-state or .Cm limit rule. The .Ar :flowname is symbolic name assigned to dynamic rule by .Cm keep-state opcode. The special flowname .Cm :any can be used to ignore states flowname when matching. The .Cm :default keyword is special name used for compatibility with old rulesets. .It Cm count Update counters for all packets that match rule. The search continues with the next rule. .It Cm deny | drop Discard packets that match this rule. The search terminates. .It Cm divert Ar port Divert packets that match this rule to the .Xr divert 4 socket bound to port .Ar port . The search terminates. .It Cm fwd | forward Ar ipaddr | tablearg Ns Op , Ns Ar port Change the next-hop on matching packets to .Ar ipaddr , which can be an IP address or a host name. The next hop can also be supplied by the last table looked up for the packet by using the .Cm tablearg keyword instead of an explicit address. The search terminates if this rule matches. .Pp If .Ar ipaddr is a local address, then matching packets will be forwarded to .Ar port (or the port number in the packet if one is not specified in the rule) on the local machine. .br If .Ar ipaddr is not a local address, then the port number (if specified) is ignored, and the packet will be forwarded to the remote address, using the route as found in the local routing table for that IP. .br A .Ar fwd rule will not match layer2 packets (those received on ether_input, ether_output, or bridged). .br The .Cm fwd action does not change the contents of the packet at all. In particular, the destination address remains unmodified, so packets forwarded to another system will usually be rejected by that system unless there is a matching rule on that system to capture them. For packets forwarded locally, the local address of the socket will be set to the original destination address of the packet. This makes the .Xr netstat 1 entry look rather weird but is intended for use with transparent proxy servers. .It Cm nat Ar nat_nr | global | tablearg Pass packet to a nat instance (for network address translation, address redirect, etc.): see the .Sx NETWORK ADDRESS TRANSLATION (NAT) Section for further information. .It Cm nat64lsn Ar name Pass packet to a stateful NAT64 instance (for IPv6/IPv4 network address and protocol translation): see the .Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION Section for further information. .It Cm nat64stl Ar name Pass packet to a stateless NAT64 instance (for IPv6/IPv4 network address and protocol translation): see the .Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION Section for further information. .It Cm nat64clat Ar name Pass packet to a CLAT NAT64 instance (for client-side IPv6/IPv4 network address and protocol translation): see the .Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION Section for further information. .It Cm nptv6 Ar name Pass packet to a NPTv6 instance (for IPv6-to-IPv6 network prefix translation): see the .Sx IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6) Section for further information. .It Cm pipe Ar pipe_nr Pass packet to a .Nm dummynet .Dq pipe (for bandwidth limitation, delay, etc.). See the .Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION Section for further information. The search terminates; however, on exit from the pipe and if the .Xr sysctl 8 variable .Va net.inet.ip.fw.one_pass is not set, the packet is passed again to the firewall code starting from the next rule. .It Cm queue Ar queue_nr Pass packet to a .Nm dummynet .Dq queue (for bandwidth limitation using WF2Q+). .It Cm reject (Deprecated). Synonym for .Cm unreach host . .It Cm reset Discard packets that match this rule, and if the packet is a TCP packet, try to send a TCP reset (RST) notice. The search terminates. .It Cm reset6 Discard packets that match this rule, and if the packet is a TCP packet, try to send a TCP reset (RST) notice. The search terminates. .It Cm skipto Ar number | tablearg Skip all subsequent rules numbered less than .Ar number . The search continues with the first rule numbered .Ar number or higher. It is possible to use the .Cm tablearg keyword with a skipto for a .Em computed skipto. Skipto may work either in O(log(N)) or in O(1) depending on amount of memory and/or sysctl variables. See the .Sx SYSCTL VARIABLES section for more details. .It Cm call Ar number | tablearg The current rule number is saved in the internal stack and ruleset processing continues with the first rule numbered .Ar number or higher. If later a rule with the .Cm return action is encountered, the processing returns to the first rule with number of this .Cm call rule plus one or higher (the same behaviour as with packets returning from .Xr divert 4 socket after a .Cm divert action). This could be used to make somewhat like an assembly language .Dq subroutine calls to rules with common checks for different interfaces, etc. .Pp Rule with any number could be called, not just forward jumps as with .Cm skipto . So, to prevent endless loops in case of mistakes, both .Cm call and .Cm return actions don't do any jumps and simply go to the next rule if memory cannot be allocated or stack overflowed/underflowed. .Pp Internally stack for rule numbers is implemented using .Xr mbuf_tags 9 facility and currently has size of 16 entries. As mbuf tags are lost when packet leaves the kernel, .Cm divert should not be used in subroutines to avoid endless loops and other undesired effects. .It Cm return Takes rule number saved to internal stack by the last .Cm call action and returns ruleset processing to the first rule with number greater than number of corresponding .Cm call rule. See description of the .Cm call action for more details. .Pp Note that .Cm return rules usually end a .Dq subroutine and thus are unconditional, but .Nm command-line utility currently requires every action except .Cm check-state to have body. While it is sometimes useful to return only on some packets, usually you want to print just .Dq return for readability. A workaround for this is to use new syntax and .Fl c switch: .Bd -literal -offset indent # Add a rule without actual body ipfw add 2999 return via any # List rules without "from any to any" part ipfw -c list .Ed .Pp This cosmetic annoyance may be fixed in future releases. .It Cm tee Ar port Send a copy of packets matching this rule to the .Xr divert 4 socket bound to port .Ar port . The search continues with the next rule. .It Cm unreach Ar code Op mtu Discard packets that match this rule, and try to send an ICMP unreachable notice with code .Ar code , where .Ar code is a number from 0 to 255, or one of these aliases: .Cm net , host , protocol , port , .Cm needfrag , srcfail , net-unknown , host-unknown , .Cm isolated , net-prohib , host-prohib , tosnet , .Cm toshost , filter-prohib , host-precedence or .Cm precedence-cutoff . The .Cm needfrag code may have an optional .Ar mtu parameter. If specified, the MTU value will be put into generated ICMP packet. The search terminates. .It Cm unreach6 Ar code Discard packets that match this rule, and try to send an ICMPv6 unreachable notice with code .Ar code , where .Ar code is a number from 0, 1, 3 or 4, or one of these aliases: .Cm no-route, admin-prohib, address or .Cm port . The search terminates. .It Cm netgraph Ar cookie Divert packet into netgraph with given .Ar cookie . The search terminates. If packet is later returned from netgraph it is either accepted or continues with the next rule, depending on .Va net.inet.ip.fw.one_pass sysctl variable. .It Cm ngtee Ar cookie A copy of packet is diverted into netgraph, original packet continues with the next rule. See .Xr ng_ipfw 4 for more information on .Cm netgraph and .Cm ngtee actions. .It Cm setfib Ar fibnum | tablearg The packet is tagged so as to use the FIB (routing table) .Ar fibnum in any subsequent forwarding decisions. In the current implementation, this is limited to the values 0 through 15, see .Xr setfib 2 . Processing continues at the next rule. It is possible to use the .Cm tablearg keyword with setfib. If the tablearg value is not within the compiled range of fibs, the packet's fib is set to 0. .It Cm setdscp Ar DSCP | number | tablearg Set specified DiffServ codepoint for an IPv4/IPv6 packet. Processing continues at the next rule. Supported values are: .Pp .Cm cs0 .Pq Dv 000000 , .Cm cs1 .Pq Dv 001000 , .Cm cs2 .Pq Dv 010000 , .Cm cs3 .Pq Dv 011000 , .Cm cs4 .Pq Dv 100000 , .Cm cs5 .Pq Dv 101000 , .Cm cs6 .Pq Dv 110000 , .Cm cs7 .Pq Dv 111000 , .Cm af11 .Pq Dv 001010 , .Cm af12 .Pq Dv 001100 , .Cm af13 .Pq Dv 001110 , .Cm af21 .Pq Dv 010010 , .Cm af22 .Pq Dv 010100 , .Cm af23 .Pq Dv 010110 , .Cm af31 .Pq Dv 011010 , .Cm af32 .Pq Dv 011100 , .Cm af33 .Pq Dv 011110 , .Cm af41 .Pq Dv 100010 , .Cm af42 .Pq Dv 100100 , .Cm af43 .Pq Dv 100110 , .Cm va .Pq Dv 101100 , .Cm ef .Pq Dv 101110 , .Cm be .Pq Dv 000000 . Additionally, DSCP value can be specified by number (0..63). It is also possible to use the .Cm tablearg keyword with setdscp. If the tablearg value is not within the 0..63 range, lower 6 bits of supplied value are used. .It Cm tcp-setmss Ar mss Set the Maximum Segment Size (MSS) in the TCP segment to value .Ar mss . The kernel module .Cm ipfw_pmod should be loaded or kernel should have .Cm options IPFIREWALL_PMOD to be able use this action. This command does not change a packet if original MSS value is lower than specified value. Both TCP over IPv4 and over IPv6 are supported. Regardless of matched a packet or not by the .Cm tcp-setmss rule, the search continues with the next rule. .It Cm reass Queue and reassemble IPv4 fragments. If the packet is not fragmented, counters are updated and processing continues with the next rule. If the packet is the last logical fragment, the packet is reassembled and, if .Va net.inet.ip.fw.one_pass is set to 0, processing continues with the next rule. Otherwise, the packet is allowed to pass and the search terminates. If the packet is a fragment in the middle of a logical group of fragments, it is consumed and processing stops immediately. .Pp Fragment handling can be tuned via .Va net.inet.ip.maxfragpackets and .Va net.inet.ip.maxfragsperpacket which limit, respectively, the maximum number of processable fragments (default: 800) and the maximum number of fragments per packet (default: 16). .Pp NOTA BENE: since fragments do not contain port numbers, they should be avoided with the .Nm reass rule. Alternatively, direction-based (like .Nm in / .Nm out ) and source-based (like .Nm via ) match patterns can be used to select fragments. .Pp Usually a simple rule like: .Bd -literal -offset indent # reassemble incoming fragments ipfw add reass all from any to any in .Ed .Pp is all you need at the beginning of your ruleset. .It Cm abort Discard packets that match this rule, and if the packet is an SCTP packet, try to send an SCTP packet containing an ABORT chunk. The search terminates. .It Cm abort6 Discard packets that match this rule, and if the packet is an SCTP packet, try to send an SCTP packet containing an ABORT chunk. The search terminates. .El .Ss RULE BODY The body of a rule contains zero or more patterns (such as specific source and destination addresses or ports, protocol options, incoming or outgoing interfaces, etc.) that the packet must match in order to be recognised. In general, the patterns are connected by (implicit) .Cm and operators -- i.e., all must match in order for the rule to match. Individual patterns can be prefixed by the .Cm not operator to reverse the result of the match, as in .Pp .Dl "ipfw add 100 allow ip from not 1.2.3.4 to any" .Pp Additionally, sets of alternative match patterns .Pq Em or-blocks can be constructed by putting the patterns in lists enclosed between parentheses ( ) or braces { }, and using the .Cm or operator as follows: .Pp .Dl "ipfw add 100 allow ip from { x or not y or z } to any" .Pp Only one level of parentheses is allowed. Beware that most shells have special meanings for parentheses or braces, so it is advisable to put a backslash \\ in front of them to prevent such interpretations. .Pp The body of a rule must in general include a source and destination address specifier. The keyword .Ar any can be used in various places to specify that the content of a required field is irrelevant. .Pp The rule body has the following format: .Bd -ragged -offset indent .Op Ar proto Cm from Ar src Cm to Ar dst .Op Ar options .Ed .Pp The first part (proto from src to dst) is for backward compatibility with earlier versions of .Fx . In modern .Fx any match pattern (including MAC headers, IP protocols, addresses and ports) can be specified in the .Ar options section. .Pp Rule fields have the following meaning: .Bl -tag -width indent .It Ar proto : protocol | Cm { Ar protocol Cm or ... } .It Ar protocol : Oo Cm not Oc Ar protocol-name | protocol-number An IP protocol specified by number or name (for a complete list see .Pa /etc/protocols ) , or one of the following keywords: .Bl -tag -width indent .It Cm ip4 | ipv4 Matches IPv4 packets. .It Cm ip6 | ipv6 Matches IPv6 packets. .It Cm ip | all Matches any packet. .El .Pp The .Cm ipv6 in .Cm proto option will be treated as inner protocol. And, the .Cm ipv4 is not available in .Cm proto option. .Pp The .Cm { Ar protocol Cm or ... } format (an .Em or-block ) is provided for convenience only but its use is deprecated. .It Ar src No and Ar dst : Bro Cm addr | Cm { Ar addr Cm or ... } Brc Op Oo Cm not Oc Ar ports An address (or a list, see below) optionally followed by .Ar ports specifiers. .Pp The second format .Em ( or-block with multiple addresses) is provided for convenience only and its use is discouraged. .It Ar addr : Oo Cm not Oc Bro .Cm any | me | me6 | .Cm table Ns Pq Ar name Ns Op , Ns Ar value .Ar | addr-list | addr-set .Brc .Bl -tag -width indent .It Cm any Matches any IP address. .It Cm me Matches any IP address configured on an interface in the system. .It Cm me6 Matches any IPv6 address configured on an interface in the system. The address list is evaluated at the time the packet is analysed. .It Cm table Ns Pq Ar name Ns Op , Ns Ar value Matches any IPv4 or IPv6 address for which an entry exists in the lookup table .Ar number . If an optional 32-bit unsigned .Ar value is also specified, an entry will match only if it has this value. See the .Sx LOOKUP TABLES section below for more information on lookup tables. .El .It Ar addr-list : ip-addr Ns Op Ns , Ns Ar addr-list .It Ar ip-addr : A host or subnet address specified in one of the following ways: .Bl -tag -width indent .It Ar numeric-ip | hostname Matches a single IPv4 address, specified as dotted-quad or a hostname. Hostnames are resolved at the time the rule is added to the firewall list. .It Ar addr Ns / Ns Ar masklen Matches all addresses with base .Ar addr (specified as an IP address, a network number, or a hostname) and mask width of .Cm masklen bits. As an example, 1.2.3.4/25 or 1.2.3.0/25 will match all IP numbers from 1.2.3.0 to 1.2.3.127 . .It Ar addr Ns : Ns Ar mask Matches all addresses with base .Ar addr (specified as an IP address, a network number, or a hostname) and the mask of .Ar mask , specified as a dotted quad. As an example, 1.2.3.4:255.0.255.0 or 1.0.3.0:255.0.255.0 will match 1.*.3.*. This form is advised only for non-contiguous masks. It is better to resort to the .Ar addr Ns / Ns Ar masklen format for contiguous masks, which is more compact and less error-prone. .El .It Ar addr-set : addr Ns Oo Ns / Ns Ar masklen Oc Ns Cm { Ns Ar list Ns Cm } .It Ar list : Bro Ar num | num-num Brc Ns Op Ns , Ns Ar list Matches all addresses with base address .Ar addr (specified as an IP address, a network number, or a hostname) and whose last byte is in the list between braces { } . Note that there must be no spaces between braces and numbers (spaces after commas are allowed). Elements of the list can be specified as single entries or ranges. The .Ar masklen field is used to limit the size of the set of addresses, and can have any value between 24 and 32. If not specified, it will be assumed as 24. .br This format is particularly useful to handle sparse address sets within a single rule. Because the matching occurs using a bitmask, it takes constant time and dramatically reduces the complexity of rulesets. .br As an example, an address specified as 1.2.3.4/24{128,35-55,89} or 1.2.3.0/24{128,35-55,89} will match the following IP addresses: .br 1.2.3.128, 1.2.3.35 to 1.2.3.55, 1.2.3.89 . .It Ar addr6-list : ip6-addr Ns Op Ns , Ns Ar addr6-list .It Ar ip6-addr : A host or subnet specified one of the following ways: .Bl -tag -width indent .It Ar numeric-ip | hostname Matches a single IPv6 address as allowed by .Xr inet_pton 3 or a hostname. Hostnames are resolved at the time the rule is added to the firewall list. .It Ar addr Ns / Ns Ar masklen Matches all IPv6 addresses with base .Ar addr (specified as allowed by .Xr inet_pton 3 or a hostname) and mask width of .Cm masklen bits. .It Ar addr Ns / Ns Ar mask Matches all IPv6 addresses with base .Ar addr (specified as allowed by .Xr inet_pton 3 or a hostname) and the mask of .Ar mask , specified as allowed by .Xr inet_pton 3 . As an example, fe::640:0:0/ffff::ffff:ffff:0:0 will match fe:*:*:*:0:640:*:*. This form is advised only for non-contiguous masks. It is better to resort to the .Ar addr Ns / Ns Ar masklen format for contiguous masks, which is more compact and less error-prone. .El .Pp No support for sets of IPv6 addresses is provided because IPv6 addresses are typically random past the initial prefix. .It Ar ports : Bro Ar port | port Ns \&- Ns Ar port Ns Brc Ns Op , Ns Ar ports For protocols which support port numbers (such as SCTP, TCP and UDP), optional .Cm ports may be specified as one or more ports or port ranges, separated by commas but no spaces, and an optional .Cm not operator. The .Ql \&- notation specifies a range of ports (including boundaries). .Pp Service names (from .Pa /etc/services ) may be used instead of numeric port values. The length of the port list is limited to 30 ports or ranges, though one can specify larger ranges by using an .Em or-block in the .Cm options section of the rule. .Pp A backslash .Pq Ql \e can be used to escape the dash .Pq Ql - character in a service name (from a shell, the backslash must be typed twice to avoid the shell itself interpreting it as an escape character). .Pp .Dl "ipfw add count tcp from any ftp\e\e-data-ftp to any" .Pp Fragmented packets which have a non-zero offset (i.e., not the first fragment) will never match a rule which has one or more port specifications. See the .Cm frag option for details on matching fragmented packets. .El .Ss RULE OPTIONS (MATCH PATTERNS) Additional match patterns can be used within rules. Zero or more of these so-called .Em options can be present in a rule, optionally prefixed by the .Cm not operand, and possibly grouped into .Em or-blocks . .Pp The following match patterns can be used (listed in alphabetical order): .Bl -tag -width indent .It Cm // this is a comment . Inserts the specified text as a comment in the rule. Everything following // is considered as a comment and stored in the rule. You can have comment-only rules, which are listed as having a .Cm count action followed by the comment. .It Cm bridged Alias for .Cm layer2 . .It Cm defer-immediate-action | defer-action A rule with this option will not perform normal action upon a match. This option is intended to be used with .Cm record-state or .Cm keep-state as the dynamic rule, created but ignored on match, will work as intended. Rules with both .Cm record-state and .Cm defer-immediate-action create a dynamic rule and continue with the next rule without actually performing the action part of this rule. When the rule is later activated via the state table, the action is performed as usual. .It Cm diverted Matches only packets generated by a divert socket. .It Cm diverted-loopback Matches only packets coming from a divert socket back into the IP stack input for delivery. .It Cm diverted-output Matches only packets going from a divert socket back outward to the IP stack output for delivery. .It Cm dst-ip Ar ip-address Matches IPv4 packets whose destination IP is one of the address(es) specified as argument. .It Bro Cm dst-ip6 | dst-ipv6 Brc Ar ip6-address Matches IPv6 packets whose destination IP is one of the address(es) specified as argument. .It Cm dst-port Ar ports Matches IP packets whose destination port is one of the port(s) specified as argument. .It Cm established Matches TCP packets that have the RST or ACK bits set. .It Cm ext6hdr Ar header Matches IPv6 packets containing the extended header given by .Ar header . Supported headers are: .Pp Fragment, .Pq Cm frag , Hop-to-hop options .Pq Cm hopopt , any type of Routing Header .Pq Cm route , Source routing Routing Header Type 0 .Pq Cm rthdr0 , Mobile IPv6 Routing Header Type 2 .Pq Cm rthdr2 , Destination options .Pq Cm dstopt , IPSec authentication headers .Pq Cm ah , and IPsec encapsulated security payload headers .Pq Cm esp . .It Cm fib Ar fibnum Matches a packet that has been tagged to use the given FIB (routing table) number. .It Cm flow Ar table Ns Pq Ar name Ns Op , Ns Ar value Search for the flow entry in lookup table .Ar name . If not found, the match fails. Otherwise, the match succeeds and .Cm tablearg is set to the value extracted from the table. .Pp This option can be useful to quickly dispatch traffic based on certain packet fields. See the .Sx LOOKUP TABLES section below for more information on lookup tables. .It Cm flow-id Ar labels Matches IPv6 packets containing any of the flow labels given in .Ar labels . .Ar labels is a comma separated list of numeric flow labels. .It Cm dst-mac Ar table Ns Pq Ar name Ns Op , Ns Ar value Search for the destination MAC address entry in lookup table .Ar name . If not found, the match fails. Otherwise, the match succeeds and .Cm tablearg is set to the value extracted from the table. .It Cm src-mac Ar table Ns Pq Ar name Ns Op , Ns Ar value Search for the source MAC address entry in lookup table .Ar name . If not found, the match fails. Otherwise, the match succeeds and .Cm tablearg is set to the value extracted from the table. .It Cm frag Ar spec Matches IPv4 packets whose .Cm ip_off field contains the comma separated list of IPv4 fragmentation options specified in .Ar spec . The recognized options are: .Cm df .Pq Dv don't fragment , .Cm mf .Pq Dv more fragments , .Cm rf .Pq Dv reserved fragment bit .Cm offset .Pq Dv non-zero fragment offset . The absence of a particular options may be denoted with a .Ql \&! . .Pp Empty list of options defaults to matching on non-zero fragment offset. Such rule would match all not the first fragment datagrams, both IPv4 and IPv6. This is a backward compatibility with older rulesets. .It Cm gid Ar group Matches all TCP or UDP packets sent by or received for a .Ar group . A .Ar group may be specified by name or number. .It Cm jail Ar jail Matches all TCP or UDP packets sent by or received for the jail whose ID or name is .Ar jail . .It Cm icmptypes Ar types Matches ICMP packets whose ICMP type is in the list .Ar types . The list may be specified as any combination of individual types (numeric) separated by commas. .Em Ranges are not allowed . The supported ICMP types are: .Pp echo reply .Pq Cm 0 , destination unreachable .Pq Cm 3 , source quench .Pq Cm 4 , redirect .Pq Cm 5 , echo request .Pq Cm 8 , router advertisement .Pq Cm 9 , router solicitation .Pq Cm 10 , time-to-live exceeded .Pq Cm 11 , IP header bad .Pq Cm 12 , timestamp request .Pq Cm 13 , timestamp reply .Pq Cm 14 , information request .Pq Cm 15 , information reply .Pq Cm 16 , address mask request .Pq Cm 17 and address mask reply .Pq Cm 18 . .It Cm icmp6types Ar types Matches ICMP6 packets whose ICMP6 type is in the list of .Ar types . The list may be specified as any combination of individual types (numeric) separated by commas. .Em Ranges are not allowed . .It Cm in | out Matches incoming or outgoing packets, respectively. .Cm in and .Cm out are mutually exclusive (in fact, .Cm out is implemented as .Cm not in Ns No ). .It Cm ipid Ar id-list Matches IPv4 packets whose .Cm ip_id field has value included in .Ar id-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm iplen Ar len-list Matches IP packets whose total length, including header and data, is in the set .Ar len-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm ipoptions Ar spec Matches packets whose IPv4 header contains the comma separated list of options specified in .Ar spec . The supported IP options are: .Pp .Cm ssrr (strict source route), .Cm lsrr (loose source route), .Cm rr (record packet route) and .Cm ts (timestamp). The absence of a particular option may be denoted with a .Ql \&! . .It Cm ipprecedence Ar precedence Matches IPv4 packets whose precedence field is equal to .Ar precedence . .It Cm ipsec Matches packets that have IPSEC history associated with them (i.e., the packet comes encapsulated in IPSEC, the kernel has IPSEC support, and can correctly decapsulate it). .Pp Note that specifying .Cm ipsec is different from specifying .Cm proto Ar ipsec as the latter will only look at the specific IP protocol field, irrespective of IPSEC kernel support and the validity of the IPSEC data. .Pp Further note that this flag is silently ignored in kernels without IPSEC support. It does not affect rule processing when given and the rules are handled as if with no .Cm ipsec flag. .It Cm iptos Ar spec Matches IPv4 packets whose .Cm tos field contains the comma separated list of service types specified in .Ar spec . The supported IP types of service are: .Pp .Cm lowdelay .Pq Dv IPTOS_LOWDELAY , .Cm throughput .Pq Dv IPTOS_THROUGHPUT , .Cm reliability .Pq Dv IPTOS_RELIABILITY , .Cm mincost .Pq Dv IPTOS_MINCOST , .Cm congestion .Pq Dv IPTOS_ECN_CE . The absence of a particular type may be denoted with a .Ql \&! . .It Cm dscp spec Ns Op , Ns Ar spec Matches IPv4/IPv6 packets whose .Cm DS field value is contained in .Ar spec mask. Multiple values can be specified via the comma separated list. Value can be one of keywords used in .Cm setdscp action or exact number. .It Cm ipttl Ar ttl-list Matches IPv4 packets whose time to live is included in .Ar ttl-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm ipversion Ar ver Matches IP packets whose IP version field is .Ar ver . .It Cm keep-state Op Ar :flowname Upon a match, the firewall will create a dynamic rule, whose default behaviour is to match bidirectional traffic between source and destination IP/port using the same protocol. The rule has a limited lifetime (controlled by a set of .Xr sysctl 8 variables), and the lifetime is refreshed every time a matching packet is found. The .Ar :flowname is used to assign additional to addresses, ports and protocol parameter to dynamic rule. It can be used for more accurate matching by .Cm check-state rule. The .Cm :default keyword is special name used for compatibility with old rulesets. .It Cm layer2 Matches only layer2 packets, i.e., those passed to .Nm from .Fn ether_demux and .Fn ether_output_frame . .It Cm limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N Op Ar :flowname The firewall will only allow .Ar N connections with the same set of parameters as specified in the rule. One or more of source and destination addresses and ports can be specified. -.It Cm lookup Bro Cm dst-ip | dst-port | dst-mac | src-ip | src-port | src-mac | uid | jail Brc Ar name +.It Cm lookup Bro Cm dst-ip | dst-port | dst-mac | src-ip | src-port | src-mac | uid | +.Cm jail | dscp | mark Brc Ar name Search an entry in lookup table .Ar name that matches the field specified as argument. If not found, the match fails. Otherwise, the match succeeds and .Cm tablearg is set to the value extracted from the table. .Pp This option can be useful to quickly dispatch traffic based on certain packet fields. See the .Sx LOOKUP TABLES section below for more information on lookup tables. .It Cm { MAC | mac } Ar dst-mac src-mac Match packets with a given .Ar dst-mac and .Ar src-mac addresses, specified as the .Cm any keyword (matching any MAC address), or six groups of hex digits separated by colons, and optionally followed by a mask indicating the significant bits. The mask may be specified using either of the following methods: .Bl -enum -width indent .It A slash .Pq / followed by the number of significant bits. For example, an address with 33 significant bits could be specified as: .Pp .Dl "MAC 10:20:30:40:50:60/33 any" .It An ampersand .Pq & followed by a bitmask specified as six groups of hex digits separated by colons. For example, an address in which the last 16 bits are significant could be specified as: .Pp .Dl "MAC 10:20:30:40:50:60&00:00:00:00:ff:ff any" .Pp Note that the ampersand character has a special meaning in many shells and should generally be escaped. .El Note that the order of MAC addresses (destination first, source second) is the same as on the wire, but the opposite of the one used for IP addresses. .It Cm mac-type Ar mac-type Matches packets whose Ethernet Type field corresponds to one of those specified as argument. .Ar mac-type is specified in the same way as .Cm port numbers (i.e., one or more comma-separated single values or ranges). You can use symbolic names for known values such as .Em vlan , ipv4, ipv6 . Values can be entered as decimal or hexadecimal (if prefixed by 0x), and they are always printed as hexadecimal (unless the .Cm -N option is used, in which case symbolic resolution will be attempted). .It Cm proto Ar protocol Matches packets with the corresponding IP protocol. .It Cm record-state Upon a match, the firewall will create a dynamic rule as if .Cm keep-state was specified. However, this option doesn't imply an implicit .Cm check-state in contrast to .Cm keep-state . .It Cm recv | xmit | via Brq Ar ifX | Ar ifmask | Ar table Ns Po Ar name Ns Oo , Ns Ar value Oc Pc | Ar ipno | Ar any Matches packets received, transmitted or going through, respectively, the interface specified by exact name .Po Ar ifX Pc , by device mask .Po Ar ifmask Pc , by IP address, or through some interface. .Pp Interface name may be matched against .Ar ifmask with .Xr fnmatch 3 according to the rules used by the shell (f.e. tun*). See also the .Sx EXAMPLES section. .Pp Table .Ar name may be used to match interface by its kernel ifindex. See the .Sx LOOKUP TABLES section below for more information on lookup tables. .Pp The .Cm via keyword causes the interface to always be checked. If .Cm recv or .Cm xmit is used instead of .Cm via , then only the receive or transmit interface (respectively) is checked. By specifying both, it is possible to match packets based on both receive and transmit interface, e.g.: .Pp .Dl "ipfw add deny ip from any to any out recv ed0 xmit ed1" .Pp The .Cm recv interface can be tested on either incoming or outgoing packets, while the .Cm xmit interface can only be tested on outgoing packets. So .Cm out is required (and .Cm in is invalid) whenever .Cm xmit is used. .Pp A packet might not have a receive or transmit interface: packets originating from the local host have no receive interface, while packets destined for the local host have no transmit interface. .It Cm set-limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N Works like .Cm limit but does not have an implicit .Cm check-state attached to it. .It Cm setup Matches TCP packets that have the SYN bit set but no ACK bit. This is the short form of .Dq Li tcpflags\ syn,!ack . .It Cm sockarg Matches packets that are associated to a local socket and for which the SO_USER_COOKIE socket option has been set to a non-zero value. As a side effect, the value of the option is made available as .Cm tablearg value, which in turn can be used as .Cm skipto or .Cm pipe number. .It Cm src-ip Ar ip-address Matches IPv4 packets whose source IP is one of the address(es) specified as an argument. .It Cm src-ip6 Ar ip6-address Matches IPv6 packets whose source IP is one of the address(es) specified as an argument. .It Cm src-port Ar ports Matches IP packets whose source port is one of the port(s) specified as argument. .It Cm tagged Ar tag-list Matches packets whose tags are included in .Ar tag-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . Tags can be applied to the packet using .Cm tag rule action parameter (see it's description for details on tags). +.It Cm mark Ar value[:bitmask] | tablearg[:bitmask] +Matches packets whose mark is equal to +.Ar value +with optional +.Ar bitmask +applied to it. +.Cm tablearg +can also be used instead of an explicit +.Ar value +to match a value supplied by the last table lookup. +.Pp +Both +.Ar value +and +.Ar bitmask +can be entered as decimal or hexadecimal (if prefixed by 0x), and they +are always printed as hexadecimal. .It Cm tcpack Ar ack TCP packets only. Match if the TCP header acknowledgment number field is set to .Ar ack . .It Cm tcpdatalen Ar tcpdatalen-list Matches TCP packets whose length of TCP data is .Ar tcpdatalen-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm tcpflags Ar spec TCP packets only. Match if the TCP header contains the comma separated list of flags specified in .Ar spec . The supported TCP flags are: .Pp .Cm fin , .Cm syn , .Cm rst , .Cm psh , .Cm ack and .Cm urg . The absence of a particular flag may be denoted with a .Ql \&! . A rule which contains a .Cm tcpflags specification can never match a fragmented packet which has a non-zero offset. See the .Cm frag option for details on matching fragmented packets. .It Cm tcpmss Ar tcpmss-list Matches TCP packets whose MSS (maximum segment size) value is set to .Ar tcpmss-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm tcpseq Ar seq TCP packets only. Match if the TCP header sequence number field is set to .Ar seq . .It Cm tcpwin Ar tcpwin-list Matches TCP packets whose header window field is set to .Ar tcpwin-list , which is either a single value or a list of values or ranges specified in the same way as .Ar ports . .It Cm tcpoptions Ar spec TCP packets only. Match if the TCP header contains the comma separated list of options specified in .Ar spec . The supported TCP options are: .Pp .Cm mss (maximum segment size), .Cm window (tcp window advertisement), .Cm sack (selective ack), .Cm ts (rfc1323 timestamp) and .Cm cc (rfc1644 t/tcp connection count). The absence of a particular option may be denoted with a .Ql \&! . .It Cm uid Ar user Match all TCP or UDP packets sent by or received for a .Ar user . A .Ar user may be matched by name or identification number. .It Cm verrevpath For incoming packets, a routing table lookup is done on the packet's source address. If the interface on which the packet entered the system matches the outgoing interface for the route, the packet matches. If the interfaces do not match up, the packet does not match. All outgoing packets or packets with no incoming interface match. .Pp The name and functionality of the option is intentionally similar to the Cisco IOS command: .Pp .Dl ip verify unicast reverse-path .Pp This option can be used to make anti-spoofing rules to reject all packets with source addresses not from this interface. See also the option .Cm antispoof . .It Cm versrcreach For incoming packets, a routing table lookup is done on the packet's source address. If a route to the source address exists, but not the default route or a blackhole/reject route, the packet matches. Otherwise, the packet does not match. All outgoing packets match. .Pp The name and functionality of the option is intentionally similar to the Cisco IOS command: .Pp .Dl ip verify unicast source reachable-via any .Pp This option can be used to make anti-spoofing rules to reject all packets whose source address is unreachable. .It Cm antispoof For incoming packets, the packet's source address is checked if it belongs to a directly connected network. If the network is directly connected, then the interface the packet came on in is compared to the interface the network is connected to. When incoming interface and directly connected interface are not the same, the packet does not match. Otherwise, the packet does match. All outgoing packets match. .Pp This option can be used to make anti-spoofing rules to reject all packets that pretend to be from a directly connected network but do not come in through that interface. This option is similar to but more restricted than .Cm verrevpath because it engages only on packets with source addresses of directly connected networks instead of all source addresses. .El .Sh LOOKUP TABLES Lookup tables are useful to handle large sparse sets of addresses or other search keys (e.g., ports, jail IDs, interface names). In the rest of this section we will use the term ``key''. Table name needs to match the following spec: .Ar table-name . Tables with the same name can be created in different .Ar sets . However, rule links to the tables in .Ar set 0 by default. This behavior can be controlled by .Va net.inet.ip.fw.tables_sets variable. See the .Sx SETS OF RULES section for more information. There may be up to 65535 different lookup tables. .Pp The following table types are supported: .Bl -tag -width indent .It Ar table-type : Ar addr | iface | number | flow | mac .It Ar table-key : Ar addr Ns Oo / Ns Ar masklen Oc | iface-name | number | flow-spec .It Ar flow-spec : Ar flow-field Ns Op , Ns Ar flow-spec .It Ar flow-field : src-ip | proto | src-port | dst-ip | dst-port .It Cm addr Matches IPv4 or IPv6 address. Each entry is represented by an .Ar addr Ns Op / Ns Ar masklen and will match all addresses with base .Ar addr (specified as an IPv4/IPv6 address, or a hostname) and mask width of .Ar masklen bits. If .Ar masklen is not specified, it defaults to 32 for IPv4 and 128 for IPv6. When looking up an IP address in a table, the most specific entry will match. .It Cm iface Matches interface names. Each entry is represented by string treated as interface name. Wildcards are not supported. .It Cm number Matches protocol ports, uids/gids or jail IDs. Each entry is represented by 32-bit unsigned integer. Ranges are not supported. .It Cm flow Matches packet fields specified by .Ar flow type suboptions with table entries. .It Cm mac Matches MAC address. Each entry is represented by an .Ar addr Ns Op / Ns Ar masklen and will match all addresses with base .Ar addr and mask width of .Ar masklen bits. If .Ar masklen is not specified, it defaults to 48. When looking up an MAC address in a table, the most specific entry will match. .El .Pp Tables require explicit creation via .Cm create before use. .Pp The following creation options are supported: .Bl -tag -width indent .It Ar create-options : Ar create-option | create-options .It Ar create-option : Cm type Ar table-type | Cm valtype Ar value-mask | Cm algo Ar algo-desc | .Cm limit Ar number | Cm locked | Cm missing | Cm or-flush .It Cm type Table key type. .It Cm valtype Table value mask. .It Cm algo Table algorithm to use (see below). .It Cm limit Maximum number of items that may be inserted into table. .It Cm locked Restrict any table modifications. .It Cm missing Do not fail if table already exists and has exactly same options as new one. .It Cm or-flush Flush existing table with same name instead of returning error. Implies .Cm missing so existing table must be compatible with new one. .El .Pp Some of these options may be modified later via .Cm modify keyword. The following options can be changed: .Bl -tag -width indent .It Ar modify-options : Ar modify-option | modify-options .It Ar modify-option : Cm limit Ar number .It Cm limit Alter maximum number of items that may be inserted into table. .El .Pp Additionally, table can be locked or unlocked using .Cm lock or .Cm unlock commands. .Pp Tables of the same .Ar type can be swapped with each other using .Cm swap Ar name command. Swap may fail if tables limits are set and data exchange would result in limits hit. Operation is performed atomically. .Pp One or more entries can be added to a table at once using .Cm add command. Addition of all items are performed atomically. By default, error in addition of one entry does not influence addition of other entries. However, non-zero error code is returned in that case. Special .Cm atomic keyword may be specified before .Cm add to indicate all-or-none add request. .Pp One or more entries can be removed from a table at once using .Cm delete command. By default, error in removal of one entry does not influence removing of other entries. However, non-zero error code is returned in that case. .Pp It may be possible to check what entry will be found on particular .Ar table-key using .Cm lookup .Ar table-key command. This functionality is optional and may be unsupported in some algorithms. .Pp The following operations can be performed on .Ar one or .Cm all tables: .Bl -tag -width indent .It Cm list List all entries. .It Cm flush Removes all entries. .It Cm info Shows generic table information. .It Cm detail Shows generic table information and algo-specific data. .El .Pp The following lookup algorithms are supported: .Bl -tag -width indent .It Ar algo-desc : algo-name | "algo-name algo-data" .It Ar algo-name : Ar addr: radix | addr: hash | iface: array | number: array | flow: hash | mac: radix .It Cm addr: radix Separate Radix trees for IPv4 and IPv6, the same way as the routing table (see .Xr route 4 ) . Default choice for .Ar addr type. .It Cm addr:hash Separate auto-growing hashes for IPv4 and IPv6. Accepts entries with the same mask length specified initially via .Cm "addr:hash masks=/v4,/v6" algorithm creation options. Assume /32 and /128 masks by default. Search removes host bits (according to mask) from supplied address and checks resulting key in appropriate hash. Mostly optimized for /64 and byte-ranged IPv6 masks. .It Cm iface:array Array storing sorted indexes for entries which are presented in the system. Optimized for very fast lookup. .It Cm number:array Array storing sorted u32 numbers. .It Cm flow:hash Auto-growing hash storing flow entries. Search calculates hash on required packet fields and searches for matching entries in selected bucket. .It Cm mac: radix Radix tree for MAC address .El .Pp The .Cm tablearg feature provides the ability to use a value, looked up in the table, as the argument for a rule action, action parameter or rule option. This can significantly reduce number of rules in some configurations. If two tables are used in a rule, the result of the second (destination) is used. .Pp Each record may hold one or more values according to .Ar value-mask . This mask is set on table creation via .Cm valtype option. The following value types are supported: .Bl -tag -width indent .It Ar value-mask : Ar value-type Ns Op , Ns Ar value-mask .It Ar value-type : Ar skipto | pipe | fib | nat | dscp | tag | divert | -.Ar netgraph | limit | ipv4 +.Ar netgraph | limit | ipv4 | ipv6 | mark .It Cm skipto rule number to jump to. .It Cm pipe Pipe number to use. .It Cm fib fib number to match/set. .It Cm nat nat number to jump to. .It Cm dscp dscp value to match/set. .It Cm tag tag number to match/set. .It Cm divert port number to divert traffic to. .It Cm netgraph hook number to move packet to. .It Cm limit maximum number of connections. .It Cm ipv4 IPv4 nexthop to fwd packets to. .It Cm ipv6 IPv6 nexthop to fwd packets to. +.It Cm mark +mark value to match/set. .El .Pp The .Cm tablearg argument can be used with the following actions: .Cm nat, pipe, queue, divert, tee, netgraph, ngtee, fwd, skipto, setfib , +.Cm setmark , action parameters: .Cm tag, untag , rule options: -.Cm limit, tagged . +.Cm limit, tagged, mark . .Pp When used with the .Cm skipto action, the user should be aware that the code will walk the ruleset up to a rule equal to, or past, the given number. .Pp See the .Sx EXAMPLES Section for example usage of tables and the tablearg keyword. .Sh SETS OF RULES Each rule or table belongs to one of 32 different .Em sets , numbered 0 to 31. Set 31 is reserved for the default rule. .Pp By default, rules or tables are put in set 0, unless you use the .Cm set N attribute when adding a new rule or table. Sets can be individually and atomically enabled or disabled, so this mechanism permits an easy way to store multiple configurations of the firewall and quickly (and atomically) switch between them. .Pp By default, tables from set 0 are referenced when adding rule with table opcodes regardless of rule set. This behavior can be changed by setting .Va net.inet.ip.fw.tables_sets variable to 1. Rule's set will then be used for table references. .Pp The command to enable/disable sets is .Bd -ragged -offset indent .Nm .Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ... .Ed .Pp where multiple .Cm enable or .Cm disable sections can be specified. Command execution is atomic on all the sets specified in the command. By default, all sets are enabled. .Pp When you disable a set, its rules behave as if they do not exist in the firewall configuration, with only one exception: .Bd -ragged -offset indent dynamic rules created from a rule before it had been disabled will still be active until they expire. In order to delete dynamic rules you have to explicitly delete the parent rule which generated them. .Ed .Pp The set number of rules can be changed with the command .Bd -ragged -offset indent .Nm .Cm set move .Brq Cm rule Ar rule-number | old-set .Cm to Ar new-set .Ed .Pp Also, you can atomically swap two rulesets with the command .Bd -ragged -offset indent .Nm .Cm set swap Ar first-set second-set .Ed .Pp See the .Sx EXAMPLES Section on some possible uses of sets of rules. .Sh STATEFUL FIREWALL Stateful operation is a way for the firewall to dynamically create rules for specific flows when packets that match a given pattern are detected. Support for stateful operation comes through the .Cm check-state , keep-state , record-state , limit and .Cm set-limit options of .Nm rules . .Pp Dynamic rules are created when a packet matches a .Cm keep-state , .Cm record-state , .Cm limit or .Cm set-limit rule, causing the creation of a .Em dynamic rule which will match all and only packets with a given .Em protocol between a .Em src-ip/src-port dst-ip/dst-port pair of addresses .Em ( src and .Em dst are used here only to denote the initial match addresses, but they are completely equivalent afterwards). Rules created by .Cm keep-state option also have a .Ar :flowname taken from it. This name is used in matching together with addresses, ports and protocol. Dynamic rules will be checked at the first .Cm check-state, keep-state or .Cm limit occurrence, and the action performed upon a match will be the same as in the parent rule. .Pp Note that no additional attributes other than protocol and IP addresses and ports and :flowname are checked on dynamic rules. .Pp The typical use of dynamic rules is to keep a closed firewall configuration, but let the first TCP SYN packet from the inside network install a dynamic rule for the flow so that packets belonging to that session will be allowed through the firewall: .Pp .Dl "ipfw add check-state :OUTBOUND" .Dl "ipfw add allow tcp from my-subnet to any setup keep-state :OUTBOUND" .Dl "ipfw add deny tcp from any to any" .Pp A similar approach can be used for UDP, where an UDP packet coming from the inside will install a dynamic rule to let the response through the firewall: .Pp .Dl "ipfw add check-state :OUTBOUND" .Dl "ipfw add allow udp from my-subnet to any keep-state :OUTBOUND" .Dl "ipfw add deny udp from any to any" .Pp Dynamic rules expire after some time, which depends on the status of the flow and the setting of some .Cm sysctl variables. See Section .Sx SYSCTL VARIABLES for more details. For TCP sessions, dynamic rules can be instructed to periodically send keepalive packets to refresh the state of the rule when it is about to expire. .Pp See Section .Sx EXAMPLES for more examples on how to use dynamic rules. .Sh TRAFFIC SHAPER (DUMMYNET) CONFIGURATION .Nm is also the user interface for the .Nm dummynet traffic shaper, packet scheduler and network emulator, a subsystem that can artificially queue, delay or drop packets emulating the behaviour of certain network links or queueing systems. .Pp .Nm dummynet operates by first using the firewall to select packets using any match pattern that can be used in .Nm rules. Matching packets are then passed to either of two different objects, which implement the traffic regulation: .Bl -hang -offset XXXX .It Em pipe A .Em pipe emulates a .Em link with given bandwidth and propagation delay, driven by a FIFO scheduler and a single queue with programmable queue size and packet loss rate. Packets are appended to the queue as they come out from .Nm ipfw , and then transferred in FIFO order to the link at the desired rate. .It Em queue A .Em queue is an abstraction used to implement packet scheduling using one of several packet scheduling algorithms. Packets sent to a .Em queue are first grouped into flows according to a mask on the 5-tuple. Flows are then passed to the scheduler associated to the .Em queue , and each flow uses scheduling parameters (weight and others) as configured in the .Em queue itself. A scheduler in turn is connected to an emulated link, and arbitrates the link's bandwidth among backlogged flows according to weights and to the features of the scheduling algorithm in use. .El .Pp In practice, .Em pipes can be used to set hard limits to the bandwidth that a flow can use, whereas .Em queues can be used to determine how different flows share the available bandwidth. .Pp A graphical representation of the binding of queues, flows, schedulers and links is below. .Bd -literal -offset indent (flow_mask|sched_mask) sched_mask +---------+ weight Wx +-------------+ | |->-[flow]-->--| |-+ -->--| QUEUE x | ... | | | | |->-[flow]-->--| SCHEDuler N | | +---------+ | | | ... | +--[LINK N]-->-- +---------+ weight Wy | | +--[LINK N]-->-- | |->-[flow]-->--| | | -->--| QUEUE y | ... | | | | |->-[flow]-->--| | | +---------+ +-------------+ | +-------------+ .Ed It is important to understand the role of the SCHED_MASK and FLOW_MASK, which are configured through the commands .Dl "ipfw sched N config mask SCHED_MASK ..." and .Dl "ipfw queue X config mask FLOW_MASK ..." . .Pp The SCHED_MASK is used to assign flows to one or more scheduler instances, one for each value of the packet's 5-tuple after applying SCHED_MASK. As an example, using ``src-ip 0xffffff00'' creates one instance for each /24 destination subnet. .Pp The FLOW_MASK, together with the SCHED_MASK, is used to split packets into flows. As an example, using ``src-ip 0x000000ff'' together with the previous SCHED_MASK makes a flow for each individual source address. In turn, flows for each /24 subnet will be sent to the same scheduler instance. .Pp The above diagram holds even for the .Em pipe case, with the only restriction that a .Em pipe only supports a SCHED_MASK, and forces the use of a FIFO scheduler (these are for backward compatibility reasons; in fact, internally, a .Nm dummynet's pipe is implemented exactly as above). .Pp There are two modes of .Nm dummynet operation: .Dq normal and .Dq fast . The .Dq normal mode tries to emulate a real link: the .Nm dummynet scheduler ensures that the packet will not leave the pipe faster than it would on the real link with a given bandwidth. The .Dq fast mode allows certain packets to bypass the .Nm dummynet scheduler (if packet flow does not exceed pipe's bandwidth). This is the reason why the .Dq fast mode requires less CPU cycles per packet (on average) and packet latency can be significantly lower in comparison to a real link with the same bandwidth. The default mode is .Dq normal . The .Dq fast mode can be enabled by setting the .Va net.inet.ip.dummynet.io_fast .Xr sysctl 8 variable to a non-zero value. .Ss PIPE, QUEUE AND SCHEDULER CONFIGURATION The .Em pipe , .Em queue and .Em scheduler configuration commands are the following: .Bd -ragged -offset indent .Cm pipe Ar number Cm config Ar pipe-configuration .Pp .Cm queue Ar number Cm config Ar queue-configuration .Pp .Cm sched Ar number Cm config Ar sched-configuration .Ed .Pp The following parameters can be configured for a pipe: .Pp .Bl -tag -width indent -compact .It Cm bw Ar bandwidth | device Bandwidth, measured in .Sm off .Op Cm K | M | G .Brq Cm bit/s | Byte/s . .Sm on .Pp A value of 0 (default) means unlimited bandwidth. The unit must immediately follow the number, as in .Pp .Dl "dnctl pipe 1 config bw 300Kbit/s" .Pp If a device name is specified instead of a numeric value, as in .Pp .Dl "dnctl pipe 1 config bw tun0" .Pp then the transmit clock is supplied by the specified device. At the moment only the .Xr tun 4 device supports this functionality, for use in conjunction with .Xr ppp 8 . .Pp .It Cm delay Ar ms-delay Propagation delay, measured in milliseconds. The value is rounded to the next multiple of the clock tick (typically 10ms, but it is a good practice to run kernels with .Dq "options HZ=1000" to reduce the granularity to 1ms or less). The default value is 0, meaning no delay. .Pp .It Cm burst Ar size If the data to be sent exceeds the pipe's bandwidth limit (and the pipe was previously idle), up to .Ar size bytes of data are allowed to bypass the .Nm dummynet scheduler, and will be sent as fast as the physical link allows. Any additional data will be transmitted at the rate specified by the .Nm pipe bandwidth. The burst size depends on how long the pipe has been idle; the effective burst size is calculated as follows: MAX( .Ar size , .Nm bw * pipe_idle_time). .Pp .It Cm profile Ar filename A file specifying the additional overhead incurred in the transmission of a packet on the link. .Pp Some link types introduce extra delays in the transmission of a packet, e.g., because of MAC level framing, contention on the use of the channel, MAC level retransmissions and so on. From our point of view, the channel is effectively unavailable for this extra time, which is constant or variable depending on the link type. Additionally, packets may be dropped after this time (e.g., on a wireless link after too many retransmissions). We can model the additional delay with an empirical curve that represents its distribution. .Bd -literal -offset indent cumulative probability 1.0 ^ | L +-- loss-level x | ****** | * | ***** | * | ** | * +-------*-------------------> delay .Ed The empirical curve may have both vertical and horizontal lines. Vertical lines represent constant delay for a range of probabilities. Horizontal lines correspond to a discontinuity in the delay distribution: the pipe will use the largest delay for a given probability. .Pp The file format is the following, with whitespace acting as a separator and '#' indicating the beginning a comment: .Bl -tag -width indent .It Cm name Ar identifier optional name (listed by "dnctl pipe show") to identify the delay distribution; .It Cm bw Ar value the bandwidth used for the pipe. If not specified here, it must be present explicitly as a configuration parameter for the pipe; .It Cm loss-level Ar L the probability above which packets are lost. (0.0 <= L <= 1.0, default 1.0 i.e., no loss); .It Cm samples Ar N the number of samples used in the internal representation of the curve (2..1024; default 100); .It Cm "delay prob" | "prob delay" One of these two lines is mandatory and defines the format of the following lines with data points. .It Ar XXX Ar YYY 2 or more lines representing points in the curve, with either delay or probability first, according to the chosen format. The unit for delay is milliseconds. Data points do not need to be sorted. Also, the number of actual lines can be different from the value of the "samples" parameter: .Nm utility will sort and interpolate the curve as needed. .El .Pp Example of a profile file: .Bd -literal -offset indent name bla_bla_bla samples 100 loss-level 0.86 prob delay 0 200 # minimum overhead is 200ms 0.5 200 0.5 300 0.8 1000 0.9 1300 1 1300 #configuration file end .Ed .El .Pp The following parameters can be configured for a queue: .Pp .Bl -tag -width indent -compact .It Cm pipe Ar pipe_nr Connects a queue to the specified pipe. Multiple queues (with the same or different weights) can be connected to the same pipe, which specifies the aggregate rate for the set of queues. .Pp .It Cm weight Ar weight Specifies the weight to be used for flows matching this queue. The weight must be in the range 1..100, and defaults to 1. .El .Pp The following case-insensitive parameters can be configured for a scheduler: .Pp .Bl -tag -width indent -compact .It Cm type Ar {fifo | wf2q+ | rr | qfq | fq_codel | fq_pie} specifies the scheduling algorithm to use. .Bl -tag -width indent -compact .It Cm fifo is just a FIFO scheduler (which means that all packets are stored in the same queue as they arrive to the scheduler). FIFO has O(1) per-packet time complexity, with very low constants (estimate 60-80ns on a 2GHz desktop machine) but gives no service guarantees. .It Cm wf2q+ implements the WF2Q+ algorithm, which is a Weighted Fair Queueing algorithm which permits flows to share bandwidth according to their weights. Note that weights are not priorities; even a flow with a minuscule weight will never starve. WF2Q+ has O(log N) per-packet processing cost, where N is the number of flows, and is the default algorithm used by previous versions dummynet's queues. .It Cm rr implements the Deficit Round Robin algorithm, which has O(1) processing costs (roughly, 100-150ns per packet) and permits bandwidth allocation according to weights, but with poor service guarantees. .It Cm qfq implements the QFQ algorithm, which is a very fast variant of WF2Q+, with similar service guarantees and O(1) processing costs (roughly, 200-250ns per packet). .It Cm fq_codel implements the FQ-CoDel (FlowQueue-CoDel) scheduler/AQM algorithm, which uses a modified Deficit Round Robin scheduler to manage two lists of sub-queues (old sub-queues and new sub-queues) for providing brief periods of priority to lightweight or short burst flows. By default, the total number of sub-queues is 1024. FQ-CoDel's internal, dynamically created sub-queues are controlled by separate instances of CoDel AQM. .It Cm fq_pie implements the FQ-PIE (FlowQueue-PIE) scheduler/AQM algorithm, which similar to .Cm fq_codel but uses per sub-queue PIE AQM instance to control the queue delay. .El .Pp .Cm fq_codel inherits AQM parameters and options from .Cm codel (see below), and .Cm fq_pie inherits AQM parameters and options from .Cm pie (see below). Additionally, both of .Cm fq_codel and .Cm fq_pie have shared scheduler parameters which are: .Bl -tag -width indent .It Cm quantum .Ar m specifies the quantum (credit) of the scheduler. .Ar m is the number of bytes a queue can serve before being moved to the tail of old queues list. The default is 1514 bytes, and the maximum acceptable value is 9000 bytes. .It Cm limit .Ar m specifies the hard size limit (in unit of packets) of all queues managed by an instance of the scheduler. The default value of .Ar m is 10240 packets, and the maximum acceptable value is 20480 packets. .It Cm flows .Ar m specifies the total number of flow queues (sub-queues) that fq_* creates and manages. By default, 1024 sub-queues are created when an instance of the fq_{codel/pie} scheduler is created. The maximum acceptable value is 65536. .El .Pp Note that any token after .Cm fq_codel or .Cm fq_pie is considered a parameter for fq_{codel/pie}. So, ensure all scheduler configuration options not related to fq_{codel/pie} are written before .Cm fq_codel/fq_pie tokens. .El .Pp In addition to the type, all parameters allowed for a pipe can also be specified for a scheduler. .Pp Finally, the following parameters can be configured for both pipes and queues: .Pp .Bl -tag -width XXXX -compact .It Cm buckets Ar hash-table-size Specifies the size of the hash table used for storing the various queues. Default value is 64 controlled by the .Xr sysctl 8 variable .Va net.inet.ip.dummynet.hash_size , allowed range is 16 to 65536. .Pp .It Cm mask Ar mask-specifier Packets sent to a given pipe or queue by an .Nm rule can be further classified into multiple flows, each of which is then sent to a different .Em dynamic pipe or queue. A flow identifier is constructed by masking the IP addresses, ports and protocol types as specified with the .Cm mask options in the configuration of the pipe or queue. For each different flow identifier, a new pipe or queue is created with the same parameters as the original object, and matching packets are sent to it. .Pp Thus, when .Em dynamic pipes are used, each flow will get the same bandwidth as defined by the pipe, whereas when .Em dynamic queues are used, each flow will share the parent's pipe bandwidth evenly with other flows generated by the same queue (note that other queues with different weights might be connected to the same pipe). .br Available mask specifiers are a combination of one or more of the following: .Pp .Cm dst-ip Ar mask , .Cm dst-ip6 Ar mask , .Cm src-ip Ar mask , .Cm src-ip6 Ar mask , .Cm dst-port Ar mask , .Cm src-port Ar mask , .Cm flow-id Ar mask , .Cm proto Ar mask or .Cm all , .Pp where the latter means all bits in all fields are significant. .Pp .It Cm noerror When a packet is dropped by a .Nm dummynet queue or pipe, the error is normally reported to the caller routine in the kernel, in the same way as it happens when a device queue fills up. Setting this option reports the packet as successfully delivered, which can be needed for some experimental setups where you want to simulate loss or congestion at a remote router. .Pp .It Cm plr Ar packet-loss-rate Packet loss rate. Argument .Ar packet-loss-rate is a floating-point number between 0 and 1, with 0 meaning no loss, 1 meaning 100% loss. The loss rate is internally represented on 31 bits. .Pp .It Cm queue Brq Ar slots | size Ns Cm Kbytes Queue size, in .Ar slots or .Cm KBytes . Default value is 50 slots, which is the typical queue size for Ethernet devices. Note that for slow speed links you should keep the queue size short or your traffic might be affected by a significant queueing delay. E.g., 50 max-sized Ethernet packets (1500 bytes) mean 600Kbit or 20s of queue on a 30Kbit/s pipe. Even worse effects can result if you get packets from an interface with a much larger MTU, e.g.\& the loopback interface with its 16KB packets. The .Xr sysctl 8 variables .Em net.inet.ip.dummynet.pipe_byte_limit and .Em net.inet.ip.dummynet.pipe_slot_limit control the maximum lengths that can be specified. .Pp .It Cm red | gred Ar w_q Ns / Ns Ar min_th Ns / Ns Ar max_th Ns / Ns Ar max_p [ecn] Make use of the RED (Random Early Detection) queue management algorithm. .Ar w_q and .Ar max_p are floating point numbers between 0 and 1 (inclusive), while .Ar min_th and .Ar max_th are integer numbers specifying thresholds for queue management (thresholds are computed in bytes if the queue has been defined in bytes, in slots otherwise). The two parameters can also be of the same value if needed. The .Nm dummynet also supports the gentle RED variant (gred) and ECN (Explicit Congestion Notification) as optional. Three .Xr sysctl 8 variables can be used to control the RED behaviour: .Bl -tag -width indent .It Va net.inet.ip.dummynet.red_lookup_depth specifies the accuracy in computing the average queue when the link is idle (defaults to 256, must be greater than zero) .It Va net.inet.ip.dummynet.red_avg_pkt_size specifies the expected average packet size (defaults to 512, must be greater than zero) .It Va net.inet.ip.dummynet.red_max_pkt_size specifies the expected maximum packet size, only used when queue thresholds are in bytes (defaults to 1500, must be greater than zero). .El .Pp .It Cm codel Oo Cm target Ar time Oc Oo Cm interval Ar time Oc Oo Cm ecn | .Cm noecn Oc Make use of the CoDel (Controlled-Delay) queue management algorithm. .Ar time is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or microseconds (us) can be specified instead. CoDel drops or marks (ECN) packets depending on packet sojourn time in the queue. .Cm target .Ar time (5ms by default) is the minimum acceptable persistent queue delay that CoDel allows. CoDel does not drop packets directly after packets sojourn time becomes higher than .Cm target .Ar time but waits for .Cm interval .Ar time (100ms default) before dropping. .Cm interval .Ar time should be set to maximum RTT for all expected connections. .Cm ecn enables (disabled by default) packet marking (instead of dropping) for ECN-enabled TCP flows when queue delay becomes high. .Pp Note that any token after .Cm codel is considered a parameter for CoDel. So, ensure all pipe/queue configuration options are written before .Cm codel token. .Pp The .Xr sysctl 8 variables .Va net.inet.ip.dummynet.codel.target and .Va net.inet.ip.dummynet.codel.interval can be used to set CoDel default parameters. .Pp .It Cm pie Oo Cm target Ar time Oc Oo Cm tupdate Ar time Oc Oo .Cm alpha Ar n Oc Oo Cm beta Ar n Oc Oo Cm max_burst Ar time Oc Oo .Cm max_ecnth Ar n Oc Oo Cm ecn | Cm noecn Oc Oo Cm capdrop | .Cm nocapdrop Oc Oo Cm drand | Cm nodrand Oc Oo Cm onoff .Oc Oo Cm dre | Cm ts Oc Make use of the PIE (Proportional Integral controller Enhanced) queue management algorithm. PIE drops or marks packets depending on a calculated drop probability during en-queue process, with the aim of achieving high throughput while keeping queue delay low. At regular time intervals of .Cm tupdate .Ar time (15ms by default) a background process (re)calculates the probability based on queue delay deviations from .Cm target .Ar time (15ms by default) and queue delay trends. PIE approximates current queue delay by using a departure rate estimation method, or (optionally) by using a packet timestamp method similar to CoDel. .Ar time is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or microseconds (us) can be specified instead. The other PIE parameters and options are as follows: .Bl -tag -width indent .It Cm alpha Ar n .Ar n is a floating point number between 0 and 7 which specifies the weight of queue delay deviations that is used in drop probability calculation. 0.125 is the default. .It Cm beta Ar n .Ar n is a floating point number between 0 and 7 which specifies is the weight of queue delay trend that is used in drop probability calculation. 1.25 is the default. .It Cm max_burst Ar time The maximum period of time that PIE does not drop/mark packets. 150ms is the default and 10s is the maximum value. .It Cm max_ecnth Ar n Even when ECN is enabled, PIE drops packets instead of marking them when drop probability becomes higher than ECN probability threshold .Cm max_ecnth Ar n , the default is 0.1 (i.e 10%) and 1 is the maximum value. .It Cm ecn | noecn enable or disable ECN marking for ECN-enabled TCP flows. Disabled by default. .It Cm capdrop | nocapdrop enable or disable cap drop adjustment. Cap drop adjustment is enabled by default. .It Cm drand | nodrand enable or disable drop probability de-randomisation. De-randomisation eliminates the problem of dropping packets too close or too far. De-randomisation is enabled by default. .It Cm onoff enable turning PIE on and off depending on queue load. If this option is enabled, PIE turns on when over 1/3 of queue becomes full. This option is disabled by default. .It Cm dre | ts Calculate queue delay using departure rate estimation .Cm dre or timestamps .Cm ts . .Cm dre is used by default. .El .Pp Note that any token after .Cm pie is considered a parameter for PIE. So ensure all pipe/queue the configuration options are written before .Cm pie token. .Xr sysctl 8 variables can be used to control the .Cm pie default parameters. See the .Sx SYSCTL VARIABLES section for more details. .El .Pp When used with IPv6 data, .Nm dummynet currently has several limitations. Information necessary to route link-local packets to an interface is not available after processing by .Nm dummynet so those packets are dropped in the output path. Care should be taken to ensure that link-local packets are not passed to .Nm dummynet . .Sh CHECKLIST Here are some important points to consider when designing your rules: .Bl -bullet .It Remember that you filter both packets going .Cm in and .Cm out . Most connections need packets going in both directions. .It Remember to test very carefully. It is a good idea to be near the console when doing this. If you cannot be near the console, use an auto-recovery script such as the one in .Pa /usr/share/examples/ipfw/change_rules.sh . .It Do not forget the loopback interface. .El .Sh FINE POINTS .Bl -bullet .It There are circumstances where fragmented datagrams are unconditionally dropped. TCP packets are dropped if they do not contain at least 20 bytes of TCP header, UDP packets are dropped if they do not contain a full 8 byte UDP header, and ICMP packets are dropped if they do not contain 4 bytes of ICMP header, enough to specify the ICMP type, code, and checksum. These packets are simply logged as .Dq pullup failed since there may not be enough good data in the packet to produce a meaningful log entry. .It Another type of packet is unconditionally dropped, a TCP packet with a fragment offset of one. This is a valid packet, but it only has one use, to try to circumvent firewalls. When logging is enabled, these packets are reported as being dropped by rule -1. .It If you are logged in over a network, loading the .Xr kld 4 version of .Nm is probably not as straightforward as you would think. The following command line is recommended: .Bd -literal -offset indent kldload ipfw && \e ipfw add 32000 allow ip from any to any .Ed .Pp Along the same lines, doing an .Bd -literal -offset indent ipfw flush .Ed .Pp in similar surroundings is also a bad idea. .It The .Nm filter list may not be modified if the system security level is set to 3 or higher (see .Xr init 8 for information on system security levels). .El .Sh PACKET DIVERSION A .Xr divert 4 socket bound to the specified port will receive all packets diverted to that port. If no socket is bound to the destination port, or if the divert module is not loaded, or if the kernel was not compiled with divert socket support, the packets are dropped. .Sh NETWORK ADDRESS TRANSLATION (NAT) .Nm support in-kernel NAT using the kernel version of .Xr libalias 3 . The kernel module .Cm ipfw_nat should be loaded or kernel should have .Cm options IPFIREWALL_NAT to be able use NAT. .Pp The nat configuration command is the following: .Bd -ragged -offset indent .Bk -words .Cm nat .Ar nat_number .Cm config .Ar nat-configuration .Ek .Ed .Pp The following parameters can be configured: .Bl -tag -width indent .It Cm ip Ar ip_address Define an ip address to use for aliasing. .It Cm if Ar nic Use ip address of NIC for aliasing, dynamically changing it if NIC's ip address changes. .It Cm log Enable logging on this nat instance. .It Cm deny_in Deny any incoming connection from outside world. .It Cm same_ports Try to leave the alias port numbers unchanged from the actual local port numbers. .It Cm unreg_only Traffic on the local network not originating from a RFC 1918 unregistered address spaces will be ignored. .It Cm unreg_cgn Like unreg_only, but includes the RFC 6598 (Carrier Grade NAT) address range. .It Cm reset Reset table of the packet aliasing engine on address change. .It Cm reverse Reverse the way libalias handles aliasing. .It Cm proxy_only Obey transparent proxy rules only, packet aliasing is not performed. .It Cm skip_global Skip instance in case of global state lookup (see below). .It Cm port_range Ar lower-upper -Set the aliasing ports between the ranges given. Upper port has to be greater -than lower. +Set the aliasing ports between the ranges given. +Upper port has to be greater than lower. .El .Pp Some special values can be supplied instead of .Va nat_number in nat rule actions: .Bl -tag -width indent .It Cm global Looks up translation state in all configured nat instances. If an entry is found, packet is aliased according to that entry. If no entry was found in any of the instances, packet is passed unchanged, and no new entry will be created. See section .Sx MULTIPLE INSTANCES in .Xr natd 8 for more information. .It Cm tablearg Uses argument supplied in lookup table. See .Sx LOOKUP TABLES section below for more information on lookup tables. .El .Pp To let the packet continue after being (de)aliased, set the sysctl variable .Va net.inet.ip.fw.one_pass to 0. For more information about aliasing modes, refer to .Xr libalias 3 . See Section .Sx EXAMPLES for some examples of nat usage. .Ss REDIRECT AND LSNAT SUPPORT IN IPFW Redirect and LSNAT support follow closely the syntax used in .Xr natd 8 . See Section .Sx EXAMPLES for some examples on how to do redirect and lsnat. .Ss SCTP NAT SUPPORT SCTP nat can be configured in a similar manner to TCP through the .Nm command line tool. The main difference is that .Nm sctp nat does not do port translation. Since the local and global side ports will be the same, there is no need to specify both. Ports are redirected as follows: .Bd -ragged -offset indent .Bk -words .Cm nat .Ar nat_number .Cm config if .Ar nic .Cm redirect_port sctp .Ar ip_address [,addr_list] {[port | port-port] [,ports]} .Ek .Ed .Pp Most .Nm sctp nat configuration can be done in real-time through the .Xr sysctl 8 interface. All may be changed dynamically, though the hash_table size will only change for new .Nm nat instances. See .Sx SYSCTL VARIABLES for more info. .Sh IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION .Ss Stateful translation .Nm supports in-kernel IPv6/IPv4 network address and protocol translation. Stateful NAT64 translation allows IPv6-only clients to contact IPv4 servers using unicast TCP, UDP or ICMP protocols. One or more IPv4 addresses assigned to a stateful NAT64 translator are shared among several IPv6-only clients. When stateful NAT64 is used in conjunction with DNS64, no changes are usually required in the IPv6 client or the IPv4 server. The kernel module .Cm ipfw_nat64 should be loaded or kernel should have .Cm options IPFIREWALL_NAT64 to be able use stateful NAT64 translator. .Pp Stateful NAT64 uses a bunch of memory for several types of objects. When IPv6 client initiates connection, NAT64 translator creates a host entry in the states table. Each host entry uses preallocated IPv4 alias entry. Each alias entry has a number of ports group entries allocated on demand. Ports group entries contains connection state entries. There are several options to control limits and lifetime for these objects. .Pp NAT64 translator follows RFC7915 when does ICMPv6/ICMP translation, unsupported message types will be silently dropped. IPv6 needs several ICMPv6 message types to be explicitly allowed for correct operation. Make sure that ND6 neighbor solicitation (ICMPv6 type 135) and neighbor advertisement (ICMPv6 type 136) messages will not be handled by translation rules. .Pp After translation NAT64 translator by default sends packets through corresponding netisr queue. Thus translator host should be configured as IPv4 and IPv6 router. Also this means, that a packet is handled by firewall twice. First time an original packet is handled and consumed by translator, and then it is handled again as translated packet. This behavior can be changed by sysctl variable .Va net.inet.ip.fw.nat64_direct_output . Also translated packet can be tagged using .Cm tag rule action, and then matched by .Cm tagged opcode to avoid loops and extra overhead. .Pp The stateful NAT64 configuration command is the following: .Bd -ragged -offset indent .Bk -words .Cm nat64lsn .Ar name .Cm create .Ar create-options .Ek .Ed .Pp The following parameters can be configured: .Bl -tag -width indent .It Cm prefix4 Ar ipv4_prefix/plen The IPv4 prefix with mask defines the pool of IPv4 addresses used as source address after translation. Stateful NAT64 module translates IPv6 source address of client to one IPv4 address from this pool. Note that incoming IPv4 packets that don't have corresponding state entry in the states table will be dropped by translator. Make sure that translation rules handle packets, destined to configured prefix. .It Cm prefix6 Ar ipv6_prefix/length The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent IPv4 addresses. This IPv6 prefix should be configured in DNS64. The translator implementation follows RFC6052, that restricts the length of prefixes to one of following: 32, 40, 48, 56, 64, or 96. The Well-Known IPv6 Prefix 64:ff9b:: must be 96 bits long. The special .Ar ::/length prefix can be used to handle several IPv6 prefixes with one NAT64 instance. The NAT64 instance will determine a destination IPv4 address from prefix .Ar length . .It Cm states_chunks Ar number The number of states chunks in single ports group. Each ports group by default can keep 64 state entries in single chunk. The above value affects the maximum number of states that can be associated with single IPv4 alias address and port. The value must be power of 2, and up to 128. .It Cm host_del_age Ar seconds The number of seconds until the host entry for a IPv6 client will be deleted and all its resources will be released due to inactivity. Default value is .Ar 3600 . .It Cm pg_del_age Ar seconds The number of seconds until a ports group with unused state entries will be released. Default value is .Ar 900 . .It Cm tcp_syn_age Ar seconds The number of seconds while a state entry for TCP connection with only SYN sent will be kept. If TCP connection establishing will not be finished, state entry will be deleted. Default value is .Ar 10 . .It Cm tcp_est_age Ar seconds The number of seconds while a state entry for established TCP connection will be kept. Default value is .Ar 7200 . .It Cm tcp_close_age Ar seconds The number of seconds while a state entry for closed TCP connection will be kept. Keeping state entries for closed connections is needed, because IPv4 servers typically keep closed connections in a TIME_WAIT state for a several minutes. Since translator's IPv4 addresses are shared among all IPv6 clients, new connections from the same addresses and ports may be rejected by server, because these connections are still in a TIME_WAIT state. Keeping them in translator's state table protects from such rejects. Default value is .Ar 180 . .It Cm udp_age Ar seconds The number of seconds while translator keeps state entry in a waiting for reply to the sent UDP datagram. Default value is .Ar 120 . .It Cm icmp_age Ar seconds The number of seconds while translator keeps state entry in a waiting for reply to the sent ICMP message. Default value is .Ar 60 . .It Cm log Turn on logging of all handled packets via BPF through .Ar ipfwlog0 interface. .Ar ipfwlog0 is a pseudo interface and can be created after a boot manually with .Cm ifconfig command. Note that it has different purpose than .Ar ipfw0 interface. Translators sends to BPF an additional information with each packet. With .Cm tcpdump you are able to see each handled packet before and after translation. .It Cm -log Turn off logging of all handled packets via BPF. .It Cm allow_private Turn on processing private IPv4 addresses. By default IPv6 packets with destinations mapped to private address ranges defined by RFC1918 are not processed. .It Cm -allow_private Turn off private address handling in .Nm nat64 instance. .El .Pp To inspect a states table of stateful NAT64 the following command can be used: .Bd -ragged -offset indent .Bk -words .Cm nat64lsn .Ar name .Cm show Cm states .Ek .Ed .Pp Stateless NAT64 translator doesn't use a states table for translation and converts IPv4 addresses to IPv6 and vice versa solely based on the mappings taken from configured lookup tables. Since a states table doesn't used by stateless translator, it can be configured to pass IPv4 clients to IPv6-only servers. .Pp The stateless NAT64 configuration command is the following: .Bd -ragged -offset indent .Bk -words .Cm nat64stl .Ar name .Cm create .Ar create-options .Ek .Ed .Pp The following parameters can be configured: .Bl -tag -width indent .It Cm prefix6 Ar ipv6_prefix/length The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent IPv4 addresses. This IPv6 prefix should be configured in DNS64. .It Cm table4 Ar table46 The lookup table .Ar table46 contains mapping how IPv4 addresses should be translated to IPv6 addresses. .It Cm table6 Ar table64 The lookup table .Ar table64 contains mapping how IPv6 addresses should be translated to IPv4 addresses. .It Cm log Turn on logging of all handled packets via BPF through .Ar ipfwlog0 interface. .It Cm -log Turn off logging of all handled packets via BPF. .It Cm allow_private Turn on processing private IPv4 addresses. By default IPv6 packets with destinations mapped to private address ranges defined by RFC1918 are not processed. .It Cm -allow_private Turn off private address handling in .Nm nat64 instance. .El .Pp Note that the behavior of stateless translator with respect to not matched packets differs from stateful translator. If corresponding addresses was not found in the lookup tables, the packet will not be dropped and the search continues. .Ss XLAT464 CLAT translation XLAT464 CLAT NAT64 translator implements client-side stateless translation as defined in RFC6877 and is very similar to statless NAT64 translator explained above. Instead of lookup tables it uses one-to-one mapping between IPv4 and IPv6 addresses using configured prefixes. This mode can be used as a replacement of DNS64 service for applications that are not using it (e.g. VoIP) allowing them to access IPv4-only Internet over IPv6-only networks with help of remote NAT64 translator. .Pp The CLAT NAT64 configuration command is the following: .Bd -ragged -offset indent .Bk -words .Cm nat64clat .Ar name .Cm create .Ar create-options .Ek .Ed .Pp The following parameters can be configured: .Bl -tag -width indent .It Cm clat_prefix Ar ipv6_prefix/length The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent source IPv4 addresses. .It Cm plat_prefix Ar ipv6_prefix/length The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator to represent destination IPv4 addresses. This IPv6 prefix should be configured on a remote NAT64 translator. .It Cm log Turn on logging of all handled packets via BPF through .Ar ipfwlog0 interface. .It Cm -log Turn off logging of all handled packets via BPF. .It Cm allow_private Turn on processing private IPv4 addresses. By default .Nm nat64clat instance will not process IPv4 packets with destination address from private ranges as defined in RFC1918. .It Cm -allow_private Turn off private address handling in .Nm nat64clat instance. .El .Pp Note that the behavior of CLAT translator with respect to not matched packets differs from stateful translator. If corresponding addresses were not matched against prefixes configured, the packet will not be dropped and the search continues. .Sh IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6) .Nm supports in-kernel IPv6-to-IPv6 network prefix translation as described in RFC6296. The kernel module .Cm ipfw_nptv6 should be loaded or kernel should has .Cm options IPFIREWALL_NPTV6 to be able use NPTv6 translator. .Pp The NPTv6 configuration command is the following: .Bd -ragged -offset indent .Bk -words .Cm nptv6 .Ar name .Cm create .Ar create-options .Ek .Ed .Pp The following parameters can be configured: .Bl -tag -width indent .It Cm int_prefix Ar ipv6_prefix IPv6 prefix used in internal network. NPTv6 module translates source address when it matches this prefix. .It Cm ext_prefix Ar ipv6_prefix IPv6 prefix used in external network. NPTv6 module translates destination address when it matches this prefix. .It Cm ext_if Ar nic The NPTv6 module will use first global IPv6 address from interface .Ar nic as external prefix. It can be useful when IPv6 prefix of external network is dynamically obtained. .Cm ext_prefix and .Cm ext_if options are mutually exclusive. .It Cm prefixlen Ar length The length of specified IPv6 prefixes. It must be in range from 8 to 64. .El .Pp Note that the prefix translation rules are silently ignored when IPv6 packet forwarding is disabled. To enable the packet forwarding, set the sysctl variable .Va net.inet6.ip6.forwarding to 1. .Pp To let the packet continue after being translated, set the sysctl variable .Va net.inet.ip.fw.one_pass to 0. .Sh LOADER TUNABLES Tunables can be set in .Xr loader 8 prompt, .Xr loader.conf 5 or .Xr kenv 1 before ipfw module gets loaded. .Bl -tag -width indent .It Va net.inet.ip.fw.default_to_accept : No 0 Defines ipfw last rule behavior. This value overrides .Cd "options IPFW_DEFAULT_TO_(ACCEPT|DENY)" from kernel configuration file. .It Va net.inet.ip.fw.tables_max : No 128 Defines number of tables available in ipfw. Number cannot exceed 65534. .El .Sh SYSCTL VARIABLES A set of .Xr sysctl 8 variables controls the behaviour of the firewall and associated modules .Pq Nm dummynet , bridge , sctp nat . These are shown below together with their default value (but always check with the .Xr sysctl 8 command what value is actually in use) and meaning: .Bl -tag -width indent .It Va net.inet.ip.alias.sctp.accept_global_ootb_addip : No 0 Defines how the .Nm nat responds to receipt of global OOTB ASCONF-AddIP: .Bl -tag -width indent .It Cm 0 No response (unless a partially matching association exists - ports and vtags match but global address does not) .It Cm 1 .Nm nat will accept and process all OOTB global AddIP messages. .El .Pp Option 1 should never be selected as this forms a security risk. An attacker can establish multiple fake associations by sending AddIP messages. .It Va net.inet.ip.alias.sctp.chunk_proc_limit : No 5 Defines the maximum number of chunks in an SCTP packet that will be parsed for a packet that matches an existing association. This value is enforced to be greater or equal than .Cm net.inet.ip.alias.sctp.initialising_chunk_proc_limit . A high value is a DoS risk yet setting too low a value may result in important control chunks in the packet not being located and parsed. .It Va net.inet.ip.alias.sctp.error_on_ootb : No 1 Defines when the .Nm nat responds to any Out-of-the-Blue (OOTB) packets with ErrorM packets. An OOTB packet is a packet that arrives with no existing association registered in the .Nm nat and is not an INIT or ASCONF-AddIP packet: .Bl -tag -width indent .It Cm 0 ErrorM is never sent in response to OOTB packets. .It Cm 1 ErrorM is only sent to OOTB packets received on the local side. .It Cm 2 ErrorM is sent to the local side and on the global side ONLY if there is a partial match (ports and vtags match but the source global IP does not). This value is only useful if the .Nm nat is tracking global IP addresses. .It Cm 3 ErrorM is sent in response to all OOTB packets on both the local and global side (DoS risk). .El .Pp At the moment the default is 0, since the ErrorM packet is not yet supported by most SCTP stacks. When it is supported, and if not tracking global addresses, we recommend setting this value to 1 to allow multi-homed local hosts to function with the .Nm nat . To track global addresses, we recommend setting this value to 2 to allow global hosts to be informed when they need to (re)send an ASCONF-AddIP. Value 3 should never be chosen (except for debugging) as the .Nm nat will respond to all OOTB global packets (a DoS risk). .It Va net.inet.ip.alias.sctp.hashtable_size : No 2003 Size of hash tables used for .Nm nat lookups (100 < prime_number > 1000001). This value sets the .Nm hash table size for any future created .Nm nat instance and therefore must be set prior to creating a .Nm nat instance. The table sizes may be changed to suit specific needs. If there will be few concurrent associations, and memory is scarce, you may make these smaller. If there will be many thousands (or millions) of concurrent associations, you should make these larger. A prime number is best for the table size. The sysctl update function will adjust your input value to the next highest prime number. .It Va net.inet.ip.alias.sctp.holddown_time : No 0 Hold association in table for this many seconds after receiving a SHUTDOWN-COMPLETE. This allows endpoints to correct shutdown gracefully if a shutdown_complete is lost and retransmissions are required. .It Va net.inet.ip.alias.sctp.init_timer : No 15 Timeout value while waiting for (INIT-ACK|AddIP-ACK). This value cannot be 0. .It Va net.inet.ip.alias.sctp.initialising_chunk_proc_limit : No 2 Defines the maximum number of chunks in an SCTP packet that will be parsed when no existing association exists that matches that packet. Ideally this packet will only be an INIT or ASCONF-AddIP packet. A higher value may become a DoS risk as malformed packets can consume processing resources. .It Va net.inet.ip.alias.sctp.param_proc_limit : No 25 Defines the maximum number of parameters within a chunk that will be parsed in a packet. As for other similar sysctl variables, larger values pose a DoS risk. .It Va net.inet.ip.alias.sctp.log_level : No 0 Level of detail in the system log messages (0 \- minimal, 1 \- event, 2 \- info, 3 \- detail, 4 \- debug, 5 \- max debug). May be a good option in high loss environments. .It Va net.inet.ip.alias.sctp.shutdown_time : No 15 Timeout value while waiting for SHUTDOWN-COMPLETE. This value cannot be 0. .It Va net.inet.ip.alias.sctp.track_global_addresses : No 0 Enables/disables global IP address tracking within the .Nm nat and places an upper limit on the number of addresses tracked for each association: .Bl -tag -width indent .It Cm 0 Global tracking is disabled .It Cm >1 Enables tracking, the maximum number of addresses tracked for each association is limited to this value .El .Pp This variable is fully dynamic, the new value will be adopted for all newly arriving associations, existing associations are treated as they were previously. Global tracking will decrease the number of collisions within the .Nm nat at a cost of increased processing load, memory usage, complexity, and possible .Nm nat state problems in complex networks with multiple .Nm nats . We recommend not tracking global IP addresses, this will still result in a fully functional .Nm nat . .It Va net.inet.ip.alias.sctp.up_timer : No 300 Timeout value to keep an association up with no traffic. This value cannot be 0. .It Va net.inet.ip.dummynet.codel.interval : No 100000 Default .Cm codel AQM interval in microseconds. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.codel.target : No 5000 Default .Cm codel AQM target delay time in microseconds (the minimum acceptable persistent queue delay). The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.expire : No 1 Lazily delete dynamic pipes/queue once they have no pending traffic. You can disable this by setting the variable to 0, in which case the pipes/queues will only be deleted when the threshold is reached. .It Va net.inet.ip.dummynet.fqcodel.flows : No 1024 Defines the default total number of flow queues (sub-queues) that .Cm fq_codel creates and manages. The value must be in the range 1..65536. .It Va net.inet.ip.dummynet.fqcodel.interval : No 100000 Default .Cm fq_codel scheduler/AQM interval in microseconds. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.fqcodel.limit : No 10240 The default hard size limit (in unit of packet) of all queues managed by an instance of the .Cm fq_codel scheduler. The value must be in the range 1..20480. .It Va net.inet.ip.dummynet.fqcodel.quantum : No 1514 The default quantum (credit) of the .Cm fq_codel in unit of byte. The value must be in the range 1..9000. .It Va net.inet.ip.dummynet.fqcodel.target : No 5000 Default .Cm fq_codel scheduler/AQM target delay time in microseconds (the minimum acceptable persistent queue delay). The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.fqpie.alpha : No 125 The default .Ar alpha parameter (scaled by 1000) for .Cm fq_pie scheduler/AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.fqpie.beta : No 1250 The default .Ar beta parameter (scaled by 1000) for .Cm fq_pie scheduler/AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.fqpie.flows : No 1024 Defines the default total number of flow queues (sub-queues) that .Cm fq_pie creates and manages. The value must be in the range 1..65536. .It Va net.inet.ip.dummynet.fqpie.limit : No 10240 The default hard size limit (in unit of packet) of all queues managed by an instance of the .Cm fq_pie scheduler. The value must be in the range 1..20480. .It Va net.inet.ip.dummynet.fqpie.max_burst : No 150000 The default maximum period of microseconds that .Cm fq_pie scheduler/AQM does not drop/mark packets. The value must be in the range 1..10000000. .It Va net.inet.ip.dummynet.fqpie.max_ecnth : No 99 The default maximum ECN probability threshold (scaled by 1000) for .Cm fq_pie scheduler/AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.fqpie.quantum : No 1514 The default quantum (credit) of the .Cm fq_pie in unit of byte. The value must be in the range 1..9000. .It Va net.inet.ip.dummynet.fqpie.target : No 15000 The default .Cm target delay of the .Cm fq_pie in unit of microsecond. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.fqpie.tupdate : No 15000 The default .Cm tupdate of the .Cm fq_pie in unit of microsecond. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.hash_size : No 64 Default size of the hash table used for dynamic pipes/queues. This value is used when no .Cm buckets option is specified when configuring a pipe/queue. .It Va net.inet.ip.dummynet.io_fast : No 0 If set to a non-zero value, the .Dq fast mode of .Nm dummynet operation (see above) is enabled. .It Va net.inet.ip.dummynet.io_pkt Number of packets passed to .Nm dummynet . .It Va net.inet.ip.dummynet.io_pkt_drop Number of packets dropped by .Nm dummynet . .It Va net.inet.ip.dummynet.io_pkt_fast Number of packets bypassed by the .Nm dummynet scheduler. .It Va net.inet.ip.dummynet.max_chain_len : No 16 Target value for the maximum number of pipes/queues in a hash bucket. The product .Cm max_chain_len*hash_size is used to determine the threshold over which empty pipes/queues will be expired even when .Cm net.inet.ip.dummynet.expire=0 . .It Va net.inet.ip.dummynet.red_lookup_depth : No 256 .It Va net.inet.ip.dummynet.red_avg_pkt_size : No 512 .It Va net.inet.ip.dummynet.red_max_pkt_size : No 1500 Parameters used in the computations of the drop probability for the RED algorithm. .It Va net.inet.ip.dummynet.pie.alpha : No 125 The default .Ar alpha parameter (scaled by 1000) for .Cm pie AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.pie.beta : No 1250 The default .Ar beta parameter (scaled by 1000) for .Cm pie AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.pie.max_burst : No 150000 The default maximum period of microseconds that .Cm pie AQM does not drop/mark packets. The value must be in the range 1..10000000. .It Va net.inet.ip.dummynet.pie.max_ecnth : No 99 The default maximum ECN probability threshold (scaled by 1000) for .Cm pie AQM. The value must be in the range 1..7000. .It Va net.inet.ip.dummynet.pie.target : No 15000 The default .Cm target delay of .Cm pie AQM in unit of microsecond. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.pie.tupdate : No 15000 The default .Cm tupdate of .Cm pie AQM in unit of microsecond. The value must be in the range 1..5000000. .It Va net.inet.ip.dummynet.pipe_byte_limit : No 1048576 .It Va net.inet.ip.dummynet.pipe_slot_limit : No 100 The maximum queue size that can be specified in bytes or packets. These limits prevent accidental exhaustion of resources such as mbufs. If you raise these limits, you should make sure the system is configured so that sufficient resources are available. .It Va net.inet.ip.fw.autoinc_step : No 100 Delta between rule numbers when auto-generating them. The value must be in the range 1..1000. .It Va net.inet.ip.fw.curr_dyn_buckets : Va net.inet.ip.fw.dyn_buckets The current number of buckets in the hash table for dynamic rules (readonly). .It Va net.inet.ip.fw.debug : No 1 Controls debugging messages produced by .Nm . .It Va net.inet.ip.fw.default_rule : No 65535 The default rule number (read-only). By the design of .Nm , the default rule is the last one, so its number can also serve as the highest number allowed for a rule. .It Va net.inet.ip.fw.dyn_buckets : No 256 The number of buckets in the hash table for dynamic rules. Must be a power of 2, up to 65536. It only takes effect when all dynamic rules have expired, so you are advised to use a .Cm flush command to make sure that the hash table is resized. .It Va net.inet.ip.fw.dyn_count : No 3 Current number of dynamic rules (read-only). .It Va net.inet.ip.fw.dyn_keepalive : No 1 Enables generation of keepalive packets for .Cm keep-state rules on TCP sessions. A keepalive is generated to both sides of the connection every 5 seconds for the last 20 seconds of the lifetime of the rule. .It Va net.inet.ip.fw.dyn_max : No 8192 Maximum number of dynamic rules. When you hit this limit, no more dynamic rules can be installed until old ones expire. .It Va net.inet.ip.fw.dyn_ack_lifetime : No 300 .It Va net.inet.ip.fw.dyn_syn_lifetime : No 20 .It Va net.inet.ip.fw.dyn_fin_lifetime : No 1 .It Va net.inet.ip.fw.dyn_rst_lifetime : No 1 .It Va net.inet.ip.fw.dyn_udp_lifetime : No 5 .It Va net.inet.ip.fw.dyn_short_lifetime : No 30 These variables control the lifetime, in seconds, of dynamic rules. Upon the initial SYN exchange the lifetime is kept short, then increased after both SYN have been seen, then decreased again during the final FIN exchange or when a RST is received. Both .Em dyn_fin_lifetime and .Em dyn_rst_lifetime must be strictly lower than 5 seconds, the period of repetition of keepalives. The firewall enforces that. .It Va net.inet.ip.fw.dyn_keep_states : No 0 Keep dynamic states on rule/set deletion. States are relinked to default rule (65535). This can be handly for ruleset reload. Turned off by default. .It Va net.inet.ip.fw.enable : No 1 Enables the firewall. Setting this variable to 0 lets you run your machine without firewall even if compiled in. .It Va net.inet6.ip6.fw.enable : No 1 provides the same functionality as above for the IPv6 case. .It Va net.inet.ip.fw.one_pass : No 1 When set, the packet exiting from the .Nm dummynet pipe or from .Xr ng_ipfw 4 node is not passed though the firewall again. Otherwise, after an action, the packet is reinjected into the firewall at the next rule. .It Va net.inet.ip.fw.tables_max : No 128 Maximum number of tables. .It Va net.inet.ip.fw.verbose : No 1 Enables verbose messages. .It Va net.inet.ip.fw.verbose_limit : No 0 Limits the number of messages produced by a verbose firewall. .It Va net.inet6.ip6.fw.deny_unknown_exthdrs : No 1 If enabled packets with unknown IPv6 Extension Headers will be denied. .It Va net.link.ether.ipfw : No 0 Controls whether layer2 packets are passed to .Nm . Default is no. .It Va net.link.bridge.ipfw : No 0 Controls whether bridged packets are passed to .Nm . Default is no. .It Va net.inet.ip.fw.nat64_debug : No 0 Controls debugging messages produced by .Nm ipfw_nat64 module. .It Va net.inet.ip.fw.nat64_direct_output : No 0 Controls the output method used by .Nm ipfw_nat64 module: .Bl -tag -width indent .It Cm 0 A packet is handled by .Nm ipfw twice. First time an original packet is handled by .Nm ipfw and consumed by .Nm ipfw_nat64 translator. Then translated packet is queued via netisr to input processing again. .It Cm 1 A packet is handled by .Nm ipfw only once, and after translation it will be pushed directly to outgoing interface. .El .El .Sh INTERNAL DIAGNOSTICS There are some commands that may be useful to understand current state of certain subsystems inside kernel module. These commands provide debugging output which may change without notice. .Pp Currently the following commands are available as .Cm internal sub-options: .Bl -tag -width indent .It Cm iflist Lists all interface which are currently tracked by .Nm with their in-kernel status. .It Cm talist List all table lookup algorithms currently available. .El .Sh EXAMPLES There are far too many possible uses of .Nm so this Section will only give a small set of examples. .Ss BASIC PACKET FILTERING This command adds an entry which denies all tcp packets from .Em cracker.evil.org to the telnet port of .Em wolf.tambov.su from being forwarded by the host: .Pp .Dl "ipfw add deny tcp from cracker.evil.org to wolf.tambov.su telnet" .Pp This one disallows any connection from the entire cracker's network to my host: .Pp .Dl "ipfw add deny ip from 123.45.67.0/24 to my.host.org" .Pp A first and efficient way to limit access (not using dynamic rules) is the use of the following rules: .Pp .Dl "ipfw add allow tcp from any to any established" .Dl "ipfw add allow tcp from net1 portlist1 to net2 portlist2 setup" .Dl "ipfw add allow tcp from net3 portlist3 to net3 portlist3 setup" .Dl "..." .Dl "ipfw add deny tcp from any to any" .Pp The first rule will be a quick match for normal TCP packets, but it will not match the initial SYN packet, which will be matched by the .Cm setup rules only for selected source/destination pairs. All other SYN packets will be rejected by the final .Cm deny rule. .Pp If you administer one or more subnets, you can take advantage of the address sets and or-blocks and write extremely compact rulesets which selectively enable services to blocks of clients, as below: .Pp .Dl "goodguys=\*q{ 10.1.2.0/24{20,35,66,18} or 10.2.3.0/28{6,3,11} }\*q" .Dl "badguys=\*q10.1.2.0/24{8,38,60}\*q" .Dl "" .Dl "ipfw add allow ip from ${goodguys} to any" .Dl "ipfw add deny ip from ${badguys} to any" .Dl "... normal policies ..." .Pp Allow any transit packets coming from single vlan 10 and going out to vlans 100-1000: .Pp .Dl "ipfw add 10 allow out recv vlan10 \e" .Dl "{ xmit vlan1000 or xmit \*qvlan[1-9]??\*q }" .Pp The .Cm verrevpath option could be used to do automated anti-spoofing by adding the following to the top of a ruleset: .Pp .Dl "ipfw add deny ip from any to any not verrevpath in" .Pp This rule drops all incoming packets that appear to be coming to the system on the wrong interface. For example, a packet with a source address belonging to a host on a protected internal network would be dropped if it tried to enter the system from an external interface. .Pp The .Cm antispoof option could be used to do similar but more restricted anti-spoofing by adding the following to the top of a ruleset: .Pp .Dl "ipfw add deny ip from any to any not antispoof in" .Pp This rule drops all incoming packets that appear to be coming from another directly connected system but on the wrong interface. For example, a packet with a source address of .Li 192.168.0.0/24 , configured on .Li fxp0 , but coming in on .Li fxp1 would be dropped. .Pp The .Cm setdscp option could be used to (re)mark user traffic, by adding the following to the appropriate place in ruleset: .Pp .Dl "ipfw add setdscp be ip from any to any dscp af11,af21" .Ss SELECTIVE MIRRORING If your network has network traffic analyzer connected to your host directly via dedicated interface or remotely via RSPAN vlan, you can selectively mirror some Ethernet layer2 frames to the analyzer. .Pp First, make sure your firewall is already configured and runs. Then, enable layer2 processing if not already enabled: .Pp .Dl "sysctl net.link.ether.ipfw=1" .Pp Next, load needed additional kernel modules: .Pp .Dl "kldload ng_ether ng_ipfw" .Pp Optionally, make system load these modules automatically at startup: .Pp .Dl sysrc kld_list+="ng_ether ng_ipfw" .Pp Next, configure .Xr ng_ipfw 4 kernel module to transmit mirrored copies of layer2 frames out via vlan900 interface: .Pp .Dl "ngctl connect ipfw: vlan900: 1 lower" .Pp Think of "1" here as of "mirroring instance index" and vlan900 is its destination. You can have arbitrary number of instances. Refer to .Xr ng_ipfw 4 for details. .Pp At last, actually start mirroring of selected frames using "instance 1". For frames incoming from em0 interface: .Pp .Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 in recv em0" .Pp For frames outgoing to em0 interface: .Pp .Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 out xmit em0" .Pp For both incoming and outgoing frames while flowing through em0: .Pp .Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 via em0" .Pp Make sure you do not perform mirroring for already duplicated frames or kernel may hang as there is no safety net. .Ss DYNAMIC RULES In order to protect a site from flood attacks involving fake TCP packets, it is safer to use dynamic rules: .Pp .Dl "ipfw add check-state" .Dl "ipfw add deny tcp from any to any established" .Dl "ipfw add allow tcp from my-net to any setup keep-state" .Pp This will let the firewall install dynamic rules only for those connection which start with a regular SYN packet coming from the inside of our network. Dynamic rules are checked when encountering the first occurrence of a .Cm check-state , .Cm keep-state or .Cm limit rule. A .Cm check-state rule should usually be placed near the beginning of the ruleset to minimize the amount of work scanning the ruleset. Your mileage may vary. .Pp For more complex scenarios with dynamic rules .Cm record-state and .Cm defer-action can be used to precisely control creation and checking of dynamic rules. Example of usage of these options are provided in .Sx NETWORK ADDRESS TRANSLATION (NAT) Section. .Pp To limit the number of connections a user can open you can use the following type of rules: .Pp .Dl "ipfw add allow tcp from my-net/24 to any setup limit src-addr 10" .Dl "ipfw add allow tcp from any to me setup limit src-addr 4" .Pp The former (assuming it runs on a gateway) will allow each host on a /24 network to open at most 10 TCP connections. The latter can be placed on a server to make sure that a single client does not use more than 4 simultaneous connections. .Pp .Em BEWARE : stateful rules can be subject to denial-of-service attacks by a SYN-flood which opens a huge number of dynamic rules. The effects of such attacks can be partially limited by acting on a set of .Xr sysctl 8 variables which control the operation of the firewall. .Pp Here is a good usage of the .Cm list command to see accounting records and timestamp information: .Pp .Dl ipfw -at list .Pp or in short form without timestamps: .Pp .Dl ipfw -a list .Pp which is equivalent to: .Pp .Dl ipfw show .Pp Next rule diverts all incoming packets from 192.168.2.0/24 to divert port 5000: .Pp .Dl ipfw divert 5000 ip from 192.168.2.0/24 to any in .Ss TRAFFIC SHAPING The following rules show some of the applications of .Nm and .Nm dummynet for simulations and the like. .Pp This rule drops random incoming packets with a probability of 5%: .Pp .Dl "ipfw add prob 0.05 deny ip from any to any in" .Pp A similar effect can be achieved making use of .Nm dummynet pipes: .Pp .Dl "dnctl add pipe 10 ip from any to any" .Dl "dnctl pipe 10 config plr 0.05" .Pp We can use pipes to artificially limit bandwidth, e.g.\& on a machine acting as a router, if we want to limit traffic from local clients on 192.168.2.0/24 we do: .Pp .Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out" .Dl "dnctl pipe 1 config bw 300Kbit/s queue 50KBytes" .Pp note that we use the .Cm out modifier so that the rule is not used twice. Remember in fact that .Nm rules are checked both on incoming and outgoing packets. .Pp Should we want to simulate a bidirectional link with bandwidth limitations, the correct way is the following: .Pp .Dl "ipfw add pipe 1 ip from any to any out" .Dl "ipfw add pipe 2 ip from any to any in" .Dl "dnctl pipe 1 config bw 64Kbit/s queue 10Kbytes" .Dl "dnctl pipe 2 config bw 64Kbit/s queue 10Kbytes" .Pp The above can be very useful, e.g.\& if you want to see how your fancy Web page will look for a residential user who is connected only through a slow link. You should not use only one pipe for both directions, unless you want to simulate a half-duplex medium (e.g.\& AppleTalk, Ethernet, IRDA). It is not necessary that both pipes have the same configuration, so we can also simulate asymmetric links. .Pp Should we want to verify network performance with the RED queue management algorithm: .Pp .Dl "ipfw add pipe 1 ip from any to any" .Dl "dnctl pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1" .Pp Another typical application of the traffic shaper is to introduce some delay in the communication. This can significantly affect applications which do a lot of Remote Procedure Calls, and where the round-trip-time of the connection often becomes a limiting factor much more than bandwidth: .Pp .Dl "ipfw add pipe 1 ip from any to any out" .Dl "ipfw add pipe 2 ip from any to any in" .Dl "dnctl pipe 1 config delay 250ms bw 1Mbit/s" .Dl "dnctl pipe 2 config delay 250ms bw 1Mbit/s" .Pp Per-flow queueing can be useful for a variety of purposes. A very simple one is counting traffic: .Pp .Dl "ipfw add pipe 1 tcp from any to any" .Dl "ipfw add pipe 1 udp from any to any" .Dl "ipfw add pipe 1 ip from any to any" .Dl "dnctl pipe 1 config mask all" .Pp The above set of rules will create queues (and collect statistics) for all traffic. Because the pipes have no limitations, the only effect is collecting statistics. Note that we need 3 rules, not just the last one, because when .Nm tries to match IP packets it will not consider ports, so we would not see connections on separate ports as different ones. .Pp A more sophisticated example is limiting the outbound traffic on a net with per-host limits, rather than per-network limits: .Pp .Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out" .Dl "ipfw add pipe 2 ip from any to 192.168.2.0/24 in" .Dl "dnctl pipe 1 config mask src-ip 0x000000ff bw 200Kbit/s queue 20Kbytes" .Dl "dnctl pipe 2 config mask dst-ip 0x000000ff bw 200Kbit/s queue 20Kbytes" .Ss LOOKUP TABLES In the following example, we need to create several traffic bandwidth classes and we need different hosts/networks to fall into different classes. We create one pipe for each class and configure them accordingly. Then we create a single table and fill it with IP subnets and addresses. For each subnet/host we set the argument equal to the number of the pipe that it should use. Then we classify traffic using a single rule: .Pp .Dl "dnctl pipe 1 config bw 1000Kbyte/s" .Dl "dnctl pipe 4 config bw 4000Kbyte/s" .Dl "..." .Dl "ipfw table T1 create type addr" .Dl "ipfw table T1 add 192.168.2.0/24 1" .Dl "ipfw table T1 add 192.168.0.0/27 4" .Dl "ipfw table T1 add 192.168.0.2 1" .Dl "..." .Dl "ipfw add pipe tablearg ip from 'table(T1)' to any" .Pp Using the .Cm fwd action, the table entries may include hostnames and IP addresses. .Pp .Dl "ipfw table T2 create type addr valtype ipv4" .Dl "ipfw table T2 add 192.168.2.0/24 10.23.2.1" .Dl "ipfw table T2 add 192.168.0.0/27 router1.dmz" .Dl "..." .Dl "ipfw add 100 fwd tablearg ip from any to 'table(T2)'" .Pp In the following example per-interface firewall is created: .Pp .Dl "ipfw table IN create type iface valtype skipto,fib" .Dl "ipfw table IN add vlan20 12000,12" .Dl "ipfw table IN add vlan30 13000,13" .Dl "ipfw table OUT create type iface valtype skipto" .Dl "ipfw table OUT add vlan20 22000" .Dl "ipfw table OUT add vlan30 23000" .Dl ".." .Dl "ipfw add 100 setfib tablearg ip from any to any recv 'table(IN)' in" .Dl "ipfw add 200 skipto tablearg ip from any to any recv 'table(IN)' in" .Dl "ipfw add 300 skipto tablearg ip from any to any xmit 'table(OUT)' out" .Pp The following example illustrate usage of flow tables: .Pp .Dl "ipfw table fl create type flow:src-ip,proto,dst-ip,dst-port" .Dl "ipfw table fl add 2a02:6b8:77::88,tcp,2a02:6b8:77::99,80 11" .Dl "ipfw table fl add 10.0.0.1,udp,10.0.0.2,53 12" .Dl ".." .Dl "ipfw add 100 allow ip from any to any flow 'table(fl,11)' recv ix0" .Ss SETS OF RULES To add a set of rules atomically, e.g.\& set 18: .Pp .Dl "ipfw set disable 18" .Dl "ipfw add NN set 18 ... # repeat as needed" .Dl "ipfw set enable 18" .Pp To delete a set of rules atomically the command is simply: .Pp .Dl "ipfw delete set 18" .Pp To test a ruleset and disable it and regain control if something goes wrong: .Pp .Dl "ipfw set disable 18" .Dl "ipfw add NN set 18 ... # repeat as needed" .Dl "ipfw set enable 18; echo done; sleep 30 && ipfw set disable 18" .Pp Here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left active. Otherwise, e.g.\& if you cannot access your box, the ruleset will be disabled after the sleep terminates thus restoring the previous situation. .Pp To show rules of the specific set: .Pp .Dl "ipfw set 18 show" .Pp To show rules of the disabled set: .Pp .Dl "ipfw -S set 18 show" .Pp To clear a specific rule counters of the specific set: .Pp .Dl "ipfw set 18 zero NN" .Pp To delete a specific rule of the specific set: .Pp .Dl "ipfw set 18 delete NN" .Ss NAT, REDIRECT AND LSNAT First redirect all the traffic to nat instance 123: .Pp .Dl "ipfw add nat 123 all from any to any" .Pp Then to configure nat instance 123 to alias all the outgoing traffic with ip 192.168.0.123, blocking all incoming connections, trying to keep same ports on both sides, clearing aliasing table on address change and keeping a log of traffic/link statistics: .Pp .Dl "ipfw nat 123 config ip 192.168.0.123 log deny_in reset same_ports" .Pp Or to change address of instance 123, aliasing table will be cleared (see reset option): .Pp .Dl "ipfw nat 123 config ip 10.0.0.1" .Pp To see configuration of nat instance 123: .Pp .Dl "ipfw nat 123 show config" .Pp To show logs of all instances: .Pp .Dl "ipfw nat show log" .Pp To see configurations of all instances: .Pp .Dl "ipfw nat show config" .Pp Or a redirect rule with mixed modes could looks like: .Bd -literal -offset 2n ipfw nat 123 config redirect_addr 10.0.0.1 10.0.0.66 redirect_port tcp 192.168.0.1:80 500 redirect_proto udp 192.168.1.43 192.168.1.1 redirect_addr 192.168.0.10,192.168.0.11 10.0.0.100 # LSNAT redirect_port tcp 192.168.0.1:80,192.168.0.10:22 500 # LSNAT .Ed .Pp or it could be split in: .Bd -literal -offset 2n ipfw nat 1 config redirect_addr 10.0.0.1 10.0.0.66 ipfw nat 2 config redirect_port tcp 192.168.0.1:80 500 ipfw nat 3 config redirect_proto udp 192.168.1.43 192.168.1.1 ipfw nat 4 config redirect_addr 192.168.0.10,192.168.0.11,192.168.0.12 10.0.0.100 ipfw nat 5 config redirect_port tcp 192.168.0.1:80,192.168.0.10:22,192.168.0.20:25 500 .Ed .Pp Sometimes you may want to mix NAT and dynamic rules. It could be achieved with .Cm record-state and .Cm defer-action options. Problem is, you need to create dynamic rule before NAT and check it after NAT actions (or vice versa) to have consistent addresses and ports. Rule with .Cm keep-state option will trigger activation of existing dynamic state, and action of such rule will be performed as soon as rule is matched. In case of NAT and .Cm allow rule packet need to be passed to NAT, not allowed as soon is possible. .Pp There is example of set of rules to achieve this. Bear in mind that this is example only and it is not very useful by itself. .Pp On way out, after all checks place this rules: .Pp .Dl "ipfw add allow record-state defer-action" .Dl "ipfw add nat 1" .Pp And on way in there should be something like this: .Pp .Dl "ipfw add nat 1" .Dl "ipfw add check-state" .Pp Please note, that first rule on way out doesn't allow packet and doesn't execute existing dynamic rules. All it does, create new dynamic rule with .Cm allow action, if it is not created yet. Later, this dynamic rule is used on way in by .Cm check-state rule. .Ss CONFIGURING CODEL, PIE, FQ-CODEL and FQ-PIE AQM .Cm codel and .Cm pie AQM can be configured for .Nm dummynet .Cm pipe or .Cm queue . .Pp To configure a .Cm pipe with .Cm codel AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s codel" .Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any" .Pp To configure a .Cm queue with .Cm codel AQM using different configurations parameters for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s" .Dl "dnctl queue 1 config pipe 1 codel target 8ms interval 160ms ecn" .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any" .Pp To configure a .Cm pipe with .Cm pie AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s pie" .Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any" .Pp To configure a .Cm queue with .Cm pie AQM using different configuration parameters for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s" .Dl "dnctl queue 1 config pipe 1 pie target 20ms tupdate 30ms ecn" .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any" .Pp .Cm fq_codel and .Cm fq_pie AQM can be configured for .Nm dummynet schedulers. .Pp To configure .Cm fq_codel scheduler using different configurations parameters for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s" .Dl "dnctl sched 1 config pipe 1 type fq_codel" .Dl "dnctl queue 1 config sched 1" .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any" .Pp To change .Cm fq_codel default configuration for a .Cm sched such as disable ECN and change the .Ar target to 10ms, we do: .Pp .Dl "dnctl sched 1 config pipe 1 type fq_codel target 10ms noecn" .Pp Similar to .Cm fq_codel , to configure .Cm fq_pie scheduler using different configurations parameters for traffic from 192.168.0.0/24 and 1Mbits/s rate limit, we do: .Pp .Dl "dnctl pipe 1 config bw 1mbits/s" .Dl "dnctl sched 1 config pipe 1 type fq_pie" .Dl "dnctl queue 1 config sched 1" .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any" .Pp The configurations of .Cm fq_pie .Cm sched can be changed in a similar way as for .Cm fq_codel .Sh SEE ALSO .Xr cpp 1 , .Xr m4 1 , .Xr fnmatch 3 , .Xr altq 4 , .Xr divert 4 , .Xr dummynet 4 , .Xr if_bridge 4 , .Xr ip 4 , .Xr ipfirewall 4 , .Xr ng_ether 4 , .Xr ng_ipfw 4 , .Xr protocols 5 , .Xr services 5 , .Xr init 8 , .Xr kldload 8 , .Xr reboot 8 , .Xr sysctl 8 , .Xr syslogd 8 , .Xr sysrc 8 .Sh HISTORY The .Nm utility first appeared in .Fx 2.0 . .Nm dummynet was introduced in .Fx 2.2.8 . Stateful extensions were introduced in .Fx 4.0 . .Nm ipfw2 was introduced in Summer 2002. .Sh AUTHORS .An Ugen J. S. Antsilevich , .An Poul-Henning Kamp , .An Alex Nash , .An Archie Cobbs , .An Luigi Rizzo , .An Rasool Al-Saadi . .Pp .An -nosplit API based upon code written by .An Daniel Boulet for BSDI. .Pp Dummynet has been introduced by Luigi Rizzo in 1997-1998. .Pp Some early work (1999-2000) on the .Nm dummynet traffic shaper supported by Akamba Corp. .Pp The ipfw core (ipfw2) has been completely redesigned and reimplemented by Luigi Rizzo in summer 2002. Further actions and options have been added by various developers over the years. .Pp .An -nosplit In-kernel NAT support written by .An Paolo Pisati Aq Mt piso@FreeBSD.org as part of a Summer of Code 2005 project. .Pp SCTP .Nm nat support has been developed by .An The Centre for Advanced Internet Architectures (CAIA) Aq http://www.caia.swin.edu.au . The primary developers and maintainers are David Hayes and Jason But. For further information visit: .Aq http://www.caia.swin.edu.au/urp/SONATA .Pp Delay profiles have been developed by Alessandro Cerri and Luigi Rizzo, supported by the European Commission within Projects Onelab and Onelab2. .Pp CoDel, PIE, FQ-CoDel and FQ-PIE AQM for Dummynet have been implemented by .An The Centre for Advanced Internet Architectures (CAIA) in 2016, supported by The Comcast Innovation Fund. The primary developer is Rasool Al-Saadi. .Sh BUGS The syntax has grown over the years and sometimes it might be confusing. Unfortunately, backward compatibility prevents cleaning up mistakes made in the definition of the syntax. .Pp .Em !!! WARNING !!! .Pp Misconfiguring the firewall can put your computer in an unusable state, possibly shutting down network services and requiring console access to regain control of it. .Pp Incoming packet fragments diverted by .Cm divert are reassembled before delivery to the socket. The action used on those packet is the one from the rule which matches the first fragment of the packet. .Pp Packets diverted to userland, and then reinserted by a userland process may lose various packet attributes. The packet source interface name will be preserved if it is shorter than 8 bytes and the userland process saves and reuses the sockaddr_in (as does .Xr natd 8 ) ; otherwise, it may be lost. If a packet is reinserted in this manner, later rules may be incorrectly applied, making the order of .Cm divert rules in the rule sequence very important. .Pp Dummynet drops all packets with IPv6 link-local addresses. .Pp Rules using .Cm uid or .Cm gid may not behave as expected. In particular, incoming SYN packets may have no uid or gid associated with them since they do not yet belong to a TCP connection, and the uid/gid associated with a packet may not be as expected if the associated process calls .Xr setuid 2 or similar system calls. .Pp Rule syntax is subject to the command line environment and some patterns may need to be escaped with the backslash character or quoted appropriately. .Pp Due to the architecture of .Xr libalias 3 , ipfw nat is not compatible with the TCP segmentation offloading (TSO). Thus, to reliably nat your network traffic, please disable TSO on your NICs using .Xr ifconfig 8 . .Pp ICMP error messages are not implicitly matched by dynamic rules for the respective conversations. To avoid failures of network error detection and path MTU discovery, ICMP error messages may need to be allowed explicitly through static rules. .Pp Rules using .Cm call and .Cm return actions may lead to confusing behaviour if ruleset has mistakes, and/or interaction with other subsystems (netgraph, dummynet, etc.) is used. One possible case for this is packet leaving .Nm in subroutine on the input pass, while later on output encountering unpaired .Cm return first. As the call stack is kept intact after input pass, packet will suddenly return to the rule number used on input pass, not on output one. Order of processing should be checked carefully to avoid such mistakes. diff --git a/sbin/ipfw/ipfw2.c b/sbin/ipfw/ipfw2.c index 4ef724160625..3a50fb40bc19 100644 --- a/sbin/ipfw/ipfw2.c +++ b/sbin/ipfw/ipfw2.c @@ -1,5738 +1,5823 @@ /*- * Copyright (c) 2002-2003 Luigi Rizzo * Copyright (c) 1996 Alex Nash, Paul Traina, Poul-Henning Kamp * Copyright (c) 1994 Ugen J.S.Antsilevich * * Idea and grammar partially left from: * Copyright (c) 1993 Daniel Boulet * * Redistribution and use in source forms, with and without modification, * are permitted provided that this entire comment appears intact. * * Redistribution in binary form may occur without any restrictions. * Obviously, it would be nice if you gave credit where credit is due * but requiring it would be too onerous. * * This software is provided ``AS IS'' without any warranties of any kind. * * NEW command line interface for IP firewall facility * * $FreeBSD$ */ #include #include #include #include #include #include "ipfw2.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* ctime */ #include /* _long_to_time */ #include #include #include /* offsetof */ #include #include /* only IFNAMSIZ */ #include #include /* only n_short, n_long */ #include #include #include #include #include struct cmdline_opts g_co; /* global options */ struct format_opts { int bcwidth; int pcwidth; int show_counters; int show_time; /* show timestamp */ uint32_t set_mask; /* enabled sets mask */ uint32_t flags; /* request flags */ uint32_t first; /* first rule to request */ uint32_t last; /* last rule to request */ uint32_t dcnt; /* number of dynamic states */ ipfw_obj_ctlv *tstate; /* table state data */ }; int resvd_set_number = RESVD_SET; static int ipfw_socket = -1; #define CHECK_LENGTH(v, len) do { \ if ((v) < (len)) \ errx(EX_DATAERR, "Rule too long"); \ } while (0) /* * Check if we have enough space in cmd buffer. Note that since * first 8? u32 words are reserved by reserved header, full cmd * buffer can't be used, so we need to protect from buffer overrun * only. At the beginning, cblen is less than actual buffer size by * size of ipfw_insn_u32 instruction + 1 u32 work. This eliminates need * for checking small instructions fitting in given range. * We also (ab)use the fact that ipfw_insn is always the first field * for any custom instruction. */ #define CHECK_CMDLEN CHECK_LENGTH(cblen, F_LEN((ipfw_insn *)cmd)) #define GET_UINT_ARG(arg, min, max, tok, s_x) do { \ if (!av[0]) \ errx(EX_USAGE, "%s: missing argument", match_value(s_x, tok)); \ if (_substrcmp(*av, "tablearg") == 0) { \ arg = IP_FW_TARG; \ break; \ } \ \ { \ long _xval; \ char *end; \ \ _xval = strtol(*av, &end, 10); \ \ if (!isdigit(**av) || *end != '\0' || (_xval == 0 && errno == EINVAL)) \ errx(EX_DATAERR, "%s: invalid argument: %s", \ match_value(s_x, tok), *av); \ \ if (errno == ERANGE || _xval < min || _xval > max) \ errx(EX_DATAERR, "%s: argument is out of range (%u..%u): %s", \ match_value(s_x, tok), min, max, *av); \ \ if (_xval == IP_FW_TARG) \ errx(EX_DATAERR, "%s: illegal argument value: %s", \ match_value(s_x, tok), *av); \ arg = _xval; \ } \ } while (0) static struct _s_x f_tcpflags[] = { { "syn", TH_SYN }, { "fin", TH_FIN }, { "ack", TH_ACK }, { "psh", TH_PUSH }, { "rst", TH_RST }, { "urg", TH_URG }, { "tcp flag", 0 }, { NULL, 0 } }; static struct _s_x f_tcpopts[] = { { "mss", IP_FW_TCPOPT_MSS }, { "maxseg", IP_FW_TCPOPT_MSS }, { "window", IP_FW_TCPOPT_WINDOW }, { "sack", IP_FW_TCPOPT_SACK }, { "ts", IP_FW_TCPOPT_TS }, { "timestamp", IP_FW_TCPOPT_TS }, { "cc", IP_FW_TCPOPT_CC }, { "tcp option", 0 }, { NULL, 0 } }; /* * IP options span the range 0 to 255 so we need to remap them * (though in fact only the low 5 bits are significant). */ static struct _s_x f_ipopts[] = { { "ssrr", IP_FW_IPOPT_SSRR}, { "lsrr", IP_FW_IPOPT_LSRR}, { "rr", IP_FW_IPOPT_RR}, { "ts", IP_FW_IPOPT_TS}, { "ip option", 0 }, { NULL, 0 } }; static struct _s_x f_iptos[] = { { "lowdelay", IPTOS_LOWDELAY}, { "throughput", IPTOS_THROUGHPUT}, { "reliability", IPTOS_RELIABILITY}, { "mincost", IPTOS_MINCOST}, { "congestion", IPTOS_ECN_CE}, { "ecntransport", IPTOS_ECN_ECT0}, { "ip tos option", 0}, { NULL, 0 } }; static struct _s_x f_ipoff[] = { { "rf", IP_RF >> 8 }, { "df", IP_DF >> 8 }, { "mf", IP_MF >> 8 }, { "offset", 0x1 }, { NULL, 0} }; struct _s_x f_ipdscp[] = { { "af11", IPTOS_DSCP_AF11 >> 2 }, /* 001010 */ { "af12", IPTOS_DSCP_AF12 >> 2 }, /* 001100 */ { "af13", IPTOS_DSCP_AF13 >> 2 }, /* 001110 */ { "af21", IPTOS_DSCP_AF21 >> 2 }, /* 010010 */ { "af22", IPTOS_DSCP_AF22 >> 2 }, /* 010100 */ { "af23", IPTOS_DSCP_AF23 >> 2 }, /* 010110 */ { "af31", IPTOS_DSCP_AF31 >> 2 }, /* 011010 */ { "af32", IPTOS_DSCP_AF32 >> 2 }, /* 011100 */ { "af33", IPTOS_DSCP_AF33 >> 2 }, /* 011110 */ { "af41", IPTOS_DSCP_AF41 >> 2 }, /* 100010 */ { "af42", IPTOS_DSCP_AF42 >> 2 }, /* 100100 */ { "af43", IPTOS_DSCP_AF43 >> 2 }, /* 100110 */ { "be", IPTOS_DSCP_CS0 >> 2 }, /* 000000 */ { "va", IPTOS_DSCP_VA >> 2 }, /* 101100 */ { "ef", IPTOS_DSCP_EF >> 2 }, /* 101110 */ { "cs0", IPTOS_DSCP_CS0 >> 2 }, /* 000000 */ { "cs1", IPTOS_DSCP_CS1 >> 2 }, /* 001000 */ { "cs2", IPTOS_DSCP_CS2 >> 2 }, /* 010000 */ { "cs3", IPTOS_DSCP_CS3 >> 2 }, /* 011000 */ { "cs4", IPTOS_DSCP_CS4 >> 2 }, /* 100000 */ { "cs5", IPTOS_DSCP_CS5 >> 2 }, /* 101000 */ { "cs6", IPTOS_DSCP_CS6 >> 2 }, /* 110000 */ { "cs7", IPTOS_DSCP_CS7 >> 2 }, /* 100000 */ { NULL, 0 } }; static struct _s_x limit_masks[] = { {"all", DYN_SRC_ADDR|DYN_SRC_PORT|DYN_DST_ADDR|DYN_DST_PORT}, {"src-addr", DYN_SRC_ADDR}, {"src-port", DYN_SRC_PORT}, {"dst-addr", DYN_DST_ADDR}, {"dst-port", DYN_DST_PORT}, {NULL, 0} }; /* * we use IPPROTO_ETHERTYPE as a fake protocol id to call the print routines * This is only used in this code. */ #define IPPROTO_ETHERTYPE 0x1000 static struct _s_x ether_types[] = { /* * Note, we cannot use "-:&/" in the names because they are field * separators in the type specifications. Also, we use s = NULL as * end-delimiter, because a type of 0 can be legal. */ { "ip", 0x0800 }, { "ipv4", 0x0800 }, { "ipv6", 0x86dd }, { "arp", 0x0806 }, { "rarp", 0x8035 }, { "vlan", 0x8100 }, { "loop", 0x9000 }, { "trail", 0x1000 }, { "at", 0x809b }, { "atalk", 0x809b }, { "aarp", 0x80f3 }, { "pppoe_disc", 0x8863 }, { "pppoe_sess", 0x8864 }, { "ipx_8022", 0x00E0 }, { "ipx_8023", 0x0000 }, { "ipx_ii", 0x8137 }, { "ipx_snap", 0x8137 }, { "ipx", 0x8137 }, { "ns", 0x0600 }, { NULL, 0 } }; static struct _s_x rule_eactions[] = { { "nat64clat", TOK_NAT64CLAT }, { "nat64lsn", TOK_NAT64LSN }, { "nat64stl", TOK_NAT64STL }, { "nptv6", TOK_NPTV6 }, { "tcp-setmss", TOK_TCPSETMSS }, { NULL, 0 } /* terminator */ }; static struct _s_x rule_actions[] = { { "abort6", TOK_ABORT6 }, { "abort", TOK_ABORT }, { "accept", TOK_ACCEPT }, { "pass", TOK_ACCEPT }, { "allow", TOK_ACCEPT }, { "permit", TOK_ACCEPT }, { "count", TOK_COUNT }, { "pipe", TOK_PIPE }, { "queue", TOK_QUEUE }, { "divert", TOK_DIVERT }, { "tee", TOK_TEE }, { "netgraph", TOK_NETGRAPH }, { "ngtee", TOK_NGTEE }, { "fwd", TOK_FORWARD }, { "forward", TOK_FORWARD }, { "skipto", TOK_SKIPTO }, { "deny", TOK_DENY }, { "drop", TOK_DENY }, { "reject", TOK_REJECT }, { "reset6", TOK_RESET6 }, { "reset", TOK_RESET }, { "unreach6", TOK_UNREACH6 }, { "unreach", TOK_UNREACH }, { "check-state", TOK_CHECKSTATE }, { "//", TOK_COMMENT }, { "nat", TOK_NAT }, { "reass", TOK_REASS }, { "setfib", TOK_SETFIB }, { "setdscp", TOK_SETDSCP }, { "call", TOK_CALL }, { "return", TOK_RETURN }, { "eaction", TOK_EACTION }, { "tcp-setmss", TOK_TCPSETMSS }, + { "setmark", TOK_SETMARK }, { NULL, 0 } /* terminator */ }; static struct _s_x rule_action_params[] = { { "altq", TOK_ALTQ }, { "log", TOK_LOG }, { "tag", TOK_TAG }, { "untag", TOK_UNTAG }, { NULL, 0 } /* terminator */ }; /* * The 'lookup' instruction accepts one of the following arguments. * Arguments are passed as v[1] in O_DST_LOOKUP options. */ static struct _s_x lookup_keys[] = { { "dst-ip", LOOKUP_DST_IP }, { "src-ip", LOOKUP_SRC_IP }, { "dst-port", LOOKUP_DST_PORT }, { "src-port", LOOKUP_SRC_PORT }, { "dst-mac", LOOKUP_DST_MAC }, { "src-mac", LOOKUP_SRC_MAC }, { "uid", LOOKUP_UID }, { "jail", LOOKUP_JAIL }, { "dscp", LOOKUP_DSCP }, + { "mark", LOOKUP_MARK }, { NULL, 0 }, }; static struct _s_x rule_options[] = { { "tagged", TOK_TAGGED }, { "uid", TOK_UID }, { "gid", TOK_GID }, { "jail", TOK_JAIL }, { "in", TOK_IN }, { "limit", TOK_LIMIT }, { "set-limit", TOK_SETLIMIT }, { "keep-state", TOK_KEEPSTATE }, { "record-state", TOK_RECORDSTATE }, { "bridged", TOK_LAYER2 }, { "layer2", TOK_LAYER2 }, { "out", TOK_OUT }, { "diverted", TOK_DIVERTED }, { "diverted-loopback", TOK_DIVERTEDLOOPBACK }, { "diverted-output", TOK_DIVERTEDOUTPUT }, { "xmit", TOK_XMIT }, { "recv", TOK_RECV }, { "via", TOK_VIA }, { "fragment", TOK_FRAG }, { "frag", TOK_FRAG }, { "fib", TOK_FIB }, { "ipoptions", TOK_IPOPTS }, { "ipopts", TOK_IPOPTS }, { "iplen", TOK_IPLEN }, { "ipid", TOK_IPID }, { "ipprecedence", TOK_IPPRECEDENCE }, { "dscp", TOK_DSCP }, { "iptos", TOK_IPTOS }, { "ipttl", TOK_IPTTL }, { "ipversion", TOK_IPVER }, { "ipver", TOK_IPVER }, { "estab", TOK_ESTAB }, { "established", TOK_ESTAB }, { "setup", TOK_SETUP }, { "sockarg", TOK_SOCKARG }, { "tcpdatalen", TOK_TCPDATALEN }, { "tcpflags", TOK_TCPFLAGS }, { "tcpflgs", TOK_TCPFLAGS }, { "tcpmss", TOK_TCPMSS }, { "tcpoptions", TOK_TCPOPTS }, { "tcpopts", TOK_TCPOPTS }, { "tcpseq", TOK_TCPSEQ }, { "tcpack", TOK_TCPACK }, { "tcpwin", TOK_TCPWIN }, { "icmptype", TOK_ICMPTYPES }, { "icmptypes", TOK_ICMPTYPES }, { "dst-ip", TOK_DSTIP }, { "src-ip", TOK_SRCIP }, { "dst-port", TOK_DSTPORT }, { "src-port", TOK_SRCPORT }, { "dst-mac", TOK_DSTMAC }, { "src-mac", TOK_SRCMAC }, { "proto", TOK_PROTO }, { "MAC", TOK_MAC }, { "mac", TOK_MAC }, { "mac-type", TOK_MACTYPE }, { "verrevpath", TOK_VERREVPATH }, { "versrcreach", TOK_VERSRCREACH }, { "antispoof", TOK_ANTISPOOF }, { "ipsec", TOK_IPSEC }, { "icmp6type", TOK_ICMP6TYPES }, { "icmp6types", TOK_ICMP6TYPES }, { "ext6hdr", TOK_EXT6HDR }, { "flow-id", TOK_FLOWID }, { "ipv6", TOK_IPV6 }, { "ip6", TOK_IPV6 }, { "ipv4", TOK_IPV4 }, { "ip4", TOK_IPV4 }, { "dst-ipv6", TOK_DSTIP6 }, { "dst-ip6", TOK_DSTIP6 }, { "src-ipv6", TOK_SRCIP6 }, { "src-ip6", TOK_SRCIP6 }, { "lookup", TOK_LOOKUP }, { "flow", TOK_FLOW }, + { "mark", TOK_MARK }, { "defer-action", TOK_SKIPACTION }, { "defer-immediate-action", TOK_SKIPACTION }, { "//", TOK_COMMENT }, { "not", TOK_NOT }, /* pseudo option */ { "!", /* escape ? */ TOK_NOT }, /* pseudo option */ { "or", TOK_OR }, /* pseudo option */ { "|", /* escape */ TOK_OR }, /* pseudo option */ { "{", TOK_STARTBRACE }, /* pseudo option */ { "(", TOK_STARTBRACE }, /* pseudo option */ { "}", TOK_ENDBRACE }, /* pseudo option */ { ")", TOK_ENDBRACE }, /* pseudo option */ { NULL, 0 } /* terminator */ }; void bprint_uint_arg(struct buf_pr *bp, const char *str, uint32_t arg); static int ipfw_get_config(struct cmdline_opts *co, struct format_opts *fo, ipfw_cfg_lheader **pcfg, size_t *psize); static int ipfw_show_config(struct cmdline_opts *co, struct format_opts *fo, ipfw_cfg_lheader *cfg, size_t sz, int ac, char **av); static void ipfw_list_tifaces(void); struct tidx; static uint16_t pack_object(struct tidx *tstate, const char *name, int otype); static uint16_t pack_table(struct tidx *tstate, const char *name); static char *table_search_ctlv(ipfw_obj_ctlv *ctlv, uint16_t idx); static void object_sort_ctlv(ipfw_obj_ctlv *ctlv); static char *object_search_ctlv(ipfw_obj_ctlv *ctlv, uint16_t idx, uint16_t type); int is_ipfw(void) { return (g_co.prog == cmdline_prog_ipfw); } /* * Simple string buffer API. * Used to simplify buffer passing between function and for * transparent overrun handling. */ /* * Allocates new buffer of given size @sz. * * Returns 0 on success. */ int bp_alloc(struct buf_pr *b, size_t size) { memset(b, 0, sizeof(struct buf_pr)); if ((b->buf = calloc(1, size)) == NULL) return (ENOMEM); b->ptr = b->buf; b->size = size; b->avail = b->size; return (0); } void bp_free(struct buf_pr *b) { free(b->buf); } /* * Flushes buffer so new writer start from beginning. */ void bp_flush(struct buf_pr *b) { b->ptr = b->buf; b->avail = b->size; b->buf[0] = '\0'; } /* * Print message specified by @format and args. * Automatically manage buffer space and transparently handle * buffer overruns. * * Returns number of bytes that should have been printed. */ int bprintf(struct buf_pr *b, const char *format, ...) { va_list args; int i; va_start(args, format); i = vsnprintf(b->ptr, b->avail, format, args); va_end(args); if (i < 0 || (size_t)i > b->avail) { /* Overflow or print error */ b->avail = 0; } else { b->ptr += i; b->avail -= i; } b->needed += i; return (i); } /* * Special values printer for tablearg-aware opcodes. */ void bprint_uint_arg(struct buf_pr *bp, const char *str, uint32_t arg) { if (str != NULL) bprintf(bp, "%s", str); if (arg == IP_FW_TARG) bprintf(bp, "tablearg"); else bprintf(bp, "%u", arg); } /* * Helper routine to print a possibly unaligned uint64_t on * various platform. If width > 0, print the value with * the desired width, followed by a space; * otherwise, return the required width. */ int pr_u64(struct buf_pr *b, void *pd, int width) { #ifdef TCC #define U64_FMT "I64" #else #define U64_FMT "llu" #endif uint64_t u; unsigned long long d; bcopy (pd, &u, sizeof(u)); d = u; return (width > 0) ? bprintf(b, "%*" U64_FMT " ", width, d) : snprintf(NULL, 0, "%" U64_FMT, d) ; #undef U64_FMT } void * safe_calloc(size_t number, size_t size) { void *ret = calloc(number, size); if (ret == NULL) err(EX_OSERR, "calloc"); return ret; } void * safe_realloc(void *ptr, size_t size) { void *ret = realloc(ptr, size); if (ret == NULL) err(EX_OSERR, "realloc"); return ret; } /* * Compare things like interface or table names. */ int stringnum_cmp(const char *a, const char *b) { int la, lb; la = strlen(a); lb = strlen(b); if (la > lb) return (1); else if (la < lb) return (-01); return (strcmp(a, b)); } /* * conditionally runs the command. * Selected options or negative -> getsockopt */ int do_cmd(int optname, void *optval, uintptr_t optlen) { int i; if (g_co.test_only) return 0; if (ipfw_socket == -1) ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); if (ipfw_socket < 0) err(EX_UNAVAILABLE, "socket"); if (optname == IP_FW_GET || optname == IP_DUMMYNET_GET || optname == IP_FW_ADD || optname == IP_FW3 || optname == IP_FW_NAT_GET_CONFIG || optname < 0 || optname == IP_FW_NAT_GET_LOG) { if (optname < 0) optname = -optname; i = getsockopt(ipfw_socket, IPPROTO_IP, optname, optval, (socklen_t *)optlen); } else { i = setsockopt(ipfw_socket, IPPROTO_IP, optname, optval, optlen); } return i; } /* * do_set3 - pass ipfw control cmd to kernel * @optname: option name * @optval: pointer to option data * @optlen: option length * * Assumes op3 header is already embedded. * Calls setsockopt() with IP_FW3 as kernel-visible opcode. * Returns 0 on success or errno otherwise. */ int do_set3(int optname, ip_fw3_opheader *op3, size_t optlen) { if (g_co.test_only) return (0); if (ipfw_socket == -1) ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); if (ipfw_socket < 0) err(EX_UNAVAILABLE, "socket"); op3->opcode = optname; return (setsockopt(ipfw_socket, IPPROTO_IP, IP_FW3, op3, optlen)); } /* * do_get3 - pass ipfw control cmd to kernel * @optname: option name * @optval: pointer to option data * @optlen: pointer to option length * * Assumes op3 header is already embedded. * Calls getsockopt() with IP_FW3 as kernel-visible opcode. * Returns 0 on success or errno otherwise. */ int do_get3(int optname, ip_fw3_opheader *op3, size_t *optlen) { int error; socklen_t len; if (g_co.test_only) return (0); if (ipfw_socket == -1) ipfw_socket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); if (ipfw_socket < 0) err(EX_UNAVAILABLE, "socket"); op3->opcode = optname; len = *optlen; error = getsockopt(ipfw_socket, IPPROTO_IP, IP_FW3, op3, &len); *optlen = len; return (error); } /** * match_token takes a table and a string, returns the value associated * with the string (-1 in case of failure). */ int match_token(struct _s_x *table, const char *string) { struct _s_x *pt; uint i = strlen(string); for (pt = table ; i && pt->s != NULL ; pt++) if (strlen(pt->s) == i && !bcmp(string, pt->s, i)) return pt->x; return (-1); } /** * match_token_relaxed takes a table and a string, returns the value associated * with the string for the best match. * * Returns: * value from @table for matched records * -1 for non-matched records * -2 if more than one records match @string. */ int match_token_relaxed(struct _s_x *table, const char *string) { struct _s_x *pt, *m; int i, c; i = strlen(string); c = 0; for (pt = table ; i != 0 && pt->s != NULL ; pt++) { if (strncmp(pt->s, string, i) != 0) continue; m = pt; c++; } if (c == 1) return (m->x); return (c > 0 ? -2: -1); } int get_token(struct _s_x *table, const char *string, const char *errbase) { int tcmd; if ((tcmd = match_token_relaxed(table, string)) < 0) errx(EX_USAGE, "%s %s %s", (tcmd == 0) ? "invalid" : "ambiguous", errbase, string); return (tcmd); } /** * match_value takes a table and a value, returns the string associated * with the value (NULL in case of failure). */ char const * match_value(struct _s_x *p, int value) { for (; p->s != NULL; p++) if (p->x == value) return p->s; return NULL; } size_t concat_tokens(char *buf, size_t bufsize, struct _s_x *table, const char *delimiter) { struct _s_x *pt; int l; size_t sz; for (sz = 0, pt = table ; pt->s != NULL; pt++) { l = snprintf(buf + sz, bufsize - sz, "%s%s", (sz == 0) ? "" : delimiter, pt->s); sz += l; bufsize += l; if (sz > bufsize) return (bufsize); } return (sz); } /* * helper function to process a set of flags and set bits in the * appropriate masks. */ int fill_flags(struct _s_x *flags, char *p, char **e, uint32_t *set, uint32_t *clear) { char *q; /* points to the separator */ int val; uint32_t *which; /* mask we are working on */ while (p && *p) { if (*p == '!') { p++; which = clear; } else which = set; q = strchr(p, ','); if (q) *q++ = '\0'; val = match_token(flags, p); if (val <= 0) { if (e != NULL) *e = p; return (-1); } *which |= (uint32_t)val; p = q; } return (0); } void print_flags_buffer(char *buf, size_t sz, struct _s_x *list, uint32_t set) { char const *comma = ""; int i, l; for (i = 0; list[i].x != 0; i++) { if ((set & list[i].x) == 0) continue; set &= ~list[i].x; l = snprintf(buf, sz, "%s%s", comma, list[i].s); if (l < 0 || (size_t)l >= sz) return; comma = ","; buf += l; sz -=l; } } /* * _substrcmp takes two strings and returns 1 if they do not match, * and 0 if they match exactly or the first string is a sub-string * of the second. A warning is printed to stderr in the case that the * first string is a sub-string of the second. * * This function will be removed in the future through the usual * deprecation process. */ int _substrcmp(const char *str1, const char* str2) { if (strncmp(str1, str2, strlen(str1)) != 0) return 1; if (strlen(str1) != strlen(str2)) warnx("DEPRECATED: '%s' matched '%s' as a sub-string", str1, str2); return 0; } /* * _substrcmp2 takes three strings and returns 1 if the first two do not match, * and 0 if they match exactly or the second string is a sub-string * of the first. A warning is printed to stderr in the case that the * first string does not match the third. * * This function exists to warn about the bizarre construction * strncmp(str, "by", 2) which is used to allow people to use a shortcut * for "bytes". The problem is that in addition to accepting "by", * "byt", "byte", and "bytes", it also excepts "by_rabid_dogs" and any * other string beginning with "by". * * This function will be removed in the future through the usual * deprecation process. */ int _substrcmp2(const char *str1, const char* str2, const char* str3) { if (strncmp(str1, str2, strlen(str2)) != 0) return 1; if (strcmp(str1, str3) != 0) warnx("DEPRECATED: '%s' matched '%s'", str1, str3); return 0; } /* * prints one port, symbolic or numeric */ static void print_port(struct buf_pr *bp, int proto, uint16_t port) { if (proto == IPPROTO_ETHERTYPE) { char const *s; if (g_co.do_resolv && (s = match_value(ether_types, port)) ) bprintf(bp, "%s", s); else bprintf(bp, "0x%04x", port); } else { struct servent *se = NULL; if (g_co.do_resolv) { struct protoent *pe = getprotobynumber(proto); se = getservbyport(htons(port), pe ? pe->p_name : NULL); } if (se) bprintf(bp, "%s", se->s_name); else bprintf(bp, "%d", port); } } static struct _s_x _port_name[] = { {"dst-port", O_IP_DSTPORT}, {"src-port", O_IP_SRCPORT}, {"ipid", O_IPID}, {"iplen", O_IPLEN}, {"ipttl", O_IPTTL}, {"mac-type", O_MAC_TYPE}, {"tcpdatalen", O_TCPDATALEN}, {"tcpmss", O_TCPMSS}, {"tcpwin", O_TCPWIN}, {"tagged", O_TAGGED}, {NULL, 0} }; /* * Print the values in a list 16-bit items of the types above. * XXX todo: add support for mask. */ static void print_newports(struct buf_pr *bp, const ipfw_insn_u16 *cmd, int proto, int opcode) { const uint16_t *p = cmd->ports; int i; char const *sep; if (opcode != 0) { sep = match_value(_port_name, opcode); if (sep == NULL) sep = "???"; bprintf(bp, " %s", sep); } sep = " "; for (i = F_LEN((const ipfw_insn *)cmd) - 1; i > 0; i--, p += 2) { bprintf(bp, "%s", sep); print_port(bp, proto, p[0]); if (p[0] != p[1]) { bprintf(bp, "-"); print_port(bp, proto, p[1]); } sep = ","; } } /* * Like strtol, but also translates service names into port numbers * for some protocols. * In particular: * proto == -1 disables the protocol check; * proto == IPPROTO_ETHERTYPE looks up an internal table * proto == matches the values there. * Returns *end == s in case the parameter is not found. */ static int strtoport(char *s, char **end, int base, int proto) { char *p, *buf; char *s1; int i; *end = s; /* default - not found */ if (*s == '\0') return 0; /* not found */ if (isdigit(*s)) return strtol(s, end, base); /* * find separator. '\\' escapes the next char. */ for (s1 = s; *s1 && (isalnum(*s1) || *s1 == '\\' || *s1 == '_' || *s1 == '.') ; s1++) if (*s1 == '\\' && s1[1] != '\0') s1++; buf = safe_calloc(s1 - s + 1, 1); /* * copy into a buffer skipping backslashes */ for (p = s, i = 0; p != s1 ; p++) if (*p != '\\') buf[i++] = *p; buf[i++] = '\0'; if (proto == IPPROTO_ETHERTYPE) { i = match_token(ether_types, buf); free(buf); if (i != -1) { /* found */ *end = s1; return i; } } else { struct protoent *pe = NULL; struct servent *se; if (proto != 0) pe = getprotobynumber(proto); setservent(1); se = getservbyname(buf, pe ? pe->p_name : NULL); free(buf); if (se != NULL) { *end = s1; return ntohs(se->s_port); } } return 0; /* not found */ } /* * Fill the body of the command with the list of port ranges. */ static int fill_newports(ipfw_insn_u16 *cmd, char *av, int proto, int cblen) { uint16_t a, b, *p = cmd->ports; int i = 0; char *s = av; while (*s) { a = strtoport(av, &s, 0, proto); if (s == av) /* empty or invalid argument */ return (0); CHECK_LENGTH(cblen, i + 2); switch (*s) { case '-': /* a range */ av = s + 1; b = strtoport(av, &s, 0, proto); /* Reject expressions like '1-abc' or '1-2-3'. */ if (s == av || (*s != ',' && *s != '\0')) return (0); p[0] = a; p[1] = b; break; case ',': /* comma separated list */ case '\0': p[0] = p[1] = a; break; default: warnx("port list: invalid separator <%c> in <%s>", *s, av); return (0); } i++; p += 2; av = s + 1; } if (i > 0) { if (i + 1 > F_LEN_MASK) errx(EX_DATAERR, "too many ports/ranges\n"); cmd->o.len |= i + 1; /* leave F_NOT and F_OR untouched */ } return (i); } /* * Fill the body of the command with the list of DiffServ codepoints. */ static void fill_dscp(ipfw_insn *cmd, char *av, int cblen) { uint32_t *low, *high; char *s = av, *a; int code; cmd->opcode = O_DSCP; cmd->len |= F_INSN_SIZE(ipfw_insn_u32) + 1; CHECK_CMDLEN; low = (uint32_t *)(cmd + 1); high = low + 1; *low = 0; *high = 0; while (s != NULL) { a = strchr(s, ','); if (a != NULL) *a++ = '\0'; if (isalpha(*s)) { if ((code = match_token(f_ipdscp, s)) == -1) errx(EX_DATAERR, "Unknown DSCP code"); } else { code = strtoul(s, NULL, 10); if (code < 0 || code > 63) errx(EX_DATAERR, "Invalid DSCP value"); } if (code >= 32) *high |= 1 << (code - 32); else *low |= 1 << code; s = a; } } +/* + * Fill the body of the command with mark value and mask. + */ +static void +fill_mark(ipfw_insn *cmd, char *av, int cblen) +{ + uint32_t *value, *mask; + char *value_str; + + cmd->opcode = O_MARK; + cmd->len |= F_INSN_SIZE(ipfw_insn_u32) + 1; + + CHECK_CMDLEN; + + value = (uint32_t *)(cmd + 1); + mask = value + 1; + + value_str = strsep(&av, ":"); + + if (strcmp(value_str, "tablearg") == 0) { + cmd->arg1 = IP_FW_TARG; + *value = 0; + } else { + /* This is not a tablearg */ + cmd->arg1 |= 0x8000; + *value = strtoul(value_str, NULL, 0); + } + if (av) + *mask = strtoul(av, NULL, 0); + else + *mask = 0xFFFFFFFF; + + if ((*value & *mask) != *value) + errx(EX_DATAERR, "Static mark value: some bits in value are" + " set that will be masked out by mask " + "(%#x & %#x) = %#x != %#x", + *value, *mask, (*value & *mask), *value); +} + static struct _s_x icmpcodes[] = { { "net", ICMP_UNREACH_NET }, { "host", ICMP_UNREACH_HOST }, { "protocol", ICMP_UNREACH_PROTOCOL }, { "port", ICMP_UNREACH_PORT }, { "needfrag", ICMP_UNREACH_NEEDFRAG }, { "srcfail", ICMP_UNREACH_SRCFAIL }, { "net-unknown", ICMP_UNREACH_NET_UNKNOWN }, { "host-unknown", ICMP_UNREACH_HOST_UNKNOWN }, { "isolated", ICMP_UNREACH_ISOLATED }, { "net-prohib", ICMP_UNREACH_NET_PROHIB }, { "host-prohib", ICMP_UNREACH_HOST_PROHIB }, { "tosnet", ICMP_UNREACH_TOSNET }, { "toshost", ICMP_UNREACH_TOSHOST }, { "filter-prohib", ICMP_UNREACH_FILTER_PROHIB }, { "host-precedence", ICMP_UNREACH_HOST_PRECEDENCE }, { "precedence-cutoff", ICMP_UNREACH_PRECEDENCE_CUTOFF }, { NULL, 0 } }; static void fill_reject_code(u_short *codep, char *str) { int val; char *s; val = strtoul(str, &s, 0); if (s == str || *s != '\0' || val >= 0x100) val = match_token(icmpcodes, str); if (val < 0) errx(EX_DATAERR, "unknown ICMP unreachable code ``%s''", str); *codep = val; return; } static void print_reject_code(struct buf_pr *bp, uint16_t code) { char const *s; if ((s = match_value(icmpcodes, code)) != NULL) bprintf(bp, "unreach %s", s); else bprintf(bp, "unreach %u", code); } /* * Returns the number of bits set (from left) in a contiguous bitmask, * or -1 if the mask is not contiguous. * XXX this needs a proper fix. * This effectively works on masks in big-endian (network) format. * when compiled on little endian architectures. * * First bit is bit 7 of the first byte -- note, for MAC addresses, * the first bit on the wire is bit 0 of the first byte. * len is the max length in bits. */ int contigmask(const uint8_t *p, int len) { int i, n; for (i=0; iarg1 & 0xff; uint8_t clear = (cmd->arg1 >> 8) & 0xff; if (list == f_tcpflags && set == TH_SYN && clear == TH_ACK) { bprintf(bp, " setup"); return; } bprintf(bp, " %s ", name); for (i=0; list[i].x != 0; i++) { if (set & list[i].x) { set &= ~list[i].x; bprintf(bp, "%s%s", comma, list[i].s); comma = ","; } if (clear & list[i].x) { clear &= ~list[i].x; bprintf(bp, "%s!%s", comma, list[i].s); comma = ","; } } } /* * Print the ip address contained in a command. */ static void print_ip(struct buf_pr *bp, const struct format_opts *fo, const ipfw_insn_ip *cmd) { struct hostent *he = NULL; const struct in_addr *ia; const uint32_t *a = ((const ipfw_insn_u32 *)cmd)->d; uint32_t len = F_LEN((const ipfw_insn *)cmd); char *t; bprintf(bp, " "); if (cmd->o.opcode == O_IP_DST_LOOKUP && len > F_INSN_SIZE(ipfw_insn_u32)) { const char *arg; arg = match_value(lookup_keys, a[1]); t = table_search_ctlv(fo->tstate, ((const ipfw_insn *)cmd)->arg1); bprintf(bp, "lookup %s %s", arg, t); return; } if (cmd->o.opcode == O_IP_SRC_ME || cmd->o.opcode == O_IP_DST_ME) { bprintf(bp, "me"); return; } if (cmd->o.opcode == O_IP_SRC_LOOKUP || cmd->o.opcode == O_IP_DST_LOOKUP) { t = table_search_ctlv(fo->tstate, ((const ipfw_insn *)cmd)->arg1); bprintf(bp, "table(%s", t); if (len == F_INSN_SIZE(ipfw_insn_u32)) bprintf(bp, ",%u", *a); bprintf(bp, ")"); return; } if (cmd->o.opcode == O_IP_SRC_SET || cmd->o.opcode == O_IP_DST_SET) { const uint32_t *map = (const uint32_t *)&cmd->mask; struct in_addr addr; uint32_t x; int i, j; char comma = '{'; x = cmd->o.arg1 - 1; x = htonl(~x); addr.s_addr = htonl(cmd->addr.s_addr); bprintf(bp, "%s/%d", inet_ntoa(addr), contigmask((uint8_t *)&x, 32)); x = cmd->addr.s_addr; x &= 0xff; /* base */ /* * Print bits and ranges. * Locate first bit set (i), then locate first bit unset (j). * If we have 3+ consecutive bits set, then print them as a * range, otherwise only print the initial bit and rescan. */ for (i=0; i < cmd->o.arg1; i++) if (map[i/32] & (1<<(i & 31))) { for (j=i+1; j < cmd->o.arg1; j++) if (!(map[ j/32] & (1<<(j & 31)))) break; bprintf(bp, "%c%d", comma, i+x); if (j>i+2) { /* range has at least 3 elements */ bprintf(bp, "-%d", j-1+x); i = j-1; } comma = ','; } bprintf(bp, "}"); return; } /* * len == 2 indicates a single IP, whereas lists of 1 or more * addr/mask pairs have len = (2n+1). We convert len to n so we * use that to count the number of entries. */ for (len = len / 2; len > 0; len--, a += 2) { int mb = /* mask length */ (cmd->o.opcode == O_IP_SRC || cmd->o.opcode == O_IP_DST) ? 32 : contigmask((const uint8_t *)&(a[1]), 32); if (mb == 32 && g_co.do_resolv) he = gethostbyaddr((const char *)&(a[0]), sizeof(in_addr_t), AF_INET); if (he != NULL) /* resolved to name */ bprintf(bp, "%s", he->h_name); else if (mb == 0) /* any */ bprintf(bp, "any"); else { /* numeric IP followed by some kind of mask */ ia = (const struct in_addr *)&a[0]; bprintf(bp, "%s", inet_ntoa(*ia)); if (mb < 0) { ia = (const struct in_addr *)&a[1]; bprintf(bp, ":%s", inet_ntoa(*ia)); } else if (mb < 32) bprintf(bp, "/%d", mb); } if (len > 1) bprintf(bp, ","); } } /* * prints a MAC address/mask pair */ static void format_mac(struct buf_pr *bp, const uint8_t *addr, const uint8_t *mask) { int l = contigmask(mask, 48); if (l == 0) bprintf(bp, " any"); else { bprintf(bp, " %02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); if (l == -1) bprintf(bp, "&%02x:%02x:%02x:%02x:%02x:%02x", mask[0], mask[1], mask[2], mask[3], mask[4], mask[5]); else if (l < 48) bprintf(bp, "/%d", l); } } static void print_mac(struct buf_pr *bp, const ipfw_insn_mac *mac) { bprintf(bp, " MAC"); format_mac(bp, mac->addr, mac->mask); format_mac(bp, mac->addr + 6, mac->mask + 6); } static void print_mac_lookup(struct buf_pr *bp, const struct format_opts *fo, const ipfw_insn *cmd) { uint32_t len = F_LEN(cmd); char *t; bprintf(bp, " "); t = table_search_ctlv(fo->tstate, cmd->arg1); bprintf(bp, "table(%s", t); if (len == F_INSN_SIZE(ipfw_insn_u32)) bprintf(bp, ",%u", ((const ipfw_insn_u32 *)cmd)->d[0]); bprintf(bp, ")"); } static void fill_icmptypes(ipfw_insn_u32 *cmd, char *av) { uint8_t type; cmd->d[0] = 0; while (*av) { if (*av == ',') av++; type = strtoul(av, &av, 0); if (*av != ',' && *av != '\0') errx(EX_DATAERR, "invalid ICMP type"); if (type > 31) errx(EX_DATAERR, "ICMP type out of range"); cmd->d[0] |= 1 << type; } cmd->o.opcode = O_ICMPTYPE; cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32); } static void print_icmptypes(struct buf_pr *bp, const ipfw_insn_u32 *cmd) { int i; char sep= ' '; bprintf(bp, " icmptypes"); for (i = 0; i < 32; i++) { if ( (cmd->d[0] & (1 << (i))) == 0) continue; bprintf(bp, "%c%d", sep, i); sep = ','; } } static void print_dscp(struct buf_pr *bp, const ipfw_insn_u32 *cmd) { const uint32_t *v; const char *code; int i = 0; char sep= ' '; bprintf(bp, " dscp"); v = cmd->d; while (i < 64) { if (*v & (1 << i)) { if ((code = match_value(f_ipdscp, i)) != NULL) bprintf(bp, "%c%s", sep, code); else bprintf(bp, "%c%d", sep, i); sep = ','; } if ((++i % 32) == 0) v++; } } #define insntod(cmd, type) ((const ipfw_insn_ ## type *)(cmd)) struct show_state { struct ip_fw_rule *rule; const ipfw_insn *eaction; uint8_t *printed; int flags; #define HAVE_PROTO 0x0001 #define HAVE_SRCIP 0x0002 #define HAVE_DSTIP 0x0004 #define HAVE_PROBE_STATE 0x0008 int proto; int or_block; }; static int init_show_state(struct show_state *state, struct ip_fw_rule *rule) { state->printed = calloc(rule->cmd_len, sizeof(uint8_t)); if (state->printed == NULL) return (ENOMEM); state->rule = rule; state->eaction = NULL; state->flags = 0; state->proto = 0; state->or_block = 0; return (0); } static void free_show_state(struct show_state *state) { free(state->printed); } static uint8_t is_printed_opcode(struct show_state *state, const ipfw_insn *cmd) { return (state->printed[cmd - state->rule->cmd]); } static void mark_printed(struct show_state *state, const ipfw_insn *cmd) { state->printed[cmd - state->rule->cmd] = 1; } static void print_limit_mask(struct buf_pr *bp, const ipfw_insn_limit *limit) { struct _s_x *p = limit_masks; char const *comma = " "; uint8_t x; for (x = limit->limit_mask; p->x != 0; p++) { if ((x & p->x) == p->x) { x &= ~p->x; bprintf(bp, "%s%s", comma, p->s); comma = ","; } } bprint_uint_arg(bp, " ", limit->conn_limit); } static int print_instruction(struct buf_pr *bp, const struct format_opts *fo, struct show_state *state, const ipfw_insn *cmd) { struct protoent *pe; struct passwd *pwd; struct group *grp; const char *s; double d; if (is_printed_opcode(state, cmd)) return (0); if ((cmd->len & F_OR) != 0 && state->or_block == 0) bprintf(bp, " {"); if (cmd->opcode != O_IN && (cmd->len & F_NOT) != 0) bprintf(bp, " not"); switch (cmd->opcode) { case O_PROB: d = 1.0 * insntod(cmd, u32)->d[0] / 0x7fffffff; bprintf(bp, "prob %f ", d); break; case O_PROBE_STATE: /* no need to print anything here */ state->flags |= HAVE_PROBE_STATE; break; case O_IP_SRC: case O_IP_SRC_LOOKUP: case O_IP_SRC_MASK: case O_IP_SRC_ME: case O_IP_SRC_SET: if (state->flags & HAVE_SRCIP) bprintf(bp, " src-ip"); print_ip(bp, fo, insntod(cmd, ip)); break; case O_IP_DST: case O_IP_DST_LOOKUP: case O_IP_DST_MASK: case O_IP_DST_ME: case O_IP_DST_SET: if (state->flags & HAVE_DSTIP) bprintf(bp, " dst-ip"); print_ip(bp, fo, insntod(cmd, ip)); break; case O_IP6_SRC: case O_IP6_SRC_MASK: case O_IP6_SRC_ME: if (state->flags & HAVE_SRCIP) bprintf(bp, " src-ip6"); print_ip6(bp, insntod(cmd, ip6)); break; case O_IP6_DST: case O_IP6_DST_MASK: case O_IP6_DST_ME: if (state->flags & HAVE_DSTIP) bprintf(bp, " dst-ip6"); print_ip6(bp, insntod(cmd, ip6)); break; case O_MAC_SRC_LOOKUP: bprintf(bp, " src-mac"); print_mac_lookup(bp, fo, cmd); break; case O_MAC_DST_LOOKUP: bprintf(bp, " dst-mac"); print_mac_lookup(bp, fo, cmd); break; case O_FLOW6ID: print_flow6id(bp, insntod(cmd, u32)); break; case O_IP_DSTPORT: case O_IP_SRCPORT: print_newports(bp, insntod(cmd, u16), state->proto, (state->flags & (HAVE_SRCIP | HAVE_DSTIP)) == (HAVE_SRCIP | HAVE_DSTIP) ? cmd->opcode: 0); break; case O_PROTO: pe = getprotobynumber(cmd->arg1); if (state->flags & HAVE_PROTO) bprintf(bp, " proto"); if (pe != NULL) bprintf(bp, " %s", pe->p_name); else bprintf(bp, " %u", cmd->arg1); state->proto = cmd->arg1; break; case O_MACADDR2: print_mac(bp, insntod(cmd, mac)); break; case O_MAC_TYPE: print_newports(bp, insntod(cmd, u16), IPPROTO_ETHERTYPE, cmd->opcode); break; case O_FRAG: print_flags(bp, "frag", cmd, f_ipoff); break; case O_FIB: bprintf(bp, " fib %u", cmd->arg1); break; case O_SOCKARG: bprintf(bp, " sockarg"); break; case O_IN: bprintf(bp, cmd->len & F_NOT ? " out" : " in"); break; case O_DIVERTED: switch (cmd->arg1) { case 3: bprintf(bp, " diverted"); break; case 2: bprintf(bp, " diverted-output"); break; case 1: bprintf(bp, " diverted-loopback"); break; default: bprintf(bp, " diverted-?<%u>", cmd->arg1); break; } break; case O_LAYER2: bprintf(bp, " layer2"); break; case O_XMIT: case O_RECV: case O_VIA: if (cmd->opcode == O_XMIT) s = "xmit"; else if (cmd->opcode == O_RECV) s = "recv"; else /* if (cmd->opcode == O_VIA) */ s = "via"; switch (insntod(cmd, if)->name[0]) { case '\0': bprintf(bp, " %s %s", s, inet_ntoa(insntod(cmd, if)->p.ip)); break; case '\1': bprintf(bp, " %s table(%s)", s, table_search_ctlv(fo->tstate, insntod(cmd, if)->p.kidx)); break; default: bprintf(bp, " %s %s", s, insntod(cmd, if)->name); } break; case O_IP_FLOW_LOOKUP: s = table_search_ctlv(fo->tstate, cmd->arg1); bprintf(bp, " flow table(%s", s); if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) bprintf(bp, ",%u", insntod(cmd, u32)->d[0]); bprintf(bp, ")"); break; case O_IPID: case O_IPTTL: case O_IPLEN: case O_TCPDATALEN: case O_TCPMSS: case O_TCPWIN: if (F_LEN(cmd) == 1) { switch (cmd->opcode) { case O_IPID: s = "ipid"; break; case O_IPTTL: s = "ipttl"; break; case O_IPLEN: s = "iplen"; break; case O_TCPDATALEN: s = "tcpdatalen"; break; case O_TCPMSS: s = "tcpmss"; break; case O_TCPWIN: s = "tcpwin"; break; default: s = ""; break; } bprintf(bp, " %s %u", s, cmd->arg1); } else print_newports(bp, insntod(cmd, u16), 0, cmd->opcode); break; case O_IPVER: bprintf(bp, " ipver %u", cmd->arg1); break; case O_IPPRECEDENCE: bprintf(bp, " ipprecedence %u", cmd->arg1 >> 5); break; case O_DSCP: print_dscp(bp, insntod(cmd, u32)); break; case O_IPOPT: print_flags(bp, "ipoptions", cmd, f_ipopts); break; case O_IPTOS: print_flags(bp, "iptos", cmd, f_iptos); break; case O_ICMPTYPE: print_icmptypes(bp, insntod(cmd, u32)); break; case O_ESTAB: bprintf(bp, " established"); break; case O_TCPFLAGS: print_flags(bp, "tcpflags", cmd, f_tcpflags); break; case O_TCPOPTS: print_flags(bp, "tcpoptions", cmd, f_tcpopts); break; case O_TCPACK: bprintf(bp, " tcpack %d", ntohl(insntod(cmd, u32)->d[0])); break; case O_TCPSEQ: bprintf(bp, " tcpseq %d", ntohl(insntod(cmd, u32)->d[0])); break; case O_UID: pwd = getpwuid(insntod(cmd, u32)->d[0]); if (pwd != NULL) bprintf(bp, " uid %s", pwd->pw_name); else bprintf(bp, " uid %u", insntod(cmd, u32)->d[0]); break; case O_GID: grp = getgrgid(insntod(cmd, u32)->d[0]); if (grp != NULL) bprintf(bp, " gid %s", grp->gr_name); else bprintf(bp, " gid %u", insntod(cmd, u32)->d[0]); break; case O_JAIL: bprintf(bp, " jail %d", insntod(cmd, u32)->d[0]); break; case O_VERREVPATH: bprintf(bp, " verrevpath"); break; case O_VERSRCREACH: bprintf(bp, " versrcreach"); break; case O_ANTISPOOF: bprintf(bp, " antispoof"); break; case O_IPSEC: bprintf(bp, " ipsec"); break; case O_NOP: bprintf(bp, " // %s", (const char *)(cmd + 1)); break; case O_KEEP_STATE: if (state->flags & HAVE_PROBE_STATE) bprintf(bp, " keep-state"); else bprintf(bp, " record-state"); bprintf(bp, " :%s", object_search_ctlv(fo->tstate, cmd->arg1, IPFW_TLV_STATE_NAME)); break; case O_LIMIT: if (state->flags & HAVE_PROBE_STATE) bprintf(bp, " limit"); else bprintf(bp, " set-limit"); print_limit_mask(bp, insntod(cmd, limit)); bprintf(bp, " :%s", object_search_ctlv(fo->tstate, cmd->arg1, IPFW_TLV_STATE_NAME)); break; case O_IP6: if (state->flags & HAVE_PROTO) bprintf(bp, " proto"); bprintf(bp, " ip6"); break; case O_IP4: if (state->flags & HAVE_PROTO) bprintf(bp, " proto"); bprintf(bp, " ip4"); break; case O_ICMP6TYPE: print_icmp6types(bp, insntod(cmd, u32)); break; case O_EXT_HDR: print_ext6hdr(bp, cmd); break; case O_TAGGED: if (F_LEN(cmd) == 1) bprint_uint_arg(bp, " tagged ", cmd->arg1); else print_newports(bp, insntod(cmd, u16), 0, O_TAGGED); break; case O_SKIP_ACTION: bprintf(bp, " defer-immediate-action"); break; + case O_MARK: + bprintf(bp, " mark"); + if (cmd->arg1 == IP_FW_TARG) + bprintf(bp, " tablearg"); + else + bprintf(bp, " %#x", + ((const ipfw_insn_u32 *)cmd)->d[0]); + + if (((const ipfw_insn_u32 *)cmd)->d[1] != 0xFFFFFFFF) + bprintf(bp, ":%#x", + ((const ipfw_insn_u32 *)cmd)->d[1]); + break; + default: bprintf(bp, " [opcode %d len %d]", cmd->opcode, cmd->len); } if (cmd->len & F_OR) { bprintf(bp, " or"); state->or_block = 1; } else if (state->or_block != 0) { bprintf(bp, " }"); state->or_block = 0; } mark_printed(state, cmd); return (1); } static ipfw_insn * print_opcode(struct buf_pr *bp, struct format_opts *fo, struct show_state *state, int opcode) { ipfw_insn *cmd; int l; for (l = state->rule->act_ofs, cmd = state->rule->cmd; l > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { /* We use zero opcode to print the rest of options */ if (opcode >= 0 && cmd->opcode != opcode) continue; /* * Skip O_NOP, when we printing the rest * of options, it will be handled separately. */ if (cmd->opcode == O_NOP && opcode != O_NOP) continue; if (!print_instruction(bp, fo, state, cmd)) continue; return (cmd); } return (NULL); } static void print_fwd(struct buf_pr *bp, const ipfw_insn *cmd) { char buf[INET6_ADDRSTRLEN + IF_NAMESIZE + 2]; const ipfw_insn_sa6 *sa6; const ipfw_insn_sa *sa; uint16_t port; if (cmd->opcode == O_FORWARD_IP) { sa = insntod(cmd, sa); port = sa->sa.sin_port; if (sa->sa.sin_addr.s_addr == INADDR_ANY) bprintf(bp, "fwd tablearg"); else bprintf(bp, "fwd %s", inet_ntoa(sa->sa.sin_addr)); } else { sa6 = insntod(cmd, sa6); port = sa6->sa.sin6_port; bprintf(bp, "fwd "); if (getnameinfo((const struct sockaddr *)&sa6->sa, sizeof(struct sockaddr_in6), buf, sizeof(buf), NULL, 0, NI_NUMERICHOST) == 0) bprintf(bp, "%s", buf); } if (port != 0) bprintf(bp, ",%u", port); } static int print_action_instruction(struct buf_pr *bp, const struct format_opts *fo, struct show_state *state, const ipfw_insn *cmd) { const char *s; if (is_printed_opcode(state, cmd)) return (0); switch (cmd->opcode) { case O_CHECK_STATE: bprintf(bp, "check-state"); if (cmd->arg1 != 0) s = object_search_ctlv(fo->tstate, cmd->arg1, IPFW_TLV_STATE_NAME); else s = NULL; bprintf(bp, " :%s", s ? s: "any"); break; case O_ACCEPT: bprintf(bp, "allow"); break; case O_COUNT: bprintf(bp, "count"); break; case O_DENY: bprintf(bp, "deny"); break; case O_REJECT: if (cmd->arg1 == ICMP_REJECT_RST) bprintf(bp, "reset"); else if (cmd->arg1 == ICMP_REJECT_ABORT) bprintf(bp, "abort"); else if (cmd->arg1 == ICMP_UNREACH_HOST) bprintf(bp, "reject"); else if (cmd->arg1 == ICMP_UNREACH_NEEDFRAG && cmd->len == F_INSN_SIZE(ipfw_insn_u16)) bprintf(bp, "needfrag %u", ((const ipfw_insn_u16 *)cmd)->ports[0]); else print_reject_code(bp, cmd->arg1); break; case O_UNREACH6: if (cmd->arg1 == ICMP6_UNREACH_RST) bprintf(bp, "reset6"); else if (cmd->arg1 == ICMP6_UNREACH_ABORT) bprintf(bp, "abort6"); else print_unreach6_code(bp, cmd->arg1); break; case O_SKIPTO: bprint_uint_arg(bp, "skipto ", cmd->arg1); break; case O_PIPE: bprint_uint_arg(bp, "pipe ", cmd->arg1); break; case O_QUEUE: bprint_uint_arg(bp, "queue ", cmd->arg1); break; case O_DIVERT: bprint_uint_arg(bp, "divert ", cmd->arg1); break; case O_TEE: bprint_uint_arg(bp, "tee ", cmd->arg1); break; case O_NETGRAPH: bprint_uint_arg(bp, "netgraph ", cmd->arg1); break; case O_NGTEE: bprint_uint_arg(bp, "ngtee ", cmd->arg1); break; case O_FORWARD_IP: case O_FORWARD_IP6: print_fwd(bp, cmd); break; case O_LOG: if (insntod(cmd, log)->max_log > 0) bprintf(bp, " log logamount %d", insntod(cmd, log)->max_log); else bprintf(bp, " log"); break; case O_ALTQ: #ifndef NO_ALTQ print_altq_cmd(bp, insntod(cmd, altq)); #endif break; case O_TAG: bprint_uint_arg(bp, cmd->len & F_NOT ? " untag ": " tag ", cmd->arg1); break; case O_NAT: if (cmd->arg1 != IP_FW_NAT44_GLOBAL) bprint_uint_arg(bp, "nat ", cmd->arg1); else bprintf(bp, "nat global"); break; case O_SETFIB: if (cmd->arg1 == IP_FW_TARG) bprint_uint_arg(bp, "setfib ", cmd->arg1); else bprintf(bp, "setfib %u", cmd->arg1 & 0x7FFF); break; case O_EXTERNAL_ACTION: /* * The external action can consists of two following * each other opcodes - O_EXTERNAL_ACTION and * O_EXTERNAL_INSTANCE. The first contains the ID of * name of external action. The second contains the ID * of name of external action instance. * NOTE: in case when external action has no named * instances support, the second opcode isn't needed. */ state->eaction = cmd; s = object_search_ctlv(fo->tstate, cmd->arg1, IPFW_TLV_EACTION); if (match_token(rule_eactions, s) != -1) bprintf(bp, "%s", s); else bprintf(bp, "eaction %s", s); break; case O_EXTERNAL_INSTANCE: if (state->eaction == NULL) break; /* * XXX: we need to teach ipfw(9) to rewrite opcodes * in the user buffer on rule addition. When we add * the rule, we specify zero TLV type for * O_EXTERNAL_INSTANCE object. To show correct * rule after `ipfw add` we need to search instance * name with zero type. But when we do `ipfw show` * we calculate TLV type using IPFW_TLV_EACTION_NAME() * macro. */ s = object_search_ctlv(fo->tstate, cmd->arg1, 0); if (s == NULL) s = object_search_ctlv(fo->tstate, cmd->arg1, IPFW_TLV_EACTION_NAME( state->eaction->arg1)); bprintf(bp, " %s", s); break; case O_EXTERNAL_DATA: if (state->eaction == NULL) break; /* * Currently we support data formatting only for * external data with datalen u16. For unknown data * print its size in bytes. */ if (cmd->len == F_INSN_SIZE(ipfw_insn)) bprintf(bp, " %u", cmd->arg1); else bprintf(bp, " %ubytes", cmd->len * sizeof(uint32_t)); break; case O_SETDSCP: if (cmd->arg1 == IP_FW_TARG) { bprintf(bp, "setdscp tablearg"); break; } s = match_value(f_ipdscp, cmd->arg1 & 0x3F); if (s != NULL) bprintf(bp, "setdscp %s", s); else bprintf(bp, "setdscp %u", cmd->arg1 & 0x3F); break; case O_REASS: bprintf(bp, "reass"); break; case O_CALLRETURN: if (cmd->len & F_NOT) bprintf(bp, "return"); else bprint_uint_arg(bp, "call ", cmd->arg1); break; + case O_SETMARK: + if (cmd->arg1 == IP_FW_TARG) { + bprintf(bp, "setmark tablearg"); + break; + } + bprintf(bp, "setmark %#x", ((const ipfw_insn_u32 *)cmd)->d[0]); + break; default: bprintf(bp, "** unrecognized action %d len %d ", cmd->opcode, cmd->len); } mark_printed(state, cmd); return (1); } static ipfw_insn * print_action(struct buf_pr *bp, struct format_opts *fo, struct show_state *state, uint8_t opcode) { ipfw_insn *cmd; int l; for (l = state->rule->cmd_len - state->rule->act_ofs, cmd = ACTION_PTR(state->rule); l > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { if (cmd->opcode != opcode) continue; if (!print_action_instruction(bp, fo, state, cmd)) continue; return (cmd); } return (NULL); } static void print_proto(struct buf_pr *bp, struct format_opts *fo, struct show_state *state) { ipfw_insn *cmd; int l, proto, ip4, ip6; /* Count all O_PROTO, O_IP4, O_IP6 instructions. */ proto = ip4 = ip6 = 0; for (l = state->rule->act_ofs, cmd = state->rule->cmd; l > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { switch (cmd->opcode) { case O_PROTO: proto++; break; case O_IP4: ip4 = 1; if (cmd->len & F_OR) ip4++; break; case O_IP6: ip6 = 1; if (cmd->len & F_OR) ip6++; break; default: continue; } } if (proto == 0 && ip4 == 0 && ip6 == 0) { state->proto = IPPROTO_IP; state->flags |= HAVE_PROTO; bprintf(bp, " ip"); return; } /* To handle the case { ip4 or ip6 }, print opcode with F_OR first */ cmd = NULL; if (ip4 || ip6) cmd = print_opcode(bp, fo, state, ip4 > ip6 ? O_IP4: O_IP6); if (cmd != NULL && (cmd->len & F_OR)) cmd = print_opcode(bp, fo, state, ip4 > ip6 ? O_IP6: O_IP4); if (cmd == NULL || (cmd->len & F_OR)) for (l = proto; l > 0; l--) { cmd = print_opcode(bp, fo, state, O_PROTO); if (cmd == NULL || (cmd->len & F_OR) == 0) break; } /* Initialize proto, it is used by print_newports() */ state->flags |= HAVE_PROTO; if (state->proto == 0 && ip6 != 0) state->proto = IPPROTO_IPV6; } static int match_opcode(int opcode, const int opcodes[], size_t nops) { size_t i; for (i = 0; i < nops; i++) if (opcode == opcodes[i]) return (1); return (0); } static void print_address(struct buf_pr *bp, struct format_opts *fo, struct show_state *state, const int opcodes[], size_t nops, int portop, int flag) { ipfw_insn *cmd; int count, l, portcnt, pf; count = portcnt = 0; for (l = state->rule->act_ofs, cmd = state->rule->cmd; l > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { if (match_opcode(cmd->opcode, opcodes, nops)) count++; else if (cmd->opcode == portop) portcnt++; } if (count == 0) bprintf(bp, " any"); for (l = state->rule->act_ofs, cmd = state->rule->cmd; l > 0 && count > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { if (!match_opcode(cmd->opcode, opcodes, nops)) continue; print_instruction(bp, fo, state, cmd); if ((cmd->len & F_OR) == 0) break; count--; } /* * If several O_IP_?PORT opcodes specified, leave them to the * options section. */ if (portcnt == 1) { for (l = state->rule->act_ofs, cmd = state->rule->cmd, pf = 0; l > 0; l -= F_LEN(cmd), cmd += F_LEN(cmd)) { if (cmd->opcode != portop) { pf = (cmd->len & F_OR); continue; } /* Print opcode iff it is not in OR block. */ if (pf == 0 && (cmd->len & F_OR) == 0) print_instruction(bp, fo, state, cmd); break; } } state->flags |= flag; } static const int action_opcodes[] = { O_CHECK_STATE, O_ACCEPT, O_COUNT, O_DENY, O_REJECT, O_UNREACH6, O_SKIPTO, O_PIPE, O_QUEUE, O_DIVERT, O_TEE, O_NETGRAPH, O_NGTEE, O_FORWARD_IP, O_FORWARD_IP6, O_NAT, - O_SETFIB, O_SETDSCP, O_REASS, O_CALLRETURN, + O_SETFIB, O_SETDSCP, O_REASS, O_CALLRETURN, O_SETMARK, /* keep the following opcodes at the end of the list */ O_EXTERNAL_ACTION, O_EXTERNAL_INSTANCE, O_EXTERNAL_DATA }; static const int modifier_opcodes[] = { O_LOG, O_ALTQ, O_TAG }; static const int src_opcodes[] = { O_IP_SRC, O_IP_SRC_LOOKUP, O_IP_SRC_MASK, O_IP_SRC_ME, O_IP_SRC_SET, O_IP6_SRC, O_IP6_SRC_MASK, O_IP6_SRC_ME }; static const int dst_opcodes[] = { O_IP_DST, O_IP_DST_LOOKUP, O_IP_DST_MASK, O_IP_DST_ME, O_IP_DST_SET, O_IP6_DST, O_IP6_DST_MASK, O_IP6_DST_ME }; static void show_static_rule(struct cmdline_opts *co, struct format_opts *fo, struct buf_pr *bp, struct ip_fw_rule *rule, struct ip_fw_bcounter *cntr) { static int twidth = 0; struct show_state state; ipfw_insn *cmd; size_t i; /* Print # DISABLED or skip the rule */ if ((fo->set_mask & (1 << rule->set)) == 0) { /* disabled mask */ if (!co->show_sets) return; else bprintf(bp, "# DISABLED "); } if (init_show_state(&state, rule) != 0) { warn("init_show_state() failed"); return; } bprintf(bp, "%05u ", rule->rulenum); /* only if counters are available */ if (cntr != NULL) { /* Print counters if enabled */ if (fo->pcwidth > 0 || fo->bcwidth > 0) { pr_u64(bp, &cntr->pcnt, fo->pcwidth); pr_u64(bp, &cntr->bcnt, fo->bcwidth); } /* Print timestamp */ if (co->do_time == TIMESTAMP_NUMERIC) bprintf(bp, "%10u ", cntr->timestamp); else if (co->do_time == TIMESTAMP_STRING) { char timestr[30]; time_t t = (time_t)0; if (twidth == 0) { strcpy(timestr, ctime(&t)); *strchr(timestr, '\n') = '\0'; twidth = strlen(timestr); } if (cntr->timestamp > 0) { t = _long_to_time(cntr->timestamp); strcpy(timestr, ctime(&t)); *strchr(timestr, '\n') = '\0'; bprintf(bp, "%s ", timestr); } else { bprintf(bp, "%*s ", twidth, ""); } } } /* Print set number */ if (co->show_sets) bprintf(bp, "set %d ", rule->set); /* Print the optional "match probability" */ cmd = print_opcode(bp, fo, &state, O_PROB); /* Print rule action */ for (i = 0; i < nitems(action_opcodes); i++) { cmd = print_action(bp, fo, &state, action_opcodes[i]); if (cmd == NULL) continue; /* Handle special cases */ switch (cmd->opcode) { case O_CHECK_STATE: goto end; case O_EXTERNAL_ACTION: case O_EXTERNAL_INSTANCE: /* External action can have several instructions */ continue; } break; } /* Print rule modifiers */ for (i = 0; i < nitems(modifier_opcodes); i++) print_action(bp, fo, &state, modifier_opcodes[i]); /* * Print rule body */ if (co->comment_only != 0) goto end; if (rule->flags & IPFW_RULE_JUSTOPTS) { state.flags |= HAVE_PROTO | HAVE_SRCIP | HAVE_DSTIP; goto justopts; } print_proto(bp, fo, &state); if (co->do_compact != 0 && (rule->flags & IPFW_RULE_NOOPT)) goto justopts; /* Print source */ bprintf(bp, " from"); print_address(bp, fo, &state, src_opcodes, nitems(src_opcodes), O_IP_SRCPORT, HAVE_SRCIP); /* Print destination */ bprintf(bp, " to"); print_address(bp, fo, &state, dst_opcodes, nitems(dst_opcodes), O_IP_DSTPORT, HAVE_DSTIP); justopts: /* Print the rest of options */ while (print_opcode(bp, fo, &state, -1)) ; end: /* Print comment at the end */ cmd = print_opcode(bp, fo, &state, O_NOP); if (co->comment_only != 0 && cmd == NULL) bprintf(bp, " // ..."); bprintf(bp, "\n"); free_show_state(&state); } static void show_dyn_state(struct cmdline_opts *co, struct format_opts *fo, struct buf_pr *bp, ipfw_dyn_rule *d) { struct protoent *pe; struct in_addr a; uint16_t rulenum; char buf[INET6_ADDRSTRLEN]; if (d->expire == 0 && d->dyn_type != O_LIMIT_PARENT) return; bcopy(&d->rule, &rulenum, sizeof(rulenum)); bprintf(bp, "%05d", rulenum); if (fo->pcwidth > 0 || fo->bcwidth > 0) { bprintf(bp, " "); pr_u64(bp, &d->pcnt, fo->pcwidth); pr_u64(bp, &d->bcnt, fo->bcwidth); bprintf(bp, "(%ds)", d->expire); } switch (d->dyn_type) { case O_LIMIT_PARENT: bprintf(bp, " PARENT %d", d->count); break; case O_LIMIT: bprintf(bp, " LIMIT"); break; case O_KEEP_STATE: /* bidir, no mask */ bprintf(bp, " STATE"); break; } if ((pe = getprotobynumber(d->id.proto)) != NULL) bprintf(bp, " %s", pe->p_name); else bprintf(bp, " proto %u", d->id.proto); if (d->id.addr_type == 4) { a.s_addr = htonl(d->id.src_ip); bprintf(bp, " %s %d", inet_ntoa(a), d->id.src_port); a.s_addr = htonl(d->id.dst_ip); bprintf(bp, " <-> %s %d", inet_ntoa(a), d->id.dst_port); } else if (d->id.addr_type == 6) { bprintf(bp, " %s %d", inet_ntop(AF_INET6, &d->id.src_ip6, buf, sizeof(buf)), d->id.src_port); bprintf(bp, " <-> %s %d", inet_ntop(AF_INET6, &d->id.dst_ip6, buf, sizeof(buf)), d->id.dst_port); } else bprintf(bp, " UNKNOWN <-> UNKNOWN"); if (d->kidx != 0) bprintf(bp, " :%s", object_search_ctlv(fo->tstate, d->kidx, IPFW_TLV_STATE_NAME)); #define BOTH_SYN (TH_SYN | (TH_SYN << 8)) #define BOTH_FIN (TH_FIN | (TH_FIN << 8)) if (co->verbose) { bprintf(bp, " state 0x%08x%s", d->state, d->state ? " ": ","); if (d->state & IPFW_DYN_ORPHANED) bprintf(bp, "ORPHANED,"); if ((d->state & BOTH_SYN) == BOTH_SYN) bprintf(bp, "BOTH_SYN,"); else { if (d->state & TH_SYN) bprintf(bp, "F_SYN,"); if (d->state & (TH_SYN << 8)) bprintf(bp, "R_SYN,"); } if ((d->state & BOTH_FIN) == BOTH_FIN) bprintf(bp, "BOTH_FIN,"); else { if (d->state & TH_FIN) bprintf(bp, "F_FIN,"); if (d->state & (TH_FIN << 8)) bprintf(bp, "R_FIN,"); } bprintf(bp, " f_ack 0x%x, r_ack 0x%x", d->ack_fwd, d->ack_rev); } } static int do_range_cmd(int cmd, ipfw_range_tlv *rt) { ipfw_range_header rh; size_t sz; memset(&rh, 0, sizeof(rh)); memcpy(&rh.range, rt, sizeof(*rt)); rh.range.head.length = sizeof(*rt); rh.range.head.type = IPFW_TLV_RANGE; sz = sizeof(rh); if (do_get3(cmd, &rh.opheader, &sz) != 0) return (-1); /* Save number of matched objects */ rt->new_set = rh.range.new_set; return (0); } /* * This one handles all set-related commands * ipfw set { show | enable | disable } * ipfw set swap X Y * ipfw set move X to Y * ipfw set move rule X to Y */ void ipfw_sets_handler(char *av[]) { ipfw_range_tlv rt; const char *msg; size_t size; uint32_t masks[2]; int i; uint16_t rulenum; uint8_t cmd; av++; memset(&rt, 0, sizeof(rt)); if (av[0] == NULL) errx(EX_USAGE, "set needs command"); if (_substrcmp(*av, "show") == 0) { struct format_opts fo; ipfw_cfg_lheader *cfg; memset(&fo, 0, sizeof(fo)); if (ipfw_get_config(&g_co, &fo, &cfg, &size) != 0) err(EX_OSERR, "requesting config failed"); for (i = 0, msg = "disable"; i < RESVD_SET; i++) if ((cfg->set_mask & (1<set_mask != (uint32_t)-1) ? " enable" : "enable"; for (i = 0; i < RESVD_SET; i++) if ((cfg->set_mask & (1< RESVD_SET) errx(EX_DATAERR, "invalid set number %s\n", av[0]); if (!isdigit(*(av[1])) || rt.new_set > RESVD_SET) errx(EX_DATAERR, "invalid set number %s\n", av[1]); i = do_range_cmd(IP_FW_SET_SWAP, &rt); } else if (_substrcmp(*av, "move") == 0) { av++; if (av[0] && _substrcmp(*av, "rule") == 0) { rt.flags = IPFW_RCFLAG_RANGE; /* move rules to new set */ cmd = IP_FW_XMOVE; av++; } else cmd = IP_FW_SET_MOVE; /* Move set to new one */ if (av[0] == NULL || av[1] == NULL || av[2] == NULL || av[3] != NULL || _substrcmp(av[1], "to") != 0) errx(EX_USAGE, "syntax: set move [rule] X to Y\n"); rulenum = atoi(av[0]); rt.new_set = atoi(av[2]); if (cmd == IP_FW_XMOVE) { rt.start_rule = rulenum; rt.end_rule = rulenum; } else rt.set = rulenum; rt.new_set = atoi(av[2]); if (!isdigit(*(av[0])) || (cmd == 3 && rt.set > RESVD_SET) || (cmd == 2 && rt.start_rule == IPFW_DEFAULT_RULE) ) errx(EX_DATAERR, "invalid source number %s\n", av[0]); if (!isdigit(*(av[2])) || rt.new_set > RESVD_SET) errx(EX_DATAERR, "invalid dest. set %s\n", av[1]); i = do_range_cmd(cmd, &rt); if (i < 0) err(EX_OSERR, "failed to move %s", cmd == IP_FW_SET_MOVE ? "set": "rule"); } else if (_substrcmp(*av, "disable") == 0 || _substrcmp(*av, "enable") == 0 ) { int which = _substrcmp(*av, "enable") == 0 ? 1 : 0; av++; masks[0] = masks[1] = 0; while (av[0]) { if (isdigit(**av)) { i = atoi(*av); if (i < 0 || i > RESVD_SET) errx(EX_DATAERR, "invalid set number %d\n", i); masks[which] |= (1<dcnt++; if (fo->show_counters == 0) return; if (co->use_set) { /* skip states from another set */ bcopy((char *)&d->rule + sizeof(uint16_t), &set, sizeof(uint8_t)); if (set != co->use_set - 1) return; } width = pr_u64(NULL, &d->pcnt, 0); if (width > fo->pcwidth) fo->pcwidth = width; width = pr_u64(NULL, &d->bcnt, 0); if (width > fo->bcwidth) fo->bcwidth = width; } static int foreach_state(struct cmdline_opts *co, struct format_opts *fo, caddr_t base, size_t sz, state_cb dyn_bc, void *dyn_arg) { int ttype; state_cb *fptr; void *farg; ipfw_obj_tlv *tlv; ipfw_obj_ctlv *ctlv; fptr = NULL; ttype = 0; while (sz > 0) { ctlv = (ipfw_obj_ctlv *)base; switch (ctlv->head.type) { case IPFW_TLV_DYNSTATE_LIST: base += sizeof(*ctlv); sz -= sizeof(*ctlv); ttype = IPFW_TLV_DYN_ENT; fptr = dyn_bc; farg = dyn_arg; break; default: return (sz); } while (sz > 0) { tlv = (ipfw_obj_tlv *)base; if (tlv->type != ttype) break; fptr(co, fo, farg, tlv + 1); sz -= tlv->length; base += tlv->length; } } return (sz); } static void prepare_format_opts(struct cmdline_opts *co, struct format_opts *fo, ipfw_obj_tlv *rtlv, int rcnt, caddr_t dynbase, size_t dynsz) { int bcwidth, pcwidth, width; int n; struct ip_fw_bcounter *cntr; struct ip_fw_rule *r; bcwidth = 0; pcwidth = 0; if (fo->show_counters != 0) { for (n = 0; n < rcnt; n++, rtlv = (ipfw_obj_tlv *)((caddr_t)rtlv + rtlv->length)) { cntr = (struct ip_fw_bcounter *)(rtlv + 1); r = (struct ip_fw_rule *)((caddr_t)cntr + cntr->size); /* skip rules from another set */ if (co->use_set && r->set != co->use_set - 1) continue; /* packet counter */ width = pr_u64(NULL, &cntr->pcnt, 0); if (width > pcwidth) pcwidth = width; /* byte counter */ width = pr_u64(NULL, &cntr->bcnt, 0); if (width > bcwidth) bcwidth = width; } } fo->bcwidth = bcwidth; fo->pcwidth = pcwidth; fo->dcnt = 0; if (co->do_dynamic && dynsz > 0) foreach_state(co, fo, dynbase, dynsz, prepare_format_dyn, NULL); } static int list_static_range(struct cmdline_opts *co, struct format_opts *fo, struct buf_pr *bp, ipfw_obj_tlv *rtlv, int rcnt) { int n, seen; struct ip_fw_rule *r; struct ip_fw_bcounter *cntr; for (n = seen = 0; n < rcnt; n++, rtlv = (ipfw_obj_tlv *)((caddr_t)rtlv + rtlv->length)) { if ((fo->show_counters | fo->show_time) != 0) { cntr = (struct ip_fw_bcounter *)(rtlv + 1); r = (struct ip_fw_rule *)((caddr_t)cntr + cntr->size); } else { cntr = NULL; r = (struct ip_fw_rule *)(rtlv + 1); } if (r->rulenum > fo->last) break; if (co->use_set && r->set != co->use_set - 1) continue; if (r->rulenum >= fo->first && r->rulenum <= fo->last) { show_static_rule(co, fo, bp, r, cntr); printf("%s", bp->buf); bp_flush(bp); seen++; } } return (seen); } static void list_dyn_state(struct cmdline_opts *co, struct format_opts *fo, void *_arg, void *_state) { uint16_t rulenum; uint8_t set; ipfw_dyn_rule *d; struct buf_pr *bp; d = (ipfw_dyn_rule *)_state; bp = (struct buf_pr *)_arg; bcopy(&d->rule, &rulenum, sizeof(rulenum)); if (rulenum > fo->last) return; if (co->use_set) { bcopy((char *)&d->rule + sizeof(uint16_t), &set, sizeof(uint8_t)); if (set != co->use_set - 1) return; } if (rulenum >= fo->first) { show_dyn_state(co, fo, bp, d); printf("%s\n", bp->buf); bp_flush(bp); } } static int list_dyn_range(struct cmdline_opts *co, struct format_opts *fo, struct buf_pr *bp, caddr_t base, size_t sz) { sz = foreach_state(co, fo, base, sz, list_dyn_state, bp); return (sz); } void ipfw_list(int ac, char *av[], int show_counters) { ipfw_cfg_lheader *cfg; struct format_opts sfo; size_t sz; int error; int lac; char **lav; uint32_t rnum; char *endptr; if (g_co.test_only) { fprintf(stderr, "Testing only, list disabled\n"); return; } if (g_co.do_pipe) { dummynet_list(ac, av, show_counters); return; } ac--; av++; memset(&sfo, 0, sizeof(sfo)); /* Determine rule range to request */ if (ac > 0) { for (lac = ac, lav = av; lac != 0; lac--) { rnum = strtoul(*lav++, &endptr, 10); if (sfo.first == 0 || rnum < sfo.first) sfo.first = rnum; if (*endptr == '-') rnum = strtoul(endptr + 1, &endptr, 10); if (sfo.last == 0 || rnum > sfo.last) sfo.last = rnum; } } /* get configuraion from kernel */ cfg = NULL; sfo.show_counters = show_counters; sfo.show_time = g_co.do_time; if (g_co.do_dynamic != 2) sfo.flags |= IPFW_CFG_GET_STATIC; if (g_co.do_dynamic != 0) sfo.flags |= IPFW_CFG_GET_STATES; if ((sfo.show_counters | sfo.show_time) != 0) sfo.flags |= IPFW_CFG_GET_COUNTERS; if (ipfw_get_config(&g_co, &sfo, &cfg, &sz) != 0) err(EX_OSERR, "retrieving config failed"); error = ipfw_show_config(&g_co, &sfo, cfg, sz, ac, av); free(cfg); if (error != EX_OK) exit(error); } static int ipfw_show_config(struct cmdline_opts *co, struct format_opts *fo, ipfw_cfg_lheader *cfg, size_t sz, int ac, char *av[]) { caddr_t dynbase; size_t dynsz; int rcnt; int exitval = EX_OK; int lac; char **lav; char *endptr; size_t readsz; struct buf_pr bp; ipfw_obj_ctlv *ctlv; ipfw_obj_tlv *rbase; /* * Handle tablenames TLV first, if any */ rbase = NULL; dynbase = NULL; dynsz = 0; readsz = sizeof(*cfg); rcnt = 0; fo->set_mask = cfg->set_mask; ctlv = (ipfw_obj_ctlv *)(cfg + 1); if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) { object_sort_ctlv(ctlv); fo->tstate = ctlv; readsz += ctlv->head.length; ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length); } if (cfg->flags & IPFW_CFG_GET_STATIC) { /* We've requested static rules */ if (ctlv->head.type == IPFW_TLV_RULE_LIST) { rbase = (ipfw_obj_tlv *)(ctlv + 1); rcnt = ctlv->count; readsz += ctlv->head.length; ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length); } } if ((cfg->flags & IPFW_CFG_GET_STATES) && (readsz != sz)) { /* We may have some dynamic states */ dynsz = sz - readsz; /* Skip empty header */ if (dynsz != sizeof(ipfw_obj_ctlv)) dynbase = (caddr_t)ctlv; else dynsz = 0; } prepare_format_opts(co, fo, rbase, rcnt, dynbase, dynsz); bp_alloc(&bp, 4096); /* if no rule numbers were specified, list all rules */ if (ac == 0) { fo->first = 0; fo->last = IPFW_DEFAULT_RULE; if (cfg->flags & IPFW_CFG_GET_STATIC) list_static_range(co, fo, &bp, rbase, rcnt); if (co->do_dynamic && dynsz > 0) { printf("## Dynamic rules (%d %zu):\n", fo->dcnt, dynsz); list_dyn_range(co, fo, &bp, dynbase, dynsz); } bp_free(&bp); return (EX_OK); } /* display specific rules requested on command line */ for (lac = ac, lav = av; lac != 0; lac--) { /* convert command line rule # */ fo->last = fo->first = strtoul(*lav++, &endptr, 10); if (*endptr == '-') fo->last = strtoul(endptr + 1, &endptr, 10); if (*endptr) { exitval = EX_USAGE; warnx("invalid rule number: %s", *(lav - 1)); continue; } if ((cfg->flags & IPFW_CFG_GET_STATIC) == 0) continue; if (list_static_range(co, fo, &bp, rbase, rcnt) == 0) { /* give precedence to other error(s) */ if (exitval == EX_OK) exitval = EX_UNAVAILABLE; if (fo->first == fo->last) warnx("rule %u does not exist", fo->first); else warnx("no rules in range %u-%u", fo->first, fo->last); } } if (co->do_dynamic && dynsz > 0) { printf("## Dynamic rules:\n"); for (lac = ac, lav = av; lac != 0; lac--) { fo->last = fo->first = strtoul(*lav++, &endptr, 10); if (*endptr == '-') fo->last = strtoul(endptr+1, &endptr, 10); if (*endptr) /* already warned */ continue; list_dyn_range(co, fo, &bp, dynbase, dynsz); } } bp_free(&bp); return (exitval); } /* * Retrieves current ipfw configuration of given type * and stores its pointer to @pcfg. * * Caller is responsible for freeing @pcfg. * * Returns 0 on success. */ static int ipfw_get_config(struct cmdline_opts *co, struct format_opts *fo, ipfw_cfg_lheader **pcfg, size_t *psize) { ipfw_cfg_lheader *cfg; size_t sz; int i; if (co->test_only != 0) { fprintf(stderr, "Testing only, list disabled\n"); return (0); } /* Start with some data size */ sz = 4096; cfg = NULL; for (i = 0; i < 16; i++) { if (cfg != NULL) free(cfg); if ((cfg = calloc(1, sz)) == NULL) return (ENOMEM); cfg->flags = fo->flags; cfg->start_rule = fo->first; cfg->end_rule = fo->last; if (do_get3(IP_FW_XGET, &cfg->opheader, &sz) != 0) { if (errno != ENOMEM) { free(cfg); return (errno); } /* Buffer size is not enough. Try to increase */ sz = sz * 2; if (sz < cfg->size) sz = cfg->size; continue; } *pcfg = cfg; *psize = sz; return (0); } free(cfg); return (ENOMEM); } static int lookup_host (char *host, struct in_addr *ipaddr) { struct hostent *he; if (!inet_aton(host, ipaddr)) { if ((he = gethostbyname(host)) == NULL) return(-1); *ipaddr = *(struct in_addr *)he->h_addr_list[0]; } return(0); } struct tidx { ipfw_obj_ntlv *idx; uint32_t count; uint32_t size; uint16_t counter; uint8_t set; }; int ipfw_check_object_name(const char *name) { int c, i, l; /* * Check that name is null-terminated and contains * valid symbols only. Valid mask is: * [a-zA-Z0-9\-_\.]{1,63} */ l = strlen(name); if (l == 0 || l >= 64) return (EINVAL); for (i = 0; i < l; i++) { c = name[i]; if (isalpha(c) || isdigit(c) || c == '_' || c == '-' || c == '.') continue; return (EINVAL); } return (0); } static const char *default_state_name = "default"; static int state_check_name(const char *name) { if (ipfw_check_object_name(name) != 0) return (EINVAL); if (strcmp(name, "any") == 0) return (EINVAL); return (0); } static int eaction_check_name(const char *name) { if (ipfw_check_object_name(name) != 0) return (EINVAL); /* Restrict some 'special' names */ if (match_token(rule_actions, name) != -1 && match_token(rule_action_params, name) != -1) return (EINVAL); return (0); } static uint16_t pack_object(struct tidx *tstate, const char *name, int otype) { ipfw_obj_ntlv *ntlv; uint32_t i; for (i = 0; i < tstate->count; i++) { if (strcmp(tstate->idx[i].name, name) != 0) continue; if (tstate->idx[i].set != tstate->set) continue; if (tstate->idx[i].head.type != otype) continue; return (tstate->idx[i].idx); } if (tstate->count + 1 > tstate->size) { tstate->size += 4; tstate->idx = realloc(tstate->idx, tstate->size * sizeof(ipfw_obj_ntlv)); if (tstate->idx == NULL) return (0); } ntlv = &tstate->idx[i]; memset(ntlv, 0, sizeof(ipfw_obj_ntlv)); strlcpy(ntlv->name, name, sizeof(ntlv->name)); ntlv->head.type = otype; ntlv->head.length = sizeof(ipfw_obj_ntlv); ntlv->set = tstate->set; ntlv->idx = ++tstate->counter; tstate->count++; return (ntlv->idx); } static uint16_t pack_table(struct tidx *tstate, const char *name) { if (table_check_name(name) != 0) return (0); return (pack_object(tstate, name, IPFW_TLV_TBL_NAME)); } void fill_table(struct _ipfw_insn *cmd, char *av, uint8_t opcode, struct tidx *tstate) { uint32_t *d = ((ipfw_insn_u32 *)cmd)->d; uint16_t uidx; char *p; if ((p = strchr(av + 6, ')')) == NULL) errx(EX_DATAERR, "forgotten parenthesis: '%s'", av); *p = '\0'; p = strchr(av + 6, ','); if (p) *p++ = '\0'; if ((uidx = pack_table(tstate, av + 6)) == 0) errx(EX_DATAERR, "Invalid table name: %s", av + 6); cmd->opcode = opcode; cmd->arg1 = uidx; if (p) { cmd->len |= F_INSN_SIZE(ipfw_insn_u32); d[0] = strtoul(p, NULL, 0); } else cmd->len |= F_INSN_SIZE(ipfw_insn); } /* * fills the addr and mask fields in the instruction as appropriate from av. * Update length as appropriate. * The following formats are allowed: * me returns O_IP_*_ME * 1.2.3.4 single IP address * 1.2.3.4:5.6.7.8 address:mask * 1.2.3.4/24 address/mask * 1.2.3.4/26{1,6,5,4,23} set of addresses in a subnet * We can have multiple comma-separated address/mask entries. */ static void fill_ip(ipfw_insn_ip *cmd, char *av, int cblen, struct tidx *tstate) { int len = 0; uint32_t *d = ((ipfw_insn_u32 *)cmd)->d; cmd->o.len &= ~F_LEN_MASK; /* zero len */ if (_substrcmp(av, "any") == 0) return; if (_substrcmp(av, "me") == 0) { cmd->o.len |= F_INSN_SIZE(ipfw_insn); return; } if (strncmp(av, "table(", 6) == 0) { fill_table(&cmd->o, av, O_IP_DST_LOOKUP, tstate); return; } while (av) { /* * After the address we can have '/' or ':' indicating a mask, * ',' indicating another address follows, '{' indicating a * set of addresses of unspecified size. */ char *t = NULL, *p = strpbrk(av, "/:,{"); int masklen; char md, nd = '\0'; CHECK_LENGTH(cblen, (int)F_INSN_SIZE(ipfw_insn) + 2 + len); if (p) { md = *p; *p++ = '\0'; if ((t = strpbrk(p, ",{")) != NULL) { nd = *t; *t = '\0'; } } else md = '\0'; if (lookup_host(av, (struct in_addr *)&d[0]) != 0) errx(EX_NOHOST, "hostname ``%s'' unknown", av); switch (md) { case ':': if (!inet_aton(p, (struct in_addr *)&d[1])) errx(EX_DATAERR, "bad netmask ``%s''", p); break; case '/': masklen = atoi(p); if (masklen == 0) d[1] = htonl(0U); /* mask */ else if (masklen > 32) errx(EX_DATAERR, "bad width ``%s''", p); else d[1] = htonl(~0U << (32 - masklen)); break; case '{': /* no mask, assume /24 and put back the '{' */ d[1] = htonl(~0U << (32 - 24)); *(--p) = md; break; case ',': /* single address plus continuation */ *(--p) = md; /* FALLTHROUGH */ case 0: /* initialization value */ default: d[1] = htonl(~0U); /* force /32 */ break; } d[0] &= d[1]; /* mask base address with mask */ if (t) *t = nd; /* find next separator */ if (p) p = strpbrk(p, ",{"); if (p && *p == '{') { /* * We have a set of addresses. They are stored as follows: * arg1 is the set size (powers of 2, 2..256) * addr is the base address IN HOST FORMAT * mask.. is an array of arg1 bits (rounded up to * the next multiple of 32) with bits set * for each host in the map. */ uint32_t *map = (uint32_t *)&cmd->mask; int low, high; int i = contigmask((uint8_t *)&(d[1]), 32); if (len > 0) errx(EX_DATAERR, "address set cannot be in a list"); if (i < 24 || i > 31) errx(EX_DATAERR, "invalid set with mask %d\n", i); cmd->o.arg1 = 1<<(32-i); /* map length */ d[0] = ntohl(d[0]); /* base addr in host format */ cmd->o.opcode = O_IP_DST_SET; /* default */ cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32) + (cmd->o.arg1+31)/32; for (i = 0; i < (cmd->o.arg1+31)/32 ; i++) map[i] = 0; /* clear map */ av = p + 1; low = d[0] & 0xff; high = low + cmd->o.arg1 - 1; /* * Here, i stores the previous value when we specify a range * of addresses within a mask, e.g. 45-63. i = -1 means we * have no previous value. */ i = -1; /* previous value in a range */ while (isdigit(*av)) { char *s; int a = strtol(av, &s, 0); if (s == av) { /* no parameter */ if (*av != '}') errx(EX_DATAERR, "set not closed\n"); if (i != -1) errx(EX_DATAERR, "incomplete range %d-", i); break; } if (a < low || a > high) errx(EX_DATAERR, "addr %d out of range [%d-%d]\n", a, low, high); a -= low; if (i == -1) /* no previous in range */ i = a; else { /* check that range is valid */ if (i > a) errx(EX_DATAERR, "invalid range %d-%d", i+low, a+low); if (*s == '-') errx(EX_DATAERR, "double '-' in range"); } for (; i <= a; i++) map[i/32] |= 1<<(i & 31); i = -1; if (*s == '-') i = a; else if (*s == '}') break; av = s+1; } return; } av = p; if (av) /* then *av must be a ',' */ av++; /* Check this entry */ if (d[1] == 0) { /* "any", specified as x.x.x.x/0 */ /* * 'any' turns the entire list into a NOP. * 'not any' never matches, so it is removed from the * list unless it is the only item, in which case we * report an error. */ if (cmd->o.len & F_NOT) { /* "not any" never matches */ if (av == NULL && len == 0) /* only this entry */ errx(EX_DATAERR, "not any never matches"); } /* else do nothing and skip this entry */ return; } /* A single IP can be stored in an optimized format */ if (d[1] == (uint32_t)~0 && av == NULL && len == 0) { cmd->o.len |= F_INSN_SIZE(ipfw_insn_u32); return; } len += 2; /* two words... */ d += 2; } /* end while */ if (len + 1 > F_LEN_MASK) errx(EX_DATAERR, "address list too long"); cmd->o.len |= len+1; } /* n2mask sets n bits of the mask */ void n2mask(struct in6_addr *mask, int n) { static int minimask[9] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff }; u_char *p; memset(mask, 0, sizeof(struct in6_addr)); p = (u_char *) mask; for (; n > 0; p++, n -= 8) { if (n >= 8) *p = 0xff; else *p = minimask[n]; } return; } static void fill_flags_cmd(ipfw_insn *cmd, enum ipfw_opcodes opcode, struct _s_x *flags, char *p) { char *e; uint32_t set = 0, clear = 0; if (fill_flags(flags, p, &e, &set, &clear) != 0) errx(EX_DATAERR, "invalid flag %s", e); cmd->opcode = opcode; cmd->len = (cmd->len & (F_NOT | F_OR)) | 1; cmd->arg1 = (set & 0xff) | ( (clear & 0xff) << 8); } void ipfw_delete(char *av[]) { ipfw_range_tlv rt; char *sep; int i, j; int exitval = EX_OK; int do_set = 0; av++; NEED1("missing rule specification"); if ( *av && _substrcmp(*av, "set") == 0) { /* Do not allow using the following syntax: * ipfw set N delete set M */ if (g_co.use_set) errx(EX_DATAERR, "invalid syntax"); do_set = 1; /* delete set */ av++; } /* Rule number */ while (*av && isdigit(**av)) { i = strtol(*av, &sep, 10); j = i; if (*sep== '-') j = strtol(sep + 1, NULL, 10); av++; if (g_co.do_nat) { exitval = ipfw_delete_nat(i); } else if (g_co.do_pipe) { exitval = ipfw_delete_pipe(g_co.do_pipe, i); } else { memset(&rt, 0, sizeof(rt)); if (do_set != 0) { rt.set = i & 31; rt.flags = IPFW_RCFLAG_SET; } else { rt.start_rule = i & 0xffff; rt.end_rule = j & 0xffff; if (rt.start_rule == 0 && rt.end_rule == 0) rt.flags |= IPFW_RCFLAG_ALL; else rt.flags |= IPFW_RCFLAG_RANGE; if (g_co.use_set != 0) { rt.set = g_co.use_set - 1; rt.flags |= IPFW_RCFLAG_SET; } } if (g_co.do_dynamic == 2) rt.flags |= IPFW_RCFLAG_DYNAMIC; i = do_range_cmd(IP_FW_XDEL, &rt); if (i != 0) { exitval = EX_UNAVAILABLE; if (g_co.do_quiet) continue; warn("rule %u: setsockopt(IP_FW_XDEL)", rt.start_rule); } else if (rt.new_set == 0 && do_set == 0 && g_co.do_dynamic != 2) { exitval = EX_UNAVAILABLE; if (g_co.do_quiet) continue; if (rt.start_rule != rt.end_rule) warnx("no rules rules in %u-%u range", rt.start_rule, rt.end_rule); else warnx("rule %u not found", rt.start_rule); } } } if (exitval != EX_OK && g_co.do_force == 0) exit(exitval); } /* * fill the interface structure. We do not check the name as we can * create interfaces dynamically, so checking them at insert time * makes relatively little sense. * Interface names containing '*', '?', or '[' are assumed to be shell * patterns which match interfaces. */ static void fill_iface(ipfw_insn_if *cmd, char *arg, int cblen, struct tidx *tstate) { char *p; uint16_t uidx; cmd->name[0] = '\0'; cmd->o.len |= F_INSN_SIZE(ipfw_insn_if); CHECK_CMDLEN; /* Parse the interface or address */ if (strcmp(arg, "any") == 0) cmd->o.len = 0; /* effectively ignore this command */ else if (strncmp(arg, "table(", 6) == 0) { if ((p = strchr(arg + 6, ')')) == NULL) errx(EX_DATAERR, "forgotten parenthesis: '%s'", arg); *p = '\0'; p = strchr(arg + 6, ','); if (p) *p++ = '\0'; if ((uidx = pack_table(tstate, arg + 6)) == 0) errx(EX_DATAERR, "Invalid table name: %s", arg + 6); cmd->name[0] = '\1'; /* Special value indicating table */ cmd->p.kidx = uidx; } else if (!isdigit(*arg)) { strlcpy(cmd->name, arg, sizeof(cmd->name)); cmd->p.glob = strpbrk(arg, "*?[") != NULL ? 1 : 0; } else if (!inet_aton(arg, &cmd->p.ip)) errx(EX_DATAERR, "bad ip address ``%s''", arg); } static void get_mac_addr_mask(const char *p, uint8_t *addr, uint8_t *mask) { int i; size_t l; char *ap, *ptr, *optr; struct ether_addr *mac; const char *macset = "0123456789abcdefABCDEF:"; if (strcmp(p, "any") == 0) { for (i = 0; i < ETHER_ADDR_LEN; i++) addr[i] = mask[i] = 0; return; } optr = ptr = strdup(p); if ((ap = strsep(&ptr, "&/")) != NULL && *ap != 0) { l = strlen(ap); if (strspn(ap, macset) != l || (mac = ether_aton(ap)) == NULL) errx(EX_DATAERR, "Incorrect MAC address"); bcopy(mac, addr, ETHER_ADDR_LEN); } else errx(EX_DATAERR, "Incorrect MAC address"); if (ptr != NULL) { /* we have mask? */ if (p[ptr - optr - 1] == '/') { /* mask len */ long ml = strtol(ptr, &ap, 10); if (*ap != 0 || ml > ETHER_ADDR_LEN * 8 || ml < 0) errx(EX_DATAERR, "Incorrect mask length"); for (i = 0; ml > 0 && i < ETHER_ADDR_LEN; ml -= 8, i++) mask[i] = (ml >= 8) ? 0xff: (~0) << (8 - ml); } else { /* mask */ l = strlen(ptr); if (strspn(ptr, macset) != l || (mac = ether_aton(ptr)) == NULL) errx(EX_DATAERR, "Incorrect mask"); bcopy(mac, mask, ETHER_ADDR_LEN); } } else { /* default mask: ff:ff:ff:ff:ff:ff */ for (i = 0; i < ETHER_ADDR_LEN; i++) mask[i] = 0xff; } for (i = 0; i < ETHER_ADDR_LEN; i++) addr[i] &= mask[i]; free(optr); } /* * helper function, updates the pointer to cmd with the length * of the current command, and also cleans up the first word of * the new command in case it has been clobbered before. */ static ipfw_insn * next_cmd(ipfw_insn *cmd, int *len) { *len -= F_LEN(cmd); CHECK_LENGTH(*len, 0); cmd += F_LEN(cmd); bzero(cmd, sizeof(*cmd)); return cmd; } /* * Takes arguments and copies them into a comment */ static void fill_comment(ipfw_insn *cmd, char **av, int cblen) { int i, l; char *p = (char *)(cmd + 1); cmd->opcode = O_NOP; cmd->len = (cmd->len & (F_NOT | F_OR)); /* Compute length of comment string. */ for (i = 0, l = 0; av[i] != NULL; i++) l += strlen(av[i]) + 1; if (l == 0) return; if (l > 84) errx(EX_DATAERR, "comment too long (max 80 chars)"); l = 1 + (l+3)/4; cmd->len = (cmd->len & (F_NOT | F_OR)) | l; CHECK_CMDLEN; for (i = 0; av[i] != NULL; i++) { strcpy(p, av[i]); p += strlen(av[i]); *p++ = ' '; } *(--p) = '\0'; } /* * A function to fill simple commands of size 1. * Existing flags are preserved. */ static void fill_cmd(ipfw_insn *cmd, enum ipfw_opcodes opcode, int flags, uint16_t arg) { cmd->opcode = opcode; cmd->len = ((cmd->len | flags) & (F_NOT | F_OR)) | 1; cmd->arg1 = arg; } /* * Fetch and add the MAC address and type, with masks. This generates one or * two microinstructions, and returns the pointer to the last one. */ static ipfw_insn * add_mac(ipfw_insn *cmd, char *av[], int cblen) { ipfw_insn_mac *mac; if ( ( av[0] == NULL ) || ( av[1] == NULL ) ) errx(EX_DATAERR, "MAC dst src"); cmd->opcode = O_MACADDR2; cmd->len = (cmd->len & (F_NOT | F_OR)) | F_INSN_SIZE(ipfw_insn_mac); CHECK_CMDLEN; mac = (ipfw_insn_mac *)cmd; get_mac_addr_mask(av[0], mac->addr, mac->mask); /* dst */ get_mac_addr_mask(av[1], &(mac->addr[ETHER_ADDR_LEN]), &(mac->mask[ETHER_ADDR_LEN])); /* src */ return cmd; } static ipfw_insn * add_mactype(ipfw_insn *cmd, char *av, int cblen) { if (!av) errx(EX_DATAERR, "missing MAC type"); if (strcmp(av, "any") != 0) { /* we have a non-null type */ fill_newports((ipfw_insn_u16 *)cmd, av, IPPROTO_ETHERTYPE, cblen); cmd->opcode = O_MAC_TYPE; return cmd; } else return NULL; } static ipfw_insn * add_proto0(ipfw_insn *cmd, char *av, u_char *protop) { struct protoent *pe; char *ep; int proto; proto = strtol(av, &ep, 10); if (*ep != '\0' || proto <= 0) { if ((pe = getprotobyname(av)) == NULL) return NULL; proto = pe->p_proto; } fill_cmd(cmd, O_PROTO, 0, proto); *protop = proto; return cmd; } static ipfw_insn * add_proto(ipfw_insn *cmd, char *av, u_char *protop) { u_char proto = IPPROTO_IP; if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0) ; /* do not set O_IP4 nor O_IP6 */ else if (strcmp(av, "ip4") == 0) /* explicit "just IPv4" rule */ fill_cmd(cmd, O_IP4, 0, 0); else if (strcmp(av, "ip6") == 0) { /* explicit "just IPv6" rule */ proto = IPPROTO_IPV6; fill_cmd(cmd, O_IP6, 0, 0); } else return add_proto0(cmd, av, protop); *protop = proto; return cmd; } static ipfw_insn * add_proto_compat(ipfw_insn *cmd, char *av, u_char *protop) { u_char proto = IPPROTO_IP; if (_substrcmp(av, "all") == 0 || strcmp(av, "ip") == 0) ; /* do not set O_IP4 nor O_IP6 */ else if (strcmp(av, "ipv4") == 0 || strcmp(av, "ip4") == 0) /* explicit "just IPv4" rule */ fill_cmd(cmd, O_IP4, 0, 0); else if (strcmp(av, "ipv6") == 0 || strcmp(av, "ip6") == 0) { /* explicit "just IPv6" rule */ proto = IPPROTO_IPV6; fill_cmd(cmd, O_IP6, 0, 0); } else return add_proto0(cmd, av, protop); *protop = proto; return cmd; } static ipfw_insn * add_srcip(ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate) { fill_ip((ipfw_insn_ip *)cmd, av, cblen, tstate); if (cmd->opcode == O_IP_DST_SET) /* set */ cmd->opcode = O_IP_SRC_SET; else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */ cmd->opcode = O_IP_SRC_LOOKUP; else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */ cmd->opcode = O_IP_SRC_ME; else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */ cmd->opcode = O_IP_SRC; else /* addr/mask */ cmd->opcode = O_IP_SRC_MASK; return cmd; } static ipfw_insn * add_dstip(ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate) { fill_ip((ipfw_insn_ip *)cmd, av, cblen, tstate); if (cmd->opcode == O_IP_DST_SET) /* set */ ; else if (cmd->opcode == O_IP_DST_LOOKUP) /* table */ ; else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn)) /* me */ cmd->opcode = O_IP_DST_ME; else if (F_LEN(cmd) == F_INSN_SIZE(ipfw_insn_u32)) /* one IP */ cmd->opcode = O_IP_DST; else /* addr/mask */ cmd->opcode = O_IP_DST_MASK; return cmd; } static ipfw_insn * add_srcmac(ipfw_insn *cmd, char *av, struct tidx *tstate) { if (strncmp(av, "table(", 6) == 0) fill_table(cmd, av, O_MAC_SRC_LOOKUP, tstate); else errx(EX_DATAERR, "only mac table lookup is supported %s", av); return cmd; } static ipfw_insn * add_dstmac(ipfw_insn *cmd, char *av, struct tidx *tstate) { if (strncmp(av, "table(", 6) == 0) fill_table(cmd, av, O_MAC_DST_LOOKUP, tstate); else errx(EX_DATAERR, "only mac table lookup is supported %s", av); return cmd; } static struct _s_x f_reserved_keywords[] = { { "altq", TOK_OR }, { "//", TOK_OR }, { "diverted", TOK_OR }, { "dst-port", TOK_OR }, { "src-port", TOK_OR }, { "established", TOK_OR }, { "keep-state", TOK_OR }, { "frag", TOK_OR }, { "icmptypes", TOK_OR }, { "in", TOK_OR }, { "out", TOK_OR }, { "ip6", TOK_OR }, { "any", TOK_OR }, { "to", TOK_OR }, { "via", TOK_OR }, { "{", TOK_OR }, { NULL, 0 } /* terminator */ }; static ipfw_insn * add_ports(ipfw_insn *cmd, char *av, u_char proto, int opcode, int cblen) { if (match_token(f_reserved_keywords, av) != -1) return (NULL); if (fill_newports((ipfw_insn_u16 *)cmd, av, proto, cblen)) { /* XXX todo: check that we have a protocol with ports */ cmd->opcode = opcode; return cmd; } return NULL; } static ipfw_insn * add_src(ipfw_insn *cmd, char *av, u_char proto, int cblen, struct tidx *tstate) { struct in6_addr a; char *host, *ch, buf[INET6_ADDRSTRLEN]; ipfw_insn *ret = NULL; size_t len; /* Copy first address in set if needed */ if ((ch = strpbrk(av, "/,")) != NULL) { len = ch - av; strlcpy(buf, av, sizeof(buf)); if (len < sizeof(buf)) buf[len] = '\0'; host = buf; } else host = av; if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 || inet_pton(AF_INET6, host, &a) == 1) ret = add_srcip6(cmd, av, cblen, tstate); /* XXX: should check for IPv4, not !IPv6 */ if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 || inet_pton(AF_INET6, host, &a) != 1)) ret = add_srcip(cmd, av, cblen, tstate); if (ret == NULL && strcmp(av, "any") != 0) ret = cmd; return ret; } static ipfw_insn * add_dst(ipfw_insn *cmd, char *av, u_char proto, int cblen, struct tidx *tstate) { struct in6_addr a; char *host, *ch, buf[INET6_ADDRSTRLEN]; ipfw_insn *ret = NULL; size_t len; /* Copy first address in set if needed */ if ((ch = strpbrk(av, "/,")) != NULL) { len = ch - av; strlcpy(buf, av, sizeof(buf)); if (len < sizeof(buf)) buf[len] = '\0'; host = buf; } else host = av; if (proto == IPPROTO_IPV6 || strcmp(av, "me6") == 0 || inet_pton(AF_INET6, host, &a) == 1) ret = add_dstip6(cmd, av, cblen, tstate); /* XXX: should check for IPv4, not !IPv6 */ if (ret == NULL && (proto == IPPROTO_IP || strcmp(av, "me") == 0 || inet_pton(AF_INET6, host, &a) != 1)) ret = add_dstip(cmd, av, cblen, tstate); if (ret == NULL && strcmp(av, "any") != 0) ret = cmd; return ret; } /* * Parse arguments and assemble the microinstructions which make up a rule. * Rules are added into the 'rulebuf' and then copied in the correct order * into the actual rule. * * The syntax for a rule starts with the action, followed by * optional action parameters, and the various match patterns. * In the assembled microcode, the first opcode must be an O_PROBE_STATE * (generated if the rule includes a keep-state option), then the * various match patterns, log/altq actions, and the actual action. * */ static void compile_rule(char *av[], uint32_t *rbuf, int *rbufsize, struct tidx *tstate) { /* * rules are added into the 'rulebuf' and then copied in * the correct order into the actual rule. * Some things that need to go out of order (prob, action etc.) * go into actbuf[]. */ static uint32_t actbuf[255], cmdbuf[255]; int rblen, ablen, cblen; ipfw_insn *src, *dst, *cmd, *action, *prev=NULL; ipfw_insn *first_cmd; /* first match pattern */ struct ip_fw_rule *rule; /* * various flags used to record that we entered some fields. */ ipfw_insn *have_state = NULL; /* any state-related option */ int have_rstate = 0; ipfw_insn *have_log = NULL, *have_altq = NULL, *have_tag = NULL; ipfw_insn *have_skipcmd = NULL; size_t len; int i; int open_par = 0; /* open parenthesis ( */ /* proto is here because it is used to fetch ports */ u_char proto = IPPROTO_IP; /* default protocol */ double match_prob = 1; /* match probability, default is always match */ bzero(actbuf, sizeof(actbuf)); /* actions go here */ bzero(cmdbuf, sizeof(cmdbuf)); bzero(rbuf, *rbufsize); rule = (struct ip_fw_rule *)rbuf; cmd = (ipfw_insn *)cmdbuf; action = (ipfw_insn *)actbuf; rblen = *rbufsize / sizeof(uint32_t); rblen -= sizeof(struct ip_fw_rule) / sizeof(uint32_t); ablen = sizeof(actbuf) / sizeof(actbuf[0]); cblen = sizeof(cmdbuf) / sizeof(cmdbuf[0]); cblen -= F_INSN_SIZE(ipfw_insn_u32) + 1; #define CHECK_RBUFLEN(len) { CHECK_LENGTH(rblen, len); rblen -= len; } #define CHECK_ACTLEN CHECK_LENGTH(ablen, action->len) av++; /* [rule N] -- Rule number optional */ if (av[0] && isdigit(**av)) { rule->rulenum = atoi(*av); av++; } /* [set N] -- set number (0..RESVD_SET), optional */ if (av[0] && av[1] && _substrcmp(*av, "set") == 0) { int set = strtoul(av[1], NULL, 10); if (set < 0 || set > RESVD_SET) errx(EX_DATAERR, "illegal set %s", av[1]); rule->set = set; tstate->set = set; av += 2; } /* [prob D] -- match probability, optional */ if (av[0] && av[1] && _substrcmp(*av, "prob") == 0) { match_prob = strtod(av[1], NULL); if (match_prob <= 0 || match_prob > 1) errx(EX_DATAERR, "illegal match prob. %s", av[1]); av += 2; } /* action -- mandatory */ NEED1("missing action"); i = match_token(rule_actions, *av); av++; action->len = 1; /* default */ CHECK_ACTLEN; switch(i) { case TOK_CHECKSTATE: have_state = action; action->opcode = O_CHECK_STATE; if (*av == NULL || match_token(rule_options, *av) == TOK_COMMENT) { action->arg1 = pack_object(tstate, default_state_name, IPFW_TLV_STATE_NAME); break; } if (*av[0] == ':') { if (strcmp(*av + 1, "any") == 0) action->arg1 = 0; else if (state_check_name(*av + 1) == 0) action->arg1 = pack_object(tstate, *av + 1, IPFW_TLV_STATE_NAME); else errx(EX_DATAERR, "Invalid state name %s", *av); av++; break; } errx(EX_DATAERR, "Invalid state name %s", *av); break; case TOK_ABORT: action->opcode = O_REJECT; action->arg1 = ICMP_REJECT_ABORT; break; case TOK_ABORT6: action->opcode = O_UNREACH6; action->arg1 = ICMP6_UNREACH_ABORT; break; case TOK_ACCEPT: action->opcode = O_ACCEPT; break; case TOK_DENY: action->opcode = O_DENY; action->arg1 = 0; break; case TOK_REJECT: action->opcode = O_REJECT; action->arg1 = ICMP_UNREACH_HOST; break; case TOK_RESET: action->opcode = O_REJECT; action->arg1 = ICMP_REJECT_RST; break; case TOK_RESET6: action->opcode = O_UNREACH6; action->arg1 = ICMP6_UNREACH_RST; break; case TOK_UNREACH: action->opcode = O_REJECT; NEED1("missing reject code"); fill_reject_code(&action->arg1, *av); av++; if (action->arg1 == ICMP_UNREACH_NEEDFRAG && isdigit(**av)) { uint16_t mtu; mtu = strtoul(*av, NULL, 10); if (mtu < 68 || mtu >= IP_MAXPACKET) errx(EX_DATAERR, "illegal argument for %s", *(av - 1)); action->len = F_INSN_SIZE(ipfw_insn_u16); ((ipfw_insn_u16 *)action)->ports[0] = mtu; av++; } break; case TOK_UNREACH6: action->opcode = O_UNREACH6; NEED1("missing unreach code"); fill_unreach6_code(&action->arg1, *av); av++; break; case TOK_COUNT: action->opcode = O_COUNT; break; case TOK_NAT: action->opcode = O_NAT; action->len = F_INSN_SIZE(ipfw_insn_nat); CHECK_ACTLEN; if (*av != NULL && _substrcmp(*av, "global") == 0) { action->arg1 = IP_FW_NAT44_GLOBAL; av++; break; } else goto chkarg; case TOK_QUEUE: action->opcode = O_QUEUE; goto chkarg; case TOK_PIPE: action->opcode = O_PIPE; goto chkarg; case TOK_SKIPTO: action->opcode = O_SKIPTO; goto chkarg; case TOK_NETGRAPH: action->opcode = O_NETGRAPH; goto chkarg; case TOK_NGTEE: action->opcode = O_NGTEE; goto chkarg; case TOK_DIVERT: action->opcode = O_DIVERT; goto chkarg; case TOK_TEE: action->opcode = O_TEE; goto chkarg; case TOK_CALL: action->opcode = O_CALLRETURN; chkarg: if (!av[0]) errx(EX_USAGE, "missing argument for %s", *(av - 1)); if (isdigit(**av)) { action->arg1 = strtoul(*av, NULL, 10); if (action->arg1 <= 0 || action->arg1 >= IP_FW_TABLEARG) errx(EX_DATAERR, "illegal argument for %s", *(av - 1)); } else if (_substrcmp(*av, "tablearg") == 0) { action->arg1 = IP_FW_TARG; } else if (i == TOK_DIVERT || i == TOK_TEE) { struct servent *s; setservent(1); s = getservbyname(av[0], "divert"); if (s != NULL) action->arg1 = ntohs(s->s_port); else errx(EX_DATAERR, "illegal divert/tee port"); } else errx(EX_DATAERR, "illegal argument for %s", *(av - 1)); av++; break; case TOK_FORWARD: { /* * Locate the address-port separator (':' or ','). * Could be one of the following: * hostname:port * IPv4 a.b.c.d,port * IPv4 a.b.c.d:port * IPv6 w:x:y::z,port * IPv6 [w:x:y::z]:port */ struct sockaddr_storage result; struct addrinfo *res; char *s, *end; int family; u_short port_number = 0; NEED1("missing forward address[:port]"); if (strncmp(*av, "tablearg", 8) == 0 && ((*av)[8] == '\0' || (*av)[8] == ',' || (*av)[8] == ':')) memcpy(++(*av), "0.0.0.0", 7); /* * Are we an bracket-enclosed IPv6 address? */ if (strchr(*av, '[')) (*av)++; /* * locate the address-port separator (':' or ',') */ s = strchr(*av, ','); if (s == NULL) { s = strchr(*av, ']'); /* Prevent erroneous parsing on brackets. */ if (s != NULL) *(s++) = '\0'; else s = *av; /* Distinguish between IPv4:port and IPv6 cases. */ s = strchr(s, ':'); if (s && strchr(s+1, ':')) s = NULL; /* no port */ } if (s != NULL) { /* Terminate host portion and set s to start of port. */ *(s++) = '\0'; i = strtoport(s, &end, 0 /* base */, 0 /* proto */); if (s == end) errx(EX_DATAERR, "illegal forwarding port ``%s''", s); port_number = (u_short)i; } /* * Resolve the host name or address to a family and a * network representation of the address. */ if (getaddrinfo(*av, NULL, NULL, &res)) errx(EX_DATAERR, NULL); /* Just use the first host in the answer. */ family = res->ai_family; memcpy(&result, res->ai_addr, res->ai_addrlen); freeaddrinfo(res); if (family == PF_INET) { ipfw_insn_sa *p = (ipfw_insn_sa *)action; action->opcode = O_FORWARD_IP; action->len = F_INSN_SIZE(ipfw_insn_sa); CHECK_ACTLEN; /* * In the kernel we assume AF_INET and use only * sin_port and sin_addr. Remember to set sin_len as * the routing code seems to use it too. */ p->sa.sin_len = sizeof(struct sockaddr_in); p->sa.sin_family = AF_INET; p->sa.sin_port = port_number; p->sa.sin_addr.s_addr = ((struct sockaddr_in *)&result)->sin_addr.s_addr; } else if (family == PF_INET6) { ipfw_insn_sa6 *p = (ipfw_insn_sa6 *)action; action->opcode = O_FORWARD_IP6; action->len = F_INSN_SIZE(ipfw_insn_sa6); CHECK_ACTLEN; p->sa.sin6_len = sizeof(struct sockaddr_in6); p->sa.sin6_family = AF_INET6; p->sa.sin6_port = port_number; p->sa.sin6_flowinfo = 0; p->sa.sin6_scope_id = ((struct sockaddr_in6 *)&result)->sin6_scope_id; bcopy(&((struct sockaddr_in6*)&result)->sin6_addr, &p->sa.sin6_addr, sizeof(p->sa.sin6_addr)); } else { errx(EX_DATAERR, "Invalid address family in forward action"); } av++; break; } case TOK_COMMENT: /* pretend it is a 'count' rule followed by the comment */ action->opcode = O_COUNT; av--; /* go back... */ break; case TOK_SETFIB: { int numfibs; size_t intsize = sizeof(int); action->opcode = O_SETFIB; NEED1("missing fib number"); if (_substrcmp(*av, "tablearg") == 0) { action->arg1 = IP_FW_TARG; } else { action->arg1 = strtoul(*av, NULL, 10); if (sysctlbyname("net.fibs", &numfibs, &intsize, NULL, 0) == -1) errx(EX_DATAERR, "fibs not supported.\n"); if (action->arg1 >= numfibs) /* Temporary */ errx(EX_DATAERR, "fib too large.\n"); /* Add high-order bit to fib to make room for tablearg*/ action->arg1 |= 0x8000; } av++; break; } case TOK_SETDSCP: { int code; action->opcode = O_SETDSCP; NEED1("missing DSCP code"); if (_substrcmp(*av, "tablearg") == 0) { action->arg1 = IP_FW_TARG; } else { if (isalpha(*av[0])) { if ((code = match_token(f_ipdscp, *av)) == -1) errx(EX_DATAERR, "Unknown DSCP code"); action->arg1 = code; } else action->arg1 = strtoul(*av, NULL, 10); /* * Add high-order bit to DSCP to make room * for tablearg */ action->arg1 |= 0x8000; } av++; break; } case TOK_REASS: action->opcode = O_REASS; break; case TOK_RETURN: fill_cmd(action, O_CALLRETURN, F_NOT, 0); break; + case TOK_SETMARK: { + action->opcode = O_SETMARK; + action->len = F_INSN_SIZE(ipfw_insn_u32); + NEED1("missing mark"); + if (strcmp(*av, "tablearg") == 0) { + action->arg1 = IP_FW_TARG; + } else { + ((ipfw_insn_u32 *)action)->d[0] = + strtoul(*av, NULL, 0); + /* This is not a tablearg */ + action->arg1 |= 0x8000; + } + av++; + CHECK_CMDLEN; + break; + } + case TOK_TCPSETMSS: { u_long mss; uint16_t idx; idx = pack_object(tstate, "tcp-setmss", IPFW_TLV_EACTION); if (idx == 0) errx(EX_DATAERR, "pack_object failed"); fill_cmd(action, O_EXTERNAL_ACTION, 0, idx); NEED1("Missing MSS value"); action = next_cmd(action, &ablen); action->len = 1; CHECK_ACTLEN; mss = strtoul(*av, NULL, 10); if (mss == 0 || mss > UINT16_MAX) errx(EX_USAGE, "invalid MSS value %s", *av); fill_cmd(action, O_EXTERNAL_DATA, 0, (uint16_t)mss); av++; break; } default: av--; if (match_token(rule_eactions, *av) == -1) errx(EX_DATAERR, "invalid action %s\n", *av); /* * External actions support. * XXX: we support only syntax with instance name. * For known external actions (from rule_eactions list) * we can handle syntax directly. But with `eaction' * keyword we can use only `eaction ' * syntax. */ case TOK_EACTION: { uint16_t idx; NEED1("Missing eaction name"); if (eaction_check_name(*av) != 0) errx(EX_DATAERR, "Invalid eaction name %s", *av); idx = pack_object(tstate, *av, IPFW_TLV_EACTION); if (idx == 0) errx(EX_DATAERR, "pack_object failed"); fill_cmd(action, O_EXTERNAL_ACTION, 0, idx); av++; NEED1("Missing eaction instance name"); action = next_cmd(action, &ablen); action->len = 1; CHECK_ACTLEN; if (eaction_check_name(*av) != 0) errx(EX_DATAERR, "Invalid eaction instance name %s", *av); /* * External action instance object has TLV type depended * from the external action name object index. Since we * currently don't know this index, use zero as TLV type. */ idx = pack_object(tstate, *av, 0); if (idx == 0) errx(EX_DATAERR, "pack_object failed"); fill_cmd(action, O_EXTERNAL_INSTANCE, 0, idx); av++; } } action = next_cmd(action, &ablen); /* * [altq queuename] -- altq tag, optional * [log [logamount N]] -- log, optional * * If they exist, it go first in the cmdbuf, but then it is * skipped in the copy section to the end of the buffer. */ while (av[0] != NULL && (i = match_token(rule_action_params, *av)) != -1) { av++; switch (i) { case TOK_LOG: { ipfw_insn_log *c = (ipfw_insn_log *)cmd; int l; if (have_log) errx(EX_DATAERR, "log cannot be specified more than once"); have_log = (ipfw_insn *)c; cmd->len = F_INSN_SIZE(ipfw_insn_log); CHECK_CMDLEN; cmd->opcode = O_LOG; if (av[0] && _substrcmp(*av, "logamount") == 0) { av++; NEED1("logamount requires argument"); l = atoi(*av); if (l < 0) errx(EX_DATAERR, "logamount must be positive"); c->max_log = l; av++; } else { len = sizeof(c->max_log); if (sysctlbyname("net.inet.ip.fw.verbose_limit", &c->max_log, &len, NULL, 0) == -1) { if (g_co.test_only) { c->max_log = 0; break; } errx(1, "sysctlbyname(\"%s\")", "net.inet.ip.fw.verbose_limit"); } } } break; #ifndef NO_ALTQ case TOK_ALTQ: { ipfw_insn_altq *a = (ipfw_insn_altq *)cmd; NEED1("missing altq queue name"); if (have_altq) errx(EX_DATAERR, "altq cannot be specified more than once"); have_altq = (ipfw_insn *)a; cmd->len = F_INSN_SIZE(ipfw_insn_altq); CHECK_CMDLEN; cmd->opcode = O_ALTQ; a->qid = altq_name_to_qid(*av); av++; } break; #endif case TOK_TAG: case TOK_UNTAG: { uint16_t tag; if (have_tag) errx(EX_USAGE, "tag and untag cannot be " "specified more than once"); GET_UINT_ARG(tag, IPFW_ARG_MIN, IPFW_ARG_MAX, i, rule_action_params); have_tag = cmd; fill_cmd(cmd, O_TAG, (i == TOK_TAG) ? 0: F_NOT, tag); av++; break; } default: abort(); } cmd = next_cmd(cmd, &cblen); } if (have_state) { /* must be a check-state, we are done */ if (*av != NULL && match_token(rule_options, *av) == TOK_COMMENT) { /* check-state has a comment */ av++; fill_comment(cmd, av, cblen); cmd = next_cmd(cmd, &cblen); av[0] = NULL; } goto done; } #define OR_START(target) \ if (av[0] && (*av[0] == '(' || *av[0] == '{')) { \ if (open_par) \ errx(EX_USAGE, "nested \"(\" not allowed\n"); \ prev = NULL; \ open_par = 1; \ if ( (av[0])[1] == '\0') { \ av++; \ } else \ (*av)++; \ } \ target: \ #define CLOSE_PAR \ if (open_par) { \ if (av[0] && ( \ strcmp(*av, ")") == 0 || \ strcmp(*av, "}") == 0)) { \ prev = NULL; \ open_par = 0; \ av++; \ } else \ errx(EX_USAGE, "missing \")\"\n"); \ } #define NOT_BLOCK \ if (av[0] && _substrcmp(*av, "not") == 0) { \ if (cmd->len & F_NOT) \ errx(EX_USAGE, "double \"not\" not allowed\n"); \ cmd->len |= F_NOT; \ av++; \ } #define OR_BLOCK(target) \ if (av[0] && _substrcmp(*av, "or") == 0) { \ if (prev == NULL || open_par == 0) \ errx(EX_DATAERR, "invalid OR block"); \ prev->len |= F_OR; \ av++; \ goto target; \ } \ CLOSE_PAR; first_cmd = cmd; #if 0 /* * MAC addresses, optional. * If we have this, we skip the part "proto from src to dst" * and jump straight to the option parsing. */ NOT_BLOCK; NEED1("missing protocol"); if (_substrcmp(*av, "MAC") == 0 || _substrcmp(*av, "mac") == 0) { av++; /* the "MAC" keyword */ add_mac(cmd, av); /* exits in case of errors */ cmd = next_cmd(cmd); av += 2; /* dst-mac and src-mac */ NOT_BLOCK; NEED1("missing mac type"); if (add_mactype(cmd, av[0])) cmd = next_cmd(cmd); av++; /* any or mac-type */ goto read_options; } #endif /* * protocol, mandatory */ OR_START(get_proto); NOT_BLOCK; NEED1("missing protocol"); if (add_proto_compat(cmd, *av, &proto)) { av++; if (F_LEN(cmd) != 0) { prev = cmd; cmd = next_cmd(cmd, &cblen); } } else if (first_cmd != cmd) { errx(EX_DATAERR, "invalid protocol ``%s''", *av); } else { rule->flags |= IPFW_RULE_JUSTOPTS; goto read_options; } OR_BLOCK(get_proto); first_cmd = cmd; /* update pointer to use in compact form */ /* * "from", mandatory */ if ((av[0] == NULL) || _substrcmp(*av, "from") != 0) errx(EX_USAGE, "missing ``from''"); av++; /* * source IP, mandatory */ OR_START(source_ip); NOT_BLOCK; /* optional "not" */ NEED1("missing source address"); if (add_src(cmd, *av, proto, cblen, tstate)) { av++; if (F_LEN(cmd) != 0) { /* ! any */ prev = cmd; cmd = next_cmd(cmd, &cblen); } } else errx(EX_USAGE, "bad source address %s", *av); OR_BLOCK(source_ip); /* * source ports, optional */ NOT_BLOCK; /* optional "not" */ if ( av[0] != NULL ) { if (_substrcmp(*av, "any") == 0 || add_ports(cmd, *av, proto, O_IP_SRCPORT, cblen)) { av++; if (F_LEN(cmd) != 0) cmd = next_cmd(cmd, &cblen); } } /* * "to", mandatory */ if ( (av[0] == NULL) || _substrcmp(*av, "to") != 0 ) errx(EX_USAGE, "missing ``to''"); av++; /* * destination, mandatory */ OR_START(dest_ip); NOT_BLOCK; /* optional "not" */ NEED1("missing dst address"); if (add_dst(cmd, *av, proto, cblen, tstate)) { av++; if (F_LEN(cmd) != 0) { /* ! any */ prev = cmd; cmd = next_cmd(cmd, &cblen); } } else errx( EX_USAGE, "bad destination address %s", *av); OR_BLOCK(dest_ip); /* * dest. ports, optional */ NOT_BLOCK; /* optional "not" */ if (av[0]) { if (_substrcmp(*av, "any") == 0 || add_ports(cmd, *av, proto, O_IP_DSTPORT, cblen)) { av++; if (F_LEN(cmd) != 0) cmd = next_cmd(cmd, &cblen); } } if (first_cmd == cmd) rule->flags |= IPFW_RULE_NOOPT; read_options: prev = NULL; while ( av[0] != NULL ) { char *s; ipfw_insn_u32 *cmd32; /* alias for cmd */ s = *av; cmd32 = (ipfw_insn_u32 *)cmd; if (*s == '!') { /* alternate syntax for NOT */ if (cmd->len & F_NOT) errx(EX_USAGE, "double \"not\" not allowed\n"); cmd->len = F_NOT; s++; } i = match_token(rule_options, s); av++; switch(i) { case TOK_NOT: if (cmd->len & F_NOT) errx(EX_USAGE, "double \"not\" not allowed\n"); cmd->len = F_NOT; break; case TOK_OR: if (open_par == 0 || prev == NULL) errx(EX_USAGE, "invalid \"or\" block\n"); prev->len |= F_OR; break; case TOK_STARTBRACE: if (open_par) errx(EX_USAGE, "+nested \"(\" not allowed\n"); open_par = 1; break; case TOK_ENDBRACE: if (!open_par) errx(EX_USAGE, "+missing \")\"\n"); open_par = 0; prev = NULL; break; case TOK_IN: fill_cmd(cmd, O_IN, 0, 0); break; case TOK_OUT: cmd->len ^= F_NOT; /* toggle F_NOT */ fill_cmd(cmd, O_IN, 0, 0); break; case TOK_DIVERTED: fill_cmd(cmd, O_DIVERTED, 0, 3); break; case TOK_DIVERTEDLOOPBACK: fill_cmd(cmd, O_DIVERTED, 0, 1); break; case TOK_DIVERTEDOUTPUT: fill_cmd(cmd, O_DIVERTED, 0, 2); break; case TOK_FRAG: { uint32_t set = 0, clear = 0; if (*av != NULL && fill_flags(f_ipoff, *av, NULL, &set, &clear) == 0) av++; else { /* * Compatibility: no argument after "frag" * keyword equals to "frag offset". */ set = 0x01; clear = 0; } fill_cmd(cmd, O_FRAG, 0, (set & 0xff) | ( (clear & 0xff) << 8)); break; } case TOK_LAYER2: fill_cmd(cmd, O_LAYER2, 0, 0); break; case TOK_XMIT: case TOK_RECV: case TOK_VIA: NEED1("recv, xmit, via require interface name" " or address"); fill_iface((ipfw_insn_if *)cmd, av[0], cblen, tstate); av++; if (F_LEN(cmd) == 0) /* not a valid address */ break; if (i == TOK_XMIT) cmd->opcode = O_XMIT; else if (i == TOK_RECV) cmd->opcode = O_RECV; else if (i == TOK_VIA) cmd->opcode = O_VIA; break; case TOK_ICMPTYPES: NEED1("icmptypes requires list of types"); fill_icmptypes((ipfw_insn_u32 *)cmd, *av); av++; break; case TOK_ICMP6TYPES: NEED1("icmptypes requires list of types"); fill_icmp6types((ipfw_insn_icmp6 *)cmd, *av, cblen); av++; break; case TOK_IPTTL: NEED1("ipttl requires TTL"); if (strpbrk(*av, "-,")) { if (!add_ports(cmd, *av, 0, O_IPTTL, cblen)) errx(EX_DATAERR, "invalid ipttl %s", *av); } else fill_cmd(cmd, O_IPTTL, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_IPID: NEED1("ipid requires id"); if (strpbrk(*av, "-,")) { if (!add_ports(cmd, *av, 0, O_IPID, cblen)) errx(EX_DATAERR, "invalid ipid %s", *av); } else fill_cmd(cmd, O_IPID, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_IPLEN: NEED1("iplen requires length"); if (strpbrk(*av, "-,")) { if (!add_ports(cmd, *av, 0, O_IPLEN, cblen)) errx(EX_DATAERR, "invalid ip len %s", *av); } else fill_cmd(cmd, O_IPLEN, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_IPVER: NEED1("ipver requires version"); fill_cmd(cmd, O_IPVER, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_IPPRECEDENCE: NEED1("ipprecedence requires value"); fill_cmd(cmd, O_IPPRECEDENCE, 0, (strtoul(*av, NULL, 0) & 7) << 5); av++; break; case TOK_DSCP: NEED1("missing DSCP code"); fill_dscp(cmd, *av, cblen); av++; break; case TOK_IPOPTS: NEED1("missing argument for ipoptions"); fill_flags_cmd(cmd, O_IPOPT, f_ipopts, *av); av++; break; case TOK_IPTOS: NEED1("missing argument for iptos"); fill_flags_cmd(cmd, O_IPTOS, f_iptos, *av); av++; break; case TOK_UID: NEED1("uid requires argument"); { char *end; uid_t uid; struct passwd *pwd; cmd->opcode = O_UID; uid = strtoul(*av, &end, 0); pwd = (*end == '\0') ? getpwuid(uid) : getpwnam(*av); if (pwd == NULL) errx(EX_DATAERR, "uid \"%s\" nonexistent", *av); cmd32->d[0] = pwd->pw_uid; cmd->len |= F_INSN_SIZE(ipfw_insn_u32); av++; } break; case TOK_GID: NEED1("gid requires argument"); { char *end; gid_t gid; struct group *grp; cmd->opcode = O_GID; gid = strtoul(*av, &end, 0); grp = (*end == '\0') ? getgrgid(gid) : getgrnam(*av); if (grp == NULL) errx(EX_DATAERR, "gid \"%s\" nonexistent", *av); cmd32->d[0] = grp->gr_gid; cmd->len |= F_INSN_SIZE(ipfw_insn_u32); av++; } break; case TOK_JAIL: NEED1("jail requires argument"); { char *end; int jid; cmd->opcode = O_JAIL; /* * If av is a number, then we'll just pass it as-is. If * it's a name, try to resolve that to a jid. * * We save the jail_getid(3) call for a fallback because * it entails an unconditional trip to the kernel to * either validate a jid or resolve a name to a jid. * This specific token doesn't currently require a * jid to be an active jail, so we save a transition * by simply using a number that we're given. */ jid = strtoul(*av, &end, 10); if (*end != '\0') { jid = jail_getid(*av); if (jid < 0) errx(EX_DATAERR, "%s", jail_errmsg); } cmd32->d[0] = (uint32_t)jid; cmd->len |= F_INSN_SIZE(ipfw_insn_u32); av++; } break; case TOK_ESTAB: fill_cmd(cmd, O_ESTAB, 0, 0); break; case TOK_SETUP: fill_cmd(cmd, O_TCPFLAGS, 0, (TH_SYN) | ( (TH_ACK) & 0xff) <<8 ); break; case TOK_TCPDATALEN: NEED1("tcpdatalen requires length"); if (strpbrk(*av, "-,")) { if (!add_ports(cmd, *av, 0, O_TCPDATALEN, cblen)) errx(EX_DATAERR, "invalid tcpdata len %s", *av); } else fill_cmd(cmd, O_TCPDATALEN, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_TCPOPTS: NEED1("missing argument for tcpoptions"); fill_flags_cmd(cmd, O_TCPOPTS, f_tcpopts, *av); av++; break; case TOK_TCPSEQ: case TOK_TCPACK: NEED1("tcpseq/tcpack requires argument"); cmd->len = F_INSN_SIZE(ipfw_insn_u32); cmd->opcode = (i == TOK_TCPSEQ) ? O_TCPSEQ : O_TCPACK; cmd32->d[0] = htonl(strtoul(*av, NULL, 0)); av++; break; case TOK_TCPMSS: case TOK_TCPWIN: NEED1("tcpmss/tcpwin requires size"); if (strpbrk(*av, "-,")) { if (add_ports(cmd, *av, 0, i == TOK_TCPWIN ? O_TCPWIN : O_TCPMSS, cblen) == NULL) errx(EX_DATAERR, "invalid %s size %s", s, *av); } else fill_cmd(cmd, i == TOK_TCPWIN ? O_TCPWIN : O_TCPMSS, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_TCPFLAGS: NEED1("missing argument for tcpflags"); cmd->opcode = O_TCPFLAGS; fill_flags_cmd(cmd, O_TCPFLAGS, f_tcpflags, *av); av++; break; case TOK_KEEPSTATE: case TOK_RECORDSTATE: { uint16_t uidx; if (open_par) errx(EX_USAGE, "keep-state or record-state cannot be part " "of an or block"); if (have_state) errx(EX_USAGE, "only one of keep-state, record-state, " " limit and set-limit is allowed"); if (*av != NULL && *av[0] == ':') { if (state_check_name(*av + 1) != 0) errx(EX_DATAERR, "Invalid state name %s", *av); uidx = pack_object(tstate, *av + 1, IPFW_TLV_STATE_NAME); av++; } else uidx = pack_object(tstate, default_state_name, IPFW_TLV_STATE_NAME); have_state = cmd; have_rstate = i == TOK_RECORDSTATE; fill_cmd(cmd, O_KEEP_STATE, 0, uidx); break; } case TOK_LIMIT: case TOK_SETLIMIT: { ipfw_insn_limit *c = (ipfw_insn_limit *)cmd; int val; if (open_par) errx(EX_USAGE, "limit or set-limit cannot be part of an or block"); if (have_state) errx(EX_USAGE, "only one of keep-state, record-state, " " limit and set-limit is allowed"); have_state = cmd; have_rstate = i == TOK_SETLIMIT; cmd->len = F_INSN_SIZE(ipfw_insn_limit); CHECK_CMDLEN; cmd->opcode = O_LIMIT; c->limit_mask = c->conn_limit = 0; while ( av[0] != NULL ) { if ((val = match_token(limit_masks, *av)) <= 0) break; c->limit_mask |= val; av++; } if (c->limit_mask == 0) errx(EX_USAGE, "limit: missing limit mask"); GET_UINT_ARG(c->conn_limit, IPFW_ARG_MIN, IPFW_ARG_MAX, TOK_LIMIT, rule_options); av++; if (*av != NULL && *av[0] == ':') { if (state_check_name(*av + 1) != 0) errx(EX_DATAERR, "Invalid state name %s", *av); cmd->arg1 = pack_object(tstate, *av + 1, IPFW_TLV_STATE_NAME); av++; } else cmd->arg1 = pack_object(tstate, default_state_name, IPFW_TLV_STATE_NAME); break; } case TOK_PROTO: NEED1("missing protocol"); if (add_proto(cmd, *av, &proto)) { av++; } else errx(EX_DATAERR, "invalid protocol ``%s''", *av); break; case TOK_SRCIP: NEED1("missing source IP"); if (add_srcip(cmd, *av, cblen, tstate)) { av++; } break; case TOK_DSTIP: NEED1("missing destination IP"); if (add_dstip(cmd, *av, cblen, tstate)) { av++; } break; case TOK_SRCIP6: NEED1("missing source IP6"); if (add_srcip6(cmd, *av, cblen, tstate)) { av++; } break; case TOK_DSTIP6: NEED1("missing destination IP6"); if (add_dstip6(cmd, *av, cblen, tstate)) { av++; } break; case TOK_SRCMAC: NEED1("missing source MAC"); if (add_srcmac(cmd, *av, tstate)) { av++; } break; case TOK_DSTMAC: NEED1("missing destination MAC"); if (add_dstmac(cmd, *av, tstate)) { av++; } break; case TOK_SRCPORT: NEED1("missing source port"); if (_substrcmp(*av, "any") == 0 || add_ports(cmd, *av, proto, O_IP_SRCPORT, cblen)) { av++; } else errx(EX_DATAERR, "invalid source port %s", *av); break; case TOK_DSTPORT: NEED1("missing destination port"); if (_substrcmp(*av, "any") == 0 || add_ports(cmd, *av, proto, O_IP_DSTPORT, cblen)) { av++; } else errx(EX_DATAERR, "invalid destination port %s", *av); break; case TOK_MAC: if (add_mac(cmd, av, cblen)) av += 2; break; case TOK_MACTYPE: NEED1("missing mac type"); if (!add_mactype(cmd, *av, cblen)) errx(EX_DATAERR, "invalid mac type %s", *av); av++; break; case TOK_VERREVPATH: fill_cmd(cmd, O_VERREVPATH, 0, 0); break; case TOK_VERSRCREACH: fill_cmd(cmd, O_VERSRCREACH, 0, 0); break; case TOK_ANTISPOOF: fill_cmd(cmd, O_ANTISPOOF, 0, 0); break; case TOK_IPSEC: fill_cmd(cmd, O_IPSEC, 0, 0); break; case TOK_IPV6: fill_cmd(cmd, O_IP6, 0, 0); break; case TOK_IPV4: fill_cmd(cmd, O_IP4, 0, 0); break; case TOK_EXT6HDR: NEED1("missing extension header"); fill_ext6hdr( cmd, *av ); av++; break; case TOK_FLOWID: if (proto != IPPROTO_IPV6 ) errx( EX_USAGE, "flow-id filter is active " "only for ipv6 protocol\n"); fill_flow6( (ipfw_insn_u32 *) cmd, *av, cblen); av++; break; case TOK_COMMENT: fill_comment(cmd, av, cblen); av[0]=NULL; break; case TOK_TAGGED: if (av[0] && strpbrk(*av, "-,")) { if (!add_ports(cmd, *av, 0, O_TAGGED, cblen)) errx(EX_DATAERR, "tagged: invalid tag" " list: %s", *av); } else { uint16_t tag; GET_UINT_ARG(tag, IPFW_ARG_MIN, IPFW_ARG_MAX, TOK_TAGGED, rule_options); fill_cmd(cmd, O_TAGGED, 0, tag); } av++; break; case TOK_FIB: NEED1("fib requires fib number"); fill_cmd(cmd, O_FIB, 0, strtoul(*av, NULL, 0)); av++; break; case TOK_SOCKARG: fill_cmd(cmd, O_SOCKARG, 0, 0); break; case TOK_LOOKUP: { ipfw_insn_u32 *c = (ipfw_insn_u32 *)cmd; if (!av[0] || !av[1]) errx(EX_USAGE, "format: lookup argument tablenum"); cmd->opcode = O_IP_DST_LOOKUP; cmd->len |= F_INSN_SIZE(ipfw_insn) + 2; i = match_token(lookup_keys, *av); if (i == -1) errx(EX_USAGE, "format: cannot lookup on %s", *av); __PAST_END(c->d, 1) = i; av++; if ((i = pack_table(tstate, *av)) == 0) errx(EX_DATAERR, "Invalid table name: %s", *av); cmd->arg1 = i; av++; } break; case TOK_FLOW: NEED1("missing table name"); if (strncmp(*av, "table(", 6) != 0) errx(EX_DATAERR, "enclose table name into \"table()\""); fill_table(cmd, *av, O_IP_FLOW_LOOKUP, tstate); av++; break; case TOK_SKIPACTION: if (have_skipcmd) errx(EX_USAGE, "only one defer-action " "is allowed"); have_skipcmd = cmd; fill_cmd(cmd, O_SKIP_ACTION, 0, 0); break; + case TOK_MARK: + NEED1("missing mark value:mask"); + fill_mark(cmd, *av, cblen); + av++; + break; + default: errx(EX_USAGE, "unrecognised option [%d] %s\n", i, s); } if (F_LEN(cmd) > 0) { /* prepare to advance */ prev = cmd; cmd = next_cmd(cmd, &cblen); } } done: if (!have_state && have_skipcmd) warnx("Rule contains \"defer-immediate-action\" " "and doesn't contain any state-related options."); /* * Now copy stuff into the rule. * If we have a keep-state option, the first instruction * must be a PROBE_STATE (which is generated here). * If we have a LOG option, it was stored as the first command, * and now must be moved to the top of the action part. */ dst = (ipfw_insn *)rule->cmd; /* * First thing to write into the command stream is the match probability. */ if (match_prob != 1) { /* 1 means always match */ dst->opcode = O_PROB; dst->len = 2; *((int32_t *)(dst+1)) = (int32_t)(match_prob * 0x7fffffff); dst += dst->len; } /* * generate O_PROBE_STATE if necessary */ if (have_state && have_state->opcode != O_CHECK_STATE && !have_rstate) { fill_cmd(dst, O_PROBE_STATE, 0, have_state->arg1); dst = next_cmd(dst, &rblen); } /* * copy all commands but O_LOG, O_KEEP_STATE, O_LIMIT, O_ALTQ, O_TAG, * O_SKIP_ACTION */ for (src = (ipfw_insn *)cmdbuf; src != cmd; src += i) { i = F_LEN(src); CHECK_RBUFLEN(i); switch (src->opcode) { case O_LOG: case O_KEEP_STATE: case O_LIMIT: case O_ALTQ: case O_TAG: case O_SKIP_ACTION: break; default: bcopy(src, dst, i * sizeof(uint32_t)); dst += i; } } /* * put back the have_state command as last opcode */ if (have_state && have_state->opcode != O_CHECK_STATE) { i = F_LEN(have_state); CHECK_RBUFLEN(i); bcopy(have_state, dst, i * sizeof(uint32_t)); dst += i; } /* * put back the have_skipcmd command as very last opcode */ if (have_skipcmd) { i = F_LEN(have_skipcmd); CHECK_RBUFLEN(i); bcopy(have_skipcmd, dst, i * sizeof(uint32_t)); dst += i; } /* * start action section */ rule->act_ofs = dst - rule->cmd; /* put back O_LOG, O_ALTQ, O_TAG if necessary */ if (have_log) { i = F_LEN(have_log); CHECK_RBUFLEN(i); bcopy(have_log, dst, i * sizeof(uint32_t)); dst += i; } if (have_altq) { i = F_LEN(have_altq); CHECK_RBUFLEN(i); bcopy(have_altq, dst, i * sizeof(uint32_t)); dst += i; } if (have_tag) { i = F_LEN(have_tag); CHECK_RBUFLEN(i); bcopy(have_tag, dst, i * sizeof(uint32_t)); dst += i; } /* * copy all other actions */ for (src = (ipfw_insn *)actbuf; src != action; src += i) { i = F_LEN(src); CHECK_RBUFLEN(i); bcopy(src, dst, i * sizeof(uint32_t)); dst += i; } rule->cmd_len = (uint32_t *)dst - (uint32_t *)(rule->cmd); *rbufsize = (char *)dst - (char *)rule; } static int compare_ntlv(const void *_a, const void *_b) { const ipfw_obj_ntlv *a, *b; a = (const ipfw_obj_ntlv *)_a; b = (const ipfw_obj_ntlv *)_b; if (a->set < b->set) return (-1); else if (a->set > b->set) return (1); if (a->idx < b->idx) return (-1); else if (a->idx > b->idx) return (1); if (a->head.type < b->head.type) return (-1); else if (a->head.type > b->head.type) return (1); return (0); } /* * Provide kernel with sorted list of referenced objects */ static void object_sort_ctlv(ipfw_obj_ctlv *ctlv) { qsort(ctlv + 1, ctlv->count, ctlv->objsize, compare_ntlv); } struct object_kt { uint16_t uidx; uint16_t type; }; static int compare_object_kntlv(const void *k, const void *v) { const ipfw_obj_ntlv *ntlv; struct object_kt key; key = *((const struct object_kt *)k); ntlv = (const ipfw_obj_ntlv *)v; if (key.uidx < ntlv->idx) return (-1); else if (key.uidx > ntlv->idx) return (1); if (key.type < ntlv->head.type) return (-1); else if (key.type > ntlv->head.type) return (1); return (0); } /* * Finds object name in @ctlv by @idx and @type. * Uses the following facts: * 1) All TLVs are the same size * 2) Kernel implementation provides already sorted list. * * Returns table name or NULL. */ static char * object_search_ctlv(ipfw_obj_ctlv *ctlv, uint16_t idx, uint16_t type) { ipfw_obj_ntlv *ntlv; struct object_kt key; key.uidx = idx; key.type = type; ntlv = bsearch(&key, (ctlv + 1), ctlv->count, ctlv->objsize, compare_object_kntlv); if (ntlv != NULL) return (ntlv->name); return (NULL); } static char * table_search_ctlv(ipfw_obj_ctlv *ctlv, uint16_t idx) { return (object_search_ctlv(ctlv, idx, IPFW_TLV_TBL_NAME)); } /* * Adds one or more rules to ipfw chain. * Data layout: * Request: * [ * ip_fw3_opheader * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1) * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) [ ip_fw_rule ip_fw_insn ] x N ] (*2) (*3) * ] * Reply: * [ * ip_fw3_opheader * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional) * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) [ ip_fw_rule ip_fw_insn ] x N ] * ] * * Rules in reply are modified to store their actual ruleset number. * * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending * according to their idx field and there has to be no duplicates. * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending. * (*3) Each ip_fw structure needs to be aligned to u64 boundary. */ void ipfw_add(char *av[]) { uint32_t rulebuf[1024]; int rbufsize, default_off, tlen, rlen; size_t sz; struct tidx ts; struct ip_fw_rule *rule; caddr_t tbuf; ip_fw3_opheader *op3; ipfw_obj_ctlv *ctlv, *tstate; rbufsize = sizeof(rulebuf); memset(rulebuf, 0, rbufsize); memset(&ts, 0, sizeof(ts)); /* Optimize case with no tables */ default_off = sizeof(ipfw_obj_ctlv) + sizeof(ip_fw3_opheader); op3 = (ip_fw3_opheader *)rulebuf; ctlv = (ipfw_obj_ctlv *)(op3 + 1); rule = (struct ip_fw_rule *)(ctlv + 1); rbufsize -= default_off; compile_rule(av, (uint32_t *)rule, &rbufsize, &ts); /* Align rule size to u64 boundary */ rlen = roundup2(rbufsize, sizeof(uint64_t)); tbuf = NULL; sz = 0; tstate = NULL; if (ts.count != 0) { /* Some tables. We have to alloc more data */ tlen = ts.count * sizeof(ipfw_obj_ntlv); sz = default_off + sizeof(ipfw_obj_ctlv) + tlen + rlen; if ((tbuf = calloc(1, sz)) == NULL) err(EX_UNAVAILABLE, "malloc() failed for IP_FW_ADD"); op3 = (ip_fw3_opheader *)tbuf; /* Tables first */ ctlv = (ipfw_obj_ctlv *)(op3 + 1); ctlv->head.type = IPFW_TLV_TBLNAME_LIST; ctlv->head.length = sizeof(ipfw_obj_ctlv) + tlen; ctlv->count = ts.count; ctlv->objsize = sizeof(ipfw_obj_ntlv); memcpy(ctlv + 1, ts.idx, tlen); object_sort_ctlv(ctlv); tstate = ctlv; /* Rule next */ ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length); ctlv->head.type = IPFW_TLV_RULE_LIST; ctlv->head.length = sizeof(ipfw_obj_ctlv) + rlen; ctlv->count = 1; memcpy(ctlv + 1, rule, rbufsize); } else { /* Simply add header */ sz = rlen + default_off; memset(ctlv, 0, sizeof(*ctlv)); ctlv->head.type = IPFW_TLV_RULE_LIST; ctlv->head.length = sizeof(ipfw_obj_ctlv) + rlen; ctlv->count = 1; } if (do_get3(IP_FW_XADD, op3, &sz) != 0) err(EX_UNAVAILABLE, "getsockopt(%s)", "IP_FW_XADD"); if (!g_co.do_quiet) { struct format_opts sfo; struct buf_pr bp; memset(&sfo, 0, sizeof(sfo)); sfo.tstate = tstate; sfo.set_mask = (uint32_t)(-1); bp_alloc(&bp, 4096); show_static_rule(&g_co, &sfo, &bp, rule, NULL); printf("%s", bp.buf); bp_free(&bp); } if (tbuf != NULL) free(tbuf); if (ts.idx != NULL) free(ts.idx); } /* * clear the counters or the log counters. * optname has the following values: * 0 (zero both counters and logging) * 1 (zero logging only) */ void ipfw_zero(int ac, char *av[], int optname) { ipfw_range_tlv rt; char const *errstr; char const *name = optname ? "RESETLOG" : "ZERO"; uint32_t arg; int failed = EX_OK; optname = optname ? IP_FW_XRESETLOG : IP_FW_XZERO; av++; ac--; if (ac == 0) { /* clear all entries */ memset(&rt, 0, sizeof(rt)); rt.flags = IPFW_RCFLAG_ALL; if (do_range_cmd(optname, &rt) < 0) err(EX_UNAVAILABLE, "setsockopt(IP_FW_X%s)", name); if (!g_co.do_quiet) printf("%s.\n", optname == IP_FW_XZERO ? "Accounting cleared":"Logging counts reset"); return; } while (ac) { /* Rule number */ if (isdigit(**av)) { arg = strtonum(*av, 0, 0xffff, &errstr); if (errstr) errx(EX_DATAERR, "invalid rule number %s\n", *av); memset(&rt, 0, sizeof(rt)); rt.start_rule = arg; rt.end_rule = arg; rt.flags |= IPFW_RCFLAG_RANGE; if (g_co.use_set != 0) { rt.set = g_co.use_set - 1; rt.flags |= IPFW_RCFLAG_SET; } if (do_range_cmd(optname, &rt) != 0) { warn("rule %u: setsockopt(IP_FW_X%s)", arg, name); failed = EX_UNAVAILABLE; } else if (rt.new_set == 0) { printf("Entry %d not found\n", arg); failed = EX_UNAVAILABLE; } else if (!g_co.do_quiet) printf("Entry %d %s.\n", arg, optname == IP_FW_XZERO ? "cleared" : "logging count reset"); } else { errx(EX_USAGE, "invalid rule number ``%s''", *av); } av++; ac--; } if (failed != EX_OK) exit(failed); } void ipfw_flush(int force) { ipfw_range_tlv rt; if (!force && !g_co.do_quiet) { /* need to ask user */ int c; printf("Are you sure? [yn] "); fflush(stdout); do { c = toupper(getc(stdin)); while (c != '\n' && getc(stdin) != '\n') if (feof(stdin)) return; /* and do not flush */ } while (c != 'Y' && c != 'N'); printf("\n"); if (c == 'N') /* user said no */ return; } if (g_co.do_pipe) { dummynet_flush(); return; } /* `ipfw set N flush` - is the same that `ipfw delete set N` */ memset(&rt, 0, sizeof(rt)); if (g_co.use_set != 0) { rt.set = g_co.use_set - 1; rt.flags = IPFW_RCFLAG_SET; } else rt.flags = IPFW_RCFLAG_ALL; if (do_range_cmd(IP_FW_XDEL, &rt) != 0) err(EX_UNAVAILABLE, "setsockopt(IP_FW_XDEL)"); if (!g_co.do_quiet) printf("Flushed all %s.\n", g_co.do_pipe ? "pipes" : "rules"); } static struct _s_x intcmds[] = { { "talist", TOK_TALIST }, { "iflist", TOK_IFLIST }, { "olist", TOK_OLIST }, { "vlist", TOK_VLIST }, { NULL, 0 } }; static struct _s_x otypes[] = { { "EACTION", IPFW_TLV_EACTION }, { "DYNSTATE", IPFW_TLV_STATE_NAME }, { NULL, 0 } }; static const char* lookup_eaction_name(ipfw_obj_ntlv *ntlv, int cnt, uint16_t type) { const char *name; int i; name = NULL; for (i = 0; i < cnt; i++) { if (ntlv[i].head.type != IPFW_TLV_EACTION) continue; if (IPFW_TLV_EACTION_NAME(ntlv[i].idx) != type) continue; name = ntlv[i].name; break; } return (name); } static void ipfw_list_objects(int ac __unused, char *av[] __unused) { ipfw_obj_lheader req, *olh; ipfw_obj_ntlv *ntlv; const char *name; size_t sz; uint32_t i; memset(&req, 0, sizeof(req)); sz = sizeof(req); if (do_get3(IP_FW_DUMP_SRVOBJECTS, &req.opheader, &sz) != 0) if (errno != ENOMEM) return; sz = req.size; if ((olh = calloc(1, sz)) == NULL) return; olh->size = sz; if (do_get3(IP_FW_DUMP_SRVOBJECTS, &olh->opheader, &sz) != 0) { free(olh); return; } if (olh->count > 0) printf("Objects list:\n"); else printf("There are no objects\n"); ntlv = (ipfw_obj_ntlv *)(olh + 1); for (i = 0; i < olh->count; i++) { name = match_value(otypes, ntlv->head.type); if (name == NULL) name = lookup_eaction_name( (ipfw_obj_ntlv *)(olh + 1), olh->count, ntlv->head.type); if (name == NULL) printf(" kidx: %4d\ttype: %10d\tname: %s\n", ntlv->idx, ntlv->head.type, ntlv->name); else printf(" kidx: %4d\ttype: %10s\tname: %s\n", ntlv->idx, name, ntlv->name); ntlv++; } free(olh); } void ipfw_internal_handler(int ac, char *av[]) { int tcmd; ac--; av++; NEED1("internal cmd required"); if ((tcmd = match_token(intcmds, *av)) == -1) errx(EX_USAGE, "invalid internal sub-cmd: %s", *av); switch (tcmd) { case TOK_IFLIST: ipfw_list_tifaces(); break; case TOK_TALIST: ipfw_list_ta(ac, av); break; case TOK_OLIST: ipfw_list_objects(ac, av); break; case TOK_VLIST: ipfw_list_values(ac, av); break; } } static int ipfw_get_tracked_ifaces(ipfw_obj_lheader **polh) { ipfw_obj_lheader req, *olh; size_t sz; memset(&req, 0, sizeof(req)); sz = sizeof(req); if (do_get3(IP_FW_XIFLIST, &req.opheader, &sz) != 0) { if (errno != ENOMEM) return (errno); } sz = req.size; if ((olh = calloc(1, sz)) == NULL) return (ENOMEM); olh->size = sz; if (do_get3(IP_FW_XIFLIST, &olh->opheader, &sz) != 0) { free(olh); return (errno); } *polh = olh; return (0); } static int ifinfo_cmp(const void *a, const void *b) { const ipfw_iface_info *ia, *ib; ia = (const ipfw_iface_info *)a; ib = (const ipfw_iface_info *)b; return (stringnum_cmp(ia->ifname, ib->ifname)); } /* * Retrieves table list from kernel, * optionally sorts it and calls requested function for each table. * Returns 0 on success. */ static void ipfw_list_tifaces(void) { ipfw_obj_lheader *olh = NULL; ipfw_iface_info *info; uint32_t i; int error; if ((error = ipfw_get_tracked_ifaces(&olh)) != 0) err(EX_OSERR, "Unable to request ipfw tracked interface list"); qsort(olh + 1, olh->count, olh->objsize, ifinfo_cmp); info = (ipfw_iface_info *)(olh + 1); for (i = 0; i < olh->count; i++) { if (info->flags & IPFW_IFFLAG_RESOLVED) printf("%s ifindex: %d refcount: %u changes: %u\n", info->ifname, info->ifindex, info->refcnt, info->gencnt); else printf("%s ifindex: unresolved refcount: %u changes: %u\n", info->ifname, info->refcnt, info->gencnt); info = (ipfw_iface_info *)((caddr_t)info + olh->objsize); } free(olh); } diff --git a/sbin/ipfw/ipfw2.h b/sbin/ipfw/ipfw2.h index dd7699987434..a554f9b9f6fc 100644 --- a/sbin/ipfw/ipfw2.h +++ b/sbin/ipfw/ipfw2.h @@ -1,464 +1,467 @@ /*- * Copyright (c) 2002-2003 Luigi Rizzo * Copyright (c) 1996 Alex Nash, Paul Traina, Poul-Henning Kamp * Copyright (c) 1994 Ugen J.S.Antsilevich * * Idea and grammar partially left from: * Copyright (c) 1993 Daniel Boulet * * Redistribution and use in source forms, with and without modification, * are permitted provided that this entire comment appears intact. * * Redistribution in binary form may occur without any restrictions. * Obviously, it would be nice if you gave credit where credit is due * but requiring it would be too onerous. * * This software is provided ``AS IS'' without any warranties of any kind. * * NEW command line interface for IP firewall facility * * $FreeBSD$ */ enum cmdline_prog { cmdline_prog_ipfw, cmdline_prog_dnctl }; /* * Options that can be set on the command line. * When reading commands from a file, a subset of the options can also * be applied globally by specifying them before the file name. * After that, each line can contain its own option that changes * the global value. * XXX The context is not restored after each line. */ struct cmdline_opts { /* boolean options: */ int do_value_as_ip; /* show table value as IP */ int do_resolv; /* try to resolve all ip to names */ int do_time; /* Show time stamps */ int do_quiet; /* Be quiet in add and flush */ int do_pipe; /* this cmd refers to a pipe/queue/sched */ int do_nat; /* this cmd refers to a nat config */ int do_compact; /* show rules in compact mode */ int do_force; /* do not ask for confirmation */ int show_sets; /* display the set each rule belongs to */ int test_only; /* only check syntax */ int comment_only; /* only print action and comment */ int verbose; /* be verbose on some commands */ /* The options below can have multiple values. */ int do_dynamic; /* 1 - display dynamic rules */ /* 2 - display/delete only dynamic rules */ int do_sort; /* field to sort results (0 = no) */ /* valid fields are 1 and above */ uint32_t use_set; /* work with specified set number */ /* 0 means all sets, otherwise apply to set use_set - 1 */ enum cmdline_prog prog; /* Are we ipfw or dnctl? */ }; int is_ipfw(void); enum { TIMESTAMP_NONE = 0, TIMESTAMP_STRING, TIMESTAMP_NUMERIC, }; extern struct cmdline_opts g_co; /* * _s_x is a structure that stores a string <-> token pairs, used in * various places in the parser. Entries are stored in arrays, * with an entry with s=NULL as terminator. * The search routines are match_token() and match_value(). * Often, an element with x=0 contains an error string. * */ struct _s_x { char const *s; int x; }; extern struct _s_x f_ipdscp[]; enum tokens { TOK_NULL=0, TOK_OR, TOK_NOT, TOK_STARTBRACE, TOK_ENDBRACE, TOK_ABORT6, TOK_ABORT, TOK_ACCEPT, TOK_COUNT, TOK_EACTION, TOK_PIPE, TOK_LINK, TOK_QUEUE, TOK_FLOWSET, TOK_SCHED, TOK_DIVERT, TOK_TEE, TOK_NETGRAPH, TOK_NGTEE, TOK_FORWARD, TOK_SKIPTO, TOK_DENY, TOK_REJECT, TOK_RESET, TOK_UNREACH, TOK_CHECKSTATE, TOK_NAT, TOK_REASS, TOK_CALL, TOK_RETURN, TOK_ALTQ, TOK_LOG, TOK_TAG, TOK_UNTAG, TOK_TAGGED, TOK_UID, TOK_GID, TOK_JAIL, TOK_IN, TOK_LIMIT, TOK_SETLIMIT, TOK_KEEPSTATE, TOK_RECORDSTATE, TOK_LAYER2, TOK_OUT, TOK_DIVERTED, TOK_DIVERTEDLOOPBACK, TOK_DIVERTEDOUTPUT, TOK_XMIT, TOK_RECV, TOK_VIA, TOK_FRAG, TOK_IPOPTS, TOK_IPLEN, TOK_IPID, TOK_IPPRECEDENCE, TOK_DSCP, TOK_IPTOS, TOK_IPTTL, TOK_IPVER, TOK_ESTAB, TOK_SETUP, TOK_TCPDATALEN, TOK_TCPFLAGS, TOK_TCPOPTS, TOK_TCPSEQ, TOK_TCPACK, TOK_TCPMSS, TOK_TCPWIN, TOK_ICMPTYPES, TOK_MAC, TOK_MACTYPE, TOK_VERREVPATH, TOK_VERSRCREACH, TOK_ANTISPOOF, TOK_IPSEC, TOK_COMMENT, TOK_PLR, TOK_NOERROR, TOK_BUCKETS, TOK_DSTIP, TOK_SRCIP, TOK_DSTPORT, TOK_SRCPORT, TOK_DSTMAC, TOK_SRCMAC, TOK_ALL, TOK_MASK, TOK_FLOW_MASK, TOK_SCHED_MASK, TOK_BW, TOK_DELAY, TOK_PROFILE, TOK_BURST, TOK_RED, TOK_GRED, TOK_ECN, TOK_DROPTAIL, TOK_PROTO, #ifdef NEW_AQM /* AQM tokens*/ TOK_NO_ECN, TOK_CODEL, TOK_FQ_CODEL, TOK_TARGET, TOK_INTERVAL, TOK_FLOWS, TOK_QUANTUM, TOK_PIE, TOK_FQ_PIE, TOK_TUPDATE, TOK_MAX_BURST, TOK_MAX_ECNTH, TOK_ALPHA, TOK_BETA, TOK_CAPDROP, TOK_NO_CAPDROP, TOK_ONOFF, TOK_DRE, TOK_TS, TOK_DERAND, TOK_NO_DERAND, #endif /* dummynet tokens */ TOK_WEIGHT, TOK_LMAX, TOK_PRI, TOK_TYPE, TOK_SLOTSIZE, TOK_IP, TOK_IF, TOK_ALOG, TOK_DENY_INC, TOK_SAME_PORTS, TOK_UNREG_ONLY, TOK_UNREG_CGN, TOK_SKIP_GLOBAL, TOK_RESET_ADDR, TOK_ALIAS_REV, TOK_PROXY_ONLY, TOK_REDIR_ADDR, TOK_REDIR_PORT, TOK_REDIR_PROTO, TOK_IPV6, TOK_FLOWID, TOK_ICMP6TYPES, TOK_EXT6HDR, TOK_DSTIP6, TOK_SRCIP6, TOK_IPV4, TOK_UNREACH6, TOK_RESET6, TOK_FIB, TOK_SETFIB, TOK_LOOKUP, TOK_SOCKARG, TOK_SETDSCP, TOK_FLOW, TOK_IFLIST, /* Table tokens */ TOK_CREATE, TOK_DESTROY, TOK_LIST, TOK_INFO, TOK_DETAIL, TOK_MODIFY, TOK_FLUSH, TOK_SWAP, TOK_ADD, TOK_DEL, TOK_VALTYPE, TOK_ALGO, TOK_TALIST, TOK_ATOMIC, TOK_LOCK, TOK_UNLOCK, TOK_VLIST, TOK_OLIST, TOK_MISSING, TOK_ORFLUSH, /* NAT64 tokens */ TOK_NAT64STL, TOK_NAT64LSN, TOK_STATS, TOK_STATES, TOK_CONFIG, TOK_TABLE4, TOK_TABLE6, TOK_PREFIX4, TOK_PREFIX6, TOK_AGG_LEN, TOK_AGG_COUNT, TOK_MAX_PORTS, TOK_STATES_CHUNKS, TOK_JMAXLEN, TOK_PORT_RANGE, TOK_PORT_ALIAS, TOK_HOST_DEL_AGE, TOK_PG_DEL_AGE, TOK_TCP_SYN_AGE, TOK_TCP_CLOSE_AGE, TOK_TCP_EST_AGE, TOK_UDP_AGE, TOK_ICMP_AGE, TOK_LOGOFF, TOK_PRIVATE, TOK_PRIVATEOFF, /* NAT64 CLAT tokens */ TOK_NAT64CLAT, TOK_PLAT_PREFIX, TOK_CLAT_PREFIX, /* NPTv6 tokens */ TOK_NPTV6, TOK_INTPREFIX, TOK_EXTPREFIX, TOK_PREFIXLEN, TOK_EXTIF, TOK_TCPSETMSS, + TOK_MARK, + TOK_SETMARK, + TOK_SKIPACTION, }; /* * the following macro returns an error message if we run out of * arguments. */ #define NEED(_p, msg) {if (!_p) errx(EX_USAGE, msg);} #define NEED1(msg) {if (!(*av)) errx(EX_USAGE, msg);} struct buf_pr { char *buf; /* allocated buffer */ char *ptr; /* current pointer */ size_t size; /* total buffer size */ size_t avail; /* available storage */ size_t needed; /* length needed */ }; int pr_u64(struct buf_pr *bp, void *pd, int width); int bp_alloc(struct buf_pr *b, size_t size); void bp_free(struct buf_pr *b); int bprintf(struct buf_pr *b, const char *format, ...); /* memory allocation support */ void *safe_calloc(size_t number, size_t size); void *safe_realloc(void *ptr, size_t size); /* string comparison functions used for historical compatibility */ int _substrcmp(const char *str1, const char* str2); int _substrcmp2(const char *str1, const char* str2, const char* str3); int stringnum_cmp(const char *a, const char *b); /* utility functions */ int match_token(struct _s_x *table, const char *string); int match_token_relaxed(struct _s_x *table, const char *string); int get_token(struct _s_x *table, const char *string, const char *errbase); char const *match_value(struct _s_x *p, int value); size_t concat_tokens(char *buf, size_t bufsize, struct _s_x *table, const char *delimiter); int fill_flags(struct _s_x *flags, char *p, char **e, uint32_t *set, uint32_t *clear); void print_flags_buffer(char *buf, size_t sz, struct _s_x *list, uint32_t set); struct _ip_fw3_opheader; int do_cmd(int optname, void *optval, uintptr_t optlen); int do_set3(int optname, struct _ip_fw3_opheader *op3, size_t optlen); int do_get3(int optname, struct _ip_fw3_opheader *op3, size_t *optlen); struct in6_addr; void n2mask(struct in6_addr *mask, int n); int contigmask(const uint8_t *p, int len); /* * Forward declarations to avoid include way too many headers. * C does not allow duplicated typedefs, so we use the base struct * that the typedef points to. * Should the typedefs use a different type, the compiler will * still detect the change when compiling the body of the * functions involved, so we do not lose error checking. */ struct _ipfw_insn; struct _ipfw_insn_altq; struct _ipfw_insn_u32; struct _ipfw_insn_ip6; struct _ipfw_insn_icmp6; /* * The reserved set numer. This is a constant in ip_fw.h * but we store it in a variable so other files do not depend * in that header just for one constant. */ extern int resvd_set_number; /* first-level command handlers */ void ipfw_add(char *av[]); void ipfw_show_nat(int ac, char **av); int ipfw_delete_nat(int i); void ipfw_config_pipe(int ac, char **av); void ipfw_config_nat(int ac, char **av); void ipfw_sets_handler(char *av[]); void ipfw_table_handler(int ac, char *av[]); void ipfw_sysctl_handler(char *av[], int which); void ipfw_delete(char *av[]); void ipfw_flush(int force); void ipfw_zero(int ac, char *av[], int optname); void ipfw_list(int ac, char *av[], int show_counters); void ipfw_internal_handler(int ac, char *av[]); void ipfw_nat64clat_handler(int ac, char *av[]); void ipfw_nat64lsn_handler(int ac, char *av[]); void ipfw_nat64stl_handler(int ac, char *av[]); void ipfw_nptv6_handler(int ac, char *av[]); int ipfw_check_object_name(const char *name); int ipfw_check_nat64prefix(const struct in6_addr *prefix, int length); #ifdef PF /* altq.c */ void altq_set_enabled(int enabled); u_int32_t altq_name_to_qid(const char *name); void print_altq_cmd(struct buf_pr *bp, const struct _ipfw_insn_altq *altqptr); #else #define NO_ALTQ #endif /* dummynet.c */ void dummynet_list(int ac, char *av[], int show_counters); void dummynet_flush(void); int ipfw_delete_pipe(int pipe_or_queue, int n); /* ipv6.c */ void print_unreach6_code(struct buf_pr *bp, uint16_t code); void print_ip6(struct buf_pr *bp, const struct _ipfw_insn_ip6 *cmd); void print_flow6id(struct buf_pr *bp, const struct _ipfw_insn_u32 *cmd); void print_icmp6types(struct buf_pr *bp, const struct _ipfw_insn_u32 *cmd); void print_ext6hdr(struct buf_pr *bp, const struct _ipfw_insn *cmd); struct tidx; struct _ipfw_insn *add_srcip6(struct _ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate); struct _ipfw_insn *add_dstip6(struct _ipfw_insn *cmd, char *av, int cblen, struct tidx *tstate); void fill_flow6(struct _ipfw_insn_u32 *cmd, char *av, int cblen); void fill_unreach6_code(u_short *codep, char *str); void fill_icmp6types(struct _ipfw_insn_icmp6 *cmd, char *av, int cblen); int fill_ext6hdr(struct _ipfw_insn *cmd, char *av); /* ipfw2.c */ void bp_flush(struct buf_pr *b); void fill_table(struct _ipfw_insn *cmd, char *av, uint8_t opcode, struct tidx *tstate); /* tables.c */ struct _ipfw_obj_ctlv; struct _ipfw_obj_ntlv; int table_check_name(const char *tablename); void ipfw_list_ta(int ac, char *av[]); void ipfw_list_values(int ac, char *av[]); void table_fill_ntlv(struct _ipfw_obj_ntlv *ntlv, const char *name, uint8_t set, uint16_t uidx); diff --git a/sbin/ipfw/tables.c b/sbin/ipfw/tables.c index 9e6390492e96..37cbd7a2d7ae 100644 --- a/sbin/ipfw/tables.c +++ b/sbin/ipfw/tables.c @@ -1,2113 +1,2102 @@ /* * Copyright (c) 2014 Yandex LLC * Copyright (c) 2014 Alexander V. Chernikov * * Redistribution and use in source forms, with and without modification, * are permitted provided that this entire comment appears intact. * * Redistribution in binary form may occur without any restrictions. * Obviously, it would be nice if you gave credit where credit is due * but requiring it would be too onerous. * * This software is provided ``AS IS'' without any warranties of any kind. * * in-kernel ipfw tables support. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipfw2.h" static void table_modify_record(ipfw_obj_header *oh, int ac, char *av[], int add, int quiet, int update, int atomic); static int table_flush(ipfw_obj_header *oh); static int table_destroy(ipfw_obj_header *oh); static int table_do_create(ipfw_obj_header *oh, ipfw_xtable_info *i); static int table_do_modify(ipfw_obj_header *oh, ipfw_xtable_info *i); static int table_do_swap(ipfw_obj_header *oh, char *second); static void table_create(ipfw_obj_header *oh, int ac, char *av[]); static void table_modify(ipfw_obj_header *oh, int ac, char *av[]); static void table_lookup(ipfw_obj_header *oh, int ac, char *av[]); static void table_lock(ipfw_obj_header *oh, int lock); static int table_swap(ipfw_obj_header *oh, char *second); static int table_get_info(ipfw_obj_header *oh, ipfw_xtable_info *i); static int table_show_info(ipfw_xtable_info *i, void *arg); static int table_destroy_one(ipfw_xtable_info *i, void *arg); static int table_flush_one(ipfw_xtable_info *i, void *arg); static int table_show_one(ipfw_xtable_info *i, void *arg); static int table_do_get_list(ipfw_xtable_info *i, ipfw_obj_header **poh); static void table_show_list(ipfw_obj_header *oh, int need_header); static void table_show_entry(ipfw_xtable_info *i, ipfw_obj_tentry *tent); static void tentry_fill_key(ipfw_obj_header *oh, ipfw_obj_tentry *tent, char *key, int add, uint8_t *ptype, uint32_t *pvmask, ipfw_xtable_info *xi); static void tentry_fill_value(ipfw_obj_header *oh, ipfw_obj_tentry *tent, char *arg, uint8_t type, uint32_t vmask); static void table_show_value(char *buf, size_t bufsize, ipfw_table_value *v, uint32_t vmask, int print_ip); typedef int (table_cb_t)(ipfw_xtable_info *i, void *arg); static int tables_foreach(table_cb_t *f, void *arg, int sort); #ifndef s6_addr32 #define s6_addr32 __u6_addr.__u6_addr32 #endif static struct _s_x tabletypes[] = { { "addr", IPFW_TABLE_ADDR }, { "mac", IPFW_TABLE_MAC }, { "iface", IPFW_TABLE_INTERFACE }, { "number", IPFW_TABLE_NUMBER }, { "flow", IPFW_TABLE_FLOW }, { NULL, 0 } }; /* Default algorithms for various table types */ static struct _s_x tablealgos[] = { { "addr:radix", IPFW_TABLE_ADDR }, { "flow:hash", IPFW_TABLE_FLOW }, { "iface:array", IPFW_TABLE_INTERFACE }, { "number:array", IPFW_TABLE_NUMBER }, { NULL, 0 } }; static struct _s_x tablevaltypes[] = { { "skipto", IPFW_VTYPE_SKIPTO }, { "pipe", IPFW_VTYPE_PIPE }, { "fib", IPFW_VTYPE_FIB }, { "nat", IPFW_VTYPE_NAT }, { "dscp", IPFW_VTYPE_DSCP }, { "tag", IPFW_VTYPE_TAG }, { "divert", IPFW_VTYPE_DIVERT }, { "netgraph", IPFW_VTYPE_NETGRAPH }, { "limit", IPFW_VTYPE_LIMIT }, { "ipv4", IPFW_VTYPE_NH4 }, { "ipv6", IPFW_VTYPE_NH6 }, + { "mark", IPFW_VTYPE_MARK }, { NULL, 0 } }; static struct _s_x tablecmds[] = { { "add", TOK_ADD }, { "delete", TOK_DEL }, { "create", TOK_CREATE }, { "destroy", TOK_DESTROY }, { "flush", TOK_FLUSH }, { "modify", TOK_MODIFY }, { "swap", TOK_SWAP }, { "info", TOK_INFO }, { "detail", TOK_DETAIL }, { "list", TOK_LIST }, { "lookup", TOK_LOOKUP }, { "atomic", TOK_ATOMIC }, { "lock", TOK_LOCK }, { "unlock", TOK_UNLOCK }, { NULL, 0 } }; static int lookup_host (char *host, struct in_addr *ipaddr) { struct hostent *he; if (!inet_aton(host, ipaddr)) { if ((he = gethostbyname(host)) == NULL) return(-1); *ipaddr = *(struct in_addr *)he->h_addr_list[0]; } return(0); } /* * This one handles all table-related commands * ipfw table NAME create ... * ipfw table NAME modify ... * ipfw table {NAME | all} destroy * ipfw table NAME swap NAME * ipfw table NAME lock * ipfw table NAME unlock * ipfw table NAME add addr[/masklen] [value] * ipfw table NAME add [addr[/masklen] value] [addr[/masklen] value] .. * ipfw table NAME delete addr[/masklen] [addr[/masklen]] .. * ipfw table NAME lookup addr * ipfw table {NAME | all} flush * ipfw table {NAME | all} list * ipfw table {NAME | all} info * ipfw table {NAME | all} detail */ void ipfw_table_handler(int ac, char *av[]) { int do_add, is_all; int atomic, error, tcmd; ipfw_xtable_info i; ipfw_obj_header oh; char *tablename; uint8_t set; void *arg; memset(&oh, 0, sizeof(oh)); is_all = 0; if (g_co.use_set != 0) set = g_co.use_set - 1; else set = 0; ac--; av++; NEED1("table needs name"); tablename = *av; if (table_check_name(tablename) == 0) { table_fill_ntlv(&oh.ntlv, *av, set, 1); oh.idx = 1; } else { if (strcmp(tablename, "all") == 0) is_all = 1; else errx(EX_USAGE, "table name %s is invalid", tablename); } ac--; av++; NEED1("table needs command"); tcmd = get_token(tablecmds, *av, "table command"); /* Check if atomic operation was requested */ atomic = 0; if (tcmd == TOK_ATOMIC) { ac--; av++; NEED1("atomic needs command"); tcmd = get_token(tablecmds, *av, "table command"); switch (tcmd) { case TOK_ADD: break; default: errx(EX_USAGE, "atomic is not compatible with %s", *av); } atomic = 1; } switch (tcmd) { case TOK_LIST: case TOK_INFO: case TOK_DETAIL: case TOK_FLUSH: case TOK_DESTROY: break; default: if (is_all != 0) errx(EX_USAGE, "table name required"); } switch (tcmd) { case TOK_ADD: case TOK_DEL: do_add = **av == 'a'; ac--; av++; table_modify_record(&oh, ac, av, do_add, g_co.do_quiet, g_co.do_quiet, atomic); break; case TOK_CREATE: ac--; av++; table_create(&oh, ac, av); break; case TOK_MODIFY: ac--; av++; table_modify(&oh, ac, av); break; case TOK_DESTROY: if (is_all == 0) { if (table_destroy(&oh) == 0) break; if (errno != ESRCH) err(EX_OSERR, "failed to destroy table %s", tablename); /* ESRCH isn't fatal, warn if not quiet mode */ if (g_co.do_quiet == 0) warn("failed to destroy table %s", tablename); } else { error = tables_foreach(table_destroy_one, &oh, 1); if (error != 0) err(EX_OSERR, "failed to destroy tables list"); } break; case TOK_FLUSH: if (is_all == 0) { if ((error = table_flush(&oh)) == 0) break; if (errno != ESRCH) err(EX_OSERR, "failed to flush table %s info", tablename); /* ESRCH isn't fatal, warn if not quiet mode */ if (g_co.do_quiet == 0) warn("failed to flush table %s info", tablename); } else { error = tables_foreach(table_flush_one, &oh, 1); if (error != 0) err(EX_OSERR, "failed to flush tables list"); /* XXX: we ignore errors here */ } break; case TOK_SWAP: ac--; av++; NEED1("second table name required"); table_swap(&oh, *av); break; case TOK_LOCK: case TOK_UNLOCK: table_lock(&oh, (tcmd == TOK_LOCK)); break; case TOK_DETAIL: case TOK_INFO: arg = (tcmd == TOK_DETAIL) ? (void *)1 : NULL; if (is_all == 0) { if ((error = table_get_info(&oh, &i)) != 0) err(EX_OSERR, "failed to request table info"); table_show_info(&i, arg); } else { error = tables_foreach(table_show_info, arg, 1); if (error != 0) err(EX_OSERR, "failed to request tables list"); } break; case TOK_LIST: arg = is_all ? (void*)1 : NULL; if (is_all == 0) { if ((error = table_get_info(&oh, &i)) != 0) err(EX_OSERR, "failed to request table info"); table_show_one(&i, arg); } else { error = tables_foreach(table_show_one, arg, 1); if (error != 0) err(EX_OSERR, "failed to request tables list"); } break; case TOK_LOOKUP: ac--; av++; table_lookup(&oh, ac, av); break; } } void table_fill_ntlv(ipfw_obj_ntlv *ntlv, const char *name, uint8_t set, uint16_t uidx) { ntlv->head.type = IPFW_TLV_TBL_NAME; ntlv->head.length = sizeof(ipfw_obj_ntlv); ntlv->idx = uidx; ntlv->set = set; strlcpy(ntlv->name, name, sizeof(ntlv->name)); } static void table_fill_objheader(ipfw_obj_header *oh, ipfw_xtable_info *i) { oh->idx = 1; table_fill_ntlv(&oh->ntlv, i->tablename, i->set, 1); } static struct _s_x tablenewcmds[] = { { "type", TOK_TYPE }, { "valtype", TOK_VALTYPE }, { "algo", TOK_ALGO }, { "limit", TOK_LIMIT }, { "locked", TOK_LOCK }, { "missing", TOK_MISSING }, { "or-flush", TOK_ORFLUSH }, { NULL, 0 } }; static struct _s_x flowtypecmds[] = { { "src-ip", IPFW_TFFLAG_SRCIP }, { "proto", IPFW_TFFLAG_PROTO }, { "src-port", IPFW_TFFLAG_SRCPORT }, { "dst-ip", IPFW_TFFLAG_DSTIP }, { "dst-port", IPFW_TFFLAG_DSTPORT }, { NULL, 0 } }; static int table_parse_type(uint8_t ttype, char *p, uint8_t *tflags) { uint32_t fset, fclear; char *e; /* Parse type options */ switch(ttype) { case IPFW_TABLE_FLOW: fset = fclear = 0; if (fill_flags(flowtypecmds, p, &e, &fset, &fclear) != 0) errx(EX_USAGE, "unable to parse flow option %s", e); *tflags = fset; break; default: return (EX_USAGE); } return (0); } static void table_print_type(char *tbuf, size_t size, uint8_t type, uint8_t tflags) { const char *tname; int l; if ((tname = match_value(tabletypes, type)) == NULL) tname = "unknown"; l = snprintf(tbuf, size, "%s", tname); tbuf += l; size -= l; switch(type) { case IPFW_TABLE_FLOW: if (tflags != 0) { *tbuf++ = ':'; l--; print_flags_buffer(tbuf, size, flowtypecmds, tflags); } break; } } /* * Creates new table * * ipfw table NAME create [ type { addr | iface | number | flow } ] * [ algo algoname ] [missing] [or-flush] */ static void table_create(ipfw_obj_header *oh, int ac, char *av[]) { ipfw_xtable_info xi, xie; int error, missing, orflush, tcmd, val; uint32_t fset, fclear; char *e, *p; char tbuf[128]; missing = orflush = 0; memset(&xi, 0, sizeof(xi)); while (ac > 0) { tcmd = get_token(tablenewcmds, *av, "option"); ac--; av++; switch (tcmd) { case TOK_LIMIT: NEED1("limit value required"); xi.limit = strtol(*av, NULL, 10); ac--; av++; break; case TOK_TYPE: NEED1("table type required"); /* Type may have suboptions after ':' */ if ((p = strchr(*av, ':')) != NULL) *p++ = '\0'; val = match_token(tabletypes, *av); if (val == -1) { concat_tokens(tbuf, sizeof(tbuf), tabletypes, ", "); errx(EX_USAGE, "Unknown tabletype: %s. Supported: %s", *av, tbuf); } xi.type = val; if (p != NULL) { error = table_parse_type(val, p, &xi.tflags); if (error != 0) errx(EX_USAGE, "Unsupported suboptions: %s", p); } ac--; av++; break; case TOK_VALTYPE: NEED1("table value type required"); fset = fclear = 0; val = fill_flags(tablevaltypes, *av, &e, &fset, &fclear); if (val != -1) { xi.vmask = fset; ac--; av++; break; } concat_tokens(tbuf, sizeof(tbuf), tablevaltypes, ", "); errx(EX_USAGE, "Unknown value type: %s. Supported: %s", e, tbuf); break; case TOK_ALGO: NEED1("table algorithm name required"); if (strlen(*av) > sizeof(xi.algoname)) errx(EX_USAGE, "algorithm name too long"); strlcpy(xi.algoname, *av, sizeof(xi.algoname)); ac--; av++; break; case TOK_LOCK: xi.flags |= IPFW_TGFLAGS_LOCKED; break; case TOK_ORFLUSH: orflush = 1; /* FALLTHROUGH */ case TOK_MISSING: missing = 1; break; } } /* Set some defaults to preserve compatibility. */ if (xi.algoname[0] == '\0') { const char *algo; if (xi.type == 0) xi.type = IPFW_TABLE_ADDR; algo = match_value(tablealgos, xi.type); if (algo != NULL) strlcpy(xi.algoname, algo, sizeof(xi.algoname)); } if (xi.vmask == 0) xi.vmask = IPFW_VTYPE_LEGACY; error = table_do_create(oh, &xi); if (error == 0) return; if (errno != EEXIST || missing == 0) err(EX_OSERR, "Table creation failed"); /* Check that existing table is the same we are trying to create */ if (table_get_info(oh, &xie) != 0) err(EX_OSERR, "Existing table check failed"); if (xi.limit != xie.limit || xi.type != xie.type || xi.tflags != xie.tflags || xi.vmask != xie.vmask || ( xi.algoname[0] != '\0' && strcmp(xi.algoname, xie.algoname) != 0) || xi.flags != xie.flags) errx(EX_DATAERR, "The existing table is not compatible " "with one you are creating."); /* Flush existing table if instructed to do so */ if (orflush != 0 && table_flush(oh) != 0) err(EX_OSERR, "Table flush on creation failed"); } /* * Creates new table * * Request: [ ipfw_obj_header ipfw_xtable_info ] * * Returns 0 on success. */ static int table_do_create(ipfw_obj_header *oh, ipfw_xtable_info *i) { char tbuf[sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info)]; int error; memcpy(tbuf, oh, sizeof(*oh)); memcpy(tbuf + sizeof(*oh), i, sizeof(*i)); oh = (ipfw_obj_header *)tbuf; error = do_set3(IP_FW_TABLE_XCREATE, &oh->opheader, sizeof(tbuf)); return (error); } /* * Modifies existing table * * ipfw table NAME modify [ limit number ] */ static void table_modify(ipfw_obj_header *oh, int ac, char *av[]) { ipfw_xtable_info xi; int tcmd; memset(&xi, 0, sizeof(xi)); while (ac > 0) { tcmd = get_token(tablenewcmds, *av, "option"); ac--; av++; switch (tcmd) { case TOK_LIMIT: NEED1("limit value required"); xi.limit = strtol(*av, NULL, 10); xi.mflags |= IPFW_TMFLAGS_LIMIT; ac--; av++; break; default: errx(EX_USAGE, "cmd is not supported for modification"); } } if (table_do_modify(oh, &xi) != 0) err(EX_OSERR, "Table modification failed"); } /* * Modifies existing table. * * Request: [ ipfw_obj_header ipfw_xtable_info ] * * Returns 0 on success. */ static int table_do_modify(ipfw_obj_header *oh, ipfw_xtable_info *i) { char tbuf[sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info)]; int error; memcpy(tbuf, oh, sizeof(*oh)); memcpy(tbuf + sizeof(*oh), i, sizeof(*i)); oh = (ipfw_obj_header *)tbuf; error = do_set3(IP_FW_TABLE_XMODIFY, &oh->opheader, sizeof(tbuf)); return (error); } /* * Locks or unlocks given table */ static void table_lock(ipfw_obj_header *oh, int lock) { ipfw_xtable_info xi; memset(&xi, 0, sizeof(xi)); xi.mflags |= IPFW_TMFLAGS_LOCK; xi.flags |= (lock != 0) ? IPFW_TGFLAGS_LOCKED : 0; if (table_do_modify(oh, &xi) != 0) err(EX_OSERR, "Table %s failed", lock != 0 ? "lock" : "unlock"); } /* * Destroys given table specified by @oh->ntlv. * Returns 0 on success. */ static int table_destroy(ipfw_obj_header *oh) { if (do_set3(IP_FW_TABLE_XDESTROY, &oh->opheader, sizeof(*oh)) != 0) return (-1); return (0); } static int table_destroy_one(ipfw_xtable_info *i, void *arg) { ipfw_obj_header *oh; oh = (ipfw_obj_header *)arg; table_fill_ntlv(&oh->ntlv, i->tablename, i->set, 1); if (table_destroy(oh) != 0) { if (g_co.do_quiet == 0) warn("failed to destroy table(%s) in set %u", i->tablename, i->set); return (-1); } return (0); } /* * Flushes given table specified by @oh->ntlv. * Returns 0 on success. */ static int table_flush(ipfw_obj_header *oh) { if (do_set3(IP_FW_TABLE_XFLUSH, &oh->opheader, sizeof(*oh)) != 0) return (-1); return (0); } static int table_do_swap(ipfw_obj_header *oh, char *second) { char tbuf[sizeof(ipfw_obj_header) + sizeof(ipfw_obj_ntlv)]; int error; memset(tbuf, 0, sizeof(tbuf)); memcpy(tbuf, oh, sizeof(*oh)); oh = (ipfw_obj_header *)tbuf; table_fill_ntlv((ipfw_obj_ntlv *)(oh + 1), second, oh->ntlv.set, 1); error = do_set3(IP_FW_TABLE_XSWAP, &oh->opheader, sizeof(tbuf)); return (error); } /* * Swaps given table with @second one. */ static int table_swap(ipfw_obj_header *oh, char *second) { if (table_check_name(second) != 0) errx(EX_USAGE, "table name %s is invalid", second); if (table_do_swap(oh, second) == 0) return (0); switch (errno) { case EINVAL: errx(EX_USAGE, "Unable to swap table: check types"); case EFBIG: errx(EX_USAGE, "Unable to swap table: check limits"); } return (0); } /* * Retrieves table in given table specified by @oh->ntlv. * it inside @i. * Returns 0 on success. */ static int table_get_info(ipfw_obj_header *oh, ipfw_xtable_info *i) { char tbuf[sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info)]; size_t sz; sz = sizeof(tbuf); memset(tbuf, 0, sizeof(tbuf)); memcpy(tbuf, oh, sizeof(*oh)); oh = (ipfw_obj_header *)tbuf; if (do_get3(IP_FW_TABLE_XINFO, &oh->opheader, &sz) != 0) return (errno); if (sz < sizeof(tbuf)) return (EINVAL); *i = *(ipfw_xtable_info *)(oh + 1); return (0); } static struct _s_x tablealgoclass[] = { { "hash", IPFW_TACLASS_HASH }, { "array", IPFW_TACLASS_ARRAY }, { "radix", IPFW_TACLASS_RADIX }, { NULL, 0 } }; struct ta_cldata { uint8_t taclass; uint8_t spare4; uint16_t itemsize; uint16_t itemsize6; uint32_t size; uint32_t count; }; /* * Print global/per-AF table @i algorithm info. */ static void table_show_tainfo(ipfw_xtable_info *i __unused, struct ta_cldata *d, const char *af, const char *taclass) { switch (d->taclass) { case IPFW_TACLASS_HASH: case IPFW_TACLASS_ARRAY: printf(" %salgorithm %s info\n", af, taclass); if (d->itemsize == d->itemsize6) printf(" size: %u items: %u itemsize: %u\n", d->size, d->count, d->itemsize); else printf(" size: %u items: %u " "itemsize4: %u itemsize6: %u\n", d->size, d->count, d->itemsize, d->itemsize6); break; case IPFW_TACLASS_RADIX: printf(" %salgorithm %s info\n", af, taclass); if (d->itemsize == d->itemsize6) printf(" items: %u itemsize: %u\n", d->count, d->itemsize); else printf(" items: %u " "itemsize4: %u itemsize6: %u\n", d->count, d->itemsize, d->itemsize6); break; default: printf(" algo class: %s\n", taclass); } } static void table_print_valheader(char *buf, size_t bufsize, uint32_t vmask) { if (vmask == IPFW_VTYPE_LEGACY) { snprintf(buf, bufsize, "legacy"); return; } memset(buf, 0, bufsize); print_flags_buffer(buf, bufsize, tablevaltypes, vmask); } /* * Prints table info struct @i in human-readable form. */ static int table_show_info(ipfw_xtable_info *i, void *arg) { const char *vtype; ipfw_ta_tinfo *tainfo; int afdata, afitem; struct ta_cldata d; char ttype[64], tvtype[64]; table_print_type(ttype, sizeof(ttype), i->type, i->tflags); table_print_valheader(tvtype, sizeof(tvtype), i->vmask); printf("--- table(%s), set(%u) ---\n", i->tablename, i->set); if ((i->flags & IPFW_TGFLAGS_LOCKED) != 0) printf(" kindex: %d, type: %s, locked\n", i->kidx, ttype); else printf(" kindex: %d, type: %s\n", i->kidx, ttype); printf(" references: %u, valtype: %s\n", i->refcnt, tvtype); printf(" algorithm: %s\n", i->algoname); printf(" items: %u, size: %u\n", i->count, i->size); if (i->limit > 0) printf(" limit: %u\n", i->limit); /* Print algo-specific info if requested & set */ if (arg == NULL) return (0); if ((i->ta_info.flags & IPFW_TATFLAGS_DATA) == 0) return (0); tainfo = &i->ta_info; afdata = 0; afitem = 0; if (tainfo->flags & IPFW_TATFLAGS_AFDATA) afdata = 1; if (tainfo->flags & IPFW_TATFLAGS_AFITEM) afitem = 1; memset(&d, 0, sizeof(d)); d.taclass = tainfo->taclass4; d.size = tainfo->size4; d.count = tainfo->count4; d.itemsize = tainfo->itemsize4; if (afdata == 0 && afitem != 0) d.itemsize6 = tainfo->itemsize6; else d.itemsize6 = d.itemsize; if ((vtype = match_value(tablealgoclass, d.taclass)) == NULL) vtype = "unknown"; if (afdata == 0) { table_show_tainfo(i, &d, "", vtype); } else { table_show_tainfo(i, &d, "IPv4 ", vtype); memset(&d, 0, sizeof(d)); d.taclass = tainfo->taclass6; if ((vtype = match_value(tablealgoclass, d.taclass)) == NULL) vtype = "unknown"; d.size = tainfo->size6; d.count = tainfo->count6; d.itemsize = tainfo->itemsize6; d.itemsize6 = d.itemsize; table_show_tainfo(i, &d, "IPv6 ", vtype); } return (0); } /* * Function wrappers which can be used either * as is or as foreach function parameter. */ static int table_show_one(ipfw_xtable_info *i, void *arg) { ipfw_obj_header *oh = NULL; int error; int is_all; is_all = arg == NULL ? 0 : 1; if ((error = table_do_get_list(i, &oh)) != 0) { err(EX_OSERR, "Error requesting table %s list", i->tablename); return (error); } table_show_list(oh, is_all); free(oh); return (0); } static int table_flush_one(ipfw_xtable_info *i, void *arg) { ipfw_obj_header *oh; oh = (ipfw_obj_header *)arg; table_fill_ntlv(&oh->ntlv, i->tablename, i->set, 1); return (table_flush(oh)); } static int table_do_modify_record(int cmd, ipfw_obj_header *oh, ipfw_obj_tentry *tent, int count, int atomic) { ipfw_obj_ctlv *ctlv; ipfw_obj_tentry *tent_base; caddr_t pbuf; char xbuf[sizeof(*oh) + sizeof(ipfw_obj_ctlv) + sizeof(*tent)]; int error, i; size_t sz; sz = sizeof(*ctlv) + sizeof(*tent) * count; if (count == 1) { memset(xbuf, 0, sizeof(xbuf)); pbuf = xbuf; } else { if ((pbuf = calloc(1, sizeof(*oh) + sz)) == NULL) return (ENOMEM); } memcpy(pbuf, oh, sizeof(*oh)); oh = (ipfw_obj_header *)pbuf; - oh->opheader.version = 1; + oh->opheader.version = 1; /* Current version */ ctlv = (ipfw_obj_ctlv *)(oh + 1); ctlv->count = count; ctlv->head.length = sz; if (atomic != 0) ctlv->flags |= IPFW_CTF_ATOMIC; tent_base = tent; memcpy(ctlv + 1, tent, sizeof(*tent) * count); tent = (ipfw_obj_tentry *)(ctlv + 1); for (i = 0; i < count; i++, tent++) { tent->head.length = sizeof(ipfw_obj_tentry); tent->idx = oh->idx; } sz += sizeof(*oh); error = do_get3(cmd, &oh->opheader, &sz); if (error != 0) error = errno; tent = (ipfw_obj_tentry *)(ctlv + 1); /* Copy result back to provided buffer */ memcpy(tent_base, ctlv + 1, sizeof(*tent) * count); if (pbuf != xbuf) free(pbuf); return (error); } static void table_modify_record(ipfw_obj_header *oh, int ac, char *av[], int add, int quiet, int update, int atomic) { ipfw_obj_tentry *ptent, tent, *tent_buf; ipfw_xtable_info xi; const char *etxt, *px, *texterr; uint8_t type; uint32_t vmask; int cmd, count, error, i, ignored; if (ac == 0) errx(EX_USAGE, "address required"); if (add != 0) { cmd = IP_FW_TABLE_XADD; texterr = "Adding record failed"; } else { cmd = IP_FW_TABLE_XDEL; texterr = "Deleting record failed"; } /* * Calculate number of entries: * Assume [key val] x N for add * and * key x N for delete */ count = (add != 0) ? ac / 2 + 1 : ac; if (count <= 1) { /* Adding single entry with/without value */ memset(&tent, 0, sizeof(tent)); tent_buf = &tent; } else { if ((tent_buf = calloc(count, sizeof(tent))) == NULL) errx(EX_OSERR, "Unable to allocate memory for all entries"); } ptent = tent_buf; memset(&xi, 0, sizeof(xi)); count = 0; while (ac > 0) { tentry_fill_key(oh, ptent, *av, add, &type, &vmask, &xi); /* * Compatibility layer: auto-create table if not exists. */ if (xi.tablename[0] == '\0') { xi.type = type; xi.vmask = vmask; strlcpy(xi.tablename, oh->ntlv.name, sizeof(xi.tablename)); if (quiet == 0) warnx("DEPRECATED: inserting data into " "non-existent table %s. (auto-created)", xi.tablename); table_do_create(oh, &xi); } oh->ntlv.type = type; ac--; av++; if (add != 0 && ac > 0) { tentry_fill_value(oh, ptent, *av, type, vmask); ac--; av++; } if (update != 0) ptent->head.flags |= IPFW_TF_UPDATE; count++; ptent++; } error = table_do_modify_record(cmd, oh, tent_buf, count, atomic); /* * Compatibility stuff: do not yell on duplicate keys or * failed deletions. */ if (error == 0 || (error == EEXIST && add != 0) || (error == ENOENT && add == 0)) { if (quiet != 0) { if (tent_buf != &tent) free(tent_buf); return; } } /* Report results back */ ptent = tent_buf; for (i = 0; i < count; ptent++, i++) { ignored = 0; switch (ptent->result) { case IPFW_TR_ADDED: px = "added"; break; case IPFW_TR_DELETED: px = "deleted"; break; case IPFW_TR_UPDATED: px = "updated"; break; case IPFW_TR_LIMIT: px = "limit"; ignored = 1; break; case IPFW_TR_ERROR: px = "error"; ignored = 1; break; case IPFW_TR_NOTFOUND: px = "notfound"; ignored = 1; break; case IPFW_TR_EXISTS: px = "exists"; ignored = 1; break; case IPFW_TR_IGNORED: px = "ignored"; ignored = 1; break; default: px = "unknown"; ignored = 1; } if (error != 0 && atomic != 0 && ignored == 0) printf("%s(reverted): ", px); else printf("%s: ", px); table_show_entry(&xi, ptent); } if (tent_buf != &tent) free(tent_buf); if (error == 0) return; /* Get real OS error */ error = errno; /* Try to provide more human-readable error */ switch (error) { case EEXIST: etxt = "record already exists"; break; case EFBIG: etxt = "limit hit"; break; case ESRCH: etxt = "table not found"; break; case ENOENT: etxt = "record not found"; break; case EACCES: etxt = "table is locked"; break; default: etxt = strerror(error); } errx(EX_OSERR, "%s: %s", texterr, etxt); } static int table_do_lookup(ipfw_obj_header *oh, char *key, ipfw_xtable_info *xi, ipfw_obj_tentry *xtent) { char xbuf[sizeof(ipfw_obj_header) + sizeof(ipfw_obj_tentry)]; ipfw_obj_tentry *tent; uint8_t type; uint32_t vmask; size_t sz; memcpy(xbuf, oh, sizeof(*oh)); oh = (ipfw_obj_header *)xbuf; tent = (ipfw_obj_tentry *)(oh + 1); memset(tent, 0, sizeof(*tent)); tent->head.length = sizeof(*tent); tent->idx = 1; tentry_fill_key(oh, tent, key, 0, &type, &vmask, xi); oh->ntlv.type = type; sz = sizeof(xbuf); if (do_get3(IP_FW_TABLE_XFIND, &oh->opheader, &sz) != 0) return (errno); if (sz < sizeof(xbuf)) return (EINVAL); *xtent = *tent; return (0); } static void table_lookup(ipfw_obj_header *oh, int ac, char *av[]) { ipfw_obj_tentry xtent; ipfw_xtable_info xi; char key[64]; int error; if (ac == 0) errx(EX_USAGE, "address required"); strlcpy(key, *av, sizeof(key)); memset(&xi, 0, sizeof(xi)); error = table_do_lookup(oh, key, &xi, &xtent); switch (error) { case 0: break; case ESRCH: errx(EX_UNAVAILABLE, "Table %s not found", oh->ntlv.name); case ENOENT: errx(EX_UNAVAILABLE, "Entry %s not found", *av); case ENOTSUP: errx(EX_UNAVAILABLE, "Table %s algo does not support " "\"lookup\" method", oh->ntlv.name); default: err(EX_OSERR, "getsockopt(IP_FW_TABLE_XFIND)"); } table_show_entry(&xi, &xtent); } static void tentry_fill_key_type(char *arg, ipfw_obj_tentry *tentry, uint8_t type, uint8_t tflags) { char *p, *pp; int mask, af; struct in6_addr *paddr, tmp; struct ether_addr *mac; struct tflow_entry *tfe; uint32_t key, *pkey; uint16_t port; struct protoent *pent; struct servent *sent; int masklen; mask = masklen = 0; af = 0; paddr = (struct in6_addr *)&tentry->k; switch (type) { case IPFW_TABLE_ADDR: /* Remove / if exists */ if ((p = strchr(arg, '/')) != NULL) { *p = '\0'; mask = atoi(p + 1); } if (inet_pton(AF_INET, arg, paddr) == 1) { if (p != NULL && mask > 32) errx(EX_DATAERR, "bad IPv4 mask width: %s", p + 1); masklen = p ? mask : 32; af = AF_INET; } else if (inet_pton(AF_INET6, arg, paddr) == 1) { if (IN6_IS_ADDR_V4COMPAT(paddr)) errx(EX_DATAERR, "Use IPv4 instead of v4-compatible"); if (p != NULL && mask > 128) errx(EX_DATAERR, "bad IPv6 mask width: %s", p + 1); masklen = p ? mask : 128; af = AF_INET6; } else { /* Assume FQDN */ if (lookup_host(arg, (struct in_addr *)paddr) != 0) errx(EX_NOHOST, "hostname ``%s'' unknown", arg); masklen = 32; type = IPFW_TABLE_ADDR; af = AF_INET; } break; case IPFW_TABLE_MAC: /* Remove / if exists */ if ((p = strchr(arg, '/')) != NULL) { *p = '\0'; mask = atoi(p + 1); } if (p != NULL && mask > 8 * ETHER_ADDR_LEN) errx(EX_DATAERR, "bad MAC mask width: %s", p + 1); if ((mac = ether_aton(arg)) == NULL) errx(EX_DATAERR, "Incorrect MAC address"); memcpy(tentry->k.mac, mac->octet, ETHER_ADDR_LEN); masklen = p ? mask : 8 * ETHER_ADDR_LEN; af = AF_LINK; break; case IPFW_TABLE_INTERFACE: /* Assume interface name. Copy significant data only */ mask = MIN(strlen(arg), IF_NAMESIZE - 1); memcpy(paddr, arg, mask); /* Set mask to exact match */ masklen = 8 * IF_NAMESIZE; break; case IPFW_TABLE_NUMBER: /* Port or any other key */ key = strtol(arg, &p, 10); if (*p != '\0') errx(EX_DATAERR, "Invalid number: %s", arg); pkey = (uint32_t *)paddr; *pkey = key; masklen = 32; break; case IPFW_TABLE_FLOW: /* Assume [src-ip][,proto][,src-port][,dst-ip][,dst-port] */ tfe = &tentry->k.flow; af = 0; /* Handle */ if ((tflags & IPFW_TFFLAG_SRCIP) != 0) { if ((p = strchr(arg, ',')) != NULL) *p++ = '\0'; /* Determine family using temporary storage */ if (inet_pton(AF_INET, arg, &tmp) == 1) { if (af != 0 && af != AF_INET) errx(EX_DATAERR, "Inconsistent address family\n"); af = AF_INET; memcpy(&tfe->a.a4.sip, &tmp, 4); } else if (inet_pton(AF_INET6, arg, &tmp) == 1) { if (af != 0 && af != AF_INET6) errx(EX_DATAERR, "Inconsistent address family\n"); af = AF_INET6; memcpy(&tfe->a.a6.sip6, &tmp, 16); } arg = p; } /* Handle */ if ((tflags & IPFW_TFFLAG_PROTO) != 0) { if (arg == NULL) errx(EX_DATAERR, "invalid key: proto missing"); if ((p = strchr(arg, ',')) != NULL) *p++ = '\0'; key = strtol(arg, &pp, 10); if (*pp != '\0') { if ((pent = getprotobyname(arg)) == NULL) errx(EX_DATAERR, "Unknown proto: %s", arg); else key = pent->p_proto; } if (key > 255) errx(EX_DATAERR, "Bad protocol number: %u",key); tfe->proto = key; arg = p; } /* Handle */ if ((tflags & IPFW_TFFLAG_SRCPORT) != 0) { if (arg == NULL) errx(EX_DATAERR, "invalid key: src port missing"); if ((p = strchr(arg, ',')) != NULL) *p++ = '\0'; port = htons(strtol(arg, &pp, 10)); if (*pp != '\0') { if ((sent = getservbyname(arg, NULL)) == NULL) errx(EX_DATAERR, "Unknown service: %s", arg); port = sent->s_port; } tfe->sport = port; arg = p; } /* Handle */ if ((tflags & IPFW_TFFLAG_DSTIP) != 0) { if (arg == NULL) errx(EX_DATAERR, "invalid key: dst ip missing"); if ((p = strchr(arg, ',')) != NULL) *p++ = '\0'; /* Determine family using temporary storage */ if (inet_pton(AF_INET, arg, &tmp) == 1) { if (af != 0 && af != AF_INET) errx(EX_DATAERR, "Inconsistent address family"); af = AF_INET; memcpy(&tfe->a.a4.dip, &tmp, 4); } else if (inet_pton(AF_INET6, arg, &tmp) == 1) { if (af != 0 && af != AF_INET6) errx(EX_DATAERR, "Inconsistent address family"); af = AF_INET6; memcpy(&tfe->a.a6.dip6, &tmp, 16); } arg = p; } /* Handle */ if ((tflags & IPFW_TFFLAG_DSTPORT) != 0) { if (arg == NULL) errx(EX_DATAERR, "invalid key: dst port missing"); if ((p = strchr(arg, ',')) != NULL) *p++ = '\0'; port = htons(strtol(arg, &pp, 10)); if (*pp != '\0') { if ((sent = getservbyname(arg, NULL)) == NULL) errx(EX_DATAERR, "Unknown service: %s", arg); port = sent->s_port; } tfe->dport = port; arg = p; } tfe->af = af; break; default: errx(EX_DATAERR, "Unsupported table type: %d", type); } tentry->subtype = af; tentry->masklen = masklen; } /* * Tries to guess table key type. * This procedure is used in legacy table auto-create * code AND in `ipfw -n` ruleset checking. * * Imported from old table_fill_xentry() parse code. */ static int guess_key_type(char *key, uint8_t *ptype) { char *p; struct in6_addr addr; uint32_t kv; if (ishexnumber(*key) != 0 || *key == ':') { /* Remove / if exists */ if ((p = strchr(key, '/')) != NULL) *p = '\0'; if ((inet_pton(AF_INET, key, &addr) == 1) || (inet_pton(AF_INET6, key, &addr) == 1)) { *ptype = IPFW_TABLE_CIDR; if (p != NULL) *p = '/'; return (0); } else { /* Port or any other key */ /* Skip non-base 10 entries like 'fa1' */ kv = strtol(key, &p, 10); if (*p == '\0') { *ptype = IPFW_TABLE_NUMBER; return (0); } else if ((p != key) && (*p == '.')) { /* * Warn on IPv4 address strings * which are "valid" for inet_aton() but not * in inet_pton(). * * Typical examples: '10.5' or '10.0.0.05' */ return (1); } } } if (strchr(key, '.') == NULL) { *ptype = IPFW_TABLE_INTERFACE; return (0); } if (lookup_host(key, (struct in_addr *)&addr) != 0) return (1); *ptype = IPFW_TABLE_CIDR; return (0); } static void tentry_fill_key(ipfw_obj_header *oh, ipfw_obj_tentry *tent, char *key, int add, uint8_t *ptype, uint32_t *pvmask, ipfw_xtable_info *xi) { uint8_t type, tflags; uint32_t vmask; int error; type = 0; tflags = 0; vmask = 0; if (xi->tablename[0] == '\0') error = table_get_info(oh, xi); else error = 0; if (error == 0) { if (g_co.test_only == 0) { /* Table found */ type = xi->type; tflags = xi->tflags; vmask = xi->vmask; } else { /* * We're running `ipfw -n` * Compatibility layer: try to guess key type * before failing. */ if (guess_key_type(key, &type) != 0) { /* Inknown key */ errx(EX_USAGE, "Cannot guess " "key '%s' type", key); } vmask = IPFW_VTYPE_LEGACY; } } else { if (error != ESRCH) errx(EX_OSERR, "Error requesting table %s info", oh->ntlv.name); if (add == 0) errx(EX_DATAERR, "Table %s does not exist", oh->ntlv.name); /* * Table does not exist * Compatibility layer: try to guess key type before failing. */ if (guess_key_type(key, &type) != 0) { /* Inknown key */ errx(EX_USAGE, "Table %s does not exist, cannot guess " "key '%s' type", oh->ntlv.name, key); } vmask = IPFW_VTYPE_LEGACY; } tentry_fill_key_type(key, tent, type, tflags); *ptype = type; *pvmask = vmask; } static void set_legacy_value(uint32_t val, ipfw_table_value *v) { v->tag = val; v->pipe = val; v->divert = val; v->skipto = val; v->netgraph = val; v->fib = val; v->nat = val; v->nh4 = val; v->dscp = (uint8_t)val; v->limit = val; } static void tentry_fill_value(ipfw_obj_header *oh __unused, ipfw_obj_tentry *tent, char *arg, uint8_t type __unused, uint32_t vmask) { struct addrinfo hints, *res; struct in_addr ipaddr; const char *etype; char *comma, *e, *n, *p; uint32_t a4, flag, val; ipfw_table_value *v; uint32_t i; int dval; v = &tent->v.value; /* Compat layer: keep old behavior for legacy value types */ if (vmask == IPFW_VTYPE_LEGACY) { /* Try to interpret as number first */ val = strtoul(arg, &p, 0); if (*p == '\0') { set_legacy_value(val, v); return; } if (inet_pton(AF_INET, arg, &val) == 1) { set_legacy_value(ntohl(val), v); return; } /* Try hostname */ if (lookup_host(arg, &ipaddr) == 0) { set_legacy_value(ntohl(ipaddr.s_addr), v); return; } errx(EX_OSERR, "Unable to parse value %s", arg); } /* * Shorthands: handle single value if vmask consists * of numbers only. e.g.: * vmask = "fib,skipto" -> treat input "1" as "1,1" */ n = arg; etype = NULL; for (i = 1; i < (1u << 31); i *= 2) { if ((flag = (vmask & i)) == 0) continue; vmask &= ~flag; if ((comma = strchr(n, ',')) != NULL) *comma = '\0'; switch (flag) { case IPFW_VTYPE_TAG: v->tag = strtol(n, &e, 10); if (*e != '\0') etype = "tag"; break; case IPFW_VTYPE_PIPE: v->pipe = strtol(n, &e, 10); if (*e != '\0') etype = "pipe"; break; case IPFW_VTYPE_DIVERT: v->divert = strtol(n, &e, 10); if (*e != '\0') etype = "divert"; break; case IPFW_VTYPE_SKIPTO: v->skipto = strtol(n, &e, 10); if (*e != '\0') etype = "skipto"; break; case IPFW_VTYPE_NETGRAPH: v->netgraph = strtol(n, &e, 10); if (*e != '\0') etype = "netgraph"; break; case IPFW_VTYPE_FIB: v->fib = strtol(n, &e, 10); if (*e != '\0') etype = "fib"; break; case IPFW_VTYPE_NAT: v->nat = strtol(n, &e, 10); if (*e != '\0') etype = "nat"; break; case IPFW_VTYPE_LIMIT: v->limit = strtol(n, &e, 10); if (*e != '\0') etype = "limit"; break; case IPFW_VTYPE_NH4: if (strchr(n, '.') != NULL && inet_pton(AF_INET, n, &a4) == 1) { v->nh4 = ntohl(a4); break; } if (lookup_host(n, &ipaddr) == 0) { v->nh4 = ntohl(ipaddr.s_addr); break; } etype = "ipv4"; break; case IPFW_VTYPE_DSCP: if (isalpha(*n)) { if ((dval = match_token(f_ipdscp, n)) != -1) { v->dscp = dval; break; } else etype = "DSCP code"; } else { v->dscp = strtol(n, &e, 10); if (v->dscp > 63 || *e != '\0') etype = "DSCP value"; } break; case IPFW_VTYPE_NH6: if (strchr(n, ':') != NULL) { memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET6; hints.ai_flags = AI_NUMERICHOST; if (getaddrinfo(n, NULL, &hints, &res) == 0) { v->nh6 = ((struct sockaddr_in6 *) res->ai_addr)->sin6_addr; v->zoneid = ((struct sockaddr_in6 *) res->ai_addr)->sin6_scope_id; freeaddrinfo(res); break; } } etype = "ipv6"; break; + case IPFW_VTYPE_MARK: + v->mark = strtol(n, &e, 16); + if (*e != '\0') + etype = "mark"; + break; } if (etype != NULL) errx(EX_USAGE, "Unable to parse %s as %s", n, etype); if (comma != NULL) *comma++ = ','; if ((n = comma) != NULL) continue; /* End of input. */ if (vmask != 0) errx(EX_USAGE, "Not enough fields inside value"); } } /* * Compare table names. * Honor number comparison. */ static int tablename_cmp(const void *a, const void *b) { const ipfw_xtable_info *ia, *ib; ia = (const ipfw_xtable_info *)a; ib = (const ipfw_xtable_info *)b; return (stringnum_cmp(ia->tablename, ib->tablename)); } /* * Retrieves table list from kernel, * optionally sorts it and calls requested function for each table. * Returns 0 on success. */ static int tables_foreach(table_cb_t *f, void *arg, int sort) { ipfw_obj_lheader *olh; ipfw_xtable_info *info; size_t sz; uint32_t i; int error; /* Start with reasonable default */ sz = sizeof(*olh) + 16 * sizeof(ipfw_xtable_info); for (;;) { if ((olh = calloc(1, sz)) == NULL) return (ENOMEM); olh->size = sz; if (do_get3(IP_FW_TABLES_XLIST, &olh->opheader, &sz) != 0) { sz = olh->size; free(olh); if (errno != ENOMEM) return (errno); continue; } if (sort != 0) qsort(olh + 1, olh->count, olh->objsize, tablename_cmp); info = (ipfw_xtable_info *)(olh + 1); for (i = 0; i < olh->count; i++) { if (g_co.use_set == 0 || info->set == g_co.use_set - 1) error = f(info, arg); info = (ipfw_xtable_info *)((caddr_t)info + olh->objsize); } free(olh); break; } return (0); } /* * Retrieves all entries for given table @i in * eXtended format. Allocate buffer large enough * to store result. Called needs to free it later. * * Returns 0 on success. */ static int table_do_get_list(ipfw_xtable_info *i, ipfw_obj_header **poh) { ipfw_obj_header *oh; size_t sz; int c; sz = 0; oh = NULL; for (c = 0; c < 8; c++) { if (sz < i->size) sz = i->size + 44; if (oh != NULL) free(oh); if ((oh = calloc(1, sz)) == NULL) continue; table_fill_objheader(oh, i); oh->opheader.version = 1; /* Current version */ if (do_get3(IP_FW_TABLE_XLIST, &oh->opheader, &sz) == 0) { *poh = oh; return (0); } if (errno != ENOMEM) break; } free(oh); return (errno); } /* * Shows all entries from @oh in human-readable format */ static void table_show_list(ipfw_obj_header *oh, int need_header) { ipfw_obj_tentry *tent; uint32_t count; ipfw_xtable_info *i; i = (ipfw_xtable_info *)(oh + 1); tent = (ipfw_obj_tentry *)(i + 1); if (need_header) printf("--- table(%s), set(%u) ---\n", i->tablename, i->set); count = i->count; while (count > 0) { table_show_entry(i, tent); tent = (ipfw_obj_tentry *)((caddr_t)tent + tent->head.length); count--; } } static void table_show_value(char *buf, size_t bufsize, ipfw_table_value *v, uint32_t vmask, int print_ip) { char abuf[INET6_ADDRSTRLEN + IF_NAMESIZE + 2]; struct sockaddr_in6 sa6; uint32_t flag, i, l; size_t sz; struct in_addr a4; sz = bufsize; /* * Some shorthands for printing values: * legacy assumes all values are equal, so keep the first one. */ if (vmask == IPFW_VTYPE_LEGACY) { if (print_ip != 0) { flag = htonl(v->tag); inet_ntop(AF_INET, &flag, buf, sz); } else snprintf(buf, sz, "%u", v->tag); return; } for (i = 1; i < (1u << 31); i *= 2) { if ((flag = (vmask & i)) == 0) continue; l = 0; switch (flag) { case IPFW_VTYPE_TAG: l = snprintf(buf, sz, "%u,", v->tag); break; case IPFW_VTYPE_PIPE: l = snprintf(buf, sz, "%u,", v->pipe); break; case IPFW_VTYPE_DIVERT: l = snprintf(buf, sz, "%d,", v->divert); break; case IPFW_VTYPE_SKIPTO: l = snprintf(buf, sz, "%d,", v->skipto); break; case IPFW_VTYPE_NETGRAPH: l = snprintf(buf, sz, "%u,", v->netgraph); break; case IPFW_VTYPE_FIB: l = snprintf(buf, sz, "%u,", v->fib); break; case IPFW_VTYPE_NAT: l = snprintf(buf, sz, "%u,", v->nat); break; case IPFW_VTYPE_LIMIT: l = snprintf(buf, sz, "%u,", v->limit); break; case IPFW_VTYPE_NH4: a4.s_addr = htonl(v->nh4); inet_ntop(AF_INET, &a4, abuf, sizeof(abuf)); l = snprintf(buf, sz, "%s,", abuf); break; case IPFW_VTYPE_DSCP: l = snprintf(buf, sz, "%d,", v->dscp); break; case IPFW_VTYPE_NH6: sa6.sin6_family = AF_INET6; sa6.sin6_len = sizeof(sa6); sa6.sin6_addr = v->nh6; sa6.sin6_port = 0; sa6.sin6_scope_id = v->zoneid; if (getnameinfo((const struct sockaddr *)&sa6, sa6.sin6_len, abuf, sizeof(abuf), NULL, 0, NI_NUMERICHOST) == 0) l = snprintf(buf, sz, "%s,", abuf); break; + case IPFW_VTYPE_MARK: + l = snprintf(buf, sz, "%#x,", v->mark); + break; } buf += l; sz -= l; } if (sz != bufsize) *(buf - 1) = '\0'; } static void table_show_entry(ipfw_xtable_info *i, ipfw_obj_tentry *tent) { char tbuf[128], pval[128]; const char *comma; const u_char *mac; void *paddr; struct tflow_entry *tfe; table_show_value(pval, sizeof(pval), &tent->v.value, i->vmask, g_co.do_value_as_ip); switch (i->type) { case IPFW_TABLE_ADDR: /* IPv4 or IPv6 prefixes */ inet_ntop(tent->subtype, &tent->k, tbuf, sizeof(tbuf)); printf("%s/%u %s\n", tbuf, tent->masklen, pval); break; case IPFW_TABLE_MAC: /* MAC prefixes */ mac = tent->k.mac; printf("%02x:%02x:%02x:%02x:%02x:%02x/%u %s\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], tent->masklen, pval); break; case IPFW_TABLE_INTERFACE: /* Interface names */ printf("%s %s\n", tent->k.iface, pval); break; case IPFW_TABLE_NUMBER: /* numbers */ printf("%u %s\n", tent->k.key, pval); break; case IPFW_TABLE_FLOW: /* flows */ tfe = &tent->k.flow; comma = ""; if ((i->tflags & IPFW_TFFLAG_SRCIP) != 0) { if (tfe->af == AF_INET) paddr = &tfe->a.a4.sip; else paddr = &tfe->a.a6.sip6; inet_ntop(tfe->af, paddr, tbuf, sizeof(tbuf)); printf("%s%s", comma, tbuf); comma = ","; } if ((i->tflags & IPFW_TFFLAG_PROTO) != 0) { printf("%s%d", comma, tfe->proto); comma = ","; } if ((i->tflags & IPFW_TFFLAG_SRCPORT) != 0) { printf("%s%d", comma, ntohs(tfe->sport)); comma = ","; } if ((i->tflags & IPFW_TFFLAG_DSTIP) != 0) { if (tfe->af == AF_INET) paddr = &tfe->a.a4.dip; else paddr = &tfe->a.a6.dip6; inet_ntop(tfe->af, paddr, tbuf, sizeof(tbuf)); printf("%s%s", comma, tbuf); comma = ","; } if ((i->tflags & IPFW_TFFLAG_DSTPORT) != 0) { printf("%s%d", comma, ntohs(tfe->dport)); comma = ","; } printf(" %s\n", pval); } } static int table_do_get_stdlist(uint16_t opcode, ipfw_obj_lheader **polh) { ipfw_obj_lheader req, *olh; size_t sz; memset(&req, 0, sizeof(req)); sz = sizeof(req); if (do_get3(opcode, &req.opheader, &sz) != 0) if (errno != ENOMEM) return (errno); sz = req.size; if ((olh = calloc(1, sz)) == NULL) return (ENOMEM); olh->size = sz; if (do_get3(opcode, &olh->opheader, &sz) != 0) { free(olh); return (errno); } *polh = olh; return (0); } static int table_do_get_algolist(ipfw_obj_lheader **polh) { return (table_do_get_stdlist(IP_FW_TABLES_ALIST, polh)); } static int table_do_get_vlist(ipfw_obj_lheader **polh) { return (table_do_get_stdlist(IP_FW_TABLE_VLIST, polh)); } void ipfw_list_ta(int ac __unused, char *av[] __unused) { ipfw_obj_lheader *olh; ipfw_ta_info *info; const char *atype; uint32_t i; int error; error = table_do_get_algolist(&olh); if (error != 0) err(EX_OSERR, "Unable to request algorithm list"); info = (ipfw_ta_info *)(olh + 1); for (i = 0; i < olh->count; i++) { if ((atype = match_value(tabletypes, info->type)) == NULL) atype = "unknown"; printf("--- %s ---\n", info->algoname); printf(" type: %s\n refcount: %u\n", atype, info->refcnt); info = (ipfw_ta_info *)((caddr_t)info + olh->objsize); } free(olh); } -/* Copy of current kernel table_value structure */ -struct _table_value { - uint32_t tag; /* O_TAG/O_TAGGED */ - uint32_t pipe; /* O_PIPE/O_QUEUE */ - uint16_t divert; /* O_DIVERT/O_TEE */ - uint16_t skipto; /* skipto, CALLRET */ - uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */ - uint32_t fib; /* O_SETFIB */ - uint32_t nat; /* O_NAT */ - uint32_t nh4; - uint8_t dscp; - uint8_t spare0; - uint16_t spare1; - /* -- 32 bytes -- */ - struct in6_addr nh6; - uint32_t limit; /* O_LIMIT */ - uint32_t zoneid; - uint64_t refcnt; /* Number of references */ -}; - static int compare_values(const void *_a, const void *_b) { - const struct _table_value *a, *b; + const ipfw_table_value *a, *b; - a = (const struct _table_value *)_a; - b = (const struct _table_value *)_b; + a = (const ipfw_table_value *)_a; + b = (const ipfw_table_value *)_b; - if (a->spare1 < b->spare1) + if (a->kidx < b->kidx) return (-1); - else if (a->spare1 > b->spare1) + else if (a->kidx > b->kidx) return (1); return (0); } void ipfw_list_values(int ac __unused, char *av[] __unused) { char buf[128]; ipfw_obj_lheader *olh; - struct _table_value *v; + ipfw_table_value *v; uint32_t i, vmask; int error; error = table_do_get_vlist(&olh); if (error != 0) err(EX_OSERR, "Unable to request value list"); vmask = 0x7FFFFFFF; /* Similar to IPFW_VTYPE_LEGACY */ table_print_valheader(buf, sizeof(buf), vmask); printf("HEADER: %s\n", buf); - v = (struct _table_value *)(olh + 1); + v = (ipfw_table_value *)(olh + 1); qsort(v, olh->count, olh->objsize, compare_values); for (i = 0; i < olh->count; i++) { table_show_value(buf, sizeof(buf), (ipfw_table_value *)v, vmask, 0); - printf("[%u] refs=%lu %s\n", v->spare1, (u_long)v->refcnt, buf); - v = (struct _table_value *)((caddr_t)v + olh->objsize); + printf("[%u] refs=%lu %s\n", v->kidx, (u_long)v->refcnt, buf); + v = (ipfw_table_value *)((caddr_t)v + olh->objsize); } free(olh); } int table_check_name(const char *tablename) { if (ipfw_check_object_name(tablename) != 0) return (EINVAL); /* Restrict some 'special' names */ if (strcmp(tablename, "all") == 0) return (EINVAL); return (0); } diff --git a/sys/netinet/ip_fw.h b/sys/netinet/ip_fw.h index cbf03a5a6f8e..fff76b5f840d 100644 --- a/sys/netinet/ip_fw.h +++ b/sys/netinet/ip_fw.h @@ -1,1092 +1,1099 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _IPFW2_H #define _IPFW2_H /* * The default rule number. By the design of ip_fw, the default rule * is the last one, so its number can also serve as the highest number * allowed for a rule. The ip_fw code relies on both meanings of this * constant. */ #define IPFW_DEFAULT_RULE 65535 #define RESVD_SET 31 /*set for default and persistent rules*/ #define IPFW_MAX_SETS 32 /* Number of sets supported by ipfw*/ /* * Compat values for old clients */ #ifndef _KERNEL #define IPFW_TABLES_MAX 65535 #define IPFW_TABLES_DEFAULT 128 #endif /* * Most commands (queue, pipe, tag, untag, limit...) can have a 16-bit * argument between 1 and 65534. The value 0 (IP_FW_TARG) is used * to represent 'tablearg' value, e.g. indicate the use of a 'tablearg' * result of the most recent table() lookup. * Note that 16bit is only a historical limit, resulting from * the use of a 16-bit fields for that value. In reality, we can have * 2^32 pipes, queues, tag values and so on. */ #define IPFW_ARG_MIN 1 #define IPFW_ARG_MAX 65534 #define IP_FW_TABLEARG 65535 /* Compat value for old clients */ #define IP_FW_TARG 0 /* Current tablearg value */ #define IP_FW_NAT44_GLOBAL 65535 /* arg1 value for "nat global" */ /* * Number of entries in the call stack of the call/return commands. * Call stack currently is an uint16_t array with rule numbers. */ #define IPFW_CALLSTACK_SIZE 16 /* IP_FW3 header/opcodes */ typedef struct _ip_fw3_opheader { uint16_t opcode; /* Operation opcode */ uint16_t version; /* Opcode version */ uint16_t reserved[2]; /* Align to 64-bit boundary */ } ip_fw3_opheader; /* IP_FW3 opcodes */ #define IP_FW_TABLE_XADD 86 /* add entry */ #define IP_FW_TABLE_XDEL 87 /* delete entry */ #define IP_FW_TABLE_XGETSIZE 88 /* get table size (deprecated) */ #define IP_FW_TABLE_XLIST 89 /* list table contents */ #define IP_FW_TABLE_XDESTROY 90 /* destroy table */ #define IP_FW_TABLES_XLIST 92 /* list all tables */ #define IP_FW_TABLE_XINFO 93 /* request info for one table */ #define IP_FW_TABLE_XFLUSH 94 /* flush table data */ #define IP_FW_TABLE_XCREATE 95 /* create new table */ #define IP_FW_TABLE_XMODIFY 96 /* modify existing table */ #define IP_FW_XGET 97 /* Retrieve configuration */ #define IP_FW_XADD 98 /* add rule */ #define IP_FW_XDEL 99 /* del rule */ #define IP_FW_XMOVE 100 /* move rules to different set */ #define IP_FW_XZERO 101 /* clear accounting */ #define IP_FW_XRESETLOG 102 /* zero rules logs */ #define IP_FW_SET_SWAP 103 /* Swap between 2 sets */ #define IP_FW_SET_MOVE 104 /* Move one set to another one */ #define IP_FW_SET_ENABLE 105 /* Enable/disable sets */ #define IP_FW_TABLE_XFIND 106 /* finds an entry */ #define IP_FW_XIFLIST 107 /* list tracked interfaces */ #define IP_FW_TABLES_ALIST 108 /* list table algorithms */ #define IP_FW_TABLE_XSWAP 109 /* swap two tables */ #define IP_FW_TABLE_VLIST 110 /* dump table value hash */ #define IP_FW_NAT44_XCONFIG 111 /* Create/modify NAT44 instance */ #define IP_FW_NAT44_DESTROY 112 /* Destroys NAT44 instance */ #define IP_FW_NAT44_XGETCONFIG 113 /* Get NAT44 instance config */ #define IP_FW_NAT44_LIST_NAT 114 /* List all NAT44 instances */ #define IP_FW_NAT44_XGETLOG 115 /* Get log from NAT44 instance */ #define IP_FW_DUMP_SOPTCODES 116 /* Dump available sopts/versions */ #define IP_FW_DUMP_SRVOBJECTS 117 /* Dump existing named objects */ #define IP_FW_NAT64STL_CREATE 130 /* Create stateless NAT64 instance */ #define IP_FW_NAT64STL_DESTROY 131 /* Destroy stateless NAT64 instance */ #define IP_FW_NAT64STL_CONFIG 132 /* Modify stateless NAT64 instance */ #define IP_FW_NAT64STL_LIST 133 /* List stateless NAT64 instances */ #define IP_FW_NAT64STL_STATS 134 /* Get NAT64STL instance statistics */ #define IP_FW_NAT64STL_RESET_STATS 135 /* Reset NAT64STL instance statistics */ #define IP_FW_NAT64LSN_CREATE 140 /* Create stateful NAT64 instance */ #define IP_FW_NAT64LSN_DESTROY 141 /* Destroy stateful NAT64 instance */ #define IP_FW_NAT64LSN_CONFIG 142 /* Modify stateful NAT64 instance */ #define IP_FW_NAT64LSN_LIST 143 /* List stateful NAT64 instances */ #define IP_FW_NAT64LSN_STATS 144 /* Get NAT64LSN instance statistics */ #define IP_FW_NAT64LSN_LIST_STATES 145 /* Get stateful NAT64 states */ #define IP_FW_NAT64LSN_RESET_STATS 146 /* Reset NAT64LSN instance statistics */ #define IP_FW_NPTV6_CREATE 150 /* Create NPTv6 instance */ #define IP_FW_NPTV6_DESTROY 151 /* Destroy NPTv6 instance */ #define IP_FW_NPTV6_CONFIG 152 /* Modify NPTv6 instance */ #define IP_FW_NPTV6_LIST 153 /* List NPTv6 instances */ #define IP_FW_NPTV6_STATS 154 /* Get NPTv6 instance statistics */ #define IP_FW_NPTV6_RESET_STATS 155 /* Reset NPTv6 instance statistics */ #define IP_FW_NAT64CLAT_CREATE 160 /* Create clat NAT64 instance */ #define IP_FW_NAT64CLAT_DESTROY 161 /* Destroy clat NAT64 instance */ #define IP_FW_NAT64CLAT_CONFIG 162 /* Modify clat NAT64 instance */ #define IP_FW_NAT64CLAT_LIST 163 /* List clat NAT64 instances */ #define IP_FW_NAT64CLAT_STATS 164 /* Get NAT64CLAT instance statistics */ #define IP_FW_NAT64CLAT_RESET_STATS 165 /* Reset NAT64CLAT instance statistics */ /* * The kernel representation of ipfw rules is made of a list of * 'instructions' (for all practical purposes equivalent to BPF * instructions), which specify which fields of the packet * (or its metadata) should be analysed. * * Each instruction is stored in a structure which begins with * "ipfw_insn", and can contain extra fields depending on the * instruction type (listed below). * Note that the code is written so that individual instructions * have a size which is a multiple of 32 bits. This means that, if * such structures contain pointers or other 64-bit entities, * (there is just one instance now) they may end up unaligned on * 64-bit architectures, so the must be handled with care. * * "enum ipfw_opcodes" are the opcodes supported. We can have up * to 256 different opcodes. When adding new opcodes, they should * be appended to the end of the opcode list before O_LAST_OPCODE, * this will prevent the ABI from being broken, otherwise users * will have to recompile ipfw(8) when they update the kernel. */ enum ipfw_opcodes { /* arguments (4 byte each) */ O_NOP, O_IP_SRC, /* u32 = IP */ O_IP_SRC_MASK, /* ip = IP/mask */ O_IP_SRC_ME, /* none */ O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */ O_IP_DST, /* u32 = IP */ O_IP_DST_MASK, /* ip = IP/mask */ O_IP_DST_ME, /* none */ O_IP_DST_SET, /* u32=base, arg1=len, bitmap */ O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */ O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */ O_PROTO, /* arg1=protocol */ O_MACADDR2, /* 2 mac addr:mask */ O_MAC_TYPE, /* same as srcport */ O_LAYER2, /* none */ O_IN, /* none */ O_FRAG, /* none */ O_RECV, /* none */ O_XMIT, /* none */ O_VIA, /* none */ O_IPOPT, /* arg1 = 2*u8 bitmap */ O_IPLEN, /* arg1 = len */ O_IPID, /* arg1 = id */ O_IPTOS, /* arg1 = id */ O_IPPRECEDENCE, /* arg1 = precedence << 5 */ O_IPTTL, /* arg1 = TTL */ O_IPVER, /* arg1 = version */ O_UID, /* u32 = id */ O_GID, /* u32 = id */ O_ESTAB, /* none (tcp established) */ O_TCPFLAGS, /* arg1 = 2*u8 bitmap */ O_TCPWIN, /* arg1 = desired win */ O_TCPSEQ, /* u32 = desired seq. */ O_TCPACK, /* u32 = desired seq. */ O_ICMPTYPE, /* u32 = icmp bitmap */ O_TCPOPTS, /* arg1 = 2*u8 bitmap */ O_VERREVPATH, /* none */ O_VERSRCREACH, /* none */ O_PROBE_STATE, /* none */ O_KEEP_STATE, /* none */ O_LIMIT, /* ipfw_insn_limit */ O_LIMIT_PARENT, /* dyn_type, not an opcode. */ /* * These are really 'actions'. */ O_LOG, /* ipfw_insn_log */ O_PROB, /* u32 = match probability */ O_CHECK_STATE, /* none */ O_ACCEPT, /* none */ O_DENY, /* none */ O_REJECT, /* arg1=icmp arg (same as deny) */ O_COUNT, /* none */ O_SKIPTO, /* arg1=next rule number */ O_PIPE, /* arg1=pipe number */ O_QUEUE, /* arg1=queue number */ O_DIVERT, /* arg1=port number */ O_TEE, /* arg1=port number */ O_FORWARD_IP, /* fwd sockaddr */ O_FORWARD_MAC, /* fwd mac */ O_NAT, /* nope */ O_REASS, /* none */ /* * More opcodes. */ O_IPSEC, /* has ipsec history */ O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */ O_IP_DST_LOOKUP, /* arg1=table number, u32=value */ O_ANTISPOOF, /* none */ O_JAIL, /* u32 = id */ O_ALTQ, /* u32 = altq classif. qid */ O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */ O_TCPDATALEN, /* arg1 = tcp data len */ O_IP6_SRC, /* address without mask */ O_IP6_SRC_ME, /* my addresses */ O_IP6_SRC_MASK, /* address with the mask */ O_IP6_DST, O_IP6_DST_ME, O_IP6_DST_MASK, O_FLOW6ID, /* for flow id tag in the ipv6 pkt */ O_ICMP6TYPE, /* icmp6 packet type filtering */ O_EXT_HDR, /* filtering for ipv6 extension header */ O_IP6, /* * actions for ng_ipfw */ O_NETGRAPH, /* send to ng_ipfw */ O_NGTEE, /* copy to ng_ipfw */ O_IP4, O_UNREACH6, /* arg1=icmpv6 code arg (deny) */ O_TAG, /* arg1=tag number */ O_TAGGED, /* arg1=tag number */ O_SETFIB, /* arg1=FIB number */ O_FIB, /* arg1=FIB desired fib number */ O_SOCKARG, /* socket argument */ O_CALLRETURN, /* arg1=called rule number */ O_FORWARD_IP6, /* fwd sockaddr_in6 */ O_DSCP, /* 2 u32 = DSCP mask */ O_SETDSCP, /* arg1=DSCP value */ O_IP_FLOW_LOOKUP, /* arg1=table number, u32=value */ O_EXTERNAL_ACTION, /* arg1=id of external action handler */ O_EXTERNAL_INSTANCE, /* arg1=id of eaction handler instance */ O_EXTERNAL_DATA, /* variable length data */ O_SKIP_ACTION, /* none */ O_TCPMSS, /* arg1=MSS value */ O_MAC_SRC_LOOKUP, /* arg1=table number, u32=value */ O_MAC_DST_LOOKUP, /* arg1=table number, u32=value */ + O_SETMARK, /* u32 = value */ + O_MARK, /* 2 u32 = value, bitmask */ + O_LAST_OPCODE /* not an opcode! */ }; /* * Defines key types used by lookup instruction */ enum ipfw_table_lookup_type { LOOKUP_DST_IP, LOOKUP_SRC_IP, LOOKUP_DST_PORT, LOOKUP_SRC_PORT, LOOKUP_UID, LOOKUP_JAIL, LOOKUP_DSCP, LOOKUP_DST_MAC, LOOKUP_SRC_MAC, + LOOKUP_MARK, }; /* * The extension header are filtered only for presence using a bit * vector with a flag for each header. */ #define EXT_FRAGMENT 0x1 #define EXT_HOPOPTS 0x2 #define EXT_ROUTING 0x4 #define EXT_AH 0x8 #define EXT_ESP 0x10 #define EXT_DSTOPTS 0x20 #define EXT_RTHDR0 0x40 #define EXT_RTHDR2 0x80 /* * Template for instructions. * * ipfw_insn is used for all instructions which require no operands, * a single 16-bit value (arg1), or a couple of 8-bit values. * * For other instructions which require different/larger arguments * we have derived structures, ipfw_insn_*. * * The size of the instruction (in 32-bit words) is in the low * 6 bits of "len". The 2 remaining bits are used to implement * NOT and OR on individual instructions. Given a type, you can * compute the length to be put in "len" using F_INSN_SIZE(t) * * F_NOT negates the match result of the instruction. * * F_OR is used to build or blocks. By default, instructions * are evaluated as part of a logical AND. An "or" block * { X or Y or Z } contains F_OR set in all but the last * instruction of the block. A match will cause the code * to skip past the last instruction of the block. * * NOTA BENE: in a couple of places we assume that * sizeof(ipfw_insn) == sizeof(u_int32_t) * this needs to be fixed. * */ typedef struct _ipfw_insn { /* template for instructions */ _Alignas(_Alignof(u_int32_t)) u_int8_t opcode; u_int8_t len; /* number of 32-bit words */ #define F_NOT 0x80 #define F_OR 0x40 #define F_LEN_MASK 0x3f #define F_LEN(cmd) ((cmd)->len & F_LEN_MASK) u_int16_t arg1; } ipfw_insn; /* * The F_INSN_SIZE(type) computes the size, in 4-byte words, of * a given type. */ #define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t)) /* * This is used to store an array of 16-bit entries (ports etc.) */ typedef struct _ipfw_insn_u16 { ipfw_insn o; u_int16_t ports[2]; /* there may be more */ } ipfw_insn_u16; /* * This is used to store an array of 32-bit entries * (uid, single IPv4 addresses etc.) */ typedef struct _ipfw_insn_u32 { ipfw_insn o; u_int32_t d[1]; /* one or more */ } ipfw_insn_u32; /* * This is used to store IP addr-mask pairs. */ typedef struct _ipfw_insn_ip { ipfw_insn o; struct in_addr addr; struct in_addr mask; } ipfw_insn_ip; /* * This is used to forward to a given address (ip). */ typedef struct _ipfw_insn_sa { ipfw_insn o; struct sockaddr_in sa; } ipfw_insn_sa; /* * This is used to forward to a given address (ipv6). */ typedef struct _ipfw_insn_sa6 { ipfw_insn o; struct sockaddr_in6 sa; } ipfw_insn_sa6; /* * This is used for MAC addr-mask pairs. */ typedef struct _ipfw_insn_mac { ipfw_insn o; u_char addr[12]; /* dst[6] + src[6] */ u_char mask[12]; /* dst[6] + src[6] */ } ipfw_insn_mac; /* * This is used for interface match rules (recv xx, xmit xx). */ typedef struct _ipfw_insn_if { ipfw_insn o; union { struct in_addr ip; int glob; uint16_t kidx; } p; char name[IFNAMSIZ]; } ipfw_insn_if; /* * This is used for storing an altq queue id number. */ typedef struct _ipfw_insn_altq { ipfw_insn o; u_int32_t qid; } ipfw_insn_altq; /* * This is used for limit rules. */ typedef struct _ipfw_insn_limit { ipfw_insn o; u_int8_t _pad; u_int8_t limit_mask; /* combination of DYN_* below */ #define DYN_SRC_ADDR 0x1 #define DYN_SRC_PORT 0x2 #define DYN_DST_ADDR 0x4 #define DYN_DST_PORT 0x8 u_int16_t conn_limit; } ipfw_insn_limit; /* * This is used for log instructions. */ typedef struct _ipfw_insn_log { ipfw_insn o; u_int32_t max_log; /* how many do we log -- 0 = all */ u_int32_t log_left; /* how many left to log */ } ipfw_insn_log; /* Legacy NAT structures, compat only */ #ifndef _KERNEL /* * Data structures required by both ipfw(8) and ipfw(4) but not part of the * management API are protected by IPFW_INTERNAL. */ #ifdef IPFW_INTERNAL /* Server pool support (LSNAT). */ struct cfg_spool { LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */ struct in_addr addr; u_short port; }; #endif /* Redirect modes id. */ #define REDIR_ADDR 0x01 #define REDIR_PORT 0x02 #define REDIR_PROTO 0x04 #ifdef IPFW_INTERNAL /* Nat redirect configuration. */ struct cfg_redir { LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */ u_int16_t mode; /* type of redirect mode */ struct in_addr laddr; /* local ip address */ struct in_addr paddr; /* public ip address */ struct in_addr raddr; /* remote ip address */ u_short lport; /* local port */ u_short pport; /* public port */ u_short rport; /* remote port */ u_short pport_cnt; /* number of public ports */ u_short rport_cnt; /* number of remote ports */ int proto; /* protocol: tcp/udp */ struct alias_link **alink; /* num of entry in spool chain */ u_int16_t spool_cnt; /* chain of spool instances */ LIST_HEAD(spool_chain, cfg_spool) spool_chain; }; #endif #ifdef IPFW_INTERNAL /* Nat configuration data struct. */ struct cfg_nat { /* chain of nat instances */ LIST_ENTRY(cfg_nat) _next; int id; /* nat id */ struct in_addr ip; /* nat ip address */ char if_name[IF_NAMESIZE]; /* interface name */ int mode; /* aliasing mode */ struct libalias *lib; /* libalias instance */ /* number of entry in spool chain */ int redir_cnt; /* chain of redir instances */ LIST_HEAD(redir_chain, cfg_redir) redir_chain; }; #endif #define SOF_NAT sizeof(struct cfg_nat) #define SOF_REDIR sizeof(struct cfg_redir) #define SOF_SPOOL sizeof(struct cfg_spool) #endif /* ifndef _KERNEL */ struct nat44_cfg_spool { struct in_addr addr; uint16_t port; uint16_t spare; }; #define NAT44_REDIR_ADDR 0x01 #define NAT44_REDIR_PORT 0x02 #define NAT44_REDIR_PROTO 0x04 /* Nat redirect configuration. */ struct nat44_cfg_redir { struct in_addr laddr; /* local ip address */ struct in_addr paddr; /* public ip address */ struct in_addr raddr; /* remote ip address */ uint16_t lport; /* local port */ uint16_t pport; /* public port */ uint16_t rport; /* remote port */ uint16_t pport_cnt; /* number of public ports */ uint16_t rport_cnt; /* number of remote ports */ uint16_t mode; /* type of redirect mode */ uint16_t spool_cnt; /* num of entry in spool chain */ uint16_t spare; uint32_t proto; /* protocol: tcp/udp */ }; /* Nat configuration data struct. */ struct nat44_cfg_nat { char name[64]; /* nat name */ char if_name[64]; /* interface name */ uint32_t size; /* structure size incl. redirs */ struct in_addr ip; /* nat IPv4 address */ uint32_t mode; /* aliasing mode */ uint32_t redir_cnt; /* number of entry in spool chain */ u_short alias_port_lo; /* low range for port aliasing */ u_short alias_port_hi; /* high range for port aliasing */ }; /* Nat command. */ typedef struct _ipfw_insn_nat { ipfw_insn o; struct cfg_nat *nat; } ipfw_insn_nat; /* Apply ipv6 mask on ipv6 addr */ #define APPLY_MASK(addr,mask) do { \ (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \ (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \ (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \ (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; \ } while (0) /* Structure for ipv6 */ typedef struct _ipfw_insn_ip6 { ipfw_insn o; struct in6_addr addr6; struct in6_addr mask6; } ipfw_insn_ip6; /* Used to support icmp6 types */ typedef struct _ipfw_insn_icmp6 { ipfw_insn o; uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h * define ICMP6_MAXTYPE * as follows: n = ICMP6_MAXTYPE/32 + 1 * Actually is 203 */ } ipfw_insn_icmp6; /* * Here we have the structure representing an ipfw rule. * * Layout: * struct ip_fw_rule * [ counter block, size = rule->cntr_len ] * [ one or more instructions, size = rule->cmd_len * 4 ] * * It starts with a general area (with link fields). * Counter block may be next (if rule->cntr_len > 0), * followed by an array of one or more instructions, which the code * accesses as an array of 32-bit values. rule->cmd_len represents * the total instructions legth in u32 worrd, while act_ofs represents * rule action offset in u32 words. * * When assembling instruction, remember the following: * * + if a rule has a "keep-state" (or "limit") option, then the * first instruction (at r->cmd) MUST BE an O_PROBE_STATE * + if a rule has a "log" option, then the first action * (at ACTION_PTR(r)) MUST be O_LOG * + if a rule has an "altq" option, it comes after "log" * + if a rule has an O_TAG option, it comes after "log" and "altq" * * * All structures (excluding instructions) are u64-aligned. * Please keep this. */ struct ip_fw_rule { uint16_t act_ofs; /* offset of action in 32-bit units */ uint16_t cmd_len; /* # of 32-bit words in cmd */ uint16_t spare; uint8_t set; /* rule set (0..31) */ uint8_t flags; /* rule flags */ uint32_t rulenum; /* rule number */ uint32_t id; /* rule id */ ipfw_insn cmd[1]; /* storage for commands */ }; #define IPFW_RULE_NOOPT 0x01 /* Has no options in body */ #define IPFW_RULE_JUSTOPTS 0x02 /* new format of rule body */ /* Unaligned version */ /* Base ipfw rule counter block. */ struct ip_fw_bcounter { uint16_t size; /* Size of counter block, bytes */ uint8_t flags; /* flags for given block */ uint8_t spare; uint32_t timestamp; /* tv_sec of last match */ uint64_t pcnt; /* Packet counter */ uint64_t bcnt; /* Byte counter */ }; #ifndef _KERNEL /* * Legacy rule format */ struct ip_fw { struct ip_fw *x_next; /* linked list of rules */ struct ip_fw *next_rule; /* ptr to next [skipto] rule */ /* 'next_rule' is used to pass up 'set_disable' status */ uint16_t act_ofs; /* offset of action in 32-bit units */ uint16_t cmd_len; /* # of 32-bit words in cmd */ uint16_t rulenum; /* rule number */ uint8_t set; /* rule set (0..31) */ uint8_t _pad; /* padding */ uint32_t id; /* rule id */ /* These fields are present in all rules. */ uint64_t pcnt; /* Packet counter */ uint64_t bcnt; /* Byte counter */ uint32_t timestamp; /* tv_sec of last match */ ipfw_insn cmd[1]; /* storage for commands */ }; #endif #define ACTION_PTR(rule) \ (ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) ) #define RULESIZE(rule) (sizeof(*(rule)) + (rule)->cmd_len * 4 - 4) #if 1 // should be moved to in.h /* * This structure is used as a flow mask and a flow id for various * parts of the code. * addr_type is used in userland and kernel to mark the address type. * fib is used in the kernel to record the fib in use. * _flags is used in the kernel to store tcp flags for dynamic rules. */ struct ipfw_flow_id { uint32_t dst_ip; uint32_t src_ip; uint16_t dst_port; uint16_t src_port; uint8_t fib; /* XXX: must be uint16_t */ uint8_t proto; uint8_t _flags; /* protocol-specific flags */ uint8_t addr_type; /* 4=ip4, 6=ip6, 1=ether ? */ struct in6_addr dst_ip6; struct in6_addr src_ip6; uint32_t flow_id6; uint32_t extra; /* queue/pipe or frag_id */ }; #endif #define IS_IP4_FLOW_ID(id) ((id)->addr_type == 4) #define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6) /* * Dynamic ipfw rule. */ typedef struct _ipfw_dyn_rule ipfw_dyn_rule; struct _ipfw_dyn_rule { ipfw_dyn_rule *next; /* linked list of rules. */ struct ip_fw *rule; /* pointer to rule */ /* 'rule' is used to pass up the rule number (from the parent) */ ipfw_dyn_rule *parent; /* pointer to parent rule */ u_int64_t pcnt; /* packet match counter */ u_int64_t bcnt; /* byte match counter */ struct ipfw_flow_id id; /* (masked) flow id */ u_int32_t expire; /* expire time */ u_int32_t bucket; /* which bucket in hash table */ u_int32_t state; /* state of this rule (typically a * combination of TCP flags) */ #define IPFW_DYN_ORPHANED 0x40000 /* state's parent rule was deleted */ u_int32_t ack_fwd; /* most recent ACKs in forward */ u_int32_t ack_rev; /* and reverse directions (used */ /* to generate keepalives) */ u_int16_t dyn_type; /* rule type */ u_int16_t count; /* refcount */ u_int16_t kidx; /* index of named object */ } __packed __aligned(8); /* * Definitions for IP option names. */ #define IP_FW_IPOPT_LSRR 0x01 #define IP_FW_IPOPT_SSRR 0x02 #define IP_FW_IPOPT_RR 0x04 #define IP_FW_IPOPT_TS 0x08 /* * Definitions for TCP option names. */ #define IP_FW_TCPOPT_MSS 0x01 #define IP_FW_TCPOPT_WINDOW 0x02 #define IP_FW_TCPOPT_SACK 0x04 #define IP_FW_TCPOPT_TS 0x08 #define IP_FW_TCPOPT_CC 0x10 #define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */ #define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */ #define ICMP_REJECT_ABORT 0x101 /* fake ICMP code (send an SCTP ABORT) */ #define ICMP6_UNREACH_ABORT 0x101 /* fake ICMPv6 code (send an SCTP ABORT) */ /* * These are used for lookup tables. */ #define IPFW_TABLE_ADDR 1 /* Table for holding IPv4/IPv6 prefixes */ #define IPFW_TABLE_INTERFACE 2 /* Table for holding interface names */ #define IPFW_TABLE_NUMBER 3 /* Table for holding ports/uid/gid/etc */ #define IPFW_TABLE_FLOW 4 /* Table for holding flow data */ #define IPFW_TABLE_MAC 5 /* Table for holding mac address prefixes */ #define IPFW_TABLE_MAXTYPE 5 /* Maximum valid number */ #define IPFW_TABLE_CIDR IPFW_TABLE_ADDR /* compat */ /* Value types */ #define IPFW_VTYPE_LEGACY 0xFFFFFFFF /* All data is filled in */ #define IPFW_VTYPE_SKIPTO 0x00000001 /* skipto/call/callreturn */ #define IPFW_VTYPE_PIPE 0x00000002 /* pipe/queue */ #define IPFW_VTYPE_FIB 0x00000004 /* setfib */ #define IPFW_VTYPE_NAT 0x00000008 /* nat */ #define IPFW_VTYPE_DSCP 0x00000010 /* dscp */ #define IPFW_VTYPE_TAG 0x00000020 /* tag/untag */ #define IPFW_VTYPE_DIVERT 0x00000040 /* divert/tee */ #define IPFW_VTYPE_NETGRAPH 0x00000080 /* netgraph/ngtee */ #define IPFW_VTYPE_LIMIT 0x00000100 /* limit */ #define IPFW_VTYPE_NH4 0x00000200 /* IPv4 nexthop */ #define IPFW_VTYPE_NH6 0x00000400 /* IPv6 nexthop */ +#define IPFW_VTYPE_MARK 0x00000800 /* [fw]mark */ /* MAC/InfiniBand/etc address length */ #define IPFW_MAX_L2_ADDR_LEN 20 typedef struct _ipfw_table_entry { in_addr_t addr; /* network address */ u_int32_t value; /* value */ u_int16_t tbl; /* table number */ u_int8_t masklen; /* mask length */ } ipfw_table_entry; typedef struct _ipfw_table_xentry { uint16_t len; /* Total entry length */ uint8_t type; /* entry type */ uint8_t masklen; /* mask length */ uint16_t tbl; /* table number */ uint16_t flags; /* record flags */ uint32_t value; /* value */ union { /* Longest field needs to be aligned by 4-byte boundary */ struct in6_addr addr6; /* IPv6 address */ char iface[IF_NAMESIZE]; /* interface name */ } k; } ipfw_table_xentry; #define IPFW_TCF_INET 0x01 /* CIDR flags: IPv4 record */ typedef struct _ipfw_table { u_int32_t size; /* size of entries in bytes */ u_int32_t cnt; /* # of entries */ u_int16_t tbl; /* table number */ ipfw_table_entry ent[0]; /* entries */ } ipfw_table; typedef struct _ipfw_xtable { ip_fw3_opheader opheader; /* IP_FW3 opcode */ uint32_t size; /* size of entries in bytes */ uint32_t cnt; /* # of entries */ uint16_t tbl; /* table number */ uint8_t type; /* table type */ ipfw_table_xentry xent[0]; /* entries */ } ipfw_xtable; typedef struct _ipfw_obj_tlv { uint16_t type; /* TLV type */ uint16_t flags; /* TLV-specific flags */ uint32_t length; /* Total length, aligned to u64 */ } ipfw_obj_tlv; #define IPFW_TLV_TBL_NAME 1 #define IPFW_TLV_TBLNAME_LIST 2 #define IPFW_TLV_RULE_LIST 3 #define IPFW_TLV_DYNSTATE_LIST 4 #define IPFW_TLV_TBL_ENT 5 #define IPFW_TLV_DYN_ENT 6 #define IPFW_TLV_RULE_ENT 7 #define IPFW_TLV_TBLENT_LIST 8 #define IPFW_TLV_RANGE 9 #define IPFW_TLV_EACTION 10 #define IPFW_TLV_COUNTERS 11 #define IPFW_TLV_OBJDATA 12 #define IPFW_TLV_STATE_NAME 14 #define IPFW_TLV_EACTION_BASE 1000 #define IPFW_TLV_EACTION_NAME(arg) (IPFW_TLV_EACTION_BASE + (arg)) typedef struct _ipfw_obj_data { ipfw_obj_tlv head; void *data[0]; } ipfw_obj_data; /* Object name TLV */ typedef struct _ipfw_obj_ntlv { ipfw_obj_tlv head; /* TLV header */ uint16_t idx; /* Name index */ uint8_t set; /* set, if applicable */ uint8_t type; /* object type, if applicable */ uint32_t spare; /* unused */ char name[64]; /* Null-terminated name */ } ipfw_obj_ntlv; /* IPv4/IPv6 L4 flow description */ struct tflow_entry { uint8_t af; uint8_t proto; uint16_t spare; uint16_t sport; uint16_t dport; union { struct { struct in_addr sip; struct in_addr dip; } a4; struct { struct in6_addr sip6; struct in6_addr dip6; } a6; } a; }; +/* 64-byte structure representing multi-field table value */ typedef struct _ipfw_table_value { uint32_t tag; /* O_TAG/O_TAGGED */ uint32_t pipe; /* O_PIPE/O_QUEUE */ uint16_t divert; /* O_DIVERT/O_TEE */ uint16_t skipto; /* skipto, CALLRET */ uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */ uint32_t fib; /* O_SETFIB */ uint32_t nat; /* O_NAT */ uint32_t nh4; uint8_t dscp; uint8_t spare0; - uint16_t spare1; + uint16_t kidx; /* value kernel index */ struct in6_addr nh6; uint32_t limit; /* O_LIMIT */ uint32_t zoneid; /* scope zone id for nh6 */ - uint64_t reserved; + uint32_t mark; /* O_SETMARK/O_MARK */ + uint32_t refcnt; /* XXX 64-bit in kernel */ } ipfw_table_value; /* Table entry TLV */ typedef struct _ipfw_obj_tentry { ipfw_obj_tlv head; /* TLV header */ uint8_t subtype; /* subtype (IPv4,IPv6) */ uint8_t masklen; /* mask length */ uint8_t result; /* request result */ uint8_t spare0; uint16_t idx; /* Table name index */ uint16_t spare1; union { /* Longest field needs to be aligned by 8-byte boundary */ struct in_addr addr; /* IPv4 address */ uint32_t key; /* uid/gid/port */ struct in6_addr addr6; /* IPv6 address */ char iface[IF_NAMESIZE]; /* interface name */ u_char mac[IPFW_MAX_L2_ADDR_LEN]; /* MAC address */ struct tflow_entry flow; } k; union { ipfw_table_value value; /* value data */ uint32_t kidx; /* value kernel index */ } v; } ipfw_obj_tentry; #define IPFW_TF_UPDATE 0x01 /* Update record if exists */ /* Container TLV */ #define IPFW_CTF_ATOMIC 0x01 /* Perform atomic operation */ /* Operation results */ #define IPFW_TR_IGNORED 0 /* Entry was ignored (rollback) */ #define IPFW_TR_ADDED 1 /* Entry was successfully added */ #define IPFW_TR_UPDATED 2 /* Entry was successfully updated*/ #define IPFW_TR_DELETED 3 /* Entry was successfully deleted*/ #define IPFW_TR_LIMIT 4 /* Entry was ignored (limit) */ #define IPFW_TR_NOTFOUND 5 /* Entry was not found */ #define IPFW_TR_EXISTS 6 /* Entry already exists */ #define IPFW_TR_ERROR 7 /* Request has failed (unknown) */ typedef struct _ipfw_obj_dyntlv { ipfw_obj_tlv head; ipfw_dyn_rule state; } ipfw_obj_dyntlv; #define IPFW_DF_LAST 0x01 /* Last state in chain */ /* Containter TLVs */ typedef struct _ipfw_obj_ctlv { ipfw_obj_tlv head; /* TLV header */ uint32_t count; /* Number of sub-TLVs */ uint16_t objsize; /* Single object size */ uint8_t version; /* TLV version */ uint8_t flags; /* TLV-specific flags */ } ipfw_obj_ctlv; /* Range TLV */ typedef struct _ipfw_range_tlv { ipfw_obj_tlv head; /* TLV header */ uint32_t flags; /* Range flags */ uint16_t start_rule; /* Range start */ uint16_t end_rule; /* Range end */ uint32_t set; /* Range set to match */ uint32_t new_set; /* New set to move/swap to */ } ipfw_range_tlv; #define IPFW_RCFLAG_RANGE 0x01 /* rule range is set */ #define IPFW_RCFLAG_ALL 0x02 /* match ALL rules */ #define IPFW_RCFLAG_SET 0x04 /* match rules in given set */ #define IPFW_RCFLAG_DYNAMIC 0x08 /* match only dynamic states */ /* User-settable flags */ #define IPFW_RCFLAG_USER (IPFW_RCFLAG_RANGE | IPFW_RCFLAG_ALL | \ IPFW_RCFLAG_SET | IPFW_RCFLAG_DYNAMIC) /* Internally used flags */ #define IPFW_RCFLAG_DEFAULT 0x0100 /* Do not skip defaul rule */ typedef struct _ipfw_ta_tinfo { uint32_t flags; /* Format flags */ uint32_t spare; uint8_t taclass4; /* algorithm class */ uint8_t spare4; uint16_t itemsize4; /* item size in runtime */ uint32_t size4; /* runtime structure size */ uint32_t count4; /* number of items in runtime */ uint8_t taclass6; /* algorithm class */ uint8_t spare6; uint16_t itemsize6; /* item size in runtime */ uint32_t size6; /* runtime structure size */ uint32_t count6; /* number of items in runtime */ } ipfw_ta_tinfo; #define IPFW_TACLASS_HASH 1 /* algo is based on hash */ #define IPFW_TACLASS_ARRAY 2 /* algo is based on array */ #define IPFW_TACLASS_RADIX 3 /* algo is based on radix tree */ #define IPFW_TATFLAGS_DATA 0x0001 /* Has data filled in */ #define IPFW_TATFLAGS_AFDATA 0x0002 /* Separate data per AF */ #define IPFW_TATFLAGS_AFITEM 0x0004 /* diff. items per AF */ typedef struct _ipfw_xtable_info { uint8_t type; /* table type (addr,iface,..) */ uint8_t tflags; /* type flags */ uint16_t mflags; /* modification flags */ uint16_t flags; /* generic table flags */ uint16_t spare[3]; uint32_t vmask; /* bitmask with value types */ uint32_t set; /* set table is in */ uint32_t kidx; /* kernel index */ uint32_t refcnt; /* number of references */ uint32_t count; /* Number of records */ uint32_t size; /* Total size of records(export)*/ uint32_t limit; /* Max number of records */ char tablename[64]; /* table name */ char algoname[64]; /* algorithm name */ ipfw_ta_tinfo ta_info; /* additional algo stats */ } ipfw_xtable_info; /* Generic table flags */ #define IPFW_TGFLAGS_LOCKED 0x01 /* Tables is locked from changes*/ /* Table type-specific flags */ #define IPFW_TFFLAG_SRCIP 0x01 #define IPFW_TFFLAG_DSTIP 0x02 #define IPFW_TFFLAG_SRCPORT 0x04 #define IPFW_TFFLAG_DSTPORT 0x08 #define IPFW_TFFLAG_PROTO 0x10 /* Table modification flags */ #define IPFW_TMFLAGS_LIMIT 0x0002 /* Change limit value */ #define IPFW_TMFLAGS_LOCK 0x0004 /* Change table lock state */ typedef struct _ipfw_iface_info { char ifname[64]; /* interface name */ uint32_t ifindex; /* interface index */ uint32_t flags; /* flags */ uint32_t refcnt; /* number of references */ uint32_t gencnt; /* number of changes */ uint64_t spare; } ipfw_iface_info; #define IPFW_IFFLAG_RESOLVED 0x01 /* Interface exists */ typedef struct _ipfw_ta_info { char algoname[64]; /* algorithm name */ uint32_t type; /* lookup type */ uint32_t flags; uint32_t refcnt; uint32_t spare0; uint64_t spare1; } ipfw_ta_info; typedef struct _ipfw_obj_header { ip_fw3_opheader opheader; /* IP_FW3 opcode */ uint32_t spare; uint16_t idx; /* object name index */ uint8_t objtype; /* object type */ uint8_t objsubtype; /* object subtype */ ipfw_obj_ntlv ntlv; /* object name tlv */ } ipfw_obj_header; typedef struct _ipfw_obj_lheader { ip_fw3_opheader opheader; /* IP_FW3 opcode */ uint32_t set_mask; /* disabled set mask */ uint32_t count; /* Total objects count */ uint32_t size; /* Total size (incl. header) */ uint32_t objsize; /* Size of one object */ } ipfw_obj_lheader; #define IPFW_CFG_GET_STATIC 0x01 #define IPFW_CFG_GET_STATES 0x02 #define IPFW_CFG_GET_COUNTERS 0x04 typedef struct _ipfw_cfg_lheader { ip_fw3_opheader opheader; /* IP_FW3 opcode */ uint32_t set_mask; /* enabled set mask */ uint32_t spare; uint32_t flags; /* Request flags */ uint32_t size; /* neded buffer size */ uint32_t start_rule; uint32_t end_rule; } ipfw_cfg_lheader; typedef struct _ipfw_range_header { ip_fw3_opheader opheader; /* IP_FW3 opcode */ ipfw_range_tlv range; } ipfw_range_header; typedef struct _ipfw_sopt_info { uint16_t opcode; uint8_t version; uint8_t dir; uint8_t spare; uint64_t refcnt; } ipfw_sopt_info; #endif /* _IPFW2_H */ diff --git a/sys/netinet/ip_var.h b/sys/netinet/ip_var.h index 2dfd7ddb4822..c25bae4b394f 100644 --- a/sys/netinet/ip_var.h +++ b/sys/netinet/ip_var.h @@ -1,311 +1,328 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IP_VAR_H_ #define _NETINET_IP_VAR_H_ #include #include #include #include /* * Overlay for ip header used by other protocols (tcp, udp). */ struct ipovly { u_char ih_x1[9]; /* (unused) */ u_char ih_pr; /* protocol */ u_short ih_len; /* protocol length */ struct in_addr ih_src; /* source internet address */ struct in_addr ih_dst; /* destination internet address */ }; #ifdef _KERNEL /* * Ip reassembly queue structure. Each fragment * being reassembled is attached to one of these structures. * They are timed out after net.inet.ip.fragttl seconds, and may also be * reclaimed if memory becomes tight. */ struct ipq { TAILQ_ENTRY(ipq) ipq_list; /* to other reass headers */ time_t ipq_expire; /* time_uptime when ipq expires */ u_char ipq_nfrags; /* # frags in this packet */ u_char ipq_p; /* protocol of this fragment */ u_short ipq_id; /* sequence id for reassembly */ int ipq_maxoff; /* total length of packet */ struct mbuf *ipq_frags; /* to ip headers of fragments */ struct in_addr ipq_src,ipq_dst; struct label *ipq_label; /* MAC label */ }; #endif /* _KERNEL */ /* * Structure stored in mbuf in inpcb.ip_options * and passed to ip_output when ip options are in use. * The actual length of the options (including ipopt_dst) * is in m_len. */ #define MAX_IPOPTLEN 40 struct ipoption { struct in_addr ipopt_dst; /* first-hop dst if source routed */ char ipopt_list[MAX_IPOPTLEN]; /* options proper */ }; #if defined(_NETINET_IN_VAR_H_) && defined(_KERNEL) /* * Structure attached to inpcb.ip_moptions and * passed to ip_output when IP multicast options are in use. * This structure is lazy-allocated. */ struct ip_moptions { struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */ struct in_addr imo_multicast_addr; /* ifindex/addr on MULTICAST_IF */ u_long imo_multicast_vif; /* vif num outgoing multicasts */ u_char imo_multicast_ttl; /* TTL for outgoing multicasts */ u_char imo_multicast_loop; /* 1 => hear sends if a member */ struct ip_mfilter_head imo_head; /* group membership list */ }; #else struct ip_moptions; #endif struct ipstat { uint64_t ips_total; /* total packets received */ uint64_t ips_badsum; /* checksum bad */ uint64_t ips_tooshort; /* packet too short */ uint64_t ips_toosmall; /* not enough data */ uint64_t ips_badhlen; /* ip header length < data size */ uint64_t ips_badlen; /* ip length < ip header length */ uint64_t ips_fragments; /* fragments received */ uint64_t ips_fragdropped; /* frags dropped (dups, out of space) */ uint64_t ips_fragtimeout; /* fragments timed out */ uint64_t ips_forward; /* packets forwarded */ uint64_t ips_fastforward; /* packets fast forwarded */ uint64_t ips_cantforward; /* packets rcvd for unreachable dest */ uint64_t ips_redirectsent; /* packets forwarded on same net */ uint64_t ips_noproto; /* unknown or unsupported protocol */ uint64_t ips_delivered; /* datagrams delivered to upper level*/ uint64_t ips_localout; /* total ip packets generated here */ uint64_t ips_odropped; /* lost packets due to nobufs, etc. */ uint64_t ips_reassembled; /* total packets reassembled ok */ uint64_t ips_fragmented; /* datagrams successfully fragmented */ uint64_t ips_ofragments; /* output fragments created */ uint64_t ips_cantfrag; /* don't fragment flag was set, etc. */ uint64_t ips_badoptions; /* error in option processing */ uint64_t ips_noroute; /* packets discarded due to no route */ uint64_t ips_badvers; /* ip version != 4 */ uint64_t ips_rawout; /* total raw ip packets generated */ uint64_t ips_toolong; /* ip length > max ip packet size */ uint64_t ips_notmember; /* multicasts for unregistered grps */ uint64_t ips_nogif; /* no match gif found */ uint64_t ips_badaddr; /* invalid address on header */ }; #ifdef _KERNEL #include #include VNET_PCPUSTAT_DECLARE(struct ipstat, ipstat); /* * In-kernel consumers can use these accessor macros directly to update * stats. */ #define IPSTAT_ADD(name, val) \ VNET_PCPUSTAT_ADD(struct ipstat, ipstat, name, (val)) #define IPSTAT_SUB(name, val) IPSTAT_ADD(name, -(val)) #define IPSTAT_INC(name) IPSTAT_ADD(name, 1) #define IPSTAT_DEC(name) IPSTAT_SUB(name, 1) /* * Kernel module consumers must use this accessor macro. */ void kmod_ipstat_inc(int statnum); #define KMOD_IPSTAT_INC(name) \ kmod_ipstat_inc(offsetof(struct ipstat, name) / sizeof(uint64_t)) void kmod_ipstat_dec(int statnum); #define KMOD_IPSTAT_DEC(name) \ kmod_ipstat_dec(offsetof(struct ipstat, name) / sizeof(uint64_t)) /* flags passed to ip_output as last parameter */ #define IP_FORWARDING 0x1 /* most of ip header exists */ #define IP_RAWOUTPUT 0x2 /* raw ip header exists */ #define IP_SENDONES 0x4 /* send all-ones broadcast */ #define IP_SENDTOIF 0x8 /* send on specific ifnet */ #define IP_ROUTETOIF SO_DONTROUTE /* 0x10 bypass routing tables */ #define IP_ALLOWBROADCAST SO_BROADCAST /* 0x20 can send broadcast packets */ #define IP_NODEFAULTFLOWID 0x40 /* Don't set the flowid from inp */ #define IP_NO_SND_TAG_RL 0x80 /* Don't send down the ratelimit tag */ #ifdef __NO_STRICT_ALIGNMENT #define IP_HDR_ALIGNED_P(ip) 1 #else #define IP_HDR_ALIGNED_P(ip) ((((intptr_t) (ip)) & 3) == 0) #endif struct ip; struct inpcb; struct route; struct sockopt; struct inpcbinfo; VNET_DECLARE(int, ip_defttl); /* default IP ttl */ VNET_DECLARE(int, ipforwarding); /* ip forwarding */ VNET_DECLARE(int, ipsendredirects); #ifdef IPSTEALTH VNET_DECLARE(int, ipstealth); /* stealth forwarding */ #endif VNET_DECLARE(struct socket *, ip_rsvpd); /* reservation protocol daemon*/ VNET_DECLARE(struct socket *, ip_mrouter); /* multicast routing daemon */ extern int (*legal_vif_num)(int); extern u_long (*ip_mcast_src)(int); VNET_DECLARE(int, rsvp_on); VNET_DECLARE(int, drop_redirect); #define V_ip_id VNET(ip_id) #define V_ip_defttl VNET(ip_defttl) #define V_ipforwarding VNET(ipforwarding) #define V_ipsendredirects VNET(ipsendredirects) #ifdef IPSTEALTH #define V_ipstealth VNET(ipstealth) #endif #define V_ip_rsvpd VNET(ip_rsvpd) #define V_ip_mrouter VNET(ip_mrouter) #define V_rsvp_on VNET(rsvp_on) #define V_drop_redirect VNET(drop_redirect) void inp_freemoptions(struct ip_moptions *); int inp_getmoptions(struct inpcb *, struct sockopt *); int inp_setmoptions(struct inpcb *, struct sockopt *); int ip_ctloutput(struct socket *, struct sockopt *sopt); int ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, u_long if_hwassist_flags); void ip_forward(struct mbuf *m, int srcrt); extern int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int ip_output(struct mbuf *, struct mbuf *, struct route *, int, struct ip_moptions *, struct inpcb *); struct mbuf * ip_reass(struct mbuf *); void ip_savecontrol(struct inpcb *, struct mbuf **, struct ip *, struct mbuf *); void ip_fillid(struct ip *); int rip_ctloutput(struct socket *, struct sockopt *); int ipip_input(struct mbuf **, int *, int); int rsvp_input(struct mbuf **, int *, int); int ip_rsvp_init(struct socket *); int ip_rsvp_done(void); extern int (*ip_rsvp_vif)(struct socket *, struct sockopt *); extern void (*ip_rsvp_force_done)(struct socket *); extern int (*rsvp_input_p)(struct mbuf **, int *, int); typedef int ipproto_input_t(struct mbuf **, int *, int); struct icmp; typedef void ipproto_ctlinput_t(struct icmp *); int ipproto_register(uint8_t, ipproto_input_t, ipproto_ctlinput_t); int ipproto_unregister(uint8_t); #define IPPROTO_REGISTER(prot, input, ctl) do { \ int error __diagused; \ error = ipproto_register(prot, input, ctl); \ MPASS(error == 0); \ } while (0) ipproto_input_t rip_input; ipproto_ctlinput_t rip_ctlinput; VNET_DECLARE(struct pfil_head *, inet_pfil_head); #define V_inet_pfil_head VNET(inet_pfil_head) #define PFIL_INET_NAME "inet" void in_delayed_cksum(struct mbuf *m); /* Hooks for ipfw, dummynet, divert etc. Most are declared in raw_ip.c */ /* * Reference to an ipfw or packet filter rule that can be carried * outside critical sections. * A rule is identified by rulenum:rule_id which is ordered. * In version chain_id the rule can be found in slot 'slot', so * we don't need a lookup if chain_id == chain->id. * * On exit from the firewall this structure refers to the rule after * the matching one (slot points to the new rule; rulenum:rule_id-1 * is the matching rule), and additional info (e.g. info often contains * the insn argument or tablearg in the low 16 bits, in host format). * On entry, the structure is valid if slot>0, and refers to the starting * rules. 'info' contains the reason for reinject, e.g. divert port, * divert direction, and so on. + * + * Packet Mark is an analogue to ipfw tags with O(1) lookup from mbuf while + * regular tags require a single-linked list traversal. Mark is a 32-bit + * number that can be looked up in a table [with 'number' table-type], matched + * or compared with a number with optional mask applied before comparison. + * Having generic nature, Mark can be used in a variety of needs. + * For example, it could be used as a security group: mark will hold a + * security group id and represent a group of packet flows that shares same + * access control policy. + * O_MASK opcode can match mark value bitwise so one can build a hierarchical + * model designating different meanings for a bit range(s). */ struct ipfw_rule_ref { +/* struct m_tag spans 24 bytes above this point, see mbuf_tags(9) */ + /* spare space just to be save in case struct m_tag grows */ +/* -- 32 bytes -- */ uint32_t slot; /* slot for matching rule */ uint32_t rulenum; /* matching rule number */ uint32_t rule_id; /* matching rule id */ uint32_t chain_id; /* ruleset id */ uint32_t info; /* see below */ + uint32_t pkt_mark; /* packet mark */ + uint32_t spare[2]; +/* -- 64 bytes -- */ }; enum { IPFW_INFO_MASK = 0x0000ffff, IPFW_INFO_OUT = 0x00000000, /* outgoing, just for convenience */ IPFW_INFO_IN = 0x80000000, /* incoming, overloads dir */ IPFW_ONEPASS = 0x40000000, /* One-pass, do not reinject */ IPFW_IS_MASK = 0x30000000, /* which source ? */ IPFW_IS_DIVERT = 0x20000000, IPFW_IS_DUMMYNET =0x10000000, IPFW_IS_PIPE = 0x08000000, /* pipe=1, queue = 0 */ }; #define MTAG_IPFW 1148380143 /* IPFW-tagged cookie */ #define MTAG_IPFW_RULE 1262273568 /* rule reference */ #define MTAG_IPFW_CALL 1308397630 /* call stack */ struct ip_fw_args; typedef int (*ip_fw_ctl_ptr_t)(struct sockopt *); VNET_DECLARE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr); #define V_ip_fw_ctl_ptr VNET(ip_fw_ctl_ptr) /* Divert hooks. */ extern void (*ip_divert_ptr)(struct mbuf *m, bool incoming); /* ng_ipfw hooks -- XXX make it the same as divert and dummynet */ extern int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool); extern int (*ip_dn_ctl_ptr)(struct sockopt *); extern int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *); #endif /* _KERNEL */ #endif /* !_NETINET_IP_VAR_H_ */ diff --git a/sys/netpfil/ipfw/ip_fw2.c b/sys/netpfil/ipfw/ip_fw2.c index f2e914e24007..4b347b2d7d2d 100644 --- a/sys/netpfil/ipfw/ip_fw2.c +++ b/sys/netpfil/ipfw/ip_fw2.c @@ -1,3673 +1,3703 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * The FreeBSD IP packet firewall, main file */ #include "opt_ipfw.h" #include "opt_ipdivert.h" #include "opt_inet.h" #ifndef INET #error "IPFIREWALL requires INET" #endif /* INET */ #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for ETHERTYPE_IP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #endif #include /* for struct grehdr */ #include #include /* XXX for in_cksum */ #ifdef MAC #include #endif #define IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5) \ SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5) SDT_PROVIDER_DEFINE(ipfw); SDT_PROBE_DEFINE6(ipfw, , , rule__matched, "int", /* retval */ "int", /* af */ "void *", /* src addr */ "void *", /* dst addr */ "struct ip_fw_args *", /* args */ "struct ip_fw *" /* rule */); /* * static variables followed by global ones. * All ipfw global variables are here. */ VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs); #define V_fw_deny_unknown_exthdrs VNET(fw_deny_unknown_exthdrs) VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1; #define V_fw_permit_single_frag6 VNET(fw_permit_single_frag6) #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT static int default_to_accept = 1; #else static int default_to_accept; #endif VNET_DEFINE(int, autoinc_step); VNET_DEFINE(int, fw_one_pass) = 1; VNET_DEFINE(unsigned int, fw_tables_max); VNET_DEFINE(unsigned int, fw_tables_sets) = 0; /* Don't use set-aware tables */ /* Use 128 tables by default */ static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT; static int jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num, int tablearg, int jump_backwards); #ifndef LINEAR_SKIPTO static int jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num, int tablearg, int jump_backwards); #define JUMP(ch, f, num, targ, back) jump_cached(ch, f, num, targ, back) #else #define JUMP(ch, f, num, targ, back) jump_lookup_pos(ch, f, num, targ, back) #endif /* * Each rule belongs to one of 32 different sets (0..31). * The variable set_disable contains one bit per set. * If the bit is set, all rules in the corresponding set * are disabled. Set RESVD_SET(31) is reserved for the default rule * and rules that are not deleted by the flush command, * and CANNOT be disabled. * Rules in set RESVD_SET can only be deleted individually. */ VNET_DEFINE(u_int32_t, set_disable); #define V_set_disable VNET(set_disable) VNET_DEFINE(int, fw_verbose); /* counter for ipfw_log(NULL...) */ VNET_DEFINE(u_int64_t, norule_counter); VNET_DEFINE(int, verbose_limit); /* layer3_chain contains the list of rules for layer 3 */ VNET_DEFINE(struct ip_fw_chain, layer3_chain); /* ipfw_vnet_ready controls when we are open for business */ VNET_DEFINE(int, ipfw_vnet_ready) = 0; VNET_DEFINE(int, ipfw_nat_ready) = 0; ipfw_nat_t *ipfw_nat_ptr = NULL; struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int); ipfw_nat_cfg_t *ipfw_nat_cfg_ptr; ipfw_nat_cfg_t *ipfw_nat_del_ptr; ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr; ipfw_nat_cfg_t *ipfw_nat_get_log_ptr; #ifdef SYSCTL_NODE uint32_t dummy_def = IPFW_DEFAULT_RULE; static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS); static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS); SYSBEGIN(f3) SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Firewall"); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0, "Only do a single pass through ipfw when using dummynet(4)"); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0, "Rule number auto-increment step"); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0, "Log matches to ipfw rules"); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0, "Set upper limit of matches of ipfw rules logged"); SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD, &dummy_def, 0, "The default/max possible rule number."); SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_ipfw_table_num, "IU", "Maximum number of concurrently used tables"); SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets, CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_ipfw_tables_sets, "IU", "Use per-set namespace for tables"); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN, &default_to_accept, 0, "Make the default rule accept all packets."); TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables); SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0, "Number of static rules"); #ifdef INET6 SYSCTL_DECL(_net_inet6_ip6); SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Firewall"); SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0, "Deny packets with unknown IPv6 Extension Headers"); SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_permit_single_frag6), 0, "Permit single packet IPv6 fragments"); #endif /* INET6 */ SYSEND #endif /* SYSCTL_NODE */ /* * Some macros used in the various matching options. * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T * Other macros just cast void * into the appropriate type */ #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl)) #define TCP(p) ((struct tcphdr *)(p)) #define SCTP(p) ((struct sctphdr *)(p)) #define UDP(p) ((struct udphdr *)(p)) #define ICMP(p) ((struct icmphdr *)(p)) #define ICMP6(p) ((struct icmp6_hdr *)(p)) static __inline int icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd) { int type = icmp->icmp_type; return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<icmp_type; return (type <= ICMP_MAXTYPE && (TT & (1<arg1 or cmd->d[0]. * * We scan options and store the bits we find set. We succeed if * * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear * * The code is sometimes optimized not to store additional variables. */ static int flags_match(ipfw_insn *cmd, u_int8_t bits) { u_char want_clear; bits = ~bits; if ( ((cmd->arg1 & 0xff) & bits) != 0) return 0; /* some bits we want set were clear */ want_clear = (cmd->arg1 >> 8) & 0xff; if ( (want_clear & bits) != want_clear) return 0; /* some bits we want clear were set */ return 1; } static int ipopts_match(struct ip *ip, ipfw_insn *cmd) { int optlen, bits = 0; u_char *cp = (u_char *)(ip + 1); int x = (ip->ip_hl << 2) - sizeof (struct ip); for (; x > 0; x -= optlen, cp += optlen) { int opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) optlen = 1; else { optlen = cp[IPOPT_OLEN]; if (optlen <= 0 || optlen > x) return 0; /* invalid or truncated */ } switch (opt) { default: break; case IPOPT_LSRR: bits |= IP_FW_IPOPT_LSRR; break; case IPOPT_SSRR: bits |= IP_FW_IPOPT_SSRR; break; case IPOPT_RR: bits |= IP_FW_IPOPT_RR; break; case IPOPT_TS: bits |= IP_FW_IPOPT_TS; break; } } return (flags_match(cmd, bits)); } /* * Parse TCP options. The logic copied from tcp_dooptions(). */ static int tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss) { const u_char *cp = (const u_char *)(tcp + 1); int optlen, bits = 0; int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr); for (; cnt > 0; cnt -= optlen, cp += optlen) { int opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { if (cnt < 2) break; optlen = cp[1]; if (optlen < 2 || optlen > cnt) break; } switch (opt) { default: break; case TCPOPT_MAXSEG: if (optlen != TCPOLEN_MAXSEG) break; bits |= IP_FW_TCPOPT_MSS; if (mss != NULL) *mss = be16dec(cp + 2); break; case TCPOPT_WINDOW: if (optlen == TCPOLEN_WINDOW) bits |= IP_FW_TCPOPT_WINDOW; break; case TCPOPT_SACK_PERMITTED: if (optlen == TCPOLEN_SACK_PERMITTED) bits |= IP_FW_TCPOPT_SACK; break; case TCPOPT_SACK: if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0) bits |= IP_FW_TCPOPT_SACK; break; case TCPOPT_TIMESTAMP: if (optlen == TCPOLEN_TIMESTAMP) bits |= IP_FW_TCPOPT_TS; break; } } return (bits); } static int tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd) { return (flags_match(cmd, tcpopts_parse(tcp, NULL))); } static int iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain, uint32_t *tablearg) { if (ifp == NULL) /* no iface with this packet, match fails */ return (0); /* Check by name or by IP address */ if (cmd->name[0] != '\0') { /* match by name */ if (cmd->name[0] == '\1') /* use tablearg to match */ return ipfw_lookup_table(chain, cmd->p.kidx, 0, &ifp->if_index, tablearg); /* Check name */ if (cmd->p.glob) { if (fnmatch(cmd->name, ifp->if_xname, 0) == 0) return(1); } else { if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0) return(1); } } else { #if !defined(USERSPACE) && defined(__FreeBSD__) /* and OSX too ? */ struct ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) { if (ia->ifa_addr->sa_family != AF_INET) continue; if (cmd->p.ip.s_addr == ((struct sockaddr_in *) (ia->ifa_addr))->sin_addr.s_addr) return (1); /* match */ } #endif /* __FreeBSD__ */ } return(0); /* no match, fail ... */ } /* * The verify_path function checks if a route to the src exists and * if it is reachable via ifp (when provided). * * The 'verrevpath' option checks that the interface that an IP packet * arrives on is the same interface that traffic destined for the * packet's source address would be routed out of. * The 'versrcreach' option just checks that the source address is * reachable via any route (except default) in the routing table. * These two are a measure to block forged packets. This is also * commonly known as "anti-spoofing" or Unicast Reverse Path * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs * is purposely reminiscent of the Cisco IOS command, * * ip verify unicast reverse-path * ip verify unicast source reachable-via any * * which implements the same functionality. But note that the syntax * is misleading, and the check may be performed on all IP packets * whether unicast, multicast, or broadcast. */ static int verify_path(struct in_addr src, struct ifnet *ifp, u_int fib) { #if defined(USERSPACE) || !defined(__FreeBSD__) return 0; #else struct nhop_object *nh; nh = fib4_lookup(fib, src, 0, NHR_NONE, 0); if (nh == NULL) return (0); /* * If ifp is provided, check for equality with rtentry. * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp, * in order to pass packets injected back by if_simloop(): * routing entry (via lo0) for our own address * may exist, so we need to handle routing assymetry. */ if (ifp != NULL && ifp != nh->nh_aifp) return (0); /* if no ifp provided, check if rtentry is not default route */ if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0) return (0); /* or if this is a blackhole/reject route */ if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0) return (0); /* found valid route */ return 1; #endif /* __FreeBSD__ */ } /* * Generate an SCTP packet containing an ABORT chunk. The verification tag * is given by vtag. The T-bit is set in the ABORT chunk if and only if * reflected is not 0. */ static struct mbuf * ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag, int reflected) { struct mbuf *m; struct ip *ip; #ifdef INET6 struct ip6_hdr *ip6; #endif struct sctphdr *sctp; struct sctp_chunkhdr *chunk; u_int16_t hlen, plen, tlen; MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); M_SETFIB(m, id->fib); #ifdef MAC if (replyto != NULL) mac_netinet_firewall_reply(replyto, m); else mac_netinet_firewall_send(m); #else (void)replyto; /* don't warn about unused arg */ #endif switch (id->addr_type) { case 4: hlen = sizeof(struct ip); break; #ifdef INET6 case 6: hlen = sizeof(struct ip6_hdr); break; #endif default: /* XXX: log me?!? */ FREE_PKT(m); return (NULL); } plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr); tlen = hlen + plen; m->m_data += max_linkhdr; m->m_flags |= M_SKIP_FIREWALL; m->m_pkthdr.len = m->m_len = tlen; m->m_pkthdr.rcvif = NULL; bzero(m->m_data, tlen); switch (id->addr_type) { case 4: ip = mtod(m, struct ip *); ip->ip_v = 4; ip->ip_hl = sizeof(struct ip) >> 2; ip->ip_tos = IPTOS_LOWDELAY; ip->ip_len = htons(tlen); ip->ip_id = htons(0); ip->ip_off = htons(0); ip->ip_ttl = V_ip_defttl; ip->ip_p = IPPROTO_SCTP; ip->ip_sum = 0; ip->ip_src.s_addr = htonl(id->dst_ip); ip->ip_dst.s_addr = htonl(id->src_ip); sctp = (struct sctphdr *)(ip + 1); break; #ifdef INET6 case 6: ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = htons(plen); ip6->ip6_nxt = IPPROTO_SCTP; ip6->ip6_hlim = IPV6_DEFHLIM; ip6->ip6_src = id->dst_ip6; ip6->ip6_dst = id->src_ip6; sctp = (struct sctphdr *)(ip6 + 1); break; #endif } sctp->src_port = htons(id->dst_port); sctp->dest_port = htons(id->src_port); sctp->v_tag = htonl(vtag); sctp->checksum = htonl(0); chunk = (struct sctp_chunkhdr *)(sctp + 1); chunk->chunk_type = SCTP_ABORT_ASSOCIATION; chunk->chunk_flags = 0; if (reflected != 0) { chunk->chunk_flags |= SCTP_HAD_NO_TCB; } chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr)); sctp->checksum = sctp_calculate_cksum(m, hlen); return (m); } /* * Generate a TCP packet, containing either a RST or a keepalive. * When flags & TH_RST, we are sending a RST packet, because of a * "reset" action matched the packet. * Otherwise we are sending a keepalive, and flags & TH_ * The 'replyto' mbuf is the mbuf being replied to, if any, and is required * so that MAC can label the reply appropriately. */ struct mbuf * ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags) { struct mbuf *m = NULL; /* stupid compiler */ struct ip *h = NULL; /* stupid compiler */ #ifdef INET6 struct ip6_hdr *h6 = NULL; #endif struct tcphdr *th = NULL; int len, dir; MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); M_SETFIB(m, id->fib); #ifdef MAC if (replyto != NULL) mac_netinet_firewall_reply(replyto, m); else mac_netinet_firewall_send(m); #else (void)replyto; /* don't warn about unused arg */ #endif switch (id->addr_type) { case 4: len = sizeof(struct ip) + sizeof(struct tcphdr); break; #ifdef INET6 case 6: len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); break; #endif default: /* XXX: log me?!? */ FREE_PKT(m); return (NULL); } dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN); m->m_data += max_linkhdr; m->m_flags |= M_SKIP_FIREWALL; m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = NULL; bzero(m->m_data, len); switch (id->addr_type) { case 4: h = mtod(m, struct ip *); /* prepare for checksum */ h->ip_p = IPPROTO_TCP; h->ip_len = htons(sizeof(struct tcphdr)); if (dir) { h->ip_src.s_addr = htonl(id->src_ip); h->ip_dst.s_addr = htonl(id->dst_ip); } else { h->ip_src.s_addr = htonl(id->dst_ip); h->ip_dst.s_addr = htonl(id->src_ip); } th = (struct tcphdr *)(h + 1); break; #ifdef INET6 case 6: h6 = mtod(m, struct ip6_hdr *); /* prepare for checksum */ h6->ip6_nxt = IPPROTO_TCP; h6->ip6_plen = htons(sizeof(struct tcphdr)); if (dir) { h6->ip6_src = id->src_ip6; h6->ip6_dst = id->dst_ip6; } else { h6->ip6_src = id->dst_ip6; h6->ip6_dst = id->src_ip6; } th = (struct tcphdr *)(h6 + 1); break; #endif } if (dir) { th->th_sport = htons(id->src_port); th->th_dport = htons(id->dst_port); } else { th->th_sport = htons(id->dst_port); th->th_dport = htons(id->src_port); } th->th_off = sizeof(struct tcphdr) >> 2; if (flags & TH_RST) { if (flags & TH_ACK) { th->th_seq = htonl(ack); th->th_flags = TH_RST; } else { if (flags & TH_SYN) seq++; th->th_ack = htonl(seq); th->th_flags = TH_RST | TH_ACK; } } else { /* * Keepalive - use caller provided sequence numbers */ th->th_seq = htonl(seq); th->th_ack = htonl(ack); th->th_flags = TH_ACK; } switch (id->addr_type) { case 4: th->th_sum = in_cksum(m, len); /* finish the ip header */ h->ip_v = 4; h->ip_hl = sizeof(*h) >> 2; h->ip_tos = IPTOS_LOWDELAY; h->ip_off = htons(0); h->ip_len = htons(len); h->ip_ttl = V_ip_defttl; h->ip_sum = 0; break; #ifdef INET6 case 6: th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6), sizeof(struct tcphdr)); /* finish the ip6 header */ h6->ip6_vfc |= IPV6_VERSION; h6->ip6_hlim = IPV6_DEFHLIM; break; #endif } return (m); } #ifdef INET6 /* * ipv6 specific rules here... */ static __inline int icmp6type_match(int type, ipfw_insn_u32 *cmd) { return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) ); } static int flow6id_match(int curr_flow, ipfw_insn_u32 *cmd) { int i; for (i=0; i <= cmd->o.arg1; ++i) if (curr_flow == cmd->d[i]) return 1; return 0; } /* support for IP6_*_ME opcodes */ static const struct in6_addr lla_mask = {{{ 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}}; static int ipfw_localip6(struct in6_addr *in6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; if (IN6_IS_ADDR_MULTICAST(in6)) return (0); if (!IN6_IS_ADDR_LINKLOCAL(in6)) return (in6_localip(in6)); IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) continue; if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr, in6, &lla_mask)) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (1); } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } static int verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib) { struct nhop_object *nh; if (IN6_IS_SCOPE_LINKLOCAL(src)) return (1); nh = fib6_lookup(fib, src, 0, NHR_NONE, 0); if (nh == NULL) return (0); /* If ifp is provided, check for equality with route table. */ if (ifp != NULL && ifp != nh->nh_aifp) return (0); /* if no ifp provided, check if rtentry is not default route */ if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0) return (0); /* or if this is a blackhole/reject route */ if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0) return (0); /* found valid route */ return 1; } static int is_icmp6_query(int icmp6_type) { if ((icmp6_type <= ICMP6_MAXTYPE) && (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_MEMBERSHIP_QUERY || icmp6_type == ICMP6_WRUREQUEST || icmp6_type == ICMP6_FQDN_QUERY || icmp6_type == ICMP6_NI_QUERY)) return (1); return (0); } static int map_icmp_unreach(int code) { /* RFC 7915 p4.2 */ switch (code) { case ICMP_UNREACH_NET: case ICMP_UNREACH_HOST: case ICMP_UNREACH_SRCFAIL: case ICMP_UNREACH_NET_UNKNOWN: case ICMP_UNREACH_HOST_UNKNOWN: case ICMP_UNREACH_TOSNET: case ICMP_UNREACH_TOSHOST: return (ICMP6_DST_UNREACH_NOROUTE); case ICMP_UNREACH_PORT: return (ICMP6_DST_UNREACH_NOPORT); default: /* * Map the rest of codes into admit prohibited. * XXX: unreach proto should be mapped into ICMPv6 * parameter problem, but we use only unreach type. */ return (ICMP6_DST_UNREACH_ADMIN); } } static void send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6) { struct mbuf *m; m = args->m; if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) { struct tcphdr *tcp; tcp = (struct tcphdr *)((char *)ip6 + hlen); if ((tcp->th_flags & TH_RST) == 0) { struct mbuf *m0; m0 = ipfw_send_pkt(args->m, &(args->f_id), ntohl(tcp->th_seq), ntohl(tcp->th_ack), tcp->th_flags | TH_RST); if (m0 != NULL) ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); } FREE_PKT(m); } else if (code == ICMP6_UNREACH_ABORT && args->f_id.proto == IPPROTO_SCTP) { struct mbuf *m0; struct sctphdr *sctp; u_int32_t v_tag; int reflected; sctp = (struct sctphdr *)((char *)ip6 + hlen); reflected = 1; v_tag = ntohl(sctp->v_tag); /* Investigate the first chunk header if available */ if (m->m_len >= hlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr)) { struct sctp_chunkhdr *chunk; chunk = (struct sctp_chunkhdr *)(sctp + 1); switch (chunk->chunk_type) { case SCTP_INITIATION: /* * Packets containing an INIT chunk MUST have * a zero v-tag. */ if (v_tag != 0) { v_tag = 0; break; } /* INIT chunk MUST NOT be bundled */ if (m->m_pkthdr.len > hlen + sizeof(struct sctphdr) + ntohs(chunk->chunk_length) + 3) { break; } /* Use the initiate tag if available */ if ((m->m_len >= hlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd))) { struct sctp_init *init; init = (struct sctp_init *)(chunk + 1); v_tag = ntohl(init->initiate_tag); reflected = 0; } break; case SCTP_ABORT_ASSOCIATION: /* * If the packet contains an ABORT chunk, don't * reply. * XXX: We should search through all chunks, * but do not do that to avoid attacks. */ v_tag = 0; break; } } if (v_tag == 0) { m0 = NULL; } else { m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag, reflected); } if (m0 != NULL) ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL); FREE_PKT(m); } else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) { /* Send an ICMPv6 unreach. */ #if 0 /* * Unlike above, the mbufs need to line up with the ip6 hdr, * as the contents are read. We need to m_adj() the * needed amount. * The mbuf will however be thrown away so we can adjust it. * Remember we did an m_pullup on it already so we * can make some assumptions about contiguousness. */ if (args->L3offset) m_adj(m, args->L3offset); #endif icmp6_error(m, ICMP6_DST_UNREACH, code, 0); } else FREE_PKT(m); args->m = NULL; } #endif /* INET6 */ /* * sends a reject message, consuming the mbuf passed as an argument. */ static void send_reject(struct ip_fw_args *args, const ipfw_insn *cmd, int iplen, struct ip *ip) { int code, mtu; code = cmd->arg1; if (code == ICMP_UNREACH_NEEDFRAG && cmd->len == F_INSN_SIZE(ipfw_insn_u16)) mtu = ((const ipfw_insn_u16 *)cmd)->ports[0]; else mtu = 0; #if 0 /* XXX When ip is not guaranteed to be at mtod() we will * need to account for this */ * The mbuf will however be thrown away so we can adjust it. * Remember we did an m_pullup on it already so we * can make some assumptions about contiguousness. */ if (args->L3offset) m_adj(m, args->L3offset); #endif if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) { /* Send an ICMP unreach */ icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu); } else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) { struct tcphdr *const tcp = L3HDR(struct tcphdr, mtod(args->m, struct ip *)); if ( (tcp->th_flags & TH_RST) == 0) { struct mbuf *m; m = ipfw_send_pkt(args->m, &(args->f_id), ntohl(tcp->th_seq), ntohl(tcp->th_ack), tcp->th_flags | TH_RST); if (m != NULL) ip_output(m, NULL, NULL, 0, NULL, NULL); } FREE_PKT(args->m); } else if (code == ICMP_REJECT_ABORT && args->f_id.proto == IPPROTO_SCTP) { struct mbuf *m; struct sctphdr *sctp; struct sctp_chunkhdr *chunk; struct sctp_init *init; u_int32_t v_tag; int reflected; sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *)); reflected = 1; v_tag = ntohl(sctp->v_tag); if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr)) { /* Look at the first chunk header if available */ chunk = (struct sctp_chunkhdr *)(sctp + 1); switch (chunk->chunk_type) { case SCTP_INITIATION: /* * Packets containing an INIT chunk MUST have * a zero v-tag. */ if (v_tag != 0) { v_tag = 0; break; } /* INIT chunk MUST NOT be bundled */ if (iplen > (ip->ip_hl << 2) + sizeof(struct sctphdr) + ntohs(chunk->chunk_length) + 3) { break; } /* Use the initiate tag if available */ if ((iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd))) { init = (struct sctp_init *)(chunk + 1); v_tag = ntohl(init->initiate_tag); reflected = 0; } break; case SCTP_ABORT_ASSOCIATION: /* * If the packet contains an ABORT chunk, don't * reply. * XXX: We should search through all chunks, * but do not do that to avoid attacks. */ v_tag = 0; break; } } if (v_tag == 0) { m = NULL; } else { m = ipfw_send_abort(args->m, &(args->f_id), v_tag, reflected); } if (m != NULL) ip_output(m, NULL, NULL, 0, NULL, NULL); FREE_PKT(args->m); } else FREE_PKT(args->m); args->m = NULL; } /* * Support for uid/gid/jail lookup. These tests are expensive * (because we may need to look into the list of active sockets) * so we cache the results. ugid_lookupp is 0 if we have not * yet done a lookup, 1 if we succeeded, and -1 if we tried * and failed. The function always returns the match value. * We could actually spare the variable and use *uc, setting * it to '(void *)check_uidgid if we have no info, NULL if * we tried and failed, or any other value if successful. */ static int check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp, struct ucred **uc) { #if defined(USERSPACE) return 0; // not supported in userspace #else #ifndef __FreeBSD__ /* XXX */ return cred_check(insn, proto, oif, dst_ip, dst_port, src_ip, src_port, (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb); #else /* FreeBSD */ struct in_addr src_ip, dst_ip; struct inpcbinfo *pi; struct ipfw_flow_id *id; struct inpcb *pcb, *inp; int lookupflags; int match; id = &args->f_id; inp = args->inp; /* * Check to see if the UDP or TCP stack supplied us with * the PCB. If so, rather then holding a lock and looking * up the PCB, we can use the one that was supplied. */ if (inp && *ugid_lookupp == 0) { INP_LOCK_ASSERT(inp); if (inp->inp_socket != NULL) { *uc = crhold(inp->inp_cred); *ugid_lookupp = 1; } else *ugid_lookupp = -1; } /* * If we have already been here and the packet has no * PCB entry associated with it, then we can safely * assume that this is a no match. */ if (*ugid_lookupp == -1) return (0); if (id->proto == IPPROTO_TCP) { lookupflags = 0; pi = &V_tcbinfo; } else if (id->proto == IPPROTO_UDP) { lookupflags = INPLOOKUP_WILDCARD; pi = &V_udbinfo; } else if (id->proto == IPPROTO_UDPLITE) { lookupflags = INPLOOKUP_WILDCARD; pi = &V_ulitecbinfo; } else return 0; lookupflags |= INPLOOKUP_RLOCKPCB; match = 0; if (*ugid_lookupp == 0) { if (id->addr_type == 6) { #ifdef INET6 if (args->flags & IPFW_ARGS_IN) pcb = in6_pcblookup_mbuf(pi, &id->src_ip6, htons(id->src_port), &id->dst_ip6, htons(id->dst_port), lookupflags, NULL, args->m); else pcb = in6_pcblookup_mbuf(pi, &id->dst_ip6, htons(id->dst_port), &id->src_ip6, htons(id->src_port), lookupflags, args->ifp, args->m); #else *ugid_lookupp = -1; return (0); #endif } else { src_ip.s_addr = htonl(id->src_ip); dst_ip.s_addr = htonl(id->dst_ip); if (args->flags & IPFW_ARGS_IN) pcb = in_pcblookup_mbuf(pi, src_ip, htons(id->src_port), dst_ip, htons(id->dst_port), lookupflags, NULL, args->m); else pcb = in_pcblookup_mbuf(pi, dst_ip, htons(id->dst_port), src_ip, htons(id->src_port), lookupflags, args->ifp, args->m); } if (pcb != NULL) { INP_RLOCK_ASSERT(pcb); *uc = crhold(pcb->inp_cred); *ugid_lookupp = 1; INP_RUNLOCK(pcb); } if (*ugid_lookupp == 0) { /* * We tried and failed, set the variable to -1 * so we will not try again on this packet. */ *ugid_lookupp = -1; return (0); } } if (insn->o.opcode == O_UID) match = ((*uc)->cr_uid == (uid_t)insn->d[0]); else if (insn->o.opcode == O_GID) match = groupmember((gid_t)insn->d[0], *uc); else if (insn->o.opcode == O_JAIL) match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]); return (match); #endif /* __FreeBSD__ */ #endif /* not supported in userspace */ } /* * Helper function to set args with info on the rule after the matching * one. slot is precise, whereas we guess rule_id as they are * assigned sequentially. */ static inline void set_match(struct ip_fw_args *args, int slot, struct ip_fw_chain *chain) { args->rule.chain_id = chain->id; args->rule.slot = slot + 1; /* we use 0 as a marker */ args->rule.rule_id = 1 + chain->map[slot]->id; args->rule.rulenum = chain->map[slot]->rulenum; args->flags |= IPFW_ARGS_REF; } static int jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, int num, int tablearg, int jump_backwards) { int f_pos, i; i = IP_FW_ARG_TABLEARG(chain, num, skipto); /* make sure we do not jump backward */ if (jump_backwards == 0 && i <= f->rulenum) i = f->rulenum + 1; #ifndef LINEAR_SKIPTO if (chain->idxmap != NULL) f_pos = chain->idxmap[i]; else f_pos = ipfw_find_rule(chain, i, 0); #else f_pos = chain->idxmap[i]; #endif /* LINEAR_SKIPTO */ return (f_pos); } #ifndef LINEAR_SKIPTO /* * Helper function to enable cached rule lookups using * cache.id and cache.pos fields in ipfw rule. */ static int jump_cached(struct ip_fw_chain *chain, struct ip_fw *f, int num, int tablearg, int jump_backwards) { int f_pos; /* Can't use cache with IP_FW_TARG */ if (num == IP_FW_TARG) return jump_lookup_pos(chain, f, num, tablearg, jump_backwards); /* * If possible use cached f_pos (in f->cache.pos), * whose version is written in f->cache.id (horrible hacks * to avoid changing the ABI). * * Multiple threads can execute the same rule simultaneously, * we need to ensure that cache.pos is updated before cache.id. */ #ifdef __LP64__ struct ip_fw_jump_cache cache; cache.raw_value = f->cache.raw_value; if (cache.id == chain->id) return (cache.pos); f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards); cache.pos = f_pos; cache.id = chain->id; f->cache.raw_value = cache.raw_value; #else if (f->cache.id == chain->id) { /* Load pos after id */ atomic_thread_fence_acq(); return (f->cache.pos); } f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards); f->cache.pos = f_pos; /* Store id after pos */ atomic_thread_fence_rel(); f->cache.id = chain->id; #endif /* !__LP64__ */ return (f_pos); } #endif /* !LINEAR_SKIPTO */ #define TARG(k, f) IP_FW_ARG_TABLEARG(chain, k, f) /* * The main check routine for the firewall. * * All arguments are in args so we can modify them and return them * back to the caller. * * Parameters: * * args->m (in/out) The packet; we set to NULL when/if we nuke it. * Starts with the IP header. * args->L3offset Number of bytes bypassed if we came from L2. * e.g. often sizeof(eh) ** NOTYET ** * args->ifp Incoming or outgoing interface. * args->divert_rule (in/out) * Skip up to the first rule past this rule number; * upon return, non-zero port number for divert or tee. * * args->rule Pointer to the last matching rule (in/out) * args->next_hop Socket we are forwarding to (out). * args->next_hop6 IPv6 next hop we are forwarding to (out). * args->f_id Addresses grabbed from the packet (out) * args->rule.info a cookie depending on rule action * * Return value: * * IP_FW_PASS the packet must be accepted * IP_FW_DENY the packet must be dropped * IP_FW_DIVERT divert packet, port in m_tag * IP_FW_TEE tee packet, port in m_tag * IP_FW_DUMMYNET to dummynet, pipe in args->cookie * IP_FW_NETGRAPH into netgraph, cookie args->cookie * args->rule contains the matching rule, * args->rule.info has additional information. * */ int ipfw_chk(struct ip_fw_args *args) { /* * Local variables holding state while processing a packet: * * IMPORTANT NOTE: to speed up the processing of rules, there * are some assumption on the values of the variables, which * are documented here. Should you change them, please check * the implementation of the various instructions to make sure * that they still work. * * m | args->m Pointer to the mbuf, as received from the caller. * It may change if ipfw_chk() does an m_pullup, or if it * consumes the packet because it calls send_reject(). * XXX This has to change, so that ipfw_chk() never modifies * or consumes the buffer. * OR * args->mem Pointer to contigous memory chunk. * ip Is the beginning of the ip(4 or 6) header. * eh Ethernet header in case if input is Layer2. */ struct mbuf *m; struct ip *ip; struct ether_header *eh; /* * For rules which contain uid/gid or jail constraints, cache * a copy of the users credentials after the pcb lookup has been * executed. This will speed up the processing of rules with * these types of constraints, as well as decrease contention * on pcb related locks. */ #ifndef __FreeBSD__ struct bsd_ucred ucred_cache; #else struct ucred *ucred_cache = NULL; #endif int ucred_lookup = 0; int f_pos = 0; /* index of current rule in the array */ int retval = 0; struct ifnet *oif, *iif; /* * hlen The length of the IP header. */ u_int hlen = 0; /* hlen >0 means we have an IP pkt */ /* * offset The offset of a fragment. offset != 0 means that * we have a fragment at this offset of an IPv4 packet. * offset == 0 means that (if this is an IPv4 packet) * this is the first or only fragment. * For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header * or there is a single packet fragment (fragment header added * without needed). We will treat a single packet fragment as if * there was no fragment header (or log/block depending on the * V_fw_permit_single_frag6 sysctl setting). */ u_short offset = 0; u_short ip6f_mf = 0; /* * Local copies of addresses. They are only valid if we have * an IP packet. * * proto The protocol. Set to 0 for non-ip packets, * or to the protocol read from the packet otherwise. * proto != 0 means that we have an IPv4 packet. * * src_port, dst_port port numbers, in HOST format. Only * valid for TCP and UDP packets. * * src_ip, dst_ip ip addresses, in NETWORK format. * Only valid for IPv4 packets. */ uint8_t proto; uint16_t src_port, dst_port; /* NOTE: host format */ struct in_addr src_ip, dst_ip; /* NOTE: network format */ int iplen = 0; int pktlen; struct ipfw_dyn_info dyn_info; struct ip_fw *q = NULL; struct ip_fw_chain *chain = &V_layer3_chain; /* * We store in ulp a pointer to the upper layer protocol header. * In the ipv4 case this is easy to determine from the header, * but for ipv6 we might have some additional headers in the middle. * ulp is NULL if not found. */ void *ulp = NULL; /* upper layer protocol pointer. */ /* XXX ipv6 variables */ int is_ipv6 = 0; #ifdef INET6 uint8_t icmp6_type = 0; #endif uint16_t ext_hd = 0; /* bits vector for extension header filtering */ /* end of ipv6 variables */ int is_ipv4 = 0; int done = 0; /* flag to exit the outer loop */ IPFW_RLOCK_TRACKER; bool mem; if ((mem = (args->flags & IPFW_ARGS_LENMASK))) { if (args->flags & IPFW_ARGS_ETHER) { eh = (struct ether_header *)args->mem; if (eh->ether_type == htons(ETHERTYPE_VLAN)) ip = (struct ip *) ((struct ether_vlan_header *)eh + 1); else ip = (struct ip *)(eh + 1); } else { eh = NULL; ip = (struct ip *)args->mem; } pktlen = IPFW_ARGS_LENGTH(args->flags); args->f_id.fib = args->ifp->if_fib; /* best guess */ } else { m = args->m; if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready)) return (IP_FW_PASS); /* accept */ if (args->flags & IPFW_ARGS_ETHER) { /* We need some amount of data to be contiguous. */ if (m->m_len < min(m->m_pkthdr.len, max_protohdr) && (args->m = m = m_pullup(m, min(m->m_pkthdr.len, max_protohdr))) == NULL) goto pullup_failed; eh = mtod(m, struct ether_header *); ip = (struct ip *)(eh + 1); } else { eh = NULL; ip = mtod(m, struct ip *); } pktlen = m->m_pkthdr.len; args->f_id.fib = M_GETFIB(m); /* mbuf not altered */ } dst_ip.s_addr = 0; /* make sure it is initialized */ src_ip.s_addr = 0; /* make sure it is initialized */ src_port = dst_port = 0; DYN_INFO_INIT(&dyn_info); /* * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous, * then it sets p to point at the offset "len" in the mbuf. WARNING: the * pointer might become stale after other pullups (but we never use it * this way). */ #define PULLUP_TO(_len, p, T) PULLUP_LEN(_len, p, sizeof(T)) #define EHLEN (eh != NULL ? ((char *)ip - (char *)eh) : 0) #define _PULLUP_LOCKED(_len, p, T, unlock) \ do { \ int x = (_len) + T + EHLEN; \ if (mem) { \ if (__predict_false(pktlen < x)) { \ unlock; \ goto pullup_failed; \ } \ p = (char *)args->mem + (_len) + EHLEN; \ } else { \ if (__predict_false((m)->m_len < x)) { \ args->m = m = m_pullup(m, x); \ if (m == NULL) { \ unlock; \ goto pullup_failed; \ } \ } \ p = mtod(m, char *) + (_len) + EHLEN; \ } \ } while (0) #define PULLUP_LEN(_len, p, T) _PULLUP_LOCKED(_len, p, T, ) #define PULLUP_LEN_LOCKED(_len, p, T) \ _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain)); \ UPDATE_POINTERS() /* * In case pointers got stale after pullups, update them. */ #define UPDATE_POINTERS() \ do { \ if (!mem) { \ if (eh != NULL) { \ eh = mtod(m, struct ether_header *); \ ip = (struct ip *)(eh + 1); \ } else \ ip = mtod(m, struct ip *); \ args->m = m; \ } \ } while (0) /* Identify IP packets and fill up variables. */ if (pktlen >= sizeof(struct ip6_hdr) && (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) && ip->ip_v == 6) { struct ip6_hdr *ip6 = (struct ip6_hdr *)ip; is_ipv6 = 1; args->flags |= IPFW_ARGS_IP6; hlen = sizeof(struct ip6_hdr); proto = ip6->ip6_nxt; /* Search extension headers to find upper layer protocols */ while (ulp == NULL && offset == 0) { switch (proto) { case IPPROTO_ICMPV6: PULLUP_TO(hlen, ulp, struct icmp6_hdr); #ifdef INET6 icmp6_type = ICMP6(ulp)->icmp6_type; #endif break; case IPPROTO_TCP: PULLUP_TO(hlen, ulp, struct tcphdr); dst_port = TCP(ulp)->th_dport; src_port = TCP(ulp)->th_sport; /* save flags for dynamic rules */ args->f_id._flags = TCP(ulp)->th_flags; break; case IPPROTO_SCTP: if (pktlen >= hlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)) PULLUP_LEN(hlen, ulp, sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)); else if (pktlen >= hlen + sizeof(struct sctphdr)) PULLUP_LEN(hlen, ulp, pktlen - hlen); else PULLUP_LEN(hlen, ulp, sizeof(struct sctphdr)); src_port = SCTP(ulp)->src_port; dst_port = SCTP(ulp)->dest_port; break; case IPPROTO_UDP: case IPPROTO_UDPLITE: PULLUP_TO(hlen, ulp, struct udphdr); dst_port = UDP(ulp)->uh_dport; src_port = UDP(ulp)->uh_sport; break; case IPPROTO_HOPOPTS: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_hbh); ext_hd |= EXT_HOPOPTS; hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3; proto = ((struct ip6_hbh *)ulp)->ip6h_nxt; ulp = NULL; break; case IPPROTO_ROUTING: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_rthdr); switch (((struct ip6_rthdr *)ulp)->ip6r_type) { case 0: ext_hd |= EXT_RTHDR0; break; case 2: ext_hd |= EXT_RTHDR2; break; default: if (V_fw_verbose) printf("IPFW2: IPV6 - Unknown " "Routing Header type(%d)\n", ((struct ip6_rthdr *) ulp)->ip6r_type); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); break; } ext_hd |= EXT_ROUTING; hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3; proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt; ulp = NULL; break; case IPPROTO_FRAGMENT: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_frag); ext_hd |= EXT_FRAGMENT; hlen += sizeof (struct ip6_frag); proto = ((struct ip6_frag *)ulp)->ip6f_nxt; offset = ((struct ip6_frag *)ulp)->ip6f_offlg & IP6F_OFF_MASK; ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg & IP6F_MORE_FRAG; if (V_fw_permit_single_frag6 == 0 && offset == 0 && ip6f_mf == 0) { if (V_fw_verbose) printf("IPFW2: IPV6 - Invalid " "Fragment Header\n"); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); break; } args->f_id.extra = ntohl(((struct ip6_frag *)ulp)->ip6f_ident); ulp = NULL; break; case IPPROTO_DSTOPTS: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_hbh); ext_hd |= EXT_DSTOPTS; hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3; proto = ((struct ip6_hbh *)ulp)->ip6h_nxt; ulp = NULL; break; case IPPROTO_AH: /* RFC 2402 */ PULLUP_TO(hlen, ulp, struct ip6_ext); ext_hd |= EXT_AH; hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2; proto = ((struct ip6_ext *)ulp)->ip6e_nxt; ulp = NULL; break; case IPPROTO_ESP: /* RFC 2406 */ PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */ /* Anything past Seq# is variable length and * data past this ext. header is encrypted. */ ext_hd |= EXT_ESP; break; case IPPROTO_NONE: /* RFC 2460 */ /* * Packet ends here, and IPv6 header has * already been pulled up. If ip6e_len!=0 * then octets must be ignored. */ ulp = ip; /* non-NULL to get out of loop. */ break; case IPPROTO_OSPFIGP: /* XXX OSPF header check? */ PULLUP_TO(hlen, ulp, struct ip6_ext); break; case IPPROTO_PIM: /* XXX PIM header check? */ PULLUP_TO(hlen, ulp, struct pim); break; case IPPROTO_GRE: /* RFC 1701 */ /* XXX GRE header check? */ PULLUP_TO(hlen, ulp, struct grehdr); break; case IPPROTO_CARP: PULLUP_TO(hlen, ulp, offsetof( struct carp_header, carp_counter)); if (CARP_ADVERTISEMENT != ((struct carp_header *)ulp)->carp_type) return (IP_FW_DENY); break; case IPPROTO_IPV6: /* RFC 2893 */ PULLUP_TO(hlen, ulp, struct ip6_hdr); break; case IPPROTO_IPV4: /* RFC 2893 */ PULLUP_TO(hlen, ulp, struct ip); break; default: if (V_fw_verbose) printf("IPFW2: IPV6 - Unknown " "Extension Header(%d), ext_hd=%x\n", proto, ext_hd); if (V_fw_deny_unknown_exthdrs) return (IP_FW_DENY); PULLUP_TO(hlen, ulp, struct ip6_ext); break; } /*switch */ } UPDATE_POINTERS(); ip6 = (struct ip6_hdr *)ip; args->f_id.addr_type = 6; args->f_id.src_ip6 = ip6->ip6_src; args->f_id.dst_ip6 = ip6->ip6_dst; args->f_id.flow_id6 = ntohl(ip6->ip6_flow); iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6); } else if (pktlen >= sizeof(struct ip) && (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) && ip->ip_v == 4) { is_ipv4 = 1; args->flags |= IPFW_ARGS_IP4; hlen = ip->ip_hl << 2; /* * Collect parameters into local variables for faster * matching. */ proto = ip->ip_p; src_ip = ip->ip_src; dst_ip = ip->ip_dst; offset = ntohs(ip->ip_off) & IP_OFFMASK; iplen = ntohs(ip->ip_len); if (offset == 0) { switch (proto) { case IPPROTO_TCP: PULLUP_TO(hlen, ulp, struct tcphdr); dst_port = TCP(ulp)->th_dport; src_port = TCP(ulp)->th_sport; /* save flags for dynamic rules */ args->f_id._flags = TCP(ulp)->th_flags; break; case IPPROTO_SCTP: if (pktlen >= hlen + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)) PULLUP_LEN(hlen, ulp, sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)); else if (pktlen >= hlen + sizeof(struct sctphdr)) PULLUP_LEN(hlen, ulp, pktlen - hlen); else PULLUP_LEN(hlen, ulp, sizeof(struct sctphdr)); src_port = SCTP(ulp)->src_port; dst_port = SCTP(ulp)->dest_port; break; case IPPROTO_UDP: case IPPROTO_UDPLITE: PULLUP_TO(hlen, ulp, struct udphdr); dst_port = UDP(ulp)->uh_dport; src_port = UDP(ulp)->uh_sport; break; case IPPROTO_ICMP: PULLUP_TO(hlen, ulp, struct icmphdr); //args->f_id.flags = ICMP(ulp)->icmp_type; break; default: break; } } else { if (offset == 1 && proto == IPPROTO_TCP) { /* RFC 3128 */ goto pullup_failed; } } UPDATE_POINTERS(); args->f_id.addr_type = 4; args->f_id.src_ip = ntohl(src_ip.s_addr); args->f_id.dst_ip = ntohl(dst_ip.s_addr); } else { proto = 0; dst_ip.s_addr = src_ip.s_addr = 0; args->f_id.addr_type = 1; /* XXX */ } #undef PULLUP_TO pktlen = iplen < pktlen ? iplen: pktlen; /* Properly initialize the rest of f_id */ args->f_id.proto = proto; args->f_id.src_port = src_port = ntohs(src_port); args->f_id.dst_port = dst_port = ntohs(dst_port); IPFW_PF_RLOCK(chain); if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */ IPFW_PF_RUNLOCK(chain); return (IP_FW_PASS); /* accept */ } if (args->flags & IPFW_ARGS_REF) { /* * Packet has already been tagged as a result of a previous * match on rule args->rule aka args->rule_id (PIPE, QUEUE, * REASS, NETGRAPH, DIVERT/TEE...) * Validate the slot and continue from the next one * if still present, otherwise do a lookup. */ f_pos = (args->rule.chain_id == chain->id) ? args->rule.slot : ipfw_find_rule(chain, args->rule.rulenum, args->rule.rule_id); } else { f_pos = 0; } if (args->flags & IPFW_ARGS_IN) { iif = args->ifp; oif = NULL; } else { MPASS(args->flags & IPFW_ARGS_OUT); iif = mem ? NULL : m_rcvif(m); oif = args->ifp; } /* * Now scan the rules, and parse microinstructions for each rule. * We have two nested loops and an inner switch. Sometimes we * need to break out of one or both loops, or re-enter one of * the loops with updated variables. Loop variables are: * * f_pos (outer loop) points to the current rule. * On output it points to the matching rule. * done (outer loop) is used as a flag to break the loop. * l (inner loop) residual length of current rule. * cmd points to the current microinstruction. * * We break the inner loop by setting l=0 and possibly * cmdlen=0 if we don't want to advance cmd. * We break the outer loop by setting done=1 * We can restart the inner loop by setting l>0 and f_pos, f, cmd * as needed. */ for (; f_pos < chain->n_rules; f_pos++) { ipfw_insn *cmd; uint32_t tablearg = 0; int l, cmdlen, skip_or; /* skip rest of OR block */ struct ip_fw *f; f = chain->map[f_pos]; if (V_set_disable & (1 << f->set) ) continue; skip_or = 0; for (l = f->cmd_len, cmd = f->cmd ; l > 0 ; l -= cmdlen, cmd += cmdlen) { int match; /* * check_body is a jump target used when we find a * CHECK_STATE, and need to jump to the body of * the target rule. */ /* check_body: */ cmdlen = F_LEN(cmd); /* * An OR block (insn_1 || .. || insn_n) has the * F_OR bit set in all but the last instruction. * The first match will set "skip_or", and cause * the following instructions to be skipped until * past the one with the F_OR bit clear. */ if (skip_or) { /* skip this instruction */ if ((cmd->len & F_OR) == 0) skip_or = 0; /* next one is good */ continue; } match = 0; /* set to 1 if we succeed */ switch (cmd->opcode) { /* * The first set of opcodes compares the packet's * fields with some pattern, setting 'match' if a * match is found. At the end of the loop there is * logic to deal with F_NOT and F_OR flags associated * with the opcode. */ case O_NOP: match = 1; break; case O_FORWARD_MAC: printf("ipfw: opcode %d unimplemented\n", cmd->opcode); break; case O_GID: case O_UID: case O_JAIL: /* * We only check offset == 0 && proto != 0, * as this ensures that we have a * packet with the ports info. */ if (offset != 0) break; if (proto == IPPROTO_TCP || proto == IPPROTO_UDP || proto == IPPROTO_UDPLITE) match = check_uidgid( (ipfw_insn_u32 *)cmd, args, &ucred_lookup, #ifdef __FreeBSD__ &ucred_cache); #else (void *)&ucred_cache); #endif break; case O_RECV: match = iface_match(iif, (ipfw_insn_if *)cmd, chain, &tablearg); break; case O_XMIT: match = iface_match(oif, (ipfw_insn_if *)cmd, chain, &tablearg); break; case O_VIA: match = iface_match(args->ifp, (ipfw_insn_if *)cmd, chain, &tablearg); break; case O_MACADDR2: if (args->flags & IPFW_ARGS_ETHER) { u_int32_t *want = (u_int32_t *) ((ipfw_insn_mac *)cmd)->addr; u_int32_t *mask = (u_int32_t *) ((ipfw_insn_mac *)cmd)->mask; u_int32_t *hdr = (u_int32_t *)eh; match = ( want[0] == (hdr[0] & mask[0]) && want[1] == (hdr[1] & mask[1]) && want[2] == (hdr[2] & mask[2]) ); } break; case O_MAC_TYPE: if (args->flags & IPFW_ARGS_ETHER) { u_int16_t *p = ((ipfw_insn_u16 *)cmd)->ports; int i; for (i = cmdlen - 1; !match && i>0; i--, p += 2) match = (ntohs(eh->ether_type) >= p[0] && ntohs(eh->ether_type) <= p[1]); } break; case O_FRAG: if (is_ipv4) { /* * Since flags_match() works with * uint8_t we pack ip_off into 8 bits. * For this match offset is a boolean. */ match = flags_match(cmd, ((ntohs(ip->ip_off) & ~IP_OFFMASK) >> 8) | (offset != 0)); } else { /* * Compatiblity: historically bare * "frag" would match IPv6 fragments. */ match = (cmd->arg1 == 0x1 && (offset != 0)); } break; case O_IN: /* "out" is "not in" */ match = (oif == NULL); break; case O_LAYER2: match = (args->flags & IPFW_ARGS_ETHER); break; case O_DIVERTED: if ((args->flags & IPFW_ARGS_REF) == 0) break; /* * For diverted packets, args->rule.info * contains the divert port (in host format) * reason and direction. */ match = ((args->rule.info & IPFW_IS_MASK) == IPFW_IS_DIVERT) && ( ((args->rule.info & IPFW_INFO_IN) ? 1: 2) & cmd->arg1); break; case O_PROTO: /* * We do not allow an arg of 0 so the * check of "proto" only suffices. */ match = (proto == cmd->arg1); break; case O_IP_SRC: match = is_ipv4 && (((ipfw_insn_ip *)cmd)->addr.s_addr == src_ip.s_addr); break; case O_IP_DST_LOOKUP: { if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) { void *pkey; uint32_t vidx, key; uint16_t keylen = 0; /* zero if can't match the packet */ /* Determine lookup key type */ vidx = ((ipfw_insn_u32 *)cmd)->d[1]; switch (vidx) { case LOOKUP_DST_IP: case LOOKUP_SRC_IP: /* Need IP frame */ if (is_ipv6 == 0 && is_ipv4 == 0) break; if (vidx == LOOKUP_DST_IP) pkey = is_ipv6 ? (void *)&args->f_id.dst_ip6: (void *)&dst_ip; else pkey = is_ipv6 ? (void *)&args->f_id.src_ip6: (void *)&src_ip; keylen = is_ipv6 ? sizeof(struct in6_addr): sizeof(in_addr_t); break; case LOOKUP_DST_PORT: case LOOKUP_SRC_PORT: /* Need IP frame */ if (is_ipv6 == 0 && is_ipv4 == 0) break; /* Skip fragments */ if (offset != 0) break; /* Skip proto without ports */ if (proto != IPPROTO_TCP && proto != IPPROTO_UDP && proto != IPPROTO_UDPLITE && proto != IPPROTO_SCTP) break; key = vidx == LOOKUP_DST_PORT ? dst_port: src_port; pkey = &key; keylen = sizeof(key); break; case LOOKUP_UID: case LOOKUP_JAIL: check_uidgid( (ipfw_insn_u32 *)cmd, args, &ucred_lookup, &ucred_cache); key = vidx == LOOKUP_UID ? ucred_cache->cr_uid: ucred_cache->cr_prison->pr_id; pkey = &key; keylen = sizeof(key); break; case LOOKUP_DSCP: /* Need IP frame */ if (is_ipv6 == 0 && is_ipv4 == 0) break; if (is_ipv6) key = IPV6_DSCP( (struct ip6_hdr *)ip) >> 2; else key = ip->ip_tos >> 2; pkey = &key; keylen = sizeof(key); break; case LOOKUP_DST_MAC: case LOOKUP_SRC_MAC: /* Need ether frame */ if ((args->flags & IPFW_ARGS_ETHER) == 0) break; pkey = vidx == LOOKUP_DST_MAC ? eh->ether_dhost: eh->ether_shost; keylen = ETHER_ADDR_LEN; break; + case LOOKUP_MARK: + key = args->rule.pkt_mark; + pkey = &key; + keylen = sizeof(key); + break; } if (keylen == 0) break; match = ipfw_lookup_table(chain, cmd->arg1, keylen, pkey, &vidx); if (!match) break; tablearg = vidx; break; } /* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */ /* FALLTHROUGH */ } case O_IP_SRC_LOOKUP: { void *pkey; uint32_t vidx; uint16_t keylen; if (is_ipv4) { keylen = sizeof(in_addr_t); if (cmd->opcode == O_IP_DST_LOOKUP) pkey = &dst_ip; else pkey = &src_ip; } else if (is_ipv6) { keylen = sizeof(struct in6_addr); if (cmd->opcode == O_IP_DST_LOOKUP) pkey = &args->f_id.dst_ip6; else pkey = &args->f_id.src_ip6; } else break; match = ipfw_lookup_table(chain, cmd->arg1, keylen, pkey, &vidx); if (!match) break; if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) { match = ((ipfw_insn_u32 *)cmd)->d[0] == TARG_VAL(chain, vidx, tag); if (!match) break; } tablearg = vidx; break; } case O_MAC_SRC_LOOKUP: case O_MAC_DST_LOOKUP: { void *pkey; uint32_t vidx; uint16_t keylen = ETHER_ADDR_LEN; /* Need ether frame */ if ((args->flags & IPFW_ARGS_ETHER) == 0) break; if (cmd->opcode == O_MAC_DST_LOOKUP) pkey = eh->ether_dhost; else pkey = eh->ether_shost; match = ipfw_lookup_table(chain, cmd->arg1, keylen, pkey, &vidx); if (!match) break; if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) { match = ((ipfw_insn_u32 *)cmd)->d[0] == TARG_VAL(chain, vidx, tag); if (!match) break; } tablearg = vidx; break; } case O_IP_FLOW_LOOKUP: { uint32_t v = 0; match = ipfw_lookup_table(chain, cmd->arg1, 0, &args->f_id, &v); if (!match) break; if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) match = ((ipfw_insn_u32 *)cmd)->d[0] == TARG_VAL(chain, v, tag); if (match) tablearg = v; } break; case O_IP_SRC_MASK: case O_IP_DST_MASK: if (is_ipv4) { uint32_t a = (cmd->opcode == O_IP_DST_MASK) ? dst_ip.s_addr : src_ip.s_addr; uint32_t *p = ((ipfw_insn_u32 *)cmd)->d; int i = cmdlen-1; for (; !match && i>0; i-= 2, p+= 2) match = (p[0] == (a & p[1])); } break; case O_IP_SRC_ME: if (is_ipv4) { match = in_localip(src_ip); break; } #ifdef INET6 /* FALLTHROUGH */ case O_IP6_SRC_ME: match = is_ipv6 && ipfw_localip6(&args->f_id.src_ip6); #endif break; case O_IP_DST_SET: case O_IP_SRC_SET: if (is_ipv4) { u_int32_t *d = (u_int32_t *)(cmd+1); u_int32_t addr = cmd->opcode == O_IP_DST_SET ? args->f_id.dst_ip : args->f_id.src_ip; if (addr < d[0]) break; addr -= d[0]; /* subtract base */ match = (addr < cmd->arg1) && ( d[ 1 + (addr>>5)] & (1<<(addr & 0x1f)) ); } break; case O_IP_DST: match = is_ipv4 && (((ipfw_insn_ip *)cmd)->addr.s_addr == dst_ip.s_addr); break; case O_IP_DST_ME: if (is_ipv4) { match = in_localip(dst_ip); break; } #ifdef INET6 /* FALLTHROUGH */ case O_IP6_DST_ME: match = is_ipv6 && ipfw_localip6(&args->f_id.dst_ip6); #endif break; case O_IP_SRCPORT: case O_IP_DSTPORT: /* * offset == 0 && proto != 0 is enough * to guarantee that we have a * packet with port info. */ if ((proto == IPPROTO_UDP || proto == IPPROTO_UDPLITE || proto == IPPROTO_TCP || proto == IPPROTO_SCTP) && offset == 0) { u_int16_t x = (cmd->opcode == O_IP_SRCPORT) ? src_port : dst_port ; u_int16_t *p = ((ipfw_insn_u16 *)cmd)->ports; int i; for (i = cmdlen - 1; !match && i>0; i--, p += 2) match = (x>=p[0] && x<=p[1]); } break; case O_ICMPTYPE: match = (offset == 0 && proto==IPPROTO_ICMP && icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) ); break; #ifdef INET6 case O_ICMP6TYPE: match = is_ipv6 && offset == 0 && proto==IPPROTO_ICMPV6 && icmp6type_match( ICMP6(ulp)->icmp6_type, (ipfw_insn_u32 *)cmd); break; #endif /* INET6 */ case O_IPOPT: match = (is_ipv4 && ipopts_match(ip, cmd) ); break; case O_IPVER: match = ((is_ipv4 || is_ipv6) && cmd->arg1 == ip->ip_v); break; case O_IPID: case O_IPTTL: if (!is_ipv4) break; case O_IPLEN: { /* only for IP packets */ uint16_t x; uint16_t *p; int i; if (cmd->opcode == O_IPLEN) x = iplen; else if (cmd->opcode == O_IPTTL) x = ip->ip_ttl; else /* must be IPID */ x = ntohs(ip->ip_id); if (cmdlen == 1) { match = (cmd->arg1 == x); break; } /* otherwise we have ranges */ p = ((ipfw_insn_u16 *)cmd)->ports; i = cmdlen - 1; for (; !match && i>0; i--, p += 2) match = (x >= p[0] && x <= p[1]); } break; case O_IPPRECEDENCE: match = (is_ipv4 && (cmd->arg1 == (ip->ip_tos & 0xe0)) ); break; case O_IPTOS: match = (is_ipv4 && flags_match(cmd, ip->ip_tos)); break; case O_DSCP: { uint32_t *p; uint16_t x; p = ((ipfw_insn_u32 *)cmd)->d; if (is_ipv4) x = ip->ip_tos >> 2; else if (is_ipv6) { x = IPV6_DSCP( (struct ip6_hdr *)ip) >> 2; x &= 0x3f; } else break; /* DSCP bitmask is stored as low_u32 high_u32 */ if (x >= 32) match = *(p + 1) & (1 << (x - 32)); else match = *p & (1 << x); } break; case O_TCPDATALEN: if (proto == IPPROTO_TCP && offset == 0) { struct tcphdr *tcp; uint16_t x; uint16_t *p; int i; #ifdef INET6 if (is_ipv6) { struct ip6_hdr *ip6; ip6 = (struct ip6_hdr *)ip; if (ip6->ip6_plen == 0) { /* * Jumbo payload is not * supported by this * opcode. */ break; } x = iplen - hlen; } else #endif /* INET6 */ x = iplen - (ip->ip_hl << 2); tcp = TCP(ulp); x -= tcp->th_off << 2; if (cmdlen == 1) { match = (cmd->arg1 == x); break; } /* otherwise we have ranges */ p = ((ipfw_insn_u16 *)cmd)->ports; i = cmdlen - 1; for (; !match && i>0; i--, p += 2) match = (x >= p[0] && x <= p[1]); } break; case O_TCPFLAGS: match = (proto == IPPROTO_TCP && offset == 0 && flags_match(cmd, TCP(ulp)->th_flags)); break; case O_TCPOPTS: if (proto == IPPROTO_TCP && offset == 0 && ulp){ PULLUP_LEN_LOCKED(hlen, ulp, (TCP(ulp)->th_off << 2)); match = tcpopts_match(TCP(ulp), cmd); } break; case O_TCPSEQ: match = (proto == IPPROTO_TCP && offset == 0 && ((ipfw_insn_u32 *)cmd)->d[0] == TCP(ulp)->th_seq); break; case O_TCPACK: match = (proto == IPPROTO_TCP && offset == 0 && ((ipfw_insn_u32 *)cmd)->d[0] == TCP(ulp)->th_ack); break; case O_TCPMSS: if (proto == IPPROTO_TCP && (args->f_id._flags & TH_SYN) != 0 && ulp != NULL) { uint16_t mss, *p; int i; PULLUP_LEN_LOCKED(hlen, ulp, (TCP(ulp)->th_off << 2)); if ((tcpopts_parse(TCP(ulp), &mss) & IP_FW_TCPOPT_MSS) == 0) break; if (cmdlen == 1) { match = (cmd->arg1 == mss); break; } /* Otherwise we have ranges. */ p = ((ipfw_insn_u16 *)cmd)->ports; i = cmdlen - 1; for (; !match && i > 0; i--, p += 2) match = (mss >= p[0] && mss <= p[1]); } break; case O_TCPWIN: if (proto == IPPROTO_TCP && offset == 0) { uint16_t x; uint16_t *p; int i; x = ntohs(TCP(ulp)->th_win); if (cmdlen == 1) { match = (cmd->arg1 == x); break; } /* Otherwise we have ranges. */ p = ((ipfw_insn_u16 *)cmd)->ports; i = cmdlen - 1; for (; !match && i > 0; i--, p += 2) match = (x >= p[0] && x <= p[1]); } break; case O_ESTAB: /* reject packets which have SYN only */ /* XXX should i also check for TH_ACK ? */ match = (proto == IPPROTO_TCP && offset == 0 && (TCP(ulp)->th_flags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN); break; case O_ALTQ: { struct pf_mtag *at; struct m_tag *mtag; ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd; /* * ALTQ uses mbuf tags from another * packet filtering system - pf(4). * We allocate a tag in its format * and fill it in, pretending to be pf(4). */ match = 1; at = pf_find_mtag(m); if (at != NULL && at->qid != 0) break; mtag = m_tag_get(PACKET_TAG_PF, sizeof(struct pf_mtag), M_NOWAIT | M_ZERO); if (mtag == NULL) { /* * Let the packet fall back to the * default ALTQ. */ break; } m_tag_prepend(m, mtag); at = (struct pf_mtag *)(mtag + 1); at->qid = altq->qid; at->hdr = ip; break; } case O_LOG: ipfw_log(chain, f, hlen, args, offset | ip6f_mf, tablearg, ip); match = 1; break; case O_PROB: match = (random()<((ipfw_insn_u32 *)cmd)->d[0]); break; case O_VERREVPATH: /* Outgoing packets automatically pass/match */ match = (args->flags & IPFW_ARGS_OUT || ( #ifdef INET6 is_ipv6 ? verify_path6(&(args->f_id.src_ip6), iif, args->f_id.fib) : #endif verify_path(src_ip, iif, args->f_id.fib))); break; case O_VERSRCREACH: /* Outgoing packets automatically pass/match */ match = (hlen > 0 && ((oif != NULL) || ( #ifdef INET6 is_ipv6 ? verify_path6(&(args->f_id.src_ip6), NULL, args->f_id.fib) : #endif verify_path(src_ip, NULL, args->f_id.fib)))); break; case O_ANTISPOOF: /* Outgoing packets automatically pass/match */ if (oif == NULL && hlen > 0 && ( (is_ipv4 && in_localaddr(src_ip)) #ifdef INET6 || (is_ipv6 && in6_localaddr(&(args->f_id.src_ip6))) #endif )) match = #ifdef INET6 is_ipv6 ? verify_path6( &(args->f_id.src_ip6), iif, args->f_id.fib) : #endif verify_path(src_ip, iif, args->f_id.fib); else match = 1; break; case O_IPSEC: match = (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL); /* otherwise no match */ break; #ifdef INET6 case O_IP6_SRC: match = is_ipv6 && IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6, &((ipfw_insn_ip6 *)cmd)->addr6); break; case O_IP6_DST: match = is_ipv6 && IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6, &((ipfw_insn_ip6 *)cmd)->addr6); break; case O_IP6_SRC_MASK: case O_IP6_DST_MASK: if (is_ipv6) { int i = cmdlen - 1; struct in6_addr p; struct in6_addr *d = &((ipfw_insn_ip6 *)cmd)->addr6; for (; !match && i > 0; d += 2, i -= F_INSN_SIZE(struct in6_addr) * 2) { p = (cmd->opcode == O_IP6_SRC_MASK) ? args->f_id.src_ip6: args->f_id.dst_ip6; APPLY_MASK(&p, &d[1]); match = IN6_ARE_ADDR_EQUAL(&d[0], &p); } } break; case O_FLOW6ID: match = is_ipv6 && flow6id_match(args->f_id.flow_id6, (ipfw_insn_u32 *) cmd); break; case O_EXT_HDR: match = is_ipv6 && (ext_hd & ((ipfw_insn *) cmd)->arg1); break; case O_IP6: match = is_ipv6; break; #endif case O_IP4: match = is_ipv4; break; case O_TAG: { struct m_tag *mtag; uint32_t tag = TARG(cmd->arg1, tag); /* Packet is already tagged with this tag? */ mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL); /* We have `untag' action when F_NOT flag is * present. And we must remove this mtag from * mbuf and reset `match' to zero (`match' will * be inversed later). * Otherwise we should allocate new mtag and * push it into mbuf. */ if (cmd->len & F_NOT) { /* `untag' action */ if (mtag != NULL) m_tag_delete(m, mtag); match = 0; } else { if (mtag == NULL) { mtag = m_tag_alloc( MTAG_IPFW, tag, 0, M_NOWAIT); if (mtag != NULL) m_tag_prepend(m, mtag); } match = 1; } break; } case O_FIB: /* try match the specified fib */ if (args->f_id.fib == cmd->arg1) match = 1; break; case O_SOCKARG: { #ifndef USERSPACE /* not supported in userspace */ struct inpcb *inp = args->inp; struct inpcbinfo *pi; bool inp_locked = false; if (proto == IPPROTO_TCP) pi = &V_tcbinfo; else if (proto == IPPROTO_UDP) pi = &V_udbinfo; else if (proto == IPPROTO_UDPLITE) pi = &V_ulitecbinfo; else break; /* * XXXRW: so_user_cookie should almost * certainly be inp_user_cookie? */ /* * For incoming packet lookup the inpcb * using the src/dest ip/port tuple. */ if (is_ipv4 && inp == NULL) { inp = in_pcblookup(pi, src_ip, htons(src_port), dst_ip, htons(dst_port), INPLOOKUP_RLOCKPCB, NULL); inp_locked = true; } #ifdef INET6 if (is_ipv6 && inp == NULL) { inp = in6_pcblookup(pi, &args->f_id.src_ip6, htons(src_port), &args->f_id.dst_ip6, htons(dst_port), INPLOOKUP_RLOCKPCB, NULL); inp_locked = true; } #endif /* INET6 */ if (inp != NULL) { if (inp->inp_socket) { tablearg = inp->inp_socket->so_user_cookie; if (tablearg) match = 1; } if (inp_locked) INP_RUNLOCK(inp); } #endif /* !USERSPACE */ break; } case O_TAGGED: { struct m_tag *mtag; uint32_t tag = TARG(cmd->arg1, tag); if (cmdlen == 1) { match = m_tag_locate(m, MTAG_IPFW, tag, NULL) != NULL; break; } /* we have ranges */ for (mtag = m_tag_first(m); mtag != NULL && !match; mtag = m_tag_next(m, mtag)) { uint16_t *p; int i; if (mtag->m_tag_cookie != MTAG_IPFW) continue; p = ((ipfw_insn_u16 *)cmd)->ports; i = cmdlen - 1; for(; !match && i > 0; i--, p += 2) match = mtag->m_tag_id >= p[0] && mtag->m_tag_id <= p[1]; } break; } + + case O_MARK: { + uint32_t mark; + if (cmd->arg1 == IP_FW_TARG) + mark = TARG_VAL(chain, tablearg, mark); + else + mark = ((ipfw_insn_u32 *)cmd)->d[0]; + match = + (args->rule.pkt_mark & + ((ipfw_insn_u32 *)cmd)->d[1]) == + (mark & ((ipfw_insn_u32 *)cmd)->d[1]); + break; + } /* * The second set of opcodes represents 'actions', * i.e. the terminal part of a rule once the packet * matches all previous patterns. * Typically there is only one action for each rule, * and the opcode is stored at the end of the rule * (but there are exceptions -- see below). * * In general, here we set retval and terminate the * outer loop (would be a 'break 3' in some language, * but we need to set l=0, done=1) * * Exceptions: * O_COUNT and O_SKIPTO actions: * instead of terminating, we jump to the next rule * (setting l=0), or to the SKIPTO target (setting * f/f_len, cmd and l as needed), respectively. * * O_TAG, O_LOG and O_ALTQ action parameters: * perform some action and set match = 1; * * O_LIMIT and O_KEEP_STATE: these opcodes are * not real 'actions', and are stored right * before the 'action' part of the rule (one * exception is O_SKIP_ACTION which could be * between these opcodes and 'action' one). * These opcodes try to install an entry in the * state tables; if successful, we continue with * the next opcode (match=1; break;), otherwise * the packet must be dropped (set retval, * break loops with l=0, done=1) * * O_PROBE_STATE and O_CHECK_STATE: these opcodes * cause a lookup of the state table, and a jump * to the 'action' part of the parent rule * if an entry is found, or * (CHECK_STATE only) a jump to the next rule if * the entry is not found. * The result of the lookup is cached so that * further instances of these opcodes become NOPs. * The jump to the next rule is done by setting * l=0, cmdlen=0. * * O_SKIP_ACTION: this opcode is not a real 'action' * either, and is stored right before the 'action' * part of the rule, right after the O_KEEP_STATE * opcode. It causes match failure so the real * 'action' could be executed only if the rule * is checked via dynamic rule from the state * table, as in such case execution starts * from the true 'action' opcode directly. * */ case O_LIMIT: case O_KEEP_STATE: if (ipfw_dyn_install_state(chain, f, (ipfw_insn_limit *)cmd, args, ulp, pktlen, &dyn_info, tablearg)) { /* error or limit violation */ retval = IP_FW_DENY; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ } match = 1; break; case O_PROBE_STATE: case O_CHECK_STATE: /* * dynamic rules are checked at the first * keep-state or check-state occurrence, * with the result being stored in dyn_info. * The compiler introduces a PROBE_STATE * instruction for us when we have a * KEEP_STATE (because PROBE_STATE needs * to be run first). */ if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) && (q = ipfw_dyn_lookup_state(args, ulp, pktlen, cmd, &dyn_info)) != NULL) { /* * Found dynamic entry, jump to the * 'action' part of the parent rule * by setting f, cmd, l and clearing * cmdlen. */ f = q; f_pos = dyn_info.f_pos; cmd = ACTION_PTR(f); l = f->cmd_len - f->act_ofs; cmdlen = 0; match = 1; break; } /* * Dynamic entry not found. If CHECK_STATE, * skip to next rule, if PROBE_STATE just * ignore and continue with next opcode. */ if (cmd->opcode == O_CHECK_STATE) l = 0; /* exit inner loop */ match = 1; break; case O_SKIP_ACTION: match = 0; /* skip to the next rule */ l = 0; /* exit inner loop */ break; case O_ACCEPT: retval = 0; /* accept */ l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; case O_PIPE: case O_QUEUE: set_match(args, f_pos, chain); args->rule.info = TARG(cmd->arg1, pipe); if (cmd->opcode == O_PIPE) args->rule.info |= IPFW_IS_PIPE; if (V_fw_one_pass) args->rule.info |= IPFW_ONEPASS; retval = IP_FW_DUMMYNET; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; case O_DIVERT: case O_TEE: if (args->flags & IPFW_ARGS_ETHER) break; /* not on layer 2 */ /* otherwise this is terminal */ l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ retval = (cmd->opcode == O_DIVERT) ? IP_FW_DIVERT : IP_FW_TEE; set_match(args, f_pos, chain); args->rule.info = TARG(cmd->arg1, divert); break; case O_COUNT: IPFW_INC_RULE_COUNTER(f, pktlen); l = 0; /* exit inner loop */ break; case O_SKIPTO: IPFW_INC_RULE_COUNTER(f, pktlen); f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0); /* * Skip disabled rules, and re-enter * the inner loop with the correct * f_pos, f, l and cmd. * Also clear cmdlen and skip_or */ for (; f_pos < chain->n_rules - 1 && (V_set_disable & (1 << chain->map[f_pos]->set)); f_pos++) ; /* Re-enter the inner loop at the skipto rule. */ f = chain->map[f_pos]; l = f->cmd_len; cmd = f->cmd; match = 1; cmdlen = 0; skip_or = 0; continue; break; /* not reached */ case O_CALLRETURN: { /* * Implementation of `subroutine' call/return, * in the stack carried in an mbuf tag. This * is different from `skipto' in that any call * address is possible (`skipto' must prevent * backward jumps to avoid endless loops). * We have `return' action when F_NOT flag is * present. The `m_tag_id' field is used as * stack pointer. */ struct m_tag *mtag; uint16_t jmpto, *stack; #define IS_CALL ((cmd->len & F_NOT) == 0) #define IS_RETURN ((cmd->len & F_NOT) != 0) /* * Hand-rolled version of m_tag_locate() with * wildcard `type'. * If not already tagged, allocate new tag. */ mtag = m_tag_first(m); while (mtag != NULL) { if (mtag->m_tag_cookie == MTAG_IPFW_CALL) break; mtag = m_tag_next(m, mtag); } if (mtag == NULL && IS_CALL) { mtag = m_tag_alloc(MTAG_IPFW_CALL, 0, IPFW_CALLSTACK_SIZE * sizeof(uint16_t), M_NOWAIT); if (mtag != NULL) m_tag_prepend(m, mtag); } /* * On error both `call' and `return' just * continue with next rule. */ if (IS_RETURN && (mtag == NULL || mtag->m_tag_id == 0)) { l = 0; /* exit inner loop */ break; } if (IS_CALL && (mtag == NULL || mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) { printf("ipfw: call stack error, " "go to next rule\n"); l = 0; /* exit inner loop */ break; } IPFW_INC_RULE_COUNTER(f, pktlen); stack = (uint16_t *)(mtag + 1); /* * The `call' action may use cached f_pos * (in f->next_rule), whose version is written * in f->next_rule. * The `return' action, however, doesn't have * fixed jump address in cmd->arg1 and can't use * cache. */ if (IS_CALL) { stack[mtag->m_tag_id] = f->rulenum; mtag->m_tag_id++; f_pos = JUMP(chain, f, cmd->arg1, tablearg, 1); } else { /* `return' action */ mtag->m_tag_id--; jmpto = stack[mtag->m_tag_id] + 1; f_pos = ipfw_find_rule(chain, jmpto, 0); } /* * Skip disabled rules, and re-enter * the inner loop with the correct * f_pos, f, l and cmd. * Also clear cmdlen and skip_or */ for (; f_pos < chain->n_rules - 1 && (V_set_disable & (1 << chain->map[f_pos]->set)); f_pos++) ; /* Re-enter the inner loop at the dest rule. */ f = chain->map[f_pos]; l = f->cmd_len; cmd = f->cmd; cmdlen = 0; skip_or = 0; continue; break; /* NOTREACHED */ } #undef IS_CALL #undef IS_RETURN case O_REJECT: /* * Drop the packet and send a reject notice * if the packet is not ICMP (or is an ICMP * query), and it is not multicast/broadcast. */ if (hlen > 0 && is_ipv4 && offset == 0 && (proto != IPPROTO_ICMP || is_icmp_query(ICMP(ulp))) && !(m->m_flags & (M_BCAST|M_MCAST)) && !IN_MULTICAST(ntohl(dst_ip.s_addr))) { send_reject(args, cmd, iplen, ip); m = args->m; } /* FALLTHROUGH */ #ifdef INET6 case O_UNREACH6: if (hlen > 0 && is_ipv6 && ((offset & IP6F_OFF_MASK) == 0) && (proto != IPPROTO_ICMPV6 || (is_icmp6_query(icmp6_type) == 1)) && !(m->m_flags & (M_BCAST|M_MCAST)) && !IN6_IS_ADDR_MULTICAST( &args->f_id.dst_ip6)) { send_reject6(args, cmd->opcode == O_REJECT ? map_icmp_unreach(cmd->arg1): cmd->arg1, hlen, (struct ip6_hdr *)ip); m = args->m; } /* FALLTHROUGH */ #endif case O_DENY: retval = IP_FW_DENY; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; case O_FORWARD_IP: if (args->flags & IPFW_ARGS_ETHER) break; /* not valid on layer2 pkts */ if (q != f || dyn_info.direction == MATCH_FORWARD) { struct sockaddr_in *sa; sa = &(((ipfw_insn_sa *)cmd)->sa); if (sa->sin_addr.s_addr == INADDR_ANY) { #ifdef INET6 /* * We use O_FORWARD_IP opcode for * fwd rule with tablearg, but tables * now support IPv6 addresses. And * when we are inspecting IPv6 packet, * we can use nh6 field from * table_value as next_hop6 address. */ if (is_ipv6) { struct ip_fw_nh6 *nh6; args->flags |= IPFW_ARGS_NH6; nh6 = &args->hopstore6; nh6->sin6_addr = TARG_VAL( chain, tablearg, nh6); nh6->sin6_port = sa->sin_port; nh6->sin6_scope_id = TARG_VAL( chain, tablearg, zoneid); } else #endif { args->flags |= IPFW_ARGS_NH4; args->hopstore.sin_port = sa->sin_port; sa = &args->hopstore; sa->sin_family = AF_INET; sa->sin_len = sizeof(*sa); sa->sin_addr.s_addr = htonl( TARG_VAL(chain, tablearg, nh4)); } } else { args->flags |= IPFW_ARGS_NH4PTR; args->next_hop = sa; } } retval = IP_FW_PASS; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; #ifdef INET6 case O_FORWARD_IP6: if (args->flags & IPFW_ARGS_ETHER) break; /* not valid on layer2 pkts */ if (q != f || dyn_info.direction == MATCH_FORWARD) { struct sockaddr_in6 *sin6; sin6 = &(((ipfw_insn_sa6 *)cmd)->sa); args->flags |= IPFW_ARGS_NH6PTR; args->next_hop6 = sin6; } retval = IP_FW_PASS; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; #endif case O_NETGRAPH: case O_NGTEE: set_match(args, f_pos, chain); args->rule.info = TARG(cmd->arg1, netgraph); if (V_fw_one_pass) args->rule.info |= IPFW_ONEPASS; retval = (cmd->opcode == O_NETGRAPH) ? IP_FW_NETGRAPH : IP_FW_NGTEE; l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ break; case O_SETFIB: { uint32_t fib; IPFW_INC_RULE_COUNTER(f, pktlen); fib = TARG(cmd->arg1, fib) & 0x7FFF; if (fib >= rt_numfibs) fib = 0; M_SETFIB(m, fib); args->f_id.fib = fib; /* XXX */ l = 0; /* exit inner loop */ break; } case O_SETDSCP: { uint16_t code; code = TARG(cmd->arg1, dscp) & 0x3F; l = 0; /* exit inner loop */ if (is_ipv4) { uint16_t old; old = *(uint16_t *)ip; ip->ip_tos = (code << 2) | (ip->ip_tos & 0x03); ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip); } else if (is_ipv6) { /* update cached value */ args->f_id.flow_id6 = ntohl(*(uint32_t *)ip) & ~0x0FC00000; args->f_id.flow_id6 |= code << 22; *((uint32_t *)ip) = htonl(args->f_id.flow_id6); } else break; IPFW_INC_RULE_COUNTER(f, pktlen); break; } case O_NAT: l = 0; /* exit inner loop */ done = 1; /* exit outer loop */ /* * Ensure that we do not invoke NAT handler for * non IPv4 packets. Libalias expects only IPv4. */ if (!is_ipv4 || !IPFW_NAT_LOADED) { retval = IP_FW_DENY; break; } struct cfg_nat *t; int nat_id; args->rule.info = 0; set_match(args, f_pos, chain); /* Check if this is 'global' nat rule */ if (cmd->arg1 == IP_FW_NAT44_GLOBAL) { retval = ipfw_nat_ptr(args, NULL, m); break; } t = ((ipfw_insn_nat *)cmd)->nat; if (t == NULL) { nat_id = TARG(cmd->arg1, nat); t = (*lookup_nat_ptr)(&chain->nat, nat_id); if (t == NULL) { retval = IP_FW_DENY; break; } if (cmd->arg1 != IP_FW_TARG) ((ipfw_insn_nat *)cmd)->nat = t; } retval = ipfw_nat_ptr(args, t, m); break; case O_REASS: { int ip_off; l = 0; /* in any case exit inner loop */ if (is_ipv6) /* IPv6 is not supported yet */ break; IPFW_INC_RULE_COUNTER(f, pktlen); ip_off = ntohs(ip->ip_off); /* if not fragmented, go to next rule */ if ((ip_off & (IP_MF | IP_OFFMASK)) == 0) break; args->m = m = ip_reass(m); /* * do IP header checksum fixup. */ if (m == NULL) { /* fragment got swallowed */ retval = IP_FW_DENY; } else { /* good, packet complete */ int hlen; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip->ip_sum = 0; if (hlen == sizeof(struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(m, hlen); retval = IP_FW_REASS; args->rule.info = 0; set_match(args, f_pos, chain); } done = 1; /* exit outer loop */ break; } + + case O_SETMARK: { + l = 0; /* exit inner loop */ + args->rule.pkt_mark = ( + (cmd->arg1 == IP_FW_TARG) ? + TARG_VAL(chain, tablearg, mark) : + ((ipfw_insn_u32 *)cmd)->d[0]); + + IPFW_INC_RULE_COUNTER(f, pktlen); + break; + } + case O_EXTERNAL_ACTION: l = 0; /* in any case exit inner loop */ retval = ipfw_run_eaction(chain, args, cmd, &done); /* * If both @retval and @done are zero, * consider this as rule matching and * update counters. */ if (retval == 0 && done == 0) { IPFW_INC_RULE_COUNTER(f, pktlen); /* * Reset the result of the last * dynamic state lookup. * External action can change * @args content, and it may be * used for new state lookup later. */ DYN_INFO_INIT(&dyn_info); } break; default: panic("-- unknown opcode %d\n", cmd->opcode); } /* end of switch() on opcodes */ /* * if we get here with l=0, then match is irrelevant. */ if (cmd->len & F_NOT) match = !match; if (match) { if (cmd->len & F_OR) skip_or = 1; } else { if (!(cmd->len & F_OR)) /* not an OR block, */ break; /* try next rule */ } } /* end of inner loop, scan opcodes */ #undef PULLUP_LEN #undef PULLUP_LEN_LOCKED if (done) break; /* next_rule:; */ /* try next rule */ } /* end of outer for, scan rules */ if (done) { struct ip_fw *rule = chain->map[f_pos]; /* Update statistics */ IPFW_INC_RULE_COUNTER(rule, pktlen); IPFW_PROBE(rule__matched, retval, is_ipv4 ? AF_INET : AF_INET6, is_ipv4 ? (uintptr_t)&src_ip : (uintptr_t)&args->f_id.src_ip6, is_ipv4 ? (uintptr_t)&dst_ip : (uintptr_t)&args->f_id.dst_ip6, args, rule); } else { retval = IP_FW_DENY; printf("ipfw: ouch!, skip past end of rules, denying packet\n"); } IPFW_PF_RUNLOCK(chain); #ifdef __FreeBSD__ if (ucred_cache != NULL) crfree(ucred_cache); #endif return (retval); pullup_failed: if (V_fw_verbose) printf("ipfw: pullup failed\n"); return (IP_FW_DENY); } /* * Set maximum number of tables that can be used in given VNET ipfw instance. */ #ifdef SYSCTL_NODE static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS) { int error; unsigned int ntables; ntables = V_fw_tables_max; error = sysctl_handle_int(oidp, &ntables, 0, req); /* Read operation or some error */ if ((error != 0) || (req->newptr == NULL)) return (error); return (ipfw_resize_tables(&V_layer3_chain, ntables)); } /* * Switches table namespace between global and per-set. */ static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS) { int error; unsigned int sets; sets = V_fw_tables_sets; error = sysctl_handle_int(oidp, &sets, 0, req); /* Read operation or some error */ if ((error != 0) || (req->newptr == NULL)) return (error); return (ipfw_switch_tables_namespace(&V_layer3_chain, sets)); } #endif /* * Module and VNET glue */ /* * Stuff that must be initialised only on boot or module load */ static int ipfw_init(void) { int error = 0; /* * Only print out this stuff the first time around, * when called from the sysinit code. */ printf("ipfw2 " #ifdef INET6 "(+ipv6) " #endif "initialized, divert %s, nat %s, " "default to %s, logging ", #ifdef IPDIVERT "enabled", #else "loadable", #endif #ifdef IPFIREWALL_NAT "enabled", #else "loadable", #endif default_to_accept ? "accept" : "deny"); /* * Note: V_xxx variables can be accessed here but the vnet specific * initializer may not have been called yet for the VIMAGE case. * Tuneables will have been processed. We will print out values for * the default vnet. * XXX This should all be rationalized AFTER 8.0 */ if (V_fw_verbose == 0) printf("disabled\n"); else if (V_verbose_limit == 0) printf("unlimited\n"); else printf("limited to %d packets/entry by default\n", V_verbose_limit); /* Check user-supplied table count for validness */ if (default_fw_tables > IPFW_TABLES_MAX) default_fw_tables = IPFW_TABLES_MAX; ipfw_init_sopt_handler(); ipfw_init_obj_rewriter(); ipfw_iface_init(); return (error); } /* * Called for the removal of the last instance only on module unload. */ static void ipfw_destroy(void) { ipfw_iface_destroy(); ipfw_destroy_sopt_handler(); ipfw_destroy_obj_rewriter(); printf("IP firewall unloaded\n"); } /* * Stuff that must be initialized for every instance * (including the first of course). */ static int vnet_ipfw_init(const void *unused) { int error, first; struct ip_fw *rule = NULL; struct ip_fw_chain *chain; chain = &V_layer3_chain; first = IS_DEFAULT_VNET(curvnet) ? 1 : 0; /* First set up some values that are compile time options */ V_autoinc_step = 100; /* bounded to 1..1000 in add_rule() */ V_fw_deny_unknown_exthdrs = 1; #ifdef IPFIREWALL_VERBOSE V_fw_verbose = 1; #endif #ifdef IPFIREWALL_VERBOSE_LIMIT V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT; #endif #ifdef IPFIREWALL_NAT LIST_INIT(&chain->nat); #endif /* Init shared services hash table */ ipfw_init_srv(chain); ipfw_init_counters(); /* Set initial number of tables */ V_fw_tables_max = default_fw_tables; error = ipfw_init_tables(chain, first); if (error) { printf("ipfw2: setting up tables failed\n"); free(chain->map, M_IPFW); free(rule, M_IPFW); return (ENOSPC); } IPFW_LOCK_INIT(chain); /* fill and insert the default rule */ rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw)); rule->flags |= IPFW_RULE_NOOPT; rule->cmd_len = 1; rule->cmd[0].len = 1; rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY; chain->default_rule = rule; ipfw_add_protected_rule(chain, rule, 0); ipfw_dyn_init(chain); ipfw_eaction_init(chain, first); #ifdef LINEAR_SKIPTO ipfw_init_skipto_cache(chain); #endif ipfw_bpf_init(first); /* First set up some values that are compile time options */ V_ipfw_vnet_ready = 1; /* Open for business */ /* * Hook the sockopt handler and pfil hooks for ipv4 and ipv6. * Even if the latter two fail we still keep the module alive * because the sockopt and layer2 paths are still useful. * ipfw[6]_hook return 0 on success, ENOENT on failure, * so we can ignore the exact return value and just set a flag. * * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so * changes in the underlying (per-vnet) variables trigger * immediate hook()/unhook() calls. * In layer2 we have the same behaviour, except that V_ether_ipfw * is checked on each packet because there are no pfil hooks. */ V_ip_fw_ctl_ptr = ipfw_ctl3; error = ipfw_attach_hooks(); return (error); } /* * Called for the removal of each instance. */ static int vnet_ipfw_uninit(const void *unused) { struct ip_fw *reap; struct ip_fw_chain *chain = &V_layer3_chain; int i, last; V_ipfw_vnet_ready = 0; /* tell new callers to go away */ /* * disconnect from ipv4, ipv6, layer2 and sockopt. * Then grab, release and grab again the WLOCK so we make * sure the update is propagated and nobody will be in. */ ipfw_detach_hooks(); V_ip_fw_ctl_ptr = NULL; last = IS_DEFAULT_VNET(curvnet) ? 1 : 0; IPFW_UH_WLOCK(chain); IPFW_UH_WUNLOCK(chain); ipfw_dyn_uninit(0); /* run the callout_drain */ IPFW_UH_WLOCK(chain); reap = NULL; IPFW_WLOCK(chain); for (i = 0; i < chain->n_rules; i++) ipfw_reap_add(chain, &reap, chain->map[i]); free(chain->map, M_IPFW); #ifdef LINEAR_SKIPTO ipfw_destroy_skipto_cache(chain); #endif IPFW_WUNLOCK(chain); IPFW_UH_WUNLOCK(chain); ipfw_destroy_tables(chain, last); ipfw_eaction_uninit(chain, last); if (reap != NULL) ipfw_reap_rules(reap); vnet_ipfw_iface_destroy(chain); ipfw_destroy_srv(chain); IPFW_LOCK_DESTROY(chain); ipfw_dyn_uninit(1); /* free the remaining parts */ ipfw_destroy_counters(); ipfw_bpf_uninit(last); return (0); } /* * Module event handler. * In general we have the choice of handling most of these events by the * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to * use the SYSINIT handlers as they are more capable of expressing the * flow of control during module and vnet operations, so this is just * a skeleton. Note there is no SYSINIT equivalent of the module * SHUTDOWN handler, but we don't have anything to do in that case anyhow. */ static int ipfw_modevent(module_t mod, int type, void *unused) { int err = 0; switch (type) { case MOD_LOAD: /* Called once at module load or * system boot if compiled in. */ break; case MOD_QUIESCE: /* Called before unload. May veto unloading. */ break; case MOD_UNLOAD: /* Called during unload. */ break; case MOD_SHUTDOWN: /* Called during system shutdown. */ break; default: err = EOPNOTSUPP; break; } return err; } static moduledata_t ipfwmod = { "ipfw", ipfw_modevent, 0 }; /* Define startup order. */ #define IPFW_SI_SUB_FIREWALL SI_SUB_PROTO_FIREWALL #define IPFW_MODEVENT_ORDER (SI_ORDER_ANY - 255) /* On boot slot in here. */ #define IPFW_MODULE_ORDER (IPFW_MODEVENT_ORDER + 1) /* A little later. */ #define IPFW_VNET_ORDER (IPFW_MODEVENT_ORDER + 2) /* Later still. */ DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER); FEATURE(ipfw_ctl3, "ipfw new sockopt calls"); MODULE_VERSION(ipfw, 3); /* should declare some dependencies here */ /* * Starting up. Done in order after ipfwmod() has been called. * VNET_SYSINIT is also called for each existing vnet and each new vnet. */ SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER, ipfw_init, NULL); VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER, vnet_ipfw_init, NULL); /* * Closing up shop. These are done in REVERSE ORDER, but still * after ipfwmod() has been called. Not called on reboot. * VNET_SYSUNINIT is also called for each exiting vnet as it exits. * or when the module is unloaded. */ SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER, ipfw_destroy, NULL); VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER, vnet_ipfw_uninit, NULL); /* end of file */ diff --git a/sys/netpfil/ipfw/ip_fw_log.c b/sys/netpfil/ipfw/ip_fw_log.c index b5d2f998adc8..4fe95ea9a6fd 100644 --- a/sys/netpfil/ipfw/ip_fw_log.c +++ b/sys/netpfil/ipfw/ip_fw_log.c @@ -1,427 +1,443 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Logging support for ipfw */ #include "opt_ipfw.h" #include "opt_inet.h" #ifndef INET #error IPFIREWALL requires INET. #endif /* INET */ #include "opt_inet6.h" #include #include #include #include #include #include #include #include /* for ETHERTYPE_IP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include /* ip6_sprintf() */ #endif #include #ifdef MAC #include #endif /* * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T * Other macros just cast void * into the appropriate type */ #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl)) #define TCP(p) ((struct tcphdr *)(p)) #define SCTP(p) ((struct sctphdr *)(p)) #define UDP(p) ((struct udphdr *)(p)) #define ICMP(p) ((struct icmphdr *)(p)) #define ICMP6(p) ((struct icmp6_hdr *)(p)) #ifdef __APPLE__ #undef snprintf #define snprintf sprintf #define SNPARGS(buf, len) buf + len #define SNP(buf) buf #else /* !__APPLE__ */ #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0 #define SNP(buf) buf, sizeof(buf) #endif /* !__APPLE__ */ #define TARG(k, f) IP_FW_ARG_TABLEARG(chain, k, f) /* * We enter here when we have a rule with O_LOG. * XXX this function alone takes about 2Kbytes of code! */ void ipfw_log(struct ip_fw_chain *chain, struct ip_fw *f, u_int hlen, struct ip_fw_args *args, u_short offset, uint32_t tablearg, struct ip *ip) { char *action; int limit_reached = 0; - char action2[92], proto[128], fragment[32]; + char action2[92], proto[128], fragment[32], mark_str[24]; if (V_fw_verbose == 0) { if (args->flags & IPFW_ARGS_LENMASK) ipfw_bpf_tap(args->mem, IPFW_ARGS_LENGTH(args->flags)); else if (args->flags & IPFW_ARGS_ETHER) /* layer2, use orig hdr */ ipfw_bpf_mtap(args->m); else { /* Add fake header. Later we will store * more info in the header. */ if (ip->ip_v == 4) ipfw_bpf_mtap2("DDDDDDSSSSSS\x08\x00", ETHER_HDR_LEN, args->m); else if (ip->ip_v == 6) ipfw_bpf_mtap2("DDDDDDSSSSSS\x86\xdd", ETHER_HDR_LEN, args->m); else /* Obviously bogus EtherType. */ ipfw_bpf_mtap2("DDDDDDSSSSSS\xff\xff", ETHER_HDR_LEN, args->m); } return; } /* the old 'log' function */ fragment[0] = '\0'; proto[0] = '\0'; if (f == NULL) { /* bogus pkt */ if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit) return; V_norule_counter++; if (V_norule_counter == V_verbose_limit) limit_reached = V_verbose_limit; action = "Refuse"; } else { /* O_LOG is the first action, find the real one */ ipfw_insn *cmd = ACTION_PTR(f); ipfw_insn_log *l = (ipfw_insn_log *)cmd; if (l->max_log != 0 && l->log_left == 0) return; l->log_left--; if (l->log_left == 0) limit_reached = l->max_log; cmd += F_LEN(cmd); /* point to first action */ if (cmd->opcode == O_ALTQ) { ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd; snprintf(SNPARGS(action2, 0), "Altq %d", altq->qid); cmd += F_LEN(cmd); } if (cmd->opcode == O_PROB || cmd->opcode == O_TAG) cmd += F_LEN(cmd); action = action2; switch (cmd->opcode) { case O_DENY: action = "Deny"; break; case O_REJECT: if (cmd->arg1==ICMP_REJECT_RST) action = "Reset"; else if (cmd->arg1==ICMP_REJECT_ABORT) action = "Abort"; else if (cmd->arg1==ICMP_UNREACH_HOST) action = "Reject"; else snprintf(SNPARGS(action2, 0), "Unreach %d", cmd->arg1); break; case O_UNREACH6: if (cmd->arg1==ICMP6_UNREACH_RST) action = "Reset"; else if (cmd->arg1==ICMP6_UNREACH_ABORT) action = "Abort"; else snprintf(SNPARGS(action2, 0), "Unreach %d", cmd->arg1); break; case O_ACCEPT: action = "Accept"; break; case O_COUNT: action = "Count"; break; case O_DIVERT: snprintf(SNPARGS(action2, 0), "Divert %d", TARG(cmd->arg1, divert)); break; case O_TEE: snprintf(SNPARGS(action2, 0), "Tee %d", TARG(cmd->arg1, divert)); break; case O_SETDSCP: snprintf(SNPARGS(action2, 0), "SetDscp %d", TARG(cmd->arg1, dscp) & 0x3F); break; case O_SETFIB: snprintf(SNPARGS(action2, 0), "SetFib %d", TARG(cmd->arg1, fib) & 0x7FFF); break; case O_SKIPTO: snprintf(SNPARGS(action2, 0), "SkipTo %d", TARG(cmd->arg1, skipto)); break; case O_PIPE: snprintf(SNPARGS(action2, 0), "Pipe %d", TARG(cmd->arg1, pipe)); break; case O_QUEUE: snprintf(SNPARGS(action2, 0), "Queue %d", TARG(cmd->arg1, pipe)); break; case O_FORWARD_IP: { char buf[INET_ADDRSTRLEN]; ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd; int len; struct in_addr dummyaddr; if (sa->sa.sin_addr.s_addr == INADDR_ANY) dummyaddr.s_addr = htonl(tablearg); else dummyaddr.s_addr = sa->sa.sin_addr.s_addr; len = snprintf(SNPARGS(action2, 0), "Forward to %s", inet_ntoa_r(dummyaddr, buf)); if (sa->sa.sin_port) snprintf(SNPARGS(action2, len), ":%d", sa->sa.sin_port); } break; #ifdef INET6 case O_FORWARD_IP6: { char buf[INET6_ADDRSTRLEN]; ipfw_insn_sa6 *sa = (ipfw_insn_sa6 *)cmd; int len; len = snprintf(SNPARGS(action2, 0), "Forward to [%s]", ip6_sprintf(buf, &sa->sa.sin6_addr)); if (sa->sa.sin6_port) snprintf(SNPARGS(action2, len), ":%u", sa->sa.sin6_port); } break; #endif case O_NETGRAPH: snprintf(SNPARGS(action2, 0), "Netgraph %d", cmd->arg1); break; case O_NGTEE: snprintf(SNPARGS(action2, 0), "Ngtee %d", cmd->arg1); break; case O_NAT: action = "Nat"; break; case O_REASS: action = "Reass"; break; case O_CALLRETURN: if (cmd->len & F_NOT) action = "Return"; else snprintf(SNPARGS(action2, 0), "Call %d", cmd->arg1); break; + case O_SETMARK: + if (cmd->arg1 == IP_FW_TARG) + snprintf(SNPARGS(action2, 0), "SetMark %#x", + TARG(cmd->arg1, mark)); + else + snprintf(SNPARGS(action2, 0), "SetMark %#x", + ((ipfw_insn_u32 *)cmd)->d[0]); + break; case O_EXTERNAL_ACTION: snprintf(SNPARGS(action2, 0), "Eaction %s", ((struct named_object *)SRV_OBJECT(chain, cmd->arg1))->name); break; default: action = "UNKNOWN"; break; } } if (hlen == 0) { /* non-ip */ snprintf(SNPARGS(proto, 0), "MAC"); } else { int len; #ifdef INET6 char src[INET6_ADDRSTRLEN + 2], dst[INET6_ADDRSTRLEN + 2]; #else char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN]; #endif struct icmphdr *icmp; struct tcphdr *tcp; struct udphdr *udp; #ifdef INET6 struct ip6_hdr *ip6 = NULL; struct icmp6_hdr *icmp6; u_short ip6f_mf; #endif src[0] = '\0'; dst[0] = '\0'; #ifdef INET6 ip6f_mf = offset & IP6F_MORE_FRAG; offset &= IP6F_OFF_MASK; if (IS_IP6_FLOW_ID(&(args->f_id))) { char ip6buf[INET6_ADDRSTRLEN]; snprintf(src, sizeof(src), "[%s]", ip6_sprintf(ip6buf, &args->f_id.src_ip6)); snprintf(dst, sizeof(dst), "[%s]", ip6_sprintf(ip6buf, &args->f_id.dst_ip6)); ip6 = (struct ip6_hdr *)ip; tcp = (struct tcphdr *)(((char *)ip) + hlen); udp = (struct udphdr *)(((char *)ip) + hlen); } else #endif { tcp = L3HDR(struct tcphdr, ip); udp = L3HDR(struct udphdr, ip); inet_ntop(AF_INET, &ip->ip_src, src, sizeof(src)); inet_ntop(AF_INET, &ip->ip_dst, dst, sizeof(dst)); } switch (args->f_id.proto) { case IPPROTO_TCP: len = snprintf(SNPARGS(proto, 0), "TCP %s", src); if (offset == 0) snprintf(SNPARGS(proto, len), ":%d %s:%d", ntohs(tcp->th_sport), dst, ntohs(tcp->th_dport)); else snprintf(SNPARGS(proto, len), " %s", dst); break; case IPPROTO_UDP: case IPPROTO_UDPLITE: len = snprintf(SNPARGS(proto, 0), "UDP%s%s", args->f_id.proto == IPPROTO_UDP ? " ": "Lite ", src); if (offset == 0) snprintf(SNPARGS(proto, len), ":%d %s:%d", ntohs(udp->uh_sport), dst, ntohs(udp->uh_dport)); else snprintf(SNPARGS(proto, len), " %s", dst); break; case IPPROTO_ICMP: icmp = L3HDR(struct icmphdr, ip); if (offset == 0) len = snprintf(SNPARGS(proto, 0), "ICMP:%u.%u ", icmp->icmp_type, icmp->icmp_code); else len = snprintf(SNPARGS(proto, 0), "ICMP "); len += snprintf(SNPARGS(proto, len), "%s", src); snprintf(SNPARGS(proto, len), " %s", dst); break; #ifdef INET6 case IPPROTO_ICMPV6: icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen); if (offset == 0) len = snprintf(SNPARGS(proto, 0), "ICMPv6:%u.%u ", icmp6->icmp6_type, icmp6->icmp6_code); else len = snprintf(SNPARGS(proto, 0), "ICMPv6 "); len += snprintf(SNPARGS(proto, len), "%s", src); snprintf(SNPARGS(proto, len), " %s", dst); break; #endif default: len = snprintf(SNPARGS(proto, 0), "P:%d %s", args->f_id.proto, src); snprintf(SNPARGS(proto, len), " %s", dst); break; } #ifdef INET6 if (IS_IP6_FLOW_ID(&(args->f_id))) { if (offset || ip6f_mf) snprintf(SNPARGS(fragment, 0), " (frag %08x:%d@%d%s)", args->f_id.extra, ntohs(ip6->ip6_plen) - hlen, ntohs(offset) << 3, ip6f_mf ? "+" : ""); } else #endif { int ipoff, iplen; ipoff = ntohs(ip->ip_off); iplen = ntohs(ip->ip_len); if (ipoff & (IP_MF | IP_OFFMASK)) snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)", ntohs(ip->ip_id), iplen - (ip->ip_hl << 2), offset << 3, (ipoff & IP_MF) ? "+" : ""); } } + + /* [fw]mark */ + if (args->rule.pkt_mark) + snprintf(SNPARGS(mark_str, 0), " mark:%#x", + args->rule.pkt_mark); + else + mark_str[0] = '\0'; + #ifdef __FreeBSD__ - log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s %s via %s%s\n", - f ? f->rulenum : -1, action, proto, + log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s%s %s via %s%s\n", + f ? f->rulenum : -1, action, proto, mark_str, args->flags & IPFW_ARGS_OUT ? "out" : "in", args->ifp->if_xname, fragment); #else - log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s [no if info]%s\n", - f ? f->rulenum : -1, action, proto, fragment); + log(LOG_SECURITY | LOG_INFO, "ipfw: %d %s %s%s [no if info]%s\n", + f ? f->rulenum : -1, action, proto, mark_str, fragment); #endif if (limit_reached) log(LOG_SECURITY | LOG_NOTICE, "ipfw: limit %d reached on entry %d\n", limit_reached, f ? f->rulenum : -1); } /* end of file */ diff --git a/sys/netpfil/ipfw/ip_fw_pfil.c b/sys/netpfil/ipfw/ip_fw_pfil.c index ec46c077d8bb..72cc25f647fe 100644 --- a/sys/netpfil/ipfw/ip_fw_pfil.c +++ b/sys/netpfil/ipfw/ip_fw_pfil.c @@ -1,741 +1,742 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Andre Oppermann, Internet Business Solutions AG * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ipfw.h" #include "opt_inet.h" #include "opt_inet6.h" #ifndef INET #error IPFIREWALL requires INET. #endif /* INET */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #include #include #include VNET_DEFINE_STATIC(int, fw_enable) = 1; #define V_fw_enable VNET(fw_enable) #ifdef INET6 VNET_DEFINE_STATIC(int, fw6_enable) = 1; #define V_fw6_enable VNET(fw6_enable) #endif VNET_DEFINE_STATIC(int, fwlink_enable) = 0; #define V_fwlink_enable VNET(fwlink_enable) int ipfw_chg_hook(SYSCTL_HANDLER_ARGS); /* Forward declarations. */ static int ipfw_divert(struct mbuf **, struct ip_fw_args *, bool); #ifdef SYSCTL_NODE SYSBEGIN(f1) SYSCTL_DECL(_net_inet_ip_fw); SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3 | CTLFLAG_NEEDGIANT, &VNET_NAME(fw_enable), 0, ipfw_chg_hook, "I", "Enable ipfw"); #ifdef INET6 SYSCTL_DECL(_net_inet6_ip6_fw); SYSCTL_PROC(_net_inet6_ip6_fw, OID_AUTO, enable, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3 | CTLFLAG_NEEDGIANT, &VNET_NAME(fw6_enable), 0, ipfw_chg_hook, "I", "Enable ipfw+6"); #endif /* INET6 */ SYSCTL_DECL(_net_link_ether); SYSCTL_PROC(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3 | CTLFLAG_NEEDGIANT, &VNET_NAME(fwlink_enable), 0, ipfw_chg_hook, "I", "Pass ether pkts through firewall"); SYSEND #endif /* SYSCTL_NODE */ /* * The pfilter hook to pass packets to ipfw_chk and then to * dummynet, divert, netgraph or other modules. * The packet may be consumed. */ static pfil_return_t ipfw_check_packet(struct mbuf **m0, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { struct ip_fw_args args; struct m_tag *tag; pfil_return_t ret; int ipfw; args.flags = (flags & PFIL_IN) ? IPFW_ARGS_IN : IPFW_ARGS_OUT; again: /* * extract and remove the tag if present. If we are left * with onepass, optimize the outgoing path. */ tag = m_tag_locate(*m0, MTAG_IPFW_RULE, 0, NULL); if (tag != NULL) { args.rule = *((struct ipfw_rule_ref *)(tag+1)); m_tag_delete(*m0, tag); if (args.rule.info & IPFW_ONEPASS) return (PFIL_PASS); args.flags |= IPFW_ARGS_REF; } args.m = *m0; args.ifp = ifp; args.inp = inp; + args.rule.pkt_mark = 0; ipfw = ipfw_chk(&args); *m0 = args.m; KASSERT(*m0 != NULL || ipfw == IP_FW_DENY || ipfw == IP_FW_NAT64, ("%s: m0 is NULL", __func__)); ret = PFIL_PASS; switch (ipfw) { case IP_FW_PASS: /* next_hop may be set by ipfw_chk */ if ((args.flags & (IPFW_ARGS_NH4 | IPFW_ARGS_NH4PTR | IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)) == 0) break; #if (!defined(INET6) && !defined(INET)) ret = PFIL_DROPPED; #else { void *psa; size_t len; #ifdef INET if (args.flags & (IPFW_ARGS_NH4 | IPFW_ARGS_NH4PTR)) { MPASS((args.flags & (IPFW_ARGS_NH4 | IPFW_ARGS_NH4PTR)) != (IPFW_ARGS_NH4 | IPFW_ARGS_NH4PTR)); MPASS((args.flags & (IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)) == 0); len = sizeof(struct sockaddr_in); psa = (args.flags & IPFW_ARGS_NH4) ? &args.hopstore : args.next_hop; if (in_localip(satosin(psa)->sin_addr)) (*m0)->m_flags |= M_FASTFWD_OURS; (*m0)->m_flags |= M_IP_NEXTHOP; } #endif /* INET */ #ifdef INET6 if (args.flags & (IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)) { MPASS((args.flags & (IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)) != (IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)); MPASS((args.flags & (IPFW_ARGS_NH4 | IPFW_ARGS_NH4PTR)) == 0); len = sizeof(struct sockaddr_in6); psa = args.next_hop6; (*m0)->m_flags |= M_IP6_NEXTHOP; } #endif /* INET6 */ /* * Incoming packets should not be tagged so we do not * m_tag_find. Outgoing packets may be tagged, so we * reuse the tag if present. */ tag = (flags & PFIL_IN) ? NULL : m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL); if (tag != NULL) { m_tag_unlink(*m0, tag); } else { tag = m_tag_get(PACKET_TAG_IPFORWARD, len, M_NOWAIT); if (tag == NULL) { ret = PFIL_DROPPED; break; } } if ((args.flags & IPFW_ARGS_NH6) == 0) bcopy(psa, tag + 1, len); m_tag_prepend(*m0, tag); ret = PFIL_PASS; #ifdef INET6 /* IPv6 next hop needs additional handling */ if (args.flags & (IPFW_ARGS_NH6 | IPFW_ARGS_NH6PTR)) { struct sockaddr_in6 *sa6; sa6 = satosin6(tag + 1); if (args.flags & IPFW_ARGS_NH6) { sa6->sin6_family = AF_INET6; sa6->sin6_len = sizeof(*sa6); sa6->sin6_addr = args.hopstore6.sin6_addr; sa6->sin6_port = args.hopstore6.sin6_port; sa6->sin6_scope_id = args.hopstore6.sin6_scope_id; } /* * If nh6 address is link-local we should convert * it to kernel internal form before doing any * comparisons. */ if (sa6_embedscope(sa6, V_ip6_use_defzone) != 0) { ret = PFIL_DROPPED; break; } if (in6_localip(&sa6->sin6_addr)) (*m0)->m_flags |= M_FASTFWD_OURS; } #endif /* INET6 */ } #endif /* INET || INET6 */ break; case IP_FW_DENY: ret = PFIL_DROPPED; break; case IP_FW_DUMMYNET: if (ip_dn_io_ptr == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); if (args.flags & (IPFW_ARGS_IP4 | IPFW_ARGS_IP6)) (void )ip_dn_io_ptr(m0, &args); else { ret = PFIL_DROPPED; break; } /* * XXX should read the return value. * dummynet normally eats the packet and sets *m0=NULL * unless the packet can be sent immediately. In this * case args is updated and we should re-run the * check without clearing args. */ if (*m0 != NULL) goto again; ret = PFIL_CONSUMED; break; case IP_FW_TEE: case IP_FW_DIVERT: if (ip_divert_ptr == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); (void )ipfw_divert(m0, &args, ipfw == IP_FW_TEE); /* continue processing for the original packet (tee). */ if (*m0) goto again; ret = PFIL_CONSUMED; break; case IP_FW_NGTEE: case IP_FW_NETGRAPH: if (ng_ipfw_input_p == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); (void )ng_ipfw_input_p(m0, &args, ipfw == IP_FW_NGTEE); if (ipfw == IP_FW_NGTEE) /* ignore errors for NGTEE */ goto again; /* continue with packet */ ret = PFIL_CONSUMED; break; case IP_FW_NAT: /* honor one-pass in case of successful nat */ if (V_fw_one_pass) break; goto again; case IP_FW_REASS: goto again; /* continue with packet */ case IP_FW_NAT64: ret = PFIL_CONSUMED; break; default: KASSERT(0, ("%s: unknown retval", __func__)); } if (ret != PFIL_PASS) { if (*m0) FREE_PKT(*m0); *m0 = NULL; } return (ret); } /* * ipfw processing for ethernet packets (in and out), mbuf version. */ static pfil_return_t ipfw_check_frame_mbuf(struct mbuf **m0, struct ifnet *ifp, const int flags, void *ruleset __unused, struct inpcb *inp) { struct ip_fw_args args = { .flags = IPFW_ARGS_ETHER | ((flags & PFIL_IN) ? IPFW_ARGS_IN : IPFW_ARGS_OUT), .ifp = ifp, .inp = inp, }; struct m_tag *mtag; pfil_return_t ret; int ipfw; again: /* * Fetch start point from rule, if any. * Remove the tag if present. */ mtag = m_tag_locate(*m0, MTAG_IPFW_RULE, 0, NULL); if (mtag != NULL) { args.rule = *((struct ipfw_rule_ref *)(mtag+1)); m_tag_delete(*m0, mtag); if (args.rule.info & IPFW_ONEPASS) return (PFIL_PASS); args.flags |= IPFW_ARGS_REF; } - args.m = *m0, + args.m = *m0; ipfw = ipfw_chk(&args); *m0 = args.m; ret = PFIL_PASS; switch (ipfw) { case IP_FW_PASS: break; case IP_FW_DENY: ret = PFIL_DROPPED; break; case IP_FW_DUMMYNET: if (ip_dn_io_ptr == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); ip_dn_io_ptr(m0, &args); return (PFIL_CONSUMED); case IP_FW_NGTEE: case IP_FW_NETGRAPH: if (ng_ipfw_input_p == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); (void )ng_ipfw_input_p(m0, &args, ipfw == IP_FW_NGTEE); if (ipfw == IP_FW_NGTEE) /* ignore errors for NGTEE */ goto again; /* continue with packet */ ret = PFIL_CONSUMED; break; default: KASSERT(0, ("%s: unknown retval", __func__)); } if (ret != PFIL_PASS) { if (*m0) FREE_PKT(*m0); *m0 = NULL; } return (ret); } /* * ipfw processing for ethernet packets (in and out), memory pointer version, * two in/out accessors. */ static pfil_return_t ipfw_check_frame_mem(void *mem, u_int len, int flags, struct ifnet *ifp, void *ruleset __unused, struct mbuf **m) { struct ip_fw_args args = { .flags = len | IPFW_ARGS_ETHER | ((flags & PFIL_IN) ? IPFW_ARGS_IN : IPFW_ARGS_OUT), .ifp = ifp, .mem = mem, }; pfil_return_t ret; int ipfw; *m = NULL; again: ipfw = ipfw_chk(&args); ret = PFIL_PASS; switch (ipfw) { case IP_FW_PASS: break; case IP_FW_DENY: ret = PFIL_DROPPED; break; case IP_FW_DUMMYNET: if (ip_dn_io_ptr == NULL) { ret = PFIL_DROPPED; break; } *m = m_devget(mem, len, 0, ifp, NULL); if (*m == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); ip_dn_io_ptr(m, &args); return (PFIL_CONSUMED); case IP_FW_NGTEE: case IP_FW_NETGRAPH: if (ng_ipfw_input_p == NULL) { ret = PFIL_DROPPED; break; } *m = m_devget(mem, len, 0, ifp, NULL); if (*m == NULL) { ret = PFIL_DROPPED; break; } MPASS(args.flags & IPFW_ARGS_REF); (void )ng_ipfw_input_p(m, &args, ipfw == IP_FW_NGTEE); if (ipfw == IP_FW_NGTEE) /* ignore errors for NGTEE */ goto again; /* continue with packet */ ret = PFIL_CONSUMED; break; default: KASSERT(0, ("%s: unknown retval", __func__)); } if (*m != NULL && ret == PFIL_PASS) ret = PFIL_REALLOCED; return (ret); } /* do the divert, return 1 on error 0 on success */ static int ipfw_divert(struct mbuf **m0, struct ip_fw_args *args, bool tee) { /* * ipfw_chk() has already tagged the packet with the divert tag. * If tee is set, copy packet and return original. * If not tee, consume packet and send it to divert socket. */ struct mbuf *clone; struct ip *ip = mtod(*m0, struct ip *); struct m_tag *tag; /* Cloning needed for tee? */ if (tee == false) { clone = *m0; /* use the original mbuf */ *m0 = NULL; } else { clone = m_dup(*m0, M_NOWAIT); /* If we cannot duplicate the mbuf, we sacrifice the divert * chain and continue with the tee-ed packet. */ if (clone == NULL) return 1; } /* * Divert listeners can normally handle non-fragmented packets, * but we can only reass in the non-tee case. * This means that listeners on a tee rule may get fragments, * and have to live with that. * Note that we now have the 'reass' ipfw option so if we care * we can do it before a 'tee'. */ if (tee == false) switch (ip->ip_v) { case IPVERSION: if (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) { int hlen; struct mbuf *reass; reass = ip_reass(clone); /* Reassemble packet. */ if (reass == NULL) return 0; /* not an error */ /* if reass = NULL then it was consumed by ip_reass */ /* * IP header checksum fixup after reassembly and leave header * in network byte order. */ ip = mtod(reass, struct ip *); hlen = ip->ip_hl << 2; ip->ip_sum = 0; if (hlen == sizeof(struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(reass, hlen); clone = reass; } break; #ifdef INET6 case IPV6_VERSION >> 4: { struct ip6_hdr *const ip6 = mtod(clone, struct ip6_hdr *); if (ip6->ip6_nxt == IPPROTO_FRAGMENT) { int nxt, off; off = sizeof(struct ip6_hdr); nxt = frag6_input(&clone, &off, 0); if (nxt == IPPROTO_DONE) return (0); } break; } #endif } /* attach a tag to the packet with the reinject info */ tag = m_tag_alloc(MTAG_IPFW_RULE, 0, sizeof(struct ipfw_rule_ref), M_NOWAIT); if (tag == NULL) { FREE_PKT(clone); return 1; } *((struct ipfw_rule_ref *)(tag+1)) = args->rule; m_tag_prepend(clone, tag); /* Do the dirty job... */ ip_divert_ptr(clone, args->flags & IPFW_ARGS_IN); return 0; } /* * attach or detach hooks for a given protocol family */ VNET_DEFINE_STATIC(pfil_hook_t, ipfw_inet_hook); #define V_ipfw_inet_hook VNET(ipfw_inet_hook) #ifdef INET6 VNET_DEFINE_STATIC(pfil_hook_t, ipfw_inet6_hook); #define V_ipfw_inet6_hook VNET(ipfw_inet6_hook) #endif VNET_DEFINE_STATIC(pfil_hook_t, ipfw_link_hook); #define V_ipfw_link_hook VNET(ipfw_link_hook) static void ipfw_hook(int pf) { struct pfil_hook_args pha = { .pa_version = PFIL_VERSION, .pa_flags = PFIL_IN | PFIL_OUT, .pa_modname = "ipfw", }; pfil_hook_t *h; switch (pf) { case AF_INET: pha.pa_mbuf_chk = ipfw_check_packet; pha.pa_type = PFIL_TYPE_IP4; pha.pa_rulname = "default"; h = &V_ipfw_inet_hook; break; #ifdef INET6 case AF_INET6: pha.pa_mbuf_chk = ipfw_check_packet; pha.pa_type = PFIL_TYPE_IP6; pha.pa_rulname = "default6"; h = &V_ipfw_inet6_hook; break; #endif case AF_LINK: pha.pa_mbuf_chk = ipfw_check_frame_mbuf; pha.pa_mem_chk = ipfw_check_frame_mem; pha.pa_type = PFIL_TYPE_ETHERNET; pha.pa_rulname = "default-link"; h = &V_ipfw_link_hook; break; } *h = pfil_add_hook(&pha); } static void ipfw_unhook(int pf) { switch (pf) { case AF_INET: pfil_remove_hook(V_ipfw_inet_hook); break; #ifdef INET6 case AF_INET6: pfil_remove_hook(V_ipfw_inet6_hook); break; #endif case AF_LINK: pfil_remove_hook(V_ipfw_link_hook); break; } } static int ipfw_link(int pf, bool unlink) { struct pfil_link_args pla; pla.pa_version = PFIL_VERSION; pla.pa_flags = PFIL_IN | PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; if (unlink) pla.pa_flags |= PFIL_UNLINK; switch (pf) { case AF_INET: pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_ipfw_inet_hook; break; #ifdef INET6 case AF_INET6: pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_ipfw_inet6_hook; break; #endif case AF_LINK: pla.pa_head = V_link_pfil_head; pla.pa_hook = V_ipfw_link_hook; break; } return (pfil_link(&pla)); } int ipfw_attach_hooks(void) { int error = 0; ipfw_hook(AF_INET); TUNABLE_INT_FETCH("net.inet.ip.fw.enable", &V_fw_enable); if (V_fw_enable && (error = ipfw_link(AF_INET, false)) != 0) printf("ipfw_hook() error\n"); #ifdef INET6 ipfw_hook(AF_INET6); TUNABLE_INT_FETCH("net.inet6.ip6.fw.enable", &V_fw6_enable); if (V_fw6_enable && (error = ipfw_link(AF_INET6, false)) != 0) printf("ipfw6_hook() error\n"); #endif ipfw_hook(AF_LINK); TUNABLE_INT_FETCH("net.link.ether.ipfw", &V_fwlink_enable); if (V_fwlink_enable && (error = ipfw_link(AF_LINK, false)) != 0) printf("ipfw_link_hook() error\n"); return (error); } void ipfw_detach_hooks(void) { ipfw_unhook(AF_INET); #ifdef INET6 ipfw_unhook(AF_INET6); #endif ipfw_unhook(AF_LINK); } int ipfw_chg_hook(SYSCTL_HANDLER_ARGS) { int newval; int error; int af; if (arg1 == &V_fw_enable) af = AF_INET; #ifdef INET6 else if (arg1 == &V_fw6_enable) af = AF_INET6; #endif else if (arg1 == &V_fwlink_enable) af = AF_LINK; else return (EINVAL); newval = *(int *)arg1; /* Handle sysctl change */ error = sysctl_handle_int(oidp, &newval, 0, req); if (error) return (error); /* Formalize new value */ newval = (newval) ? 1 : 0; if (*(int *)arg1 == newval) return (0); error = ipfw_link(af, newval == 0 ? true : false); if (error) return (error); *(int *)arg1 = newval; return (0); } /* end of file */ diff --git a/sys/netpfil/ipfw/ip_fw_private.h b/sys/netpfil/ipfw/ip_fw_private.h index 87a40c940c23..abb3cd965680 100644 --- a/sys/netpfil/ipfw/ip_fw_private.h +++ b/sys/netpfil/ipfw/ip_fw_private.h @@ -1,829 +1,830 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _IPFW2_PRIVATE_H #define _IPFW2_PRIVATE_H /* * Internal constants and data structures used by ipfw components * and not meant to be exported outside the kernel. */ #ifdef _KERNEL /* * For platforms that do not have SYSCTL support, we wrap the * SYSCTL_* into a function (one per file) to collect the values * into an array at module initialization. The wrapping macros, * SYSBEGIN() and SYSEND, are empty in the default case. */ #ifndef SYSBEGIN #define SYSBEGIN(x) #endif #ifndef SYSEND #define SYSEND #endif /* Return values from ipfw_chk() */ enum { IP_FW_PASS = 0, IP_FW_DENY, IP_FW_DIVERT, IP_FW_TEE, IP_FW_DUMMYNET, IP_FW_NETGRAPH, IP_FW_NGTEE, IP_FW_NAT, IP_FW_REASS, IP_FW_NAT64, }; /* * Structure for collecting parameters to dummynet for ip6_output forwarding */ struct _ip6dn_args { struct ip6_pktopts *opt_or; int flags_or; struct ip6_moptions *im6o_or; struct ifnet *origifp_or; struct ifnet *ifp_or; struct sockaddr_in6 dst_or; u_long mtu_or; }; /* * Arguments for calling ipfw_chk() and dummynet_io(). We put them * all into a structure because this way it is easier and more * efficient to pass variables around and extend the interface. */ struct ip_fw_args { uint32_t flags; #define IPFW_ARGS_ETHER 0x00010000 /* valid ethernet header */ #define IPFW_ARGS_NH4 0x00020000 /* IPv4 next hop in hopstore */ #define IPFW_ARGS_NH6 0x00040000 /* IPv6 next hop in hopstore */ #define IPFW_ARGS_NH4PTR 0x00080000 /* IPv4 next hop in next_hop */ #define IPFW_ARGS_NH6PTR 0x00100000 /* IPv6 next hop in next_hop6 */ #define IPFW_ARGS_REF 0x00200000 /* valid ipfw_rule_ref */ #define IPFW_ARGS_IN 0x00400000 /* called on input */ #define IPFW_ARGS_OUT 0x00800000 /* called on output */ #define IPFW_ARGS_IP4 0x01000000 /* belongs to v4 ISR */ #define IPFW_ARGS_IP6 0x02000000 /* belongs to v6 ISR */ #define IPFW_ARGS_DROP 0x04000000 /* drop it (dummynet) */ #define IPFW_ARGS_LENMASK 0x0000ffff /* length of data in *mem */ #define IPFW_ARGS_LENGTH(f) ((f) & IPFW_ARGS_LENMASK) /* * On return, it points to the matching rule. * On entry, rule.slot > 0 means the info is valid and * contains the starting rule for an ipfw search. * If chain_id == chain->id && slot >0 then jump to that slot. * Otherwise, we locate the first rule >= rulenum:rule_id */ struct ipfw_rule_ref rule; /* match/restart info */ struct ifnet *ifp; /* input/output interface */ struct inpcb *inp; union { /* * next_hop[6] pointers can be used to point to next hop * stored in rule's opcode to avoid copying into hopstore. * Also, it is expected that all 0x1-0x10 flags are mutually * exclusive. */ struct sockaddr_in *next_hop; struct sockaddr_in6 *next_hop6; /* ipfw next hop storage */ struct sockaddr_in hopstore; struct ip_fw_nh6 { struct in6_addr sin6_addr; uint32_t sin6_scope_id; uint16_t sin6_port; } hopstore6; }; union { struct mbuf *m; /* the mbuf chain */ void *mem; /* or memory pointer */ }; struct ipfw_flow_id f_id; /* grabbed from IP header */ }; MALLOC_DECLARE(M_IPFW); /* wrapper for freeing a packet, in case we need to do more work */ #ifndef FREE_PKT #if defined(__linux__) || defined(_WIN32) #define FREE_PKT(m) netisr_dispatch(-1, m) #else #define FREE_PKT(m) m_freem(m) #endif #endif /* !FREE_PKT */ /* * Function definitions. */ int ipfw_chk(struct ip_fw_args *args); struct mbuf *ipfw_send_pkt(struct mbuf *, struct ipfw_flow_id *, u_int32_t, u_int32_t, int); int ipfw_attach_hooks(void); void ipfw_detach_hooks(void); #ifdef NOTYET void ipfw_nat_destroy(void); #endif /* In ip_fw_log.c */ struct ip; struct ip_fw_chain; void ipfw_bpf_init(int); void ipfw_bpf_uninit(int); void ipfw_bpf_tap(u_char *, u_int); void ipfw_bpf_mtap(struct mbuf *); void ipfw_bpf_mtap2(void *, u_int, struct mbuf *); void ipfw_log(struct ip_fw_chain *chain, struct ip_fw *f, u_int hlen, struct ip_fw_args *args, u_short offset, uint32_t tablearg, struct ip *ip); VNET_DECLARE(u_int64_t, norule_counter); #define V_norule_counter VNET(norule_counter) VNET_DECLARE(int, verbose_limit); #define V_verbose_limit VNET(verbose_limit) /* In ip_fw_dynamic.c */ struct sockopt_data; enum { /* result for matching dynamic rules */ MATCH_REVERSE = 0, MATCH_FORWARD, MATCH_NONE, MATCH_UNKNOWN, }; /* * Macro to determine that we need to do or redo dynamic state lookup. * direction == MATCH_UNKNOWN means that this is first lookup, then we need * to do lookup. * Otherwise check the state name, if previous lookup was for "any" name, * this means there is no state with specific name. Thus no need to do * lookup. If previous name was not "any", redo lookup for specific name. */ #define DYN_LOOKUP_NEEDED(p, cmd) \ ((p)->direction == MATCH_UNKNOWN || \ ((p)->kidx != 0 && (p)->kidx != (cmd)->arg1)) #define DYN_INFO_INIT(p) do { \ (p)->direction = MATCH_UNKNOWN; \ (p)->kidx = 0; \ } while (0) struct ipfw_dyn_info { uint16_t direction; /* match direction */ uint16_t kidx; /* state name kidx */ uint32_t hashval; /* hash value */ uint32_t version; /* bucket version */ uint32_t f_pos; }; int ipfw_dyn_install_state(struct ip_fw_chain *chain, struct ip_fw *rule, const ipfw_insn_limit *cmd, const struct ip_fw_args *args, const void *ulp, int pktlen, struct ipfw_dyn_info *info, uint32_t tablearg); struct ip_fw *ipfw_dyn_lookup_state(const struct ip_fw_args *args, const void *ulp, int pktlen, const ipfw_insn *cmd, struct ipfw_dyn_info *info); int ipfw_is_dyn_rule(struct ip_fw *rule); void ipfw_expire_dyn_states(struct ip_fw_chain *, ipfw_range_tlv *); void ipfw_get_dynamic(struct ip_fw_chain *chain, char **bp, const char *ep); int ipfw_dump_states(struct ip_fw_chain *chain, struct sockopt_data *sd); void ipfw_dyn_init(struct ip_fw_chain *); /* per-vnet initialization */ void ipfw_dyn_uninit(int); /* per-vnet deinitialization */ int ipfw_dyn_len(void); uint32_t ipfw_dyn_get_count(uint32_t *, int *); void ipfw_dyn_reset_eaction(struct ip_fw_chain *ch, uint16_t eaction_id, uint16_t default_id, uint16_t instance_id); /* common variables */ VNET_DECLARE(int, fw_one_pass); #define V_fw_one_pass VNET(fw_one_pass) VNET_DECLARE(int, fw_verbose); #define V_fw_verbose VNET(fw_verbose) VNET_DECLARE(struct ip_fw_chain, layer3_chain); #define V_layer3_chain VNET(layer3_chain) VNET_DECLARE(int, ipfw_vnet_ready); #define V_ipfw_vnet_ready VNET(ipfw_vnet_ready) VNET_DECLARE(u_int32_t, set_disable); #define V_set_disable VNET(set_disable) VNET_DECLARE(int, autoinc_step); #define V_autoinc_step VNET(autoinc_step) VNET_DECLARE(unsigned int, fw_tables_max); #define V_fw_tables_max VNET(fw_tables_max) VNET_DECLARE(unsigned int, fw_tables_sets); #define V_fw_tables_sets VNET(fw_tables_sets) struct tables_config; #ifdef _KERNEL /* * Here we have the structure representing an ipfw rule. * * It starts with a general area * followed by an array of one or more instructions, which the code * accesses as an array of 32-bit values. * * Given a rule pointer r: * * r->cmd is the start of the first instruction. * ACTION_PTR(r) is the start of the first action (things to do * once a rule matched). */ struct ip_fw_jump_cache { union { struct { uint32_t id; uint32_t pos; }; uint64_t raw_value; }; }; struct ip_fw { uint16_t act_ofs; /* offset of action in 32-bit units */ uint16_t cmd_len; /* # of 32-bit words in cmd */ uint16_t rulenum; /* rule number */ uint8_t set; /* rule set (0..31) */ uint8_t flags; /* currently unused */ counter_u64_t cntr; /* Pointer to rule counters */ struct ip_fw_jump_cache cache; /* used by jump_fast */ uint32_t timestamp; /* tv_sec of last match */ uint32_t id; /* rule id */ uint32_t refcnt; /* number of references */ struct ip_fw *next; /* linked list of deleted rules */ ipfw_insn cmd[1]; /* storage for commands */ }; #define IPFW_RULE_CNTR_SIZE (2 * sizeof(uint64_t)) #endif struct ip_fw_chain { struct ip_fw **map; /* array of rule ptrs to ease lookup */ uint32_t id; /* ruleset id */ int n_rules; /* number of static rules */ void *tablestate; /* runtime table info */ void *valuestate; /* runtime table value info */ int *idxmap; /* skipto array of rules */ void **srvstate; /* runtime service mappings */ #if defined( __linux__ ) || defined( _WIN32 ) spinlock_t rwmtx; #else struct rmlock rwmtx; #endif int static_len; /* total len of static rules (v0) */ uint32_t gencnt; /* NAT generation count */ LIST_HEAD(nat_list, cfg_nat) nat; /* list of nat entries */ struct ip_fw *default_rule; struct tables_config *tblcfg; /* tables module data */ void *ifcfg; /* interface module data */ int *idxmap_back; /* standby skipto array of rules */ struct namedobj_instance *srvmap; /* cfg name->number mappings */ #if defined( __linux__ ) || defined( _WIN32 ) spinlock_t uh_lock; #else struct rwlock uh_lock; /* lock for upper half */ #endif }; /* 64-byte structure representing multi-field table value */ struct table_value { uint32_t tag; /* O_TAG/O_TAGGED */ uint32_t pipe; /* O_PIPE/O_QUEUE */ uint16_t divert; /* O_DIVERT/O_TEE */ uint16_t skipto; /* skipto, CALLRET */ uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */ - uint32_t fib; /* O_SETFIB */ - uint32_t nat; /* O_NAT */ + uint16_t fib; /* O_SETFIB */ + uint16_t nat; /* O_NAT */ + uint32_t mark; /* O_SETMARK/O_MARK */ uint32_t nh4; uint8_t dscp; uint8_t spare0; - uint16_t spare1; + uint16_t kidx; /* value kernel index */ /* -- 32 bytes -- */ struct in6_addr nh6; uint32_t limit; /* O_LIMIT */ uint32_t zoneid; /* scope zone id for nh6 */ uint64_t refcnt; /* Number of references */ }; struct named_object { TAILQ_ENTRY(named_object) nn_next; /* namehash */ TAILQ_ENTRY(named_object) nv_next; /* valuehash */ char *name; /* object name */ uint16_t etlv; /* Export TLV id */ uint8_t subtype;/* object subtype within class */ uint8_t set; /* set object belongs to */ uint16_t kidx; /* object kernel index */ uint16_t spare; uint32_t ocnt; /* object counter for internal use */ uint32_t refcnt; /* number of references */ }; TAILQ_HEAD(namedobjects_head, named_object); struct sockopt; /* used by tcp_var.h */ struct sockopt_data { caddr_t kbuf; /* allocated buffer */ size_t ksize; /* given buffer size */ size_t koff; /* data already used */ size_t kavail; /* number of bytes available */ size_t ktotal; /* total bytes pushed */ struct sockopt *sopt; /* socket data */ caddr_t sopt_val; /* sopt user buffer */ size_t valsize; /* original data size */ }; struct ipfw_ifc; typedef void (ipfw_ifc_cb)(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex); struct ipfw_iface { struct named_object no; char ifname[64]; int resolved; uint16_t ifindex; uint16_t spare; uint64_t gencnt; TAILQ_HEAD(, ipfw_ifc) consumers; }; struct ipfw_ifc { TAILQ_ENTRY(ipfw_ifc) next; struct ipfw_iface *iface; ipfw_ifc_cb *cb; void *cbdata; }; /* Macro for working with various counters */ #define IPFW_INC_RULE_COUNTER(_cntr, _bytes) do { \ counter_u64_add((_cntr)->cntr, 1); \ counter_u64_add((_cntr)->cntr + 1, _bytes); \ if ((_cntr)->timestamp != time_uptime) \ (_cntr)->timestamp = time_uptime; \ } while (0) #define IPFW_INC_DYN_COUNTER(_cntr, _bytes) do { \ (_cntr)->pcnt++; \ (_cntr)->bcnt += _bytes; \ } while (0) #define IPFW_ZERO_RULE_COUNTER(_cntr) do { \ counter_u64_zero((_cntr)->cntr); \ counter_u64_zero((_cntr)->cntr + 1); \ (_cntr)->timestamp = 0; \ } while (0) #define IPFW_ZERO_DYN_COUNTER(_cntr) do { \ (_cntr)->pcnt = 0; \ (_cntr)->bcnt = 0; \ } while (0) #define TARG_VAL(ch, k, f) ((struct table_value *)((ch)->valuestate))[k].f #define IP_FW_ARG_TABLEARG(ch, a, f) \ (((a) == IP_FW_TARG) ? TARG_VAL(ch, tablearg, f) : (a)) /* * The lock is heavily used by ip_fw2.c (the main file) and ip_fw_nat.c * so the variable and the macros must be here. */ #if defined( __linux__ ) || defined( _WIN32 ) #define IPFW_LOCK_INIT(_chain) do { \ rw_init(&(_chain)->rwmtx, "IPFW static rules"); \ rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \ } while (0) #define IPFW_LOCK_DESTROY(_chain) do { \ rw_destroy(&(_chain)->rwmtx); \ rw_destroy(&(_chain)->uh_lock); \ } while (0) #define IPFW_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_RLOCKED) #define IPFW_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->rwmtx, RA_WLOCKED) #define IPFW_RLOCK_TRACKER #define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx) #define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx) #define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx) #define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx) #define IPFW_PF_RLOCK(p) IPFW_RLOCK(p) #define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p) #else /* FreeBSD */ #define IPFW_LOCK_INIT(_chain) do { \ rm_init_flags(&(_chain)->rwmtx, "IPFW static rules", RM_RECURSE); \ rw_init(&(_chain)->uh_lock, "IPFW UH lock"); \ } while (0) #define IPFW_LOCK_DESTROY(_chain) do { \ rm_destroy(&(_chain)->rwmtx); \ rw_destroy(&(_chain)->uh_lock); \ } while (0) #define IPFW_RLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_RLOCKED) #define IPFW_WLOCK_ASSERT(_chain) rm_assert(&(_chain)->rwmtx, RA_WLOCKED) #define IPFW_RLOCK_TRACKER struct rm_priotracker _tracker #define IPFW_RLOCK(p) rm_rlock(&(p)->rwmtx, &_tracker) #define IPFW_RUNLOCK(p) rm_runlock(&(p)->rwmtx, &_tracker) #define IPFW_WLOCK(p) rm_wlock(&(p)->rwmtx) #define IPFW_WUNLOCK(p) rm_wunlock(&(p)->rwmtx) #define IPFW_PF_RLOCK(p) IPFW_RLOCK(p) #define IPFW_PF_RUNLOCK(p) IPFW_RUNLOCK(p) #endif #define IPFW_UH_RLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_RLOCKED) #define IPFW_UH_WLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_WLOCKED) #define IPFW_UH_UNLOCK_ASSERT(_chain) rw_assert(&(_chain)->uh_lock, RA_UNLOCKED) #define IPFW_UH_RLOCK(p) rw_rlock(&(p)->uh_lock) #define IPFW_UH_RUNLOCK(p) rw_runlock(&(p)->uh_lock) #define IPFW_UH_WLOCK(p) rw_wlock(&(p)->uh_lock) #define IPFW_UH_WUNLOCK(p) rw_wunlock(&(p)->uh_lock) struct obj_idx { uint16_t uidx; /* internal index supplied by userland */ uint16_t kidx; /* kernel object index */ uint16_t off; /* tlv offset from rule end in 4-byte words */ uint8_t spare; uint8_t type; /* object type within its category */ }; struct rule_check_info { uint16_t flags; /* rule-specific check flags */ uint16_t object_opcodes; /* num of opcodes referencing objects */ uint16_t urule_numoff; /* offset of rulenum in bytes */ uint8_t version; /* rule version */ uint8_t spare; ipfw_obj_ctlv *ctlv; /* name TLV containter */ struct ip_fw *krule; /* resulting rule pointer */ caddr_t urule; /* original rule pointer */ struct obj_idx obuf[8]; /* table references storage */ }; /* Legacy interface support */ /* * FreeBSD 8 export rule format */ struct ip_fw_rule0 { struct ip_fw *x_next; /* linked list of rules */ struct ip_fw *next_rule; /* ptr to next [skipto] rule */ /* 'next_rule' is used to pass up 'set_disable' status */ uint16_t act_ofs; /* offset of action in 32-bit units */ uint16_t cmd_len; /* # of 32-bit words in cmd */ uint16_t rulenum; /* rule number */ uint8_t set; /* rule set (0..31) */ uint8_t _pad; /* padding */ uint32_t id; /* rule id */ /* These fields are present in all rules. */ uint64_t pcnt; /* Packet counter */ uint64_t bcnt; /* Byte counter */ uint32_t timestamp; /* tv_sec of last match */ ipfw_insn cmd[1]; /* storage for commands */ }; struct ip_fw_bcounter0 { uint64_t pcnt; /* Packet counter */ uint64_t bcnt; /* Byte counter */ uint32_t timestamp; /* tv_sec of last match */ }; /* Kernel rule length */ /* * RULE _K_ SIZE _V_ -> * get kernel size from userland rool version _V_. * RULE _U_ SIZE _V_ -> * get user size version _V_ from kernel rule * RULESIZE _V_ -> * get user size rule length */ /* FreeBSD8 <> current kernel format */ #define RULEUSIZE0(r) (sizeof(struct ip_fw_rule0) + (r)->cmd_len * 4 - 4) #define RULEKSIZE0(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8) /* FreeBSD11 <> current kernel format */ #define RULEUSIZE1(r) (roundup2(sizeof(struct ip_fw_rule) + \ (r)->cmd_len * 4 - 4, 8)) #define RULEKSIZE1(r) roundup2((sizeof(struct ip_fw) + (r)->cmd_len*4 - 4), 8) /* * Tables/Objects index rewriting code */ /* Default and maximum number of ipfw tables/objects. */ #define IPFW_TABLES_MAX 65536 #define IPFW_TABLES_DEFAULT 128 #define IPFW_OBJECTS_MAX 65536 #define IPFW_OBJECTS_DEFAULT 1024 #define CHAIN_TO_SRV(ch) ((ch)->srvmap) #define SRV_OBJECT(ch, idx) ((ch)->srvstate[(idx)]) struct tid_info { uint32_t set; /* table set */ uint16_t uidx; /* table index */ uint8_t type; /* table type */ uint8_t atype; uint8_t spare; int tlen; /* Total TLV size block */ void *tlvs; /* Pointer to first TLV */ }; /* * Classifier callback. Checks if @cmd opcode contains kernel object reference. * If true, returns its index and type. * Returns 0 if match is found, 1 overwise. */ typedef int (ipfw_obj_rw_cl)(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype); /* * Updater callback. Sets kernel object reference index to @puidx */ typedef void (ipfw_obj_rw_upd)(ipfw_insn *cmd, uint16_t puidx); /* * Finder callback. Tries to find named object by name (specified via @ti). * Stores found named object pointer in @pno. * If object was not found, NULL is stored. * * Return 0 if input data was valid. */ typedef int (ipfw_obj_fname_cb)(struct ip_fw_chain *ch, struct tid_info *ti, struct named_object **pno); /* * Another finder callback. Tries to findex named object by kernel index. * * Returns pointer to named object or NULL. */ typedef struct named_object *(ipfw_obj_fidx_cb)(struct ip_fw_chain *ch, uint16_t kidx); /* * Object creator callback. Tries to create object specified by @ti. * Stores newly-allocated object index in @pkidx. * * Returns 0 on success. */ typedef int (ipfw_obj_create_cb)(struct ip_fw_chain *ch, struct tid_info *ti, uint16_t *pkidx); /* * Object destroy callback. Intended to free resources allocated by * create_object callback. */ typedef void (ipfw_obj_destroy_cb)(struct ip_fw_chain *ch, struct named_object *no); /* * Sets handler callback. Handles moving and swaping set of named object. * SWAP_ALL moves all named objects from set `set' to `new_set' and vise versa; * TEST_ALL checks that there aren't any named object with conflicting names; * MOVE_ALL moves all named objects from set `set' to `new_set'; * COUNT_ONE used to count number of references used by object with kidx `set'; * TEST_ONE checks that named object with kidx `set' can be moved to `new_set`; * MOVE_ONE moves named object with kidx `set' to set `new_set'. */ enum ipfw_sets_cmd { SWAP_ALL = 0, TEST_ALL, MOVE_ALL, COUNT_ONE, TEST_ONE, MOVE_ONE }; typedef int (ipfw_obj_sets_cb)(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd); struct opcode_obj_rewrite { uint32_t opcode; /* Opcode to act upon */ uint32_t etlv; /* Relevant export TLV id */ ipfw_obj_rw_cl *classifier; /* Check if rewrite is needed */ ipfw_obj_rw_upd *update; /* update cmd with new value */ ipfw_obj_fname_cb *find_byname; /* Find named object by name */ ipfw_obj_fidx_cb *find_bykidx; /* Find named object by kidx */ ipfw_obj_create_cb *create_object; /* Create named object */ ipfw_obj_destroy_cb *destroy_object;/* Destroy named object */ ipfw_obj_sets_cb *manage_sets; /* Swap or move sets */ }; #define IPFW_ADD_OBJ_REWRITER(f, c) do { \ if ((f) != 0) \ ipfw_add_obj_rewriter(c, \ sizeof(c) / sizeof(c[0])); \ } while(0) #define IPFW_DEL_OBJ_REWRITER(l, c) do { \ if ((l) != 0) \ ipfw_del_obj_rewriter(c, \ sizeof(c) / sizeof(c[0])); \ } while(0) /* In ip_fw_iface.c */ int ipfw_iface_init(void); void ipfw_iface_destroy(void); void vnet_ipfw_iface_destroy(struct ip_fw_chain *ch); int ipfw_iface_ref(struct ip_fw_chain *ch, char *name, struct ipfw_ifc *ic); void ipfw_iface_unref(struct ip_fw_chain *ch, struct ipfw_ifc *ic); void ipfw_iface_add_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic); void ipfw_iface_del_notify(struct ip_fw_chain *ch, struct ipfw_ifc *ic); /* In ip_fw_sockopt.c */ void ipfw_init_skipto_cache(struct ip_fw_chain *chain); void ipfw_destroy_skipto_cache(struct ip_fw_chain *chain); int ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id); int ipfw_ctl3(struct sockopt *sopt); int ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule, int locked); void ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head, struct ip_fw *rule); void ipfw_reap_rules(struct ip_fw *head); void ipfw_init_counters(void); void ipfw_destroy_counters(void); struct ip_fw *ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize); void ipfw_free_rule(struct ip_fw *rule); int ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt); int ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint16_t kidx); ipfw_insn *ipfw_get_action(struct ip_fw *); typedef int (sopt_handler_f)(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd); struct ipfw_sopt_handler { uint16_t opcode; uint8_t version; uint8_t dir; sopt_handler_f *handler; uint64_t refcnt; }; #define HDIR_SET 0x01 /* Handler is used to set some data */ #define HDIR_GET 0x02 /* Handler is used to retrieve data */ #define HDIR_BOTH HDIR_GET|HDIR_SET void ipfw_init_sopt_handler(void); void ipfw_destroy_sopt_handler(void); void ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count); int ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count); caddr_t ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed); caddr_t ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed); #define IPFW_ADD_SOPT_HANDLER(f, c) do { \ if ((f) != 0) \ ipfw_add_sopt_handler(c, \ sizeof(c) / sizeof(c[0])); \ } while(0) #define IPFW_DEL_SOPT_HANDLER(l, c) do { \ if ((l) != 0) \ ipfw_del_sopt_handler(c, \ sizeof(c) / sizeof(c[0])); \ } while(0) struct namedobj_instance; typedef int (objhash_cb_t)(struct namedobj_instance *ni, struct named_object *, void *arg); typedef uint32_t (objhash_hash_f)(struct namedobj_instance *ni, const void *key, uint32_t kopt); typedef int (objhash_cmp_f)(struct named_object *no, const void *key, uint32_t kopt); struct namedobj_instance *ipfw_objhash_create(uint32_t items); void ipfw_objhash_destroy(struct namedobj_instance *); void ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks); void ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks); void ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks); void ipfw_objhash_bitmap_free(void *idx, int blocks); void ipfw_objhash_set_hashf(struct namedobj_instance *ni, objhash_hash_f *f); struct named_object *ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set, const char *name); struct named_object *ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set, uint32_t type, const char *name); struct named_object *ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint16_t idx); int ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a, struct named_object *b); void ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no); void ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no); uint32_t ipfw_objhash_count(struct namedobj_instance *ni); uint32_t ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type); int ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg); int ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f, void *arg, uint16_t type); int ipfw_objhash_free_idx(struct namedobj_instance *ni, uint16_t idx); int ipfw_objhash_alloc_idx(void *n, uint16_t *pidx); void ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f, objhash_cmp_f *cmp_f); int ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti, uint32_t etlv, struct named_object **pno); void ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv); ipfw_obj_ntlv *ipfw_find_name_tlv_type(void *tlvs, int len, uint16_t uidx, uint32_t etlv); void ipfw_init_obj_rewriter(void); void ipfw_destroy_obj_rewriter(void); void ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count); int ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count); int create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti); void update_opcode_kidx(ipfw_insn *cmd, uint16_t idx); int classify_opcode_kidx(ipfw_insn *cmd, uint16_t *puidx); void ipfw_init_srv(struct ip_fw_chain *ch); void ipfw_destroy_srv(struct ip_fw_chain *ch); int ipfw_check_object_name_generic(const char *name); int ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type, uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd); /* In ip_fw_eaction.c */ typedef int (ipfw_eaction_t)(struct ip_fw_chain *ch, struct ip_fw_args *args, ipfw_insn *cmd, int *done); int ipfw_eaction_init(struct ip_fw_chain *ch, int first); void ipfw_eaction_uninit(struct ip_fw_chain *ch, int last); uint16_t ipfw_add_eaction(struct ip_fw_chain *ch, ipfw_eaction_t handler, const char *name); int ipfw_del_eaction(struct ip_fw_chain *ch, uint16_t eaction_id); int ipfw_run_eaction(struct ip_fw_chain *ch, struct ip_fw_args *args, ipfw_insn *cmd, int *done); int ipfw_reset_eaction(struct ip_fw_chain *ch, struct ip_fw *rule, uint16_t eaction_id, uint16_t default_id, uint16_t instance_id); int ipfw_reset_eaction_instance(struct ip_fw_chain *ch, uint16_t eaction_id, uint16_t instance_id); /* In ip_fw_table.c */ struct table_info; typedef int (table_lookup_t)(struct table_info *ti, void *key, uint32_t keylen, uint32_t *val); int ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, void *paddr, uint32_t *val); struct named_object *ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx); int ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx); void ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx); int ipfw_init_tables(struct ip_fw_chain *ch, int first); int ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables); int ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int nsets); void ipfw_destroy_tables(struct ip_fw_chain *ch, int last); /* In ip_fw_nat.c -- XXX to be moved to ip_var.h */ extern struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int); typedef int ipfw_nat_t(struct ip_fw_args *, struct cfg_nat *, struct mbuf *); typedef int ipfw_nat_cfg_t(struct sockopt *); VNET_DECLARE(int, ipfw_nat_ready); #define V_ipfw_nat_ready VNET(ipfw_nat_ready) #define IPFW_NAT_LOADED (V_ipfw_nat_ready) extern ipfw_nat_t *ipfw_nat_ptr; extern ipfw_nat_cfg_t *ipfw_nat_cfg_ptr; extern ipfw_nat_cfg_t *ipfw_nat_del_ptr; extern ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr; extern ipfw_nat_cfg_t *ipfw_nat_get_log_ptr; /* Helper functions for IP checksum adjustment */ static __inline uint16_t cksum_add(uint16_t sum, uint16_t a) { uint16_t res; res = sum + a; return (res + (res < a)); } static __inline uint16_t cksum_adjust(uint16_t oldsum, uint16_t old, uint16_t new) { return (~cksum_add(cksum_add(~oldsum, ~old), new)); } #endif /* _KERNEL */ #endif /* _IPFW2_PRIVATE_H */ diff --git a/sys/netpfil/ipfw/ip_fw_sockopt.c b/sys/netpfil/ipfw/ip_fw_sockopt.c index e8dd59eacc09..0065f7d95c00 100644 --- a/sys/netpfil/ipfw/ip_fw_sockopt.c +++ b/sys/netpfil/ipfw/ip_fw_sockopt.c @@ -1,4701 +1,4710 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa * Copyright (c) 2014 Yandex LLC * Copyright (c) 2014 Alexander V. Chernikov * * Supported by: Valeria Paoli * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Control socket and rule management routines for ipfw. * Control is currently implemented via IP_FW3 setsockopt() code. */ #include "opt_ipfw.h" #include "opt_inet.h" #ifndef INET #error IPFIREWALL requires INET. #endif /* INET */ #include "opt_inet6.h" #include #include #include #include /* struct m_tag used by nested headers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* hooks */ #include #include #include #ifdef MAC #include #endif static int ipfw_ctl(struct sockopt *sopt); static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci); static int check_ipfw_rule1(struct ip_fw_rule *rule, int size, struct rule_check_info *ci); static int check_ipfw_rule0(struct ip_fw_rule0 *rule, int size, struct rule_check_info *ci); static int rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci); #define NAMEDOBJ_HASH_SIZE 32 struct namedobj_instance { struct namedobjects_head *names; struct namedobjects_head *values; uint32_t nn_size; /* names hash size */ uint32_t nv_size; /* number hash size */ u_long *idx_mask; /* used items bitmask */ uint32_t max_blocks; /* number of "long" blocks in bitmask */ uint32_t count; /* number of items */ uint16_t free_off[IPFW_MAX_SETS]; /* first possible free offset */ objhash_hash_f *hash_f; objhash_cmp_f *cmp_f; }; #define BLOCK_ITEMS (8 * sizeof(u_long)) /* Number of items for ffsl() */ static uint32_t objhash_hash_name(struct namedobj_instance *ni, const void *key, uint32_t kopt); static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val); static int objhash_cmp_name(struct named_object *no, const void *name, uint32_t set); MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's"); static int dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); static int dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd); /* ctl3 handler data */ struct mtx ctl3_lock; #define CTL3_LOCK_INIT() mtx_init(&ctl3_lock, "ctl3_lock", NULL, MTX_DEF) #define CTL3_LOCK_DESTROY() mtx_destroy(&ctl3_lock) #define CTL3_LOCK() mtx_lock(&ctl3_lock) #define CTL3_UNLOCK() mtx_unlock(&ctl3_lock) static struct ipfw_sopt_handler *ctl3_handlers; static size_t ctl3_hsize; static uint64_t ctl3_refct, ctl3_gencnt; #define CTL3_SMALLBUF 4096 /* small page-size write buffer */ #define CTL3_LARGEBUF 16 * 1024 * 1024 /* handle large rulesets */ static int ipfw_flush_sopt_data(struct sockopt_data *sd); static struct ipfw_sopt_handler scodes[] = { { IP_FW_XGET, 0, HDIR_GET, dump_config }, { IP_FW_XADD, 0, HDIR_BOTH, add_rules }, { IP_FW_XDEL, 0, HDIR_BOTH, del_rules }, { IP_FW_XZERO, 0, HDIR_SET, clear_rules }, { IP_FW_XRESETLOG, 0, HDIR_SET, clear_rules }, { IP_FW_XMOVE, 0, HDIR_SET, move_rules }, { IP_FW_SET_SWAP, 0, HDIR_SET, manage_sets }, { IP_FW_SET_MOVE, 0, HDIR_SET, manage_sets }, { IP_FW_SET_ENABLE, 0, HDIR_SET, manage_sets }, { IP_FW_DUMP_SOPTCODES, 0, HDIR_GET, dump_soptcodes }, { IP_FW_DUMP_SRVOBJECTS,0, HDIR_GET, dump_srvobjects }, }; static int set_legacy_obj_kidx(struct ip_fw_chain *ch, struct ip_fw_rule0 *rule); static struct opcode_obj_rewrite *find_op_rw(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype); static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule, struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti); static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti, struct obj_idx *pidx, int *unresolved); static void unref_rule_objects(struct ip_fw_chain *chain, struct ip_fw *rule); static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib, struct obj_idx *end); static int export_objhash_ntlv(struct namedobj_instance *ni, uint16_t kidx, struct sockopt_data *sd); /* * Opcode object rewriter variables */ struct opcode_obj_rewrite *ctl3_rewriters; static size_t ctl3_rsize; /* * static variables followed by global ones */ VNET_DEFINE_STATIC(uma_zone_t, ipfw_cntr_zone); #define V_ipfw_cntr_zone VNET(ipfw_cntr_zone) void ipfw_init_counters(void) { V_ipfw_cntr_zone = uma_zcreate("IPFW counters", IPFW_RULE_CNTR_SIZE, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); } void ipfw_destroy_counters(void) { uma_zdestroy(V_ipfw_cntr_zone); } struct ip_fw * ipfw_alloc_rule(struct ip_fw_chain *chain, size_t rulesize) { struct ip_fw *rule; rule = malloc(rulesize, M_IPFW, M_WAITOK | M_ZERO); rule->cntr = uma_zalloc_pcpu(V_ipfw_cntr_zone, M_WAITOK | M_ZERO); rule->refcnt = 1; return (rule); } void ipfw_free_rule(struct ip_fw *rule) { /* * We don't release refcnt here, since this function * can be called without any locks held. The caller * must release reference under IPFW_UH_WLOCK, and then * call this function if refcount becomes 1. */ if (rule->refcnt > 1) return; uma_zfree_pcpu(V_ipfw_cntr_zone, rule->cntr); free(rule, M_IPFW); } /* * Find the smallest rule >= key, id. * We could use bsearch but it is so simple that we code it directly */ int ipfw_find_rule(struct ip_fw_chain *chain, uint32_t key, uint32_t id) { int i, lo, hi; struct ip_fw *r; for (lo = 0, hi = chain->n_rules - 1; lo < hi;) { i = (lo + hi) / 2; r = chain->map[i]; if (r->rulenum < key) lo = i + 1; /* continue from the next one */ else if (r->rulenum > key) hi = i; /* this might be good */ else if (r->id < id) lo = i + 1; /* continue from the next one */ else /* r->id >= id */ hi = i; /* this might be good */ } return hi; } /* * Builds skipto cache on rule set @map. */ static void update_skipto_cache(struct ip_fw_chain *chain, struct ip_fw **map) { int *smap, rulenum; int i, mi; IPFW_UH_WLOCK_ASSERT(chain); mi = 0; rulenum = map[mi]->rulenum; smap = chain->idxmap_back; if (smap == NULL) return; for (i = 0; i < 65536; i++) { smap[i] = mi; /* Use the same rule index until i < rulenum */ if (i != rulenum || i == 65535) continue; /* Find next rule with num > i */ rulenum = map[++mi]->rulenum; while (rulenum == i) rulenum = map[++mi]->rulenum; } } /* * Swaps prepared (backup) index with current one. */ static void swap_skipto_cache(struct ip_fw_chain *chain) { int *map; IPFW_UH_WLOCK_ASSERT(chain); IPFW_WLOCK_ASSERT(chain); map = chain->idxmap; chain->idxmap = chain->idxmap_back; chain->idxmap_back = map; } /* * Allocate and initialize skipto cache. */ void ipfw_init_skipto_cache(struct ip_fw_chain *chain) { int *idxmap, *idxmap_back; idxmap = malloc(65536 * sizeof(int), M_IPFW, M_WAITOK | M_ZERO); idxmap_back = malloc(65536 * sizeof(int), M_IPFW, M_WAITOK); /* * Note we may be called at any time after initialization, * for example, on first skipto rule, so we need to * provide valid chain->idxmap on return */ IPFW_UH_WLOCK(chain); if (chain->idxmap != NULL) { IPFW_UH_WUNLOCK(chain); free(idxmap, M_IPFW); free(idxmap_back, M_IPFW); return; } /* Set backup pointer first to permit building cache */ chain->idxmap_back = idxmap_back; update_skipto_cache(chain, chain->map); IPFW_WLOCK(chain); /* It is now safe to set chain->idxmap ptr */ chain->idxmap = idxmap; swap_skipto_cache(chain); IPFW_WUNLOCK(chain); IPFW_UH_WUNLOCK(chain); } /* * Destroys skipto cache. */ void ipfw_destroy_skipto_cache(struct ip_fw_chain *chain) { if (chain->idxmap != NULL) free(chain->idxmap, M_IPFW); if (chain->idxmap != NULL) free(chain->idxmap_back, M_IPFW); } /* * allocate a new map, returns the chain locked. extra is the number * of entries to add or delete. */ static struct ip_fw ** get_map(struct ip_fw_chain *chain, int extra, int locked) { for (;;) { struct ip_fw **map; u_int i, mflags; mflags = M_ZERO | ((locked != 0) ? M_NOWAIT : M_WAITOK); i = chain->n_rules + extra; map = malloc(i * sizeof(struct ip_fw *), M_IPFW, mflags); if (map == NULL) { printf("%s: cannot allocate map\n", __FUNCTION__); return NULL; } if (!locked) IPFW_UH_WLOCK(chain); if (i >= chain->n_rules + extra) /* good */ return map; /* otherwise we lost the race, free and retry */ if (!locked) IPFW_UH_WUNLOCK(chain); free(map, M_IPFW); } } /* * swap the maps. It is supposed to be called with IPFW_UH_WLOCK */ static struct ip_fw ** swap_map(struct ip_fw_chain *chain, struct ip_fw **new_map, int new_len) { struct ip_fw **old_map; IPFW_WLOCK(chain); chain->id++; chain->n_rules = new_len; old_map = chain->map; chain->map = new_map; swap_skipto_cache(chain); IPFW_WUNLOCK(chain); return old_map; } static void export_cntr1_base(struct ip_fw *krule, struct ip_fw_bcounter *cntr) { struct timeval boottime; cntr->size = sizeof(*cntr); if (krule->cntr != NULL) { cntr->pcnt = counter_u64_fetch(krule->cntr); cntr->bcnt = counter_u64_fetch(krule->cntr + 1); cntr->timestamp = krule->timestamp; } if (cntr->timestamp > 0) { getboottime(&boottime); cntr->timestamp += boottime.tv_sec; } } static void export_cntr0_base(struct ip_fw *krule, struct ip_fw_bcounter0 *cntr) { struct timeval boottime; if (krule->cntr != NULL) { cntr->pcnt = counter_u64_fetch(krule->cntr); cntr->bcnt = counter_u64_fetch(krule->cntr + 1); cntr->timestamp = krule->timestamp; } if (cntr->timestamp > 0) { getboottime(&boottime); cntr->timestamp += boottime.tv_sec; } } /* * Copies rule @urule from v1 userland format (current). * to kernel @krule. * Assume @krule is zeroed. */ static void import_rule1(struct rule_check_info *ci) { struct ip_fw_rule *urule; struct ip_fw *krule; urule = (struct ip_fw_rule *)ci->urule; krule = (struct ip_fw *)ci->krule; /* copy header */ krule->act_ofs = urule->act_ofs; krule->cmd_len = urule->cmd_len; krule->rulenum = urule->rulenum; krule->set = urule->set; krule->flags = urule->flags; /* Save rulenum offset */ ci->urule_numoff = offsetof(struct ip_fw_rule, rulenum); /* Copy opcodes */ memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t)); } /* * Export rule into v1 format (Current). * Layout: * [ ipfw_obj_tlv(IPFW_TLV_RULE_ENT) * [ ip_fw_rule ] OR * [ ip_fw_bcounter ip_fw_rule] (depends on rcntrs). * ] * Assume @data is zeroed. */ static void export_rule1(struct ip_fw *krule, caddr_t data, int len, int rcntrs) { struct ip_fw_bcounter *cntr; struct ip_fw_rule *urule; ipfw_obj_tlv *tlv; /* Fill in TLV header */ tlv = (ipfw_obj_tlv *)data; tlv->type = IPFW_TLV_RULE_ENT; tlv->length = len; if (rcntrs != 0) { /* Copy counters */ cntr = (struct ip_fw_bcounter *)(tlv + 1); urule = (struct ip_fw_rule *)(cntr + 1); export_cntr1_base(krule, cntr); } else urule = (struct ip_fw_rule *)(tlv + 1); /* copy header */ urule->act_ofs = krule->act_ofs; urule->cmd_len = krule->cmd_len; urule->rulenum = krule->rulenum; urule->set = krule->set; urule->flags = krule->flags; urule->id = krule->id; /* Copy opcodes */ memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t)); } /* * Copies rule @urule from FreeBSD8 userland format (v0) * to kernel @krule. * Assume @krule is zeroed. */ static void import_rule0(struct rule_check_info *ci) { struct ip_fw_rule0 *urule; struct ip_fw *krule; int cmdlen, l; ipfw_insn *cmd; ipfw_insn_limit *lcmd; ipfw_insn_if *cmdif; urule = (struct ip_fw_rule0 *)ci->urule; krule = (struct ip_fw *)ci->krule; /* copy header */ krule->act_ofs = urule->act_ofs; krule->cmd_len = urule->cmd_len; krule->rulenum = urule->rulenum; krule->set = urule->set; if ((urule->_pad & 1) != 0) krule->flags |= IPFW_RULE_NOOPT; /* Save rulenum offset */ ci->urule_numoff = offsetof(struct ip_fw_rule0, rulenum); /* Copy opcodes */ memcpy(krule->cmd, urule->cmd, krule->cmd_len * sizeof(uint32_t)); /* * Alter opcodes: * 1) convert tablearg value from 65535 to 0 * 2) Add high bit to O_SETFIB/O_SETDSCP values (to make room * for targ). * 3) convert table number in iface opcodes to u16 * 4) convert old `nat global` into new 65535 */ l = krule->cmd_len; cmd = krule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); switch (cmd->opcode) { /* Opcodes supporting tablearg */ case O_TAG: case O_TAGGED: case O_PIPE: case O_QUEUE: case O_DIVERT: case O_TEE: case O_SKIPTO: case O_CALLRETURN: case O_NETGRAPH: case O_NGTEE: case O_NAT: if (cmd->arg1 == IP_FW_TABLEARG) cmd->arg1 = IP_FW_TARG; else if (cmd->arg1 == 0) cmd->arg1 = IP_FW_NAT44_GLOBAL; break; case O_SETFIB: case O_SETDSCP: + case O_SETMARK: + case O_MARK: if (cmd->arg1 == IP_FW_TABLEARG) cmd->arg1 = IP_FW_TARG; else cmd->arg1 |= 0x8000; break; case O_LIMIT: lcmd = (ipfw_insn_limit *)cmd; if (lcmd->conn_limit == IP_FW_TABLEARG) lcmd->conn_limit = IP_FW_TARG; break; /* Interface tables */ case O_XMIT: case O_RECV: case O_VIA: /* Interface table, possibly */ cmdif = (ipfw_insn_if *)cmd; if (cmdif->name[0] != '\1') break; cmdif->p.kidx = (uint16_t)cmdif->p.glob; break; } } } /* * Copies rule @krule from kernel to FreeBSD8 userland format (v0) */ static void export_rule0(struct ip_fw *krule, struct ip_fw_rule0 *urule, int len) { int cmdlen, l; ipfw_insn *cmd; ipfw_insn_limit *lcmd; ipfw_insn_if *cmdif; /* copy header */ memset(urule, 0, len); urule->act_ofs = krule->act_ofs; urule->cmd_len = krule->cmd_len; urule->rulenum = krule->rulenum; urule->set = krule->set; if ((krule->flags & IPFW_RULE_NOOPT) != 0) urule->_pad |= 1; /* Copy opcodes */ memcpy(urule->cmd, krule->cmd, krule->cmd_len * sizeof(uint32_t)); /* Export counters */ export_cntr0_base(krule, (struct ip_fw_bcounter0 *)&urule->pcnt); /* * Alter opcodes: * 1) convert tablearg value from 0 to 65535 * 2) Remove highest bit from O_SETFIB/O_SETDSCP values. * 3) convert table number in iface opcodes to int */ l = urule->cmd_len; cmd = urule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); switch (cmd->opcode) { /* Opcodes supporting tablearg */ case O_TAG: case O_TAGGED: case O_PIPE: case O_QUEUE: case O_DIVERT: case O_TEE: case O_SKIPTO: case O_CALLRETURN: case O_NETGRAPH: case O_NGTEE: case O_NAT: if (cmd->arg1 == IP_FW_TARG) cmd->arg1 = IP_FW_TABLEARG; else if (cmd->arg1 == IP_FW_NAT44_GLOBAL) cmd->arg1 = 0; break; case O_SETFIB: case O_SETDSCP: + case O_SETMARK: + case O_MARK: if (cmd->arg1 == IP_FW_TARG) cmd->arg1 = IP_FW_TABLEARG; else cmd->arg1 &= ~0x8000; break; case O_LIMIT: lcmd = (ipfw_insn_limit *)cmd; if (lcmd->conn_limit == IP_FW_TARG) lcmd->conn_limit = IP_FW_TABLEARG; break; /* Interface tables */ case O_XMIT: case O_RECV: case O_VIA: /* Interface table, possibly */ cmdif = (ipfw_insn_if *)cmd; if (cmdif->name[0] != '\1') break; cmdif->p.glob = cmdif->p.kidx; break; } } } /* * Add new rule(s) to the list possibly creating rule number for each. * Update the rule_number in the input struct so the caller knows it as well. * Must be called without IPFW_UH held */ static int commit_rules(struct ip_fw_chain *chain, struct rule_check_info *rci, int count) { int error, i, insert_before, tcount; uint16_t rulenum, *pnum; struct rule_check_info *ci; struct ip_fw *krule; struct ip_fw **map; /* the new array of pointers */ /* Check if we need to do table/obj index remap */ tcount = 0; for (ci = rci, i = 0; i < count; ci++, i++) { if (ci->object_opcodes == 0) continue; /* * Rule has some object opcodes. * We need to find (and create non-existing) * kernel objects, and reference existing ones. */ error = rewrite_rule_uidx(chain, ci); if (error != 0) { /* * rewrite failed, state for current rule * has been reverted. Check if we need to * revert more. */ if (tcount > 0) { /* * We have some more table rules * we need to rollback. */ IPFW_UH_WLOCK(chain); while (ci != rci) { ci--; if (ci->object_opcodes == 0) continue; unref_rule_objects(chain,ci->krule); } IPFW_UH_WUNLOCK(chain); } return (error); } tcount++; } /* get_map returns with IPFW_UH_WLOCK if successful */ map = get_map(chain, count, 0 /* not locked */); if (map == NULL) { if (tcount > 0) { /* Unbind tables */ IPFW_UH_WLOCK(chain); for (ci = rci, i = 0; i < count; ci++, i++) { if (ci->object_opcodes == 0) continue; unref_rule_objects(chain, ci->krule); } IPFW_UH_WUNLOCK(chain); } return (ENOSPC); } if (V_autoinc_step < 1) V_autoinc_step = 1; else if (V_autoinc_step > 1000) V_autoinc_step = 1000; /* FIXME: Handle count > 1 */ ci = rci; krule = ci->krule; rulenum = krule->rulenum; /* find the insertion point, we will insert before */ insert_before = rulenum ? rulenum + 1 : IPFW_DEFAULT_RULE; i = ipfw_find_rule(chain, insert_before, 0); /* duplicate first part */ if (i > 0) bcopy(chain->map, map, i * sizeof(struct ip_fw *)); map[i] = krule; /* duplicate remaining part, we always have the default rule */ bcopy(chain->map + i, map + i + 1, sizeof(struct ip_fw *) *(chain->n_rules - i)); if (rulenum == 0) { /* Compute rule number and write it back */ rulenum = i > 0 ? map[i-1]->rulenum : 0; if (rulenum < IPFW_DEFAULT_RULE - V_autoinc_step) rulenum += V_autoinc_step; krule->rulenum = rulenum; /* Save number to userland rule */ pnum = (uint16_t *)((caddr_t)ci->urule + ci->urule_numoff); *pnum = rulenum; } krule->id = chain->id + 1; update_skipto_cache(chain, map); map = swap_map(chain, map, chain->n_rules + 1); chain->static_len += RULEUSIZE0(krule); IPFW_UH_WUNLOCK(chain); if (map) free(map, M_IPFW); return (0); } int ipfw_add_protected_rule(struct ip_fw_chain *chain, struct ip_fw *rule, int locked) { struct ip_fw **map; map = get_map(chain, 1, locked); if (map == NULL) return (ENOMEM); if (chain->n_rules > 0) bcopy(chain->map, map, chain->n_rules * sizeof(struct ip_fw *)); map[chain->n_rules] = rule; rule->rulenum = IPFW_DEFAULT_RULE; rule->set = RESVD_SET; rule->id = chain->id + 1; /* We add rule in the end of chain, no need to update skipto cache */ map = swap_map(chain, map, chain->n_rules + 1); chain->static_len += RULEUSIZE0(rule); IPFW_UH_WUNLOCK(chain); free(map, M_IPFW); return (0); } /* * Adds @rule to the list of rules to reap */ void ipfw_reap_add(struct ip_fw_chain *chain, struct ip_fw **head, struct ip_fw *rule) { IPFW_UH_WLOCK_ASSERT(chain); /* Unlink rule from everywhere */ unref_rule_objects(chain, rule); rule->next = *head; *head = rule; } /* * Reclaim storage associated with a list of rules. This is * typically the list created using remove_rule. * A NULL pointer on input is handled correctly. */ void ipfw_reap_rules(struct ip_fw *head) { struct ip_fw *rule; while ((rule = head) != NULL) { head = head->next; ipfw_free_rule(rule); } } /* * Rules to keep are * (default || reserved || !match_set || !match_number) * where * default ::= (rule->rulenum == IPFW_DEFAULT_RULE) * // the default rule is always protected * * reserved ::= (cmd == 0 && n == 0 && rule->set == RESVD_SET) * // RESVD_SET is protected only if cmd == 0 and n == 0 ("ipfw flush") * * match_set ::= (cmd == 0 || rule->set == set) * // set number is ignored for cmd == 0 * * match_number ::= (cmd == 1 || n == 0 || n == rule->rulenum) * // number is ignored for cmd == 1 or n == 0 * */ int ipfw_match_range(struct ip_fw *rule, ipfw_range_tlv *rt) { /* Don't match default rule for modification queries */ if (rule->rulenum == IPFW_DEFAULT_RULE && (rt->flags & IPFW_RCFLAG_DEFAULT) == 0) return (0); /* Don't match rules in reserved set for flush requests */ if ((rt->flags & IPFW_RCFLAG_ALL) != 0 && rule->set == RESVD_SET) return (0); /* If we're filtering by set, don't match other sets */ if ((rt->flags & IPFW_RCFLAG_SET) != 0 && rule->set != rt->set) return (0); if ((rt->flags & IPFW_RCFLAG_RANGE) != 0 && (rule->rulenum < rt->start_rule || rule->rulenum > rt->end_rule)) return (0); return (1); } struct manage_sets_args { uint16_t set; uint8_t new_set; }; static int swap_sets_cb(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct manage_sets_args *args; args = (struct manage_sets_args *)arg; if (no->set == (uint8_t)args->set) no->set = args->new_set; else if (no->set == args->new_set) no->set = (uint8_t)args->set; return (0); } static int move_sets_cb(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct manage_sets_args *args; args = (struct manage_sets_args *)arg; if (no->set == (uint8_t)args->set) no->set = args->new_set; return (0); } static int test_sets_cb(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct manage_sets_args *args; args = (struct manage_sets_args *)arg; if (no->set != (uint8_t)args->set) return (0); if (ipfw_objhash_lookup_name_type(ni, args->new_set, no->etlv, no->name) != NULL) return (EEXIST); return (0); } /* * Generic function to handler moving and swapping sets. */ int ipfw_obj_manage_sets(struct namedobj_instance *ni, uint16_t type, uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd) { struct manage_sets_args args; struct named_object *no; args.set = set; args.new_set = new_set; switch (cmd) { case SWAP_ALL: return (ipfw_objhash_foreach_type(ni, swap_sets_cb, &args, type)); case TEST_ALL: return (ipfw_objhash_foreach_type(ni, test_sets_cb, &args, type)); case MOVE_ALL: return (ipfw_objhash_foreach_type(ni, move_sets_cb, &args, type)); case COUNT_ONE: /* * @set used to pass kidx. * When @new_set is zero - reset object counter, * otherwise increment it. */ no = ipfw_objhash_lookup_kidx(ni, set); if (new_set != 0) no->ocnt++; else no->ocnt = 0; return (0); case TEST_ONE: /* @set used to pass kidx */ no = ipfw_objhash_lookup_kidx(ni, set); /* * First check number of references: * when it differs, this mean other rules are holding * reference to given object, so it is not possible to * change its set. Note that refcnt may account references * to some going-to-be-added rules. Since we don't know * their numbers (and even if they will be added) it is * perfectly OK to return error here. */ if (no->ocnt != no->refcnt) return (EBUSY); if (ipfw_objhash_lookup_name_type(ni, new_set, type, no->name) != NULL) return (EEXIST); return (0); case MOVE_ONE: /* @set used to pass kidx */ no = ipfw_objhash_lookup_kidx(ni, set); no->set = new_set; return (0); } return (EINVAL); } /* * Delete rules matching range @rt. * Saves number of deleted rules in @ndel. * * Returns 0 on success. */ static int delete_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int *ndel) { struct ip_fw *reap, *rule, **map; int end, start; int i, n, ndyn, ofs; reap = NULL; IPFW_UH_WLOCK(chain); /* arbitrate writers */ /* * Stage 1: Determine range to inspect. * Range is half-inclusive, e.g [start, end). */ start = 0; end = chain->n_rules - 1; if ((rt->flags & IPFW_RCFLAG_RANGE) != 0) { start = ipfw_find_rule(chain, rt->start_rule, 0); if (rt->end_rule >= IPFW_DEFAULT_RULE) rt->end_rule = IPFW_DEFAULT_RULE - 1; end = ipfw_find_rule(chain, rt->end_rule, UINT32_MAX); } if (rt->flags & IPFW_RCFLAG_DYNAMIC) { /* * Requested deleting only for dynamic states. */ *ndel = 0; ipfw_expire_dyn_states(chain, rt); IPFW_UH_WUNLOCK(chain); return (0); } /* Allocate new map of the same size */ map = get_map(chain, 0, 1 /* locked */); if (map == NULL) { IPFW_UH_WUNLOCK(chain); return (ENOMEM); } n = 0; ndyn = 0; ofs = start; /* 1. bcopy the initial part of the map */ if (start > 0) bcopy(chain->map, map, start * sizeof(struct ip_fw *)); /* 2. copy active rules between start and end */ for (i = start; i < end; i++) { rule = chain->map[i]; if (ipfw_match_range(rule, rt) == 0) { map[ofs++] = rule; continue; } n++; if (ipfw_is_dyn_rule(rule) != 0) ndyn++; } /* 3. copy the final part of the map */ bcopy(chain->map + end, map + ofs, (chain->n_rules - end) * sizeof(struct ip_fw *)); /* 4. recalculate skipto cache */ update_skipto_cache(chain, map); /* 5. swap the maps (under UH_WLOCK + WHLOCK) */ map = swap_map(chain, map, chain->n_rules - n); /* 6. Remove all dynamic states originated by deleted rules */ if (ndyn > 0) ipfw_expire_dyn_states(chain, rt); /* 7. now remove the rules deleted from the old map */ for (i = start; i < end; i++) { rule = map[i]; if (ipfw_match_range(rule, rt) == 0) continue; chain->static_len -= RULEUSIZE0(rule); ipfw_reap_add(chain, &reap, rule); } IPFW_UH_WUNLOCK(chain); ipfw_reap_rules(reap); if (map != NULL) free(map, M_IPFW); *ndel = n; return (0); } static int move_objects(struct ip_fw_chain *ch, ipfw_range_tlv *rt) { struct opcode_obj_rewrite *rw; struct ip_fw *rule; ipfw_insn *cmd; int cmdlen, i, l, c; uint16_t kidx; IPFW_UH_WLOCK_ASSERT(ch); /* Stage 1: count number of references by given rules */ for (c = 0, i = 0; i < ch->n_rules - 1; i++) { rule = ch->map[i]; if (ipfw_match_range(rule, rt) == 0) continue; if (rule->set == rt->new_set) /* nothing to do */ continue; /* Search opcodes with named objects */ for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd; l > 0; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); rw = find_op_rw(cmd, &kidx, NULL); if (rw == NULL || rw->manage_sets == NULL) continue; /* * When manage_sets() returns non-zero value to * COUNT_ONE command, consider this as an object * doesn't support sets (e.g. disabled with sysctl). * So, skip checks for this object. */ if (rw->manage_sets(ch, kidx, 1, COUNT_ONE) != 0) continue; c++; } } if (c == 0) /* No objects found */ return (0); /* Stage 2: verify "ownership" */ for (c = 0, i = 0; (i < ch->n_rules - 1) && c == 0; i++) { rule = ch->map[i]; if (ipfw_match_range(rule, rt) == 0) continue; if (rule->set == rt->new_set) /* nothing to do */ continue; /* Search opcodes with named objects */ for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd; l > 0 && c == 0; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); rw = find_op_rw(cmd, &kidx, NULL); if (rw == NULL || rw->manage_sets == NULL) continue; /* Test for ownership and conflicting names */ c = rw->manage_sets(ch, kidx, (uint8_t)rt->new_set, TEST_ONE); } } /* Stage 3: change set and cleanup */ for (i = 0; i < ch->n_rules - 1; i++) { rule = ch->map[i]; if (ipfw_match_range(rule, rt) == 0) continue; if (rule->set == rt->new_set) /* nothing to do */ continue; /* Search opcodes with named objects */ for (l = rule->cmd_len, cmdlen = 0, cmd = rule->cmd; l > 0; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); rw = find_op_rw(cmd, &kidx, NULL); if (rw == NULL || rw->manage_sets == NULL) continue; /* cleanup object counter */ rw->manage_sets(ch, kidx, 0 /* reset counter */, COUNT_ONE); if (c != 0) continue; /* change set */ rw->manage_sets(ch, kidx, (uint8_t)rt->new_set, MOVE_ONE); } } return (c); } /* * Changes set of given rule rannge @rt * with each other. * * Returns 0 on success. */ static int move_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt) { struct ip_fw *rule; int i; IPFW_UH_WLOCK(chain); /* * Move rules with matching paramenerts to a new set. * This one is much more complex. We have to ensure * that all referenced tables (if any) are referenced * by given rule subset only. Otherwise, we can't move * them to new set and have to return error. */ if ((i = move_objects(chain, rt)) != 0) { IPFW_UH_WUNLOCK(chain); return (i); } /* XXX: We have to do swap holding WLOCK */ for (i = 0; i < chain->n_rules; i++) { rule = chain->map[i]; if (ipfw_match_range(rule, rt) == 0) continue; rule->set = rt->new_set; } IPFW_UH_WUNLOCK(chain); return (0); } /* * Returns pointer to action instruction, skips all possible rule * modifiers like O_LOG, O_TAG, O_ALTQ. */ ipfw_insn * ipfw_get_action(struct ip_fw *rule) { ipfw_insn *cmd; int l, cmdlen; cmd = ACTION_PTR(rule); l = rule->cmd_len - rule->act_ofs; while (l > 0) { switch (cmd->opcode) { case O_ALTQ: case O_LOG: case O_TAG: break; default: return (cmd); } cmdlen = F_LEN(cmd); l -= cmdlen; cmd += cmdlen; } panic("%s: rule (%p) has not action opcode", __func__, rule); return (NULL); } /* * Clear counters for a specific rule. * Normally run under IPFW_UH_RLOCK, but these are idempotent ops * so we only care that rules do not disappear. */ static void clear_counters(struct ip_fw *rule, int log_only) { ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule); if (log_only == 0) IPFW_ZERO_RULE_COUNTER(rule); if (l->o.opcode == O_LOG) l->log_left = l->max_log; } /* * Flushes rules counters and/or log values on matching range. * * Returns number of items cleared. */ static int clear_range(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int log_only) { struct ip_fw *rule; int num; int i; num = 0; rt->flags |= IPFW_RCFLAG_DEFAULT; IPFW_UH_WLOCK(chain); /* arbitrate writers */ for (i = 0; i < chain->n_rules; i++) { rule = chain->map[i]; if (ipfw_match_range(rule, rt) == 0) continue; clear_counters(rule, log_only); num++; } IPFW_UH_WUNLOCK(chain); return (num); } static int check_range_tlv(ipfw_range_tlv *rt) { if (rt->head.length != sizeof(*rt)) return (1); if (rt->start_rule > rt->end_rule) return (1); if (rt->set >= IPFW_MAX_SETS || rt->new_set >= IPFW_MAX_SETS) return (1); if ((rt->flags & IPFW_RCFLAG_USER) != rt->flags) return (1); return (0); } /* * Delete rules matching specified parameters * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_range_tlv ] * Reply: [ ipfw_obj_header ipfw_range_tlv ] * * Saves number of deleted rules in ipfw_range_tlv->new_set. * * Returns 0 on success. */ static int del_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_range_header *rh; int error, ndel; if (sd->valsize != sizeof(*rh)) return (EINVAL); rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize); if (check_range_tlv(&rh->range) != 0) return (EINVAL); ndel = 0; if ((error = delete_range(chain, &rh->range, &ndel)) != 0) return (error); /* Save number of rules deleted */ rh->range.new_set = ndel; return (0); } /* * Move rules/sets matching specified parameters * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_range_tlv ] * * Returns 0 on success. */ static int move_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_range_header *rh; if (sd->valsize != sizeof(*rh)) return (EINVAL); rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize); if (check_range_tlv(&rh->range) != 0) return (EINVAL); return (move_range(chain, &rh->range)); } /* * Clear rule accounting data matching specified parameters * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_range_tlv ] * Reply: [ ipfw_obj_header ipfw_range_tlv ] * * Saves number of cleared rules in ipfw_range_tlv->new_set. * * Returns 0 on success. */ static int clear_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_range_header *rh; int log_only, num; char *msg; if (sd->valsize != sizeof(*rh)) return (EINVAL); rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize); if (check_range_tlv(&rh->range) != 0) return (EINVAL); log_only = (op3->opcode == IP_FW_XRESETLOG); num = clear_range(chain, &rh->range, log_only); if (rh->range.flags & IPFW_RCFLAG_ALL) msg = log_only ? "All logging counts reset" : "Accounting cleared"; else msg = log_only ? "logging count reset" : "cleared"; if (V_fw_verbose) { int lev = LOG_SECURITY | LOG_NOTICE; log(lev, "ipfw: %s.\n", msg); } /* Save number of rules cleared */ rh->range.new_set = num; return (0); } static void enable_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt) { uint32_t v_set; IPFW_UH_WLOCK_ASSERT(chain); /* Change enabled/disabled sets mask */ v_set = (V_set_disable | rt->set) & ~rt->new_set; v_set &= ~(1 << RESVD_SET); /* set RESVD_SET always enabled */ IPFW_WLOCK(chain); V_set_disable = v_set; IPFW_WUNLOCK(chain); } static int swap_sets(struct ip_fw_chain *chain, ipfw_range_tlv *rt, int mv) { struct opcode_obj_rewrite *rw; struct ip_fw *rule; int i; IPFW_UH_WLOCK_ASSERT(chain); if (rt->set == rt->new_set) /* nothing to do */ return (0); if (mv != 0) { /* * Berfore moving the rules we need to check that * there aren't any conflicting named objects. */ for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) { if (rw->manage_sets == NULL) continue; i = rw->manage_sets(chain, (uint8_t)rt->set, (uint8_t)rt->new_set, TEST_ALL); if (i != 0) return (EEXIST); } } /* Swap or move two sets */ for (i = 0; i < chain->n_rules - 1; i++) { rule = chain->map[i]; if (rule->set == (uint8_t)rt->set) rule->set = (uint8_t)rt->new_set; else if (rule->set == (uint8_t)rt->new_set && mv == 0) rule->set = (uint8_t)rt->set; } for (rw = ctl3_rewriters; rw < ctl3_rewriters + ctl3_rsize; rw++) { if (rw->manage_sets == NULL) continue; rw->manage_sets(chain, (uint8_t)rt->set, (uint8_t)rt->new_set, mv != 0 ? MOVE_ALL: SWAP_ALL); } return (0); } /* * Swaps or moves set * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_range_tlv ] * * Returns 0 on success. */ static int manage_sets(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_range_header *rh; int ret; if (sd->valsize != sizeof(*rh)) return (EINVAL); rh = (ipfw_range_header *)ipfw_get_sopt_space(sd, sd->valsize); if (rh->range.head.length != sizeof(ipfw_range_tlv)) return (1); /* enable_sets() expects bitmasks. */ if (op3->opcode != IP_FW_SET_ENABLE && (rh->range.set >= IPFW_MAX_SETS || rh->range.new_set >= IPFW_MAX_SETS)) return (EINVAL); ret = 0; IPFW_UH_WLOCK(chain); switch (op3->opcode) { case IP_FW_SET_SWAP: case IP_FW_SET_MOVE: ret = swap_sets(chain, &rh->range, op3->opcode == IP_FW_SET_MOVE); break; case IP_FW_SET_ENABLE: enable_sets(chain, &rh->range); break; } IPFW_UH_WUNLOCK(chain); return (ret); } /** * Remove all rules with given number, or do set manipulation. * Assumes chain != NULL && *chain != NULL. * * The argument is an uint32_t. The low 16 bit are the rule or set number; * the next 8 bits are the new set; the top 8 bits indicate the command: * * 0 delete rules numbered "rulenum" * 1 delete rules in set "rulenum" * 2 move rules "rulenum" to set "new_set" * 3 move rules from set "rulenum" to set "new_set" * 4 swap sets "rulenum" and "new_set" * 5 delete rules "rulenum" and set "new_set" */ static int del_entry(struct ip_fw_chain *chain, uint32_t arg) { uint32_t num; /* rule number or old_set */ uint8_t cmd, new_set; int do_del, ndel; int error = 0; ipfw_range_tlv rt; num = arg & 0xffff; cmd = (arg >> 24) & 0xff; new_set = (arg >> 16) & 0xff; if (cmd > 5 || new_set > RESVD_SET) return EINVAL; if (cmd == 0 || cmd == 2 || cmd == 5) { if (num >= IPFW_DEFAULT_RULE) return EINVAL; } else { if (num > RESVD_SET) /* old_set */ return EINVAL; } /* Convert old requests into new representation */ memset(&rt, 0, sizeof(rt)); rt.start_rule = num; rt.end_rule = num; rt.set = num; rt.new_set = new_set; do_del = 0; switch (cmd) { case 0: /* delete rules numbered "rulenum" */ if (num == 0) rt.flags |= IPFW_RCFLAG_ALL; else rt.flags |= IPFW_RCFLAG_RANGE; do_del = 1; break; case 1: /* delete rules in set "rulenum" */ rt.flags |= IPFW_RCFLAG_SET; do_del = 1; break; case 5: /* delete rules "rulenum" and set "new_set" */ rt.flags |= IPFW_RCFLAG_RANGE | IPFW_RCFLAG_SET; rt.set = new_set; rt.new_set = 0; do_del = 1; break; case 2: /* move rules "rulenum" to set "new_set" */ rt.flags |= IPFW_RCFLAG_RANGE; break; case 3: /* move rules from set "rulenum" to set "new_set" */ IPFW_UH_WLOCK(chain); error = swap_sets(chain, &rt, 1); IPFW_UH_WUNLOCK(chain); return (error); case 4: /* swap sets "rulenum" and "new_set" */ IPFW_UH_WLOCK(chain); error = swap_sets(chain, &rt, 0); IPFW_UH_WUNLOCK(chain); return (error); default: return (ENOTSUP); } if (do_del != 0) { if ((error = delete_range(chain, &rt, &ndel)) != 0) return (error); if (ndel == 0 && (cmd != 1 && num != 0)) return (EINVAL); return (0); } return (move_range(chain, &rt)); } /** * Reset some or all counters on firewall rules. * The argument `arg' is an u_int32_t. The low 16 bit are the rule number, * the next 8 bits are the set number, the top 8 bits are the command: * 0 work with rules from all set's; * 1 work with rules only from specified set. * Specified rule number is zero if we want to clear all entries. * log_only is 1 if we only want to reset logs, zero otherwise. */ static int zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only) { struct ip_fw *rule; char *msg; int i; uint16_t rulenum = arg & 0xffff; uint8_t set = (arg >> 16) & 0xff; uint8_t cmd = (arg >> 24) & 0xff; if (cmd > 1) return (EINVAL); if (cmd == 1 && set > RESVD_SET) return (EINVAL); IPFW_UH_RLOCK(chain); if (rulenum == 0) { V_norule_counter = 0; for (i = 0; i < chain->n_rules; i++) { rule = chain->map[i]; /* Skip rules not in our set. */ if (cmd == 1 && rule->set != set) continue; clear_counters(rule, log_only); } msg = log_only ? "All logging counts reset" : "Accounting cleared"; } else { int cleared = 0; for (i = 0; i < chain->n_rules; i++) { rule = chain->map[i]; if (rule->rulenum == rulenum) { if (cmd == 0 || rule->set == set) clear_counters(rule, log_only); cleared = 1; } if (rule->rulenum > rulenum) break; } if (!cleared) { /* we did not find any matching rules */ IPFW_UH_RUNLOCK(chain); return (EINVAL); } msg = log_only ? "logging count reset" : "cleared"; } IPFW_UH_RUNLOCK(chain); if (V_fw_verbose) { int lev = LOG_SECURITY | LOG_NOTICE; if (rulenum) log(lev, "ipfw: Entry %d %s.\n", rulenum, msg); else log(lev, "ipfw: %s.\n", msg); } return (0); } /* * Check rule head in FreeBSD11 format * */ static int check_ipfw_rule1(struct ip_fw_rule *rule, int size, struct rule_check_info *ci) { int l; if (size < sizeof(*rule)) { printf("ipfw: rule too short\n"); return (EINVAL); } /* Check for valid cmd_len */ l = roundup2(RULESIZE(rule), sizeof(uint64_t)); if (l != size) { printf("ipfw: size mismatch (have %d want %d)\n", size, l); return (EINVAL); } if (rule->act_ofs >= rule->cmd_len) { printf("ipfw: bogus action offset (%u > %u)\n", rule->act_ofs, rule->cmd_len - 1); return (EINVAL); } if (rule->rulenum > IPFW_DEFAULT_RULE - 1) return (EINVAL); return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci)); } /* * Check rule head in FreeBSD8 format * */ static int check_ipfw_rule0(struct ip_fw_rule0 *rule, int size, struct rule_check_info *ci) { int l; if (size < sizeof(*rule)) { printf("ipfw: rule too short\n"); return (EINVAL); } /* Check for valid cmd_len */ l = sizeof(*rule) + rule->cmd_len * 4 - 4; if (l != size) { printf("ipfw: size mismatch (have %d want %d)\n", size, l); return (EINVAL); } if (rule->act_ofs >= rule->cmd_len) { printf("ipfw: bogus action offset (%u > %u)\n", rule->act_ofs, rule->cmd_len - 1); return (EINVAL); } if (rule->rulenum > IPFW_DEFAULT_RULE - 1) return (EINVAL); return (check_ipfw_rule_body(rule->cmd, rule->cmd_len, ci)); } static int check_ipfw_rule_body(ipfw_insn *cmd, int cmd_len, struct rule_check_info *ci) { int cmdlen, l; int have_action; have_action = 0; /* * Now go for the individual checks. Very simple ones, basically only * instruction sizes. */ for (l = cmd_len; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); if (cmdlen > l) { printf("ipfw: opcode %d size truncated\n", cmd->opcode); return EINVAL; } switch (cmd->opcode) { case O_PROBE_STATE: case O_KEEP_STATE: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; ci->object_opcodes++; break; case O_PROTO: case O_IP_SRC_ME: case O_IP_DST_ME: case O_LAYER2: case O_IN: case O_FRAG: case O_DIVERTED: case O_IPOPT: case O_IPTOS: case O_IPPRECEDENCE: case O_IPVER: case O_SOCKARG: case O_TCPFLAGS: case O_TCPOPTS: case O_ESTAB: case O_VERREVPATH: case O_VERSRCREACH: case O_ANTISPOOF: case O_IPSEC: #ifdef INET6 case O_IP6_SRC_ME: case O_IP6_DST_ME: case O_EXT_HDR: case O_IP6: #endif case O_IP4: case O_TAG: case O_SKIP_ACTION: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; break; case O_EXTERNAL_ACTION: if (cmd->arg1 == 0 || cmdlen != F_INSN_SIZE(ipfw_insn)) { printf("ipfw: invalid external " "action opcode\n"); return (EINVAL); } ci->object_opcodes++; /* * Do we have O_EXTERNAL_INSTANCE or O_EXTERNAL_DATA * opcode? */ if (l != cmdlen) { l -= cmdlen; cmd += cmdlen; cmdlen = F_LEN(cmd); if (cmd->opcode == O_EXTERNAL_DATA) goto check_action; if (cmd->opcode != O_EXTERNAL_INSTANCE) { printf("ipfw: invalid opcode " "next to external action %u\n", cmd->opcode); return (EINVAL); } if (cmd->arg1 == 0 || cmdlen != F_INSN_SIZE(ipfw_insn)) { printf("ipfw: invalid external " "action instance opcode\n"); return (EINVAL); } ci->object_opcodes++; } goto check_action; case O_FIB: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; if (cmd->arg1 >= rt_numfibs) { printf("ipfw: invalid fib number %d\n", cmd->arg1); return EINVAL; } break; case O_SETFIB: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; if ((cmd->arg1 != IP_FW_TARG) && ((cmd->arg1 & 0x7FFF) >= rt_numfibs)) { printf("ipfw: invalid fib number %d\n", cmd->arg1 & 0x7FFF); return EINVAL; } goto check_action; case O_UID: case O_GID: case O_JAIL: case O_IP_SRC: case O_IP_DST: case O_TCPSEQ: case O_TCPACK: case O_PROB: case O_ICMPTYPE: if (cmdlen != F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; break; case O_LIMIT: if (cmdlen != F_INSN_SIZE(ipfw_insn_limit)) goto bad_size; ci->object_opcodes++; break; case O_LOG: if (cmdlen != F_INSN_SIZE(ipfw_insn_log)) goto bad_size; ((ipfw_insn_log *)cmd)->log_left = ((ipfw_insn_log *)cmd)->max_log; break; case O_IP_SRC_MASK: case O_IP_DST_MASK: /* only odd command lengths */ if ((cmdlen & 1) == 0) goto bad_size; break; case O_IP_SRC_SET: case O_IP_DST_SET: if (cmd->arg1 == 0 || cmd->arg1 > 256) { printf("ipfw: invalid set size %d\n", cmd->arg1); return EINVAL; } if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + (cmd->arg1+31)/32 ) goto bad_size; break; case O_IP_SRC_LOOKUP: if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; case O_IP_DST_LOOKUP: if (cmd->arg1 >= V_fw_tables_max) { printf("ipfw: invalid table number %d\n", cmd->arg1); return (EINVAL); } if (cmdlen != F_INSN_SIZE(ipfw_insn) && cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1 && cmdlen != F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; ci->object_opcodes++; break; case O_IP_FLOW_LOOKUP: case O_MAC_DST_LOOKUP: case O_MAC_SRC_LOOKUP: if (cmd->arg1 >= V_fw_tables_max) { printf("ipfw: invalid table number %d\n", cmd->arg1); return (EINVAL); } if (cmdlen != F_INSN_SIZE(ipfw_insn) && cmdlen != F_INSN_SIZE(ipfw_insn_u32)) goto bad_size; ci->object_opcodes++; break; case O_MACADDR2: if (cmdlen != F_INSN_SIZE(ipfw_insn_mac)) goto bad_size; break; case O_NOP: case O_IPID: case O_IPTTL: case O_IPLEN: case O_TCPDATALEN: case O_TCPMSS: case O_TCPWIN: case O_TAGGED: if (cmdlen < 1 || cmdlen > 31) goto bad_size; break; case O_DSCP: + case O_MARK: if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + 1) goto bad_size; break; case O_MAC_TYPE: case O_IP_SRCPORT: case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */ if (cmdlen < 2 || cmdlen > 31) goto bad_size; break; case O_RECV: case O_XMIT: case O_VIA: if (cmdlen != F_INSN_SIZE(ipfw_insn_if)) goto bad_size; ci->object_opcodes++; break; case O_ALTQ: if (cmdlen != F_INSN_SIZE(ipfw_insn_altq)) goto bad_size; break; case O_PIPE: case O_QUEUE: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; goto check_action; case O_FORWARD_IP: if (cmdlen != F_INSN_SIZE(ipfw_insn_sa)) goto bad_size; goto check_action; #ifdef INET6 case O_FORWARD_IP6: if (cmdlen != F_INSN_SIZE(ipfw_insn_sa6)) goto bad_size; goto check_action; #endif /* INET6 */ case O_DIVERT: case O_TEE: if (ip_divert_ptr == NULL) return EINVAL; else goto check_size; case O_NETGRAPH: case O_NGTEE: if (ng_ipfw_input_p == NULL) return EINVAL; else goto check_size; case O_NAT: if (!IPFW_NAT_LOADED) return EINVAL; if (cmdlen != F_INSN_SIZE(ipfw_insn_nat)) goto bad_size; goto check_action; case O_CHECK_STATE: ci->object_opcodes++; goto check_size; + case O_SETMARK: + if (cmdlen != F_INSN_SIZE(ipfw_insn_u32)) + goto bad_size; + goto check_action; case O_REJECT: /* "unreach needfrag" has variable len. */ if ((cmdlen == F_INSN_SIZE(ipfw_insn) || cmdlen == F_INSN_SIZE(ipfw_insn_u16))) goto check_action; /* FALLTHROUGH */ case O_FORWARD_MAC: /* XXX not implemented yet */ case O_COUNT: case O_ACCEPT: case O_DENY: case O_SETDSCP: #ifdef INET6 case O_UNREACH6: #endif case O_SKIPTO: case O_REASS: case O_CALLRETURN: check_size: if (cmdlen != F_INSN_SIZE(ipfw_insn)) goto bad_size; check_action: if (have_action) { printf("ipfw: opcode %d, multiple actions" " not allowed\n", cmd->opcode); return (EINVAL); } have_action = 1; if (l != cmdlen) { printf("ipfw: opcode %d, action must be" " last opcode\n", cmd->opcode); return (EINVAL); } break; #ifdef INET6 case O_IP6_SRC: case O_IP6_DST: if (cmdlen != F_INSN_SIZE(struct in6_addr) + F_INSN_SIZE(ipfw_insn)) goto bad_size; break; case O_FLOW6ID: if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) + ((ipfw_insn_u32 *)cmd)->o.arg1) goto bad_size; break; case O_IP6_SRC_MASK: case O_IP6_DST_MASK: if ( !(cmdlen & 1) || cmdlen > 127) goto bad_size; break; case O_ICMP6TYPE: if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) ) goto bad_size; break; #endif default: switch (cmd->opcode) { #ifndef INET6 case O_IP6_SRC_ME: case O_IP6_DST_ME: case O_EXT_HDR: case O_IP6: case O_UNREACH6: case O_IP6_SRC: case O_IP6_DST: case O_FLOW6ID: case O_IP6_SRC_MASK: case O_IP6_DST_MASK: case O_ICMP6TYPE: printf("ipfw: no IPv6 support in kernel\n"); return (EPROTONOSUPPORT); #endif default: printf("ipfw: opcode %d, unknown opcode\n", cmd->opcode); return (EINVAL); } } } if (have_action == 0) { printf("ipfw: missing action\n"); return (EINVAL); } return 0; bad_size: printf("ipfw: opcode %d size %d wrong\n", cmd->opcode, cmdlen); return (EINVAL); } /* * Translation of requests for compatibility with FreeBSD 7.2/8. * a static variable tells us if we have an old client from userland, * and if necessary we translate requests and responses between the * two formats. */ static int is7 = 0; struct ip_fw7 { struct ip_fw7 *next; /* linked list of rules */ struct ip_fw7 *next_rule; /* ptr to next [skipto] rule */ /* 'next_rule' is used to pass up 'set_disable' status */ uint16_t act_ofs; /* offset of action in 32-bit units */ uint16_t cmd_len; /* # of 32-bit words in cmd */ uint16_t rulenum; /* rule number */ uint8_t set; /* rule set (0..31) */ // #define RESVD_SET 31 /* set for default and persistent rules */ uint8_t _pad; /* padding */ // uint32_t id; /* rule id, only in v.8 */ /* These fields are present in all rules. */ uint64_t pcnt; /* Packet counter */ uint64_t bcnt; /* Byte counter */ uint32_t timestamp; /* tv_sec of last match */ ipfw_insn cmd[1]; /* storage for commands */ }; static int convert_rule_to_7(struct ip_fw_rule0 *rule); static int convert_rule_to_8(struct ip_fw_rule0 *rule); #ifndef RULESIZE7 #define RULESIZE7(rule) (sizeof(struct ip_fw7) + \ ((struct ip_fw7 *)(rule))->cmd_len * 4 - 4) #endif /* * Copy the static and dynamic rules to the supplied buffer * and return the amount of space actually used. * Must be run under IPFW_UH_RLOCK */ static size_t ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space) { char *bp = buf; char *ep = bp + space; struct ip_fw *rule; struct ip_fw_rule0 *dst; struct timeval boottime; int error, i, l, warnflag; time_t boot_seconds; warnflag = 0; getboottime(&boottime); boot_seconds = boottime.tv_sec; for (i = 0; i < chain->n_rules; i++) { rule = chain->map[i]; if (is7) { /* Convert rule to FreeBSd 7.2 format */ l = RULESIZE7(rule); if (bp + l + sizeof(uint32_t) <= ep) { bcopy(rule, bp, l + sizeof(uint32_t)); error = set_legacy_obj_kidx(chain, (struct ip_fw_rule0 *)bp); if (error != 0) return (0); error = convert_rule_to_7((struct ip_fw_rule0 *) bp); if (error) return 0; /*XXX correct? */ /* * XXX HACK. Store the disable mask in the "next" * pointer in a wild attempt to keep the ABI the same. * Why do we do this on EVERY rule? */ bcopy(&V_set_disable, &(((struct ip_fw7 *)bp)->next_rule), sizeof(V_set_disable)); if (((struct ip_fw7 *)bp)->timestamp) ((struct ip_fw7 *)bp)->timestamp += boot_seconds; bp += l; } continue; /* go to next rule */ } l = RULEUSIZE0(rule); if (bp + l > ep) { /* should not happen */ printf("overflow dumping static rules\n"); break; } dst = (struct ip_fw_rule0 *)bp; export_rule0(rule, dst, l); error = set_legacy_obj_kidx(chain, dst); /* * XXX HACK. Store the disable mask in the "next" * pointer in a wild attempt to keep the ABI the same. * Why do we do this on EVERY rule? * * XXX: "ipfw set show" (ab)uses IP_FW_GET to read disabled mask * so we need to fail _after_ saving at least one mask. */ bcopy(&V_set_disable, &dst->next_rule, sizeof(V_set_disable)); if (dst->timestamp) dst->timestamp += boot_seconds; bp += l; if (error != 0) { if (error == 2) { /* Non-fatal table rewrite error. */ warnflag = 1; continue; } printf("Stop on rule %d. Fail to convert table\n", rule->rulenum); break; } } if (warnflag != 0) printf("ipfw: process %s is using legacy interfaces," " consider rebuilding\n", ""); ipfw_get_dynamic(chain, &bp, ep); /* protected by the dynamic lock */ return (bp - (char *)buf); } struct dump_args { uint32_t b; /* start rule */ uint32_t e; /* end rule */ uint32_t rcount; /* number of rules */ uint32_t rsize; /* rules size */ uint32_t tcount; /* number of tables */ int rcounters; /* counters */ uint32_t *bmask; /* index bitmask of used named objects */ }; void ipfw_export_obj_ntlv(struct named_object *no, ipfw_obj_ntlv *ntlv) { ntlv->head.type = no->etlv; ntlv->head.length = sizeof(*ntlv); ntlv->idx = no->kidx; strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); } /* * Export named object info in instance @ni, identified by @kidx * to ipfw_obj_ntlv. TLV is allocated from @sd space. * * Returns 0 on success. */ static int export_objhash_ntlv(struct namedobj_instance *ni, uint16_t kidx, struct sockopt_data *sd) { struct named_object *no; ipfw_obj_ntlv *ntlv; no = ipfw_objhash_lookup_kidx(ni, kidx); KASSERT(no != NULL, ("invalid object kernel index passed")); ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); if (ntlv == NULL) return (ENOMEM); ipfw_export_obj_ntlv(no, ntlv); return (0); } static int export_named_objects(struct namedobj_instance *ni, struct dump_args *da, struct sockopt_data *sd) { int error, i; for (i = 0; i < IPFW_TABLES_MAX && da->tcount > 0; i++) { if ((da->bmask[i / 32] & (1 << (i % 32))) == 0) continue; if ((error = export_objhash_ntlv(ni, i, sd)) != 0) return (error); da->tcount--; } return (0); } static int dump_named_objects(struct ip_fw_chain *ch, struct dump_args *da, struct sockopt_data *sd) { ipfw_obj_ctlv *ctlv; int error; MPASS(da->tcount > 0); /* Header first */ ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv)); if (ctlv == NULL) return (ENOMEM); ctlv->head.type = IPFW_TLV_TBLNAME_LIST; ctlv->head.length = da->tcount * sizeof(ipfw_obj_ntlv) + sizeof(*ctlv); ctlv->count = da->tcount; ctlv->objsize = sizeof(ipfw_obj_ntlv); /* Dump table names first (if any) */ error = export_named_objects(ipfw_get_table_objhash(ch), da, sd); if (error != 0) return (error); /* Then dump another named objects */ da->bmask += IPFW_TABLES_MAX / 32; return (export_named_objects(CHAIN_TO_SRV(ch), da, sd)); } /* * Dumps static rules with table TLVs in buffer @sd. * * Returns 0 on success. */ static int dump_static_rules(struct ip_fw_chain *chain, struct dump_args *da, struct sockopt_data *sd) { ipfw_obj_ctlv *ctlv; struct ip_fw *krule; caddr_t dst; int i, l; /* Dump rules */ ctlv = (ipfw_obj_ctlv *)ipfw_get_sopt_space(sd, sizeof(*ctlv)); if (ctlv == NULL) return (ENOMEM); ctlv->head.type = IPFW_TLV_RULE_LIST; ctlv->head.length = da->rsize + sizeof(*ctlv); ctlv->count = da->rcount; for (i = da->b; i < da->e; i++) { krule = chain->map[i]; l = RULEUSIZE1(krule) + sizeof(ipfw_obj_tlv); if (da->rcounters != 0) l += sizeof(struct ip_fw_bcounter); dst = (caddr_t)ipfw_get_sopt_space(sd, l); if (dst == NULL) return (ENOMEM); export_rule1(krule, dst, l, da->rcounters); } return (0); } int ipfw_mark_object_kidx(uint32_t *bmask, uint16_t etlv, uint16_t kidx) { uint32_t bidx; /* * Maintain separate bitmasks for table and non-table objects. */ bidx = (etlv == IPFW_TLV_TBL_NAME) ? 0: IPFW_TABLES_MAX / 32; bidx += kidx / 32; if ((bmask[bidx] & (1 << (kidx % 32))) != 0) return (0); bmask[bidx] |= 1 << (kidx % 32); return (1); } /* * Marks every object index used in @rule with bit in @bmask. * Used to generate bitmask of referenced tables/objects for given ruleset * or its part. */ static void mark_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule, struct dump_args *da) { struct opcode_obj_rewrite *rw; ipfw_insn *cmd; int cmdlen, l; uint16_t kidx; uint8_t subtype; l = rule->cmd_len; cmd = rule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); rw = find_op_rw(cmd, &kidx, &subtype); if (rw == NULL) continue; if (ipfw_mark_object_kidx(da->bmask, rw->etlv, kidx)) da->tcount++; } } /* * Dumps requested objects data * Data layout (version 0)(current): * Request: [ ipfw_cfg_lheader ] + IPFW_CFG_GET_* flags * size = ipfw_cfg_lheader.size * Reply: [ ipfw_cfg_lheader * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional) * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) * ipfw_obj_tlv(IPFW_TLV_RULE_ENT) [ ip_fw_bcounter (optional) ip_fw_rule ] * ] (optional) * [ ipfw_obj_ctlv(IPFW_TLV_STATE_LIST) ipfw_obj_dyntlv x N ] (optional) * ] * * NOTE IPFW_TLV_STATE_LIST has the single valid field: objsize. * The rest (size, count) are set to zero and needs to be ignored. * * Returns 0 on success. */ static int dump_config(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct dump_args da; ipfw_cfg_lheader *hdr; struct ip_fw *rule; size_t sz, rnum; uint32_t hdr_flags, *bmask; int error, i; hdr = (ipfw_cfg_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr)); if (hdr == NULL) return (EINVAL); error = 0; bmask = NULL; memset(&da, 0, sizeof(da)); /* * Allocate needed state. * Note we allocate 2xspace mask, for table & srv */ if (hdr->flags & (IPFW_CFG_GET_STATIC | IPFW_CFG_GET_STATES)) da.bmask = bmask = malloc( sizeof(uint32_t) * IPFW_TABLES_MAX * 2 / 32, M_TEMP, M_WAITOK | M_ZERO); IPFW_UH_RLOCK(chain); /* * STAGE 1: Determine size/count for objects in range. * Prepare used tables bitmask. */ sz = sizeof(ipfw_cfg_lheader); da.e = chain->n_rules; if (hdr->end_rule != 0) { /* Handle custom range */ if ((rnum = hdr->start_rule) > IPFW_DEFAULT_RULE) rnum = IPFW_DEFAULT_RULE; da.b = ipfw_find_rule(chain, rnum, 0); rnum = (hdr->end_rule < IPFW_DEFAULT_RULE) ? hdr->end_rule + 1: IPFW_DEFAULT_RULE; da.e = ipfw_find_rule(chain, rnum, UINT32_MAX) + 1; } if (hdr->flags & IPFW_CFG_GET_STATIC) { for (i = da.b; i < da.e; i++) { rule = chain->map[i]; da.rsize += RULEUSIZE1(rule) + sizeof(ipfw_obj_tlv); da.rcount++; /* Update bitmask of used objects for given range */ mark_rule_objects(chain, rule, &da); } /* Add counters if requested */ if (hdr->flags & IPFW_CFG_GET_COUNTERS) { da.rsize += sizeof(struct ip_fw_bcounter) * da.rcount; da.rcounters = 1; } sz += da.rsize + sizeof(ipfw_obj_ctlv); } if (hdr->flags & IPFW_CFG_GET_STATES) { sz += sizeof(ipfw_obj_ctlv) + ipfw_dyn_get_count(bmask, &i) * sizeof(ipfw_obj_dyntlv); da.tcount += i; } if (da.tcount > 0) sz += da.tcount * sizeof(ipfw_obj_ntlv) + sizeof(ipfw_obj_ctlv); /* * Fill header anyway. * Note we have to save header fields to stable storage * buffer inside @sd can be flushed after dumping rules */ hdr->size = sz; hdr->set_mask = ~V_set_disable; hdr_flags = hdr->flags; hdr = NULL; if (sd->valsize < sz) { error = ENOMEM; goto cleanup; } /* STAGE2: Store actual data */ if (da.tcount > 0) { error = dump_named_objects(chain, &da, sd); if (error != 0) goto cleanup; } if (hdr_flags & IPFW_CFG_GET_STATIC) { error = dump_static_rules(chain, &da, sd); if (error != 0) goto cleanup; } if (hdr_flags & IPFW_CFG_GET_STATES) error = ipfw_dump_states(chain, sd); cleanup: IPFW_UH_RUNLOCK(chain); if (bmask != NULL) free(bmask, M_TEMP); return (error); } int ipfw_check_object_name_generic(const char *name) { int nsize; nsize = sizeof(((ipfw_obj_ntlv *)0)->name); if (strnlen(name, nsize) == nsize) return (EINVAL); if (name[0] == '\0') return (EINVAL); return (0); } /* * Creates non-existent objects referenced by rule. * * Return 0 on success. */ int create_objects_compat(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib, struct obj_idx *pidx, struct tid_info *ti) { struct opcode_obj_rewrite *rw; struct obj_idx *p; uint16_t kidx; int error; /* * Compatibility stuff: do actual creation for non-existing, * but referenced objects. */ for (p = oib; p < pidx; p++) { if (p->kidx != 0) continue; ti->uidx = p->uidx; ti->type = p->type; ti->atype = 0; rw = find_op_rw(cmd + p->off, NULL, NULL); KASSERT(rw != NULL, ("Unable to find handler for op %d", (cmd + p->off)->opcode)); if (rw->create_object == NULL) error = EOPNOTSUPP; else error = rw->create_object(ch, ti, &kidx); if (error == 0) { p->kidx = kidx; continue; } /* * Error happened. We have to rollback everything. * Drop all already acquired references. */ IPFW_UH_WLOCK(ch); unref_oib_objects(ch, cmd, oib, pidx); IPFW_UH_WUNLOCK(ch); return (error); } return (0); } /* * Compatibility function for old ipfw(8) binaries. * Rewrites table/nat kernel indices with userland ones. * Convert tables matching '/^\d+$/' to their atoi() value. * Use number 65535 for other tables. * * Returns 0 on success. */ static int set_legacy_obj_kidx(struct ip_fw_chain *ch, struct ip_fw_rule0 *rule) { struct opcode_obj_rewrite *rw; struct named_object *no; ipfw_insn *cmd; char *end; long val; int cmdlen, error, l; uint16_t kidx, uidx; uint8_t subtype; error = 0; l = rule->cmd_len; cmd = rule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); /* Check if is index in given opcode */ rw = find_op_rw(cmd, &kidx, &subtype); if (rw == NULL) continue; /* Try to find referenced kernel object */ no = rw->find_bykidx(ch, kidx); if (no == NULL) continue; val = strtol(no->name, &end, 10); if (*end == '\0' && val < 65535) { uidx = val; } else { /* * We are called via legacy opcode. * Save error and show table as fake number * not to make ipfw(8) hang. */ uidx = 65535; error = 2; } rw->update(cmd, uidx); } return (error); } /* * Unreferences all already-referenced objects in given @cmd rule, * using information in @oib. * * Used to rollback partially converted rule on error. */ static void unref_oib_objects(struct ip_fw_chain *ch, ipfw_insn *cmd, struct obj_idx *oib, struct obj_idx *end) { struct opcode_obj_rewrite *rw; struct named_object *no; struct obj_idx *p; IPFW_UH_WLOCK_ASSERT(ch); for (p = oib; p < end; p++) { if (p->kidx == 0) continue; rw = find_op_rw(cmd + p->off, NULL, NULL); KASSERT(rw != NULL, ("Unable to find handler for op %d", (cmd + p->off)->opcode)); /* Find & unref by existing idx */ no = rw->find_bykidx(ch, p->kidx); KASSERT(no != NULL, ("Ref'd object %d disappeared", p->kidx)); no->refcnt--; } } /* * Remove references from every object used in @rule. * Used at rule removal code. */ static void unref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule) { struct opcode_obj_rewrite *rw; struct named_object *no; ipfw_insn *cmd; int cmdlen, l; uint16_t kidx; uint8_t subtype; IPFW_UH_WLOCK_ASSERT(ch); l = rule->cmd_len; cmd = rule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); rw = find_op_rw(cmd, &kidx, &subtype); if (rw == NULL) continue; no = rw->find_bykidx(ch, kidx); KASSERT(no != NULL, ("object id %d not found", kidx)); KASSERT(no->subtype == subtype, ("wrong type %d (%d) for object id %d", no->subtype, subtype, kidx)); KASSERT(no->refcnt > 0, ("refcount for object %d is %d", kidx, no->refcnt)); if (no->refcnt == 1 && rw->destroy_object != NULL) rw->destroy_object(ch, no); else no->refcnt--; } } /* * Find and reference object (if any) stored in instruction @cmd. * * Saves object info in @pidx, sets * - @unresolved to 1 if object should exists but not found * * Returns non-zero value in case of error. */ static int ref_opcode_object(struct ip_fw_chain *ch, ipfw_insn *cmd, struct tid_info *ti, struct obj_idx *pidx, int *unresolved) { struct named_object *no; struct opcode_obj_rewrite *rw; int error; /* Check if this opcode is candidate for rewrite */ rw = find_op_rw(cmd, &ti->uidx, &ti->type); if (rw == NULL) return (0); /* Need to rewrite. Save necessary fields */ pidx->uidx = ti->uidx; pidx->type = ti->type; /* Try to find referenced kernel object */ error = rw->find_byname(ch, ti, &no); if (error != 0) return (error); if (no == NULL) { /* * Report about unresolved object for automaic * creation. */ *unresolved = 1; return (0); } /* * Object is already exist. * Its subtype should match with expected value. */ if (ti->type != no->subtype) return (EINVAL); /* Bump refcount and update kidx. */ no->refcnt++; rw->update(cmd, no->kidx); return (0); } /* * Finds and bumps refcount for objects referenced by given @rule. * Auto-creates non-existing tables. * Fills in @oib array with userland/kernel indexes. * * Returns 0 on success. */ static int ref_rule_objects(struct ip_fw_chain *ch, struct ip_fw *rule, struct rule_check_info *ci, struct obj_idx *oib, struct tid_info *ti) { struct obj_idx *pidx; ipfw_insn *cmd; int cmdlen, error, l, unresolved; pidx = oib; l = rule->cmd_len; cmd = rule->cmd; cmdlen = 0; error = 0; IPFW_UH_WLOCK(ch); /* Increase refcount on each existing referenced table. */ for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); unresolved = 0; error = ref_opcode_object(ch, cmd, ti, pidx, &unresolved); if (error != 0) break; /* * Compatibility stuff for old clients: * prepare to automaitcally create non-existing objects. */ if (unresolved != 0) { pidx->off = rule->cmd_len - l; pidx++; } } if (error != 0) { /* Unref everything we have already done */ unref_oib_objects(ch, rule->cmd, oib, pidx); IPFW_UH_WUNLOCK(ch); return (error); } IPFW_UH_WUNLOCK(ch); /* Perform auto-creation for non-existing objects */ if (pidx != oib) error = create_objects_compat(ch, rule->cmd, oib, pidx, ti); /* Calculate real number of dynamic objects */ ci->object_opcodes = (uint16_t)(pidx - oib); return (error); } /* * Checks is opcode is referencing table of appropriate type. * Adds reference count for found table if true. * Rewrites user-supplied opcode values with kernel ones. * * Returns 0 on success and appropriate error code otherwise. */ static int rewrite_rule_uidx(struct ip_fw_chain *chain, struct rule_check_info *ci) { int error; ipfw_insn *cmd; struct obj_idx *p, *pidx_first, *pidx_last; struct tid_info ti; /* * Prepare an array for storing opcode indices. * Use stack allocation by default. */ if (ci->object_opcodes <= (sizeof(ci->obuf)/sizeof(ci->obuf[0]))) { /* Stack */ pidx_first = ci->obuf; } else pidx_first = malloc( ci->object_opcodes * sizeof(struct obj_idx), M_IPFW, M_WAITOK | M_ZERO); error = 0; memset(&ti, 0, sizeof(ti)); /* Use set rule is assigned to. */ ti.set = ci->krule->set; if (ci->ctlv != NULL) { ti.tlvs = (void *)(ci->ctlv + 1); ti.tlen = ci->ctlv->head.length - sizeof(ipfw_obj_ctlv); } /* Reference all used tables and other objects */ error = ref_rule_objects(chain, ci->krule, ci, pidx_first, &ti); if (error != 0) goto free; /* * Note that ref_rule_objects() might have updated ci->object_opcodes * to reflect actual number of object opcodes. */ /* Perform rewrite of remaining opcodes */ p = pidx_first; pidx_last = pidx_first + ci->object_opcodes; for (p = pidx_first; p < pidx_last; p++) { cmd = ci->krule->cmd + p->off; update_opcode_kidx(cmd, p->kidx); } free: if (pidx_first != ci->obuf) free(pidx_first, M_IPFW); return (error); } /* * Adds one or more rules to ipfw @chain. * Data layout (version 0)(current): * Request: * [ * ip_fw3_opheader * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional *1) * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] (*2) (*3) * ] * Reply: * [ * ip_fw3_opheader * [ ipfw_obj_ctlv(IPFW_TLV_TBL_LIST) ipfw_obj_ntlv x N ] (optional) * [ ipfw_obj_ctlv(IPFW_TLV_RULE_LIST) ip_fw x N ] * ] * * Rules in reply are modified to store their actual ruleset number. * * (*1) TLVs inside IPFW_TLV_TBL_LIST needs to be sorted ascending * according to their idx field and there has to be no duplicates. * (*2) Numbered rules inside IPFW_TLV_RULE_LIST needs to be sorted ascending. * (*3) Each ip_fw structure needs to be aligned to u64 boundary. * * Returns 0 on success. */ static int add_rules(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_obj_ctlv *ctlv, *rtlv, *tstate; ipfw_obj_ntlv *ntlv; int clen, error, idx; uint32_t count, read; struct ip_fw_rule *r; struct rule_check_info rci, *ci, *cbuf; int i, rsize; op3 = (ip_fw3_opheader *)ipfw_get_sopt_space(sd, sd->valsize); ctlv = (ipfw_obj_ctlv *)(op3 + 1); read = sizeof(ip_fw3_opheader); rtlv = NULL; tstate = NULL; cbuf = NULL; memset(&rci, 0, sizeof(struct rule_check_info)); if (read + sizeof(*ctlv) > sd->valsize) return (EINVAL); if (ctlv->head.type == IPFW_TLV_TBLNAME_LIST) { clen = ctlv->head.length; /* Check size and alignment */ if (clen > sd->valsize || clen < sizeof(*ctlv)) return (EINVAL); if ((clen % sizeof(uint64_t)) != 0) return (EINVAL); /* * Some table names or other named objects. * Check for validness. */ count = (ctlv->head.length - sizeof(*ctlv)) / sizeof(*ntlv); if (ctlv->count != count || ctlv->objsize != sizeof(*ntlv)) return (EINVAL); /* * Check each TLV. * Ensure TLVs are sorted ascending and * there are no duplicates. */ idx = -1; ntlv = (ipfw_obj_ntlv *)(ctlv + 1); while (count > 0) { if (ntlv->head.length != sizeof(ipfw_obj_ntlv)) return (EINVAL); error = ipfw_check_object_name_generic(ntlv->name); if (error != 0) return (error); if (ntlv->idx <= idx) return (EINVAL); idx = ntlv->idx; count--; ntlv++; } tstate = ctlv; read += ctlv->head.length; ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length); } if (read + sizeof(*ctlv) > sd->valsize) return (EINVAL); if (ctlv->head.type == IPFW_TLV_RULE_LIST) { clen = ctlv->head.length; if (clen + read > sd->valsize || clen < sizeof(*ctlv)) return (EINVAL); if ((clen % sizeof(uint64_t)) != 0) return (EINVAL); /* * TODO: Permit adding multiple rules at once */ if (ctlv->count != 1) return (ENOTSUP); clen -= sizeof(*ctlv); if (ctlv->count > clen / sizeof(struct ip_fw_rule)) return (EINVAL); /* Allocate state for each rule or use stack */ if (ctlv->count == 1) { memset(&rci, 0, sizeof(struct rule_check_info)); cbuf = &rci; } else cbuf = malloc(ctlv->count * sizeof(*ci), M_TEMP, M_WAITOK | M_ZERO); ci = cbuf; /* * Check each rule for validness. * Ensure numbered rules are sorted ascending * and properly aligned */ idx = 0; r = (struct ip_fw_rule *)(ctlv + 1); count = 0; error = 0; while (clen > 0) { rsize = roundup2(RULESIZE(r), sizeof(uint64_t)); if (rsize > clen || ctlv->count <= count) { error = EINVAL; break; } ci->ctlv = tstate; error = check_ipfw_rule1(r, rsize, ci); if (error != 0) break; /* Check sorting */ if (r->rulenum != 0 && r->rulenum < idx) { printf("rulenum %d idx %d\n", r->rulenum, idx); error = EINVAL; break; } idx = r->rulenum; ci->urule = (caddr_t)r; rsize = roundup2(rsize, sizeof(uint64_t)); clen -= rsize; r = (struct ip_fw_rule *)((caddr_t)r + rsize); count++; ci++; } if (ctlv->count != count || error != 0) { if (cbuf != &rci) free(cbuf, M_TEMP); return (EINVAL); } rtlv = ctlv; read += ctlv->head.length; ctlv = (ipfw_obj_ctlv *)((caddr_t)ctlv + ctlv->head.length); } if (read != sd->valsize || rtlv == NULL || rtlv->count == 0) { if (cbuf != NULL && cbuf != &rci) free(cbuf, M_TEMP); return (EINVAL); } /* * Passed rules seems to be valid. * Allocate storage and try to add them to chain. */ for (i = 0, ci = cbuf; i < rtlv->count; i++, ci++) { clen = RULEKSIZE1((struct ip_fw_rule *)ci->urule); ci->krule = ipfw_alloc_rule(chain, clen); import_rule1(ci); } if ((error = commit_rules(chain, cbuf, rtlv->count)) != 0) { /* Free allocate krules */ for (i = 0, ci = cbuf; i < rtlv->count; i++, ci++) ipfw_free_rule(ci->krule); } if (cbuf != NULL && cbuf != &rci) free(cbuf, M_TEMP); return (error); } /* * Lists all sopts currently registered. * Data layout (v0)(current): * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size * Reply: [ ipfw_obj_lheader ipfw_sopt_info x N ] * * Returns 0 on success */ static int dump_soptcodes(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_lheader *olh; ipfw_sopt_info *i; struct ipfw_sopt_handler *sh; uint32_t count, n, size; olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); if (olh == NULL) return (EINVAL); if (sd->valsize < olh->size) return (EINVAL); CTL3_LOCK(); count = ctl3_hsize; size = count * sizeof(ipfw_sopt_info) + sizeof(ipfw_obj_lheader); /* Fill in header regadless of buffer size */ olh->count = count; olh->objsize = sizeof(ipfw_sopt_info); if (size > olh->size) { olh->size = size; CTL3_UNLOCK(); return (ENOMEM); } olh->size = size; for (n = 1; n <= count; n++) { i = (ipfw_sopt_info *)ipfw_get_sopt_space(sd, sizeof(*i)); KASSERT(i != NULL, ("previously checked buffer is not enough")); sh = &ctl3_handlers[n]; i->opcode = sh->opcode; i->version = sh->version; i->refcnt = sh->refcnt; } CTL3_UNLOCK(); return (0); } /* * Compares two opcodes. * Used both in qsort() and bsearch(). * * Returns 0 if match is found. */ static int compare_opcodes(const void *_a, const void *_b) { const struct opcode_obj_rewrite *a, *b; a = (const struct opcode_obj_rewrite *)_a; b = (const struct opcode_obj_rewrite *)_b; if (a->opcode < b->opcode) return (-1); else if (a->opcode > b->opcode) return (1); return (0); } /* * XXX: Rewrite bsearch() */ static int find_op_rw_range(uint16_t op, struct opcode_obj_rewrite **plo, struct opcode_obj_rewrite **phi) { struct opcode_obj_rewrite *ctl3_max, *lo, *hi, h, *rw; memset(&h, 0, sizeof(h)); h.opcode = op; rw = (struct opcode_obj_rewrite *)bsearch(&h, ctl3_rewriters, ctl3_rsize, sizeof(h), compare_opcodes); if (rw == NULL) return (1); /* Find the first element matching the same opcode */ lo = rw; for ( ; lo > ctl3_rewriters && (lo - 1)->opcode == op; lo--) ; /* Find the last element matching the same opcode */ hi = rw; ctl3_max = ctl3_rewriters + ctl3_rsize; for ( ; (hi + 1) < ctl3_max && (hi + 1)->opcode == op; hi++) ; *plo = lo; *phi = hi; return (0); } /* * Finds opcode object rewriter based on @code. * * Returns pointer to handler or NULL. */ static struct opcode_obj_rewrite * find_op_rw(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) { struct opcode_obj_rewrite *rw, *lo, *hi; uint16_t uidx; uint8_t subtype; if (find_op_rw_range(cmd->opcode, &lo, &hi) != 0) return (NULL); for (rw = lo; rw <= hi; rw++) { if (rw->classifier(cmd, &uidx, &subtype) == 0) { if (puidx != NULL) *puidx = uidx; if (ptype != NULL) *ptype = subtype; return (rw); } } return (NULL); } int classify_opcode_kidx(ipfw_insn *cmd, uint16_t *puidx) { if (find_op_rw(cmd, puidx, NULL) == NULL) return (1); return (0); } void update_opcode_kidx(ipfw_insn *cmd, uint16_t idx) { struct opcode_obj_rewrite *rw; rw = find_op_rw(cmd, NULL, NULL); KASSERT(rw != NULL, ("No handler to update opcode %d", cmd->opcode)); rw->update(cmd, idx); } void ipfw_init_obj_rewriter(void) { ctl3_rewriters = NULL; ctl3_rsize = 0; } void ipfw_destroy_obj_rewriter(void) { if (ctl3_rewriters != NULL) free(ctl3_rewriters, M_IPFW); ctl3_rewriters = NULL; ctl3_rsize = 0; } /* * Adds one or more opcode object rewrite handlers to the global array. * Function may sleep. */ void ipfw_add_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count) { size_t sz; struct opcode_obj_rewrite *tmp; CTL3_LOCK(); for (;;) { sz = ctl3_rsize + count; CTL3_UNLOCK(); tmp = malloc(sizeof(*rw) * sz, M_IPFW, M_WAITOK | M_ZERO); CTL3_LOCK(); if (ctl3_rsize + count <= sz) break; /* Retry */ free(tmp, M_IPFW); } /* Merge old & new arrays */ sz = ctl3_rsize + count; memcpy(tmp, ctl3_rewriters, ctl3_rsize * sizeof(*rw)); memcpy(&tmp[ctl3_rsize], rw, count * sizeof(*rw)); qsort(tmp, sz, sizeof(*rw), compare_opcodes); /* Switch new and free old */ if (ctl3_rewriters != NULL) free(ctl3_rewriters, M_IPFW); ctl3_rewriters = tmp; ctl3_rsize = sz; CTL3_UNLOCK(); } /* * Removes one or more object rewrite handlers from the global array. */ int ipfw_del_obj_rewriter(struct opcode_obj_rewrite *rw, size_t count) { size_t sz; struct opcode_obj_rewrite *ctl3_max, *ktmp, *lo, *hi; int i; CTL3_LOCK(); for (i = 0; i < count; i++) { if (find_op_rw_range(rw[i].opcode, &lo, &hi) != 0) continue; for (ktmp = lo; ktmp <= hi; ktmp++) { if (ktmp->classifier != rw[i].classifier) continue; ctl3_max = ctl3_rewriters + ctl3_rsize; sz = (ctl3_max - (ktmp + 1)) * sizeof(*ktmp); memmove(ktmp, ktmp + 1, sz); ctl3_rsize--; break; } } if (ctl3_rsize == 0) { if (ctl3_rewriters != NULL) free(ctl3_rewriters, M_IPFW); ctl3_rewriters = NULL; } CTL3_UNLOCK(); return (0); } static int export_objhash_ntlv_internal(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct sockopt_data *sd; ipfw_obj_ntlv *ntlv; sd = (struct sockopt_data *)arg; ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); if (ntlv == NULL) return (ENOMEM); ipfw_export_obj_ntlv(no, ntlv); return (0); } /* * Lists all service objects. * Data layout (v0)(current): * Request: [ ipfw_obj_lheader ] size = ipfw_obj_lheader.size * Reply: [ ipfw_obj_lheader [ ipfw_obj_ntlv x N ] (optional) ] * Returns 0 on success */ static int dump_srvobjects(struct ip_fw_chain *chain, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_obj_lheader *hdr; int count; hdr = (ipfw_obj_lheader *)ipfw_get_sopt_header(sd, sizeof(*hdr)); if (hdr == NULL) return (EINVAL); IPFW_UH_RLOCK(chain); count = ipfw_objhash_count(CHAIN_TO_SRV(chain)); hdr->size = sizeof(ipfw_obj_lheader) + count * sizeof(ipfw_obj_ntlv); if (sd->valsize < hdr->size) { IPFW_UH_RUNLOCK(chain); return (ENOMEM); } hdr->count = count; hdr->objsize = sizeof(ipfw_obj_ntlv); if (count > 0) ipfw_objhash_foreach(CHAIN_TO_SRV(chain), export_objhash_ntlv_internal, sd); IPFW_UH_RUNLOCK(chain); return (0); } /* * Compares two sopt handlers (code, version and handler ptr). * Used both as qsort() and bsearch(). * Does not compare handler for latter case. * * Returns 0 if match is found. */ static int compare_sh(const void *_a, const void *_b) { const struct ipfw_sopt_handler *a, *b; a = (const struct ipfw_sopt_handler *)_a; b = (const struct ipfw_sopt_handler *)_b; if (a->opcode < b->opcode) return (-1); else if (a->opcode > b->opcode) return (1); if (a->version < b->version) return (-1); else if (a->version > b->version) return (1); /* bsearch helper */ if (a->handler == NULL) return (0); if ((uintptr_t)a->handler < (uintptr_t)b->handler) return (-1); else if ((uintptr_t)a->handler > (uintptr_t)b->handler) return (1); return (0); } /* * Finds sopt handler based on @code and @version. * * Returns pointer to handler or NULL. */ static struct ipfw_sopt_handler * find_sh(uint16_t code, uint8_t version, sopt_handler_f *handler) { struct ipfw_sopt_handler *sh, h; memset(&h, 0, sizeof(h)); h.opcode = code; h.version = version; h.handler = handler; sh = (struct ipfw_sopt_handler *)bsearch(&h, ctl3_handlers, ctl3_hsize, sizeof(h), compare_sh); return (sh); } static int find_ref_sh(uint16_t opcode, uint8_t version, struct ipfw_sopt_handler *psh) { struct ipfw_sopt_handler *sh; CTL3_LOCK(); if ((sh = find_sh(opcode, version, NULL)) == NULL) { CTL3_UNLOCK(); printf("ipfw: ipfw_ctl3 invalid option %d""v""%d\n", opcode, version); return (EINVAL); } sh->refcnt++; ctl3_refct++; /* Copy handler data to requested buffer */ *psh = *sh; CTL3_UNLOCK(); return (0); } static void find_unref_sh(struct ipfw_sopt_handler *psh) { struct ipfw_sopt_handler *sh; CTL3_LOCK(); sh = find_sh(psh->opcode, psh->version, NULL); KASSERT(sh != NULL, ("ctl3 handler disappeared")); sh->refcnt--; ctl3_refct--; CTL3_UNLOCK(); } void ipfw_init_sopt_handler(void) { CTL3_LOCK_INIT(); IPFW_ADD_SOPT_HANDLER(1, scodes); } void ipfw_destroy_sopt_handler(void) { IPFW_DEL_SOPT_HANDLER(1, scodes); CTL3_LOCK_DESTROY(); } /* * Adds one or more sockopt handlers to the global array. * Function may sleep. */ void ipfw_add_sopt_handler(struct ipfw_sopt_handler *sh, size_t count) { size_t sz; struct ipfw_sopt_handler *tmp; CTL3_LOCK(); for (;;) { sz = ctl3_hsize + count; CTL3_UNLOCK(); tmp = malloc(sizeof(*sh) * sz, M_IPFW, M_WAITOK | M_ZERO); CTL3_LOCK(); if (ctl3_hsize + count <= sz) break; /* Retry */ free(tmp, M_IPFW); } /* Merge old & new arrays */ sz = ctl3_hsize + count; memcpy(tmp, ctl3_handlers, ctl3_hsize * sizeof(*sh)); memcpy(&tmp[ctl3_hsize], sh, count * sizeof(*sh)); qsort(tmp, sz, sizeof(*sh), compare_sh); /* Switch new and free old */ if (ctl3_handlers != NULL) free(ctl3_handlers, M_IPFW); ctl3_handlers = tmp; ctl3_hsize = sz; ctl3_gencnt++; CTL3_UNLOCK(); } /* * Removes one or more sockopt handlers from the global array. */ int ipfw_del_sopt_handler(struct ipfw_sopt_handler *sh, size_t count) { size_t sz; struct ipfw_sopt_handler *tmp, *h; int i; CTL3_LOCK(); for (i = 0; i < count; i++) { tmp = &sh[i]; h = find_sh(tmp->opcode, tmp->version, tmp->handler); if (h == NULL) continue; sz = (ctl3_handlers + ctl3_hsize - (h + 1)) * sizeof(*h); memmove(h, h + 1, sz); ctl3_hsize--; } if (ctl3_hsize == 0) { if (ctl3_handlers != NULL) free(ctl3_handlers, M_IPFW); ctl3_handlers = NULL; } ctl3_gencnt++; CTL3_UNLOCK(); return (0); } /* * Writes data accumulated in @sd to sockopt buffer. * Zeroes internal @sd buffer. */ static int ipfw_flush_sopt_data(struct sockopt_data *sd) { struct sockopt *sopt; int error; size_t sz; sz = sd->koff; if (sz == 0) return (0); sopt = sd->sopt; if (sopt->sopt_dir == SOPT_GET) { error = copyout(sd->kbuf, sopt->sopt_val, sz); if (error != 0) return (error); } memset(sd->kbuf, 0, sd->ksize); sd->ktotal += sz; sd->koff = 0; if (sd->ktotal + sd->ksize < sd->valsize) sd->kavail = sd->ksize; else sd->kavail = sd->valsize - sd->ktotal; /* Update sopt buffer data */ sopt->sopt_valsize = sd->ktotal; sopt->sopt_val = sd->sopt_val + sd->ktotal; return (0); } /* * Ensures that @sd buffer has contiguous @neeeded number of * bytes. * * Returns pointer to requested space or NULL. */ caddr_t ipfw_get_sopt_space(struct sockopt_data *sd, size_t needed) { int error; caddr_t addr; if (sd->kavail < needed) { /* * Flush data and try another time. */ error = ipfw_flush_sopt_data(sd); if (sd->kavail < needed || error != 0) return (NULL); } addr = sd->kbuf + sd->koff; sd->koff += needed; sd->kavail -= needed; return (addr); } /* * Requests @needed contiguous bytes from @sd buffer. * Function is used to notify subsystem that we are * interesed in first @needed bytes (request header) * and the rest buffer can be safely zeroed. * * Returns pointer to requested space or NULL. */ caddr_t ipfw_get_sopt_header(struct sockopt_data *sd, size_t needed) { caddr_t addr; if ((addr = ipfw_get_sopt_space(sd, needed)) == NULL) return (NULL); if (sd->kavail > 0) memset(sd->kbuf + sd->koff, 0, sd->kavail); return (addr); } /* * New sockopt handler. */ int ipfw_ctl3(struct sockopt *sopt) { int error, locked; size_t size, valsize; struct ip_fw_chain *chain; char xbuf[256]; struct sockopt_data sdata; struct ipfw_sopt_handler h; ip_fw3_opheader *op3 = NULL; error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW); if (error != 0) return (error); if (sopt->sopt_name != IP_FW3) return (ipfw_ctl(sopt)); chain = &V_layer3_chain; error = 0; /* Save original valsize before it is altered via sooptcopyin() */ valsize = sopt->sopt_valsize; memset(&sdata, 0, sizeof(sdata)); /* Read op3 header first to determine actual operation */ op3 = (ip_fw3_opheader *)xbuf; error = sooptcopyin(sopt, op3, sizeof(*op3), sizeof(*op3)); if (error != 0) return (error); sopt->sopt_valsize = valsize; /* * Find and reference command. */ error = find_ref_sh(op3->opcode, op3->version, &h); if (error != 0) return (error); /* * Disallow modifications in really-really secure mode, but still allow * the logging counters to be reset. */ if ((h.dir & HDIR_SET) != 0 && h.opcode != IP_FW_XRESETLOG) { error = securelevel_ge(sopt->sopt_td->td_ucred, 3); if (error != 0) { find_unref_sh(&h); return (error); } } /* * Fill in sockopt_data structure that may be useful for * IP_FW3 get requests. */ locked = 0; if (valsize <= sizeof(xbuf)) { /* use on-stack buffer */ sdata.kbuf = xbuf; sdata.ksize = sizeof(xbuf); sdata.kavail = valsize; } else { /* * Determine opcode type/buffer size: * allocate sliding-window buf for data export or * contiguous buffer for special ops. */ if ((h.dir & HDIR_SET) != 0) { /* Set request. Allocate contigous buffer. */ if (valsize > CTL3_LARGEBUF) { find_unref_sh(&h); return (EFBIG); } size = valsize; } else { /* Get request. Allocate sliding window buffer */ size = (valsizesopt_val, valsize); if (error != 0) return (error); locked = 1; } } sdata.kbuf = malloc(size, M_TEMP, M_WAITOK | M_ZERO); sdata.ksize = size; sdata.kavail = size; } sdata.sopt = sopt; sdata.sopt_val = sopt->sopt_val; sdata.valsize = valsize; /* * Copy either all request (if valsize < bsize_max) * or first bsize_max bytes to guarantee most consumers * that all necessary data has been copied). * Anyway, copy not less than sizeof(ip_fw3_opheader). */ if ((error = sooptcopyin(sopt, sdata.kbuf, sdata.ksize, sizeof(ip_fw3_opheader))) != 0) return (error); op3 = (ip_fw3_opheader *)sdata.kbuf; /* Finally, run handler */ error = h.handler(chain, op3, &sdata); find_unref_sh(&h); /* Flush state and free buffers */ if (error == 0) error = ipfw_flush_sopt_data(&sdata); else ipfw_flush_sopt_data(&sdata); if (locked != 0) vsunlock(sdata.sopt_val, valsize); /* Restore original pointer and set number of bytes written */ sopt->sopt_val = sdata.sopt_val; sopt->sopt_valsize = sdata.ktotal; if (sdata.kbuf != xbuf) free(sdata.kbuf, M_TEMP); return (error); } /** * {set|get}sockopt parser. */ int ipfw_ctl(struct sockopt *sopt) { #define RULE_MAXSIZE (512*sizeof(u_int32_t)) int error; size_t size; struct ip_fw *buf; struct ip_fw_rule0 *rule; struct ip_fw_chain *chain; u_int32_t rulenum[2]; uint32_t opt; struct rule_check_info ci; IPFW_RLOCK_TRACKER; chain = &V_layer3_chain; error = 0; opt = sopt->sopt_name; /* * Disallow modifications in really-really secure mode, but still allow * the logging counters to be reset. */ if (opt == IP_FW_ADD || (sopt->sopt_dir == SOPT_SET && opt != IP_FW_RESETLOG)) { error = securelevel_ge(sopt->sopt_td->td_ucred, 3); if (error != 0) return (error); } switch (opt) { case IP_FW_GET: /* * pass up a copy of the current rules. Static rules * come first (the last of which has number IPFW_DEFAULT_RULE), * followed by a possibly empty list of dynamic rule. * The last dynamic rule has NULL in the "next" field. * * Note that the calculated size is used to bound the * amount of data returned to the user. The rule set may * change between calculating the size and returning the * data in which case we'll just return what fits. */ for (;;) { int len = 0, want; size = chain->static_len; size += ipfw_dyn_len(); if (size >= sopt->sopt_valsize) break; buf = malloc(size, M_TEMP, M_WAITOK | M_ZERO); IPFW_UH_RLOCK(chain); /* check again how much space we need */ want = chain->static_len + ipfw_dyn_len(); if (size >= want) len = ipfw_getrules(chain, buf, size); IPFW_UH_RUNLOCK(chain); if (size >= want) error = sooptcopyout(sopt, buf, len); free(buf, M_TEMP); if (size >= want) break; } break; case IP_FW_FLUSH: /* locking is done within del_entry() */ error = del_entry(chain, 0); /* special case, rule=0, cmd=0 means all */ break; case IP_FW_ADD: rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK); error = sooptcopyin(sopt, rule, RULE_MAXSIZE, sizeof(struct ip_fw7) ); memset(&ci, 0, sizeof(struct rule_check_info)); /* * If the size of commands equals RULESIZE7 then we assume * a FreeBSD7.2 binary is talking to us (set is7=1). * is7 is persistent so the next 'ipfw list' command * will use this format. * NOTE: If wrong version is guessed (this can happen if * the first ipfw command is 'ipfw [pipe] list') * the ipfw binary may crash or loop infinitly... */ size = sopt->sopt_valsize; if (size == RULESIZE7(rule)) { is7 = 1; error = convert_rule_to_8(rule); if (error) { free(rule, M_TEMP); return error; } size = RULESIZE(rule); } else is7 = 0; if (error == 0) error = check_ipfw_rule0(rule, size, &ci); if (error == 0) { /* locking is done within add_rule() */ struct ip_fw *krule; krule = ipfw_alloc_rule(chain, RULEKSIZE0(rule)); ci.urule = (caddr_t)rule; ci.krule = krule; import_rule0(&ci); error = commit_rules(chain, &ci, 1); if (error != 0) ipfw_free_rule(ci.krule); else if (sopt->sopt_dir == SOPT_GET) { if (is7) { error = convert_rule_to_7(rule); size = RULESIZE7(rule); if (error) { free(rule, M_TEMP); return error; } } error = sooptcopyout(sopt, rule, size); } } free(rule, M_TEMP); break; case IP_FW_DEL: /* * IP_FW_DEL is used for deleting single rules or sets, * and (ab)used to atomically manipulate sets. Argument size * is used to distinguish between the two: * sizeof(u_int32_t) * delete single rule or set of rules, * or reassign rules (or sets) to a different set. * 2*sizeof(u_int32_t) * atomic disable/enable sets. * first u_int32_t contains sets to be disabled, * second u_int32_t contains sets to be enabled. */ error = sooptcopyin(sopt, rulenum, 2*sizeof(u_int32_t), sizeof(u_int32_t)); if (error) break; size = sopt->sopt_valsize; if (size == sizeof(u_int32_t) && rulenum[0] != 0) { /* delete or reassign, locking done in del_entry() */ error = del_entry(chain, rulenum[0]); } else if (size == 2*sizeof(u_int32_t)) { /* set enable/disable */ IPFW_UH_WLOCK(chain); V_set_disable = (V_set_disable | rulenum[0]) & ~rulenum[1] & ~(1<sopt_val != 0) { error = sooptcopyin(sopt, rulenum, sizeof(u_int32_t), sizeof(u_int32_t)); if (error) break; } error = zero_entry(chain, rulenum[0], sopt->sopt_name == IP_FW_RESETLOG); break; /*--- TABLE opcodes ---*/ case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: { ipfw_table_entry ent; struct tentry_info tei; struct tid_info ti; struct table_value v; error = sooptcopyin(sopt, &ent, sizeof(ent), sizeof(ent)); if (error) break; memset(&tei, 0, sizeof(tei)); tei.paddr = &ent.addr; tei.subtype = AF_INET; tei.masklen = ent.masklen; ipfw_import_table_value_legacy(ent.value, &v); tei.pvalue = &v; memset(&ti, 0, sizeof(ti)); ti.uidx = ent.tbl; ti.type = IPFW_TABLE_CIDR; error = (opt == IP_FW_TABLE_ADD) ? add_table_entry(chain, &ti, &tei, 0, 1) : del_table_entry(chain, &ti, &tei, 0, 1); } break; case IP_FW_TABLE_FLUSH: { u_int16_t tbl; struct tid_info ti; error = sooptcopyin(sopt, &tbl, sizeof(tbl), sizeof(tbl)); if (error) break; memset(&ti, 0, sizeof(ti)); ti.uidx = tbl; error = flush_table(chain, &ti); } break; case IP_FW_TABLE_GETSIZE: { u_int32_t tbl, cnt; struct tid_info ti; if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl), sizeof(tbl)))) break; memset(&ti, 0, sizeof(ti)); ti.uidx = tbl; IPFW_RLOCK(chain); error = ipfw_count_table(chain, &ti, &cnt); IPFW_RUNLOCK(chain); if (error) break; error = sooptcopyout(sopt, &cnt, sizeof(cnt)); } break; case IP_FW_TABLE_LIST: { ipfw_table *tbl; struct tid_info ti; if (sopt->sopt_valsize < sizeof(*tbl)) { error = EINVAL; break; } size = sopt->sopt_valsize; tbl = malloc(size, M_TEMP, M_WAITOK); error = sooptcopyin(sopt, tbl, size, sizeof(*tbl)); if (error) { free(tbl, M_TEMP); break; } tbl->size = (size - sizeof(*tbl)) / sizeof(ipfw_table_entry); memset(&ti, 0, sizeof(ti)); ti.uidx = tbl->tbl; IPFW_RLOCK(chain); error = ipfw_dump_table_legacy(chain, &ti, tbl); IPFW_RUNLOCK(chain); if (error) { free(tbl, M_TEMP); break; } error = sooptcopyout(sopt, tbl, size); free(tbl, M_TEMP); } break; /*--- NAT operations are protected by the IPFW_LOCK ---*/ case IP_FW_NAT_CFG: if (IPFW_NAT_LOADED) error = ipfw_nat_cfg_ptr(sopt); else { printf("IP_FW_NAT_CFG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_DEL: if (IPFW_NAT_LOADED) error = ipfw_nat_del_ptr(sopt); else { printf("IP_FW_NAT_DEL: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_GET_CONFIG: if (IPFW_NAT_LOADED) error = ipfw_nat_get_cfg_ptr(sopt); else { printf("IP_FW_NAT_GET_CFG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; case IP_FW_NAT_GET_LOG: if (IPFW_NAT_LOADED) error = ipfw_nat_get_log_ptr(sopt); else { printf("IP_FW_NAT_GET_LOG: %s\n", "ipfw_nat not present, please load it"); error = EINVAL; } break; default: printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name); error = EINVAL; } return (error); #undef RULE_MAXSIZE } #define RULE_MAXSIZE (256*sizeof(u_int32_t)) /* Functions to convert rules 7.2 <==> 8.0 */ static int convert_rule_to_7(struct ip_fw_rule0 *rule) { /* Used to modify original rule */ struct ip_fw7 *rule7 = (struct ip_fw7 *)rule; /* copy of original rule, version 8 */ struct ip_fw_rule0 *tmp; /* Used to copy commands */ ipfw_insn *ccmd, *dst; int ll = 0, ccmdlen = 0; tmp = malloc(RULE_MAXSIZE, M_TEMP, M_NOWAIT | M_ZERO); if (tmp == NULL) { return 1; //XXX error } bcopy(rule, tmp, RULE_MAXSIZE); /* Copy fields */ //rule7->_pad = tmp->_pad; rule7->set = tmp->set; rule7->rulenum = tmp->rulenum; rule7->cmd_len = tmp->cmd_len; rule7->act_ofs = tmp->act_ofs; rule7->next_rule = (struct ip_fw7 *)tmp->next_rule; rule7->cmd_len = tmp->cmd_len; rule7->pcnt = tmp->pcnt; rule7->bcnt = tmp->bcnt; rule7->timestamp = tmp->timestamp; /* Copy commands */ for (ll = tmp->cmd_len, ccmd = tmp->cmd, dst = rule7->cmd ; ll > 0 ; ll -= ccmdlen, ccmd += ccmdlen, dst += ccmdlen) { ccmdlen = F_LEN(ccmd); bcopy(ccmd, dst, F_LEN(ccmd)*sizeof(uint32_t)); if (dst->opcode > O_NAT) /* O_REASS doesn't exists in 7.2 version, so * decrement opcode if it is after O_REASS */ dst->opcode--; if (ccmdlen > ll) { printf("ipfw: opcode %d size truncated\n", ccmd->opcode); return EINVAL; } } free(tmp, M_TEMP); return 0; } static int convert_rule_to_8(struct ip_fw_rule0 *rule) { /* Used to modify original rule */ struct ip_fw7 *rule7 = (struct ip_fw7 *) rule; /* Used to copy commands */ ipfw_insn *ccmd, *dst; int ll = 0, ccmdlen = 0; /* Copy of original rule */ struct ip_fw7 *tmp = malloc(RULE_MAXSIZE, M_TEMP, M_NOWAIT | M_ZERO); if (tmp == NULL) { return 1; //XXX error } bcopy(rule7, tmp, RULE_MAXSIZE); for (ll = tmp->cmd_len, ccmd = tmp->cmd, dst = rule->cmd ; ll > 0 ; ll -= ccmdlen, ccmd += ccmdlen, dst += ccmdlen) { ccmdlen = F_LEN(ccmd); bcopy(ccmd, dst, F_LEN(ccmd)*sizeof(uint32_t)); if (dst->opcode > O_NAT) /* O_REASS doesn't exists in 7.2 version, so * increment opcode if it is after O_REASS */ dst->opcode++; if (ccmdlen > ll) { printf("ipfw: opcode %d size truncated\n", ccmd->opcode); return EINVAL; } } rule->_pad = tmp->_pad; rule->set = tmp->set; rule->rulenum = tmp->rulenum; rule->cmd_len = tmp->cmd_len; rule->act_ofs = tmp->act_ofs; rule->next_rule = (struct ip_fw *)tmp->next_rule; rule->cmd_len = tmp->cmd_len; rule->id = 0; /* XXX see if is ok = 0 */ rule->pcnt = tmp->pcnt; rule->bcnt = tmp->bcnt; rule->timestamp = tmp->timestamp; free (tmp, M_TEMP); return 0; } /* * Named object api * */ void ipfw_init_srv(struct ip_fw_chain *ch) { ch->srvmap = ipfw_objhash_create(IPFW_OBJECTS_DEFAULT); ch->srvstate = malloc(sizeof(void *) * IPFW_OBJECTS_DEFAULT, M_IPFW, M_WAITOK | M_ZERO); } void ipfw_destroy_srv(struct ip_fw_chain *ch) { free(ch->srvstate, M_IPFW); ipfw_objhash_destroy(ch->srvmap); } /* * Allocate new bitmask which can be used to enlarge/shrink * named instance index. */ void ipfw_objhash_bitmap_alloc(uint32_t items, void **idx, int *pblocks) { size_t size; int max_blocks; u_long *idx_mask; KASSERT((items % BLOCK_ITEMS) == 0, ("bitmask size needs to power of 2 and greater or equal to %zu", BLOCK_ITEMS)); max_blocks = items / BLOCK_ITEMS; size = items / 8; idx_mask = malloc(size * IPFW_MAX_SETS, M_IPFW, M_WAITOK); /* Mark all as free */ memset(idx_mask, 0xFF, size * IPFW_MAX_SETS); *idx_mask &= ~(u_long)1; /* Skip index 0 */ *idx = idx_mask; *pblocks = max_blocks; } /* * Copy current bitmask index to new one. */ void ipfw_objhash_bitmap_merge(struct namedobj_instance *ni, void **idx, int *blocks) { int old_blocks, new_blocks; u_long *old_idx, *new_idx; int i; old_idx = ni->idx_mask; old_blocks = ni->max_blocks; new_idx = *idx; new_blocks = *blocks; for (i = 0; i < IPFW_MAX_SETS; i++) { memcpy(&new_idx[new_blocks * i], &old_idx[old_blocks * i], old_blocks * sizeof(u_long)); } } /* * Swaps current @ni index with new one. */ void ipfw_objhash_bitmap_swap(struct namedobj_instance *ni, void **idx, int *blocks) { int old_blocks; u_long *old_idx; old_idx = ni->idx_mask; old_blocks = ni->max_blocks; ni->idx_mask = *idx; ni->max_blocks = *blocks; /* Save old values */ *idx = old_idx; *blocks = old_blocks; } void ipfw_objhash_bitmap_free(void *idx, int blocks) { free(idx, M_IPFW); } /* * Creates named hash instance. * Must be called without holding any locks. * Return pointer to new instance. */ struct namedobj_instance * ipfw_objhash_create(uint32_t items) { struct namedobj_instance *ni; int i; size_t size; size = sizeof(struct namedobj_instance) + sizeof(struct namedobjects_head) * NAMEDOBJ_HASH_SIZE + sizeof(struct namedobjects_head) * NAMEDOBJ_HASH_SIZE; ni = malloc(size, M_IPFW, M_WAITOK | M_ZERO); ni->nn_size = NAMEDOBJ_HASH_SIZE; ni->nv_size = NAMEDOBJ_HASH_SIZE; ni->names = (struct namedobjects_head *)(ni +1); ni->values = &ni->names[ni->nn_size]; for (i = 0; i < ni->nn_size; i++) TAILQ_INIT(&ni->names[i]); for (i = 0; i < ni->nv_size; i++) TAILQ_INIT(&ni->values[i]); /* Set default hashing/comparison functions */ ni->hash_f = objhash_hash_name; ni->cmp_f = objhash_cmp_name; /* Allocate bitmask separately due to possible resize */ ipfw_objhash_bitmap_alloc(items, (void*)&ni->idx_mask, &ni->max_blocks); return (ni); } void ipfw_objhash_destroy(struct namedobj_instance *ni) { free(ni->idx_mask, M_IPFW); free(ni, M_IPFW); } void ipfw_objhash_set_funcs(struct namedobj_instance *ni, objhash_hash_f *hash_f, objhash_cmp_f *cmp_f) { ni->hash_f = hash_f; ni->cmp_f = cmp_f; } static uint32_t objhash_hash_name(struct namedobj_instance *ni, const void *name, uint32_t set) { return (fnv_32_str((const char *)name, FNV1_32_INIT)); } static int objhash_cmp_name(struct named_object *no, const void *name, uint32_t set) { if ((strcmp(no->name, (const char *)name) == 0) && (no->set == set)) return (0); return (1); } static uint32_t objhash_hash_idx(struct namedobj_instance *ni, uint32_t val) { uint32_t v; v = val % (ni->nv_size - 1); return (v); } struct named_object * ipfw_objhash_lookup_name(struct namedobj_instance *ni, uint32_t set, const char *name) { struct named_object *no; uint32_t hash; hash = ni->hash_f(ni, name, set) % ni->nn_size; TAILQ_FOREACH(no, &ni->names[hash], nn_next) { if (ni->cmp_f(no, name, set) == 0) return (no); } return (NULL); } /* * Find named object by @uid. * Check @tlvs for valid data inside. * * Returns pointer to found TLV or NULL. */ ipfw_obj_ntlv * ipfw_find_name_tlv_type(void *tlvs, int len, uint16_t uidx, uint32_t etlv) { ipfw_obj_ntlv *ntlv; uintptr_t pa, pe; int l; pa = (uintptr_t)tlvs; pe = pa + len; l = 0; for (; pa < pe; pa += l) { ntlv = (ipfw_obj_ntlv *)pa; l = ntlv->head.length; if (l != sizeof(*ntlv)) return (NULL); if (ntlv->idx != uidx) continue; /* * When userland has specified zero TLV type, do * not compare it with eltv. In some cases userland * doesn't know what type should it have. Use only * uidx and name for search named_object. */ if (ntlv->head.type != 0 && ntlv->head.type != (uint16_t)etlv) continue; if (ipfw_check_object_name_generic(ntlv->name) != 0) return (NULL); return (ntlv); } return (NULL); } /* * Finds object config based on either legacy index * or name in ntlv. * Note @ti structure contains unchecked data from userland. * * Returns 0 in success and fills in @pno with found config */ int ipfw_objhash_find_type(struct namedobj_instance *ni, struct tid_info *ti, uint32_t etlv, struct named_object **pno) { char *name; ipfw_obj_ntlv *ntlv; uint32_t set; if (ti->tlvs == NULL) return (EINVAL); ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, etlv); if (ntlv == NULL) return (EINVAL); name = ntlv->name; /* * Use set provided by @ti instead of @ntlv one. * This is needed due to different sets behavior * controlled by V_fw_tables_sets. */ set = ti->set; *pno = ipfw_objhash_lookup_name(ni, set, name); if (*pno == NULL) return (ESRCH); return (0); } /* * Find named object by name, considering also its TLV type. */ struct named_object * ipfw_objhash_lookup_name_type(struct namedobj_instance *ni, uint32_t set, uint32_t type, const char *name) { struct named_object *no; uint32_t hash; hash = ni->hash_f(ni, name, set) % ni->nn_size; TAILQ_FOREACH(no, &ni->names[hash], nn_next) { if (ni->cmp_f(no, name, set) == 0 && no->etlv == (uint16_t)type) return (no); } return (NULL); } struct named_object * ipfw_objhash_lookup_kidx(struct namedobj_instance *ni, uint16_t kidx) { struct named_object *no; uint32_t hash; hash = objhash_hash_idx(ni, kidx); TAILQ_FOREACH(no, &ni->values[hash], nv_next) { if (no->kidx == kidx) return (no); } return (NULL); } int ipfw_objhash_same_name(struct namedobj_instance *ni, struct named_object *a, struct named_object *b) { if ((strcmp(a->name, b->name) == 0) && a->set == b->set) return (1); return (0); } void ipfw_objhash_add(struct namedobj_instance *ni, struct named_object *no) { uint32_t hash; hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size; TAILQ_INSERT_HEAD(&ni->names[hash], no, nn_next); hash = objhash_hash_idx(ni, no->kidx); TAILQ_INSERT_HEAD(&ni->values[hash], no, nv_next); ni->count++; } void ipfw_objhash_del(struct namedobj_instance *ni, struct named_object *no) { uint32_t hash; hash = ni->hash_f(ni, no->name, no->set) % ni->nn_size; TAILQ_REMOVE(&ni->names[hash], no, nn_next); hash = objhash_hash_idx(ni, no->kidx); TAILQ_REMOVE(&ni->values[hash], no, nv_next); ni->count--; } uint32_t ipfw_objhash_count(struct namedobj_instance *ni) { return (ni->count); } uint32_t ipfw_objhash_count_type(struct namedobj_instance *ni, uint16_t type) { struct named_object *no; uint32_t count; int i; count = 0; for (i = 0; i < ni->nn_size; i++) { TAILQ_FOREACH(no, &ni->names[i], nn_next) { if (no->etlv == type) count++; } } return (count); } /* * Runs @func for each found named object. * It is safe to delete objects from callback */ int ipfw_objhash_foreach(struct namedobj_instance *ni, objhash_cb_t *f, void *arg) { struct named_object *no, *no_tmp; int i, ret; for (i = 0; i < ni->nn_size; i++) { TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) { ret = f(ni, no, arg); if (ret != 0) return (ret); } } return (0); } /* * Runs @f for each found named object with type @type. * It is safe to delete objects from callback */ int ipfw_objhash_foreach_type(struct namedobj_instance *ni, objhash_cb_t *f, void *arg, uint16_t type) { struct named_object *no, *no_tmp; int i, ret; for (i = 0; i < ni->nn_size; i++) { TAILQ_FOREACH_SAFE(no, &ni->names[i], nn_next, no_tmp) { if (no->etlv != type) continue; ret = f(ni, no, arg); if (ret != 0) return (ret); } } return (0); } /* * Removes index from given set. * Returns 0 on success. */ int ipfw_objhash_free_idx(struct namedobj_instance *ni, uint16_t idx) { u_long *mask; int i, v; i = idx / BLOCK_ITEMS; v = idx % BLOCK_ITEMS; if (i >= ni->max_blocks) return (1); mask = &ni->idx_mask[i]; if ((*mask & ((u_long)1 << v)) != 0) return (1); /* Mark as free */ *mask |= (u_long)1 << v; /* Update free offset */ if (ni->free_off[0] > i) ni->free_off[0] = i; return (0); } /* * Allocate new index in given instance and stores in in @pidx. * Returns 0 on success. */ int ipfw_objhash_alloc_idx(void *n, uint16_t *pidx) { struct namedobj_instance *ni; u_long *mask; int i, off, v; ni = (struct namedobj_instance *)n; off = ni->free_off[0]; mask = &ni->idx_mask[off]; for (i = off; i < ni->max_blocks; i++, mask++) { if ((v = ffsl(*mask)) == 0) continue; /* Mark as busy */ *mask &= ~ ((u_long)1 << (v - 1)); ni->free_off[0] = i; v = BLOCK_ITEMS * i + v - 1; *pidx = v; return (0); } return (1); } /* end of file */ diff --git a/sys/netpfil/ipfw/ip_fw_table.c b/sys/netpfil/ipfw/ip_fw_table.c index 202a49840b38..52955410fef2 100644 --- a/sys/netpfil/ipfw/ip_fw_table.c +++ b/sys/netpfil/ipfw/ip_fw_table.c @@ -1,3376 +1,3377 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko. * Copyright (c) 2014 Yandex LLC * Copyright (c) 2014 Alexander V. Chernikov * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Lookup table support for ipfw. * * This file contains handlers for all generic tables' operations: * add/del/flush entries, list/dump tables etc.. * * Table data modification is protected by both UH and runtime lock * while reading configuration/data is protected by UH lock. * * Lookup algorithms for all table types are located in ip_fw_table_algo.c */ #include "opt_ipfw.h" #include #include #include #include #include #include #include #include #include #include #include /* ip_fw.h requires IFNAMSIZ */ #include #include /* struct ipfw_rule_ref */ #include #include #include /* * Table has the following `type` concepts: * * `no.type` represents lookup key type (addr, ifp, uid, etc..) * vmask represents bitmask of table values which are present at the moment. * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old * single-value-for-all approach. */ struct table_config { struct named_object no; uint8_t tflags; /* type flags */ uint8_t locked; /* 1 if locked from changes */ uint8_t linked; /* 1 if already linked */ uint8_t ochanged; /* used by set swapping */ uint8_t vshared; /* 1 if using shared value array */ uint8_t spare[3]; uint32_t count; /* Number of records */ uint32_t limit; /* Max number of records */ uint32_t vmask; /* bitmask with supported values */ uint32_t ocount; /* used by set swapping */ uint64_t gencnt; /* generation count */ char tablename[64]; /* table name */ struct table_algo *ta; /* Callbacks for given algo */ void *astate; /* algorithm state */ struct table_info ti_copy; /* data to put to table_info */ struct namedobj_instance *vi; }; static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti, struct table_config **tc); static struct table_config *find_table(struct namedobj_instance *ni, struct tid_info *ti); static struct table_config *alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags); static void free_table_config(struct namedobj_instance *ni, struct table_config *tc); static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref); static void link_table(struct ip_fw_chain *ch, struct table_config *tc); static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc); static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc); #define OP_ADD 1 #define OP_DEL 0 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, struct sockopt_data *sd); static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, ipfw_xtable_info *i); static int dump_table_tentry(void *e, void *arg); static int dump_table_xentry(void *e, void *arg); static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, struct tid_info *b); static int check_table_name(const char *name); static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, struct table_config *tc, struct table_info *ti, uint32_t count); static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti); static struct table_algo *find_table_algo(struct tables_config *tableconf, struct tid_info *ti, char *name); static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti); static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti); #define CHAIN_TO_NI(chain) (CHAIN_TO_TCFG(chain)->namehash) #define KIDX_TO_TI(ch, k) (&(((struct table_info *)(ch)->tablestate)[k])) #define TA_BUF_SZ 128 /* On-stack buffer for add/delete state */ void rollback_toperation_state(struct ip_fw_chain *ch, void *object) { struct tables_config *tcfg; struct op_state *os; tcfg = CHAIN_TO_TCFG(ch); TAILQ_FOREACH(os, &tcfg->state_list, next) os->func(object, os); } void add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) { struct tables_config *tcfg; tcfg = CHAIN_TO_TCFG(ch); TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next); } void del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts) { struct tables_config *tcfg; tcfg = CHAIN_TO_TCFG(ch); TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next); } void tc_ref(struct table_config *tc) { tc->no.refcnt++; } void tc_unref(struct table_config *tc) { tc->no.refcnt--; } static struct table_value * get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx) { struct table_value *pval; pval = (struct table_value *)ch->valuestate; return (&pval[kidx]); } /* * Checks if we're able to insert/update entry @tei into table * w.r.t @tc limits. * May alter @tei to indicate insertion error / insert * options. * * Returns 0 if operation can be performed/ */ static int check_table_limit(struct table_config *tc, struct tentry_info *tei) { if (tc->limit == 0 || tc->count < tc->limit) return (0); if ((tei->flags & TEI_FLAGS_UPDATE) == 0) { /* Notify userland on error cause */ tei->flags |= TEI_FLAGS_LIMIT; return (EFBIG); } /* * We have UPDATE flag set. * Permit updating record (if found), * but restrict adding new one since we've * already hit the limit. */ tei->flags |= TEI_FLAGS_DONTADD; return (0); } /* * Convert algorithm callback return code into * one of pre-defined states known by userland. */ static void store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num) { int flag; flag = 0; switch (error) { case 0: if (op == OP_ADD && num != 0) flag = TEI_FLAGS_ADDED; if (op == OP_DEL) flag = TEI_FLAGS_DELETED; break; case ENOENT: flag = TEI_FLAGS_NOTFOUND; break; case EEXIST: flag = TEI_FLAGS_EXISTS; break; default: flag = TEI_FLAGS_ERROR; } tei->flags |= flag; } /* * Creates and references table with default parameters. * Saves table config, algo and allocated kidx info @ptc, @pta and * @pkidx if non-zero. * Used for table auto-creation to support old binaries. * * Returns 0 on success. */ static int create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti, uint16_t *pkidx) { ipfw_xtable_info xi; int error; memset(&xi, 0, sizeof(xi)); /* Set default value mask for legacy clients */ xi.vmask = IPFW_VTYPE_LEGACY; error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1); if (error != 0) return (error); return (0); } /* * Find and reference existing table optionally * creating new one. * * Saves found table config into @ptc. * Note function may drop/acquire UH_WLOCK. * Returns 0 if table was found/created and referenced * or non-zero return code. */ static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti, struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc) { struct namedobj_instance *ni; struct table_config *tc; uint16_t kidx; int error; IPFW_UH_WLOCK_ASSERT(ch); ni = CHAIN_TO_NI(ch); tc = NULL; if ((tc = find_table(ni, ti)) != NULL) { /* check table type */ if (tc->no.subtype != ti->type) return (EINVAL); if (tc->locked != 0) return (EACCES); /* Try to exit early on limit hit */ if (op == OP_ADD && count == 1 && check_table_limit(tc, tei) != 0) return (EFBIG); /* Reference and return */ tc->no.refcnt++; *ptc = tc; return (0); } if (op == OP_DEL) return (ESRCH); /* Compatibility mode: create new table for old clients */ if ((tei->flags & TEI_FLAGS_COMPAT) == 0) return (ESRCH); IPFW_UH_WUNLOCK(ch); error = create_table_compat(ch, ti, &kidx); IPFW_UH_WLOCK(ch); if (error != 0) return (error); tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx)); /* OK, now we've got referenced table. */ *ptc = tc; return (0); } /* * Rolls back already @added to @tc entries using state array @ta_buf_m. * Assume the following layout: * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1]) * for storing deleted state */ static void rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc, struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m, uint32_t count, uint32_t added) { struct table_algo *ta; struct tentry_info *ptei; caddr_t v, vv; size_t ta_buf_sz; int error __diagused, i; uint32_t num; IPFW_UH_WLOCK_ASSERT(ch); ta = tc->ta; ta_buf_sz = ta->ta_buf_size; v = ta_buf_m; vv = v + count * ta_buf_sz; for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) { ptei = &tei[i]; if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) { /* * We have old value stored by previous * call in @ptei->value. Do add once again * to restore it. */ error = ta->add(tc->astate, tinfo, ptei, v, &num); KASSERT(error == 0, ("rollback UPDATE fail")); KASSERT(num == 0, ("rollback UPDATE fail2")); continue; } error = ta->prepare_del(ch, ptei, vv); KASSERT(error == 0, ("pre-rollback INSERT failed")); error = ta->del(tc->astate, tinfo, ptei, vv, &num); KASSERT(error == 0, ("rollback INSERT failed")); tc->count -= num; } } /* * Prepares add/del state for all @count entries in @tei. * Uses either stack buffer (@ta_buf) or allocates a new one. * Stores pointer to allocated buffer back to @ta_buf. * * Returns 0 on success. */ static int prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf) { caddr_t ta_buf_m, v; size_t ta_buf_sz, sz; struct tentry_info *ptei; int error, i; error = 0; ta_buf_sz = ta->ta_buf_size; if (count == 1) { /* Single add/delete, use on-stack buffer */ memset(*ta_buf, 0, TA_BUF_SZ); ta_buf_m = *ta_buf; } else { /* * Multiple adds/deletes, allocate larger buffer * * Note we need 2xcount buffer for add case: * we have hold both ADD state * and DELETE state (this may be needed * if we need to rollback all changes) */ sz = count * ta_buf_sz; ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP, M_WAITOK | M_ZERO); } v = ta_buf_m; for (i = 0; i < count; i++, v += ta_buf_sz) { ptei = &tei[i]; error = (op == OP_ADD) ? ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v); /* * Some syntax error (incorrect mask, or address, or * anything). Return error regardless of atomicity * settings. */ if (error != 0) break; } *ta_buf = ta_buf_m; return (error); } /* * Flushes allocated state for each @count entries in @tei. * Frees @ta_buf_m if differs from stack buffer @ta_buf. */ static void flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta, struct tentry_info *tei, uint32_t count, int rollback, caddr_t ta_buf_m, caddr_t ta_buf) { caddr_t v; struct tentry_info *ptei; size_t ta_buf_sz; int i; ta_buf_sz = ta->ta_buf_size; /* Run cleaning callback anyway */ v = ta_buf_m; for (i = 0; i < count; i++, v += ta_buf_sz) { ptei = &tei[i]; ta->flush_entry(ch, ptei, v); if (ptei->ptv != NULL) { free(ptei->ptv, M_IPFW); ptei->ptv = NULL; } } /* Clean up "deleted" state in case of rollback */ if (rollback != 0) { v = ta_buf_m + count * ta_buf_sz; for (i = 0; i < count; i++, v += ta_buf_sz) ta->flush_entry(ch, &tei[i], v); } if (ta_buf_m != ta_buf) free(ta_buf_m, M_TEMP); } static void rollback_add_entry(void *object, struct op_state *_state) { struct ip_fw_chain *ch __diagused; struct tableop_state *ts; ts = (struct tableop_state *)_state; if (ts->tc != object && ts->ch != object) return; ch = ts->ch; IPFW_UH_WLOCK_ASSERT(ch); /* Call specifid unlockers */ rollback_table_values(ts); /* Indicate we've called */ ts->modified = 1; } /* * Adds/updates one or more entries in table @ti. * * Function may drop/reacquire UH wlock multiple times due to * items alloc, algorithm callbacks (check_space), value linkage * (new values, value storage realloc), etc.. * Other processes like other adds (which may involve storage resize), * table swaps (which changes table data and may change algo type), * table modify (which may change value mask) may be executed * simultaneously so we need to deal with it. * * The following approach was implemented: * we have per-chain linked list, protected with UH lock. * add_table_entry prepares special on-stack structure wthich is passed * to its descendants. Users add this structure to this list before unlock. * After performing needed operations and acquiring UH lock back, each user * checks if structure has changed. If true, it rolls local state back and * returns without error to the caller. * add_table_entry() on its own checks if structure has changed and restarts * its operation from the beginning (goto restart). * * Functions which are modifying fields of interest (currently * resize_shared_value_storage() and swap_tables() ) * traverses given list while holding UH lock immediately before * performing their operations calling function provided be list entry * ( currently rollback_add_entry ) which performs rollback for all necessary * state and sets appropriate values in structure indicating rollback * has happened. * * Algo interaction: * Function references @ti first to ensure table won't * disappear or change its type. * After that, prepare_add callback is called for each @tei entry. * Next, we try to add each entry under UH+WHLOCK * using add() callback. * Finally, we free all state by calling flush_entry callback * for each @tei. * * Returns 0 on success. */ int add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, struct tentry_info *tei, uint8_t flags, uint32_t count) { struct table_config *tc; struct table_algo *ta; uint16_t kidx; int error, first_error, i, rollback; uint32_t num, numadd; struct tentry_info *ptei; struct tableop_state ts; char ta_buf[TA_BUF_SZ]; caddr_t ta_buf_m, v; memset(&ts, 0, sizeof(ts)); ta = NULL; IPFW_UH_WLOCK(ch); /* * Find and reference existing table. */ restart: if (ts.modified != 0) { IPFW_UH_WUNLOCK(ch); flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); memset(&ts, 0, sizeof(ts)); ta = NULL; IPFW_UH_WLOCK(ch); } error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc); if (error != 0) { IPFW_UH_WUNLOCK(ch); return (error); } ta = tc->ta; /* Fill in tablestate */ ts.ch = ch; ts.opstate.func = rollback_add_entry; ts.tc = tc; ts.vshared = tc->vshared; ts.vmask = tc->vmask; ts.ta = ta; ts.tei = tei; ts.count = count; rollback = 0; add_toperation_state(ch, &ts); IPFW_UH_WUNLOCK(ch); /* Allocate memory and prepare record(s) */ /* Pass stack buffer by default */ ta_buf_m = ta_buf; error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m); IPFW_UH_WLOCK(ch); del_toperation_state(ch, &ts); /* Drop reference we've used in first search */ tc->no.refcnt--; /* Check prepare_batch_buffer() error */ if (error != 0) goto cleanup; /* * Check if table swap has happened. * (so table algo might be changed). * Restart operation to achieve consistent behavior. */ if (ts.modified != 0) goto restart; /* * Link all values values to shared/per-table value array. * * May release/reacquire UH_WLOCK. */ error = ipfw_link_table_values(ch, &ts, flags); if (error != 0) goto cleanup; if (ts.modified != 0) goto restart; /* * Ensure we are able to add all entries without additional * memory allocations. May release/reacquire UH_WLOCK. */ kidx = tc->no.kidx; error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count); if (error != 0) goto cleanup; if (ts.modified != 0) goto restart; /* We've got valid table in @tc. Let's try to add data */ kidx = tc->no.kidx; ta = tc->ta; numadd = 0; first_error = 0; IPFW_WLOCK(ch); v = ta_buf_m; for (i = 0; i < count; i++, v += ta->ta_buf_size) { ptei = &tei[i]; num = 0; /* check limit before adding */ if ((error = check_table_limit(tc, ptei)) == 0) { /* * It should be safe to insert a record w/o * a properly-linked value if atomicity is * not required. * * If the added item does not have a valid value * index, it would get rejected by ta->add(). * */ error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, &num); /* Set status flag to inform userland */ store_tei_result(ptei, OP_ADD, error, num); } if (error == 0) { /* Update number of records to ease limit checking */ tc->count += num; numadd += num; continue; } if (first_error == 0) first_error = error; /* * Some error have happened. Check our atomicity * settings: continue if atomicity is not required, * rollback changes otherwise. */ if ((flags & IPFW_CTF_ATOMIC) == 0) continue; rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx), tei, ta_buf_m, count, i); rollback = 1; break; } IPFW_WUNLOCK(ch); ipfw_garbage_table_values(ch, tc, tei, count, rollback); /* Permit post-add algorithm grow/rehash. */ if (numadd != 0) check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); /* Return first error to user, if any */ error = first_error; cleanup: IPFW_UH_WUNLOCK(ch); flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf); return (error); } /* * Deletes one or more entries in table @ti. * * Returns 0 on success. */ int del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti, struct tentry_info *tei, uint8_t flags, uint32_t count) { struct table_config *tc; struct table_algo *ta; struct tentry_info *ptei; uint16_t kidx; int error, first_error, i; uint32_t num, numdel; char ta_buf[TA_BUF_SZ]; caddr_t ta_buf_m, v; /* * Find and reference existing table. */ IPFW_UH_WLOCK(ch); error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc); if (error != 0) { IPFW_UH_WUNLOCK(ch); return (error); } ta = tc->ta; IPFW_UH_WUNLOCK(ch); /* Allocate memory and prepare record(s) */ /* Pass stack buffer by default */ ta_buf_m = ta_buf; error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m); if (error != 0) goto cleanup; IPFW_UH_WLOCK(ch); /* Drop reference we've used in first search */ tc->no.refcnt--; /* * Check if table algo is still the same. * (changed ta may be the result of table swap). */ if (ta != tc->ta) { IPFW_UH_WUNLOCK(ch); error = EINVAL; goto cleanup; } kidx = tc->no.kidx; numdel = 0; first_error = 0; IPFW_WLOCK(ch); v = ta_buf_m; for (i = 0; i < count; i++, v += ta->ta_buf_size) { ptei = &tei[i]; num = 0; error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v, &num); /* Save state for userland */ store_tei_result(ptei, OP_DEL, error, num); if (error != 0 && first_error == 0) first_error = error; tc->count -= num; numdel += num; } IPFW_WUNLOCK(ch); /* Unlink non-used values */ ipfw_garbage_table_values(ch, tc, tei, count, 0); if (numdel != 0) { /* Run post-del hook to permit shrinking */ check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0); } IPFW_UH_WUNLOCK(ch); /* Return first error to user, if any */ error = first_error; cleanup: flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf); return (error); } /* * Ensure that table @tc has enough space to add @count entries without * need for reallocation. * * Callbacks order: * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize. * * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags. * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage * 3) modify (UH_WLOCK + WLOCK) - switch pointers * 4) flush_modify (UH_WLOCK) - free state, if needed * * Returns 0 on success. */ static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts, struct table_config *tc, struct table_info *ti, uint32_t count) { struct table_algo *ta; uint64_t pflags; char ta_buf[TA_BUF_SZ]; int error; IPFW_UH_WLOCK_ASSERT(ch); error = 0; ta = tc->ta; if (ta->need_modify == NULL) return (0); /* Acquire reference not to loose @tc between locks/unlocks */ tc->no.refcnt++; /* * TODO: think about avoiding race between large add/large delete * operation on algorithm which implements shrinking along with * growing. */ while (true) { pflags = 0; if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { error = 0; break; } /* We have to shrink/grow table */ if (ts != NULL) add_toperation_state(ch, ts); IPFW_UH_WUNLOCK(ch); memset(&ta_buf, 0, sizeof(ta_buf)); error = ta->prepare_mod(ta_buf, &pflags); IPFW_UH_WLOCK(ch); if (ts != NULL) del_toperation_state(ch, ts); if (error != 0) break; if (ts != NULL && ts->modified != 0) { /* * Swap operation has happened * so we're currently operating on other * table data. Stop doing this. */ ta->flush_mod(ta_buf); break; } /* Check if we still need to alter table */ ti = KIDX_TO_TI(ch, tc->no.kidx); if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) { IPFW_UH_WUNLOCK(ch); /* * Other thread has already performed resize. * Flush our state and return. */ ta->flush_mod(ta_buf); break; } error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags); if (error == 0) { /* Do actual modification */ IPFW_WLOCK(ch); ta->modify(tc->astate, ti, ta_buf, pflags); IPFW_WUNLOCK(ch); } /* Anyway, flush data and retry */ ta->flush_mod(ta_buf); } tc->no.refcnt--; return (error); } /* * Adds or deletes record in table. * Data layout (v0): * Request: [ ip_fw3_opheader ipfw_table_xentry ] * * Returns 0 on success */ static int manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_table_xentry *xent; struct tentry_info tei; struct tid_info ti; struct table_value v; int error, hdrlen, read; hdrlen = offsetof(ipfw_table_xentry, k); /* Check minimum header size */ if (sd->valsize < (sizeof(*op3) + hdrlen)) return (EINVAL); read = sizeof(ip_fw3_opheader); /* Check if xentry len field is valid */ xent = (ipfw_table_xentry *)(op3 + 1); if (xent->len < hdrlen || xent->len + read > sd->valsize) return (EINVAL); memset(&tei, 0, sizeof(tei)); tei.paddr = &xent->k; tei.masklen = xent->masklen; ipfw_import_table_value_legacy(xent->value, &v); tei.pvalue = &v; /* Old requests compatibility */ tei.flags = TEI_FLAGS_COMPAT; if (xent->type == IPFW_TABLE_ADDR) { if (xent->len - hdrlen == sizeof(in_addr_t)) tei.subtype = AF_INET; else tei.subtype = AF_INET6; } memset(&ti, 0, sizeof(ti)); ti.uidx = xent->tbl; ti.type = xent->type; error = (op3->opcode == IP_FW_TABLE_XADD) ? add_table_entry(ch, &ti, &tei, 0, 1) : del_table_entry(ch, &ti, &tei, 0, 1); return (error); } /* * Adds or deletes record in table. * Data layout (v1)(current): * Request: [ ipfw_obj_header * ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ] * ] * * Returns 0 on success */ static int manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_obj_tentry *tent, *ptent; ipfw_obj_ctlv *ctlv; ipfw_obj_header *oh; struct tentry_info *ptei, tei, *tei_buf; struct tid_info ti; int error, i, kidx, read; /* Check minimum header size */ if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv))) return (EINVAL); /* Check if passed data is too long */ if (sd->valsize != sd->kavail) return (EINVAL); oh = (ipfw_obj_header *)sd->kbuf; /* Basic length checks for TLVs */ if (oh->ntlv.head.length != sizeof(oh->ntlv)) return (EINVAL); read = sizeof(*oh); ctlv = (ipfw_obj_ctlv *)(oh + 1); if (ctlv->head.length + read != sd->valsize) return (EINVAL); read += sizeof(*ctlv); tent = (ipfw_obj_tentry *)(ctlv + 1); if (ctlv->count * sizeof(*tent) + read != sd->valsize) return (EINVAL); if (ctlv->count == 0) return (0); /* * Mark entire buffer as "read". * This instructs sopt api write it back * after function return. */ ipfw_get_sopt_header(sd, sd->valsize); /* Perform basic checks for each entry */ ptent = tent; kidx = tent->idx; for (i = 0; i < ctlv->count; i++, ptent++) { if (ptent->head.length != sizeof(*ptent)) return (EINVAL); if (ptent->idx != kidx) return (ENOTSUP); } /* Convert data into kernel request objects */ objheader_to_ti(oh, &ti); ti.type = oh->ntlv.type; ti.uidx = kidx; /* Use on-stack buffer for single add/del */ if (ctlv->count == 1) { memset(&tei, 0, sizeof(tei)); tei_buf = &tei; } else tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP, M_WAITOK | M_ZERO); ptei = tei_buf; ptent = tent; for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { ptei->paddr = &ptent->k; ptei->subtype = ptent->subtype; ptei->masklen = ptent->masklen; if (ptent->head.flags & IPFW_TF_UPDATE) ptei->flags |= TEI_FLAGS_UPDATE; ipfw_import_table_value_v1(&ptent->v.value); ptei->pvalue = (struct table_value *)&ptent->v.value; } error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ? add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) : del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count); /* Translate result back to userland */ ptei = tei_buf; ptent = tent; for (i = 0; i < ctlv->count; i++, ptent++, ptei++) { if (ptei->flags & TEI_FLAGS_ADDED) ptent->result = IPFW_TR_ADDED; else if (ptei->flags & TEI_FLAGS_DELETED) ptent->result = IPFW_TR_DELETED; else if (ptei->flags & TEI_FLAGS_UPDATED) ptent->result = IPFW_TR_UPDATED; else if (ptei->flags & TEI_FLAGS_LIMIT) ptent->result = IPFW_TR_LIMIT; else if (ptei->flags & TEI_FLAGS_ERROR) ptent->result = IPFW_TR_ERROR; else if (ptei->flags & TEI_FLAGS_NOTFOUND) ptent->result = IPFW_TR_NOTFOUND; else if (ptei->flags & TEI_FLAGS_EXISTS) ptent->result = IPFW_TR_EXISTS; ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value); } if (tei_buf != &tei) free(tei_buf, M_TEMP); return (error); } /* * Looks up an entry in given table. * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_obj_tentry ] * Reply: [ ipfw_obj_header ipfw_obj_tentry ] * * Returns 0 on success */ static int find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_obj_tentry *tent; ipfw_obj_header *oh; struct tid_info ti; struct table_config *tc; struct table_algo *ta; struct table_info *kti; struct table_value *pval; struct namedobj_instance *ni; int error; size_t sz; /* Check minimum header size */ sz = sizeof(*oh) + sizeof(*tent); if (sd->valsize != sz) return (EINVAL); oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); tent = (ipfw_obj_tentry *)(oh + 1); /* Basic length checks for TLVs */ if (oh->ntlv.head.length != sizeof(oh->ntlv)) return (EINVAL); objheader_to_ti(oh, &ti); ti.type = oh->ntlv.type; ti.uidx = tent->idx; IPFW_UH_RLOCK(ch); ni = CHAIN_TO_NI(ch); /* * Find existing table and check its type . */ ta = NULL; if ((tc = find_table(ni, &ti)) == NULL) { IPFW_UH_RUNLOCK(ch); return (ESRCH); } /* check table type */ if (tc->no.subtype != ti.type) { IPFW_UH_RUNLOCK(ch); return (EINVAL); } kti = KIDX_TO_TI(ch, tc->no.kidx); ta = tc->ta; if (ta->find_tentry == NULL) return (ENOTSUP); error = ta->find_tentry(tc->astate, kti, tent); if (error == 0) { pval = get_table_value(ch, tc, tent->v.kidx); ipfw_export_table_value_v1(pval, &tent->v.value); } IPFW_UH_RUNLOCK(ch); return (error); } /* * Flushes all entries or destroys given table. * Data layout (v0)(current): * Request: [ ipfw_obj_header ] * * Returns 0 on success */ static int flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { int error; struct _ipfw_obj_header *oh; struct tid_info ti; if (sd->valsize != sizeof(*oh)) return (EINVAL); oh = (struct _ipfw_obj_header *)op3; objheader_to_ti(oh, &ti); if (op3->opcode == IP_FW_TABLE_XDESTROY) error = destroy_table(ch, &ti); else if (op3->opcode == IP_FW_TABLE_XFLUSH) error = flush_table(ch, &ti); else return (ENOTSUP); return (error); } static void restart_flush(void *object, struct op_state *_state) { struct tableop_state *ts; ts = (struct tableop_state *)_state; if (ts->tc != object) return; /* Indicate we've called */ ts->modified = 1; } /* * Flushes given table. * * Function create new table instance with the same * parameters, swaps it with old one and * flushes state without holding runtime WLOCK. * * Returns 0 on success. */ int flush_table(struct ip_fw_chain *ch, struct tid_info *ti) { struct namedobj_instance *ni; struct table_config *tc; struct table_algo *ta; struct table_info ti_old, ti_new, *tablestate; void *astate_old, *astate_new; char algostate[64], *pstate; struct tableop_state ts; int error, need_gc; uint16_t kidx; uint8_t tflags; /* * Stage 1: save table algorithm. * Reference found table to ensure it won't disappear. */ IPFW_UH_WLOCK(ch); ni = CHAIN_TO_NI(ch); if ((tc = find_table(ni, ti)) == NULL) { IPFW_UH_WUNLOCK(ch); return (ESRCH); } need_gc = 0; astate_new = NULL; memset(&ti_new, 0, sizeof(ti_new)); restart: /* Set up swap handler */ memset(&ts, 0, sizeof(ts)); ts.opstate.func = restart_flush; ts.tc = tc; ta = tc->ta; /* Do not flush readonly tables */ if ((ta->flags & TA_FLAG_READONLY) != 0) { IPFW_UH_WUNLOCK(ch); return (EACCES); } /* Save startup algo parameters */ if (ta->print_config != NULL) { ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx), algostate, sizeof(algostate)); pstate = algostate; } else pstate = NULL; tflags = tc->tflags; tc->no.refcnt++; add_toperation_state(ch, &ts); IPFW_UH_WUNLOCK(ch); /* * Stage 1.5: if this is not the first attempt, destroy previous state */ if (need_gc != 0) { ta->destroy(astate_new, &ti_new); need_gc = 0; } /* * Stage 2: allocate new table instance using same algo. */ memset(&ti_new, 0, sizeof(struct table_info)); error = ta->init(ch, &astate_new, &ti_new, pstate, tflags); /* * Stage 3: swap old state pointers with newly-allocated ones. * Decrease refcount. */ IPFW_UH_WLOCK(ch); tc->no.refcnt--; del_toperation_state(ch, &ts); if (error != 0) { IPFW_UH_WUNLOCK(ch); return (error); } /* * Restart operation if table swap has happened: * even if algo may be the same, algo init parameters * may change. Restart operation instead of doing * complex checks. */ if (ts.modified != 0) { /* Delay destroying data since we're holding UH lock */ need_gc = 1; goto restart; } ni = CHAIN_TO_NI(ch); kidx = tc->no.kidx; tablestate = (struct table_info *)ch->tablestate; IPFW_WLOCK(ch); ti_old = tablestate[kidx]; tablestate[kidx] = ti_new; IPFW_WUNLOCK(ch); astate_old = tc->astate; tc->astate = astate_new; tc->ti_copy = ti_new; tc->count = 0; /* Notify algo on real @ti address */ if (ta->change_ti != NULL) ta->change_ti(tc->astate, &tablestate[kidx]); /* * Stage 4: unref values. */ ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old); IPFW_UH_WUNLOCK(ch); /* * Stage 5: perform real flush/destroy. */ ta->destroy(astate_old, &ti_old); return (0); } /* * Swaps two tables. * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_obj_ntlv ] * * Returns 0 on success */ static int swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { int error; struct _ipfw_obj_header *oh; struct tid_info ti_a, ti_b; if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv)) return (EINVAL); oh = (struct _ipfw_obj_header *)op3; ntlv_to_ti(&oh->ntlv, &ti_a); ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b); error = swap_tables(ch, &ti_a, &ti_b); return (error); } /* * Swaps two tables of the same type/valtype. * * Checks if tables are compatible and limits * permits swap, than actually perform swap. * * Each table consists of 2 different parts: * config: * @tc (with name, set, kidx) and rule bindings, which is "stable". * number of items * table algo * runtime: * runtime data @ti (ch->tablestate) * runtime cache in @tc * algo-specific data (@tc->astate) * * So we switch: * all runtime data * number of items * table algo * * After that we call @ti change handler for each table. * * Note that referencing @tc won't protect tc->ta from change. * XXX: Do we need to restrict swap between locked tables? * XXX: Do we need to exchange ftype? * * Returns 0 on success. */ static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a, struct tid_info *b) { struct namedobj_instance *ni; struct table_config *tc_a, *tc_b; struct table_algo *ta; struct table_info ti, *tablestate; void *astate; uint32_t count; /* * Stage 1: find both tables and ensure they are of * the same type. */ IPFW_UH_WLOCK(ch); ni = CHAIN_TO_NI(ch); if ((tc_a = find_table(ni, a)) == NULL) { IPFW_UH_WUNLOCK(ch); return (ESRCH); } if ((tc_b = find_table(ni, b)) == NULL) { IPFW_UH_WUNLOCK(ch); return (ESRCH); } /* It is very easy to swap between the same table */ if (tc_a == tc_b) { IPFW_UH_WUNLOCK(ch); return (0); } /* Check type and value are the same */ if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) { IPFW_UH_WUNLOCK(ch); return (EINVAL); } /* Check limits before swap */ if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) || (tc_b->limit != 0 && tc_a->count > tc_b->limit)) { IPFW_UH_WUNLOCK(ch); return (EFBIG); } /* Check if one of the tables is readonly */ if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) { IPFW_UH_WUNLOCK(ch); return (EACCES); } /* Notify we're going to swap */ rollback_toperation_state(ch, tc_a); rollback_toperation_state(ch, tc_b); /* Everything is fine, prepare to swap */ tablestate = (struct table_info *)ch->tablestate; ti = tablestate[tc_a->no.kidx]; ta = tc_a->ta; astate = tc_a->astate; count = tc_a->count; IPFW_WLOCK(ch); /* a <- b */ tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx]; tc_a->ta = tc_b->ta; tc_a->astate = tc_b->astate; tc_a->count = tc_b->count; /* b <- a */ tablestate[tc_b->no.kidx] = ti; tc_b->ta = ta; tc_b->astate = astate; tc_b->count = count; IPFW_WUNLOCK(ch); /* Ensure tc.ti copies are in sync */ tc_a->ti_copy = tablestate[tc_a->no.kidx]; tc_b->ti_copy = tablestate[tc_b->no.kidx]; /* Notify both tables on @ti change */ if (tc_a->ta->change_ti != NULL) tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]); if (tc_b->ta->change_ti != NULL) tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]); IPFW_UH_WUNLOCK(ch); return (0); } /* * Destroys table specified by @ti. * Data layout (v0)(current): * Request: [ ip_fw3_opheader ] * * Returns 0 on success */ static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti) { struct namedobj_instance *ni; struct table_config *tc; IPFW_UH_WLOCK(ch); ni = CHAIN_TO_NI(ch); if ((tc = find_table(ni, ti)) == NULL) { IPFW_UH_WUNLOCK(ch); return (ESRCH); } /* Do not permit destroying referenced tables */ if (tc->no.refcnt > 0) { IPFW_UH_WUNLOCK(ch); return (EBUSY); } IPFW_WLOCK(ch); unlink_table(ch, tc); IPFW_WUNLOCK(ch); /* Free obj index */ if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0) printf("Error unlinking kidx %d from table %s\n", tc->no.kidx, tc->tablename); /* Unref values used in tables while holding UH lock */ ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy); IPFW_UH_WUNLOCK(ch); free_table_config(ni, tc); return (0); } static uint32_t roundup2p(uint32_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return (v); } /* * Grow tables index. * * Returns 0 on success. */ int ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables) { unsigned int tbl; struct namedobj_instance *ni; void *new_idx, *old_tablestate, *tablestate; struct table_info *ti; struct table_config *tc; int i, new_blocks; /* Check new value for validity */ if (ntables == 0) return (EINVAL); if (ntables > IPFW_TABLES_MAX) ntables = IPFW_TABLES_MAX; /* Alight to nearest power of 2 */ ntables = (unsigned int)roundup2p(ntables); /* Allocate new pointers */ tablestate = malloc(ntables * sizeof(struct table_info), M_IPFW, M_WAITOK | M_ZERO); ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks); IPFW_UH_WLOCK(ch); tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables; ni = CHAIN_TO_NI(ch); /* Temporary restrict decreasing max_tables */ if (ntables < V_fw_tables_max) { /* * FIXME: Check if we really can shrink */ IPFW_UH_WUNLOCK(ch); return (EINVAL); } /* Copy table info/indices */ memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl); ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks); IPFW_WLOCK(ch); /* Change pointers */ old_tablestate = ch->tablestate; ch->tablestate = tablestate; ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks); V_fw_tables_max = ntables; IPFW_WUNLOCK(ch); /* Notify all consumers that their @ti pointer has changed */ ti = (struct table_info *)ch->tablestate; for (i = 0; i < tbl; i++, ti++) { if (ti->lookup == NULL) continue; tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i); if (tc == NULL || tc->ta->change_ti == NULL) continue; tc->ta->change_ti(tc->astate, ti); } IPFW_UH_WUNLOCK(ch); /* Free old pointers */ free(old_tablestate, M_IPFW); ipfw_objhash_bitmap_free(new_idx, new_blocks); return (0); } /* * Lookup table's named object by its @kidx. */ struct named_object * ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx) { return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx)); } /* * Take reference to table specified in @ntlv. * On success return its @kidx. */ int ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx) { struct tid_info ti; struct table_config *tc; int error; IPFW_UH_WLOCK_ASSERT(ch); ntlv_to_ti(ntlv, &ti); error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc); if (error != 0) return (error); if (tc == NULL) return (ESRCH); tc_ref(tc); *kidx = tc->no.kidx; return (0); } void ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx) { struct namedobj_instance *ni; struct named_object *no; IPFW_UH_WLOCK_ASSERT(ch); ni = CHAIN_TO_NI(ch); no = ipfw_objhash_lookup_kidx(ni, kidx); KASSERT(no != NULL, ("Table with index %d not found", kidx)); no->refcnt--; } /* * Lookup an arbitrary key @paddr of length @plen in table @tbl. * Stores found value in @val. * * Returns 1 if key was found. */ int ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen, void *paddr, uint32_t *val) { struct table_info *ti; ti = KIDX_TO_TI(ch, tbl); return (ti->lookup(ti, paddr, plen, val)); } /* * Info/List/dump support for tables. * */ /* * High-level 'get' cmds sysctl handlers */ /* * Lists all tables currently available in kernel. * Data layout (v0)(current): * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ] * * Returns 0 on success */ static int list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_lheader *olh; int error; olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); if (olh == NULL) return (EINVAL); if (sd->valsize < olh->size) return (EINVAL); IPFW_UH_RLOCK(ch); error = export_tables(ch, olh, sd); IPFW_UH_RUNLOCK(ch); return (error); } /* * Store table info to buffer provided by @sd. * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_xtable_info(empty)] * Reply: [ ipfw_obj_header ipfw_xtable_info ] * * Returns 0 on success. */ static int describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_header *oh; struct table_config *tc; struct tid_info ti; size_t sz; sz = sizeof(*oh) + sizeof(ipfw_xtable_info); oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); if (oh == NULL) return (EINVAL); objheader_to_ti(oh, &ti); IPFW_UH_RLOCK(ch); if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { IPFW_UH_RUNLOCK(ch); return (ESRCH); } export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1)); IPFW_UH_RUNLOCK(ch); return (0); } /* * Modifies existing table. * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_xtable_info ] * * Returns 0 on success */ static int modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_header *oh; ipfw_xtable_info *i; char *tname; struct tid_info ti; struct namedobj_instance *ni; struct table_config *tc; if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) return (EINVAL); oh = (struct _ipfw_obj_header *)sd->kbuf; i = (ipfw_xtable_info *)(oh + 1); /* * Verify user-supplied strings. * Check for null-terminated/zero-length strings/ */ tname = oh->ntlv.name; if (check_table_name(tname) != 0) return (EINVAL); objheader_to_ti(oh, &ti); ti.type = i->type; IPFW_UH_WLOCK(ch); ni = CHAIN_TO_NI(ch); if ((tc = find_table(ni, &ti)) == NULL) { IPFW_UH_WUNLOCK(ch); return (ESRCH); } /* Do not support any modifications for readonly tables */ if ((tc->ta->flags & TA_FLAG_READONLY) != 0) { IPFW_UH_WUNLOCK(ch); return (EACCES); } if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0) tc->limit = i->limit; if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0) tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0); IPFW_UH_WUNLOCK(ch); return (0); } /* * Creates new table. * Data layout (v0)(current): * Request: [ ipfw_obj_header ipfw_xtable_info ] * * Returns 0 on success */ static int create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_header *oh; ipfw_xtable_info *i; char *tname, *aname; struct tid_info ti; struct namedobj_instance *ni; if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info)) return (EINVAL); oh = (struct _ipfw_obj_header *)sd->kbuf; i = (ipfw_xtable_info *)(oh + 1); /* * Verify user-supplied strings. * Check for null-terminated/zero-length strings/ */ tname = oh->ntlv.name; aname = i->algoname; if (check_table_name(tname) != 0 || strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname)) return (EINVAL); if (aname[0] == '\0') { /* Use default algorithm */ aname = NULL; } objheader_to_ti(oh, &ti); ti.type = i->type; ni = CHAIN_TO_NI(ch); IPFW_UH_RLOCK(ch); if (find_table(ni, &ti) != NULL) { IPFW_UH_RUNLOCK(ch); return (EEXIST); } IPFW_UH_RUNLOCK(ch); return (create_table_internal(ch, &ti, aname, i, NULL, 0)); } /* * Creates new table based on @ti and @aname. * * Assume @aname to be checked and valid. * Stores allocated table kidx inside @pkidx (if non-NULL). * Reference created table if @compat is non-zero. * * Returns 0 on success. */ static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti, char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat) { struct namedobj_instance *ni; struct table_config *tc, *tc_new, *tmp; struct table_algo *ta; uint16_t kidx; ni = CHAIN_TO_NI(ch); ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname); if (ta == NULL) return (ENOTSUP); tc = alloc_table_config(ch, ti, ta, aname, i->tflags); if (tc == NULL) return (ENOMEM); tc->vmask = i->vmask; tc->limit = i->limit; if (ta->flags & TA_FLAG_READONLY) tc->locked = 1; else tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0; IPFW_UH_WLOCK(ch); /* Check if table has been already created */ tc_new = find_table(ni, ti); if (tc_new != NULL) { /* * Compat: do not fail if we're * requesting to create existing table * which has the same type */ if (compat == 0 || tc_new->no.subtype != tc->no.subtype) { IPFW_UH_WUNLOCK(ch); free_table_config(ni, tc); return (EEXIST); } /* Exchange tc and tc_new for proper refcounting & freeing */ tmp = tc; tc = tc_new; tc_new = tmp; } else { /* New table */ if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) { IPFW_UH_WUNLOCK(ch); printf("Unable to allocate table index." " Consider increasing net.inet.ip.fw.tables_max"); free_table_config(ni, tc); return (EBUSY); } tc->no.kidx = kidx; tc->no.etlv = IPFW_TLV_TBL_NAME; link_table(ch, tc); } if (compat != 0) tc->no.refcnt++; if (pkidx != NULL) *pkidx = tc->no.kidx; IPFW_UH_WUNLOCK(ch); if (tc_new != NULL) free_table_config(ni, tc_new); return (0); } static void ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti) { memset(ti, 0, sizeof(struct tid_info)); ti->set = ntlv->set; ti->uidx = ntlv->idx; ti->tlvs = ntlv; ti->tlen = ntlv->head.length; } static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti) { ntlv_to_ti(&oh->ntlv, ti); } struct namedobj_instance * ipfw_get_table_objhash(struct ip_fw_chain *ch) { return (CHAIN_TO_NI(ch)); } /* * Exports basic table info as name TLV. * Used inside dump_static_rules() to provide info * about all tables referenced by current ruleset. * * Returns 0 on success. */ int ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx, struct sockopt_data *sd) { struct namedobj_instance *ni; struct named_object *no; ipfw_obj_ntlv *ntlv; ni = CHAIN_TO_NI(ch); no = ipfw_objhash_lookup_kidx(ni, kidx); KASSERT(no != NULL, ("invalid table kidx passed")); ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv)); if (ntlv == NULL) return (ENOMEM); ntlv->head.type = IPFW_TLV_TBL_NAME; ntlv->head.length = sizeof(*ntlv); ntlv->idx = no->kidx; strlcpy(ntlv->name, no->name, sizeof(ntlv->name)); return (0); } struct dump_args { struct ip_fw_chain *ch; struct table_info *ti; struct table_config *tc; struct sockopt_data *sd; uint32_t cnt; uint16_t uidx; int error; uint32_t size; ipfw_table_entry *ent; ta_foreach_f *f; void *farg; ipfw_obj_tentry tent; }; static int count_ext_entries(void *e, void *arg) { struct dump_args *da; da = (struct dump_args *)arg; da->cnt++; return (0); } /* * Gets number of items from table either using * internal counter or calling algo callback for * externally-managed tables. * * Returns number of records. */ static uint32_t table_get_count(struct ip_fw_chain *ch, struct table_config *tc) { struct table_info *ti; struct table_algo *ta; struct dump_args da; ti = KIDX_TO_TI(ch, tc->no.kidx); ta = tc->ta; /* Use internal counter for self-managed tables */ if ((ta->flags & TA_FLAG_READONLY) == 0) return (tc->count); /* Use callback to quickly get number of items */ if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0) return (ta->get_count(tc->astate, ti)); /* Count number of iterms ourselves */ memset(&da, 0, sizeof(da)); ta->foreach(tc->astate, ti, count_ext_entries, &da); return (da.cnt); } /* * Exports table @tc info into standard ipfw_xtable_info format. */ static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc, ipfw_xtable_info *i) { struct table_info *ti; struct table_algo *ta; i->type = tc->no.subtype; i->tflags = tc->tflags; i->vmask = tc->vmask; i->set = tc->no.set; i->kidx = tc->no.kidx; i->refcnt = tc->no.refcnt; i->count = table_get_count(ch, tc); i->limit = tc->limit; i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0; i->size = i->count * sizeof(ipfw_obj_tentry); i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); strlcpy(i->tablename, tc->tablename, sizeof(i->tablename)); ti = KIDX_TO_TI(ch, tc->no.kidx); ta = tc->ta; if (ta->print_config != NULL) { /* Use algo function to print table config to string */ ta->print_config(tc->astate, ti, i->algoname, sizeof(i->algoname)); } else strlcpy(i->algoname, ta->name, sizeof(i->algoname)); /* Dump algo-specific data, if possible */ if (ta->dump_tinfo != NULL) { ta->dump_tinfo(tc->astate, ti, &i->ta_info); i->ta_info.flags |= IPFW_TATFLAGS_DATA; } } struct dump_table_args { struct ip_fw_chain *ch; struct sockopt_data *sd; }; static int export_table_internal(struct namedobj_instance *ni, struct named_object *no, void *arg) { ipfw_xtable_info *i; struct dump_table_args *dta; dta = (struct dump_table_args *)arg; i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i)); KASSERT(i != NULL, ("previously checked buffer is not enough")); export_table_info(dta->ch, (struct table_config *)no, i); return (0); } /* * Export all tables as ipfw_xtable_info structures to * storage provided by @sd. * * If supplied buffer is too small, fills in required size * and returns ENOMEM. * Returns 0 on success. */ static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh, struct sockopt_data *sd) { uint32_t size; uint32_t count; struct dump_table_args dta; count = ipfw_objhash_count(CHAIN_TO_NI(ch)); size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader); /* Fill in header regadless of buffer size */ olh->count = count; olh->objsize = sizeof(ipfw_xtable_info); if (size > olh->size) { olh->size = size; return (ENOMEM); } olh->size = size; dta.ch = ch; dta.sd = sd; ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta); return (0); } /* * Dumps all table data * Data layout (v1)(current): * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ] * * Returns 0 on success */ static int dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_header *oh; ipfw_xtable_info *i; struct tid_info ti; struct table_config *tc; struct table_algo *ta; struct dump_args da; uint32_t sz; sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info); oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz); if (oh == NULL) return (EINVAL); i = (ipfw_xtable_info *)(oh + 1); objheader_to_ti(oh, &ti); IPFW_UH_RLOCK(ch); if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { IPFW_UH_RUNLOCK(ch); return (ESRCH); } export_table_info(ch, tc, i); if (sd->valsize < i->size) { /* * Submitted buffer size is not enough. * WE've already filled in @i structure with * relevant table info including size, so we * can return. Buffer will be flushed automatically. */ IPFW_UH_RUNLOCK(ch); return (ENOMEM); } /* * Do the actual dump in eXtended format */ memset(&da, 0, sizeof(da)); da.ch = ch; da.ti = KIDX_TO_TI(ch, tc->no.kidx); da.tc = tc; da.sd = sd; ta = tc->ta; ta->foreach(tc->astate, da.ti, dump_table_tentry, &da); IPFW_UH_RUNLOCK(ch); return (da.error); } /* * Dumps all table data * Data layout (version 0)(legacy): * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE() * Reply: [ ipfw_xtable ipfw_table_xentry x N ] * * Returns 0 on success */ static int dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { ipfw_xtable *xtbl; struct tid_info ti; struct table_config *tc; struct table_algo *ta; struct dump_args da; size_t sz, count; xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable)); if (xtbl == NULL) return (EINVAL); memset(&ti, 0, sizeof(ti)); ti.uidx = xtbl->tbl; IPFW_UH_RLOCK(ch); if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) { IPFW_UH_RUNLOCK(ch); return (0); } count = table_get_count(ch, tc); sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable); xtbl->cnt = count; xtbl->size = sz; xtbl->type = tc->no.subtype; xtbl->tbl = ti.uidx; if (sd->valsize < sz) { /* * Submitted buffer size is not enough. * WE've already filled in @i structure with * relevant table info including size, so we * can return. Buffer will be flushed automatically. */ IPFW_UH_RUNLOCK(ch); return (ENOMEM); } /* Do the actual dump in eXtended format */ memset(&da, 0, sizeof(da)); da.ch = ch; da.ti = KIDX_TO_TI(ch, tc->no.kidx); da.tc = tc; da.sd = sd; ta = tc->ta; ta->foreach(tc->astate, da.ti, dump_table_xentry, &da); IPFW_UH_RUNLOCK(ch); return (0); } /* * Legacy function to retrieve number of items in table. */ static int get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { uint32_t *tbl; struct tid_info ti; size_t sz; int error; sz = sizeof(*op3) + sizeof(uint32_t); op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz); if (op3 == NULL) return (EINVAL); tbl = (uint32_t *)(op3 + 1); memset(&ti, 0, sizeof(ti)); ti.uidx = *tbl; IPFW_UH_RLOCK(ch); error = ipfw_count_xtable(ch, &ti, tbl); IPFW_UH_RUNLOCK(ch); return (error); } /* * Legacy IP_FW_TABLE_GETSIZE handler */ int ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) { struct table_config *tc; if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) return (ESRCH); *cnt = table_get_count(ch, tc); return (0); } /* * Legacy IP_FW_TABLE_XGETSIZE handler */ int ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt) { struct table_config *tc; uint32_t count; if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) { *cnt = 0; return (0); /* 'table all list' requires success */ } count = table_get_count(ch, tc); *cnt = count * sizeof(ipfw_table_xentry); if (count > 0) *cnt += sizeof(ipfw_xtable); return (0); } static int dump_table_entry(void *e, void *arg) { struct dump_args *da; struct table_config *tc; struct table_algo *ta; ipfw_table_entry *ent; struct table_value *pval; int error; da = (struct dump_args *)arg; tc = da->tc; ta = tc->ta; /* Out of memory, returning */ if (da->cnt == da->size) return (1); ent = da->ent++; ent->tbl = da->uidx; da->cnt++; error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); if (error != 0) return (error); ent->addr = da->tent.k.addr.s_addr; ent->masklen = da->tent.masklen; pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); ent->value = ipfw_export_table_value_legacy(pval); return (0); } /* * Dumps table in pre-8.1 legacy format. */ int ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti, ipfw_table *tbl) { struct table_config *tc; struct table_algo *ta; struct dump_args da; tbl->cnt = 0; if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) return (0); /* XXX: We should return ESRCH */ ta = tc->ta; /* This dump format supports IPv4 only */ if (tc->no.subtype != IPFW_TABLE_ADDR) return (0); memset(&da, 0, sizeof(da)); da.ch = ch; da.ti = KIDX_TO_TI(ch, tc->no.kidx); da.tc = tc; da.ent = &tbl->ent[0]; da.size = tbl->size; tbl->cnt = 0; ta->foreach(tc->astate, da.ti, dump_table_entry, &da); tbl->cnt = da.cnt; return (0); } /* * Dumps table entry in eXtended format (v1)(current). */ static int dump_table_tentry(void *e, void *arg) { struct dump_args *da; struct table_config *tc; struct table_algo *ta; struct table_value *pval; ipfw_obj_tentry *tent; int error; da = (struct dump_args *)arg; tc = da->tc; ta = tc->ta; tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent)); /* Out of memory, returning */ if (tent == NULL) { da->error = ENOMEM; return (1); } tent->head.length = sizeof(ipfw_obj_tentry); tent->idx = da->uidx; error = ta->dump_tentry(tc->astate, da->ti, e, tent); if (error != 0) return (error); pval = get_table_value(da->ch, da->tc, tent->v.kidx); ipfw_export_table_value_v1(pval, &tent->v.value); return (0); } /* * Dumps table entry in eXtended format (v0). */ static int dump_table_xentry(void *e, void *arg) { struct dump_args *da; struct table_config *tc; struct table_algo *ta; ipfw_table_xentry *xent; ipfw_obj_tentry *tent; struct table_value *pval; int error; da = (struct dump_args *)arg; tc = da->tc; ta = tc->ta; xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent)); /* Out of memory, returning */ if (xent == NULL) return (1); xent->len = sizeof(ipfw_table_xentry); xent->tbl = da->uidx; memset(&da->tent, 0, sizeof(da->tent)); tent = &da->tent; error = ta->dump_tentry(tc->astate, da->ti, e, tent); if (error != 0) return (error); /* Convert current format to previous one */ xent->masklen = tent->masklen; pval = get_table_value(da->ch, da->tc, da->tent.v.kidx); xent->value = ipfw_export_table_value_legacy(pval); /* Apply some hacks */ if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) { xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr; xent->flags = IPFW_TCF_INET; } else memcpy(&xent->k, &tent->k, sizeof(xent->k)); return (0); } /* * Helper function to export table algo data * to tentry format before calling user function. * * Returns 0 on success. */ static int prepare_table_tentry(void *e, void *arg) { struct dump_args *da; struct table_config *tc; struct table_algo *ta; int error; da = (struct dump_args *)arg; tc = da->tc; ta = tc->ta; error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent); if (error != 0) return (error); da->f(&da->tent, da->farg); return (0); } /* * Allow external consumers to read table entries in standard format. */ int ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx, ta_foreach_f *f, void *arg) { struct namedobj_instance *ni; struct table_config *tc; struct table_algo *ta; struct dump_args da; ni = CHAIN_TO_NI(ch); tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx); if (tc == NULL) return (ESRCH); ta = tc->ta; memset(&da, 0, sizeof(da)); da.ch = ch; da.ti = KIDX_TO_TI(ch, tc->no.kidx); da.tc = tc; da.f = f; da.farg = arg; ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da); return (0); } /* * Table algorithms */ /* * Finds algorithm by index, table type or supplied name. * * Returns pointer to algo or NULL. */ static struct table_algo * find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name) { int i, l; struct table_algo *ta; if (ti->type > IPFW_TABLE_MAXTYPE) return (NULL); /* Search by index */ if (ti->atype != 0) { if (ti->atype > tcfg->algo_count) return (NULL); return (tcfg->algo[ti->atype]); } if (name == NULL) { /* Return default algorithm for given type if set */ return (tcfg->def_algo[ti->type]); } /* Search by name */ /* TODO: better search */ for (i = 1; i <= tcfg->algo_count; i++) { ta = tcfg->algo[i]; /* * One can supply additional algorithm * parameters so we compare only the first word * of supplied name: * 'addr:chash hsize=32' * '^^^^^^^^^' * */ l = strlen(ta->name); if (strncmp(name, ta->name, l) != 0) continue; if (name[l] != '\0' && name[l] != ' ') continue; /* Check if we're requesting proper table type */ if (ti->type != 0 && ti->type != ta->type) return (NULL); return (ta); } return (NULL); } /* * Register new table algo @ta. * Stores algo id inside @idx. * * Returns 0 on success. */ int ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size, int *idx) { struct tables_config *tcfg; struct table_algo *ta_new; size_t sz; if (size > sizeof(struct table_algo)) return (EINVAL); /* Check for the required on-stack size for add/del */ sz = roundup2(ta->ta_buf_size, sizeof(void *)); if (sz > TA_BUF_SZ) return (EINVAL); KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE")); /* Copy algorithm data to stable storage. */ ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO); memcpy(ta_new, ta, size); tcfg = CHAIN_TO_TCFG(ch); KASSERT(tcfg->algo_count < 255, ("Increase algo array size")); tcfg->algo[++tcfg->algo_count] = ta_new; ta_new->idx = tcfg->algo_count; /* Set algorithm as default one for given type */ if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 && tcfg->def_algo[ta_new->type] == NULL) tcfg->def_algo[ta_new->type] = ta_new; *idx = ta_new->idx; return (0); } /* * Unregisters table algo using @idx as id. * XXX: It is NOT safe to call this function in any place * other than ipfw instance destroy handler. */ void ipfw_del_table_algo(struct ip_fw_chain *ch, int idx) { struct tables_config *tcfg; struct table_algo *ta; tcfg = CHAIN_TO_TCFG(ch); KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d", idx, tcfg->algo_count)); ta = tcfg->algo[idx]; KASSERT(ta != NULL, ("algo idx %d is NULL", idx)); if (tcfg->def_algo[ta->type] == ta) tcfg->def_algo[ta->type] = NULL; free(ta, M_IPFW); } /* * Lists all table algorithms currently available. * Data layout (v0)(current): * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ] * * Returns 0 on success */ static int list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_lheader *olh; struct tables_config *tcfg; ipfw_ta_info *i; struct table_algo *ta; uint32_t count, n, size; olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); if (olh == NULL) return (EINVAL); if (sd->valsize < olh->size) return (EINVAL); IPFW_UH_RLOCK(ch); tcfg = CHAIN_TO_TCFG(ch); count = tcfg->algo_count; size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader); /* Fill in header regadless of buffer size */ olh->count = count; olh->objsize = sizeof(ipfw_ta_info); if (size > olh->size) { olh->size = size; IPFW_UH_RUNLOCK(ch); return (ENOMEM); } olh->size = size; for (n = 1; n <= count; n++) { i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i)); KASSERT(i != NULL, ("previously checked buffer is not enough")); ta = tcfg->algo[n]; strlcpy(i->algoname, ta->name, sizeof(i->algoname)); i->type = ta->type; i->refcnt = ta->refcnt; } IPFW_UH_RUNLOCK(ch); return (0); } static int classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) { /* Basic IPv4/IPv6 or u32 lookups */ *puidx = cmd->arg1; /* Assume ADDR by default */ *ptype = IPFW_TABLE_ADDR; int v; if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) { /* * generic lookup. The key must be * in 32bit big-endian format. */ v = ((ipfw_insn_u32 *)cmd)->d[1]; switch (v) { case LOOKUP_DST_IP: case LOOKUP_SRC_IP: break; case LOOKUP_DST_PORT: case LOOKUP_SRC_PORT: case LOOKUP_UID: case LOOKUP_JAIL: case LOOKUP_DSCP: + case LOOKUP_MARK: *ptype = IPFW_TABLE_NUMBER; break; case LOOKUP_DST_MAC: case LOOKUP_SRC_MAC: *ptype = IPFW_TABLE_MAC; break; } } return (0); } static int classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) { ipfw_insn_if *cmdif; /* Interface table, possibly */ cmdif = (ipfw_insn_if *)cmd; if (cmdif->name[0] != '\1') return (1); *ptype = IPFW_TABLE_INTERFACE; *puidx = cmdif->p.kidx; return (0); } static int classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) { *puidx = cmd->arg1; *ptype = IPFW_TABLE_FLOW; return (0); } static int classify_mac_lookup(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype) { *puidx = cmd->arg1; *ptype = IPFW_TABLE_MAC; return (0); } static void update_arg1(ipfw_insn *cmd, uint16_t idx) { cmd->arg1 = idx; } static void update_via(ipfw_insn *cmd, uint16_t idx) { ipfw_insn_if *cmdif; cmdif = (ipfw_insn_if *)cmd; cmdif->p.kidx = idx; } static int table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti, struct named_object **pno) { struct table_config *tc; int error; IPFW_UH_WLOCK_ASSERT(ch); error = find_table_err(CHAIN_TO_NI(ch), ti, &tc); if (error != 0) return (error); *pno = &tc->no; return (0); } /* XXX: sets-sets! */ static struct named_object * table_findbykidx(struct ip_fw_chain *ch, uint16_t idx) { struct namedobj_instance *ni; struct table_config *tc; IPFW_UH_WLOCK_ASSERT(ch); ni = CHAIN_TO_NI(ch); tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx); KASSERT(tc != NULL, ("Table with index %d not found", idx)); return (&tc->no); } static int table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd) { switch (cmd) { case SWAP_ALL: case TEST_ALL: case MOVE_ALL: /* * Always return success, the real action and decision * should make table_manage_sets_all(). */ return (0); case TEST_ONE: case MOVE_ONE: /* * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add * if set number will be used in hash function. Currently * we can just use generic handler that replaces set value. */ if (V_fw_tables_sets == 0) return (0); break; case COUNT_ONE: /* * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is * disabled. This allow skip table's opcodes from additional * checks when specific rules moved to another set. */ if (V_fw_tables_sets == 0) return (EOPNOTSUPP); } /* Use generic sets handler when per-set sysctl is enabled. */ return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, set, new_set, cmd)); } /* * We register several opcode rewriters for lookup tables. * All tables opcodes have the same ETLV type, but different subtype. * To avoid invoking sets handler several times for XXX_ALL commands, * we use separate manage_sets handler. O_RECV has the lowest value, * so it should be called first. */ static int table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set, enum ipfw_sets_cmd cmd) { switch (cmd) { case SWAP_ALL: case TEST_ALL: /* * Return success for TEST_ALL, since nothing prevents * move rules from one set to another. All tables are * accessible from all sets when per-set tables sysctl * is disabled. */ case MOVE_ALL: if (V_fw_tables_sets == 0) return (0); break; default: return (table_manage_sets(ch, set, new_set, cmd)); } /* Use generic sets handler when per-set sysctl is enabled. */ return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME, set, new_set, cmd)); } static struct opcode_obj_rewrite opcodes[] = { { .opcode = O_IP_SRC_LOOKUP, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_srcdst, .update = update_arg1, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_IP_DST_LOOKUP, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_srcdst, .update = update_arg1, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_IP_FLOW_LOOKUP, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_flow, .update = update_arg1, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_MAC_SRC_LOOKUP, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_mac_lookup, .update = update_arg1, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_MAC_DST_LOOKUP, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_mac_lookup, .update = update_arg1, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_XMIT, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_via, .update = update_via, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, { .opcode = O_RECV, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_via, .update = update_via, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets_all, }, { .opcode = O_VIA, .etlv = IPFW_TLV_TBL_NAME, .classifier = classify_via, .update = update_via, .find_byname = table_findbyname, .find_bykidx = table_findbykidx, .create_object = create_table_compat, .manage_sets = table_manage_sets, }, }; static int test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no, void *arg __unused) { /* Check that there aren't any tables in not default set */ if (no->set != 0) return (EBUSY); return (0); } /* * Switch between "set 0" and "rule's set" table binding, * Check all ruleset bindings and permits changing * IFF each binding has both rule AND table in default set (set 0). * * Returns 0 on success. */ int ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets) { struct opcode_obj_rewrite *rw; struct namedobj_instance *ni; struct named_object *no; struct ip_fw *rule; ipfw_insn *cmd; int cmdlen, i, l; uint16_t kidx; uint8_t subtype; IPFW_UH_WLOCK(ch); if (V_fw_tables_sets == sets) { IPFW_UH_WUNLOCK(ch); return (0); } ni = CHAIN_TO_NI(ch); if (sets == 0) { /* * Prevent disabling sets support if we have some tables * in not default sets. */ if (ipfw_objhash_foreach_type(ni, test_sets_cb, NULL, IPFW_TLV_TBL_NAME) != 0) { IPFW_UH_WUNLOCK(ch); return (EBUSY); } } /* * Scan all rules and examine tables opcodes. */ for (i = 0; i < ch->n_rules; i++) { rule = ch->map[i]; l = rule->cmd_len; cmd = rule->cmd; cmdlen = 0; for ( ; l > 0 ; l -= cmdlen, cmd += cmdlen) { cmdlen = F_LEN(cmd); /* Check only tables opcodes */ for (kidx = 0, rw = opcodes; rw < opcodes + nitems(opcodes); rw++) { if (rw->opcode != cmd->opcode) continue; if (rw->classifier(cmd, &kidx, &subtype) == 0) break; } if (kidx == 0) continue; no = ipfw_objhash_lookup_kidx(ni, kidx); /* Check if both table object and rule has the set 0 */ if (no->set != 0 || rule->set != 0) { IPFW_UH_WUNLOCK(ch); return (EBUSY); } } } V_fw_tables_sets = sets; IPFW_UH_WUNLOCK(ch); return (0); } /* * Checks table name for validity. * Enforce basic length checks, the rest * should be done in userland. * * Returns 0 if name is considered valid. */ static int check_table_name(const char *name) { /* * TODO: do some more complicated checks */ return (ipfw_check_object_name_generic(name)); } /* * Finds table config based on either legacy index * or name in ntlv. * Note @ti structure contains unchecked data from userland. * * Returns 0 in success and fills in @tc with found config */ static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti, struct table_config **tc) { char *name, bname[16]; struct named_object *no; ipfw_obj_ntlv *ntlv; uint32_t set; if (ti->tlvs != NULL) { ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, IPFW_TLV_TBL_NAME); if (ntlv == NULL) return (EINVAL); name = ntlv->name; /* * Use set provided by @ti instead of @ntlv one. * This is needed due to different sets behavior * controlled by V_fw_tables_sets. */ set = (V_fw_tables_sets != 0) ? ti->set : 0; } else { snprintf(bname, sizeof(bname), "%d", ti->uidx); name = bname; set = 0; } no = ipfw_objhash_lookup_name(ni, set, name); *tc = (struct table_config *)no; return (0); } /* * Finds table config based on either legacy index * or name in ntlv. * Note @ti structure contains unchecked data from userland. * * Returns pointer to table_config or NULL. */ static struct table_config * find_table(struct namedobj_instance *ni, struct tid_info *ti) { struct table_config *tc; if (find_table_err(ni, ti, &tc) != 0) return (NULL); return (tc); } /* * Allocate new table config structure using * specified @algo and @aname. * * Returns pointer to config or NULL. */ static struct table_config * alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti, struct table_algo *ta, char *aname, uint8_t tflags) { char *name, bname[16]; struct table_config *tc; int error; ipfw_obj_ntlv *ntlv; uint32_t set; if (ti->tlvs != NULL) { ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx, IPFW_TLV_TBL_NAME); if (ntlv == NULL) return (NULL); name = ntlv->name; set = (V_fw_tables_sets == 0) ? 0 : ntlv->set; } else { /* Compat part: convert number to string representation */ snprintf(bname, sizeof(bname), "%d", ti->uidx); name = bname; set = 0; } tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO); tc->no.name = tc->tablename; tc->no.subtype = ta->type; tc->no.set = set; tc->tflags = tflags; tc->ta = ta; strlcpy(tc->tablename, name, sizeof(tc->tablename)); /* Set "shared" value type by default */ tc->vshared = 1; /* Preallocate data structures for new tables */ error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags); if (error != 0) { free(tc, M_IPFW); return (NULL); } return (tc); } /* * Destroys table state and config. */ static void free_table_config(struct namedobj_instance *ni, struct table_config *tc) { KASSERT(tc->linked == 0, ("free() on linked config")); /* UH lock MUST NOT be held */ /* * We're using ta without any locking/referencing. * TODO: fix this if we're going to use unloadable algos. */ tc->ta->destroy(tc->astate, &tc->ti_copy); free(tc, M_IPFW); } /* * Links @tc to @chain table named instance. * Sets appropriate type/states in @chain table info. */ static void link_table(struct ip_fw_chain *ch, struct table_config *tc) { struct namedobj_instance *ni; struct table_info *ti; uint16_t kidx; IPFW_UH_WLOCK_ASSERT(ch); ni = CHAIN_TO_NI(ch); kidx = tc->no.kidx; ipfw_objhash_add(ni, &tc->no); ti = KIDX_TO_TI(ch, kidx); *ti = tc->ti_copy; /* Notify algo on real @ti address */ if (tc->ta->change_ti != NULL) tc->ta->change_ti(tc->astate, ti); tc->linked = 1; tc->ta->refcnt++; } /* * Unlinks @tc from @chain table named instance. * Zeroes states in @chain and stores them in @tc. */ static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc) { struct namedobj_instance *ni; struct table_info *ti; uint16_t kidx; IPFW_UH_WLOCK_ASSERT(ch); IPFW_WLOCK_ASSERT(ch); ni = CHAIN_TO_NI(ch); kidx = tc->no.kidx; /* Clear state. @ti copy is already saved inside @tc */ ipfw_objhash_del(ni, &tc->no); ti = KIDX_TO_TI(ch, kidx); memset(ti, 0, sizeof(struct table_info)); tc->linked = 0; tc->ta->refcnt--; /* Notify algo on real @ti address */ if (tc->ta->change_ti != NULL) tc->ta->change_ti(tc->astate, NULL); } static struct ipfw_sopt_handler scodes[] = { { IP_FW_TABLE_XCREATE, 0, HDIR_SET, create_table }, { IP_FW_TABLE_XDESTROY, 0, HDIR_SET, flush_table_v0 }, { IP_FW_TABLE_XFLUSH, 0, HDIR_SET, flush_table_v0 }, { IP_FW_TABLE_XMODIFY, 0, HDIR_BOTH, modify_table }, { IP_FW_TABLE_XINFO, 0, HDIR_GET, describe_table }, { IP_FW_TABLES_XLIST, 0, HDIR_GET, list_tables }, { IP_FW_TABLE_XLIST, 0, HDIR_GET, dump_table_v0 }, { IP_FW_TABLE_XLIST, 1, HDIR_GET, dump_table_v1 }, { IP_FW_TABLE_XADD, 0, HDIR_BOTH, manage_table_ent_v0 }, { IP_FW_TABLE_XADD, 1, HDIR_BOTH, manage_table_ent_v1 }, { IP_FW_TABLE_XDEL, 0, HDIR_BOTH, manage_table_ent_v0 }, { IP_FW_TABLE_XDEL, 1, HDIR_BOTH, manage_table_ent_v1 }, { IP_FW_TABLE_XFIND, 0, HDIR_GET, find_table_entry }, { IP_FW_TABLE_XSWAP, 0, HDIR_SET, swap_table }, { IP_FW_TABLES_ALIST, 0, HDIR_GET, list_table_algo }, { IP_FW_TABLE_XGETSIZE, 0, HDIR_GET, get_table_size }, }; static int destroy_table_locked(struct namedobj_instance *ni, struct named_object *no, void *arg) { unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no); if (ipfw_objhash_free_idx(ni, no->kidx) != 0) printf("Error unlinking kidx %d from table %s\n", no->kidx, no->name); free_table_config(ni, (struct table_config *)no); return (0); } /* * Shuts tables module down. */ void ipfw_destroy_tables(struct ip_fw_chain *ch, int last) { IPFW_DEL_SOPT_HANDLER(last, scodes); IPFW_DEL_OBJ_REWRITER(last, opcodes); /* Remove all tables from working set */ IPFW_UH_WLOCK(ch); IPFW_WLOCK(ch); ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch); IPFW_WUNLOCK(ch); IPFW_UH_WUNLOCK(ch); /* Free pointers itself */ free(ch->tablestate, M_IPFW); ipfw_table_value_destroy(ch, last); ipfw_table_algo_destroy(ch); ipfw_objhash_destroy(CHAIN_TO_NI(ch)); free(CHAIN_TO_TCFG(ch), M_IPFW); } /* * Starts tables module. */ int ipfw_init_tables(struct ip_fw_chain *ch, int first) { struct tables_config *tcfg; /* Allocate pointers */ ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info), M_IPFW, M_WAITOK | M_ZERO); tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO); tcfg->namehash = ipfw_objhash_create(V_fw_tables_max); ch->tblcfg = tcfg; ipfw_table_value_init(ch, first); ipfw_table_algo_init(ch); IPFW_ADD_OBJ_REWRITER(first, opcodes); IPFW_ADD_SOPT_HANDLER(first, scodes); return (0); } diff --git a/sys/netpfil/ipfw/ip_fw_table_value.c b/sys/netpfil/ipfw/ip_fw_table_value.c index 025ee5923a10..eb268ab9b98d 100644 --- a/sys/netpfil/ipfw/ip_fw_table_value.c +++ b/sys/netpfil/ipfw/ip_fw_table_value.c @@ -1,801 +1,805 @@ /*- * Copyright (c) 2014 Yandex LLC * Copyright (c) 2014 Alexander V. Chernikov * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Multi-field value support for ipfw tables. * * This file contains necessary functions to convert * large multi-field values into u32 indices suitable to be fed * to various table algorithms. Other machinery like proper refcounting, * internal structures resizing are also kept here. */ #include "opt_ipfw.h" #include #include #include #include #include #include #include #include #include #include #include #include /* ip_fw.h requires IFNAMSIZ */ #include #include /* struct ipfw_rule_ref */ #include #include #include static uint32_t hash_table_value(struct namedobj_instance *ni, const void *key, uint32_t kopt); static int cmp_table_value(struct named_object *no, const void *key, uint32_t kopt); static int list_table_values(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd); static struct ipfw_sopt_handler scodes[] = { { IP_FW_TABLE_VLIST, 0, HDIR_GET, list_table_values }, }; #define CHAIN_TO_VI(chain) (CHAIN_TO_TCFG(chain)->valhash) struct table_val_link { struct named_object no; struct table_value *pval; /* Pointer to real table value */ }; #define VALDATA_START_SIZE 64 /* Allocate 64-items array by default */ struct vdump_args { struct ip_fw_chain *ch; struct sockopt_data *sd; struct table_value *pval; int error; }; static uint32_t hash_table_value(struct namedobj_instance *ni, const void *key, uint32_t kopt) { return (hash32_buf(key, 56, 0)); } static int cmp_table_value(struct named_object *no, const void *key, uint32_t kopt) { return (memcmp(((struct table_val_link *)no)->pval, key, 56)); } static void mask_table_value(struct table_value *src, struct table_value *dst, uint32_t mask) { #define _MCPY(f, b) if ((mask & (b)) != 0) { dst->f = src->f; } memset(dst, 0, sizeof(*dst)); _MCPY(tag, IPFW_VTYPE_TAG); _MCPY(pipe, IPFW_VTYPE_PIPE); _MCPY(divert, IPFW_VTYPE_DIVERT); _MCPY(skipto, IPFW_VTYPE_SKIPTO); _MCPY(netgraph, IPFW_VTYPE_NETGRAPH); _MCPY(fib, IPFW_VTYPE_FIB); _MCPY(nat, IPFW_VTYPE_NAT); + _MCPY(mark, IPFW_VTYPE_MARK); _MCPY(dscp, IPFW_VTYPE_DSCP); _MCPY(nh4, IPFW_VTYPE_NH4); _MCPY(nh6, IPFW_VTYPE_NH6); _MCPY(zoneid, IPFW_VTYPE_NH6); #undef _MCPY } static void get_value_ptrs(struct ip_fw_chain *ch, struct table_config *tc, int vshared, struct table_value **ptv, struct namedobj_instance **pvi) { struct table_value *pval; struct namedobj_instance *vi; if (vshared != 0) { pval = (struct table_value *)ch->valuestate; vi = CHAIN_TO_VI(ch); } else { pval = NULL; vi = NULL; //pval = (struct table_value *)&tc->ti.data; } if (ptv != NULL) *ptv = pval; if (pvi != NULL) *pvi = vi; } /* * Update pointers to real vaues after @pval change. */ static int update_tvalue(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct vdump_args *da; struct table_val_link *ptv; struct table_value *pval; da = (struct vdump_args *)arg; ptv = (struct table_val_link *)no; pval = da->pval; ptv->pval = &pval[ptv->no.kidx]; ptv->no.name = (char *)&pval[ptv->no.kidx]; return (0); } /* * Grows value storage shared among all tables. * Drops/reacquires UH locks. * Notifies other running adds on @ch shared storage resize. * Note function does not guarantee that free space * will be available after invocation, so one caller needs * to roll cycle himself. * * Returns 0 if case of no errors. */ static int resize_shared_value_storage(struct ip_fw_chain *ch) { struct tables_config *tcfg; struct namedobj_instance *vi; struct table_value *pval, *valuestate, *old_valuestate; void *new_idx; struct vdump_args da; int new_blocks; int val_size, val_size_old; IPFW_UH_WLOCK_ASSERT(ch); valuestate = NULL; new_idx = NULL; pval = (struct table_value *)ch->valuestate; vi = CHAIN_TO_VI(ch); tcfg = CHAIN_TO_TCFG(ch); val_size = tcfg->val_size * 2; if (val_size == (1 << 30)) return (ENOSPC); IPFW_UH_WUNLOCK(ch); valuestate = malloc(sizeof(struct table_value) * val_size, M_IPFW, M_WAITOK | M_ZERO); ipfw_objhash_bitmap_alloc(val_size, (void *)&new_idx, &new_blocks); IPFW_UH_WLOCK(ch); /* * Check if we still need to resize */ if (tcfg->val_size >= val_size) goto done; /* Update pointers and notify everyone we're changing @ch */ pval = (struct table_value *)ch->valuestate; rollback_toperation_state(ch, ch); /* Good. Let's merge */ memcpy(valuestate, pval, sizeof(struct table_value) * tcfg->val_size); ipfw_objhash_bitmap_merge(CHAIN_TO_VI(ch), &new_idx, &new_blocks); IPFW_WLOCK(ch); /* Change pointers */ old_valuestate = ch->valuestate; ch->valuestate = valuestate; valuestate = old_valuestate; ipfw_objhash_bitmap_swap(CHAIN_TO_VI(ch), &new_idx, &new_blocks); val_size_old = tcfg->val_size; tcfg->val_size = val_size; val_size = val_size_old; IPFW_WUNLOCK(ch); /* Update pointers to reflect resize */ memset(&da, 0, sizeof(da)); da.pval = (struct table_value *)ch->valuestate; ipfw_objhash_foreach(vi, update_tvalue, &da); done: free(valuestate, M_IPFW); ipfw_objhash_bitmap_free(new_idx, new_blocks); return (0); } /* * Drops reference for table value with index @kidx, stored in @pval and * @vi. Frees value if it has no references. */ static void unref_table_value(struct namedobj_instance *vi, struct table_value *pval, uint32_t kidx) { struct table_val_link *ptvl; KASSERT(pval[kidx].refcnt > 0, ("Refcount is 0 on kidx %d", kidx)); if (--pval[kidx].refcnt > 0) return; /* Last reference, delete item */ ptvl = (struct table_val_link *)ipfw_objhash_lookup_kidx(vi, kidx); KASSERT(ptvl != NULL, ("lookup on value kidx %d failed", kidx)); ipfw_objhash_del(vi, &ptvl->no); ipfw_objhash_free_idx(vi, kidx); free(ptvl, M_IPFW); } struct flush_args { struct ip_fw_chain *ch; struct table_algo *ta; struct table_info *ti; void *astate; ipfw_obj_tentry tent; }; static int unref_table_value_cb(void *e, void *arg) { struct flush_args *fa; struct ip_fw_chain *ch; struct table_algo *ta; ipfw_obj_tentry *tent; int error; fa = (struct flush_args *)arg; ta = fa->ta; memset(&fa->tent, 0, sizeof(fa->tent)); tent = &fa->tent; error = ta->dump_tentry(fa->astate, fa->ti, e, tent); if (error != 0) return (error); ch = fa->ch; unref_table_value(CHAIN_TO_VI(ch), (struct table_value *)ch->valuestate, tent->v.kidx); return (0); } /* * Drop references for each value used in @tc. */ void ipfw_unref_table_values(struct ip_fw_chain *ch, struct table_config *tc, struct table_algo *ta, void *astate, struct table_info *ti) { struct flush_args fa; IPFW_UH_WLOCK_ASSERT(ch); memset(&fa, 0, sizeof(fa)); fa.ch = ch; fa.ta = ta; fa.astate = astate; fa.ti = ti; ta->foreach(astate, ti, unref_table_value_cb, &fa); } /* * Table operation state handler. * Called when we are going to change something in @tc which * may lead to inconsistencies in on-going table data addition. * * Here we rollback all already committed state (table values, currently) * and set "modified" field to non-zero value to indicate * that we need to restart original operation. */ void rollback_table_values(struct tableop_state *ts) { struct ip_fw_chain *ch; struct table_value *pval; struct tentry_info *ptei; struct namedobj_instance *vi; int i; ch = ts->ch; IPFW_UH_WLOCK_ASSERT(ch); /* Get current table value pointer */ get_value_ptrs(ch, ts->tc, ts->vshared, &pval, &vi); for (i = 0; i < ts->count; i++) { ptei = &ts->tei[i]; if (ptei->value == 0) continue; unref_table_value(vi, pval, ptei->value); } } /* * Allocate new value index in either shared or per-table array. * Function may drop/reacquire UH lock. * * Returns 0 on success. */ static int alloc_table_vidx(struct ip_fw_chain *ch, struct tableop_state *ts, struct namedobj_instance *vi, uint16_t *pvidx, uint8_t flags) { int error, vlimit; uint16_t vidx; IPFW_UH_WLOCK_ASSERT(ch); error = ipfw_objhash_alloc_idx(vi, &vidx); if (error != 0) { /* * We need to resize array. This involves * lock/unlock, so we need to check "modified" * state. */ ts->opstate.func(ts->tc, &ts->opstate); error = resize_shared_value_storage(ch); return (error); /* ts->modified should be set, we will restart */ } vlimit = ts->ta->vlimit; if (vlimit != 0 && vidx >= vlimit && !(flags & IPFW_CTF_ATOMIC)) { /* * Algorithm is not able to store given index. * We have to rollback state, start using * per-table value array or return error * if we're already using it. */ if (ts->vshared != 0) { /* shared -> per-table */ return (ENOSPC); /* TODO: proper error */ } /* per-table. Fail for now. */ return (ENOSPC); /* TODO: proper error */ } *pvidx = vidx; return (0); } /* * Drops value reference for unused values (updates, deletes, partially * successful adds or rollbacks). */ void ipfw_garbage_table_values(struct ip_fw_chain *ch, struct table_config *tc, struct tentry_info *tei, uint32_t count, int rollback) { int i; struct tentry_info *ptei; struct table_value *pval; struct namedobj_instance *vi; /* * We have two slightly different ADD cases here: * either (1) we are successful / partially successful, * in that case we need * * to ignore ADDED entries values * * rollback every other values if atomicity is not * * required (either UPDATED since old value has been * stored there, or some failure like EXISTS or LIMIT * or simply "ignored" case. * * (2): atomic rollback of partially successful operation * in that case we simply need to unref all entries. * * DELETE case is simpler: no atomic support there, so * we simply unref all non-zero values. */ /* * Get current table value pointers. * XXX: Properly read vshared */ get_value_ptrs(ch, tc, 1, &pval, &vi); for (i = 0; i < count; i++) { ptei = &tei[i]; if (ptei->value == 0) { /* * We may be deleting non-existing record. * Skip. */ continue; } if ((ptei->flags & TEI_FLAGS_ADDED) != 0 && rollback == 0) { ptei->value = 0; continue; } unref_table_value(vi, pval, ptei->value); ptei->value = 0; } } /* * Main function used to link values of entries going to be added, * to the index. Since we may perform many UH locks drops/acquires, * handle changes by checking tablestate "modified" field. * * Success: return 0. */ int ipfw_link_table_values(struct ip_fw_chain *ch, struct tableop_state *ts, uint8_t flags) { int error, i, found; struct namedobj_instance *vi; struct table_config *tc; struct tentry_info *tei, *ptei; uint32_t count, vlimit; uint16_t vidx; struct table_val_link *ptv; struct table_value tval, *pval; /* * Stage 1: reference all existing values and * save their indices. */ IPFW_UH_WLOCK_ASSERT(ch); get_value_ptrs(ch, ts->tc, ts->vshared, &pval, &vi); error = 0; found = 0; vlimit = ts->ta->vlimit; vidx = 0; tc = ts->tc; tei = ts->tei; count = ts->count; for (i = 0; i < count; i++) { ptei = &tei[i]; ptei->value = 0; /* Ensure value is always 0 in the beginning */ mask_table_value(ptei->pvalue, &tval, ts->vmask); ptv = (struct table_val_link *)ipfw_objhash_lookup_name(vi, 0, (char *)&tval); if (ptv == NULL) continue; /* Deal with vlimit later */ if (vlimit > 0 && vlimit <= ptv->no.kidx) continue; /* Value found. Bump refcount */ ptv->pval->refcnt++; ptei->value = ptv->no.kidx; found++; } if (ts->count == found) { /* We've found all values , no need ts create new ones */ return (0); } /* * we have added some state here, let's attach operation * state ts the list ts be able ts rollback if necessary. */ add_toperation_state(ch, ts); /* Ensure table won't disappear */ tc_ref(tc); IPFW_UH_WUNLOCK(ch); /* * Stage 2: allocate objects for non-existing values. */ for (i = 0; i < count; i++) { ptei = &tei[i]; if (ptei->value != 0) continue; if (ptei->ptv != NULL) continue; ptei->ptv = malloc(sizeof(struct table_val_link), M_IPFW, M_WAITOK | M_ZERO); } /* * Stage 3: allocate index numbers for new values * and link them to index. */ IPFW_UH_WLOCK(ch); tc_unref(tc); del_toperation_state(ch, ts); if (ts->modified != 0) { /* * In general, we should free all state/indexes here * and return. However, we keep allocated state instead * to ensure we achieve some progress on each restart. */ return (0); } KASSERT(pval == ch->valuestate, ("resize_storage() notify failure")); /* Let's try to link values */ for (i = 0; i < count; i++) { ptei = &tei[i]; /* Check if record has appeared */ mask_table_value(ptei->pvalue, &tval, ts->vmask); ptv = (struct table_val_link *)ipfw_objhash_lookup_name(vi, 0, (char *)&tval); if (ptv != NULL) { ptv->pval->refcnt++; ptei->value = ptv->no.kidx; continue; } /* May perform UH unlock/lock */ error = alloc_table_vidx(ch, ts, vi, &vidx, flags); if (error != 0) { ts->opstate.func(ts->tc, &ts->opstate); return (error); } /* value storage resize has happened, return */ if (ts->modified != 0) return (0); /* Finally, we have allocated valid index, let's add entry */ ptei->value = vidx; ptv = (struct table_val_link *)ptei->ptv; ptei->ptv = NULL; ptv->no.kidx = vidx; ptv->no.name = (char *)&pval[vidx]; ptv->pval = &pval[vidx]; memcpy(ptv->pval, &tval, sizeof(struct table_value)); pval[vidx].refcnt = 1; ipfw_objhash_add(vi, &ptv->no); } return (0); } /* * Compatibility function used to import data from old * IP_FW_TABLE_ADD / IP_FW_TABLE_XADD opcodes. */ void ipfw_import_table_value_legacy(uint32_t value, struct table_value *v) { memset(v, 0, sizeof(*v)); v->tag = value; v->pipe = value; v->divert = value; v->skipto = value; v->netgraph = value; v->fib = value; v->nat = value; v->nh4 = value; /* host format */ v->dscp = value; v->limit = value; + v->mark = value; } /* * Export data to legacy table dumps opcodes. */ uint32_t ipfw_export_table_value_legacy(struct table_value *v) { /* * TODO: provide more compatibility depending on * vmask value. */ return (v->tag); } /* * Imports table value from current userland format. * Saves value in kernel format to the same place. */ void ipfw_import_table_value_v1(ipfw_table_value *iv) { struct table_value v; memset(&v, 0, sizeof(v)); v.tag = iv->tag; v.pipe = iv->pipe; v.divert = iv->divert; v.skipto = iv->skipto; v.netgraph = iv->netgraph; v.fib = iv->fib; v.nat = iv->nat; v.dscp = iv->dscp; v.nh4 = iv->nh4; v.nh6 = iv->nh6; v.limit = iv->limit; v.zoneid = iv->zoneid; + v.mark = iv->mark; memcpy(iv, &v, sizeof(ipfw_table_value)); } /* * Export real table value @v to current userland format. * Note that @v and @piv may point to the same memory. */ void ipfw_export_table_value_v1(struct table_value *v, ipfw_table_value *piv) { ipfw_table_value iv; memset(&iv, 0, sizeof(iv)); iv.tag = v->tag; iv.pipe = v->pipe; iv.divert = v->divert; iv.skipto = v->skipto; iv.netgraph = v->netgraph; iv.fib = v->fib; iv.nat = v->nat; iv.dscp = v->dscp; iv.limit = v->limit; iv.nh4 = v->nh4; iv.nh6 = v->nh6; iv.zoneid = v->zoneid; + iv.mark = v->mark; memcpy(piv, &iv, sizeof(iv)); } /* - * Exports real value data into ipfw_table_value structure. - * Utilizes "spare1" field to store kernel index. + * Exports real value data into ipfw_table_value structure including refcnt. */ static int dump_tvalue(struct namedobj_instance *ni, struct named_object *no, void *arg) { struct vdump_args *da; struct table_val_link *ptv; - struct table_value *v; + ipfw_table_value *v; da = (struct vdump_args *)arg; ptv = (struct table_val_link *)no; - v = (struct table_value *)ipfw_get_sopt_space(da->sd, sizeof(*v)); + v = (ipfw_table_value *)ipfw_get_sopt_space(da->sd, sizeof(*v)); /* Out of memory, returning */ if (v == NULL) { da->error = ENOMEM; return (ENOMEM); } - memcpy(v, ptv->pval, sizeof(*v)); - v->spare1 = ptv->no.kidx; + ipfw_export_table_value_v1(ptv->pval, v); + v->refcnt = ptv->pval->refcnt; + v->kidx = ptv->no.kidx; return (0); } /* * Dumps all shared/table value data * Data layout (v1)(current): * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size * Reply: [ ipfw_obj_lheader ipfw_table_value x N ] * * Returns 0 on success */ static int list_table_values(struct ip_fw_chain *ch, ip_fw3_opheader *op3, struct sockopt_data *sd) { struct _ipfw_obj_lheader *olh; struct namedobj_instance *vi; struct vdump_args da; uint32_t count, size; olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh)); if (olh == NULL) return (EINVAL); if (sd->valsize < olh->size) return (EINVAL); IPFW_UH_RLOCK(ch); vi = CHAIN_TO_VI(ch); count = ipfw_objhash_count(vi); size = count * sizeof(ipfw_table_value) + sizeof(ipfw_obj_lheader); /* Fill in header regadless of buffer size */ olh->count = count; olh->objsize = sizeof(ipfw_table_value); if (size > olh->size) { olh->size = size; IPFW_UH_RUNLOCK(ch); return (ENOMEM); } olh->size = size; /* * Do the actual value dump */ memset(&da, 0, sizeof(da)); da.ch = ch; da.sd = sd; ipfw_objhash_foreach(vi, dump_tvalue, &da); IPFW_UH_RUNLOCK(ch); return (0); } void ipfw_table_value_init(struct ip_fw_chain *ch, int first) { struct tables_config *tcfg; ch->valuestate = malloc(VALDATA_START_SIZE * sizeof(struct table_value), M_IPFW, M_WAITOK | M_ZERO); tcfg = ch->tblcfg; tcfg->val_size = VALDATA_START_SIZE; tcfg->valhash = ipfw_objhash_create(tcfg->val_size); ipfw_objhash_set_funcs(tcfg->valhash, hash_table_value, cmp_table_value); IPFW_ADD_SOPT_HANDLER(first, scodes); } static int destroy_value(struct namedobj_instance *ni, struct named_object *no, void *arg) { free(no, M_IPFW); return (0); } void ipfw_table_value_destroy(struct ip_fw_chain *ch, int last) { IPFW_DEL_SOPT_HANDLER(last, scodes); free(ch->valuestate, M_IPFW); ipfw_objhash_foreach(CHAIN_TO_VI(ch), destroy_value, ch); ipfw_objhash_destroy(CHAIN_TO_VI(ch)); }