diff --git a/sys/dev/kbd/kbd.c b/sys/dev/kbd/kbd.c index fd996f7a06ad..70c0ef15a56e 100644 --- a/sys/dev/kbd/kbd.c +++ b/sys/dev/kbd/kbd.c @@ -1,1515 +1,1515 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1999 Kazutaka YOKOTA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer as * the first lines of this file unmodified. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_kbd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KBD_INDEX(dev) dev2unit(dev) #define KB_QSIZE 512 #define KB_BUFSIZE 64 typedef struct genkbd_softc { int gkb_flags; /* flag/status bits */ #define KB_ASLEEP (1 << 0) struct selinfo gkb_rsel; char gkb_q[KB_QSIZE]; /* input queue */ unsigned int gkb_q_start; unsigned int gkb_q_length; } genkbd_softc_t; static u_char *genkbd_get_fkeystr(keyboard_t *kbd, int fkey, size_t *len); static void genkbd_diag(keyboard_t *kbd, int level); static SLIST_HEAD(, keyboard_driver) keyboard_drivers = SLIST_HEAD_INITIALIZER(keyboard_drivers); SET_DECLARE(kbddriver_set, keyboard_driver_t); /* local arrays */ /* * We need at least one entry each in order to initialize a keyboard * for the kernel console. The arrays will be increased dynamically * when necessary. */ static int keyboards = 1; static keyboard_t *kbd_ini; static keyboard_t **keyboard = &kbd_ini; static int keymap_restrict_change; static SYSCTL_NODE(_hw, OID_AUTO, kbd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "kbd"); SYSCTL_INT(_hw_kbd, OID_AUTO, keymap_restrict_change, CTLFLAG_RW, &keymap_restrict_change, 0, "restrict ability to change keymap"); #define ARRAY_DELTA 4 static int kbd_realloc_array(void) { keyboard_t **new_kbd; int newsize; int s; s = spltty(); newsize = rounddown(keyboards + ARRAY_DELTA, ARRAY_DELTA); new_kbd = malloc(sizeof(*new_kbd)*newsize, M_DEVBUF, M_NOWAIT|M_ZERO); if (new_kbd == NULL) { splx(s); return (ENOMEM); } bcopy(keyboard, new_kbd, sizeof(*keyboard)*keyboards); if (keyboards > 1) free(keyboard, M_DEVBUF); keyboard = new_kbd; keyboards = newsize; splx(s); if (bootverbose) printf("kbd: new array size %d\n", keyboards); return (0); } /* * Low-level keyboard driver functions * Keyboard subdrivers, such as the AT keyboard driver and the USB keyboard * driver, call these functions to initialize the keyboard_t structure * and register it to the virtual keyboard driver `kbd'. */ /* initialize the keyboard_t structure */ void kbd_init_struct(keyboard_t *kbd, char *name, int type, int unit, int config, int port, int port_size) { kbd->kb_flags = KB_NO_DEVICE; /* device has not been found */ kbd->kb_name = name; kbd->kb_type = type; kbd->kb_unit = unit; kbd->kb_config = config & ~KB_CONF_PROBE_ONLY; kbd->kb_led = 0; /* unknown */ kbd->kb_io_base = port; kbd->kb_io_size = port_size; kbd->kb_data = NULL; kbd->kb_keymap = NULL; kbd->kb_accentmap = NULL; kbd->kb_fkeytab = NULL; kbd->kb_fkeytab_size = 0; kbd->kb_delay1 = KB_DELAY1; /* these values are advisory only */ kbd->kb_delay2 = KB_DELAY2; kbd->kb_count = 0L; bzero(kbd->kb_lastact, sizeof(kbd->kb_lastact)); } void kbd_set_maps(keyboard_t *kbd, keymap_t *keymap, accentmap_t *accmap, fkeytab_t *fkeymap, int fkeymap_size) { kbd->kb_keymap = keymap; kbd->kb_accentmap = accmap; kbd->kb_fkeytab = fkeymap; kbd->kb_fkeytab_size = fkeymap_size; } /* declare a new keyboard driver */ int kbd_add_driver(keyboard_driver_t *driver) { if ((driver->flags & KBDF_REGISTERED) != 0) return (0); KASSERT(SLIST_NEXT(driver, link) == NULL, ("%s: keyboard driver list garbage detected", __func__)); if (driver->kbdsw->get_fkeystr == NULL) driver->kbdsw->get_fkeystr = genkbd_get_fkeystr; if (driver->kbdsw->diag == NULL) driver->kbdsw->diag = genkbd_diag; driver->flags |= KBDF_REGISTERED; SLIST_INSERT_HEAD(&keyboard_drivers, driver, link); return (0); } int kbd_delete_driver(keyboard_driver_t *driver) { if ((driver->flags & KBDF_REGISTERED) == 0) return (EINVAL); driver->flags &= ~KBDF_REGISTERED; SLIST_REMOVE(&keyboard_drivers, driver, keyboard_driver, link); SLIST_NEXT(driver, link) = NULL; return (0); } /* register a keyboard and associate it with a function table */ int kbd_register(keyboard_t *kbd) { const keyboard_driver_t *p; keyboard_t *mux; keyboard_info_t ki; int index; mux = kbd_get_keyboard(kbd_find_keyboard("kbdmux", -1)); for (index = 0; index < keyboards; ++index) { if (keyboard[index] == NULL) break; } if (index >= keyboards) { if (kbd_realloc_array()) return (-1); } kbd->kb_index = index; KBD_UNBUSY(kbd); KBD_VALID(kbd); kbd->kb_active = 0; /* disabled until someone calls kbd_enable() */ kbd->kb_token = NULL; kbd->kb_callback.kc_func = NULL; kbd->kb_callback.kc_arg = NULL; SLIST_FOREACH(p, &keyboard_drivers, link) { if (strcmp(p->name, kbd->kb_name) == 0) { kbd->kb_drv = p; keyboard[index] = kbd; if (mux != NULL) { bzero(&ki, sizeof(ki)); strcpy(ki.kb_name, kbd->kb_name); ki.kb_unit = kbd->kb_unit; (void)kbdd_ioctl(mux, KBADDKBD, (caddr_t) &ki); } return (index); } } return (-1); } int kbd_unregister(keyboard_t *kbd) { int error; int s; if ((kbd->kb_index < 0) || (kbd->kb_index >= keyboards)) return (ENOENT); if (keyboard[kbd->kb_index] != kbd) return (ENOENT); s = spltty(); if (KBD_IS_BUSY(kbd)) { error = (*kbd->kb_callback.kc_func)(kbd, KBDIO_UNLOADING, kbd->kb_callback.kc_arg); if (error) { splx(s); return (error); } if (KBD_IS_BUSY(kbd)) { splx(s); return (EBUSY); } } KBD_INVALID(kbd); keyboard[kbd->kb_index] = NULL; splx(s); return (0); } /* find a function table by the driver name */ keyboard_switch_t * kbd_get_switch(char *driver) { const keyboard_driver_t *p; SLIST_FOREACH(p, &keyboard_drivers, link) { if (strcmp(p->name, driver) == 0) return (p->kbdsw); } return (NULL); } /* * Keyboard client functions * Keyboard clients, such as the console driver `syscons' and the keyboard * cdev driver, use these functions to claim and release a keyboard for * exclusive use. */ /* * find the keyboard specified by a driver name and a unit number * starting at given index */ int kbd_find_keyboard2(char *driver, int unit, int index) { int i; if ((index < 0) || (index >= keyboards)) return (-1); for (i = index; i < keyboards; ++i) { if (keyboard[i] == NULL) continue; if (!KBD_IS_VALID(keyboard[i])) continue; if (strcmp("*", driver) && strcmp(keyboard[i]->kb_name, driver)) continue; if ((unit != -1) && (keyboard[i]->kb_unit != unit)) continue; return (i); } return (-1); } /* find the keyboard specified by a driver name and a unit number */ int kbd_find_keyboard(char *driver, int unit) { return (kbd_find_keyboard2(driver, unit, 0)); } /* allocate a keyboard */ int kbd_allocate(char *driver, int unit, void *id, kbd_callback_func_t *func, void *arg) { int index; int s; if (func == NULL) return (-1); s = spltty(); index = kbd_find_keyboard(driver, unit); if (index >= 0) { if (KBD_IS_BUSY(keyboard[index])) { splx(s); return (-1); } keyboard[index]->kb_token = id; KBD_BUSY(keyboard[index]); keyboard[index]->kb_callback.kc_func = func; keyboard[index]->kb_callback.kc_arg = arg; kbdd_clear_state(keyboard[index]); } splx(s); return (index); } int kbd_release(keyboard_t *kbd, void *id) { int error; int s; s = spltty(); if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) { error = EINVAL; } else if (kbd->kb_token != id) { error = EPERM; } else { kbd->kb_token = NULL; KBD_UNBUSY(kbd); kbd->kb_callback.kc_func = NULL; kbd->kb_callback.kc_arg = NULL; kbdd_clear_state(kbd); error = 0; } splx(s); return (error); } int kbd_change_callback(keyboard_t *kbd, void *id, kbd_callback_func_t *func, void *arg) { int error; int s; s = spltty(); if (!KBD_IS_VALID(kbd) || !KBD_IS_BUSY(kbd)) { error = EINVAL; } else if (kbd->kb_token != id) { error = EPERM; } else if (func == NULL) { error = EINVAL; } else { kbd->kb_callback.kc_func = func; kbd->kb_callback.kc_arg = arg; error = 0; } splx(s); return (error); } /* get a keyboard structure */ keyboard_t * kbd_get_keyboard(int index) { if ((index < 0) || (index >= keyboards)) return (NULL); if (keyboard[index] == NULL) return (NULL); if (!KBD_IS_VALID(keyboard[index])) return (NULL); return (keyboard[index]); } /* * The back door for the console driver; configure keyboards * This function is for the kernel console to initialize keyboards * at very early stage. */ int kbd_configure(int flags) { const keyboard_driver_t *p; SLIST_FOREACH(p, &keyboard_drivers, link) { if (p->configure != NULL) (*p->configure)(flags); } return (0); } #ifdef KBD_INSTALL_CDEV /* * Virtual keyboard cdev driver functions * The virtual keyboard driver dispatches driver functions to * appropriate subdrivers. */ #define KBD_UNIT(dev) dev2unit(dev) static d_open_t genkbdopen; static d_close_t genkbdclose; static d_read_t genkbdread; static d_write_t genkbdwrite; static d_ioctl_t genkbdioctl; static d_poll_t genkbdpoll; static struct cdevsw kbd_cdevsw = { .d_version = D_VERSION, - .d_flags = D_NEEDGIANT, + .d_flags = D_NEEDGIANT | D_GIANTOK, .d_open = genkbdopen, .d_close = genkbdclose, .d_read = genkbdread, .d_write = genkbdwrite, .d_ioctl = genkbdioctl, .d_poll = genkbdpoll, .d_name = "kbd", }; int kbd_attach(keyboard_t *kbd) { if (kbd->kb_index >= keyboards) return (EINVAL); if (keyboard[kbd->kb_index] != kbd) return (EINVAL); kbd->kb_dev = make_dev(&kbd_cdevsw, kbd->kb_index, UID_ROOT, GID_WHEEL, 0600, "%s%r", kbd->kb_name, kbd->kb_unit); make_dev_alias(kbd->kb_dev, "kbd%r", kbd->kb_index); kbd->kb_dev->si_drv1 = malloc(sizeof(genkbd_softc_t), M_DEVBUF, M_WAITOK | M_ZERO); printf("kbd%d at %s%d\n", kbd->kb_index, kbd->kb_name, kbd->kb_unit); return (0); } int kbd_detach(keyboard_t *kbd) { if (kbd->kb_index >= keyboards) return (EINVAL); if (keyboard[kbd->kb_index] != kbd) return (EINVAL); free(kbd->kb_dev->si_drv1, M_DEVBUF); destroy_dev(kbd->kb_dev); return (0); } /* * Generic keyboard cdev driver functions * Keyboard subdrivers may call these functions to implement common * driver functions. */ static void genkbd_putc(genkbd_softc_t *sc, char c) { unsigned int p; if (sc->gkb_q_length == KB_QSIZE) return; p = (sc->gkb_q_start + sc->gkb_q_length) % KB_QSIZE; sc->gkb_q[p] = c; sc->gkb_q_length++; } static size_t genkbd_getc(genkbd_softc_t *sc, char *buf, size_t len) { /* Determine copy size. */ if (sc->gkb_q_length == 0) return (0); if (len >= sc->gkb_q_length) len = sc->gkb_q_length; if (len >= KB_QSIZE - sc->gkb_q_start) len = KB_QSIZE - sc->gkb_q_start; /* Copy out data and progress offset. */ memcpy(buf, sc->gkb_q + sc->gkb_q_start, len); sc->gkb_q_start = (sc->gkb_q_start + len) % KB_QSIZE; sc->gkb_q_length -= len; return (len); } static kbd_callback_func_t genkbd_event; static int genkbdopen(struct cdev *dev, int mode, int flag, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int s; int i; s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); } i = kbd_allocate(kbd->kb_name, kbd->kb_unit, sc, genkbd_event, (void *)sc); if (i < 0) { splx(s); return (EBUSY); } /* assert(i == kbd->kb_index) */ /* assert(kbd == kbd_get_keyboard(i)) */ /* * NOTE: even when we have successfully claimed a keyboard, * the device may still be missing (!KBD_HAS_DEVICE(kbd)). */ sc->gkb_q_length = 0; splx(s); return (0); } static int genkbdclose(struct cdev *dev, int mode, int flag, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int s; /* * NOTE: the device may have already become invalid. * kbd == NULL || !KBD_IS_VALID(kbd) */ s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { /* XXX: we shall be forgiving and don't report error... */ } else { kbd_release(kbd, (void *)sc); } splx(s); return (0); } static int genkbdread(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd; genkbd_softc_t *sc; u_char buffer[KB_BUFSIZE]; int len; int error; int s; /* wait for input */ s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); } while (sc->gkb_q_length == 0) { if (flag & O_NONBLOCK) { splx(s); return (EWOULDBLOCK); } sc->gkb_flags |= KB_ASLEEP; error = tsleep(sc, PZERO | PCATCH, "kbdrea", 0); kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) { splx(s); return (ENXIO); /* our keyboard has gone... */ } if (error) { sc->gkb_flags &= ~KB_ASLEEP; splx(s); return (error); } } splx(s); /* copy as much input as possible */ error = 0; while (uio->uio_resid > 0) { len = imin(uio->uio_resid, sizeof(buffer)); len = genkbd_getc(sc, buffer, len); if (len <= 0) break; error = uiomove(buffer, len, uio); if (error) break; } return (error); } static int genkbdwrite(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) return (ENXIO); return (ENODEV); } static int genkbdioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) { keyboard_t *kbd; int error; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((kbd == NULL) || !KBD_IS_VALID(kbd)) return (ENXIO); error = kbdd_ioctl(kbd, cmd, arg); if (error == ENOIOCTL) error = ENODEV; return (error); } static int genkbdpoll(struct cdev *dev, int events, struct thread *td) { keyboard_t *kbd; genkbd_softc_t *sc; int revents; int s; revents = 0; s = spltty(); sc = dev->si_drv1; kbd = kbd_get_keyboard(KBD_INDEX(dev)); if ((sc == NULL) || (kbd == NULL) || !KBD_IS_VALID(kbd)) { revents = POLLHUP; /* the keyboard has gone */ } else if (events & (POLLIN | POLLRDNORM)) { if (sc->gkb_q_length > 0) revents = events & (POLLIN | POLLRDNORM); else selrecord(td, &sc->gkb_rsel); } splx(s); return (revents); } static int genkbd_event(keyboard_t *kbd, int event, void *arg) { genkbd_softc_t *sc; size_t len; u_char *cp; int mode; u_int c; /* assert(KBD_IS_VALID(kbd)) */ sc = (genkbd_softc_t *)arg; switch (event) { case KBDIO_KEYINPUT: break; case KBDIO_UNLOADING: /* the keyboard is going... */ kbd_release(kbd, (void *)sc); if (sc->gkb_flags & KB_ASLEEP) { sc->gkb_flags &= ~KB_ASLEEP; wakeup(sc); } selwakeuppri(&sc->gkb_rsel, PZERO); return (0); default: return (EINVAL); } /* obtain the current key input mode */ if (kbdd_ioctl(kbd, KDGKBMODE, (caddr_t)&mode)) mode = K_XLATE; /* read all pending input */ while (kbdd_check_char(kbd)) { c = kbdd_read_char(kbd, FALSE); if (c == NOKEY) continue; if (c == ERRKEY) /* XXX: ring bell? */ continue; if (!KBD_IS_BUSY(kbd)) /* the device is not open, discard the input */ continue; /* store the byte as is for K_RAW and K_CODE modes */ if (mode != K_XLATE) { genkbd_putc(sc, KEYCHAR(c)); continue; } /* K_XLATE */ if (c & RELKEY) /* key release is ignored */ continue; /* process special keys; most of them are just ignored... */ if (c & SPCLKEY) { switch (KEYCHAR(c)) { default: /* ignore them... */ continue; case BTAB: /* a backtab: ESC [ Z */ genkbd_putc(sc, 0x1b); genkbd_putc(sc, '['); genkbd_putc(sc, 'Z'); continue; } } /* normal chars, normal chars with the META, function keys */ switch (KEYFLAGS(c)) { case 0: /* a normal char */ genkbd_putc(sc, KEYCHAR(c)); break; case MKEY: /* the META flag: prepend ESC */ genkbd_putc(sc, 0x1b); genkbd_putc(sc, KEYCHAR(c)); break; case FKEY | SPCLKEY: /* a function key, return string */ cp = kbdd_get_fkeystr(kbd, KEYCHAR(c), &len); if (cp != NULL) { while (len-- > 0) genkbd_putc(sc, *cp++); } break; } } /* wake up sleeping/polling processes */ if (sc->gkb_q_length > 0) { if (sc->gkb_flags & KB_ASLEEP) { sc->gkb_flags &= ~KB_ASLEEP; wakeup(sc); } selwakeuppri(&sc->gkb_rsel, PZERO); } return (0); } #endif /* KBD_INSTALL_CDEV */ /* * Generic low-level keyboard functions * The low-level functions in the keyboard subdriver may use these * functions. */ #ifndef KBD_DISABLE_KEYMAP_LOAD static int key_change_ok(struct keyent_t *, struct keyent_t *, struct thread *); static int keymap_change_ok(keymap_t *, keymap_t *, struct thread *); static int accent_change_ok(accentmap_t *, accentmap_t *, struct thread *); static int fkey_change_ok(fkeytab_t *, fkeyarg_t *, struct thread *); #endif int genkbd_commonioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { keymap_t *mapp; okeymap_t *omapp; keyarg_t *keyp; fkeyarg_t *fkeyp; int s; int i, j; int error; s = spltty(); switch (cmd) { case KDGKBINFO: /* get keyboard information */ ((keyboard_info_t *)arg)->kb_index = kbd->kb_index; i = imin(strlen(kbd->kb_name) + 1, sizeof(((keyboard_info_t *)arg)->kb_name)); bcopy(kbd->kb_name, ((keyboard_info_t *)arg)->kb_name, i); ((keyboard_info_t *)arg)->kb_unit = kbd->kb_unit; ((keyboard_info_t *)arg)->kb_type = kbd->kb_type; ((keyboard_info_t *)arg)->kb_config = kbd->kb_config; ((keyboard_info_t *)arg)->kb_flags = kbd->kb_flags; break; case KDGKBTYPE: /* get keyboard type */ *(int *)arg = kbd->kb_type; break; case KDGETREPEAT: /* get keyboard repeat rate */ ((int *)arg)[0] = kbd->kb_delay1; ((int *)arg)[1] = kbd->kb_delay2; break; case GIO_KEYMAP: /* get keyboard translation table */ error = copyout(kbd->kb_keymap, *(void **)arg, sizeof(keymap_t)); splx(s); return (error); case OGIO_KEYMAP: /* get keyboard translation table (compat) */ mapp = kbd->kb_keymap; omapp = (okeymap_t *)arg; omapp->n_keys = mapp->n_keys; for (i = 0; i < NUM_KEYS; i++) { for (j = 0; j < NUM_STATES; j++) omapp->key[i].map[j] = mapp->key[i].map[j]; omapp->key[i].spcl = mapp->key[i].spcl; omapp->key[i].flgs = mapp->key[i].flgs; } break; case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table (compat) */ #ifndef KBD_DISABLE_KEYMAP_LOAD mapp = malloc(sizeof *mapp, M_TEMP, M_WAITOK); if (cmd == OPIO_KEYMAP) { omapp = (okeymap_t *)arg; mapp->n_keys = omapp->n_keys; for (i = 0; i < NUM_KEYS; i++) { for (j = 0; j < NUM_STATES; j++) mapp->key[i].map[j] = omapp->key[i].map[j]; mapp->key[i].spcl = omapp->key[i].spcl; mapp->key[i].flgs = omapp->key[i].flgs; } } else { error = copyin(*(void **)arg, mapp, sizeof *mapp); if (error != 0) { splx(s); free(mapp, M_TEMP); return (error); } } error = keymap_change_ok(kbd->kb_keymap, mapp, curthread); if (error != 0) { splx(s); free(mapp, M_TEMP); return (error); } bzero(kbd->kb_accentmap, sizeof(*kbd->kb_accentmap)); bcopy(mapp, kbd->kb_keymap, sizeof(*kbd->kb_keymap)); free(mapp, M_TEMP); break; #else splx(s); return (ENODEV); #endif case GIO_KEYMAPENT: /* get keyboard translation table entry */ keyp = (keyarg_t *)arg; if (keyp->keynum >= sizeof(kbd->kb_keymap->key) / sizeof(kbd->kb_keymap->key[0])) { splx(s); return (EINVAL); } bcopy(&kbd->kb_keymap->key[keyp->keynum], &keyp->key, sizeof(keyp->key)); break; case PIO_KEYMAPENT: /* set keyboard translation table entry */ #ifndef KBD_DISABLE_KEYMAP_LOAD keyp = (keyarg_t *)arg; if (keyp->keynum >= sizeof(kbd->kb_keymap->key) / sizeof(kbd->kb_keymap->key[0])) { splx(s); return (EINVAL); } error = key_change_ok(&kbd->kb_keymap->key[keyp->keynum], &keyp->key, curthread); if (error != 0) { splx(s); return (error); } bcopy(&keyp->key, &kbd->kb_keymap->key[keyp->keynum], sizeof(keyp->key)); break; #else splx(s); return (ENODEV); #endif case GIO_DEADKEYMAP: /* get accent key translation table */ bcopy(kbd->kb_accentmap, arg, sizeof(*kbd->kb_accentmap)); break; case PIO_DEADKEYMAP: /* set accent key translation table */ #ifndef KBD_DISABLE_KEYMAP_LOAD error = accent_change_ok(kbd->kb_accentmap, (accentmap_t *)arg, curthread); if (error != 0) { splx(s); return (error); } bcopy(arg, kbd->kb_accentmap, sizeof(*kbd->kb_accentmap)); break; #else splx(s); return (ENODEV); #endif case GETFKEY: /* get functionkey string */ fkeyp = (fkeyarg_t *)arg; if (fkeyp->keynum >= kbd->kb_fkeytab_size) { splx(s); return (EINVAL); } bcopy(kbd->kb_fkeytab[fkeyp->keynum].str, fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].len); fkeyp->flen = kbd->kb_fkeytab[fkeyp->keynum].len; break; case SETFKEY: /* set functionkey string */ #ifndef KBD_DISABLE_KEYMAP_LOAD fkeyp = (fkeyarg_t *)arg; if (fkeyp->keynum >= kbd->kb_fkeytab_size) { splx(s); return (EINVAL); } error = fkey_change_ok(&kbd->kb_fkeytab[fkeyp->keynum], fkeyp, curthread); if (error != 0) { splx(s); return (error); } kbd->kb_fkeytab[fkeyp->keynum].len = min(fkeyp->flen, MAXFK); bcopy(fkeyp->keydef, kbd->kb_fkeytab[fkeyp->keynum].str, kbd->kb_fkeytab[fkeyp->keynum].len); break; #else splx(s); return (ENODEV); #endif default: splx(s); return (ENOIOCTL); } splx(s); return (0); } #ifndef KBD_DISABLE_KEYMAP_LOAD #define RESTRICTED_KEY(key, i) \ ((key->spcl & (0x80 >> i)) && \ (key->map[i] == RBT || key->map[i] == SUSP || \ key->map[i] == STBY || key->map[i] == DBG || \ key->map[i] == PNC || key->map[i] == HALT || \ key->map[i] == PDWN)) static int key_change_ok(struct keyent_t *oldkey, struct keyent_t *newkey, struct thread *td) { int i; /* Low keymap_restrict_change means any changes are OK. */ if (keymap_restrict_change <= 0) return (0); /* High keymap_restrict_change means only root can change the keymap. */ if (keymap_restrict_change >= 2) { for (i = 0; i < NUM_STATES; i++) if (oldkey->map[i] != newkey->map[i]) return priv_check(td, PRIV_KEYBOARD); if (oldkey->spcl != newkey->spcl) return priv_check(td, PRIV_KEYBOARD); if (oldkey->flgs != newkey->flgs) return priv_check(td, PRIV_KEYBOARD); return (0); } /* Otherwise we have to see if any special keys are being changed. */ for (i = 0; i < NUM_STATES; i++) { /* * If either the oldkey or the newkey action is restricted * then we must make sure that the action doesn't change. */ if (!RESTRICTED_KEY(oldkey, i) && !RESTRICTED_KEY(newkey, i)) continue; if ((oldkey->spcl & (0x80 >> i)) == (newkey->spcl & (0x80 >> i)) && oldkey->map[i] == newkey->map[i]) continue; return priv_check(td, PRIV_KEYBOARD); } return (0); } static int keymap_change_ok(keymap_t *oldmap, keymap_t *newmap, struct thread *td) { int keycode, error; for (keycode = 0; keycode < NUM_KEYS; keycode++) { if ((error = key_change_ok(&oldmap->key[keycode], &newmap->key[keycode], td)) != 0) return (error); } return (0); } static int accent_change_ok(accentmap_t *oldmap, accentmap_t *newmap, struct thread *td) { struct acc_t *oldacc, *newacc; int accent, i; if (keymap_restrict_change <= 2) return (0); if (oldmap->n_accs != newmap->n_accs) return priv_check(td, PRIV_KEYBOARD); for (accent = 0; accent < oldmap->n_accs; accent++) { oldacc = &oldmap->acc[accent]; newacc = &newmap->acc[accent]; if (oldacc->accchar != newacc->accchar) return priv_check(td, PRIV_KEYBOARD); for (i = 0; i < NUM_ACCENTCHARS; ++i) { if (oldacc->map[i][0] != newacc->map[i][0]) return priv_check(td, PRIV_KEYBOARD); if (oldacc->map[i][0] == 0) /* end of table */ break; if (oldacc->map[i][1] != newacc->map[i][1]) return priv_check(td, PRIV_KEYBOARD); } } return (0); } static int fkey_change_ok(fkeytab_t *oldkey, fkeyarg_t *newkey, struct thread *td) { if (keymap_restrict_change <= 3) return (0); if (oldkey->len != newkey->flen || bcmp(oldkey->str, newkey->keydef, oldkey->len) != 0) return priv_check(td, PRIV_KEYBOARD); return (0); } #endif /* get a pointer to the string associated with the given function key */ static u_char * genkbd_get_fkeystr(keyboard_t *kbd, int fkey, size_t *len) { if (kbd == NULL) return (NULL); fkey -= F_FN; if (fkey > kbd->kb_fkeytab_size) return (NULL); *len = kbd->kb_fkeytab[fkey].len; return (kbd->kb_fkeytab[fkey].str); } /* diagnostic dump */ static char * get_kbd_type_name(int type) { static struct { int type; char *name; } name_table[] = { { KB_84, "AT 84" }, { KB_101, "AT 101/102" }, { KB_OTHER, "generic" }, }; int i; for (i = 0; i < nitems(name_table); ++i) { if (type == name_table[i].type) return (name_table[i].name); } return ("unknown"); } static void genkbd_diag(keyboard_t *kbd, int level) { if (level > 0) { printf("kbd%d: %s%d, %s (%d), config:0x%x, flags:0x%x", kbd->kb_index, kbd->kb_name, kbd->kb_unit, get_kbd_type_name(kbd->kb_type), kbd->kb_type, kbd->kb_config, kbd->kb_flags); if (kbd->kb_io_base > 0) printf(", port:0x%x-0x%x", kbd->kb_io_base, kbd->kb_io_base + kbd->kb_io_size - 1); printf("\n"); } } #define set_lockkey_state(k, s, l) \ if (!((s) & l ## DOWN)) { \ int i; \ (s) |= l ## DOWN; \ (s) ^= l ## ED; \ i = (s) & LOCK_MASK; \ (void)kbdd_ioctl((k), KDSETLED, (caddr_t)&i); \ } static u_int save_accent_key(keyboard_t *kbd, u_int key, int *accents) { int i; /* make an index into the accent map */ i = key - F_ACC + 1; if ((i > kbd->kb_accentmap->n_accs) || (kbd->kb_accentmap->acc[i - 1].accchar == 0)) { /* the index is out of range or pointing to an empty entry */ *accents = 0; return (ERRKEY); } /* * If the same accent key has been hit twice, produce the accent * char itself. */ if (i == *accents) { key = kbd->kb_accentmap->acc[i - 1].accchar; *accents = 0; return (key); } /* remember the index and wait for the next key */ *accents = i; return (NOKEY); } static u_int make_accent_char(keyboard_t *kbd, u_int ch, int *accents) { struct acc_t *acc; int i; acc = &kbd->kb_accentmap->acc[*accents - 1]; *accents = 0; /* * If the accent key is followed by the space key, * produce the accent char itself. */ if (ch == ' ') return (acc->accchar); /* scan the accent map */ for (i = 0; i < NUM_ACCENTCHARS; ++i) { if (acc->map[i][0] == 0) /* end of table */ break; if (acc->map[i][0] == ch) return (acc->map[i][1]); } /* this char cannot be accented... */ return (ERRKEY); } int genkbd_keyaction(keyboard_t *kbd, int keycode, int up, int *shiftstate, int *accents) { struct keyent_t *key; int state = *shiftstate; int action; int f; int i; i = keycode; f = state & (AGRS | ALKED); if ((f == AGRS1) || (f == AGRS2) || (f == ALKED)) i += ALTGR_OFFSET; key = &kbd->kb_keymap->key[i]; i = ((state & SHIFTS) ? 1 : 0) | ((state & CTLS) ? 2 : 0) | ((state & ALTS) ? 4 : 0); if (((key->flgs & FLAG_LOCK_C) && (state & CLKED)) || ((key->flgs & FLAG_LOCK_N) && (state & NLKED)) ) i ^= 1; if (up) { /* break: key released */ action = kbd->kb_lastact[keycode]; kbd->kb_lastact[keycode] = NOP; switch (action) { case LSHA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LSH; /* FALL THROUGH */ case LSH: state &= ~SHIFTS1; break; case RSHA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RSH; /* FALL THROUGH */ case RSH: state &= ~SHIFTS2; break; case LCTRA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LCTR; /* FALL THROUGH */ case LCTR: state &= ~CTLS1; break; case RCTRA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RCTR; /* FALL THROUGH */ case RCTR: state &= ~CTLS2; break; case LALTA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = LALT; /* FALL THROUGH */ case LALT: state &= ~ALTS1; break; case RALTA: if (state & SHIFTAON) { set_lockkey_state(kbd, state, ALK); state &= ~ALKDOWN; } action = RALT; /* FALL THROUGH */ case RALT: state &= ~ALTS2; break; case ASH: state &= ~AGRS1; break; case META: state &= ~METAS1; break; case NLK: state &= ~NLKDOWN; break; case CLK: state &= ~CLKDOWN; break; case SLK: state &= ~SLKDOWN; break; case ALK: state &= ~ALKDOWN; break; case NOP: /* release events of regular keys are not reported */ *shiftstate &= ~SHIFTAON; return (NOKEY); } *shiftstate = state & ~SHIFTAON; return (SPCLKEY | RELKEY | action); } else { /* make: key pressed */ action = key->map[i]; state &= ~SHIFTAON; if (key->spcl & (0x80 >> i)) { /* special keys */ if (kbd->kb_lastact[keycode] == NOP) kbd->kb_lastact[keycode] = action; if (kbd->kb_lastact[keycode] != action) action = NOP; switch (action) { /* LOCKING KEYS */ case NLK: set_lockkey_state(kbd, state, NLK); break; case CLK: set_lockkey_state(kbd, state, CLK); break; case SLK: set_lockkey_state(kbd, state, SLK); break; case ALK: set_lockkey_state(kbd, state, ALK); break; /* NON-LOCKING KEYS */ case SPSC: case RBT: case SUSP: case STBY: case DBG: case NEXT: case PREV: case PNC: case HALT: case PDWN: *accents = 0; break; case BTAB: *accents = 0; action |= BKEY; break; case LSHA: state |= SHIFTAON; action = LSH; /* FALL THROUGH */ case LSH: state |= SHIFTS1; break; case RSHA: state |= SHIFTAON; action = RSH; /* FALL THROUGH */ case RSH: state |= SHIFTS2; break; case LCTRA: state |= SHIFTAON; action = LCTR; /* FALL THROUGH */ case LCTR: state |= CTLS1; break; case RCTRA: state |= SHIFTAON; action = RCTR; /* FALL THROUGH */ case RCTR: state |= CTLS2; break; case LALTA: state |= SHIFTAON; action = LALT; /* FALL THROUGH */ case LALT: state |= ALTS1; break; case RALTA: state |= SHIFTAON; action = RALT; /* FALL THROUGH */ case RALT: state |= ALTS2; break; case ASH: state |= AGRS1; break; case META: state |= METAS1; break; case NOP: *shiftstate = state; return (NOKEY); default: /* is this an accent (dead) key? */ *shiftstate = state; if (action >= F_ACC && action <= L_ACC) { action = save_accent_key(kbd, action, accents); switch (action) { case NOKEY: case ERRKEY: return (action); default: if (state & METAS) return (action | MKEY); else return (action); } /* NOT REACHED */ } /* other special keys */ if (*accents > 0) { *accents = 0; return (ERRKEY); } if (action >= F_FN && action <= L_FN) action |= FKEY; /* XXX: return fkey string for the FKEY? */ return (SPCLKEY | action); } *shiftstate = state; return (SPCLKEY | action); } else { /* regular keys */ kbd->kb_lastact[keycode] = NOP; *shiftstate = state; if (*accents > 0) { /* make an accented char */ action = make_accent_char(kbd, action, accents); if (action == ERRKEY) return (action); } if (state & METAS) action |= MKEY; return (action); } } /* NOT REACHED */ } void kbd_ev_event(keyboard_t *kbd, uint16_t type, uint16_t code, int32_t value) { int delay[2], led = 0, leds, oleds; if (type == EV_LED) { leds = oleds = KBD_LED_VAL(kbd); switch (code) { case LED_CAPSL: led = CLKED; break; case LED_NUML: led = NLKED; break; case LED_SCROLLL: led = SLKED; break; } if (value) leds |= led; else leds &= ~led; if (leds != oleds) kbdd_ioctl(kbd, KDSETLED, (caddr_t)&leds); } else if (type == EV_REP && code == REP_DELAY) { delay[0] = value; delay[1] = kbd->kb_delay2; kbdd_ioctl(kbd, KDSETREPEAT, (caddr_t)delay); } else if (type == EV_REP && code == REP_PERIOD) { delay[0] = kbd->kb_delay1; delay[1] = value; kbdd_ioctl(kbd, KDSETREPEAT, (caddr_t)delay); } } void kbdinit(void) { keyboard_driver_t *drv, **list; SET_FOREACH(list, kbddriver_set) { drv = *list; /* * The following printfs will almost universally get dropped, * with exception to kernel configs with EARLY_PRINTF and * special setups where msgbufinit() is called early with a * static buffer to capture output occurring before the dynamic * message buffer is mapped. */ if (kbd_add_driver(drv) != 0) printf("kbd: failed to register driver '%s'\n", drv->name); else if (bootverbose) printf("kbd: registered driver '%s'\n", drv->name); } } diff --git a/sys/dev/ofw/openfirmio.c b/sys/dev/ofw/openfirmio.c index 2112d45d4dd9..30afb85baf8a 100644 --- a/sys/dev/ofw/openfirmio.c +++ b/sys/dev/ofw/openfirmio.c @@ -1,305 +1,305 @@ /* $NetBSD: openfirmio.c,v 1.4 2002/09/06 13:23:19 gehenna Exp $ */ #include __FBSDID("$FreeBSD$"); /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)openfirm.c 8.1 (Berkeley) 6/11/93 * */ #include #include #include #include #include #include #include #include #include #include static struct cdev *openfirm_dev; static d_ioctl_t openfirm_ioctl; #define OPENFIRM_MINOR 0 static struct cdevsw openfirm_cdevsw = { .d_version = D_VERSION, - .d_flags = D_NEEDGIANT, + .d_flags = D_NEEDGIANT | D_GIANTOK, .d_ioctl = openfirm_ioctl, .d_name = "openfirm", }; static phandle_t lastnode; /* speed hack */ static int openfirm_checkid(phandle_t, phandle_t); static int openfirm_getstr(int, const char *, char **); /* * Verify target ID is valid (exists in the OPENPROM tree), as * listed from node ID sid forward. */ static int openfirm_checkid(phandle_t sid, phandle_t tid) { for (; sid != 0; sid = OF_peer(sid)) if (sid == tid || openfirm_checkid(OF_child(sid), tid)) return (1); return (0); } static int openfirm_getstr(int len, const char *user, char **cpp) { int error; char *cp; /* Reject obvious bogus requests. */ if ((u_int)len > OFIOCMAXNAME) return (ENAMETOOLONG); *cpp = cp = malloc(len + 1, M_TEMP, M_WAITOK); error = copyin(user, cp, len); cp[len] = '\0'; return (error); } int openfirm_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int flags, struct thread *td) { struct ofiocdesc *of; phandle_t node; int len, ok, error; char *name, *value; char newname[OFIOCSUGGPROPNAMELEN]; if ((flags & FREAD) == 0) return (EBADF); of = (struct ofiocdesc *)data; switch (cmd) { case OFIOCGETOPTNODE: *(phandle_t *) data = OF_finddevice("/options"); return (0); case OFIOCGET: case OFIOCSET: case OFIOCNEXTPROP: case OFIOCFINDDEVICE: case OFIOCGETPROPLEN: node = of->of_nodeid; break; case OFIOCGETNEXT: case OFIOCGETCHILD: node = *(phandle_t *)data; break; default: return (ENOIOCTL); } if (node != 0 && node != lastnode) { /* Not an easy one, we must search for it. */ ok = openfirm_checkid(OF_peer(0), node); if (!ok) return (EINVAL); lastnode = node; } name = value = NULL; error = 0; switch (cmd) { case OFIOCGET: case OFIOCGETPROPLEN: if (node == 0) return (EINVAL); error = openfirm_getstr(of->of_namelen, of->of_name, &name); if (error) break; len = OF_getproplen(node, name); if (cmd == OFIOCGETPROPLEN) { of->of_buflen = len; break; } if (len > of->of_buflen) { error = ENOMEM; break; } of->of_buflen = len; /* -1 means no entry; 0 means no value. */ if (len <= 0) break; value = malloc(len, M_TEMP, M_WAITOK); len = OF_getprop(node, name, (void *)value, len); error = copyout(value, of->of_buf, len); break; case OFIOCSET: /* * Note: Text string values for at least the /options node * have to be null-terminated and the length parameter must * include this terminating null. However, like OF_getprop(), * OF_setprop() will return the actual length of the text * string, i.e. omitting the terminating null. */ if ((flags & FWRITE) == 0) return (EBADF); if (node == 0) return (EINVAL); if ((u_int)of->of_buflen > OFIOCMAXVALUE) return (ENAMETOOLONG); error = openfirm_getstr(of->of_namelen, of->of_name, &name); if (error) break; value = malloc(of->of_buflen, M_TEMP, M_WAITOK); error = copyin(of->of_buf, value, of->of_buflen); if (error) break; len = OF_setprop(node, name, value, of->of_buflen); if (len < 0) error = EINVAL; of->of_buflen = len; break; case OFIOCNEXTPROP: if (node == 0 || of->of_buflen < 0) return (EINVAL); if (of->of_namelen != 0) { error = openfirm_getstr(of->of_namelen, of->of_name, &name); if (error) break; } ok = OF_nextprop(node, name, newname, sizeof(newname)); if (ok == 0) { error = ENOENT; break; } if (ok == -1) { error = EINVAL; break; } len = strlen(newname) + 1; if (len > of->of_buflen) { /* * Passed buffer was insufficient. * * Instead of returning an error here, truncate the * property name to fit the buffer. * * This allows us to retain compatibility with old * tools which always pass a 32 character buffer. */ len = of->of_buflen; newname[len - 1] = '\0'; } else of->of_buflen = len; error = copyout(newname, of->of_buf, len); break; case OFIOCGETNEXT: node = OF_peer(node); *(phandle_t *)data = lastnode = node; break; case OFIOCGETCHILD: if (node == 0) return (EINVAL); node = OF_child(node); *(phandle_t *)data = lastnode = node; break; case OFIOCFINDDEVICE: error = openfirm_getstr(of->of_namelen, of->of_name, &name); if (error) break; node = OF_finddevice(name); if (node == -1) { error = ENOENT; break; } of->of_nodeid = lastnode = node; break; } if (name != NULL) free(name, M_TEMP); if (value != NULL) free(value, M_TEMP); return (error); } static int openfirm_modevent(module_t mod, int type, void *data) { switch(type) { case MOD_LOAD: if (bootverbose) printf("openfirm: \n"); /* * Allow only root access by default; this device may allow * users to peek into firmware passwords, and likely to crash * the machine on some boxen due to firmware quirks. */ openfirm_dev = make_dev(&openfirm_cdevsw, OPENFIRM_MINOR, UID_ROOT, GID_WHEEL, 0600, "openfirm"); return 0; case MOD_UNLOAD: destroy_dev(openfirm_dev); return 0; case MOD_SHUTDOWN: return 0; default: return EOPNOTSUPP; } } DEV_MODULE(openfirm, openfirm_modevent, NULL); diff --git a/sys/kern/kern_conf.c b/sys/kern/kern_conf.c index 3a07c95e74d0..42435c0b8740 100644 --- a/sys/kern/kern_conf.c +++ b/sys/kern/kern_conf.c @@ -1,1578 +1,1578 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1999-2002 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_DEVT, "cdev", "cdev storage"); struct mtx devmtx; static void destroy_devl(struct cdev *dev); static int destroy_dev_sched_cbl(struct cdev *dev, void (*cb)(void *), void *arg); static void destroy_dev_tq(void *ctx, int pending); static int make_dev_credv(int flags, struct cdev **dres, struct cdevsw *devsw, int unit, struct ucred *cr, uid_t uid, gid_t gid, int mode, const char *fmt, va_list ap); static struct cdev_priv_list cdevp_free_list = TAILQ_HEAD_INITIALIZER(cdevp_free_list); static SLIST_HEAD(free_cdevsw, cdevsw) cdevsw_gt_post_list = SLIST_HEAD_INITIALIZER(cdevsw_gt_post_list); void dev_lock(void) { mtx_lock(&devmtx); } /* * Free all the memory collected while the cdev mutex was * locked. Since devmtx is after the system map mutex, free() cannot * be called immediately and is postponed until cdev mutex can be * dropped. */ static void dev_unlock_and_free(void) { struct cdev_priv_list cdp_free; struct free_cdevsw csw_free; struct cdev_priv *cdp; struct cdevsw *csw; dev_lock_assert_locked(); /* * Make the local copy of the list heads while the dev_mtx is * held. Free it later. */ TAILQ_INIT(&cdp_free); TAILQ_CONCAT(&cdp_free, &cdevp_free_list, cdp_list); csw_free = cdevsw_gt_post_list; SLIST_INIT(&cdevsw_gt_post_list); mtx_unlock(&devmtx); while ((cdp = TAILQ_FIRST(&cdp_free)) != NULL) { TAILQ_REMOVE(&cdp_free, cdp, cdp_list); devfs_free(&cdp->cdp_c); } while ((csw = SLIST_FIRST(&csw_free)) != NULL) { SLIST_REMOVE_HEAD(&csw_free, d_postfree_list); free(csw, M_DEVT); } } static void dev_free_devlocked(struct cdev *cdev) { struct cdev_priv *cdp; dev_lock_assert_locked(); cdp = cdev2priv(cdev); KASSERT((cdp->cdp_flags & CDP_UNREF_DTR) == 0, ("destroy_dev() was not called after delist_dev(%p)", cdev)); TAILQ_INSERT_HEAD(&cdevp_free_list, cdp, cdp_list); } static void cdevsw_free_devlocked(struct cdevsw *csw) { dev_lock_assert_locked(); SLIST_INSERT_HEAD(&cdevsw_gt_post_list, csw, d_postfree_list); } void dev_unlock(void) { mtx_unlock(&devmtx); } void dev_ref(struct cdev *dev) { dev_lock_assert_unlocked(); mtx_lock(&devmtx); dev->si_refcount++; mtx_unlock(&devmtx); } void dev_refl(struct cdev *dev) { dev_lock_assert_locked(); dev->si_refcount++; } void dev_rel(struct cdev *dev) { int flag = 0; dev_lock_assert_unlocked(); dev_lock(); dev->si_refcount--; KASSERT(dev->si_refcount >= 0, ("dev_rel(%s) gave negative count", devtoname(dev))); if (dev->si_devsw == NULL && dev->si_refcount == 0) { LIST_REMOVE(dev, si_list); flag = 1; } dev_unlock(); if (flag) devfs_free(dev); } struct cdevsw * dev_refthread(struct cdev *dev, int *ref) { struct cdevsw *csw; struct cdev_priv *cdp; dev_lock_assert_unlocked(); if ((dev->si_flags & SI_ETERNAL) != 0) { *ref = 0; return (dev->si_devsw); } cdp = cdev2priv(dev); mtx_lock(&cdp->cdp_threadlock); csw = dev->si_devsw; if (csw != NULL) { if ((cdp->cdp_flags & CDP_SCHED_DTR) == 0) atomic_add_long(&dev->si_threadcount, 1); else csw = NULL; } mtx_unlock(&cdp->cdp_threadlock); if (csw != NULL) *ref = 1; return (csw); } struct cdevsw * devvn_refthread(struct vnode *vp, struct cdev **devp, int *ref) { struct cdevsw *csw; struct cdev_priv *cdp; struct cdev *dev; dev_lock_assert_unlocked(); if ((vp->v_vflag & VV_ETERNALDEV) != 0) { dev = vp->v_rdev; if (dev == NULL) return (NULL); KASSERT((dev->si_flags & SI_ETERNAL) != 0, ("Not eternal cdev")); *ref = 0; csw = dev->si_devsw; KASSERT(csw != NULL, ("Eternal cdev is destroyed")); *devp = dev; return (csw); } csw = NULL; VI_LOCK(vp); dev = vp->v_rdev; if (dev == NULL) { VI_UNLOCK(vp); return (NULL); } cdp = cdev2priv(dev); mtx_lock(&cdp->cdp_threadlock); if ((cdp->cdp_flags & CDP_SCHED_DTR) == 0) { csw = dev->si_devsw; if (csw != NULL) atomic_add_long(&dev->si_threadcount, 1); } mtx_unlock(&cdp->cdp_threadlock); VI_UNLOCK(vp); if (csw != NULL) { *devp = dev; *ref = 1; } return (csw); } void dev_relthread(struct cdev *dev, int ref) { dev_lock_assert_unlocked(); if (!ref) return; KASSERT(dev->si_threadcount > 0, ("%s threadcount is wrong", dev->si_name)); atomic_subtract_rel_long(&dev->si_threadcount, 1); } int nullop(void) { return (0); } int eopnotsupp(void) { return (EOPNOTSUPP); } static int enxio(void) { return (ENXIO); } static int enodev(void) { return (ENODEV); } /* Define a dead_cdevsw for use when devices leave unexpectedly. */ #define dead_open (d_open_t *)enxio #define dead_close (d_close_t *)enxio #define dead_read (d_read_t *)enxio #define dead_write (d_write_t *)enxio #define dead_ioctl (d_ioctl_t *)enxio #define dead_poll (d_poll_t *)enodev #define dead_mmap (d_mmap_t *)enodev static void dead_strategy(struct bio *bp) { biofinish(bp, NULL, ENXIO); } #define dead_dump (dumper_t *)enxio #define dead_kqfilter (d_kqfilter_t *)enxio #define dead_mmap_single (d_mmap_single_t *)enodev static struct cdevsw dead_cdevsw = { .d_version = D_VERSION, .d_open = dead_open, .d_close = dead_close, .d_read = dead_read, .d_write = dead_write, .d_ioctl = dead_ioctl, .d_poll = dead_poll, .d_mmap = dead_mmap, .d_strategy = dead_strategy, .d_name = "dead", .d_dump = dead_dump, .d_kqfilter = dead_kqfilter, .d_mmap_single = dead_mmap_single }; /* Default methods if driver does not specify method */ #define null_open (d_open_t *)nullop #define null_close (d_close_t *)nullop #define no_read (d_read_t *)enodev #define no_write (d_write_t *)enodev #define no_ioctl (d_ioctl_t *)enodev #define no_mmap (d_mmap_t *)enodev #define no_kqfilter (d_kqfilter_t *)enodev #define no_mmap_single (d_mmap_single_t *)enodev static void no_strategy(struct bio *bp) { biofinish(bp, NULL, ENODEV); } static int no_poll(struct cdev *dev __unused, int events, struct thread *td __unused) { return (poll_no_poll(events)); } #define no_dump (dumper_t *)enodev static int giant_open(struct cdev *dev, int oflags, int devtype, struct thread *td) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_open(dev, oflags, devtype, td); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_fdopen(struct cdev *dev, int oflags, struct thread *td, struct file *fp) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_fdopen(dev, oflags, td, fp); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_close(struct cdev *dev, int fflag, int devtype, struct thread *td) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_close(dev, fflag, devtype, td); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static void giant_strategy(struct bio *bp) { struct cdevsw *dsw; struct cdev *dev; int ref; dev = bp->bio_dev; dsw = dev_refthread(dev, &ref); if (dsw == NULL) { biofinish(bp, NULL, ENXIO); return; } mtx_lock(&Giant); dsw->d_gianttrick->d_strategy(bp); mtx_unlock(&Giant); dev_relthread(dev, ref); } static int giant_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_ioctl(dev, cmd, data, fflag, td); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_read(struct cdev *dev, struct uio *uio, int ioflag) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_read(dev, uio, ioflag); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_write(struct cdev *dev, struct uio *uio, int ioflag) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_write(dev, uio, ioflag); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_poll(struct cdev *dev, int events, struct thread *td) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_poll(dev, events, td); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_kqfilter(struct cdev *dev, struct knote *kn) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_kqfilter(dev, kn); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, vm_memattr_t *memattr) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_mmap(dev, offset, paddr, nprot, memattr); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static int giant_mmap_single(struct cdev *dev, vm_ooffset_t *offset, vm_size_t size, vm_object_t *object, int nprot) { struct cdevsw *dsw; int ref, retval; dsw = dev_refthread(dev, &ref); if (dsw == NULL) return (ENXIO); mtx_lock(&Giant); retval = dsw->d_gianttrick->d_mmap_single(dev, offset, size, object, nprot); mtx_unlock(&Giant); dev_relthread(dev, ref); return (retval); } static void notify(struct cdev *dev, const char *ev, int flags) { static const char prefix[] = "cdev="; char *data; int namelen, mflags; if (cold) return; mflags = (flags & MAKEDEV_NOWAIT) ? M_NOWAIT : M_WAITOK; namelen = strlen(dev->si_name); data = malloc(namelen + sizeof(prefix), M_TEMP, mflags); if (data == NULL) return; memcpy(data, prefix, sizeof(prefix) - 1); memcpy(data + sizeof(prefix) - 1, dev->si_name, namelen + 1); devctl_notify("DEVFS", "CDEV", ev, data); free(data, M_TEMP); } static void notify_create(struct cdev *dev, int flags) { notify(dev, "CREATE", flags); } static void notify_destroy(struct cdev *dev) { notify(dev, "DESTROY", MAKEDEV_WAITOK); } static struct cdev * newdev(struct make_dev_args *args, struct cdev *si) { struct cdev *si2; struct cdevsw *csw; dev_lock_assert_locked(); csw = args->mda_devsw; si2 = NULL; if (csw->d_flags & D_NEEDMINOR) { /* We may want to return an existing device */ LIST_FOREACH(si2, &csw->d_devs, si_list) { if (dev2unit(si2) == args->mda_unit) { dev_free_devlocked(si); si = si2; break; } } /* * If we're returning an existing device, we should make sure * it isn't already initialized. This would have been caught * in consumers anyways, but it's good to catch such a case * early. We still need to complete initialization of the * device, and we'll use whatever make_dev_args were passed in * to do so. */ KASSERT(si2 == NULL || (si2->si_flags & SI_NAMED) == 0, ("make_dev() by driver %s on pre-existing device (min=%x, name=%s)", args->mda_devsw->d_name, dev2unit(si2), devtoname(si2))); } si->si_drv0 = args->mda_unit; si->si_drv1 = args->mda_si_drv1; si->si_drv2 = args->mda_si_drv2; /* Only push to csw->d_devs if it's not a cloned device. */ if (si2 == NULL) { si->si_devsw = csw; LIST_INSERT_HEAD(&csw->d_devs, si, si_list); } else { KASSERT(si->si_devsw == csw, ("%s: inconsistent devsw between clone_create() and make_dev()", __func__)); } return (si); } static void fini_cdevsw(struct cdevsw *devsw) { struct cdevsw *gt; if (devsw->d_gianttrick != NULL) { gt = devsw->d_gianttrick; memcpy(devsw, gt, sizeof *devsw); cdevsw_free_devlocked(gt); devsw->d_gianttrick = NULL; } devsw->d_flags &= ~D_INIT; } static int prep_cdevsw(struct cdevsw *devsw, int flags) { struct cdevsw *dsw2; dev_lock_assert_locked(); if (devsw->d_flags & D_INIT) return (0); if (devsw->d_flags & D_NEEDGIANT) { dev_unlock(); dsw2 = malloc(sizeof *dsw2, M_DEVT, (flags & MAKEDEV_NOWAIT) ? M_NOWAIT : M_WAITOK); dev_lock(); if (dsw2 == NULL && !(devsw->d_flags & D_INIT)) return (ENOMEM); } else dsw2 = NULL; if (devsw->d_flags & D_INIT) { if (dsw2 != NULL) cdevsw_free_devlocked(dsw2); return (0); } if (devsw->d_version != D_VERSION_04) { printf( "WARNING: Device driver \"%s\" has wrong version %s\n", devsw->d_name == NULL ? "???" : devsw->d_name, "and is disabled. Recompile KLD module."); devsw->d_open = dead_open; devsw->d_close = dead_close; devsw->d_read = dead_read; devsw->d_write = dead_write; devsw->d_ioctl = dead_ioctl; devsw->d_poll = dead_poll; devsw->d_mmap = dead_mmap; devsw->d_mmap_single = dead_mmap_single; devsw->d_strategy = dead_strategy; devsw->d_dump = dead_dump; devsw->d_kqfilter = dead_kqfilter; } - if (devsw->d_flags & D_NEEDGIANT) { + if ((devsw->d_flags & (D_NEEDGIANT | D_GIANTOK)) == D_NEEDGIANT) { printf("WARNING: Device \"%s\" is Giant locked and may be " "deleted before FreeBSD 14.0.\n", devsw->d_name == NULL ? "???" : devsw->d_name); if (devsw->d_gianttrick == NULL) { memcpy(dsw2, devsw, sizeof *dsw2); devsw->d_gianttrick = dsw2; dsw2 = NULL; } } #define FIXUP(member, noop, giant) \ do { \ if (devsw->member == NULL) { \ devsw->member = noop; \ } else if (devsw->d_flags & D_NEEDGIANT) \ devsw->member = giant; \ } \ while (0) FIXUP(d_open, null_open, giant_open); FIXUP(d_fdopen, NULL, giant_fdopen); FIXUP(d_close, null_close, giant_close); FIXUP(d_read, no_read, giant_read); FIXUP(d_write, no_write, giant_write); FIXUP(d_ioctl, no_ioctl, giant_ioctl); FIXUP(d_poll, no_poll, giant_poll); FIXUP(d_mmap, no_mmap, giant_mmap); FIXUP(d_strategy, no_strategy, giant_strategy); FIXUP(d_kqfilter, no_kqfilter, giant_kqfilter); FIXUP(d_mmap_single, no_mmap_single, giant_mmap_single); if (devsw->d_dump == NULL) devsw->d_dump = no_dump; LIST_INIT(&devsw->d_devs); devsw->d_flags |= D_INIT; if (dsw2 != NULL) cdevsw_free_devlocked(dsw2); return (0); } static int prep_devname(struct cdev *dev, const char *fmt, va_list ap) { int len; char *from, *q, *s, *to; dev_lock_assert_locked(); len = vsnrprintf(dev->si_name, sizeof(dev->si_name), 32, fmt, ap); if (len > sizeof(dev->si_name) - 1) return (ENAMETOOLONG); /* Strip leading slashes. */ for (from = dev->si_name; *from == '/'; from++) ; for (to = dev->si_name; *from != '\0'; from++, to++) { /* * Spaces and double quotation marks cause * problems for the devctl(4) protocol. * Reject names containing those characters. */ if (isspace(*from) || *from == '"') return (EINVAL); /* Treat multiple sequential slashes as single. */ while (from[0] == '/' && from[1] == '/') from++; /* Trailing slash is considered invalid. */ if (from[0] == '/' && from[1] == '\0') return (EINVAL); *to = *from; } *to = '\0'; if (dev->si_name[0] == '\0') return (EINVAL); /* Disallow "." and ".." components. */ for (s = dev->si_name;;) { for (q = s; *q != '/' && *q != '\0'; q++) ; if (q - s == 1 && s[0] == '.') return (EINVAL); if (q - s == 2 && s[0] == '.' && s[1] == '.') return (EINVAL); if (*q != '/') break; s = q + 1; } if (devfs_dev_exists(dev->si_name) != 0) return (EEXIST); return (0); } void make_dev_args_init_impl(struct make_dev_args *args, size_t sz) { bzero(args, sz); args->mda_size = sz; } static int make_dev_sv(struct make_dev_args *args1, struct cdev **dres, const char *fmt, va_list ap) { struct cdev *dev, *dev_new; struct make_dev_args args; int res; bzero(&args, sizeof(args)); if (sizeof(args) < args1->mda_size) return (EINVAL); bcopy(args1, &args, args1->mda_size); KASSERT((args.mda_flags & MAKEDEV_WAITOK) == 0 || (args.mda_flags & MAKEDEV_NOWAIT) == 0, ("make_dev_sv: both WAITOK and NOWAIT specified")); dev_new = devfs_alloc(args.mda_flags); if (dev_new == NULL) return (ENOMEM); dev_lock(); res = prep_cdevsw(args.mda_devsw, args.mda_flags); if (res != 0) { dev_unlock(); devfs_free(dev_new); return (res); } dev = newdev(&args, dev_new); if ((dev->si_flags & SI_NAMED) == 0) { res = prep_devname(dev, fmt, ap); if (res != 0) { if ((args.mda_flags & MAKEDEV_CHECKNAME) == 0) { panic( "make_dev_sv: bad si_name (error=%d, si_name=%s)", res, dev->si_name); } if (dev == dev_new) { LIST_REMOVE(dev, si_list); dev_unlock(); devfs_free(dev); } else dev_unlock(); return (res); } } if ((args.mda_flags & MAKEDEV_REF) != 0) dev_refl(dev); if ((args.mda_flags & MAKEDEV_ETERNAL) != 0) dev->si_flags |= SI_ETERNAL; KASSERT(!(dev->si_flags & SI_NAMED), ("make_dev() by driver %s on pre-existing device (min=%x, name=%s)", args.mda_devsw->d_name, dev2unit(dev), devtoname(dev))); dev->si_flags |= SI_NAMED; if (args.mda_cr != NULL) dev->si_cred = crhold(args.mda_cr); dev->si_uid = args.mda_uid; dev->si_gid = args.mda_gid; dev->si_mode = args.mda_mode; devfs_create(dev); clean_unrhdrl(devfs_inos); dev_unlock_and_free(); notify_create(dev, args.mda_flags); *dres = dev; return (0); } int make_dev_s(struct make_dev_args *args, struct cdev **dres, const char *fmt, ...) { va_list ap; int res; va_start(ap, fmt); res = make_dev_sv(args, dres, fmt, ap); va_end(ap); return (res); } static int make_dev_credv(int flags, struct cdev **dres, struct cdevsw *devsw, int unit, struct ucred *cr, uid_t uid, gid_t gid, int mode, const char *fmt, va_list ap) { struct make_dev_args args; make_dev_args_init(&args); args.mda_flags = flags; args.mda_devsw = devsw; args.mda_cr = cr; args.mda_uid = uid; args.mda_gid = gid; args.mda_mode = mode; args.mda_unit = unit; return (make_dev_sv(&args, dres, fmt, ap)); } struct cdev * make_dev(struct cdevsw *devsw, int unit, uid_t uid, gid_t gid, int mode, const char *fmt, ...) { struct cdev *dev; va_list ap; int res __unused; va_start(ap, fmt); res = make_dev_credv(0, &dev, devsw, unit, NULL, uid, gid, mode, fmt, ap); va_end(ap); KASSERT(res == 0 && dev != NULL, ("make_dev: failed make_dev_credv (error=%d)", res)); return (dev); } struct cdev * make_dev_cred(struct cdevsw *devsw, int unit, struct ucred *cr, uid_t uid, gid_t gid, int mode, const char *fmt, ...) { struct cdev *dev; va_list ap; int res __unused; va_start(ap, fmt); res = make_dev_credv(0, &dev, devsw, unit, cr, uid, gid, mode, fmt, ap); va_end(ap); KASSERT(res == 0 && dev != NULL, ("make_dev_cred: failed make_dev_credv (error=%d)", res)); return (dev); } struct cdev * make_dev_credf(int flags, struct cdevsw *devsw, int unit, struct ucred *cr, uid_t uid, gid_t gid, int mode, const char *fmt, ...) { struct cdev *dev; va_list ap; int res; va_start(ap, fmt); res = make_dev_credv(flags, &dev, devsw, unit, cr, uid, gid, mode, fmt, ap); va_end(ap); KASSERT(((flags & MAKEDEV_NOWAIT) != 0 && res == ENOMEM) || ((flags & MAKEDEV_CHECKNAME) != 0 && res != ENOMEM) || res == 0, ("make_dev_credf: failed make_dev_credv (error=%d)", res)); return (res == 0 ? dev : NULL); } int make_dev_p(int flags, struct cdev **cdev, struct cdevsw *devsw, struct ucred *cr, uid_t uid, gid_t gid, int mode, const char *fmt, ...) { va_list ap; int res; va_start(ap, fmt); res = make_dev_credv(flags, cdev, devsw, 0, cr, uid, gid, mode, fmt, ap); va_end(ap); KASSERT(((flags & MAKEDEV_NOWAIT) != 0 && res == ENOMEM) || ((flags & MAKEDEV_CHECKNAME) != 0 && res != ENOMEM) || res == 0, ("make_dev_p: failed make_dev_credv (error=%d)", res)); return (res); } static void dev_dependsl(struct cdev *pdev, struct cdev *cdev) { cdev->si_parent = pdev; cdev->si_flags |= SI_CHILD; LIST_INSERT_HEAD(&pdev->si_children, cdev, si_siblings); } void dev_depends(struct cdev *pdev, struct cdev *cdev) { dev_lock(); dev_dependsl(pdev, cdev); dev_unlock(); } static int make_dev_alias_v(int flags, struct cdev **cdev, struct cdev *pdev, const char *fmt, va_list ap) { struct cdev *dev; int error; KASSERT(pdev != NULL, ("make_dev_alias_v: pdev is NULL")); KASSERT((flags & MAKEDEV_WAITOK) == 0 || (flags & MAKEDEV_NOWAIT) == 0, ("make_dev_alias_v: both WAITOK and NOWAIT specified")); KASSERT((flags & ~(MAKEDEV_WAITOK | MAKEDEV_NOWAIT | MAKEDEV_CHECKNAME)) == 0, ("make_dev_alias_v: invalid flags specified (flags=%02x)", flags)); dev = devfs_alloc(flags); if (dev == NULL) return (ENOMEM); dev_lock(); dev->si_flags |= SI_ALIAS; error = prep_devname(dev, fmt, ap); if (error != 0) { if ((flags & MAKEDEV_CHECKNAME) == 0) { panic("make_dev_alias_v: bad si_name " "(error=%d, si_name=%s)", error, dev->si_name); } dev_unlock(); devfs_free(dev); return (error); } dev->si_flags |= SI_NAMED; devfs_create(dev); dev_dependsl(pdev, dev); clean_unrhdrl(devfs_inos); dev_unlock(); notify_create(dev, flags); *cdev = dev; return (0); } struct cdev * make_dev_alias(struct cdev *pdev, const char *fmt, ...) { struct cdev *dev; va_list ap; int res __unused; va_start(ap, fmt); res = make_dev_alias_v(MAKEDEV_WAITOK, &dev, pdev, fmt, ap); va_end(ap); KASSERT(res == 0 && dev != NULL, ("make_dev_alias: failed make_dev_alias_v (error=%d)", res)); return (dev); } int make_dev_alias_p(int flags, struct cdev **cdev, struct cdev *pdev, const char *fmt, ...) { va_list ap; int res; va_start(ap, fmt); res = make_dev_alias_v(flags, cdev, pdev, fmt, ap); va_end(ap); return (res); } int make_dev_physpath_alias(int flags, struct cdev **cdev, struct cdev *pdev, struct cdev *old_alias, const char *physpath) { char *devfspath; int physpath_len; int max_parentpath_len; int parentpath_len; int devfspathbuf_len; int mflags; int ret; *cdev = NULL; devfspath = NULL; physpath_len = strlen(physpath); ret = EINVAL; if (physpath_len == 0) goto out; if (strncmp("id1,", physpath, 4) == 0) { physpath += 4; physpath_len -= 4; if (physpath_len == 0) goto out; } max_parentpath_len = SPECNAMELEN - physpath_len - /*/*/1; parentpath_len = strlen(pdev->si_name); if (max_parentpath_len < parentpath_len) { if (bootverbose) printf("WARNING: Unable to alias %s " "to %s/%s - path too long\n", pdev->si_name, physpath, pdev->si_name); ret = ENAMETOOLONG; goto out; } mflags = (flags & MAKEDEV_NOWAIT) ? M_NOWAIT : M_WAITOK; devfspathbuf_len = physpath_len + /*/*/1 + parentpath_len + /*NUL*/1; devfspath = malloc(devfspathbuf_len, M_DEVBUF, mflags); if (devfspath == NULL) { ret = ENOMEM; goto out; } sprintf(devfspath, "%s/%s", physpath, pdev->si_name); if (old_alias != NULL && strcmp(old_alias->si_name, devfspath) == 0) { /* Retain the existing alias. */ *cdev = old_alias; old_alias = NULL; ret = 0; } else { ret = make_dev_alias_p(flags, cdev, pdev, "%s", devfspath); } out: if (old_alias != NULL) destroy_dev(old_alias); if (devfspath != NULL) free(devfspath, M_DEVBUF); return (ret); } static void destroy_devl(struct cdev *dev) { struct cdevsw *csw; struct cdev_privdata *p; struct cdev_priv *cdp; dev_lock_assert_locked(); KASSERT(dev->si_flags & SI_NAMED, ("WARNING: Driver mistake: destroy_dev on %d\n", dev2unit(dev))); KASSERT((dev->si_flags & SI_ETERNAL) == 0, ("WARNING: Driver mistake: destroy_dev on eternal %d\n", dev2unit(dev))); cdp = cdev2priv(dev); if ((cdp->cdp_flags & CDP_UNREF_DTR) == 0) { /* * Avoid race with dev_rel(), e.g. from the populate * loop. If CDP_UNREF_DTR flag is set, the reference * to be dropped at the end of destroy_devl() was * already taken by delist_dev_locked(). */ dev_refl(dev); devfs_destroy(dev); } /* Remove name marking */ dev->si_flags &= ~SI_NAMED; /* If we are a child, remove us from the parents list */ if (dev->si_flags & SI_CHILD) { LIST_REMOVE(dev, si_siblings); dev->si_flags &= ~SI_CHILD; } /* Kill our children */ while (!LIST_EMPTY(&dev->si_children)) destroy_devl(LIST_FIRST(&dev->si_children)); /* Remove from clone list */ if (dev->si_flags & SI_CLONELIST) { LIST_REMOVE(dev, si_clone); dev->si_flags &= ~SI_CLONELIST; } mtx_lock(&cdp->cdp_threadlock); csw = dev->si_devsw; dev->si_devsw = NULL; /* already NULL for SI_ALIAS */ while (csw != NULL && csw->d_purge != NULL && dev->si_threadcount) { csw->d_purge(dev); mtx_unlock(&cdp->cdp_threadlock); msleep(csw, &devmtx, PRIBIO, "devprg", hz/10); mtx_lock(&cdp->cdp_threadlock); if (dev->si_threadcount) printf("Still %lu threads in %s\n", dev->si_threadcount, devtoname(dev)); } while (dev->si_threadcount != 0) { /* Use unique dummy wait ident */ mtx_unlock(&cdp->cdp_threadlock); msleep(&csw, &devmtx, PRIBIO, "devdrn", hz / 10); mtx_lock(&cdp->cdp_threadlock); } mtx_unlock(&cdp->cdp_threadlock); dev_unlock(); if ((cdp->cdp_flags & CDP_UNREF_DTR) == 0) { /* avoid out of order notify events */ notify_destroy(dev); } mtx_lock(&cdevpriv_mtx); while ((p = LIST_FIRST(&cdp->cdp_fdpriv)) != NULL) { devfs_destroy_cdevpriv(p); mtx_lock(&cdevpriv_mtx); } mtx_unlock(&cdevpriv_mtx); dev_lock(); dev->si_drv1 = 0; dev->si_drv2 = 0; if (!(dev->si_flags & SI_ALIAS)) { /* Remove from cdevsw list */ LIST_REMOVE(dev, si_list); /* If cdevsw has no more struct cdev *'s, clean it */ if (LIST_EMPTY(&csw->d_devs)) { fini_cdevsw(csw); wakeup(&csw->d_devs); } } dev->si_flags &= ~SI_ALIAS; cdp->cdp_flags &= ~CDP_UNREF_DTR; dev->si_refcount--; if (dev->si_refcount > 0) LIST_INSERT_HEAD(&dead_cdevsw.d_devs, dev, si_list); else dev_free_devlocked(dev); } static void delist_dev_locked(struct cdev *dev) { struct cdev_priv *cdp; struct cdev *child; dev_lock_assert_locked(); cdp = cdev2priv(dev); if ((cdp->cdp_flags & CDP_UNREF_DTR) != 0) return; cdp->cdp_flags |= CDP_UNREF_DTR; dev_refl(dev); devfs_destroy(dev); LIST_FOREACH(child, &dev->si_children, si_siblings) delist_dev_locked(child); dev_unlock(); /* ensure the destroy event is queued in order */ notify_destroy(dev); dev_lock(); } /* * This function will delist a character device and its children from * the directory listing and create a destroy event without waiting * for all character device references to go away. At some later point * destroy_dev() must be called to complete the character device * destruction. After calling this function the character device name * can instantly be re-used. */ void delist_dev(struct cdev *dev) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "delist_dev"); dev_lock(); delist_dev_locked(dev); dev_unlock(); } void destroy_dev(struct cdev *dev) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "destroy_dev"); dev_lock(); destroy_devl(dev); dev_unlock_and_free(); } const char * devtoname(struct cdev *dev) { return (dev->si_name); } int dev_stdclone(char *name, char **namep, const char *stem, int *unit) { int u, i; i = strlen(stem); if (strncmp(stem, name, i) != 0) return (0); if (!isdigit(name[i])) return (0); u = 0; if (name[i] == '0' && isdigit(name[i+1])) return (0); while (isdigit(name[i])) { u *= 10; u += name[i++] - '0'; } if (u > 0xffffff) return (0); *unit = u; if (namep) *namep = &name[i]; if (name[i]) return (2); return (1); } /* * Helper functions for cloning device drivers. * * The objective here is to make it unnecessary for the device drivers to * use rman or similar to manage their unit number space. Due to the way * we do "on-demand" devices, using rman or other "private" methods * will be very tricky to lock down properly once we lock down this file. * * Instead we give the drivers these routines which puts the struct cdev *'s * that are to be managed on their own list, and gives the driver the ability * to ask for the first free unit number or a given specified unit number. * * In addition these routines support paired devices (pty, nmdm and similar) * by respecting a number of "flag" bits in the minor number. * */ struct clonedevs { LIST_HEAD(,cdev) head; }; void clone_setup(struct clonedevs **cdp) { *cdp = malloc(sizeof **cdp, M_DEVBUF, M_WAITOK | M_ZERO); LIST_INIT(&(*cdp)->head); } int clone_create(struct clonedevs **cdp, struct cdevsw *csw, int *up, struct cdev **dp, int extra) { struct clonedevs *cd; struct cdev *dev, *ndev, *dl, *de; struct make_dev_args args; int unit, low, u; KASSERT(*cdp != NULL, ("clone_setup() not called in driver \"%s\"", csw->d_name)); KASSERT(!(extra & CLONE_UNITMASK), ("Illegal extra bits (0x%x) in clone_create", extra)); KASSERT(*up <= CLONE_UNITMASK, ("Too high unit (0x%x) in clone_create", *up)); KASSERT(csw->d_flags & D_NEEDMINOR, ("clone_create() on cdevsw without minor numbers")); /* * Search the list for a lot of things in one go: * A preexisting match is returned immediately. * The lowest free unit number if we are passed -1, and the place * in the list where we should insert that new element. * The place to insert a specified unit number, if applicable * the end of the list. */ unit = *up; ndev = devfs_alloc(MAKEDEV_WAITOK); dev_lock(); prep_cdevsw(csw, MAKEDEV_WAITOK); low = extra; de = dl = NULL; cd = *cdp; LIST_FOREACH(dev, &cd->head, si_clone) { KASSERT(dev->si_flags & SI_CLONELIST, ("Dev %p(%s) should be on clonelist", dev, dev->si_name)); u = dev2unit(dev); if (u == (unit | extra)) { *dp = dev; dev_unlock(); devfs_free(ndev); return (0); } if (unit == -1 && u == low) { low++; de = dev; continue; } else if (u < (unit | extra)) { de = dev; continue; } else if (u > (unit | extra)) { dl = dev; break; } } if (unit == -1) unit = low & CLONE_UNITMASK; make_dev_args_init(&args); args.mda_unit = unit | extra; args.mda_devsw = csw; dev = newdev(&args, ndev); if (dev->si_flags & SI_CLONELIST) { printf("dev %p (%s) is on clonelist\n", dev, dev->si_name); printf("unit=%d, low=%d, extra=0x%x\n", unit, low, extra); LIST_FOREACH(dev, &cd->head, si_clone) { printf("\t%p %s\n", dev, dev->si_name); } panic("foo"); } KASSERT(!(dev->si_flags & SI_CLONELIST), ("Dev %p(%s) should not be on clonelist", dev, dev->si_name)); if (dl != NULL) LIST_INSERT_BEFORE(dl, dev, si_clone); else if (de != NULL) LIST_INSERT_AFTER(de, dev, si_clone); else LIST_INSERT_HEAD(&cd->head, dev, si_clone); dev->si_flags |= SI_CLONELIST; *up = unit; dev_unlock_and_free(); return (1); } /* * Kill everything still on the list. The driver should already have * disposed of any softc hung of the struct cdev *'s at this time. */ void clone_cleanup(struct clonedevs **cdp) { struct cdev *dev; struct cdev_priv *cp; struct clonedevs *cd; cd = *cdp; if (cd == NULL) return; dev_lock(); while (!LIST_EMPTY(&cd->head)) { dev = LIST_FIRST(&cd->head); LIST_REMOVE(dev, si_clone); KASSERT(dev->si_flags & SI_CLONELIST, ("Dev %p(%s) should be on clonelist", dev, dev->si_name)); dev->si_flags &= ~SI_CLONELIST; cp = cdev2priv(dev); if (!(cp->cdp_flags & CDP_SCHED_DTR)) { cp->cdp_flags |= CDP_SCHED_DTR; KASSERT(dev->si_flags & SI_NAMED, ("Driver has goofed in cloning underways udev %jx unit %x", (uintmax_t)dev2udev(dev), dev2unit(dev))); destroy_devl(dev); } } dev_unlock_and_free(); free(cd, M_DEVBUF); *cdp = NULL; } static TAILQ_HEAD(, cdev_priv) dev_ddtr = TAILQ_HEAD_INITIALIZER(dev_ddtr); static struct task dev_dtr_task = TASK_INITIALIZER(0, destroy_dev_tq, NULL); static void destroy_dev_tq(void *ctx, int pending) { struct cdev_priv *cp; struct cdev *dev; void (*cb)(void *); void *cb_arg; dev_lock(); while (!TAILQ_EMPTY(&dev_ddtr)) { cp = TAILQ_FIRST(&dev_ddtr); dev = &cp->cdp_c; KASSERT(cp->cdp_flags & CDP_SCHED_DTR, ("cdev %p in dev_destroy_tq without CDP_SCHED_DTR", cp)); TAILQ_REMOVE(&dev_ddtr, cp, cdp_dtr_list); cb = cp->cdp_dtr_cb; cb_arg = cp->cdp_dtr_cb_arg; destroy_devl(dev); dev_unlock_and_free(); dev_rel(dev); if (cb != NULL) cb(cb_arg); dev_lock(); } dev_unlock(); } /* * devmtx shall be locked on entry. devmtx will be unlocked after * function return. */ static int destroy_dev_sched_cbl(struct cdev *dev, void (*cb)(void *), void *arg) { struct cdev_priv *cp; dev_lock_assert_locked(); cp = cdev2priv(dev); if (cp->cdp_flags & CDP_SCHED_DTR) { dev_unlock(); return (0); } dev_refl(dev); cp->cdp_flags |= CDP_SCHED_DTR; cp->cdp_dtr_cb = cb; cp->cdp_dtr_cb_arg = arg; TAILQ_INSERT_TAIL(&dev_ddtr, cp, cdp_dtr_list); dev_unlock(); taskqueue_enqueue(taskqueue_swi_giant, &dev_dtr_task); return (1); } int destroy_dev_sched_cb(struct cdev *dev, void (*cb)(void *), void *arg) { dev_lock(); return (destroy_dev_sched_cbl(dev, cb, arg)); } int destroy_dev_sched(struct cdev *dev) { return (destroy_dev_sched_cb(dev, NULL, NULL)); } void destroy_dev_drain(struct cdevsw *csw) { dev_lock(); while (!LIST_EMPTY(&csw->d_devs)) { msleep(&csw->d_devs, &devmtx, PRIBIO, "devscd", hz/10); } dev_unlock(); } void drain_dev_clone_events(void) { sx_xlock(&clone_drain_lock); sx_xunlock(&clone_drain_lock); } #include "opt_ddb.h" #ifdef DDB #include #include DB_SHOW_COMMAND(cdev, db_show_cdev) { struct cdev_priv *cdp; struct cdev *dev; u_int flags; char buf[512]; if (!have_addr) { TAILQ_FOREACH(cdp, &cdevp_list, cdp_list) { dev = &cdp->cdp_c; db_printf("%s %p\n", dev->si_name, dev); if (db_pager_quit) break; } return; } dev = (struct cdev *)addr; cdp = cdev2priv(dev); db_printf("dev %s ref %d use %ld thr %ld inuse %u fdpriv %p\n", dev->si_name, dev->si_refcount, dev->si_usecount, dev->si_threadcount, cdp->cdp_inuse, cdp->cdp_fdpriv.lh_first); db_printf("devsw %p si_drv0 %d si_drv1 %p si_drv2 %p\n", dev->si_devsw, dev->si_drv0, dev->si_drv1, dev->si_drv2); flags = dev->si_flags; #define SI_FLAG(flag) do { \ if (flags & (flag)) { \ if (buf[0] != '\0') \ strlcat(buf, ", ", sizeof(buf)); \ strlcat(buf, (#flag) + 3, sizeof(buf)); \ flags &= ~(flag); \ } \ } while (0) buf[0] = '\0'; SI_FLAG(SI_ETERNAL); SI_FLAG(SI_ALIAS); SI_FLAG(SI_NAMED); SI_FLAG(SI_CHILD); SI_FLAG(SI_DUMPDEV); SI_FLAG(SI_CLONELIST); db_printf("si_flags %s\n", buf); flags = cdp->cdp_flags; #define CDP_FLAG(flag) do { \ if (flags & (flag)) { \ if (buf[0] != '\0') \ strlcat(buf, ", ", sizeof(buf)); \ strlcat(buf, (#flag) + 4, sizeof(buf)); \ flags &= ~(flag); \ } \ } while (0) buf[0] = '\0'; CDP_FLAG(CDP_ACTIVE); CDP_FLAG(CDP_SCHED_DTR); db_printf("cdp_flags %s\n", buf); } #endif diff --git a/sys/sys/conf.h b/sys/sys/conf.h index 2a87e5d3a9ca..123bf91cf952 100644 --- a/sys/sys/conf.h +++ b/sys/sys/conf.h @@ -1,382 +1,383 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * Copyright (c) 2000 * Poul-Henning Kamp. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)conf.h 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _SYS_CONF_H_ #define _SYS_CONF_H_ #ifdef _KERNEL #include #else #include #endif struct snapdata; struct devfs_dirent; struct cdevsw; struct file; struct cdev { void *si_spare0; u_int si_flags; #define SI_ETERNAL 0x0001 /* never destroyed */ #define SI_ALIAS 0x0002 /* carrier of alias name */ #define SI_NAMED 0x0004 /* make_dev{_alias} has been called */ #define SI_UNUSED1 0x0008 /* unused */ #define SI_CHILD 0x0010 /* child of another struct cdev **/ #define SI_DUMPDEV 0x0080 /* is kernel dumpdev */ #define SI_CLONELIST 0x0200 /* on a clone list */ #define SI_UNMAPPED 0x0400 /* can handle unmapped I/O */ #define SI_NOSPLIT 0x0800 /* I/O should not be split up */ struct timespec si_atime; struct timespec si_ctime; struct timespec si_mtime; uid_t si_uid; gid_t si_gid; mode_t si_mode; struct ucred *si_cred; /* cached clone-time credential */ int si_drv0; int si_refcount; LIST_ENTRY(cdev) si_list; LIST_ENTRY(cdev) si_clone; LIST_HEAD(, cdev) si_children; LIST_ENTRY(cdev) si_siblings; struct cdev *si_parent; struct mount *si_mountpt; void *si_drv1, *si_drv2; struct cdevsw *si_devsw; int si_iosize_max; /* maximum I/O size (for physio &al) */ u_long si_usecount; u_long si_threadcount; union { struct snapdata *__sid_snapdata; } __si_u; char si_name[SPECNAMELEN + 1]; }; #define si_snapdata __si_u.__sid_snapdata #ifdef _KERNEL /* * Definitions of device driver entry switches */ struct bio; struct buf; struct dumperinfo; struct kerneldumpheader; struct thread; struct uio; struct knote; struct clonedevs; struct vm_object; struct vnode; typedef int d_open_t(struct cdev *dev, int oflags, int devtype, struct thread *td); typedef int d_fdopen_t(struct cdev *dev, int oflags, struct thread *td, struct file *fp); typedef int d_close_t(struct cdev *dev, int fflag, int devtype, struct thread *td); typedef void d_strategy_t(struct bio *bp); typedef int d_ioctl_t(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); typedef int d_read_t(struct cdev *dev, struct uio *uio, int ioflag); typedef int d_write_t(struct cdev *dev, struct uio *uio, int ioflag); typedef int d_poll_t(struct cdev *dev, int events, struct thread *td); typedef int d_kqfilter_t(struct cdev *dev, struct knote *kn); typedef int d_mmap_t(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, vm_memattr_t *memattr); typedef int d_mmap_single_t(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t size, struct vm_object **object, int nprot); typedef void d_purge_t(struct cdev *dev); typedef int dumper_t( void *_priv, /* Private to the driver. */ void *_virtual, /* Virtual (mapped) address. */ vm_offset_t _physical, /* Physical address of virtual. */ off_t _offset, /* Byte-offset to write at. */ size_t _length); /* Number of bytes to dump. */ typedef int dumper_start_t(struct dumperinfo *di); typedef int dumper_hdr_t(struct dumperinfo *di, struct kerneldumpheader *kdh, void *key, uint32_t keylen); #endif /* _KERNEL */ /* * Types for d_flags. */ #define D_TAPE 0x0001 #define D_DISK 0x0002 #define D_TTY 0x0004 #define D_MEM 0x0008 /* /dev/(k)mem */ /* Defined uid and gid values. */ #define UID_ROOT 0 #define UID_BIN 3 #define UID_UUCP 66 #define UID_NOBODY 65534 #define GID_WHEEL 0 #define GID_KMEM 2 #define GID_TTY 4 #define GID_OPERATOR 5 #define GID_BIN 7 #define GID_GAMES 13 #define GID_VIDEO 44 #define GID_DIALER 68 #define GID_NOGROUP 65533 #define GID_NOBODY 65534 #ifdef _KERNEL #define D_TYPEMASK 0xffff /* * Flags for d_flags which the drivers can set. */ #define D_TRACKCLOSE 0x00080000 /* track all closes */ #define D_MMAP_ANON 0x00100000 /* special treatment in vm_mmap.c */ +#define D_GIANTOK 0x00200000 /* suppress warning about using Giant */ #define D_NEEDGIANT 0x00400000 /* driver want Giant */ #define D_NEEDMINOR 0x00800000 /* driver uses clone_create() */ /* * Version numbers. */ #define D_VERSION_00 0x20011966 #define D_VERSION_01 0x17032005 /* Add d_uid,gid,mode & kind */ #define D_VERSION_02 0x28042009 /* Add d_mmap_single */ #define D_VERSION_03 0x17122009 /* d_mmap takes memattr,vm_ooffset_t */ #define D_VERSION_04 0x5c48c353 /* SPECNAMELEN bumped to MAXNAMLEN */ #define D_VERSION D_VERSION_04 /* * Flags used for internal housekeeping */ #define D_INIT 0x80000000 /* cdevsw initialized */ /* * Character device switch table */ struct cdevsw { int d_version; u_int d_flags; const char *d_name; d_open_t *d_open; d_fdopen_t *d_fdopen; d_close_t *d_close; d_read_t *d_read; d_write_t *d_write; d_ioctl_t *d_ioctl; d_poll_t *d_poll; d_mmap_t *d_mmap; d_strategy_t *d_strategy; dumper_t *d_dump; d_kqfilter_t *d_kqfilter; d_purge_t *d_purge; d_mmap_single_t *d_mmap_single; int32_t d_spare0[3]; void *d_spare1[3]; /* These fields should not be messed with by drivers */ LIST_HEAD(, cdev) d_devs; int d_spare2; union { struct cdevsw *gianttrick; SLIST_ENTRY(cdevsw) postfree_list; } __d_giant; }; #define d_gianttrick __d_giant.gianttrick #define d_postfree_list __d_giant.postfree_list struct module; struct devsw_module_data { int (*chainevh)(struct module *, int, void *); /* next handler */ void *chainarg; /* arg for next event handler */ /* Do not initialize fields hereafter */ }; #define DEV_MODULE_ORDERED(name, evh, arg, ord) \ static moduledata_t name##_mod = { \ #name, \ evh, \ arg \ }; \ DECLARE_MODULE(name, name##_mod, SI_SUB_DRIVERS, ord) #define DEV_MODULE(name, evh, arg) \ DEV_MODULE_ORDERED(name, evh, arg, SI_ORDER_MIDDLE) void clone_setup(struct clonedevs **cdp); void clone_cleanup(struct clonedevs **); #define CLONE_UNITMASK 0xfffff #define CLONE_FLAG0 (CLONE_UNITMASK + 1) int clone_create(struct clonedevs **, struct cdevsw *, int *unit, struct cdev **dev, int extra); #define MAKEDEV_REF 0x01 #define MAKEDEV_WHTOUT 0x02 #define MAKEDEV_NOWAIT 0x04 #define MAKEDEV_WAITOK 0x08 #define MAKEDEV_ETERNAL 0x10 #define MAKEDEV_CHECKNAME 0x20 struct make_dev_args { size_t mda_size; int mda_flags; struct cdevsw *mda_devsw; struct ucred *mda_cr; uid_t mda_uid; gid_t mda_gid; int mda_mode; int mda_unit; void *mda_si_drv1; void *mda_si_drv2; }; void make_dev_args_init_impl(struct make_dev_args *_args, size_t _sz); #define make_dev_args_init(a) \ make_dev_args_init_impl((a), sizeof(struct make_dev_args)) void delist_dev(struct cdev *_dev); void destroy_dev(struct cdev *_dev); int destroy_dev_sched(struct cdev *dev); int destroy_dev_sched_cb(struct cdev *dev, void (*cb)(void *), void *arg); void destroy_dev_drain(struct cdevsw *csw); void drain_dev_clone_events(void); struct cdevsw *dev_refthread(struct cdev *_dev, int *_ref); struct cdevsw *devvn_refthread(struct vnode *vp, struct cdev **devp, int *_ref); void dev_relthread(struct cdev *_dev, int _ref); void dev_depends(struct cdev *_pdev, struct cdev *_cdev); void dev_ref(struct cdev *dev); void dev_refl(struct cdev *dev); void dev_rel(struct cdev *dev); struct cdev *make_dev(struct cdevsw *_devsw, int _unit, uid_t _uid, gid_t _gid, int _perms, const char *_fmt, ...) __printflike(6, 7); struct cdev *make_dev_cred(struct cdevsw *_devsw, int _unit, struct ucred *_cr, uid_t _uid, gid_t _gid, int _perms, const char *_fmt, ...) __printflike(7, 8); struct cdev *make_dev_credf(int _flags, struct cdevsw *_devsw, int _unit, struct ucred *_cr, uid_t _uid, gid_t _gid, int _mode, const char *_fmt, ...) __printflike(8, 9); int make_dev_p(int _flags, struct cdev **_cdev, struct cdevsw *_devsw, struct ucred *_cr, uid_t _uid, gid_t _gid, int _mode, const char *_fmt, ...) __printflike(8, 9); int make_dev_s(struct make_dev_args *_args, struct cdev **_cdev, const char *_fmt, ...) __printflike(3, 4); struct cdev *make_dev_alias(struct cdev *_pdev, const char *_fmt, ...) __printflike(2, 3); int make_dev_alias_p(int _flags, struct cdev **_cdev, struct cdev *_pdev, const char *_fmt, ...) __printflike(4, 5); int make_dev_physpath_alias(int _flags, struct cdev **_cdev, struct cdev *_pdev, struct cdev *_old_alias, const char *_physpath); void dev_lock(void); void dev_unlock(void); #ifdef KLD_MODULE #define MAKEDEV_ETERNAL_KLD 0 #else #define MAKEDEV_ETERNAL_KLD MAKEDEV_ETERNAL #endif #define dev2unit(d) ((d)->si_drv0) typedef void d_priv_dtor_t(void *data); int devfs_get_cdevpriv(void **datap); int devfs_set_cdevpriv(void *priv, d_priv_dtor_t *dtr); void devfs_clear_cdevpriv(void); ino_t devfs_alloc_cdp_inode(void); void devfs_free_cdp_inode(ino_t ino); typedef void (*dev_clone_fn)(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **result); int dev_stdclone(char *_name, char **_namep, const char *_stem, int *_unit); EVENTHANDLER_DECLARE(dev_clone, dev_clone_fn); /* Stuff relating to kernel-dump */ struct kerneldumpcrypto; struct kerneldumpheader; struct dumperinfo { dumper_t *dumper; /* Dumping function. */ dumper_start_t *dumper_start; /* Dumper callback for dump_start(). */ dumper_hdr_t *dumper_hdr; /* Dumper callback for writing headers. */ void *priv; /* Private parts. */ u_int blocksize; /* Size of block in bytes. */ u_int maxiosize; /* Max size allowed for an individual I/O */ off_t mediaoffset; /* Initial offset in bytes. */ off_t mediasize; /* Space available in bytes. */ /* MI kernel dump state. */ void *blockbuf; /* Buffer for padding shorter dump blocks */ off_t dumpoff; /* Offset of ongoing kernel dump. */ off_t origdumpoff; /* Starting dump offset. */ struct kerneldumpcrypto *kdcrypto; /* Kernel dump crypto. */ struct kerneldumpcomp *kdcomp; /* Kernel dump compression. */ TAILQ_ENTRY(dumperinfo) di_next; char di_devname[]; }; extern int dumping; /* system is dumping */ int doadump(boolean_t); struct diocskerneldump_arg; int dumper_insert(const struct dumperinfo *di_template, const char *devname, const struct diocskerneldump_arg *kda); int dumper_remove(const char *devname, const struct diocskerneldump_arg *kda); /* For ddb(4)-time use only. */ void dumper_ddb_insert(struct dumperinfo *); void dumper_ddb_remove(struct dumperinfo *); int dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh); int dump_append(struct dumperinfo *, void *, vm_offset_t, size_t); int dump_write(struct dumperinfo *, void *, vm_offset_t, off_t, size_t); int dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh); void dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh, const char *magic, uint32_t archver, uint64_t dumplen); #endif /* _KERNEL */ #endif /* !_SYS_CONF_H_ */