diff --git a/sys/cam/scsi/scsi_all.h b/sys/cam/scsi/scsi_all.h index ff27388e446c..597d5fd68447 100644 --- a/sys/cam/scsi/scsi_all.h +++ b/sys/cam/scsi/scsi_all.h @@ -1,4472 +1,4448 @@ /*- * Largely written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 * * $FreeBSD$ */ /* * SCSI general interface description */ #ifndef _SCSI_SCSI_ALL_H #define _SCSI_SCSI_ALL_H 1 #include #ifdef _KERNEL #include #else #include #endif #ifdef _KERNEL /* * This is the number of seconds we wait for devices to settle after a SCSI * bus reset. */ extern int scsi_delay; #endif /* _KERNEL */ /* * SCSI command format */ /* * Define dome bits that are in ALL (or a lot of) scsi commands */ #define SCSI_CTL_LINK 0x01 #define SCSI_CTL_FLAG 0x02 #define SCSI_CTL_VENDOR 0xC0 #define SCSI_CMD_LUN 0xA0 /* these two should not be needed */ #define SCSI_CMD_LUN_SHIFT 5 /* LUN in the cmd is no longer SCSI */ #define SCSI_MAX_CDBLEN 16 /* * 16 byte commands are in the * SCSI-3 spec */ #if defined(CAM_MAX_CDBLEN) && (CAM_MAX_CDBLEN < SCSI_MAX_CDBLEN) #error "CAM_MAX_CDBLEN cannot be less than SCSI_MAX_CDBLEN" #endif /* 6byte CDBs special case 0 length to be 256 */ #define SCSI_CDB6_LEN(len) ((len) == 0 ? 256 : len) /* * This type defines actions to be taken when a particular sense code is * received. Right now, these flags are only defined to take up 16 bits, * but can be expanded in the future if necessary. */ typedef enum { SS_NOP = 0x000000, /* Do nothing */ SS_RETRY = 0x010000, /* Retry the command */ SS_FAIL = 0x020000, /* Bail out */ SS_START = 0x030000, /* Send a Start Unit command to the device, * then retry the original command. */ SS_TUR = 0x040000, /* Send a Test Unit Ready command to the * device, then retry the original command. */ SS_MASK = 0xff0000 } scsi_sense_action; typedef enum { SSQ_NONE = 0x0000, SSQ_DECREMENT_COUNT = 0x0100, /* Decrement the retry count */ SSQ_MANY = 0x0200, /* send lots of recovery commands */ SSQ_RANGE = 0x0400, /* * This table entry represents the * end of a range of ASCQs that * have identical error actions * and text. */ SSQ_PRINT_SENSE = 0x0800, SSQ_UA = 0x1000, /* Broadcast UA. */ SSQ_RESCAN = 0x2000, /* Rescan target for LUNs. */ SSQ_LOST = 0x4000, /* Destroy the LUNs. */ SSQ_MASK = 0xff00 } scsi_sense_action_qualifier; /* Mask for error status values */ #define SS_ERRMASK 0xff /* The default, retyable, error action */ #define SS_RDEF SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE|EIO /* The retyable, error action, with table specified error code */ #define SS_RET SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE /* Wait for transient error status to change */ #define SS_WAIT SS_TUR|SSQ_MANY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE /* Fatal error action, with table specified error code */ #define SS_FATAL SS_FAIL|SSQ_PRINT_SENSE struct scsi_generic { u_int8_t opcode; u_int8_t bytes[11]; }; struct scsi_request_sense { u_int8_t opcode; u_int8_t byte2; #define SRS_DESC 0x01 u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_test_unit_ready { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[3]; u_int8_t control; }; struct scsi_receive_diag { uint8_t opcode; uint8_t byte2; #define SRD_PCV 0x01 uint8_t page_code; uint8_t length[2]; uint8_t control; }; struct scsi_send_diag { uint8_t opcode; uint8_t byte2; #define SSD_UNITOFFL 0x01 #define SSD_DEVOFFL 0x02 #define SSD_SELFTEST 0x04 #define SSD_PF 0x10 #define SSD_SELF_TEST_CODE_MASK 0xE0 #define SSD_SELF_TEST_CODE_SHIFT 5 #define SSD_SELF_TEST_CODE_NONE 0x00 #define SSD_SELF_TEST_CODE_BG_SHORT 0x01 #define SSD_SELF_TEST_CODE_BG_EXTENDED 0x02 #define SSD_SELF_TEST_CODE_BG_ABORT 0x04 #define SSD_SELF_TEST_CODE_FG_SHORT 0x05 #define SSD_SELF_TEST_CODE_FG_EXTENDED 0x06 uint8_t reserved; uint8_t length[2]; uint8_t control; }; struct scsi_sense { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_inquiry { u_int8_t opcode; u_int8_t byte2; #define SI_EVPD 0x01 #define SI_CMDDT 0x02 u_int8_t page_code; u_int8_t length[2]; u_int8_t control; }; struct scsi_mode_sense_6 { u_int8_t opcode; u_int8_t byte2; #define SMS_DBD 0x08 u_int8_t page; #define SMS_PAGE_CODE 0x3F #define SMS_VENDOR_SPECIFIC_PAGE 0x00 #define SMS_DISCONNECT_RECONNECT_PAGE 0x02 #define SMS_FORMAT_DEVICE_PAGE 0x03 #define SMS_GEOMETRY_PAGE 0x04 #define SMS_CACHE_PAGE 0x08 #define SMS_PERIPHERAL_DEVICE_PAGE 0x09 #define SMS_CONTROL_MODE_PAGE 0x0A #define SMS_PROTO_SPECIFIC_PAGE 0x19 #define SMS_INFO_EXCEPTIONS_PAGE 0x1C #define SMS_ALL_PAGES_PAGE 0x3F #define SMS_PAGE_CTRL_MASK 0xC0 #define SMS_PAGE_CTRL_CURRENT 0x00 #define SMS_PAGE_CTRL_CHANGEABLE 0x40 #define SMS_PAGE_CTRL_DEFAULT 0x80 #define SMS_PAGE_CTRL_SAVED 0xC0 u_int8_t subpage; #define SMS_SUBPAGE_PAGE_0 0x00 #define SMS_SUBPAGE_ALL 0xff u_int8_t length; u_int8_t control; }; struct scsi_mode_sense_10 { u_int8_t opcode; u_int8_t byte2; /* same bits as small version */ #define SMS10_LLBAA 0x10 u_int8_t page; /* same bits as small version */ u_int8_t subpage; u_int8_t unused[3]; u_int8_t length[2]; u_int8_t control; }; struct scsi_mode_select_6 { u_int8_t opcode; u_int8_t byte2; #define SMS_SP 0x01 #define SMS_RTD 0x02 #define SMS_PF 0x10 u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_mode_select_10 { u_int8_t opcode; u_int8_t byte2; /* same bits as small version */ u_int8_t unused[5]; u_int8_t length[2]; u_int8_t control; }; /* * When sending a mode select to a tape drive, the medium type must be 0. */ struct scsi_mode_hdr_6 { u_int8_t datalen; u_int8_t medium_type; u_int8_t dev_specific; u_int8_t block_descr_len; }; struct scsi_mode_hdr_10 { u_int8_t datalen[2]; u_int8_t medium_type; u_int8_t dev_specific; u_int8_t flags; #define SMH_LONGLBA 0x01 u_int8_t reserved; u_int8_t block_descr_len[2]; }; struct scsi_mode_block_descr { u_int8_t density_code; u_int8_t num_blocks[3]; u_int8_t reserved; u_int8_t block_len[3]; }; struct scsi_mode_block_descr_dshort { u_int8_t num_blocks[4]; u_int8_t reserved; u_int8_t block_len[3]; }; struct scsi_mode_block_descr_dlong { u_int8_t num_blocks[8]; u_int8_t reserved[4]; u_int8_t block_len[4]; }; struct scsi_per_res_in { u_int8_t opcode; u_int8_t action; #define SPRI_RK 0x00 #define SPRI_RR 0x01 #define SPRI_RC 0x02 #define SPRI_RS 0x03 u_int8_t reserved[5]; u_int8_t length[2]; #define SPRI_MAX_LEN 0xffff u_int8_t control; }; struct scsi_per_res_in_header { u_int8_t generation[4]; u_int8_t length[4]; }; struct scsi_per_res_key { u_int8_t key[8]; }; struct scsi_per_res_in_keys { struct scsi_per_res_in_header header; struct scsi_per_res_key keys[0]; }; struct scsi_per_res_cap { uint8_t length[2]; uint8_t flags1; #define SPRI_RLR_C 0x80 #define SPRI_CRH 0x10 #define SPRI_SIP_C 0x08 #define SPRI_ATP_C 0x04 #define SPRI_PTPL_C 0x01 uint8_t flags2; #define SPRI_TMV 0x80 #define SPRI_ALLOW_CMD_MASK 0x70 #define SPRI_ALLOW_CMD_SHIFT 4 #define SPRI_ALLOW_NA 0x00 #define SPRI_ALLOW_1 0x10 #define SPRI_ALLOW_2 0x20 #define SPRI_ALLOW_3 0x30 #define SPRI_ALLOW_4 0x40 #define SPRI_ALLOW_5 0x50 #define SPRI_PTPL_A 0x01 uint8_t type_mask[2]; #define SPRI_TM_WR_EX_AR 0x8000 #define SPRI_TM_EX_AC_RO 0x4000 #define SPRI_TM_WR_EX_RO 0x2000 #define SPRI_TM_EX_AC 0x0800 #define SPRI_TM_WR_EX 0x0200 #define SPRI_TM_EX_AC_AR 0x0001 uint8_t reserved[2]; }; struct scsi_per_res_in_rsrv_data { uint8_t reservation[8]; uint8_t scope_addr[4]; uint8_t reserved; uint8_t scopetype; #define SPRT_WE 0x01 #define SPRT_EA 0x03 #define SPRT_WERO 0x05 #define SPRT_EARO 0x06 #define SPRT_WEAR 0x07 #define SPRT_EAAR 0x08 uint8_t extent_length[2]; }; struct scsi_per_res_in_rsrv { struct scsi_per_res_in_header header; struct scsi_per_res_in_rsrv_data data; }; struct scsi_per_res_in_full_desc { struct scsi_per_res_key res_key; uint8_t reserved1[4]; uint8_t flags; #define SPRI_FULL_ALL_TG_PT 0x02 #define SPRI_FULL_R_HOLDER 0x01 uint8_t scopetype; uint8_t reserved2[4]; uint8_t rel_trgt_port_id[2]; uint8_t additional_length[4]; uint8_t transport_id[]; }; struct scsi_per_res_in_full { struct scsi_per_res_in_header header; struct scsi_per_res_in_full_desc desc[]; }; struct scsi_per_res_out { u_int8_t opcode; u_int8_t action; #define SPRO_REGISTER 0x00 #define SPRO_RESERVE 0x01 #define SPRO_RELEASE 0x02 #define SPRO_CLEAR 0x03 #define SPRO_PREEMPT 0x04 #define SPRO_PRE_ABO 0x05 #define SPRO_REG_IGNO 0x06 #define SPRO_REG_MOVE 0x07 #define SPRO_REPL_LOST_RES 0x08 #define SPRO_ACTION_MASK 0x1f u_int8_t scope_type; #define SPR_SCOPE_MASK 0xf0 #define SPR_SCOPE_SHIFT 4 #define SPR_LU_SCOPE 0x00 #define SPR_EXTENT_SCOPE 0x10 #define SPR_ELEMENT_SCOPE 0x20 #define SPR_TYPE_MASK 0x0f #define SPR_TYPE_RD_SHARED 0x00 #define SPR_TYPE_WR_EX 0x01 #define SPR_TYPE_RD_EX 0x02 #define SPR_TYPE_EX_AC 0x03 #define SPR_TYPE_SHARED 0x04 #define SPR_TYPE_WR_EX_RO 0x05 #define SPR_TYPE_EX_AC_RO 0x06 #define SPR_TYPE_WR_EX_AR 0x07 #define SPR_TYPE_EX_AC_AR 0x08 u_int8_t reserved[2]; u_int8_t length[4]; u_int8_t control; }; struct scsi_per_res_out_parms { struct scsi_per_res_key res_key; u_int8_t serv_act_res_key[8]; u_int8_t scope_spec_address[4]; u_int8_t flags; #define SPR_SPEC_I_PT 0x08 #define SPR_ALL_TG_PT 0x04 #define SPR_APTPL 0x01 u_int8_t reserved1; u_int8_t extent_length[2]; u_int8_t transport_id_list[]; }; struct scsi_per_res_out_trans_ids { u_int8_t additional_length[4]; u_int8_t transport_ids[]; }; /* * Used with REGISTER AND MOVE serivce action of the PERSISTENT RESERVE OUT * command. */ struct scsi_per_res_reg_move { struct scsi_per_res_key res_key; u_int8_t serv_act_res_key[8]; u_int8_t reserved; u_int8_t flags; #define SPR_REG_MOVE_UNREG 0x02 #define SPR_REG_MOVE_APTPL 0x01 u_int8_t rel_trgt_port_id[2]; u_int8_t transport_id_length[4]; u_int8_t transport_id[]; }; struct scsi_transportid_header { uint8_t format_protocol; #define SCSI_TRN_FORMAT_MASK 0xc0 #define SCSI_TRN_FORMAT_SHIFT 6 #define SCSI_TRN_PROTO_MASK 0x0f }; struct scsi_transportid_fcp { uint8_t format_protocol; #define SCSI_TRN_FCP_FORMAT_DEFAULT 0x00 uint8_t reserved1[7]; uint8_t n_port_name[8]; uint8_t reserved2[8]; }; struct scsi_transportid_spi { uint8_t format_protocol; #define SCSI_TRN_SPI_FORMAT_DEFAULT 0x00 uint8_t reserved1; uint8_t scsi_addr[2]; uint8_t obsolete[2]; uint8_t rel_trgt_port_id[2]; uint8_t reserved2[16]; }; struct scsi_transportid_1394 { uint8_t format_protocol; #define SCSI_TRN_1394_FORMAT_DEFAULT 0x00 uint8_t reserved1[7]; uint8_t eui64[8]; uint8_t reserved2[8]; }; struct scsi_transportid_rdma { uint8_t format_protocol; #define SCSI_TRN_RDMA_FORMAT_DEFAULT 0x00 uint8_t reserved[7]; #define SCSI_TRN_RDMA_PORT_LEN 16 uint8_t initiator_port_id[SCSI_TRN_RDMA_PORT_LEN]; }; struct scsi_transportid_iscsi_device { uint8_t format_protocol; #define SCSI_TRN_ISCSI_FORMAT_DEVICE 0x00 uint8_t reserved; uint8_t additional_length[2]; uint8_t iscsi_name[]; }; struct scsi_transportid_iscsi_port { uint8_t format_protocol; #define SCSI_TRN_ISCSI_FORMAT_PORT 0x40 uint8_t reserved; uint8_t additional_length[2]; uint8_t iscsi_name[]; /* * Followed by a separator and iSCSI initiator session ID */ }; struct scsi_transportid_sas { uint8_t format_protocol; #define SCSI_TRN_SAS_FORMAT_DEFAULT 0x00 uint8_t reserved1[3]; uint8_t sas_address[8]; uint8_t reserved2[12]; }; struct scsi_sop_routing_id_norm { uint8_t bus; uint8_t devfunc; #define SCSI_TRN_SOP_BUS_MAX 0xff #define SCSI_TRN_SOP_DEV_MAX 0x1f #define SCSI_TRN_SOP_DEV_MASK 0xf8 #define SCSI_TRN_SOP_DEV_SHIFT 3 #define SCSI_TRN_SOP_FUNC_NORM_MASK 0x07 #define SCSI_TRN_SOP_FUNC_NORM_MAX 0x07 }; struct scsi_sop_routing_id_alt { uint8_t bus; uint8_t function; #define SCSI_TRN_SOP_FUNC_ALT_MAX 0xff }; struct scsi_transportid_sop { uint8_t format_protocol; #define SCSI_TRN_SOP_FORMAT_DEFAULT 0x00 uint8_t reserved1; uint8_t routing_id[2]; uint8_t reserved2[20]; }; struct scsi_log_sense { u_int8_t opcode; u_int8_t byte2; #define SLS_SP 0x01 #define SLS_PPC 0x02 u_int8_t page; #define SLS_PAGE_CODE 0x3F #define SLS_SUPPORTED_PAGES_PAGE 0x00 #define SLS_OVERRUN_PAGE 0x01 #define SLS_ERROR_WRITE_PAGE 0x02 #define SLS_ERROR_READ_PAGE 0x03 #define SLS_ERROR_READREVERSE_PAGE 0x04 #define SLS_ERROR_VERIFY_PAGE 0x05 #define SLS_ERROR_NONMEDIUM_PAGE 0x06 #define SLS_ERROR_LASTN_PAGE 0x07 #define SLS_LOGICAL_BLOCK_PROVISIONING 0x0c #define SLS_TEMPERATURE 0x0d #define SLS_SELF_TEST_PAGE 0x10 #define SLS_SOLID_STATE_MEDIA 0x11 #define SLS_STAT_AND_PERF 0x19 #define SLS_IE_PAGE 0x2f #define SLS_PAGE_CTRL_MASK 0xC0 #define SLS_PAGE_CTRL_THRESHOLD 0x00 #define SLS_PAGE_CTRL_CUMULATIVE 0x40 #define SLS_PAGE_CTRL_THRESH_DEFAULT 0x80 #define SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0 u_int8_t subpage; #define SLS_SUPPORTED_SUBPAGES_SUBPAGE 0xff u_int8_t reserved; u_int8_t paramptr[2]; u_int8_t length[2]; u_int8_t control; }; struct scsi_log_select { u_int8_t opcode; u_int8_t byte2; /* SLS_SP 0x01 */ #define SLS_PCR 0x02 u_int8_t page; /* SLS_PAGE_CTRL_MASK 0xC0 */ /* SLS_PAGE_CTRL_THRESHOLD 0x00 */ /* SLS_PAGE_CTRL_CUMULATIVE 0x40 */ /* SLS_PAGE_CTRL_THRESH_DEFAULT 0x80 */ /* SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0 */ u_int8_t reserved[4]; u_int8_t length[2]; u_int8_t control; }; struct scsi_log_header { u_int8_t page; #define SL_PAGE_CODE 0x3F #define SL_SPF 0x40 #define SL_DS 0x80 u_int8_t subpage; u_int8_t datalen[2]; }; struct scsi_log_param_header { u_int8_t param_code[2]; u_int8_t param_control; #define SLP_LP 0x01 #define SLP_LBIN 0x02 #define SLP_TMC_MASK 0x0C #define SLP_TMC_ALWAYS 0x00 #define SLP_TMC_EQUAL 0x04 #define SLP_TMC_NOTEQUAL 0x08 #define SLP_TMC_GREATER 0x0C #define SLP_ETC 0x10 #define SLP_TSD 0x20 #define SLP_DS 0x40 #define SLP_DU 0x80 u_int8_t param_len; }; struct scsi_log_media_pct_used { struct scsi_log_param_header hdr; #define SLP_SS_MEDIA_PCT_USED 0x0001 uint8_t reserved[3]; uint8_t pct_used; }; struct scsi_log_stat_and_perf { struct scsi_log_param_header hdr; #define SLP_SAP 0x0001 uint8_t read_num[8]; uint8_t write_num[8]; uint8_t recvieved_lba[8]; uint8_t transmitted_lba[8]; uint8_t read_int[8]; uint8_t write_int[8]; uint8_t weighted_num[8]; uint8_t weighted_int[8]; }; struct scsi_log_idle_time { struct scsi_log_param_header hdr; #define SLP_IT 0x0002 uint8_t idle_int[8]; }; struct scsi_log_time_interval { struct scsi_log_param_header hdr; #define SLP_TI 0x0003 uint8_t exponent[4]; uint8_t integer[4]; }; struct scsi_log_fua_stat_and_perf { struct scsi_log_param_header hdr; #define SLP_FUA_SAP 0x0004 uint8_t fua_read_num[8]; uint8_t fua_write_num[8]; uint8_t fuanv_read_num[8]; uint8_t fuanv_write_num[8]; uint8_t fua_read_int[8]; uint8_t fua_write_int[8]; uint8_t fuanv_read_int[8]; uint8_t fuanv_write_int[8]; }; struct scsi_log_informational_exceptions { struct scsi_log_param_header hdr; #define SLP_IE_GEN 0x0000 uint8_t ie_asc; uint8_t ie_ascq; uint8_t temperature; }; struct scsi_log_temperature { struct scsi_log_param_header hdr; #define SLP_TEMPERATURE 0x0000 #define SLP_REFTEMPERATURE 0x0001 uint8_t reserved; uint8_t temperature; }; struct scsi_control_page { u_int8_t page_code; u_int8_t page_length; u_int8_t rlec; #define SCP_RLEC 0x01 /*Report Log Exception Cond*/ #define SCP_GLTSD 0x02 /*Global Logging target save disable */ #define SCP_DSENSE 0x04 /*Descriptor Sense */ #define SCP_DPICZ 0x08 /*Disable Prot. Info Check if Prot. Field is Zero */ #define SCP_TMF_ONLY 0x10 /*TM Functions Only*/ #define SCP_TST_MASK 0xE0 /*Task Set Type Mask*/ #define SCP_TST_ONE 0x00 /*One Task Set*/ #define SCP_TST_SEPARATE 0x20 /*Separate Task Sets*/ u_int8_t queue_flags; #define SCP_QUEUE_ALG_MASK 0xF0 #define SCP_QUEUE_ALG_RESTRICTED 0x00 #define SCP_QUEUE_ALG_UNRESTRICTED 0x10 #define SCP_NUAR 0x08 /*No UA on release*/ #define SCP_QUEUE_ERR 0x02 /*Queued I/O aborted for CACs*/ #define SCP_QUEUE_DQUE 0x01 /*Queued I/O disabled*/ u_int8_t eca_and_aen; #define SCP_EECA 0x80 /*Enable Extended CA*/ #define SCP_RAC 0x40 /*Report a check*/ #define SCP_SWP 0x08 /*Software Write Protect*/ #define SCP_RAENP 0x04 /*Ready AEN Permission*/ #define SCP_UAAENP 0x02 /*UA AEN Permission*/ #define SCP_EAENP 0x01 /*Error AEN Permission*/ u_int8_t flags4; #define SCP_ATO 0x80 /*Application tag owner*/ #define SCP_TAS 0x40 /*Task aborted status*/ #define SCP_ATMPE 0x20 /*Application tag mode page*/ #define SCP_RWWP 0x10 /*Reject write without prot*/ u_int8_t aen_holdoff_period[2]; u_int8_t busy_timeout_period[2]; u_int8_t extended_selftest_completion_time[2]; }; struct scsi_control_ext_page { uint8_t page_code; #define SCEP_PAGE_CODE 0x0a uint8_t subpage_code; #define SCEP_SUBPAGE_CODE 0x01 uint8_t page_length[2]; uint8_t flags; #define SCEP_TCMOS 0x04 /* Timestamp Changeable by */ #define SCEP_SCSIP 0x02 /* SCSI Precedence (clock) */ #define SCEP_IALUAE 0x01 /* Implicit ALUA Enabled */ uint8_t prio; uint8_t max_sense; uint8_t reserve[25]; }; struct scsi_cache_page { u_int8_t page_code; #define SCHP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t cache_flags; #define SCHP_FLAGS_WCE 0x04 /* Write Cache Enable */ #define SCHP_FLAGS_MF 0x02 /* Multiplication factor */ #define SCHP_FLAGS_RCD 0x01 /* Read Cache Disable */ u_int8_t rw_cache_policy; u_int8_t dis_prefetch[2]; u_int8_t min_prefetch[2]; u_int8_t max_prefetch[2]; u_int8_t max_prefetch_ceil[2]; }; /* * XXX KDM * Updated version of the cache page, as of SBC. Update this to SBC-3 and * rationalize the two. */ struct scsi_caching_page { uint8_t page_code; #define SMS_CACHING_PAGE 0x08 uint8_t page_length; uint8_t flags1; #define SCP_IC 0x80 #define SCP_ABPF 0x40 #define SCP_CAP 0x20 #define SCP_DISC 0x10 #define SCP_SIZE 0x08 #define SCP_WCE 0x04 #define SCP_MF 0x02 #define SCP_RCD 0x01 uint8_t ret_priority; uint8_t disable_pf_transfer_len[2]; uint8_t min_prefetch[2]; uint8_t max_prefetch[2]; uint8_t max_pf_ceiling[2]; uint8_t flags2; #define SCP_FSW 0x80 #define SCP_LBCSS 0x40 #define SCP_DRA 0x20 #define SCP_VS1 0x10 #define SCP_VS2 0x08 uint8_t cache_segments; uint8_t cache_seg_size[2]; uint8_t reserved; uint8_t non_cache_seg_size[3]; }; struct scsi_info_exceptions_page { u_int8_t page_code; #define SIEP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t info_flags; #define SIEP_FLAGS_PERF 0x80 #define SIEP_FLAGS_EBF 0x20 #define SIEP_FLAGS_EWASC 0x10 #define SIEP_FLAGS_DEXCPT 0x08 #define SIEP_FLAGS_TEST 0x04 #define SIEP_FLAGS_EBACKERR 0x02 #define SIEP_FLAGS_LOGERR 0x01 u_int8_t mrie; #define SIEP_MRIE_NO 0x00 #define SIEP_MRIE_UA 0x02 #define SIEP_MRIE_REC_COND 0x03 #define SIEP_MRIE_REC_UNCOND 0x04 #define SIEP_MRIE_NO_SENSE 0x05 #define SIEP_MRIE_ON_REQ 0x06 u_int8_t interval_timer[4]; u_int8_t report_count[4]; }; struct scsi_logical_block_provisioning_page_descr { uint8_t flags; #define SLBPPD_ENABLED 0x80 #define SLBPPD_TYPE_MASK 0x38 #define SLBPPD_ARMING_MASK 0x07 #define SLBPPD_ARMING_DEC 0x02 #define SLBPPD_ARMING_INC 0x01 uint8_t resource; uint8_t reserved[2]; uint8_t count[4]; }; struct scsi_logical_block_provisioning_page { uint8_t page_code; uint8_t subpage_code; uint8_t page_length[2]; uint8_t flags; #define SLBPP_SITUA 0x01 uint8_t reserved[11]; struct scsi_logical_block_provisioning_page_descr descr[0]; }; /* * SCSI protocol identifier values, current as of SPC4r36l. */ #define SCSI_PROTO_FC 0x00 /* Fibre Channel */ #define SCSI_PROTO_SPI 0x01 /* Parallel SCSI */ #define SCSI_PROTO_SSA 0x02 /* Serial Storage Arch. */ #define SCSI_PROTO_1394 0x03 /* IEEE 1394 (Firewire) */ #define SCSI_PROTO_RDMA 0x04 /* SCSI RDMA Protocol */ #define SCSI_PROTO_ISCSI 0x05 /* Internet SCSI */ #define SCSI_PROTO_iSCSI 0x05 /* Internet SCSI */ #define SCSI_PROTO_SAS 0x06 /* SAS Serial SCSI Protocol */ #define SCSI_PROTO_ADT 0x07 /* Automation/Drive Int. Trans. Prot.*/ #define SCSI_PROTO_ADITP 0x07 /* Automation/Drive Int. Trans. Prot.*/ #define SCSI_PROTO_ATA 0x08 /* AT Attachment Interface */ #define SCSI_PROTO_UAS 0x09 /* USB Atached SCSI */ #define SCSI_PROTO_SOP 0x0a /* SCSI over PCI Express */ #define SCSI_PROTO_NONE 0x0f /* No specific protocol */ struct scsi_proto_specific_page { u_int8_t page_code; #define SPSP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t protocol; #define SPSP_PROTO_FC SCSI_PROTO_FC #define SPSP_PROTO_SPI SCSI_PROTO_SPI #define SPSP_PROTO_SSA SCSI_PROTO_SSA #define SPSP_PROTO_1394 SCSI_PROTO_1394 #define SPSP_PROTO_RDMA SCSI_PROTO_RDMA #define SPSP_PROTO_ISCSI SCSI_PROTO_ISCSI #define SPSP_PROTO_SAS SCSI_PROTO_SAS #define SPSP_PROTO_ADT SCSI_PROTO_ADITP #define SPSP_PROTO_ATA SCSI_PROTO_ATA #define SPSP_PROTO_UAS SCSI_PROTO_UAS #define SPSP_PROTO_SOP SCSI_PROTO_SOP #define SPSP_PROTO_NONE SCSI_PROTO_NONE }; struct scsi_reserve { u_int8_t opcode; u_int8_t byte2; #define SR_EXTENT 0x01 #define SR_ID_MASK 0x0e #define SR_3RDPTY 0x10 #define SR_LUN_MASK 0xe0 u_int8_t resv_id; u_int8_t length[2]; u_int8_t control; }; struct scsi_reserve_10 { uint8_t opcode; uint8_t byte2; #define SR10_3RDPTY 0x10 #define SR10_LONGID 0x02 #define SR10_EXTENT 0x01 uint8_t resv_id; uint8_t thirdparty_id; uint8_t reserved[3]; uint8_t length[2]; uint8_t control; }; struct scsi_release { u_int8_t opcode; u_int8_t byte2; u_int8_t resv_id; u_int8_t unused[1]; u_int8_t length; u_int8_t control; }; struct scsi_release_10 { uint8_t opcode; uint8_t byte2; uint8_t resv_id; uint8_t thirdparty_id; uint8_t reserved[3]; uint8_t length[2]; uint8_t control; }; struct scsi_prevent { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[2]; u_int8_t how; u_int8_t control; }; #define PR_PREVENT 0x01 #define PR_ALLOW 0x00 struct scsi_sync_cache { u_int8_t opcode; u_int8_t byte2; #define SSC_IMMED 0x02 #define SSC_RELADR 0x01 u_int8_t begin_lba[4]; u_int8_t reserved; u_int8_t lb_count[2]; u_int8_t control; }; struct scsi_sync_cache_16 { uint8_t opcode; uint8_t byte2; uint8_t begin_lba[8]; uint8_t lb_count[4]; uint8_t reserved; uint8_t control; }; struct scsi_format { uint8_t opcode; uint8_t byte2; #define SF_LONGLIST 0x20 #define SF_FMTDATA 0x10 #define SF_CMPLIST 0x08 #define SF_FORMAT_MASK 0x07 #define SF_FORMAT_BLOCK 0x00 #define SF_FORMAT_LONG_BLOCK 0x03 #define SF_FORMAT_BFI 0x04 #define SF_FORMAT_PHYS 0x05 uint8_t vendor; uint8_t interleave[2]; uint8_t control; }; struct scsi_format_header_short { uint8_t reserved; #define SF_DATA_FOV 0x80 #define SF_DATA_DPRY 0x40 #define SF_DATA_DCRT 0x20 #define SF_DATA_STPF 0x10 #define SF_DATA_IP 0x08 #define SF_DATA_DSP 0x04 #define SF_DATA_IMMED 0x02 #define SF_DATA_VS 0x01 uint8_t byte2; uint8_t defect_list_len[2]; }; struct scsi_format_header_long { uint8_t reserved; uint8_t byte2; uint8_t reserved2[2]; uint8_t defect_list_len[4]; }; struct scsi_changedef { u_int8_t opcode; u_int8_t byte2; u_int8_t unused1; u_int8_t how; u_int8_t unused[4]; u_int8_t datalen; u_int8_t control; }; struct scsi_read_buffer { u_int8_t opcode; u_int8_t byte2; #define RWB_MODE 0x1F #define RWB_MODE_HDR_DATA 0x00 #define RWB_MODE_VENDOR 0x01 #define RWB_MODE_DATA 0x02 #define RWB_MODE_DESCR 0x03 #define RWB_MODE_DOWNLOAD 0x04 #define RWB_MODE_DOWNLOAD_SAVE 0x05 #define RWB_MODE_ECHO 0x0A #define RWB_MODE_ECHO_DESCR 0x0B #define RWB_MODE_ERROR_HISTORY 0x1C u_int8_t buffer_id; u_int8_t offset[3]; u_int8_t length[3]; u_int8_t control; }; struct scsi_read_buffer_16 { uint8_t opcode; uint8_t byte2; uint8_t offset[8]; uint8_t length[4]; uint8_t buffer_id; uint8_t control; }; struct scsi_write_buffer { u_int8_t opcode; u_int8_t byte2; u_int8_t buffer_id; u_int8_t offset[3]; u_int8_t length[3]; u_int8_t control; }; struct scsi_read_attribute { u_int8_t opcode; u_int8_t service_action; #define SRA_SA_ATTR_VALUES 0x00 #define SRA_SA_ATTR_LIST 0x01 #define SRA_SA_LOG_VOL_LIST 0x02 #define SRA_SA_PART_LIST 0x03 #define SRA_SA_RESTRICTED 0x04 #define SRA_SA_SUPPORTED_ATTRS 0x05 #define SRA_SA_MASK 0x1f u_int8_t element[2]; u_int8_t elem_type; u_int8_t logical_volume; u_int8_t reserved1; u_int8_t partition; u_int8_t first_attribute[2]; u_int8_t length[4]; u_int8_t cache; #define SRA_CACHE 0x01 u_int8_t control; }; struct scsi_write_attribute { u_int8_t opcode; u_int8_t byte2; #define SWA_WTC 0x01 u_int8_t element[3]; u_int8_t logical_volume; u_int8_t reserved1; u_int8_t partition; u_int8_t reserved2[2]; u_int8_t length[4]; u_int8_t reserved3; u_int8_t control; }; struct scsi_read_attribute_values { u_int8_t length[4]; u_int8_t attribute_0[0]; }; struct scsi_mam_attribute_header { u_int8_t id[2]; /* * Attributes obtained from SPC-4r36g (section 7.4.2.2) and * SSC-4r03 (section 4.2.21). */ #define SMA_ATTR_ID_DEVICE_MIN 0x0000 #define SMA_ATTR_REM_CAP_PARTITION 0x0000 #define SMA_ATTR_MAX_CAP_PARTITION 0x0001 #define SMA_ATTR_TAPEALERT_FLAGS 0x0002 #define SMA_ATTR_LOAD_COUNT 0x0003 #define SMA_ATTR_MAM_SPACE_REMAINING 0x0004 #define SMA_ATTR_DEV_ASSIGNING_ORG 0x0005 #define SMA_ATTR_FORMAT_DENSITY_CODE 0x0006 #define SMA_ATTR_INITIALIZATION_COUNT 0x0007 #define SMA_ATTR_VOLUME_ID 0x0008 #define SMA_ATTR_VOLUME_CHANGE_REF 0x0009 #define SMA_ATTR_DEV_SERIAL_LAST_LOAD 0x020a #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_1 0x020b #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_2 0x020c #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_3 0x020d #define SMA_ATTR_TOTAL_MB_WRITTEN_LT 0x0220 #define SMA_ATTR_TOTAL_MB_READ_LT 0x0221 #define SMA_ATTR_TOTAL_MB_WRITTEN_CUR 0x0222 #define SMA_ATTR_TOTAL_MB_READ_CUR 0x0223 #define SMA_ATTR_FIRST_ENC_BLOCK 0x0224 #define SMA_ATTR_NEXT_UNENC_BLOCK 0x0225 #define SMA_ATTR_MEDIUM_USAGE_HIST 0x0340 #define SMA_ATTR_PART_USAGE_HIST 0x0341 #define SMA_ATTR_ID_DEVICE_MAX 0x03ff #define SMA_ATTR_ID_MEDIUM_MIN 0x0400 #define SMA_ATTR_MED_MANUF 0x0400 #define SMA_ATTR_MED_SERIAL 0x0401 #define SMA_ATTR_MED_LENGTH 0x0402 #define SMA_ATTR_MED_WIDTH 0x0403 #define SMA_ATTR_MED_ASSIGNING_ORG 0x0404 #define SMA_ATTR_MED_DENSITY_CODE 0x0405 #define SMA_ATTR_MED_MANUF_DATE 0x0406 #define SMA_ATTR_MAM_CAPACITY 0x0407 #define SMA_ATTR_MED_TYPE 0x0408 #define SMA_ATTR_MED_TYPE_INFO 0x0409 #define SMA_ATTR_MED_SERIAL_NUM 0x040a #define SMA_ATTR_ID_MEDIUM_MAX 0x07ff #define SMA_ATTR_ID_HOST_MIN 0x0800 #define SMA_ATTR_APP_VENDOR 0x0800 #define SMA_ATTR_APP_NAME 0x0801 #define SMA_ATTR_APP_VERSION 0x0802 #define SMA_ATTR_USER_MED_TEXT_LABEL 0x0803 #define SMA_ATTR_LAST_WRITTEN_TIME 0x0804 #define SMA_ATTR_TEXT_LOCAL_ID 0x0805 #define SMA_ATTR_BARCODE 0x0806 #define SMA_ATTR_HOST_OWNER_NAME 0x0807 #define SMA_ATTR_MEDIA_POOL 0x0808 #define SMA_ATTR_PART_USER_LABEL 0x0809 #define SMA_ATTR_LOAD_UNLOAD_AT_PART 0x080a #define SMA_ATTR_APP_FORMAT_VERSION 0x080b #define SMA_ATTR_VOL_COHERENCY_INFO 0x080c #define SMA_ATTR_ID_HOST_MAX 0x0bff #define SMA_ATTR_VENDOR_DEVICE_MIN 0x0c00 #define SMA_ATTR_VENDOR_DEVICE_MAX 0x0fff #define SMA_ATTR_VENDOR_MEDIUM_MIN 0x1000 #define SMA_ATTR_VENDOR_MEDIUM_MAX 0x13ff #define SMA_ATTR_VENDOR_HOST_MIN 0x1400 #define SMA_ATTR_VENDOR_HOST_MAX 0x17ff u_int8_t byte2; #define SMA_FORMAT_BINARY 0x00 #define SMA_FORMAT_ASCII 0x01 #define SMA_FORMAT_TEXT 0x02 #define SMA_FORMAT_MASK 0x03 #define SMA_READ_ONLY 0x80 u_int8_t length[2]; u_int8_t attribute[0]; }; struct scsi_attrib_list_header { u_int8_t length[4]; u_int8_t first_attr_0[0]; }; struct scsi_attrib_lv_list { u_int8_t length[2]; u_int8_t first_lv_number; u_int8_t num_logical_volumes; }; struct scsi_attrib_vendser { uint8_t vendor[8]; uint8_t serial_num[32]; }; /* * These values are used to decode the Volume Coherency Information * Attribute (0x080c) for LTFS-format coherency information. * Although the Application Client Specific lengths are different for * Version 0 and Version 1, the data is in fact the same. The length * difference was due to a code bug. */ #define SCSI_LTFS_VER0_LEN 42 #define SCSI_LTFS_VER1_LEN 43 #define SCSI_LTFS_UUID_LEN 36 #define SCSI_LTFS_STR_NAME "LTFS" #define SCSI_LTFS_STR_LEN 4 typedef enum { SCSI_ATTR_FLAG_NONE = 0x00, SCSI_ATTR_FLAG_HEX = 0x01, SCSI_ATTR_FLAG_FP = 0x02, SCSI_ATTR_FLAG_DIV_10 = 0x04, SCSI_ATTR_FLAG_FP_1DIGIT = 0x08 } scsi_attrib_flags; typedef enum { SCSI_ATTR_OUTPUT_NONE = 0x00, SCSI_ATTR_OUTPUT_TEXT_MASK = 0x03, SCSI_ATTR_OUTPUT_TEXT_RAW = 0x00, SCSI_ATTR_OUTPUT_TEXT_ESC = 0x01, SCSI_ATTR_OUTPUT_TEXT_RSV1 = 0x02, SCSI_ATTR_OUTPUT_TEXT_RSV2 = 0x03, SCSI_ATTR_OUTPUT_NONASCII_MASK = 0x0c, SCSI_ATTR_OUTPUT_NONASCII_TRIM = 0x00, SCSI_ATTR_OUTPUT_NONASCII_ESC = 0x04, SCSI_ATTR_OUTPUT_NONASCII_RAW = 0x08, SCSI_ATTR_OUTPUT_NONASCII_RSV1 = 0x0c, SCSI_ATTR_OUTPUT_FIELD_MASK = 0xf0, SCSI_ATTR_OUTPUT_FIELD_ALL = 0xf0, SCSI_ATTR_OUTPUT_FIELD_NONE = 0x00, SCSI_ATTR_OUTPUT_FIELD_DESC = 0x10, SCSI_ATTR_OUTPUT_FIELD_NUM = 0x20, SCSI_ATTR_OUTPUT_FIELD_SIZE = 0x40, SCSI_ATTR_OUTPUT_FIELD_RW = 0x80 } scsi_attrib_output_flags; struct sbuf; struct scsi_attrib_table_entry { u_int32_t id; u_int32_t flags; const char *desc; const char *suffix; int (*to_str)(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int (*parse_str)(char *str, struct scsi_mam_attribute_header *hdr, uint32_t alloc_len, uint32_t flags, char *error_str, int error_str_len); }; struct scsi_rw_6 { u_int8_t opcode; u_int8_t addr[3]; /* only 5 bits are valid in the MSB address byte */ #define SRW_TOPADDR 0x1F u_int8_t length; u_int8_t control; }; struct scsi_rw_10 { u_int8_t opcode; #define SRW10_RELADDR 0x01 /* EBP defined for WRITE(10) only */ #define SRW10_EBP 0x04 #define SRW10_FUA 0x08 #define SRW10_DPO 0x10 u_int8_t byte2; u_int8_t addr[4]; u_int8_t reserved; u_int8_t length[2]; u_int8_t control; }; struct scsi_rw_12 { u_int8_t opcode; #define SRW12_RELADDR 0x01 #define SRW12_FUA 0x08 #define SRW12_DPO 0x10 u_int8_t byte2; u_int8_t addr[4]; u_int8_t length[4]; u_int8_t reserved; u_int8_t control; }; struct scsi_rw_16 { u_int8_t opcode; #define SRW16_RELADDR 0x01 #define SRW16_FUA 0x08 #define SRW16_DPO 0x10 u_int8_t byte2; u_int8_t addr[8]; u_int8_t length[4]; u_int8_t reserved; u_int8_t control; }; struct scsi_write_atomic_16 { uint8_t opcode; uint8_t byte2; uint8_t addr[8]; uint8_t boundary[2]; uint8_t length[2]; uint8_t group; uint8_t control; }; struct scsi_write_same_10 { uint8_t opcode; uint8_t byte2; #define SWS_LBDATA 0x02 #define SWS_PBDATA 0x04 #define SWS_UNMAP 0x08 #define SWS_ANCHOR 0x10 uint8_t addr[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_write_same_16 { uint8_t opcode; uint8_t byte2; #define SWS_NDOB 0x01 uint8_t addr[8]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_unmap { uint8_t opcode; uint8_t byte2; #define SU_ANCHOR 0x01 uint8_t reserved[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_unmap_header { uint8_t length[2]; uint8_t desc_length[2]; uint8_t reserved[4]; }; struct scsi_unmap_desc { uint8_t lba[8]; uint8_t length[4]; uint8_t reserved[4]; }; struct scsi_write_verify_10 { uint8_t opcode; uint8_t byte2; #define SWV_BYTCHK 0x02 #define SWV_DPO 0x10 #define SWV_WRPROECT_MASK 0xe0 uint8_t addr[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_write_verify_12 { uint8_t opcode; uint8_t byte2; uint8_t addr[4]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_write_verify_16 { uint8_t opcode; uint8_t byte2; uint8_t addr[8]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_start_stop_unit { u_int8_t opcode; u_int8_t byte2; #define SSS_IMMED 0x01 u_int8_t reserved[2]; u_int8_t how; #define SSS_START 0x01 #define SSS_LOEJ 0x02 #define SSS_PC_MASK 0xf0 #define SSS_PC_START_VALID 0x00 #define SSS_PC_ACTIVE 0x10 #define SSS_PC_IDLE 0x20 #define SSS_PC_STANDBY 0x30 #define SSS_PC_LU_CONTROL 0x70 #define SSS_PC_FORCE_IDLE_0 0xa0 #define SSS_PC_FORCE_STANDBY_0 0xb0 u_int8_t control; }; struct ata_pass_12 { u_int8_t opcode; u_int8_t protocol; #define AP_PROTO_HARD_RESET (0x00 << 1) #define AP_PROTO_SRST (0x01 << 1) #define AP_PROTO_NON_DATA (0x03 << 1) #define AP_PROTO_PIO_IN (0x04 << 1) #define AP_PROTO_PIO_OUT (0x05 << 1) #define AP_PROTO_DMA (0x06 << 1) #define AP_PROTO_DMA_QUEUED (0x07 << 1) #define AP_PROTO_DEVICE_DIAG (0x08 << 1) #define AP_PROTO_DEVICE_RESET (0x09 << 1) #define AP_PROTO_UDMA_IN (0x0a << 1) #define AP_PROTO_UDMA_OUT (0x0b << 1) #define AP_PROTO_FPDMA (0x0c << 1) #define AP_PROTO_RESP_INFO (0x0f << 1) #define AP_PROTO_MASK 0x1e #define AP_MULTI 0xe0 u_int8_t flags; #define AP_T_LEN 0x03 #define AP_BB 0x04 #define AP_T_DIR 0x08 #define AP_CK_COND 0x20 #define AP_OFFLINE 0x60 u_int8_t features; u_int8_t sector_count; u_int8_t lba_low; u_int8_t lba_mid; u_int8_t lba_high; u_int8_t device; u_int8_t command; u_int8_t reserved; u_int8_t control; }; struct scsi_maintenance_in { uint8_t opcode; uint8_t byte2; #define SERVICE_ACTION_MASK 0x1f #define SA_RPRT_TRGT_GRP 0x0a uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_ident_info { uint8_t opcode; uint8_t service_action; uint8_t reserved[4]; uint8_t length[4]; uint8_t type; #define RII_LUII 0x00 #define RII_LUTII 0x04 #define RII_IIS 0xfc uint8_t control; }; struct scsi_report_ident_info_data { uint8_t reserved[2]; uint8_t length[2]; }; struct scsi_report_ident_info_descr { uint8_t type; uint8_t reserved; uint8_t length[2]; }; struct scsi_report_supported_opcodes { uint8_t opcode; uint8_t service_action; uint8_t options; #define RSO_RCTD 0x80 #define RSO_OPTIONS_MASK 0x07 #define RSO_OPTIONS_ALL 0x00 #define RSO_OPTIONS_OC 0x01 #define RSO_OPTIONS_OC_SA 0x02 #define RSO_OPTIONS_OC_ASA 0x03 uint8_t requested_opcode; uint8_t requested_service_action[2]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_supported_opcodes_timeout { uint8_t length[2]; uint8_t reserved; uint8_t cmd_specific; uint8_t nominal_time[4]; uint8_t recommended_time[4]; }; struct scsi_report_supported_opcodes_descr { uint8_t opcode; uint8_t reserved; uint8_t service_action[2]; uint8_t reserved2; uint8_t flags; #define RSO_SERVACTV 0x01 #define RSO_CTDP 0x02 #define RSO_CDLP_MASK 0x0c #define RSO_CDLP_NO 0x00 #define RSO_CDLP_A 0x04 #define RSO_CDLP_B 0x08 uint8_t cdb_length[2]; struct scsi_report_supported_opcodes_timeout timeout[0]; }; struct scsi_report_supported_opcodes_all { uint8_t length[4]; struct scsi_report_supported_opcodes_descr descr[0]; }; struct scsi_report_supported_opcodes_one { uint8_t reserved; uint8_t support; #define RSO_ONE_CTDP 0x80 #define RSO_ONE_CDLP_MASK 0x18 #define RSO_ONE_CDLP_NO 0x00 #define RSO_ONE_CDLP_A 0x08 #define RSO_ONE_CDLP_B 0x10 #define RSO_ONE_SUP_MASK 0x07 #define RSO_ONE_SUP_UNAVAIL 0x00 #define RSO_ONE_SUP_NOT_SUP 0x01 #define RSO_ONE_SUP_AVAIL 0x03 #define RSO_ONE_SUP_VENDOR 0x05 uint8_t cdb_length[2]; uint8_t cdb_usage[]; }; struct scsi_report_supported_tmf { uint8_t opcode; uint8_t service_action; uint8_t options; #define RST_REPD 0x80 uint8_t reserved[3]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_supported_tmf_data { uint8_t byte1; #define RST_WAKES 0x01 #define RST_TRS 0x02 #define RST_QTS 0x04 #define RST_LURS 0x08 #define RST_CTSS 0x10 #define RST_CACAS 0x20 #define RST_ATSS 0x40 #define RST_ATS 0x80 uint8_t byte2; #define RST_ITNRS 0x01 #define RST_QTSS 0x02 #define RST_QAES 0x04 uint8_t reserved; uint8_t length; }; struct scsi_report_supported_tmf_ext_data { uint8_t byte1; uint8_t byte2; uint8_t reserved; uint8_t length; uint8_t byte5; #define RST_TMFTMOV 0x01 uint8_t reserved2; uint8_t byte7; #define RST_WAKETS 0x01 #define RST_TRTS 0x02 #define RST_QTTS 0x04 #define RST_LURTS 0x08 #define RST_CTSTS 0x10 #define RST_CACATS 0x20 #define RST_ATSTS 0x40 #define RST_ATTS 0x80 uint8_t byte8; #define RST_ITNRTS 0x01 #define RST_QTSTS 0x02 #define RST_QAETS 0x04 uint8_t long_timeout[4]; uint8_t short_timeout[4]; }; struct scsi_report_timestamp { uint8_t opcode; uint8_t service_action; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_timestamp_data { uint8_t length[2]; uint8_t origin; #define RTS_ORIG_MASK 0x00 #define RTS_ORIG_ZERO 0x00 #define RTS_ORIG_SET 0x02 #define RTS_ORIG_OUTSIDE 0x03 uint8_t reserved; uint8_t timestamp[6]; uint8_t reserve2[2]; }; struct scsi_receive_copy_status_lid1 { uint8_t opcode; uint8_t service_action; #define RCS_RCS_LID1 0x00 uint8_t list_identifier; uint8_t reserved[7]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_status_lid1_data { uint8_t available_data[4]; uint8_t copy_command_status; #define RCS_CCS_INPROG 0x00 #define RCS_CCS_COMPLETED 0x01 #define RCS_CCS_ERROR 0x02 uint8_t segments_processed[2]; uint8_t transfer_count_units; #define RCS_TC_BYTES 0x00 #define RCS_TC_KBYTES 0x01 #define RCS_TC_MBYTES 0x02 #define RCS_TC_GBYTES 0x03 #define RCS_TC_TBYTES 0x04 #define RCS_TC_PBYTES 0x05 #define RCS_TC_EBYTES 0x06 #define RCS_TC_LBAS 0xf1 uint8_t transfer_count[4]; }; struct scsi_receive_copy_failure_details { uint8_t opcode; uint8_t service_action; #define RCS_RCFD 0x04 uint8_t list_identifier; uint8_t reserved[7]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_failure_details_data { uint8_t available_data[4]; uint8_t reserved[52]; uint8_t copy_command_status; uint8_t reserved2; uint8_t sense_data_length[2]; uint8_t sense_data[]; }; struct scsi_receive_copy_status_lid4 { uint8_t opcode; uint8_t service_action; #define RCS_RCS_LID4 0x05 uint8_t list_identifier[4]; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_status_lid4_data { uint8_t available_data[4]; uint8_t response_to_service_action; uint8_t copy_command_status; #define RCS_CCS_COMPLETED_PROD 0x03 #define RCS_CCS_COMPLETED_RESID 0x04 #define RCS_CCS_INPROG_FGBG 0x10 #define RCS_CCS_INPROG_FG 0x11 #define RCS_CCS_INPROG_BG 0x12 #define RCS_CCS_ABORTED 0x60 uint8_t operation_counter[2]; uint8_t estimated_status_update_delay[4]; uint8_t extended_copy_completion_status; uint8_t length_of_the_sense_data_field; uint8_t sense_data_length; uint8_t transfer_count_units; uint8_t transfer_count[8]; uint8_t segments_processed[2]; uint8_t reserved[6]; uint8_t sense_data[]; }; struct scsi_receive_copy_operating_parameters { uint8_t opcode; uint8_t service_action; #define RCS_RCOP 0x03 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_operating_parameters_data { uint8_t length[4]; uint8_t snlid; #define RCOP_SNLID 0x01 uint8_t reserved[3]; uint8_t maximum_cscd_descriptor_count[2]; uint8_t maximum_segment_descriptor_count[2]; uint8_t maximum_descriptor_list_length[4]; uint8_t maximum_segment_length[4]; uint8_t maximum_inline_data_length[4]; uint8_t held_data_limit[4]; uint8_t maximum_stream_device_transfer_size[4]; uint8_t reserved2[2]; uint8_t total_concurrent_copies[2]; uint8_t maximum_concurrent_copies; uint8_t data_segment_granularity; uint8_t inline_data_granularity; uint8_t held_data_granularity; uint8_t reserved3[3]; uint8_t implemented_descriptor_list_length; uint8_t list_of_implemented_descriptor_type_codes[0]; }; struct scsi_extended_copy { uint8_t opcode; uint8_t service_action; #define EC_EC_LID1 0x00 #define EC_EC_LID4 0x01 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_ec_cscd_dtsp { uint8_t flags; #define EC_CSCD_FIXED 0x01 #define EC_CSCD_PAD 0x04 uint8_t block_length[3]; }; struct scsi_ec_cscd { uint8_t type_code; #define EC_CSCD_EXT 0xff uint8_t luidt_pdt; #define EC_NUL 0x20 #define EC_LUIDT_MASK 0xc0 #define EC_LUIDT_LUN 0x00 #define EC_LUIDT_PROXY_TOKEN 0x40 uint8_t relative_initiator_port[2]; uint8_t cscd_params[24]; struct scsi_ec_cscd_dtsp dtsp; }; struct scsi_ec_cscd_id { uint8_t type_code; #define EC_CSCD_ID 0xe4 uint8_t luidt_pdt; uint8_t relative_initiator_port[2]; uint8_t codeset; uint8_t id_type; uint8_t reserved; uint8_t length; uint8_t designator[20]; struct scsi_ec_cscd_dtsp dtsp; }; struct scsi_ec_segment { uint8_t type_code; uint8_t flags; #define EC_SEG_DC 0x02 #define EC_SEG_CAT 0x01 uint8_t descr_length[2]; uint8_t params[]; }; struct scsi_ec_segment_b2b { uint8_t type_code; #define EC_SEG_B2B 0x02 uint8_t flags; uint8_t descr_length[2]; uint8_t src_cscd[2]; uint8_t dst_cscd[2]; uint8_t reserved[2]; uint8_t number_of_blocks[2]; uint8_t src_lba[8]; uint8_t dst_lba[8]; }; struct scsi_ec_segment_verify { uint8_t type_code; #define EC_SEG_VERIFY 0x07 uint8_t reserved; uint8_t descr_length[2]; uint8_t src_cscd[2]; uint8_t reserved2[2]; uint8_t tur; uint8_t reserved3[3]; }; struct scsi_ec_segment_register_key { uint8_t type_code; #define EC_SEG_REGISTER_KEY 0x14 uint8_t reserved; uint8_t descr_length[2]; uint8_t reserved2[2]; uint8_t dst_cscd[2]; uint8_t res_key[8]; uint8_t sa_res_key[8]; uint8_t reserved3[4]; }; struct scsi_extended_copy_lid1_data { uint8_t list_identifier; uint8_t flags; #define EC_PRIORITY 0x07 #define EC_LIST_ID_USAGE_MASK 0x18 #define EC_LIST_ID_USAGE_FULL 0x08 #define EC_LIST_ID_USAGE_NOHOLD 0x10 #define EC_LIST_ID_USAGE_NONE 0x18 #define EC_STR 0x20 uint8_t cscd_list_length[2]; uint8_t reserved[4]; uint8_t segment_list_length[4]; uint8_t inline_data_length[4]; uint8_t data[]; }; struct scsi_extended_copy_lid4_data { uint8_t list_format; #define EC_LIST_FORMAT 0x01 uint8_t flags; uint8_t header_cscd_list_length[2]; uint8_t reserved[11]; uint8_t flags2; #define EC_IMMED 0x01 #define EC_G_SENSE 0x02 uint8_t header_cscd_type_code; uint8_t reserved2[3]; uint8_t list_identifier[4]; uint8_t reserved3[18]; uint8_t cscd_list_length[2]; uint8_t segment_list_length[2]; uint8_t inline_data_length[2]; uint8_t data[]; }; struct scsi_copy_operation_abort { uint8_t opcode; uint8_t service_action; #define EC_COA 0x1c uint8_t list_identifier[4]; uint8_t reserved[9]; uint8_t control; }; struct scsi_populate_token { uint8_t opcode; uint8_t service_action; #define EC_PT 0x10 uint8_t reserved[4]; uint8_t list_identifier[4]; uint8_t length[4]; uint8_t group_number; uint8_t control; }; struct scsi_range_desc { uint8_t lba[8]; uint8_t length[4]; uint8_t reserved[4]; }; struct scsi_populate_token_data { uint8_t length[2]; uint8_t flags; #define EC_PT_IMMED 0x01 #define EC_PT_RTV 0x02 uint8_t reserved; uint8_t inactivity_timeout[4]; uint8_t rod_type[4]; uint8_t reserved2[2]; uint8_t range_descriptor_length[2]; struct scsi_range_desc desc[]; }; struct scsi_write_using_token { uint8_t opcode; uint8_t service_action; #define EC_WUT 0x11 uint8_t reserved[4]; uint8_t list_identifier[4]; uint8_t length[4]; uint8_t group_number; uint8_t control; }; struct scsi_write_using_token_data { uint8_t length[2]; uint8_t flags; #define EC_WUT_IMMED 0x01 #define EC_WUT_DEL_TKN 0x02 uint8_t reserved[5]; uint8_t offset_into_rod[8]; uint8_t rod_token[512]; uint8_t reserved2[6]; uint8_t range_descriptor_length[2]; struct scsi_range_desc desc[]; }; struct scsi_receive_rod_token_information { uint8_t opcode; uint8_t service_action; #define RCS_RRTI 0x07 uint8_t list_identifier[4]; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_token { uint8_t type[4]; #define ROD_TYPE_INTERNAL 0x00000000 #define ROD_TYPE_AUR 0x00010000 #define ROD_TYPE_PIT_DEF 0x00800000 #define ROD_TYPE_PIT_VULN 0x00800001 #define ROD_TYPE_PIT_PERS 0x00800002 #define ROD_TYPE_PIT_ANY 0x0080FFFF #define ROD_TYPE_BLOCK_ZERO 0xFFFF0001 uint8_t reserved[2]; uint8_t length[2]; uint8_t body[0]; }; struct scsi_report_all_rod_tokens { uint8_t opcode; uint8_t service_action; #define RCS_RART 0x08 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_report_all_rod_tokens_data { uint8_t available_data[4]; uint8_t reserved[4]; uint8_t rod_management_token_list[]; }; struct ata_pass_16 { u_int8_t opcode; u_int8_t protocol; #define AP_EXTEND 0x01 u_int8_t flags; #define AP_FLAG_TLEN_NO_DATA (0 << 0) #define AP_FLAG_TLEN_FEAT (1 << 0) #define AP_FLAG_TLEN_SECT_CNT (2 << 0) #define AP_FLAG_TLEN_STPSIU (3 << 0) #define AP_FLAG_BYT_BLOK_BYTES (0 << 2) #define AP_FLAG_BYT_BLOK_BLOCKS (1 << 2) #define AP_FLAG_TDIR_TO_DEV (0 << 3) #define AP_FLAG_TDIR_FROM_DEV (1 << 3) #define AP_FLAG_CHK_COND (1 << 5) u_int8_t features_ext; u_int8_t features; u_int8_t sector_count_ext; u_int8_t sector_count; u_int8_t lba_low_ext; u_int8_t lba_low; u_int8_t lba_mid_ext; u_int8_t lba_mid; u_int8_t lba_high_ext; u_int8_t lba_high; u_int8_t device; u_int8_t command; u_int8_t control; }; struct ata_pass_32 { uint8_t opcode; uint8_t control; uint8_t reserved1[5]; uint8_t length; uint8_t service_action[2]; #define ATA_PASS_32_SA 0x1ff0 uint8_t protocol; uint8_t flags; uint8_t reserved2[2]; uint8_t lba[6]; uint8_t features[2]; uint8_t count[2]; uint8_t device; uint8_t command; uint8_t reserved3; uint8_t icc; uint8_t auxiliary[4]; }; #define SC_SCSI_1 0x01 #define SC_SCSI_2 0x03 /* * Opcodes */ #define TEST_UNIT_READY 0x00 #define REQUEST_SENSE 0x03 #define READ_6 0x08 #define WRITE_6 0x0A #define INQUIRY 0x12 #define MODE_SELECT_6 0x15 #define MODE_SENSE_6 0x1A #define START_STOP_UNIT 0x1B #define START_STOP 0x1B #define RESERVE 0x16 #define RELEASE 0x17 #define RECEIVE_DIAGNOSTIC 0x1C #define SEND_DIAGNOSTIC 0x1D #define PREVENT_ALLOW 0x1E #define READ_CAPACITY 0x25 #define READ_10 0x28 #define WRITE_10 0x2A #define POSITION_TO_ELEMENT 0x2B #define WRITE_VERIFY_10 0x2E #define VERIFY_10 0x2F #define SYNCHRONIZE_CACHE 0x35 #define READ_DEFECT_DATA_10 0x37 #define WRITE_BUFFER 0x3B #define READ_BUFFER 0x3C #define CHANGE_DEFINITION 0x40 #define WRITE_SAME_10 0x41 #define UNMAP 0x42 #define LOG_SELECT 0x4C #define LOG_SENSE 0x4D #define MODE_SELECT_10 0x55 #define RESERVE_10 0x56 #define RELEASE_10 0x57 #define MODE_SENSE_10 0x5A #define PERSISTENT_RES_IN 0x5E #define PERSISTENT_RES_OUT 0x5F #define EXTENDED_CDB 0x7E #define VARIABLE_LEN_CDB 0x7F #define EXTENDED_COPY 0x83 #define RECEIVE_COPY_STATUS 0x84 #define ATA_PASS_16 0x85 #define READ_16 0x88 #define COMPARE_AND_WRITE 0x89 #define WRITE_16 0x8A #define READ_ATTRIBUTE 0x8C #define WRITE_ATTRIBUTE 0x8D #define WRITE_VERIFY_16 0x8E #define VERIFY_16 0x8F #define SYNCHRONIZE_CACHE_16 0x91 #define WRITE_SAME_16 0x93 #define READ_BUFFER_16 0x9B #define WRITE_ATOMIC_16 0x9C #define SERVICE_ACTION_IN 0x9E #define REPORT_LUNS 0xA0 #define ATA_PASS_12 0xA1 #define SECURITY_PROTOCOL_IN 0xA2 #define MAINTENANCE_IN 0xA3 #define MAINTENANCE_OUT 0xA4 #define MOVE_MEDIUM 0xA5 #define READ_12 0xA8 #define WRITE_12 0xAA #define WRITE_VERIFY_12 0xAE #define VERIFY_12 0xAF #define SECURITY_PROTOCOL_OUT 0xB5 #define READ_ELEMENT_STATUS 0xB8 #define READ_CD 0xBE /* Maintenance In Service Action Codes */ #define REPORT_IDENTIFYING_INFRMATION 0x05 #define REPORT_TARGET_PORT_GROUPS 0x0A #define REPORT_ALIASES 0x0B #define REPORT_SUPPORTED_OPERATION_CODES 0x0C #define REPORT_SUPPORTED_TASK_MANAGEMENT_FUNCTIONS 0x0D #define REPORT_PRIORITY 0x0E #define REPORT_TIMESTAMP 0x0F #define MANAGEMENT_PROTOCOL_IN 0x10 /* Maintenance Out Service Action Codes */ #define SET_IDENTIFY_INFORMATION 0x06 #define SET_TARGET_PORT_GROUPS 0x0A #define CHANGE_ALIASES 0x0B #define SET_PRIORITY 0x0E #define SET_TIMESTAMP 0x0F #define MANAGEMENT_PROTOCOL_OUT 0x10 /* * Device Types */ #define T_DIRECT 0x00 #define T_SEQUENTIAL 0x01 #define T_PRINTER 0x02 #define T_PROCESSOR 0x03 #define T_WORM 0x04 #define T_CDROM 0x05 #define T_SCANNER 0x06 #define T_OPTICAL 0x07 #define T_CHANGER 0x08 #define T_COMM 0x09 #define T_ASC0 0x0a #define T_ASC1 0x0b #define T_STORARRAY 0x0c #define T_ENCLOSURE 0x0d #define T_RBC 0x0e #define T_OCRW 0x0f #define T_OSD 0x11 #define T_ADC 0x12 #define T_ZBC_HM 0x14 #define T_NODEVICE 0x1f #define T_ANY 0xff /* Used in Quirk table matches */ #define T_REMOV 1 #define T_FIXED 0 /* * This length is the initial inquiry length used by the probe code, as * well as the length necessary for scsi_print_inquiry() to function * correctly. If either use requires a different length in the future, * the two values should be de-coupled. */ #define SHORT_INQUIRY_LENGTH 36 struct scsi_inquiry_data { u_int8_t device; #define SID_TYPE(inq_data) ((inq_data)->device & 0x1f) #define SID_QUAL(inq_data) (((inq_data)->device & 0xE0) >> 5) #define SID_QUAL_LU_CONNECTED 0x00 /* * The specified peripheral device * type is currently connected to * logical unit. If the target cannot * determine whether or not a physical * device is currently connected, it * shall also use this peripheral * qualifier when returning the INQUIRY * data. This peripheral qualifier * does not mean that the device is * ready for access by the initiator. */ #define SID_QUAL_LU_OFFLINE 0x01 /* * The target is capable of supporting * the specified peripheral device type * on this logical unit; however, the * physical device is not currently * connected to this logical unit. */ #define SID_QUAL_RSVD 0x02 #define SID_QUAL_BAD_LU 0x03 /* * The target is not capable of * supporting a physical device on * this logical unit. For this * peripheral qualifier the peripheral * device type shall be set to 1Fh to * provide compatibility with previous * versions of SCSI. All other * peripheral device type values are * reserved for this peripheral * qualifier. */ #define SID_QUAL_IS_VENDOR_UNIQUE(inq_data) ((SID_QUAL(inq_data) & 0x04) != 0) u_int8_t dev_qual2; #define SID_QUAL2 0x7F #define SID_LU_CONG 0x40 #define SID_RMB 0x80 #define SID_IS_REMOVABLE(inq_data) (((inq_data)->dev_qual2 & SID_RMB) != 0) u_int8_t version; #define SID_ANSI_REV(inq_data) ((inq_data)->version & 0x07) #define SCSI_REV_0 0 #define SCSI_REV_CCS 1 #define SCSI_REV_2 2 #define SCSI_REV_SPC 3 #define SCSI_REV_SPC2 4 #define SCSI_REV_SPC3 5 #define SCSI_REV_SPC4 6 #define SCSI_REV_SPC5 7 #define SID_ECMA 0x38 #define SID_ISO 0xC0 u_int8_t response_format; #define SID_AENC 0x80 #define SID_TrmIOP 0x40 #define SID_NormACA 0x20 #define SID_HiSup 0x10 u_int8_t additional_length; #define SID_ADDITIONAL_LENGTH(iqd) \ ((iqd)->additional_length + \ __offsetof(struct scsi_inquiry_data, additional_length) + 1) u_int8_t spc3_flags; #define SPC3_SID_PROTECT 0x01 #define SPC3_SID_3PC 0x08 #define SPC3_SID_TPGS_MASK 0x30 #define SPC3_SID_TPGS_IMPLICIT 0x10 #define SPC3_SID_TPGS_EXPLICIT 0x20 #define SPC3_SID_ACC 0x40 #define SPC3_SID_SCCS 0x80 u_int8_t spc2_flags; #define SPC2_SID_ADDR16 0x01 #define SPC2_SID_MChngr 0x08 #define SPC2_SID_MultiP 0x10 #define SPC2_SID_EncServ 0x40 #define SPC2_SID_BQueue 0x80 #define INQ_DATA_TQ_ENABLED(iqd) \ ((SID_ANSI_REV(iqd) < SCSI_REV_SPC2)? ((iqd)->flags & SID_CmdQue) : \ (((iqd)->flags & SID_CmdQue) && !((iqd)->spc2_flags & SPC2_SID_BQueue)) || \ (!((iqd)->flags & SID_CmdQue) && ((iqd)->spc2_flags & SPC2_SID_BQueue))) u_int8_t flags; #define SID_SftRe 0x01 #define SID_CmdQue 0x02 #define SID_Linked 0x08 #define SID_Sync 0x10 #define SID_WBus16 0x20 #define SID_WBus32 0x40 #define SID_RelAdr 0x80 #define SID_VENDOR_SIZE 8 char vendor[SID_VENDOR_SIZE]; #define SID_PRODUCT_SIZE 16 char product[SID_PRODUCT_SIZE]; #define SID_REVISION_SIZE 4 char revision[SID_REVISION_SIZE]; /* * The following fields were taken from SCSI Primary Commands - 2 * (SPC-2) Revision 14, Dated 11 November 1999 */ #define SID_VENDOR_SPECIFIC_0_SIZE 20 u_int8_t vendor_specific0[SID_VENDOR_SPECIFIC_0_SIZE]; /* * An extension of SCSI Parallel Specific Values */ #define SID_SPI_IUS 0x01 #define SID_SPI_QAS 0x02 #define SID_SPI_CLOCK_ST 0x00 #define SID_SPI_CLOCK_DT 0x04 #define SID_SPI_CLOCK_DT_ST 0x0C #define SID_SPI_MASK 0x0F u_int8_t spi3data; u_int8_t reserved2; /* * Version Descriptors, stored 2 byte values. */ u_int8_t version1[2]; u_int8_t version2[2]; u_int8_t version3[2]; u_int8_t version4[2]; u_int8_t version5[2]; u_int8_t version6[2]; u_int8_t version7[2]; u_int8_t version8[2]; u_int8_t reserved3[22]; #define SID_VENDOR_SPECIFIC_1_SIZE 160 u_int8_t vendor_specific1[SID_VENDOR_SPECIFIC_1_SIZE]; }; /* * This structure is more suited to initiator operation, because the * maximum number of supported pages is already allocated. */ struct scsi_vpd_supported_page_list { u_int8_t device; u_int8_t page_code; #define SVPD_SUPPORTED_PAGE_LIST 0x00 #define SVPD_SUPPORTED_PAGES_HDR_LEN 4 u_int8_t reserved; u_int8_t length; /* number of VPD entries */ #define SVPD_SUPPORTED_PAGES_SIZE 251 u_int8_t list[SVPD_SUPPORTED_PAGES_SIZE]; }; /* * This structure is more suited to target operation, because the * number of supported pages is left to the user to allocate. */ struct scsi_vpd_supported_pages { u_int8_t device; u_int8_t page_code; u_int8_t reserved; #define SVPD_SUPPORTED_PAGES 0x00 u_int8_t length; u_int8_t page_list[0]; }; struct scsi_vpd_unit_serial_number { u_int8_t device; u_int8_t page_code; #define SVPD_UNIT_SERIAL_NUMBER 0x80 u_int8_t reserved; u_int8_t length; /* serial number length */ #define SVPD_SERIAL_NUM_SIZE 251 u_int8_t serial_num[SVPD_SERIAL_NUM_SIZE]; }; struct scsi_vpd_device_id { u_int8_t device; u_int8_t page_code; #define SVPD_DEVICE_ID 0x83 #define SVPD_DEVICE_ID_MAX_SIZE 252 #define SVPD_DEVICE_ID_HDR_LEN \ __offsetof(struct scsi_vpd_device_id, desc_list) u_int8_t length[2]; u_int8_t desc_list[]; }; struct scsi_vpd_id_descriptor { u_int8_t proto_codeset; /* * See the SCSI_PROTO definitions above for the protocols. */ #define SVPD_ID_PROTO_SHIFT 4 #define SVPD_ID_CODESET_BINARY 0x01 #define SVPD_ID_CODESET_ASCII 0x02 #define SVPD_ID_CODESET_UTF8 0x03 #define SVPD_ID_CODESET_MASK 0x0f u_int8_t id_type; #define SVPD_ID_PIV 0x80 #define SVPD_ID_ASSOC_LUN 0x00 #define SVPD_ID_ASSOC_PORT 0x10 #define SVPD_ID_ASSOC_TARGET 0x20 #define SVPD_ID_ASSOC_MASK 0x30 #define SVPD_ID_TYPE_VENDOR 0x00 #define SVPD_ID_TYPE_T10 0x01 #define SVPD_ID_TYPE_EUI64 0x02 #define SVPD_ID_TYPE_NAA 0x03 #define SVPD_ID_TYPE_RELTARG 0x04 #define SVPD_ID_TYPE_TPORTGRP 0x05 #define SVPD_ID_TYPE_LUNGRP 0x06 #define SVPD_ID_TYPE_MD5_LUN_ID 0x07 #define SVPD_ID_TYPE_SCSI_NAME 0x08 #define SVPD_ID_TYPE_PROTO 0x09 #define SVPD_ID_TYPE_UUID 0x0a #define SVPD_ID_TYPE_MASK 0x0f u_int8_t reserved; u_int8_t length; #define SVPD_DEVICE_ID_DESC_HDR_LEN \ __offsetof(struct scsi_vpd_id_descriptor, identifier) u_int8_t identifier[]; }; struct scsi_vpd_id_t10 { u_int8_t vendor[8]; u_int8_t vendor_spec_id[0]; }; struct scsi_vpd_id_eui64 { u_int8_t ieee_company_id[3]; u_int8_t extension_id[5]; }; struct scsi_vpd_id_naa_basic { uint8_t naa; /* big endian, packed: uint8_t naa : 4; uint8_t naa_desig : 4; */ #define SVPD_ID_NAA_NAA_SHIFT 4 #define SVPD_ID_NAA_IEEE_EXT 0x02 #define SVPD_ID_NAA_LOCAL_REG 0x03 #define SVPD_ID_NAA_IEEE_REG 0x05 #define SVPD_ID_NAA_IEEE_REG_EXT 0x06 uint8_t naa_data[]; }; struct scsi_vpd_id_naa_ieee_extended_id { uint8_t naa; uint8_t vendor_specific_id_a; uint8_t ieee_company_id[3]; uint8_t vendor_specific_id_b[4]; }; struct scsi_vpd_id_naa_local_reg { uint8_t naa; uint8_t local_value[7]; }; struct scsi_vpd_id_naa_ieee_reg { uint8_t naa; uint8_t reg_value[7]; /* big endian, packed: uint8_t naa_basic : 4; uint8_t ieee_company_id_0 : 4; uint8_t ieee_company_id_1[2]; uint8_t ieee_company_id_2 : 4; uint8_t vendor_specific_id_0 : 4; uint8_t vendor_specific_id_1[4]; */ }; struct scsi_vpd_id_naa_ieee_reg_extended { uint8_t naa; uint8_t reg_value[15]; /* big endian, packed: uint8_t naa_basic : 4; uint8_t ieee_company_id_0 : 4; uint8_t ieee_company_id_1[2]; uint8_t ieee_company_id_2 : 4; uint8_t vendor_specific_id_0 : 4; uint8_t vendor_specific_id_1[4]; uint8_t vendor_specific_id_ext[8]; */ }; struct scsi_vpd_id_rel_trgt_port_id { uint8_t obsolete[2]; uint8_t rel_trgt_port_id[2]; }; struct scsi_vpd_id_trgt_port_grp_id { uint8_t reserved[2]; uint8_t trgt_port_grp[2]; }; struct scsi_vpd_id_lun_grp_id { uint8_t reserved[2]; uint8_t log_unit_grp[2]; }; struct scsi_vpd_id_md5_lun_id { uint8_t lun_id[16]; }; struct scsi_vpd_id_scsi_name { uint8_t name_string[256]; }; struct scsi_service_action_in { uint8_t opcode; uint8_t service_action; uint8_t action_dependent[13]; uint8_t control; }; struct scsi_vpd_extended_inquiry_data { uint8_t device; uint8_t page_code; #define SVPD_EXTENDED_INQUIRY_DATA 0x86 uint8_t page_length[2]; uint8_t flags1; /* These values are for direct access devices */ #define SVPD_EID_AM_MASK 0xC0 #define SVPD_EID_AM_DEFER 0x80 #define SVPD_EID_AM_IMMED 0x40 #define SVPD_EID_AM_UNDEFINED 0x00 #define SVPD_EID_AM_RESERVED 0xc0 #define SVPD_EID_SPT 0x38 #define SVPD_EID_SPT_1 0x00 #define SVPD_EID_SPT_12 0x08 #define SVPD_EID_SPT_2 0x10 #define SVPD_EID_SPT_13 0x18 #define SVPD_EID_SPT_3 0x20 #define SVPD_EID_SPT_23 0x28 #define SVPD_EID_SPT_123 0x38 /* These values are for sequential access devices */ #define SVPD_EID_SA_SPT_LBP 0x08 #define SVPD_EID_GRD_CHK 0x04 #define SVPD_EID_APP_CHK 0x02 #define SVPD_EID_REF_CHK 0x01 uint8_t flags2; #define SVPD_EID_UASK_SUP 0x20 #define SVPD_EID_GROUP_SUP 0x10 #define SVPD_EID_PRIOR_SUP 0x08 #define SVPD_EID_HEADSUP 0x04 #define SVPD_EID_ORDSUP 0x02 #define SVPD_EID_SIMPSUP 0x01 uint8_t flags3; #define SVPD_EID_WU_SUP 0x08 #define SVPD_EID_CRD_SUP 0x04 #define SVPD_EID_NV_SUP 0x02 #define SVPD_EID_V_SUP 0x01 uint8_t flags4; #define SVPD_EID_NO_PI_CHK 0x20 #define SVPD_EID_P_I_I_SUP 0x10 #define SVPD_EID_LUICLR 0x01 uint8_t flags5; #define SVPD_EID_LUCT_MASK 0xe0 #define SVPD_EID_LUCT_NOT_REP 0x00 #define SVPD_EID_LUCT_CONGL 0x20 #define SVPD_EID_LUCT_GROUP 0x40 #define SVPD_EID_R_SUP 0x10 #define SVPD_EID_RTD_SUP 0x08 #define SVPD_EID_HSSRELEF 0x02 #define SVPD_EID_CBCS 0x01 uint8_t flags6; #define SVPD_EID_MULTI_I_T_FW 0x0F #define SVPD_EID_MC_VENDOR_SPEC 0x00 #define SVPD_EID_MC_MODE_1 0x01 #define SVPD_EID_MC_MODE_2 0x02 #define SVPD_EID_MC_MODE_3 0x03 uint8_t est[2]; uint8_t flags7; #define SVPD_EID_POA_SUP 0x80 #define SVPD_EID_HRA_SUP 0x40 #define SVPD_EID_VSA_SUP 0x20 uint8_t max_sense_length; uint8_t bind_flags; #define SVPD_EID_IBS 0x80 #define SVPD_EID_IAS 0x40 #define SVPD_EID_SAC 0x04 #define SVPD_EID_NRD1 0x02 #define SVPD_EID_NRD0 0x01 uint8_t reserved2[49]; }; struct scsi_vpd_mode_page_policy_descr { uint8_t page_code; uint8_t subpage_code; uint8_t policy; #define SVPD_MPP_SHARED 0x00 #define SVPD_MPP_PORT 0x01 #define SVPD_MPP_I_T 0x03 #define SVPD_MPP_MLUS 0x80 uint8_t reserved; }; struct scsi_vpd_mode_page_policy { uint8_t device; uint8_t page_code; #define SVPD_MODE_PAGE_POLICY 0x87 uint8_t page_length[2]; struct scsi_vpd_mode_page_policy_descr descr[0]; }; struct scsi_diag_page { uint8_t page_code; uint8_t page_specific_flags; uint8_t length[2]; uint8_t params[0]; }; struct scsi_vpd_port_designation { uint8_t reserved[2]; uint8_t relative_port_id[2]; uint8_t reserved2[2]; uint8_t initiator_transportid_length[2]; uint8_t initiator_transportid[0]; }; struct scsi_vpd_port_designation_cont { uint8_t reserved[2]; uint8_t target_port_descriptors_length[2]; struct scsi_vpd_id_descriptor target_port_descriptors[0]; }; struct scsi_vpd_scsi_ports { u_int8_t device; u_int8_t page_code; #define SVPD_SCSI_PORTS 0x88 u_int8_t page_length[2]; struct scsi_vpd_port_designation design[]; }; /* * ATA Information VPD Page based on * T10/2126-D Revision 04 */ #define SVPD_ATA_INFORMATION 0x89 struct scsi_vpd_tpc_descriptor { uint8_t desc_type[2]; uint8_t desc_length[2]; uint8_t parameters[]; }; struct scsi_vpd_tpc_descriptor_bdrl { uint8_t desc_type[2]; #define SVPD_TPC_BDRL 0x0000 uint8_t desc_length[2]; uint8_t vendor_specific[6]; uint8_t maximum_ranges[2]; uint8_t maximum_inactivity_timeout[4]; uint8_t default_inactivity_timeout[4]; uint8_t maximum_token_transfer_size[8]; uint8_t optimal_transfer_count[8]; }; struct scsi_vpd_tpc_descriptor_sc_descr { uint8_t opcode; uint8_t sa_length; uint8_t supported_service_actions[0]; }; struct scsi_vpd_tpc_descriptor_sc { uint8_t desc_type[2]; #define SVPD_TPC_SC 0x0001 uint8_t desc_length[2]; uint8_t list_length; struct scsi_vpd_tpc_descriptor_sc_descr descr[]; }; struct scsi_vpd_tpc_descriptor_pd { uint8_t desc_type[2]; #define SVPD_TPC_PD 0x0004 uint8_t desc_length[2]; uint8_t reserved[4]; uint8_t maximum_cscd_descriptor_count[2]; uint8_t maximum_segment_descriptor_count[2]; uint8_t maximum_descriptor_list_length[4]; uint8_t maximum_inline_data_length[4]; uint8_t reserved2[12]; }; struct scsi_vpd_tpc_descriptor_sd { uint8_t desc_type[2]; #define SVPD_TPC_SD 0x0008 uint8_t desc_length[2]; uint8_t list_length; uint8_t supported_descriptor_codes[]; }; struct scsi_vpd_tpc_descriptor_sdid { uint8_t desc_type[2]; #define SVPD_TPC_SDID 0x000C uint8_t desc_length[2]; uint8_t list_length[2]; uint8_t supported_descriptor_ids[]; }; struct scsi_vpd_tpc_descriptor_rtf_block { uint8_t type_format; #define SVPD_TPC_RTF_BLOCK 0x00 uint8_t reserved; uint8_t desc_length[2]; uint8_t reserved2[2]; uint8_t optimal_length_granularity[2]; uint8_t maximum_bytes[8]; uint8_t optimal_bytes[8]; uint8_t optimal_bytes_to_token_per_segment[8]; uint8_t optimal_bytes_from_token_per_segment[8]; uint8_t reserved3[8]; }; struct scsi_vpd_tpc_descriptor_rtf { uint8_t desc_type[2]; #define SVPD_TPC_RTF 0x0106 uint8_t desc_length[2]; uint8_t remote_tokens; uint8_t reserved[11]; uint8_t minimum_token_lifetime[4]; uint8_t maximum_token_lifetime[4]; uint8_t maximum_token_inactivity_timeout[4]; uint8_t reserved2[18]; uint8_t type_specific_features_length[2]; uint8_t type_specific_features[0]; }; struct scsi_vpd_tpc_descriptor_srtd { uint8_t rod_type[4]; uint8_t flags; #define SVPD_TPC_SRTD_TOUT 0x01 #define SVPD_TPC_SRTD_TIN 0x02 #define SVPD_TPC_SRTD_ECPY 0x80 uint8_t reserved; uint8_t preference_indicator[2]; uint8_t reserved2[56]; }; struct scsi_vpd_tpc_descriptor_srt { uint8_t desc_type[2]; #define SVPD_TPC_SRT 0x0108 uint8_t desc_length[2]; uint8_t reserved[2]; uint8_t rod_type_descriptors_length[2]; uint8_t rod_type_descriptors[0]; }; struct scsi_vpd_tpc_descriptor_gco { uint8_t desc_type[2]; #define SVPD_TPC_GCO 0x8001 uint8_t desc_length[2]; uint8_t total_concurrent_copies[4]; uint8_t maximum_identified_concurrent_copies[4]; uint8_t maximum_segment_length[4]; uint8_t data_segment_granularity; uint8_t inline_data_granularity; uint8_t reserved[18]; }; struct scsi_vpd_tpc { uint8_t device; uint8_t page_code; #define SVPD_SCSI_TPC 0x8F uint8_t page_length[2]; struct scsi_vpd_tpc_descriptor descr[]; }; /* * SCSI Feature Sets VPD Page */ struct scsi_vpd_sfs { uint8_t device; uint8_t page_code; #define SVPD_SCSI_SFS 0x92 uint8_t page_length[2]; uint8_t reserved[4]; uint8_t codes[]; }; -/* - * Block Device Characteristics VPD Page based on - * T10/1799-D Revision 31 - */ -struct scsi_vpd_block_characteristics -{ - u_int8_t device; - u_int8_t page_code; -#define SVPD_BDC 0xB1 - u_int8_t page_length[2]; - u_int8_t medium_rotation_rate[2]; -#define SVPD_BDC_RATE_NOT_REPORTED 0x00 -#define SVPD_BDC_RATE_NON_ROTATING 0x01 - u_int8_t reserved1; - u_int8_t nominal_form_factor; -#define SVPD_BDC_FORM_NOT_REPORTED 0x00 -#define SVPD_BDC_FORM_5_25INCH 0x01 -#define SVPD_BDC_FORM_3_5INCH 0x02 -#define SVPD_BDC_FORM_2_5INCH 0x03 -#define SVPD_BDC_FORM_1_5INCH 0x04 -#define SVPD_BDC_FORM_LESSTHAN_1_5INCH 0x05 - u_int8_t reserved2[56]; -}; - /* * Block Device Characteristics VPD Page */ struct scsi_vpd_block_device_characteristics { uint8_t device; uint8_t page_code; #define SVPD_BDC 0xB1 uint8_t page_length[2]; uint8_t medium_rotation_rate[2]; #define SVPD_NOT_REPORTED 0x0000 #define SVPD_NON_ROTATING 0x0001 uint8_t product_type; uint8_t wab_wac_ff; uint8_t flags; #define SVPD_VBULS 0x01 #define SVPD_FUAB 0x02 #define SVPD_BOCS 0x04 #define SVPD_RBWZ 0x08 #define SVPD_ZBC_NR 0x00 /* Not Reported */ #define SVPD_HAW_ZBC 0x10 /* Host Aware */ #define SVPD_DM_ZBC 0x20 /* Drive Managed */ #define SVPD_ZBC_MASK 0x30 /* Zoned mask */ uint8_t reserved[3]; uint8_t depopulation_time[4]; uint8_t reserved2[48]; }; #define SBDC_IS_PRESENT(bdc, length, field) \ ((length >= offsetof(struct scsi_vpd_block_device_characteristics, \ field) + sizeof(bdc->field)) ? 1 : 0) /* * Logical Block Provisioning VPD Page based on * T10/1799-D Revision 31 */ struct scsi_vpd_logical_block_prov { u_int8_t device; u_int8_t page_code; #define SVPD_LBP 0xB2 u_int8_t page_length[2]; #define SVPD_LBP_PL_BASIC 0x04 u_int8_t threshold_exponent; u_int8_t flags; #define SVPD_LBP_UNMAP 0x80 #define SVPD_LBP_WS16 0x40 #define SVPD_LBP_WS10 0x20 #define SVPD_LBP_RZ 0x04 #define SVPD_LBP_ANC_SUP 0x02 #define SVPD_LBP_DP 0x01 u_int8_t prov_type; #define SVPD_LBP_RESOURCE 0x01 #define SVPD_LBP_THIN 0x02 u_int8_t reserved; /* * Provisioning Group Descriptor can be here if SVPD_LBP_DP is set * Its size can be determined from page_length - 4 */ }; /* * Block Limits VDP Page based on SBC-4 Revision 17 */ struct scsi_vpd_block_limits { u_int8_t device; u_int8_t page_code; #define SVPD_BLOCK_LIMITS 0xB0 u_int8_t page_length[2]; #define SVPD_BL_PL_BASIC 0x10 #define SVPD_BL_PL_TP 0x3C u_int8_t flags; #define SVPD_BL_WSNZ 0x01 u_int8_t max_cmp_write_len; u_int8_t opt_txfer_len_grain[2]; u_int8_t max_txfer_len[4]; u_int8_t opt_txfer_len[4]; u_int8_t max_prefetch[4]; u_int8_t max_unmap_lba_cnt[4]; u_int8_t max_unmap_blk_cnt[4]; u_int8_t opt_unmap_grain[4]; u_int8_t unmap_grain_align[4]; u_int8_t max_write_same_length[8]; u_int8_t max_atomic_transfer_length[4]; u_int8_t atomic_alignment[4]; u_int8_t atomic_transfer_length_granularity[4]; u_int8_t max_atomic_transfer_length_with_atomic_boundary[4]; u_int8_t max_atomic_boundary_size[4]; }; /* * Zoned Block Device Characacteristics VPD page. * From ZBC-r04, dated August 12, 2015. */ struct scsi_vpd_zoned_bdc { uint8_t device; uint8_t page_code; #define SVPD_ZONED_BDC 0xB6 uint8_t page_length[2]; #define SVPD_ZBDC_PL 0x3C uint8_t flags; #define SVPD_ZBDC_URSWRZ 0x01 uint8_t reserved1[3]; uint8_t optimal_seq_zones[4]; #define SVPD_ZBDC_OPT_SEQ_NR 0xffffffff uint8_t optimal_nonseq_zones[4]; #define SVPD_ZBDC_OPT_NONSEQ_NR 0xffffffff uint8_t max_seq_req_zones[4]; #define SVPD_ZBDC_MAX_SEQ_UNLIMITED 0xffffffff uint8_t reserved2[44]; }; struct scsi_read_capacity { u_int8_t opcode; u_int8_t byte2; #define SRC_RELADR 0x01 u_int8_t addr[4]; u_int8_t unused[2]; u_int8_t pmi; #define SRC_PMI 0x01 u_int8_t control; }; struct scsi_read_capacity_16 { uint8_t opcode; #define SRC16_SERVICE_ACTION 0x10 uint8_t service_action; uint8_t addr[8]; uint8_t alloc_len[4]; #define SRC16_PMI 0x01 #define SRC16_RELADR 0x02 uint8_t reladr; uint8_t control; }; struct scsi_read_capacity_data { u_int8_t addr[4]; u_int8_t length[4]; }; struct scsi_read_capacity_data_long { uint8_t addr[8]; uint8_t length[4]; #define SRC16_PROT_EN 0x01 #define SRC16_P_TYPE 0x0e #define SRC16_P_TYPE_SHIFT 1 #define SRC16_PTYPE_1 0x00 #define SRC16_PTYPE_2 0x02 #define SRC16_PTYPE_3 0x04 uint8_t prot; #define SRC16_LBPPBE 0x0f #define SRC16_PI_EXPONENT 0xf0 #define SRC16_PI_EXPONENT_SHIFT 4 uint8_t prot_lbppbe; #define SRC16_LALBA 0x3f #define SRC16_LBPRZ 0x40 #define SRC16_LBPME 0x80 /* * Alternate versions of these macros that are intended for use on a 16-bit * version of the lalba_lbp field instead of the array of 2 8 bit numbers. */ #define SRC16_LALBA_A 0x3fff #define SRC16_LBPRZ_A 0x4000 #define SRC16_LBPME_A 0x8000 uint8_t lalba_lbp[2]; uint8_t reserved[16]; }; struct scsi_get_lba_status { uint8_t opcode; #define SGLS_SERVICE_ACTION 0x12 uint8_t service_action; uint8_t addr[8]; uint8_t alloc_len[4]; uint8_t reserved; uint8_t control; }; struct scsi_get_lba_status_data_descr { uint8_t addr[8]; uint8_t length[4]; uint8_t status; uint8_t reserved[3]; }; struct scsi_get_lba_status_data { uint8_t length[4]; uint8_t reserved[4]; struct scsi_get_lba_status_data_descr descr[]; }; struct scsi_report_luns { uint8_t opcode; uint8_t reserved1; #define RPL_REPORT_DEFAULT 0x00 #define RPL_REPORT_WELLKNOWN 0x01 #define RPL_REPORT_ALL 0x02 #define RPL_REPORT_ADMIN 0x10 #define RPL_REPORT_NONSUBSID 0x11 #define RPL_REPORT_CONGLOM 0x12 uint8_t select_report; uint8_t reserved2[3]; uint8_t length[4]; uint8_t reserved3; uint8_t control; }; struct scsi_report_luns_lundata { uint8_t lundata[8]; #define RPL_LUNDATA_PERIPH_BUS_MASK 0x3f #define RPL_LUNDATA_FLAT_LUN_MASK 0x3f #define RPL_LUNDATA_FLAT_LUN_BITS 0x06 #define RPL_LUNDATA_LUN_TARG_MASK 0x3f #define RPL_LUNDATA_LUN_BUS_MASK 0xe0 #define RPL_LUNDATA_LUN_LUN_MASK 0x1f #define RPL_LUNDATA_EXT_LEN_MASK 0x30 #define RPL_LUNDATA_EXT_EAM_MASK 0x0f #define RPL_LUNDATA_EXT_EAM_WK 0x01 #define RPL_LUNDATA_EXT_EAM_NOT_SPEC 0x0f #define RPL_LUNDATA_ATYP_MASK 0xc0 /* MBZ for type 0 lun */ #define RPL_LUNDATA_ATYP_PERIPH 0x00 #define RPL_LUNDATA_ATYP_FLAT 0x40 #define RPL_LUNDATA_ATYP_LUN 0x80 #define RPL_LUNDATA_ATYP_EXTLUN 0xc0 }; struct scsi_report_luns_data { u_int8_t length[4]; /* length of LUN inventory, in bytes */ u_int8_t reserved[4]; /* unused */ /* * LUN inventory- we only support the type zero form for now. */ struct scsi_report_luns_lundata luns[0]; }; struct scsi_target_group { uint8_t opcode; uint8_t service_action; #define STG_PDF_MASK 0xe0 #define STG_PDF_LENGTH 0x00 #define STG_PDF_EXTENDED 0x20 uint8_t reserved1[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_timestamp { uint8_t opcode; uint8_t service_action; uint8_t reserved1[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_set_timestamp_parameters { uint8_t reserved1[4]; uint8_t timestamp[6]; uint8_t reserved2[2]; }; struct scsi_report_timestamp_parameter_data { uint8_t length[2]; uint8_t reserved1[2]; uint8_t timestamp[6]; uint8_t reserved2[2]; }; struct scsi_target_port_descriptor { uint8_t reserved[2]; uint8_t relative_target_port_identifier[2]; uint8_t desc_list[]; }; struct scsi_target_port_group_descriptor { uint8_t pref_state; #define TPG_PRIMARY 0x80 #define TPG_ASYMMETRIC_ACCESS_STATE_MASK 0xf #define TPG_ASYMMETRIC_ACCESS_OPTIMIZED 0x0 #define TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED 0x1 #define TPG_ASYMMETRIC_ACCESS_STANDBY 0x2 #define TPG_ASYMMETRIC_ACCESS_UNAVAILABLE 0x3 #define TPG_ASYMMETRIC_ACCESS_LBA_DEPENDENT 0x4 #define TPG_ASYMMETRIC_ACCESS_OFFLINE 0xE #define TPG_ASYMMETRIC_ACCESS_TRANSITIONING 0xF uint8_t support; #define TPG_AO_SUP 0x01 #define TPG_AN_SUP 0x02 #define TPG_S_SUP 0x04 #define TPG_U_SUP 0x08 #define TPG_LBD_SUP 0x10 #define TPG_O_SUP 0x40 #define TPG_T_SUP 0x80 uint8_t target_port_group[2]; uint8_t reserved; uint8_t status; #define TPG_UNAVLBL 0 #define TPG_SET_BY_STPG 0x01 #define TPG_IMPLICIT 0x02 uint8_t vendor_specific; uint8_t target_port_count; struct scsi_target_port_descriptor descriptors[]; }; struct scsi_target_group_data { uint8_t length[4]; /* length of returned data, in bytes */ struct scsi_target_port_group_descriptor groups[]; }; struct scsi_target_group_data_extended { uint8_t length[4]; /* length of returned data, in bytes */ uint8_t format_type; /* STG_PDF_LENGTH or STG_PDF_EXTENDED */ uint8_t implicit_transition_time; uint8_t reserved[2]; struct scsi_target_port_group_descriptor groups[]; }; struct scsi_security_protocol_in { uint8_t opcode; uint8_t security_protocol; #define SPI_PROT_INFORMATION 0x00 #define SPI_PROT_CBCS 0x07 #define SPI_PROT_TAPE_DATA_ENC 0x20 #define SPI_PROT_DATA_ENC_CONFIG 0x21 #define SPI_PROT_SA_CREATE_CAP 0x40 #define SPI_PROT_IKEV2_SCSI 0x41 #define SPI_PROT_JEDEC_UFS 0xEC #define SPI_PROT_SDCARD_TFSSS 0xED #define SPI_PROT_AUTH_HOST_TRANSIENT 0xEE #define SPI_PROT_ATA_DEVICE_PASSWORD 0xEF uint8_t security_protocol_specific[2]; uint8_t byte4; #define SPI_INC_512 0x80 uint8_t reserved1; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_security_protocol_out { uint8_t opcode; uint8_t security_protocol; uint8_t security_protocol_specific[2]; uint8_t byte4; #define SPO_INC_512 0x80 uint8_t reserved1; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; typedef enum { SSD_TYPE_NONE, SSD_TYPE_FIXED, SSD_TYPE_DESC } scsi_sense_data_type; typedef enum { SSD_ELEM_NONE, SSD_ELEM_SKIP, SSD_ELEM_DESC, SSD_ELEM_SKS, SSD_ELEM_COMMAND, SSD_ELEM_INFO, SSD_ELEM_FRU, SSD_ELEM_STREAM, SSD_ELEM_MAX } scsi_sense_elem_type; struct scsi_sense_data { uint8_t error_code; /* * SPC-4 says that the maximum length of sense data is 252 bytes. * So this structure is exactly 252 bytes log. */ #define SSD_FULL_SIZE 252 uint8_t sense_buf[SSD_FULL_SIZE - 1]; /* * XXX KDM is this still a reasonable minimum size? */ #define SSD_MIN_SIZE 18 /* * Maximum value for the extra_len field in the sense data. */ #define SSD_EXTRA_MAX 244 }; /* * Fixed format sense data. */ struct scsi_sense_data_fixed { u_int8_t error_code; #define SSD_ERRCODE 0x7F #define SSD_CURRENT_ERROR 0x70 #define SSD_DEFERRED_ERROR 0x71 #define SSD_ERRCODE_VALID 0x80 u_int8_t segment; u_int8_t flags; #define SSD_KEY 0x0F #define SSD_KEY_NO_SENSE 0x00 #define SSD_KEY_RECOVERED_ERROR 0x01 #define SSD_KEY_NOT_READY 0x02 #define SSD_KEY_MEDIUM_ERROR 0x03 #define SSD_KEY_HARDWARE_ERROR 0x04 #define SSD_KEY_ILLEGAL_REQUEST 0x05 #define SSD_KEY_UNIT_ATTENTION 0x06 #define SSD_KEY_DATA_PROTECT 0x07 #define SSD_KEY_BLANK_CHECK 0x08 #define SSD_KEY_Vendor_Specific 0x09 #define SSD_KEY_COPY_ABORTED 0x0a #define SSD_KEY_ABORTED_COMMAND 0x0b #define SSD_KEY_EQUAL 0x0c #define SSD_KEY_VOLUME_OVERFLOW 0x0d #define SSD_KEY_MISCOMPARE 0x0e #define SSD_KEY_COMPLETED 0x0f #define SSD_SDAT_OVFL 0x10 #define SSD_ILI 0x20 #define SSD_EOM 0x40 #define SSD_FILEMARK 0x80 u_int8_t info[4]; u_int8_t extra_len; u_int8_t cmd_spec_info[4]; u_int8_t add_sense_code; u_int8_t add_sense_code_qual; u_int8_t fru; u_int8_t sense_key_spec[3]; #define SSD_SCS_VALID 0x80 #define SSD_FIELDPTR_CMD 0x40 #define SSD_BITPTR_VALID 0x08 #define SSD_BITPTR_VALUE 0x07 u_int8_t extra_bytes[14]; #define SSD_FIXED_IS_PRESENT(sense, length, field) \ ((length >= (offsetof(struct scsi_sense_data_fixed, field) + \ sizeof(sense->field))) ? 1 :0) #define SSD_FIXED_IS_FILLED(sense, field) \ ((((offsetof(struct scsi_sense_data_fixed, field) + \ sizeof(sense->field)) - \ (offsetof(struct scsi_sense_data_fixed, extra_len) + \ sizeof(sense->extra_len))) <= sense->extra_len) ? 1 : 0) }; /* * Descriptor format sense data definitions. * Introduced in SPC-3. */ struct scsi_sense_data_desc { uint8_t error_code; #define SSD_DESC_CURRENT_ERROR 0x72 #define SSD_DESC_DEFERRED_ERROR 0x73 uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_code_qual; uint8_t flags; #define SSDD_SDAT_OVFL 0x80 uint8_t reserved[2]; /* * Note that SPC-4, section 4.5.2.1 says that the extra_len field * must be less than or equal to 244. */ uint8_t extra_len; uint8_t sense_desc[0]; #define SSD_DESC_IS_PRESENT(sense, length, field) \ ((length >= (offsetof(struct scsi_sense_data_desc, field) + \ sizeof(sense->field))) ? 1 :0) }; struct scsi_sense_desc_header { uint8_t desc_type; uint8_t length; }; /* * The information provide in the Information descriptor is device type or * command specific information, and defined in a command standard. * * Note that any changes to the field names or positions in this structure, * even reserved fields, should be accompanied by an examination of the * code in ctl_set_sense() that uses them. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_info { uint8_t desc_type; #define SSD_DESC_INFO 0x00 uint8_t length; uint8_t byte2; #define SSD_INFO_VALID 0x80 uint8_t reserved; uint8_t info[8]; }; /* * Command-specific information depends on the command for which the * reported condition occurred. * * Note that any changes to the field names or positions in this structure, * even reserved fields, should be accompanied by an examination of the * code in ctl_set_sense() that uses them. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_command { uint8_t desc_type; #define SSD_DESC_COMMAND 0x01 uint8_t length; uint8_t reserved[2]; uint8_t command_info[8]; }; /* * Sense key specific descriptor. The sense key specific data format * depends on the sense key in question. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_sks { uint8_t desc_type; #define SSD_DESC_SKS 0x02 uint8_t length; uint8_t reserved1[2]; uint8_t sense_key_spec[3]; #define SSD_SKS_VALID 0x80 uint8_t reserved2; }; /* * This is used for the Illegal Request sense key (0x05) only. */ struct scsi_sense_sks_field { uint8_t byte0; #define SSD_SKS_FIELD_VALID 0x80 #define SSD_SKS_FIELD_CMD 0x40 #define SSD_SKS_BPV 0x08 #define SSD_SKS_BIT_VALUE 0x07 uint8_t field[2]; }; /* * This is used for the Hardware Error (0x04), Medium Error (0x03) and * Recovered Error (0x01) sense keys. */ struct scsi_sense_sks_retry { uint8_t byte0; #define SSD_SKS_RETRY_VALID 0x80 uint8_t actual_retry_count[2]; }; /* * Used with the NO Sense (0x00) or Not Ready (0x02) sense keys. */ struct scsi_sense_sks_progress { uint8_t byte0; #define SSD_SKS_PROGRESS_VALID 0x80 uint8_t progress[2]; #define SSD_SKS_PROGRESS_DENOM 0x10000 }; /* * Used with the Copy Aborted (0x0a) sense key. */ struct scsi_sense_sks_segment { uint8_t byte0; #define SSD_SKS_SEGMENT_VALID 0x80 #define SSD_SKS_SEGMENT_SD 0x20 #define SSD_SKS_SEGMENT_BPV 0x08 #define SSD_SKS_SEGMENT_BITPTR 0x07 uint8_t field[2]; }; /* * Used with the Unit Attention (0x06) sense key. * * This is currently used to indicate that the unit attention condition * queue has overflowed (when the overflow bit is set). */ struct scsi_sense_sks_overflow { uint8_t byte0; #define SSD_SKS_OVERFLOW_VALID 0x80 #define SSD_SKS_OVERFLOW_SET 0x01 uint8_t reserved[2]; }; /* * This specifies which component is associated with the sense data. There * is no standard meaning for the fru value. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_fru { uint8_t desc_type; #define SSD_DESC_FRU 0x03 uint8_t length; uint8_t reserved; uint8_t fru; }; /* * Used for Stream commands, defined in SSC-4. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_stream { uint8_t desc_type; #define SSD_DESC_STREAM 0x04 uint8_t length; uint8_t reserved; uint8_t byte3; #define SSD_DESC_STREAM_FM 0x80 #define SSD_DESC_STREAM_EOM 0x40 #define SSD_DESC_STREAM_ILI 0x20 }; /* * Used for Block commands, defined in SBC-3. * * This is currently (as of SBC-3) only used for the Incorrect Length * Indication (ILI) bit, which says that the data length requested in the * READ LONG or WRITE LONG command did not match the length of the logical * block. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_block { uint8_t desc_type; #define SSD_DESC_BLOCK 0x05 uint8_t length; uint8_t reserved; uint8_t byte3; #define SSD_DESC_BLOCK_ILI 0x20 }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_objid { uint8_t desc_type; #define SSD_DESC_OSD_OBJID 0x06 uint8_t length; uint8_t reserved[6]; /* * XXX KDM provide the bit definitions here? There are a lot of * them, and we don't have an OSD driver yet. */ uint8_t not_init_cmds[4]; uint8_t completed_cmds[4]; uint8_t partition_id[8]; uint8_t object_id[8]; }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_integrity { uint8_t desc_type; #define SSD_DESC_OSD_INTEGRITY 0x07 uint8_t length; uint8_t integ_check_val[32]; }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_attr_id { uint8_t desc_type; #define SSD_DESC_OSD_ATTR_ID 0x08 uint8_t length; uint8_t reserved[2]; uint8_t attr_desc[0]; }; /* * ATA Return descriptor, used for the SCSI ATA PASS-THROUGH(12), (16) and * (32) commands. Described in SAT-4r05. */ struct scsi_sense_ata_ret_desc { uint8_t desc_type; #define SSD_DESC_ATA 0x09 uint8_t length; uint8_t flags; #define SSD_DESC_ATA_FLAG_EXTEND 0x01 uint8_t error; uint8_t count_15_8; uint8_t count_7_0; uint8_t lba_31_24; uint8_t lba_7_0; uint8_t lba_39_32; uint8_t lba_15_8; uint8_t lba_47_40; uint8_t lba_23_16; uint8_t device; uint8_t status; }; /* * Used with Sense keys No Sense (0x00) and Not Ready (0x02). * * Maximum descriptors allowed: 32 (as of SPC-4) */ struct scsi_sense_progress { uint8_t desc_type; #define SSD_DESC_PROGRESS 0x0a uint8_t length; uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_code_qual; uint8_t reserved; uint8_t progress[2]; }; /* * This is typically forwarded as the result of an EXTENDED COPY command. * * Maximum descriptors allowed: 2 (as of SPC-4) */ struct scsi_sense_forwarded { uint8_t desc_type; #define SSD_DESC_FORWARDED 0x0c uint8_t length; uint8_t byte2; #define SSD_FORWARDED_FSDT 0x80 #define SSD_FORWARDED_SDS_MASK 0x0f #define SSD_FORWARDED_SDS_UNK 0x00 #define SSD_FORWARDED_SDS_EXSRC 0x01 #define SSD_FORWARDED_SDS_EXDST 0x02 uint8_t status; uint8_t sense_data[]; }; /* * Vendor-specific sense descriptor. The desc_type field will be in the * range between MIN and MAX inclusive. */ struct scsi_sense_vendor { uint8_t desc_type; #define SSD_DESC_VENDOR_MIN 0x80 #define SSD_DESC_VENDOR_MAX 0xff uint8_t length; uint8_t data[0]; }; struct scsi_mode_header_6 { u_int8_t data_length; /* Sense data length */ u_int8_t medium_type; u_int8_t dev_spec; u_int8_t blk_desc_len; }; struct scsi_mode_header_10 { u_int8_t data_length[2];/* Sense data length */ u_int8_t medium_type; u_int8_t dev_spec; u_int8_t flags; #define SMH_LONGLBA 0x01 u_int8_t unused; u_int8_t blk_desc_len[2]; }; struct scsi_mode_page_header { u_int8_t page_code; #define SMPH_PS 0x80 #define SMPH_SPF 0x40 #define SMPH_PC_MASK 0x3f u_int8_t page_length; }; struct scsi_mode_page_header_sp { uint8_t page_code; uint8_t subpage; uint8_t page_length[2]; }; struct scsi_mode_blk_desc { u_int8_t density; u_int8_t nblocks[3]; u_int8_t reserved; u_int8_t blklen[3]; }; #define SCSI_DEFAULT_DENSITY 0x00 /* use 'default' density */ #define SCSI_SAME_DENSITY 0x7f /* use 'same' density- >= SCSI-2 only */ /* * Status Byte */ #define SCSI_STATUS_OK 0x00 #define SCSI_STATUS_CHECK_COND 0x02 #define SCSI_STATUS_COND_MET 0x04 #define SCSI_STATUS_BUSY 0x08 #define SCSI_STATUS_INTERMED 0x10 #define SCSI_STATUS_INTERMED_COND_MET 0x14 #define SCSI_STATUS_RESERV_CONFLICT 0x18 #define SCSI_STATUS_CMD_TERMINATED 0x22 /* Obsolete in SAM-2 */ #define SCSI_STATUS_QUEUE_FULL 0x28 #define SCSI_STATUS_ACA_ACTIVE 0x30 #define SCSI_STATUS_TASK_ABORTED 0x40 struct scsi_inquiry_pattern { u_int8_t type; u_int8_t media_type; #define SIP_MEDIA_REMOVABLE 0x01 #define SIP_MEDIA_FIXED 0x02 const char *vendor; const char *product; const char *revision; }; struct scsi_static_inquiry_pattern { u_int8_t type; u_int8_t media_type; char vendor[SID_VENDOR_SIZE+1]; char product[SID_PRODUCT_SIZE+1]; char revision[SID_REVISION_SIZE+1]; }; struct scsi_sense_quirk_entry { struct scsi_inquiry_pattern inq_pat; int num_sense_keys; int num_ascs; struct sense_key_table_entry *sense_key_info; struct asc_table_entry *asc_info; }; struct sense_key_table_entry { u_int8_t sense_key; u_int32_t action; const char *desc; }; struct asc_table_entry { u_int8_t asc; u_int8_t ascq; u_int32_t action; const char *desc; }; struct op_table_entry { u_int8_t opcode; u_int32_t opmask; const char *desc; }; struct scsi_op_quirk_entry { struct scsi_inquiry_pattern inq_pat; int num_ops; struct op_table_entry *op_table; }; typedef enum { SSS_FLAG_NONE = 0x00, SSS_FLAG_PRINT_COMMAND = 0x01 } scsi_sense_string_flags; struct scsi_nv { const char *name; uint64_t value; }; typedef enum { SCSI_NV_FOUND, SCSI_NV_AMBIGUOUS, SCSI_NV_NOT_FOUND } scsi_nv_status; typedef enum { SCSI_NV_FLAG_NONE = 0x00, SCSI_NV_FLAG_IG_CASE = 0x01 /* Case insensitive comparison */ } scsi_nv_flags; struct ccb_scsiio; struct cam_periph; union ccb; #ifndef _KERNEL struct cam_device; #endif extern const char *scsi_sense_key_text[]; __BEGIN_DECLS void scsi_sense_desc(int sense_key, int asc, int ascq, struct scsi_inquiry_data *inq_data, const char **sense_key_desc, const char **asc_desc); scsi_sense_action scsi_error_action(struct ccb_scsiio* csio, struct scsi_inquiry_data *inq_data, u_int32_t sense_flags); const char * scsi_status_string(struct ccb_scsiio *csio); void scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, int (*iter_func)(struct scsi_sense_data_desc *sense, u_int, struct scsi_sense_desc_header *, void *), void *arg); uint8_t *scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, uint8_t desc_type); void scsi_set_sense_data(struct scsi_sense_data *sense_data, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) ; void scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) ; void scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap); int scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t info_type, uint64_t *info, int64_t *signed_info); int scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks); int scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *block_bits); int scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *stream_bits); void scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t info); void scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t csi); void scsi_progress_sbuf(struct sbuf *sb, uint16_t progress); int scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks); void scsi_fru_sbuf(struct sbuf *sb, uint64_t fru); void scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits); void scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits); void scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); scsi_sense_data_type scsi_sense_type(struct scsi_sense_data *sense_data); void scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, struct sbuf *sb, char *path_str, struct scsi_inquiry_data *inq_data, uint8_t *cdb, int cdb_len); #ifdef _KERNEL int scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb); int scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags); char * scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len); void scsi_sense_print(struct ccb_scsiio *csio); int scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id); #else /* _KERNEL */ int scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb); int scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags); char * scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, char *str, int str_len); void scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, FILE *ofile); #endif /* _KERNEL */ const char * scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data); char * scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len); void scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb); void scsi_print_inquiry(struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data); u_int scsi_calc_syncsrate(u_int period_factor); u_int scsi_calc_syncparam(u_int period); typedef int (*scsi_devid_checkfn_t)(uint8_t *); int scsi_devid_is_naa_ieee_reg(uint8_t *bufp); int scsi_devid_is_sas_target(uint8_t *bufp); int scsi_devid_is_lun_eui64(uint8_t *bufp); int scsi_devid_is_lun_naa(uint8_t *bufp); int scsi_devid_is_lun_name(uint8_t *bufp); int scsi_devid_is_lun_t10(uint8_t *bufp); int scsi_devid_is_lun_md5(uint8_t *bufp); int scsi_devid_is_lun_uuid(uint8_t *bufp); int scsi_devid_is_port_naa(uint8_t *bufp); struct scsi_vpd_id_descriptor * scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t len, scsi_devid_checkfn_t ck_fn); struct scsi_vpd_id_descriptor * scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, scsi_devid_checkfn_t ck_fn); int scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, uint32_t valid_len); const char * scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value); scsi_nv_status scsi_get_nv(struct scsi_nv *table, int num_table_entries, char *name, int *table_entry, scsi_nv_flags flags); int scsi_parse_transportid_64bit(int proto_id, char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str,int error_str_len); int scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str,int error_str_len); int scsi_parse_transportid(char *transportid_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); struct scsi_attrib_table_entry *scsi_find_attrib_entry( struct scsi_attrib_table_entry *table, size_t num_table_entries, uint32_t id); struct scsi_attrib_table_entry *scsi_get_attrib_entry(uint32_t id); int scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, struct scsi_mam_attribute_header *hdr, uint32_t output_flags, char *error_str, size_t error_str_len); void scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, const char *desc); int scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, struct scsi_attrib_table_entry *user_table, size_t num_user_entries, int prefer_user_table, uint32_t output_flags, char *error_str, int error_str_len); void scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout); void scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout); void scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, int evpd, u_int8_t page_code, u_int8_t sense_len, u_int32_t timeout); void scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, uint32_t timeout); void scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout); void scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout); void scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout); void scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, u_int8_t page, int save_pages, int ppc, u_int32_t paramptr, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, int save_pages, int pc_reset, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t action, u_int8_t sense_len, u_int32_t timeout); void scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, struct scsi_read_capacity_data *, u_int8_t sense_len, u_int32_t timeout); void scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint64_t lba, int reladr, int pmi, uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, uint32_t timeout); void scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t select_report, struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_create_timestamp(uint8_t *timestamp_6b_buf, uint64_t timestamp); void scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int32_t begin_lba, u_int16_t lb_count, u_int8_t sense_len, u_int32_t timeout); void scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int pcv, uint8_t page_code, uint8_t *data_ptr, uint16_t allocation_length, uint8_t sense_len, uint32_t timeout); void scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int unit_offline, int device_offline, int self_test, int page_format, int self_test_code, uint8_t *data_ptr, uint16_t param_list_length, uint8_t sense_len, uint32_t timeout); void scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t allocation_length, uint8_t sense_len, uint32_t timeout); void scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t param_list_length, uint8_t sense_len, uint32_t timeout); #define SCSI_RW_READ 0x0001 #define SCSI_RW_WRITE 0x0002 #define SCSI_RW_DIRMASK 0x0003 #define SCSI_RW_BIO 0x1000 void scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int readop, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int16_t block_count, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); int scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t log_address, uint32_t page_number, uint16_t block_count, uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, uint32_t timeout); int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t feature, uint64_t lba, uint32_t count, uint8_t sense_len, uint32_t timeout); int scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t tag_action, uint8_t protocol, uint8_t ata_flags, uint16_t features, uint16_t sector_count, uint64_t lba, uint8_t command, uint8_t device, uint8_t icc, uint32_t auxiliary, uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, u_int16_t sector_count, uint64_t lba, u_int8_t command, u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int start, int load_eject, int immediate, u_int8_t sense_len, u_int32_t timeout); void scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t service_action, uint32_t element, u_int8_t elem_type, int logical_volume, int partition, u_int32_t first_attribute, int cache, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout); void scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, uint32_t element, int logical_volume, int partition, int wtc, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout); void scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *,union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *,union ccb *), uint8_t tag_action, int service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int service_action, int scope, int res_type, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int options, int req_opcode, int req_service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); int scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry); int scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry); int scsi_devid_match(uint8_t *rhs, size_t rhs_len, uint8_t *lhs, size_t lhs_len); void scsi_extract_sense(struct scsi_sense_data *sense, int *error_code, int *sense_key, int *asc, int *ascq); int scsi_extract_sense_ccb(union ccb *ccb, int *error_code, int *sense_key, int *asc, int *ascq); void scsi_extract_sense_len(struct scsi_sense_data *sense, u_int sense_len, int *error_code, int *sense_key, int *asc, int *ascq, int show_errors); int scsi_get_sense_key(struct scsi_sense_data *sense, u_int sense_len, int show_errors); int scsi_get_asc(struct scsi_sense_data *sense, u_int sense_len, int show_errors); int scsi_get_ascq(struct scsi_sense_data *sense, u_int sense_len, int show_errors); static __inline void scsi_ulto2b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 8) & 0xff; bytes[1] = val & 0xff; } static __inline void scsi_ulto3b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 16) & 0xff; bytes[1] = (val >> 8) & 0xff; bytes[2] = val & 0xff; } static __inline void scsi_ulto4b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 24) & 0xff; bytes[1] = (val >> 16) & 0xff; bytes[2] = (val >> 8) & 0xff; bytes[3] = val & 0xff; } static __inline void scsi_u64to8b(u_int64_t val, u_int8_t *bytes) { bytes[0] = (val >> 56) & 0xff; bytes[1] = (val >> 48) & 0xff; bytes[2] = (val >> 40) & 0xff; bytes[3] = (val >> 32) & 0xff; bytes[4] = (val >> 24) & 0xff; bytes[5] = (val >> 16) & 0xff; bytes[6] = (val >> 8) & 0xff; bytes[7] = val & 0xff; } static __inline uint32_t scsi_2btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 8) | bytes[1]; return (rv); } static __inline uint32_t scsi_3btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 16) | (bytes[1] << 8) | bytes[2]; return (rv); } static __inline int32_t scsi_3btol(const uint8_t *bytes) { uint32_t rc = scsi_3btoul(bytes); if (rc & 0x00800000) rc |= 0xff000000; return (int32_t) rc; } static __inline uint32_t scsi_4btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 24) | (bytes[1] << 16) | (bytes[2] << 8) | bytes[3]; return (rv); } static __inline uint64_t scsi_8btou64(const uint8_t *bytes) { uint64_t rv; rv = (((uint64_t)bytes[0]) << 56) | (((uint64_t)bytes[1]) << 48) | (((uint64_t)bytes[2]) << 40) | (((uint64_t)bytes[3]) << 32) | (((uint64_t)bytes[4]) << 24) | (((uint64_t)bytes[5]) << 16) | (((uint64_t)bytes[6]) << 8) | bytes[7]; return (rv); } /* * Given the pointer to a returned mode sense buffer, return a pointer to * the start of the first mode page. */ static __inline void * find_mode_page_6(struct scsi_mode_header_6 *mode_header) { void *page_start; page_start = (void *)((u_int8_t *)&mode_header[1] + mode_header->blk_desc_len); return(page_start); } static __inline void * find_mode_page_10(struct scsi_mode_header_10 *mode_header) { void *page_start; page_start = (void *)((u_int8_t *)&mode_header[1] + scsi_2btoul(mode_header->blk_desc_len)); return(page_start); } __END_DECLS #endif /*_SCSI_SCSI_ALL_H*/ diff --git a/sys/cam/scsi/scsi_da.c b/sys/cam/scsi/scsi_da.c index 490f75336efd..73e5e0c3e14c 100644 --- a/sys/cam/scsi/scsi_da.c +++ b/sys/cam/scsi/scsi_da.c @@ -1,6639 +1,6638 @@ /*- * Implementation of SCSI Direct Access Peripheral driver for CAM. * * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #ifdef _KERNEL #include "opt_da.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #ifndef _KERNEL #include #include #endif /* _KERNEL */ #include #include #include #include #ifdef _KERNEL #include #endif /* _KERNEL */ #include #include #include #include #ifdef _KERNEL /* * Note that there are probe ordering dependencies here. The order isn't * controlled by this enumeration, but by explicit state transitions in * dastart() and dadone(). Here are some of the dependencies: * * 1. RC should come first, before RC16, unless there is evidence that RC16 * is supported. * 2. BDC needs to come before any of the ATA probes, or the ZONE probe. * 3. The ATA probes should go in this order: * ATA -> LOGDIR -> IDDIR -> SUP -> ATA_ZONE */ typedef enum { DA_STATE_PROBE_WP, DA_STATE_PROBE_RC, DA_STATE_PROBE_RC16, DA_STATE_PROBE_LBP, DA_STATE_PROBE_BLK_LIMITS, DA_STATE_PROBE_BDC, DA_STATE_PROBE_ATA, DA_STATE_PROBE_ATA_LOGDIR, DA_STATE_PROBE_ATA_IDDIR, DA_STATE_PROBE_ATA_SUP, DA_STATE_PROBE_ATA_ZONE, DA_STATE_PROBE_ZONE, DA_STATE_NORMAL } da_state; typedef enum { DA_FLAG_PACK_INVALID = 0x000001, DA_FLAG_NEW_PACK = 0x000002, DA_FLAG_PACK_LOCKED = 0x000004, DA_FLAG_PACK_REMOVABLE = 0x000008, DA_FLAG_ROTATING = 0x000010, DA_FLAG_NEED_OTAG = 0x000020, DA_FLAG_WAS_OTAG = 0x000040, DA_FLAG_RETRY_UA = 0x000080, DA_FLAG_OPEN = 0x000100, DA_FLAG_SCTX_INIT = 0x000200, DA_FLAG_CAN_RC16 = 0x000400, DA_FLAG_PROBED = 0x000800, DA_FLAG_DIRTY = 0x001000, DA_FLAG_ANNOUNCED = 0x002000, DA_FLAG_CAN_ATA_DMA = 0x004000, DA_FLAG_CAN_ATA_LOG = 0x008000, DA_FLAG_CAN_ATA_IDLOG = 0x010000, DA_FLAG_CAN_ATA_SUPCAP = 0x020000, DA_FLAG_CAN_ATA_ZONE = 0x040000, DA_FLAG_TUR_PENDING = 0x080000, DA_FLAG_UNMAPPEDIO = 0x100000 } da_flags; #define DA_FLAG_STRING \ "\020" \ "\001PACK_INVALID" \ "\002NEW_PACK" \ "\003PACK_LOCKED" \ "\004PACK_REMOVABLE" \ "\005ROTATING" \ "\006NEED_OTAG" \ "\007WAS_OTAG" \ "\010RETRY_UA" \ "\011OPEN" \ "\012SCTX_INIT" \ "\013CAN_RC16" \ "\014PROBED" \ "\015DIRTY" \ "\016ANNOUCNED" \ "\017CAN_ATA_DMA" \ "\020CAN_ATA_LOG" \ "\021CAN_ATA_IDLOG" \ "\022CAN_ATA_SUPACP" \ "\023CAN_ATA_ZONE" \ "\024TUR_PENDING" \ "\025UNMAPPEDIO" typedef enum { DA_Q_NONE = 0x00, DA_Q_NO_SYNC_CACHE = 0x01, DA_Q_NO_6_BYTE = 0x02, DA_Q_NO_PREVENT = 0x04, DA_Q_4K = 0x08, DA_Q_NO_RC16 = 0x10, DA_Q_NO_UNMAP = 0x20, DA_Q_RETRY_BUSY = 0x40, DA_Q_SMR_DM = 0x80, DA_Q_STRICT_UNMAP = 0x100, DA_Q_128KB = 0x200 } da_quirks; #define DA_Q_BIT_STRING \ "\020" \ "\001NO_SYNC_CACHE" \ "\002NO_6_BYTE" \ "\003NO_PREVENT" \ "\0044K" \ "\005NO_RC16" \ "\006NO_UNMAP" \ "\007RETRY_BUSY" \ "\010SMR_DM" \ "\011STRICT_UNMAP" \ "\012128KB" typedef enum { DA_CCB_PROBE_RC = 0x01, DA_CCB_PROBE_RC16 = 0x02, DA_CCB_PROBE_LBP = 0x03, DA_CCB_PROBE_BLK_LIMITS = 0x04, DA_CCB_PROBE_BDC = 0x05, DA_CCB_PROBE_ATA = 0x06, DA_CCB_BUFFER_IO = 0x07, DA_CCB_DUMP = 0x0A, DA_CCB_DELETE = 0x0B, DA_CCB_TUR = 0x0C, DA_CCB_PROBE_ZONE = 0x0D, DA_CCB_PROBE_ATA_LOGDIR = 0x0E, DA_CCB_PROBE_ATA_IDDIR = 0x0F, DA_CCB_PROBE_ATA_SUP = 0x10, DA_CCB_PROBE_ATA_ZONE = 0x11, DA_CCB_PROBE_WP = 0x12, DA_CCB_TYPE_MASK = 0x1F, DA_CCB_RETRY_UA = 0x20 } da_ccb_state; /* * Order here is important for method choice * * We prefer ATA_TRIM as tests run against a Sandforce 2281 SSD attached to * LSI 2008 (mps) controller (FW: v12, Drv: v14) resulted 20% quicker deletes * using ATA_TRIM than the corresponding UNMAP results for a real world mysql * import taking 5mins. * */ typedef enum { DA_DELETE_NONE, DA_DELETE_DISABLE, DA_DELETE_ATA_TRIM, DA_DELETE_UNMAP, DA_DELETE_WS16, DA_DELETE_WS10, DA_DELETE_ZERO, DA_DELETE_MIN = DA_DELETE_ATA_TRIM, DA_DELETE_MAX = DA_DELETE_ZERO } da_delete_methods; /* * For SCSI, host managed drives show up as a separate device type. For * ATA, host managed drives also have a different device signature. * XXX KDM figure out the ATA host managed signature. */ typedef enum { DA_ZONE_NONE = 0x00, DA_ZONE_DRIVE_MANAGED = 0x01, DA_ZONE_HOST_AWARE = 0x02, DA_ZONE_HOST_MANAGED = 0x03 } da_zone_mode; /* * We distinguish between these interface cases in addition to the drive type: * o ATA drive behind a SCSI translation layer that knows about ZBC/ZAC * o ATA drive behind a SCSI translation layer that does not know about * ZBC/ZAC, and so needs to be managed via ATA passthrough. In this * case, we would need to share the ATA code with the ada(4) driver. * o SCSI drive. */ typedef enum { DA_ZONE_IF_SCSI, DA_ZONE_IF_ATA_PASS, DA_ZONE_IF_ATA_SAT, } da_zone_interface; typedef enum { DA_ZONE_FLAG_RZ_SUP = 0x0001, DA_ZONE_FLAG_OPEN_SUP = 0x0002, DA_ZONE_FLAG_CLOSE_SUP = 0x0004, DA_ZONE_FLAG_FINISH_SUP = 0x0008, DA_ZONE_FLAG_RWP_SUP = 0x0010, DA_ZONE_FLAG_SUP_MASK = (DA_ZONE_FLAG_RZ_SUP | DA_ZONE_FLAG_OPEN_SUP | DA_ZONE_FLAG_CLOSE_SUP | DA_ZONE_FLAG_FINISH_SUP | DA_ZONE_FLAG_RWP_SUP), DA_ZONE_FLAG_URSWRZ = 0x0020, DA_ZONE_FLAG_OPT_SEQ_SET = 0x0040, DA_ZONE_FLAG_OPT_NONSEQ_SET = 0x0080, DA_ZONE_FLAG_MAX_SEQ_SET = 0x0100, DA_ZONE_FLAG_SET_MASK = (DA_ZONE_FLAG_OPT_SEQ_SET | DA_ZONE_FLAG_OPT_NONSEQ_SET | DA_ZONE_FLAG_MAX_SEQ_SET) } da_zone_flags; static struct da_zone_desc { da_zone_flags value; const char *desc; } da_zone_desc_table[] = { {DA_ZONE_FLAG_RZ_SUP, "Report Zones" }, {DA_ZONE_FLAG_OPEN_SUP, "Open" }, {DA_ZONE_FLAG_CLOSE_SUP, "Close" }, {DA_ZONE_FLAG_FINISH_SUP, "Finish" }, {DA_ZONE_FLAG_RWP_SUP, "Reset Write Pointer" }, }; typedef void da_delete_func_t (struct cam_periph *periph, union ccb *ccb, struct bio *bp); static da_delete_func_t da_delete_trim; static da_delete_func_t da_delete_unmap; static da_delete_func_t da_delete_ws; static const void * da_delete_functions[] = { NULL, NULL, da_delete_trim, da_delete_unmap, da_delete_ws, da_delete_ws, da_delete_ws }; static const char *da_delete_method_names[] = { "NONE", "DISABLE", "ATA_TRIM", "UNMAP", "WS16", "WS10", "ZERO" }; static const char *da_delete_method_desc[] = { "NONE", "DISABLED", "ATA TRIM", "UNMAP", "WRITE SAME(16) with UNMAP", "WRITE SAME(10) with UNMAP", "ZERO" }; /* Offsets into our private area for storing information */ #define ccb_state ppriv_field0 #define ccb_bp ppriv_ptr1 struct disk_params { u_int8_t heads; u_int32_t cylinders; u_int8_t secs_per_track; u_int32_t secsize; /* Number of bytes/sector */ u_int64_t sectors; /* total number sectors */ u_int stripesize; u_int stripeoffset; }; #define UNMAP_RANGE_MAX 0xffffffff #define UNMAP_HEAD_SIZE 8 #define UNMAP_RANGE_SIZE 16 #define UNMAP_MAX_RANGES 2048 /* Protocol Max is 4095 */ #define UNMAP_BUF_SIZE ((UNMAP_MAX_RANGES * UNMAP_RANGE_SIZE) + \ UNMAP_HEAD_SIZE) #define WS10_MAX_BLKS 0xffff #define WS16_MAX_BLKS 0xffffffff #define ATA_TRIM_MAX_RANGES ((UNMAP_BUF_SIZE / \ (ATA_DSM_RANGE_SIZE * ATA_DSM_BLK_SIZE)) * ATA_DSM_BLK_SIZE) #define DA_WORK_TUR (1 << 16) typedef enum { DA_REF_OPEN = 1, DA_REF_OPEN_HOLD, DA_REF_CLOSE_HOLD, DA_REF_PROBE_HOLD, DA_REF_TUR, DA_REF_GEOM, DA_REF_SYSCTL, DA_REF_REPROBE, DA_REF_MAX /* KEEP LAST */ } da_ref_token; struct da_softc { struct cam_iosched_softc *cam_iosched; struct bio_queue_head delete_run_queue; LIST_HEAD(, ccb_hdr) pending_ccbs; int refcount; /* Active xpt_action() calls */ da_state state; da_flags flags; da_quirks quirks; int minimum_cmd_size; int error_inject; int trim_max_ranges; int delete_available; /* Delete methods possibly available */ da_zone_mode zone_mode; da_zone_interface zone_interface; da_zone_flags zone_flags; struct ata_gp_log_dir ata_logdir; int valid_logdir_len; struct ata_identify_log_pages ata_iddir; int valid_iddir_len; uint64_t optimal_seq_zones; uint64_t optimal_nonseq_zones; uint64_t max_seq_zones; u_int maxio; uint32_t unmap_max_ranges; uint32_t unmap_max_lba; /* Max LBAs in UNMAP req */ uint32_t unmap_gran; uint32_t unmap_gran_align; uint64_t ws_max_blks; uint64_t trim_count; uint64_t trim_ranges; uint64_t trim_lbas; da_delete_methods delete_method_pref; da_delete_methods delete_method; da_delete_func_t *delete_func; int p_type; struct disk_params params; struct disk *disk; union ccb saved_ccb; struct task sysctl_task; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; struct callout sendordered_c; uint64_t wwpn; uint8_t unmap_buf[UNMAP_BUF_SIZE]; struct scsi_read_capacity_data_long rcaplong; struct callout mediapoll_c; int ref_flags[DA_REF_MAX]; #ifdef CAM_IO_STATS struct sysctl_ctx_list sysctl_stats_ctx; struct sysctl_oid *sysctl_stats_tree; u_int errors; u_int timeouts; u_int invalidations; #endif #define DA_ANNOUNCETMP_SZ 160 char announce_temp[DA_ANNOUNCETMP_SZ]; #define DA_ANNOUNCE_SZ 400 char announcebuf[DA_ANNOUNCE_SZ]; }; #define dadeleteflag(softc, delete_method, enable) \ if (enable) { \ softc->delete_available |= (1 << delete_method); \ } else { \ softc->delete_available &= ~(1 << delete_method); \ } struct da_quirk_entry { struct scsi_inquiry_pattern inq_pat; da_quirks quirks; }; static const char quantum[] = "QUANTUM"; static const char microp[] = "MICROP"; static struct da_quirk_entry da_quirk_table[] = { /* SPI, FC devices */ { /* * Fujitsu M2513A MO drives. * Tested devices: M2513A2 firmware versions 1200 & 1300. * (dip switch selects whether T_DIRECT or T_OPTICAL device) * Reported by: W.Scholten */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FUJITSU", "M2513A", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* See above. */ {T_OPTICAL, SIP_MEDIA_REMOVABLE, "FUJITSU", "M2513A", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This particular Fujitsu drive doesn't like the * synchronize cache command. * Reported by: Tom Jackson */ {T_DIRECT, SIP_MEDIA_FIXED, "FUJITSU", "M2954*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This drive doesn't like the synchronize cache command * either. Reported by: Matthew Jacob * in NetBSD PR kern/6027, August 24, 1998. */ {T_DIRECT, SIP_MEDIA_FIXED, microp, "2217*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * This drive doesn't like the synchronize cache command * either. Reported by: Hellmuth Michaelis (hm@kts.org) * (PR 8882). */ {T_DIRECT, SIP_MEDIA_FIXED, microp, "2112*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: Blaz Zupan */ {T_DIRECT, SIP_MEDIA_FIXED, "NEC", "D3847*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: Blaz Zupan */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "MAVERICK 540S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "LPS525S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't like the synchronize cache command. * Reported by: walter@pelissero.de */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "LPS540S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Doesn't work correctly with 6 byte reads/writes. * Returns illegal request, and points to byte 9 of the * 6-byte CDB. * Reported by: Adam McDougall */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "VIKING 4*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE }, { /* See above. */ {T_DIRECT, SIP_MEDIA_FIXED, quantum, "VIKING 2*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE }, { /* * Doesn't like the synchronize cache command. * Reported by: walter@pelissero.de */ {T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CP3500*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * The CISS RAID controllers do not support SYNC_CACHE */ {T_DIRECT, SIP_MEDIA_FIXED, "COMPAQ", "RAID*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * The STEC SSDs sometimes hang on UNMAP. */ {T_DIRECT, SIP_MEDIA_FIXED, "STEC", "*", "*"}, /*quirks*/ DA_Q_NO_UNMAP }, { /* * VMware returns BUSY status when storage has transient * connectivity problems, so better wait. * Also VMware returns odd errors on misaligned UNMAPs. */ {T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*"}, /*quirks*/ DA_Q_RETRY_BUSY | DA_Q_STRICT_UNMAP }, /* USB mass storage devices supported by umass(4) */ { /* * EXATELECOM (Sigmatel) i-Bead 100/105 USB Flash MP3 Player * PR: kern/51675 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "EXATEL", "i-BEAD10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Power Quotient Int. (PQI) USB flash key * PR: kern/53067 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "USB Flash Disk*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Creative Nomad MUVO mp3 player (USB) * PR: kern/53094 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CREATIVE", "NOMAD_MUVO", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * Jungsoft NEXDISK USB flash key * PR: kern/54737 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "JUNGSOFT", "NEXDISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * FreeDik USB Mini Data Drive * PR: kern/54786 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FreeDik*", "Mini Data Drive", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Sigmatel USB Flash MP3 Player * PR: kern/57046 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SigmaTel", "MSCN", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * Neuros USB Digital Audio Computer * PR: kern/63645 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "NEUROS", "dig. audio comp.", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SEAGRAND NP-900 MP3 Player * PR: kern/64563 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SEAGRAND", "NP-900*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * iRiver iFP MP3 player (with UMS Firmware) * PR: kern/54881, i386/63941, kern/66124 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iRiver", "iFP*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Frontier Labs NEX IA+ Digital Audio Player, rev 1.10/0.01 * PR: kern/70158 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "FL" , "Nex*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * ZICPlay USB MP3 Player with FM * PR: kern/75057 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "ACTIONS*" , "USB DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * TEAC USB floppy mechanisms */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "TEAC" , "FD-05*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Kingston DataTraveler II+ USB Pen-Drive. * Reported by: Pawel Jakub Dawidek */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston" , "DataTraveler II+", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * USB DISK Pro PMAP * Reported by: jhs * PR: usb/96381 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, " ", "USB DISK Pro", "PMAP"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Motorola E398 Mobile Phone (TransFlash memory card). * Reported by: Wojciech A. Koszek * PR: usb/89889 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Motorola" , "Motorola Phone", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Qware BeatZkey! Pro * PR: usb/79164 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "GENERIC", "USB DISK DEVICE", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Time DPA20B 1GB MP3 Player * PR: usb/81846 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB2.0*", "(FS) FLASH DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Samsung USB key 128Mb * PR: usb/90081 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB-DISK", "FreeDik-FlashUsb", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Kingston DataTraveler 2.0 USB Flash memory. * PR: usb/89196 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston", "DataTraveler 2.0", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Creative MUVO Slim mp3 player (USB) * PR: usb/86131 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CREATIVE", "MuVo Slim", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE|DA_Q_NO_PREVENT }, { /* * United MP5512 Portable MP3 Player (2-in-1 USB DISK/MP3) * PR: usb/80487 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "MUSIC DISK", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SanDisk Micro Cruzer 128MB * PR: usb/75970 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "SanDisk" , "Micro Cruzer", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * TOSHIBA TransMemory USB sticks * PR: kern/94660 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "TOSHIBA", "TransMemory", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * PNY USB 3.0 Flash Drives */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "PNY", "USB 3.0 FD*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_NO_RC16 }, { /* * PNY USB Flash keys * PR: usb/75578, usb/72344, usb/65436 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "*" , "USB DISK*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Genesys GL3224 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "STORAGE DEVICE*", "120?"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_4K | DA_Q_NO_RC16 }, { /* * Genesys 6-in-1 Card Reader * PR: usb/94647 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Generic*", "STORAGE DEVICE*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Rekam Digital CAMERA * PR: usb/98713 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "CAMERA*", "4MP-9J6*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * iRiver H10 MP3 player * PR: usb/102547 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iriver", "H10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * iRiver U10 MP3 player * PR: usb/92306 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "iriver", "U10*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * X-Micro Flash Disk * PR: usb/96901 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "X-Micro", "Flash Disk", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * EasyMP3 EM732X USB 2.0 Flash MP3 Player * PR: usb/96546 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "EM732X", "MP3 Player*", "1.00"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Denver MP3 player * PR: usb/107101 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "DENVER", "MP3 PLAYER", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Philips USB Key Audio KEY013 * PR: usb/68412 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "PHILIPS", "Key*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_NO_PREVENT }, { /* * JNC MP3 Player * PR: usb/94439 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "JNC*" , "MP3 Player*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * SAMSUNG MP0402H * PR: usb/108427 */ {T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "MP0402H", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * I/O Magic USB flash - Giga Bank * PR: usb/108810 */ {T_DIRECT, SIP_MEDIA_FIXED, "GS-Magic", "stor*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * JoyFly 128mb USB Flash Drive * PR: 96133 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB 2.0", "Flash Disk*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * ChipsBnk usb stick * PR: 103702 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "ChipsBnk", "USB*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Storcase (Kingston) InfoStation IFS FC2/SATA-R 201A * PR: 129858 */ {T_DIRECT, SIP_MEDIA_FIXED, "IFS", "FC2/SATA-R*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Samsung YP-U3 mp3-player * PR: 125398 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Samsung", "YP-U3", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { {T_DIRECT, SIP_MEDIA_REMOVABLE, "Netac", "OnlyDisk*", "2000"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Sony Cyber-Shot DSC cameras * PR: usb/137035 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "Sony", "Sony DSC", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE | DA_Q_NO_PREVENT }, { {T_DIRECT, SIP_MEDIA_REMOVABLE, "Kingston", "DataTraveler G3", "1.00"}, /*quirks*/ DA_Q_NO_PREVENT }, { /* At least several Transcent USB sticks lie on RC16. */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "JetFlash", "Transcend*", "*"}, /*quirks*/ DA_Q_NO_RC16 }, { /* * I-O Data USB Flash Disk * PR: usb/211716 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "I-O DATA", "USB Flash Disk*", "*"}, /*quirks*/ DA_Q_NO_RC16 }, { /* * SLC CHIPFANCIER USB drives * PR: usb/234503 (RC10 right, RC16 wrong) * 16GB, 32GB and 128GB confirmed to have same issue */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "*SLC", "CHIPFANCIER", "*"}, /*quirks*/ DA_Q_NO_RC16 }, /* ATA/SATA devices over SAS/USB/... */ { /* Sandisk X400 */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SanDisk SD8SB8U1*", "*" }, /*quirks*/DA_Q_128KB }, { /* Hitachi Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "Hitachi", "H??????????E3*", "*" }, /*quirks*/DA_Q_4K }, { /* Micron Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Micron 5100 MTFDDAK*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG HD155UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HD155UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG HD204UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Samsung Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HD204UI*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST????DL*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST????DL", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST???DM*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST???DM*", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST????DM*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Barracuda Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST????DM", "*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9500423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST950042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9500424AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST950042", "4AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9640423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST964042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9640424AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST964042", "4AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750420AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "0AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750422AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "2AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST9750423AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST975042", "3AS*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Thin Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST???LT*", "*" }, /*quirks*/DA_Q_4K }, { /* Seagate Momentus Thin Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ST???LT*", "*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "??RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "??RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD??????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "????RS*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD??????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Caviar Green Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "????RX*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD???PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "?PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD?????PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Black Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "???PKT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD???PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "?PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "WDC WD?????PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* WDC Scorpio Blue Advanced Format (4k) drives */ { T_DIRECT, SIP_MEDIA_FIXED, "WDC WD??", "???PVT*", "*" }, /*quirks*/DA_Q_4K }, { /* * Olympus digital cameras (C-3040ZOOM, C-2040ZOOM, C-1) * PR: usb/97472 */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "OLYMPUS", "C*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE | DA_Q_NO_SYNC_CACHE }, { /* * Olympus digital cameras (D-370) * PR: usb/97472 */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "OLYMPUS", "D*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE }, { /* * Olympus digital cameras (E-100RS, E-10). * PR: usb/97472 */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "OLYMPUS", "E*", "*"}, /*quirks*/ DA_Q_NO_6_BYTE | DA_Q_NO_SYNC_CACHE }, { /* * Olympus FE-210 camera */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "OLYMPUS", "FE210*", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Pentax Digital Camera * PR: usb/93389 */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "PENTAX", "DIGITAL CAMERA", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * LG UP3S MP3 player */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "LG", "UP3S", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * Laser MP3-2GA13 MP3 player */ {T_DIRECT, SIP_MEDIA_REMOVABLE, "USB 2.0", "(HS) Flash Disk", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, { /* * LaCie external 250GB Hard drive des by Porsche * Submitted by: Ben Stuyts * PR: 121474 */ {T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "HM250JI", "*"}, /*quirks*/ DA_Q_NO_SYNC_CACHE }, /* SATA SSDs */ { /* * Corsair Force 2 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Corsair CSSD-F*", "*" }, /*quirks*/DA_Q_4K }, { /* * Corsair Force 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Corsair Force 3*", "*" }, /*quirks*/DA_Q_4K }, { /* * Corsair Neutron GTX SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "Corsair Neutron GTX*", "*" }, /*quirks*/DA_Q_4K }, { /* * Corsair Force GT & GS SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Corsair Force G*", "*" }, /*quirks*/DA_Q_4K }, { /* * Crucial M4 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "M4-CT???M4SSD2*", "*" }, /*quirks*/DA_Q_4K }, { /* * Crucial RealSSD C300 SSDs * 4k optimised */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "C300-CTFDDAC???MAG*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel 320 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSA2CW*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel 330 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSC2CT*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel 510 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSC2MH*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel 520 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSC2BW*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel S3610 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSC2BX*", "*" }, /*quirks*/DA_Q_4K }, { /* * Intel X25-M Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "INTEL SSDSA2M*", "*" }, /*quirks*/DA_Q_4K }, { /* * Kingston E100 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "KINGSTON SE100S3*", "*" }, /*quirks*/DA_Q_4K }, { /* * Kingston HyperX 3k SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "KINGSTON SH103S3*", "*" }, /*quirks*/DA_Q_4K }, { /* * Marvell SSDs (entry taken from OpenSolaris) * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "MARVELL SD88SA02*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Agility 2 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "*", "OCZ-AGILITY2*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Agility 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "OCZ-AGILITY3*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Deneva R Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "DENRSTE251M45*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Vertex 2 SSDs (inc pro series) * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "OCZ?VERTEX2*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Vertex 3 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "OCZ-VERTEX3*", "*" }, /*quirks*/DA_Q_4K }, { /* * OCZ Vertex 4 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "OCZ-VERTEX4*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 750 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Samsung SSD 750*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 830 Series SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG SSD 830 Series*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 840 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Samsung SSD 840*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 845 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Samsung SSD 845*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 850 SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "Samsung SSD 850*", "*" }, /*quirks*/DA_Q_4K }, { /* * Samsung 843T Series SSDs (MZ7WD*) * Samsung PM851 Series SSDs (MZ7TE*) * Samsung PM853T Series SSDs (MZ7GE*) * Samsung SM863 Series SSDs (MZ7KM*) * 4k optimised */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SAMSUNG MZ7*", "*" }, /*quirks*/DA_Q_4K }, { /* * Same as for SAMSUNG MZ7* but enable the quirks for SSD * starting with MZ7* too */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "MZ7*", "*" }, /*quirks*/DA_Q_4K }, { /* * Same as above but enable the quirks for SSD SAMSUNG MZ7* * connected via SATA-to-SAS interposer and because of this * starting without "ATA" */ { T_DIRECT, SIP_MEDIA_FIXED, "SAMSUNG", "MZ7*", "*" }, /*quirks*/DA_Q_4K }, { /* * SuperTalent TeraDrive CT SSDs * 4k optimised & trim only works in 4k requests + 4k aligned */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "FTM??CT25H*", "*" }, /*quirks*/DA_Q_4K }, { /* * XceedIOPS SATA SSDs * 4k optimised */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "SG9XCS2D*", "*" }, /*quirks*/DA_Q_4K }, { /* * Hama Innostor USB-Stick */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "Innostor", "Innostor*", "*" }, /*quirks*/DA_Q_NO_RC16 }, { /* * Seagate Lamarr 8TB Shingled Magnetic Recording (SMR) * Drive Managed SATA hard drive. This drive doesn't report * in firmware that it is a drive managed SMR drive. */ { T_DIRECT, SIP_MEDIA_FIXED, "ATA", "ST8000AS000[23]*", "*" }, /*quirks*/DA_Q_SMR_DM }, { /* * MX-ES USB Drive by Mach Xtreme */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "MX", "MXUB3*", "*"}, /*quirks*/DA_Q_NO_RC16 }, }; static disk_strategy_t dastrategy; static dumper_t dadump; static periph_init_t dainit; static void daasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void dasysctlinit(void *context, int pending); static int dasysctlsofttimeout(SYSCTL_HANDLER_ARGS); static int dacmdsizesysctl(SYSCTL_HANDLER_ARGS); static int dadeletemethodsysctl(SYSCTL_HANDLER_ARGS); static int dabitsysctl(SYSCTL_HANDLER_ARGS); static int daflagssysctl(SYSCTL_HANDLER_ARGS); static int dazonemodesysctl(SYSCTL_HANDLER_ARGS); static int dazonesupsysctl(SYSCTL_HANDLER_ARGS); static int dadeletemaxsysctl(SYSCTL_HANDLER_ARGS); static void dadeletemethodset(struct da_softc *softc, da_delete_methods delete_method); static off_t dadeletemaxsize(struct da_softc *softc, da_delete_methods delete_method); static void dadeletemethodchoose(struct da_softc *softc, da_delete_methods default_method); static void daprobedone(struct cam_periph *periph, union ccb *ccb); static periph_ctor_t daregister; static periph_dtor_t dacleanup; static periph_start_t dastart; static periph_oninv_t daoninvalidate; static void dazonedone(struct cam_periph *periph, union ccb *ccb); static void dadone(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probewp(struct cam_periph *periph, union ccb *done_ccb); static void dadone_proberc(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probelbp(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeblklimits(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probebdc(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeata(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeatalogdir(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeataiddir(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeatasup(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probeatazone(struct cam_periph *periph, union ccb *done_ccb); static void dadone_probezone(struct cam_periph *periph, union ccb *done_ccb); static void dadone_tur(struct cam_periph *periph, union ccb *done_ccb); static int daerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static void daprevent(struct cam_periph *periph, int action); static void dareprobe(struct cam_periph *periph); static void dasetgeom(struct cam_periph *periph, uint32_t block_len, uint64_t maxsector, struct scsi_read_capacity_data_long *rcaplong, size_t rcap_size); static callout_func_t dasendorderedtag; static void dashutdown(void *arg, int howto); static callout_func_t damediapoll; #ifndef DA_DEFAULT_POLL_PERIOD #define DA_DEFAULT_POLL_PERIOD 3 #endif #ifndef DA_DEFAULT_TIMEOUT #define DA_DEFAULT_TIMEOUT 60 /* Timeout in seconds */ #endif #ifndef DA_DEFAULT_SOFTTIMEOUT #define DA_DEFAULT_SOFTTIMEOUT 0 #endif #ifndef DA_DEFAULT_RETRY #define DA_DEFAULT_RETRY 4 #endif #ifndef DA_DEFAULT_SEND_ORDERED #define DA_DEFAULT_SEND_ORDERED 1 #endif static int da_poll_period = DA_DEFAULT_POLL_PERIOD; static int da_retry_count = DA_DEFAULT_RETRY; static int da_default_timeout = DA_DEFAULT_TIMEOUT; static sbintime_t da_default_softtimeout = DA_DEFAULT_SOFTTIMEOUT; static int da_send_ordered = DA_DEFAULT_SEND_ORDERED; static int da_disable_wp_detection = 0; static int da_enable_biospeedup = 1; static SYSCTL_NODE(_kern_cam, OID_AUTO, da, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "CAM Direct Access Disk driver"); SYSCTL_INT(_kern_cam_da, OID_AUTO, poll_period, CTLFLAG_RWTUN, &da_poll_period, 0, "Media polling period in seconds"); SYSCTL_INT(_kern_cam_da, OID_AUTO, retry_count, CTLFLAG_RWTUN, &da_retry_count, 0, "Normal I/O retry count"); SYSCTL_INT(_kern_cam_da, OID_AUTO, default_timeout, CTLFLAG_RWTUN, &da_default_timeout, 0, "Normal I/O timeout (in seconds)"); SYSCTL_INT(_kern_cam_da, OID_AUTO, send_ordered, CTLFLAG_RWTUN, &da_send_ordered, 0, "Send Ordered Tags"); SYSCTL_INT(_kern_cam_da, OID_AUTO, disable_wp_detection, CTLFLAG_RWTUN, &da_disable_wp_detection, 0, "Disable detection of write-protected disks"); SYSCTL_INT(_kern_cam_da, OID_AUTO, enable_biospeedup, CTLFLAG_RDTUN, &da_enable_biospeedup, 0, "Enable BIO_SPEEDUP processing"); SYSCTL_PROC(_kern_cam_da, OID_AUTO, default_softtimeout, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, dasysctlsofttimeout, "I", "Soft I/O timeout (ms)"); TUNABLE_INT64("kern.cam.da.default_softtimeout", &da_default_softtimeout); /* * DA_ORDEREDTAG_INTERVAL determines how often, relative * to the default timeout, we check to see whether an ordered * tagged transaction is appropriate to prevent simple tag * starvation. Since we'd like to ensure that there is at least * 1/2 of the timeout length left for a starved transaction to * complete after we've sent an ordered tag, we must poll at least * four times in every timeout period. This takes care of the worst * case where a starved transaction starts during an interval that * meets the requirement "don't send an ordered tag" test so it takes * us two intervals to determine that a tag must be sent. */ #ifndef DA_ORDEREDTAG_INTERVAL #define DA_ORDEREDTAG_INTERVAL 4 #endif static struct periph_driver dadriver = { dainit, "da", TAILQ_HEAD_INITIALIZER(dadriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(da, dadriver); static MALLOC_DEFINE(M_SCSIDA, "scsi_da", "scsi_da buffers"); /* * This driver takes out references / holds in well defined pairs, never * recursively. These macros / inline functions enforce those rules. They * are only enabled with DA_TRACK_REFS or INVARIANTS. If DA_TRACK_REFS is * defined to be 2 or larger, the tracking also includes debug printfs. */ #if defined(DA_TRACK_REFS) || defined(INVARIANTS) #ifndef DA_TRACK_REFS #define DA_TRACK_REFS 1 #endif #if DA_TRACK_REFS > 1 static const char *da_ref_text[] = { "bogus", "open", "open hold", "close hold", "reprobe hold", "Test Unit Ready", "Geom", "sysctl", "reprobe", "max -- also bogus" }; #define DA_PERIPH_PRINT(periph, msg, args...) \ CAM_PERIPH_PRINT(periph, msg, ##args) #else #define DA_PERIPH_PRINT(periph, msg, args...) #endif static inline void token_sanity(da_ref_token token) { if ((unsigned)token >= DA_REF_MAX) panic("Bad token value passed in %d\n", token); } static inline int da_periph_hold(struct cam_periph *periph, int priority, da_ref_token token) { int err = cam_periph_hold(periph, priority); token_sanity(token); DA_PERIPH_PRINT(periph, "Holding device %s (%d): %d\n", da_ref_text[token], token, err); if (err == 0) { int cnt; struct da_softc *softc = periph->softc; cnt = atomic_fetchadd_int(&softc->ref_flags[token], 1); if (cnt != 0) panic("Re-holding for reason %d, cnt = %d", token, cnt); } return (err); } static inline void da_periph_unhold(struct cam_periph *periph, da_ref_token token) { int cnt; struct da_softc *softc = periph->softc; token_sanity(token); DA_PERIPH_PRINT(periph, "Unholding device %s (%d)\n", da_ref_text[token], token); cnt = atomic_fetchadd_int(&softc->ref_flags[token], -1); if (cnt != 1) panic("Unholding %d with cnt = %d", token, cnt); cam_periph_unhold(periph); } static inline int da_periph_acquire(struct cam_periph *periph, da_ref_token token) { int err = cam_periph_acquire(periph); token_sanity(token); DA_PERIPH_PRINT(periph, "acquiring device %s (%d): %d\n", da_ref_text[token], token, err); if (err == 0) { int cnt; struct da_softc *softc = periph->softc; cnt = atomic_fetchadd_int(&softc->ref_flags[token], 1); if (cnt != 0) panic("Re-refing for reason %d, cnt = %d", token, cnt); } return (err); } static inline void da_periph_release(struct cam_periph *periph, da_ref_token token) { int cnt; struct da_softc *softc = periph->softc; token_sanity(token); DA_PERIPH_PRINT(periph, "releasing device %s (%d)\n", da_ref_text[token], token); cnt = atomic_fetchadd_int(&softc->ref_flags[token], -1); if (cnt != 1) panic("Releasing %d with cnt = %d", token, cnt); cam_periph_release(periph); } static inline void da_periph_release_locked(struct cam_periph *periph, da_ref_token token) { int cnt; struct da_softc *softc = periph->softc; token_sanity(token); DA_PERIPH_PRINT(periph, "releasing device (locked) %s (%d)\n", da_ref_text[token], token); cnt = atomic_fetchadd_int(&softc->ref_flags[token], -1); if (cnt != 1) panic("releasing (locked) %d with cnt = %d", token, cnt); cam_periph_release_locked(periph); } #define cam_periph_hold POISON #define cam_periph_unhold POISON #define cam_periph_acquire POISON #define cam_periph_release POISON #define cam_periph_release_locked POISON #else #define da_periph_hold(periph, prio, token) cam_periph_hold((periph), (prio)) #define da_periph_unhold(periph, token) cam_periph_unhold((periph)) #define da_periph_acquire(periph, token) cam_periph_acquire((periph)) #define da_periph_release(periph, token) cam_periph_release((periph)) #define da_periph_release_locked(periph, token) cam_periph_release_locked((periph)) #endif static int daopen(struct disk *dp) { struct cam_periph *periph; struct da_softc *softc; int error; periph = (struct cam_periph *)dp->d_drv1; if (da_periph_acquire(periph, DA_REF_OPEN) != 0) { return (ENXIO); } cam_periph_lock(periph); if ((error = da_periph_hold(periph, PRIBIO|PCATCH, DA_REF_OPEN_HOLD)) != 0) { cam_periph_unlock(periph); da_periph_release(periph, DA_REF_OPEN); return (error); } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("daopen\n")); softc = (struct da_softc *)periph->softc; dareprobe(periph); /* Wait for the disk size update. */ error = cam_periph_sleep(periph, &softc->disk->d_mediasize, PRIBIO, "dareprobe", 0); if (error != 0) xpt_print(periph->path, "unable to retrieve capacity data\n"); if (periph->flags & CAM_PERIPH_INVALID) error = ENXIO; if (error == 0 && (softc->flags & DA_FLAG_PACK_REMOVABLE) != 0 && (softc->quirks & DA_Q_NO_PREVENT) == 0) daprevent(periph, PR_PREVENT); if (error == 0) { softc->flags &= ~DA_FLAG_PACK_INVALID; softc->flags |= DA_FLAG_OPEN; } da_periph_unhold(periph, DA_REF_OPEN_HOLD); cam_periph_unlock(periph); if (error != 0) da_periph_release(periph, DA_REF_OPEN); return (error); } static int daclose(struct disk *dp) { struct cam_periph *periph; struct da_softc *softc; union ccb *ccb; periph = (struct cam_periph *)dp->d_drv1; softc = (struct da_softc *)periph->softc; cam_periph_lock(periph); CAM_DEBUG(periph->path, CAM_DEBUG_TRACE | CAM_DEBUG_PERIPH, ("daclose\n")); if (da_periph_hold(periph, PRIBIO, DA_REF_CLOSE_HOLD) == 0) { /* Flush disk cache. */ if ((softc->flags & DA_FLAG_DIRTY) != 0 && (softc->quirks & DA_Q_NO_SYNC_CACHE) == 0 && (softc->flags & DA_FLAG_PACK_INVALID) == 0) { ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_synchronize_cache(&ccb->csio, /*retries*/1, /*cbfcnp*/NULL, MSG_SIMPLE_Q_TAG, /*begin_lba*/0, /*lb_count*/0, SSD_FULL_SIZE, 5 * 60 * 1000); cam_periph_runccb(ccb, daerror, /*cam_flags*/0, /*sense_flags*/SF_RETRY_UA | SF_QUIET_IR, softc->disk->d_devstat); softc->flags &= ~DA_FLAG_DIRTY; xpt_release_ccb(ccb); } /* Allow medium removal. */ if ((softc->flags & DA_FLAG_PACK_REMOVABLE) != 0 && (softc->quirks & DA_Q_NO_PREVENT) == 0) daprevent(periph, PR_ALLOW); da_periph_unhold(periph, DA_REF_CLOSE_HOLD); } /* * If we've got removable media, mark the blocksize as * unavailable, since it could change when new media is * inserted. */ if ((softc->flags & DA_FLAG_PACK_REMOVABLE) != 0) softc->disk->d_devstat->flags |= DEVSTAT_BS_UNAVAILABLE; softc->flags &= ~DA_FLAG_OPEN; while (softc->refcount != 0) cam_periph_sleep(periph, &softc->refcount, PRIBIO, "daclose", 1); cam_periph_unlock(periph); da_periph_release(periph, DA_REF_OPEN); return (0); } static void daschedule(struct cam_periph *periph) { struct da_softc *softc = (struct da_softc *)periph->softc; if (softc->state != DA_STATE_NORMAL) return; cam_iosched_schedule(softc->cam_iosched, periph); } /* * Actually translate the requested transfer into one the physical driver * can understand. The transfer is described by a buf and will include * only one physical transfer. */ static void dastrategy(struct bio *bp) { struct cam_periph *periph; struct da_softc *softc; periph = (struct cam_periph *)bp->bio_disk->d_drv1; softc = (struct da_softc *)periph->softc; cam_periph_lock(periph); /* * If the device has been made invalid, error out */ if ((softc->flags & DA_FLAG_PACK_INVALID)) { cam_periph_unlock(periph); biofinish(bp, NULL, ENXIO); return; } CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dastrategy(%p)\n", bp)); /* * Zone commands must be ordered, because they can depend on the * effects of previously issued commands, and they may affect * commands after them. */ if (bp->bio_cmd == BIO_ZONE) bp->bio_flags |= BIO_ORDERED; /* * Place it in the queue of disk activities for this disk */ cam_iosched_queue_work(softc->cam_iosched, bp); /* * Schedule ourselves for performing the work. */ daschedule(periph); cam_periph_unlock(periph); return; } static int dadump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length) { struct cam_periph *periph; struct da_softc *softc; u_int secsize; struct ccb_scsiio csio; struct disk *dp; int error = 0; dp = arg; periph = dp->d_drv1; softc = (struct da_softc *)periph->softc; secsize = softc->params.secsize; if ((softc->flags & DA_FLAG_PACK_INVALID) != 0) return (ENXIO); memset(&csio, 0, sizeof(csio)); if (length > 0) { xpt_setup_ccb(&csio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); csio.ccb_h.ccb_state = DA_CCB_DUMP; scsi_read_write(&csio, /*retries*/0, /*cbfcnp*/NULL, MSG_ORDERED_Q_TAG, /*read*/SCSI_RW_WRITE, /*byte2*/0, /*minimum_cmd_size*/ softc->minimum_cmd_size, offset / secsize, length / secsize, /*data_ptr*/(u_int8_t *) virtual, /*dxfer_len*/length, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); error = cam_periph_runccb((union ccb *)&csio, cam_periph_error, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if (error != 0) printf("Aborting dump due to I/O error.\n"); return (error); } /* * Sync the disk cache contents to the physical media. */ if ((softc->quirks & DA_Q_NO_SYNC_CACHE) == 0) { xpt_setup_ccb(&csio.ccb_h, periph->path, CAM_PRIORITY_NORMAL); csio.ccb_h.ccb_state = DA_CCB_DUMP; scsi_synchronize_cache(&csio, /*retries*/0, /*cbfcnp*/NULL, MSG_SIMPLE_Q_TAG, /*begin_lba*/0,/* Cover the whole disk */ /*lb_count*/0, SSD_FULL_SIZE, 5 * 1000); error = cam_periph_runccb((union ccb *)&csio, cam_periph_error, 0, SF_NO_RECOVERY | SF_NO_RETRY, NULL); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); } return (error); } static int dagetattr(struct bio *bp) { int ret; struct cam_periph *periph; if (g_handleattr_int(bp, "GEOM::canspeedup", da_enable_biospeedup)) return (EJUSTRETURN); periph = (struct cam_periph *)bp->bio_disk->d_drv1; cam_periph_lock(periph); ret = xpt_getattr(bp->bio_data, bp->bio_length, bp->bio_attribute, periph->path); cam_periph_unlock(periph); if (ret == 0) bp->bio_completed = bp->bio_length; return ret; } static void dainit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, daasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("da: Failed to attach master async callback " "due to status 0x%x!\n", status); } else if (da_send_ordered) { /* Register our shutdown event handler */ if ((EVENTHANDLER_REGISTER(shutdown_post_sync, dashutdown, NULL, SHUTDOWN_PRI_DEFAULT)) == NULL) printf("dainit: shutdown event registration failed!\n"); } } /* * Callback from GEOM, called when it has finished cleaning up its * resources. */ static void dadiskgonecb(struct disk *dp) { struct cam_periph *periph; periph = (struct cam_periph *)dp->d_drv1; da_periph_release(periph, DA_REF_GEOM); } static void daoninvalidate(struct cam_periph *periph) { struct da_softc *softc; cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, daasync, periph, periph->path); softc->flags |= DA_FLAG_PACK_INVALID; #ifdef CAM_IO_STATS softc->invalidations++; #endif /* * Return all queued I/O with ENXIO. * XXX Handle any transactions queued to the card * with XPT_ABORT_CCB. */ cam_iosched_flush(softc->cam_iosched, NULL, ENXIO); /* * Tell GEOM that we've gone away, we'll get a callback when it is * done cleaning up its resources. */ disk_gone(softc->disk); } static void dacleanup(struct cam_periph *periph) { struct da_softc *softc; softc = (struct da_softc *)periph->softc; cam_periph_unlock(periph); cam_iosched_fini(softc->cam_iosched); /* * If we can't free the sysctl tree, oh well... */ if ((softc->flags & DA_FLAG_SCTX_INIT) != 0) { #ifdef CAM_IO_STATS if (sysctl_ctx_free(&softc->sysctl_stats_ctx) != 0) xpt_print(periph->path, "can't remove sysctl stats context\n"); #endif if (sysctl_ctx_free(&softc->sysctl_ctx) != 0) xpt_print(periph->path, "can't remove sysctl context\n"); } callout_drain(&softc->mediapoll_c); disk_destroy(softc->disk); callout_drain(&softc->sendordered_c); free(softc, M_DEVBUF); cam_periph_lock(periph); } static void daasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; struct da_softc *softc; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: /* callback to create periph, no locking yet */ { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; if (cgd->protocol != PROTO_SCSI) break; if (SID_QUAL(&cgd->inq_data) != SID_QUAL_LU_CONNECTED) break; if (SID_TYPE(&cgd->inq_data) != T_DIRECT && SID_TYPE(&cgd->inq_data) != T_RBC && SID_TYPE(&cgd->inq_data) != T_OPTICAL && SID_TYPE(&cgd->inq_data) != T_ZBC_HM) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(daregister, daoninvalidate, dacleanup, dastart, "da", CAM_PERIPH_BIO, path, daasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) printf("daasync: Unable to attach to new device " "due to status 0x%x\n", status); return; } case AC_ADVINFO_CHANGED: /* Doesn't touch periph */ { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct da_softc *softc; softc = periph->softc; disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); } break; } case AC_UNIT_ATTENTION: { union ccb *ccb; int error_code, sense_key, asc, ascq; softc = (struct da_softc *)periph->softc; ccb = (union ccb *)arg; /* * Handle all UNIT ATTENTIONs except our own, as they will be * handled by daerror(). Since this comes from a different periph, * that periph's lock is held, not ours, so we have to take it ours * out to touch softc flags. */ if (xpt_path_periph(ccb->ccb_h.path) != periph && scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (asc == 0x2A && ascq == 0x09) { xpt_print(ccb->ccb_h.path, "Capacity data has changed\n"); cam_periph_lock(periph); softc->flags &= ~DA_FLAG_PROBED; dareprobe(periph); cam_periph_unlock(periph); } else if (asc == 0x28 && ascq == 0x00) { cam_periph_lock(periph); softc->flags &= ~DA_FLAG_PROBED; cam_periph_unlock(periph); disk_media_changed(softc->disk, M_NOWAIT); } else if (asc == 0x3F && ascq == 0x03) { xpt_print(ccb->ccb_h.path, "INQUIRY data has changed\n"); cam_periph_lock(periph); softc->flags &= ~DA_FLAG_PROBED; dareprobe(periph); cam_periph_unlock(periph); } } break; } case AC_SCSI_AEN: /* Called for this path: periph locked */ /* * Appears to be currently unused for SCSI devices, only ata SIMs * generate this. */ cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; if (!cam_iosched_has_work_flags(softc->cam_iosched, DA_WORK_TUR) && (softc->flags & DA_FLAG_TUR_PENDING) == 0) { if (da_periph_acquire(periph, DA_REF_TUR) == 0) { cam_iosched_set_work_flags(softc->cam_iosched, DA_WORK_TUR); daschedule(periph); } } /* FALLTHROUGH */ case AC_SENT_BDR: /* Called for this path: periph locked */ case AC_BUS_RESET: /* Called for this path: periph locked */ { struct ccb_hdr *ccbh; cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; /* * Don't fail on the expected unit attention * that will occur. */ softc->flags |= DA_FLAG_RETRY_UA; LIST_FOREACH(ccbh, &softc->pending_ccbs, periph_links.le) ccbh->ccb_state |= DA_CCB_RETRY_UA; break; } case AC_INQ_CHANGED: /* Called for this path: periph locked */ cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; softc->flags &= ~DA_FLAG_PROBED; dareprobe(periph); break; default: break; } cam_periph_async(periph, code, path, arg); } static void dasysctlinit(void *context, int pending) { struct cam_periph *periph; struct da_softc *softc; char tmpstr[32], tmpstr2[16]; struct ccb_trans_settings cts; periph = (struct cam_periph *)context; /* * periph was held for us when this task was enqueued */ if (periph->flags & CAM_PERIPH_INVALID) { da_periph_release(periph, DA_REF_SYSCTL); return; } softc = (struct da_softc *)periph->softc; snprintf(tmpstr, sizeof(tmpstr), "CAM DA unit %d", periph->unit_number); snprintf(tmpstr2, sizeof(tmpstr2), "%d", periph->unit_number); sysctl_ctx_init(&softc->sysctl_ctx); cam_periph_lock(periph); softc->flags |= DA_FLAG_SCTX_INIT; cam_periph_unlock(periph); softc->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&softc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_kern_cam_da), OID_AUTO, tmpstr2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr, "device_index"); if (softc->sysctl_tree == NULL) { printf("dasysctlinit: unable to allocate sysctl tree\n"); da_periph_release(periph, DA_REF_SYSCTL); return; } /* * Now register the sysctl handler, so the user can change the value on * the fly. */ SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "delete_method", CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, softc, 0, dadeletemethodsysctl, "A", "BIO_DELETE execution method"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "delete_max", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT, softc, 0, dadeletemaxsysctl, "Q", "Maximum BIO_DELETE size"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "minimum_cmd_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &softc->minimum_cmd_size, 0, dacmdsizesysctl, "I", "Minimum CDB size"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_count", CTLFLAG_RD, &softc->trim_count, "Total number of unmap/dsm commands sent"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_ranges", CTLFLAG_RD, &softc->trim_ranges, "Total number of ranges in unmap/dsm commands"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "trim_lbas", CTLFLAG_RD, &softc->trim_lbas, "Total lbas in the unmap/dsm commands sent"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "zone_mode", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, softc, 0, dazonemodesysctl, "A", "Zone Mode"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "zone_support", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, softc, 0, dazonesupsysctl, "A", "Zone Support"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "optimal_seq_zones", CTLFLAG_RD, &softc->optimal_seq_zones, "Optimal Number of Open Sequential Write Preferred Zones"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "optimal_nonseq_zones", CTLFLAG_RD, &softc->optimal_nonseq_zones, "Optimal Number of Non-Sequentially Written Sequential Write " "Preferred Zones"); SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "max_seq_zones", CTLFLAG_RD, &softc->max_seq_zones, "Maximum Number of Open Sequential Write Required Zones"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "error_inject", CTLFLAG_RW, &softc->error_inject, 0, "error_inject leaf"); SYSCTL_ADD_INT(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "p_type", CTLFLAG_RD, &softc->p_type, 0, "DIF protection type"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "flags", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, softc, 0, daflagssysctl, "A", "Flags for drive"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "rotating", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &softc->flags, (u_int)DA_FLAG_ROTATING, dabitsysctl, "I", "Rotating media *DEPRECATED* gone in FreeBSD 14"); SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "unmapped_io", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, &softc->flags, (u_int)DA_FLAG_UNMAPPEDIO, dabitsysctl, "I", "Unmapped I/O support *DEPRECATED* gone in FreeBSD 14"); #ifdef CAM_TEST_FAILURE SYSCTL_ADD_PROC(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "invalidate", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, periph, 0, cam_periph_invalidate_sysctl, "I", "Write 1 to invalidate the drive immediately"); #endif /* * Add some addressing info. */ memset(&cts, 0, sizeof (cts)); xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE); cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; cam_periph_lock(periph); xpt_action((union ccb *)&cts); cam_periph_unlock(periph); if (cts.ccb_h.status != CAM_REQ_CMP) { da_periph_release(periph, DA_REF_SYSCTL); return; } if (cts.protocol == PROTO_SCSI && cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_WWPN) { softc->wwpn = fc->wwpn; SYSCTL_ADD_UQUAD(&softc->sysctl_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "wwpn", CTLFLAG_RD, &softc->wwpn, "World Wide Port Name"); } } #ifdef CAM_IO_STATS /* * Now add some useful stats. * XXX These should live in cam_periph and be common to all periphs */ softc->sysctl_stats_tree = SYSCTL_ADD_NODE(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Statistics"); SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "errors", CTLFLAG_RD, &softc->errors, 0, "Transport errors reported by the SIM"); SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "timeouts", CTLFLAG_RD, &softc->timeouts, 0, "Device timeouts reported by the SIM"); SYSCTL_ADD_INT(&softc->sysctl_stats_ctx, SYSCTL_CHILDREN(softc->sysctl_stats_tree), OID_AUTO, "pack_invalidations", CTLFLAG_RD, &softc->invalidations, 0, "Device pack invalidations"); #endif cam_iosched_sysctl_init(softc->cam_iosched, &softc->sysctl_ctx, softc->sysctl_tree); da_periph_release(periph, DA_REF_SYSCTL); } static int dadeletemaxsysctl(SYSCTL_HANDLER_ARGS) { int error; uint64_t value; struct da_softc *softc; softc = (struct da_softc *)arg1; value = softc->disk->d_delmaxsize; error = sysctl_handle_64(oidp, &value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); /* only accept values smaller than the calculated value */ if (value > dadeletemaxsize(softc, softc->delete_method)) { return (EINVAL); } softc->disk->d_delmaxsize = value; return (0); } static int dacmdsizesysctl(SYSCTL_HANDLER_ARGS) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); /* * Acceptable values here are 6, 10, 12 or 16. */ if (value < 6) value = 6; else if ((value > 6) && (value <= 10)) value = 10; else if ((value > 10) && (value <= 12)) value = 12; else if (value > 12) value = 16; *(int *)arg1 = value; return (0); } static int dasysctlsofttimeout(SYSCTL_HANDLER_ARGS) { sbintime_t value; int error; value = da_default_softtimeout / SBT_1MS; error = sysctl_handle_int(oidp, (int *)&value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); /* XXX Should clip this to a reasonable level */ if (value > da_default_timeout * 1000) return (EINVAL); da_default_softtimeout = value * SBT_1MS; return (0); } static void dadeletemethodset(struct da_softc *softc, da_delete_methods delete_method) { softc->delete_method = delete_method; softc->disk->d_delmaxsize = dadeletemaxsize(softc, delete_method); softc->delete_func = da_delete_functions[delete_method]; if (softc->delete_method > DA_DELETE_DISABLE) softc->disk->d_flags |= DISKFLAG_CANDELETE; else softc->disk->d_flags &= ~DISKFLAG_CANDELETE; } static off_t dadeletemaxsize(struct da_softc *softc, da_delete_methods delete_method) { off_t sectors; switch(delete_method) { case DA_DELETE_UNMAP: sectors = (off_t)softc->unmap_max_lba; break; case DA_DELETE_ATA_TRIM: sectors = (off_t)ATA_DSM_RANGE_MAX * softc->trim_max_ranges; break; case DA_DELETE_WS16: sectors = omin(softc->ws_max_blks, WS16_MAX_BLKS); break; case DA_DELETE_ZERO: case DA_DELETE_WS10: sectors = omin(softc->ws_max_blks, WS10_MAX_BLKS); break; default: return 0; } return (off_t)softc->params.secsize * omin(sectors, softc->params.sectors); } static void daprobedone(struct cam_periph *periph, union ccb *ccb) { struct da_softc *softc; softc = (struct da_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); dadeletemethodchoose(softc, DA_DELETE_NONE); if (bootverbose && (softc->flags & DA_FLAG_ANNOUNCED) == 0) { char buf[80]; int i, sep; snprintf(buf, sizeof(buf), "Delete methods: <"); sep = 0; for (i = 0; i <= DA_DELETE_MAX; i++) { if ((softc->delete_available & (1 << i)) == 0 && i != softc->delete_method) continue; if (sep) strlcat(buf, ",", sizeof(buf)); strlcat(buf, da_delete_method_names[i], sizeof(buf)); if (i == softc->delete_method) strlcat(buf, "(*)", sizeof(buf)); sep = 1; } strlcat(buf, ">", sizeof(buf)); printf("%s%d: %s\n", periph->periph_name, periph->unit_number, buf); } if ((softc->disk->d_flags & DISKFLAG_WRITE_PROTECT) != 0 && (softc->flags & DA_FLAG_ANNOUNCED) == 0) { printf("%s%d: Write Protected\n", periph->periph_name, periph->unit_number); } /* * Since our peripheral may be invalidated by an error * above or an external event, we must release our CCB * before releasing the probe lock on the peripheral. * The peripheral will only go away once the last lock * is removed, and we need it around for the CCB release * operation. */ xpt_release_ccb(ccb); softc->state = DA_STATE_NORMAL; softc->flags |= DA_FLAG_PROBED; daschedule(periph); wakeup(&softc->disk->d_mediasize); if ((softc->flags & DA_FLAG_ANNOUNCED) == 0) { softc->flags |= DA_FLAG_ANNOUNCED; da_periph_unhold(periph, DA_REF_PROBE_HOLD); } else da_periph_release_locked(periph, DA_REF_REPROBE); } static void dadeletemethodchoose(struct da_softc *softc, da_delete_methods default_method) { int i, methods; /* If available, prefer the method requested by user. */ i = softc->delete_method_pref; methods = softc->delete_available | (1 << DA_DELETE_DISABLE); if (methods & (1 << i)) { dadeletemethodset(softc, i); return; } /* Use the pre-defined order to choose the best performing delete. */ for (i = DA_DELETE_MIN; i <= DA_DELETE_MAX; i++) { if (i == DA_DELETE_ZERO) continue; if (softc->delete_available & (1 << i)) { dadeletemethodset(softc, i); return; } } /* Fallback to default. */ dadeletemethodset(softc, default_method); } static int dabitsysctl(SYSCTL_HANDLER_ARGS) { u_int *flags = arg1; u_int test = arg2; int tmpout, error; tmpout = !!(*flags & test); error = SYSCTL_OUT(req, &tmpout, sizeof(tmpout)); if (error || !req->newptr) return (error); return (EPERM); } static int daflagssysctl(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; struct da_softc *softc = arg1; int error; sbuf_new_for_sysctl(&sbuf, NULL, 0, req); if (softc->flags != 0) sbuf_printf(&sbuf, "0x%b", (unsigned)softc->flags, DA_FLAG_STRING); else sbuf_printf(&sbuf, "0"); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } static int dadeletemethodsysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; const char *p; struct da_softc *softc; int i, error, value; softc = (struct da_softc *)arg1; value = softc->delete_method; if (value < 0 || value > DA_DELETE_MAX) p = "UNKNOWN"; else p = da_delete_method_names[value]; strncpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); for (i = 0; i <= DA_DELETE_MAX; i++) { if (strcmp(buf, da_delete_method_names[i]) == 0) break; } if (i > DA_DELETE_MAX) return (EINVAL); softc->delete_method_pref = i; dadeletemethodchoose(softc, DA_DELETE_NONE); return (0); } static int dazonemodesysctl(SYSCTL_HANDLER_ARGS) { char tmpbuf[40]; struct da_softc *softc; int error; softc = (struct da_softc *)arg1; switch (softc->zone_mode) { case DA_ZONE_DRIVE_MANAGED: snprintf(tmpbuf, sizeof(tmpbuf), "Drive Managed"); break; case DA_ZONE_HOST_AWARE: snprintf(tmpbuf, sizeof(tmpbuf), "Host Aware"); break; case DA_ZONE_HOST_MANAGED: snprintf(tmpbuf, sizeof(tmpbuf), "Host Managed"); break; case DA_ZONE_NONE: default: snprintf(tmpbuf, sizeof(tmpbuf), "Not Zoned"); break; } error = sysctl_handle_string(oidp, tmpbuf, sizeof(tmpbuf), req); return (error); } static int dazonesupsysctl(SYSCTL_HANDLER_ARGS) { char tmpbuf[180]; struct da_softc *softc; struct sbuf sb; int error, first; unsigned int i; softc = (struct da_softc *)arg1; error = 0; first = 1; sbuf_new(&sb, tmpbuf, sizeof(tmpbuf), 0); for (i = 0; i < sizeof(da_zone_desc_table) / sizeof(da_zone_desc_table[0]); i++) { if (softc->zone_flags & da_zone_desc_table[i].value) { if (first == 0) sbuf_printf(&sb, ", "); else first = 0; sbuf_cat(&sb, da_zone_desc_table[i].desc); } } if (first == 1) sbuf_printf(&sb, "None"); sbuf_finish(&sb); error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); return (error); } static cam_status daregister(struct cam_periph *periph, void *arg) { struct da_softc *softc; struct ccb_pathinq cpi; struct ccb_getdev *cgd; char tmpstr[80]; caddr_t match; int quirks; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("daregister: no getdev CCB, can't register device\n"); return(CAM_REQ_CMP_ERR); } softc = (struct da_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT|M_ZERO); if (softc == NULL) { printf("daregister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } if (cam_iosched_init(&softc->cam_iosched, periph) != 0) { printf("daregister: Unable to probe new device. " "Unable to allocate iosched memory\n"); free(softc, M_DEVBUF); return(CAM_REQ_CMP_ERR); } LIST_INIT(&softc->pending_ccbs); softc->state = DA_STATE_PROBE_WP; bioq_init(&softc->delete_run_queue); if (SID_IS_REMOVABLE(&cgd->inq_data)) softc->flags |= DA_FLAG_PACK_REMOVABLE; softc->unmap_max_ranges = UNMAP_MAX_RANGES; softc->unmap_max_lba = UNMAP_RANGE_MAX; softc->unmap_gran = 0; softc->unmap_gran_align = 0; softc->ws_max_blks = WS16_MAX_BLKS; softc->trim_max_ranges = ATA_TRIM_MAX_RANGES; softc->flags |= DA_FLAG_ROTATING; periph->softc = softc; /* * See if this device has any quirks. */ match = cam_quirkmatch((caddr_t)&cgd->inq_data, (caddr_t)da_quirk_table, nitems(da_quirk_table), sizeof(*da_quirk_table), scsi_inquiry_match); if (match != NULL) softc->quirks = ((struct da_quirk_entry *)match)->quirks; else softc->quirks = DA_Q_NONE; /* Check if the SIM does not want 6 byte commands */ xpt_path_inq(&cpi, periph->path); if (cpi.ccb_h.status == CAM_REQ_CMP && (cpi.hba_misc & PIM_NO_6_BYTE)) softc->quirks |= DA_Q_NO_6_BYTE; /* Override quirks if tunable is set */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.da.%d.quirks", periph->unit_number); quirks = softc->quirks; TUNABLE_INT_FETCH(tmpstr, &quirks); softc->quirks = quirks; if (SID_TYPE(&cgd->inq_data) == T_ZBC_HM) softc->zone_mode = DA_ZONE_HOST_MANAGED; else if (softc->quirks & DA_Q_SMR_DM) softc->zone_mode = DA_ZONE_DRIVE_MANAGED; else softc->zone_mode = DA_ZONE_NONE; if (softc->zone_mode != DA_ZONE_NONE) { if (scsi_vpd_supported_page(periph, SVPD_ATA_INFORMATION)) { if (scsi_vpd_supported_page(periph, SVPD_ZONED_BDC)) softc->zone_interface = DA_ZONE_IF_ATA_SAT; else softc->zone_interface = DA_ZONE_IF_ATA_PASS; } else softc->zone_interface = DA_ZONE_IF_SCSI; } TASK_INIT(&softc->sysctl_task, 0, dasysctlinit, periph); /* * Take an exclusive section lock qon the periph while dastart is called * to finish the probe. The lock will be dropped in dadone at the end * of probe. This locks out daopen and daclose from racing with the * probe. * * XXX if cam_periph_hold returns an error, we don't hold a refcount. */ (void)da_periph_hold(periph, PRIBIO, DA_REF_PROBE_HOLD); /* * Schedule a periodic event to occasionally send an * ordered tag to a device. */ callout_init_mtx(&softc->sendordered_c, cam_periph_mtx(periph), 0); callout_reset(&softc->sendordered_c, (da_default_timeout * hz) / DA_ORDEREDTAG_INTERVAL, dasendorderedtag, periph); cam_periph_unlock(periph); /* * RBC devices don't have to support READ(6), only READ(10). */ if (softc->quirks & DA_Q_NO_6_BYTE || SID_TYPE(&cgd->inq_data) == T_RBC) softc->minimum_cmd_size = 10; else softc->minimum_cmd_size = 6; /* * Load the user's default, if any. */ snprintf(tmpstr, sizeof(tmpstr), "kern.cam.da.%d.minimum_cmd_size", periph->unit_number); TUNABLE_INT_FETCH(tmpstr, &softc->minimum_cmd_size); /* * 6, 10, 12 and 16 are the currently permissible values. */ if (softc->minimum_cmd_size > 12) softc->minimum_cmd_size = 16; else if (softc->minimum_cmd_size > 10) softc->minimum_cmd_size = 12; else if (softc->minimum_cmd_size > 6) softc->minimum_cmd_size = 10; else softc->minimum_cmd_size = 6; /* Predict whether device may support READ CAPACITY(16). */ if (SID_ANSI_REV(&cgd->inq_data) >= SCSI_REV_SPC3 && (softc->quirks & DA_Q_NO_RC16) == 0) { softc->flags |= DA_FLAG_CAN_RC16; } /* * Register this media as a disk. */ softc->disk = disk_alloc(); softc->disk->d_devstat = devstat_new_entry(periph->periph_name, periph->unit_number, 0, DEVSTAT_BS_UNAVAILABLE, SID_TYPE(&cgd->inq_data) | XPORT_DEVSTAT_TYPE(cpi.transport), DEVSTAT_PRIORITY_DISK); softc->disk->d_open = daopen; softc->disk->d_close = daclose; softc->disk->d_strategy = dastrategy; softc->disk->d_dump = dadump; softc->disk->d_getattr = dagetattr; softc->disk->d_gone = dadiskgonecb; softc->disk->d_name = "da"; softc->disk->d_drv1 = periph; if (cpi.maxio == 0) softc->maxio = DFLTPHYS; /* traditional default */ else if (cpi.maxio > maxphys) softc->maxio = maxphys; /* for safety */ else softc->maxio = cpi.maxio; if (softc->quirks & DA_Q_128KB) softc->maxio = min(softc->maxio, 128 * 1024); softc->disk->d_maxsize = softc->maxio; softc->disk->d_unit = periph->unit_number; softc->disk->d_flags = DISKFLAG_DIRECT_COMPLETION | DISKFLAG_CANZONE; if ((softc->quirks & DA_Q_NO_SYNC_CACHE) == 0) softc->disk->d_flags |= DISKFLAG_CANFLUSHCACHE; if ((cpi.hba_misc & PIM_UNMAPPED) != 0) { softc->flags |= DA_FLAG_UNMAPPEDIO; softc->disk->d_flags |= DISKFLAG_UNMAPPED_BIO; } cam_strvis(softc->disk->d_descr, cgd->inq_data.vendor, sizeof(cgd->inq_data.vendor), sizeof(softc->disk->d_descr)); strlcat(softc->disk->d_descr, " ", sizeof(softc->disk->d_descr)); cam_strvis(&softc->disk->d_descr[strlen(softc->disk->d_descr)], cgd->inq_data.product, sizeof(cgd->inq_data.product), sizeof(softc->disk->d_descr) - strlen(softc->disk->d_descr)); softc->disk->d_hba_vendor = cpi.hba_vendor; softc->disk->d_hba_device = cpi.hba_device; softc->disk->d_hba_subvendor = cpi.hba_subvendor; softc->disk->d_hba_subdevice = cpi.hba_subdevice; snprintf(softc->disk->d_attachment, sizeof(softc->disk->d_attachment), "%s%d", cpi.dev_name, cpi.unit_number); /* * Acquire a reference to the periph before we register with GEOM. * We'll release this reference once GEOM calls us back (via * dadiskgonecb()) telling us that our provider has been freed. */ if (da_periph_acquire(periph, DA_REF_GEOM) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } disk_create(softc->disk, DISK_VERSION); cam_periph_lock(periph); /* * Add async callbacks for events of interest. * I don't bother checking if this fails as, * in most cases, the system will function just * fine without them and the only alternative * would be to not attach the device on failure. */ xpt_register_async(AC_SENT_BDR | AC_BUS_RESET | AC_LOST_DEVICE | AC_ADVINFO_CHANGED | AC_SCSI_AEN | AC_UNIT_ATTENTION | AC_INQ_CHANGED, daasync, periph, periph->path); /* * Emit an attribute changed notification just in case * physical path information arrived before our async * event handler was registered, but after anyone attaching * to our disk device polled it. */ disk_attr_changed(softc->disk, "GEOM::physpath", M_NOWAIT); /* * Schedule a periodic media polling events. */ callout_init_mtx(&softc->mediapoll_c, cam_periph_mtx(periph), 0); if ((softc->flags & DA_FLAG_PACK_REMOVABLE) && (cgd->inq_flags & SID_AEN) == 0 && da_poll_period != 0) callout_reset(&softc->mediapoll_c, da_poll_period * hz, damediapoll, periph); xpt_schedule(periph, CAM_PRIORITY_DEV); return(CAM_REQ_CMP); } static int da_zone_bio_to_scsi(int disk_zone_cmd) { switch (disk_zone_cmd) { case DISK_ZONE_OPEN: return ZBC_OUT_SA_OPEN; case DISK_ZONE_CLOSE: return ZBC_OUT_SA_CLOSE; case DISK_ZONE_FINISH: return ZBC_OUT_SA_FINISH; case DISK_ZONE_RWP: return ZBC_OUT_SA_RWP; } return -1; } static int da_zone_cmd(struct cam_periph *periph, union ccb *ccb, struct bio *bp, int *queue_ccb) { struct da_softc *softc; int error; error = 0; if (bp->bio_cmd != BIO_ZONE) { error = EINVAL; goto bailout; } softc = periph->softc; switch (bp->bio_zone.zone_cmd) { case DISK_ZONE_OPEN: case DISK_ZONE_CLOSE: case DISK_ZONE_FINISH: case DISK_ZONE_RWP: { int zone_flags; int zone_sa; uint64_t lba; zone_sa = da_zone_bio_to_scsi(bp->bio_zone.zone_cmd); if (zone_sa == -1) { xpt_print(periph->path, "Cannot translate zone " "cmd %#x to SCSI\n", bp->bio_zone.zone_cmd); error = EINVAL; goto bailout; } zone_flags = 0; lba = bp->bio_zone.zone_params.rwp.id; if (bp->bio_zone.zone_params.rwp.flags & DISK_ZONE_RWP_FLAG_ALL) zone_flags |= ZBC_OUT_ALL; if (softc->zone_interface != DA_ZONE_IF_ATA_PASS) { scsi_zbc_out(&ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*service_action*/ zone_sa, /*zone_id*/ lba, /*zone_flags*/ zone_flags, /*data_ptr*/ NULL, /*dxfer_len*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); } else { /* * Note that in this case, even though we can * technically use NCQ, we don't bother for several * reasons: * 1. It hasn't been tested on a SAT layer that * supports it. This is new as of SAT-4. * 2. Even when there is a SAT layer that supports * it, that SAT layer will also probably support * ZBC -> ZAC translation, since they are both * in the SAT-4 spec. * 3. Translation will likely be preferable to ATA * passthrough. LSI / Avago at least single * steps ATA passthrough commands in the HBA, * regardless of protocol, so unless that * changes, there is a performance penalty for * doing ATA passthrough no matter whether * you're using NCQ/FPDMA, DMA or PIO. * 4. It requires a 32-byte CDB, which at least at * this point in CAM requires a CDB pointer, which * would require us to allocate an additional bit * of storage separate from the CCB. */ error = scsi_ata_zac_mgmt_out(&ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*use_ncq*/ 0, /*zm_action*/ zone_sa, /*zone_id*/ lba, /*zone_flags*/ zone_flags, /*data_ptr*/ NULL, /*dxfer_len*/ 0, /*cdb_storage*/ NULL, /*cdb_storage_len*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (error != 0) { error = EINVAL; xpt_print(periph->path, "scsi_ata_zac_mgmt_out() returned an " "error!"); goto bailout; } } *queue_ccb = 1; break; } case DISK_ZONE_REPORT_ZONES: { uint8_t *rz_ptr; uint32_t num_entries, alloc_size; struct disk_zone_report *rep; rep = &bp->bio_zone.zone_params.report; num_entries = rep->entries_allocated; if (num_entries == 0) { xpt_print(periph->path, "No entries allocated for " "Report Zones request\n"); error = EINVAL; goto bailout; } alloc_size = sizeof(struct scsi_report_zones_hdr) + (sizeof(struct scsi_report_zones_desc) * num_entries); alloc_size = min(alloc_size, softc->disk->d_maxsize); rz_ptr = malloc(alloc_size, M_SCSIDA, M_NOWAIT | M_ZERO); if (rz_ptr == NULL) { xpt_print(periph->path, "Unable to allocate memory " "for Report Zones request\n"); error = ENOMEM; goto bailout; } if (softc->zone_interface != DA_ZONE_IF_ATA_PASS) { scsi_zbc_in(&ccb->csio, /*retries*/ da_retry_count, /*cbcfnp*/ dadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*service_action*/ ZBC_IN_SA_REPORT_ZONES, /*zone_start_lba*/ rep->starting_id, /*zone_options*/ rep->rep_options, /*data_ptr*/ rz_ptr, /*dxfer_len*/ alloc_size, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); } else { /* * Note that in this case, even though we can * technically use NCQ, we don't bother for several * reasons: * 1. It hasn't been tested on a SAT layer that * supports it. This is new as of SAT-4. * 2. Even when there is a SAT layer that supports * it, that SAT layer will also probably support * ZBC -> ZAC translation, since they are both * in the SAT-4 spec. * 3. Translation will likely be preferable to ATA * passthrough. LSI / Avago at least single * steps ATA passthrough commands in the HBA, * regardless of protocol, so unless that * changes, there is a performance penalty for * doing ATA passthrough no matter whether * you're using NCQ/FPDMA, DMA or PIO. * 4. It requires a 32-byte CDB, which at least at * this point in CAM requires a CDB pointer, which * would require us to allocate an additional bit * of storage separate from the CCB. */ error = scsi_ata_zac_mgmt_in(&ccb->csio, /*retries*/ da_retry_count, /*cbcfnp*/ dadone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*use_ncq*/ 0, /*zm_action*/ ATA_ZM_REPORT_ZONES, /*zone_id*/ rep->starting_id, /*zone_flags*/ rep->rep_options, /*data_ptr*/ rz_ptr, /*dxfer_len*/ alloc_size, /*cdb_storage*/ NULL, /*cdb_storage_len*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (error != 0) { error = EINVAL; xpt_print(periph->path, "scsi_ata_zac_mgmt_in() returned an " "error!"); goto bailout; } } /* * For BIO_ZONE, this isn't normally needed. However, it * is used by devstat_end_transaction_bio() to determine * how much data was transferred. */ /* * XXX KDM we have a problem. But I'm not sure how to fix * it. devstat uses bio_bcount - bio_resid to calculate * the amount of data transferred. The GEOM disk code * uses bio_length - bio_resid to calculate the amount of * data in bio_completed. We have different structure * sizes above and below the ada(4) driver. So, if we * use the sizes above, the amount transferred won't be * quite accurate for devstat. If we use different sizes * for bio_bcount and bio_length (above and below * respectively), then the residual needs to match one or * the other. Everything is calculated after the bio * leaves the driver, so changing the values around isn't * really an option. For now, just set the count to the * passed in length. This means that the calculations * above (e.g. bio_completed) will be correct, but the * amount of data reported to devstat will be slightly * under or overstated. */ bp->bio_bcount = bp->bio_length; *queue_ccb = 1; break; } case DISK_ZONE_GET_PARAMS: { struct disk_zone_disk_params *params; params = &bp->bio_zone.zone_params.disk_params; bzero(params, sizeof(*params)); switch (softc->zone_mode) { case DA_ZONE_DRIVE_MANAGED: params->zone_mode = DISK_ZONE_MODE_DRIVE_MANAGED; break; case DA_ZONE_HOST_AWARE: params->zone_mode = DISK_ZONE_MODE_HOST_AWARE; break; case DA_ZONE_HOST_MANAGED: params->zone_mode = DISK_ZONE_MODE_HOST_MANAGED; break; default: case DA_ZONE_NONE: params->zone_mode = DISK_ZONE_MODE_NONE; break; } if (softc->zone_flags & DA_ZONE_FLAG_URSWRZ) params->flags |= DISK_ZONE_DISK_URSWRZ; if (softc->zone_flags & DA_ZONE_FLAG_OPT_SEQ_SET) { params->optimal_seq_zones = softc->optimal_seq_zones; params->flags |= DISK_ZONE_OPT_SEQ_SET; } if (softc->zone_flags & DA_ZONE_FLAG_OPT_NONSEQ_SET) { params->optimal_nonseq_zones = softc->optimal_nonseq_zones; params->flags |= DISK_ZONE_OPT_NONSEQ_SET; } if (softc->zone_flags & DA_ZONE_FLAG_MAX_SEQ_SET) { params->max_seq_zones = softc->max_seq_zones; params->flags |= DISK_ZONE_MAX_SEQ_SET; } if (softc->zone_flags & DA_ZONE_FLAG_RZ_SUP) params->flags |= DISK_ZONE_RZ_SUP; if (softc->zone_flags & DA_ZONE_FLAG_OPEN_SUP) params->flags |= DISK_ZONE_OPEN_SUP; if (softc->zone_flags & DA_ZONE_FLAG_CLOSE_SUP) params->flags |= DISK_ZONE_CLOSE_SUP; if (softc->zone_flags & DA_ZONE_FLAG_FINISH_SUP) params->flags |= DISK_ZONE_FINISH_SUP; if (softc->zone_flags & DA_ZONE_FLAG_RWP_SUP) params->flags |= DISK_ZONE_RWP_SUP; break; } default: break; } bailout: return (error); } static void dastart(struct cam_periph *periph, union ccb *start_ccb) { struct da_softc *softc; cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dastart\n")); skipstate: switch (softc->state) { case DA_STATE_NORMAL: { struct bio *bp; uint8_t tag_code; more: bp = cam_iosched_next_bio(softc->cam_iosched); if (bp == NULL) { if (cam_iosched_has_work_flags(softc->cam_iosched, DA_WORK_TUR)) { softc->flags |= DA_FLAG_TUR_PENDING; cam_iosched_clr_work_flags(softc->cam_iosched, DA_WORK_TUR); scsi_test_unit_ready(&start_ccb->csio, /*retries*/ da_retry_count, dadone_tur, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_TUR; xpt_action(start_ccb); } else xpt_release_ccb(start_ccb); break; } if (bp->bio_cmd == BIO_DELETE) { if (softc->delete_func != NULL) { softc->delete_func(periph, start_ccb, bp); goto out; } else { /* * Not sure this is possible, but failsafe by * lying and saying "sure, done." */ biofinish(bp, NULL, 0); goto more; } } if (cam_iosched_has_work_flags(softc->cam_iosched, DA_WORK_TUR)) { cam_iosched_clr_work_flags(softc->cam_iosched, DA_WORK_TUR); da_periph_release_locked(periph, DA_REF_TUR); } if ((bp->bio_flags & BIO_ORDERED) != 0 || (softc->flags & DA_FLAG_NEED_OTAG) != 0) { softc->flags &= ~DA_FLAG_NEED_OTAG; softc->flags |= DA_FLAG_WAS_OTAG; tag_code = MSG_ORDERED_Q_TAG; } else { tag_code = MSG_SIMPLE_Q_TAG; } switch (bp->bio_cmd) { case BIO_WRITE: case BIO_READ: { void *data_ptr; int rw_op; biotrack(bp, __func__); if (bp->bio_cmd == BIO_WRITE) { softc->flags |= DA_FLAG_DIRTY; rw_op = SCSI_RW_WRITE; } else { rw_op = SCSI_RW_READ; } data_ptr = bp->bio_data; if ((bp->bio_flags & (BIO_UNMAPPED|BIO_VLIST)) != 0) { rw_op |= SCSI_RW_BIO; data_ptr = bp; } scsi_read_write(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/tag_code, rw_op, /*byte2*/0, softc->minimum_cmd_size, /*lba*/bp->bio_pblkno, /*block_count*/bp->bio_bcount / softc->params.secsize, data_ptr, /*dxfer_len*/ bp->bio_bcount, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) start_ccb->csio.bio = bp; #endif break; } case BIO_FLUSH: /* * If we don't support sync cache, or the disk * isn't dirty, FLUSH is a no-op. Use the * allocated CCB for the next bio if one is * available. */ if ((softc->quirks & DA_Q_NO_SYNC_CACHE) != 0 || (softc->flags & DA_FLAG_DIRTY) == 0) { biodone(bp); goto skipstate; } /* * BIO_FLUSH doesn't currently communicate * range data, so we synchronize the cache * over the whole disk. */ scsi_synchronize_cache(&start_ccb->csio, /*retries*/1, /*cbfcnp*/dadone, /*tag_action*/tag_code, /*begin_lba*/0, /*lb_count*/0, SSD_FULL_SIZE, da_default_timeout*1000); /* * Clear the dirty flag before sending the command. * Either this sync cache will be successful, or it * will fail after a retry. If it fails, it is * unlikely to be successful if retried later, so * we'll save ourselves time by just marking the * device clean. */ softc->flags &= ~DA_FLAG_DIRTY; break; case BIO_ZONE: { int error, queue_ccb; queue_ccb = 0; error = da_zone_cmd(periph, start_ccb, bp,&queue_ccb); if ((error != 0) || (queue_ccb == 0)) { biofinish(bp, NULL, error); xpt_release_ccb(start_ccb); return; } break; } default: biofinish(bp, NULL, EOPNOTSUPP); xpt_release_ccb(start_ccb); return; } start_ccb->ccb_h.ccb_state = DA_CCB_BUFFER_IO; start_ccb->ccb_h.flags |= CAM_UNLOCKED; start_ccb->ccb_h.softtimeout = sbttotv(da_default_softtimeout); out: LIST_INSERT_HEAD(&softc->pending_ccbs, &start_ccb->ccb_h, periph_links.le); /* We expect a unit attention from this device */ if ((softc->flags & DA_FLAG_RETRY_UA) != 0) { start_ccb->ccb_h.ccb_state |= DA_CCB_RETRY_UA; softc->flags &= ~DA_FLAG_RETRY_UA; } start_ccb->ccb_h.ccb_bp = bp; softc->refcount++; cam_periph_unlock(periph); xpt_action(start_ccb); cam_periph_lock(periph); /* May have more work to do, so ensure we stay scheduled */ daschedule(periph); break; } case DA_STATE_PROBE_WP: { void *mode_buf; int mode_buf_len; if (da_disable_wp_detection) { if ((softc->flags & DA_FLAG_CAN_RC16) != 0) softc->state = DA_STATE_PROBE_RC16; else softc->state = DA_STATE_PROBE_RC; goto skipstate; } mode_buf_len = 192; mode_buf = malloc(mode_buf_len, M_SCSIDA, M_NOWAIT); if (mode_buf == NULL) { xpt_print(periph->path, "Unable to send mode sense - " "malloc failure\n"); if ((softc->flags & DA_FLAG_CAN_RC16) != 0) softc->state = DA_STATE_PROBE_RC16; else softc->state = DA_STATE_PROBE_RC; goto skipstate; } scsi_mode_sense_len(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_probewp, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*dbd*/ FALSE, /*pc*/ SMS_PAGE_CTRL_CURRENT, /*page*/ SMS_ALL_PAGES_PAGE, /*param_buf*/ mode_buf, /*param_len*/ mode_buf_len, /*minimum_cmd_size*/ softc->minimum_cmd_size, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_WP; xpt_action(start_ccb); break; } case DA_STATE_PROBE_RC: { struct scsi_read_capacity_data *rcap; rcap = (struct scsi_read_capacity_data *) malloc(sizeof(*rcap), M_SCSIDA, M_NOWAIT|M_ZERO); if (rcap == NULL) { printf("dastart: Couldn't malloc read_capacity data\n"); /* da_free_periph??? */ break; } scsi_read_capacity(&start_ccb->csio, /*retries*/da_retry_count, dadone_proberc, MSG_SIMPLE_Q_TAG, rcap, SSD_FULL_SIZE, /*timeout*/5000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_RC; xpt_action(start_ccb); break; } case DA_STATE_PROBE_RC16: { struct scsi_read_capacity_data_long *rcaplong; rcaplong = (struct scsi_read_capacity_data_long *) malloc(sizeof(*rcaplong), M_SCSIDA, M_NOWAIT|M_ZERO); if (rcaplong == NULL) { printf("dastart: Couldn't malloc read_capacity data\n"); /* da_free_periph??? */ break; } scsi_read_capacity_16(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_proberc, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*lba*/ 0, /*reladr*/ 0, /*pmi*/ 0, /*rcap_buf*/ (uint8_t *)rcaplong, /*rcap_buf_len*/ sizeof(*rcaplong), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_RC16; xpt_action(start_ccb); break; } case DA_STATE_PROBE_LBP: { struct scsi_vpd_logical_block_prov *lbp; if (!scsi_vpd_supported_page(periph, SVPD_LBP)) { /* * If we get here we don't support any SBC-3 delete * methods with UNMAP as the Logical Block Provisioning * VPD page support is required for devices which * support it according to T10/1799-D Revision 31 * however older revisions of the spec don't mandate * this so we currently don't remove these methods * from the available set. */ softc->state = DA_STATE_PROBE_BLK_LIMITS; goto skipstate; } lbp = (struct scsi_vpd_logical_block_prov *) malloc(sizeof(*lbp), M_SCSIDA, M_NOWAIT|M_ZERO); if (lbp == NULL) { printf("dastart: Couldn't malloc lbp data\n"); /* da_free_periph??? */ break; } scsi_inquiry(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone_probelbp, /*tag_action*/MSG_SIMPLE_Q_TAG, /*inq_buf*/(u_int8_t *)lbp, /*inq_len*/sizeof(*lbp), /*evpd*/TRUE, /*page_code*/SVPD_LBP, /*sense_len*/SSD_MIN_SIZE, /*timeout*/da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_LBP; xpt_action(start_ccb); break; } case DA_STATE_PROBE_BLK_LIMITS: { struct scsi_vpd_block_limits *block_limits; if (!scsi_vpd_supported_page(periph, SVPD_BLOCK_LIMITS)) { /* Not supported skip to next probe */ softc->state = DA_STATE_PROBE_BDC; goto skipstate; } block_limits = (struct scsi_vpd_block_limits *) malloc(sizeof(*block_limits), M_SCSIDA, M_NOWAIT|M_ZERO); if (block_limits == NULL) { printf("dastart: Couldn't malloc block_limits data\n"); /* da_free_periph??? */ break; } scsi_inquiry(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone_probeblklimits, /*tag_action*/MSG_SIMPLE_Q_TAG, /*inq_buf*/(u_int8_t *)block_limits, /*inq_len*/sizeof(*block_limits), /*evpd*/TRUE, /*page_code*/SVPD_BLOCK_LIMITS, /*sense_len*/SSD_MIN_SIZE, /*timeout*/da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_BLK_LIMITS; xpt_action(start_ccb); break; } case DA_STATE_PROBE_BDC: { - struct scsi_vpd_block_characteristics *bdc; + struct scsi_vpd_block_device_characteristics *bdc; if (!scsi_vpd_supported_page(periph, SVPD_BDC)) { softc->state = DA_STATE_PROBE_ATA; goto skipstate; } - bdc = (struct scsi_vpd_block_characteristics *) + bdc = (struct scsi_vpd_block_device_characteristics *) malloc(sizeof(*bdc), M_SCSIDA, M_NOWAIT|M_ZERO); if (bdc == NULL) { printf("dastart: Couldn't malloc bdc data\n"); /* da_free_periph??? */ break; } scsi_inquiry(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone_probebdc, /*tag_action*/MSG_SIMPLE_Q_TAG, /*inq_buf*/(u_int8_t *)bdc, /*inq_len*/sizeof(*bdc), /*evpd*/TRUE, /*page_code*/SVPD_BDC, /*sense_len*/SSD_MIN_SIZE, /*timeout*/da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_BDC; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ATA: { struct ata_params *ata_params; if (!scsi_vpd_supported_page(periph, SVPD_ATA_INFORMATION)) { if ((softc->zone_mode == DA_ZONE_HOST_AWARE) || (softc->zone_mode == DA_ZONE_HOST_MANAGED)) { /* * Note that if the ATA VPD page isn't * supported, we aren't talking to an ATA * device anyway. Support for that VPD * page is mandatory for SCSI to ATA (SAT) * translation layers. */ softc->state = DA_STATE_PROBE_ZONE; goto skipstate; } daprobedone(periph, start_ccb); break; } ata_params = &periph->path->device->ident_data; scsi_ata_identify(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone_probeata, /*tag_action*/MSG_SIMPLE_Q_TAG, /*data_ptr*/(u_int8_t *)ata_params, /*dxfer_len*/sizeof(*ata_params), /*sense_len*/SSD_FULL_SIZE, /*timeout*/da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ATA; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ATA_LOGDIR: { struct ata_gp_log_dir *log_dir; int retval; retval = 0; if ((softc->flags & DA_FLAG_CAN_ATA_LOG) == 0) { /* * If we don't have log support, not much point in * trying to probe zone support. */ daprobedone(periph, start_ccb); break; } /* * If we have an ATA device (the SCSI ATA Information VPD * page should be present and the ATA identify should have * succeeded) and it supports logs, ask for the log directory. */ log_dir = malloc(sizeof(*log_dir), M_SCSIDA, M_NOWAIT|M_ZERO); if (log_dir == NULL) { xpt_print(periph->path, "Couldn't malloc log_dir " "data\n"); daprobedone(periph, start_ccb); break; } retval = scsi_ata_read_log(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_probeatalogdir, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*log_address*/ ATA_LOG_DIRECTORY, /*page_number*/ 0, /*block_count*/ 1, /*protocol*/ softc->flags & DA_FLAG_CAN_ATA_DMA ? AP_PROTO_DMA : AP_PROTO_PIO_IN, /*data_ptr*/ (uint8_t *)log_dir, /*dxfer_len*/ sizeof(*log_dir), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (retval != 0) { xpt_print(periph->path, "scsi_ata_read_log() failed!"); free(log_dir, M_SCSIDA); daprobedone(periph, start_ccb); break; } start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ATA_LOGDIR; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ATA_IDDIR: { struct ata_identify_log_pages *id_dir; int retval; retval = 0; /* * Check here to see whether the Identify Device log is * supported in the directory of logs. If so, continue * with requesting the log of identify device pages. */ if ((softc->flags & DA_FLAG_CAN_ATA_IDLOG) == 0) { daprobedone(periph, start_ccb); break; } id_dir = malloc(sizeof(*id_dir), M_SCSIDA, M_NOWAIT | M_ZERO); if (id_dir == NULL) { xpt_print(periph->path, "Couldn't malloc id_dir " "data\n"); daprobedone(periph, start_ccb); break; } retval = scsi_ata_read_log(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_probeataiddir, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*log_address*/ ATA_IDENTIFY_DATA_LOG, /*page_number*/ ATA_IDL_PAGE_LIST, /*block_count*/ 1, /*protocol*/ softc->flags & DA_FLAG_CAN_ATA_DMA ? AP_PROTO_DMA : AP_PROTO_PIO_IN, /*data_ptr*/ (uint8_t *)id_dir, /*dxfer_len*/ sizeof(*id_dir), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (retval != 0) { xpt_print(periph->path, "scsi_ata_read_log() failed!"); free(id_dir, M_SCSIDA); daprobedone(periph, start_ccb); break; } start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ATA_IDDIR; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ATA_SUP: { struct ata_identify_log_sup_cap *sup_cap; int retval; retval = 0; /* * Check here to see whether the Supported Capabilities log * is in the list of Identify Device logs. */ if ((softc->flags & DA_FLAG_CAN_ATA_SUPCAP) == 0) { daprobedone(periph, start_ccb); break; } sup_cap = malloc(sizeof(*sup_cap), M_SCSIDA, M_NOWAIT|M_ZERO); if (sup_cap == NULL) { xpt_print(periph->path, "Couldn't malloc sup_cap " "data\n"); daprobedone(periph, start_ccb); break; } retval = scsi_ata_read_log(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_probeatasup, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*log_address*/ ATA_IDENTIFY_DATA_LOG, /*page_number*/ ATA_IDL_SUP_CAP, /*block_count*/ 1, /*protocol*/ softc->flags & DA_FLAG_CAN_ATA_DMA ? AP_PROTO_DMA : AP_PROTO_PIO_IN, /*data_ptr*/ (uint8_t *)sup_cap, /*dxfer_len*/ sizeof(*sup_cap), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (retval != 0) { xpt_print(periph->path, "scsi_ata_read_log() failed!"); free(sup_cap, M_SCSIDA); daprobedone(periph, start_ccb); break; } start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ATA_SUP; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ATA_ZONE: { struct ata_zoned_info_log *ata_zone; int retval; retval = 0; /* * Check here to see whether the zoned device information * page is supported. If so, continue on to request it. * If not, skip to DA_STATE_PROBE_LOG or done. */ if ((softc->flags & DA_FLAG_CAN_ATA_ZONE) == 0) { daprobedone(periph, start_ccb); break; } ata_zone = malloc(sizeof(*ata_zone), M_SCSIDA, M_NOWAIT|M_ZERO); if (ata_zone == NULL) { xpt_print(periph->path, "Couldn't malloc ata_zone " "data\n"); daprobedone(periph, start_ccb); break; } retval = scsi_ata_read_log(&start_ccb->csio, /*retries*/ da_retry_count, /*cbfcnp*/ dadone_probeatazone, /*tag_action*/ MSG_SIMPLE_Q_TAG, /*log_address*/ ATA_IDENTIFY_DATA_LOG, /*page_number*/ ATA_IDL_ZDI, /*block_count*/ 1, /*protocol*/ softc->flags & DA_FLAG_CAN_ATA_DMA ? AP_PROTO_DMA : AP_PROTO_PIO_IN, /*data_ptr*/ (uint8_t *)ata_zone, /*dxfer_len*/ sizeof(*ata_zone), /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ da_default_timeout * 1000); if (retval != 0) { xpt_print(periph->path, "scsi_ata_read_log() failed!"); free(ata_zone, M_SCSIDA); daprobedone(periph, start_ccb); break; } start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ATA_ZONE; xpt_action(start_ccb); break; } case DA_STATE_PROBE_ZONE: { struct scsi_vpd_zoned_bdc *bdc; /* * Note that this page will be supported for SCSI protocol * devices that support ZBC (SMR devices), as well as ATA * protocol devices that are behind a SAT (SCSI to ATA * Translation) layer that supports converting ZBC commands * to their ZAC equivalents. */ if (!scsi_vpd_supported_page(periph, SVPD_ZONED_BDC)) { daprobedone(periph, start_ccb); break; } bdc = (struct scsi_vpd_zoned_bdc *) malloc(sizeof(*bdc), M_SCSIDA, M_NOWAIT|M_ZERO); if (bdc == NULL) { xpt_release_ccb(start_ccb); xpt_print(periph->path, "Couldn't malloc zone VPD " "data\n"); break; } scsi_inquiry(&start_ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone_probezone, /*tag_action*/MSG_SIMPLE_Q_TAG, /*inq_buf*/(u_int8_t *)bdc, /*inq_len*/sizeof(*bdc), /*evpd*/TRUE, /*page_code*/SVPD_ZONED_BDC, /*sense_len*/SSD_FULL_SIZE, /*timeout*/da_default_timeout * 1000); start_ccb->ccb_h.ccb_bp = NULL; start_ccb->ccb_h.ccb_state = DA_CCB_PROBE_ZONE; xpt_action(start_ccb); break; } } } /* * In each of the methods below, while its the caller's * responsibility to ensure the request will fit into a * single device request, we might have changed the delete * method due to the device incorrectly advertising either * its supported methods or limits. * * To prevent this causing further issues we validate the * against the methods limits, and warn which would * otherwise be unnecessary. */ static void da_delete_unmap(struct cam_periph *periph, union ccb *ccb, struct bio *bp) { struct da_softc *softc = (struct da_softc *)periph->softc; struct bio *bp1; uint8_t *buf = softc->unmap_buf; struct scsi_unmap_desc *d = (void *)&buf[UNMAP_HEAD_SIZE]; uint64_t lba, lastlba = (uint64_t)-1; uint64_t totalcount = 0; uint64_t count; uint32_t c, lastcount = 0, ranges = 0; /* * Currently this doesn't take the UNMAP * Granularity and Granularity Alignment * fields into account. * * This could result in both unoptimal unmap * requests as as well as UNMAP calls unmapping * fewer LBA's than requested. */ bzero(softc->unmap_buf, sizeof(softc->unmap_buf)); bp1 = bp; do { /* * Note: ada and da are different in how they store the * pending bp's in a trim. ada stores all of them in the * trim_req.bps. da stores all but the first one in the * delete_run_queue. ada then completes all the bps in * its adadone() loop. da completes all the bps in the * delete_run_queue in dadone, and relies on the biodone * after to complete. This should be reconciled since there's * no real reason to do it differently. XXX */ if (bp1 != bp) bioq_insert_tail(&softc->delete_run_queue, bp1); lba = bp1->bio_pblkno; count = bp1->bio_bcount / softc->params.secsize; /* Try to extend the previous range. */ if (lba == lastlba) { c = omin(count, UNMAP_RANGE_MAX - lastcount); lastlba += c; lastcount += c; scsi_ulto4b(lastcount, d[ranges - 1].length); count -= c; lba += c; totalcount += c; } else if ((softc->quirks & DA_Q_STRICT_UNMAP) && softc->unmap_gran != 0) { /* Align length of the previous range. */ if ((c = lastcount % softc->unmap_gran) != 0) { if (lastcount <= c) { totalcount -= lastcount; lastlba = (uint64_t)-1; lastcount = 0; ranges--; } else { totalcount -= c; lastlba -= c; lastcount -= c; scsi_ulto4b(lastcount, d[ranges - 1].length); } } /* Align beginning of the new range. */ c = (lba - softc->unmap_gran_align) % softc->unmap_gran; if (c != 0) { c = softc->unmap_gran - c; if (count <= c) { count = 0; } else { lba += c; count -= c; } } } while (count > 0) { c = omin(count, UNMAP_RANGE_MAX); if (totalcount + c > softc->unmap_max_lba || ranges >= softc->unmap_max_ranges) { xpt_print(periph->path, "%s issuing short delete %ld > %ld" "|| %d >= %d", da_delete_method_desc[softc->delete_method], totalcount + c, softc->unmap_max_lba, ranges, softc->unmap_max_ranges); break; } scsi_u64to8b(lba, d[ranges].lba); scsi_ulto4b(c, d[ranges].length); lba += c; totalcount += c; ranges++; count -= c; lastlba = lba; lastcount = c; } bp1 = cam_iosched_next_trim(softc->cam_iosched); if (bp1 == NULL) break; if (ranges >= softc->unmap_max_ranges || totalcount + bp1->bio_bcount / softc->params.secsize > softc->unmap_max_lba) { cam_iosched_put_back_trim(softc->cam_iosched, bp1); break; } } while (1); /* Align length of the last range. */ if ((softc->quirks & DA_Q_STRICT_UNMAP) && softc->unmap_gran != 0 && (c = lastcount % softc->unmap_gran) != 0) { if (lastcount <= c) ranges--; else scsi_ulto4b(lastcount - c, d[ranges - 1].length); } scsi_ulto2b(ranges * 16 + 6, &buf[0]); scsi_ulto2b(ranges * 16, &buf[2]); scsi_unmap(&ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/MSG_SIMPLE_Q_TAG, /*byte2*/0, /*data_ptr*/ buf, /*dxfer_len*/ ranges * 16 + 8, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); ccb->ccb_h.ccb_state = DA_CCB_DELETE; ccb->ccb_h.flags |= CAM_UNLOCKED; softc->trim_count++; softc->trim_ranges += ranges; softc->trim_lbas += totalcount; cam_iosched_submit_trim(softc->cam_iosched); } static void da_delete_trim(struct cam_periph *periph, union ccb *ccb, struct bio *bp) { struct da_softc *softc = (struct da_softc *)periph->softc; struct bio *bp1; uint8_t *buf = softc->unmap_buf; uint64_t lastlba = (uint64_t)-1; uint64_t count; uint64_t lba; uint32_t lastcount = 0, c, requestcount; int ranges = 0, off, block_count; bzero(softc->unmap_buf, sizeof(softc->unmap_buf)); bp1 = bp; do { if (bp1 != bp)//XXX imp XXX bioq_insert_tail(&softc->delete_run_queue, bp1); lba = bp1->bio_pblkno; count = bp1->bio_bcount / softc->params.secsize; requestcount = count; /* Try to extend the previous range. */ if (lba == lastlba) { c = omin(count, ATA_DSM_RANGE_MAX - lastcount); lastcount += c; off = (ranges - 1) * 8; buf[off + 6] = lastcount & 0xff; buf[off + 7] = (lastcount >> 8) & 0xff; count -= c; lba += c; } while (count > 0) { c = omin(count, ATA_DSM_RANGE_MAX); off = ranges * 8; buf[off + 0] = lba & 0xff; buf[off + 1] = (lba >> 8) & 0xff; buf[off + 2] = (lba >> 16) & 0xff; buf[off + 3] = (lba >> 24) & 0xff; buf[off + 4] = (lba >> 32) & 0xff; buf[off + 5] = (lba >> 40) & 0xff; buf[off + 6] = c & 0xff; buf[off + 7] = (c >> 8) & 0xff; lba += c; ranges++; count -= c; lastcount = c; if (count != 0 && ranges == softc->trim_max_ranges) { xpt_print(periph->path, "%s issuing short delete %ld > %ld\n", da_delete_method_desc[softc->delete_method], requestcount, (softc->trim_max_ranges - ranges) * ATA_DSM_RANGE_MAX); break; } } lastlba = lba; bp1 = cam_iosched_next_trim(softc->cam_iosched); if (bp1 == NULL) break; if (bp1->bio_bcount / softc->params.secsize > (softc->trim_max_ranges - ranges) * ATA_DSM_RANGE_MAX) { cam_iosched_put_back_trim(softc->cam_iosched, bp1); break; } } while (1); block_count = howmany(ranges, ATA_DSM_BLK_RANGES); scsi_ata_trim(&ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/MSG_SIMPLE_Q_TAG, block_count, /*data_ptr*/buf, /*dxfer_len*/block_count * ATA_DSM_BLK_SIZE, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); ccb->ccb_h.ccb_state = DA_CCB_DELETE; ccb->ccb_h.flags |= CAM_UNLOCKED; cam_iosched_submit_trim(softc->cam_iosched); } /* * We calculate ws_max_blks here based off d_delmaxsize instead * of using softc->ws_max_blks as it is absolute max for the * device not the protocol max which may well be lower. */ static void da_delete_ws(struct cam_periph *periph, union ccb *ccb, struct bio *bp) { struct da_softc *softc; struct bio *bp1; uint64_t ws_max_blks; uint64_t lba; uint64_t count; /* forward compat with WS32 */ softc = (struct da_softc *)periph->softc; ws_max_blks = softc->disk->d_delmaxsize / softc->params.secsize; lba = bp->bio_pblkno; count = 0; bp1 = bp; do { if (bp1 != bp)//XXX imp XXX bioq_insert_tail(&softc->delete_run_queue, bp1); count += bp1->bio_bcount / softc->params.secsize; if (count > ws_max_blks) { xpt_print(periph->path, "%s issuing short delete %ld > %ld\n", da_delete_method_desc[softc->delete_method], count, ws_max_blks); count = omin(count, ws_max_blks); break; } bp1 = cam_iosched_next_trim(softc->cam_iosched); if (bp1 == NULL) break; if (lba + count != bp1->bio_pblkno || count + bp1->bio_bcount / softc->params.secsize > ws_max_blks) { cam_iosched_put_back_trim(softc->cam_iosched, bp1); break; } } while (1); scsi_write_same(&ccb->csio, /*retries*/da_retry_count, /*cbfcnp*/dadone, /*tag_action*/MSG_SIMPLE_Q_TAG, /*byte2*/softc->delete_method == DA_DELETE_ZERO ? 0 : SWS_UNMAP, softc->delete_method == DA_DELETE_WS16 ? 16 : 10, /*lba*/lba, /*block_count*/count, /*data_ptr*/ __DECONST(void *, zero_region), /*dxfer_len*/ softc->params.secsize, /*sense_len*/SSD_FULL_SIZE, da_default_timeout * 1000); ccb->ccb_h.ccb_state = DA_CCB_DELETE; ccb->ccb_h.flags |= CAM_UNLOCKED; cam_iosched_submit_trim(softc->cam_iosched); } static int cmd6workaround(union ccb *ccb) { struct scsi_rw_6 cmd6; struct scsi_rw_10 *cmd10; struct da_softc *softc; u_int8_t *cdb; struct bio *bp; int frozen; cdb = ccb->csio.cdb_io.cdb_bytes; softc = (struct da_softc *)xpt_path_periph(ccb->ccb_h.path)->softc; if (ccb->ccb_h.ccb_state == DA_CCB_DELETE) { da_delete_methods old_method = softc->delete_method; /* * Typically there are two reasons for failure here * 1. Delete method was detected as supported but isn't * 2. Delete failed due to invalid params e.g. too big * * While we will attempt to choose an alternative delete method * this may result in short deletes if the existing delete * requests from geom are big for the new method chosen. * * This method assumes that the error which triggered this * will not retry the io otherwise a panic will occur */ dadeleteflag(softc, old_method, 0); dadeletemethodchoose(softc, DA_DELETE_DISABLE); if (softc->delete_method == DA_DELETE_DISABLE) xpt_print(ccb->ccb_h.path, "%s failed, disabling BIO_DELETE\n", da_delete_method_desc[old_method]); else xpt_print(ccb->ccb_h.path, "%s failed, switching to %s BIO_DELETE\n", da_delete_method_desc[old_method], da_delete_method_desc[softc->delete_method]); while ((bp = bioq_takefirst(&softc->delete_run_queue)) != NULL) cam_iosched_queue_work(softc->cam_iosched, bp); cam_iosched_queue_work(softc->cam_iosched, (struct bio *)ccb->ccb_h.ccb_bp); ccb->ccb_h.ccb_bp = NULL; return (0); } /* Detect unsupported PREVENT ALLOW MEDIUM REMOVAL. */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) == 0 && (*cdb == PREVENT_ALLOW) && (softc->quirks & DA_Q_NO_PREVENT) == 0) { if (bootverbose) xpt_print(ccb->ccb_h.path, "PREVENT ALLOW MEDIUM REMOVAL not supported.\n"); softc->quirks |= DA_Q_NO_PREVENT; return (0); } /* Detect unsupported SYNCHRONIZE CACHE(10). */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) == 0 && (*cdb == SYNCHRONIZE_CACHE) && (softc->quirks & DA_Q_NO_SYNC_CACHE) == 0) { if (bootverbose) xpt_print(ccb->ccb_h.path, "SYNCHRONIZE CACHE(10) not supported.\n"); softc->quirks |= DA_Q_NO_SYNC_CACHE; softc->disk->d_flags &= ~DISKFLAG_CANFLUSHCACHE; return (0); } /* Translation only possible if CDB is an array and cmd is R/W6 */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0 || (*cdb != READ_6 && *cdb != WRITE_6)) return 0; xpt_print(ccb->ccb_h.path, "READ(6)/WRITE(6) not supported, " "increasing minimum_cmd_size to 10.\n"); softc->minimum_cmd_size = 10; bcopy(cdb, &cmd6, sizeof(struct scsi_rw_6)); cmd10 = (struct scsi_rw_10 *)cdb; cmd10->opcode = (cmd6.opcode == READ_6) ? READ_10 : WRITE_10; cmd10->byte2 = 0; scsi_ulto4b(scsi_3btoul(cmd6.addr), cmd10->addr); cmd10->reserved = 0; scsi_ulto2b(cmd6.length, cmd10->length); cmd10->control = cmd6.control; ccb->csio.cdb_len = sizeof(*cmd10); /* Requeue request, unfreezing queue if necessary */ frozen = (ccb->ccb_h.status & CAM_DEV_QFRZN) != 0; ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_action(ccb); if (frozen) { cam_release_devq(ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } return (ERESTART); } static void dazonedone(struct cam_periph *periph, union ccb *ccb) { struct da_softc *softc; struct bio *bp; softc = periph->softc; bp = (struct bio *)ccb->ccb_h.ccb_bp; switch (bp->bio_zone.zone_cmd) { case DISK_ZONE_OPEN: case DISK_ZONE_CLOSE: case DISK_ZONE_FINISH: case DISK_ZONE_RWP: break; case DISK_ZONE_REPORT_ZONES: { uint32_t avail_len; struct disk_zone_report *rep; struct scsi_report_zones_hdr *hdr; struct scsi_report_zones_desc *desc; struct disk_zone_rep_entry *entry; uint32_t hdr_len, num_avail; uint32_t num_to_fill, i; int ata; rep = &bp->bio_zone.zone_params.report; avail_len = ccb->csio.dxfer_len - ccb->csio.resid; /* * Note that bio_resid isn't normally used for zone * commands, but it is used by devstat_end_transaction_bio() * to determine how much data was transferred. Because * the size of the SCSI/ATA data structures is different * than the size of the BIO interface structures, the * amount of data actually transferred from the drive will * be different than the amount of data transferred to * the user. */ bp->bio_resid = ccb->csio.resid; hdr = (struct scsi_report_zones_hdr *)ccb->csio.data_ptr; if (avail_len < sizeof(*hdr)) { /* * Is there a better error than EIO here? We asked * for at least the header, and we got less than * that. */ bp->bio_error = EIO; bp->bio_flags |= BIO_ERROR; bp->bio_resid = bp->bio_bcount; break; } if (softc->zone_interface == DA_ZONE_IF_ATA_PASS) ata = 1; else ata = 0; hdr_len = ata ? le32dec(hdr->length) : scsi_4btoul(hdr->length); if (hdr_len > 0) rep->entries_available = hdr_len / sizeof(*desc); else rep->entries_available = 0; /* * NOTE: using the same values for the BIO version of the * same field as the SCSI/ATA values. This means we could * get some additional values that aren't defined in bio.h * if more values of the same field are defined later. */ rep->header.same = hdr->byte4 & SRZ_SAME_MASK; rep->header.maximum_lba = ata ? le64dec(hdr->maximum_lba) : scsi_8btou64(hdr->maximum_lba); /* * If the drive reports no entries that match the query, * we're done. */ if (hdr_len == 0) { rep->entries_filled = 0; break; } num_avail = min((avail_len - sizeof(*hdr)) / sizeof(*desc), hdr_len / sizeof(*desc)); /* * If the drive didn't return any data, then we're done. */ if (num_avail == 0) { rep->entries_filled = 0; break; } num_to_fill = min(num_avail, rep->entries_allocated); /* * If the user didn't allocate any entries for us to fill, * we're done. */ if (num_to_fill == 0) { rep->entries_filled = 0; break; } for (i = 0, desc = &hdr->desc_list[0], entry=&rep->entries[0]; i < num_to_fill; i++, desc++, entry++) { /* * NOTE: we're mapping the values here directly * from the SCSI/ATA bit definitions to the bio.h * definitons. There is also a warning in * disk_zone.h, but the impact is that if * additional values are added in the SCSI/ATA * specs these will be visible to consumers of * this interface. */ entry->zone_type = desc->zone_type & SRZ_TYPE_MASK; entry->zone_condition = (desc->zone_flags & SRZ_ZONE_COND_MASK) >> SRZ_ZONE_COND_SHIFT; entry->zone_flags |= desc->zone_flags & (SRZ_ZONE_NON_SEQ|SRZ_ZONE_RESET); entry->zone_length = ata ? le64dec(desc->zone_length) : scsi_8btou64(desc->zone_length); entry->zone_start_lba = ata ? le64dec(desc->zone_start_lba) : scsi_8btou64(desc->zone_start_lba); entry->write_pointer_lba = ata ? le64dec(desc->write_pointer_lba) : scsi_8btou64(desc->write_pointer_lba); } rep->entries_filled = num_to_fill; break; } case DISK_ZONE_GET_PARAMS: default: /* * In theory we should not get a GET_PARAMS bio, since it * should be handled without queueing the command to the * drive. */ panic("%s: Invalid zone command %d", __func__, bp->bio_zone.zone_cmd); break; } if (bp->bio_zone.zone_cmd == DISK_ZONE_REPORT_ZONES) free(ccb->csio.data_ptr, M_SCSIDA); } static void dadone(struct cam_periph *periph, union ccb *done_ccb) { struct bio *bp, *bp1; struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; da_ccb_state state; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (csio->bio != NULL) biotrack(csio->bio, __func__); #endif state = csio->ccb_h.ccb_state & DA_CCB_TYPE_MASK; cam_periph_lock(periph); bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { int error; int sf; if ((csio->ccb_h.ccb_state & DA_CCB_RETRY_UA) != 0) sf = SF_RETRY_UA; else sf = 0; error = daerror(done_ccb, CAM_RETRY_SELTO, sf); if (error == ERESTART) { /* A retry was scheduled, so just return. */ cam_periph_unlock(periph); return; } bp = (struct bio *)done_ccb->ccb_h.ccb_bp; if (error != 0) { int queued_error; /* * return all queued I/O with EIO, so that * the client can retry these I/Os in the * proper order should it attempt to recover. */ queued_error = EIO; if (error == ENXIO && (softc->flags & DA_FLAG_PACK_INVALID)== 0) { /* * Catastrophic error. Mark our pack as * invalid. * * XXX See if this is really a media * XXX change first? */ xpt_print(periph->path, "Invalidating pack\n"); softc->flags |= DA_FLAG_PACK_INVALID; #ifdef CAM_IO_STATS softc->invalidations++; #endif queued_error = ENXIO; } cam_iosched_flush(softc->cam_iosched, NULL, queued_error); if (bp != NULL) { bp->bio_error = error; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; } } else if (bp != NULL) { if (state == DA_CCB_DELETE) bp->bio_resid = 0; else bp->bio_resid = csio->resid; bp->bio_error = 0; if (bp->bio_resid != 0) bp->bio_flags |= BIO_ERROR; } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } else if (bp != NULL) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) panic("REQ_CMP with QFRZN"); if (bp->bio_cmd == BIO_ZONE) dazonedone(periph, done_ccb); else if (state == DA_CCB_DELETE) bp->bio_resid = 0; else bp->bio_resid = csio->resid; if ((csio->resid > 0) && (bp->bio_cmd != BIO_ZONE)) bp->bio_flags |= BIO_ERROR; if (softc->error_inject != 0) { bp->bio_error = softc->error_inject; bp->bio_resid = bp->bio_bcount; bp->bio_flags |= BIO_ERROR; softc->error_inject = 0; } } if (bp != NULL) biotrack(bp, __func__); LIST_REMOVE(&done_ccb->ccb_h, periph_links.le); if (LIST_EMPTY(&softc->pending_ccbs)) softc->flags |= DA_FLAG_WAS_OTAG; /* * We need to call cam_iosched before we call biodone so that we don't * measure any activity that happens in the completion routine, which in * the case of sendfile can be quite extensive. Release the periph * refcount taken in dastart() for each CCB. */ cam_iosched_bio_complete(softc->cam_iosched, bp, done_ccb); xpt_release_ccb(done_ccb); KASSERT(softc->refcount >= 1, ("dadone softc %p refcount %d", softc, softc->refcount)); softc->refcount--; if (state == DA_CCB_DELETE) { TAILQ_HEAD(, bio) queue; TAILQ_INIT(&queue); TAILQ_CONCAT(&queue, &softc->delete_run_queue.queue, bio_queue); softc->delete_run_queue.insert_point = NULL; /* * Normally, the xpt_release_ccb() above would make sure * that when we have more work to do, that work would * get kicked off. However, we specifically keep * delete_running set to 0 before the call above to * allow other I/O to progress when many BIO_DELETE * requests are pushed down. We set delete_running to 0 * and call daschedule again so that we don't stall if * there are no other I/Os pending apart from BIO_DELETEs. */ cam_iosched_trim_done(softc->cam_iosched); daschedule(periph); cam_periph_unlock(periph); while ((bp1 = TAILQ_FIRST(&queue)) != NULL) { TAILQ_REMOVE(&queue, bp1, bio_queue); bp1->bio_error = bp->bio_error; if (bp->bio_flags & BIO_ERROR) { bp1->bio_flags |= BIO_ERROR; bp1->bio_resid = bp1->bio_bcount; } else bp1->bio_resid = 0; biodone(bp1); } } else { daschedule(periph); cam_periph_unlock(periph); } if (bp != NULL) biodone(bp); return; } static void dadone_probewp(struct cam_periph *periph, union ccb *done_ccb) { struct scsi_mode_header_6 *mode_hdr6; struct scsi_mode_header_10 *mode_hdr10; struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; uint8_t dev_spec; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probewp\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); KASSERT(softc->state == DA_STATE_PROBE_WP, ("State (%d) not PROBE_WP in dadone_probewp, periph %p ccb %p", softc->state, periph, done_ccb)); KASSERT((csio->ccb_h.ccb_state & DA_CCB_TYPE_MASK) == DA_CCB_PROBE_WP, ("CCB State (%lu) not PROBE_WP in dadone_probewp, periph %p ccb %p", (unsigned long)csio->ccb_h.ccb_state & DA_CCB_TYPE_MASK, periph, done_ccb)); if (softc->minimum_cmd_size > 6) { mode_hdr10 = (struct scsi_mode_header_10 *)csio->data_ptr; dev_spec = mode_hdr10->dev_spec; } else { mode_hdr6 = (struct scsi_mode_header_6 *)csio->data_ptr; dev_spec = mode_hdr6->dev_spec; } if (cam_ccb_status(done_ccb) == CAM_REQ_CMP) { if ((dev_spec & 0x80) != 0) softc->disk->d_flags |= DISKFLAG_WRITE_PROTECT; else softc->disk->d_flags &= ~DISKFLAG_WRITE_PROTECT; } else { int error; error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); if ((softc->flags & DA_FLAG_CAN_RC16) != 0) softc->state = DA_STATE_PROBE_RC16; else softc->state = DA_STATE_PROBE_RC; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } static void dadone_proberc(struct cam_periph *periph, union ccb *done_ccb) { struct scsi_read_capacity_data *rdcap; struct scsi_read_capacity_data_long *rcaplong; struct da_softc *softc; struct ccb_scsiio *csio; da_ccb_state state; char *announce_buf; u_int32_t priority; int lbp, n; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_proberc\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; state = csio->ccb_h.ccb_state & DA_CCB_TYPE_MASK; KASSERT(softc->state == DA_STATE_PROBE_RC || softc->state == DA_STATE_PROBE_RC16, ("State (%d) not PROBE_RC* in dadone_proberc, periph %p ccb %p", softc->state, periph, done_ccb)); KASSERT(state == DA_CCB_PROBE_RC || state == DA_CCB_PROBE_RC16, ("CCB State (%lu) not PROBE_RC* in dadone_probewp, periph %p ccb %p", (unsigned long)state, periph, done_ccb)); lbp = 0; rdcap = NULL; rcaplong = NULL; /* XXX TODO: can this be a malloc? */ announce_buf = softc->announce_temp; bzero(announce_buf, DA_ANNOUNCETMP_SZ); if (state == DA_CCB_PROBE_RC) rdcap =(struct scsi_read_capacity_data *)csio->data_ptr; else rcaplong = (struct scsi_read_capacity_data_long *) csio->data_ptr; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { struct disk_params *dp; uint32_t block_size; uint64_t maxsector; u_int lalba; /* Lowest aligned LBA. */ if (state == DA_CCB_PROBE_RC) { block_size = scsi_4btoul(rdcap->length); maxsector = scsi_4btoul(rdcap->addr); lalba = 0; /* * According to SBC-2, if the standard 10 * byte READ CAPACITY command returns 2^32, * we should issue the 16 byte version of * the command, since the device in question * has more sectors than can be represented * with the short version of the command. */ if (maxsector == 0xffffffff) { free(rdcap, M_SCSIDA); softc->state = DA_STATE_PROBE_RC16; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } } else { block_size = scsi_4btoul(rcaplong->length); maxsector = scsi_8btou64(rcaplong->addr); lalba = scsi_2btoul(rcaplong->lalba_lbp); } /* * Because GEOM code just will panic us if we * give them an 'illegal' value we'll avoid that * here. */ if (block_size == 0) { block_size = 512; if (maxsector == 0) maxsector = -1; } if (block_size >= maxphys) { xpt_print(periph->path, "unsupportable block size %ju\n", (uintmax_t) block_size); announce_buf = NULL; cam_periph_invalidate(periph); } else { /* * We pass rcaplong into dasetgeom(), * because it will only use it if it is * non-NULL. */ dasetgeom(periph, block_size, maxsector, rcaplong, sizeof(*rcaplong)); lbp = (lalba & SRC16_LBPME_A); dp = &softc->params; n = snprintf(announce_buf, DA_ANNOUNCETMP_SZ, "%juMB (%ju %u byte sectors", ((uintmax_t)dp->secsize * dp->sectors) / (1024 * 1024), (uintmax_t)dp->sectors, dp->secsize); if (softc->p_type != 0) { n += snprintf(announce_buf + n, DA_ANNOUNCETMP_SZ - n, ", DIF type %d", softc->p_type); } snprintf(announce_buf + n, DA_ANNOUNCETMP_SZ - n, ")"); } } else { int error; /* * Retry any UNIT ATTENTION type errors. They * are expected at boot. */ error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) { /* * A retry was scheuled, so * just return. */ return; } else if (error != 0) { int asc, ascq; int sense_key, error_code; int have_sense; cam_status status; struct ccb_getdev cgd; /* Don't wedge this device's queue */ status = done_ccb->ccb_h.status; if ((status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); if (scsi_extract_sense_ccb(done_ccb, &error_code, &sense_key, &asc, &ascq)) have_sense = TRUE; else have_sense = FALSE; /* * If we tried READ CAPACITY(16) and failed, * fallback to READ CAPACITY(10). */ if ((state == DA_CCB_PROBE_RC16) && (softc->flags & DA_FLAG_CAN_RC16) && (((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID) || ((have_sense) && (error_code == SSD_CURRENT_ERROR || error_code == SSD_DESC_CURRENT_ERROR) && (sense_key == SSD_KEY_ILLEGAL_REQUEST)))) { cam_periph_assert(periph, MA_OWNED); softc->flags &= ~DA_FLAG_CAN_RC16; free(rdcap, M_SCSIDA); softc->state = DA_STATE_PROBE_RC; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } /* * Attach to anything that claims to be a * direct access or optical disk device, * as long as it doesn't return a "Logical * unit not supported" (0x25) error. * "Internal Target Failure" (0x44) is also * special and typically means that the * device is a SATA drive behind a SATL * translation that's fallen into a * terminally fatal state. */ if ((have_sense) && (asc != 0x25) && (asc != 0x44) && (error_code == SSD_CURRENT_ERROR || error_code == SSD_DESC_CURRENT_ERROR)) { const char *sense_key_desc; const char *asc_desc; dasetgeom(periph, 512, -1, NULL, 0); scsi_sense_desc(sense_key, asc, ascq, &cgd.inq_data, &sense_key_desc, &asc_desc); snprintf(announce_buf, DA_ANNOUNCETMP_SZ, "Attempt to query device " "size failed: %s, %s", sense_key_desc, asc_desc); } else { if (have_sense) scsi_sense_print(&done_ccb->csio); else { xpt_print(periph->path, "got CAM status %#x\n", done_ccb->ccb_h.status); } xpt_print(periph->path, "fatal error, " "failed to attach to device\n"); announce_buf = NULL; /* * Free up resources. */ cam_periph_invalidate(periph); } } } free(csio->data_ptr, M_SCSIDA); if (announce_buf != NULL && ((softc->flags & DA_FLAG_ANNOUNCED) == 0)) { struct sbuf sb; sbuf_new(&sb, softc->announcebuf, DA_ANNOUNCE_SZ, SBUF_FIXEDLEN); xpt_announce_periph_sbuf(periph, &sb, announce_buf); xpt_announce_quirks_sbuf(periph, &sb, softc->quirks, DA_Q_BIT_STRING); sbuf_finish(&sb); sbuf_putbuf(&sb); /* * Create our sysctl variables, now that we know * we have successfully attached. */ /* increase the refcount */ if (da_periph_acquire(periph, DA_REF_SYSCTL) == 0) { taskqueue_enqueue(taskqueue_thread, &softc->sysctl_task); } else { /* XXX This message is useless! */ xpt_print(periph->path, "fatal error, " "could not acquire reference count\n"); } } /* We already probed the device. */ if (softc->flags & DA_FLAG_PROBED) { daprobedone(periph, done_ccb); return; } /* Ensure re-probe doesn't see old delete. */ softc->delete_available = 0; dadeleteflag(softc, DA_DELETE_ZERO, 1); if (lbp && (softc->quirks & DA_Q_NO_UNMAP) == 0) { /* * Based on older SBC-3 spec revisions * any of the UNMAP methods "may" be * available via LBP given this flag so * we flag all of them as available and * then remove those which further * probes confirm aren't available * later. * * We could also check readcap(16) p_type * flag to exclude one or more invalid * write same (X) types here */ dadeleteflag(softc, DA_DELETE_WS16, 1); dadeleteflag(softc, DA_DELETE_WS10, 1); dadeleteflag(softc, DA_DELETE_UNMAP, 1); softc->state = DA_STATE_PROBE_LBP; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } softc->state = DA_STATE_PROBE_BDC; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } static void dadone_probelbp(struct cam_periph *periph, union ccb *done_ccb) { struct scsi_vpd_logical_block_prov *lbp; struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probelbp\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; lbp = (struct scsi_vpd_logical_block_prov *)csio->data_ptr; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { /* * T10/1799-D Revision 31 states at least one of these * must be supported but we don't currently enforce this. */ dadeleteflag(softc, DA_DELETE_WS16, (lbp->flags & SVPD_LBP_WS16)); dadeleteflag(softc, DA_DELETE_WS10, (lbp->flags & SVPD_LBP_WS10)); dadeleteflag(softc, DA_DELETE_UNMAP, (lbp->flags & SVPD_LBP_UNMAP)); } else { int error; error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } /* * Failure indicates we don't support any SBC-3 * delete methods with UNMAP */ } } free(lbp, M_SCSIDA); softc->state = DA_STATE_PROBE_BLK_LIMITS; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } static void dadone_probeblklimits(struct cam_periph *periph, union ccb *done_ccb) { struct scsi_vpd_block_limits *block_limits; struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeblklimits\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; block_limits = (struct scsi_vpd_block_limits *)csio->data_ptr; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { uint32_t max_txfer_len = scsi_4btoul( block_limits->max_txfer_len); uint32_t max_unmap_lba_cnt = scsi_4btoul( block_limits->max_unmap_lba_cnt); uint32_t max_unmap_blk_cnt = scsi_4btoul( block_limits->max_unmap_blk_cnt); uint32_t unmap_gran = scsi_4btoul( block_limits->opt_unmap_grain); uint32_t unmap_gran_align = scsi_4btoul( block_limits->unmap_grain_align); uint64_t ws_max_blks = scsi_8btou64( block_limits->max_write_same_length); if (max_txfer_len != 0) { softc->disk->d_maxsize = MIN(softc->maxio, (off_t)max_txfer_len * softc->params.secsize); } /* * We should already support UNMAP but we check lba * and block count to be sure */ if (max_unmap_lba_cnt != 0x00L && max_unmap_blk_cnt != 0x00L) { softc->unmap_max_lba = max_unmap_lba_cnt; softc->unmap_max_ranges = min(max_unmap_blk_cnt, UNMAP_MAX_RANGES); if (unmap_gran > 1) { softc->unmap_gran = unmap_gran; if (unmap_gran_align & 0x80000000) { softc->unmap_gran_align = unmap_gran_align & 0x7fffffff; } } } else { /* * Unexpected UNMAP limits which means the * device doesn't actually support UNMAP */ dadeleteflag(softc, DA_DELETE_UNMAP, 0); } if (ws_max_blks != 0x00L) softc->ws_max_blks = ws_max_blks; } else { int error; error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } /* * Failure here doesn't mean UNMAP is not * supported as this is an optional page. */ softc->unmap_max_lba = 1; softc->unmap_max_ranges = 1; } } free(block_limits, M_SCSIDA); softc->state = DA_STATE_PROBE_BDC; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } static void dadone_probebdc(struct cam_periph *periph, union ccb *done_ccb) { struct scsi_vpd_block_device_characteristics *bdc; struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probebdc\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; bdc = (struct scsi_vpd_block_device_characteristics *)csio->data_ptr; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { uint32_t valid_len; /* * Disable queue sorting for non-rotational media * by default. */ u_int16_t old_rate = softc->disk->d_rotation_rate; valid_len = csio->dxfer_len - csio->resid; if (SBDC_IS_PRESENT(bdc, valid_len, medium_rotation_rate)) { softc->disk->d_rotation_rate = scsi_2btoul(bdc->medium_rotation_rate); - if (softc->disk->d_rotation_rate == - SVPD_BDC_RATE_NON_ROTATING) { + if (softc->disk->d_rotation_rate == SVPD_NON_ROTATING) { cam_iosched_set_sort_queue( softc->cam_iosched, 0); softc->flags &= ~DA_FLAG_ROTATING; } if (softc->disk->d_rotation_rate != old_rate) { disk_attr_changed(softc->disk, "GEOM::rotation_rate", M_NOWAIT); } } if ((SBDC_IS_PRESENT(bdc, valid_len, flags)) && (softc->zone_mode == DA_ZONE_NONE)) { int ata_proto; if (scsi_vpd_supported_page(periph, SVPD_ATA_INFORMATION)) ata_proto = 1; else ata_proto = 0; /* * The Zoned field will only be set for * Drive Managed and Host Aware drives. If * they are Host Managed, the device type * in the standard INQUIRY data should be * set to T_ZBC_HM (0x14). */ if ((bdc->flags & SVPD_ZBC_MASK) == SVPD_HAW_ZBC) { softc->zone_mode = DA_ZONE_HOST_AWARE; softc->zone_interface = (ata_proto) ? DA_ZONE_IF_ATA_SAT : DA_ZONE_IF_SCSI; } else if ((bdc->flags & SVPD_ZBC_MASK) == SVPD_DM_ZBC) { softc->zone_mode =DA_ZONE_DRIVE_MANAGED; softc->zone_interface = (ata_proto) ? DA_ZONE_IF_ATA_SAT : DA_ZONE_IF_SCSI; } else if ((bdc->flags & SVPD_ZBC_MASK) != SVPD_ZBC_NR) { xpt_print(periph->path, "Unknown zoned " "type %#x", bdc->flags & SVPD_ZBC_MASK); } } } else { int error; error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(bdc, M_SCSIDA); softc->state = DA_STATE_PROBE_ATA; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } static void dadone_probeata(struct cam_periph *periph, union ccb *done_ccb) { struct ata_params *ata_params; struct ccb_scsiio *csio; struct da_softc *softc; u_int32_t priority; int continue_probe; int error; int16_t *ptr; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeata\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; ata_params = (struct ata_params *)csio->data_ptr; ptr = (uint16_t *)ata_params; continue_probe = 0; error = 0; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { uint16_t old_rate; ata_param_fixup(ata_params); if (ata_params->support_dsm & ATA_SUPPORT_DSM_TRIM && (softc->quirks & DA_Q_NO_UNMAP) == 0) { dadeleteflag(softc, DA_DELETE_ATA_TRIM, 1); if (ata_params->max_dsm_blocks != 0) softc->trim_max_ranges = min( softc->trim_max_ranges, ata_params->max_dsm_blocks * ATA_DSM_BLK_RANGES); } /* * Disable queue sorting for non-rotational media * by default. */ old_rate = softc->disk->d_rotation_rate; softc->disk->d_rotation_rate = ata_params->media_rotation_rate; if (softc->disk->d_rotation_rate == ATA_RATE_NON_ROTATING) { cam_iosched_set_sort_queue(softc->cam_iosched, 0); softc->flags &= ~DA_FLAG_ROTATING; } if (softc->disk->d_rotation_rate != old_rate) { disk_attr_changed(softc->disk, "GEOM::rotation_rate", M_NOWAIT); } cam_periph_assert(periph, MA_OWNED); if (ata_params->capabilities1 & ATA_SUPPORT_DMA) softc->flags |= DA_FLAG_CAN_ATA_DMA; if (ata_params->support.extension & ATA_SUPPORT_GENLOG) softc->flags |= DA_FLAG_CAN_ATA_LOG; /* * At this point, if we have a SATA host aware drive, * we communicate via ATA passthrough unless the * SAT layer supports ZBC -> ZAC translation. In * that case, * * XXX KDM figure out how to detect a host managed * SATA drive. */ if (softc->zone_mode == DA_ZONE_NONE) { /* * Note that we don't override the zone * mode or interface if it has already been * set. This is because it has either been * set as a quirk, or when we probed the * SCSI Block Device Characteristics page, * the zoned field was set. The latter * means that the SAT layer supports ZBC to * ZAC translation, and we would prefer to * use that if it is available. */ if ((ata_params->support3 & ATA_SUPPORT_ZONE_MASK) == ATA_SUPPORT_ZONE_HOST_AWARE) { softc->zone_mode = DA_ZONE_HOST_AWARE; softc->zone_interface = DA_ZONE_IF_ATA_PASS; } else if ((ata_params->support3 & ATA_SUPPORT_ZONE_MASK) == ATA_SUPPORT_ZONE_DEV_MANAGED) { softc->zone_mode =DA_ZONE_DRIVE_MANAGED; softc->zone_interface = DA_ZONE_IF_ATA_PASS; } } } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } if ((softc->zone_mode == DA_ZONE_HOST_AWARE) || (softc->zone_mode == DA_ZONE_HOST_MANAGED)) { /* * If the ATA IDENTIFY failed, we could be talking * to a SCSI drive, although that seems unlikely, * since the drive did report that it supported the * ATA Information VPD page. If the ATA IDENTIFY * succeeded, and the SAT layer doesn't support * ZBC -> ZAC translation, continue on to get the * directory of ATA logs, and complete the rest of * the ZAC probe. If the SAT layer does support * ZBC -> ZAC translation, we want to use that, * and we'll probe the SCSI Zoned Block Device * Characteristics VPD page next. */ if ((error == 0) && (softc->flags & DA_FLAG_CAN_ATA_LOG) && (softc->zone_interface == DA_ZONE_IF_ATA_PASS)) softc->state = DA_STATE_PROBE_ATA_LOGDIR; else softc->state = DA_STATE_PROBE_ZONE; continue_probe = 1; } if (continue_probe != 0) { xpt_schedule(periph, priority); xpt_release_ccb(done_ccb); return; } else daprobedone(periph, done_ccb); return; } static void dadone_probeatalogdir(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeatalogdir\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { error = 0; softc->valid_logdir_len = 0; bzero(&softc->ata_logdir, sizeof(softc->ata_logdir)); softc->valid_logdir_len = csio->dxfer_len - csio->resid; if (softc->valid_logdir_len > 0) bcopy(csio->data_ptr, &softc->ata_logdir, min(softc->valid_logdir_len, sizeof(softc->ata_logdir))); /* * Figure out whether the Identify Device log is * supported. The General Purpose log directory * has a header, and lists the number of pages * available for each GP log identified by the * offset into the list. */ if ((softc->valid_logdir_len >= ((ATA_IDENTIFY_DATA_LOG + 1) * sizeof(uint16_t))) && (le16dec(softc->ata_logdir.header) == ATA_GP_LOG_DIR_VERSION) && (le16dec(&softc->ata_logdir.num_pages[ (ATA_IDENTIFY_DATA_LOG * sizeof(uint16_t)) - sizeof(uint16_t)]) > 0)){ softc->flags |= DA_FLAG_CAN_ATA_IDLOG; } else { softc->flags &= ~DA_FLAG_CAN_ATA_IDLOG; } } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { /* * If we can't get the ATA log directory, * then ATA logs are effectively not * supported even if the bit is set in the * identify data. */ softc->flags &= ~(DA_FLAG_CAN_ATA_LOG | DA_FLAG_CAN_ATA_IDLOG); if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); if ((error == 0) && (softc->flags & DA_FLAG_CAN_ATA_IDLOG)) { softc->state = DA_STATE_PROBE_ATA_IDDIR; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } daprobedone(periph, done_ccb); return; } static void dadone_probeataiddir(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeataiddir\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { off_t entries_offset, max_entries; error = 0; softc->valid_iddir_len = 0; bzero(&softc->ata_iddir, sizeof(softc->ata_iddir)); softc->flags &= ~(DA_FLAG_CAN_ATA_SUPCAP | DA_FLAG_CAN_ATA_ZONE); softc->valid_iddir_len = csio->dxfer_len - csio->resid; if (softc->valid_iddir_len > 0) bcopy(csio->data_ptr, &softc->ata_iddir, min(softc->valid_iddir_len, sizeof(softc->ata_iddir))); entries_offset = __offsetof(struct ata_identify_log_pages,entries); max_entries = softc->valid_iddir_len - entries_offset; if ((softc->valid_iddir_len > (entries_offset + 1)) && (le64dec(softc->ata_iddir.header) == ATA_IDLOG_REVISION) && (softc->ata_iddir.entry_count > 0)) { int num_entries, i; num_entries = softc->ata_iddir.entry_count; num_entries = min(num_entries, softc->valid_iddir_len - entries_offset); for (i = 0; i < num_entries && i < max_entries; i++) { if (softc->ata_iddir.entries[i] == ATA_IDL_SUP_CAP) softc->flags |= DA_FLAG_CAN_ATA_SUPCAP; else if (softc->ata_iddir.entries[i] == ATA_IDL_ZDI) softc->flags |= DA_FLAG_CAN_ATA_ZONE; if ((softc->flags & DA_FLAG_CAN_ATA_SUPCAP) && (softc->flags & DA_FLAG_CAN_ATA_ZONE)) break; } } } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { /* * If we can't get the ATA Identify Data log * directory, then it effectively isn't * supported even if the ATA Log directory * a non-zero number of pages present for * this log. */ softc->flags &= ~DA_FLAG_CAN_ATA_IDLOG; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); if ((error == 0) && (softc->flags & DA_FLAG_CAN_ATA_SUPCAP)) { softc->state = DA_STATE_PROBE_ATA_SUP; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } daprobedone(periph, done_ccb); return; } static void dadone_probeatasup(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; u_int32_t priority; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeatasup\n")); softc = (struct da_softc *)periph->softc; priority = done_ccb->ccb_h.pinfo.priority; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { uint32_t valid_len; size_t needed_size; struct ata_identify_log_sup_cap *sup_cap; error = 0; sup_cap = (struct ata_identify_log_sup_cap *)csio->data_ptr; valid_len = csio->dxfer_len - csio->resid; needed_size = __offsetof(struct ata_identify_log_sup_cap, sup_zac_cap) + 1 + sizeof(sup_cap->sup_zac_cap); if (valid_len >= needed_size) { uint64_t zoned, zac_cap; zoned = le64dec(sup_cap->zoned_cap); if (zoned & ATA_ZONED_VALID) { /* * This should have already been * set, because this is also in the * ATA identify data. */ if ((zoned & ATA_ZONED_MASK) == ATA_SUPPORT_ZONE_HOST_AWARE) softc->zone_mode = DA_ZONE_HOST_AWARE; else if ((zoned & ATA_ZONED_MASK) == ATA_SUPPORT_ZONE_DEV_MANAGED) softc->zone_mode = DA_ZONE_DRIVE_MANAGED; } zac_cap = le64dec(sup_cap->sup_zac_cap); if (zac_cap & ATA_SUP_ZAC_CAP_VALID) { if (zac_cap & ATA_REPORT_ZONES_SUP) softc->zone_flags |= DA_ZONE_FLAG_RZ_SUP; if (zac_cap & ATA_ND_OPEN_ZONE_SUP) softc->zone_flags |= DA_ZONE_FLAG_OPEN_SUP; if (zac_cap & ATA_ND_CLOSE_ZONE_SUP) softc->zone_flags |= DA_ZONE_FLAG_CLOSE_SUP; if (zac_cap & ATA_ND_FINISH_ZONE_SUP) softc->zone_flags |= DA_ZONE_FLAG_FINISH_SUP; if (zac_cap & ATA_ND_RWP_SUP) softc->zone_flags |= DA_ZONE_FLAG_RWP_SUP; } else { /* * This field was introduced in * ACS-4, r08 on April 28th, 2015. * If the drive firmware was written * to an earlier spec, it won't have * the field. So, assume all * commands are supported. */ softc->zone_flags |= DA_ZONE_FLAG_SUP_MASK; } } } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { /* * If we can't get the ATA Identify Data * Supported Capabilities page, clear the * flag... */ softc->flags &= ~DA_FLAG_CAN_ATA_SUPCAP; /* * And clear zone capabilities. */ softc->zone_flags &= ~DA_ZONE_FLAG_SUP_MASK; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); if ((error == 0) && (softc->flags & DA_FLAG_CAN_ATA_ZONE)) { softc->state = DA_STATE_PROBE_ATA_ZONE; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } daprobedone(periph, done_ccb); return; } static void dadone_probeatazone(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probeatazone\n")); softc = (struct da_softc *)periph->softc; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { struct ata_zoned_info_log *zi_log; uint32_t valid_len; size_t needed_size; zi_log = (struct ata_zoned_info_log *)csio->data_ptr; valid_len = csio->dxfer_len - csio->resid; needed_size = __offsetof(struct ata_zoned_info_log, version_info) + 1 + sizeof(zi_log->version_info); if (valid_len >= needed_size) { uint64_t tmpvar; tmpvar = le64dec(zi_log->zoned_cap); if (tmpvar & ATA_ZDI_CAP_VALID) { if (tmpvar & ATA_ZDI_CAP_URSWRZ) softc->zone_flags |= DA_ZONE_FLAG_URSWRZ; else softc->zone_flags &= ~DA_ZONE_FLAG_URSWRZ; } tmpvar = le64dec(zi_log->optimal_seq_zones); if (tmpvar & ATA_ZDI_OPT_SEQ_VALID) { softc->zone_flags |= DA_ZONE_FLAG_OPT_SEQ_SET; softc->optimal_seq_zones = (tmpvar & ATA_ZDI_OPT_SEQ_MASK); } else { softc->zone_flags &= ~DA_ZONE_FLAG_OPT_SEQ_SET; softc->optimal_seq_zones = 0; } tmpvar =le64dec(zi_log->optimal_nonseq_zones); if (tmpvar & ATA_ZDI_OPT_NS_VALID) { softc->zone_flags |= DA_ZONE_FLAG_OPT_NONSEQ_SET; softc->optimal_nonseq_zones = (tmpvar & ATA_ZDI_OPT_NS_MASK); } else { softc->zone_flags &= ~DA_ZONE_FLAG_OPT_NONSEQ_SET; softc->optimal_nonseq_zones = 0; } tmpvar = le64dec(zi_log->max_seq_req_zones); if (tmpvar & ATA_ZDI_MAX_SEQ_VALID) { softc->zone_flags |= DA_ZONE_FLAG_MAX_SEQ_SET; softc->max_seq_zones = (tmpvar & ATA_ZDI_MAX_SEQ_MASK); } else { softc->zone_flags &= ~DA_ZONE_FLAG_MAX_SEQ_SET; softc->max_seq_zones = 0; } } } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { softc->flags &= ~DA_FLAG_CAN_ATA_ZONE; softc->flags &= ~DA_ZONE_FLAG_SET_MASK; if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); daprobedone(periph, done_ccb); return; } static void dadone_probezone(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; int error; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_probezone\n")); softc = (struct da_softc *)periph->softc; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { uint32_t valid_len; size_t needed_len; struct scsi_vpd_zoned_bdc *zoned_bdc; error = 0; zoned_bdc = (struct scsi_vpd_zoned_bdc *)csio->data_ptr; valid_len = csio->dxfer_len - csio->resid; needed_len = __offsetof(struct scsi_vpd_zoned_bdc, max_seq_req_zones) + 1 + sizeof(zoned_bdc->max_seq_req_zones); if ((valid_len >= needed_len) && (scsi_2btoul(zoned_bdc->page_length) >= SVPD_ZBDC_PL)) { if (zoned_bdc->flags & SVPD_ZBDC_URSWRZ) softc->zone_flags |= DA_ZONE_FLAG_URSWRZ; else softc->zone_flags &= ~DA_ZONE_FLAG_URSWRZ; softc->optimal_seq_zones = scsi_4btoul(zoned_bdc->optimal_seq_zones); softc->zone_flags |= DA_ZONE_FLAG_OPT_SEQ_SET; softc->optimal_nonseq_zones = scsi_4btoul( zoned_bdc->optimal_nonseq_zones); softc->zone_flags |= DA_ZONE_FLAG_OPT_NONSEQ_SET; softc->max_seq_zones = scsi_4btoul(zoned_bdc->max_seq_req_zones); softc->zone_flags |= DA_ZONE_FLAG_MAX_SEQ_SET; } /* * All of the zone commands are mandatory for SCSI * devices. * * XXX KDM this is valid as of September 2015. * Re-check this assumption once the SAT spec is * updated to support SCSI ZBC to ATA ZAC mapping. * Since ATA allows zone commands to be reported * as supported or not, this may not necessarily * be true for an ATA device behind a SAT (SCSI to * ATA Translation) layer. */ softc->zone_flags |= DA_ZONE_FLAG_SUP_MASK; } else { error = daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA|SF_NO_PRINT); if (error == ERESTART) return; else if (error != 0) { if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge this device's queue */ cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } } } free(csio->data_ptr, M_SCSIDA); daprobedone(periph, done_ccb); return; } static void dadone_tur(struct cam_periph *periph, union ccb *done_ccb) { struct da_softc *softc; struct ccb_scsiio *csio; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("dadone_tur\n")); softc = (struct da_softc *)periph->softc; csio = &done_ccb->csio; cam_periph_assert(periph, MA_OWNED); if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (daerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_RECOVERY | SF_NO_PRINT) == ERESTART) return; /* Will complete again, keep reference */ if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(done_ccb->ccb_h.path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); } softc->flags &= ~DA_FLAG_TUR_PENDING; xpt_release_ccb(done_ccb); da_periph_release_locked(periph, DA_REF_TUR); return; } static void dareprobe(struct cam_periph *periph) { struct da_softc *softc; int status; softc = (struct da_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); /* Probe in progress; don't interfere. */ if (softc->state != DA_STATE_NORMAL) return; status = da_periph_acquire(periph, DA_REF_REPROBE); KASSERT(status == 0, ("dareprobe: cam_periph_acquire failed")); softc->state = DA_STATE_PROBE_WP; xpt_schedule(periph, CAM_PRIORITY_DEV); } static int daerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { struct da_softc *softc; struct cam_periph *periph; int error, error_code, sense_key, asc, ascq; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->csio.bio != NULL) biotrack(ccb->csio.bio, __func__); #endif periph = xpt_path_periph(ccb->ccb_h.path); softc = (struct da_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); /* * Automatically detect devices that do not support * READ(6)/WRITE(6) and upgrade to using 10 byte cdbs. */ error = 0; if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INVALID) { error = cmd6workaround(ccb); } else if (scsi_extract_sense_ccb(ccb, &error_code, &sense_key, &asc, &ascq)) { if (sense_key == SSD_KEY_ILLEGAL_REQUEST) error = cmd6workaround(ccb); /* * If the target replied with CAPACITY DATA HAS CHANGED UA, * query the capacity and notify upper layers. */ else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x2A && ascq == 0x09) { xpt_print(periph->path, "Capacity data has changed\n"); softc->flags &= ~DA_FLAG_PROBED; dareprobe(periph); sense_flags |= SF_NO_PRINT; } else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x28 && ascq == 0x00) { softc->flags &= ~DA_FLAG_PROBED; disk_media_changed(softc->disk, M_NOWAIT); } else if (sense_key == SSD_KEY_UNIT_ATTENTION && asc == 0x3F && ascq == 0x03) { xpt_print(periph->path, "INQUIRY data has changed\n"); softc->flags &= ~DA_FLAG_PROBED; dareprobe(periph); sense_flags |= SF_NO_PRINT; } else if (sense_key == SSD_KEY_NOT_READY && asc == 0x3a && (softc->flags & DA_FLAG_PACK_INVALID) == 0) { softc->flags |= DA_FLAG_PACK_INVALID; disk_media_gone(softc->disk, M_NOWAIT); } } if (error == ERESTART) return (ERESTART); #ifdef CAM_IO_STATS switch (ccb->ccb_h.status & CAM_STATUS_MASK) { case CAM_CMD_TIMEOUT: softc->timeouts++; break; case CAM_REQ_ABORTED: case CAM_REQ_CMP_ERR: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_DATA_RUN_ERR: softc->errors++; break; default: break; } #endif /* * XXX * Until we have a better way of doing pack validation, * don't treat UAs as errors. */ sense_flags |= SF_RETRY_UA; if (softc->quirks & DA_Q_RETRY_BUSY) sense_flags |= SF_RETRY_BUSY; return(cam_periph_error(ccb, cam_flags, sense_flags)); } static void damediapoll(void *arg) { struct cam_periph *periph = arg; struct da_softc *softc = periph->softc; if (!cam_iosched_has_work_flags(softc->cam_iosched, DA_WORK_TUR) && (softc->flags & DA_FLAG_TUR_PENDING) == 0 && softc->state == DA_STATE_NORMAL && LIST_EMPTY(&softc->pending_ccbs)) { if (da_periph_acquire(periph, DA_REF_TUR) == 0) { cam_iosched_set_work_flags(softc->cam_iosched, DA_WORK_TUR); daschedule(periph); } } /* Queue us up again */ if (da_poll_period != 0) callout_schedule(&softc->mediapoll_c, da_poll_period * hz); } static void daprevent(struct cam_periph *periph, int action) { struct da_softc *softc; union ccb *ccb; int error; cam_periph_assert(periph, MA_OWNED); softc = (struct da_softc *)periph->softc; if (((action == PR_ALLOW) && (softc->flags & DA_FLAG_PACK_LOCKED) == 0) || ((action == PR_PREVENT) && (softc->flags & DA_FLAG_PACK_LOCKED) != 0)) { return; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_prevent(&ccb->csio, /*retries*/1, /*cbcfp*/NULL, MSG_SIMPLE_Q_TAG, action, SSD_FULL_SIZE, 5000); error = cam_periph_runccb(ccb, daerror, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_PRINT, softc->disk->d_devstat); if (error == 0) { if (action == PR_ALLOW) softc->flags &= ~DA_FLAG_PACK_LOCKED; else softc->flags |= DA_FLAG_PACK_LOCKED; } xpt_release_ccb(ccb); } static void dasetgeom(struct cam_periph *periph, uint32_t block_len, uint64_t maxsector, struct scsi_read_capacity_data_long *rcaplong, size_t rcap_len) { struct ccb_calc_geometry ccg; struct da_softc *softc; struct disk_params *dp; u_int lbppbe, lalba; int error; softc = (struct da_softc *)periph->softc; dp = &softc->params; dp->secsize = block_len; dp->sectors = maxsector + 1; if (rcaplong != NULL) { lbppbe = rcaplong->prot_lbppbe & SRC16_LBPPBE; lalba = scsi_2btoul(rcaplong->lalba_lbp); lalba &= SRC16_LALBA_A; if (rcaplong->prot & SRC16_PROT_EN) softc->p_type = ((rcaplong->prot & SRC16_P_TYPE) >> SRC16_P_TYPE_SHIFT) + 1; else softc->p_type = 0; } else { lbppbe = 0; lalba = 0; softc->p_type = 0; } if (lbppbe > 0) { dp->stripesize = block_len << lbppbe; dp->stripeoffset = (dp->stripesize - block_len * lalba) % dp->stripesize; } else if (softc->quirks & DA_Q_4K) { dp->stripesize = 4096; dp->stripeoffset = 0; } else if (softc->unmap_gran != 0) { dp->stripesize = block_len * softc->unmap_gran; dp->stripeoffset = (dp->stripesize - block_len * softc->unmap_gran_align) % dp->stripesize; } else { dp->stripesize = 0; dp->stripeoffset = 0; } /* * Have the controller provide us with a geometry * for this disk. The only time the geometry * matters is when we boot and the controller * is the only one knowledgeable enough to come * up with something that will make this a bootable * device. */ xpt_setup_ccb(&ccg.ccb_h, periph->path, CAM_PRIORITY_NORMAL); ccg.ccb_h.func_code = XPT_CALC_GEOMETRY; ccg.block_size = dp->secsize; ccg.volume_size = dp->sectors; ccg.heads = 0; ccg.secs_per_track = 0; ccg.cylinders = 0; xpt_action((union ccb*)&ccg); if ((ccg.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { /* * We don't know what went wrong here- but just pick * a geometry so we don't have nasty things like divide * by zero. */ dp->heads = 255; dp->secs_per_track = 255; dp->cylinders = dp->sectors / (255 * 255); if (dp->cylinders == 0) { dp->cylinders = 1; } } else { dp->heads = ccg.heads; dp->secs_per_track = ccg.secs_per_track; dp->cylinders = ccg.cylinders; } /* * If the user supplied a read capacity buffer, and if it is * different than the previous buffer, update the data in the EDT. * If it's the same, we don't bother. This avoids sending an * update every time someone opens this device. */ if ((rcaplong != NULL) && (bcmp(rcaplong, &softc->rcaplong, min(sizeof(softc->rcaplong), rcap_len)) != 0)) { struct ccb_dev_advinfo cdai; xpt_setup_ccb(&cdai.ccb_h, periph->path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.buftype = CDAI_TYPE_RCAPLONG; cdai.flags = CDAI_FLAG_STORE; cdai.bufsiz = rcap_len; cdai.buf = (uint8_t *)rcaplong; xpt_action((union ccb *)&cdai); if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.ccb_h.status != CAM_REQ_CMP) { xpt_print(periph->path, "%s: failed to set read " "capacity advinfo\n", __func__); /* Use cam_error_print() to decode the status */ cam_error_print((union ccb *)&cdai, CAM_ESF_CAM_STATUS, CAM_EPF_ALL); } else { bcopy(rcaplong, &softc->rcaplong, min(sizeof(softc->rcaplong), rcap_len)); } } softc->disk->d_sectorsize = softc->params.secsize; softc->disk->d_mediasize = softc->params.secsize * (off_t)softc->params.sectors; softc->disk->d_stripesize = softc->params.stripesize; softc->disk->d_stripeoffset = softc->params.stripeoffset; /* XXX: these are not actually "firmware" values, so they may be wrong */ softc->disk->d_fwsectors = softc->params.secs_per_track; softc->disk->d_fwheads = softc->params.heads; softc->disk->d_devstat->block_size = softc->params.secsize; softc->disk->d_devstat->flags &= ~DEVSTAT_BS_UNAVAILABLE; error = disk_resize(softc->disk, M_NOWAIT); if (error != 0) xpt_print(periph->path, "disk_resize(9) failed, error = %d\n", error); } static void dasendorderedtag(void *arg) { struct cam_periph *periph = arg; struct da_softc *softc = periph->softc; cam_periph_assert(periph, MA_OWNED); if (da_send_ordered) { if (!LIST_EMPTY(&softc->pending_ccbs)) { if ((softc->flags & DA_FLAG_WAS_OTAG) == 0) softc->flags |= DA_FLAG_NEED_OTAG; softc->flags &= ~DA_FLAG_WAS_OTAG; } } /* Queue us up again */ callout_reset(&softc->sendordered_c, (da_default_timeout * hz) / DA_ORDEREDTAG_INTERVAL, dasendorderedtag, periph); } /* * Step through all DA peripheral drivers, and if the device is still open, * sync the disk cache to physical media. */ static void dashutdown(void * arg, int howto) { struct cam_periph *periph; struct da_softc *softc; union ccb *ccb; int error; CAM_PERIPH_FOREACH(periph, &dadriver) { softc = (struct da_softc *)periph->softc; if (SCHEDULER_STOPPED()) { /* If we paniced with the lock held, do not recurse. */ if (!cam_periph_owned(periph) && (softc->flags & DA_FLAG_OPEN)) { dadump(softc->disk, NULL, 0, 0, 0); } continue; } cam_periph_lock(periph); /* * We only sync the cache if the drive is still open, and * if the drive is capable of it.. */ if (((softc->flags & DA_FLAG_OPEN) == 0) || (softc->quirks & DA_Q_NO_SYNC_CACHE)) { cam_periph_unlock(periph); continue; } ccb = cam_periph_getccb(periph, CAM_PRIORITY_NORMAL); scsi_synchronize_cache(&ccb->csio, /*retries*/0, /*cbfcnp*/NULL, MSG_SIMPLE_Q_TAG, /*begin_lba*/0, /* whole disk */ /*lb_count*/0, SSD_FULL_SIZE, 60 * 60 * 1000); error = cam_periph_runccb(ccb, daerror, /*cam_flags*/0, /*sense_flags*/ SF_NO_RECOVERY | SF_NO_RETRY | SF_QUIET_IR, softc->disk->d_devstat); if (error != 0) xpt_print(periph->path, "Synchronize cache failed\n"); xpt_release_ccb(ccb); cam_periph_unlock(periph); } } #else /* !_KERNEL */ /* * XXX These are only left out of the kernel build to silence warnings. If, * for some reason these functions are used in the kernel, the ifdefs should * be moved so they are included both in the kernel and userland. */ void scsi_format_unit(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int16_t ileave, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_format_unit *scsi_cmd; scsi_cmd = (struct scsi_format_unit *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = FORMAT_UNIT; scsi_cmd->byte2 = byte2; scsi_ulto2b(ileave, scsi_cmd->interleave); cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_read_defects(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t list_format, uint32_t addr_desc_index, uint8_t *data_ptr, uint32_t dxfer_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) { uint8_t cdb_len; /* * These conditions allow using the 10 byte command. Otherwise we * need to use the 12 byte command. */ if ((minimum_cmd_size <= 10) && (addr_desc_index == 0) && (dxfer_len <= SRDD10_MAX_LENGTH)) { struct scsi_read_defect_data_10 *cdb10; cdb10 = (struct scsi_read_defect_data_10 *) &csio->cdb_io.cdb_bytes; cdb_len = sizeof(*cdb10); bzero(cdb10, cdb_len); cdb10->opcode = READ_DEFECT_DATA_10; cdb10->format = list_format; scsi_ulto2b(dxfer_len, cdb10->alloc_length); } else { struct scsi_read_defect_data_12 *cdb12; cdb12 = (struct scsi_read_defect_data_12 *) &csio->cdb_io.cdb_bytes; cdb_len = sizeof(*cdb12); bzero(cdb12, cdb_len); cdb12->opcode = READ_DEFECT_DATA_12; cdb12->format = list_format; scsi_ulto4b(dxfer_len, cdb12->alloc_length); scsi_ulto4b(addr_desc_index, cdb12->address_descriptor_index); } cam_fill_csio(csio, retries, cbfcnp, /*flags*/ CAM_DIR_IN, tag_action, data_ptr, dxfer_len, sense_len, cdb_len, timeout); } void scsi_sanitize(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int16_t control, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout) { struct scsi_sanitize *scsi_cmd; scsi_cmd = (struct scsi_sanitize *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = SANITIZE; scsi_cmd->byte2 = byte2; scsi_cmd->control = control; scsi_ulto2b(dxfer_len, scsi_cmd->length); cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } #endif /* _KERNEL */ void scsi_zbc_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t service_action, uint64_t zone_id, uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, uint32_t timeout) { struct scsi_zbc_out *scsi_cmd; scsi_cmd = (struct scsi_zbc_out *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = ZBC_OUT; scsi_cmd->service_action = service_action; scsi_u64to8b(zone_id, scsi_cmd->zone_id); scsi_cmd->zone_flags = zone_flags; cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } void scsi_zbc_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t service_action, uint64_t zone_start_lba, uint8_t zone_options, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, uint32_t timeout) { struct scsi_zbc_in *scsi_cmd; scsi_cmd = (struct scsi_zbc_in *)&csio->cdb_io.cdb_bytes; scsi_cmd->opcode = ZBC_IN; scsi_cmd->service_action = service_action; scsi_ulto4b(dxfer_len, scsi_cmd->length); scsi_u64to8b(zone_start_lba, scsi_cmd->zone_start_lba); scsi_cmd->zone_options = zone_options; cam_fill_csio(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_IN : CAM_DIR_NONE, tag_action, data_ptr, dxfer_len, sense_len, sizeof(*scsi_cmd), timeout); } int scsi_ata_zac_mgmt_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, uint8_t sense_len, uint32_t timeout) { uint8_t command_out, protocol, ata_flags; uint16_t features_out; uint32_t sectors_out, auxiliary; int retval; retval = 0; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_OUT; features_out = (zm_action & 0xf) | (zone_flags << 8); ata_flags = AP_FLAG_BYT_BLOK_BLOCKS; if (dxfer_len == 0) { protocol = AP_PROTO_NON_DATA; ata_flags |= AP_FLAG_TLEN_NO_DATA; sectors_out = 0; } else { protocol = AP_PROTO_DMA; ata_flags |= AP_FLAG_TLEN_SECT_CNT | AP_FLAG_TDIR_TO_DEV; sectors_out = ((dxfer_len >> 9) & 0xffff); } auxiliary = 0; } else { ata_flags = AP_FLAG_BYT_BLOK_BLOCKS; if (dxfer_len == 0) { command_out = ATA_NCQ_NON_DATA; features_out = ATA_NCQ_ZAC_MGMT_OUT; /* * We're assuming the SCSI to ATA translation layer * will set the NCQ tag number in the tag field. * That isn't clear from the SAT-4 spec (as of rev 05). */ sectors_out = 0; ata_flags |= AP_FLAG_TLEN_NO_DATA; } else { command_out = ATA_SEND_FPDMA_QUEUED; /* * Note that we're defaulting to normal priority, * and assuming that the SCSI to ATA translation * layer will insert the NCQ tag number in the tag * field. That isn't clear in the SAT-4 spec (as * of rev 05). */ sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8; ata_flags |= AP_FLAG_TLEN_FEAT | AP_FLAG_TDIR_TO_DEV; /* * For SEND FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it seems unlikely that we'll see * a transfer that large, and it may confuse the * the SAT layer, because generally that means that * 0 bytes should be transferred. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else if (dxfer_len <= (65535 * 512)) { features_out = ((dxfer_len >> 9) & 0xffff); } else { /* The transfer is too big. */ retval = 1; goto bailout; } } auxiliary = (zm_action & 0xf) | (zone_flags << 8); protocol = AP_PROTO_FPDMA; } protocol |= AP_EXTEND; retval = scsi_ata_pass(csio, retries, cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, /*protocol*/ protocol, /*ata_flags*/ ata_flags, /*features*/ features_out, /*sector_count*/ sectors_out, /*lba*/ zone_id, /*command*/ command_out, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ auxiliary, /*control*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*cdb_storage*/ cdb_storage, /*cdb_storage_len*/ cdb_storage_len, /*minimum_cmd_size*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout); bailout: return (retval); } int scsi_ata_zac_mgmt_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, uint8_t sense_len, uint32_t timeout) { uint8_t command_out, protocol; uint16_t features_out, sectors_out; uint32_t auxiliary; int ata_flags; int retval; retval = 0; ata_flags = AP_FLAG_TDIR_FROM_DEV | AP_FLAG_BYT_BLOK_BLOCKS; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_IN; /* XXX KDM put a macro here */ features_out = (zm_action & 0xf) | (zone_flags << 8); sectors_out = dxfer_len >> 9; /* XXX KDM macro */ protocol = AP_PROTO_DMA; ata_flags |= AP_FLAG_TLEN_SECT_CNT; auxiliary = 0; } else { ata_flags |= AP_FLAG_TLEN_FEAT; command_out = ATA_RECV_FPDMA_QUEUED; sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8; /* * For RECEIVE FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it seems unlikely that we'll see * a transfer that large, and it may confuse the * the SAT layer, because generally that means that * 0 bytes should be transferred. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else if (dxfer_len <= (65535 * 512)) { features_out = ((dxfer_len >> 9) & 0xffff); } else { /* The transfer is too big. */ retval = 1; goto bailout; } auxiliary = (zm_action & 0xf) | (zone_flags << 8), protocol = AP_PROTO_FPDMA; } protocol |= AP_EXTEND; retval = scsi_ata_pass(csio, retries, cbfcnp, /*flags*/ CAM_DIR_IN, tag_action, /*protocol*/ protocol, /*ata_flags*/ ata_flags, /*features*/ features_out, /*sector_count*/ sectors_out, /*lba*/ zone_id, /*command*/ command_out, /*device*/ 0, /*icc*/ 0, /*auxiliary*/ auxiliary, /*control*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ (dxfer_len >> 9) * 512, /* XXX KDM */ /*cdb_storage*/ cdb_storage, /*cdb_storage_len*/ cdb_storage_len, /*minimum_cmd_size*/ 0, /*sense_len*/ SSD_FULL_SIZE, /*timeout*/ timeout); bailout: return (retval); }