diff --git a/sys/compat/linuxkpi/common/include/linux/net.h b/sys/compat/linuxkpi/common/include/linux/net.h index dc0b46df9c99..a5172f3f31eb 100644 --- a/sys/compat/linuxkpi/common/include/linux/net.h +++ b/sys/compat/linuxkpi/common/include/linux/net.h @@ -1,88 +1,88 @@ /*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013, 2014 Mellanox Technologies, Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _LINUXKPI_LINUX_NET_H_ #define _LINUXKPI_LINUX_NET_H_ #include #include #include #include #include #include #include static inline int sock_create_kern(int family, int type, int proto, struct socket **res) { return -socreate(family, res, type, proto, curthread->td_ucred, curthread); } static inline int sock_getname(struct socket *so, struct sockaddr *sa, int *sockaddr_len, int peer) { int error; /* * XXXGL: we can't use sopeeraddr()/sosockaddr() here since with * INVARIANTS they would check if supplied sockaddr has enough * length. Such notion doesn't even exist in Linux KPI. */ if (peer) { - if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) + if ((so->so_state & SS_ISCONNECTED) == 0) return (-ENOTCONN); error = so->so_proto->pr_peeraddr(so, sa); } else error = so->so_proto->pr_sockaddr(so, sa); if (error) return (-error); *sockaddr_len = sa->sa_len; return (0); } static inline void sock_release(struct socket *so) { soclose(so); } int linuxkpi_net_ratelimit(void); static inline int net_ratelimit(void) { return (linuxkpi_net_ratelimit()); } #endif /* _LINUXKPI_LINUX_NET_H_ */ diff --git a/sys/kern/uipc_debug.c b/sys/kern/uipc_debug.c index 1e699a10223e..83cb7f6dc00a 100644 --- a/sys/kern/uipc_debug.c +++ b/sys/kern/uipc_debug.c @@ -1,507 +1,503 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Debugger routines relating to sockets, protocols, etc, for use in DDB. */ #include #include "opt_ddb.h" #include #include #include #include #include #include #ifdef DDB #include static void db_print_sotype(short so_type) { switch (so_type) { case SOCK_STREAM: db_printf("SOCK_STREAM"); break; case SOCK_DGRAM: db_printf("SOCK_DGRAM"); break; case SOCK_RAW: db_printf("SOCK_RAW"); break; case SOCK_RDM: db_printf("SOCK_RDM"); break; case SOCK_SEQPACKET: db_printf("SOCK_SEQPACKET"); break; default: db_printf("unknown"); break; } } static void db_print_sooptions(int so_options) { int comma; comma = 0; if (so_options & SO_DEBUG) { db_printf("%sSO_DEBUG", comma ? ", " : ""); comma = 1; } if (so_options & SO_ACCEPTCONN) { db_printf("%sSO_ACCEPTCONN", comma ? ", " : ""); comma = 1; } if (so_options & SO_REUSEADDR) { db_printf("%sSO_REUSEADDR", comma ? ", " : ""); comma = 1; } if (so_options & SO_KEEPALIVE) { db_printf("%sSO_KEEPALIVE", comma ? ", " : ""); comma = 1; } if (so_options & SO_DONTROUTE) { db_printf("%sSO_DONTROUTE", comma ? ", " : ""); comma = 1; } if (so_options & SO_BROADCAST) { db_printf("%sSO_BROADCAST", comma ? ", " : ""); comma = 1; } if (so_options & SO_USELOOPBACK) { db_printf("%sSO_USELOOPBACK", comma ? ", " : ""); comma = 1; } if (so_options & SO_LINGER) { db_printf("%sSO_LINGER", comma ? ", " : ""); comma = 1; } if (so_options & SO_OOBINLINE) { db_printf("%sSO_OOBINLINE", comma ? ", " : ""); comma = 1; } if (so_options & SO_REUSEPORT) { db_printf("%sSO_REUSEPORT", comma ? ", " : ""); comma = 1; } if (so_options & SO_REUSEPORT_LB) { db_printf("%sSO_REUSEPORT_LB", comma ? ", " : ""); comma = 1; } if (so_options & SO_TIMESTAMP) { db_printf("%sSO_TIMESTAMP", comma ? ", " : ""); comma = 1; } if (so_options & SO_NOSIGPIPE) { db_printf("%sSO_NOSIGPIPE", comma ? ", " : ""); comma = 1; } if (so_options & SO_ACCEPTFILTER) { db_printf("%sSO_ACCEPTFILTER", comma ? ", " : ""); comma = 1; } if (so_options & SO_BINTIME) { db_printf("%sSO_BINTIME", comma ? ", " : ""); comma = 1; } if (so_options & SO_NO_OFFLOAD) { db_printf("%sSO_NO_OFFLOAD", comma ? ", " : ""); comma = 1; } if (so_options & SO_NO_DDP) { db_printf("%sSO_NO_DDP", comma ? ", " : ""); comma = 1; } } static void db_print_sostate(short so_state) { int comma; comma = 0; if (so_state & SS_ISCONNECTED) { db_printf("%sSS_ISCONNECTED", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISCONNECTING) { db_printf("%sSS_ISCONNECTING", comma ? ", " : ""); comma = 1; } if (so_state & SS_ISDISCONNECTING) { db_printf("%sSS_ISDISCONNECTING", comma ? ", " : ""); comma = 1; } if (so_state & SS_NBIO) { db_printf("%sSS_NBIO", comma ? ", " : ""); comma = 1; } if (so_state & SS_ASYNC) { db_printf("%sSS_ASYNC", comma ? ", " : ""); comma = 1; } - if (so_state & SS_ISCONFIRMING) { - db_printf("%sSS_ISCONFIRMING", comma ? ", " : ""); - comma = 1; - } } static void db_print_soqstate(int so_qstate) { int comma; comma = 0; if (so_qstate & SQ_INCOMP) { db_printf("%sSQ_INCOMP", comma ? ", " : ""); comma = 1; } if (so_qstate & SQ_COMP) { db_printf("%sSQ_COMP", comma ? ", " : ""); comma = 1; } } static void db_print_sbstate(short sb_state) { int comma; comma = 0; if (sb_state & SBS_CANTSENDMORE) { db_printf("%sSBS_CANTSENDMORE", comma ? ", " : ""); comma = 1; } if (sb_state & SBS_CANTRCVMORE) { db_printf("%sSBS_CANTRCVMORE", comma ? ", " : ""); comma = 1; } if (sb_state & SBS_RCVATMARK) { db_printf("%sSBS_RCVATMARK", comma ? ", " : ""); comma = 1; } } static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_domain(struct domain *d, const char *domain_name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", domain_name, d); indent += 2; db_print_indent(indent); db_printf("dom_family: %d ", d->dom_family); db_printf("dom_name: %s\n", d->dom_name); db_print_indent(indent); db_printf("dom_externalize: %p ", d->dom_externalize); db_print_indent(indent); db_printf("dom_protosw: %p ", d->dom_protosw); db_printf("dom_next: %p\n", d->dom_next.sle_next); db_print_indent(indent); db_printf("dom_rtattach: %p ", d->dom_rtattach); db_print_indent(indent); db_printf("dom_ifattach: %p ", d->dom_ifattach); db_printf("dom_ifdetach: %p\n", d->dom_ifdetach); } static void db_print_prflags(short pr_flags) { int comma; comma = 0; if (pr_flags & PR_ATOMIC) { db_printf("%sPR_ATOMIC", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_ADDR) { db_printf("%sPR_ADDR", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_CONNREQUIRED) { db_printf("%sPR_CONNREQUIRED", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_WANTRCVD) { db_printf("%sPR_WANTRCVD", comma ? ", " : ""); comma = 1; } if (pr_flags & PR_IMPLOPCL) { db_printf("%sPR_IMPLOPCL", comma ? ", " : ""); comma = 1; } } static void db_print_protosw(struct protosw *pr, const char *prname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", prname, pr); indent += 2; db_print_indent(indent); db_printf("pr_type: %d ", pr->pr_type); db_printf("pr_domain: %p\n", pr->pr_domain); if (pr->pr_domain != NULL) db_print_domain(pr->pr_domain, "pr_domain", indent); db_print_indent(indent); db_printf("pr_protocol: %d\n", pr->pr_protocol); db_print_indent(indent); db_printf("pr_flags: %d (", pr->pr_flags); db_print_prflags(pr->pr_flags); db_printf(")\n"); db_print_indent(indent); db_printf("pr_ctloutput: %p ", pr->pr_ctloutput); } static void db_print_sbflags(short sb_flags) { int comma; comma = 0; if (sb_flags & SB_WAIT) { db_printf("%sSB_WAIT", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_SEL) { db_printf("%sSB_SEL", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_ASYNC) { db_printf("%sSB_ASYNC", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_UPCALL) { db_printf("%sSB_UPCALL", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_NOINTR) { db_printf("%sSB_NOINTR", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_AIO) { db_printf("%sSB_AIO", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_KNOTE) { db_printf("%sSB_KNOTE", comma ? ", " : ""); comma = 1; } if (sb_flags & SB_AUTOSIZE) { db_printf("%sSB_AUTOSIZE", comma ? ", " : ""); comma = 1; } } static void db_print_sockbuf(struct sockbuf *sb, const char *sockbufname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", sockbufname, sb); indent += 2; db_print_indent(indent); db_printf("sb_state: 0x%x (", sb->sb_state); db_print_sbstate(sb->sb_state); db_printf(")\n"); db_print_indent(indent); db_printf("sb_mb: %p ", sb->sb_mb); db_printf("sb_mbtail: %p ", sb->sb_mbtail); db_printf("sb_lastrecord: %p\n", sb->sb_lastrecord); db_print_indent(indent); db_printf("sb_sndptr: %p ", sb->sb_sndptr); db_printf("sb_sndptroff: %u\n", sb->sb_sndptroff); db_print_indent(indent); db_printf("sb_acc: %u ", sb->sb_acc); db_printf("sb_ccc: %u ", sb->sb_ccc); db_printf("sb_hiwat: %u ", sb->sb_hiwat); db_printf("sb_mbcnt: %u ", sb->sb_mbcnt); db_printf("sb_mbmax: %u\n", sb->sb_mbmax); db_print_indent(indent); db_printf("sb_ctl: %u ", sb->sb_ctl); db_printf("sb_lowat: %d ", sb->sb_lowat); db_printf("sb_timeo: %jd\n", sb->sb_timeo); db_print_indent(indent); db_printf("sb_flags: 0x%x (", sb->sb_flags); db_print_sbflags(sb->sb_flags); db_printf(")\n"); db_print_indent(indent); db_printf("sb_aiojobq first: %p\n", TAILQ_FIRST(&sb->sb_aiojobq)); } static void db_print_socket(struct socket *so, const char *socketname, int indent) { db_print_indent(indent); db_printf("%s at %p\n", socketname, so); indent += 2; db_print_indent(indent); db_printf("so_count: %d ", so->so_count); db_printf("so_type: %d (", so->so_type); db_print_sotype(so->so_type); db_printf(")\n"); db_print_indent(indent); db_printf("so_options: 0x%x (", so->so_options); db_print_sooptions(so->so_options); db_printf(")\n"); db_print_indent(indent); db_printf("so_linger: %d ", so->so_linger); db_printf("so_state: 0x%x (", so->so_state); db_print_sostate(so->so_state); db_printf(")\n"); db_print_indent(indent); db_printf("so_pcb: %p ", so->so_pcb); db_printf("so_proto: %p\n", so->so_proto); if (so->so_proto != NULL) db_print_protosw(so->so_proto, "so_proto", indent); db_print_indent(indent); if (so->so_options & SO_ACCEPTCONN) { db_printf("sol_incomp first: %p ", TAILQ_FIRST(&so->sol_incomp)); db_printf("sol_comp first: %p\n", TAILQ_FIRST(&so->sol_comp)); db_printf("sol_qlen: %d ", so->sol_qlen); db_printf("sol_incqlen: %d ", so->sol_incqlen); db_printf("sol_qlimit: %d ", so->sol_qlimit); } else { db_printf("so_qstate: 0x%x (", so->so_qstate); db_print_soqstate(so->so_qstate); db_printf(") "); db_printf("so_listen: %p ", so->so_listen); /* so_list skipped */ db_printf("so_timeo: %d ", so->so_timeo); db_printf("so_error: %d\n", so->so_error); db_print_indent(indent); db_printf("so_sigio: %p ", so->so_sigio); db_printf("so_oobmark: %lu\n", so->so_oobmark); db_print_sockbuf(&so->so_rcv, "so_rcv", indent); db_print_sockbuf(&so->so_snd, "so_snd", indent); } } DB_SHOW_COMMAND(socket, db_show_socket) { struct socket *so; if (!have_addr) { db_printf("usage: show socket \n"); return; } so = (struct socket *)addr; db_print_socket(so, "socket", 0); } DB_SHOW_COMMAND(sockbuf, db_show_sockbuf) { struct sockbuf *sb; if (!have_addr) { db_printf("usage: show sockbuf \n"); return; } sb = (struct sockbuf *)addr; db_print_sockbuf(sb, "sockbuf", 0); } DB_SHOW_COMMAND(protosw, db_show_protosw) { struct protosw *pr; if (!have_addr) { db_printf("usage: show protosw \n"); return; } pr = (struct protosw *)addr; db_print_protosw(pr, "protosw", 0); } DB_SHOW_COMMAND(domain, db_show_domain) { struct domain *d; if (!have_addr) { db_printf("usage: show protosw \n"); return; } d = (struct domain *)addr; db_print_domain(d, "domain", 0); } #endif diff --git a/sys/kern/uipc_socket.c b/sys/kern/uipc_socket.c index 65230e39e4ae..5e5e7d2cd058 100644 --- a/sys/kern/uipc_socket.c +++ b/sys/kern/uipc_socket.c @@ -1,4353 +1,4346 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. * Copyright (c) 2004 The FreeBSD Foundation * Copyright (c) 2004-2008 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Comments on the socket life cycle: * * soalloc() sets of socket layer state for a socket, called only by * socreate() and sonewconn(). Socket layer private. * * sodealloc() tears down socket layer state for a socket, called only by * sofree() and sonewconn(). Socket layer private. * * pru_attach() associates protocol layer state with an allocated socket; * called only once, may fail, aborting socket allocation. This is called * from socreate() and sonewconn(). Socket layer private. * * pru_detach() disassociates protocol layer state from an attached socket, * and will be called exactly once for sockets in which pru_attach() has * been successfully called. If pru_attach() returned an error, * pru_detach() will not be called. Socket layer private. * * pru_abort() and pru_close() notify the protocol layer that the last * consumer of a socket is starting to tear down the socket, and that the * protocol should terminate the connection. Historically, pru_abort() also * detached protocol state from the socket state, but this is no longer the * case. * * socreate() creates a socket and attaches protocol state. This is a public * interface that may be used by socket layer consumers to create new * sockets. * * sonewconn() creates a socket and attaches protocol state. This is a * public interface that may be used by protocols to create new sockets when * a new connection is received and will be available for accept() on a * listen socket. * * soclose() destroys a socket after possibly waiting for it to disconnect. * This is a public interface that socket consumers should use to close and * release a socket when done with it. * * soabort() destroys a socket without waiting for it to disconnect (used * only for incoming connections that are already partially or fully * connected). This is used internally by the socket layer when clearing * listen socket queues (due to overflow or close on the listen socket), but * is also a public interface protocols may use to abort connections in * their incomplete listen queues should they no longer be required. Sockets * placed in completed connection listen queues should not be aborted for * reasons described in the comment above the soclose() implementation. This * is not a general purpose close routine, and except in the specific * circumstances described here, should not be used. * * sofree() will free a socket and its protocol state if all references on * the socket have been released, and is the public interface to attempt to * free a socket when a reference is removed. This is a socket layer private * interface. * * NOTE: In addition to socreate() and soclose(), which provide a single * socket reference to the consumer to be managed as required, there are two * calls to explicitly manage socket references, soref(), and sorele(). * Currently, these are generally required only when transitioning a socket * from a listen queue to a file descriptor, in order to prevent garbage * collection of the socket at an untimely moment. For a number of reasons, * these interfaces are not preferred, and should be avoided. * * NOTE: With regard to VNETs the general rule is that callers do not set * curvnet. Exceptions to this rule include soabort(), sodisconnect(), * sofree() (and with that sorele(), sotryfree()), as well as sonewconn(), * which are usually called from a pre-set VNET context. sopoll() currently * does not need a VNET context to be set. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include #include /* for struct knote */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #include #endif static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags); static void so_rdknl_lock(void *); static void so_rdknl_unlock(void *); static void so_rdknl_assert_lock(void *, int); static void so_wrknl_lock(void *); static void so_wrknl_unlock(void *); static void so_wrknl_assert_lock(void *, int); static void filt_sordetach(struct knote *kn); static int filt_soread(struct knote *kn, long hint); static void filt_sowdetach(struct knote *kn); static int filt_sowrite(struct knote *kn, long hint); static int filt_soempty(struct knote *kn, long hint); static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id); fo_kqfilter_t soo_kqfilter; static struct filterops soread_filtops = { .f_isfd = 1, .f_detach = filt_sordetach, .f_event = filt_soread, }; static struct filterops sowrite_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_sowrite, }; static struct filterops soempty_filtops = { .f_isfd = 1, .f_detach = filt_sowdetach, .f_event = filt_soempty, }; so_gen_t so_gencnt; /* generation count for sockets */ MALLOC_DEFINE(M_SONAME, "soname", "socket name"); MALLOC_DEFINE(M_PCB, "pcb", "protocol control block"); #define VNET_SO_ASSERT(so) \ VNET_ASSERT(curvnet != NULL, \ ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so))); VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]); #define V_socket_hhh VNET(socket_hhh) /* * Limit on the number of connections in the listen queue waiting * for accept(2). * NB: The original sysctl somaxconn is still available but hidden * to prevent confusion about the actual purpose of this number. */ static u_int somaxconn = SOMAXCONN; static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS) { int error; int val; val = somaxconn; error = sysctl_handle_int(oidp, &val, 0, req); if (error || !req->newptr ) return (error); /* * The purpose of the UINT_MAX / 3 limit, is so that the formula * 3 * so_qlimit / 2 * below, will not overflow. */ if (val < 1 || val > UINT_MAX / 3) return (EINVAL); somaxconn = val; return (0); } SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size"); SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0, sizeof(int), sysctl_somaxconn, "I", "Maximum listen socket pending connection accept queue size (compat)"); static int numopensockets; SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD, &numopensockets, 0, "Number of open sockets"); /* * so_global_mtx protects so_gencnt, numopensockets, and the per-socket * so_gencnt field. */ static struct mtx so_global_mtx; MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF); /* * General IPC sysctl name space, used by sockets and a variety of other IPC * types. */ SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IPC"); /* * Initialize the socket subsystem and set up the socket * memory allocator. */ static uma_zone_t socket_zone; int maxsockets; static void socket_zone_change(void *tag) { maxsockets = uma_zone_set_max(socket_zone, maxsockets); } static void socket_hhook_register(int subtype) { if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype, &V_socket_hhh[subtype], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register hook\n", __func__); } static void socket_hhook_deregister(int subtype) { if (hhook_head_deregister(V_socket_hhh[subtype]) != 0) printf("%s: WARNING: unable to deregister hook\n", __func__); } static void socket_init(void *tag) { socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); maxsockets = uma_zone_set_max(socket_zone, maxsockets); uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached"); EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL, EVENTHANDLER_PRI_FIRST); } SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL); static void socket_vnet_init(const void *unused __unused) { int i; /* We expect a contiguous range */ for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_register(i); } VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_init, NULL); static void socket_vnet_uninit(const void *unused __unused) { int i; for (i = 0; i <= HHOOK_SOCKET_LAST; i++) socket_hhook_deregister(i); } VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_vnet_uninit, NULL); /* * Initialise maxsockets. This SYSINIT must be run after * tunable_mbinit(). */ static void init_maxsockets(void *ignored) { TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); maxsockets = imax(maxsockets, maxfiles); } SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL); /* * Sysctl to get and set the maximum global sockets limit. Notify protocols * of the change so that they can update their dependent limits as required. */ static int sysctl_maxsockets(SYSCTL_HANDLER_ARGS) { int error, newmaxsockets; newmaxsockets = maxsockets; error = sysctl_handle_int(oidp, &newmaxsockets, 0, req); if (error == 0 && req->newptr && newmaxsockets != maxsockets) { if (newmaxsockets > maxsockets && newmaxsockets <= maxfiles) { maxsockets = newmaxsockets; EVENTHANDLER_INVOKE(maxsockets_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, &maxsockets, 0, sysctl_maxsockets, "IU", "Maximum number of sockets available"); /* * Socket operation routines. These routines are called by the routines in * sys_socket.c or from a system process, and implement the semantics of * socket operations by switching out to the protocol specific routines. */ /* * Get a socket structure from our zone, and initialize it. Note that it * would probably be better to allocate socket and PCB at the same time, but * I'm not convinced that all the protocols can be easily modified to do * this. * * soalloc() returns a socket with a ref count of 0. */ static struct socket * soalloc(struct vnet *vnet) { struct socket *so; so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO); if (so == NULL) return (NULL); #ifdef MAC if (mac_socket_init(so, M_NOWAIT) != 0) { uma_zfree(socket_zone, so); return (NULL); } #endif if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) { uma_zfree(socket_zone, so); return (NULL); } /* * The socket locking protocol allows to lock 2 sockets at a time, * however, the first one must be a listening socket. WITNESS lacks * a feature to change class of an existing lock, so we use DUPOK. */ mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF); mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF); so->so_rcv.sb_sel = &so->so_rdsel; so->so_snd.sb_sel = &so->so_wrsel; sx_init(&so->so_snd_sx, "so_snd_sx"); sx_init(&so->so_rcv_sx, "so_rcv_sx"); TAILQ_INIT(&so->so_snd.sb_aiojobq); TAILQ_INIT(&so->so_rcv.sb_aiojobq); TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so); TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so); #ifdef VIMAGE VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet = vnet; #endif /* We shouldn't need the so_global_mtx */ if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) { /* Do we need more comprehensive error returns? */ uma_zfree(socket_zone, so); return (NULL); } mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; ++numopensockets; #ifdef VIMAGE vnet->vnet_sockcnt++; #endif mtx_unlock(&so_global_mtx); return (so); } /* * Free the storage associated with a socket at the socket layer, tear down * locks, labels, etc. All protocol state is assumed already to have been * torn down (and possibly never set up) by the caller. */ void sodealloc(struct socket *so) { KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count)); KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL")); mtx_lock(&so_global_mtx); so->so_gencnt = ++so_gencnt; --numopensockets; /* Could be below, but faster here. */ #ifdef VIMAGE VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p", __func__, __LINE__, so)); so->so_vnet->vnet_sockcnt--; #endif mtx_unlock(&so_global_mtx); #ifdef MAC mac_socket_destroy(so); #endif hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE); khelp_destroy_osd(&so->osd); if (SOLISTENING(so)) { if (so->sol_accept_filter != NULL) accept_filt_setopt(so, NULL); } else { if (so->so_rcv.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY); if (so->so_snd.sb_hiwat) (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, 0, RLIM_INFINITY); sx_destroy(&so->so_snd_sx); sx_destroy(&so->so_rcv_sx); mtx_destroy(&so->so_snd_mtx); mtx_destroy(&so->so_rcv_mtx); } crfree(so->so_cred); mtx_destroy(&so->so_lock); uma_zfree(socket_zone, so); } /* * socreate returns a socket with a ref count of 1 and a file descriptor * reference. The socket should be closed with soclose(). */ int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td) { struct protosw *prp; struct socket *so; int error; /* * XXX: divert(4) historically abused PF_INET. Keep this compatibility * shim until all applications have been updated. */ if (__predict_false(dom == PF_INET && type == SOCK_RAW && proto == IPPROTO_DIVERT)) { dom = PF_DIVERT; printf("%s uses obsolete way to create divert(4) socket\n", td->td_proc->p_comm); } prp = pffindproto(dom, type, proto); if (prp == NULL) { /* No support for domain. */ if (pffinddomain(dom) == NULL) return (EAFNOSUPPORT); /* No support for socket type. */ if (proto == 0 && type != 0) return (EPROTOTYPE); return (EPROTONOSUPPORT); } MPASS(prp->pr_attach); if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0) return (ECAPMODE); if (prison_check_af(cred, prp->pr_domain->dom_family) != 0) return (EPROTONOSUPPORT); so = soalloc(CRED_TO_VNET(cred)); if (so == NULL) return (ENOBUFS); so->so_type = type; so->so_cred = crhold(cred); if ((prp->pr_domain->dom_family == PF_INET) || (prp->pr_domain->dom_family == PF_INET6) || (prp->pr_domain->dom_family == PF_ROUTE)) so->so_fibnum = td->td_proc->p_fibnum; else so->so_fibnum = 0; so->so_proto = prp; #ifdef MAC mac_socket_create(cred, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_lock); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_lock); if ((prp->pr_flags & PR_SOCKBUF) == 0) { so->so_snd.sb_mtx = &so->so_snd_mtx; so->so_rcv.sb_mtx = &so->so_rcv_mtx; } /* * Auto-sizing of socket buffers is managed by the protocols and * the appropriate flags must be set in the pru_attach function. */ CURVNET_SET(so->so_vnet); error = prp->pr_attach(so, proto, td); CURVNET_RESTORE(); if (error) { sodealloc(so); return (error); } soref(so); *aso = so; return (0); } #ifdef REGRESSION static int regression_sonewconn_earlytest = 1; SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW, ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test"); #endif static int sooverprio = LOG_DEBUG; SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW, &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable"); static struct timeval overinterval = { 60, 0 }; SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW, &overinterval, "Delay in seconds between warnings for listen socket overflows"); /* * When an attempt at a new connection is noted on a socket which supports * accept(2), the protocol has two options: * 1) Call legacy sonewconn() function, which would call protocol attach * method, same as used for socket(2). * 2) Call solisten_clone(), do attach that is specific to a cloned connection, * and then call solisten_enqueue(). * * Note: the ref count on the socket is 0 on return. */ struct socket * solisten_clone(struct socket *head) { struct sbuf descrsb; struct socket *so; int len, overcount; u_int qlen; const char localprefix[] = "local:"; char descrbuf[SUNPATHLEN + sizeof(localprefix)]; #if defined(INET6) char addrbuf[INET6_ADDRSTRLEN]; #elif defined(INET) char addrbuf[INET_ADDRSTRLEN]; #endif bool dolog, over; SOLISTEN_LOCK(head); over = (head->sol_qlen > 3 * head->sol_qlimit / 2); #ifdef REGRESSION if (regression_sonewconn_earlytest && over) { #else if (over) { #endif head->sol_overcount++; dolog = (sooverprio >= 0) && !!ratecheck(&head->sol_lastover, &overinterval); /* * If we're going to log, copy the overflow count and queue * length from the listen socket before dropping the lock. * Also, reset the overflow count. */ if (dolog) { overcount = head->sol_overcount; head->sol_overcount = 0; qlen = head->sol_qlen; } SOLISTEN_UNLOCK(head); if (dolog) { /* * Try to print something descriptive about the * socket for the error message. */ sbuf_new(&descrsb, descrbuf, sizeof(descrbuf), SBUF_FIXEDLEN); switch (head->so_proto->pr_domain->dom_family) { #if defined(INET) || defined(INET6) #ifdef INET case AF_INET: #endif #ifdef INET6 case AF_INET6: if (head->so_proto->pr_domain->dom_family == AF_INET6 || (sotoinpcb(head)->inp_inc.inc_flags & INC_ISIPV6)) { ip6_sprintf(addrbuf, &sotoinpcb(head)->inp_inc.inc6_laddr); sbuf_printf(&descrsb, "[%s]", addrbuf); } else #endif { #ifdef INET inet_ntoa_r( sotoinpcb(head)->inp_inc.inc_laddr, addrbuf); sbuf_cat(&descrsb, addrbuf); #endif } sbuf_printf(&descrsb, ":%hu (proto %u)", ntohs(sotoinpcb(head)->inp_inc.inc_lport), head->so_proto->pr_protocol); break; #endif /* INET || INET6 */ case AF_UNIX: sbuf_cat(&descrsb, localprefix); if (sotounpcb(head)->unp_addr != NULL) len = sotounpcb(head)->unp_addr->sun_len - offsetof(struct sockaddr_un, sun_path); else len = 0; if (len > 0) sbuf_bcat(&descrsb, sotounpcb(head)->unp_addr->sun_path, len); else sbuf_cat(&descrsb, "(unknown)"); break; } /* * If we can't print something more specific, at least * print the domain name. */ if (sbuf_finish(&descrsb) != 0 || sbuf_len(&descrsb) <= 0) { sbuf_clear(&descrsb); sbuf_cat(&descrsb, head->so_proto->pr_domain->dom_name ?: "unknown"); sbuf_finish(&descrsb); } KASSERT(sbuf_len(&descrsb) > 0, ("%s: sbuf creation failed", __func__)); /* * Preserve the historic listen queue overflow log * message, that starts with "sonewconn:". It has * been known to sysadmins for years and also test * sys/kern/sonewconn_overflow checks for it. */ if (head->so_cred == 0) { log(LOG_PRI(sooverprio), "sonewconn: pcb %p (%s): " "Listen queue overflow: %i already in " "queue awaiting acceptance (%d " "occurrences)\n", head->so_pcb, sbuf_data(&descrsb), qlen, overcount); } else { log(LOG_PRI(sooverprio), "sonewconn: pcb %p (%s): " "Listen queue overflow: " "%i already in queue awaiting acceptance " "(%d occurrences), euid %d, rgid %d, jail %s\n", head->so_pcb, sbuf_data(&descrsb), qlen, overcount, head->so_cred->cr_uid, head->so_cred->cr_rgid, head->so_cred->cr_prison ? head->so_cred->cr_prison->pr_name : "not_jailed"); } sbuf_delete(&descrsb); overcount = 0; } return (NULL); } SOLISTEN_UNLOCK(head); VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL", __func__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_listen = head; so->so_type = head->so_type; /* * POSIX is ambiguous on what options an accept(2)ed socket should * inherit from the listener. Words "create a new socket" may be * interpreted as not inheriting anything. Best programming practice * for application developers is to not rely on such inheritance. * FreeBSD had historically inherited all so_options excluding * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options, * including those completely irrelevant to a new born socket. For * compatibility with older versions we will inherit a list of * meaningful options. */ so->so_options = head->so_options & (SO_KEEPALIVE | SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE); so->so_linger = head->so_linger; so->so_state = head->so_state; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_lock); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_lock); VNET_SO_ASSERT(head); if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->sol_sbrcv_lowat; so->so_snd.sb_lowat = head->sol_sbsnd_lowat; so->so_rcv.sb_timeo = head->sol_sbrcv_timeo; so->so_snd.sb_timeo = head->sol_sbsnd_timeo; so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE; so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE; if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) { so->so_snd.sb_mtx = &so->so_snd_mtx; so->so_rcv.sb_mtx = &so->so_rcv_mtx; } return (so); } -/* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */ +/* Connstatus may be 0 or SS_ISCONNECTED. */ struct socket * sonewconn(struct socket *head, int connstatus) { struct socket *so; if ((so = solisten_clone(head)) == NULL) return (NULL); if (so->so_proto->pr_attach(so, 0, NULL) != 0) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n", __func__, head->so_pcb); return (NULL); } (void)solisten_enqueue(so, connstatus); return (so); } /* * Enqueue socket cloned by solisten_clone() to the listen queue of the * listener it has been cloned from. * * Return 'true' if socket landed on complete queue, otherwise 'false'. */ bool solisten_enqueue(struct socket *so, int connstatus) { struct socket *head = so->so_listen; MPASS(refcount_load(&so->so_count) == 0); refcount_init(&so->so_count, 1); SOLISTEN_LOCK(head); if (head->sol_accept_filter != NULL) connstatus = 0; so->so_state |= connstatus; soref(head); /* A socket on (in)complete queue refs head. */ if (connstatus) { TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); so->so_qstate = SQ_COMP; head->sol_qlen++; solisten_wakeup(head); /* unlocks */ return (true); } else { /* * Keep removing sockets from the head until there's room for * us to insert on the tail. In pre-locking revisions, this * was a simple if(), but as we could be racing with other * threads and soabort() requires dropping locks, we must * loop waiting for the condition to be true. */ while (head->sol_incqlen > head->sol_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->sol_incomp); TAILQ_REMOVE(&head->sol_incomp, sp, so_list); head->sol_incqlen--; SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */ soabort(sp); SOLISTEN_LOCK(head); } TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list); so->so_qstate = SQ_INCOMP; head->sol_incqlen++; SOLISTEN_UNLOCK(head); return (false); } } #if defined(SCTP) || defined(SCTP_SUPPORT) /* * Socket part of sctp_peeloff(). Detach a new socket from an * association. The new socket is returned with a reference. * * XXXGL: reduce copy-paste with solisten_clone(). */ struct socket * sopeeloff(struct socket *head) { struct socket *so; VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p", __func__, __LINE__, head)); so = soalloc(head->so_vnet); if (so == NULL) { log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: " "limit reached or out of memory\n", __func__, head->so_pcb); return (NULL); } so->so_type = head->so_type; so->so_options = head->so_options; so->so_linger = head->so_linger; so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED; so->so_fibnum = head->so_fibnum; so->so_proto = head->so_proto; so->so_cred = crhold(head->so_cred); #ifdef MAC mac_socket_newconn(head, so); #endif knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock, so_rdknl_assert_lock); knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock, so_wrknl_assert_lock); VNET_SO_ASSERT(head); if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n", __func__, head->so_pcb); return (NULL); } if ((*so->so_proto->pr_attach)(so, 0, NULL)) { sodealloc(so); log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n", __func__, head->so_pcb); return (NULL); } so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; so->so_snd.sb_lowat = head->so_snd.sb_lowat; so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; so->so_snd.sb_timeo = head->so_snd.sb_timeo; so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; soref(so); return (so); } #endif /* SCTP */ int sobind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_bind(so, nam, td); CURVNET_RESTORE(); return (error); } int sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_bindat(fd, so, nam, td); CURVNET_RESTORE(); return (error); } /* * solisten() transitions a socket from a non-listening state to a listening * state, but can also be used to update the listen queue depth on an * existing listen socket. The protocol will call back into the sockets * layer using solisten_proto_check() and solisten_proto() to check and set * socket-layer listen state. Call backs are used so that the protocol can * acquire both protocol and socket layer locks in whatever order is required * by the protocol. * * Protocol implementors are advised to hold the socket lock across the * socket-layer test and set to avoid races at the socket layer. */ int solisten(struct socket *so, int backlog, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_listen(so, backlog, td); CURVNET_RESTORE(); return (error); } /* * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in * order to interlock with socket I/O. */ int solisten_proto_check(struct socket *so) { SOCK_LOCK_ASSERT(so); if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) != 0) return (EINVAL); /* * Sleeping is not permitted here, so simply fail if userspace is * attempting to transmit or receive on the socket. This kind of * transient failure is not ideal, but it should occur only if userspace * is misusing the socket interfaces. */ if (!sx_try_xlock(&so->so_snd_sx)) return (EAGAIN); if (!sx_try_xlock(&so->so_rcv_sx)) { sx_xunlock(&so->so_snd_sx); return (EAGAIN); } mtx_lock(&so->so_snd_mtx); mtx_lock(&so->so_rcv_mtx); /* Interlock with soo_aio_queue() and KTLS. */ if (!SOLISTENING(so)) { bool ktls; #ifdef KERN_TLS ktls = so->so_snd.sb_tls_info != NULL || so->so_rcv.sb_tls_info != NULL; #else ktls = false; #endif if (ktls || (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 || (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) { solisten_proto_abort(so); return (EINVAL); } } return (0); } /* * Undo the setup done by solisten_proto_check(). */ void solisten_proto_abort(struct socket *so) { mtx_unlock(&so->so_snd_mtx); mtx_unlock(&so->so_rcv_mtx); sx_xunlock(&so->so_snd_sx); sx_xunlock(&so->so_rcv_sx); } void solisten_proto(struct socket *so, int backlog) { int sbrcv_lowat, sbsnd_lowat; u_int sbrcv_hiwat, sbsnd_hiwat; short sbrcv_flags, sbsnd_flags; sbintime_t sbrcv_timeo, sbsnd_timeo; SOCK_LOCK_ASSERT(so); KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0, ("%s: bad socket state %p", __func__, so)); if (SOLISTENING(so)) goto listening; /* * Change this socket to listening state. */ sbrcv_lowat = so->so_rcv.sb_lowat; sbsnd_lowat = so->so_snd.sb_lowat; sbrcv_hiwat = so->so_rcv.sb_hiwat; sbsnd_hiwat = so->so_snd.sb_hiwat; sbrcv_flags = so->so_rcv.sb_flags; sbsnd_flags = so->so_snd.sb_flags; sbrcv_timeo = so->so_rcv.sb_timeo; sbsnd_timeo = so->so_snd.sb_timeo; sbdestroy(so, SO_SND); sbdestroy(so, SO_RCV); #ifdef INVARIANTS bzero(&so->so_rcv, sizeof(struct socket) - offsetof(struct socket, so_rcv)); #endif so->sol_sbrcv_lowat = sbrcv_lowat; so->sol_sbsnd_lowat = sbsnd_lowat; so->sol_sbrcv_hiwat = sbrcv_hiwat; so->sol_sbsnd_hiwat = sbsnd_hiwat; so->sol_sbrcv_flags = sbrcv_flags; so->sol_sbsnd_flags = sbsnd_flags; so->sol_sbrcv_timeo = sbrcv_timeo; so->sol_sbsnd_timeo = sbsnd_timeo; so->sol_qlen = so->sol_incqlen = 0; TAILQ_INIT(&so->sol_incomp); TAILQ_INIT(&so->sol_comp); so->sol_accept_filter = NULL; so->sol_accept_filter_arg = NULL; so->sol_accept_filter_str = NULL; so->sol_upcall = NULL; so->sol_upcallarg = NULL; so->so_options |= SO_ACCEPTCONN; listening: if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; so->sol_qlimit = backlog; mtx_unlock(&so->so_snd_mtx); mtx_unlock(&so->so_rcv_mtx); sx_xunlock(&so->so_snd_sx); sx_xunlock(&so->so_rcv_sx); } /* * Wakeup listeners/subsystems once we have a complete connection. * Enters with lock, returns unlocked. */ void solisten_wakeup(struct socket *sol) { if (sol->sol_upcall != NULL) (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT); else { selwakeuppri(&sol->so_rdsel, PSOCK); KNOTE_LOCKED(&sol->so_rdsel.si_note, 0); } SOLISTEN_UNLOCK(sol); wakeup_one(&sol->sol_comp); if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL) pgsigio(&sol->so_sigio, SIGIO, 0); } /* * Return single connection off a listening socket queue. Main consumer of * the function is kern_accept4(). Some modules, that do their own accept * management also use the function. The socket reference held by the * listen queue is handed to the caller. * * Listening socket must be locked on entry and is returned unlocked on * return. * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT. */ int solisten_dequeue(struct socket *head, struct socket **ret, int flags) { struct socket *so; int error; SOLISTEN_LOCK_ASSERT(head); while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) && head->so_error == 0) { error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH, "accept", 0); if (error != 0) { SOLISTEN_UNLOCK(head); return (error); } } if (head->so_error) { error = head->so_error; head->so_error = 0; } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp)) error = EWOULDBLOCK; else error = 0; if (error) { SOLISTEN_UNLOCK(head); return (error); } so = TAILQ_FIRST(&head->sol_comp); SOCK_LOCK(so); KASSERT(so->so_qstate == SQ_COMP, ("%s: so %p not SQ_COMP", __func__, so)); head->sol_qlen--; so->so_qstate = SQ_NONE; so->so_listen = NULL; TAILQ_REMOVE(&head->sol_comp, so, so_list); if (flags & ACCEPT4_INHERIT) so->so_state |= (head->so_state & SS_NBIO); else so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; SOCK_UNLOCK(so); sorele_locked(head); *ret = so; return (0); } /* * Free socket upon release of the very last reference. */ static void sofree(struct socket *so) { struct protosw *pr = so->so_proto; SOCK_LOCK_ASSERT(so); KASSERT(refcount_load(&so->so_count) == 0, ("%s: so %p has references", __func__, so)); KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE, ("%s: so %p is on listen queue", __func__, so)); SOCK_UNLOCK(so); if (so->so_dtor != NULL) so->so_dtor(so); VNET_SO_ASSERT(so); if (pr->pr_detach != NULL) pr->pr_detach(so); /* * From this point on, we assume that no other references to this * socket exist anywhere else in the stack. Therefore, no locks need * to be acquired or held. */ if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) { sbdestroy(so, SO_SND); sbdestroy(so, SO_RCV); } seldrain(&so->so_rdsel); seldrain(&so->so_wrsel); knlist_destroy(&so->so_rdsel.si_note); knlist_destroy(&so->so_wrsel.si_note); sodealloc(so); } /* * Release a reference on a socket while holding the socket lock. * Unlocks the socket lock before returning. */ void sorele_locked(struct socket *so) { SOCK_LOCK_ASSERT(so); if (refcount_release(&so->so_count)) sofree(so); else SOCK_UNLOCK(so); } /* * Close a socket on last file table reference removal. Initiate disconnect * if connected. Free socket when disconnect complete. * * This function will sorele() the socket. Note that soclose() may be called * prior to the ref count reaching zero. The actual socket structure will * not be freed until the ref count reaches zero. */ int soclose(struct socket *so) { struct accept_queue lqueue; int error = 0; bool listening, last __diagused; CURVNET_SET(so->so_vnet); funsetown(&so->so_sigio); if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) { if (error == ENOTCONN) error = 0; goto drop; } } if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep(&so->so_timeo, PSOCK | PCATCH, "soclos", so->so_linger * hz); if (error) break; } } } drop: if (so->so_proto->pr_close != NULL) so->so_proto->pr_close(so); SOCK_LOCK(so); if ((listening = SOLISTENING(so))) { struct socket *sp; TAILQ_INIT(&lqueue); TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list); TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list); so->sol_qlen = so->sol_incqlen = 0; TAILQ_FOREACH(sp, &lqueue, so_list) { SOCK_LOCK(sp); sp->so_qstate = SQ_NONE; sp->so_listen = NULL; SOCK_UNLOCK(sp); last = refcount_release(&so->so_count); KASSERT(!last, ("%s: released last reference for %p", __func__, so)); } } sorele_locked(so); if (listening) { struct socket *sp, *tsp; TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) soabort(sp); } CURVNET_RESTORE(); return (error); } /* * soabort() is used to abruptly tear down a connection, such as when a * resource limit is reached (listen queue depth exceeded), or if a listen * socket is closed while there are sockets waiting to be accepted. * * This interface is tricky, because it is called on an unreferenced socket, * and must be called only by a thread that has actually removed the socket * from the listen queue it was on. Likely this thread holds the last * reference on the socket and soabort() will proceed with sofree(). But * it might be not the last, as the sockets on the listen queues are seen * from the protocol side. * * This interface will call into the protocol code, so must not be called * with any socket locks held. Protocols do call it while holding their own * recursible protocol mutexes, but this is something that should be subject * to review in the future. * * Usually socket should have a single reference left, but this is not a * requirement. In the past, when we have had named references for file * descriptor and protocol, we asserted that none of them are being held. */ void soabort(struct socket *so) { VNET_SO_ASSERT(so); if (so->so_proto->pr_abort != NULL) so->so_proto->pr_abort(so); SOCK_LOCK(so); sorele_locked(so); } int soaccept(struct socket *so, struct sockaddr *sa) { #ifdef INVARIANTS u_char len = sa->sa_len; #endif int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_accept(so, sa); KASSERT(sa->sa_len <= len, ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); CURVNET_RESTORE(); return (error); } int sopeeraddr(struct socket *so, struct sockaddr *sa) { #ifdef INVARIANTS u_char len = sa->sa_len; #endif int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_peeraddr(so, sa); KASSERT(sa->sa_len <= len, ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); CURVNET_RESTORE(); return (error); } int sosockaddr(struct socket *so, struct sockaddr *sa) { #ifdef INVARIANTS u_char len = sa->sa_len; #endif int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_sockaddr(so, sa); KASSERT(sa->sa_len <= len, ("%s: protocol %p sockaddr overflow", __func__, so->so_proto)); CURVNET_RESTORE(); return (error); } int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (soconnectat(AT_FDCWD, so, nam, td)); } int soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td) { int error; CURVNET_SET(so->so_vnet); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. This allows * user to disconnect by connecting to, e.g., a null address. * * Note, this check is racy and may need to be re-evaluated at the * protocol layer. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) { error = EISCONN; } else { /* * Prevent accumulated error from previous connection from * biting us. */ so->so_error = 0; if (fd == AT_FDCWD) { error = so->so_proto->pr_connect(so, nam, td); } else { error = so->so_proto->pr_connectat(fd, so, nam, td); } } CURVNET_RESTORE(); return (error); } int soconnect2(struct socket *so1, struct socket *so2) { int error; CURVNET_SET(so1->so_vnet); error = so1->so_proto->pr_connect2(so1, so2); CURVNET_RESTORE(); return (error); } int sodisconnect(struct socket *so) { int error; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); VNET_SO_ASSERT(so); error = so->so_proto->pr_disconnect(so); return (error); } int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM")); KASSERT(so->so_proto->pr_flags & PR_ATOMIC, ("sosend_dgram: !PR_ATOMIC")); if (uio != NULL) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. */ if (resid < 0) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0; if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection-based * socket if it supports implied connect. Return ENOTCONN if * not connected and no address is supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { - if ((so->so_state & SS_ISCONFIRMING) == 0 && - !(resid == 0 && clen != 0)) { + if (!(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto out; } } else if (addr == NULL) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; SOCKBUF_UNLOCK(&so->so_snd); goto out; } } /* * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a * problem and need fixing. */ space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; space -= clen; SOCKBUF_UNLOCK(&so->so_snd); if (resid > space) { error = EMSGSIZE; goto out; } if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { /* * Copy the data from userland into a mbuf chain. * If no data is to be copied in, a single empty mbuf * is returned. */ top = m_uiotombuf(uio, M_WAITOK, space, max_hdr, (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0))); if (top == NULL) { error = EFAULT; /* only possible error */ goto out; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } KASSERT(resid == 0, ("sosend_dgram: resid != 0")); /* * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock * than with. */ if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously done could be out * of date. We could have received a reset packet in an interrupt or * maybe we slept while doing page faults in uiomove() etc. We could * probably recheck again inside the locking protection here, but * there are probably other places that this also happens. We must * rethink this. */ VNET_SO_ASSERT(so); error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands this flag and * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } clen = 0; control = NULL; top = NULL; out: if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * Send on a socket. If send must go all at once and message is larger than * send buffering, then hard error. Lock against other senders. If must go * all at once and not enough room now, then inform user that this would * block and do nothing. Otherwise, if nonblocking, send as much as * possible. The data to be sent is described by "uio" if nonzero, otherwise * by the mbuf chain "top" (which must be null if uio is not). Data provided * in mbuf chain must be small enough to send all at once. * * Returns nonzero on error, timeout or signal; callers must check for short * counts if EINTR/ERESTART are returned. Data and control buffers are freed * on return. */ int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { long space; ssize_t resid; int clen = 0, error, dontroute; int atomic = sosendallatonce(so) || top; int pr_send_flag; #ifdef KERN_TLS struct ktls_session *tls; int tls_enq_cnt, tls_send_flag; uint8_t tls_rtype; tls = NULL; tls_rtype = TLS_RLTYPE_APP; #endif if (uio != NULL) resid = uio->uio_resid; else if ((top->m_flags & M_PKTHDR) != 0) resid = top->m_pkthdr.len; else resid = m_length(top, NULL); /* * In theory resid should be unsigned. However, space must be * signed, as it might be less than 0 if we over-committed, and we * must use a signed comparison of space and resid. On the other * hand, a negative resid causes us to loop sending 0-length * segments to the protocol. * * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM * type sockets since that's an error. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); if (td != NULL) td->td_ru.ru_msgsnd++; if (control != NULL) clen = control->m_len; error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags)); if (error) goto out; #ifdef KERN_TLS tls_send_flag = 0; tls = ktls_hold(so->so_snd.sb_tls_info); if (tls != NULL) { if (tls->mode == TCP_TLS_MODE_SW) tls_send_flag = PRUS_NOTREADY; if (control != NULL) { struct cmsghdr *cm = mtod(control, struct cmsghdr *); if (clen >= sizeof(*cm) && cm->cmsg_type == TLS_SET_RECORD_TYPE) { tls_rtype = *((uint8_t *)CMSG_DATA(cm)); clen = 0; m_freem(control); control = NULL; atomic = 1; } } if (resid == 0 && !ktls_permit_empty_frames(tls)) { error = EINVAL; goto release; } } #endif restart: do { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(&so->so_snd); error = EPIPE; goto release; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto release; } if ((so->so_state & SS_ISCONNECTED) == 0) { /* * `sendto' and `sendmsg' is allowed on a connection- * based socket if it supports implied connect. * Return ENOTCONN if not connected and no address is * supplied. */ if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) { - if ((so->so_state & SS_ISCONFIRMING) == 0 && - !(resid == 0 && clen != 0)) { + if (!(resid == 0 && clen != 0)) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOTCONN; goto release; } } else if (addr == NULL) { SOCKBUF_UNLOCK(&so->so_snd); if (so->so_proto->pr_flags & PR_CONNREQUIRED) error = ENOTCONN; else error = EDESTADDRREQ; goto release; } } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) { SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; goto release; } if (space < resid + clen && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if ((so->so_state & SS_NBIO) || (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) { SOCKBUF_UNLOCK(&so->so_snd); error = EWOULDBLOCK; goto release; } error = sbwait(so, SO_SND); SOCKBUF_UNLOCK(&so->so_snd); if (error) goto release; goto restart; } SOCKBUF_UNLOCK(&so->so_snd); space -= clen; do { if (uio == NULL) { resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; #ifdef KERN_TLS if (tls != NULL) { ktls_frame(top, tls, &tls_enq_cnt, tls_rtype); tls_rtype = TLS_RLTYPE_APP; } #endif } else { /* * Copy the data from userland into a mbuf * chain. If resid is 0, which can happen * only if we have control to send, then * a single empty mbuf is returned. This * is a workaround to prevent protocol send * methods to panic. */ #ifdef KERN_TLS if (tls != NULL) { top = m_uiotombuf(uio, M_WAITOK, space, tls->params.max_frame_len, M_EXTPG | ((flags & MSG_EOR) ? M_EOR : 0)); if (top != NULL) { ktls_frame(top, tls, &tls_enq_cnt, tls_rtype); } tls_rtype = TLS_RLTYPE_APP; } else #endif top = m_uiotombuf(uio, M_WAITOK, space, (atomic ? max_hdr : 0), (atomic ? M_PKTHDR : 0) | ((flags & MSG_EOR) ? M_EOR : 0)); if (top == NULL) { error = EFAULT; /* only possible error */ goto release; } space -= resid - uio->uio_resid; resid = uio->uio_resid; } if (dontroute) { SOCK_LOCK(so); so->so_options |= SO_DONTROUTE; SOCK_UNLOCK(so); } /* * XXX all the SBS_CANTSENDMORE checks previously * done could be out of date. We could have received * a reset packet in an interrupt or maybe we slept * while doing page faults in uiomove() etc. We * could probably recheck again inside the locking * protection here, but there are probably other * places that this also happens. We must rethink * this. */ VNET_SO_ASSERT(so); pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB : /* * If the user set MSG_EOF, the protocol understands * this flag and nothing left to send then use * PRU_SEND_EOF instead of PRU_SEND. */ ((flags & MSG_EOF) && (so->so_proto->pr_flags & PR_IMPLOPCL) && (resid <= 0)) ? PRUS_EOF : /* If there is more to send set PRUS_MORETOCOME. */ (flags & MSG_MORETOCOME) || (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0; #ifdef KERN_TLS pr_send_flag |= tls_send_flag; #endif error = so->so_proto->pr_send(so, pr_send_flag, top, addr, control, td); if (dontroute) { SOCK_LOCK(so); so->so_options &= ~SO_DONTROUTE; SOCK_UNLOCK(so); } #ifdef KERN_TLS if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) { if (error != 0) { m_freem(top); top = NULL; } else { soref(so); ktls_enqueue(top, so, tls_enq_cnt); } } #endif clen = 0; control = NULL; top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: SOCK_IO_SEND_UNLOCK(so); out: #ifdef KERN_TLS if (tls != NULL) ktls_free(tls); #endif if (top != NULL) m_freem(top); if (control != NULL) m_freem(control); return (error); } /* * Send to a socket from a kernel thread. * * XXXGL: in almost all cases uio is NULL and the mbuf is supplied. * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs * to be set at all. This function should just boil down to a static inline * calling the protocol method. */ int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_sosend(so, addr, uio, top, control, flags, td); CURVNET_RESTORE(); return (error); } /* * send(2), write(2) or aio_write(2) on a socket. */ int sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *control, int flags, struct proc *userproc) { struct thread *td; ssize_t len; int error; td = uio->uio_td; len = uio->uio_resid; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags, td); CURVNET_RESTORE(); if (error != 0) { /* * Clear transient errors for stream protocols if they made * some progress. Make exclusion for aio(4) that would * schedule a new write in case of EWOULDBLOCK and clear * error itself. See soaio_process_job(). */ if (uio->uio_resid != len && (so->so_proto->pr_flags & PR_ATOMIC) == 0 && userproc == NULL && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket. */ if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 && (flags & MSG_NOSIGNAL) == 0) { if (userproc != NULL) { /* aio(4) job */ PROC_LOCK(userproc); kern_psignal(userproc, SIGPIPE); PROC_UNLOCK(userproc); } else { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } } return (error); } /* * The part of soreceive() that implements reading non-inline out-of-band * data from a socket. For more complete comments, see soreceive(), from * which this code originated. * * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is * unable to return an mbuf chain to the caller. */ static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags) { struct protosw *pr = so->so_proto; struct mbuf *m; int error; KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0")); VNET_SO_ASSERT(so); m = m_get(M_WAITOK, MT_DATA); error = pr->pr_rcvoob(so, m, flags & MSG_PEEK); if (error) goto bad; do { error = uiomove(mtod(m, void *), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m != NULL) m_freem(m); return (error); } /* * Following replacement or removal of the first mbuf on the first mbuf chain * of a socket buffer, push necessary state changes back into the socket * buffer so that other consumers see the values consistently. 'nextrecord' * is the callers locally stored value of the original value of * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes. * NOTE: 'nextrecord' may be NULL. */ static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord) { SOCKBUF_LOCK_ASSERT(sb); /* * First, update for the new value of nextrecord. If necessary, make * it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect the new * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the * addition of a second clause that takes care of the case where * sb_mb has been updated, but remains the last record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. We depend on the way that * records are added to the sockbuf by sbappend. In particular, each record * (mbufs linked through m_next) must begin with an address if the protocol * so specifies, followed by an optional mbuf or mbufs containing ancillary * data, and then zero or more mbufs of data. In order to allow parallelism * between network receive and copying to user space, as well as avoid * sleeping with a mutex held, we release the socket buffer mutex during the * user space copy. Although the sockbuf is locked, new data may still be * appended, and thus we must maintain consistency of the sockbuf during that * time. * * The caller may receive the data as a single mbuf chain by supplying an * mbuf **mp0 for use in returning the chain. The uio is then used only for * the count in uio_resid. */ int soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, **mp; int flags, error, offset; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; ssize_t orig_resid = uio->uio_resid; bool report_real_len = false; mp = mp0; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) { report_real_len = *flagsp & MSG_TRUNC; *flagsp &= ~MSG_TRUNC; flags = *flagsp &~ MSG_EOR; } else flags = 0; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp != NULL) *mp = NULL; - if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING) - && uio->uio_resid) { - VNET_SO_ASSERT(so); - pr->pr_rcvd(so, 0); - } error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); if (error) return (error); restart: SOCKBUF_LOCK(&so->so_rcv); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more (subject * to any timeout) if: * 1. the current count is less than the low water mark, or * 2. MSG_DONTWAIT is not set */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && sbavail(&so->so_rcv) < uio->uio_resid) && sbavail(&so->so_rcv) < so->so_rcv.sb_lowat && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { KASSERT(m != NULL || !sbavail(&so->so_rcv), ("receive: m == %p sbavail == %u", m, sbavail(&so->so_rcv))); if (so->so_error || so->so_rerror) { if (m != NULL) goto dontblock; if (so->so_error) error = so->so_error; else error = so->so_rerror; if ((flags & MSG_PEEK) == 0) { if (so->so_error) so->so_error = 0; else so->so_rerror = 0; } SOCKBUF_UNLOCK(&so->so_rcv); goto release; } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { if (m != NULL) goto dontblock; #ifdef KERN_TLS else if (so->so_rcv.sb_tlsdcc == 0 && so->so_rcv.sb_tlscc == 0) { #else else { #endif SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } for (; m != NULL; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { SOCKBUF_UNLOCK(&so->so_rcv); error = ENOTCONN; goto release; } if (uio->uio_resid == 0 && !report_real_len) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(so, SO_RCV); SOCKBUF_UNLOCK(&so->so_rcv); if (error) goto release; goto restart; } dontblock: /* * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before dropping the * socket buffer mutex, and re-reading them when picking it up. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. * * By holding the high-level sblock(), we prevent simultaneous * readers from pulling off the front of the socket buffer. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb")); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); orig_resid = 0; if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); if (flags & MSG_PEEK) { m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sockbuf_pushsync(&so->so_rcv, nextrecord); } } /* * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. If MSG_PEEK, we * just copy the data; if !MSG_PEEK, we call into the protocol to * perform externalization (or freeing if controlp == NULL). */ if (m != NULL && m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; #ifdef KERN_TLS struct cmsghdr *cmsg; struct tls_get_record tgr; /* * For MSG_TLSAPPDATA, check for an alert record. * If found, return ENXIO without removing * it from the receive queue. This allows a subsequent * call without MSG_TLSAPPDATA to receive it. * Note that, for TLS, there should only be a single * control mbuf with the TLS_GET_RECORD message in it. */ if (flags & MSG_TLSAPPDATA) { cmsg = mtod(m, struct cmsghdr *); if (cmsg->cmsg_type == TLS_GET_RECORD && cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); if (__predict_false(tgr.tls_type == TLS_RLTYPE_ALERT)) { SOCKBUF_UNLOCK(&so->so_rcv); error = ENXIO; goto release; } } } #endif do { if (flags & MSG_PEEK) { if (controlp != NULL) { *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); controlp = &(*controlp)->m_next; } m = m->m_next; } else { sbfree(&so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = so->so_rcv.sb_mb; } } while (m != NULL && m->m_type == MT_CONTROL); if ((flags & MSG_PEEK) == 0) sockbuf_pushsync(&so->so_rcv, nextrecord); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); SOCKBUF_LOCK(&so->so_rcv); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } if (m != NULL) nextrecord = so->so_rcv.sb_mb->m_nextpkt; else nextrecord = so->so_rcv.sb_mb; orig_resid = 0; } if (m != NULL) { if ((flags & MSG_PEEK) == 0) { KASSERT(m->m_nextpkt == nextrecord, ("soreceive: post-control, nextrecord !sync")); if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_mb == m, ("soreceive: post-control, sb_mb!=m")); KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive: post-control, lastrecord!=m")); } } type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; } else { if ((flags & MSG_PEEK) == 0) { KASSERT(so->so_rcv.sb_mb == nextrecord, ("soreceive: sb_mb != nextrecord")); if (so->so_rcv.sb_mb == NULL) { KASSERT(so->so_rcv.sb_lastrecord == NULL, ("soreceive: sb_lastercord != NULL")); } } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * Now continue to read any data mbufs off of the head of the socket * buffer until the read request is satisfied. Note that 'type' is * used to store the type of any mbuf reads that have happened so far * such that soreceive() can stop reading if the type changes, which * causes soreceive() to return only one of regular data and inline * out-of-band data in a single socket receive operation. */ moff = 0; offset = 0; while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0 && error == 0) { /* * If the type of mbuf has changed since the last mbuf * examined ('type'), end the receive operation. */ SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) { if (type != m->m_type) break; } else if (type == MT_OOBDATA) break; else KASSERT(m->m_type == MT_DATA, ("m->m_type == %d", m->m_type)); so->so_rcv.sb_state &= ~SBS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. Otherwise copy * them out via the uio, then free. Sockbuf must be * consistent here (points to current mbuf, it points to next * record) when we drop priority; we must note any additions * to the sockbuf when we block interrupts again. */ if (mp == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if ((m->m_flags & M_EXTPG) != 0) error = m_unmapped_uiomove(m, moff, uio, (int)len); else error = uiomove(mtod(m, char *) + moff, (int)len, uio); SOCKBUF_LOCK(&so->so_rcv); if (error) { /* * The MT_SONAME mbuf has already been removed * from the record, so it is necessary to * remove the data mbufs, if any, to preserve * the invariant in the case of PR_ADDR that * requires MT_SONAME mbufs at the head of * each record. */ if (pr->pr_flags & PR_ATOMIC && ((flags & MSG_PEEK) == 0)) (void)sbdroprecord_locked(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } else uio->uio_resid -= len; SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp != NULL) { m->m_nextpkt = NULL; *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } sockbuf_pushsync(&so->so_rcv, nextrecord); SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); } } else { if (flags & MSG_PEEK) moff += len; else { if (mp != NULL) { if (flags & MSG_DONTWAIT) { *mp = m_copym(m, 0, len, M_NOWAIT); if (*mp == NULL) { /* * m_copym() couldn't * allocate an mbuf. * Adjust uio_resid back * (it was adjusted * down by len bytes, * which we didn't end * up "copying" over). */ uio->uio_resid += len; break; } } else { SOCKBUF_UNLOCK(&so->so_rcv); *mp = m_copym(m, 0, len, M_WAITOK); SOCKBUF_LOCK(&so->so_rcv); } } sbcut_locked(&so->so_rcv, len); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SBS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), we * must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return with a * short count but without error. Keep sockbuf locked * against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && nextrecord == NULL) { SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (so->so_error || so->so_rerror || so->so_rcv.sb_state & SBS_CANTRCVMORE) break; /* * Notify the protocol that some data has been * drained before blocking. */ if (pr->pr_flags & PR_WANTRCVD) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); pr->pr_rcvd(so, flags); SOCKBUF_LOCK(&so->so_rcv); if (__predict_false(so->so_rcv.sb_mb == NULL && (so->so_error || so->so_rerror || so->so_rcv.sb_state & SBS_CANTRCVMORE))) break; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * We could receive some data while was notifying * the protocol. Skip blocking in this case. */ if (so->so_rcv.sb_mb == NULL) { error = sbwait(so, SO_RCV); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); goto release; } } m = so->so_rcv.sb_mb; if (m != NULL) nextrecord = m->m_nextpkt; } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (m != NULL && pr->pr_flags & PR_ATOMIC) { if (report_real_len) uio->uio_resid -= m_length(m, NULL) - moff; flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord_locked(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); /* * If soreceive() is being done from the socket callback, * then don't need to generate ACK to peer to update window, * since ACK will be generated on return to TCP. */ if (!(flags & MSG_SOCALLBCK) && (pr->pr_flags & PR_WANTRCVD)) { SOCKBUF_UNLOCK(&so->so_rcv); VNET_SO_ASSERT(so); pr->pr_rcvd(so, flags); SOCKBUF_LOCK(&so->so_rcv); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) { SOCKBUF_UNLOCK(&so->so_rcv); goto restart; } SOCKBUF_UNLOCK(&so->so_rcv); if (flagsp != NULL) *flagsp |= flags; release: SOCK_IO_RECV_UNLOCK(so); return (error); } /* * Optimized version of soreceive() for stream (TCP) sockets. */ int soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int len = 0, error = 0, flags, oresid; struct sockbuf *sb; struct mbuf *m, *n = NULL; /* We only do stream sockets. */ if (so->so_type != SOCK_STREAM) return (EINVAL); if (psa != NULL) *psa = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; if (controlp != NULL) *controlp = NULL; if (flags & MSG_OOB) return (soreceive_rcvoob(so, uio, flags)); if (mp0 != NULL) *mp0 = NULL; sb = &so->so_rcv; #ifdef KERN_TLS /* * KTLS store TLS records as records with a control message to * describe the framing. * * We check once here before acquiring locks to optimize the * common case. */ if (sb->sb_tls_info != NULL) return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); #endif /* Prevent other readers from entering the socket. */ error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags)); if (error) return (error); SOCKBUF_LOCK(sb); #ifdef KERN_TLS if (sb->sb_tls_info != NULL) { SOCKBUF_UNLOCK(sb); SOCK_IO_RECV_UNLOCK(so); return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); } #endif /* Easy one, no space to copyout anything. */ if (uio->uio_resid == 0) { error = EINVAL; goto out; } oresid = uio->uio_resid; /* We will never ever get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { error = ENOTCONN; goto out; } restart: SOCKBUF_LOCK_ASSERT(&so->so_rcv); /* Abort if socket has reported problems. */ if (so->so_error) { if (sbavail(sb) > 0) goto deliver; if (oresid > uio->uio_resid) goto out; error = so->so_error; if (!(flags & MSG_PEEK)) so->so_error = 0; goto out; } /* Door is closed. Deliver what is left, if any. */ if (sb->sb_state & SBS_CANTRCVMORE) { if (sbavail(sb) > 0) goto deliver; else goto out; } /* Socket buffer is empty and we shall not block. */ if (sbavail(sb) == 0 && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) { error = EAGAIN; goto out; } /* Socket buffer got some data that we shall deliver now. */ if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) && ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)) || sbavail(sb) >= sb->sb_lowat || sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat) ) { goto deliver; } /* On MSG_WAITALL we must wait until all data or error arrives. */ if ((flags & MSG_WAITALL) && (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat)) goto deliver; /* * Wait and block until (more) data comes in. * NB: Drops the sockbuf lock during wait. */ error = sbwait(so, SO_RCV); if (error) goto out; goto restart; deliver: SOCKBUF_LOCK_ASSERT(&so->so_rcv); KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__)); KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__)); /* Statistics. */ if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; /* Fill uio until full or current end of socket buffer is reached. */ len = min(uio->uio_resid, sbavail(sb)); if (mp0 != NULL) { /* Dequeue as many mbufs as possible. */ if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) { if (*mp0 == NULL) *mp0 = sb->sb_mb; else m_cat(*mp0, sb->sb_mb); for (m = sb->sb_mb; m != NULL && m->m_len <= len; m = m->m_next) { KASSERT(!(m->m_flags & M_NOTAVAIL), ("%s: m %p not available", __func__, m)); len -= m->m_len; uio->uio_resid -= m->m_len; sbfree(sb, m); n = m; } n->m_next = NULL; sb->sb_mb = m; sb->sb_lastrecord = sb->sb_mb; if (sb->sb_mb == NULL) SB_EMPTY_FIXUP(sb); } /* Copy the remainder. */ if (len > 0) { KASSERT(sb->sb_mb != NULL, ("%s: len > 0 && sb->sb_mb empty", __func__)); m = m_copym(sb->sb_mb, 0, len, M_NOWAIT); if (m == NULL) len = 0; /* Don't flush data from sockbuf. */ else uio->uio_resid -= len; if (*mp0 != NULL) m_cat(*mp0, m); else *mp0 = m; if (*mp0 == NULL) { error = ENOBUFS; goto out; } } } else { /* NB: Must unlock socket buffer as uiomove may sleep. */ SOCKBUF_UNLOCK(sb); error = m_mbuftouio(uio, sb->sb_mb, len); SOCKBUF_LOCK(sb); if (error) goto out; } SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); /* * Remove the delivered data from the socket buffer unless we * were only peeking. */ if (!(flags & MSG_PEEK)) { if (len > 0) sbdrop_locked(sb, len); /* Notify protocol that we drained some data. */ if ((so->so_proto->pr_flags & PR_WANTRCVD) && (((flags & MSG_WAITALL) && uio->uio_resid > 0) || !(flags & MSG_SOCALLBCK))) { SOCKBUF_UNLOCK(sb); VNET_SO_ASSERT(so); so->so_proto->pr_rcvd(so, flags); SOCKBUF_LOCK(sb); } } /* * For MSG_WAITALL we may have to loop again and wait for * more data to come in. */ if ((flags & MSG_WAITALL) && uio->uio_resid > 0) goto restart; out: SBLASTRECORDCHK(sb); SBLASTMBUFCHK(sb); SOCKBUF_UNLOCK(sb); SOCK_IO_RECV_UNLOCK(so); return (error); } /* * Optimized version of soreceive() for simple datagram cases from userspace. * Unlike in the stream case, we're able to drop a datagram if copyout() * fails, and because we handle datagrams atomically, we don't need to use a * sleep lock to prevent I/O interlacing. */ int soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { struct mbuf *m, *m2; int flags, error; ssize_t len; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; if (psa != NULL) *psa = NULL; if (controlp != NULL) *controlp = NULL; if (flagsp != NULL) flags = *flagsp &~ MSG_EOR; else flags = 0; /* * For any complicated cases, fall back to the full * soreceive_generic(). */ if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC))) return (soreceive_generic(so, psa, uio, mp0, controlp, flagsp)); /* * Enforce restrictions on use. */ KASSERT((pr->pr_flags & PR_WANTRCVD) == 0, ("soreceive_dgram: wantrcvd")); KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic")); KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0, ("soreceive_dgram: SBS_RCVATMARK")); KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0, ("soreceive_dgram: P_CONNREQUIRED")); /* * Loop blocking while waiting for a datagram. */ SOCKBUF_LOCK(&so->so_rcv); while ((m = so->so_rcv.sb_mb) == NULL) { KASSERT(sbavail(&so->so_rcv) == 0, ("soreceive_dgram: sb_mb NULL but sbavail %u", sbavail(&so->so_rcv))); if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_rcv); return (error); } if (so->so_rcv.sb_state & SBS_CANTRCVMORE || uio->uio_resid == 0) { SOCKBUF_UNLOCK(&so->so_rcv); return (0); } if ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO))) { SOCKBUF_UNLOCK(&so->so_rcv); return (EWOULDBLOCK); } SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); error = sbwait(so, SO_RCV); if (error) { SOCKBUF_UNLOCK(&so->so_rcv); return (error); } } SOCKBUF_LOCK_ASSERT(&so->so_rcv); if (uio->uio_td) uio->uio_td->td_ru.ru_msgrcv++; SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); nextrecord = m->m_nextpkt; if (nextrecord == NULL) { KASSERT(so->so_rcv.sb_lastrecord == m, ("soreceive_dgram: lastrecord != m")); } KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord, ("soreceive_dgram: m_nextpkt != nextrecord")); /* * Pull 'm' and its chain off the front of the packet queue. */ so->so_rcv.sb_mb = NULL; sockbuf_pushsync(&so->so_rcv, nextrecord); /* * Walk 'm's chain and free that many bytes from the socket buffer. */ for (m2 = m; m2 != NULL; m2 = m2->m_next) sbfree(&so->so_rcv, m2); /* * Do a few last checks before we let go of the lock. */ SBLASTRECORDCHK(&so->so_rcv); SBLASTMBUFCHK(&so->so_rcv); SOCKBUF_UNLOCK(&so->so_rcv); if (pr->pr_flags & PR_ADDR) { KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type)); if (psa != NULL) *psa = sodupsockaddr(mtod(m, struct sockaddr *), M_NOWAIT); m = m_free(m); } if (m == NULL) { /* XXXRW: Can this happen? */ return (0); } /* * Packet to copyout() is now in 'm' and it is disconnected from the * queue. * * Process one or more MT_CONTROL mbufs present before any data mbufs * in the first mbuf chain on the socket buffer. We call into the * protocol to perform externalization (or freeing if controlp == * NULL). In some cases there can be only MT_CONTROL mbufs without * MT_DATA mbufs. */ if (m->m_type == MT_CONTROL) { struct mbuf *cm = NULL, *cmn; struct mbuf **cme = &cm; do { m2 = m->m_next; m->m_next = NULL; *cme = m; cme = &(*cme)->m_next; m = m2; } while (m != NULL && m->m_type == MT_CONTROL); while (cm != NULL) { cmn = cm->m_next; cm->m_next = NULL; if (pr->pr_domain->dom_externalize != NULL) { error = (*pr->pr_domain->dom_externalize) (cm, controlp, flags); } else if (controlp != NULL) *controlp = cm; else m_freem(cm); if (controlp != NULL) { while (*controlp != NULL) controlp = &(*controlp)->m_next; } cm = cmn; } } KASSERT(m == NULL || m->m_type == MT_DATA, ("soreceive_dgram: !data")); while (m != NULL && uio->uio_resid > 0) { len = uio->uio_resid; if (len > m->m_len) len = m->m_len; error = uiomove(mtod(m, char *), (int)len, uio); if (error) { m_freem(m); return (error); } if (len == m->m_len) m = m_free(m); else { m->m_data += len; m->m_len -= len; } } if (m != NULL) { flags |= MSG_TRUNC; m_freem(m); } if (flagsp != NULL) *flagsp |= flags; return (0); } int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp); CURVNET_RESTORE(); return (error); } int soshutdown(struct socket *so, enum shutdown_how how) { int error; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_shutdown(so, how); CURVNET_RESTORE(); return (error); } /* * Wrapper for Socket established helper hook. * Parameters: socket, context of the hook point, hook id. */ static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id) { struct socket_hhook_data hhook_data = { .so = so, .hctx = hctx, .m = NULL, .status = 0 }; CURVNET_SET(so->so_vnet); HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd); CURVNET_RESTORE(); /* Ugly but needed, since hhooks return void for now */ return (hhook_data.status); } /* * Perhaps this routine, and sooptcopyout(), below, ought to come in an * additional variant to handle the case where the option value needs to be * some kind of integer, but not a specific size. In addition to their use * here, these functions are also called by the protocol-level pr_ctloutput() * routines. */ int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen) { size_t valsize; /* * If the user gives us more than we wanted, we ignore it, but if we * don't get the minimum length the caller wants, we return EINVAL. * On success, sopt->sopt_valsize is set to however much we actually * retrieved. */ if ((valsize = sopt->sopt_valsize) < minlen) return EINVAL; if (valsize > len) sopt->sopt_valsize = valsize = len; if (sopt->sopt_td != NULL) return (copyin(sopt->sopt_val, buf, valsize)); bcopy(sopt->sopt_val, buf, valsize); return (0); } /* * Kernel version of setsockopt(2). * * XXX: optlen is size_t, not socklen_t */ int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen) { struct sockopt sopt; sopt.sopt_level = level; sopt.sopt_name = optname; sopt.sopt_dir = SOPT_SET; sopt.sopt_val = optval; sopt.sopt_valsize = optlen; sopt.sopt_td = NULL; return (sosetopt(so, &sopt)); } int sosetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; sbintime_t val, *valp; uint32_t val32; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) error = (*so->so_proto->pr_ctloutput)(so, sopt); else error = ENOPROTOOPT; } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_setopt(so, sopt); if (error) goto bad; break; case SO_LINGER: error = sooptcopyin(sopt, &l, sizeof l, sizeof l); if (error) goto bad; if (l.l_linger < 0 || l.l_linger > USHRT_MAX || l.l_linger > (INT_MAX / hz)) { error = EDOM; goto bad; } SOCK_LOCK(so); so->so_linger = l.l_linger; if (l.l_onoff) so->so_options |= SO_LINGER; else so->so_options &= ~SO_LINGER; SOCK_UNLOCK(so); break; case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_REUSEPORT_LB: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: case SO_NO_DDP: case SO_NO_OFFLOAD: case SO_RERROR: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; SOCK_LOCK(so); if (optval) so->so_options |= sopt->sopt_name; else so->so_options &= ~sopt->sopt_name; SOCK_UNLOCK(so); break; case SO_SETFIB: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval >= rt_numfibs) { error = EINVAL; goto bad; } if (((so->so_proto->pr_domain->dom_family == PF_INET) || (so->so_proto->pr_domain->dom_family == PF_INET6) || (so->so_proto->pr_domain->dom_family == PF_ROUTE))) so->so_fibnum = optval; else so->so_fibnum = 0; break; case SO_USER_COOKIE: error = sooptcopyin(sopt, &val32, sizeof val32, sizeof val32); if (error) goto bad; so->so_user_cookie = val32; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: error = so->so_proto->pr_setsbopt(so, sopt); if (error) goto bad; break; case SO_SNDTIMEO: case SO_RCVTIMEO: #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; error = sooptcopyin(sopt, &tv32, sizeof tv32, sizeof tv32); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); } else #endif error = sooptcopyin(sopt, &tv, sizeof tv, sizeof tv); if (error) goto bad; if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { error = EDOM; goto bad; } if (tv.tv_sec > INT32_MAX) val = SBT_MAX; else val = tvtosbt(tv); SOCK_LOCK(so); valp = sopt->sopt_name == SO_SNDTIMEO ? (SOLISTENING(so) ? &so->sol_sbsnd_timeo : &so->so_snd.sb_timeo) : (SOLISTENING(so) ? &so->sol_sbrcv_timeo : &so->so_rcv.sb_timeo); *valp = val; SOCK_UNLOCK(so); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof extmac, sizeof extmac); if (error) goto bad; error = mac_setsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); #else error = EOPNOTSUPP; #endif break; case SO_TS_CLOCK: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) goto bad; if (optval < 0 || optval > SO_TS_CLOCK_MAX) { error = EINVAL; goto bad; } so->so_ts_clock = optval; break; case SO_MAX_PACING_RATE: error = sooptcopyin(sopt, &val32, sizeof(val32), sizeof(val32)); if (error) goto bad; so->so_max_pacing_rate = val32; break; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto->pr_ctloutput != NULL) (void)(*so->so_proto->pr_ctloutput)(so, sopt); } bad: CURVNET_RESTORE(); return (error); } /* * Helper routine for getsockopt. */ int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len) { int error; size_t valsize; error = 0; /* * Documented get behavior is that we always return a value, possibly * truncated to fit in the user's buffer. Traditional behavior is * that we always tell the user precisely how much we copied, rather * than something useful like the total amount we had available for * her. Note that this interface is not idempotent; the entire * answer must be generated ahead of time. */ valsize = min(len, sopt->sopt_valsize); sopt->sopt_valsize = valsize; if (sopt->sopt_val != NULL) { if (sopt->sopt_td != NULL) error = copyout(buf, sopt->sopt_val, valsize); else bcopy(buf, sopt->sopt_val, valsize); } return (error); } int sogetopt(struct socket *so, struct sockopt *sopt) { int error, optval; struct linger l; struct timeval tv; #ifdef MAC struct mac extmac; #endif CURVNET_SET(so->so_vnet); error = 0; if (sopt->sopt_level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput != NULL) error = (*so->so_proto->pr_ctloutput)(so, sopt); else error = ENOPROTOOPT; CURVNET_RESTORE(); return (error); } else { switch (sopt->sopt_name) { case SO_ACCEPTFILTER: error = accept_filt_getopt(so, sopt); break; case SO_LINGER: SOCK_LOCK(so); l.l_onoff = so->so_options & SO_LINGER; l.l_linger = so->so_linger; SOCK_UNLOCK(so); error = sooptcopyout(sopt, &l, sizeof l); break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_REUSEPORT_LB: case SO_BROADCAST: case SO_OOBINLINE: case SO_ACCEPTCONN: case SO_TIMESTAMP: case SO_BINTIME: case SO_NOSIGPIPE: case SO_NO_DDP: case SO_NO_OFFLOAD: case SO_RERROR: optval = so->so_options & sopt->sopt_name; integer: error = sooptcopyout(sopt, &optval, sizeof optval); break; case SO_DOMAIN: optval = so->so_proto->pr_domain->dom_family; goto integer; case SO_TYPE: optval = so->so_type; goto integer; case SO_PROTOCOL: optval = so->so_proto->pr_protocol; goto integer; case SO_ERROR: SOCK_LOCK(so); if (so->so_error) { optval = so->so_error; so->so_error = 0; } else { optval = so->so_rerror; so->so_rerror = 0; } SOCK_UNLOCK(so); goto integer; case SO_SNDBUF: optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat : so->so_snd.sb_hiwat; goto integer; case SO_RCVBUF: optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat : so->so_rcv.sb_hiwat; goto integer; case SO_SNDLOWAT: optval = SOLISTENING(so) ? so->sol_sbsnd_lowat : so->so_snd.sb_lowat; goto integer; case SO_RCVLOWAT: optval = SOLISTENING(so) ? so->sol_sbrcv_lowat : so->so_rcv.sb_lowat; goto integer; case SO_SNDTIMEO: case SO_RCVTIMEO: SOCK_LOCK(so); tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ? (SOLISTENING(so) ? so->sol_sbsnd_timeo : so->so_snd.sb_timeo) : (SOLISTENING(so) ? so->sol_sbrcv_timeo : so->so_rcv.sb_timeo)); SOCK_UNLOCK(so); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct timeval32 tv32; CP(tv, tv32, tv_sec); CP(tv, tv32, tv_usec); error = sooptcopyout(sopt, &tv32, sizeof tv32); } else #endif error = sooptcopyout(sopt, &tv, sizeof tv); break; case SO_LABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_label(sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; /* Don't copy out extmac, it is unchanged. */ #else error = EOPNOTSUPP; #endif break; case SO_PEERLABEL: #ifdef MAC error = sooptcopyin(sopt, &extmac, sizeof(extmac), sizeof(extmac)); if (error) goto bad; error = mac_getsockopt_peerlabel( sopt->sopt_td->td_ucred, so, &extmac); if (error) goto bad; /* Don't copy out extmac, it is unchanged. */ #else error = EOPNOTSUPP; #endif break; case SO_LISTENQLIMIT: optval = SOLISTENING(so) ? so->sol_qlimit : 0; goto integer; case SO_LISTENQLEN: optval = SOLISTENING(so) ? so->sol_qlen : 0; goto integer; case SO_LISTENINCQLEN: optval = SOLISTENING(so) ? so->sol_incqlen : 0; goto integer; case SO_TS_CLOCK: optval = so->so_ts_clock; goto integer; case SO_MAX_PACING_RATE: optval = so->so_max_pacing_rate; goto integer; default: if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0) error = hhook_run_socket(so, sopt, HHOOK_SOCKET_OPT); else error = ENOPROTOOPT; break; } } #ifdef MAC bad: #endif CURVNET_RESTORE(); return (error); } int soopt_getm(struct sockopt *sopt, struct mbuf **mp) { struct mbuf *m, *m_prev; int sopt_size = sopt->sopt_valsize; MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; *mp = m; m_prev = m; while (sopt_size) { MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { m_freem(*mp); return ENOBUFS; } if (sopt_size > MLEN) { MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK : M_NOWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(*mp); return ENOBUFS; } m->m_len = min(MCLBYTES, sopt_size); } else { m->m_len = min(MLEN, sopt_size); } sopt_size -= m->m_len; m_prev->m_next = m; m_prev = m; } return (0); } int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyin(sopt->sopt_val, mtod(m, char *), m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(sopt->sopt_val, mtod(m, char *), m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; m = m->m_next; } if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */ panic("ip6_sooptmcopyin"); return (0); } int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m) { struct mbuf *m0 = m; size_t valsize = 0; if (sopt->sopt_val == NULL) return (0); while (m != NULL && sopt->sopt_valsize >= m->m_len) { if (sopt->sopt_td != NULL) { int error; error = copyout(mtod(m, char *), sopt->sopt_val, m->m_len); if (error != 0) { m_freem(m0); return(error); } } else bcopy(mtod(m, char *), sopt->sopt_val, m->m_len); sopt->sopt_valsize -= m->m_len; sopt->sopt_val = (char *)sopt->sopt_val + m->m_len; valsize += m->m_len; m = m->m_next; } if (m != NULL) { /* enough soopt buffer should be given from user-land */ m_freem(m0); return(EINVAL); } sopt->sopt_valsize = valsize; return (0); } /* * sohasoutofband(): protocol notifies socket layer of the arrival of new * out-of-band data, which will then notify socket consumers. */ void sohasoutofband(struct socket *so) { if (so->so_sigio != NULL) pgsigio(&so->so_sigio, SIGURG, 0); selwakeuppri(&so->so_rdsel, PSOCK); } int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { /* * We do not need to set or assert curvnet as long as everyone uses * sopoll_generic(). */ return (so->so_proto->pr_sopoll(so, events, active_cred, td)); } int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td) { int revents; SOCK_LOCK(so); if (SOLISTENING(so)) { if (!(events & (POLLIN | POLLRDNORM))) revents = 0; else if (!TAILQ_EMPTY(&so->sol_comp)) revents = events & (POLLIN | POLLRDNORM); else if ((events & POLLINIGNEOF) == 0 && so->so_error) revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP; else { selrecord(td, &so->so_rdsel); revents = 0; } } else { revents = 0; SOCK_SENDBUF_LOCK(so); SOCK_RECVBUF_LOCK(so); if (events & (POLLIN | POLLRDNORM)) if (soreadabledata(so)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if (sowriteable(so)) revents |= events & (POLLOUT | POLLWRNORM); if (events & (POLLPRI | POLLRDBAND)) if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK)) revents |= events & (POLLPRI | POLLRDBAND); if ((events & POLLINIGNEOF) == 0) { if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { revents |= events & (POLLIN | POLLRDNORM); if (so->so_snd.sb_state & SBS_CANTSENDMORE) revents |= POLLHUP; } } if (so->so_rcv.sb_state & SBS_CANTRCVMORE) revents |= events & POLLRDHUP; if (revents == 0) { if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) { selrecord(td, &so->so_rdsel); so->so_rcv.sb_flags |= SB_SEL; } if (events & (POLLOUT | POLLWRNORM)) { selrecord(td, &so->so_wrsel); so->so_snd.sb_flags |= SB_SEL; } } SOCK_RECVBUF_UNLOCK(so); SOCK_SENDBUF_UNLOCK(so); } SOCK_UNLOCK(so); return (revents); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; sb_which which; struct knlist *knl; switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &soread_filtops; knl = &so->so_rdsel.si_note; sb = &so->so_rcv; which = SO_RCV; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; which = SO_SND; break; case EVFILT_EMPTY: kn->kn_fop = &soempty_filtops; knl = &so->so_wrsel.si_note; sb = &so->so_snd; which = SO_SND; break; default: return (EINVAL); } SOCK_LOCK(so); if (SOLISTENING(so)) { knlist_add(knl, kn, 1); } else { SOCK_BUF_LOCK(so, which); knlist_add(knl, kn, 1); sb->sb_flags |= SB_KNOTE; SOCK_BUF_UNLOCK(so, which); } SOCK_UNLOCK(so); return (0); } static void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_rdknl_lock(so); knlist_remove(&so->so_rdsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; so_rdknl_unlock(so); } /*ARGSUSED*/ static int filt_soread(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) { SOCK_LOCK_ASSERT(so); kn->kn_data = so->sol_qlen; if (so->so_error) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } return (!TAILQ_EMPTY(&so->sol_comp)); } SOCK_RECVBUF_LOCK_ASSERT(so); kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl; if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error || so->so_rerror) return (1); if (kn->kn_sfflags & NOTE_LOWAT) { if (kn->kn_data >= kn->kn_sdata) return (1); } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat) return (1); /* This hook returning non-zero indicates an event, not error */ return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD)); } static void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; so_wrknl_lock(so); knlist_remove(&so->so_wrsel.si_note, kn, 1); if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; so_wrknl_unlock(so); } /*ARGSUSED*/ static int filt_sowrite(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (0); SOCK_SENDBUF_LOCK_ASSERT(so); kn->kn_data = sbspace(&so->so_snd); hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; kn->kn_fflags = so->so_error; return (1); } else if (so->so_error) /* temporary udp error */ return (1); else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); else if (kn->kn_sfflags & NOTE_LOWAT) return (kn->kn_data >= kn->kn_sdata); else return (kn->kn_data >= so->so_snd.sb_lowat); } static int filt_soempty(struct knote *kn, long hint) { struct socket *so; so = kn->kn_fp->f_data; if (SOLISTENING(so)) return (1); SOCK_SENDBUF_LOCK_ASSERT(so); kn->kn_data = sbused(&so->so_snd); if (kn->kn_data == 0) return (1); else return (0); } int socheckuid(struct socket *so, uid_t uid) { if (so == NULL) return (EPERM); if (so->so_cred->cr_uid != uid) return (EPERM); return (0); } /* * These functions are used by protocols to notify the socket layer (and its * consumers) of state changes in the sockets driven by protocol-side events. */ /* * Procedures to manipulate state flags of socket and do appropriate wakeups. * * Normal sequence from the active (originating) side is that * soisconnecting() is called during processing of connect() call, resulting * in an eventual call to soisconnected() if/when the connection is * established. When the connection is torn down soisdisconnecting() is * called during processing of disconnect() call, and soisdisconnected() is * called when the connection to the peer is totally severed. The semantics * of these routines are such that connectionless protocols can call * soisconnected() and soisdisconnected() only, bypassing the in-progress * calls when setting up a ``connection'' takes no time. * * From the passive side, a socket is created with two queues of sockets: * so_incomp for connections in progress and so_comp for connections already * made and awaiting user acceptance. As a protocol is preparing incoming * connections, it creates a socket structure queued on so_incomp by calling * sonewconn(). When the connection is established, soisconnected() is * called, and transfers the socket structure to so_comp, making it available * to accept(). * * If a socket is closed with sockets on either so_incomp or so_comp, these * sockets are dropped. * * If higher-level protocols are implemented in the kernel, the wakeups done * here will sometimes cause software-interrupt process scheduling. */ void soisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; SOCK_UNLOCK(so); } void soisconnected(struct socket *so) { bool last __diagused; SOCK_LOCK(so); - so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); + so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTED; if (so->so_qstate == SQ_INCOMP) { struct socket *head = so->so_listen; int ret; KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so)); /* * Promoting a socket from incomplete queue to complete, we * need to go through reverse order of locking. We first do * trylock, and if that doesn't succeed, we go the hard way * leaving a reference and rechecking consistency after proper * locking. */ if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) { soref(head); SOCK_UNLOCK(so); SOLISTEN_LOCK(head); SOCK_LOCK(so); if (__predict_false(head != so->so_listen)) { /* * The socket went off the listen queue, * should be lost race to close(2) of sol. * The socket is about to soabort(). */ SOCK_UNLOCK(so); sorele_locked(head); return; } last = refcount_release(&head->so_count); KASSERT(!last, ("%s: released last reference for %p", __func__, head)); } again: if ((so->so_options & SO_ACCEPTFILTER) == 0) { TAILQ_REMOVE(&head->sol_incomp, so, so_list); head->sol_incqlen--; TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list); head->sol_qlen++; so->so_qstate = SQ_COMP; SOCK_UNLOCK(so); solisten_wakeup(head); /* unlocks */ } else { SOCK_RECVBUF_LOCK(so); soupcall_set(so, SO_RCV, head->sol_accept_filter->accf_callback, head->sol_accept_filter_arg); so->so_options &= ~SO_ACCEPTFILTER; ret = head->sol_accept_filter->accf_callback(so, head->sol_accept_filter_arg, M_NOWAIT); if (ret == SU_ISCONNECTED) { soupcall_clear(so, SO_RCV); SOCK_RECVBUF_UNLOCK(so); goto again; } SOCK_RECVBUF_UNLOCK(so); SOCK_UNLOCK(so); SOLISTEN_UNLOCK(head); } return; } SOCK_UNLOCK(so); wakeup(&so->so_timeo); sorwakeup(so); sowwakeup(so); } void soisdisconnecting(struct socket *so) { SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTING; so->so_state |= SS_ISDISCONNECTING; if (!SOLISTENING(so)) { SOCK_RECVBUF_LOCK(so); socantrcvmore_locked(so); SOCK_SENDBUF_LOCK(so); socantsendmore_locked(so); } SOCK_UNLOCK(so); wakeup(&so->so_timeo); } void soisdisconnected(struct socket *so) { SOCK_LOCK(so); /* * There is at least one reader of so_state that does not * acquire socket lock, namely soreceive_generic(). Ensure * that it never sees all flags that track connection status * cleared, by ordering the update with a barrier semantic of * our release thread fence. */ so->so_state |= SS_ISDISCONNECTED; atomic_thread_fence_rel(); so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); if (!SOLISTENING(so)) { SOCK_UNLOCK(so); SOCK_RECVBUF_LOCK(so); socantrcvmore_locked(so); SOCK_SENDBUF_LOCK(so); sbdrop_locked(&so->so_snd, sbused(&so->so_snd)); socantsendmore_locked(so); } else SOCK_UNLOCK(so); wakeup(&so->so_timeo); } int soiolock(struct socket *so, struct sx *sx, int flags) { int error; KASSERT((flags & SBL_VALID) == flags, ("soiolock: invalid flags %#x", flags)); if ((flags & SBL_WAIT) != 0) { if ((flags & SBL_NOINTR) != 0) { sx_xlock(sx); } else { error = sx_xlock_sig(sx); if (error != 0) return (error); } } else if (!sx_try_xlock(sx)) { return (EWOULDBLOCK); } if (__predict_false(SOLISTENING(so))) { sx_xunlock(sx); return (ENOTCONN); } return (0); } void soiounlock(struct sx *sx) { sx_xunlock(sx); } /* * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. */ struct sockaddr * sodupsockaddr(const struct sockaddr *sa, int mflags) { struct sockaddr *sa2; sa2 = malloc(sa->sa_len, M_SONAME, mflags); if (sa2) bcopy(sa, sa2, sa->sa_len); return sa2; } /* * Register per-socket destructor. */ void sodtor_set(struct socket *so, so_dtor_t *func) { SOCK_LOCK_ASSERT(so); so->so_dtor = func; } /* * Register per-socket buffer upcalls. */ void soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; } SOCK_BUF_LOCK_ASSERT(so, which); sb->sb_upcall = func; sb->sb_upcallarg = arg; sb->sb_flags |= SB_UPCALL; } void soupcall_clear(struct socket *so, sb_which which) { struct sockbuf *sb; KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so)); switch (which) { case SO_RCV: sb = &so->so_rcv; break; case SO_SND: sb = &so->so_snd; break; } SOCK_BUF_LOCK_ASSERT(so, which); KASSERT(sb->sb_upcall != NULL, ("%s: so %p no upcall to clear", __func__, so)); sb->sb_upcall = NULL; sb->sb_upcallarg = NULL; sb->sb_flags &= ~SB_UPCALL; } void solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg) { SOLISTEN_LOCK_ASSERT(so); so->sol_upcall = func; so->sol_upcallarg = arg; } static void so_rdknl_lock(void *arg) { struct socket *so = arg; retry: if (SOLISTENING(so)) { SOLISTEN_LOCK(so); } else { SOCK_RECVBUF_LOCK(so); if (__predict_false(SOLISTENING(so))) { SOCK_RECVBUF_UNLOCK(so); goto retry; } } } static void so_rdknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOLISTEN_UNLOCK(so); else SOCK_RECVBUF_UNLOCK(so); } static void so_rdknl_assert_lock(void *arg, int what) { struct socket *so = arg; if (what == LA_LOCKED) { if (SOLISTENING(so)) SOLISTEN_LOCK_ASSERT(so); else SOCK_RECVBUF_LOCK_ASSERT(so); } else { if (SOLISTENING(so)) SOLISTEN_UNLOCK_ASSERT(so); else SOCK_RECVBUF_UNLOCK_ASSERT(so); } } static void so_wrknl_lock(void *arg) { struct socket *so = arg; retry: if (SOLISTENING(so)) { SOLISTEN_LOCK(so); } else { SOCK_SENDBUF_LOCK(so); if (__predict_false(SOLISTENING(so))) { SOCK_SENDBUF_UNLOCK(so); goto retry; } } } static void so_wrknl_unlock(void *arg) { struct socket *so = arg; if (SOLISTENING(so)) SOLISTEN_UNLOCK(so); else SOCK_SENDBUF_UNLOCK(so); } static void so_wrknl_assert_lock(void *arg, int what) { struct socket *so = arg; if (what == LA_LOCKED) { if (SOLISTENING(so)) SOLISTEN_LOCK_ASSERT(so); else SOCK_SENDBUF_LOCK_ASSERT(so); } else { if (SOLISTENING(so)) SOLISTEN_UNLOCK_ASSERT(so); else SOCK_SENDBUF_UNLOCK_ASSERT(so); } } /* * Create an external-format (``xsocket'') structure using the information in * the kernel-format socket structure pointed to by so. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void sotoxsocket(struct socket *so, struct xsocket *xso) { bzero(xso, sizeof(*xso)); xso->xso_len = sizeof *xso; xso->xso_so = (uintptr_t)so; xso->so_type = so->so_type; xso->so_options = so->so_options; xso->so_linger = so->so_linger; xso->so_state = so->so_state; xso->so_pcb = (uintptr_t)so->so_pcb; xso->xso_protocol = so->so_proto->pr_protocol; xso->xso_family = so->so_proto->pr_domain->dom_family; xso->so_timeo = so->so_timeo; xso->so_error = so->so_error; xso->so_uid = so->so_cred->cr_uid; xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; if (SOLISTENING(so)) { xso->so_qlen = so->sol_qlen; xso->so_incqlen = so->sol_incqlen; xso->so_qlimit = so->sol_qlimit; xso->so_oobmark = 0; } else { xso->so_state |= so->so_qstate; xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0; xso->so_oobmark = so->so_oobmark; sbtoxsockbuf(&so->so_snd, &xso->so_snd); sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); } } struct sockbuf * so_sockbuf_rcv(struct socket *so) { return (&so->so_rcv); } struct sockbuf * so_sockbuf_snd(struct socket *so) { return (&so->so_snd); } int so_state_get(const struct socket *so) { return (so->so_state); } void so_state_set(struct socket *so, int val) { so->so_state = val; } int so_options_get(const struct socket *so) { return (so->so_options); } void so_options_set(struct socket *so, int val) { so->so_options = val; } int so_error_get(const struct socket *so) { return (so->so_error); } void so_error_set(struct socket *so, int val) { so->so_error = val; } int so_linger_get(const struct socket *so) { return (so->so_linger); } void so_linger_set(struct socket *so, int val) { KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz), ("%s: val %d out of range", __func__, val)); so->so_linger = val; } struct protosw * so_protosw_get(const struct socket *so) { return (so->so_proto); } void so_protosw_set(struct socket *so, struct protosw *val) { so->so_proto = val; } void so_sorwakeup(struct socket *so) { sorwakeup(so); } void so_sowwakeup(struct socket *so) { sowwakeup(so); } void so_sorwakeup_locked(struct socket *so) { sorwakeup_locked(so); } void so_sowwakeup_locked(struct socket *so) { sowwakeup_locked(so); } void so_lock(struct socket *so) { SOCK_LOCK(so); } void so_unlock(struct socket *so) { SOCK_UNLOCK(so); } diff --git a/sys/kern/uipc_syscalls.c b/sys/kern/uipc_syscalls.c index 366698054bce..dce0ab9b53d4 100644 --- a/sys/kern/uipc_syscalls.c +++ b/sys/kern/uipc_syscalls.c @@ -1,1555 +1,1555 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_capsicum.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_43 #include #endif #include #include #include #ifdef KTRACE #include #endif #ifdef COMPAT_FREEBSD32 #include #endif #include #include #include static int sendit(struct thread *td, int s, struct msghdr *mp, int flags); static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp); static int accept1(struct thread *td, int s, struct sockaddr *uname, socklen_t *anamelen, int flags); static int sockargs(struct mbuf **, char *, socklen_t, int); /* * Convert a user file descriptor to a kernel file entry and check if required * capability rights are present. * If required copy of current set of capability rights is returned. * A reference on the file entry is held upon returning. */ int getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp, struct filecaps *havecapsp) { struct file *fp; int error; error = fget_cap(td, fd, rightsp, &fp, havecapsp); if (__predict_false(error != 0)) return (error); if (__predict_false(fp->f_type != DTYPE_SOCKET)) { fdrop(fp, td); if (havecapsp != NULL) filecaps_free(havecapsp); return (ENOTSOCK); } *fpp = fp; return (0); } int getsock(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp) { struct file *fp; int error; error = fget_unlocked(td, fd, rightsp, &fp); if (__predict_false(error != 0)) return (error); if (__predict_false(fp->f_type != DTYPE_SOCKET)) { fdrop(fp, td); return (ENOTSOCK); } *fpp = fp; return (0); } /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) #define COMPAT_OLDSOCK #endif int sys_socket(struct thread *td, struct socket_args *uap) { return (kern_socket(td, uap->domain, uap->type, uap->protocol)); } int kern_socket(struct thread *td, int domain, int type, int protocol) { struct socket *so; struct file *fp; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = falloc(td, &fp, &fd, oflag); if (error != 0) return (error); /* An extra reference on `fp' has been held for us by falloc(). */ error = socreate(domain, &so, type, protocol, td->td_ucred, td); if (error != 0) { fdclose(td, fp, fd); } else { finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops); if ((fflag & FNONBLOCK) != 0) (void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td); td->td_retval[0] = fd; } fdrop(fp, td); return (error); } int sys_bind(struct thread *td, struct bind_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (dirfd == AT_FDCWD)) return (ECAPMODE); #endif AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock(td, fd, &cap_bind_rights, &fp); if (error != 0) return (error); so = fp->f_data; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_bind(td->td_ucred, so, sa); if (error == 0) { #endif if (dirfd == AT_FDCWD) error = sobind(so, sa, td); else error = sobindat(dirfd, so, sa, td); #ifdef MAC } #endif fdrop(fp, td); return (error); } int sys_bindat(struct thread *td, struct bindat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int sys_listen(struct thread *td, struct listen_args *uap) { return (kern_listen(td, uap->s, uap->backlog)); } int kern_listen(struct thread *td, int s, int backlog) { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(s); error = getsock(td, s, &cap_listen_rights, &fp); if (error == 0) { so = fp->f_data; #ifdef MAC error = mac_socket_check_listen(td->td_ucred, so); if (error == 0) #endif error = solisten(so, backlog, td); fdrop(fp, td); } return (error); } /* * accept1() */ static int accept1(struct thread *td, int s, struct sockaddr *uname, socklen_t *anamelen, int flags) { struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; socklen_t addrlen; struct file *fp; int error; if (uname != NULL) { error = copyin(anamelen, &addrlen, sizeof(addrlen)); if (error != 0) return (error); } error = kern_accept4(td, s, (struct sockaddr *)&ss, flags, &fp); if (error != 0) return (error); #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && (flags & ACCEPT4_COMPAT) != 0) ((struct osockaddr *)&ss)->sa_family = ss.ss_family; #endif if (uname != NULL) { addrlen = min(ss.ss_len, addrlen); error = copyout(&ss, uname, addrlen); if (error == 0) { addrlen = ss.ss_len; error = copyout(&addrlen, anamelen, sizeof(addrlen)); } } if (error != 0) fdclose(td, fp, td->td_retval[0]); fdrop(fp, td); return (error); } int kern_accept(struct thread *td, int s, struct sockaddr *sa, struct file **fp) { return (kern_accept4(td, s, sa, ACCEPT4_INHERIT, fp)); } int kern_accept4(struct thread *td, int s, struct sockaddr *sa, int flags, struct file **fp) { struct file *headfp, *nfp = NULL; struct socket *head, *so; struct filecaps fcaps; u_int fflag; pid_t pgid; int error, fd, tmp; AUDIT_ARG_FD(s); error = getsock_cap(td, s, &cap_accept_rights, &headfp, &fcaps); if (error != 0) return (error); fflag = atomic_load_int(&headfp->f_flag); head = headfp->f_data; if (!SOLISTENING(head)) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(td->td_ucred, head); if (error != 0) goto done; #endif error = falloc_caps(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0, &fcaps); if (error != 0) goto done; SOCK_LOCK(head); if (!SOLISTENING(head)) { SOCK_UNLOCK(head); error = EINVAL; goto noconnection; } error = solisten_dequeue(head, &so, flags); if (error != 0) goto noconnection; /* An extra reference on `nfp' has been held for us by falloc(). */ td->td_retval[0] = fd; /* Connection has been removed from the listen queue. */ KNOTE_UNLOCKED(&head->so_rdsel.si_note, 0); if (flags & ACCEPT4_INHERIT) { pgid = fgetown(&head->so_sigio); if (pgid != 0) fsetown(pgid, &so->so_sigio); } else { fflag &= ~(FNONBLOCK | FASYNC); if (flags & SOCK_NONBLOCK) fflag |= FNONBLOCK; } finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); /* Sync socket nonblocking/async state with file flags */ tmp = fflag & FNONBLOCK; (void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td); tmp = fflag & FASYNC; (void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td); if ((error = soaccept(so, sa)) == 0) { AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa); #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif } noconnection: /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error != 0) fdclose(td, nfp, fd); /* * Release explicitly held references before returning. We return * a reference on nfp to the caller on success if they request it. */ done: if (nfp == NULL) filecaps_free(&fcaps); if (fp != NULL) { if (error == 0) { *fp = nfp; nfp = NULL; } else *fp = NULL; } if (nfp != NULL) fdrop(nfp, td); fdrop(headfp, td); return (error); } int sys_accept(struct thread *td, struct accept_args *uap) { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT)); } int sys_accept4(struct thread *td, struct accept4_args *uap) { if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return (EINVAL); return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags)); } #ifdef COMPAT_OLDSOCK int oaccept(struct thread *td, struct oaccept_args *uap) { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT | ACCEPT4_COMPAT)); } #endif /* COMPAT_OLDSOCK */ int sys_connect(struct thread *td, struct connect_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, AT_FDCWD, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (dirfd == AT_FDCWD)) return (ECAPMODE); #endif AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock(td, fd, &cap_connect_rights, &fp); if (error != 0) return (error); so = fp->f_data; if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_connect(td->td_ucred, so, sa); if (error != 0) goto bad; #endif error = soconnectat(dirfd, so, sa, td); if (error != 0) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, &so->so_lock, PSOCK | PCATCH, "connec", 0); if (error != 0) break; } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (error == ERESTART) error = EINTR; done1: fdrop(fp, td); return (error); } int sys_connectat(struct thread *td, struct connectat_args *uap) { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv) { struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC /* We might want to have a separate check for socket pairs. */ error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = socreate(domain, &so1, type, protocol, td->td_ucred, td); if (error != 0) return (error); error = socreate(domain, &so2, type, protocol, td->td_ucred, td); if (error != 0) goto free1; /* On success extra reference to `fp1' and 'fp2' is set by falloc. */ error = falloc(td, &fp1, &fd, oflag); if (error != 0) goto free2; rsv[0] = fd; fp1->f_data = so1; /* so1 already has ref count */ error = falloc(td, &fp2, &fd, oflag); if (error != 0) goto free3; fp2->f_data = so2; /* so2 already has ref count */ rsv[1] = fd; error = soconnect2(so1, so2); if (error != 0) goto free4; if (type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error != 0) goto free4; } else if (so1->so_proto->pr_flags & PR_CONNREQUIRED) { struct unpcb *unp, *unp2; unp = sotounpcb(so1); unp2 = sotounpcb(so2); /* * No need to lock the unps, because the sockets are brand-new. * No other threads can be using them yet */ unp_copy_peercred(td, unp, unp2, unp); } finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data, &socketops); finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data, &socketops); if ((fflag & FNONBLOCK) != 0) { (void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td); (void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td); } fdrop(fp1, td); fdrop(fp2, td); return (0); free4: fdclose(td, fp2, rsv[1]); fdrop(fp2, td); free3: fdclose(td, fp1, rsv[0]); fdrop(fp1, td); free2: if (so2 != NULL) (void)soclose(so2); free1: if (so1 != NULL) (void)soclose(so1); return (error); } int sys_socketpair(struct thread *td, struct socketpair_args *uap) { int error, sv[2]; error = kern_socketpair(td, uap->domain, uap->type, uap->protocol, sv); if (error != 0) return (error); error = copyout(sv, uap->rsv, 2 * sizeof(int)); if (error != 0) { (void)kern_close(td, sv[0]); (void)kern_close(td, sv[1]); } return (error); } static int sendit(struct thread *td, int s, struct msghdr *mp, int flags) { struct mbuf *control; struct sockaddr *to; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL)) return (ECAPMODE); #endif if (mp->msg_name != NULL) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error != 0) { to = NULL; goto bad; } mp->msg_name = to; } else { to = NULL; } if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && (mp->msg_flags != MSG_COMPAT || !SV_PROC_FLAG(td->td_proc, SV_AOUT)) #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error != 0) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT && SV_PROC_FLAG(td->td_proc, SV_AOUT)) { struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAITOK); cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } #endif } else { control = NULL; } error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE); bad: free(to, M_SONAME); return (error); } int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg) { struct file *fp; struct uio auio; struct iovec *iov; struct socket *so; cap_rights_t *rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int i, error; AUDIT_ARG_FD(s); rights = &cap_send_rights; if (mp->msg_name != NULL) { AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name); rights = &cap_send_connect_rights; } error = getsock(td, s, rights, &fp); if (error != 0) { m_freem(control); return (error); } so = (struct socket *)fp->f_data; #ifdef KTRACE if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(mp->msg_name); #endif #ifdef MAC if (mp->msg_name != NULL) { error = mac_socket_check_connect(td->td_ucred, so, mp->msg_name); if (error != 0) { m_freem(control); goto bad; } } error = mac_socket_check_send(td->td_ucred, so); if (error != 0) { m_freem(control); goto bad; } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = segflg; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { error = EINVAL; m_freem(control); goto bad; } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = sousrsend(so, mp->msg_name, &auio, control, flags, NULL); if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(s, UIO_WRITE, ktruio, error); } #endif bad: fdrop(fp, td); return (error); } int sys_sendto(struct thread *td, struct sendto_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = __DECONST(void *, uap->to); msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags = 0; #endif aiov.iov_base = __DECONST(void *, uap->buf); aiov.iov_len = uap->len; return (sendit(td, uap->s, &msg, uap->flags)); } #ifdef COMPAT_OLDSOCK int osend(struct thread *td, struct osend_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = __DECONST(void *, uap->buf); aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; return (sendit(td, uap->s, &msg, uap->flags)); } int osendmsg(struct thread *td, struct osendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; msg.msg_flags = MSG_COMPAT; error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #endif int sys_sendmsg(struct thread *td, struct sendmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags = 0; #endif error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp) { struct uio auio; struct iovec *iov; struct mbuf *control, *m; caddr_t ctlbuf; struct file *fp; struct socket *so; struct sockaddr *fromsa = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int error, i; if (controlp != NULL) *controlp = NULL; AUDIT_ARG_FD(s); error = getsock(td, s, &cap_recv_rights, &fp); if (error != 0) return (error); so = fp->f_data; #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error != 0) { fdrop(fp, td); return (error); } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { fdrop(fp, td); return (EINVAL); } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif control = NULL; len = auio.uio_resid; error = soreceive(so, &fromsa, &auio, NULL, (mp->msg_control || controlp) ? &control : NULL, &mp->msg_flags); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } if (fromsa != NULL) AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa); #ifdef KTRACE if (ktruio != NULL) { /* MSG_TRUNC can trigger underflow of uio_resid. */ ktruio->uio_resid = MIN(len - auio.uio_resid, len); ktrgenio(s, UIO_READ, ktruio, error); } #endif if (error != 0) goto out; td->td_retval[0] = len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == NULL) len = 0; else { /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if ((mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif if (fromseg == UIO_USERSPACE) { error = copyout(fromsa, mp->msg_name, (unsigned)len); if (error != 0) goto out; } else bcopy(fromsa, mp->msg_name, len); } mp->msg_namelen = len; } if (mp->msg_control && controlp == NULL) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && (mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif ctlbuf = mp->msg_control; len = mp->msg_controllen; mp->msg_controllen = 0; for (m = control; m != NULL && len >= m->m_len; m = m->m_next) { if ((error = copyout(mtod(m, caddr_t), ctlbuf, m->m_len)) != 0) goto out; ctlbuf += m->m_len; len -= m->m_len; mp->msg_controllen += m->m_len; } if (m != NULL) { mp->msg_flags |= MSG_CTRUNC; m_dispose_extcontrolm(m); } } out: fdrop(fp, td); #ifdef KTRACE if (fromsa && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif free(fromsa, M_SONAME); if (error == 0 && controlp != NULL) *controlp = control; else if (control != NULL) { if (error != 0) m_dispose_extcontrolm(control); m_freem(control); } return (error); } static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp) { int error; error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL); if (error != 0) return (error); if (namelenp != NULL) { error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t)); #ifdef COMPAT_OLDSOCK if ((mp->msg_flags & MSG_COMPAT) != 0 && SV_PROC_FLAG(td->td_proc, SV_AOUT)) error = 0; /* old recvfrom didn't check */ #endif } return (error); } static int kern_recvfrom(struct thread *td, int s, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlenaddr) { struct msghdr msg; struct iovec aiov; int error; if (fromlenaddr != NULL) { error = copyin(fromlenaddr, &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error != 0) goto done2; } else { msg.msg_namelen = 0; } msg.msg_name = from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = buf; aiov.iov_len = len; msg.msg_control = 0; msg.msg_flags = flags; error = recvit(td, s, &msg, fromlenaddr); done2: return (error); } int sys_recvfrom(struct thread *td, struct recvfrom_args *uap) { return (kern_recvfrom(td, uap->s, uap->buf, uap->len, uap->flags, uap->from, uap->fromlenaddr)); } #ifdef COMPAT_OLDSOCK int orecvfrom(struct thread *td, struct orecvfrom_args *uap) { return (kern_recvfrom(td, uap->s, uap->buf, uap->len, uap->flags | MSG_COMPAT, uap->from, uap->fromlenaddr)); } #endif #ifdef COMPAT_OLDSOCK int orecv(struct thread *td, struct orecv_args *uap) { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(td, uap->s, &msg, NULL)); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(struct thread *td, struct orecvmsg_args *uap) { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags | MSG_COMPAT; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout(&msg.msg_controllen, &uap->msg->msg_accrightslen, sizeof (int)); free(iov, M_IOV); return (error); } #endif int sys_recvmsg(struct thread *td, struct recvmsg_args *uap) { struct msghdr msg; struct iovec *uiov, *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags; #ifdef COMPAT_OLDSOCK if (SV_PROC_FLAG(td->td_proc, SV_AOUT)) msg.msg_flags &= ~MSG_COMPAT; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, NULL); if (error == 0) { msg.msg_iov = uiov; error = copyout(&msg, uap->msg, sizeof(msg)); } free(iov, M_IOV); return (error); } int sys_shutdown(struct thread *td, struct shutdown_args *uap) { return (kern_shutdown(td, uap->s, uap->how)); } int kern_shutdown(struct thread *td, int s, int how) { struct socket *so; struct file *fp; int error; if (__predict_false(how < SHUT_RD || how > SHUT_RDWR)) return (EINVAL); AUDIT_ARG_FD(s); error = getsock(td, s, &cap_shutdown_rights, &fp); if (error == 0) { so = fp->f_data; error = soshutdown(so, how); /* * Previous versions did not return ENOTCONN, but 0 in * case the socket was not connected. Some important * programs like syslogd up to r279016, 2015-02-19, * still depend on this behavior. */ if (error == ENOTCONN && td->td_proc->p_osrel < P_OSREL_SHUTDOWN_ENOTCONN) error = 0; fdrop(fp, td); } return (error); } int sys_setsockopt(struct thread *td, struct setsockopt_args *uap) { return (kern_setsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, uap->valsize)); } int kern_setsockopt(struct thread *td, int s, int level, int name, const void *val, enum uio_seg valseg, socklen_t valsize) { struct socket *so; struct file *fp; struct sockopt sopt; int error; if (val == NULL && valsize != 0) return (EFAULT); if ((int)valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = __DECONST(void *, val); sopt.sopt_valsize = valsize; switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_setsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock(td, s, &cap_setsockopt_rights, &fp); if (error == 0) { so = fp->f_data; error = sosetopt(so, &sopt); fdrop(fp, td); } return(error); } int sys_getsockopt(struct thread *td, struct getsockopt_args *uap) { socklen_t valsize; int error; if (uap->val) { error = copyin(uap->avalsize, &valsize, sizeof (valsize)); if (error != 0) return (error); } error = kern_getsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, &valsize); if (error == 0) error = copyout(&valsize, uap->avalsize, sizeof (valsize)); return (error); } /* * Kernel version of getsockopt. * optval can be a userland or userspace. optlen is always a kernel pointer. */ int kern_getsockopt(struct thread *td, int s, int level, int name, void *val, enum uio_seg valseg, socklen_t *valsize) { struct socket *so; struct file *fp; struct sockopt sopt; int error; if (val == NULL) *valsize = 0; if ((int)*valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_GET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */ switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_getsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock(td, s, &cap_getsockopt_rights, &fp); if (error == 0) { so = fp->f_data; error = sogetopt(so, &sopt); *valsize = sopt.sopt_valsize; fdrop(fp, td); } return (error); } static int user_getsockname(struct thread *td, int fdes, struct sockaddr *asa, socklen_t *alen, bool compat) { struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; socklen_t len; int error; error = copyin(alen, &len, sizeof(len)); if (error != 0) return (error); error = kern_getsockname(td, fdes, (struct sockaddr *)&ss); if (error != 0) return (error); #ifdef COMPAT_OLDSOCK if (compat && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)&ss)->sa_family = ss.ss_family; #endif len = min(ss.ss_len, len); error = copyout(&ss, asa, len); if (error == 0) { len = ss.ss_len; error = copyout(&len, alen, sizeof(len)); } return (error); } int kern_getsockname(struct thread *td, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(fd); error = getsock(td, fd, &cap_getsockname_rights, &fp); if (error != 0) return (error); so = fp->f_data; error = sosockaddr(so, sa); #ifdef KTRACE if (error == 0 && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif fdrop(fp, td); return (error); } int sys_getsockname(struct thread *td, struct getsockname_args *uap) { return (user_getsockname(td, uap->fdes, uap->asa, uap->alen, false)); } #ifdef COMPAT_OLDSOCK int ogetsockname(struct thread *td, struct ogetsockname_args *uap) { return (user_getsockname(td, uap->fdes, uap->asa, uap->alen, true)); } #endif /* COMPAT_OLDSOCK */ static int user_getpeername(struct thread *td, int fdes, struct sockaddr *asa, socklen_t *alen, bool compat) { struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; socklen_t len; int error; error = copyin(alen, &len, sizeof (len)); if (error != 0) return (error); error = kern_getpeername(td, fdes, (struct sockaddr *)&ss); if (error != 0) return (error); #ifdef COMPAT_OLDSOCK if (compat && SV_PROC_FLAG(td->td_proc, SV_AOUT)) ((struct osockaddr *)&ss)->sa_family = ss.ss_family; #endif len = min(ss.ss_len, len); error = copyout(&ss, asa, len); if (error == 0) { len = ss.ss_len; error = copyout(&len, alen, sizeof(len)); } return (error); } int kern_getpeername(struct thread *td, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; int error; AUDIT_ARG_FD(fd); error = getsock(td, fd, &cap_getpeername_rights, &fp); if (error != 0) return (error); so = fp->f_data; - if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { + if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto done; } error = sopeeraddr(so, sa); #ifdef KTRACE if (error == 0 && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif done: fdrop(fp, td); return (error); } int sys_getpeername(struct thread *td, struct getpeername_args *uap) { return (user_getpeername(td, uap->fdes, uap->asa, uap->alen, false)); } #ifdef COMPAT_OLDSOCK int ogetpeername(struct thread *td, struct ogetpeername_args *uap) { return (user_getpeername(td, uap->fdes, uap->asa, uap->alen, true)); } #endif /* COMPAT_OLDSOCK */ static int sockargs(struct mbuf **mp, char *buf, socklen_t buflen, int type) { struct sockaddr *sa; struct mbuf *m; int error; if (buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && buflen <= 112 && SV_CURPROC_FLAG(SV_AOUT)) buflen = MLEN; /* unix domain compat. hack */ else #endif if (buflen > MCLBYTES) return (EMSGSIZE); } m = m_get2(buflen, M_WAITOK, type, 0); m->m_len = buflen; error = copyin(buf, mtod(m, void *), buflen); if (error != 0) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX && SV_CURPROC_FLAG(SV_AOUT)) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(struct sockaddr **namp, const struct sockaddr *uaddr, size_t len) { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data[0])) return (EINVAL); sa = malloc(len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error != 0) { free(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX && SV_CURPROC_FLAG(SV_AOUT)) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return (error); } /* * Dispose of externalized rights from an SCM_RIGHTS message. This function * should be used in error or truncation cases to avoid leaking file descriptors * into the recipient's (the current thread's) table. */ void m_dispose_extcontrolm(struct mbuf *m) { struct cmsghdr *cm; struct file *fp; struct thread *td; socklen_t clen, datalen; int error, fd, *fds, nfd; td = curthread; for (; m != NULL; m = m->m_next) { if (m->m_type != MT_EXTCONTROL) continue; cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (clen > 0) { if (clen < sizeof(*cm)) panic("%s: truncated mbuf %p", __func__, m); datalen = CMSG_SPACE(cm->cmsg_len - CMSG_SPACE(0)); if (clen < datalen) panic("%s: truncated mbuf %p", __func__, m); if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { fds = (int *)CMSG_DATA(cm); nfd = (cm->cmsg_len - CMSG_SPACE(0)) / sizeof(int); while (nfd-- > 0) { fd = *fds++; error = fget(td, fd, &cap_no_rights, &fp); if (error == 0) { fdclose(td, fp, fd); fdrop(fp, td); } } } clen -= datalen; cm = (struct cmsghdr *)((uint8_t *)cm + datalen); } m_chtype(m, MT_CONTROL); } } diff --git a/sys/netgraph/ng_ksocket.c b/sys/netgraph/ng_ksocket.c index 98eb19ab485b..388fe9557db3 100644 --- a/sys/netgraph/ng_ksocket.c +++ b/sys/netgraph/ng_ksocket.c @@ -1,1294 +1,1293 @@ /* * ng_ksocket.c */ /*- * Copyright (c) 1996-1999 Whistle Communications, Inc. * All rights reserved. * * Subject to the following obligations and disclaimer of warranty, use and * redistribution of this software, in source or object code forms, with or * without modifications are expressly permitted by Whistle Communications; * provided, however, that: * 1. Any and all reproductions of the source or object code must include the * copyright notice above and the following disclaimer of warranties; and * 2. No rights are granted, in any manner or form, to use Whistle * Communications, Inc. trademarks, including the mark "WHISTLE * COMMUNICATIONS" on advertising, endorsements, or otherwise except as * such appears in the above copyright notice or in the software. * * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * Author: Archie Cobbs * $Whistle: ng_ksocket.c,v 1.1 1999/11/16 20:04:40 archie Exp $ */ /* * Kernel socket node type. This node type is basically a kernel-mode * version of a socket... kindof like the reverse of the socket node type. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef NG_SEPARATE_MALLOC static MALLOC_DEFINE(M_NETGRAPH_KSOCKET, "netgraph_ksock", "netgraph ksock node"); #else #define M_NETGRAPH_KSOCKET M_NETGRAPH #endif #define OFFSETOF(s, e) ((char *)&((s *)0)->e - (char *)((s *)0)) #define SADATA_OFFSET (OFFSETOF(struct sockaddr, sa_data)) /* Node private data */ struct ng_ksocket_private { node_p node; hook_p hook; struct socket *so; int fn_sent; /* FN call on incoming event was sent */ LIST_HEAD(, ng_ksocket_private) embryos; LIST_ENTRY(ng_ksocket_private) siblings; u_int32_t flags; u_int32_t response_token; ng_ID_t response_addr; }; typedef struct ng_ksocket_private *priv_p; /* Flags for priv_p */ #define KSF_CONNECTING 0x00000001 /* Waiting for connection complete */ #define KSF_ACCEPTING 0x00000002 /* Waiting for accept complete */ #define KSF_EOFSEEN 0x00000004 /* Have sent 0-length EOF mbuf */ #define KSF_CLONED 0x00000008 /* Cloned from an accepting socket */ #define KSF_EMBRYONIC 0x00000010 /* Cloned node with no hooks yet */ /* Netgraph node methods */ static ng_constructor_t ng_ksocket_constructor; static ng_rcvmsg_t ng_ksocket_rcvmsg; static ng_shutdown_t ng_ksocket_shutdown; static ng_newhook_t ng_ksocket_newhook; static ng_rcvdata_t ng_ksocket_rcvdata; static ng_connect_t ng_ksocket_connect; static ng_disconnect_t ng_ksocket_disconnect; /* Alias structure */ struct ng_ksocket_alias { const char *name; const int value; const int family; }; /* Protocol family aliases */ static const struct ng_ksocket_alias ng_ksocket_families[] = { { "local", PF_LOCAL }, { "inet", PF_INET }, { "inet6", PF_INET6 }, { "atm", PF_ATM }, { "divert", PF_DIVERT }, { NULL, -1 }, }; /* Socket type aliases */ static const struct ng_ksocket_alias ng_ksocket_types[] = { { "stream", SOCK_STREAM }, { "dgram", SOCK_DGRAM }, { "raw", SOCK_RAW }, { "rdm", SOCK_RDM }, { "seqpacket", SOCK_SEQPACKET }, { NULL, -1 }, }; /* Protocol aliases */ static const struct ng_ksocket_alias ng_ksocket_protos[] = { { "ip", IPPROTO_IP, PF_INET }, { "raw", IPPROTO_RAW, PF_INET }, { "icmp", IPPROTO_ICMP, PF_INET }, { "igmp", IPPROTO_IGMP, PF_INET }, { "tcp", IPPROTO_TCP, PF_INET }, { "udp", IPPROTO_UDP, PF_INET }, { "gre", IPPROTO_GRE, PF_INET }, { "esp", IPPROTO_ESP, PF_INET }, { "ah", IPPROTO_AH, PF_INET }, { "swipe", IPPROTO_SWIPE, PF_INET }, { "encap", IPPROTO_ENCAP, PF_INET }, { "pim", IPPROTO_PIM, PF_INET }, { NULL, -1 }, }; /* Helper functions */ static int ng_ksocket_accept(priv_p); static int ng_ksocket_listen_upcall(struct socket *so, void *arg, int waitflag); static void ng_ksocket_listen_upcall2(node_p node, hook_p hook, void *arg1, int arg2); static int ng_ksocket_incoming(struct socket *so, void *arg, int waitflag); static int ng_ksocket_parse(const struct ng_ksocket_alias *aliases, const char *s, int family); static void ng_ksocket_incoming2(node_p node, hook_p hook, void *arg1, int arg2); /************************************************************************ STRUCT SOCKADDR PARSE TYPE ************************************************************************/ /* Get the length of the data portion of a generic struct sockaddr */ static int ng_parse_generic_sockdata_getLength(const struct ng_parse_type *type, const u_char *start, const u_char *buf) { const struct sockaddr *sa; sa = (const struct sockaddr *)(buf - SADATA_OFFSET); return (sa->sa_len < SADATA_OFFSET) ? 0 : sa->sa_len - SADATA_OFFSET; } /* Type for the variable length data portion of a generic struct sockaddr */ static const struct ng_parse_type ng_ksocket_generic_sockdata_type = { &ng_parse_bytearray_type, &ng_parse_generic_sockdata_getLength }; /* Type for a generic struct sockaddr */ static const struct ng_parse_struct_field ng_parse_generic_sockaddr_type_fields[] = { { "len", &ng_parse_uint8_type }, { "family", &ng_parse_uint8_type }, { "data", &ng_ksocket_generic_sockdata_type }, { NULL } }; static const struct ng_parse_type ng_ksocket_generic_sockaddr_type = { &ng_parse_struct_type, &ng_parse_generic_sockaddr_type_fields }; /* Convert a struct sockaddr from ASCII to binary. If its a protocol family that we specially handle, do that, otherwise defer to the generic parse type ng_ksocket_generic_sockaddr_type. */ static int ng_ksocket_sockaddr_parse(const struct ng_parse_type *type, const char *s, int *off, const u_char *const start, u_char *const buf, int *buflen) { struct sockaddr *const sa = (struct sockaddr *)buf; enum ng_parse_token tok; char fambuf[32]; int family, len; char *t; /* If next token is a left curly brace, use generic parse type */ if ((tok = ng_parse_get_token(s, off, &len)) == T_LBRACE) { return (*ng_ksocket_generic_sockaddr_type.supertype->parse) (&ng_ksocket_generic_sockaddr_type, s, off, start, buf, buflen); } /* Get socket address family followed by a slash */ while (isspace(s[*off])) (*off)++; if ((t = strchr(s + *off, '/')) == NULL) return (EINVAL); if ((len = t - (s + *off)) > sizeof(fambuf) - 1) return (EINVAL); strncpy(fambuf, s + *off, len); fambuf[len] = '\0'; *off += len + 1; if ((family = ng_ksocket_parse(ng_ksocket_families, fambuf, 0)) == -1) return (EINVAL); /* Set family */ if (*buflen < SADATA_OFFSET) return (ERANGE); sa->sa_family = family; /* Set family-specific data and length */ switch (sa->sa_family) { case PF_LOCAL: /* Get pathname */ { const int pathoff = OFFSETOF(struct sockaddr_un, sun_path); struct sockaddr_un *const sun = (struct sockaddr_un *)sa; int toklen, pathlen; char *path; if ((path = ng_get_string_token(s, off, &toklen, NULL)) == NULL) return (EINVAL); pathlen = strlen(path); if (pathlen > SOCK_MAXADDRLEN) { free(path, M_NETGRAPH_KSOCKET); return (E2BIG); } if (*buflen < pathoff + pathlen) { free(path, M_NETGRAPH_KSOCKET); return (ERANGE); } *off += toklen; bcopy(path, sun->sun_path, pathlen); sun->sun_len = pathoff + pathlen; free(path, M_NETGRAPH_KSOCKET); break; } case PF_INET: /* Get an IP address with optional port */ { struct sockaddr_in *const sin = (struct sockaddr_in *)sa; int i; /* Parse this: [:port] */ for (i = 0; i < 4; i++) { u_long val; char *eptr; val = strtoul(s + *off, &eptr, 10); if (val > 0xff || eptr == s + *off) return (EINVAL); *off += (eptr - (s + *off)); ((u_char *)&sin->sin_addr)[i] = (u_char)val; if (i < 3) { if (s[*off] != '.') return (EINVAL); (*off)++; } else if (s[*off] == ':') { (*off)++; val = strtoul(s + *off, &eptr, 10); if (val > 0xffff || eptr == s + *off) return (EINVAL); *off += (eptr - (s + *off)); sin->sin_port = htons(val); } else sin->sin_port = 0; } bzero(&sin->sin_zero, sizeof(sin->sin_zero)); sin->sin_len = sizeof(*sin); break; } #if 0 case PF_INET6: /* XXX implement this someday */ #endif default: return (EINVAL); } /* Done */ *buflen = sa->sa_len; return (0); } /* Convert a struct sockaddr from binary to ASCII */ static int ng_ksocket_sockaddr_unparse(const struct ng_parse_type *type, const u_char *data, int *off, char *cbuf, int cbuflen) { const struct sockaddr *sa = (const struct sockaddr *)(data + *off); int slen = 0; /* Output socket address, either in special or generic format */ switch (sa->sa_family) { case PF_LOCAL: { const int pathoff = OFFSETOF(struct sockaddr_un, sun_path); const struct sockaddr_un *sun = (const struct sockaddr_un *)sa; const int pathlen = sun->sun_len - pathoff; char pathbuf[SOCK_MAXADDRLEN + 1]; char *pathtoken; bcopy(sun->sun_path, pathbuf, pathlen); if ((pathtoken = ng_encode_string(pathbuf, pathlen)) == NULL) return (ENOMEM); slen += snprintf(cbuf, cbuflen, "local/%s", pathtoken); free(pathtoken, M_NETGRAPH_KSOCKET); if (slen >= cbuflen) return (ERANGE); *off += sun->sun_len; return (0); } case PF_INET: { const struct sockaddr_in *sin = (const struct sockaddr_in *)sa; slen += snprintf(cbuf, cbuflen, "inet/%d.%d.%d.%d", ((const u_char *)&sin->sin_addr)[0], ((const u_char *)&sin->sin_addr)[1], ((const u_char *)&sin->sin_addr)[2], ((const u_char *)&sin->sin_addr)[3]); if (sin->sin_port != 0) { slen += snprintf(cbuf + strlen(cbuf), cbuflen - strlen(cbuf), ":%d", (u_int)ntohs(sin->sin_port)); } if (slen >= cbuflen) return (ERANGE); *off += sizeof(*sin); return(0); } #if 0 case PF_INET6: /* XXX implement this someday */ #endif default: return (*ng_ksocket_generic_sockaddr_type.supertype->unparse) (&ng_ksocket_generic_sockaddr_type, data, off, cbuf, cbuflen); } } /* Parse type for struct sockaddr */ static const struct ng_parse_type ng_ksocket_sockaddr_type = { NULL, NULL, NULL, &ng_ksocket_sockaddr_parse, &ng_ksocket_sockaddr_unparse, NULL /* no such thing as a default struct sockaddr */ }; /************************************************************************ STRUCT NG_KSOCKET_SOCKOPT PARSE TYPE ************************************************************************/ /* Get length of the struct ng_ksocket_sockopt value field, which is the just the excess of the message argument portion over the length of the struct ng_ksocket_sockopt. */ static int ng_parse_sockoptval_getLength(const struct ng_parse_type *type, const u_char *start, const u_char *buf) { static const int offset = OFFSETOF(struct ng_ksocket_sockopt, value); const struct ng_ksocket_sockopt *sopt; const struct ng_mesg *msg; sopt = (const struct ng_ksocket_sockopt *)(buf - offset); msg = (const struct ng_mesg *)((const u_char *)sopt - sizeof(*msg)); return msg->header.arglen - sizeof(*sopt); } /* Parse type for the option value part of a struct ng_ksocket_sockopt XXX Eventually, we should handle the different socket options specially. XXX This would avoid byte order problems, eg an integer value of 1 is XXX going to be "[1]" for little endian or "[3=1]" for big endian. */ static const struct ng_parse_type ng_ksocket_sockoptval_type = { &ng_parse_bytearray_type, &ng_parse_sockoptval_getLength }; /* Parse type for struct ng_ksocket_sockopt */ static const struct ng_parse_struct_field ng_ksocket_sockopt_type_fields[] = NG_KSOCKET_SOCKOPT_INFO(&ng_ksocket_sockoptval_type); static const struct ng_parse_type ng_ksocket_sockopt_type = { &ng_parse_struct_type, &ng_ksocket_sockopt_type_fields }; /* Parse type for struct ng_ksocket_accept */ static const struct ng_parse_struct_field ng_ksocket_accept_type_fields[] = NGM_KSOCKET_ACCEPT_INFO; static const struct ng_parse_type ng_ksocket_accept_type = { &ng_parse_struct_type, &ng_ksocket_accept_type_fields }; /* List of commands and how to convert arguments to/from ASCII */ static const struct ng_cmdlist ng_ksocket_cmds[] = { { NGM_KSOCKET_COOKIE, NGM_KSOCKET_BIND, "bind", &ng_ksocket_sockaddr_type, NULL }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_LISTEN, "listen", &ng_parse_int32_type, NULL }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_ACCEPT, "accept", NULL, &ng_ksocket_accept_type }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_CONNECT, "connect", &ng_ksocket_sockaddr_type, &ng_parse_int32_type }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_GETNAME, "getname", NULL, &ng_ksocket_sockaddr_type }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_GETPEERNAME, "getpeername", NULL, &ng_ksocket_sockaddr_type }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_SETOPT, "setopt", &ng_ksocket_sockopt_type, NULL }, { NGM_KSOCKET_COOKIE, NGM_KSOCKET_GETOPT, "getopt", &ng_ksocket_sockopt_type, &ng_ksocket_sockopt_type }, { 0 } }; /* Node type descriptor */ static struct ng_type ng_ksocket_typestruct = { .version = NG_ABI_VERSION, .name = NG_KSOCKET_NODE_TYPE, .constructor = ng_ksocket_constructor, .rcvmsg = ng_ksocket_rcvmsg, .shutdown = ng_ksocket_shutdown, .newhook = ng_ksocket_newhook, .connect = ng_ksocket_connect, .rcvdata = ng_ksocket_rcvdata, .disconnect = ng_ksocket_disconnect, .cmdlist = ng_ksocket_cmds, }; NETGRAPH_INIT(ksocket, &ng_ksocket_typestruct); #define ERROUT(x) do { error = (x); goto done; } while (0) /************************************************************************ NETGRAPH NODE STUFF ************************************************************************/ /* * Node type constructor * The NODE part is assumed to be all set up. * There is already a reference to the node for us. */ static int ng_ksocket_constructor(node_p node) { priv_p priv; /* Allocate private structure */ priv = malloc(sizeof(*priv), M_NETGRAPH_KSOCKET, M_NOWAIT | M_ZERO); if (priv == NULL) return (ENOMEM); LIST_INIT(&priv->embryos); /* cross link them */ priv->node = node; NG_NODE_SET_PRIVATE(node, priv); /* Done */ return (0); } /* * Give our OK for a hook to be added. The hook name is of the * form "//" where the three components may * be decimal numbers or else aliases from the above lists. * * Connecting a hook amounts to opening the socket. Disconnecting * the hook closes the socket and destroys the node as well. */ static int ng_ksocket_newhook(node_p node, hook_p hook, const char *name0) { struct thread *td = curthread; /* XXX broken */ const priv_p priv = NG_NODE_PRIVATE(node); char *s1, *s2, name[NG_HOOKSIZ]; int family, type, protocol, error; /* Check if we're already connected */ if (priv->hook != NULL) return (EISCONN); if (priv->flags & KSF_CLONED) { if (priv->flags & KSF_EMBRYONIC) { /* Remove ourselves from our parent's embryo list */ LIST_REMOVE(priv, siblings); priv->flags &= ~KSF_EMBRYONIC; } } else { /* Extract family, type, and protocol from hook name */ snprintf(name, sizeof(name), "%s", name0); s1 = name; if ((s2 = strchr(s1, '/')) == NULL) return (EINVAL); *s2++ = '\0'; family = ng_ksocket_parse(ng_ksocket_families, s1, 0); if (family == -1) return (EINVAL); s1 = s2; if ((s2 = strchr(s1, '/')) == NULL) return (EINVAL); *s2++ = '\0'; type = ng_ksocket_parse(ng_ksocket_types, s1, 0); if (type == -1) return (EINVAL); s1 = s2; protocol = ng_ksocket_parse(ng_ksocket_protos, s1, family); if (protocol == -1) return (EINVAL); /* Create the socket */ error = socreate(family, &priv->so, type, protocol, td->td_ucred, td); if (error != 0) return (error); /* XXX call soreserve() ? */ } /* OK */ priv->hook = hook; /* * In case of misconfigured routing a packet may reenter * ksocket node recursively. Decouple stack to avoid possible * panics about sleeping with locks held. */ NG_HOOK_FORCE_QUEUE(hook); return(0); } static int ng_ksocket_connect(hook_p hook) { node_p node = NG_HOOK_NODE(hook); const priv_p priv = NG_NODE_PRIVATE(node); struct socket *const so = priv->so; /* Add our hook for incoming data and other events */ SOCKBUF_LOCK(&priv->so->so_rcv); soupcall_set(priv->so, SO_RCV, ng_ksocket_incoming, node); SOCKBUF_UNLOCK(&priv->so->so_rcv); SOCKBUF_LOCK(&priv->so->so_snd); soupcall_set(priv->so, SO_SND, ng_ksocket_incoming, node); SOCKBUF_UNLOCK(&priv->so->so_snd); SOCK_LOCK(priv->so); priv->so->so_state |= SS_NBIO; SOCK_UNLOCK(priv->so); /* * --Original comment-- * On a cloned socket we may have already received one or more * upcalls which we couldn't handle without a hook. Handle * those now. * We cannot call the upcall function directly * from here, because until this function has returned our * hook isn't connected. * * ---meta comment for -current --- * XXX This is dubius. * Upcalls between the time that the hook was * first created and now (on another processesor) will * be earlier on the queue than the request to finalise the hook. * By the time the hook is finalised, * The queued upcalls will have happened and the code * will have discarded them because of a lack of a hook. * (socket not open). * * This is a bad byproduct of the complicated way in which hooks * are now created (3 daisy chained async events). * * Since we are a netgraph operation * We know that we hold a lock on this node. This forces the * request we make below to be queued rather than implemented * immediately which will cause the upcall function to be called a bit * later. * However, as we will run any waiting queued operations immediately * after doing this one, if we have not finalised the other end * of the hook, those queued operations will fail. */ if (priv->flags & KSF_CLONED) { ng_send_fn(node, NULL, &ng_ksocket_incoming2, so, M_NOWAIT); } return (0); } /* * Receive a control message */ static int ng_ksocket_rcvmsg(node_p node, item_p item, hook_p lasthook) { struct thread *td = curthread; /* XXX broken */ const priv_p priv = NG_NODE_PRIVATE(node); struct socket *const so = priv->so; struct ng_mesg *resp = NULL; int error = 0; struct ng_mesg *msg; NGI_GET_MSG(item, msg); switch (msg->header.typecookie) { case NGM_KSOCKET_COOKIE: switch (msg->header.cmd) { case NGM_KSOCKET_BIND: { struct sockaddr *const sa = (struct sockaddr *)msg->data; /* Sanity check */ if (msg->header.arglen < SADATA_OFFSET || msg->header.arglen < sa->sa_len) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Bind */ error = sobind(so, sa, td); break; } case NGM_KSOCKET_LISTEN: { /* Sanity check */ if (msg->header.arglen != sizeof(int32_t)) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Listen */ so->so_state |= SS_NBIO; error = solisten(so, *((int32_t *)msg->data), td); if (error == 0) { SOLISTEN_LOCK(so); solisten_upcall_set(so, ng_ksocket_listen_upcall, priv); SOLISTEN_UNLOCK(so); } break; } case NGM_KSOCKET_ACCEPT: { /* Sanity check */ if (msg->header.arglen != 0) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Make sure the socket is capable of accepting */ if (!(so->so_options & SO_ACCEPTCONN)) ERROUT(EINVAL); if (priv->flags & KSF_ACCEPTING) ERROUT(EALREADY); /* * If a connection is already complete, take it. * Otherwise let the upcall function deal with * the connection when it comes in. Don't return * EWOULDBLOCK, per ng_ksocket(4) documentation. */ error = ng_ksocket_accept(priv); if (error == EWOULDBLOCK) error = 0; if (error != 0) ERROUT(error); priv->response_token = msg->header.token; priv->response_addr = NGI_RETADDR(item); break; } case NGM_KSOCKET_CONNECT: { struct sockaddr *const sa = (struct sockaddr *)msg->data; /* Sanity check */ if (msg->header.arglen < SADATA_OFFSET || msg->header.arglen < sa->sa_len) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Do connect */ if ((so->so_state & SS_ISCONNECTING) != 0) ERROUT(EALREADY); if ((error = soconnect(so, sa, td)) != 0) { so->so_state &= ~SS_ISCONNECTING; ERROUT(error); } if ((so->so_state & SS_ISCONNECTING) != 0) { /* We will notify the sender when we connect */ priv->response_token = msg->header.token; priv->response_addr = NGI_RETADDR(item); priv->flags |= KSF_CONNECTING; ERROUT(EINPROGRESS); } break; } case NGM_KSOCKET_GETNAME: case NGM_KSOCKET_GETPEERNAME: { int (*func)(struct socket *so, struct sockaddr *sa); struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; /* Sanity check */ if (msg->header.arglen != 0) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Get function */ if (msg->header.cmd == NGM_KSOCKET_GETPEERNAME) { - if ((so->so_state - & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) + if ((so->so_state & SS_ISCONNECTED) == 0) ERROUT(ENOTCONN); func = sopeeraddr; } else func = sosockaddr; /* Get local or peer address */ error = (*func)(so, (struct sockaddr *)&ss); if (error) break; /* Send it back in a response */ NG_MKRESPONSE(resp, msg, ss.ss_len, M_NOWAIT); if (resp != NULL) bcopy(&ss, resp->data, ss.ss_len); else error = ENOMEM; break; } case NGM_KSOCKET_GETOPT: { struct ng_ksocket_sockopt *ksopt = (struct ng_ksocket_sockopt *)msg->data; struct sockopt sopt; /* Sanity check */ if (msg->header.arglen != sizeof(*ksopt)) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Get response with room for option value */ NG_MKRESPONSE(resp, msg, sizeof(*ksopt) + NG_KSOCKET_MAX_OPTLEN, M_NOWAIT); if (resp == NULL) ERROUT(ENOMEM); /* Get socket option, and put value in the response */ sopt.sopt_dir = SOPT_GET; sopt.sopt_level = ksopt->level; sopt.sopt_name = ksopt->name; sopt.sopt_td = NULL; sopt.sopt_valsize = NG_KSOCKET_MAX_OPTLEN; ksopt = (struct ng_ksocket_sockopt *)resp->data; sopt.sopt_val = ksopt->value; if ((error = sogetopt(so, &sopt)) != 0) { NG_FREE_MSG(resp); break; } /* Set actual value length */ resp->header.arglen = sizeof(*ksopt) + sopt.sopt_valsize; break; } case NGM_KSOCKET_SETOPT: { struct ng_ksocket_sockopt *const ksopt = (struct ng_ksocket_sockopt *)msg->data; const int valsize = msg->header.arglen - sizeof(*ksopt); struct sockopt sopt; /* Sanity check */ if (valsize < 0) ERROUT(EINVAL); if (so == NULL) ERROUT(ENXIO); /* Set socket option */ sopt.sopt_dir = SOPT_SET; sopt.sopt_level = ksopt->level; sopt.sopt_name = ksopt->name; sopt.sopt_val = ksopt->value; sopt.sopt_valsize = valsize; sopt.sopt_td = NULL; error = sosetopt(so, &sopt); break; } default: error = EINVAL; break; } break; default: error = EINVAL; break; } done: NG_RESPOND_MSG(error, node, item, resp); NG_FREE_MSG(msg); return (error); } /* * Receive incoming data on our hook. Send it out the socket. */ static int ng_ksocket_rcvdata(hook_p hook, item_p item) { struct thread *td = curthread; /* XXX broken */ const node_p node = NG_HOOK_NODE(hook); const priv_p priv = NG_NODE_PRIVATE(node); struct socket *const so = priv->so; struct sockaddr *sa = NULL; int error; struct mbuf *m; #ifdef ALIGNED_POINTER struct mbuf *n; #endif /* ALIGNED_POINTER */ struct sa_tag *stag; /* Extract data */ NGI_GET_M(item, m); NG_FREE_ITEM(item); #ifdef ALIGNED_POINTER if (!ALIGNED_POINTER(mtod(m, caddr_t), uint32_t)) { n = m_defrag(m, M_NOWAIT); if (n == NULL) { m_freem(m); return (ENOBUFS); } m = n; } #endif /* ALIGNED_POINTER */ /* * Look if socket address is stored in packet tags. * If sockaddr is ours, or provided by a third party (zero id), * then we accept it. */ if (((stag = (struct sa_tag *)m_tag_locate(m, NGM_KSOCKET_COOKIE, NG_KSOCKET_TAG_SOCKADDR, NULL)) != NULL) && (stag->id == NG_NODE_ID(node) || stag->id == 0)) sa = &stag->sa; /* Reset specific mbuf flags to prevent addressing problems. */ m->m_flags &= ~(M_BCAST|M_MCAST); /* Send packet */ error = sosend(so, sa, 0, m, 0, 0, td); return (error); } /* * Destroy node */ static int ng_ksocket_shutdown(node_p node) { const priv_p priv = NG_NODE_PRIVATE(node); struct socket *so = priv->so; priv_p embryo; /* Close our socket (if any) */ if (priv->so != NULL) { if (SOLISTENING(so)) { SOLISTEN_LOCK(so); solisten_upcall_set(so, NULL, NULL); SOLISTEN_UNLOCK(so); } else { SOCK_RECVBUF_LOCK(so); soupcall_clear(so, SO_RCV); SOCK_RECVBUF_UNLOCK(so); SOCK_SENDBUF_LOCK(so); soupcall_clear(so, SO_SND); SOCK_SENDBUF_UNLOCK(so); } soclose(so); priv->so = NULL; } /* If we are an embryo, take ourselves out of the parent's list */ if (priv->flags & KSF_EMBRYONIC) { LIST_REMOVE(priv, siblings); priv->flags &= ~KSF_EMBRYONIC; } /* Remove any embryonic children we have */ while (!LIST_EMPTY(&priv->embryos)) { embryo = LIST_FIRST(&priv->embryos); ng_rmnode_self(embryo->node); } /* Take down netgraph node */ bzero(priv, sizeof(*priv)); free(priv, M_NETGRAPH_KSOCKET); NG_NODE_SET_PRIVATE(node, NULL); NG_NODE_UNREF(node); /* let the node escape */ return (0); } /* * Hook disconnection */ static int ng_ksocket_disconnect(hook_p hook) { KASSERT(NG_NODE_NUMHOOKS(NG_HOOK_NODE(hook)) == 0, ("%s: numhooks=%d?", __func__, NG_NODE_NUMHOOKS(NG_HOOK_NODE(hook)))); if (NG_NODE_IS_VALID(NG_HOOK_NODE(hook))) ng_rmnode_self(NG_HOOK_NODE(hook)); return (0); } /************************************************************************ HELPER STUFF ************************************************************************/ /* * You should not "just call" a netgraph node function from an external * asynchronous event. This is because in doing so you are ignoring the * locking on the netgraph nodes. Instead call your function via ng_send_fn(). * This will call the function you chose, but will first do all the * locking rigmarole. Your function MAY only be called at some distant future * time (several millisecs away) so don't give it any arguments * that may be revoked soon (e.g. on your stack). * * To decouple stack, we use queue version of ng_send_fn(). */ static int ng_ksocket_incoming(struct socket *so, void *arg, int waitflag) { const node_p node = arg; const priv_p priv = NG_NODE_PRIVATE(node); int wait = ((waitflag & M_WAITOK) ? NG_WAITOK : 0) | NG_QUEUE; /* * Even if node is not locked, as soon as we are called, we assume * it exist and it's private area is valid. With some care we can * access it. Mark node that incoming event for it was sent to * avoid unneded queue trashing. */ if (atomic_cmpset_int(&priv->fn_sent, 0, 1) && ng_send_fn1(node, NULL, &ng_ksocket_incoming2, so, 0, wait)) { atomic_store_rel_int(&priv->fn_sent, 0); } return (SU_OK); } /* * When incoming data is appended to the socket, we get notified here. * This is also called whenever a significant event occurs for the socket. * Our original caller may have queued this even some time ago and * we cannot trust that he even still exists. The node however is being * held with a reference by the queueing code and guarantied to be valid. */ static void ng_ksocket_incoming2(node_p node, hook_p hook, void *arg1, int arg2) { struct socket *so = arg1; const priv_p priv = NG_NODE_PRIVATE(node); struct ng_mesg *response; int error; KASSERT(so == priv->so, ("%s: wrong socket", __func__)); /* Allow next incoming event to be queued. */ atomic_store_rel_int(&priv->fn_sent, 0); /* Check whether a pending connect operation has completed */ if (priv->flags & KSF_CONNECTING) { if ((error = so->so_error) != 0) { so->so_error = 0; so->so_state &= ~SS_ISCONNECTING; } if (!(so->so_state & SS_ISCONNECTING)) { NG_MKMESSAGE(response, NGM_KSOCKET_COOKIE, NGM_KSOCKET_CONNECT, sizeof(int32_t), M_NOWAIT); if (response != NULL) { response->header.flags |= NGF_RESP; response->header.token = priv->response_token; *(int32_t *)response->data = error; /* * send an async "response" message * to the node that set us up * (if it still exists) */ NG_SEND_MSG_ID(error, node, response, priv->response_addr, 0); } priv->flags &= ~KSF_CONNECTING; } } /* * If we don't have a hook, we must handle data events later. When * the hook gets created and is connected, this upcall function * will be called again. */ if (priv->hook == NULL) return; /* Read and forward available mbufs. */ while (1) { struct uio uio; struct sockaddr *sa; struct mbuf *m; int flags; /* Try to get next packet from socket. */ uio.uio_td = NULL; uio.uio_resid = IP_MAXPACKET; flags = MSG_DONTWAIT; sa = NULL; if ((error = soreceive(so, (so->so_state & SS_ISCONNECTED) ? NULL : &sa, &uio, &m, NULL, &flags)) != 0) break; /* See if we got anything. */ if (flags & MSG_TRUNC) { m_freem(m); m = NULL; } if (m == NULL) { if (sa != NULL) free(sa, M_SONAME); break; } KASSERT(m->m_nextpkt == NULL, ("%s: nextpkt", __func__)); /* * Stream sockets do not have packet boundaries, so * we have to allocate a header mbuf and attach the * stream of data to it. */ if (so->so_type == SOCK_STREAM) { struct mbuf *mh; mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { m_freem(m); if (sa != NULL) free(sa, M_SONAME); break; } mh->m_next = m; for (; m; m = m->m_next) mh->m_pkthdr.len += m->m_len; m = mh; } /* Put peer's socket address (if any) into a tag */ if (sa != NULL) { struct sa_tag *stag; stag = (struct sa_tag *)m_tag_alloc(NGM_KSOCKET_COOKIE, NG_KSOCKET_TAG_SOCKADDR, sizeof(ng_ID_t) + sa->sa_len, M_NOWAIT); if (stag == NULL) { free(sa, M_SONAME); goto sendit; } bcopy(sa, &stag->sa, sa->sa_len); free(sa, M_SONAME); stag->id = NG_NODE_ID(node); m_tag_prepend(m, &stag->tag); } sendit: /* Forward data with optional peer sockaddr as packet tag */ NG_SEND_DATA_ONLY(error, priv->hook, m); } /* * If the peer has closed the connection, forward a 0-length mbuf * to indicate end-of-file. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE && !(priv->flags & KSF_EOFSEEN)) { struct mbuf *m; m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) NG_SEND_DATA_ONLY(error, priv->hook, m); priv->flags |= KSF_EOFSEEN; } } static int ng_ksocket_accept(priv_p priv) { struct socket *const head = priv->so; struct socket *so; struct sockaddr_storage ss = { .ss_len = sizeof(ss) }; struct ng_mesg *resp; struct ng_ksocket_accept *resp_data; node_p node; priv_p priv2; int len; int error; SOLISTEN_LOCK(head); error = solisten_dequeue(head, &so, SOCK_NONBLOCK); if (error == EWOULDBLOCK) { priv->flags |= KSF_ACCEPTING; return (error); } priv->flags &= ~KSF_ACCEPTING; if (error) return (error); if ((error = soaccept(so, (struct sockaddr *)&ss)) != 0) return (error); len = OFFSETOF(struct ng_ksocket_accept, addr); len += ss.ss_len; NG_MKMESSAGE(resp, NGM_KSOCKET_COOKIE, NGM_KSOCKET_ACCEPT, len, M_NOWAIT); if (resp == NULL) { soclose(so); goto out; } resp->header.flags |= NGF_RESP; resp->header.token = priv->response_token; /* Clone a ksocket node to wrap the new socket */ error = ng_make_node_common(&ng_ksocket_typestruct, &node); if (error) { free(resp, M_NETGRAPH); soclose(so); goto out; } if (ng_ksocket_constructor(node) != 0) { NG_NODE_UNREF(node); free(resp, M_NETGRAPH); soclose(so); goto out; } priv2 = NG_NODE_PRIVATE(node); priv2->so = so; priv2->flags |= KSF_CLONED | KSF_EMBRYONIC; /* * Insert the cloned node into a list of embryonic children * on the parent node. When a hook is created on the cloned * node it will be removed from this list. When the parent * is destroyed it will destroy any embryonic children it has. */ LIST_INSERT_HEAD(&priv->embryos, priv2, siblings); SOCKBUF_LOCK(&so->so_rcv); soupcall_set(so, SO_RCV, ng_ksocket_incoming, node); SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); soupcall_set(so, SO_SND, ng_ksocket_incoming, node); SOCKBUF_UNLOCK(&so->so_snd); /* Fill in the response data and send it or return it to the caller */ resp_data = (struct ng_ksocket_accept *)resp->data; resp_data->nodeid = NG_NODE_ID(node); bcopy(&ss, &resp_data->addr, ss.ss_len); NG_SEND_MSG_ID(error, node, resp, priv->response_addr, 0); out: return (0); } static int ng_ksocket_listen_upcall(struct socket *so, void *arg, int waitflag) { priv_p priv = arg; int wait = ((waitflag & M_WAITOK) ? NG_WAITOK : 0) | NG_QUEUE; ng_send_fn1(priv->node, NULL, &ng_ksocket_listen_upcall2, priv, 0, wait); return (SU_OK); } static void ng_ksocket_listen_upcall2(node_p node, hook_p hook, void *arg1, int arg2) { const priv_p priv = NG_NODE_PRIVATE(node); (void )ng_ksocket_accept(priv); } /* * Parse out either an integer value or an alias. */ static int ng_ksocket_parse(const struct ng_ksocket_alias *aliases, const char *s, int family) { int k, val; char *eptr; /* Try aliases */ for (k = 0; aliases[k].name != NULL; k++) { if (strcmp(s, aliases[k].name) == 0 && aliases[k].family == family) return aliases[k].value; } /* Try parsing as a number */ val = (int)strtoul(s, &eptr, 10); if (val < 0 || *eptr != '\0') return (-1); return (val); } diff --git a/sys/netinet/sctp_pcb.c b/sys/netinet/sctp_pcb.c index a1742b2fffca..1509ac13901e 100644 --- a/sys/netinet/sctp_pcb.c +++ b/sys/netinet/sctp_pcb.c @@ -1,7103 +1,7102 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET6 #include #endif #include #include #include /* FIX: we don't handle multiple link local scopes */ /* "scopeless" replacement IN6_ARE_ADDR_EQUAL */ #ifdef INET6 int SCTP6_ARE_ADDR_EQUAL(struct sockaddr_in6 *a, struct sockaddr_in6 *b) { struct sockaddr_in6 tmp_a, tmp_b; memcpy(&tmp_a, a, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_a, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } memcpy(&tmp_b, b, sizeof(struct sockaddr_in6)); if (sa6_embedscope(&tmp_b, MODULE_GLOBAL(ip6_use_defzone)) != 0) { return (0); } return (IN6_ARE_ADDR_EQUAL(&tmp_a.sin6_addr, &tmp_b.sin6_addr)); } #endif void sctp_fill_pcbinfo(struct sctp_pcbinfo *spcb) { /* * We really don't need to lock this, but I will just because it * does not hurt. */ SCTP_INP_INFO_RLOCK(); spcb->ep_count = SCTP_BASE_INFO(ipi_count_ep); spcb->asoc_count = SCTP_BASE_INFO(ipi_count_asoc); spcb->laddr_count = SCTP_BASE_INFO(ipi_count_laddr); spcb->raddr_count = SCTP_BASE_INFO(ipi_count_raddr); spcb->chk_count = SCTP_BASE_INFO(ipi_count_chunk); spcb->readq_count = SCTP_BASE_INFO(ipi_count_readq); spcb->stream_oque = SCTP_BASE_INFO(ipi_count_strmoq); spcb->free_chunks = SCTP_BASE_INFO(ipi_free_chunks); SCTP_INP_INFO_RUNLOCK(); } /*- * Addresses are added to VRF's (Virtual Router's). For BSD we * have only the default VRF 0. We maintain a hash list of * VRF's. Each VRF has its own list of sctp_ifn's. Each of * these has a list of addresses. When we add a new address * to a VRF we lookup the ifn/ifn_index, if the ifn does * not exist we create it and add it to the list of IFN's * within the VRF. Once we have the sctp_ifn, we add the * address to the list. So we look something like: * * hash-vrf-table * vrf-> ifn-> ifn -> ifn * vrf | * ... +--ifa-> ifa -> ifa * vrf * * We keep these separate lists since the SCTP subsystem will * point to these from its source address selection nets structure. * When an address is deleted it does not happen right away on * the SCTP side, it gets scheduled. What we do when a * delete happens is immediately remove the address from * the master list and decrement the refcount. As our * addip iterator works through and frees the src address * selection pointing to the sctp_ifa, eventually the refcount * will reach 0 and we will delete it. Note that it is assumed * that any locking on system level ifn/ifa is done at the * caller of these functions and these routines will only * lock the SCTP structures as they add or delete things. * * Other notes on VRF concepts. * - An endpoint can be in multiple VRF's * - An association lives within a VRF and only one VRF. * - Any incoming packet we can deduce the VRF for by * looking at the mbuf/pak inbound (for BSD its VRF=0 :D) * - Any downward send call or connect call must supply the * VRF via ancillary data or via some sort of set default * VRF socket option call (again for BSD no brainer since * the VRF is always 0). * - An endpoint may add multiple VRF's to it. * - Listening sockets can accept associations in any * of the VRF's they are in but the assoc will end up * in only one VRF (gotten from the packet or connect/send). * */ struct sctp_vrf * sctp_allocate_vrf(int vrf_id) { struct sctp_vrf *vrf = NULL; struct sctp_vrflist *bucket; /* First allocate the VRF structure */ vrf = sctp_find_vrf(vrf_id); if (vrf) { /* Already allocated */ return (vrf); } SCTP_MALLOC(vrf, struct sctp_vrf *, sizeof(struct sctp_vrf), SCTP_M_VRF); if (vrf == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif return (NULL); } /* setup the VRF */ memset(vrf, 0, sizeof(struct sctp_vrf)); vrf->vrf_id = vrf_id; LIST_INIT(&vrf->ifnlist); vrf->total_ifa_count = 0; vrf->refcount = 0; /* now also setup table ids */ SCTP_INIT_VRF_TABLEID(vrf); /* Init the HASH of addresses */ vrf->vrf_addr_hash = SCTP_HASH_INIT(SCTP_VRF_ADDR_HASH_SIZE, &vrf->vrf_addr_hashmark); if (vrf->vrf_addr_hash == NULL) { /* No memory */ #ifdef INVARIANTS panic("No memory for VRF:%d", vrf_id); #endif SCTP_FREE(vrf, SCTP_M_VRF); return (NULL); } /* Add it to the hash table */ bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_INSERT_HEAD(bucket, vrf, next_vrf); atomic_add_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); return (vrf); } struct sctp_ifn * sctp_find_ifn(void *ifn, uint32_t ifn_index) { struct sctp_ifn *sctp_ifnp; struct sctp_ifnlist *hash_ifn_head; /* * We assume the lock is held for the addresses if that's wrong * problems could occur :-) */ SCTP_IPI_ADDR_LOCK_ASSERT(); hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_FOREACH(sctp_ifnp, hash_ifn_head, next_bucket) { if (sctp_ifnp->ifn_index == ifn_index) { return (sctp_ifnp); } if (sctp_ifnp->ifn_p && ifn && (sctp_ifnp->ifn_p == ifn)) { return (sctp_ifnp); } } return (NULL); } struct sctp_vrf * sctp_find_vrf(uint32_t vrf_id) { struct sctp_vrflist *bucket; struct sctp_vrf *liste; bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(vrf_id & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH(liste, bucket, next_vrf) { if (vrf_id == liste->vrf_id) { return (liste); } } return (NULL); } void sctp_free_vrf(struct sctp_vrf *vrf) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&vrf->refcount)) { if (vrf->vrf_addr_hash) { SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); vrf->vrf_addr_hash = NULL; } /* We zero'd the count */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_vrfs), 1); } } void sctp_free_ifn(struct sctp_ifn *sctp_ifnp) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifnp->refcount)) { /* We zero'd the count */ if (sctp_ifnp->vrf) { sctp_free_vrf(sctp_ifnp->vrf); } SCTP_FREE(sctp_ifnp, SCTP_M_IFN); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); } } void sctp_update_ifn_mtu(uint32_t ifn_index, uint32_t mtu) { struct sctp_ifn *sctp_ifnp; sctp_ifnp = sctp_find_ifn((void *)NULL, ifn_index); if (sctp_ifnp != NULL) { sctp_ifnp->ifn_mtu = mtu; } } void sctp_free_ifa(struct sctp_ifa *sctp_ifap) { if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&sctp_ifap->refcount)) { /* We zero'd the count */ if (sctp_ifap->ifn_p) { sctp_free_ifn(sctp_ifap->ifn_p); } SCTP_FREE(sctp_ifap, SCTP_M_IFA); atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); } } static void sctp_delete_ifn(struct sctp_ifn *sctp_ifnp, int hold_addr_lock) { struct sctp_ifn *found; found = sctp_find_ifn(sctp_ifnp->ifn_p, sctp_ifnp->ifn_index); if (found == NULL) { /* Not in the list.. sorry */ return; } if (hold_addr_lock == 0) { SCTP_IPI_ADDR_WLOCK(); } else { SCTP_IPI_ADDR_WLOCK_ASSERT(); } LIST_REMOVE(sctp_ifnp, next_bucket); LIST_REMOVE(sctp_ifnp, next_ifn); if (hold_addr_lock == 0) { SCTP_IPI_ADDR_WUNLOCK(); } /* Take away the reference, and possibly free it */ sctp_free_ifn(sctp_ifnp); } void sctp_mark_ifa_addr_down(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unusable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_VALID); sctp_ifap->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE; out: SCTP_IPI_ADDR_RUNLOCK(); } void sctp_mark_ifa_addr_up(uint32_t vrf_id, struct sockaddr *addr, const char *if_name, uint32_t ifn_index) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap; SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find sctp_ifap for address\n"); goto out; } if (sctp_ifap->ifn_p == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA has no IFN - can't mark unusable\n"); goto out; } if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) != 0) { SCTPDBG(SCTP_DEBUG_PCB4, "IFN %s of IFA not the same as %s\n", sctp_ifap->ifn_p->ifn_name, if_name); goto out; } } else { if (sctp_ifap->ifn_p->ifn_index != ifn_index) { SCTPDBG(SCTP_DEBUG_PCB4, "IFA owned by ifn_index:%d down command for ifn_index:%d - ignored\n", sctp_ifap->ifn_p->ifn_index, ifn_index); goto out; } } sctp_ifap->localifa_flags &= (~SCTP_ADDR_IFA_UNUSEABLE); sctp_ifap->localifa_flags |= SCTP_ADDR_VALID; out: SCTP_IPI_ADDR_RUNLOCK(); } /*- * Add an ifa to an ifn. * Register the interface as necessary. * NOTE: ADDR write lock MUST be held. */ static void sctp_add_ifa_to_ifn(struct sctp_ifn *sctp_ifnp, struct sctp_ifa *sctp_ifap) { int ifa_af; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); /* update address counts */ sctp_ifnp->ifa_count++; ifa_af = sctp_ifap->address.sa.sa_family; switch (ifa_af) { #ifdef INET case AF_INET: sctp_ifnp->num_v4++; break; #endif #ifdef INET6 case AF_INET6: sctp_ifnp->num_v6++; break; #endif default: break; } if (sctp_ifnp->ifa_count == 1) { /* register the new interface */ sctp_ifnp->registered_af = ifa_af; } } /*- * Remove an ifa from its ifn. * If no more addresses exist, remove the ifn too. Otherwise, re-register * the interface based on the remaining address families left. * NOTE: ADDR write lock MUST be held. */ static void sctp_remove_ifa_from_ifn(struct sctp_ifa *sctp_ifap) { LIST_REMOVE(sctp_ifap, next_ifa); if (sctp_ifap->ifn_p) { /* update address counts */ sctp_ifap->ifn_p->ifa_count--; switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: sctp_ifap->ifn_p->num_v4--; break; #endif #ifdef INET6 case AF_INET6: sctp_ifap->ifn_p->num_v6--; break; #endif default: break; } if (LIST_EMPTY(&sctp_ifap->ifn_p->ifalist)) { /* remove the ifn, possibly freeing it */ sctp_delete_ifn(sctp_ifap->ifn_p, SCTP_ADDR_LOCKED); } else { /* re-register address family type, if needed */ if ((sctp_ifap->ifn_p->num_v6 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET6)) { sctp_ifap->ifn_p->registered_af = AF_INET; } else if ((sctp_ifap->ifn_p->num_v4 == 0) && (sctp_ifap->ifn_p->registered_af == AF_INET)) { sctp_ifap->ifn_p->registered_af = AF_INET6; } /* free the ifn refcount */ sctp_free_ifn(sctp_ifap->ifn_p); } sctp_ifap->ifn_p = NULL; } } struct sctp_ifa * sctp_add_addr_to_vrf(uint32_t vrf_id, void *ifn, uint32_t ifn_index, uint32_t ifn_type, const char *if_name, void *ifa, struct sockaddr *addr, uint32_t ifa_flags, int dynamic_add) { struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifnp, *new_sctp_ifnp; struct sctp_ifa *sctp_ifap, *new_sctp_ifap; struct sctp_ifalist *hash_addr_head; struct sctp_ifnlist *hash_ifn_head; uint32_t hash_of_addr; int new_ifn_af = 0; #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: adding address: ", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif SCTP_MALLOC(new_sctp_ifnp, struct sctp_ifn *, sizeof(struct sctp_ifn), SCTP_M_IFN); if (new_sctp_ifnp == NULL) { #ifdef INVARIANTS panic("No memory for IFN"); #endif return (NULL); } SCTP_MALLOC(new_sctp_ifap, struct sctp_ifa *, sizeof(struct sctp_ifa), SCTP_M_IFA); if (new_sctp_ifap == NULL) { #ifdef INVARIANTS panic("No memory for IFA"); #endif SCTP_FREE(new_sctp_ifnp, SCTP_M_IFN); return (NULL); } SCTP_IPI_ADDR_WLOCK(); sctp_ifnp = sctp_find_ifn(ifn, ifn_index); if (sctp_ifnp) { vrf = sctp_ifnp->vrf; } else { vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { vrf = sctp_allocate_vrf(vrf_id); if (vrf == NULL) { SCTP_IPI_ADDR_WUNLOCK(); SCTP_FREE(new_sctp_ifnp, SCTP_M_IFN); SCTP_FREE(new_sctp_ifap, SCTP_M_IFA); return (NULL); } } } if (sctp_ifnp == NULL) { /* * build one and add it, can't hold lock until after malloc * done though. */ sctp_ifnp = new_sctp_ifnp; new_sctp_ifnp = NULL; memset(sctp_ifnp, 0, sizeof(struct sctp_ifn)); sctp_ifnp->ifn_index = ifn_index; sctp_ifnp->ifn_p = ifn; sctp_ifnp->ifn_type = ifn_type; sctp_ifnp->refcount = 0; sctp_ifnp->vrf = vrf; atomic_add_int(&vrf->refcount, 1); sctp_ifnp->ifn_mtu = SCTP_GATHER_MTU_FROM_IFN_INFO(ifn, ifn_index); if (if_name != NULL) { SCTP_SNPRINTF(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", if_name); } else { SCTP_SNPRINTF(sctp_ifnp->ifn_name, SCTP_IFNAMSIZ, "%s", "unknown"); } hash_ifn_head = &SCTP_BASE_INFO(vrf_ifn_hash)[(ifn_index & SCTP_BASE_INFO(vrf_ifn_hashmark))]; LIST_INIT(&sctp_ifnp->ifalist); LIST_INSERT_HEAD(hash_ifn_head, sctp_ifnp, next_bucket); LIST_INSERT_HEAD(&vrf->ifnlist, sctp_ifnp, next_ifn); atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifns), 1); new_ifn_af = 1; } sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Hmm, it already exists? */ if ((sctp_ifap->ifn_p) && (sctp_ifap->ifn_p->ifn_index == ifn_index)) { SCTPDBG(SCTP_DEBUG_PCB4, "Using existing ifn %s (0x%x) for ifa %p\n", sctp_ifap->ifn_p->ifn_name, ifn_index, (void *)sctp_ifap); if (new_ifn_af) { /* Remove the created one that we don't want */ sctp_delete_ifn(sctp_ifnp, SCTP_ADDR_LOCKED); } if (sctp_ifap->localifa_flags & SCTP_BEING_DELETED) { /* easy to solve, just switch back to active */ SCTPDBG(SCTP_DEBUG_PCB4, "Clearing deleted ifa flag\n"); sctp_ifap->localifa_flags = SCTP_ADDR_VALID; sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifap->ifn_p->refcount, 1); } exit_stage_left: SCTP_IPI_ADDR_WUNLOCK(); if (new_sctp_ifnp != NULL) { SCTP_FREE(new_sctp_ifnp, SCTP_M_IFN); } SCTP_FREE(new_sctp_ifap, SCTP_M_IFA); return (sctp_ifap); } else { if (sctp_ifap->ifn_p) { /* * The last IFN gets the address, remove the * old one */ SCTPDBG(SCTP_DEBUG_PCB4, "Moving ifa %p from %s (0x%x) to %s (0x%x)\n", (void *)sctp_ifap, sctp_ifap->ifn_p->ifn_name, sctp_ifap->ifn_p->ifn_index, if_name, ifn_index); /* remove the address from the old ifn */ sctp_remove_ifa_from_ifn(sctp_ifap); /* move the address over to the new ifn */ sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); goto exit_stage_left; } else { /* repair ifnp which was NULL ? */ sctp_ifap->localifa_flags = SCTP_ADDR_VALID; SCTPDBG(SCTP_DEBUG_PCB4, "Repairing ifn %p for ifa %p\n", (void *)sctp_ifnp, (void *)sctp_ifap); sctp_add_ifa_to_ifn(sctp_ifnp, sctp_ifap); } goto exit_stage_left; } } sctp_ifap = new_sctp_ifap; memset(sctp_ifap, 0, sizeof(struct sctp_ifa)); sctp_ifap->ifn_p = sctp_ifnp; atomic_add_int(&sctp_ifnp->refcount, 1); sctp_ifap->vrf_id = vrf_id; sctp_ifap->ifa = ifa; memcpy(&sctp_ifap->address, addr, addr->sa_len); sctp_ifap->localifa_flags = SCTP_ADDR_VALID | SCTP_ADDR_DEFER_USE; sctp_ifap->flags = ifa_flags; /* Set scope */ switch (sctp_ifap->address.sa.sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = &sctp_ifap->address.sin; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN4_ISLOOPBACK_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_loop = 1; } if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v4++; if (new_ifn_af) new_ifn_af = AF_INET; break; } #endif #ifdef INET6 case AF_INET6: { /* ok to use deprecated addresses? */ struct sockaddr_in6 *sin6; sin6 = &sctp_ifap->address.sin6; if (SCTP_IFN_IS_IFT_LOOP(sctp_ifap->ifn_p) || (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))) { sctp_ifap->src_is_loop = 1; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { sctp_ifap->src_is_priv = 1; } sctp_ifnp->num_v6++; if (new_ifn_af) new_ifn_af = AF_INET6; break; } #endif default: new_ifn_af = 0; break; } hash_of_addr = sctp_get_ifa_hash_val(&sctp_ifap->address.sa); if ((sctp_ifap->src_is_priv == 0) && (sctp_ifap->src_is_loop == 0)) { sctp_ifap->src_is_glob = 1; } hash_addr_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)]; LIST_INSERT_HEAD(hash_addr_head, sctp_ifap, next_bucket); sctp_ifap->refcount = 1; LIST_INSERT_HEAD(&sctp_ifnp->ifalist, sctp_ifap, next_ifa); sctp_ifnp->ifa_count++; vrf->total_ifa_count++; atomic_add_int(&SCTP_BASE_INFO(ipi_count_ifas), 1); if (new_ifn_af) { sctp_ifnp->registered_af = new_ifn_af; } SCTP_IPI_ADDR_WUNLOCK(); if (new_sctp_ifnp != NULL) { SCTP_FREE(new_sctp_ifnp, SCTP_M_IFN); } if (dynamic_add) { /* * Bump up the refcount so that when the timer completes it * will drop back down. */ struct sctp_laddr *wi; atomic_add_int(&sctp_ifap->refcount, 1); wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Opps, must decrement the count */ sctp_del_addr_from_vrf(vrf_id, addr, ifn_index, if_name); return (NULL); } SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_ADD_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); } else { /* it's ready for use */ sctp_ifap->localifa_flags &= ~SCTP_ADDR_DEFER_USE; } return (sctp_ifap); } void sctp_del_addr_from_vrf(uint32_t vrf_id, struct sockaddr *addr, uint32_t ifn_index, const char *if_name) { struct sctp_vrf *vrf; struct sctp_ifa *sctp_ifap = NULL; SCTP_IPI_ADDR_WLOCK(); vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { SCTPDBG(SCTP_DEBUG_PCB4, "Can't find vrf_id 0x%x\n", vrf_id); goto out_now; } #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB4, "vrf_id 0x%x: deleting address:", vrf_id); SCTPDBG_ADDR(SCTP_DEBUG_PCB4, addr); #endif sctp_ifap = sctp_find_ifa_by_addr(addr, vrf->vrf_id, SCTP_ADDR_LOCKED); if (sctp_ifap) { /* Validate the delete */ if (sctp_ifap->ifn_p) { int valid = 0; /*- * The name has priority over the ifn_index * if its given. */ if (if_name) { if (strncmp(if_name, sctp_ifap->ifn_p->ifn_name, SCTP_IFNAMSIZ) == 0) { /* They match its a correct delete */ valid = 1; } } if (!valid) { /* last ditch check ifn_index */ if (ifn_index == sctp_ifap->ifn_p->ifn_index) { valid = 1; } } if (!valid) { SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s does not match addresses\n", ifn_index, ((if_name == NULL) ? "NULL" : if_name)); SCTPDBG(SCTP_DEBUG_PCB4, "ifn:%d ifname:%s - ignoring delete\n", sctp_ifap->ifn_p->ifn_index, sctp_ifap->ifn_p->ifn_name); SCTP_IPI_ADDR_WUNLOCK(); return; } } SCTPDBG(SCTP_DEBUG_PCB4, "Deleting ifa %p\n", (void *)sctp_ifap); sctp_ifap->localifa_flags &= SCTP_ADDR_VALID; /* * We don't set the flag. This means that the structure will * hang around in EP's that have bound specific to it until * they close. This gives us TCP like behavior if someone * removes an address (or for that matter adds it right * back). */ /* sctp_ifap->localifa_flags |= SCTP_BEING_DELETED; */ vrf->total_ifa_count--; LIST_REMOVE(sctp_ifap, next_bucket); sctp_remove_ifa_from_ifn(sctp_ifap); } #ifdef SCTP_DEBUG else { SCTPDBG(SCTP_DEBUG_PCB4, "Del Addr-ifn:%d Could not find address:", ifn_index); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif out_now: SCTP_IPI_ADDR_WUNLOCK(); if (sctp_ifap) { struct sctp_laddr *wi; wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { /* * Gak, what can we do? We have lost an address * change can you say HOSED? */ SCTPDBG(SCTP_DEBUG_PCB4, "Lost an address change?\n"); /* Oops, must decrement the count */ sctp_free_ifa(sctp_ifap); return; } SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = sctp_ifap; wi->action = SCTP_DEL_IP_ADDRESS; SCTP_WQ_ADDR_LOCK(); /* * Should this really be a tailq? As it is we will process * the newest first :-0 */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); } return; } static int sctp_does_stcb_own_this_addr(struct sctp_tcb *stcb, struct sockaddr *to) { int loopback_scope; #if defined(INET) int ipv4_local_scope, ipv4_addr_legal; #endif #if defined(INET6) int local_scope, site_scope, ipv6_addr_legal; #endif struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; loopback_scope = stcb->asoc.scope.loopback_scope; #if defined(INET) ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope; ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal; #endif #if defined(INET6) local_scope = stcb->asoc.scope.local_scope; site_scope = stcb->asoc.scope.site_scope; ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal; #endif SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { /* no vrf, no addresses */ SCTP_IPI_ADDR_RUNLOCK(); return (0); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (sctp_is_addr_restricted(stcb, sctp_ifa) && (!sctp_is_addr_pending(stcb, sctp_ifa))) { /* * We allow pending addresses, where * we have sent an asconf-add to be * considered valid. */ continue; } if (sctp_ifa->address.sa.sa_family != to->sa_family) { continue; } switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin, *rsin; sin = &sctp_ifa->address.sin; rsin = (struct sockaddr_in *)to; if ((ipv4_local_scope == 0) && IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { continue; } if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6, *rsin6; sin6 = &sctp_ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } } break; #endif default: /* TSNH */ break; } } } } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n"); continue; } if (sctp_is_addr_restricted(stcb, laddr->ifa) && (!sctp_is_addr_pending(stcb, laddr->ifa))) { /* * We allow pending addresses, where we have * sent an asconf-add to be considered * valid. */ continue; } if (laddr->ifa->address.sa.sa_family != to->sa_family) { continue; } switch (to->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = &laddr->ifa->address.sin; rsin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = &laddr->ifa->address.sin6; rsin6 = (struct sockaddr_in6 *)to; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { SCTP_IPI_ADDR_RUNLOCK(); return (1); } break; } #endif default: /* TSNH */ break; } } } SCTP_IPI_ADDR_RUNLOCK(); return (0); } static struct sctp_tcb * sctp_tcb_special_locate(struct sctp_inpcb **inp_p, struct sockaddr *from, struct sockaddr *to, struct sctp_nets **netp, uint32_t vrf_id) { /**** ASSUMES THE CALLER holds the INP_INFO_RLOCK */ /* * If we support the TCP model, then we must now dig through to see * if we can find our endpoint in the list of tcp ep's. */ uint16_t lport, rport; struct sctppcbhead *ephead; struct sctp_inpcb *inp; struct sctp_laddr *laddr; struct sctp_tcb *stcb; struct sctp_nets *net; if ((to == NULL) || (from == NULL)) { return (NULL); } switch (to->sa_family) { #ifdef INET case AF_INET: if (from->sa_family == AF_INET) { lport = ((struct sockaddr_in *)to)->sin_port; rport = ((struct sockaddr_in *)from)->sin_port; } else { return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (from->sa_family == AF_INET6) { lport = ((struct sockaddr_in6 *)to)->sin6_port; rport = ((struct sockaddr_in6 *)from)->sin6_port; } else { return (NULL); } break; #endif default: return (NULL); } ephead = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; /* * Ok now for each of the guys in this bucket we must look and see: * - Does the remote port match. - Does there single association's * addresses match this address (to). If so we update p_ep to point * to this ep and return the tcb from it. */ LIST_FOREACH(inp, ephead, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if (lport != inp->sctp_lport) { SCTP_INP_RUNLOCK(inp); continue; } switch (to->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)to; if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)to; if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; } #endif default: SCTP_INP_RUNLOCK(inp); continue; } if (inp->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(inp); continue; } /* check to see if the ep has one of the addresses */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* We are NOT bound all, so look further */ int match = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "ifa being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == to->sa_family) { /* see if it matches */ #ifdef INET if (from->sa_family == AF_INET) { struct sockaddr_in *intf_addr, *sin; intf_addr = &laddr->ifa->address.sin; sin = (struct sockaddr_in *)to; if (sin->sin_addr.s_addr == intf_addr->sin_addr.s_addr) { match = 1; break; } } #endif #ifdef INET6 if (from->sa_family == AF_INET6) { struct sockaddr_in6 *intf_addr6; struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *) to; intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { match = 1; break; } } #endif } } if (match == 0) { /* This endpoint does not have this address */ SCTP_INP_RUNLOCK(inp); continue; } } /* * Ok if we hit here the ep has the address, does it hold * the tcb? */ /* XXX: Why don't we TAILQ_FOREACH through sctp_asoc_list? */ stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); continue; } SCTP_TCB_LOCK(stcb); if (!sctp_does_stcb_own_this_addr(stcb, to)) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } if (!sctp_does_stcb_own_this_addr(stcb, to)) { SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); continue; } /* Does this TCB have a matching address? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._l_addr.sa.sa_family != from->sa_family) { /* not the same family, can't be a match */ continue; } switch (from->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *)&net->ro._l_addr; rsin = (struct sockaddr_in *)from; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)from; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } /* * Update the endpoint * pointer */ *inp_p = inp; SCTP_INP_RUNLOCK(inp); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); } return (NULL); } /* * rules for use * * 1) If I return a NULL you must decrement any INP ref cnt. 2) If I find an * stcb, both will be locked (locked_tcb and stcb) but decrement will be done * (if locked == NULL). 3) Decrement happens on return ONLY if locked == * NULL. */ struct sctp_tcb * sctp_findassociation_ep_addr(struct sctp_inpcb **inp_p, struct sockaddr *remote, struct sctp_nets **netp, struct sockaddr *local, struct sctp_tcb *locked_tcb) { struct sctpasochead *head; struct sctp_inpcb *inp; struct sctp_tcb *stcb = NULL; struct sctp_nets *net; uint16_t rport; inp = *inp_p; switch (remote->sa_family) { #ifdef INET case AF_INET: rport = (((struct sockaddr_in *)remote)->sin_port); break; #endif #ifdef INET6 case AF_INET6: rport = (((struct sockaddr_in6 *)remote)->sin6_port); break; #endif default: return (NULL); } if (locked_tcb) { /* * UN-lock so we can do proper locking here this occurs when * called from load_addresses_from_init. */ atomic_add_int(&locked_tcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(locked_tcb); } SCTP_INP_INFO_RLOCK(); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /*- * Now either this guy is our listener or it's the * connector. If it is the one that issued the connect, then * it's only chance is to be the first TCB in the list. If * it is the acceptor, then do the special_lookup to hash * and find the real inp. */ if ((inp->sctp_socket) && SCTP_IS_LISTENING(inp)) { /* to is peer addr, from is my addr */ stcb = sctp_tcb_special_locate(inp_p, remote, local, netp, inp->def_vrf_id); if ((stcb != NULL) && (locked_tcb == NULL)) { /* we have a locked tcb, lower refcount */ SCTP_INP_DECR_REF(inp); } if ((locked_tcb != NULL) && (locked_tcb != stcb)) { SCTP_INP_RLOCK(locked_tcb->sctp_ep); SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); SCTP_INP_RUNLOCK(locked_tcb->sctp_ep); } SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto null_return; } SCTP_TCB_LOCK(stcb); if (stcb->rport != rport) { /* remote port does not match. */ SCTP_TCB_UNLOCK(stcb); goto null_return; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); goto null_return; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); goto null_return; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } else { SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { goto null_return; } head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(rport, inp->sctp_hashmark)]; LIST_FOREACH(stcb, head, sctp_tcbhash) { if (stcb->rport != rport) { /* remote port does not match */ continue; } SCTP_TCB_LOCK(stcb); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } if (local && !sctp_does_stcb_own_this_addr(stcb, local)) { SCTP_TCB_UNLOCK(stcb); continue; } /* now look at the list of remote addresses */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { #ifdef INVARIANTS if (net == (TAILQ_NEXT(net, sctp_next))) { panic("Corrupt net list"); } #endif if (net->ro._l_addr.sa.sa_family != remote->sa_family) { /* not the same family */ continue; } switch (remote->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin, *rsin; sin = (struct sockaddr_in *) &net->ro._l_addr; rsin = (struct sockaddr_in *)remote; if (sin->sin_addr.s_addr == rsin->sin_addr.s_addr) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6, *rsin6; sin6 = (struct sockaddr_in6 *) &net->ro._l_addr; rsin6 = (struct sockaddr_in6 *)remote; if (SCTP6_ARE_ADDR_EQUAL(sin6, rsin6)) { /* found it */ if (netp != NULL) { *netp = net; } if (locked_tcb == NULL) { SCTP_INP_DECR_REF(inp); } else if (locked_tcb != stcb) { SCTP_TCB_LOCK(locked_tcb); } if (locked_tcb) { atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); return (stcb); } break; } #endif default: /* TSNH */ break; } } SCTP_TCB_UNLOCK(stcb); } } null_return: /* clean up for returning null */ if (locked_tcb) { SCTP_TCB_LOCK(locked_tcb); atomic_subtract_int(&locked_tcb->asoc.refcnt, 1); } SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_RUNLOCK(); /* not found */ return (NULL); } /* * Find an association for a specific endpoint using the association id given * out in the COMM_UP notification */ struct sctp_tcb * sctp_findasoc_ep_asocid_locked(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { /* * Use my the assoc_id to find a endpoint */ struct sctpasochead *head; struct sctp_tcb *stcb; uint32_t id; if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_PRINTF("TSNH ep_associd0\n"); return (NULL); } id = (uint32_t)asoc_id; head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; if (head == NULL) { /* invalid id TSNH */ SCTP_PRINTF("TSNH ep_associd1\n"); return (NULL); } LIST_FOREACH(stcb, head, sctp_tcbasocidhash) { if (stcb->asoc.assoc_id == id) { if (inp != stcb->sctp_ep) { /* * some other guy has the same id active (id * collision ??). */ SCTP_PRINTF("TSNH ep_associd2\n"); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { continue; } if (want_lock) { SCTP_TCB_LOCK(stcb); } return (stcb); } } return (NULL); } struct sctp_tcb * sctp_findassociation_ep_asocid(struct sctp_inpcb *inp, sctp_assoc_t asoc_id, int want_lock) { struct sctp_tcb *stcb; SCTP_INP_RLOCK(inp); stcb = sctp_findasoc_ep_asocid_locked(inp, asoc_id, want_lock); SCTP_INP_RUNLOCK(inp); return (stcb); } /* * Endpoint probe expects that the INP_INFO is locked. */ static struct sctp_inpcb * sctp_endpoint_probe(struct sockaddr *nam, struct sctppcbhead *head, uint16_t lport, uint32_t vrf_id) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; struct sockaddr_in6 *intf_addr6; #endif int fnd; #ifdef INET sin = NULL; #endif #ifdef INET6 sin6 = NULL; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; break; #endif default: /* unsupported family */ return (NULL); } if (head == NULL) return (NULL); LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) && (inp->sctp_lport == lport)) { /* got it */ switch (nam->sa_family) { #ifdef INET case AF_INET: if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* * IPv4 on a IPv6 socket with ONLY * IPv6 set */ SCTP_INP_RUNLOCK(inp); continue; } if (prison_check_ip4(inp->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; #endif #ifdef INET6 case AF_INET6: /* * A V6 address and the endpoint is NOT * bound V6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { SCTP_INP_RUNLOCK(inp); continue; } if (prison_check_ip6(inp->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { SCTP_INP_RUNLOCK(inp); continue; } break; #endif default: break; } /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; SCTP_INP_RUNLOCK(inp); if (!fnd) continue; return (inp); } SCTP_INP_RUNLOCK(inp); } switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == INADDR_ANY) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Can't hunt for one that has no address specified */ return (NULL); } break; #endif default: break; } /* * ok, not bound to all so see if we can find a EP bound to this * address. */ LIST_FOREACH(inp, head, sctp_hash) { SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(inp); continue; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL)) { SCTP_INP_RUNLOCK(inp); continue; } /* * Ok this could be a likely candidate, look at all of its * addresses */ if (inp->sctp_lport != lport) { SCTP_INP_RUNLOCK(inp); continue; } /* does a VRF id match? */ fnd = 0; if (inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) { SCTP_INP_RUNLOCK(inp); continue; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } SCTPDBG(SCTP_DEBUG_PCB1, "Ok laddr->ifa:%p is possible, ", (void *)laddr->ifa); if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { SCTPDBG(SCTP_DEBUG_PCB1, "Huh IFA being deleted\n"); continue; } if (laddr->ifa->address.sa.sa_family == nam->sa_family) { /* possible, see if it matches */ switch (nam->sa_family) { #ifdef INET case AF_INET: if (sin->sin_addr.s_addr == laddr->ifa->address.sin.sin_addr.s_addr) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif #ifdef INET6 case AF_INET6: intf_addr6 = &laddr->ifa->address.sin6; if (SCTP6_ARE_ADDR_EQUAL(sin6, intf_addr6)) { SCTP_INP_RUNLOCK(inp); return (inp); } break; #endif } } } SCTP_INP_RUNLOCK(inp); } return (NULL); } static struct sctp_inpcb * sctp_isport_inuse(struct sctp_inpcb *inp, uint16_t lport, uint32_t vrf_id) { struct sctppcbhead *head; struct sctp_inpcb *t_inp; int fnd; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; LIST_FOREACH(t_inp, head, sctp_hash) { if (t_inp->sctp_lport != lport) { continue; } /* is it in the VRF in question */ fnd = 0; if (t_inp->def_vrf_id == vrf_id) fnd = 1; if (!fnd) continue; /* This one is in use. */ /* check the v6/v4 binding issue */ if ((t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(t_inp)) { if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* collision in V6 space */ return (t_inp); } else { /* inp is BOUND_V4 no conflict */ continue; } } else if (t_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { /* t_inp is bound v4 and v6, conflict always */ return (t_inp); } else { /* t_inp is bound only V4 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* no conflict */ continue; } /* else fall through to conflict */ } return (t_inp); } return (NULL); } int sctp_swap_inpcb_for_listen(struct sctp_inpcb *inp) { /* For 1-2-1 with port reuse */ struct sctppcbhead *head; struct sctp_inpcb *tinp, *ninp; SCTP_INP_INFO_WLOCK_ASSERT(); SCTP_INP_WLOCK_ASSERT(inp); if (sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) { /* only works with port reuse on */ return (-1); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) { return (0); } SCTP_INP_WUNLOCK(inp); head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; /* Kick out all non-listeners to the TCP hash */ LIST_FOREACH_SAFE(tinp, head, sctp_hash, ninp) { if (tinp->sctp_lport != inp->sctp_lport) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (tinp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { continue; } if (SCTP_IS_LISTENING(tinp)) { continue; } SCTP_INP_WLOCK(tinp); LIST_REMOVE(tinp, sctp_hash); head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(tinp->sctp_lport, SCTP_BASE_INFO(hashtcpmark))]; tinp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; LIST_INSERT_HEAD(head, tinp, sctp_hash); SCTP_INP_WUNLOCK(tinp); } SCTP_INP_WLOCK(inp); /* Pull from where he was */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags &= ~SCTP_PCB_FLAGS_IN_TCPPOOL; head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(inp->sctp_lport, SCTP_BASE_INFO(hashmark))]; LIST_INSERT_HEAD(head, inp, sctp_hash); return (0); } struct sctp_inpcb * sctp_pcb_findep(struct sockaddr *nam, int find_tcp_pool, int have_lock, uint32_t vrf_id) { /* * First we check the hash table to see if someone has this port * bound with just the port. */ struct sctp_inpcb *inp; struct sctppcbhead *head; int lport; unsigned int i; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif switch (nam->sa_family) { #ifdef INET case AF_INET: sin = (struct sockaddr_in *)nam; lport = sin->sin_port; break; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)nam; lport = sin6->sin6_port; break; #endif default: return (NULL); } /* * I could cheat here and just cast to one of the types but we will * do it right. It also provides the check against an Unsupported * type too. */ /* Find the head of the ALLADDR chain */ if (have_lock == 0) { SCTP_INP_INFO_RLOCK(); } head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); /* * If the TCP model exists it could be that the main listening * endpoint is gone but there still exists a connected socket for * this guy. If so we can return the first one that we find. This * may NOT be the correct one so the caller should be wary on the * returned INP. Currently the only caller that sets find_tcp_pool * is in bindx where we are verifying that a user CAN bind the * address. He either has bound it already, or someone else has, or * its open to bind, so this is good enough. */ if (inp == NULL && find_tcp_pool) { for (i = 0; i < SCTP_BASE_INFO(hashtcpmark) + 1; i++) { head = &SCTP_BASE_INFO(sctp_tcpephash)[i]; inp = sctp_endpoint_probe(nam, head, lport, vrf_id); if (inp) { break; } } } if (inp) { SCTP_INP_INCR_REF(inp); } if (have_lock == 0) { SCTP_INP_INFO_RUNLOCK(); } return (inp); } /* * Find an association for an endpoint with the pointer to whom you want to * send to and the endpoint pointer. The address can be IPv4 or IPv6. We may * need to change the *to to some other struct like a mbuf... */ struct sctp_tcb * sctp_findassociation_addr_sa(struct sockaddr *from, struct sockaddr *to, struct sctp_inpcb **inp_p, struct sctp_nets **netp, int find_tcp_pool, uint32_t vrf_id) { struct sctp_inpcb *inp = NULL; struct sctp_tcb *stcb; SCTP_INP_INFO_RLOCK(); if (find_tcp_pool) { if (inp_p != NULL) { stcb = sctp_tcb_special_locate(inp_p, from, to, netp, vrf_id); } else { stcb = sctp_tcb_special_locate(&inp, from, to, netp, vrf_id); } if (stcb != NULL) { SCTP_INP_INFO_RUNLOCK(); return (stcb); } } inp = sctp_pcb_findep(to, 0, 1, vrf_id); if (inp_p != NULL) { *inp_p = inp; } SCTP_INP_INFO_RUNLOCK(); if (inp == NULL) { return (NULL); } /* * ok, we have an endpoint, now lets find the assoc for it (if any) * we now place the source address or from in the to of the find * endpoint call. Since in reality this chain is used from the * inbound packet side. */ if (inp_p != NULL) { stcb = sctp_findassociation_ep_addr(inp_p, from, netp, to, NULL); } else { stcb = sctp_findassociation_ep_addr(&inp, from, netp, to, NULL); } return (stcb); } /* * This routine will grub through the mbuf that is a INIT or INIT-ACK and * find all addresses that the sender has specified in any address list. Each * address will be used to lookup the TCB and see if one exits. */ static struct sctp_tcb * sctp_findassociation_special_addr(struct mbuf *m, int offset, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, struct sockaddr *dst) { struct sctp_paramhdr *phdr, param_buf; #if defined(INET) || defined(INET6) struct sctp_tcb *stcb; uint16_t ptype; #endif uint16_t plen; #ifdef INET struct sockaddr_in sin4; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif #ifdef INET memset(&sin4, 0, sizeof(sin4)); sin4.sin_len = sizeof(sin4); sin4.sin_family = AF_INET; sin4.sin_port = sh->src_port; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; sin6.sin6_port = sh->src_port; #endif offset += sizeof(struct sctp_init_chunk); phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); while (phdr != NULL) { /* now we must see if we want the parameter */ #if defined(INET) || defined(INET6) ptype = ntohs(phdr->param_type); #endif plen = ntohs(phdr->param_length); if (plen == 0) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS && plen == sizeof(struct sctp_ipv4addr_param)) { /* Get the rest of the address */ struct sctp_ipv4addr_param ip4_param, *p4; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip4_param, sizeof(ip4_param)); if (phdr == NULL) { return (NULL); } p4 = (struct sctp_ipv4addr_param *)phdr; memcpy(&sin4.sin_addr, &p4->addr, sizeof(p4->addr)); /* look it up */ stcb = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin4, netp, dst, NULL); if (stcb != NULL) { return (stcb); } } #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS && plen == sizeof(struct sctp_ipv6addr_param)) { /* Get the rest of the address */ struct sctp_ipv6addr_param ip6_param, *p6; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ip6_param, sizeof(ip6_param)); if (phdr == NULL) { return (NULL); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy(&sin6.sin6_addr, &p6->addr, sizeof(p6->addr)); /* look it up */ stcb = sctp_findassociation_ep_addr(inp_p, (struct sockaddr *)&sin6, netp, dst, NULL); if (stcb != NULL) { return (stcb); } } #endif offset += SCTP_SIZE32(plen); phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); } return (NULL); } static struct sctp_tcb * sctp_findassoc_by_vtag(struct sockaddr *from, struct sockaddr *to, uint32_t vtag, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint16_t rport, uint16_t lport, int skip_src_check, uint32_t vrf_id, uint32_t remote_tag) { /* * Use my vtag to hash. If we find it we then verify the source addr * is in the assoc. If all goes well we save a bit on rec of a * packet. */ struct sctpasochead *head; struct sctp_nets *net; struct sctp_tcb *stcb; SCTP_INP_INFO_RLOCK(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(vtag, SCTP_BASE_INFO(hashasocmark))]; LIST_FOREACH(stcb, head, sctp_asocs) { SCTP_INP_RLOCK(stcb->sctp_ep); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } if (stcb->sctp_ep->def_vrf_id != vrf_id) { SCTP_INP_RUNLOCK(stcb->sctp_ep); continue; } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(stcb->sctp_ep); if (stcb->asoc.my_vtag == vtag) { /* candidate */ if (stcb->rport != rport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->sctp_ep->sctp_lport != lport) { SCTP_TCB_UNLOCK(stcb); continue; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { SCTP_TCB_UNLOCK(stcb); continue; } /* RRS:Need toaddr check here */ if (sctp_does_stcb_own_this_addr(stcb, to) == 0) { /* Endpoint does not own this address */ SCTP_TCB_UNLOCK(stcb); continue; } if (remote_tag) { /* * If we have both vtags that's all we match * on */ if (stcb->asoc.peer_vtag == remote_tag) { /* * If both tags match we consider it * conclusive and check NO * source/destination addresses */ goto conclusive; } } if (skip_src_check) { conclusive: if (from) { *netp = sctp_findnet(stcb, from); } else { *netp = NULL; /* unknown */ } if (inp_p) *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } net = sctp_findnet(stcb, from); if (net) { /* yep its him. */ *netp = net; SCTP_STAT_INCR(sctps_vtagexpress); *inp_p = stcb->sctp_ep; SCTP_INP_INFO_RUNLOCK(); return (stcb); } else { /* * not him, this should only happen in rare * cases so I peg it. */ SCTP_STAT_INCR(sctps_vtagbogus); } } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_INFO_RUNLOCK(); return (NULL); } /* * Find an association with the pointer to the inbound IP packet. This can be * a IPv4 or IPv6 packet. */ struct sctp_tcb * sctp_findassociation_addr(struct mbuf *m, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_chunkhdr *ch, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { struct sctp_tcb *stcb; struct sctp_inpcb *inp; if (sh->v_tag) { /* we only go down this path if vtag is non-zero */ stcb = sctp_findassoc_by_vtag(src, dst, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 0, vrf_id, 0); if (stcb) { return (stcb); } } if (inp_p) { stcb = sctp_findassociation_addr_sa(src, dst, inp_p, netp, 1, vrf_id); inp = *inp_p; } else { stcb = sctp_findassociation_addr_sa(src, dst, &inp, netp, 1, vrf_id); } SCTPDBG(SCTP_DEBUG_PCB1, "stcb:%p inp:%p\n", (void *)stcb, (void *)inp); if (stcb == NULL && inp) { /* Found a EP but not this address */ if ((ch->chunk_type == SCTP_INITIATION) || (ch->chunk_type == SCTP_INITIATION_ACK)) { /*- * special hook, we do NOT return linp or an * association that is linked to an existing * association that is under the TCP pool (i.e. no * listener exists). The endpoint finding routine * will always find a listener before examining the * TCP pool. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) { if (inp_p) { *inp_p = NULL; } return (NULL); } stcb = sctp_findassociation_special_addr(m, offset, sh, &inp, netp, dst); if (inp_p != NULL) { *inp_p = inp; } } } SCTPDBG(SCTP_DEBUG_PCB1, "stcb is %p\n", (void *)stcb); return (stcb); } /* * lookup an association by an ASCONF lookup address. * if the lookup address is 0.0.0.0 or ::0, use the vtag to do the lookup */ struct sctp_tcb * sctp_findassociation_ep_asconf(struct mbuf *m, int offset, struct sockaddr *dst, struct sctphdr *sh, struct sctp_inpcb **inp_p, struct sctp_nets **netp, uint32_t vrf_id) { struct sctp_tcb *stcb; union sctp_sockstore remote_store; struct sctp_paramhdr param_buf, *phdr; int ptype; int zero_address = 0; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif memset(&remote_store, 0, sizeof(remote_store)); phdr = sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), ¶m_buf, sizeof(struct sctp_paramhdr)); if (phdr == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf lookup addr\n", __func__); return NULL; } ptype = (int)((uint32_t)ntohs(phdr->param_type)); /* get the correlation address */ switch (ptype) { #ifdef INET6 case SCTP_IPV6_ADDRESS: { /* ipv6 address param */ struct sctp_ipv6addr_param *p6, p6_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv6addr_param)) { return NULL; } p6 = (struct sctp_ipv6addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p6_buf.ph, sizeof(p6_buf)); if (p6 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v6 lookup addr\n", __func__); return (NULL); } sin6 = &remote_store.sin6; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = sh->src_port; memcpy(&sin6->sin6_addr, &p6->addr, sizeof(struct in6_addr)); if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) zero_address = 1; break; } #endif #ifdef INET case SCTP_IPV4_ADDRESS: { /* ipv4 address param */ struct sctp_ipv4addr_param *p4, p4_buf; if (ntohs(phdr->param_length) != sizeof(struct sctp_ipv4addr_param)) { return NULL; } p4 = (struct sctp_ipv4addr_param *)sctp_get_next_param(m, offset + sizeof(struct sctp_asconf_chunk), &p4_buf.ph, sizeof(p4_buf)); if (p4 == NULL) { SCTPDBG(SCTP_DEBUG_INPUT3, "%s: failed to get asconf v4 lookup addr\n", __func__); return (NULL); } sin = &remote_store.sin; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = sh->src_port; memcpy(&sin->sin_addr, &p4->addr, sizeof(struct in_addr)); if (sin->sin_addr.s_addr == INADDR_ANY) zero_address = 1; break; } #endif default: /* invalid address param type */ return NULL; } if (zero_address) { stcb = sctp_findassoc_by_vtag(NULL, dst, ntohl(sh->v_tag), inp_p, netp, sh->src_port, sh->dest_port, 1, vrf_id, 0); if (stcb != NULL) { SCTP_INP_DECR_REF(*inp_p); } } else { stcb = sctp_findassociation_ep_addr(inp_p, &remote_store.sa, netp, dst, NULL); } return (stcb); } /* * allocate a sctp_inpcb and setup a temporary binding to a port/all * addresses. This way if we don't get a bind we by default pick a ephemeral * port with all addresses bound. */ int sctp_inpcb_alloc(struct socket *so, uint32_t vrf_id) { /* * we get called when a new endpoint starts up. We need to allocate * the sctp_inpcb structure from the zone and init it. Mark it as * unbound and find a port that we can use as an ephemeral with * INADDR_ANY. If the user binds later no problem we can then add in * the specific addresses. And setup the default parameters for the * EP. */ int i, error; struct sctp_inpcb *inp; struct sctp_pcb *m; struct timeval time; sctp_sharedkey_t *null_key; error = 0; SCTP_INP_INFO_WLOCK(); inp = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_ep), struct sctp_inpcb); if (inp == NULL) { SCTP_PRINTF("Out of SCTP-INPCB structures - no resources\n"); SCTP_INP_INFO_WUNLOCK(); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); return (ENOBUFS); } /* zap it */ memset(inp, 0, sizeof(*inp)); /* bump generations */ /* setup socket pointers */ inp->sctp_socket = so; inp->ip_inp.inp.inp_socket = so; inp->ip_inp.inp.inp_cred = crhold(so->so_cred); #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { if (MODULE_GLOBAL(ip6_auto_flowlabel)) { inp->ip_inp.inp.inp_flags |= IN6P_AUTOFLOWLABEL; } if (MODULE_GLOBAL(ip6_v6only)) { inp->ip_inp.inp.inp_flags |= IN6P_IPV6_V6ONLY; } } #endif inp->sctp_associd_counter = 1; inp->partial_delivery_point = SCTP_SB_LIMIT_RCV(so) >> SCTP_PARTIAL_DELIVERY_SHIFT; inp->sctp_frag_point = 0; inp->max_cwnd = 0; inp->sctp_cmt_on_off = SCTP_BASE_SYSCTL(sctp_cmt_on_off); inp->ecn_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_ecn_enable); inp->prsctp_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_pr_enable); inp->auth_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_auth_enable); inp->asconf_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_asconf_enable); inp->reconfig_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_reconfig_enable); inp->nrsack_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_nrsack_enable); inp->pktdrop_supported = (uint8_t)SCTP_BASE_SYSCTL(sctp_pktdrop_enable); inp->idata_supported = 0; inp->rcv_edmid = SCTP_EDMID_NONE; inp->fibnum = so->so_fibnum; /* init the small hash table we use to track asocid <-> tcb */ inp->sctp_asocidhash = SCTP_HASH_INIT(SCTP_STACK_VTAG_HASH_SIZE, &inp->hashasocidmark); if (inp->sctp_asocidhash == NULL) { crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_INP_INFO_WUNLOCK(); return (ENOBUFS); } SCTP_INCR_EP_COUNT(); inp->ip_inp.inp.inp_ip_ttl = MODULE_GLOBAL(ip_defttl); SCTP_INP_INFO_WUNLOCK(); so->so_pcb = (caddr_t)inp; if (SCTP_SO_TYPE(so) == SOCK_SEQPACKET) { /* UDP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure it is NON-BLOCKING IO for UDP */ /* SCTP_SET_SO_NBIO(so); */ } else if (SCTP_SO_TYPE(so) == SOCK_STREAM) { /* TCP style socket */ inp->sctp_flags = (SCTP_PCB_FLAGS_TCPTYPE | SCTP_PCB_FLAGS_UNBOUND); /* Be sure we have blocking IO by default */ SOCK_LOCK(so); SCTP_CLEAR_SO_NBIO(so); SOCK_UNLOCK(so); } else { /* * unsupported socket type (RAW, etc)- in case we missed it * in protosw */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EOPNOTSUPP); so->so_pcb = NULL; crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (EOPNOTSUPP); } if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_1) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_2) { sctp_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } else if (SCTP_BASE_SYSCTL(sctp_default_frag_interleave) == SCTP_FRAG_LEVEL_0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE); sctp_feature_off(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS); } inp->sctp_tcbhash = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_pcbtblsize), &inp->sctp_hashmark); if (inp->sctp_tcbhash == NULL) { SCTP_PRINTF("Out of SCTP-INPCB->hashinit - no resources\n"); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); so->so_pcb = NULL; crfree(inp->ip_inp.inp.inp_cred); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); return (ENOBUFS); } inp->def_vrf_id = vrf_id; SCTP_INP_INFO_WLOCK(); SCTP_INP_LOCK_INIT(inp); rw_init_flags(&inp->ip_inp.inp.inp_lock, "sctpinp", RW_RECURSE | RW_DUPOK); SCTP_INP_READ_LOCK_INIT(inp); SCTP_ASOC_CREATE_LOCK_INIT(inp); /* lock the new ep */ SCTP_INP_WLOCK(inp); /* add it to the info area */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(listhead), inp, sctp_list); SCTP_INP_INFO_WUNLOCK(); TAILQ_INIT(&inp->read_queue); LIST_INIT(&inp->sctp_addr_list); LIST_INIT(&inp->sctp_asoc_list); #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_INIT(&inp->sctp_asoc_free_list); #endif /* Init the timer structure for signature change */ SCTP_OS_TIMER_INIT(&inp->sctp_ep.signature_change.timer); inp->sctp_ep.signature_change.type = SCTP_TIMER_TYPE_NEWCOOKIE; /* now init the actual endpoint default data */ m = &inp->sctp_ep; /* setup the base timeout information */ m->sctp_timeoutticks[SCTP_TIMER_SEND] = sctp_secs_to_ticks(SCTP_SEND_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_INIT] = sctp_secs_to_ticks(SCTP_INIT_SEC); /* needed ? */ m->sctp_timeoutticks[SCTP_TIMER_RECV] = sctp_msecs_to_ticks(SCTP_BASE_SYSCTL(sctp_delayed_sack_time_default)); m->sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = sctp_msecs_to_ticks(SCTP_BASE_SYSCTL(sctp_heartbeat_interval_default)); m->sctp_timeoutticks[SCTP_TIMER_PMTU] = sctp_secs_to_ticks(SCTP_BASE_SYSCTL(sctp_pmtu_raise_time_default)); m->sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] = sctp_secs_to_ticks(SCTP_BASE_SYSCTL(sctp_shutdown_guard_time_default)); m->sctp_timeoutticks[SCTP_TIMER_SIGNATURE] = sctp_secs_to_ticks(SCTP_BASE_SYSCTL(sctp_secret_lifetime_default)); /* all max/min max are in ms */ m->sctp_maxrto = SCTP_BASE_SYSCTL(sctp_rto_max_default); m->sctp_minrto = SCTP_BASE_SYSCTL(sctp_rto_min_default); m->initial_rto = SCTP_BASE_SYSCTL(sctp_rto_initial_default); m->initial_init_rto_max = SCTP_BASE_SYSCTL(sctp_init_rto_max_default); m->sctp_sack_freq = SCTP_BASE_SYSCTL(sctp_sack_freq_default); m->max_init_times = SCTP_BASE_SYSCTL(sctp_init_rtx_max_default); m->max_send_times = SCTP_BASE_SYSCTL(sctp_assoc_rtx_max_default); m->def_net_failure = SCTP_BASE_SYSCTL(sctp_path_rtx_max_default); m->def_net_pf_threshold = SCTP_BASE_SYSCTL(sctp_path_pf_threshold); m->sctp_sws_sender = SCTP_SWS_SENDER_DEF; m->sctp_sws_receiver = SCTP_SWS_RECEIVER_DEF; m->max_burst = SCTP_BASE_SYSCTL(sctp_max_burst_default); m->fr_max_burst = SCTP_BASE_SYSCTL(sctp_fr_max_burst_default); m->sctp_default_cc_module = SCTP_BASE_SYSCTL(sctp_default_cc_module); m->sctp_default_ss_module = SCTP_BASE_SYSCTL(sctp_default_ss_module); m->max_open_streams_intome = SCTP_BASE_SYSCTL(sctp_nr_incoming_streams_default); /* number of streams to pre-open on a association */ m->pre_open_stream_count = SCTP_BASE_SYSCTL(sctp_nr_outgoing_streams_default); m->default_mtu = 0; /* Add adaptation cookie */ m->adaptation_layer_indicator = 0; m->adaptation_layer_indicator_provided = 0; /* seed random number generator */ m->random_counter = 1; m->store_at = SCTP_SIGNATURE_SIZE; SCTP_READ_RANDOM(m->random_numbers, sizeof(m->random_numbers)); sctp_fill_random_store(m); /* Minimum cookie size */ m->size_of_a_cookie = (sizeof(struct sctp_init_msg) * 2) + sizeof(struct sctp_state_cookie); m->size_of_a_cookie += SCTP_SIGNATURE_SIZE; /* Setup the initial secret */ (void)SCTP_GETTIME_TIMEVAL(&time); m->time_of_secret_change = (unsigned int)time.tv_sec; for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) { m->secret_key[0][i] = sctp_select_initial_TSN(m); } sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL); /* How long is a cookie good for ? */ m->def_cookie_life = sctp_msecs_to_ticks(SCTP_BASE_SYSCTL(sctp_valid_cookie_life_default)); /* * Initialize authentication parameters */ m->local_hmacs = sctp_default_supported_hmaclist(); m->local_auth_chunks = sctp_alloc_chunklist(); if (inp->asconf_supported) { sctp_auth_add_chunk(SCTP_ASCONF, m->local_auth_chunks); sctp_auth_add_chunk(SCTP_ASCONF_ACK, m->local_auth_chunks); } m->default_dscp = 0; #ifdef INET6 m->default_flowlabel = 0; #endif m->port = 0; /* encapsulation disabled by default */ LIST_INIT(&m->shared_keys); /* add default NULL key as key id 0 */ null_key = sctp_alloc_sharedkey(); sctp_insert_sharedkey(&m->shared_keys, null_key); SCTP_INP_WUNLOCK(inp); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 12); #endif return (error); } void sctp_move_pcb_and_assoc(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb) { struct sctp_nets *net; uint16_t lport, rport; struct sctppcbhead *head; struct sctp_laddr *laddr, *oladdr; atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(old_inp); SCTP_INP_WLOCK(new_inp); SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); #ifdef INET6 if (old_inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { new_inp->ip_inp.inp.inp_flags |= old_inp->ip_inp.inp.inp_flags & INP_CONTROLOPTS; if (old_inp->ip_inp.inp.in6p_outputopts) { new_inp->ip_inp.inp.in6p_outputopts = ip6_copypktopts(old_inp->ip_inp.inp.in6p_outputopts, M_NOWAIT); } } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { new_inp->ip_inp.inp.inp_ip_tos = old_inp->ip_inp.inp.inp_ip_tos; new_inp->ip_inp.inp.inp_ip_ttl = old_inp->ip_inp.inp.inp_ip_ttl; } #endif new_inp->sctp_ep.time_of_secret_change = old_inp->sctp_ep.time_of_secret_change; memcpy(new_inp->sctp_ep.secret_key, old_inp->sctp_ep.secret_key, sizeof(old_inp->sctp_ep.secret_key)); new_inp->sctp_ep.current_secret_number = old_inp->sctp_ep.current_secret_number; new_inp->sctp_ep.last_secret_number = old_inp->sctp_ep.last_secret_number; new_inp->sctp_ep.size_of_a_cookie = old_inp->sctp_ep.size_of_a_cookie; /* make it so new data pours into the new socket */ stcb->sctp_socket = new_inp->sctp_socket; stcb->sctp_ep = new_inp; /* Copy the port across */ lport = new_inp->sctp_lport = old_inp->sctp_lport; rport = stcb->rport; /* Pull the tcb from the old association */ LIST_REMOVE(stcb, sctp_tcbhash); LIST_REMOVE(stcb, sctp_tcblist); if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } /* Now insert the new_inp into the TCP connected hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR((lport | rport), SCTP_BASE_INFO(hashtcpmark))]; LIST_INSERT_HEAD(head, new_inp, sctp_hash); /* Its safe to access */ new_inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; /* Now move the tcb into the endpoint list */ LIST_INSERT_HEAD(&new_inp->sctp_asoc_list, stcb, sctp_tcblist); /* * Question, do we even need to worry about the ep-hash since we * only have one connection? Probably not :> so lets get rid of it * and not suck up any kernel memory in that. */ if (stcb->asoc.in_asocid_hash) { struct sctpasochead *lhd; lhd = &new_inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(stcb->asoc.assoc_id, new_inp->hashasocidmark)]; LIST_INSERT_HEAD(lhd, stcb, sctp_tcbasocidhash); } /* Ok. Let's restart timer. */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, new_inp, stcb, net); } SCTP_INP_INFO_WUNLOCK(); if (new_inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(new_inp->sctp_tcbhash, new_inp->sctp_hashmark); new_inp->sctp_tcbhash = NULL; } if ((new_inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) { /* Subset bound, so copy in the laddr list from the old_inp */ LIST_FOREACH(oladdr, &old_inp->sctp_addr_list, sctp_nxt_addr) { laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* * Gak, what can we do? This assoc is really * HOSED. We probably should send an abort * here. */ SCTPDBG(SCTP_DEBUG_PCB1, "Association hosed in TCP model, out of laddr memory\n"); continue; } SCTP_INCR_LADDR_COUNT(); memset(laddr, 0, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = oladdr->ifa; atomic_add_int(&laddr->ifa->refcount, 1); LIST_INSERT_HEAD(&new_inp->sctp_addr_list, laddr, sctp_nxt_addr); new_inp->laddr_count++; if (oladdr == stcb->asoc.last_used_address) { stcb->asoc.last_used_address = laddr; } } } /* Now any running timers need to be adjusted. */ if (stcb->asoc.dack_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.dack_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (stcb->asoc.asconf_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.asconf_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (stcb->asoc.strreset_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.strreset_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (stcb->asoc.shut_guard_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.shut_guard_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (stcb->asoc.autoclose_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.autoclose_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (stcb->asoc.delete_prim_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); stcb->asoc.delete_prim_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } /* now what about the nets? */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->pmtu_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); net->pmtu_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (net->hb_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); net->hb_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } if (net->rxt_timer.ep == old_inp) { SCTP_INP_DECR_REF(old_inp); net->rxt_timer.ep = new_inp; SCTP_INP_INCR_REF(new_inp); } } SCTP_INP_WUNLOCK(new_inp); SCTP_INP_WUNLOCK(old_inp); } /* * insert an laddr entry with the given ifa for the desired list */ static int sctp_insert_laddr(struct sctpladdr *list, struct sctp_ifa *ifa, uint32_t act) { struct sctp_laddr *laddr; laddr = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (laddr == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); return (EINVAL); } SCTP_INCR_LADDR_COUNT(); memset(laddr, 0, sizeof(*laddr)); (void)SCTP_GETTIME_TIMEVAL(&laddr->start_time); laddr->ifa = ifa; laddr->action = act; atomic_add_int(&ifa->refcount, 1); /* insert it */ LIST_INSERT_HEAD(list, laddr, sctp_nxt_addr); return (0); } /* * Remove an laddr entry from the local address list (on an assoc) */ static void sctp_remove_laddr(struct sctp_laddr *laddr) { /* remove from the list */ LIST_REMOVE(laddr, sctp_nxt_addr); sctp_free_ifa(laddr->ifa); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), laddr); SCTP_DECR_LADDR_COUNT(); } /* * Bind the socket, with the PCB and global info locks held. Note, if a * socket address is specified, the PCB lock may be dropped and re-acquired. * * sctp_ifap is used to bypass normal local address validation checks. */ int sctp_inpcb_bind_locked(struct sctp_inpcb *inp, struct sockaddr *addr, struct sctp_ifa *sctp_ifap, struct thread *td) { /* bind a ep to a socket address */ struct sctppcbhead *head; struct sctp_inpcb *inp_tmp; struct inpcb *ip_inp; int port_reuse_active = 0; int bindall; uint16_t lport; int error; uint32_t vrf_id; KASSERT(td != NULL, ("%s: null thread", __func__)); error = 0; lport = 0; bindall = 1; ip_inp = &inp->ip_inp.inp; SCTP_INP_INFO_WLOCK_ASSERT(); SCTP_INP_WLOCK_ASSERT(inp); #ifdef SCTP_DEBUG if (addr) { SCTPDBG(SCTP_DEBUG_PCB1, "Bind called port: %d\n", ntohs(((struct sockaddr_in *)addr)->sin_port)); SCTPDBG(SCTP_DEBUG_PCB1, "Addr: "); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, addr); } #endif if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) { error = EINVAL; /* already did a bind, subsequent binds NOT allowed ! */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } if (addr != NULL) { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; /* IPV6_V6ONLY socket? */ if (SCTP_IPV6_V6ONLY(inp)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } if (addr->sa_len != sizeof(*sin)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } sin = (struct sockaddr_in *)addr; lport = sin->sin_port; /* * For LOOPBACK the prison_local_ip4() call * will transmute the ip address to the * proper value. */ if ((error = prison_local_ip4(td->td_ucred, &sin->sin_addr)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } if (sin->sin_addr.s_addr != INADDR_ANY) { bindall = 0; } break; } #endif #ifdef INET6 case AF_INET6: { /* * Only for pure IPv6 Address. (No IPv4 * Mapped!) */ struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr; if (addr->sa_len != sizeof(*sin6)) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } lport = sin6->sin6_port; /* * For LOOPBACK the prison_local_ip6() call * will transmute the ipv6 address to the * proper value. */ if ((error = prison_local_ip6(td->td_ucred, &sin6->sin6_addr, (SCTP_IPV6_V6ONLY(inp) != 0))) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { bindall = 0; /* KAME hack: embed scopeid */ if (sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)) != 0) { error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } /* this must be cleared for ifa_ifwithaddr() */ sin6->sin6_scope_id = 0; break; } #endif default: error = EAFNOSUPPORT; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } /* Setup a vrf_id to be the default for the non-bind-all case. */ vrf_id = inp->def_vrf_id; if (lport) { /* * Did the caller specify a port? if so we must see if an ep * already has this one bound. */ /* got to be root to get at low ports */ if (ntohs(lport) < IPPORT_RESERVED && (error = priv_check(td, PRIV_NETINET_RESERVEDPORT)) != 0) { goto out; } SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); if (bindall) { vrf_id = inp->def_vrf_id; inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); error = EADDRINUSE; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } else { inp_tmp = sctp_pcb_findep(addr, 0, 1, vrf_id); if (inp_tmp != NULL) { /* * lock guy returned and lower count note * that we are not bound so inp_tmp should * NEVER be inp. And it is this inp * (inp_tmp) that gets the reference bump, * so we must lower it. */ SCTP_INP_DECR_REF(inp_tmp); /* unlock info */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { /* * Ok, must be one-2-one and * allowing port re-use */ port_reuse_active = 1; goto continue_anyway; } SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); error = EADDRINUSE; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } continue_anyway: SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); if (bindall) { /* verify that no lport is not used by a singleton */ if ((port_reuse_active == 0) && (inp_tmp = sctp_isport_inuse(inp, lport, vrf_id))) { /* Sorry someone already has this one bound */ if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_PORTREUSE)) && (sctp_is_feature_on(inp_tmp, SCTP_PCB_FLAGS_PORTREUSE))) { port_reuse_active = 1; } else { error = EADDRINUSE; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } } } else { uint16_t first, last, candidate; uint16_t count; if (ip_inp->inp_flags & INP_HIGHPORT) { first = MODULE_GLOBAL(ipport_hifirstauto); last = MODULE_GLOBAL(ipport_hilastauto); } else if (ip_inp->inp_flags & INP_LOWPORT) { if ((error = priv_check(td, PRIV_NETINET_RESERVEDPORT)) != 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } first = MODULE_GLOBAL(ipport_lowfirstauto); last = MODULE_GLOBAL(ipport_lowlastauto); } else { first = MODULE_GLOBAL(ipport_firstauto); last = MODULE_GLOBAL(ipport_lastauto); } if (first > last) { uint16_t temp; temp = first; first = last; last = temp; } count = last - first + 1; /* number of candidates */ candidate = first + sctp_select_initial_TSN(&inp->sctp_ep) % (count); for (;;) { if (sctp_isport_inuse(inp, htons(candidate), inp->def_vrf_id) == NULL) { lport = htons(candidate); break; } if (--count == 0) { error = EADDRINUSE; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } if (candidate == last) candidate = first; else candidate = candidate + 1; } } if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { /* * this really should not happen. The guy did a non-blocking * bind and then did a close at the same time. */ error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } /* ok we look clear to give out this port, so lets setup the binding */ if (bindall) { /* binding to all addresses, so just set in the proper flags */ inp->sctp_flags |= SCTP_PCB_FLAGS_BOUNDALL; /* set the automatic addr changes from kernel flag */ if (SCTP_BASE_SYSCTL(sctp_auto_asconf) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); sctp_feature_on(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); } if (SCTP_BASE_SYSCTL(sctp_multiple_asconfs) == 0) { sctp_feature_off(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } else { sctp_feature_on(inp, SCTP_PCB_FLAGS_MULTIPLE_ASCONFS); } /* * set the automatic mobility_base from kernel flag (by * micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_base) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_BASE); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } /* * set the automatic mobility_fasthandoff from kernel flag * (by micchie) */ if (SCTP_BASE_SYSCTL(sctp_mobility_fasthandoff) == 0) { sctp_mobility_feature_off(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } else { sctp_mobility_feature_on(inp, SCTP_MOBILITY_FASTHANDOFF); sctp_mobility_feature_off(inp, SCTP_MOBILITY_PRIM_DELETED); } } else { /* * bind specific, make sure flags is off and add a new * address structure to the sctp_addr_list inside the ep * structure. * * We will need to allocate one and insert it at the head. * The socketopt call can just insert new addresses in there * as well. It will also have to do the embed scope kame * hack too (before adding). */ struct sctp_ifa *ifa; union sctp_sockstore store; memset(&store, 0, sizeof(store)); switch (addr->sa_family) { #ifdef INET case AF_INET: memcpy(&store.sin, addr, sizeof(struct sockaddr_in)); store.sin.sin_port = 0; break; #endif #ifdef INET6 case AF_INET6: memcpy(&store.sin6, addr, sizeof(struct sockaddr_in6)); store.sin6.sin6_port = 0; break; #endif default: break; } /* * first find the interface with the bound address need to * zero out the port to find the address! yuck! can't do * this earlier since need port for sctp_pcb_findep() */ if (sctp_ifap != NULL) { ifa = sctp_ifap; } else { /* * Note for BSD we hit here always other O/S's will * pass things in via the sctp_ifap argument. */ ifa = sctp_find_ifa_by_addr(&store.sa, vrf_id, SCTP_ADDR_NOT_LOCKED); } if (ifa == NULL) { error = EADDRNOTAVAIL; /* Can't find an interface with that address */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } #ifdef INET6 if (addr->sa_family == AF_INET6) { /* GAK, more FIXME IFA lock? */ if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ error = EINVAL; SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, error); goto out; } } #endif /* we're not bound all */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUNDALL; /* allow bindx() to send ASCONF's for binding changes */ sctp_feature_on(inp, SCTP_PCB_FLAGS_DO_ASCONF); /* clear automatic addr changes from kernel flag */ sctp_feature_off(inp, SCTP_PCB_FLAGS_AUTO_ASCONF); /* add this address to the endpoint list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, 0); if (error != 0) goto out; inp->laddr_count++; } /* find the bucket */ if (port_reuse_active) { /* Put it into tcp 1-2-1 hash */ head = &SCTP_BASE_INFO(sctp_tcpephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashtcpmark))]; inp->sctp_flags |= SCTP_PCB_FLAGS_IN_TCPPOOL; } else { head = &SCTP_BASE_INFO(sctp_ephash)[SCTP_PCBHASH_ALLADDR(lport, SCTP_BASE_INFO(hashmark))]; } /* put it in the bucket */ LIST_INSERT_HEAD(head, inp, sctp_hash); SCTPDBG(SCTP_DEBUG_PCB1, "Main hash to bind at head:%p, bound port:%d - in tcp_pool=%d\n", (void *)head, ntohs(lport), port_reuse_active); /* set in the port */ inp->sctp_lport = lport; /* turn off just the unbound flag */ KASSERT((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) != 0, ("%s: inp %p is already bound", __func__, inp)); inp->sctp_flags &= ~SCTP_PCB_FLAGS_UNBOUND; out: return (error); } int sctp_inpcb_bind(struct socket *so, struct sockaddr *addr, struct sctp_ifa *sctp_ifap, struct thread *td) { struct sctp_inpcb *inp; int error; inp = so->so_pcb; SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); error = sctp_inpcb_bind_locked(inp, addr, sctp_ifap, td); SCTP_INP_WUNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return (error); } static void sctp_iterator_inp_being_freed(struct sctp_inpcb *inp) { struct sctp_iterator *it, *nit; /* * We enter with the only the ITERATOR_LOCK in place and a write * lock on the inp_info stuff. */ it = sctp_it_ctl.cur_it; if (it && (it->vn != curvnet)) { /* Its not looking at our VNET */ return; } if (it && (it->inp == inp)) { /* * This is tricky and we hold the iterator lock, but when it * returns and gets the lock (when we release it) the * iterator will try to operate on inp. We need to stop that * from happening. But of course the iterator has a * reference on the stcb and inp. We can mark it and it will * stop. * * If its a single iterator situation, we set the end * iterator flag. Otherwise we set the iterator to go to the * next inp. * */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } else { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_INP; } } /* * Now go through and remove any single reference to our inp that * may be still pending on the list */ SCTP_IPI_ITERATOR_WQ_LOCK(); TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } if (it->inp == inp) { /* This one points to me is it inp specific? */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { /* Remove and free this one */ TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } else { it->inp = LIST_NEXT(it->inp, sctp_list); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } } /* * When its put in the refcnt is incremented so decr * it */ SCTP_INP_DECR_REF(inp); } } SCTP_IPI_ITERATOR_WQ_UNLOCK(); } /* release sctp_inpcb unbind the port */ void sctp_inpcb_free(struct sctp_inpcb *inp, int immediate, int from) { /* * Here we free a endpoint. We must find it (if it is in the Hash * table) and remove it from there. Then we must also find it in the * overall list and remove it from there. After all removals are * complete then any timer has to be stopped. Then start the actual * freeing. a) Any local lists. b) Any associations. c) The hash of * all associations. d) finally the ep itself. */ struct sctp_tcb *stcb, *nstcb; struct sctp_laddr *laddr, *nladdr; struct inpcb *ip_pcb; struct socket *so; int being_refed = 0; struct sctp_queued_to_read *sq, *nsq; int cnt; sctp_sharedkey_t *shared_key, *nshared_key; #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 0); #endif SCTP_ITERATOR_LOCK(); /* mark any iterators on the list or being processed */ sctp_iterator_inp_being_freed(inp); SCTP_ITERATOR_UNLOCK(); SCTP_ASOC_CREATE_LOCK(inp); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); so = inp->sctp_socket; KASSERT((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) != 0, ("%s: inp %p still has socket", __func__, inp)); KASSERT((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) == 0, ("%s: double free of inp %p", __func__, inp)); if (from == SCTP_CALLED_AFTER_CMPSET_OFCLOSE) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CLOSE_IP; /* socket is gone, so no more wakeups allowed */ inp->sctp_flags |= SCTP_PCB_FLAGS_DONT_WAKE; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; } /* First time through we have the socket lock, after that no more. */ sctp_timer_stop(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL, SCTP_FROM_SCTP_PCB + SCTP_LOC_1); if (inp->control) { sctp_m_freem(inp->control); inp->control = NULL; } if (inp->pkt) { sctp_m_freem(inp->pkt); inp->pkt = NULL; } ip_pcb = &inp->ip_inp.inp; /* we could just cast the main pointer * here but I will be nice :> (i.e. * ip_pcb = ep;) */ if (immediate == SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE) { int cnt_in_sd; cnt_in_sd = 0; LIST_FOREACH_SAFE(stcb, &inp->sctp_asoc_list, sctp_tcblist, nstcb) { SCTP_TCB_LOCK(stcb); /* Disconnect the socket please. */ stcb->sctp_socket = NULL; SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_CLOSED_SOCKET); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* Skip guys being freed */ cnt_in_sd++; if (stcb->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { /* * Special case - we did not start a * kill timer on the asoc due to it * was not closed. So go ahead and * start it now. */ SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_IN_ACCEPT_QUEUE); sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); } SCTP_TCB_UNLOCK(stcb); continue; } if (((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) && (stcb->asoc.total_output_queue_size == 0)) { /* * If we have data in queue, we don't want * to just free since the app may have done, * send()/close or connect/send/close. And * it wants the data to get across first. */ /* Just abandon things in the front states */ if (sctp_free_assoc(inp, stcb, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_2) == 0) { cnt_in_sd++; } continue; } if ((stcb->asoc.size_on_reasm_queue > 0) || (stcb->asoc.size_on_all_streams > 0) || ((so != NULL) && (SCTP_SBAVAIL(&so->so_rcv) > 0))) { /* Left with Data unread */ struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_3; sctp_send_abort_tcb(stcb, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, stcb, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_4) == 0) { cnt_in_sd++; } continue; } else if (TAILQ_EMPTY(&stcb->asoc.send_queue) && TAILQ_EMPTY(&stcb->asoc.sent_queue) && (stcb->asoc.stream_queue_cnt == 0)) { if ((*stcb->asoc.ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, &stcb->asoc)) { goto abort_anyway; } if ((SCTP_GET_STATE(stcb) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(stcb) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { struct sctp_nets *netp; /* * there is nothing queued to send, * so I send shutdown */ if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } SCTP_SET_STATE(stcb, SCTP_STATE_SHUTDOWN_SENT); sctp_stop_timers_for_shutdown(stcb); if (stcb->asoc.alternate) { netp = stcb->asoc.alternate; } else { netp = stcb->asoc.primary_destination; } sctp_send_shutdown(stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, netp); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, NULL); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_LOCKED); } } else { /* mark into shutdown pending */ SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_SHUTDOWN_PENDING); if ((*stcb->asoc.ss_functions.sctp_ss_is_user_msgs_incomplete) (stcb, &stcb->asoc)) { SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_PARTIAL_MSG_LEFT); } if (TAILQ_EMPTY(&stcb->asoc.send_queue) && TAILQ_EMPTY(&stcb->asoc.sent_queue) && (stcb->asoc.state & SCTP_STATE_PARTIAL_MSG_LEFT)) { struct mbuf *op_err; abort_anyway: op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_5; sctp_send_abort_tcb(stcb, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, stcb, SCTP_PCBFREE_NOFORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_6) == 0) { cnt_in_sd++; } continue; } else { sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_CLOSING, SCTP_SO_LOCKED); } } cnt_in_sd++; SCTP_TCB_UNLOCK(stcb); } /* now is there some left in our SHUTDOWN state? */ if (cnt_in_sd) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 2); #endif inp->sctp_socket = NULL; SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } } inp->sctp_socket = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == 0) { /* * ok, this guy has been bound. It's port is somewhere in * the SCTP_BASE_INFO(hash table). Remove it! */ LIST_REMOVE(inp, sctp_hash); inp->sctp_flags |= SCTP_PCB_FLAGS_UNBOUND; } /* * If there is a timer running to kill us, forget it, since it may * have a contest on the INP lock.. which would cause us to die ... */ cnt = 0; LIST_FOREACH_SAFE(stcb, &inp->sctp_asoc_list, sctp_tcblist, nstcb) { SCTP_TCB_LOCK(stcb); if (immediate != SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE) { /* Disconnect the socket please */ stcb->sctp_socket = NULL; SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_CLOSED_SOCKET); } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { if (stcb->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE) { SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_IN_ACCEPT_QUEUE); sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); } cnt++; SCTP_TCB_UNLOCK(stcb); continue; } /* Free associations that are NOT killing us */ if ((SCTP_GET_STATE(stcb) != SCTP_STATE_COOKIE_WAIT) && ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) { struct mbuf *op_err; op_err = sctp_generate_cause(SCTP_CAUSE_USER_INITIATED_ABT, ""); stcb->sctp_ep->last_abort_code = SCTP_FROM_SCTP_PCB + SCTP_LOC_7; sctp_send_abort_tcb(stcb, op_err, SCTP_SO_LOCKED); SCTP_STAT_INCR_COUNTER32(sctps_aborted); } else if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { cnt++; SCTP_TCB_UNLOCK(stcb); continue; } if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } if (sctp_free_assoc(inp, stcb, SCTP_PCBFREE_FORCE, SCTP_FROM_SCTP_PCB + SCTP_LOC_8) == 0) { cnt++; } } if (cnt) { /* Ok we have someone out there that will kill us */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 3); #endif SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } if (SCTP_INP_LOCK_CONTENDED(inp)) being_refed++; if (SCTP_INP_READ_CONTENDED(inp)) being_refed++; if (SCTP_ASOC_CREATE_LOCK_CONTENDED(inp)) being_refed++; /* NOTE: 0 refcount also means no timers are referencing us. */ if ((inp->refcount) || (being_refed) || (inp->sctp_flags & SCTP_PCB_FLAGS_CLOSE_IP)) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 4); #endif sctp_timer_start(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); return; } inp->sctp_ep.signature_change.type = 0; inp->sctp_flags |= SCTP_PCB_FLAGS_SOCKET_ALLGONE; /* * Remove it from the list .. last thing we need a lock for. */ LIST_REMOVE(inp, sctp_list); SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_INP_INFO_WUNLOCK(); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 5); #endif if ((inp->sctp_asocidhash) != NULL) { SCTP_HASH_FREE(inp->sctp_asocidhash, inp->hashasocidmark); inp->sctp_asocidhash = NULL; } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(sq, &inp->read_queue, next, nsq) { /* Its only abandoned if it had data left */ if (sq->length) SCTP_STAT_INCR(sctps_left_abandon); TAILQ_REMOVE(&inp->read_queue, sq, next); sctp_free_remote_addr(sq->whoFrom); if (so) SCTP_SB_DECR(&so->so_rcv, sq->length); if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } /* * no need to free the net count, since at this point all * assoc's are gone. */ sctp_free_a_readq(NULL, sq); } /* Now the sctp_pcb things */ /* * free each asoc if it is not already closed/free. we can't use the * macro here since le_next will get freed as part of the * sctp_free_assoc() call. */ if (ip_pcb->inp_options) { (void)sctp_m_free(ip_pcb->inp_options); ip_pcb->inp_options = 0; } #ifdef INET6 if (ip_pcb->inp_vflag & INP_IPV6) { ip6_freepcbopts(ip_pcb->in6p_outputopts); } #endif /* INET6 */ ip_pcb->inp_vflag = 0; /* free up authentication fields */ if (inp->sctp_ep.local_auth_chunks != NULL) sctp_free_chunklist(inp->sctp_ep.local_auth_chunks); if (inp->sctp_ep.local_hmacs != NULL) sctp_free_hmaclist(inp->sctp_ep.local_hmacs); LIST_FOREACH_SAFE(shared_key, &inp->sctp_ep.shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* * if we have an address list the following will free the list of * ifaddr's that are set into this ep. Again macro limitations here, * since the LIST_FOREACH could be a bad idea. */ LIST_FOREACH_SAFE(laddr, &inp->sctp_addr_list, sctp_nxt_addr, nladdr) { sctp_remove_laddr(laddr); } #ifdef SCTP_TRACK_FREED_ASOCS /* TEMP CODE */ LIST_FOREACH_SAFE(stcb, &inp->sctp_asoc_free_list, sctp_tcblist, nstcb) { LIST_REMOVE(stcb, sctp_tcblist); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); } /* *** END TEMP CODE *** */ #endif /* Now lets see about freeing the EP hash table. */ if (inp->sctp_tcbhash != NULL) { SCTP_HASH_FREE(inp->sctp_tcbhash, inp->sctp_hashmark); inp->sctp_tcbhash = NULL; } /* Now we must put the ep memory back into the zone pool */ crfree(inp->ip_inp.inp.inp_cred); INP_LOCK_DESTROY(&inp->ip_inp.inp); SCTP_INP_LOCK_DESTROY(inp); SCTP_INP_READ_LOCK_DESTROY(inp); SCTP_ASOC_CREATE_LOCK_DESTROY(inp); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_ep), inp); SCTP_DECR_EP_COUNT(); } struct sctp_nets * sctp_findnet(struct sctp_tcb *stcb, struct sockaddr *addr) { struct sctp_nets *net; /* locate the address */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (sctp_cmpaddr(addr, (struct sockaddr *)&net->ro._l_addr)) return (net); } return (NULL); } int sctp_is_address_on_local_host(struct sockaddr *addr, uint32_t vrf_id) { struct sctp_ifa *sctp_ifa; sctp_ifa = sctp_find_ifa_by_addr(addr, vrf_id, SCTP_ADDR_NOT_LOCKED); if (sctp_ifa) { return (1); } else { return (0); } } /* * add's a remote endpoint address, done with the INIT/INIT-ACK as well as * when a ASCONF arrives that adds it. It will also initialize all the cwnd * stats of stuff. */ int sctp_add_remote_addr(struct sctp_tcb *stcb, struct sockaddr *newaddr, struct sctp_nets **netp, uint16_t port, int set_scope, int from) { /* * The following is redundant to the same lines in the * sctp_aloc_assoc() but is needed since others call the add address * function */ struct sctp_nets *net, *netfirst; int addr_inscope; SCTPDBG(SCTP_DEBUG_PCB1, "Adding an address (from:%d) to the peer: ", from); SCTPDBG_ADDR(SCTP_DEBUG_PCB1, newaddr); netfirst = sctp_findnet(stcb, newaddr); if (netfirst) { /* * Lie and return ok, we don't want to make the association * go away for this behavior. It will happen in the TCP * model in a connected socket. It does not reach the hash * table until after the association is built so it can't be * found. Mark as reachable, since the initial creation will * have been cleared and the NOT_IN_ASSOC flag will have * been added... and we don't want to end up removing it * back out. */ if (netfirst->dest_state & SCTP_ADDR_UNCONFIRMED) { netfirst->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED); } else { netfirst->dest_state = SCTP_ADDR_REACHABLE; } return (0); } addr_inscope = 1; switch (newaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)newaddr; if (sin->sin_addr.s_addr == 0) { /* Invalid address */ return (-1); } /* zero out the zero area */ memset(&sin->sin_zero, 0, sizeof(sin->sin_zero)); /* assure len is set */ sin->sin_len = sizeof(struct sockaddr_in); if (set_scope) { if (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) { stcb->asoc.scope.ipv4_local_scope = 1; } } else { /* Validate the address is in scope */ if ((IN4_ISPRIVATE_ADDRESS(&sin->sin_addr)) && (stcb->asoc.scope.ipv4_local_scope == 0)) { addr_inscope = 0; } } break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)newaddr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* Invalid address */ return (-1); } /* assure len is set */ sin6->sin6_len = sizeof(struct sockaddr_in6); if (set_scope) { if (sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id)) { stcb->asoc.scope.loopback_scope = 1; stcb->asoc.scope.local_scope = 0; stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.site_scope = 1; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { /* * If the new destination is a * LINK_LOCAL we must have common * site scope. Don't set the local * scope since we may not share all * links, only loopback can do this. * Links on the local network would * also be on our private network * for v4 too. */ stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.site_scope = 1; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr)) { /* * If the new destination is * SITE_LOCAL then we must have site * scope in common. */ stcb->asoc.scope.site_scope = 1; } } else { /* Validate the address is in scope */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr) && (stcb->asoc.scope.loopback_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr) && (stcb->asoc.scope.local_scope == 0)) { addr_inscope = 0; } else if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr) && (stcb->asoc.scope.site_scope == 0)) { addr_inscope = 0; } } break; } #endif default: /* not supported family type */ return (-1); } net = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_net), struct sctp_nets); if (net == NULL) { return (-1); } SCTP_INCR_RADDR_COUNT(); memset(net, 0, sizeof(struct sctp_nets)); (void)SCTP_GETTIME_TIMEVAL(&net->start_time); memcpy(&net->ro._l_addr, newaddr, newaddr->sa_len); switch (newaddr->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)&net->ro._l_addr)->sin_port = stcb->rport; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&net->ro._l_addr)->sin6_port = stcb->rport; break; #endif default: break; } net->addr_is_local = sctp_is_address_on_local_host(newaddr, stcb->asoc.vrf_id); if (net->addr_is_local && ((set_scope || (from == SCTP_ADDR_IS_CONFIRMED)))) { stcb->asoc.scope.loopback_scope = 1; stcb->asoc.scope.ipv4_local_scope = 1; stcb->asoc.scope.local_scope = 0; stcb->asoc.scope.site_scope = 1; addr_inscope = 1; } net->failure_threshold = stcb->asoc.def_net_failure; net->pf_threshold = stcb->asoc.def_net_pf_threshold; if (addr_inscope == 0) { net->dest_state = (SCTP_ADDR_REACHABLE | SCTP_ADDR_OUT_OF_SCOPE); } else { if (from == SCTP_ADDR_IS_CONFIRMED) /* SCTP_ADDR_IS_CONFIRMED is passed by connect_x */ net->dest_state = SCTP_ADDR_REACHABLE; else net->dest_state = SCTP_ADDR_REACHABLE | SCTP_ADDR_UNCONFIRMED; } /* * We set this to 0, the timer code knows that this means its an * initial value */ net->rto_needed = 1; net->RTO = 0; net->RTO_measured = 0; stcb->asoc.numnets++; net->ref_count = 1; net->cwr_window_tsn = net->last_cwr_tsn = stcb->asoc.sending_seq - 1; net->port = port; net->dscp = stcb->asoc.default_dscp; #ifdef INET6 net->flowlabel = stcb->asoc.default_flowlabel; #endif if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DONOT_HEARTBEAT)) { net->dest_state |= SCTP_ADDR_NOHB; } else { net->dest_state &= ~SCTP_ADDR_NOHB; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DO_NOT_PMTUD)) { net->dest_state |= SCTP_ADDR_NO_PMTUD; } else { net->dest_state &= ~SCTP_ADDR_NO_PMTUD; } net->heart_beat_delay = stcb->asoc.heart_beat_delay; /* Init the timer structure */ SCTP_OS_TIMER_INIT(&net->rxt_timer.timer); SCTP_OS_TIMER_INIT(&net->pmtu_timer.timer); SCTP_OS_TIMER_INIT(&net->hb_timer.timer); /* Now generate a route for this guy */ #ifdef INET6 /* KAME hack: embed scopeid */ if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_embedscope(sin6, MODULE_GLOBAL(ip6_use_defzone)); sin6->sin6_scope_id = 0; } #endif SCTP_RTALLOC((sctp_route_t *)&net->ro, stcb->asoc.vrf_id, stcb->sctp_ep->fibnum); net->src_addr_selected = 0; if (SCTP_ROUTE_HAS_VALID_IFN(&net->ro)) { /* Get source address */ net->ro._s_addr = sctp_source_address_selection(stcb->sctp_ep, stcb, (sctp_route_t *)&net->ro, net, 0, stcb->asoc.vrf_id); if (stcb->asoc.default_mtu > 0) { net->mtu = stcb->asoc.default_mtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } #if defined(INET) || defined(INET6) if (net->port) { net->mtu += (uint32_t)sizeof(struct udphdr); } #endif } else if (net->ro._s_addr != NULL) { uint32_t imtu, rmtu, hcmtu; net->src_addr_selected = 1; /* Now get the interface MTU */ if (net->ro._s_addr->ifn_p != NULL) { /* * XXX: Should we here just use * net->ro._s_addr->ifn_p->ifn_mtu */ imtu = SCTP_GATHER_MTU_FROM_IFN_INFO(net->ro._s_addr->ifn_p->ifn_p, net->ro._s_addr->ifn_p->ifn_index); } else { imtu = 0; } rmtu = SCTP_GATHER_MTU_FROM_ROUTE(net->ro._s_addr, &net->ro._l_addr.sa, net->ro.ro_nh); hcmtu = sctp_hc_get_mtu(&net->ro._l_addr, stcb->sctp_ep->fibnum); net->mtu = sctp_min_mtu(hcmtu, rmtu, imtu); } } if (net->mtu == 0) { if (stcb->asoc.default_mtu > 0) { net->mtu = stcb->asoc.default_mtu; switch (net->ro._l_addr.sa.sa_family) { #ifdef INET case AF_INET: net->mtu += SCTP_MIN_V4_OVERHEAD; break; #endif #ifdef INET6 case AF_INET6: net->mtu += SCTP_MIN_OVERHEAD; break; #endif default: break; } #if defined(INET) || defined(INET6) if (net->port) { net->mtu += (uint32_t)sizeof(struct udphdr); } #endif } else { switch (newaddr->sa_family) { #ifdef INET case AF_INET: net->mtu = SCTP_DEFAULT_MTU; break; #endif #ifdef INET6 case AF_INET6: net->mtu = 1280; break; #endif default: break; } } } #if defined(INET) || defined(INET6) if (net->port) { net->mtu -= (uint32_t)sizeof(struct udphdr); } #endif if (from == SCTP_ALLOC_ASOC) { stcb->asoc.smallest_mtu = net->mtu; } if (stcb->asoc.smallest_mtu > net->mtu) { sctp_pathmtu_adjustment(stcb, net->mtu, true); } #ifdef INET6 if (newaddr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&net->ro._l_addr; (void)sa6_recoverscope(sin6); } #endif /* JRS - Use the congestion control given in the CC module */ if (stcb->asoc.cc_functions.sctp_set_initial_cc_param != NULL) (*stcb->asoc.cc_functions.sctp_set_initial_cc_param) (stcb, net); /* * CMT: CUC algo - set find_pseudo_cumack to TRUE (1) at beginning * of assoc (2005/06/27, iyengar@cis.udel.edu) */ net->find_pseudo_cumack = 1; net->find_rtx_pseudo_cumack = 1; /* Choose an initial flowid. */ net->flowid = stcb->asoc.my_vtag ^ ntohs(stcb->rport) ^ ntohs(stcb->sctp_ep->sctp_lport); net->flowtype = M_HASHTYPE_OPAQUE_HASH; if (netp) { *netp = net; } netfirst = TAILQ_FIRST(&stcb->asoc.nets); if (net->ro.ro_nh == NULL) { /* Since we have no route put it at the back */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); } else if (netfirst == NULL) { /* We are the first one in the pool. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (netfirst->ro.ro_nh == NULL) { /* * First one has NO route. Place this one ahead of the first * one. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else if (net->ro.ro_nh->nh_ifp != netfirst->ro.ro_nh->nh_ifp) { /* * This one has a different interface than the one at the * top of the list. Place it ahead. */ TAILQ_INSERT_HEAD(&stcb->asoc.nets, net, sctp_next); } else { /* * Ok we have the same interface as the first one. Move * forward until we find either a) one with a NULL route... * insert ahead of that b) one with a different ifp.. insert * after that. c) end of the list.. insert at the tail. */ struct sctp_nets *netlook; do { netlook = TAILQ_NEXT(netfirst, sctp_next); if (netlook == NULL) { /* End of the list */ TAILQ_INSERT_TAIL(&stcb->asoc.nets, net, sctp_next); break; } else if (netlook->ro.ro_nh == NULL) { /* next one has NO route */ TAILQ_INSERT_BEFORE(netfirst, net, sctp_next); break; } else if (netlook->ro.ro_nh->nh_ifp != net->ro.ro_nh->nh_ifp) { TAILQ_INSERT_AFTER(&stcb->asoc.nets, netlook, net, sctp_next); break; } /* Shift forward */ netfirst = netlook; } while (netlook != NULL); } /* got to have a primary set */ if (stcb->asoc.primary_destination == 0) { stcb->asoc.primary_destination = net; } else if ((stcb->asoc.primary_destination->ro.ro_nh == NULL) && (net->ro.ro_nh) && ((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0)) { /* No route to current primary adopt new primary */ stcb->asoc.primary_destination = net; } /* Validate primary is first */ net = TAILQ_FIRST(&stcb->asoc.nets); if ((net != stcb->asoc.primary_destination) && (stcb->asoc.primary_destination)) { /* * first one on the list is NOT the primary sctp_cmpaddr() * is much more efficient if the primary is the first on the * list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } static uint32_t sctp_aloc_a_assoc_id(struct sctp_inpcb *inp, struct sctp_tcb *stcb) { uint32_t id; struct sctpasochead *head; struct sctp_tcb *lstcb; try_again: if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { /* TSNH */ return (0); } /* * We don't allow assoc id to be one of SCTP_FUTURE_ASSOC, * SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC. */ if (inp->sctp_associd_counter <= SCTP_ALL_ASSOC) { inp->sctp_associd_counter = SCTP_ALL_ASSOC + 1; } id = inp->sctp_associd_counter; inp->sctp_associd_counter++; lstcb = sctp_findasoc_ep_asocid_locked(inp, (sctp_assoc_t)id, 0); if (lstcb) { goto try_again; } head = &inp->sctp_asocidhash[SCTP_PCBHASH_ASOC(id, inp->hashasocidmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbasocidhash); stcb->asoc.in_asocid_hash = 1; return (id); } /* * allocate an association and add it to the endpoint. The caller must be * careful to add all additional addresses once they are know right away or * else the assoc will be may experience a blackout scenario. */ static struct sctp_tcb * sctp_aloc_assoc_locked(struct sctp_inpcb *inp, struct sockaddr *firstaddr, int *error, uint32_t override_tag, uint32_t initial_tsn, uint32_t vrf_id, uint16_t o_streams, uint16_t port, struct thread *p, int initialize_auth_params) { /* note the p argument is only valid in unbound sockets */ struct sctp_tcb *stcb; struct sctp_association *asoc; struct sctpasochead *head; uint16_t rport; int err; SCTP_INP_INFO_WLOCK_ASSERT(); SCTP_INP_WLOCK_ASSERT(inp); /* * Assumption made here: Caller has done a * sctp_findassociation_ep_addr(ep, addr's); to make sure the * address does not exist already. */ if (SCTP_BASE_INFO(ipi_count_asoc) >= SCTP_MAX_NUM_OF_ASOC) { /* Hit max assoc, sorry no more */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } if (firstaddr == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if (inp->sctp_flags & (SCTP_PCB_FLAGS_SOCKET_GONE | SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) && ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_PORTREUSE)) || (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) { /* * If its in the TCP pool, its NOT allowed to create an * association. The parent listener needs to call * sctp_aloc_assoc.. or the one-2-many socket. If a peeled * off, or connected one does this.. its an error. */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } } SCTPDBG(SCTP_DEBUG_PCB3, "Allocate an association for peer:"); #ifdef SCTP_DEBUG if (firstaddr) { SCTPDBG_ADDR(SCTP_DEBUG_PCB3, firstaddr); switch (firstaddr->sa_family) { #ifdef INET case AF_INET: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in *)firstaddr)->sin_port)); break; #endif #ifdef INET6 case AF_INET6: SCTPDBG(SCTP_DEBUG_PCB3, "Port:%d\n", ntohs(((struct sockaddr_in6 *)firstaddr)->sin6_port)); break; #endif default: break; } } else { SCTPDBG(SCTP_DEBUG_PCB3, "None\n"); } #endif /* SCTP_DEBUG */ switch (firstaddr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)firstaddr; if ((ntohs(sin->sin_port) == 0) || (sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) || ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && (SCTP_IPV6_V6ONLY(inp) != 0))) { /* Invalid address */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin->sin_port; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)firstaddr; if ((ntohs(sin6->sin6_port) == 0) || IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) || ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0)) { /* Invalid address */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } rport = sin6->sin6_port; break; } #endif default: /* not supported family type */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, EINVAL); *error = EINVAL; return (NULL); } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* * If you have not performed a bind, then we need to do the * ephemeral bind for you. */ if ((err = sctp_inpcb_bind_locked(inp, NULL, NULL, p))) { /* bind error, probably perm */ *error = err; return (NULL); } } stcb = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_asoc), struct sctp_tcb); if (stcb == NULL) { /* out of memory? */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); *error = ENOMEM; return (NULL); } SCTP_INCR_ASOC_COUNT(); memset(stcb, 0, sizeof(*stcb)); asoc = &stcb->asoc; SCTP_TCB_LOCK_INIT(stcb); stcb->rport = rport; /* setup back pointer's */ stcb->sctp_ep = inp; stcb->sctp_socket = inp->sctp_socket; if ((err = sctp_init_asoc(inp, stcb, override_tag, initial_tsn, vrf_id, o_streams))) { /* failed */ SCTP_TCB_LOCK_DESTROY(stcb); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); *error = err; return (NULL); } SCTP_TCB_LOCK(stcb); asoc->assoc_id = sctp_aloc_a_assoc_id(inp, stcb); /* now that my_vtag is set, add it to the hash */ head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(stcb->asoc.my_vtag, SCTP_BASE_INFO(hashasocmark))]; /* put it in the bucket in the vtag hash of assoc's for the system */ LIST_INSERT_HEAD(head, stcb, sctp_asocs); if (sctp_add_remote_addr(stcb, firstaddr, NULL, port, SCTP_DO_SETSCOPE, SCTP_ALLOC_ASOC)) { /* failure.. memory error? */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } SCTP_DECR_ASOC_COUNT(); SCTP_TCB_UNLOCK(stcb); SCTP_TCB_LOCK_DESTROY(stcb); LIST_REMOVE(stcb, sctp_asocs); LIST_REMOVE(stcb, sctp_tcbasocidhash); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_INP_WUNLOCK(inp); SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOBUFS); *error = ENOBUFS; return (NULL); } /* Init all the timers */ SCTP_OS_TIMER_INIT(&asoc->dack_timer.timer); SCTP_OS_TIMER_INIT(&asoc->strreset_timer.timer); SCTP_OS_TIMER_INIT(&asoc->asconf_timer.timer); SCTP_OS_TIMER_INIT(&asoc->shut_guard_timer.timer); SCTP_OS_TIMER_INIT(&asoc->autoclose_timer.timer); SCTP_OS_TIMER_INIT(&asoc->delete_prim_timer.timer); LIST_INSERT_HEAD(&inp->sctp_asoc_list, stcb, sctp_tcblist); /* now file the port under the hash as well */ if (inp->sctp_tcbhash != NULL) { head = &inp->sctp_tcbhash[SCTP_PCBHASH_ALLADDR(stcb->rport, inp->sctp_hashmark)]; LIST_INSERT_HEAD(head, stcb, sctp_tcbhash); } if (initialize_auth_params == SCTP_INITIALIZE_AUTH_PARAMS) { sctp_initialize_auth_params(inp, stcb); } SCTPDBG(SCTP_DEBUG_PCB1, "Association %p now allocated\n", (void *)stcb); return (stcb); } struct sctp_tcb * sctp_aloc_assoc(struct sctp_inpcb *inp, struct sockaddr *firstaddr, int *error, uint32_t override_tag, uint32_t initial_tsn, uint32_t vrf_id, uint16_t o_streams, uint16_t port, struct thread *p, int initialize_auth_params) { struct sctp_tcb *stcb; SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); stcb = sctp_aloc_assoc_locked(inp, firstaddr, error, override_tag, initial_tsn, vrf_id, o_streams, port, p, initialize_auth_params); SCTP_INP_INFO_WUNLOCK(); SCTP_INP_WUNLOCK(inp); return (stcb); } struct sctp_tcb * sctp_aloc_assoc_connected(struct sctp_inpcb *inp, struct sockaddr *firstaddr, int *error, uint32_t override_tag, uint32_t initial_tsn, uint32_t vrf_id, uint16_t o_streams, uint16_t port, struct thread *p, int initialize_auth_params) { struct sctp_tcb *stcb; SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && SCTP_IS_LISTENING(inp)) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_WUNLOCK(inp); *error = EINVAL; return (NULL); } stcb = sctp_aloc_assoc_locked(inp, firstaddr, error, override_tag, initial_tsn, vrf_id, o_streams, port, p, initialize_auth_params); SCTP_INP_INFO_WUNLOCK(); if (stcb != NULL && (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) { inp->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; soisconnecting(inp->sctp_socket); } SCTP_INP_WUNLOCK(inp); return (stcb); } void sctp_remove_net(struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_inpcb *inp; struct sctp_association *asoc; inp = stcb->sctp_ep; asoc = &stcb->asoc; asoc->numnets--; TAILQ_REMOVE(&asoc->nets, net, sctp_next); if (net == asoc->primary_destination) { /* Reset primary */ struct sctp_nets *lnet; lnet = TAILQ_FIRST(&asoc->nets); /* * Mobility adaptation Ideally, if deleted destination is * the primary, it becomes a fast retransmission trigger by * the subsequent SET PRIMARY. (by micchie) */ if (sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_BASE) || sctp_is_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_FASTHANDOFF)) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: primary dst is deleting\n"); if (asoc->deleted_primary != NULL) { SCTPDBG(SCTP_DEBUG_ASCONF1, "remove_net: deleted primary may be already stored\n"); goto out; } asoc->deleted_primary = net; atomic_add_int(&net->ref_count, 1); memset(&net->lastsa, 0, sizeof(net->lastsa)); memset(&net->lastsv, 0, sizeof(net->lastsv)); sctp_mobility_feature_on(stcb->sctp_ep, SCTP_MOBILITY_PRIM_DELETED); sctp_timer_start(SCTP_TIMER_TYPE_PRIM_DELETED, stcb->sctp_ep, stcb, NULL); } out: /* Try to find a confirmed primary */ asoc->primary_destination = sctp_find_alternate_net(stcb, lnet, 0); } if (net == asoc->last_data_chunk_from) { /* Reset primary */ asoc->last_data_chunk_from = TAILQ_FIRST(&asoc->nets); } if (net == asoc->last_control_chunk_from) { /* Clear net */ asoc->last_control_chunk_from = NULL; } if (net == asoc->last_net_cmt_send_started) { /* Clear net */ asoc->last_net_cmt_send_started = NULL; } if (net == stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTP_PCB + SCTP_LOC_9); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTP_PCB + SCTP_LOC_10); net->dest_state |= SCTP_ADDR_BEING_DELETED; sctp_free_remote_addr(net); } /* * remove a remote endpoint address from an association, it will fail if the * address does not exist. */ int sctp_del_remote_addr(struct sctp_tcb *stcb, struct sockaddr *remaddr) { /* * Here we need to remove a remote address. This is quite simple, we * first find it in the list of address for the association * (tasoc->asoc.nets) and then if it is there, we do a LIST_REMOVE * on that item. Note we do not allow it to be removed if there are * no other addresses. */ struct sctp_association *asoc; struct sctp_nets *net, *nnet; asoc = &stcb->asoc; /* locate the address */ TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { if (net->ro._l_addr.sa.sa_family != remaddr->sa_family) { continue; } if (sctp_cmpaddr((struct sockaddr *)&net->ro._l_addr, remaddr)) { /* we found the guy */ if (asoc->numnets < 2) { /* Must have at LEAST two remote addresses */ return (-1); } else { sctp_remove_net(stcb, net); return (0); } } } /* not found. */ return (-2); } static bool sctp_is_in_timewait(uint32_t tag, uint16_t lport, uint16_t rport, uint32_t now) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; int i; SCTP_INP_INFO_LOCK_ASSERT(); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].tv_sec_at_expire >= now) && (twait_block->vtag_block[i].v_tag == tag) && (twait_block->vtag_block[i].lport == lport) && (twait_block->vtag_block[i].rport == rport)) { return (true); } } } return (false); } static void sctp_set_vtag_block(struct sctp_timewait *vtag_block, uint32_t time, uint32_t tag, uint16_t lport, uint16_t rport) { vtag_block->tv_sec_at_expire = time; vtag_block->v_tag = tag; vtag_block->lport = lport; vtag_block->rport = rport; } static void sctp_add_vtag_to_timewait(uint32_t tag, uint16_t lport, uint16_t rport) { struct sctpvtaghead *chain; struct sctp_tagblock *twait_block; struct timeval now; uint32_t time; int i; bool set; SCTP_INP_INFO_WLOCK_ASSERT(); (void)SCTP_GETTIME_TIMEVAL(&now); time = (uint32_t)now.tv_sec + SCTP_BASE_SYSCTL(sctp_vtag_time_wait); chain = &SCTP_BASE_INFO(vtag_timewait)[(tag % SCTP_STACK_VTAG_HASH_SIZE)]; set = false; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { /* Block(s) present, lets find space, and expire on the fly */ for (i = 0; i < SCTP_NUMBER_IN_VTAG_BLOCK; i++) { if ((twait_block->vtag_block[i].v_tag == 0) && !set) { sctp_set_vtag_block(twait_block->vtag_block + i, time, tag, lport, rport); set = true; continue; } if ((twait_block->vtag_block[i].v_tag != 0) && (twait_block->vtag_block[i].tv_sec_at_expire < (uint32_t)now.tv_sec)) { if (set) { /* Audit expires this guy */ sctp_set_vtag_block(twait_block->vtag_block + i, 0, 0, 0, 0); } else { /* Reuse it for the new tag */ sctp_set_vtag_block(twait_block->vtag_block + i, time, tag, lport, rport); set = true; } } } if (set) { /* * We only do up to the block where we can place our * tag for audits */ break; } } /* Need to add a new block to chain */ if (!set) { SCTP_MALLOC(twait_block, struct sctp_tagblock *, sizeof(struct sctp_tagblock), SCTP_M_TIMW); if (twait_block == NULL) { return; } memset(twait_block, 0, sizeof(struct sctp_tagblock)); LIST_INSERT_HEAD(chain, twait_block, sctp_nxt_tagblock); sctp_set_vtag_block(twait_block->vtag_block, time, tag, lport, rport); } } void sctp_clean_up_stream(struct sctp_tcb *stcb, struct sctp_readhead *rh) { struct sctp_tmit_chunk *chk, *nchk; struct sctp_queued_to_read *control, *ncontrol; TAILQ_FOREACH_SAFE(control, rh, next_instrm, ncontrol) { TAILQ_REMOVE(rh, control, next_instrm); control->on_strm_q = 0; if (control->on_read_q == 0) { sctp_free_remote_addr(control->whoFrom); if (control->data) { sctp_m_freem(control->data); control->data = NULL; } } /* Reassembly free? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* * We don't free the address here since all the net's were * freed above. */ if (control->on_read_q == 0) { sctp_free_a_readq(stcb, control); } } } /*- * Free the association after un-hashing the remote port. This * function ALWAYS returns holding NO LOCK on the stcb. It DOES * expect that the input to this function IS a locked TCB. * It will return 0, if it did NOT destroy the association (instead * it unlocks it. It will return NON-zero if it either destroyed the * association OR the association is already destroyed. */ int sctp_free_assoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int from_inpcbfree, int from_location) { int i; struct sctp_association *asoc; struct sctp_nets *net, *nnet; struct sctp_laddr *laddr, *naddr; struct sctp_tmit_chunk *chk, *nchk; struct sctp_asconf_addr *aparam, *naparam; struct sctp_asconf_ack *aack, *naack; struct sctp_stream_reset_list *strrst, *nstrrst; struct sctp_queued_to_read *sq, *nsq; struct sctp_stream_queue_pending *sp, *nsp; sctp_sharedkey_t *shared_key, *nshared_key; struct socket *so; /* first, lets purge the entry from the hash table. */ SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 6); #endif if (stcb->asoc.state == 0) { #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 7); #endif /* there is no asoc, really TSNH :-0 */ return (1); } if (stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } /* TEMP CODE */ if (stcb->freed_from_where == 0) { /* Only record the first place free happened from */ stcb->freed_from_where = from_location; } /* TEMP CODE */ asoc = &stcb->asoc; if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; else so = inp->sctp_socket; /* * We used timer based freeing if a reader or writer is in the way. * So we first check if we are actually being called from a timer, * if so we abort early if a reader or writer is still in the way. */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) && (from_inpcbfree == SCTP_NORMAL_PROC)) { /* * is it the timer driving us? if so are the reader/writers * gone? */ if (stcb->asoc.refcnt) { /* nope, reader or writer in the way */ sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); /* no asoc destroyed */ SCTP_TCB_UNLOCK(stcb); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 8); #endif return (0); } } /* Now clean up any other timers */ sctp_stop_association_timers(stcb, false); /* Now the read queue needs to be cleaned up (only once) */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0) { SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_ABOUT_TO_BE_FREED); SCTP_INP_READ_LOCK(inp); TAILQ_FOREACH(sq, &inp->read_queue, next) { if (sq->stcb == stcb) { sq->do_not_ref_stcb = 1; sq->sinfo_cumtsn = stcb->asoc.cumulative_tsn; /* * If there is no end, there never will be * now. */ if (sq->end_added == 0) { /* Held for PD-API, clear that. */ sq->pdapi_aborted = 1; sq->held_length = 0; if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_PDAPIEVNT) && (so != NULL)) { sctp_ulp_notify(SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION, stcb, SCTP_PARTIAL_DELIVERY_ABORTED, (void *)sq, SCTP_SO_LOCKED); } /* Add an end to wake them */ sq->end_added = 1; } } } SCTP_INP_READ_UNLOCK(inp); if (stcb->block_entry) { SCTP_LTRACE_ERR_RET(inp, stcb, NULL, SCTP_FROM_SCTP_PCB, ECONNRESET); stcb->block_entry->error = ECONNRESET; stcb->block_entry = NULL; } } if ((stcb->asoc.refcnt) || (stcb->asoc.state & SCTP_STATE_IN_ACCEPT_QUEUE)) { /* * Someone holds a reference OR the socket is unaccepted * yet. */ if ((stcb->asoc.refcnt) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_IN_ACCEPT_QUEUE); sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if (so) { /* Wake any reader/writers */ sctp_sorwakeup(inp, so); sctp_sowwakeup(inp, so); } SCTP_TCB_UNLOCK(stcb); #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 9); #endif /* no asoc destroyed */ return (0); } #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, stcb, 10); #endif /* * When I reach here, no others want to kill the assoc yet.. and I * own the lock. Now its possible an abort comes in when I do the * lock exchange below to grab all the locks to do the final take * out. to prevent this we increment the count, which will start a * timer and blow out above thus assuring us that we hold exclusive * killing of the asoc. Note that after getting back the TCB lock we * will go ahead and increment the counter back up and stop any * timer a passing stranger may have started :-S */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); SCTP_INP_INFO_WLOCK(); SCTP_INP_WLOCK(inp); SCTP_TCB_LOCK(stcb); } /* Double check the GONE flag */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) /* nothing around */ so = NULL; if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* * For TCP type we need special handling when we are * connected. We also include the peel'ed off ones to. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_CONNECTED; inp->sctp_flags |= SCTP_PCB_FLAGS_WAS_CONNECTED; if (so) { SOCKBUF_LOCK(&so->so_rcv); so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | - SS_ISCONFIRMING | SS_ISCONNECTED); so->so_state |= SS_ISDISCONNECTED; socantrcvmore_locked(so); socantsendmore(so); sctp_sowwakeup(inp, so); sctp_sorwakeup(inp, so); SCTP_SOWAKEUP(so); } } } /* * Make it invalid too, that way if its about to run it will abort * and return. */ /* re-increment the lock */ if (from_inpcbfree == SCTP_NORMAL_PROC) { atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (stcb->asoc.refcnt) { SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_IN_ACCEPT_QUEUE); sctp_timer_start(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_WUNLOCK(inp); } SCTP_TCB_UNLOCK(stcb); return (0); } asoc->state = 0; if (inp->sctp_tcbhash) { LIST_REMOVE(stcb, sctp_tcbhash); } if (stcb->asoc.in_asocid_hash) { LIST_REMOVE(stcb, sctp_tcbasocidhash); } if (inp->sctp_socket == NULL) { stcb->sctp_socket = NULL; } /* Now lets remove it from the list of ALL associations in the EP */ LIST_REMOVE(stcb, sctp_tcblist); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); } /* pull from vtag hash */ LIST_REMOVE(stcb, sctp_asocs); sctp_add_vtag_to_timewait(asoc->my_vtag, inp->sctp_lport, stcb->rport); /* * Now restop the timers to be sure this is paranoia at is finest! */ sctp_stop_association_timers(stcb, true); /* * The chunk lists and such SHOULD be empty but we check them just * in case. */ /* anything on the wheel needs to be removed */ for (i = 0; i < asoc->streamoutcnt; i++) { struct sctp_stream_out *outs; outs = &asoc->strmout[i]; /* now clean up any chunks here */ TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { atomic_subtract_int(&asoc->stream_queue_cnt, 1); TAILQ_REMOVE(&outs->outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp); sctp_free_spbufspace(stcb, asoc, sp); if (sp->data) { if (so) { /* Still an open socket - report */ sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, 0, (void *)sp, SCTP_SO_LOCKED); } if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } sctp_free_a_strmoq(stcb, sp, SCTP_SO_LOCKED); } } /* sa_ignore FREED_MEMORY */ TAILQ_FOREACH_SAFE(strrst, &asoc->resetHead, next_resp, nstrrst) { TAILQ_REMOVE(&asoc->resetHead, strrst, next_resp); SCTP_FREE(strrst, SCTP_M_STRESET); } TAILQ_FOREACH_SAFE(sq, &asoc->pending_reply_queue, next, nsq) { TAILQ_REMOVE(&asoc->pending_reply_queue, sq, next); if (sq->data) { sctp_m_freem(sq->data); sq->data = NULL; } sctp_free_remote_addr(sq->whoFrom); sq->whoFrom = NULL; sq->stcb = NULL; /* Free the ctl entry */ sctp_free_a_readq(stcb, sq); /* sa_ignore FREED_MEMORY */ } TAILQ_FOREACH_SAFE(chk, &asoc->free_chunks, sctp_next, nchk) { TAILQ_REMOVE(&asoc->free_chunks, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); atomic_subtract_int(&SCTP_BASE_INFO(ipi_free_chunks), 1); asoc->free_chunk_cnt--; /* sa_ignore FREED_MEMORY */ } /* pending send queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); if (chk->whoTo) { sctp_free_remote_addr(chk->whoTo); chk->whoTo = NULL; } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* sent queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { if (chk->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } } TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); if (chk->data) { if (so) { /* Still a socket? */ sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, chk, SCTP_SO_LOCKED); } if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } #ifdef INVARIANTS for (i = 0; i < stcb->asoc.streamoutcnt; i++) { if (stcb->asoc.strmout[i].chunks_on_queues > 0) { panic("%u chunks left for stream %u.", stcb->asoc.strmout[i].chunks_on_queues, i); } } #endif /* control queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->control_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->control_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } /* ASCONF queue MAY not be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->asconf_send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->asconf_send_queue, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } if (chk->holds_key_ref) sctp_auth_key_release(stcb, chk->auth_keyid, SCTP_SO_LOCKED); sctp_free_remote_addr(chk->whoTo); SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_chunk), chk); SCTP_DECR_CHK_COUNT(); /* sa_ignore FREED_MEMORY */ } if (asoc->mapping_array) { SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); asoc->mapping_array = NULL; } if (asoc->nr_mapping_array) { SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->nr_mapping_array = NULL; } /* the stream outs */ if (asoc->strmout) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); asoc->strmout = NULL; } asoc->strm_realoutsize = asoc->streamoutcnt = 0; if (asoc->strmin) { for (i = 0; i < asoc->streamincnt; i++) { sctp_clean_up_stream(stcb, &asoc->strmin[i].inqueue); sctp_clean_up_stream(stcb, &asoc->strmin[i].uno_inqueue); } SCTP_FREE(asoc->strmin, SCTP_M_STRMI); asoc->strmin = NULL; } asoc->streamincnt = 0; TAILQ_FOREACH_SAFE(net, &asoc->nets, sctp_next, nnet) { #ifdef INVARIANTS if (SCTP_BASE_INFO(ipi_count_raddr) == 0) { panic("no net's left alloc'ed, or list points to itself"); } #endif TAILQ_REMOVE(&asoc->nets, net, sctp_next); sctp_free_remote_addr(net); } LIST_FOREACH_SAFE(laddr, &asoc->sctp_restricted_addrs, sctp_nxt_addr, naddr) { /* sa_ignore FREED_MEMORY */ sctp_remove_laddr(laddr); } /* pending asconf (address) parameters */ TAILQ_FOREACH_SAFE(aparam, &asoc->asconf_queue, next, naparam) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_queue, aparam, next); SCTP_FREE(aparam, SCTP_M_ASC_ADDR); } TAILQ_FOREACH_SAFE(aack, &asoc->asconf_ack_sent, next, naack) { /* sa_ignore FREED_MEMORY */ TAILQ_REMOVE(&asoc->asconf_ack_sent, aack, next); if (aack->data != NULL) { sctp_m_freem(aack->data); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asconf_ack), aack); } /* clean up auth stuff */ if (asoc->local_hmacs) sctp_free_hmaclist(asoc->local_hmacs); if (asoc->peer_hmacs) sctp_free_hmaclist(asoc->peer_hmacs); if (asoc->local_auth_chunks) sctp_free_chunklist(asoc->local_auth_chunks); if (asoc->peer_auth_chunks) sctp_free_chunklist(asoc->peer_auth_chunks); sctp_free_authinfo(&asoc->authinfo); LIST_FOREACH_SAFE(shared_key, &asoc->shared_keys, next, nshared_key) { LIST_REMOVE(shared_key, next); sctp_free_sharedkey(shared_key); /* sa_ignore FREED_MEMORY */ } /* Insert new items here :> */ /* Get rid of LOCK */ SCTP_TCB_UNLOCK(stcb); SCTP_TCB_LOCK_DESTROY(stcb); if (from_inpcbfree == SCTP_NORMAL_PROC) { SCTP_INP_INFO_WUNLOCK(); SCTP_INP_RLOCK(inp); } #ifdef SCTP_TRACK_FREED_ASOCS if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* now clean up the tasoc itself */ SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); } else { LIST_INSERT_HEAD(&inp->sctp_asoc_free_list, stcb, sctp_tcblist); } #else SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_asoc), stcb); SCTP_DECR_ASOC_COUNT(); #endif if (from_inpcbfree == SCTP_NORMAL_PROC) { if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { /* * If its NOT the inp_free calling us AND sctp_close * as been called, we call back... */ SCTP_INP_RUNLOCK(inp); /* * This will start the kill timer (if we are the * last one) since we hold an increment yet. But * this is the only safe way to do this since * otherwise if the socket closes at the same time * we are here we might collide in the cleanup. */ sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_GRACEFUL_CLOSE, SCTP_CALLED_DIRECTLY_NOCMPSET); SCTP_INP_DECR_REF(inp); } else { /* The socket is still open. */ SCTP_INP_DECR_REF(inp); SCTP_INP_RUNLOCK(inp); } } /* destroyed the asoc */ #ifdef SCTP_LOG_CLOSING sctp_log_closing(inp, NULL, 11); #endif return (1); } /* * determine if a destination is "reachable" based upon the addresses bound * to the current endpoint (e.g. only v4 or v6 currently bound) */ /* * FIX: if we allow assoc-level bindx(), then this needs to be fixed to use * assoc level v4/v6 flags, as the assoc *may* not have the same address * types bound as its endpoint */ int sctp_destination_is_reachable(struct sctp_tcb *stcb, struct sockaddr *destaddr) { struct sctp_inpcb *inp; int answer; /* * No locks here, the TCB, in all cases is already locked and an * assoc is up. There is either a INP lock by the caller applied (in * asconf case when deleting an address) or NOT in the HB case, * however if HB then the INP increment is up and the INP will not * be removed (on top of the fact that we have a TCB lock). So we * only want to read the sctp_flags, which is either bound-all or * not.. no protection needed since once an assoc is up you can't be * changing your binding. */ inp = stcb->sctp_ep; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* if bound all, destination is not restricted */ /* * RRS: Question during lock work: Is this correct? If you * are bound-all you still might need to obey the V4--V6 * flags??? IMO this bound-all stuff needs to be removed! */ return (1); } /* NOTE: all "scope" checks are done when local addresses are added */ switch (destaddr->sa_family) { #ifdef INET6 case AF_INET6: answer = inp->ip_inp.inp.inp_vflag & INP_IPV6; break; #endif #ifdef INET case AF_INET: answer = inp->ip_inp.inp.inp_vflag & INP_IPV4; break; #endif default: /* invalid family, so it's unreachable */ answer = 0; break; } return (answer); } /* * update the inp_vflags on an endpoint */ static void sctp_update_ep_vflag(struct sctp_inpcb *inp) { struct sctp_laddr *laddr; /* first clear the flag */ inp->ip_inp.inp.inp_vflag = 0; /* set the flag based on addresses on the ep list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) { SCTPDBG(SCTP_DEBUG_PCB1, "%s: NULL ifa\n", __func__); continue; } if (laddr->ifa->localifa_flags & SCTP_BEING_DELETED) { continue; } switch (laddr->ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } } } /* * Add the address to the endpoint local address list There is nothing to be * done if we are bound to all addresses */ void sctp_add_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa, uint32_t action) { struct sctp_laddr *laddr; struct sctp_tcb *stcb; int fnd, error = 0; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-useable addr. */ return; } } #endif /* first, is it already present? */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd == 0) { /* Not in the ep list */ error = sctp_insert_laddr(&inp->sctp_addr_list, ifa, action); if (error != 0) return; inp->laddr_count++; /* update inp_vflag flags */ switch (ifa->address.sa.sa_family) { #ifdef INET6 case AF_INET6: inp->ip_inp.inp.inp_vflag |= INP_IPV6; break; #endif #ifdef INET case AF_INET: inp->ip_inp.inp.inp_vflag |= INP_IPV4; break; #endif default: break; } LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { sctp_add_local_addr_restricted(stcb, ifa); } } return; } /* * select a new (hopefully reachable) destination net (should only be used * when we deleted an ep addr that is the only usable source address to reach * the destination net) */ static void sctp_select_primary_destination(struct sctp_tcb *stcb) { struct sctp_nets *net; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* for now, we'll just pick the first reachable one we find */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) continue; if (sctp_destination_is_reachable(stcb, (struct sockaddr *)&net->ro._l_addr)) { /* found a reachable destination */ stcb->asoc.primary_destination = net; } } /* I can't there from here! ...we're gonna die shortly... */ } /* * Delete the address from the endpoint local address list. There is nothing * to be done if we are bound to all addresses */ void sctp_del_local_addr_ep(struct sctp_inpcb *inp, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; int fnd; fnd = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* You are already bound to all. You have it already */ return; } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == ifa) { fnd = 1; break; } } if (fnd && (inp->laddr_count < 2)) { /* can't delete unless there are at LEAST 2 addresses */ return; } if (fnd) { /* * clean up any use of this address go through our * associations and clear any last_used_address that match * this one for each assoc, see if a new primary_destination * is needed */ struct sctp_tcb *stcb; /* clean up "next_addr_touse" */ if (inp->next_addr_touse == laddr) /* delete this address */ inp->next_addr_touse = NULL; /* clean up "last_used_address" */ LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { struct sctp_nets *net; SCTP_TCB_LOCK(stcb); if (stcb->asoc.last_used_address == laddr) /* delete this address */ stcb->asoc.last_used_address = NULL; /* * Now spin through all the nets and purge any ref * to laddr */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if (net->ro._s_addr == laddr->ifa) { /* Yep, purge src address selected */ RO_NHFREE(&net->ro); sctp_free_ifa(net->ro._s_addr); net->ro._s_addr = NULL; net->src_addr_selected = 0; } } SCTP_TCB_UNLOCK(stcb); } /* for each tcb */ /* remove it from the ep list */ sctp_remove_laddr(laddr); inp->laddr_count--; /* update inp_vflag flags */ sctp_update_ep_vflag(inp); } return; } /* * Add the address to the TCB local address restricted list. * This is a "pending" address list (eg. addresses waiting for an * ASCONF-ACK response) and cannot be used as a valid source address. */ void sctp_add_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_laddr *laddr; struct sctpladdr *list; /* * Assumes TCB is locked.. and possibly the INP. May need to * confirm/fix that if we need it and is not the case. */ list = &stcb->asoc.sctp_restricted_addrs; #ifdef INET6 if (ifa->address.sa.sa_family == AF_INET6) { if (ifa->localifa_flags & SCTP_ADDR_IFA_UNUSEABLE) { /* Can't bind a non-existent addr. */ return; } } #endif /* does the address already exist? */ LIST_FOREACH(laddr, list, sctp_nxt_addr) { if (laddr->ifa == ifa) { return; } } /* add to the list */ (void)sctp_insert_laddr(list, ifa, 0); return; } /* * Remove a local address from the TCB local address restricted list */ void sctp_del_local_addr_restricted(struct sctp_tcb *stcb, struct sctp_ifa *ifa) { struct sctp_inpcb *inp; struct sctp_laddr *laddr; /* * This is called by asconf work. It is assumed that a) The TCB is * locked and b) The INP is locked. This is true in as much as I can * trace through the entry asconf code where I did these locks. * Again, the ASCONF code is a bit different in that it does lock * the INP during its work often times. This must be since we don't * want other proc's looking up things while what they are looking * up is changing :-D */ inp = stcb->sctp_ep; /* if subset bound and don't allow ASCONF's, can't delete last */ if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) == 0) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_DO_ASCONF)) { if (stcb->sctp_ep->laddr_count < 2) { /* can't delete last address */ return; } } LIST_FOREACH(laddr, &stcb->asoc.sctp_restricted_addrs, sctp_nxt_addr) { /* remove the address if it exists */ if (laddr->ifa == NULL) continue; if (laddr->ifa == ifa) { sctp_remove_laddr(laddr); return; } } /* address not found! */ return; } /* sysctl */ static int sctp_max_number_of_assoc = SCTP_MAX_NUM_OF_ASOC; static int sctp_scale_up_for_address = SCTP_SCALE_FOR_ADDR; #if defined(SCTP_MCORE_INPUT) && defined(SMP) struct sctp_mcore_ctrl *sctp_mcore_workers = NULL; int *sctp_cpuarry = NULL; void sctp_queue_to_mcore(struct mbuf *m, int off, int cpu_to_use) { /* Queue a packet to a processor for the specified core */ struct sctp_mcore_queue *qent; struct sctp_mcore_ctrl *wkq; int need_wake = 0; if (sctp_mcore_workers == NULL) { /* Something went way bad during setup */ sctp_input_with_port(m, off, 0); return; } SCTP_MALLOC(qent, struct sctp_mcore_queue *, (sizeof(struct sctp_mcore_queue)), SCTP_M_MCORE); if (qent == NULL) { /* This is trouble */ sctp_input_with_port(m, off, 0); return; } qent->vn = curvnet; qent->m = m; qent->off = off; qent->v6 = 0; wkq = &sctp_mcore_workers[cpu_to_use]; SCTP_MCORE_QLOCK(wkq); TAILQ_INSERT_TAIL(&wkq->que, qent, next); if (wkq->running == 0) { need_wake = 1; } SCTP_MCORE_QUNLOCK(wkq); if (need_wake) { wakeup(&wkq->running); } } static void sctp_mcore_thread(void *arg) { struct sctp_mcore_ctrl *wkq; struct sctp_mcore_queue *qent; wkq = (struct sctp_mcore_ctrl *)arg; struct mbuf *m; int off, v6; /* Wait for first tickle */ SCTP_MCORE_LOCK(wkq); wkq->running = 0; msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); SCTP_MCORE_UNLOCK(wkq); /* Bind to our cpu */ thread_lock(curthread); sched_bind(curthread, wkq->cpuid); thread_unlock(curthread); /* Now lets start working */ SCTP_MCORE_LOCK(wkq); /* Now grab lock and go */ for (;;) { SCTP_MCORE_QLOCK(wkq); skip_sleep: wkq->running = 1; qent = TAILQ_FIRST(&wkq->que); if (qent) { TAILQ_REMOVE(&wkq->que, qent, next); SCTP_MCORE_QUNLOCK(wkq); CURVNET_SET(qent->vn); m = qent->m; off = qent->off; v6 = qent->v6; SCTP_FREE(qent, SCTP_M_MCORE); if (v6 == 0) { sctp_input_with_port(m, off, 0); } else { SCTP_PRINTF("V6 not yet supported\n"); sctp_m_freem(m); } CURVNET_RESTORE(); SCTP_MCORE_QLOCK(wkq); } wkq->running = 0; if (!TAILQ_EMPTY(&wkq->que)) { goto skip_sleep; } SCTP_MCORE_QUNLOCK(wkq); msleep(&wkq->running, &wkq->core_mtx, 0, "wait for pkt", 0); } } static void sctp_startup_mcore_threads(void) { int i, cpu; if (mp_ncpus == 1) return; if (sctp_mcore_workers != NULL) { /* * Already been here in some previous vnet? */ return; } SCTP_MALLOC(sctp_mcore_workers, struct sctp_mcore_ctrl *, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl)), SCTP_M_MCORE); if (sctp_mcore_workers == NULL) { /* TSNH I hope */ return; } memset(sctp_mcore_workers, 0, ((mp_maxid + 1) * sizeof(struct sctp_mcore_ctrl))); /* Init the structures */ for (i = 0; i <= mp_maxid; i++) { TAILQ_INIT(&sctp_mcore_workers[i].que); SCTP_MCORE_LOCK_INIT(&sctp_mcore_workers[i]); SCTP_MCORE_QLOCK_INIT(&sctp_mcore_workers[i]); sctp_mcore_workers[i].cpuid = i; } if (sctp_cpuarry == NULL) { SCTP_MALLOC(sctp_cpuarry, int *, (mp_ncpus * sizeof(int)), SCTP_M_MCORE); i = 0; CPU_FOREACH(cpu) { sctp_cpuarry[i] = cpu; i++; } } /* Now start them all */ CPU_FOREACH(cpu) { (void)kproc_create(sctp_mcore_thread, (void *)&sctp_mcore_workers[cpu], &sctp_mcore_workers[cpu].thread_proc, 0, SCTP_KTHREAD_PAGES, SCTP_MCORE_NAME); } } #endif #define VALIDATE_LOADER_TUNABLE(var_name, prefix) \ if (SCTP_BASE_SYSCTL(var_name) < prefix##_MIN || \ SCTP_BASE_SYSCTL(var_name) > prefix##_MAX) \ SCTP_BASE_SYSCTL(var_name) = prefix##_DEFAULT void sctp_pcb_init(void) { /* * SCTP initialization for the PCB structures should be called by * the sctp_init() function. */ int i; struct timeval tv; if (SCTP_BASE_VAR(sctp_pcb_initialized) != 0) { /* error I was called twice */ return; } SCTP_BASE_VAR(sctp_pcb_initialized) = 1; #if defined(SCTP_LOCAL_TRACE_BUF) memset(&SCTP_BASE_SYSCTL(sctp_log), 0, sizeof(struct sctp_log)); #endif #if defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_MALLOC(SCTP_BASE_STATS, struct sctpstat *, ((mp_maxid + 1) * sizeof(struct sctpstat)), SCTP_M_MCORE); #endif (void)SCTP_GETTIME_TIMEVAL(&tv); #if defined(SMP) && defined(SCTP_USE_PERCPU_STAT) memset(SCTP_BASE_STATS, 0, sizeof(struct sctpstat) * (mp_maxid + 1)); SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_sec = (uint32_t)tv.tv_sec; SCTP_BASE_STATS[PCPU_GET(cpuid)].sctps_discontinuitytime.tv_usec = (uint32_t)tv.tv_usec; #else memset(&SCTP_BASE_STATS, 0, sizeof(struct sctpstat)); SCTP_BASE_STAT(sctps_discontinuitytime).tv_sec = (uint32_t)tv.tv_sec; SCTP_BASE_STAT(sctps_discontinuitytime).tv_usec = (uint32_t)tv.tv_usec; #endif /* init the empty list of (All) Endpoints */ LIST_INIT(&SCTP_BASE_INFO(listhead)); /* init the hash table of endpoints */ TUNABLE_INT_FETCH("net.inet.sctp.tcbhashsize", &SCTP_BASE_SYSCTL(sctp_hashtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.pcbhashsize", &SCTP_BASE_SYSCTL(sctp_pcbtblsize)); TUNABLE_INT_FETCH("net.inet.sctp.chunkscale", &SCTP_BASE_SYSCTL(sctp_chunkscale)); VALIDATE_LOADER_TUNABLE(sctp_hashtblsize, SCTPCTL_TCBHASHSIZE); VALIDATE_LOADER_TUNABLE(sctp_pcbtblsize, SCTPCTL_PCBHASHSIZE); VALIDATE_LOADER_TUNABLE(sctp_chunkscale, SCTPCTL_CHUNKSCALE); SCTP_BASE_INFO(sctp_asochash) = SCTP_HASH_INIT((SCTP_BASE_SYSCTL(sctp_hashtblsize) * 31), &SCTP_BASE_INFO(hashasocmark)); SCTP_BASE_INFO(sctp_ephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashmark)); SCTP_BASE_INFO(sctp_tcpephash) = SCTP_HASH_INIT(SCTP_BASE_SYSCTL(sctp_hashtblsize), &SCTP_BASE_INFO(hashtcpmark)); SCTP_BASE_INFO(hashtblsize) = SCTP_BASE_SYSCTL(sctp_hashtblsize); SCTP_BASE_INFO(sctp_vrfhash) = SCTP_HASH_INIT(SCTP_SIZE_OF_VRF_HASH, &SCTP_BASE_INFO(hashvrfmark)); SCTP_BASE_INFO(vrf_ifn_hash) = SCTP_HASH_INIT(SCTP_VRF_IFN_HASH_SIZE, &SCTP_BASE_INFO(vrf_ifn_hashmark)); /* init the zones */ /* * FIX ME: Should check for NULL returns, but if it does fail we are * doomed to panic anyways... add later maybe. */ SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_ep), "sctp_ep", sizeof(struct sctp_inpcb), maxsockets); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asoc), "sctp_asoc", sizeof(struct sctp_tcb), sctp_max_number_of_assoc); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_laddr), "sctp_laddr", sizeof(struct sctp_laddr), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_net), "sctp_raddr", sizeof(struct sctp_nets), (sctp_max_number_of_assoc * sctp_scale_up_for_address)); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_chunk), "sctp_chunk", sizeof(struct sctp_tmit_chunk), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_readq), "sctp_readq", sizeof(struct sctp_queued_to_read), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_strmoq), "sctp_stream_msg_out", sizeof(struct sctp_stream_queue_pending), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf), "sctp_asconf", sizeof(struct sctp_asconf), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); SCTP_ZONE_INIT(SCTP_BASE_INFO(ipi_zone_asconf_ack), "sctp_asconf_ack", sizeof(struct sctp_asconf_ack), (sctp_max_number_of_assoc * SCTP_BASE_SYSCTL(sctp_chunkscale))); /* Master Lock INIT for info structure */ SCTP_INP_INFO_LOCK_INIT(); SCTP_STATLOG_INIT_LOCK(); SCTP_IPI_COUNT_INIT(); SCTP_IPI_ADDR_INIT(); #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_INIT(); #endif LIST_INIT(&SCTP_BASE_INFO(addr_wq)); SCTP_WQ_ADDR_INIT(); /* not sure if we need all the counts */ SCTP_BASE_INFO(ipi_count_ep) = 0; /* assoc/tcb zone info */ SCTP_BASE_INFO(ipi_count_asoc) = 0; /* local addrlist zone info */ SCTP_BASE_INFO(ipi_count_laddr) = 0; /* remote addrlist zone info */ SCTP_BASE_INFO(ipi_count_raddr) = 0; /* chunk info */ SCTP_BASE_INFO(ipi_count_chunk) = 0; /* socket queue zone info */ SCTP_BASE_INFO(ipi_count_readq) = 0; /* stream out queue cont */ SCTP_BASE_INFO(ipi_count_strmoq) = 0; SCTP_BASE_INFO(ipi_free_strmoq) = 0; SCTP_BASE_INFO(ipi_free_chunks) = 0; SCTP_OS_TIMER_INIT(&SCTP_BASE_INFO(addr_wq_timer.timer)); /* Init the TIMEWAIT list */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { LIST_INIT(&SCTP_BASE_INFO(vtag_timewait)[i]); } sctp_startup_iterator(); #if defined(SCTP_MCORE_INPUT) && defined(SMP) sctp_startup_mcore_threads(); #endif /* * INIT the default VRF which for BSD is the only one, other O/S's * may have more. But initially they must start with one and then * add the VRF's as addresses are added. */ sctp_init_vrf_list(SCTP_DEFAULT_VRF); } /* * Assumes that the SCTP_BASE_INFO() lock is NOT held. */ void sctp_pcb_finish(void) { struct sctp_vrflist *vrf_bucket; struct sctp_vrf *vrf, *nvrf; struct sctp_ifn *ifn, *nifn; struct sctp_ifa *ifa, *nifa; struct sctpvtaghead *chain; struct sctp_tagblock *twait_block, *prev_twait_block; struct sctp_laddr *wi, *nwi; int i; struct sctp_iterator *it, *nit; if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_PRINTF("%s: race condition on teardown.\n", __func__); return; } SCTP_BASE_VAR(sctp_pcb_initialized) = 0; /* * In FreeBSD the iterator thread never exits but we do clean up. * The only way FreeBSD reaches here is if we have VRF's but we * still add the ifdef to make it compile on old versions. */ retry: SCTP_IPI_ITERATOR_WQ_LOCK(); /* * sctp_iterator_worker() might be working on an it entry without * holding the lock. We won't find it on the list either and * continue and free/destroy it. While holding the lock, spin, to * avoid the race condition as sctp_iterator_worker() will have to * wait to re-acquire the lock. */ if (sctp_it_ctl.iterator_running != 0 || sctp_it_ctl.cur_it != NULL) { SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_PRINTF("%s: Iterator running while we held the lock. Retry. " "cur_it=%p\n", __func__, sctp_it_ctl.cur_it); DELAY(10); goto retry; } TAILQ_FOREACH_SAFE(it, &sctp_it_ctl.iteratorhead, sctp_nxt_itr, nit) { if (it->vn != curvnet) { continue; } TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_ITERATOR_LOCK(); if ((sctp_it_ctl.cur_it) && (sctp_it_ctl.cur_it->vn == curvnet)) { sctp_it_ctl.iterator_flags |= SCTP_ITERATOR_STOP_CUR_IT; } SCTP_ITERATOR_UNLOCK(); SCTP_OS_TIMER_STOP_DRAIN(&SCTP_BASE_INFO(addr_wq_timer.timer)); SCTP_WQ_ADDR_LOCK(); LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) { LIST_REMOVE(wi, sctp_nxt_addr); SCTP_DECR_LADDR_COUNT(); if (wi->action == SCTP_DEL_IP_ADDRESS) { SCTP_FREE(wi->ifa, SCTP_M_IFA); } SCTP_ZONE_FREE(SCTP_BASE_INFO(ipi_zone_laddr), wi); } SCTP_WQ_ADDR_UNLOCK(); /* * free the vrf/ifn/ifa lists and hashes (be sure address monitor is * destroyed first). */ SCTP_IPI_ADDR_WLOCK(); vrf_bucket = &SCTP_BASE_INFO(sctp_vrfhash)[(SCTP_DEFAULT_VRFID & SCTP_BASE_INFO(hashvrfmark))]; LIST_FOREACH_SAFE(vrf, vrf_bucket, next_vrf, nvrf) { LIST_FOREACH_SAFE(ifn, &vrf->ifnlist, next_ifn, nifn) { LIST_FOREACH_SAFE(ifa, &ifn->ifalist, next_ifa, nifa) { /* free the ifa */ LIST_REMOVE(ifa, next_bucket); LIST_REMOVE(ifa, next_ifa); SCTP_FREE(ifa, SCTP_M_IFA); } /* free the ifn */ LIST_REMOVE(ifn, next_bucket); LIST_REMOVE(ifn, next_ifn); SCTP_FREE(ifn, SCTP_M_IFN); } SCTP_HASH_FREE(vrf->vrf_addr_hash, vrf->vrf_addr_hashmark); /* free the vrf */ LIST_REMOVE(vrf, next_vrf); SCTP_FREE(vrf, SCTP_M_VRF); } SCTP_IPI_ADDR_WUNLOCK(); /* free the vrf hashes */ SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_vrfhash), SCTP_BASE_INFO(hashvrfmark)); SCTP_HASH_FREE(SCTP_BASE_INFO(vrf_ifn_hash), SCTP_BASE_INFO(vrf_ifn_hashmark)); /* * free the TIMEWAIT list elements malloc'd in the function * sctp_add_vtag_to_timewait()... */ for (i = 0; i < SCTP_STACK_VTAG_HASH_SIZE; i++) { chain = &SCTP_BASE_INFO(vtag_timewait)[i]; if (!LIST_EMPTY(chain)) { prev_twait_block = NULL; LIST_FOREACH(twait_block, chain, sctp_nxt_tagblock) { if (prev_twait_block) { SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } prev_twait_block = twait_block; } SCTP_FREE(prev_twait_block, SCTP_M_TIMW); } } /* free the locks and mutexes */ #ifdef SCTP_PACKET_LOGGING SCTP_IP_PKTLOG_DESTROY(); #endif SCTP_IPI_ADDR_DESTROY(); SCTP_STATLOG_DESTROY(); SCTP_INP_INFO_LOCK_DESTROY(); SCTP_WQ_ADDR_DESTROY(); /* Get rid of other stuff too. */ if (SCTP_BASE_INFO(sctp_asochash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_asochash), SCTP_BASE_INFO(hashasocmark)); if (SCTP_BASE_INFO(sctp_ephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_ephash), SCTP_BASE_INFO(hashmark)); if (SCTP_BASE_INFO(sctp_tcpephash) != NULL) SCTP_HASH_FREE(SCTP_BASE_INFO(sctp_tcpephash), SCTP_BASE_INFO(hashtcpmark)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_ep)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asoc)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_laddr)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_net)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_chunk)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_readq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_strmoq)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf)); SCTP_ZONE_DESTROY(SCTP_BASE_INFO(ipi_zone_asconf_ack)); #if defined(SMP) && defined(SCTP_USE_PERCPU_STAT) SCTP_FREE(SCTP_BASE_STATS, SCTP_M_MCORE); #endif } int sctp_load_addresses_from_init(struct sctp_tcb *stcb, struct mbuf *m, int offset, int limit, struct sockaddr *src, struct sockaddr *dst, struct sockaddr *altsa, uint16_t port) { /* * grub through the INIT pulling addresses and loading them to the * nets structure in the asoc. The from address in the mbuf should * also be loaded (if it is not already). This routine can be called * with either INIT or INIT-ACK's as long as the m points to the IP * packet and the offset points to the beginning of the parameters. */ struct sctp_inpcb *inp; struct sctp_nets *net, *nnet, *net_tmp; struct sctp_paramhdr *phdr, param_buf; struct sctp_tcb *stcb_tmp; uint16_t ptype, plen; struct sockaddr *sa; uint8_t random_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_random *p_random = NULL; uint16_t random_len = 0; uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_hmac_algo *hmacs = NULL; uint16_t hmacs_len = 0; uint8_t saw_asconf = 0; uint8_t saw_asconf_ack = 0; uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE]; struct sctp_auth_chunk_list *chunks = NULL; uint16_t num_chunks = 0; sctp_key_t *new_key; uint32_t keylen; int got_random = 0, got_hmacs = 0, got_chklist = 0; uint8_t peer_supports_ecn; uint8_t peer_supports_prsctp; uint8_t peer_supports_auth; uint8_t peer_supports_asconf; uint8_t peer_supports_asconf_ack; uint8_t peer_supports_reconfig; uint8_t peer_supports_nrsack; uint8_t peer_supports_pktdrop; uint8_t peer_supports_idata; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif /* First get the destination address setup too. */ #ifdef INET memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = stcb->rport; #endif #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_port = stcb->rport; #endif if (altsa) { sa = altsa; } else { sa = src; } peer_supports_idata = 0; peer_supports_ecn = 0; peer_supports_prsctp = 0; peer_supports_auth = 0; peer_supports_asconf = 0; peer_supports_asconf_ack = 0; peer_supports_reconfig = 0; peer_supports_nrsack = 0; peer_supports_pktdrop = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { /* mark all addresses that we have currently on the list */ net->dest_state |= SCTP_ADDR_NOT_IN_ASSOC; } /* does the source address already exist? if so skip it */ inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net_tmp, dst, stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* no scope set here since we have a tcb already. */ switch (sa->sa_family) { #ifdef INET case AF_INET: if (stcb->asoc.scope.ipv4_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_2)) { return (-1); } } break; #endif #ifdef INET6 case AF_INET6: if (stcb->asoc.scope.ipv6_addr_legal) { if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_3)) { return (-2); } } break; #endif default: break; } } else { if (net_tmp != NULL && stcb_tmp == stcb) { net_tmp->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } else if (stcb_tmp != stcb) { /* It belongs to another association? */ if (stcb_tmp) SCTP_TCB_UNLOCK(stcb_tmp); return (-3); } } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-4); } /* now we must go through each of the params. */ phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); while (phdr) { ptype = ntohs(phdr->param_type); plen = ntohs(phdr->param_length); /* * SCTP_PRINTF("ptype => %0x, plen => %d\n", * (uint32_t)ptype, (int)plen); */ if (offset + plen > limit) { break; } if (plen < sizeof(struct sctp_paramhdr)) { break; } #ifdef INET if (ptype == SCTP_IPV4_ADDRESS) { if (stcb->asoc.scope.ipv4_addr_legal) { struct sctp_ipv4addr_param *p4, p4_buf; /* ok get the v4 address and check/add */ phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p4_buf, sizeof(p4_buf)); if (plen != sizeof(struct sctp_ipv4addr_param) || phdr == NULL) { return (-5); } p4 = (struct sctp_ipv4addr_param *)phdr; sin.sin_addr.s_addr = p4->addr; if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { /* Skip multi-cast addresses */ goto next_param; } if ((sin.sin_addr.s_addr == INADDR_BROADCAST) || (sin.sin_addr.s_addr == INADDR_ANY)) { goto next_param; } sa = (struct sockaddr *)&sin; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, dst, stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if ((stcb_tmp == NULL && inp == stcb->sctp_ep) || inp == NULL) { /* we must add the source address */ /* * no scope set since we have a tcb * already */ /* * we must validate the state again * here */ add_it_now: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-7); } if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_4)) { return (-8); } } else if (stcb_tmp == stcb) { if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-10); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) { if (SCTP_GET_STATE(stcb_tmp) == SCTP_STATE_COOKIE_WAIT) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * in setup state we * abort this guy */ SCTP_SNPRINTF(msg, sizeof(msg), "%s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, op_err, false, SCTP_SO_NOT_LOCKED); goto add_it_now; } SCTP_TCB_UNLOCK(stcb_tmp); } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-12); } return (-13); } } } else #endif #ifdef INET6 if (ptype == SCTP_IPV6_ADDRESS) { if (stcb->asoc.scope.ipv6_addr_legal) { /* ok get the v6 address and check/add */ struct sctp_ipv6addr_param *p6, p6_buf; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&p6_buf, sizeof(p6_buf)); if (plen != sizeof(struct sctp_ipv6addr_param) || phdr == NULL) { return (-14); } p6 = (struct sctp_ipv6addr_param *)phdr; memcpy((caddr_t)&sin6.sin6_addr, p6->addr, sizeof(p6->addr)); if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) { /* Skip multi-cast addresses */ goto next_param; } if (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr)) { /* * Link local make no sense without * scope */ goto next_param; } sa = (struct sockaddr *)&sin6; inp = stcb->sctp_ep; atomic_add_int(&stcb->asoc.refcnt, 1); stcb_tmp = sctp_findassociation_ep_addr(&inp, sa, &net, dst, stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); if (stcb_tmp == NULL && (inp == stcb->sctp_ep || inp == NULL)) { /* * we must validate the state again * here */ add_it_now6: if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-16); } /* * we must add the address, no scope * set */ if (sctp_add_remote_addr(stcb, sa, NULL, port, SCTP_DONOT_SETSCOPE, SCTP_LOAD_ADDR_5)) { return (-17); } } else if (stcb_tmp == stcb) { /* * we must validate the state again * here */ if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-19); } if (net != NULL) { /* clear flag */ net->dest_state &= ~SCTP_ADDR_NOT_IN_ASSOC; } } else { /* * strange, address is in another * assoc? straighten out locks. */ if (stcb_tmp) { if (SCTP_GET_STATE(stcb_tmp) == SCTP_STATE_COOKIE_WAIT) { struct mbuf *op_err; char msg[SCTP_DIAG_INFO_LEN]; /* * in setup state we * abort this guy */ SCTP_SNPRINTF(msg, sizeof(msg), "%s:%d at %s", __FILE__, __LINE__, __func__); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), msg); sctp_abort_an_association(stcb_tmp->sctp_ep, stcb_tmp, op_err, false, SCTP_SO_NOT_LOCKED); goto add_it_now6; } SCTP_TCB_UNLOCK(stcb_tmp); } if (stcb->asoc.state == 0) { /* the assoc was freed? */ return (-21); } return (-22); } } } else #endif if (ptype == SCTP_ECN_CAPABLE) { peer_supports_ecn = 1; } else if (ptype == SCTP_ULP_ADAPTATION) { if (stcb->asoc.state != SCTP_STATE_OPEN) { struct sctp_adaptation_layer_indication ai, *aip; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&ai, sizeof(ai)); aip = (struct sctp_adaptation_layer_indication *)phdr; if (aip) { stcb->asoc.peers_adaptation = ntohl(aip->indication); stcb->asoc.adaptation_needed = 1; } } } else if (ptype == SCTP_SET_PRIM_ADDR) { struct sctp_asconf_addr_param lstore, *fee; int lptype; struct sockaddr *lsa = NULL; #ifdef INET struct sctp_asconf_addrv4_param *fii; #endif if (stcb->asoc.asconf_supported == 0) { return (-100); } if (plen > sizeof(lstore)) { return (-23); } if (plen < sizeof(struct sctp_asconf_addrv4_param)) { return (-101); } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&lstore, plen); if (phdr == NULL) { return (-24); } fee = (struct sctp_asconf_addr_param *)phdr; lptype = ntohs(fee->addrp.ph.param_type); switch (lptype) { #ifdef INET case SCTP_IPV4_ADDRESS: if (plen != sizeof(struct sctp_asconf_addrv4_param)) { SCTP_PRINTF("Sizeof setprim in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addrv4_param), plen); } else { fii = (struct sctp_asconf_addrv4_param *)fee; sin.sin_addr.s_addr = fii->addrp.addr; lsa = (struct sockaddr *)&sin; } break; #endif #ifdef INET6 case SCTP_IPV6_ADDRESS: if (plen != sizeof(struct sctp_asconf_addr_param)) { SCTP_PRINTF("Sizeof setprim (v6) in init/init ack not %d but %d - ignored\n", (int)sizeof(struct sctp_asconf_addr_param), plen); } else { memcpy(sin6.sin6_addr.s6_addr, fee->addrp.addr, sizeof(fee->addrp.addr)); lsa = (struct sockaddr *)&sin6; } break; #endif default: break; } if (lsa) { (void)sctp_set_primary_addr(stcb, sa, NULL); } } else if (ptype == SCTP_HAS_NAT_SUPPORT) { stcb->asoc.peer_supports_nat = 1; } else if (ptype == SCTP_PRSCTP_SUPPORTED) { /* Peer supports pr-sctp */ peer_supports_prsctp = 1; } else if (ptype == SCTP_ZERO_CHECKSUM_ACCEPTABLE) { struct sctp_zero_checksum_acceptable zero_chksum, *zero_chksum_p; phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&zero_chksum, sizeof(struct sctp_zero_checksum_acceptable)); if (phdr != NULL) { /* * Only send zero checksums if the upper * layer has enabled the support for the * same method as allowed by the peer. */ zero_chksum_p = (struct sctp_zero_checksum_acceptable *)phdr; if ((ntohl(zero_chksum_p->edmid) != SCTP_EDMID_NONE) && (ntohl(zero_chksum_p->edmid) == stcb->asoc.rcv_edmid)) { stcb->asoc.snd_edmid = stcb->asoc.rcv_edmid; } } } else if (ptype == SCTP_SUPPORTED_CHUNK_EXT) { /* A supported extension chunk */ struct sctp_supported_chunk_types_param *pr_supported; uint8_t local_store[SCTP_PARAM_BUFFER_SIZE]; int num_ent, i; if (plen > sizeof(local_store)) { return (-35); } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)&local_store, plen); if (phdr == NULL) { return (-25); } pr_supported = (struct sctp_supported_chunk_types_param *)phdr; num_ent = plen - sizeof(struct sctp_paramhdr); for (i = 0; i < num_ent; i++) { switch (pr_supported->chunk_types[i]) { case SCTP_ASCONF: peer_supports_asconf = 1; break; case SCTP_ASCONF_ACK: peer_supports_asconf_ack = 1; break; case SCTP_FORWARD_CUM_TSN: peer_supports_prsctp = 1; break; case SCTP_PACKET_DROPPED: peer_supports_pktdrop = 1; break; case SCTP_NR_SELECTIVE_ACK: peer_supports_nrsack = 1; break; case SCTP_STREAM_RESET: peer_supports_reconfig = 1; break; case SCTP_AUTHENTICATION: peer_supports_auth = 1; break; case SCTP_IDATA: peer_supports_idata = 1; break; default: /* one I have not learned yet */ break; } } } else if (ptype == SCTP_RANDOM) { if (plen > sizeof(random_store)) break; if (got_random) { /* already processed a RANDOM */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)random_store, plen); if (phdr == NULL) return (-26); p_random = (struct sctp_auth_random *)phdr; random_len = plen - sizeof(*p_random); /* enforce the random length */ if (random_len != SCTP_AUTH_RANDOM_SIZE_REQUIRED) { SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: invalid RANDOM len\n"); return (-27); } got_random = 1; } else if (ptype == SCTP_HMAC_LIST) { uint16_t num_hmacs; uint16_t i; if (plen > sizeof(hmacs_store)) break; if (got_hmacs) { /* already processed a HMAC list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)hmacs_store, plen); if (phdr == NULL) return (-28); hmacs = (struct sctp_auth_hmac_algo *)phdr; hmacs_len = plen - sizeof(*hmacs); num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]); /* validate the hmac list */ if (sctp_verify_hmac_param(hmacs, num_hmacs)) { return (-29); } if (stcb->asoc.peer_hmacs != NULL) sctp_free_hmaclist(stcb->asoc.peer_hmacs); stcb->asoc.peer_hmacs = sctp_alloc_hmaclist(num_hmacs); if (stcb->asoc.peer_hmacs != NULL) { for (i = 0; i < num_hmacs; i++) { (void)sctp_auth_add_hmacid(stcb->asoc.peer_hmacs, ntohs(hmacs->hmac_ids[i])); } } got_hmacs = 1; } else if (ptype == SCTP_CHUNK_LIST) { int i; if (plen > sizeof(chunks_store)) break; if (got_chklist) { /* already processed a Chunks list */ goto next_param; } phdr = sctp_get_next_param(m, offset, (struct sctp_paramhdr *)chunks_store, plen); if (phdr == NULL) return (-30); chunks = (struct sctp_auth_chunk_list *)phdr; num_chunks = plen - sizeof(*chunks); if (stcb->asoc.peer_auth_chunks != NULL) sctp_clear_chunklist(stcb->asoc.peer_auth_chunks); else stcb->asoc.peer_auth_chunks = sctp_alloc_chunklist(); for (i = 0; i < num_chunks; i++) { (void)sctp_auth_add_chunk(chunks->chunk_types[i], stcb->asoc.peer_auth_chunks); /* record asconf/asconf-ack if listed */ if (chunks->chunk_types[i] == SCTP_ASCONF) saw_asconf = 1; if (chunks->chunk_types[i] == SCTP_ASCONF_ACK) saw_asconf_ack = 1; } got_chklist = 1; } else if ((ptype == SCTP_HEARTBEAT_INFO) || (ptype == SCTP_STATE_COOKIE) || (ptype == SCTP_UNRECOG_PARAM) || (ptype == SCTP_COOKIE_PRESERVE) || (ptype == SCTP_SUPPORTED_ADDRTYPE) || (ptype == SCTP_ADD_IP_ADDRESS) || (ptype == SCTP_DEL_IP_ADDRESS) || (ptype == SCTP_ERROR_CAUSE_IND) || (ptype == SCTP_SUCCESS_REPORT)) { /* don't care */ } else { if ((ptype & 0x8000) == 0x0000) { /* * must stop processing the rest of the * param's. Any report bits were handled * with the call to * sctp_arethere_unrecognized_parameters() * when the INIT or INIT-ACK was first seen. */ break; } } next_param: offset += SCTP_SIZE32(plen); if (offset >= limit) { break; } phdr = sctp_get_next_param(m, offset, ¶m_buf, sizeof(param_buf)); } /* Now check to see if we need to purge any addresses */ TAILQ_FOREACH_SAFE(net, &stcb->asoc.nets, sctp_next, nnet) { if ((net->dest_state & SCTP_ADDR_NOT_IN_ASSOC) == SCTP_ADDR_NOT_IN_ASSOC) { /* This address has been removed from the asoc */ /* remove and free it */ stcb->asoc.numnets--; TAILQ_REMOVE(&stcb->asoc.nets, net, sctp_next); if (net == stcb->asoc.alternate) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } if (net == stcb->asoc.primary_destination) { stcb->asoc.primary_destination = NULL; sctp_select_primary_destination(stcb); } sctp_free_remote_addr(net); } } if ((stcb->asoc.ecn_supported == 1) && (peer_supports_ecn == 0)) { stcb->asoc.ecn_supported = 0; } if ((stcb->asoc.prsctp_supported == 1) && (peer_supports_prsctp == 0)) { stcb->asoc.prsctp_supported = 0; } if ((stcb->asoc.auth_supported == 1) && ((peer_supports_auth == 0) || (got_random == 0) || (got_hmacs == 0))) { stcb->asoc.auth_supported = 0; } if ((stcb->asoc.asconf_supported == 1) && ((peer_supports_asconf == 0) || (peer_supports_asconf_ack == 0) || (stcb->asoc.auth_supported == 0) || (saw_asconf == 0) || (saw_asconf_ack == 0))) { stcb->asoc.asconf_supported = 0; } if ((stcb->asoc.reconfig_supported == 1) && (peer_supports_reconfig == 0)) { stcb->asoc.reconfig_supported = 0; } if ((stcb->asoc.idata_supported == 1) && (peer_supports_idata == 0)) { stcb->asoc.idata_supported = 0; } if ((stcb->asoc.nrsack_supported == 1) && (peer_supports_nrsack == 0)) { stcb->asoc.nrsack_supported = 0; } if ((stcb->asoc.pktdrop_supported == 1) && (peer_supports_pktdrop == 0)) { stcb->asoc.pktdrop_supported = 0; } /* validate authentication required parameters */ if ((peer_supports_auth == 0) && (got_chklist == 1)) { /* peer does not support auth but sent a chunks list? */ return (-31); } if ((peer_supports_asconf == 1) && (peer_supports_auth == 0)) { /* peer supports asconf but not auth? */ return (-32); } else if ((peer_supports_asconf == 1) && (peer_supports_auth == 1) && ((saw_asconf == 0) || (saw_asconf_ack == 0))) { return (-33); } /* concatenate the full random key */ keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len; if (chunks != NULL) { keylen += sizeof(*chunks) + num_chunks; } new_key = sctp_alloc_key(keylen); if (new_key != NULL) { /* copy in the RANDOM */ if (p_random != NULL) { keylen = sizeof(*p_random) + random_len; memcpy(new_key->key, p_random, keylen); } else { keylen = 0; } /* append in the AUTH chunks */ if (chunks != NULL) { memcpy(new_key->key + keylen, chunks, sizeof(*chunks) + num_chunks); keylen += sizeof(*chunks) + num_chunks; } /* append in the HMACs */ if (hmacs != NULL) { memcpy(new_key->key + keylen, hmacs, sizeof(*hmacs) + hmacs_len); } } else { /* failed to get memory for the key */ return (-34); } if (stcb->asoc.authinfo.peer_random != NULL) sctp_free_key(stcb->asoc.authinfo.peer_random); stcb->asoc.authinfo.peer_random = new_key; sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid); sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid); return (0); } int sctp_set_primary_addr(struct sctp_tcb *stcb, struct sockaddr *sa, struct sctp_nets *net) { /* make sure the requested primary address exists in the assoc */ if (net == NULL && sa) net = sctp_findnet(stcb, sa); if (net == NULL) { /* didn't find the requested primary address! */ return (-1); } else { /* set the primary address */ if (net->dest_state & SCTP_ADDR_UNCONFIRMED) { /* Must be confirmed, so queue to set */ net->dest_state |= SCTP_ADDR_REQ_PRIMARY; return (0); } stcb->asoc.primary_destination = net; if (((net->dest_state & SCTP_ADDR_PF) == 0) && (stcb->asoc.alternate != NULL)) { sctp_free_remote_addr(stcb->asoc.alternate); stcb->asoc.alternate = NULL; } net = TAILQ_FIRST(&stcb->asoc.nets); if (net != stcb->asoc.primary_destination) { /* * first one on the list is NOT the primary * sctp_cmpaddr() is much more efficient if the * primary is the first on the list, make it so. */ TAILQ_REMOVE(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); TAILQ_INSERT_HEAD(&stcb->asoc.nets, stcb->asoc.primary_destination, sctp_next); } return (0); } } bool sctp_is_vtag_good(uint32_t tag, uint16_t lport, uint16_t rport, struct timeval *now) { struct sctpasochead *head; struct sctp_tcb *stcb; SCTP_INP_INFO_LOCK_ASSERT(); head = &SCTP_BASE_INFO(sctp_asochash)[SCTP_PCBHASH_ASOC(tag, SCTP_BASE_INFO(hashasocmark))]; LIST_FOREACH(stcb, head, sctp_asocs) { /* * We choose not to lock anything here. TCB's can't be * removed since we have the read lock, so they can't be * freed on us, same thing for the INP. I may be wrong with * this assumption, but we will go with it for now :-) */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) { continue; } if (stcb->asoc.my_vtag == tag) { /* candidate */ if (stcb->rport != rport) { continue; } if (stcb->sctp_ep->sctp_lport != lport) { continue; } /* The tag is currently used, so don't use it. */ return (false); } } return (!sctp_is_in_timewait(tag, lport, rport, (uint32_t)now->tv_sec)); } static void sctp_drain_mbufs(struct sctp_tcb *stcb) { /* * We must hunt this association for MBUF's past the cumack (i.e. * out of order data that we can renege on). */ struct sctp_association *asoc; struct sctp_tmit_chunk *chk, *nchk; uint32_t cumulative_tsn_p1; struct sctp_queued_to_read *control, *ncontrol; int cnt, strmat; uint32_t gap, i; int fnd = 0; /* We look for anything larger than the cum-ack + 1 */ asoc = &stcb->asoc; if (asoc->cumulative_tsn == asoc->highest_tsn_inside_map) { /* none we can reneg on. */ return; } SCTP_STAT_INCR(sctps_protocol_drains_done); cumulative_tsn_p1 = asoc->cumulative_tsn + 1; cnt = 0; /* Ok that was fun, now we will drain all the inbound streams? */ for (strmat = 0; strmat < asoc->streamincnt; strmat++) { TAILQ_FOREACH_SAFE(control, &asoc->strmin[strmat].inqueue, next_instrm, ncontrol) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_ORDERED) { panic("Huh control: %p on_q: %d -- not ordered?", control, control->on_strm_q); } #endif if (SCTP_TSN_GT(control->sinfo_tsn, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, control->sinfo_tsn, asoc->mapping_array_base_tsn); KASSERT(control->length > 0, ("control has zero length")); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); if (control->on_read_q) { TAILQ_REMOVE(&stcb->sctp_ep->read_queue, control, next); control->on_read_q = 0; } TAILQ_REMOVE(&asoc->strmin[strmat].inqueue, control, next_instrm); control->on_strm_q = 0; if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_remote_addr(control->whoFrom); /* Now its reasm? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { cnt++; SCTP_CALC_TSN_TO_GAP(gap, chk->rec.data.tsn, asoc->mapping_array_base_tsn); KASSERT(chk->send_size > 0, ("chunk has zero length")); if (asoc->size_on_reasm_queue >= chk->send_size) { asoc->size_on_reasm_queue -= chk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, chk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } sctp_free_a_readq(stcb, control); } } TAILQ_FOREACH_SAFE(control, &asoc->strmin[strmat].uno_inqueue, next_instrm, ncontrol) { #ifdef INVARIANTS if (control->on_strm_q != SCTP_ON_UNORDERED) { panic("Huh control: %p on_q: %d -- not unordered?", control, control->on_strm_q); } #endif if (SCTP_TSN_GT(control->sinfo_tsn, cumulative_tsn_p1)) { /* Yep it is above cum-ack */ cnt++; SCTP_CALC_TSN_TO_GAP(gap, control->sinfo_tsn, asoc->mapping_array_base_tsn); KASSERT(control->length > 0, ("control has zero length")); if (asoc->size_on_all_streams >= control->length) { asoc->size_on_all_streams -= control->length; } else { #ifdef INVARIANTS panic("size_on_all_streams = %u smaller than control length %u", asoc->size_on_all_streams, control->length); #else asoc->size_on_all_streams = 0; #endif } sctp_ucount_decr(asoc->cnt_on_all_streams); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); if (control->on_read_q) { TAILQ_REMOVE(&stcb->sctp_ep->read_queue, control, next); control->on_read_q = 0; } TAILQ_REMOVE(&asoc->strmin[strmat].uno_inqueue, control, next_instrm); control->on_strm_q = 0; if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_remote_addr(control->whoFrom); /* Now its reasm? */ TAILQ_FOREACH_SAFE(chk, &control->reasm, sctp_next, nchk) { cnt++; SCTP_CALC_TSN_TO_GAP(gap, chk->rec.data.tsn, asoc->mapping_array_base_tsn); KASSERT(chk->send_size > 0, ("chunk has zero length")); if (asoc->size_on_reasm_queue >= chk->send_size) { asoc->size_on_reasm_queue -= chk->send_size; } else { #ifdef INVARIANTS panic("size_on_reasm_queue = %u smaller than chunk length %u", asoc->size_on_reasm_queue, chk->send_size); #else asoc->size_on_reasm_queue = 0; #endif } sctp_ucount_decr(asoc->cnt_on_reasm_queue); SCTP_UNSET_TSN_PRESENT(asoc->mapping_array, gap); TAILQ_REMOVE(&control->reasm, chk, sctp_next); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } sctp_free_a_chunk(stcb, chk, SCTP_SO_NOT_LOCKED); } sctp_free_a_readq(stcb, control); } } } if (cnt) { /* We must back down to see what the new highest is */ for (i = asoc->highest_tsn_inside_map; SCTP_TSN_GE(i, asoc->mapping_array_base_tsn); i--) { SCTP_CALC_TSN_TO_GAP(gap, i, asoc->mapping_array_base_tsn); if (SCTP_IS_TSN_PRESENT(asoc->mapping_array, gap)) { asoc->highest_tsn_inside_map = i; fnd = 1; break; } } if (!fnd) { asoc->highest_tsn_inside_map = asoc->mapping_array_base_tsn - 1; } /* * Question, should we go through the delivery queue? The * only reason things are on here is the app not reading OR * a p-d-api up. An attacker COULD send enough in to * initiate the PD-API and then send a bunch of stuff to * other streams... these would wind up on the delivery * queue.. and then we would not get to them. But in order * to do this I then have to back-track and un-deliver * sequence numbers in streams.. el-yucko. I think for now * we will NOT look at the delivery queue and leave it to be * something to consider later. An alternative would be to * abort the P-D-API with a notification and then deliver * the data.... Or another method might be to keep track of * how many times the situation occurs and if we see a * possible attack underway just abort the association. */ #ifdef SCTP_DEBUG SCTPDBG(SCTP_DEBUG_PCB1, "Freed %d chunks from reneg harvest\n", cnt); #endif /* * Now do we need to find a new * asoc->highest_tsn_inside_map? */ asoc->last_revoke_count = cnt; sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTP_PCB + SCTP_LOC_11); /* sa_ignore NO_NULL_CHK */ sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_DRAIN, SCTP_SO_NOT_LOCKED); } /* * Another issue, in un-setting the TSN's in the mapping array we * DID NOT adjust the highest_tsn marker. This will cause one of * two things to occur. It may cause us to do extra work in checking * for our mapping array movement. More importantly it may cause us * to SACK every datagram. This may not be a bad thing though since * we will recover once we get our cum-ack above and all this stuff * we dumped recovered. */ } static void sctp_drain(void) { struct epoch_tracker et; VNET_ITERATOR_DECL(vnet_iter); NET_EPOCH_ENTER(et); /* * We must walk the PCB lists for ALL associations here. The system * is LOW on MBUF's and needs help. This is where reneging will * occur. We really hope this does NOT happen! */ VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); struct sctp_inpcb *inp; struct sctp_tcb *stcb; SCTP_STAT_INCR(sctps_protocol_drain_calls); if (SCTP_BASE_SYSCTL(sctp_do_drain) == 0) { #ifdef VIMAGE continue; #else NET_EPOCH_EXIT(et); return; #endif } SCTP_INP_INFO_RLOCK(); LIST_FOREACH(inp, &SCTP_BASE_INFO(listhead), sctp_list) { /* For each endpoint */ SCTP_INP_RLOCK(inp); LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) { /* For each association */ SCTP_TCB_LOCK(stcb); sctp_drain_mbufs(stcb); SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } SCTP_INP_INFO_RUNLOCK(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); NET_EPOCH_EXIT(et); } EVENTHANDLER_DEFINE(vm_lowmem, sctp_drain, NULL, LOWMEM_PRI_DEFAULT); EVENTHANDLER_DEFINE(mbuf_lowmem, sctp_drain, NULL, LOWMEM_PRI_DEFAULT); /* * start a new iterator * iterates through all endpoints and associations based on the pcb_state * flags and asoc_state. "af" (mandatory) is executed for all matching * assocs and "ef" (optional) is executed when the iterator completes. * "inpf" (optional) is executed for each new endpoint as it is being * iterated through. inpe (optional) is called when the inp completes * its way through all the stcbs. */ int sctp_initiate_iterator(inp_func inpf, asoc_func af, inp_func inpe, uint32_t pcb_state, uint32_t pcb_features, uint32_t asoc_state, void *argp, uint32_t argi, end_func ef, struct sctp_inpcb *s_inp, uint8_t chunk_output_off) { struct sctp_iterator *it = NULL; if (af == NULL) { return (-1); } if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_PRINTF("%s: abort on initialize being %d\n", __func__, SCTP_BASE_VAR(sctp_pcb_initialized)); return (-1); } SCTP_MALLOC(it, struct sctp_iterator *, sizeof(struct sctp_iterator), SCTP_M_ITER); if (it == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTP_PCB, ENOMEM); return (-1); } memset(it, 0, sizeof(*it)); it->function_assoc = af; it->function_inp = inpf; if (inpf) it->done_current_ep = 0; else it->done_current_ep = 1; it->function_atend = ef; it->pointer = argp; it->val = argi; it->pcb_flags = pcb_state; it->pcb_features = pcb_features; it->asoc_state = asoc_state; it->function_inp_end = inpe; it->no_chunk_output = chunk_output_off; it->vn = curvnet; if (s_inp) { /* Assume lock is held here */ it->inp = s_inp; SCTP_INP_INCR_REF(it->inp); it->iterator_flags = SCTP_ITERATOR_DO_SINGLE_INP; } else { SCTP_INP_INFO_RLOCK(); it->inp = LIST_FIRST(&SCTP_BASE_INFO(listhead)); if (it->inp) { SCTP_INP_INCR_REF(it->inp); } SCTP_INP_INFO_RUNLOCK(); it->iterator_flags = SCTP_ITERATOR_DO_ALL_INP; } SCTP_IPI_ITERATOR_WQ_LOCK(); if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { SCTP_IPI_ITERATOR_WQ_UNLOCK(); SCTP_PRINTF("%s: rollback on initialize being %d it=%p\n", __func__, SCTP_BASE_VAR(sctp_pcb_initialized), it); SCTP_FREE(it, SCTP_M_ITER); return (-1); } TAILQ_INSERT_TAIL(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); if (sctp_it_ctl.iterator_running == 0) { sctp_wakeup_iterator(); } SCTP_IPI_ITERATOR_WQ_UNLOCK(); /* sa_ignore MEMLEAK {memory is put on the tailq for the iterator} */ return (0); } /* * Atomically add flags to the sctp_flags of an inp. * To be used when the write lock of the inp is not held. */ void sctp_pcb_add_flags(struct sctp_inpcb *inp, uint32_t flags) { uint32_t old_flags, new_flags; do { old_flags = inp->sctp_flags; new_flags = old_flags | flags; } while (atomic_cmpset_int(&inp->sctp_flags, old_flags, new_flags) == 0); } diff --git a/sys/netinet/sctputil.c b/sys/netinet/sctputil.c index 19180b3cf725..b23efd9c8968 100644 --- a/sys/netinet/sctputil.c +++ b/sys/netinet/sctputil.c @@ -1,7701 +1,7700 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved. * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * a) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * b) Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * c) Neither the name of Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include #include #include #include #include #include #include #if defined(INET6) || defined(INET) #include #endif #include #include #include #ifdef INET6 #include #endif #ifndef KTR_SCTP #define KTR_SCTP KTR_SUBSYS #endif extern const struct sctp_cc_functions sctp_cc_functions[]; extern const struct sctp_ss_functions sctp_ss_functions[]; void sctp_sblog(struct sockbuf *sb, struct sctp_tcb *stcb, int from, int incr) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.sb.stcb = stcb; sctp_clog.x.sb.so_sbcc = SCTP_SBAVAIL(sb); if (stcb) sctp_clog.x.sb.stcb_sbcc = stcb->asoc.sb_cc; else sctp_clog.x.sb.stcb_sbcc = 0; sctp_clog.x.sb.incr = incr; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_SB, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_closing(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int16_t loc) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.close.inp = (void *)inp; sctp_clog.x.close.sctp_flags = inp->sctp_flags; if (stcb) { sctp_clog.x.close.stcb = (void *)stcb; sctp_clog.x.close.state = (uint16_t)stcb->asoc.state; } else { sctp_clog.x.close.stcb = 0; sctp_clog.x.close.state = 0; } sctp_clog.x.close.loc = loc; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_CLOSE, 0, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void rto_logging(struct sctp_nets *net, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.rto.net = (void *)net; sctp_clog.x.rto.rtt = net->rtt / 1000; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RTT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_strm_del_alt(struct sctp_tcb *stcb, uint32_t tsn, uint16_t sseq, uint16_t stream, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.strlog.stcb = stcb; sctp_clog.x.strlog.n_tsn = tsn; sctp_clog.x.strlog.n_sseq = sseq; sctp_clog.x.strlog.e_tsn = 0; sctp_clog.x.strlog.e_sseq = 0; sctp_clog.x.strlog.strm = stream; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_STRM, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_nagle_event(struct sctp_tcb *stcb, int action) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.nagle.stcb = (void *)stcb; sctp_clog.x.nagle.total_flight = stcb->asoc.total_flight; sctp_clog.x.nagle.total_in_queue = stcb->asoc.total_output_queue_size; sctp_clog.x.nagle.count_in_queue = stcb->asoc.chunks_on_out_queue; sctp_clog.x.nagle.count_in_flight = stcb->asoc.total_flight_count; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_NAGLE, action, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_sack(uint32_t old_cumack, uint32_t cumack, uint32_t tsn, uint16_t gaps, uint16_t dups, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.sack.cumack = cumack; sctp_clog.x.sack.oldcumack = old_cumack; sctp_clog.x.sack.tsn = tsn; sctp_clog.x.sack.numGaps = gaps; sctp_clog.x.sack.numDups = dups; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_SACK, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_map(uint32_t map, uint32_t cum, uint32_t high, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.map.base = map; sctp_clog.x.map.cum = cum; sctp_clog.x.map.high = high; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MAP, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_fr(uint32_t biggest_tsn, uint32_t biggest_new_tsn, uint32_t tsn, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.fr.largest_tsn = biggest_tsn; sctp_clog.x.fr.largest_new_tsn = biggest_new_tsn; sctp_clog.x.fr.tsn = tsn; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_FR, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #ifdef SCTP_MBUF_LOGGING void sctp_log_mb(struct mbuf *m, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.mb.mp = m; sctp_clog.x.mb.mbuf_flags = (uint8_t)(SCTP_BUF_GET_FLAGS(m)); sctp_clog.x.mb.size = (uint16_t)(SCTP_BUF_LEN(m)); sctp_clog.x.mb.data = SCTP_BUF_AT(m, 0); if (SCTP_BUF_IS_EXTENDED(m)) { sctp_clog.x.mb.ext = SCTP_BUF_EXTEND_BASE(m); sctp_clog.x.mb.refcnt = (uint8_t)(SCTP_BUF_EXTEND_REFCNT(m)); } else { sctp_clog.x.mb.ext = 0; sctp_clog.x.mb.refcnt = 0; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MBUF, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_mbc(struct mbuf *m, int from) { struct mbuf *mat; for (mat = m; mat; mat = SCTP_BUF_NEXT(mat)) { sctp_log_mb(mat, from); } } #endif void sctp_log_strm_del(struct sctp_queued_to_read *control, struct sctp_queued_to_read *poschk, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; if (control == NULL) { SCTP_PRINTF("Gak log of NULL?\n"); return; } sctp_clog.x.strlog.stcb = control->stcb; sctp_clog.x.strlog.n_tsn = control->sinfo_tsn; sctp_clog.x.strlog.n_sseq = (uint16_t)control->mid; sctp_clog.x.strlog.strm = control->sinfo_stream; if (poschk != NULL) { sctp_clog.x.strlog.e_tsn = poschk->sinfo_tsn; sctp_clog.x.strlog.e_sseq = (uint16_t)poschk->mid; } else { sctp_clog.x.strlog.e_tsn = 0; sctp_clog.x.strlog.e_sseq = 0; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_STRM, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_cwnd(struct sctp_tcb *stcb, struct sctp_nets *net, int augment, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.cwnd.net = net; if (stcb->asoc.send_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_send = 255; else sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt; if (stcb->asoc.stream_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_str = 255; else sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt; if (net) { sctp_clog.x.cwnd.cwnd_new_value = net->cwnd; sctp_clog.x.cwnd.inflight = net->flight_size; sctp_clog.x.cwnd.pseudo_cumack = net->pseudo_cumack; sctp_clog.x.cwnd.meets_pseudo_cumack = net->new_pseudo_cumack; sctp_clog.x.cwnd.need_new_pseudo_cumack = net->find_pseudo_cumack; } if (SCTP_CWNDLOG_PRESEND == from) { sctp_clog.x.cwnd.meets_pseudo_cumack = stcb->asoc.peers_rwnd; } sctp_clog.x.cwnd.cwnd_augment = augment; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_CWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_lock(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); if (inp) { sctp_clog.x.lock.sock = (void *)inp->sctp_socket; } else { sctp_clog.x.lock.sock = (void *)NULL; } sctp_clog.x.lock.inp = (void *)inp; if (stcb) { sctp_clog.x.lock.tcb_lock = mtx_owned(&stcb->tcb_mtx); } else { sctp_clog.x.lock.tcb_lock = SCTP_LOCK_UNKNOWN; } if (inp) { sctp_clog.x.lock.inp_lock = mtx_owned(&inp->inp_mtx); sctp_clog.x.lock.create_lock = mtx_owned(&inp->inp_create_mtx); } else { sctp_clog.x.lock.inp_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.create_lock = SCTP_LOCK_UNKNOWN; } sctp_clog.x.lock.info_lock = rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx)); if (inp && (inp->sctp_socket)) { sctp_clog.x.lock.sock_lock = mtx_owned(SOCK_MTX(inp->sctp_socket)); sctp_clog.x.lock.sockrcvbuf_lock = mtx_owned(SOCKBUF_MTX(&inp->sctp_socket->so_rcv)); sctp_clog.x.lock.socksndbuf_lock = mtx_owned(SOCKBUF_MTX(&inp->sctp_socket->so_snd)); } else { sctp_clog.x.lock.sock_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.sockrcvbuf_lock = SCTP_LOCK_UNKNOWN; sctp_clog.x.lock.socksndbuf_lock = SCTP_LOCK_UNKNOWN; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_LOCK_EVENT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_maxburst(struct sctp_tcb *stcb, struct sctp_nets *net, int error, int burst, uint8_t from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; memset(&sctp_clog, 0, sizeof(sctp_clog)); sctp_clog.x.cwnd.net = net; sctp_clog.x.cwnd.cwnd_new_value = error; sctp_clog.x.cwnd.inflight = net->flight_size; sctp_clog.x.cwnd.cwnd_augment = burst; if (stcb->asoc.send_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_send = 255; else sctp_clog.x.cwnd.cnt_in_send = stcb->asoc.send_queue_cnt; if (stcb->asoc.stream_queue_cnt > 255) sctp_clog.x.cwnd.cnt_in_str = 255; else sctp_clog.x.cwnd.cnt_in_str = stcb->asoc.stream_queue_cnt; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MAXBURST, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_rwnd(uint8_t from, uint32_t peers_rwnd, uint32_t snd_size, uint32_t overhead) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.rwnd.rwnd = peers_rwnd; sctp_clog.x.rwnd.send_size = snd_size; sctp_clog.x.rwnd.overhead = overhead; sctp_clog.x.rwnd.new_rwnd = 0; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_rwnd_set(uint8_t from, uint32_t peers_rwnd, uint32_t flight_size, uint32_t overhead, uint32_t a_rwndval) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.rwnd.rwnd = peers_rwnd; sctp_clog.x.rwnd.send_size = flight_size; sctp_clog.x.rwnd.overhead = overhead; sctp_clog.x.rwnd.new_rwnd = a_rwndval; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_RWND, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #ifdef SCTP_MBCNT_LOGGING static void sctp_log_mbcnt(uint8_t from, uint32_t total_oq, uint32_t book, uint32_t total_mbcnt_q, uint32_t mbcnt) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.mbcnt.total_queue_size = total_oq; sctp_clog.x.mbcnt.size_change = book; sctp_clog.x.mbcnt.total_queue_mb_size = total_mbcnt_q; sctp_clog.x.mbcnt.mbcnt_change = mbcnt; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_MBCNT, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } #endif void sctp_misc_ints(uint8_t from, uint32_t a, uint32_t b, uint32_t c, uint32_t d) { #if defined(SCTP_LOCAL_TRACE_BUF) SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_MISC_EVENT, from, a, b, c, d); #endif } void sctp_wakeup_log(struct sctp_tcb *stcb, uint32_t wake_cnt, int from) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.wake.stcb = (void *)stcb; sctp_clog.x.wake.wake_cnt = wake_cnt; sctp_clog.x.wake.flight = stcb->asoc.total_flight_count; sctp_clog.x.wake.send_q = stcb->asoc.send_queue_cnt; sctp_clog.x.wake.sent_q = stcb->asoc.sent_queue_cnt; if (stcb->asoc.stream_queue_cnt < 0xff) sctp_clog.x.wake.stream_qcnt = (uint8_t)stcb->asoc.stream_queue_cnt; else sctp_clog.x.wake.stream_qcnt = 0xff; if (stcb->asoc.chunks_on_out_queue < 0xff) sctp_clog.x.wake.chunks_on_oque = (uint8_t)stcb->asoc.chunks_on_out_queue; else sctp_clog.x.wake.chunks_on_oque = 0xff; sctp_clog.x.wake.sctpflags = 0; /* set in the defered mode stuff */ if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) sctp_clog.x.wake.sctpflags |= 1; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) sctp_clog.x.wake.sctpflags |= 2; if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) sctp_clog.x.wake.sctpflags |= 4; /* what about the sb */ if (stcb->sctp_socket) { struct socket *so = stcb->sctp_socket; sctp_clog.x.wake.sbflags = (uint8_t)((so->so_snd.sb_flags & 0x00ff)); } else { sctp_clog.x.wake.sbflags = 0xff; } SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_WAKE, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } void sctp_log_block(uint8_t from, struct sctp_association *asoc, ssize_t sendlen) { #if defined(SCTP_LOCAL_TRACE_BUF) struct sctp_cwnd_log sctp_clog; sctp_clog.x.blk.onsb = asoc->total_output_queue_size; sctp_clog.x.blk.send_sent_qcnt = (uint16_t)(asoc->send_queue_cnt + asoc->sent_queue_cnt); sctp_clog.x.blk.peer_rwnd = asoc->peers_rwnd; sctp_clog.x.blk.stream_qcnt = (uint16_t)asoc->stream_queue_cnt; sctp_clog.x.blk.chunks_on_oque = (uint16_t)asoc->chunks_on_out_queue; sctp_clog.x.blk.flight_size = (uint16_t)(asoc->total_flight / 1024); sctp_clog.x.blk.sndlen = (uint32_t)sendlen; SCTP_CTR6(KTR_SCTP, "SCTP:%d[%d]:%x-%x-%x-%x", SCTP_LOG_EVENT_BLOCK, from, sctp_clog.x.misc.log1, sctp_clog.x.misc.log2, sctp_clog.x.misc.log3, sctp_clog.x.misc.log4); #endif } int sctp_fill_stat_log(void *optval SCTP_UNUSED, size_t *optsize SCTP_UNUSED) { /* May need to fix this if ktrdump does not work */ return (0); } #ifdef SCTP_AUDITING_ENABLED uint8_t sctp_audit_data[SCTP_AUDIT_SIZE][2]; static int sctp_audit_indx = 0; static void sctp_print_audit_report(void) { int i; int cnt; cnt = 0; for (i = sctp_audit_indx; i < SCTP_AUDIT_SIZE; i++) { if ((sctp_audit_data[i][0] == 0xe0) && (sctp_audit_data[i][1] == 0x01)) { cnt = 0; SCTP_PRINTF("\n"); } else if (sctp_audit_data[i][0] == 0xf0) { cnt = 0; SCTP_PRINTF("\n"); } else if ((sctp_audit_data[i][0] == 0xc0) && (sctp_audit_data[i][1] == 0x01)) { SCTP_PRINTF("\n"); cnt = 0; } SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0], (uint32_t)sctp_audit_data[i][1]); cnt++; if ((cnt % 14) == 0) SCTP_PRINTF("\n"); } for (i = 0; i < sctp_audit_indx; i++) { if ((sctp_audit_data[i][0] == 0xe0) && (sctp_audit_data[i][1] == 0x01)) { cnt = 0; SCTP_PRINTF("\n"); } else if (sctp_audit_data[i][0] == 0xf0) { cnt = 0; SCTP_PRINTF("\n"); } else if ((sctp_audit_data[i][0] == 0xc0) && (sctp_audit_data[i][1] == 0x01)) { SCTP_PRINTF("\n"); cnt = 0; } SCTP_PRINTF("%2.2x%2.2x ", (uint32_t)sctp_audit_data[i][0], (uint32_t)sctp_audit_data[i][1]); cnt++; if ((cnt % 14) == 0) SCTP_PRINTF("\n"); } SCTP_PRINTF("\n"); } void sctp_auditing(int from, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { int resend_cnt, tot_out, rep, tot_book_cnt; struct sctp_nets *lnet; struct sctp_tmit_chunk *chk; sctp_audit_data[sctp_audit_indx][0] = 0xAA; sctp_audit_data[sctp_audit_indx][1] = 0x000000ff & from; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } if (inp == NULL) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0x01; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } return; } if (stcb == NULL) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0x02; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } return; } sctp_audit_data[sctp_audit_indx][0] = 0xA1; sctp_audit_data[sctp_audit_indx][1] = (0x000000ff & stcb->asoc.sent_queue_retran_cnt); sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 0; tot_book_cnt = 0; resend_cnt = tot_out = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->sent == SCTP_DATAGRAM_RESEND) { resend_cnt++; } else if (chk->sent < SCTP_DATAGRAM_RESEND) { tot_out += chk->book_size; tot_book_cnt++; } } if (resend_cnt != stcb->asoc.sent_queue_retran_cnt) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA1; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } SCTP_PRINTF("resend_cnt:%d asoc-tot:%d\n", resend_cnt, stcb->asoc.sent_queue_retran_cnt); rep = 1; stcb->asoc.sent_queue_retran_cnt = resend_cnt; sctp_audit_data[sctp_audit_indx][0] = 0xA2; sctp_audit_data[sctp_audit_indx][1] = (0x000000ff & stcb->asoc.sent_queue_retran_cnt); sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } } if (tot_out != stcb->asoc.total_flight) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA2; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("tot_flt:%d asoc_tot:%d\n", tot_out, (int)stcb->asoc.total_flight); stcb->asoc.total_flight = tot_out; } if (tot_book_cnt != stcb->asoc.total_flight_count) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA5; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("tot_flt_book:%d\n", tot_book_cnt); stcb->asoc.total_flight_count = tot_book_cnt; } tot_out = 0; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { tot_out += lnet->flight_size; } if (tot_out != stcb->asoc.total_flight) { sctp_audit_data[sctp_audit_indx][0] = 0xAF; sctp_audit_data[sctp_audit_indx][1] = 0xA3; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } rep = 1; SCTP_PRINTF("real flight:%d net total was %d\n", stcb->asoc.total_flight, tot_out); /* now corrective action */ TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { tot_out = 0; TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if ((chk->whoTo == lnet) && (chk->sent < SCTP_DATAGRAM_RESEND)) { tot_out += chk->book_size; } } if (lnet->flight_size != tot_out) { SCTP_PRINTF("net:%p flight was %d corrected to %d\n", (void *)lnet, lnet->flight_size, tot_out); lnet->flight_size = tot_out; } } } if (rep) { sctp_print_audit_report(); } } void sctp_audit_log(uint8_t ev, uint8_t fd) { sctp_audit_data[sctp_audit_indx][0] = ev; sctp_audit_data[sctp_audit_indx][1] = fd; sctp_audit_indx++; if (sctp_audit_indx >= SCTP_AUDIT_SIZE) { sctp_audit_indx = 0; } } #endif /* * The conversion from time to ticks and vice versa is done by rounding * upwards. This way we can test in the code the time to be positive and * know that this corresponds to a positive number of ticks. */ uint32_t sctp_msecs_to_ticks(uint32_t msecs) { uint64_t temp; uint32_t ticks; if (hz == 1000) { ticks = msecs; } else { temp = (((uint64_t)msecs * hz) + 999) / 1000; if (temp > UINT32_MAX) { ticks = UINT32_MAX; } else { ticks = (uint32_t)temp; } } return (ticks); } uint32_t sctp_ticks_to_msecs(uint32_t ticks) { uint64_t temp; uint32_t msecs; if (hz == 1000) { msecs = ticks; } else { temp = (((uint64_t)ticks * 1000) + (hz - 1)) / hz; if (temp > UINT32_MAX) { msecs = UINT32_MAX; } else { msecs = (uint32_t)temp; } } return (msecs); } uint32_t sctp_secs_to_ticks(uint32_t secs) { uint64_t temp; uint32_t ticks; temp = (uint64_t)secs * hz; if (temp > UINT32_MAX) { ticks = UINT32_MAX; } else { ticks = (uint32_t)temp; } return (ticks); } uint32_t sctp_ticks_to_secs(uint32_t ticks) { uint64_t temp; uint32_t secs; temp = ((uint64_t)ticks + (hz - 1)) / hz; if (temp > UINT32_MAX) { secs = UINT32_MAX; } else { secs = (uint32_t)temp; } return (secs); } /* * sctp_stop_timers_for_shutdown() should be called * when entering the SHUTDOWN_SENT or SHUTDOWN_ACK_SENT * state to make sure that all timers are stopped. */ void sctp_stop_timers_for_shutdown(struct sctp_tcb *stcb) { struct sctp_inpcb *inp; struct sctp_nets *net; inp = stcb->sctp_ep; sctp_timer_stop(SCTP_TIMER_TYPE_RECV, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_12); sctp_timer_stop(SCTP_TIMER_TYPE_STRRESET, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_13); sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_14); sctp_timer_stop(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_15); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_16); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_17); } } void sctp_stop_association_timers(struct sctp_tcb *stcb, bool stop_assoc_kill_timer) { struct sctp_inpcb *inp; struct sctp_nets *net; inp = stcb->sctp_ep; sctp_timer_stop(SCTP_TIMER_TYPE_RECV, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_18); sctp_timer_stop(SCTP_TIMER_TYPE_STRRESET, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_19); if (stop_assoc_kill_timer) { sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_20); } sctp_timer_stop(SCTP_TIMER_TYPE_ASCONF, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_21); sctp_timer_stop(SCTP_TIMER_TYPE_AUTOCLOSE, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_22); sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWNGUARD, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_23); /* Mobility adaptation */ sctp_timer_stop(SCTP_TIMER_TYPE_PRIM_DELETED, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_24); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sctp_timer_stop(SCTP_TIMER_TYPE_SEND, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_25); sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_26); sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWN, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_27); sctp_timer_stop(SCTP_TIMER_TYPE_COOKIE, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_28); sctp_timer_stop(SCTP_TIMER_TYPE_SHUTDOWNACK, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_29); sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_30); sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net, SCTP_FROM_SCTPUTIL + SCTP_LOC_31); } } /* * A list of sizes based on typical mtu's, used only if next hop size not * returned. These values MUST be multiples of 4 and MUST be ordered. */ static uint32_t sctp_mtu_sizes[] = { 68, 296, 508, 512, 544, 576, 1004, 1492, 1500, 1536, 2000, 2048, 4352, 4464, 8168, 17912, 32000, 65532 }; /* * Return the largest MTU in sctp_mtu_sizes smaller than val. * If val is smaller than the minimum, just return the largest * multiple of 4 smaller or equal to val. * Ensure that the result is a multiple of 4. */ uint32_t sctp_get_prev_mtu(uint32_t val) { uint32_t i; val &= 0xfffffffc; if (val <= sctp_mtu_sizes[0]) { return (val); } for (i = 1; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) { if (val <= sctp_mtu_sizes[i]) { break; } } KASSERT((sctp_mtu_sizes[i - 1] & 0x00000003) == 0, ("sctp_mtu_sizes[%u] not a multiple of 4", i - 1)); return (sctp_mtu_sizes[i - 1]); } /* * Return the smallest MTU in sctp_mtu_sizes larger than val. * If val is larger than the maximum, just return the largest multiple of 4 smaller * or equal to val. * Ensure that the result is a multiple of 4. */ uint32_t sctp_get_next_mtu(uint32_t val) { /* select another MTU that is just bigger than this one */ uint32_t i; val &= 0xfffffffc; for (i = 0; i < (sizeof(sctp_mtu_sizes) / sizeof(uint32_t)); i++) { if (val < sctp_mtu_sizes[i]) { KASSERT((sctp_mtu_sizes[i] & 0x00000003) == 0, ("sctp_mtu_sizes[%u] not a multiple of 4", i)); return (sctp_mtu_sizes[i]); } } return (val); } void sctp_fill_random_store(struct sctp_pcb *m) { /* * Here we use the MD5/SHA-1 to hash with our good randomNumbers and * our counter. The result becomes our good random numbers and we * then setup to give these out. Note that we do no locking to * protect this. This is ok, since if competing folks call this we * will get more gobbled gook in the random store which is what we * want. There is a danger that two guys will use the same random * numbers, but thats ok too since that is random as well :-> */ m->store_at = 0; (void)sctp_hmac(SCTP_HMAC, (uint8_t *)m->random_numbers, sizeof(m->random_numbers), (uint8_t *)&m->random_counter, sizeof(m->random_counter), (uint8_t *)m->random_store); m->random_counter++; } uint32_t sctp_select_initial_TSN(struct sctp_pcb *inp) { /* * A true implementation should use random selection process to get * the initial stream sequence number, using RFC1750 as a good * guideline */ uint32_t x, *xp; uint8_t *p; int store_at, new_store; if (inp->initial_sequence_debug != 0) { uint32_t ret; ret = inp->initial_sequence_debug; inp->initial_sequence_debug++; return (ret); } retry: store_at = inp->store_at; new_store = store_at + sizeof(uint32_t); if (new_store >= (SCTP_SIGNATURE_SIZE - 3)) { new_store = 0; } if (!atomic_cmpset_int(&inp->store_at, store_at, new_store)) { goto retry; } if (new_store == 0) { /* Refill the random store */ sctp_fill_random_store(inp); } p = &inp->random_store[store_at]; xp = (uint32_t *)p; x = *xp; return (x); } uint32_t sctp_select_a_tag(struct sctp_inpcb *inp, uint16_t lport, uint16_t rport, int check) { uint32_t x; struct timeval now; if (check) { (void)SCTP_GETTIME_TIMEVAL(&now); } for (;;) { x = sctp_select_initial_TSN(&inp->sctp_ep); if (x == 0) { /* we never use 0 */ continue; } if (!check || sctp_is_vtag_good(x, lport, rport, &now)) { break; } } return (x); } int32_t sctp_map_assoc_state(int kernel_state) { int32_t user_state; if (kernel_state & SCTP_STATE_WAS_ABORTED) { user_state = SCTP_CLOSED; } else if (kernel_state & SCTP_STATE_SHUTDOWN_PENDING) { user_state = SCTP_SHUTDOWN_PENDING; } else { switch (kernel_state & SCTP_STATE_MASK) { case SCTP_STATE_EMPTY: user_state = SCTP_CLOSED; break; case SCTP_STATE_INUSE: user_state = SCTP_CLOSED; break; case SCTP_STATE_COOKIE_WAIT: user_state = SCTP_COOKIE_WAIT; break; case SCTP_STATE_COOKIE_ECHOED: user_state = SCTP_COOKIE_ECHOED; break; case SCTP_STATE_OPEN: user_state = SCTP_ESTABLISHED; break; case SCTP_STATE_SHUTDOWN_SENT: user_state = SCTP_SHUTDOWN_SENT; break; case SCTP_STATE_SHUTDOWN_RECEIVED: user_state = SCTP_SHUTDOWN_RECEIVED; break; case SCTP_STATE_SHUTDOWN_ACK_SENT: user_state = SCTP_SHUTDOWN_ACK_SENT; break; default: user_state = SCTP_CLOSED; break; } } return (user_state); } int sctp_init_asoc(struct sctp_inpcb *inp, struct sctp_tcb *stcb, uint32_t override_tag, uint32_t initial_tsn, uint32_t vrf_id, uint16_t o_strms) { struct sctp_association *asoc; /* * Anything set to zero is taken care of by the allocation routine's * bzero */ /* * Up front select what scoping to apply on addresses I tell my peer * Not sure what to do with these right now, we will need to come up * with a way to set them. We may need to pass them through from the * caller in the sctp_aloc_assoc() function. */ int i; #if defined(SCTP_DETAILED_STR_STATS) int j; #endif asoc = &stcb->asoc; /* init all variables to a known value. */ SCTP_SET_STATE(stcb, SCTP_STATE_INUSE); asoc->max_burst = inp->sctp_ep.max_burst; asoc->fr_max_burst = inp->sctp_ep.fr_max_burst; asoc->heart_beat_delay = sctp_ticks_to_msecs(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]); asoc->cookie_life = inp->sctp_ep.def_cookie_life; asoc->sctp_cmt_on_off = inp->sctp_cmt_on_off; asoc->ecn_supported = inp->ecn_supported; asoc->prsctp_supported = inp->prsctp_supported; asoc->auth_supported = inp->auth_supported; asoc->asconf_supported = inp->asconf_supported; asoc->reconfig_supported = inp->reconfig_supported; asoc->nrsack_supported = inp->nrsack_supported; asoc->pktdrop_supported = inp->pktdrop_supported; asoc->idata_supported = inp->idata_supported; asoc->rcv_edmid = inp->rcv_edmid; asoc->snd_edmid = SCTP_EDMID_NONE; asoc->sctp_cmt_pf = (uint8_t)0; asoc->sctp_frag_point = inp->sctp_frag_point; asoc->sctp_features = inp->sctp_features; asoc->default_dscp = inp->sctp_ep.default_dscp; asoc->max_cwnd = inp->max_cwnd; #ifdef INET6 if (inp->sctp_ep.default_flowlabel) { asoc->default_flowlabel = inp->sctp_ep.default_flowlabel; } else { if (inp->ip_inp.inp.inp_flags & IN6P_AUTOFLOWLABEL) { asoc->default_flowlabel = sctp_select_initial_TSN(&inp->sctp_ep); asoc->default_flowlabel &= 0x000fffff; asoc->default_flowlabel |= 0x80000000; } else { asoc->default_flowlabel = 0; } } #endif asoc->sb_send_resv = 0; if (override_tag) { asoc->my_vtag = override_tag; } else { asoc->my_vtag = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 1); } /* Get the nonce tags */ asoc->my_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0); asoc->peer_vtag_nonce = sctp_select_a_tag(inp, stcb->sctp_ep->sctp_lport, stcb->rport, 0); asoc->vrf_id = vrf_id; #ifdef SCTP_ASOCLOG_OF_TSNS asoc->tsn_in_at = 0; asoc->tsn_out_at = 0; asoc->tsn_in_wrapped = 0; asoc->tsn_out_wrapped = 0; asoc->cumack_log_at = 0; asoc->cumack_log_atsnt = 0; #endif #ifdef SCTP_FS_SPEC_LOG asoc->fs_index = 0; #endif asoc->refcnt = 0; asoc->assoc_up_sent = 0; if (override_tag) { asoc->init_seq_number = initial_tsn; } else { asoc->init_seq_number = sctp_select_initial_TSN(&inp->sctp_ep); } asoc->asconf_seq_out = asoc->init_seq_number; asoc->str_reset_seq_out = asoc->init_seq_number; asoc->sending_seq = asoc->init_seq_number; asoc->asconf_seq_out_acked = asoc->init_seq_number - 1; /* we are optimistic here */ asoc->peer_supports_nat = 0; asoc->sent_queue_retran_cnt = 0; /* for CMT */ asoc->last_net_cmt_send_started = NULL; asoc->last_acked_seq = asoc->init_seq_number - 1; asoc->advanced_peer_ack_point = asoc->init_seq_number - 1; asoc->asconf_seq_in = asoc->init_seq_number - 1; /* here we are different, we hold the next one we expect */ asoc->str_reset_seq_in = asoc->init_seq_number; asoc->initial_init_rto_max = inp->sctp_ep.initial_init_rto_max; asoc->initial_rto = inp->sctp_ep.initial_rto; asoc->default_mtu = inp->sctp_ep.default_mtu; asoc->max_init_times = inp->sctp_ep.max_init_times; asoc->max_send_times = inp->sctp_ep.max_send_times; asoc->def_net_failure = inp->sctp_ep.def_net_failure; asoc->def_net_pf_threshold = inp->sctp_ep.def_net_pf_threshold; asoc->free_chunk_cnt = 0; asoc->iam_blocking = 0; asoc->context = inp->sctp_context; asoc->local_strreset_support = inp->local_strreset_support; asoc->def_send = inp->def_send; asoc->delayed_ack = sctp_ticks_to_msecs(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); asoc->sack_freq = inp->sctp_ep.sctp_sack_freq; asoc->pr_sctp_cnt = 0; asoc->total_output_queue_size = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { asoc->scope.ipv6_addr_legal = 1; if (SCTP_IPV6_V6ONLY(inp) == 0) { asoc->scope.ipv4_addr_legal = 1; } else { asoc->scope.ipv4_addr_legal = 0; } } else { asoc->scope.ipv6_addr_legal = 0; asoc->scope.ipv4_addr_legal = 1; } asoc->my_rwnd = max(SCTP_SB_LIMIT_RCV(inp->sctp_socket), SCTP_MINIMAL_RWND); asoc->peers_rwnd = SCTP_SB_LIMIT_RCV(inp->sctp_socket); asoc->smallest_mtu = 0; asoc->minrto = inp->sctp_ep.sctp_minrto; asoc->maxrto = inp->sctp_ep.sctp_maxrto; asoc->stream_locked_on = 0; asoc->ecn_echo_cnt_onq = 0; asoc->stream_locked = 0; asoc->send_sack = 1; LIST_INIT(&asoc->sctp_restricted_addrs); TAILQ_INIT(&asoc->nets); TAILQ_INIT(&asoc->pending_reply_queue); TAILQ_INIT(&asoc->asconf_ack_sent); /* Setup to fill the hb random cache at first HB */ asoc->hb_random_idx = 4; asoc->sctp_autoclose_ticks = inp->sctp_ep.auto_close_time; stcb->asoc.congestion_control_module = inp->sctp_ep.sctp_default_cc_module; stcb->asoc.cc_functions = sctp_cc_functions[inp->sctp_ep.sctp_default_cc_module]; stcb->asoc.stream_scheduling_module = inp->sctp_ep.sctp_default_ss_module; stcb->asoc.ss_functions = sctp_ss_functions[inp->sctp_ep.sctp_default_ss_module]; /* * Now the stream parameters, here we allocate space for all streams * that we request by default. */ asoc->strm_realoutsize = asoc->streamoutcnt = asoc->pre_open_streams = o_strms; SCTP_MALLOC(asoc->strmout, struct sctp_stream_out *, asoc->streamoutcnt * sizeof(struct sctp_stream_out), SCTP_M_STRMO); if (asoc->strmout == NULL) { /* big trouble no memory */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } SCTP_TCB_LOCK(stcb); for (i = 0; i < asoc->streamoutcnt; i++) { /* * inbound side must be set to 0xffff, also NOTE when we get * the INIT-ACK back (for INIT sender) we MUST reduce the * count (streamoutcnt) but first check if we sent to any of * the upper streams that were dropped (if some were). Those * that were dropped must be notified to the upper layer as * failed to send. */ TAILQ_INIT(&asoc->strmout[i].outqueue); asoc->ss_functions.sctp_ss_init_stream(stcb, &asoc->strmout[i], NULL); asoc->strmout[i].chunks_on_queues = 0; #if defined(SCTP_DETAILED_STR_STATS) for (j = 0; j < SCTP_PR_SCTP_MAX + 1; j++) { asoc->strmout[i].abandoned_sent[j] = 0; asoc->strmout[i].abandoned_unsent[j] = 0; } #else asoc->strmout[i].abandoned_sent[0] = 0; asoc->strmout[i].abandoned_unsent[0] = 0; #endif asoc->strmout[i].next_mid_ordered = 0; asoc->strmout[i].next_mid_unordered = 0; asoc->strmout[i].sid = i; asoc->strmout[i].last_msg_incomplete = 0; asoc->strmout[i].state = SCTP_STREAM_OPENING; } asoc->ss_functions.sctp_ss_init(stcb, asoc); SCTP_TCB_UNLOCK(stcb); /* Now the mapping array */ asoc->mapping_array_size = SCTP_INITIAL_MAPPING_ARRAY; SCTP_MALLOC(asoc->mapping_array, uint8_t *, asoc->mapping_array_size, SCTP_M_MAP); if (asoc->mapping_array == NULL) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } memset(asoc->mapping_array, 0, asoc->mapping_array_size); SCTP_MALLOC(asoc->nr_mapping_array, uint8_t *, asoc->mapping_array_size, SCTP_M_MAP); if (asoc->nr_mapping_array == NULL) { SCTP_FREE(asoc->strmout, SCTP_M_STRMO); SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } memset(asoc->nr_mapping_array, 0, asoc->mapping_array_size); /* Now the init of the other outqueues */ TAILQ_INIT(&asoc->free_chunks); TAILQ_INIT(&asoc->control_send_queue); TAILQ_INIT(&asoc->asconf_send_queue); TAILQ_INIT(&asoc->send_queue); TAILQ_INIT(&asoc->sent_queue); TAILQ_INIT(&asoc->resetHead); asoc->max_inbound_streams = inp->sctp_ep.max_open_streams_intome; TAILQ_INIT(&asoc->asconf_queue); /* authentication fields */ asoc->authinfo.random = NULL; asoc->authinfo.active_keyid = 0; asoc->authinfo.assoc_key = NULL; asoc->authinfo.assoc_keyid = 0; asoc->authinfo.recv_key = NULL; asoc->authinfo.recv_keyid = 0; LIST_INIT(&asoc->shared_keys); asoc->marked_retrans = 0; asoc->port = inp->sctp_ep.port; asoc->timoinit = 0; asoc->timodata = 0; asoc->timosack = 0; asoc->timoshutdown = 0; asoc->timoheartbeat = 0; asoc->timocookie = 0; asoc->timoshutdownack = 0; (void)SCTP_GETTIME_TIMEVAL(&asoc->start_time); asoc->discontinuity_time = asoc->start_time; for (i = 0; i < SCTP_PR_SCTP_MAX + 1; i++) { asoc->abandoned_unsent[i] = 0; asoc->abandoned_sent[i] = 0; } /* * sa_ignore MEMLEAK {memory is put in the assoc mapping array and * freed later when the association is freed. */ return (0); } void sctp_print_mapping_array(struct sctp_association *asoc) { unsigned int i, limit; SCTP_PRINTF("Mapping array size: %d, baseTSN: %8.8x, cumAck: %8.8x, highestTSN: (%8.8x, %8.8x).\n", asoc->mapping_array_size, asoc->mapping_array_base_tsn, asoc->cumulative_tsn, asoc->highest_tsn_inside_map, asoc->highest_tsn_inside_nr_map); for (limit = asoc->mapping_array_size; limit > 1; limit--) { if (asoc->mapping_array[limit - 1] != 0) { break; } } SCTP_PRINTF("Renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit); for (i = 0; i < limit; i++) { SCTP_PRINTF("%2.2x%c", asoc->mapping_array[i], ((i + 1) % 16) ? ' ' : '\n'); } if (limit % 16) SCTP_PRINTF("\n"); for (limit = asoc->mapping_array_size; limit > 1; limit--) { if (asoc->nr_mapping_array[limit - 1]) { break; } } SCTP_PRINTF("Non renegable mapping array (last %d entries are zero):\n", asoc->mapping_array_size - limit); for (i = 0; i < limit; i++) { SCTP_PRINTF("%2.2x%c", asoc->nr_mapping_array[i], ((i + 1) % 16) ? ' ' : '\n'); } if (limit % 16) SCTP_PRINTF("\n"); } int sctp_expand_mapping_array(struct sctp_association *asoc, uint32_t needed) { /* mapping array needs to grow */ uint8_t *new_array1, *new_array2; uint32_t new_size; new_size = asoc->mapping_array_size + ((needed + 7) / 8 + SCTP_MAPPING_ARRAY_INCR); SCTP_MALLOC(new_array1, uint8_t *, new_size, SCTP_M_MAP); SCTP_MALLOC(new_array2, uint8_t *, new_size, SCTP_M_MAP); if ((new_array1 == NULL) || (new_array2 == NULL)) { /* can't get more, forget it */ SCTP_PRINTF("No memory for expansion of SCTP mapping array %d\n", new_size); if (new_array1) { SCTP_FREE(new_array1, SCTP_M_MAP); } if (new_array2) { SCTP_FREE(new_array2, SCTP_M_MAP); } return (-1); } memset(new_array1, 0, new_size); memset(new_array2, 0, new_size); memcpy(new_array1, asoc->mapping_array, asoc->mapping_array_size); memcpy(new_array2, asoc->nr_mapping_array, asoc->mapping_array_size); SCTP_FREE(asoc->mapping_array, SCTP_M_MAP); SCTP_FREE(asoc->nr_mapping_array, SCTP_M_MAP); asoc->mapping_array = new_array1; asoc->nr_mapping_array = new_array2; asoc->mapping_array_size = new_size; return (0); } static void sctp_iterator_work(struct sctp_iterator *it) { struct epoch_tracker et; struct sctp_inpcb *tinp; int iteration_count = 0; int inp_skip = 0; int first_in = 1; NET_EPOCH_ENTER(et); SCTP_INP_INFO_RLOCK(); SCTP_ITERATOR_LOCK(); sctp_it_ctl.cur_it = it; if (it->inp) { SCTP_INP_RLOCK(it->inp); SCTP_INP_DECR_REF(it->inp); } if (it->inp == NULL) { /* iterator is complete */ done_with_iterator: sctp_it_ctl.cur_it = NULL; SCTP_ITERATOR_UNLOCK(); SCTP_INP_INFO_RUNLOCK(); if (it->function_atend != NULL) { (*it->function_atend) (it->pointer, it->val); } SCTP_FREE(it, SCTP_M_ITER); NET_EPOCH_EXIT(et); return; } select_a_new_ep: if (first_in) { first_in = 0; } else { SCTP_INP_RLOCK(it->inp); } while (((it->pcb_flags) && ((it->inp->sctp_flags & it->pcb_flags) != it->pcb_flags)) || ((it->pcb_features) && ((it->inp->sctp_features & it->pcb_features) != it->pcb_features))) { /* endpoint flags or features don't match, so keep looking */ if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { SCTP_INP_RUNLOCK(it->inp); goto done_with_iterator; } tinp = it->inp; it->inp = LIST_NEXT(it->inp, sctp_list); it->stcb = NULL; SCTP_INP_RUNLOCK(tinp); if (it->inp == NULL) { goto done_with_iterator; } SCTP_INP_RLOCK(it->inp); } /* now go through each assoc which is in the desired state */ if (it->done_current_ep == 0) { if (it->function_inp != NULL) inp_skip = (*it->function_inp) (it->inp, it->pointer, it->val); it->done_current_ep = 1; } if (it->stcb == NULL) { /* run the per instance function */ it->stcb = LIST_FIRST(&it->inp->sctp_asoc_list); } if ((inp_skip) || it->stcb == NULL) { if (it->function_inp_end != NULL) { inp_skip = (*it->function_inp_end) (it->inp, it->pointer, it->val); } SCTP_INP_RUNLOCK(it->inp); goto no_stcb; } while (it->stcb != NULL) { SCTP_TCB_LOCK(it->stcb); if (it->asoc_state && ((it->stcb->asoc.state & it->asoc_state) != it->asoc_state)) { /* not in the right state... keep looking */ SCTP_TCB_UNLOCK(it->stcb); goto next_assoc; } /* see if we have limited out the iterator loop */ iteration_count++; if (iteration_count > SCTP_ITERATOR_MAX_AT_ONCE) { /* Pause to let others grab the lock */ atomic_add_int(&it->stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(it->stcb); SCTP_INP_INCR_REF(it->inp); SCTP_INP_RUNLOCK(it->inp); SCTP_ITERATOR_UNLOCK(); SCTP_INP_INFO_RUNLOCK(); SCTP_INP_INFO_RLOCK(); SCTP_ITERATOR_LOCK(); if (sctp_it_ctl.iterator_flags) { /* We won't be staying here */ SCTP_INP_DECR_REF(it->inp); atomic_subtract_int(&it->stcb->asoc.refcnt, 1); if (sctp_it_ctl.iterator_flags & SCTP_ITERATOR_STOP_CUR_IT) { sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_IT; goto done_with_iterator; } if (sctp_it_ctl.iterator_flags & SCTP_ITERATOR_STOP_CUR_INP) { sctp_it_ctl.iterator_flags &= ~SCTP_ITERATOR_STOP_CUR_INP; goto no_stcb; } /* If we reach here huh? */ SCTP_PRINTF("Unknown it ctl flag %x\n", sctp_it_ctl.iterator_flags); sctp_it_ctl.iterator_flags = 0; } SCTP_INP_RLOCK(it->inp); SCTP_INP_DECR_REF(it->inp); SCTP_TCB_LOCK(it->stcb); atomic_subtract_int(&it->stcb->asoc.refcnt, 1); iteration_count = 0; } KASSERT(it->inp == it->stcb->sctp_ep, ("%s: stcb %p does not belong to inp %p, but inp %p", __func__, it->stcb, it->inp, it->stcb->sctp_ep)); SCTP_INP_RLOCK_ASSERT(it->inp); SCTP_TCB_LOCK_ASSERT(it->stcb); /* run function on this one */ (*it->function_assoc) (it->inp, it->stcb, it->pointer, it->val); SCTP_INP_RLOCK_ASSERT(it->inp); SCTP_TCB_LOCK_ASSERT(it->stcb); /* * we lie here, it really needs to have its own type but * first I must verify that this won't effect things :-0 */ if (it->no_chunk_output == 0) { sctp_chunk_output(it->inp, it->stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); SCTP_INP_RLOCK_ASSERT(it->inp); SCTP_TCB_LOCK_ASSERT(it->stcb); } SCTP_TCB_UNLOCK(it->stcb); next_assoc: it->stcb = LIST_NEXT(it->stcb, sctp_tcblist); if (it->stcb == NULL) { /* Run last function */ if (it->function_inp_end != NULL) { inp_skip = (*it->function_inp_end) (it->inp, it->pointer, it->val); } } } SCTP_INP_RUNLOCK(it->inp); no_stcb: /* done with all assocs on this endpoint, move on to next endpoint */ it->done_current_ep = 0; if (it->iterator_flags & SCTP_ITERATOR_DO_SINGLE_INP) { it->inp = NULL; } else { it->inp = LIST_NEXT(it->inp, sctp_list); } it->stcb = NULL; if (it->inp == NULL) { goto done_with_iterator; } goto select_a_new_ep; } void sctp_iterator_worker(void) { struct sctp_iterator *it; /* This function is called with the WQ lock in place */ sctp_it_ctl.iterator_running = 1; while ((it = TAILQ_FIRST(&sctp_it_ctl.iteratorhead)) != NULL) { /* now lets work on this one */ TAILQ_REMOVE(&sctp_it_ctl.iteratorhead, it, sctp_nxt_itr); SCTP_IPI_ITERATOR_WQ_UNLOCK(); CURVNET_SET(it->vn); sctp_iterator_work(it); CURVNET_RESTORE(); SCTP_IPI_ITERATOR_WQ_LOCK(); /* sa_ignore FREED_MEMORY */ } sctp_it_ctl.iterator_running = 0; return; } static void sctp_handle_addr_wq(void) { /* deal with the ADDR wq from the rtsock calls */ struct sctp_laddr *wi, *nwi; struct sctp_asconf_iterator *asc; SCTP_MALLOC(asc, struct sctp_asconf_iterator *, sizeof(struct sctp_asconf_iterator), SCTP_M_ASC_IT); if (asc == NULL) { /* Try later, no memory */ sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); return; } LIST_INIT(&asc->list_of_work); asc->cnt = 0; LIST_FOREACH_SAFE(wi, &SCTP_BASE_INFO(addr_wq), sctp_nxt_addr, nwi) { LIST_REMOVE(wi, sctp_nxt_addr); LIST_INSERT_HEAD(&asc->list_of_work, wi, sctp_nxt_addr); asc->cnt++; } if (asc->cnt == 0) { SCTP_FREE(asc, SCTP_M_ASC_IT); } else { int ret; ret = sctp_initiate_iterator(sctp_asconf_iterator_ep, sctp_asconf_iterator_stcb, NULL, /* No ep end for boundall */ SCTP_PCB_FLAGS_BOUNDALL, SCTP_PCB_ANY_FEATURES, SCTP_ASOC_ANY_STATE, (void *)asc, 0, sctp_asconf_iterator_end, NULL, 0); if (ret) { SCTP_PRINTF("Failed to initiate iterator for handle_addr_wq\n"); /* * Freeing if we are stopping or put back on the * addr_wq. */ if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) { sctp_asconf_iterator_end(asc, 0); } else { LIST_FOREACH(wi, &asc->list_of_work, sctp_nxt_addr) { LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); } SCTP_FREE(asc, SCTP_M_ASC_IT); } } } } /*- * The following table shows which pointers for the inp, stcb, or net are * stored for each timer after it was started. * *|Name |Timer |inp |stcb|net | *|-----------------------------|-----------------------------|----|----|----| *|SCTP_TIMER_TYPE_SEND |net->rxt_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_INIT |net->rxt_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_RECV |stcb->asoc.dack_timer |Yes |Yes |No | *|SCTP_TIMER_TYPE_SHUTDOWN |net->rxt_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_HEARTBEAT |net->hb_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_COOKIE |net->rxt_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_NEWCOOKIE |inp->sctp_ep.signature_change|Yes |No |No | *|SCTP_TIMER_TYPE_PATHMTURAISE |net->pmtu_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_SHUTDOWNACK |net->rxt_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_ASCONF |stcb->asoc.asconf_timer |Yes |Yes |Yes | *|SCTP_TIMER_TYPE_SHUTDOWNGUARD|stcb->asoc.shut_guard_timer |Yes |Yes |No | *|SCTP_TIMER_TYPE_AUTOCLOSE |stcb->asoc.autoclose_timer |Yes |Yes |No | *|SCTP_TIMER_TYPE_STRRESET |stcb->asoc.strreset_timer |Yes |Yes |No | *|SCTP_TIMER_TYPE_INPKILL |inp->sctp_ep.signature_change|Yes |No |No | *|SCTP_TIMER_TYPE_ASOCKILL |stcb->asoc.strreset_timer |Yes |Yes |No | *|SCTP_TIMER_TYPE_ADDR_WQ |SCTP_BASE_INFO(addr_wq_timer)|No |No |No | *|SCTP_TIMER_TYPE_PRIM_DELETED |stcb->asoc.delete_prim_timer |Yes |Yes |No | */ void sctp_timeout_handler(void *t) { struct epoch_tracker et; struct timeval tv; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_timer *tmr; struct mbuf *op_err; int type; int i, secret; bool did_output, released_asoc_reference; /* * If inp, stcb or net are not NULL, then references to these were * added when the timer was started, and must be released before * this function returns. */ tmr = (struct sctp_timer *)t; inp = (struct sctp_inpcb *)tmr->ep; stcb = (struct sctp_tcb *)tmr->tcb; net = (struct sctp_nets *)tmr->net; CURVNET_SET((struct vnet *)tmr->vnet); NET_EPOCH_ENTER(et); released_asoc_reference = false; #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xF0, (uint8_t)tmr->type); sctp_auditing(3, inp, stcb, net); #endif /* sanity checks... */ KASSERT(tmr->self == NULL || tmr->self == tmr, ("sctp_timeout_handler: tmr->self corrupted")); KASSERT(SCTP_IS_TIMER_TYPE_VALID(tmr->type), ("sctp_timeout_handler: invalid timer type %d", tmr->type)); type = tmr->type; KASSERT(stcb == NULL || stcb->sctp_ep == inp, ("sctp_timeout_handler of type %d: inp = %p, stcb->sctp_ep %p", type, stcb, stcb->sctp_ep)); tmr->stopped_from = 0xa001; if ((stcb != NULL) && (stcb->asoc.state == SCTP_STATE_EMPTY)) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d handler exiting due to CLOSED association.\n", type); goto out_decr; } tmr->stopped_from = 0xa002; SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d goes off.\n", type); if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d handler exiting due to not being active.\n", type); goto out_decr; } tmr->stopped_from = 0xa003; if (stcb) { SCTP_TCB_LOCK(stcb); /* * Release reference so that association can be freed if * necessary below. This is safe now that we have acquired * the lock. */ atomic_subtract_int(&stcb->asoc.refcnt, 1); released_asoc_reference = true; if ((type != SCTP_TIMER_TYPE_ASOCKILL) && ((stcb->asoc.state == SCTP_STATE_EMPTY) || (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED))) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d handler exiting due to CLOSED association.\n", type); goto out; } } else if (inp != NULL) { SCTP_INP_WLOCK(inp); } else { SCTP_WQ_ADDR_LOCK(); } /* Record in stopped_from which timeout occurred. */ tmr->stopped_from = type; /* mark as being serviced now */ if (SCTP_OS_TIMER_PENDING(&tmr->timer)) { /* * Callout has been rescheduled. */ goto out; } if (!SCTP_OS_TIMER_ACTIVE(&tmr->timer)) { /* * Not active, so no action. */ goto out; } SCTP_OS_TIMER_DEACTIVATE(&tmr->timer); /* call the handler for the appropriate timer type */ switch (type) { case SCTP_TIMER_TYPE_SEND: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timodata); stcb->asoc.timodata++; stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } SCTP_TCB_LOCK_ASSERT(stcb); if (sctp_t3rxt_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_TCB_LOCK_ASSERT(stcb); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); did_output = true; if ((stcb->asoc.num_send_timers_up == 0) && (stcb->asoc.sent_queue_cnt > 0)) { struct sctp_tmit_chunk *chk; /* * Safeguard. If there on some on the sent queue * somewhere but no timers running something is * wrong... so we start a timer on the first chunk * on the send queue on whatever net it is sent to. */ TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if (chk->whoTo != NULL) { break; } } if (chk != NULL) { sctp_timer_start(SCTP_TIMER_TYPE_SEND, stcb->sctp_ep, stcb, chk->whoTo); } } break; case SCTP_TIMER_TYPE_INIT: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoinit); stcb->asoc.timoinit++; if (sctp_t1init_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } did_output = false; break; case SCTP_TIMER_TYPE_RECV: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timosack); stcb->asoc.timosack++; sctp_send_sack(stcb, SCTP_SO_NOT_LOCKED); #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, NULL); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SACK_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_SHUTDOWN: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoshutdown); stcb->asoc.timoshutdown++; if (sctp_shutdown_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_HEARTBEAT: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoheartbeat); stcb->asoc.timoheartbeat++; if (sctp_heartbeat_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif if ((net->dest_state & SCTP_ADDR_NOHB) == 0) { sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_HB_TMR, SCTP_SO_NOT_LOCKED); did_output = true; } else { did_output = false; } break; case SCTP_TIMER_TYPE_COOKIE: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timocookie); stcb->asoc.timocookie++; if (sctp_cookie_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif /* * We consider T3 and Cookie timer pretty much the same with * respect to where from in chunk_output. */ sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_T3, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_NEWCOOKIE: KASSERT(inp != NULL && stcb == NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timosecret); (void)SCTP_GETTIME_TIMEVAL(&tv); inp->sctp_ep.time_of_secret_change = (unsigned int)tv.tv_sec; inp->sctp_ep.last_secret_number = inp->sctp_ep.current_secret_number; inp->sctp_ep.current_secret_number++; if (inp->sctp_ep.current_secret_number >= SCTP_HOW_MANY_SECRETS) { inp->sctp_ep.current_secret_number = 0; } secret = (int)inp->sctp_ep.current_secret_number; for (i = 0; i < SCTP_NUMBER_OF_SECRETS; i++) { inp->sctp_ep.secret_key[secret][i] = sctp_select_initial_TSN(&inp->sctp_ep); } sctp_timer_start(SCTP_TIMER_TYPE_NEWCOOKIE, inp, NULL, NULL); did_output = false; break; case SCTP_TIMER_TYPE_PATHMTURAISE: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timopathmtu); sctp_pathmtu_timer(inp, stcb, net); did_output = false; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); if (sctp_shutdownack_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } SCTP_STAT_INCR(sctps_timoshutdownack); stcb->asoc.timoshutdownack++; #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_SHUT_ACK_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_ASCONF: KASSERT(inp != NULL && stcb != NULL && net != NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoasconf); if (sctp_asconf_timer(inp, stcb, net)) { /* no need to unlock on tcb its gone */ goto out_decr; } #ifdef SCTP_AUDITING_ENABLED sctp_auditing(4, inp, stcb, net); #endif sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_ASCONF_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoshutdownguard); op_err = sctp_generate_cause(SCTP_BASE_SYSCTL(sctp_diag_info_code), "Shutdown guard timer expired"); sctp_abort_an_association(inp, stcb, op_err, true, SCTP_SO_NOT_LOCKED); /* no need to unlock on tcb its gone */ goto out_decr; case SCTP_TIMER_TYPE_AUTOCLOSE: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoautoclose); sctp_autoclose_timer(inp, stcb); sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_AUTOCLOSE_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_STRRESET: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timostrmrst); if (sctp_strreset_timer(inp, stcb)) { /* no need to unlock on tcb its gone */ goto out_decr; } sctp_chunk_output(inp, stcb, SCTP_OUTPUT_FROM_STRRST_TMR, SCTP_SO_NOT_LOCKED); did_output = true; break; case SCTP_TIMER_TYPE_INPKILL: KASSERT(inp != NULL && stcb == NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoinpkill); /* * special case, take away our increment since WE are the * killer */ sctp_timer_stop(SCTP_TIMER_TYPE_INPKILL, inp, NULL, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_3); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_FROM_INPKILL_TIMER); inp = NULL; goto out_decr; case SCTP_TIMER_TYPE_ASOCKILL: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timoassockill); /* Can we free it yet? */ sctp_timer_stop(SCTP_TIMER_TYPE_ASOCKILL, inp, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_1); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_2); /* * free asoc, always unlocks (or destroy's) so prevent * duplicate unlock or unlock of a free mtx :-0 */ stcb = NULL; goto out_decr; case SCTP_TIMER_TYPE_ADDR_WQ: KASSERT(inp == NULL && stcb == NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); sctp_handle_addr_wq(); did_output = true; break; case SCTP_TIMER_TYPE_PRIM_DELETED: KASSERT(inp != NULL && stcb != NULL && net == NULL, ("timeout of type %d: inp = %p, stcb = %p, net = %p", type, inp, stcb, net)); SCTP_STAT_INCR(sctps_timodelprim); sctp_delete_prim_timer(inp, stcb); did_output = false; break; default: #ifdef INVARIANTS panic("Unknown timer type %d", type); #else goto out; #endif } #ifdef SCTP_AUDITING_ENABLED sctp_audit_log(0xF1, (uint8_t)type); if (inp != NULL) sctp_auditing(5, inp, stcb, net); #endif if (did_output && (stcb != NULL)) { /* * Now we need to clean up the control chunk chain if an * ECNE is on it. It must be marked as UNSENT again so next * call will continue to send it until such time that we get * a CWR, to remove it. It is, however, less likely that we * will find a ecn echo on the chain though. */ sctp_fix_ecn_echo(&stcb->asoc); } out: if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } else if (inp != NULL) { SCTP_INP_WUNLOCK(inp); } else { SCTP_WQ_ADDR_UNLOCK(); } out_decr: /* These reference counts were incremented in sctp_timer_start(). */ if (inp != NULL) { SCTP_INP_DECR_REF(inp); } if ((stcb != NULL) && !released_asoc_reference) { atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (net != NULL) { sctp_free_remote_addr(net); } SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d handler finished.\n", type); CURVNET_RESTORE(); NET_EPOCH_EXIT(et); } /*- * The following table shows which parameters must be provided * when calling sctp_timer_start(). For parameters not being * provided, NULL must be used. * * |Name |inp |stcb|net | * |-----------------------------|----|----|----| * |SCTP_TIMER_TYPE_SEND |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_INIT |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_RECV |Yes |Yes |No | * |SCTP_TIMER_TYPE_SHUTDOWN |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_HEARTBEAT |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_COOKIE |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_NEWCOOKIE |Yes |No |No | * |SCTP_TIMER_TYPE_PATHMTURAISE |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_SHUTDOWNACK |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_ASCONF |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_SHUTDOWNGUARD|Yes |Yes |No | * |SCTP_TIMER_TYPE_AUTOCLOSE |Yes |Yes |No | * |SCTP_TIMER_TYPE_STRRESET |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_INPKILL |Yes |No |No | * |SCTP_TIMER_TYPE_ASOCKILL |Yes |Yes |No | * |SCTP_TIMER_TYPE_ADDR_WQ |No |No |No | * |SCTP_TIMER_TYPE_PRIM_DELETED |Yes |Yes |No | * */ void sctp_timer_start(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net) { struct sctp_timer *tmr; uint32_t to_ticks; uint32_t rndval, jitter; KASSERT(stcb == NULL || stcb->sctp_ep == inp, ("sctp_timer_start of type %d: inp = %p, stcb->sctp_ep %p", t_type, stcb, stcb->sctp_ep)); tmr = NULL; if (stcb != NULL) { SCTP_TCB_LOCK_ASSERT(stcb); } else if (inp != NULL) { SCTP_INP_WLOCK_ASSERT(inp); } else { SCTP_WQ_ADDR_LOCK_ASSERT(); } if (stcb != NULL) { /* * Don't restart timer on association that's about to be * killed. */ if ((stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) && (t_type != SCTP_TIMER_TYPE_ASOCKILL)) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d not started: inp=%p, stcb=%p, net=%p (stcb deleted).\n", t_type, inp, stcb, net); return; } /* Don't restart timer on net that's been removed. */ if (net != NULL && (net->dest_state & SCTP_ADDR_BEING_DELETED)) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d not started: inp=%p, stcb=%p, net=%p (net deleted).\n", t_type, inp, stcb, net); return; } } switch (t_type) { case SCTP_TIMER_TYPE_SEND: /* Here we use the RTO timer. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_INIT: /* * Here we use the INIT timer default usually about 1 * second. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_RECV: /* * Here we use the Delayed-Ack timer value from the inp, * usually about 200ms. */ if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.dack_timer; to_ticks = sctp_msecs_to_ticks(stcb->asoc.delayed_ack); break; case SCTP_TIMER_TYPE_SHUTDOWN: /* Here we use the RTO of the destination. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_HEARTBEAT: /* * The net is used here so that we can add in the RTO. Even * though we use a different timer. We also add the HB timer * PLUS a random jitter. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } if ((net->dest_state & SCTP_ADDR_NOHB) && ((net->dest_state & SCTP_ADDR_UNCONFIRMED) == 0)) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d not started: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); return; } tmr = &net->hb_timer; if (net->RTO == 0) { to_ticks = stcb->asoc.initial_rto; } else { to_ticks = net->RTO; } rndval = sctp_select_initial_TSN(&inp->sctp_ep); jitter = rndval % to_ticks; if (to_ticks > 1) { to_ticks >>= 1; } if (jitter < (UINT32_MAX - to_ticks)) { to_ticks += jitter; } else { to_ticks = UINT32_MAX; } if (!((net->dest_state & SCTP_ADDR_UNCONFIRMED) && (net->dest_state & SCTP_ADDR_REACHABLE)) && ((net->dest_state & SCTP_ADDR_PF) == 0)) { if (net->heart_beat_delay < (UINT32_MAX - to_ticks)) { to_ticks += net->heart_beat_delay; } else { to_ticks = UINT32_MAX; } } /* * Now we must convert the to_ticks that are now in ms to * ticks. */ to_ticks = sctp_msecs_to_ticks(to_ticks); break; case SCTP_TIMER_TYPE_COOKIE: /* * Here we can use the RTO timer from the network since one * RTT was complete. If a retransmission happened then we * will be using the RTO initial value. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_NEWCOOKIE: /* * Nothing needed but the endpoint here usually about 60 * minutes. */ if ((inp == NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &inp->sctp_ep.signature_change; to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_SIGNATURE]; break; case SCTP_TIMER_TYPE_PATHMTURAISE: /* * Here we use the value found in the EP for PMTUD, usually * about 10 minutes. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } if (net->dest_state & SCTP_ADDR_NO_PMTUD) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d not started: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); return; } tmr = &net->pmtu_timer; to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_PMTU]; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: /* Here we use the RTO of the destination. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_ASCONF: /* * Here the timer comes from the stcb but its value is from * the net's RTO. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.asconf_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: /* * Here we use the endpoints shutdown guard timer usually * about 3 minutes. */ if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.shut_guard_timer; if (inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN] == 0) { if (stcb->asoc.maxrto < UINT32_MAX / 5) { to_ticks = sctp_msecs_to_ticks(5 * stcb->asoc.maxrto); } else { to_ticks = sctp_msecs_to_ticks(UINT32_MAX); } } else { to_ticks = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_MAXSHUTDOWN]; } break; case SCTP_TIMER_TYPE_AUTOCLOSE: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.autoclose_timer; to_ticks = stcb->asoc.sctp_autoclose_ticks; break; case SCTP_TIMER_TYPE_STRRESET: /* * Here the timer comes from the stcb but its value is from * the net's RTO. */ if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.strreset_timer; if (net->RTO == 0) { to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); } else { to_ticks = sctp_msecs_to_ticks(net->RTO); } break; case SCTP_TIMER_TYPE_INPKILL: /* * The inp is setup to die. We re-use the signature_change * timer since that has stopped and we are in the GONE * state. */ if ((inp == NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &inp->sctp_ep.signature_change; to_ticks = sctp_msecs_to_ticks(SCTP_INP_KILL_TIMEOUT); break; case SCTP_TIMER_TYPE_ASOCKILL: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.strreset_timer; to_ticks = sctp_msecs_to_ticks(SCTP_ASOC_KILL_TIMEOUT); break; case SCTP_TIMER_TYPE_ADDR_WQ: if ((inp != NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } /* Only 1 tick away :-) */ tmr = &SCTP_BASE_INFO(addr_wq_timer); to_ticks = SCTP_ADDRESS_TICK_DELAY; break; case SCTP_TIMER_TYPE_PRIM_DELETED: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_start of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.delete_prim_timer; to_ticks = sctp_msecs_to_ticks(stcb->asoc.initial_rto); break; default: #ifdef INVARIANTS panic("Unknown timer type %d", t_type); #else return; #endif } KASSERT(tmr != NULL, ("tmr is NULL for timer type %d", t_type)); KASSERT(to_ticks > 0, ("to_ticks == 0 for timer type %d", t_type)); if (SCTP_OS_TIMER_PENDING(&tmr->timer)) { /* * We do NOT allow you to have it already running. If it is, * we leave the current one up unchanged. */ SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d already running: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); return; } /* At this point we can proceed. */ if (t_type == SCTP_TIMER_TYPE_SEND) { stcb->asoc.num_send_timers_up++; } tmr->stopped_from = 0; tmr->type = t_type; tmr->ep = (void *)inp; tmr->tcb = (void *)stcb; if (t_type == SCTP_TIMER_TYPE_STRRESET) { tmr->net = NULL; } else { tmr->net = (void *)net; } tmr->self = (void *)tmr; tmr->vnet = (void *)curvnet; tmr->ticks = sctp_get_tick_count(); if (SCTP_OS_TIMER_START(&tmr->timer, to_ticks, sctp_timeout_handler, tmr) == 0) { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d started: ticks=%u, inp=%p, stcb=%p, net=%p.\n", t_type, to_ticks, inp, stcb, net); /* * If this is a newly scheduled callout, as opposed to a * rescheduled one, increment relevant reference counts. */ if (tmr->ep != NULL) { SCTP_INP_INCR_REF(inp); } if (tmr->tcb != NULL) { atomic_add_int(&stcb->asoc.refcnt, 1); } if (tmr->net != NULL) { atomic_add_int(&net->ref_count, 1); } } else { /* * This should not happen, since we checked for pending * above. */ SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d restarted: ticks=%u, inp=%p, stcb=%p, net=%p.\n", t_type, to_ticks, inp, stcb, net); } return; } /*- * The following table shows which parameters must be provided * when calling sctp_timer_stop(). For parameters not being * provided, NULL must be used. * * |Name |inp |stcb|net | * |-----------------------------|----|----|----| * |SCTP_TIMER_TYPE_SEND |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_INIT |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_RECV |Yes |Yes |No | * |SCTP_TIMER_TYPE_SHUTDOWN |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_HEARTBEAT |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_COOKIE |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_NEWCOOKIE |Yes |No |No | * |SCTP_TIMER_TYPE_PATHMTURAISE |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_SHUTDOWNACK |Yes |Yes |Yes | * |SCTP_TIMER_TYPE_ASCONF |Yes |Yes |No | * |SCTP_TIMER_TYPE_SHUTDOWNGUARD|Yes |Yes |No | * |SCTP_TIMER_TYPE_AUTOCLOSE |Yes |Yes |No | * |SCTP_TIMER_TYPE_STRRESET |Yes |Yes |No | * |SCTP_TIMER_TYPE_INPKILL |Yes |No |No | * |SCTP_TIMER_TYPE_ASOCKILL |Yes |Yes |No | * |SCTP_TIMER_TYPE_ADDR_WQ |No |No |No | * |SCTP_TIMER_TYPE_PRIM_DELETED |Yes |Yes |No | * */ void sctp_timer_stop(int t_type, struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, uint32_t from) { struct sctp_timer *tmr; KASSERT(stcb == NULL || stcb->sctp_ep == inp, ("sctp_timer_stop of type %d: inp = %p, stcb->sctp_ep %p", t_type, stcb, stcb->sctp_ep)); if (stcb != NULL) { SCTP_TCB_LOCK_ASSERT(stcb); } else if (inp != NULL) { SCTP_INP_WLOCK_ASSERT(inp); } else { SCTP_WQ_ADDR_LOCK_ASSERT(); } tmr = NULL; switch (t_type) { case SCTP_TIMER_TYPE_SEND: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_INIT: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_RECV: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.dack_timer; break; case SCTP_TIMER_TYPE_SHUTDOWN: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_HEARTBEAT: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->hb_timer; break; case SCTP_TIMER_TYPE_COOKIE: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_NEWCOOKIE: if ((inp == NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &inp->sctp_ep.signature_change; break; case SCTP_TIMER_TYPE_PATHMTURAISE: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->pmtu_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNACK: if ((inp == NULL) || (stcb == NULL) || (net == NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &net->rxt_timer; break; case SCTP_TIMER_TYPE_ASCONF: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.asconf_timer; break; case SCTP_TIMER_TYPE_SHUTDOWNGUARD: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.shut_guard_timer; break; case SCTP_TIMER_TYPE_AUTOCLOSE: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.autoclose_timer; break; case SCTP_TIMER_TYPE_STRRESET: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.strreset_timer; break; case SCTP_TIMER_TYPE_INPKILL: /* * The inp is setup to die. We re-use the signature_change * timer since that has stopped and we are in the GONE * state. */ if ((inp == NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &inp->sctp_ep.signature_change; break; case SCTP_TIMER_TYPE_ASOCKILL: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.strreset_timer; break; case SCTP_TIMER_TYPE_ADDR_WQ: if ((inp != NULL) || (stcb != NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &SCTP_BASE_INFO(addr_wq_timer); break; case SCTP_TIMER_TYPE_PRIM_DELETED: if ((inp == NULL) || (stcb == NULL) || (net != NULL)) { #ifdef INVARIANTS panic("sctp_timer_stop of type %d: inp = %p, stcb = %p, net = %p", t_type, inp, stcb, net); #else return; #endif } tmr = &stcb->asoc.delete_prim_timer; break; default: #ifdef INVARIANTS panic("Unknown timer type %d", t_type); #else return; #endif } KASSERT(tmr != NULL, ("tmr is NULL for timer type %d", t_type)); if ((tmr->type != SCTP_TIMER_TYPE_NONE) && (tmr->type != t_type)) { /* * Ok we have a timer that is under joint use. Cookie timer * per chance with the SEND timer. We therefore are NOT * running the timer that the caller wants stopped. So just * return. */ SCTPDBG(SCTP_DEBUG_TIMER2, "Shared timer type %d not running: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); return; } if ((t_type == SCTP_TIMER_TYPE_SEND) && (stcb != NULL)) { stcb->asoc.num_send_timers_up--; if (stcb->asoc.num_send_timers_up < 0) { stcb->asoc.num_send_timers_up = 0; } } tmr->self = NULL; tmr->stopped_from = from; if (SCTP_OS_TIMER_STOP(&tmr->timer) == 1) { KASSERT(tmr->ep == inp, ("sctp_timer_stop of type %d: inp = %p, tmr->inp = %p", t_type, inp, tmr->ep)); KASSERT(tmr->tcb == stcb, ("sctp_timer_stop of type %d: stcb = %p, tmr->stcb = %p", t_type, stcb, tmr->tcb)); KASSERT(((t_type == SCTP_TIMER_TYPE_ASCONF) && (tmr->net != NULL)) || ((t_type != SCTP_TIMER_TYPE_ASCONF) && (tmr->net == net)), ("sctp_timer_stop of type %d: net = %p, tmr->net = %p", t_type, net, tmr->net)); SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d stopped: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); /* * If the timer was actually stopped, decrement reference * counts that were incremented in sctp_timer_start(). */ if (tmr->ep != NULL) { tmr->ep = NULL; SCTP_INP_DECR_REF(inp); } if (tmr->tcb != NULL) { tmr->tcb = NULL; atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (tmr->net != NULL) { struct sctp_nets *tmr_net; /* * Can't use net, since it doesn't work for * SCTP_TIMER_TYPE_ASCONF. */ tmr_net = tmr->net; tmr->net = NULL; sctp_free_remote_addr(tmr_net); } } else { SCTPDBG(SCTP_DEBUG_TIMER2, "Timer type %d not stopped: inp=%p, stcb=%p, net=%p.\n", t_type, inp, stcb, net); } return; } uint32_t sctp_calculate_len(struct mbuf *m) { struct mbuf *at; uint32_t tlen; tlen = 0; for (at = m; at != NULL; at = SCTP_BUF_NEXT(at)) { tlen += SCTP_BUF_LEN(at); } return (tlen); } /* * Given an association and starting time of the current RTT period, update * RTO in number of msecs. net should point to the current network. * Return 1, if an RTO update was performed, return 0 if no update was * performed due to invalid starting point. */ int sctp_calculate_rto(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_nets *net, struct timeval *old, int rtt_from_sack) { struct timeval now; uint64_t rtt_us; /* RTT in us */ int32_t rtt; /* RTT in ms */ uint32_t new_rto; int first_measure = 0; /************************/ /* 1. calculate new RTT */ /************************/ /* get the current time */ if (stcb->asoc.use_precise_time) { (void)SCTP_GETPTIME_TIMEVAL(&now); } else { (void)SCTP_GETTIME_TIMEVAL(&now); } if ((old->tv_sec > now.tv_sec) || ((old->tv_sec == now.tv_sec) && (old->tv_usec > now.tv_usec))) { /* The starting point is in the future. */ return (0); } timevalsub(&now, old); rtt_us = (uint64_t)1000000 * (uint64_t)now.tv_sec + (uint64_t)now.tv_usec; if (rtt_us > SCTP_RTO_UPPER_BOUND * 1000) { /* The RTT is larger than a sane value. */ return (0); } /* store the current RTT in us */ net->rtt = rtt_us; /* compute rtt in ms */ rtt = (int32_t)(net->rtt / 1000); if ((asoc->cc_functions.sctp_rtt_calculated) && (rtt_from_sack == SCTP_RTT_FROM_DATA)) { /* * Tell the CC module that a new update has just occurred * from a sack */ (*asoc->cc_functions.sctp_rtt_calculated) (stcb, net, &now); } /* * Do we need to determine the lan? We do this only on sacks i.e. * RTT being determined from data not non-data (HB/INIT->INITACK). */ if ((rtt_from_sack == SCTP_RTT_FROM_DATA) && (net->lan_type == SCTP_LAN_UNKNOWN)) { if (net->rtt > SCTP_LOCAL_LAN_RTT) { net->lan_type = SCTP_LAN_INTERNET; } else { net->lan_type = SCTP_LAN_LOCAL; } } /***************************/ /* 2. update RTTVAR & SRTT */ /***************************/ /*- * Compute the scaled average lastsa and the * scaled variance lastsv as described in van Jacobson * Paper "Congestion Avoidance and Control", Annex A. * * (net->lastsa >> SCTP_RTT_SHIFT) is the srtt * (net->lastsv >> SCTP_RTT_VAR_SHIFT) is the rttvar */ if (net->RTO_measured) { rtt -= (net->lastsa >> SCTP_RTT_SHIFT); net->lastsa += rtt; if (rtt < 0) { rtt = -rtt; } rtt -= (net->lastsv >> SCTP_RTT_VAR_SHIFT); net->lastsv += rtt; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) { rto_logging(net, SCTP_LOG_RTTVAR); } } else { /* First RTO measurement */ net->RTO_measured = 1; first_measure = 1; net->lastsa = rtt << SCTP_RTT_SHIFT; net->lastsv = (rtt / 2) << SCTP_RTT_VAR_SHIFT; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RTTVAR_LOGGING_ENABLE) { rto_logging(net, SCTP_LOG_INITIAL_RTT); } } if (net->lastsv == 0) { net->lastsv = SCTP_CLOCK_GRANULARITY; } new_rto = (net->lastsa >> SCTP_RTT_SHIFT) + net->lastsv; if ((new_rto > SCTP_SAT_NETWORK_MIN) && (stcb->asoc.sat_network_lockout == 0)) { stcb->asoc.sat_network = 1; } else if ((!first_measure) && stcb->asoc.sat_network) { stcb->asoc.sat_network = 0; stcb->asoc.sat_network_lockout = 1; } /* bound it, per C6/C7 in Section 5.3.1 */ if (new_rto < stcb->asoc.minrto) { new_rto = stcb->asoc.minrto; } if (new_rto > stcb->asoc.maxrto) { new_rto = stcb->asoc.maxrto; } net->RTO = new_rto; return (1); } /* * return a pointer to a contiguous piece of data from the given mbuf chain * starting at 'off' for 'len' bytes. If the desired piece spans more than * one mbuf, a copy is made at 'ptr'. caller must ensure that the buffer size * is >= 'len' returns NULL if there there isn't 'len' bytes in the chain. */ caddr_t sctp_m_getptr(struct mbuf *m, int off, int len, uint8_t *in_ptr) { uint32_t count; uint8_t *ptr; ptr = in_ptr; if ((off < 0) || (len <= 0)) return (NULL); /* find the desired start location */ while ((m != NULL) && (off > 0)) { if (off < SCTP_BUF_LEN(m)) break; off -= SCTP_BUF_LEN(m); m = SCTP_BUF_NEXT(m); } if (m == NULL) return (NULL); /* is the current mbuf large enough (eg. contiguous)? */ if ((SCTP_BUF_LEN(m) - off) >= len) { return (mtod(m, caddr_t)+off); } else { /* else, it spans more than one mbuf, so save a temp copy... */ while ((m != NULL) && (len > 0)) { count = min(SCTP_BUF_LEN(m) - off, len); memcpy(ptr, mtod(m, caddr_t)+off, count); len -= count; ptr += count; off = 0; m = SCTP_BUF_NEXT(m); } if ((m == NULL) && (len > 0)) return (NULL); else return ((caddr_t)in_ptr); } } struct sctp_paramhdr * sctp_get_next_param(struct mbuf *m, int offset, struct sctp_paramhdr *pull, int pull_limit) { /* This just provides a typed signature to Peter's Pull routine */ return ((struct sctp_paramhdr *)sctp_m_getptr(m, offset, pull_limit, (uint8_t *)pull)); } struct mbuf * sctp_add_pad_tombuf(struct mbuf *m, int padlen) { struct mbuf *m_last; caddr_t dp; if (padlen > 3) { return (NULL); } if (padlen <= M_TRAILINGSPACE(m)) { /* * The easy way. We hope the majority of the time we hit * here :) */ m_last = m; } else { /* Hard way we must grow the mbuf chain */ m_last = sctp_get_mbuf_for_msg(padlen, 0, M_NOWAIT, 1, MT_DATA); if (m_last == NULL) { return (NULL); } SCTP_BUF_LEN(m_last) = 0; SCTP_BUF_NEXT(m_last) = NULL; SCTP_BUF_NEXT(m) = m_last; } dp = mtod(m_last, caddr_t)+SCTP_BUF_LEN(m_last); SCTP_BUF_LEN(m_last) += padlen; memset(dp, 0, padlen); return (m_last); } struct mbuf * sctp_pad_lastmbuf(struct mbuf *m, int padval, struct mbuf *last_mbuf) { /* find the last mbuf in chain and pad it */ struct mbuf *m_at; if (last_mbuf != NULL) { return (sctp_add_pad_tombuf(last_mbuf, padval)); } else { for (m_at = m; m_at; m_at = SCTP_BUF_NEXT(m_at)) { if (SCTP_BUF_NEXT(m_at) == NULL) { return (sctp_add_pad_tombuf(m_at, padval)); } } } return (NULL); } static void sctp_notify_assoc_change(uint16_t state, struct sctp_tcb *stcb, uint16_t error, struct sctp_abort_chunk *abort, bool from_peer, bool timedout, int so_locked) { struct mbuf *m_notify; struct sctp_assoc_change *sac; struct sctp_queued_to_read *control; struct sctp_inpcb *inp; unsigned int notif_len; unsigned int i; uint16_t abort_len; KASSERT(abort == NULL || from_peer, ("sctp_notify_assoc_change: ABORT chunk provided for local termination")); KASSERT(!from_peer || !timedout, ("sctp_notify_assoc_change: timeouts can only be local")); KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); inp = stcb->sctp_ep; SCTP_INP_READ_LOCK_ASSERT(inp); if (sctp_stcb_is_feature_on(inp, stcb, SCTP_PCB_FLAGS_RECVASSOCEVNT)) { notif_len = (unsigned int)sizeof(struct sctp_assoc_change); if (abort != NULL) { abort_len = ntohs(abort->ch.chunk_length); /* * Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be * contiguous. */ if (abort_len > SCTP_CHUNK_BUFFER_SIZE) { abort_len = SCTP_CHUNK_BUFFER_SIZE; } } else { abort_len = 0; } if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) { notif_len += SCTP_ASSOC_SUPPORTS_MAX; } else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) { notif_len += abort_len; } m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* Retry with smaller value. */ notif_len = (unsigned int)sizeof(struct sctp_assoc_change); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { goto set_error; } } SCTP_BUF_NEXT(m_notify) = NULL; sac = mtod(m_notify, struct sctp_assoc_change *); memset(sac, 0, notif_len); sac->sac_type = SCTP_ASSOC_CHANGE; sac->sac_flags = 0; sac->sac_length = sizeof(struct sctp_assoc_change); sac->sac_state = state; sac->sac_error = error; if (state == SCTP_CANT_STR_ASSOC) { sac->sac_outbound_streams = 0; sac->sac_inbound_streams = 0; } else { sac->sac_outbound_streams = stcb->asoc.streamoutcnt; sac->sac_inbound_streams = stcb->asoc.streamincnt; } sac->sac_assoc_id = sctp_get_associd(stcb); if (notif_len > sizeof(struct sctp_assoc_change)) { if ((state == SCTP_COMM_UP) || (state == SCTP_RESTART)) { i = 0; if (stcb->asoc.prsctp_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_PR; } if (stcb->asoc.auth_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_AUTH; } if (stcb->asoc.asconf_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_ASCONF; } if (stcb->asoc.idata_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_INTERLEAVING; } sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_MULTIBUF; if (stcb->asoc.reconfig_supported == 1) { sac->sac_info[i++] = SCTP_ASSOC_SUPPORTS_RE_CONFIG; } sac->sac_length += i; } else if ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC)) { memcpy(sac->sac_info, abort, abort_len); sac->sac_length += abort_len; } } SCTP_BUF_LEN(m_notify) = sac->sac_length; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control != NULL) { control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(inp, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } else { sctp_m_freem(m_notify); } } /* * For 1-to-1 style sockets, we send up and error when an ABORT * comes in. */ set_error: if (((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) { SOCK_LOCK(stcb->sctp_socket); if (from_peer) { if (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNREFUSED); stcb->sctp_socket->so_error = ECONNREFUSED; } else { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET); stcb->sctp_socket->so_error = ECONNRESET; } } else { if (timedout) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ETIMEDOUT); stcb->sctp_socket->so_error = ETIMEDOUT; } else { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ECONNABORTED); stcb->sctp_socket->so_error = ECONNABORTED; } } SOCK_UNLOCK(stcb->sctp_socket); } /* Wake ANY sleepers */ if (((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) && ((state == SCTP_COMM_LOST) || (state == SCTP_CANT_STR_ASSOC))) { socantrcvmore(stcb->sctp_socket); } sorwakeup(stcb->sctp_socket); sowwakeup(stcb->sctp_socket); } static void sctp_notify_peer_addr_change(struct sctp_tcb *stcb, uint32_t state, struct sockaddr *sa, uint32_t error, int so_locked) { struct mbuf *m_notify; struct sctp_paddr_change *spc; struct sctp_queued_to_read *control; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPADDREVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_paddr_change), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) return; SCTP_BUF_LEN(m_notify) = 0; spc = mtod(m_notify, struct sctp_paddr_change *); memset(spc, 0, sizeof(struct sctp_paddr_change)); spc->spc_type = SCTP_PEER_ADDR_CHANGE; spc->spc_flags = 0; spc->spc_length = sizeof(struct sctp_paddr_change); switch (sa->sa_family) { #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(stcb->sctp_ep, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { in6_sin_2_v4mapsin6((struct sockaddr_in *)sa, (struct sockaddr_in6 *)&spc->spc_aaddr); } else { memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in)); } #else memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in)); #endif break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; memcpy(&spc->spc_aaddr, sa, sizeof(struct sockaddr_in6)); sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { if (sin6->sin6_scope_id == 0) { /* recover scope_id for user */ (void)sa6_recoverscope(sin6); } else { /* clear embedded scope_id for user */ in6_clearscope(&sin6->sin6_addr); } } break; } #endif default: /* TSNH */ break; } spc->spc_state = state; spc->spc_error = error; spc->spc_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_paddr_change); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_send_failed(struct sctp_tcb *stcb, uint8_t sent, uint32_t error, struct sctp_tmit_chunk *chk, int so_locked) { struct mbuf *m_notify; struct sctp_send_failed *ssf; struct sctp_send_failed_event *ssfe; struct sctp_queued_to_read *control; struct sctp_chunkhdr *chkhdr; int notifhdr_len, chk_len, chkhdr_len, padding_len, payload_len; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) && sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { /* event not enabled */ return; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { notifhdr_len = sizeof(struct sctp_send_failed_event); } else { notifhdr_len = sizeof(struct sctp_send_failed); } m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = notifhdr_len; if (stcb->asoc.idata_supported) { chkhdr_len = sizeof(struct sctp_idata_chunk); } else { chkhdr_len = sizeof(struct sctp_data_chunk); } /* Use some defaults in case we can't access the chunk header */ if (chk->send_size >= chkhdr_len) { payload_len = chk->send_size - chkhdr_len; } else { payload_len = 0; } padding_len = 0; if (chk->data != NULL) { chkhdr = mtod(chk->data, struct sctp_chunkhdr *); if (chkhdr != NULL) { chk_len = ntohs(chkhdr->chunk_length); if ((chk_len >= chkhdr_len) && (chk->send_size >= chk_len) && (chk->send_size - chk_len < 4)) { padding_len = chk->send_size - chk_len; payload_len = chk->send_size - chkhdr_len - padding_len; } } } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { ssfe = mtod(m_notify, struct sctp_send_failed_event *); memset(ssfe, 0, notifhdr_len); ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT; if (sent) { ssfe->ssfe_flags = SCTP_DATA_SENT; } else { ssfe->ssfe_flags = SCTP_DATA_UNSENT; } ssfe->ssfe_length = (uint32_t)(notifhdr_len + payload_len); ssfe->ssfe_error = error; /* not exactly what the user sent in, but should be close :) */ ssfe->ssfe_info.snd_sid = chk->rec.data.sid; ssfe->ssfe_info.snd_flags = chk->rec.data.rcv_flags; ssfe->ssfe_info.snd_ppid = chk->rec.data.ppid; ssfe->ssfe_info.snd_context = chk->rec.data.context; ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb); ssfe->ssfe_assoc_id = sctp_get_associd(stcb); } else { ssf = mtod(m_notify, struct sctp_send_failed *); memset(ssf, 0, notifhdr_len); ssf->ssf_type = SCTP_SEND_FAILED; if (sent) { ssf->ssf_flags = SCTP_DATA_SENT; } else { ssf->ssf_flags = SCTP_DATA_UNSENT; } ssf->ssf_length = (uint32_t)(notifhdr_len + payload_len); ssf->ssf_error = error; /* not exactly what the user sent in, but should be close :) */ ssf->ssf_info.sinfo_stream = chk->rec.data.sid; ssf->ssf_info.sinfo_ssn = (uint16_t)chk->rec.data.mid; ssf->ssf_info.sinfo_flags = chk->rec.data.rcv_flags; ssf->ssf_info.sinfo_ppid = chk->rec.data.ppid; ssf->ssf_info.sinfo_context = chk->rec.data.context; ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb); ssf->ssf_assoc_id = sctp_get_associd(stcb); } if (chk->data != NULL) { /* Trim off the sctp chunk header (it should be there) */ if (chk->send_size == chkhdr_len + payload_len + padding_len) { m_adj(chk->data, chkhdr_len); m_adj(chk->data, -padding_len); sctp_mbuf_crush(chk->data); chk->send_size -= (chkhdr_len + padding_len); } } SCTP_BUF_NEXT(m_notify) = chk->data; /* Steal off the mbuf */ chk->data = NULL; /* * For this case, we check the actual socket buffer, since the assoc * is going away we don't want to overfill the socket buffer for a * non-reader */ if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_send_failed2(struct sctp_tcb *stcb, uint32_t error, struct sctp_stream_queue_pending *sp, int so_locked) { struct mbuf *m_notify; struct sctp_send_failed *ssf; struct sctp_send_failed_event *ssfe; struct sctp_queued_to_read *control; int notifhdr_len; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSENDFAILEVNT) && sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { /* event not enabled */ return; } if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { notifhdr_len = sizeof(struct sctp_send_failed_event); } else { notifhdr_len = sizeof(struct sctp_send_failed); } m_notify = sctp_get_mbuf_for_msg(notifhdr_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* no space left */ return; } SCTP_BUF_LEN(m_notify) = notifhdr_len; if (sctp_stcb_is_feature_on(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVNSENDFAILEVNT)) { ssfe = mtod(m_notify, struct sctp_send_failed_event *); memset(ssfe, 0, notifhdr_len); ssfe->ssfe_type = SCTP_SEND_FAILED_EVENT; ssfe->ssfe_flags = SCTP_DATA_UNSENT; ssfe->ssfe_length = (uint32_t)(notifhdr_len + sp->length); ssfe->ssfe_error = error; /* not exactly what the user sent in, but should be close :) */ ssfe->ssfe_info.snd_sid = sp->sid; if (sp->some_taken) { ssfe->ssfe_info.snd_flags = SCTP_DATA_LAST_FRAG; } else { ssfe->ssfe_info.snd_flags = SCTP_DATA_NOT_FRAG; } ssfe->ssfe_info.snd_ppid = sp->ppid; ssfe->ssfe_info.snd_context = sp->context; ssfe->ssfe_info.snd_assoc_id = sctp_get_associd(stcb); ssfe->ssfe_assoc_id = sctp_get_associd(stcb); } else { ssf = mtod(m_notify, struct sctp_send_failed *); memset(ssf, 0, notifhdr_len); ssf->ssf_type = SCTP_SEND_FAILED; ssf->ssf_flags = SCTP_DATA_UNSENT; ssf->ssf_length = (uint32_t)(notifhdr_len + sp->length); ssf->ssf_error = error; /* not exactly what the user sent in, but should be close :) */ ssf->ssf_info.sinfo_stream = sp->sid; ssf->ssf_info.sinfo_ssn = 0; if (sp->some_taken) { ssf->ssf_info.sinfo_flags = SCTP_DATA_LAST_FRAG; } else { ssf->ssf_info.sinfo_flags = SCTP_DATA_NOT_FRAG; } ssf->ssf_info.sinfo_ppid = sp->ppid; ssf->ssf_info.sinfo_context = sp->context; ssf->ssf_info.sinfo_assoc_id = sctp_get_associd(stcb); ssf->ssf_assoc_id = sctp_get_associd(stcb); } SCTP_BUF_NEXT(m_notify) = sp->data; /* Steal off the mbuf */ sp->data = NULL; /* * For this case, we check the actual socket buffer, since the assoc * is going away we don't want to overfill the socket buffer for a * non-reader */ if (sctp_sbspace_failedmsgs(&stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_adaptation_layer(struct sctp_tcb *stcb, int so_locked) { struct mbuf *m_notify; struct sctp_adaptation_event *sai; struct sctp_queued_to_read *control; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ADAPTATIONEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_adaption_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; sai = mtod(m_notify, struct sctp_adaptation_event *); memset(sai, 0, sizeof(struct sctp_adaptation_event)); sai->sai_type = SCTP_ADAPTATION_INDICATION; sai->sai_flags = 0; sai->sai_length = sizeof(struct sctp_adaptation_event); sai->sai_adaptation_ind = stcb->asoc.peers_adaptation; sai->sai_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_adaptation_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_partial_delivery_indication(struct sctp_tcb *stcb, uint32_t error, struct sctp_queued_to_read *aborted_control, int so_locked) { struct mbuf *m_notify; struct sctp_pdapi_event *pdapi; struct sctp_queued_to_read *control; struct sockbuf *sb; KASSERT(aborted_control != NULL, ("aborted_control is NULL")); KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_PDAPIEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_pdapi_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; pdapi = mtod(m_notify, struct sctp_pdapi_event *); memset(pdapi, 0, sizeof(struct sctp_pdapi_event)); pdapi->pdapi_type = SCTP_PARTIAL_DELIVERY_EVENT; pdapi->pdapi_flags = 0; pdapi->pdapi_length = sizeof(struct sctp_pdapi_event); pdapi->pdapi_indication = error; pdapi->pdapi_stream = aborted_control->sinfo_stream; pdapi->pdapi_seq = (uint16_t)aborted_control->mid; pdapi->pdapi_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_pdapi_event); SCTP_BUF_NEXT(m_notify) = NULL; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sb = &stcb->sctp_socket->so_rcv; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m_notify)); } sctp_sballoc(stcb, sb, m_notify); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } control->end_added = 1; TAILQ_INSERT_AFTER(&stcb->sctp_ep->read_queue, aborted_control, control, next); if (stcb->sctp_ep && stcb->sctp_socket) { /* This should always be the case */ sctp_sorwakeup(stcb->sctp_ep, stcb->sctp_socket); } } static void sctp_notify_shutdown_event(struct sctp_tcb *stcb, int so_locked) { struct mbuf *m_notify; struct sctp_shutdown_event *sse; struct sctp_queued_to_read *control; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); /* * For TCP model AND UDP connected sockets we will send an error up * when an SHUTDOWN completes */ if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { /* mark socket closed for read/write and wakeup! */ socantsendmore(stcb->sctp_socket); } if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_shutdown_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; sse = mtod(m_notify, struct sctp_shutdown_event *); memset(sse, 0, sizeof(struct sctp_shutdown_event)); sse->sse_type = SCTP_SHUTDOWN_EVENT; sse->sse_flags = 0; sse->sse_length = sizeof(struct sctp_shutdown_event); sse->sse_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_shutdown_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_sender_dry_event(struct sctp_tcb *stcb, int so_locked) { struct mbuf *m_notify; struct sctp_sender_dry_event *event; struct sctp_queued_to_read *control; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_DRYEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_sender_dry_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* no space left */ return; } SCTP_BUF_LEN(m_notify) = 0; event = mtod(m_notify, struct sctp_sender_dry_event *); memset(event, 0, sizeof(struct sctp_sender_dry_event)); event->sender_dry_type = SCTP_SENDER_DRY_EVENT; event->sender_dry_flags = 0; event->sender_dry_length = sizeof(struct sctp_sender_dry_event); event->sender_dry_assoc_id = sctp_get_associd(stcb); SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_sender_dry_event); SCTP_BUF_NEXT(m_notify) = NULL; /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_stream_reset_add(struct sctp_tcb *stcb, int flag, int so_locked) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_stream_change_event *stradd; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_CHANGEEVNT)) { /* event not enabled */ return; } if ((stcb->asoc.peer_req_out) && flag) { /* Peer made the request, don't tell the local user */ stcb->asoc.peer_req_out = 0; return; } stcb->asoc.peer_req_out = 0; m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_stream_change_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; stradd = mtod(m_notify, struct sctp_stream_change_event *); memset(stradd, 0, sizeof(struct sctp_stream_change_event)); stradd->strchange_type = SCTP_STREAM_CHANGE_EVENT; stradd->strchange_flags = flag; stradd->strchange_length = sizeof(struct sctp_stream_change_event); stradd->strchange_assoc_id = sctp_get_associd(stcb); stradd->strchange_instrms = stcb->asoc.streamincnt; stradd->strchange_outstrms = stcb->asoc.streamoutcnt; SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_stream_change_event); SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_stream_reset_tsn(struct sctp_tcb *stcb, int flag, int so_locked) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_assoc_reset_event *strasoc; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_ASSOC_RESETEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_assoc_reset_event), 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; strasoc = mtod(m_notify, struct sctp_assoc_reset_event *); memset(strasoc, 0, sizeof(struct sctp_assoc_reset_event)); strasoc->assocreset_type = SCTP_ASSOC_RESET_EVENT; strasoc->assocreset_flags = flag; strasoc->assocreset_length = sizeof(struct sctp_assoc_reset_event); strasoc->assocreset_assoc_id = sctp_get_associd(stcb); strasoc->assocreset_local_tsn = stcb->asoc.sending_seq; strasoc->assocreset_remote_tsn = stcb->asoc.mapping_array_base_tsn + 1; SCTP_BUF_LEN(m_notify) = sizeof(struct sctp_assoc_reset_event); SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_stream_reset(struct sctp_tcb *stcb, int number_entries, uint16_t *list, int flag, int so_locked) { struct mbuf *m_notify; struct sctp_queued_to_read *control; struct sctp_stream_reset_event *strreset; int len; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_STREAM_RESETEVNT)) { /* event not enabled */ return; } m_notify = sctp_get_mbuf_for_msg(MCLBYTES, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) /* no space left */ return; SCTP_BUF_LEN(m_notify) = 0; len = sizeof(struct sctp_stream_reset_event) + (number_entries * sizeof(uint16_t)); if (len > M_TRAILINGSPACE(m_notify)) { /* never enough room */ sctp_m_freem(m_notify); return; } strreset = mtod(m_notify, struct sctp_stream_reset_event *); memset(strreset, 0, len); strreset->strreset_type = SCTP_STREAM_RESET_EVENT; strreset->strreset_flags = flag; strreset->strreset_length = len; strreset->strreset_assoc_id = sctp_get_associd(stcb); if (number_entries) { int i; for (i = 0; i < number_entries; i++) { strreset->strreset_stream_list[i] = ntohs(list[i]); } } SCTP_BUF_LEN(m_notify) = len; SCTP_BUF_NEXT(m_notify) = NULL; if (sctp_sbspace(&stcb->asoc, &stcb->sctp_socket->so_rcv) < SCTP_BUF_LEN(m_notify)) { /* no space */ sctp_m_freem(m_notify); return; } /* append to socket */ control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control == NULL) { /* no memory */ sctp_m_freem(m_notify); return; } control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } static void sctp_notify_remote_error(struct sctp_tcb *stcb, uint16_t error, struct sctp_error_chunk *chunk, int so_locked) { struct mbuf *m_notify; struct sctp_remote_error *sre; struct sctp_queued_to_read *control; unsigned int notif_len; uint16_t chunk_len; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); SCTP_INP_READ_LOCK_ASSERT(stcb->sctp_ep); if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_RECVPEERERR)) { return; } if (chunk != NULL) { chunk_len = ntohs(chunk->ch.chunk_length); /* * Only SCTP_CHUNK_BUFFER_SIZE are guaranteed to be * contiguous. */ if (chunk_len > SCTP_CHUNK_BUFFER_SIZE) { chunk_len = SCTP_CHUNK_BUFFER_SIZE; } } else { chunk_len = 0; } notif_len = (unsigned int)(sizeof(struct sctp_remote_error) + chunk_len); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { /* Retry with smaller value. */ notif_len = (unsigned int)sizeof(struct sctp_remote_error); m_notify = sctp_get_mbuf_for_msg(notif_len, 0, M_NOWAIT, 1, MT_DATA); if (m_notify == NULL) { return; } } SCTP_BUF_NEXT(m_notify) = NULL; sre = mtod(m_notify, struct sctp_remote_error *); memset(sre, 0, notif_len); sre->sre_type = SCTP_REMOTE_ERROR; sre->sre_flags = 0; sre->sre_length = sizeof(struct sctp_remote_error); sre->sre_error = error; sre->sre_assoc_id = sctp_get_associd(stcb); if (notif_len > sizeof(struct sctp_remote_error)) { memcpy(sre->sre_data, chunk, chunk_len); sre->sre_length += chunk_len; } SCTP_BUF_LEN(m_notify) = sre->sre_length; control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination, 0, 0, stcb->asoc.context, 0, 0, 0, m_notify); if (control != NULL) { control->length = SCTP_BUF_LEN(m_notify); control->spec_flags = M_NOTIFICATION; /* not that we need this */ control->tail_mbuf = m_notify; sctp_add_to_readq(stcb->sctp_ep, stcb, control, &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_HELD, so_locked); } else { sctp_m_freem(m_notify); } } void sctp_ulp_notify(uint32_t notification, struct sctp_tcb *stcb, uint32_t error, void *data, int so_locked) { struct sctp_inpcb *inp; struct sctp_nets *net; KASSERT(stcb != NULL, ("stcb == NULL")); SCTP_TCB_LOCK_ASSERT(stcb); inp = stcb->sctp_ep; if (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET) { return; } if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) { if ((notification == SCTP_NOTIFY_INTERFACE_DOWN) || (notification == SCTP_NOTIFY_INTERFACE_UP) || (notification == SCTP_NOTIFY_INTERFACE_CONFIRMED)) { /* Don't report these in front states */ return; } } if (notification != SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION) { SCTP_INP_READ_LOCK(inp); } SCTP_INP_READ_LOCK_ASSERT(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ)) { SCTP_INP_READ_UNLOCK(inp); return; } switch (notification) { case SCTP_NOTIFY_ASSOC_UP: if (stcb->asoc.assoc_up_sent == 0) { sctp_notify_assoc_change(SCTP_COMM_UP, stcb, error, NULL, false, false, so_locked); stcb->asoc.assoc_up_sent = 1; } if (stcb->asoc.adaptation_needed && (stcb->asoc.adaptation_sent == 0)) { sctp_notify_adaptation_layer(stcb, so_locked); } if (stcb->asoc.auth_supported == 0) { sctp_notify_authentication(stcb, SCTP_AUTH_NO_AUTH, 0, so_locked); } break; case SCTP_NOTIFY_ASSOC_DOWN: sctp_notify_assoc_change(SCTP_SHUTDOWN_COMP, stcb, error, NULL, false, false, so_locked); break; case SCTP_NOTIFY_INTERFACE_DOWN: net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_UNREACHABLE, &net->ro._l_addr.sa, error, so_locked); break; case SCTP_NOTIFY_INTERFACE_UP: net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_AVAILABLE, &net->ro._l_addr.sa, error, so_locked); break; case SCTP_NOTIFY_INTERFACE_CONFIRMED: net = (struct sctp_nets *)data; sctp_notify_peer_addr_change(stcb, SCTP_ADDR_CONFIRMED, &net->ro._l_addr.sa, error, so_locked); break; case SCTP_NOTIFY_SPECIAL_SP_FAIL: sctp_notify_send_failed2(stcb, error, (struct sctp_stream_queue_pending *)data, so_locked); break; case SCTP_NOTIFY_SENT_DG_FAIL: sctp_notify_send_failed(stcb, 1, error, (struct sctp_tmit_chunk *)data, so_locked); break; case SCTP_NOTIFY_UNSENT_DG_FAIL: sctp_notify_send_failed(stcb, 0, error, (struct sctp_tmit_chunk *)data, so_locked); break; case SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION: sctp_notify_partial_delivery_indication(stcb, error, (struct sctp_queued_to_read *)data, so_locked); break; case SCTP_NOTIFY_ASSOC_LOC_ABORTED: if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) { sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, false, false, so_locked); } else { sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, false, false, so_locked); } break; case SCTP_NOTIFY_ASSOC_REM_ABORTED: if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) { sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, true, false, so_locked); } else { sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, true, false, so_locked); } break; case SCTP_NOTIFY_ASSOC_TIMEDOUT: if ((SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_WAIT) || (SCTP_GET_STATE(stcb) == SCTP_STATE_COOKIE_ECHOED)) { sctp_notify_assoc_change(SCTP_CANT_STR_ASSOC, stcb, error, data, false, true, so_locked); } else { sctp_notify_assoc_change(SCTP_COMM_LOST, stcb, error, data, false, true, so_locked); } break; case SCTP_NOTIFY_ASSOC_RESTART: sctp_notify_assoc_change(SCTP_RESTART, stcb, error, NULL, false, false, so_locked); if (stcb->asoc.auth_supported == 0) { sctp_notify_authentication(stcb, SCTP_AUTH_NO_AUTH, 0, so_locked); } break; case SCTP_NOTIFY_STR_RESET_SEND: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_OUTGOING_SSN, so_locked); break; case SCTP_NOTIFY_STR_RESET_RECV: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), SCTP_STREAM_RESET_INCOMING, so_locked); break; case SCTP_NOTIFY_STR_RESET_FAILED_OUT: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_FAILED), so_locked); break; case SCTP_NOTIFY_STR_RESET_DENIED_OUT: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_OUTGOING_SSN | SCTP_STREAM_RESET_DENIED), so_locked); break; case SCTP_NOTIFY_STR_RESET_FAILED_IN: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_FAILED), so_locked); break; case SCTP_NOTIFY_STR_RESET_DENIED_IN: sctp_notify_stream_reset(stcb, error, ((uint16_t *)data), (SCTP_STREAM_RESET_INCOMING | SCTP_STREAM_RESET_DENIED), so_locked); break; case SCTP_NOTIFY_STR_RESET_ADD: sctp_notify_stream_reset_add(stcb, error, so_locked); break; case SCTP_NOTIFY_STR_RESET_TSN: sctp_notify_stream_reset_tsn(stcb, error, so_locked); break; case SCTP_NOTIFY_ASCONF_ADD_IP: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_ADDED, data, error, so_locked); break; case SCTP_NOTIFY_ASCONF_DELETE_IP: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_REMOVED, data, error, so_locked); break; case SCTP_NOTIFY_ASCONF_SET_PRIMARY: sctp_notify_peer_addr_change(stcb, SCTP_ADDR_MADE_PRIM, data, error, so_locked); break; case SCTP_NOTIFY_PEER_SHUTDOWN: sctp_notify_shutdown_event(stcb, so_locked); break; case SCTP_NOTIFY_AUTH_NEW_KEY: sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY, *(uint16_t *)data, so_locked); break; case SCTP_NOTIFY_AUTH_FREE_KEY: sctp_notify_authentication(stcb, SCTP_AUTH_FREE_KEY, *(uint16_t *)data, so_locked); break; case SCTP_NOTIFY_NO_PEER_AUTH: sctp_notify_authentication(stcb, SCTP_AUTH_NO_AUTH, 0, so_locked); break; case SCTP_NOTIFY_SENDER_DRY: sctp_notify_sender_dry_event(stcb, so_locked); break; case SCTP_NOTIFY_REMOTE_ERROR: sctp_notify_remote_error(stcb, error, data, so_locked); break; default: SCTPDBG(SCTP_DEBUG_UTIL1, "%s: unknown notification %xh (%u)\n", __func__, notification, notification); break; } if (notification != SCTP_NOTIFY_PARTIAL_DELVIERY_INDICATION) { SCTP_INP_READ_UNLOCK(inp); } } void sctp_report_all_outbound(struct sctp_tcb *stcb, uint16_t error, int so_locked) { struct sctp_association *asoc; struct sctp_stream_out *outs; struct sctp_tmit_chunk *chk, *nchk; struct sctp_stream_queue_pending *sp, *nsp; int i; if (stcb == NULL) { return; } asoc = &stcb->asoc; if (asoc->state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* already being freed */ return; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (asoc->state & SCTP_STATE_CLOSED_SOCKET)) { return; } /* now through all the gunk freeing chunks */ /* sent queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->sent_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->sent_queue, chk, sctp_next); asoc->sent_queue_cnt--; if (chk->sent != SCTP_DATAGRAM_NR_ACKED) { if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } } if (chk->data != NULL) { sctp_free_bufspace(stcb, asoc, chk, 1); sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, error, chk, so_locked); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } sctp_free_a_chunk(stcb, chk, so_locked); /* sa_ignore FREED_MEMORY */ } /* pending send queue SHOULD be empty */ TAILQ_FOREACH_SAFE(chk, &asoc->send_queue, sctp_next, nchk) { TAILQ_REMOVE(&asoc->send_queue, chk, sctp_next); asoc->send_queue_cnt--; if (asoc->strmout[chk->rec.data.sid].chunks_on_queues > 0) { asoc->strmout[chk->rec.data.sid].chunks_on_queues--; #ifdef INVARIANTS } else { panic("No chunks on the queues for sid %u.", chk->rec.data.sid); #endif } if (chk->data != NULL) { sctp_free_bufspace(stcb, asoc, chk, 1); sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, error, chk, so_locked); if (chk->data) { sctp_m_freem(chk->data); chk->data = NULL; } } sctp_free_a_chunk(stcb, chk, so_locked); /* sa_ignore FREED_MEMORY */ } for (i = 0; i < asoc->streamoutcnt; i++) { /* For each stream */ outs = &asoc->strmout[i]; /* clean up any sends there */ TAILQ_FOREACH_SAFE(sp, &outs->outqueue, next, nsp) { atomic_subtract_int(&asoc->stream_queue_cnt, 1); TAILQ_REMOVE(&outs->outqueue, sp, next); stcb->asoc.ss_functions.sctp_ss_remove_from_stream(stcb, asoc, outs, sp); sctp_free_spbufspace(stcb, asoc, sp); if (sp->data) { sctp_ulp_notify(SCTP_NOTIFY_SPECIAL_SP_FAIL, stcb, error, (void *)sp, so_locked); if (sp->data) { sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } if (sp->net) { sctp_free_remote_addr(sp->net); sp->net = NULL; } /* Free the chunk */ sctp_free_a_strmoq(stcb, sp, so_locked); /* sa_ignore FREED_MEMORY */ } } } void sctp_abort_notification(struct sctp_tcb *stcb, bool from_peer, bool timeout, uint16_t error, struct sctp_abort_chunk *abort, int so_locked) { if (stcb == NULL) { return; } SCTP_TCB_LOCK_ASSERT(stcb); if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) || ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_CONNECTED))) { sctp_pcb_add_flags(stcb->sctp_ep, SCTP_PCB_FLAGS_WAS_ABORTED); } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) || (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)) { return; } SCTP_ADD_SUBSTATE(stcb, SCTP_STATE_WAS_ABORTED); /* Tell them we lost the asoc */ sctp_report_all_outbound(stcb, error, so_locked); if (from_peer) { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_REM_ABORTED, stcb, error, abort, so_locked); } else { if (timeout) { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_TIMEDOUT, stcb, error, abort, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_ASSOC_LOC_ABORTED, stcb, error, abort, so_locked); } } } void sctp_abort_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct mbuf *m, int iphlen, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct mbuf *op_err, uint8_t mflowtype, uint32_t mflowid, uint32_t vrf_id, uint16_t port) { struct sctp_gen_error_cause *cause; uint32_t vtag; uint16_t cause_code; if (stcb != NULL) { vtag = stcb->asoc.peer_vtag; vrf_id = stcb->asoc.vrf_id; if (op_err != NULL) { /* Read the cause code from the error cause. */ cause = mtod(op_err, struct sctp_gen_error_cause *); cause_code = ntohs(cause->code); } else { cause_code = 0; } } else { vtag = 0; } sctp_send_abort(m, iphlen, src, dst, sh, vtag, op_err, mflowtype, mflowid, inp->fibnum, vrf_id, port); if (stcb != NULL) { /* We have a TCB to abort, send notification too */ sctp_abort_notification(stcb, false, false, cause_code, NULL, SCTP_SO_NOT_LOCKED); /* Ok, now lets free it */ SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_4); } } #ifdef SCTP_ASOCLOG_OF_TSNS void sctp_print_out_track_log(struct sctp_tcb *stcb) { #ifdef NOSIY_PRINTS int i; SCTP_PRINTF("Last ep reason:%x\n", stcb->sctp_ep->last_abort_code); SCTP_PRINTF("IN bound TSN log-aaa\n"); if ((stcb->asoc.tsn_in_at == 0) && (stcb->asoc.tsn_in_wrapped == 0)) { SCTP_PRINTF("None rcvd\n"); goto none_in; } if (stcb->asoc.tsn_in_wrapped) { for (i = stcb->asoc.tsn_in_at; i < SCTP_TSN_LOG_SIZE; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.in_tsnlog[i].tsn, stcb->asoc.in_tsnlog[i].strm, stcb->asoc.in_tsnlog[i].seq, stcb->asoc.in_tsnlog[i].flgs, stcb->asoc.in_tsnlog[i].sz); } } if (stcb->asoc.tsn_in_at) { for (i = 0; i < stcb->asoc.tsn_in_at; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.in_tsnlog[i].tsn, stcb->asoc.in_tsnlog[i].strm, stcb->asoc.in_tsnlog[i].seq, stcb->asoc.in_tsnlog[i].flgs, stcb->asoc.in_tsnlog[i].sz); } } none_in: SCTP_PRINTF("OUT bound TSN log-aaa\n"); if ((stcb->asoc.tsn_out_at == 0) && (stcb->asoc.tsn_out_wrapped == 0)) { SCTP_PRINTF("None sent\n"); } if (stcb->asoc.tsn_out_wrapped) { for (i = stcb->asoc.tsn_out_at; i < SCTP_TSN_LOG_SIZE; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.out_tsnlog[i].tsn, stcb->asoc.out_tsnlog[i].strm, stcb->asoc.out_tsnlog[i].seq, stcb->asoc.out_tsnlog[i].flgs, stcb->asoc.out_tsnlog[i].sz); } } if (stcb->asoc.tsn_out_at) { for (i = 0; i < stcb->asoc.tsn_out_at; i++) { SCTP_PRINTF("TSN:%x strm:%d seq:%d flags:%x sz:%d\n", stcb->asoc.out_tsnlog[i].tsn, stcb->asoc.out_tsnlog[i].strm, stcb->asoc.out_tsnlog[i].seq, stcb->asoc.out_tsnlog[i].flgs, stcb->asoc.out_tsnlog[i].sz); } } #endif } #endif void sctp_abort_an_association(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct mbuf *op_err, bool timedout, int so_locked) { struct sctp_gen_error_cause *cause; uint16_t cause_code; if (stcb == NULL) { /* Got to have a TCB */ if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_DIRECTLY_NOCMPSET); } } return; } if (op_err != NULL) { /* Read the cause code from the error cause. */ cause = mtod(op_err, struct sctp_gen_error_cause *); cause_code = ntohs(cause->code); } else { cause_code = 0; } /* notify the peer */ sctp_send_abort_tcb(stcb, op_err, so_locked); SCTP_STAT_INCR_COUNTER32(sctps_aborted); if ((SCTP_GET_STATE(stcb) == SCTP_STATE_OPEN) || (SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_RECEIVED)) { SCTP_STAT_DECR_GAUGE32(sctps_currestab); } /* notify the ulp */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) == 0) { sctp_abort_notification(stcb, false, timedout, cause_code, NULL, so_locked); } /* now free the asoc */ #ifdef SCTP_ASOCLOG_OF_TSNS sctp_print_out_track_log(stcb); #endif (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_5); } void sctp_handle_ootb(struct mbuf *m, int iphlen, int offset, struct sockaddr *src, struct sockaddr *dst, struct sctphdr *sh, struct sctp_inpcb *inp, struct mbuf *cause, uint8_t mflowtype, uint32_t mflowid, uint16_t fibnum, uint32_t vrf_id, uint16_t port) { struct sctp_chunkhdr *ch, chunk_buf; unsigned int chk_length; int contains_init_chunk; SCTP_STAT_INCR_COUNTER32(sctps_outoftheblue); /* Generate a TO address for future reference */ if (inp && (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { sctp_inpcb_free(inp, SCTP_FREE_SHOULD_USE_ABORT, SCTP_CALLED_DIRECTLY_NOCMPSET); } } contains_init_chunk = 0; ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); while (ch != NULL) { chk_length = ntohs(ch->chunk_length); if (chk_length < sizeof(*ch)) { /* break to abort land */ break; } switch (ch->chunk_type) { case SCTP_INIT: contains_init_chunk = 1; break; case SCTP_PACKET_DROPPED: /* we don't respond to pkt-dropped */ return; case SCTP_ABORT_ASSOCIATION: /* we don't respond with an ABORT to an ABORT */ return; case SCTP_SHUTDOWN_COMPLETE: /* * we ignore it since we are not waiting for it and * peer is gone */ return; case SCTP_SHUTDOWN_ACK: sctp_send_shutdown_complete2(src, dst, sh, mflowtype, mflowid, fibnum, vrf_id, port); return; default: break; } offset += SCTP_SIZE32(chk_length); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); } if ((SCTP_BASE_SYSCTL(sctp_blackhole) == 0) || ((SCTP_BASE_SYSCTL(sctp_blackhole) == 1) && (contains_init_chunk == 0))) { sctp_send_abort(m, iphlen, src, dst, sh, 0, cause, mflowtype, mflowid, fibnum, vrf_id, port); } } /* * check the inbound datagram to make sure there is not an abort inside it, * if there is return 1, else return 0. */ int sctp_is_there_an_abort_here(struct mbuf *m, int iphlen, uint32_t *vtag) { struct sctp_chunkhdr *ch; struct sctp_init_chunk *init_chk, chunk_buf; int offset; unsigned int chk_length; offset = iphlen + sizeof(struct sctphdr); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); while (ch != NULL) { chk_length = ntohs(ch->chunk_length); if (chk_length < sizeof(*ch)) { /* packet is probably corrupt */ break; } /* we seem to be ok, is it an abort? */ if (ch->chunk_type == SCTP_ABORT_ASSOCIATION) { /* yep, tell them */ return (1); } if ((ch->chunk_type == SCTP_INITIATION) || (ch->chunk_type == SCTP_INITIATION_ACK)) { /* need to update the Vtag */ init_chk = (struct sctp_init_chunk *)sctp_m_getptr(m, offset, sizeof(struct sctp_init_chunk), (uint8_t *)&chunk_buf); if (init_chk != NULL) { *vtag = ntohl(init_chk->init.initiate_tag); } } /* Nope, move to the next chunk */ offset += SCTP_SIZE32(chk_length); ch = (struct sctp_chunkhdr *)sctp_m_getptr(m, offset, sizeof(*ch), (uint8_t *)&chunk_buf); } return (0); } /* * currently (2/02), ifa_addr embeds scope_id's and don't have sin6_scope_id * set (i.e. it's 0) so, create this function to compare link local scopes */ #ifdef INET6 uint32_t sctp_is_same_scope(struct sockaddr_in6 *addr1, struct sockaddr_in6 *addr2) { struct sockaddr_in6 a, b; /* save copies */ a = *addr1; b = *addr2; if (a.sin6_scope_id == 0) if (sa6_recoverscope(&a)) { /* can't get scope, so can't match */ return (0); } if (b.sin6_scope_id == 0) if (sa6_recoverscope(&b)) { /* can't get scope, so can't match */ return (0); } if (a.sin6_scope_id != b.sin6_scope_id) return (0); return (1); } /* * returns a sockaddr_in6 with embedded scope recovered and removed */ struct sockaddr_in6 * sctp_recover_scope(struct sockaddr_in6 *addr, struct sockaddr_in6 *store) { /* check and strip embedded scope junk */ if (addr->sin6_family == AF_INET6) { if (IN6_IS_SCOPE_LINKLOCAL(&addr->sin6_addr)) { if (addr->sin6_scope_id == 0) { *store = *addr; if (!sa6_recoverscope(store)) { /* use the recovered scope */ addr = store; } } else { /* else, return the original "to" addr */ in6_clearscope(&addr->sin6_addr); } } } return (addr); } #endif /* * are the two addresses the same? currently a "scopeless" check returns: 1 * if same, 0 if not */ int sctp_cmpaddr(struct sockaddr *sa1, struct sockaddr *sa2) { /* must be valid */ if (sa1 == NULL || sa2 == NULL) return (0); /* must be the same family */ if (sa1->sa_family != sa2->sa_family) return (0); switch (sa1->sa_family) { #ifdef INET6 case AF_INET6: { /* IPv6 addresses */ struct sockaddr_in6 *sin6_1, *sin6_2; sin6_1 = (struct sockaddr_in6 *)sa1; sin6_2 = (struct sockaddr_in6 *)sa2; return (SCTP6_ARE_ADDR_EQUAL(sin6_1, sin6_2)); } #endif #ifdef INET case AF_INET: { /* IPv4 addresses */ struct sockaddr_in *sin_1, *sin_2; sin_1 = (struct sockaddr_in *)sa1; sin_2 = (struct sockaddr_in *)sa2; return (sin_1->sin_addr.s_addr == sin_2->sin_addr.s_addr); } #endif default: /* we don't do these... */ return (0); } } void sctp_print_address(struct sockaddr *sa) { #ifdef INET6 char ip6buf[INET6_ADDRSTRLEN]; #endif switch (sa->sa_family) { #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; SCTP_PRINTF("IPv6 address: %s:port:%d scope:%u\n", ip6_sprintf(ip6buf, &sin6->sin6_addr), ntohs(sin6->sin6_port), sin6->sin6_scope_id); break; } #endif #ifdef INET case AF_INET: { struct sockaddr_in *sin; unsigned char *p; sin = (struct sockaddr_in *)sa; p = (unsigned char *)&sin->sin_addr; SCTP_PRINTF("IPv4 address: %u.%u.%u.%u:%d\n", p[0], p[1], p[2], p[3], ntohs(sin->sin_port)); break; } #endif default: SCTP_PRINTF("?\n"); break; } } void sctp_pull_off_control_to_new_inp(struct sctp_inpcb *old_inp, struct sctp_inpcb *new_inp, struct sctp_tcb *stcb, int waitflags) { /* * go through our old INP and pull off any control structures that * belong to stcb and move then to the new inp. */ struct socket *old_so, *new_so; struct sctp_queued_to_read *control, *nctl; struct sctp_readhead tmp_queue; struct mbuf *m; int error = 0; old_so = old_inp->sctp_socket; new_so = new_inp->sctp_socket; TAILQ_INIT(&tmp_queue); error = SOCK_IO_RECV_LOCK(old_so, waitflags); if (error) { /* * Gak, can't get I/O lock, we have a problem. data will be * left stranded.. and we don't dare look at it since the * other thread may be reading something. Oh well, its a * screwed up app that does a peeloff OR a accept while * reading from the main socket... actually its only the * peeloff() case, since I think read will fail on a * listening socket.. */ return; } /* lock the socket buffers */ SCTP_INP_READ_LOCK(old_inp); TAILQ_FOREACH_SAFE(control, &old_inp->read_queue, next, nctl) { /* Pull off all for out target stcb */ if (control->stcb == stcb) { /* remove it we want it */ TAILQ_REMOVE(&old_inp->read_queue, control, next); TAILQ_INSERT_TAIL(&tmp_queue, control, next); m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &old_so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&old_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } } } SCTP_INP_READ_UNLOCK(old_inp); /* Remove the recv-lock on the old socket */ SOCK_IO_RECV_UNLOCK(old_so); /* Now we move them over to the new socket buffer */ SCTP_INP_READ_LOCK(new_inp); TAILQ_FOREACH_SAFE(control, &tmp_queue, next, nctl) { TAILQ_INSERT_TAIL(&new_inp->read_queue, control, next); m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m)); } sctp_sballoc(stcb, &new_so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&new_so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } } SCTP_INP_READ_UNLOCK(new_inp); } void sctp_wakeup_the_read_socket(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int so_locked SCTP_UNUSED ) { if ((inp != NULL) && (inp->sctp_socket != NULL) && (((inp->sctp_flags & (SCTP_PCB_FLAGS_TCPTYPE | SCTP_PCB_FLAGS_IN_TCPPOOL)) == 0) || !SCTP_IS_LISTENING(inp))) { sctp_sorwakeup(inp, inp->sctp_socket); } } void sctp_add_to_readq(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_queued_to_read *control, struct sockbuf *sb, int end, int inp_read_lock_held, int so_locked) { /* * Here we must place the control on the end of the socket read * queue AND increment sb_cc so that select will work properly on * read. */ struct mbuf *m, *prev = NULL; if (inp == NULL) { /* Gak, TSNH!! */ #ifdef INVARIANTS panic("Gak, inp NULL on add_to_readq"); #endif return; } if (inp_read_lock_held == SCTP_READ_LOCK_NOT_HELD) { SCTP_INP_READ_LOCK(inp); } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_CANT_READ) { if (!control->on_strm_q) { sctp_free_remote_addr(control->whoFrom); if (control->data) { sctp_m_freem(control->data); control->data = NULL; } sctp_free_a_readq(stcb, control); } if (inp_read_lock_held == SCTP_READ_LOCK_NOT_HELD) { SCTP_INP_READ_UNLOCK(inp); } return; } if ((control->spec_flags & M_NOTIFICATION) == 0) { atomic_add_int(&inp->total_recvs, 1); if (!control->do_not_ref_stcb) { atomic_add_int(&stcb->total_recvs, 1); } } m = control->data; control->held_length = 0; control->length = 0; while (m != NULL) { if (SCTP_BUF_LEN(m) == 0) { /* Skip mbufs with NO length */ if (prev == NULL) { /* First one */ control->data = sctp_m_free(m); m = control->data; } else { SCTP_BUF_NEXT(prev) = sctp_m_free(m); m = SCTP_BUF_NEXT(prev); } if (m == NULL) { control->tail_mbuf = prev; } continue; } prev = m; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBALLOC, SCTP_BUF_LEN(m)); } sctp_sballoc(stcb, sb, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(sb, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } atomic_add_int(&control->length, SCTP_BUF_LEN(m)); m = SCTP_BUF_NEXT(m); } if (prev != NULL) { control->tail_mbuf = prev; } else { /* Everything got collapsed out?? */ if (!control->on_strm_q) { sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); } if (inp_read_lock_held == 0) SCTP_INP_READ_UNLOCK(inp); return; } if (end) { control->end_added = 1; } TAILQ_INSERT_TAIL(&inp->read_queue, control, next); control->on_read_q = 1; if ((inp != NULL) && (inp->sctp_socket != NULL)) { sctp_wakeup_the_read_socket(inp, stcb, so_locked); } if (inp_read_lock_held == SCTP_READ_LOCK_NOT_HELD) { SCTP_INP_READ_UNLOCK(inp); } } /*************HOLD THIS COMMENT FOR PATCH FILE OF *************ALTERNATE ROUTING CODE */ /*************HOLD THIS COMMENT FOR END OF PATCH FILE OF *************ALTERNATE ROUTING CODE */ struct mbuf * sctp_generate_cause(uint16_t code, char *info) { struct mbuf *m; struct sctp_gen_error_cause *cause; size_t info_len; uint16_t len; if ((code == 0) || (info == NULL)) { return (NULL); } info_len = strlen(info); if (info_len > (SCTP_MAX_CAUSE_LENGTH - sizeof(struct sctp_paramhdr))) { return (NULL); } len = (uint16_t)(sizeof(struct sctp_paramhdr) + info_len); m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (m != NULL) { SCTP_BUF_LEN(m) = len; cause = mtod(m, struct sctp_gen_error_cause *); cause->code = htons(code); cause->length = htons(len); memcpy(cause->info, info, info_len); } return (m); } struct mbuf * sctp_generate_no_user_data_cause(uint32_t tsn) { struct mbuf *m; struct sctp_error_no_user_data *no_user_data_cause; uint16_t len; len = (uint16_t)sizeof(struct sctp_error_no_user_data); m = sctp_get_mbuf_for_msg(len, 0, M_NOWAIT, 1, MT_DATA); if (m != NULL) { SCTP_BUF_LEN(m) = len; no_user_data_cause = mtod(m, struct sctp_error_no_user_data *); no_user_data_cause->cause.code = htons(SCTP_CAUSE_NO_USER_DATA); no_user_data_cause->cause.length = htons(len); no_user_data_cause->tsn = htonl(tsn); } return (m); } void sctp_free_bufspace(struct sctp_tcb *stcb, struct sctp_association *asoc, struct sctp_tmit_chunk *tp1, int chk_cnt) { if (tp1->data == NULL) { return; } atomic_subtract_int(&asoc->chunks_on_out_queue, chk_cnt); #ifdef SCTP_MBCNT_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBCNT_LOGGING_ENABLE) { sctp_log_mbcnt(SCTP_LOG_MBCNT_DECREASE, asoc->total_output_queue_size, tp1->book_size, 0, tp1->mbcnt); } #endif if (asoc->total_output_queue_size >= tp1->book_size) { atomic_subtract_int(&asoc->total_output_queue_size, tp1->book_size); } else { asoc->total_output_queue_size = 0; } if ((stcb->sctp_socket != NULL) && (((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) || ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)))) { SCTP_SB_DECR(&stcb->sctp_socket->so_snd, tp1->book_size); } } int sctp_release_pr_sctp_chunk(struct sctp_tcb *stcb, struct sctp_tmit_chunk *tp1, uint8_t sent, int so_locked) { struct sctp_stream_out *strq; struct sctp_tmit_chunk *chk = NULL, *tp2; struct sctp_stream_queue_pending *sp; uint32_t mid; uint16_t sid; uint8_t foundeom = 0; int ret_sz = 0; int notdone; int do_wakeup_routine = 0; SCTP_TCB_LOCK_ASSERT(stcb); sid = tp1->rec.data.sid; mid = tp1->rec.data.mid; if (sent || ((tp1->rec.data.rcv_flags & SCTP_DATA_FIRST_FRAG) == 0)) { stcb->asoc.abandoned_sent[0]++; stcb->asoc.abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++; stcb->asoc.strmout[sid].abandoned_sent[0]++; #if defined(SCTP_DETAILED_STR_STATS) stcb->asoc.strmout[sid].abandoned_sent[PR_SCTP_POLICY(tp1->flags)]++; #endif } else { stcb->asoc.abandoned_unsent[0]++; stcb->asoc.abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++; stcb->asoc.strmout[sid].abandoned_unsent[0]++; #if defined(SCTP_DETAILED_STR_STATS) stcb->asoc.strmout[sid].abandoned_unsent[PR_SCTP_POLICY(tp1->flags)]++; #endif } do { ret_sz += tp1->book_size; if (tp1->data != NULL) { if (tp1->sent < SCTP_DATAGRAM_RESEND) { sctp_flight_size_decrease(tp1); sctp_total_flight_decrease(stcb, tp1); } sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1); stcb->asoc.peers_rwnd += tp1->send_size; stcb->asoc.peers_rwnd += SCTP_BASE_SYSCTL(sctp_peer_chunk_oh); if (sent) { sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked); } if (tp1->data) { sctp_m_freem(tp1->data); tp1->data = NULL; } do_wakeup_routine = 1; if (PR_SCTP_BUF_ENABLED(tp1->flags)) { stcb->asoc.sent_queue_cnt_removeable--; } } tp1->sent = SCTP_FORWARD_TSN_SKIP; if ((tp1->rec.data.rcv_flags & SCTP_DATA_NOT_FRAG) == SCTP_DATA_NOT_FRAG) { /* not frag'ed we ae done */ notdone = 0; foundeom = 1; } else if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { /* end of frag, we are done */ notdone = 0; foundeom = 1; } else { /* * Its a begin or middle piece, we must mark all of * it */ notdone = 1; tp1 = TAILQ_NEXT(tp1, sctp_next); } } while (tp1 && notdone); if (foundeom == 0) { /* * The multi-part message was scattered across the send and * sent queue. */ TAILQ_FOREACH_SAFE(tp1, &stcb->asoc.send_queue, sctp_next, tp2) { if ((tp1->rec.data.sid != sid) || (!SCTP_MID_EQ(stcb->asoc.idata_supported, tp1->rec.data.mid, mid))) { break; } /* * save to chk in case we have some on stream out * queue. If so and we have an un-transmitted one we * don't have to fudge the TSN. */ chk = tp1; ret_sz += tp1->book_size; sctp_free_bufspace(stcb, &stcb->asoc, tp1, 1); if (sent) { sctp_ulp_notify(SCTP_NOTIFY_SENT_DG_FAIL, stcb, 0, tp1, so_locked); } else { sctp_ulp_notify(SCTP_NOTIFY_UNSENT_DG_FAIL, stcb, 0, tp1, so_locked); } if (tp1->data) { sctp_m_freem(tp1->data); tp1->data = NULL; } /* No flight involved here book the size to 0 */ tp1->book_size = 0; if (tp1->rec.data.rcv_flags & SCTP_DATA_LAST_FRAG) { foundeom = 1; } do_wakeup_routine = 1; tp1->sent = SCTP_FORWARD_TSN_SKIP; TAILQ_REMOVE(&stcb->asoc.send_queue, tp1, sctp_next); /* * on to the sent queue so we can wait for it to be * passed by. */ TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, tp1, sctp_next); stcb->asoc.send_queue_cnt--; stcb->asoc.sent_queue_cnt++; } } if (foundeom == 0) { /* * Still no eom found. That means there is stuff left on the * stream out queue.. yuck. */ strq = &stcb->asoc.strmout[sid]; sp = TAILQ_FIRST(&strq->outqueue); if (sp != NULL) { sp->discard_rest = 1; /* * We may need to put a chunk on the queue that * holds the TSN that would have been sent with the * LAST bit. */ if (chk == NULL) { /* Yep, we have to */ sctp_alloc_a_chunk(stcb, chk); if (chk == NULL) { /* * we are hosed. All we can do is * nothing.. which will cause an * abort if the peer is paying * attention. */ goto oh_well; } memset(chk, 0, sizeof(*chk)); chk->rec.data.rcv_flags = 0; chk->sent = SCTP_FORWARD_TSN_SKIP; chk->asoc = &stcb->asoc; if (stcb->asoc.idata_supported == 0) { if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.mid = 0; } else { chk->rec.data.mid = strq->next_mid_ordered; } } else { if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.mid = strq->next_mid_unordered; } else { chk->rec.data.mid = strq->next_mid_ordered; } } chk->rec.data.sid = sp->sid; chk->rec.data.ppid = sp->ppid; chk->rec.data.context = sp->context; chk->flags = sp->act_flags; chk->whoTo = NULL; chk->rec.data.tsn = atomic_fetchadd_int(&stcb->asoc.sending_seq, 1); strq->chunks_on_queues++; TAILQ_INSERT_TAIL(&stcb->asoc.sent_queue, chk, sctp_next); stcb->asoc.sent_queue_cnt++; stcb->asoc.pr_sctp_cnt++; } chk->rec.data.rcv_flags |= SCTP_DATA_LAST_FRAG; if (sp->sinfo_flags & SCTP_UNORDERED) { chk->rec.data.rcv_flags |= SCTP_DATA_UNORDERED; } if (stcb->asoc.idata_supported == 0) { if ((sp->sinfo_flags & SCTP_UNORDERED) == 0) { strq->next_mid_ordered++; } } else { if (sp->sinfo_flags & SCTP_UNORDERED) { strq->next_mid_unordered++; } else { strq->next_mid_ordered++; } } oh_well: if (sp->data) { /* * Pull any data to free up the SB and allow * sender to "add more" while we will throw * away :-) */ sctp_free_spbufspace(stcb, &stcb->asoc, sp); ret_sz += sp->length; do_wakeup_routine = 1; sp->some_taken = 1; sctp_m_freem(sp->data); sp->data = NULL; sp->tail_mbuf = NULL; sp->length = 0; } } } if (do_wakeup_routine) { sctp_sowwakeup(stcb->sctp_ep, stcb->sctp_socket); } return (ret_sz); } /* * checks to see if the given address, sa, is one that is currently known by * the kernel note: can't distinguish the same address on multiple interfaces * and doesn't handle multiple addresses with different zone/scope id's note: * ifa_ifwithaddr() compares the entire sockaddr struct */ struct sctp_ifa * sctp_find_ifa_in_ep(struct sctp_inpcb *inp, struct sockaddr *addr, int holds_lock) { struct sctp_laddr *laddr; if (holds_lock == 0) { SCTP_INP_RLOCK(inp); } LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa == NULL) continue; if (addr->sa_family != laddr->ifa->address.sa.sa_family) continue; #ifdef INET if (addr->sa_family == AF_INET) { if (((struct sockaddr_in *)addr)->sin_addr.s_addr == laddr->ifa->address.sin.sin_addr.s_addr) { /* found him. */ break; } } #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr, &laddr->ifa->address.sin6)) { /* found him. */ break; } } #endif } if (holds_lock == 0) { SCTP_INP_RUNLOCK(inp); } if (laddr != NULL) { return (laddr->ifa); } else { return (NULL); } } uint32_t sctp_get_ifa_hash_val(struct sockaddr *addr) { switch (addr->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; return (sin->sin_addr.s_addr ^ (sin->sin_addr.s_addr >> 16)); } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; uint32_t hash_of_addr; sin6 = (struct sockaddr_in6 *)addr; hash_of_addr = (sin6->sin6_addr.s6_addr32[0] + sin6->sin6_addr.s6_addr32[1] + sin6->sin6_addr.s6_addr32[2] + sin6->sin6_addr.s6_addr32[3]); hash_of_addr = (hash_of_addr ^ (hash_of_addr >> 16)); return (hash_of_addr); } #endif default: break; } return (0); } struct sctp_ifa * sctp_find_ifa_by_addr(struct sockaddr *addr, uint32_t vrf_id, int holds_lock) { struct sctp_ifa *sctp_ifap; struct sctp_vrf *vrf; struct sctp_ifalist *hash_head; uint32_t hash_of_addr; if (holds_lock == 0) { SCTP_IPI_ADDR_RLOCK(); } else { SCTP_IPI_ADDR_LOCK_ASSERT(); } vrf = sctp_find_vrf(vrf_id); if (vrf == NULL) { if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } hash_of_addr = sctp_get_ifa_hash_val(addr); hash_head = &vrf->vrf_addr_hash[(hash_of_addr & vrf->vrf_addr_hashmark)]; if (hash_head == NULL) { SCTP_PRINTF("hash_of_addr:%x mask:%x table:%x - ", hash_of_addr, (uint32_t)vrf->vrf_addr_hashmark, (uint32_t)(hash_of_addr & vrf->vrf_addr_hashmark)); sctp_print_address(addr); SCTP_PRINTF("No such bucket for address\n"); if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (NULL); } LIST_FOREACH(sctp_ifap, hash_head, next_bucket) { if (addr->sa_family != sctp_ifap->address.sa.sa_family) continue; #ifdef INET if (addr->sa_family == AF_INET) { if (((struct sockaddr_in *)addr)->sin_addr.s_addr == sctp_ifap->address.sin.sin_addr.s_addr) { /* found him. */ break; } } #endif #ifdef INET6 if (addr->sa_family == AF_INET6) { if (SCTP6_ARE_ADDR_EQUAL((struct sockaddr_in6 *)addr, &sctp_ifap->address.sin6)) { /* found him. */ break; } } #endif } if (holds_lock == 0) SCTP_IPI_ADDR_RUNLOCK(); return (sctp_ifap); } static void sctp_user_rcvd(struct sctp_tcb *stcb, uint32_t *freed_so_far, int hold_rlock, uint32_t rwnd_req) { /* User pulled some data, do we need a rwnd update? */ struct epoch_tracker et; int r_unlocked = 0; uint32_t dif, rwnd; struct socket *so = NULL; if (stcb == NULL) return; atomic_add_int(&stcb->asoc.refcnt, 1); if ((SCTP_GET_STATE(stcb) == SCTP_STATE_SHUTDOWN_ACK_SENT) || (stcb->asoc.state & (SCTP_STATE_ABOUT_TO_BE_FREED | SCTP_STATE_SHUTDOWN_RECEIVED))) { /* Pre-check If we are freeing no update */ goto no_lock; } SCTP_INP_INCR_REF(stcb->sctp_ep); if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { goto out; } so = stcb->sctp_socket; if (so == NULL) { goto out; } atomic_add_int(&stcb->freed_by_sorcv_sincelast, *freed_so_far); /* Have you have freed enough to look */ *freed_so_far = 0; /* Yep, its worth a look and the lock overhead */ /* Figure out what the rwnd would be */ rwnd = sctp_calc_rwnd(stcb, &stcb->asoc); if (rwnd >= stcb->asoc.my_last_reported_rwnd) { dif = rwnd - stcb->asoc.my_last_reported_rwnd; } else { dif = 0; } if (dif >= rwnd_req) { if (hold_rlock) { SCTP_INP_READ_UNLOCK(stcb->sctp_ep); r_unlocked = 1; } if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* * One last check before we allow the guy possibly * to get in. There is a race, where the guy has not * reached the gate. In that case */ goto out; } SCTP_TCB_LOCK(stcb); if (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { /* No reports here */ SCTP_TCB_UNLOCK(stcb); goto out; } SCTP_STAT_INCR(sctps_wu_sacks_sent); NET_EPOCH_ENTER(et); sctp_send_sack(stcb, SCTP_SO_LOCKED); sctp_chunk_output(stcb->sctp_ep, stcb, SCTP_OUTPUT_FROM_USR_RCVD, SCTP_SO_LOCKED); /* make sure no timer is running */ NET_EPOCH_EXIT(et); sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL, SCTP_FROM_SCTPUTIL + SCTP_LOC_6); SCTP_TCB_UNLOCK(stcb); } else { /* Update how much we have pending */ stcb->freed_by_sorcv_sincelast = dif; } out: if (so && r_unlocked && hold_rlock) { SCTP_INP_READ_LOCK(stcb->sctp_ep); } SCTP_INP_DECR_REF(stcb->sctp_ep); no_lock: atomic_subtract_int(&stcb->asoc.refcnt, 1); return; } int sctp_sorecvmsg(struct socket *so, struct uio *uio, struct mbuf **mp, struct sockaddr *from, int fromlen, int *msg_flags, struct sctp_sndrcvinfo *sinfo, int filling_sinfo) { /* * MSG flags we will look at MSG_DONTWAIT - non-blocking IO. * MSG_PEEK - Look don't touch :-D (only valid with OUT mbuf copy * mp=NULL thus uio is the copy method to userland) MSG_WAITALL - ?? * On the way out we may send out any combination of: * MSG_NOTIFICATION MSG_EOR * */ struct sctp_inpcb *inp = NULL; ssize_t my_len = 0; ssize_t cp_len = 0; int error = 0; struct sctp_queued_to_read *control = NULL, *ctl = NULL, *nxt = NULL; struct mbuf *m = NULL; struct sctp_tcb *stcb = NULL; int wakeup_read_socket = 0; int freecnt_applied = 0; int out_flags = 0, in_flags = 0; int block_allowed = 1; uint32_t freed_so_far = 0; ssize_t copied_so_far = 0; int in_eeor_mode = 0; int no_rcv_needed = 0; uint32_t rwnd_req = 0; int hold_sblock = 0; int hold_rlock = 0; ssize_t slen = 0; uint32_t held_length = 0; int sockbuf_lock = 0; if (uio == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } if (msg_flags) { in_flags = *msg_flags; if (in_flags & MSG_PEEK) SCTP_STAT_INCR(sctps_read_peeks); } else { in_flags = 0; } slen = uio->uio_resid; /* Pull in and set up our int flags */ if (in_flags & MSG_OOB) { /* Out of band's NOT supported */ return (EOPNOTSUPP); } if ((in_flags & MSG_PEEK) && (mp != NULL)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } if ((in_flags & (MSG_DONTWAIT | MSG_NBIO )) || SCTP_SO_IS_NBIO(so)) { block_allowed = 0; } /* setup the endpoint */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EFAULT); return (EFAULT); } rwnd_req = (SCTP_SB_LIMIT_RCV(so) >> SCTP_RWND_HIWAT_SHIFT); /* Must be at least a MTU's worth */ if (rwnd_req < SCTP_MIN_RWND) rwnd_req = SCTP_MIN_RWND; in_eeor_mode = sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXPLICIT_EOR); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SORECV_ENTER, rwnd_req, in_eeor_mode, SCTP_SBAVAIL(&so->so_rcv), (uint32_t)uio->uio_resid); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { sctp_misc_ints(SCTP_SORECV_ENTERPL, rwnd_req, block_allowed, SCTP_SBAVAIL(&so->so_rcv), (uint32_t)uio->uio_resid); } error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(in_flags)); if (error) { goto release_unlocked; } sockbuf_lock = 1; restart: restart_nosblocks: if (hold_sblock == 0) { SOCKBUF_LOCK(&so->so_rcv); hold_sblock = 1; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE)) { goto out; } if ((so->so_rcv.sb_state & SBS_CANTRCVMORE) && SCTP_SBAVAIL(&so->so_rcv) == 0) { if (so->so_error) { error = so->so_error; if ((in_flags & MSG_PEEK) == 0) so->so_error = 0; goto out; } else { if (SCTP_SBAVAIL(&so->so_rcv) == 0) { /* indicate EOF */ error = 0; goto out; } } } if (SCTP_SBAVAIL(&so->so_rcv) <= held_length) { if (so->so_error) { error = so->so_error; if ((in_flags & MSG_PEEK) == 0) { so->so_error = 0; } goto out; } if ((SCTP_SBAVAIL(&so->so_rcv) == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL))) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0) { /* * For active open side clear flags for * re-use passive open is blocked by * connect. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_WAS_ABORTED) { /* * You were aborted, passive side * always hits here */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ECONNRESET); error = ECONNRESET; } so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | - SS_ISCONFIRMING | SS_ISCONNECTED); if (error == 0) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_WAS_CONNECTED) == 0) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOTCONN); error = ENOTCONN; } } goto out; } } if (block_allowed) { error = sbwait(so, SO_RCV); if (error) { goto out; } held_length = 0; goto restart_nosblocks; } else { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EWOULDBLOCK); error = EWOULDBLOCK; goto out; } } if (hold_sblock == 1) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } /* we possibly have data we can read */ /* sa_ignore FREED_MEMORY */ control = TAILQ_FIRST(&inp->read_queue); if (control == NULL) { /* * This could be happening since the appender did the * increment but as not yet did the tailq insert onto the * read_queue */ if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); } control = TAILQ_FIRST(&inp->read_queue); if ((control == NULL) && (SCTP_SBAVAIL(&so->so_rcv) > 0)) { #ifdef INVARIANTS panic("Huh, its non zero and nothing on control?"); #endif SCTP_SB_CLEAR(so->so_rcv); } SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; goto restart; } if ((control->length == 0) && (control->do_not_ref_stcb)) { /* * Clean up code for freeing assoc that left behind a * pdapi.. maybe a peer in EEOR that just closed after * sending and never indicated a EOR. */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } control->held_length = 0; if (control->data) { /* Hmm there is data here .. fix */ struct mbuf *m_tmp; int cnt = 0; m_tmp = control->data; while (m_tmp) { cnt += SCTP_BUF_LEN(m_tmp); if (SCTP_BUF_NEXT(m_tmp) == NULL) { control->tail_mbuf = m_tmp; control->end_added = 1; } m_tmp = SCTP_BUF_NEXT(m_tmp); } control->length = cnt; } else { /* remove it */ TAILQ_REMOVE(&inp->read_queue, control, next); /* Add back any hidden data */ sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); } if (hold_rlock) { hold_rlock = 0; SCTP_INP_READ_UNLOCK(inp); } goto restart; } if ((control->length == 0) && (control->end_added == 1)) { /* * Do we also need to check for (control->pdapi_aborted == * 1)? */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } TAILQ_REMOVE(&inp->read_queue, control, next); if (control->data) { #ifdef INVARIANTS panic("control->data not null but control->length == 0"); #else SCTP_PRINTF("Strange, data left in the control buffer. Cleaning up.\n"); sctp_m_freem(control->data); control->data = NULL; #endif } if (control->aux_data) { sctp_m_free(control->aux_data); control->aux_data = NULL; } #ifdef INVARIANTS if (control->on_strm_q) { panic("About to free ctl:%p so:%p and its in %d", control, so, control->on_strm_q); } #endif sctp_free_remote_addr(control->whoFrom); sctp_free_a_readq(stcb, control); if (hold_rlock) { hold_rlock = 0; SCTP_INP_READ_UNLOCK(inp); } goto restart; } if (control->length == 0) { if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE)) && (filling_sinfo)) { /* find a more suitable one then this */ ctl = TAILQ_NEXT(control, next); while (ctl) { if ((ctl->stcb != control->stcb) && (ctl->length) && (ctl->some_taken || (ctl->spec_flags & M_NOTIFICATION) || ((ctl->do_not_ref_stcb == 0) && (ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0))) ) { /*- * If we have a different TCB next, and there is data * present. If we have already taken some (pdapi), OR we can * ref the tcb and no delivery as started on this stream, we * take it. Note we allow a notification on a different * assoc to be delivered.. */ control = ctl; goto found_one; } else if ((sctp_is_feature_on(inp, SCTP_PCB_FLAGS_INTERLEAVE_STRMS)) && (ctl->length) && ((ctl->some_taken) || ((ctl->do_not_ref_stcb == 0) && ((ctl->spec_flags & M_NOTIFICATION) == 0) && (ctl->stcb->asoc.strmin[ctl->sinfo_stream].delivery_started == 0)))) { /*- * If we have the same tcb, and there is data present, and we * have the strm interleave feature present. Then if we have * taken some (pdapi) or we can refer to tht tcb AND we have * not started a delivery for this stream, we can take it. * Note we do NOT allow a notification on the same assoc to * be delivered. */ control = ctl; goto found_one; } ctl = TAILQ_NEXT(ctl, next); } } /* * if we reach here, not suitable replacement is available * fragment interleave is NOT on. So stuff the sb_cc * into the our held count, and its time to sleep again. */ held_length = SCTP_SBAVAIL(&so->so_rcv); control->held_length = SCTP_SBAVAIL(&so->so_rcv); goto restart; } /* Clear the held length since there is something to read */ control->held_length = 0; found_one: /* * If we reach here, control has a some data for us to read off. * Note that stcb COULD be NULL. */ if (hold_rlock == 0) { hold_rlock = 1; SCTP_INP_READ_LOCK(inp); } control->some_taken++; stcb = control->stcb; if (stcb) { if ((control->do_not_ref_stcb == 0) && (stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED)) { if (freecnt_applied == 0) stcb = NULL; } else if (control->do_not_ref_stcb == 0) { /* you can't free it on me please */ /* * The lock on the socket buffer protects us so the * free code will stop. But since we used the * socketbuf lock and the sender uses the tcb_lock * to increment, we need to use the atomic add to * the refcnt */ if (freecnt_applied) { #ifdef INVARIANTS panic("refcnt already incremented"); #else SCTP_PRINTF("refcnt already incremented?\n"); #endif } else { atomic_add_int(&stcb->asoc.refcnt, 1); freecnt_applied = 1; } /* * Setup to remember how much we have not yet told * the peer our rwnd has opened up. Note we grab the * value from the tcb from last time. Note too that * sack sending clears this when a sack is sent, * which is fine. Once we hit the rwnd_req, we then * will go to the sctp_user_rcvd() that will not * lock until it KNOWs it MUST send a WUP-SACK. */ freed_so_far = (uint32_t)stcb->freed_by_sorcv_sincelast; stcb->freed_by_sorcv_sincelast = 0; } } if (stcb && ((control->spec_flags & M_NOTIFICATION) == 0) && control->do_not_ref_stcb == 0) { stcb->asoc.strmin[control->sinfo_stream].delivery_started = 1; } /* First lets get off the sinfo and sockaddr info */ if ((sinfo != NULL) && (filling_sinfo != 0)) { sinfo->sinfo_stream = control->sinfo_stream; sinfo->sinfo_ssn = (uint16_t)control->mid; sinfo->sinfo_flags = control->sinfo_flags; sinfo->sinfo_ppid = control->sinfo_ppid; sinfo->sinfo_context = control->sinfo_context; sinfo->sinfo_timetolive = control->sinfo_timetolive; sinfo->sinfo_tsn = control->sinfo_tsn; sinfo->sinfo_cumtsn = control->sinfo_cumtsn; sinfo->sinfo_assoc_id = control->sinfo_assoc_id; nxt = TAILQ_NEXT(control, next); if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) || sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) { struct sctp_extrcvinfo *s_extra; s_extra = (struct sctp_extrcvinfo *)sinfo; if ((nxt) && (nxt->length)) { s_extra->serinfo_next_flags = SCTP_NEXT_MSG_AVAIL; if (nxt->sinfo_flags & SCTP_UNORDERED) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_UNORDERED; } if (nxt->spec_flags & M_NOTIFICATION) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_IS_NOTIFICATION; } s_extra->serinfo_next_aid = nxt->sinfo_assoc_id; s_extra->serinfo_next_length = nxt->length; s_extra->serinfo_next_ppid = nxt->sinfo_ppid; s_extra->serinfo_next_stream = nxt->sinfo_stream; if (nxt->tail_mbuf != NULL) { if (nxt->end_added) { s_extra->serinfo_next_flags |= SCTP_NEXT_MSG_ISCOMPLETE; } } } else { /* * we explicitly 0 this, since the memcpy * got some other things beyond the older * sinfo_ that is on the control's structure * :-D */ nxt = NULL; s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG; s_extra->serinfo_next_aid = 0; s_extra->serinfo_next_length = 0; s_extra->serinfo_next_ppid = 0; s_extra->serinfo_next_stream = 0; } } /* * update off the real current cum-ack, if we have an stcb. */ if ((control->do_not_ref_stcb == 0) && stcb) sinfo->sinfo_cumtsn = stcb->asoc.cumulative_tsn; /* * mask off the high bits, we keep the actual chunk bits in * there. */ sinfo->sinfo_flags &= 0x00ff; if ((control->sinfo_flags >> 8) & SCTP_DATA_UNORDERED) { sinfo->sinfo_flags |= SCTP_UNORDERED; } } #ifdef SCTP_ASOCLOG_OF_TSNS { int index, newindex; struct sctp_pcbtsn_rlog *entry; do { index = inp->readlog_index; newindex = index + 1; if (newindex >= SCTP_READ_LOG_SIZE) { newindex = 0; } } while (atomic_cmpset_int(&inp->readlog_index, index, newindex) == 0); entry = &inp->readlog[index]; entry->vtag = control->sinfo_assoc_id; entry->strm = control->sinfo_stream; entry->seq = (uint16_t)control->mid; entry->sz = control->length; entry->flgs = control->sinfo_flags; } #endif if ((fromlen > 0) && (from != NULL)) { union sctp_sockstore store; size_t len; switch (control->whoFrom->ro._l_addr.sa.sa_family) { #ifdef INET6 case AF_INET6: len = sizeof(struct sockaddr_in6); store.sin6 = control->whoFrom->ro._l_addr.sin6; store.sin6.sin6_port = control->port_from; break; #endif #ifdef INET case AF_INET: #ifdef INET6 if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)) { len = sizeof(struct sockaddr_in6); in6_sin_2_v4mapsin6(&control->whoFrom->ro._l_addr.sin, &store.sin6); store.sin6.sin6_port = control->port_from; } else { len = sizeof(struct sockaddr_in); store.sin = control->whoFrom->ro._l_addr.sin; store.sin.sin_port = control->port_from; } #else len = sizeof(struct sockaddr_in); store.sin = control->whoFrom->ro._l_addr.sin; store.sin.sin_port = control->port_from; #endif break; #endif default: len = 0; break; } memcpy(from, &store, min((size_t)fromlen, len)); #ifdef INET6 { struct sockaddr_in6 lsa6, *from6; from6 = (struct sockaddr_in6 *)from; sctp_recover_scope_mac(from6, (&lsa6)); } #endif } if (hold_rlock) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } /* now copy out what data we can */ if (mp == NULL) { /* copy out each mbuf in the chain up to length */ get_more_data: m = control->data; while (m) { /* Move out all we can */ cp_len = uio->uio_resid; my_len = SCTP_BUF_LEN(m); if (cp_len > my_len) { /* not enough in this buf */ cp_len = my_len; } if (hold_rlock) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (cp_len > 0) error = uiomove(mtod(m, char *), (int)cp_len, uio); /* re-read */ if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) { goto release; } if ((control->do_not_ref_stcb == 0) && stcb && stcb->asoc.state & SCTP_STATE_ABOUT_TO_BE_FREED) { no_rcv_needed = 1; } if (error) { /* error we are out of here */ goto release; } SCTP_INP_READ_LOCK(inp); hold_rlock = 1; if (cp_len == SCTP_BUF_LEN(m)) { if ((SCTP_BUF_NEXT(m) == NULL) && (control->end_added)) { out_flags |= MSG_EOR; if ((control->do_not_ref_stcb == 0) && (control->stcb != NULL) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } /* we ate up the mbuf */ if (in_flags & MSG_PEEK) { /* just looking */ m = SCTP_BUF_NEXT(m); copied_so_far += cp_len; } else { /* dispose of the mbuf */ if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &so->so_rcv, m); if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } copied_so_far += cp_len; freed_so_far += (uint32_t)cp_len; freed_so_far += MSIZE; atomic_subtract_int(&control->length, (int)cp_len); control->data = sctp_m_free(m); m = control->data; /* * been through it all, must hold sb * lock ok to null tail */ if (control->data == NULL) { #ifdef INVARIANTS if ((control->end_added == 0) || (TAILQ_NEXT(control, next) == NULL)) { /* * If the end is not * added, OR the * next is NOT null * we MUST have the * lock. */ if (mtx_owned(&inp->inp_rdata_mtx) == 0) { panic("Hmm we don't own the lock?"); } } #endif control->tail_mbuf = NULL; #ifdef INVARIANTS if ((control->end_added) && ((out_flags & MSG_EOR) == 0)) { panic("end_added, nothing left and no MSG_EOR"); } #endif } } } else { /* Do we need to trim the mbuf? */ if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } if ((in_flags & MSG_PEEK) == 0) { SCTP_BUF_RESV_UF(m, cp_len); SCTP_BUF_LEN(m) -= (int)cp_len; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, (int)cp_len); } SCTP_SB_DECR(&so->so_rcv, cp_len); if ((control->do_not_ref_stcb == 0) && stcb) { atomic_subtract_int(&stcb->asoc.sb_cc, (int)cp_len); } copied_so_far += cp_len; freed_so_far += (uint32_t)cp_len; freed_so_far += MSIZE; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } atomic_subtract_int(&control->length, (int)cp_len); } else { copied_so_far += cp_len; } } if ((out_flags & MSG_EOR) || (uio->uio_resid == 0)) { break; } if (((stcb) && (in_flags & MSG_PEEK) == 0) && (control->do_not_ref_stcb == 0) && (freed_so_far >= rwnd_req)) { sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } } /* end while(m) */ /* * At this point we have looked at it all and we either have * a MSG_EOR/or read all the user wants... * control->length == 0. */ if ((out_flags & MSG_EOR) && ((in_flags & MSG_PEEK) == 0)) { /* we are done with this control */ if (control->length == 0) { if (control->data) { #ifdef INVARIANTS panic("control->data not null at read eor?"); #else SCTP_PRINTF("Strange, data left in the control buffer .. invariants would panic?\n"); sctp_m_freem(control->data); control->data = NULL; #endif } done_with_control: if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); hold_rlock = 1; } TAILQ_REMOVE(&inp->read_queue, control, next); /* Add back any hidden data */ if (control->held_length) { held_length = 0; control->held_length = 0; wakeup_read_socket = 1; } if (control->aux_data) { sctp_m_free(control->aux_data); control->aux_data = NULL; } no_rcv_needed = control->do_not_ref_stcb; sctp_free_remote_addr(control->whoFrom); control->data = NULL; #ifdef INVARIANTS if (control->on_strm_q) { panic("About to free ctl:%p so:%p and its in %d", control, so, control->on_strm_q); } #endif sctp_free_a_readq(stcb, control); control = NULL; if ((freed_so_far >= rwnd_req) && (no_rcv_needed == 0)) sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } else { /* * The user did not read all of this * message, turn off the returned MSG_EOR * since we are leaving more behind on the * control to read. */ #ifdef INVARIANTS if (control->end_added && (control->data == NULL) && (control->tail_mbuf == NULL)) { panic("Gak, control->length is corrupt?"); } #endif no_rcv_needed = control->do_not_ref_stcb; out_flags &= ~MSG_EOR; } } if (out_flags & MSG_EOR) { goto release; } if ((uio->uio_resid == 0) || ((in_eeor_mode) && (copied_so_far >= max(so->so_rcv.sb_lowat, 1)))) { goto release; } /* * If I hit here the receiver wants more and this message is * NOT done (pd-api). So two questions. Can we block? if not * we are done. Did the user NOT set MSG_WAITALL? */ if (block_allowed == 0) { goto release; } /* * We need to wait for more data a few things: - We don't * release the I/O lock so we don't get someone else * reading. - We must be sure to account for the case where * what is added is NOT to our control when we wakeup. */ /* * Do we need to tell the transport a rwnd update might be * needed before we go to sleep? */ if (((stcb) && (in_flags & MSG_PEEK) == 0) && ((freed_so_far >= rwnd_req) && (control->do_not_ref_stcb == 0) && (no_rcv_needed == 0))) { sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } wait_some_more: if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { goto release; } if (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) goto release; if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock == 0) { SOCKBUF_LOCK(&so->so_rcv); hold_sblock = 1; } if ((copied_so_far) && (control->length == 0) && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_FRAG_INTERLEAVE))) { goto release; } if (SCTP_SBAVAIL(&so->so_rcv) <= control->held_length) { error = sbwait(so, SO_RCV); if (error) { goto release; } control->held_length = 0; } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } if (control->length == 0) { /* still nothing here */ if (control->end_added == 1) { /* he aborted, or is done i.e.did a shutdown */ out_flags |= MSG_EOR; if (control->pdapi_aborted) { if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; out_flags |= MSG_TRUNC; } else { if ((control->do_not_ref_stcb == 0) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } goto done_with_control; } if (SCTP_SBAVAIL(&so->so_rcv) > held_length) { control->held_length = SCTP_SBAVAIL(&so->so_rcv); held_length = 0; } goto wait_some_more; } else if (control->data == NULL) { /* * we must re-sync since data is probably being * added */ SCTP_INP_READ_LOCK(inp); if ((control->length > 0) && (control->data == NULL)) { /* * big trouble.. we have the lock and its * corrupt? */ #ifdef INVARIANTS panic("Impossible data==NULL length !=0"); #endif out_flags |= MSG_EOR; out_flags |= MSG_TRUNC; control->length = 0; SCTP_INP_READ_UNLOCK(inp); goto done_with_control; } SCTP_INP_READ_UNLOCK(inp); /* We will fall around to get more data */ } goto get_more_data; } else { /*- * Give caller back the mbuf chain, * store in uio_resid the length */ wakeup_read_socket = 0; if ((control->end_added == 0) || (TAILQ_NEXT(control, next) == NULL)) { /* Need to get rlock */ if (hold_rlock == 0) { SCTP_INP_READ_LOCK(inp); hold_rlock = 1; } } if (control->end_added) { out_flags |= MSG_EOR; if ((control->do_not_ref_stcb == 0) && (control->stcb != NULL) && ((control->spec_flags & M_NOTIFICATION) == 0)) control->stcb->asoc.strmin[control->sinfo_stream].delivery_started = 0; } if (control->spec_flags & M_NOTIFICATION) { out_flags |= MSG_NOTIFICATION; } uio->uio_resid = control->length; *mp = control->data; m = control->data; while (m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBFREE, SCTP_BUF_LEN(m)); } sctp_sbfree(control, stcb, &so->so_rcv, m); freed_so_far += (uint32_t)SCTP_BUF_LEN(m); freed_so_far += MSIZE; if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_SB_LOGGING_ENABLE) { sctp_sblog(&so->so_rcv, control->do_not_ref_stcb ? NULL : stcb, SCTP_LOG_SBRESULT, 0); } m = SCTP_BUF_NEXT(m); } control->data = control->tail_mbuf = NULL; control->length = 0; if (out_flags & MSG_EOR) { /* Done with this control */ goto done_with_control; } } release: if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); hold_rlock = 0; } if (hold_sblock == 1) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } SOCK_IO_RECV_UNLOCK(so); sockbuf_lock = 0; release_unlocked: if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); hold_sblock = 0; } if ((stcb) && (in_flags & MSG_PEEK) == 0) { if ((freed_so_far >= rwnd_req) && (control && (control->do_not_ref_stcb == 0)) && (no_rcv_needed == 0)) sctp_user_rcvd(stcb, &freed_so_far, hold_rlock, rwnd_req); } out: if (msg_flags) { *msg_flags = out_flags; } if (((out_flags & MSG_EOR) == 0) && ((in_flags & MSG_PEEK) == 0) && (sinfo) && (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_EXT_RCVINFO) || sctp_is_feature_on(inp, SCTP_PCB_FLAGS_RECVNXTINFO))) { struct sctp_extrcvinfo *s_extra; s_extra = (struct sctp_extrcvinfo *)sinfo; s_extra->serinfo_next_flags = SCTP_NO_NEXT_MSG; } if (hold_rlock == 1) { SCTP_INP_READ_UNLOCK(inp); } if (hold_sblock) { SOCKBUF_UNLOCK(&so->so_rcv); } if (sockbuf_lock) { SOCK_IO_RECV_UNLOCK(so); } if (freecnt_applied) { /* * The lock on the socket buffer protects us so the free * code will stop. But since we used the socketbuf lock and * the sender uses the tcb_lock to increment, we need to use * the atomic add to the refcnt. */ if (stcb == NULL) { #ifdef INVARIANTS panic("stcb for refcnt has gone NULL?"); goto stage_left; #else goto stage_left; #endif } /* Save the value back for next time */ stcb->freed_by_sorcv_sincelast = freed_so_far; atomic_subtract_int(&stcb->asoc.refcnt, 1); } if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_RECV_RWND_LOGGING_ENABLE) { if (stcb) { sctp_misc_ints(SCTP_SORECV_DONE, freed_so_far, (uint32_t)((uio) ? (slen - uio->uio_resid) : slen), stcb->asoc.my_rwnd, SCTP_SBAVAIL(&so->so_rcv)); } else { sctp_misc_ints(SCTP_SORECV_DONE, freed_so_far, (uint32_t)((uio) ? (slen - uio->uio_resid) : slen), 0, SCTP_SBAVAIL(&so->so_rcv)); } } stage_left: if (wakeup_read_socket) { sctp_sorwakeup(inp, so); } return (error); } #ifdef SCTP_MBUF_LOGGING struct mbuf * sctp_m_free(struct mbuf *m) { if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) { sctp_log_mb(m, SCTP_MBUF_IFREE); } return (m_free(m)); } void sctp_m_freem(struct mbuf *mb) { while (mb != NULL) mb = sctp_m_free(mb); } #endif int sctp_dynamic_set_primary(struct sockaddr *sa, uint32_t vrf_id) { /* * Given a local address. For all associations that holds the * address, request a peer-set-primary. */ struct sctp_ifa *ifa; struct sctp_laddr *wi; ifa = sctp_find_ifa_by_addr(sa, vrf_id, SCTP_ADDR_NOT_LOCKED); if (ifa == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, EADDRNOTAVAIL); return (EADDRNOTAVAIL); } /* * Now that we have the ifa we must awaken the iterator with this * message. */ wi = SCTP_ZONE_GET(SCTP_BASE_INFO(ipi_zone_laddr), struct sctp_laddr); if (wi == NULL) { SCTP_LTRACE_ERR_RET(NULL, NULL, NULL, SCTP_FROM_SCTPUTIL, ENOMEM); return (ENOMEM); } /* Now incr the count and int wi structure */ SCTP_INCR_LADDR_COUNT(); memset(wi, 0, sizeof(*wi)); (void)SCTP_GETTIME_TIMEVAL(&wi->start_time); wi->ifa = ifa; wi->action = SCTP_SET_PRIM_ADDR; atomic_add_int(&ifa->refcount, 1); /* Now add it to the work queue */ SCTP_WQ_ADDR_LOCK(); /* * Should this really be a tailq? As it is we will process the * newest first :-0 */ LIST_INSERT_HEAD(&SCTP_BASE_INFO(addr_wq), wi, sctp_nxt_addr); sctp_timer_start(SCTP_TIMER_TYPE_ADDR_WQ, (struct sctp_inpcb *)NULL, (struct sctp_tcb *)NULL, (struct sctp_nets *)NULL); SCTP_WQ_ADDR_UNLOCK(); return (0); } int sctp_soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) { int error, fromlen; uint8_t sockbuf[256]; struct sockaddr *from; struct sctp_extrcvinfo sinfo; int filling_sinfo = 1; int flags; struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; /* pickup the assoc we are reading from */ if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); return (EINVAL); } if ((sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVDATAIOEVNT) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVRCVINFO) && sctp_is_feature_off(inp, SCTP_PCB_FLAGS_RECVNXTINFO)) || (controlp == NULL)) { /* user does not want the sndrcv ctl */ filling_sinfo = 0; } if (psa) { from = (struct sockaddr *)sockbuf; fromlen = sizeof(sockbuf); from->sa_len = 0; } else { from = NULL; fromlen = 0; } if (filling_sinfo) { memset(&sinfo, 0, sizeof(struct sctp_extrcvinfo)); } if (flagsp != NULL) { flags = *flagsp; } else { flags = 0; } error = sctp_sorecvmsg(so, uio, mp0, from, fromlen, &flags, (struct sctp_sndrcvinfo *)&sinfo, filling_sinfo); if (flagsp != NULL) { *flagsp = flags; } if (controlp != NULL) { /* copy back the sinfo in a CMSG format */ if (filling_sinfo && ((flags & MSG_NOTIFICATION) == 0)) { *controlp = sctp_build_ctl_nchunk(inp, (struct sctp_sndrcvinfo *)&sinfo); } else { *controlp = NULL; } } if (psa) { /* copy back the address info */ if (from && from->sa_len) { *psa = sodupsockaddr(from, M_NOWAIT); } else { *psa = NULL; } } return (error); } int sctp_connectx_helper_add(struct sctp_tcb *stcb, struct sockaddr *addr, int totaddr, int *error) { int added = 0; int i; struct sctp_inpcb *inp; struct sockaddr *sa; size_t incr = 0; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif sa = addr; inp = stcb->sctp_ep; *error = 0; for (i = 0; i < totaddr; i++) { switch (sa->sa_family) { #ifdef INET case AF_INET: incr = sizeof(struct sockaddr_in); sin = (struct sockaddr_in *)sa; if ((sin->sin_addr.s_addr == INADDR_ANY) || (sin->sin_addr.s_addr == INADDR_BROADCAST) || IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_7); *error = EINVAL; goto out_now; } if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_8); *error = ENOBUFS; goto out_now; } added++; break; #endif #ifdef INET6 case AF_INET6: incr = sizeof(struct sockaddr_in6); sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, EINVAL); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_9); *error = EINVAL; goto out_now; } if (sctp_add_remote_addr(stcb, sa, NULL, stcb->asoc.port, SCTP_DONOT_SETSCOPE, SCTP_ADDR_IS_CONFIRMED)) { /* assoc gone no un-lock */ SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTPUTIL, ENOBUFS); (void)sctp_free_assoc(inp, stcb, SCTP_NORMAL_PROC, SCTP_FROM_SCTPUTIL + SCTP_LOC_10); *error = ENOBUFS; goto out_now; } added++; break; #endif default: break; } sa = (struct sockaddr *)((caddr_t)sa + incr); } out_now: return (added); } int sctp_connectx_helper_find(struct sctp_inpcb *inp, struct sockaddr *addr, unsigned int totaddr, unsigned int *num_v4, unsigned int *num_v6, unsigned int limit) { struct sockaddr *sa; struct sctp_tcb *stcb; unsigned int incr, at, i; at = 0; sa = addr; *num_v6 = *num_v4 = 0; /* account and validate addresses */ if (totaddr == 0) { return (EINVAL); } for (i = 0; i < totaddr; i++) { if (at + sizeof(struct sockaddr) > limit) { return (EINVAL); } switch (sa->sa_family) { #ifdef INET case AF_INET: incr = (unsigned int)sizeof(struct sockaddr_in); if (sa->sa_len != incr) { return (EINVAL); } (*num_v4) += 1; break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; incr = (unsigned int)sizeof(struct sockaddr_in6); if (sa->sa_len != incr) { return (EINVAL); } sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* Must be non-mapped for connectx */ return (EINVAL); } (*num_v6) += 1; break; } #endif default: return (EINVAL); } if ((at + incr) > limit) { return (EINVAL); } SCTP_INP_INCR_REF(inp); stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL); if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); return (EALREADY); } else { SCTP_INP_DECR_REF(inp); } at += incr; sa = (struct sockaddr *)((caddr_t)sa + incr); } return (0); } /* * sctp_bindx(ADD) for one address. * assumes all arguments are valid/checked by caller. */ void sctp_bindx_add_address(struct socket *so, struct sctp_inpcb *inp, struct sockaddr *sa, uint32_t vrf_id, int *error, void *p) { #if defined(INET) && defined(INET6) struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif #ifdef INET struct sockaddr_in *sinp; #endif struct sockaddr *addr_to_use; struct sctp_inpcb *lep; uint16_t port; /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } switch (sa->sa_family) { #ifdef INET6 case AF_INET6: if (sa->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { /* can only bind v6 on PF_INET6 sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } sin6 = (struct sockaddr_in6 *)sa; port = sin6->sin6_port; #ifdef INET if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4-mapped on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } in6_sin6_2_sin(&sin, sin6); addr_to_use = (struct sockaddr *)&sin; } else { addr_to_use = sa; } #else addr_to_use = sa; #endif break; #endif #ifdef INET case AF_INET: if (sa->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } sinp = (struct sockaddr_in *)sa; port = sinp->sin_port; addr_to_use = sa; break; #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { if (p == NULL) { /* Can't get proc for Net/Open BSD */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } *error = sctp_inpcb_bind(so, addr_to_use, NULL, p); return; } /* Validate the incoming port. */ if ((port != 0) && (port != inp->sctp_lport)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } lep = sctp_pcb_findep(addr_to_use, 1, 0, vrf_id); if (lep == NULL) { /* add the address */ *error = sctp_addr_mgmt_ep_sa(inp, addr_to_use, SCTP_ADD_IP_ADDRESS, vrf_id); } else { if (lep != inp) { *error = EADDRINUSE; } SCTP_INP_DECR_REF(lep); } } /* * sctp_bindx(DELETE) for one address. * assumes all arguments are valid/checked by caller. */ void sctp_bindx_delete_address(struct sctp_inpcb *inp, struct sockaddr *sa, uint32_t vrf_id, int *error) { struct sockaddr *addr_to_use; #if defined(INET) && defined(INET6) struct sockaddr_in6 *sin6; struct sockaddr_in sin; #endif /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } switch (sa->sa_family) { #ifdef INET6 case AF_INET6: if (sa->sa_len != sizeof(struct sockaddr_in6)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) { /* can only bind v6 on PF_INET6 sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } #ifdef INET sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind mapped-v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } in6_sin6_2_sin(&sin, sin6); addr_to_use = (struct sockaddr *)&sin; } else { addr_to_use = sa; } #else addr_to_use = sa; #endif break; #endif #ifdef INET case AF_INET: if (sa->sa_len != sizeof(struct sockaddr_in)) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && SCTP_IPV6_V6ONLY(inp)) { /* can't bind v4 on PF_INET sockets */ SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } addr_to_use = sa; break; #endif default: SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTPUTIL, EINVAL); *error = EINVAL; return; } /* No lock required mgmt_ep_sa does its own locking. */ *error = sctp_addr_mgmt_ep_sa(inp, addr_to_use, SCTP_DEL_IP_ADDRESS, vrf_id); } /* * returns the valid local address count for an assoc, taking into account * all scoping rules */ int sctp_local_addr_count(struct sctp_tcb *stcb) { int loopback_scope; #if defined(INET) int ipv4_local_scope, ipv4_addr_legal; #endif #if defined(INET6) int local_scope, site_scope, ipv6_addr_legal; #endif struct sctp_vrf *vrf; struct sctp_ifn *sctp_ifn; struct sctp_ifa *sctp_ifa; int count = 0; /* Turn on all the appropriate scopes */ loopback_scope = stcb->asoc.scope.loopback_scope; #if defined(INET) ipv4_local_scope = stcb->asoc.scope.ipv4_local_scope; ipv4_addr_legal = stcb->asoc.scope.ipv4_addr_legal; #endif #if defined(INET6) local_scope = stcb->asoc.scope.local_scope; site_scope = stcb->asoc.scope.site_scope; ipv6_addr_legal = stcb->asoc.scope.ipv6_addr_legal; #endif SCTP_IPI_ADDR_RLOCK(); vrf = sctp_find_vrf(stcb->asoc.vrf_id); if (vrf == NULL) { /* no vrf, no addresses */ SCTP_IPI_ADDR_RUNLOCK(); return (0); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { /* * bound all case: go through all ifns on the vrf */ LIST_FOREACH(sctp_ifn, &vrf->ifnlist, next_ifn) { if ((loopback_scope == 0) && SCTP_IFN_IS_IFT_LOOP(sctp_ifn)) { continue; } LIST_FOREACH(sctp_ifa, &sctp_ifn->ifalist, next_ifa) { if (sctp_is_addr_restricted(stcb, sctp_ifa)) continue; switch (sctp_ifa->address.sa.sa_family) { #ifdef INET case AF_INET: if (ipv4_addr_legal) { struct sockaddr_in *sin; sin = &sctp_ifa->address.sin; if (sin->sin_addr.s_addr == 0) { /* * skip unspecified * addrs */ continue; } if (prison_check_ip4(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin->sin_addr) != 0) { continue; } if ((ipv4_local_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { continue; } /* count this one */ count++; } else { continue; } break; #endif #ifdef INET6 case AF_INET6: if (ipv6_addr_legal) { struct sockaddr_in6 *sin6; sin6 = &sctp_ifa->address.sin6; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { continue; } if (prison_check_ip6(stcb->sctp_ep->ip_inp.inp.inp_cred, &sin6->sin6_addr) != 0) { continue; } if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { if (local_scope == 0) continue; if (sin6->sin6_scope_id == 0) { if (sa6_recoverscope(sin6) != 0) /* * * bad * link * * local * * address */ continue; } } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } /* count this one */ count++; } break; #endif default: /* TSNH */ break; } } } } else { /* * subset bound case */ struct sctp_laddr *laddr; LIST_FOREACH(laddr, &stcb->sctp_ep->sctp_addr_list, sctp_nxt_addr) { if (sctp_is_addr_restricted(stcb, laddr->ifa)) { continue; } /* count this one */ count++; } } SCTP_IPI_ADDR_RUNLOCK(); return (count); } #if defined(SCTP_LOCAL_TRACE_BUF) void sctp_log_trace(uint32_t subsys, const char *str SCTP_UNUSED, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f) { uint32_t saveindex, newindex; do { saveindex = SCTP_BASE_SYSCTL(sctp_log).index; if (saveindex >= SCTP_MAX_LOGGING_SIZE) { newindex = 1; } else { newindex = saveindex + 1; } } while (atomic_cmpset_int(&SCTP_BASE_SYSCTL(sctp_log).index, saveindex, newindex) == 0); if (saveindex >= SCTP_MAX_LOGGING_SIZE) { saveindex = 0; } SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].timestamp = SCTP_GET_CYCLECOUNT; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].subsys = subsys; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[0] = a; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[1] = b; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[2] = c; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[3] = d; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[4] = e; SCTP_BASE_SYSCTL(sctp_log).entry[saveindex].params[5] = f; } #endif static bool sctp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, const struct sockaddr *sa SCTP_UNUSED, void *ctx SCTP_UNUSED) { struct ip *iph; #ifdef INET6 struct ip6_hdr *ip6; #endif struct mbuf *sp, *last; struct udphdr *uhdr; uint16_t port; if ((m->m_flags & M_PKTHDR) == 0) { /* Can't handle one that is not a pkt hdr */ goto out; } /* Pull the src port */ iph = mtod(m, struct ip *); uhdr = (struct udphdr *)((caddr_t)iph + off); port = uhdr->uh_sport; /* * Split out the mbuf chain. Leave the IP header in m, place the * rest in the sp. */ sp = m_split(m, off, M_NOWAIT); if (sp == NULL) { /* Gak, drop packet, we can't do a split */ goto out; } if (sp->m_pkthdr.len < sizeof(struct udphdr) + sizeof(struct sctphdr)) { /* Gak, packet can't have an SCTP header in it - too small */ m_freem(sp); goto out; } /* Now pull up the UDP header and SCTP header together */ sp = m_pullup(sp, sizeof(struct udphdr) + sizeof(struct sctphdr)); if (sp == NULL) { /* Gak pullup failed */ goto out; } /* Trim out the UDP header */ m_adj(sp, sizeof(struct udphdr)); /* Now reconstruct the mbuf chain */ for (last = m; last->m_next; last = last->m_next); last->m_next = sp; m->m_pkthdr.len += sp->m_pkthdr.len; /* * The CSUM_DATA_VALID flags indicates that the HW checked the UDP * checksum and it was valid. Since CSUM_DATA_VALID == * CSUM_SCTP_VALID this would imply that the HW also verified the * SCTP checksum. Therefore, clear the bit. */ SCTPDBG(SCTP_DEBUG_CRCOFFLOAD, "sctp_recv_udp_tunneled_packet(): Packet of length %d received on %s with csum_flags 0x%b.\n", m->m_pkthdr.len, if_name(m->m_pkthdr.rcvif), (int)m->m_pkthdr.csum_flags, CSUM_BITS); m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; iph = mtod(m, struct ip *); switch (iph->ip_v) { #ifdef INET case IPVERSION: iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); sctp_input_with_port(m, off, port); break; #endif #ifdef INET6 case IPV6_VERSION >> 4: ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); sctp6_input_with_port(&m, &off, port); break; #endif default: goto out; break; } return (true); out: m_freem(m); return (true); } #ifdef INET static void sctp_recv_icmp_tunneled_packet(udp_tun_icmp_param_t param) { struct icmp *icmp = param.icmp; struct ip *outer_ip, *inner_ip; struct sctphdr *sh; struct udphdr *udp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctp_init_chunk *ch; struct sockaddr_in src, dst; uint8_t type, code; inner_ip = &icmp->icmp_ip; outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); if (ntohs(outer_ip->ip_len) < sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + sizeof(struct udphdr) + 8) { return; } udp = (struct udphdr *)((caddr_t)inner_ip + (inner_ip->ip_hl << 2)); sh = (struct sctphdr *)(udp + 1); memset(&src, 0, sizeof(struct sockaddr_in)); src.sin_family = AF_INET; src.sin_len = sizeof(struct sockaddr_in); src.sin_port = sh->src_port; src.sin_addr = inner_ip->ip_src; memset(&dst, 0, sizeof(struct sockaddr_in)); dst.sin_family = AF_INET; dst.sin_len = sizeof(struct sockaddr_in); dst.sin_port = sh->dest_port; dst.sin_addr = inner_ip->ip_dst; /* * 'dst' holds the dest of the packet that failed to be sent. 'src' * holds our local endpoint address. Thus we reverse the dst and the * src in the lookup. */ inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the UDP port numbers */ if ((udp->uh_dport != net->port) || (udp->uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) { SCTP_TCB_UNLOCK(stcb); return; } /* Check the verification tag */ if (ntohl(sh->v_tag) != 0) { /* * This must be the verification tag used for * sending out packets. We don't consider packets * reflecting the verification tag. */ if (ntohl(sh->v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ntohs(outer_ip->ip_len) >= sizeof(struct ip) + 8 + (inner_ip->ip_hl << 2) + 8 + 20) { /* * In this case we can check if we got an * INIT chunk and if the initiate tag * matches. */ ch = (struct sctp_init_chunk *)(sh + 1); if ((ch->ch.chunk_type != SCTP_INITIATION) || (ntohl(ch->init.initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } type = icmp->icmp_type; code = icmp->icmp_code; if ((type == ICMP_UNREACH) && (code == ICMP_UNREACH_PORT)) { code = ICMP_UNREACH_PROTOCOL; } sctp_notify(inp, stcb, net, type, code, ntohs(inner_ip->ip_len), (uint32_t)ntohs(icmp->icmp_nextmtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } return; } #endif #ifdef INET6 static void sctp_recv_icmp6_tunneled_packet(udp_tun_icmp_param_t param) { struct ip6ctlparam *ip6cp = param.ip6cp; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sctphdr sh; struct udphdr udp; struct sockaddr_in6 src, dst; uint8_t type, code; /* * XXX: We assume that when IPV6 is non NULL, M and OFF are valid. */ if (ip6cp->ip6c_m == NULL) { return; } /* * Check if we can safely examine the ports and the verification tag * of the SCTP common header. */ if (ip6cp->ip6c_m->m_pkthdr.len < ip6cp->ip6c_off + sizeof(struct udphdr) + offsetof(struct sctphdr, checksum)) { return; } /* Copy out the UDP header. */ memset(&udp, 0, sizeof(struct udphdr)); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), (caddr_t)&udp); /* Copy out the port numbers and the verification tag. */ memset(&sh, 0, sizeof(struct sctphdr)); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint32_t), (caddr_t)&sh); memset(&src, 0, sizeof(struct sockaddr_in6)); src.sin6_family = AF_INET6; src.sin6_len = sizeof(struct sockaddr_in6); src.sin6_port = sh.src_port; src.sin6_addr = ip6cp->ip6c_ip6->ip6_src; if (in6_setscope(&src.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } memset(&dst, 0, sizeof(struct sockaddr_in6)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(struct sockaddr_in6); dst.sin6_port = sh.dest_port; dst.sin6_addr = ip6cp->ip6c_ip6->ip6_dst; if (in6_setscope(&dst.sin6_addr, ip6cp->ip6c_m->m_pkthdr.rcvif, NULL) != 0) { return; } inp = NULL; net = NULL; stcb = sctp_findassociation_addr_sa((struct sockaddr *)&dst, (struct sockaddr *)&src, &inp, &net, 1, SCTP_DEFAULT_VRFID); if ((stcb != NULL) && (net != NULL) && (inp != NULL)) { /* Check the UDP port numbers */ if ((udp.uh_dport != net->port) || (udp.uh_sport != htons(SCTP_BASE_SYSCTL(sctp_udp_tunneling_port)))) { SCTP_TCB_UNLOCK(stcb); return; } /* Check the verification tag */ if (ntohl(sh.v_tag) != 0) { /* * This must be the verification tag used for * sending out packets. We don't consider packets * reflecting the verification tag. */ if (ntohl(sh.v_tag) != stcb->asoc.peer_vtag) { SCTP_TCB_UNLOCK(stcb); return; } } else { if (ip6cp->ip6c_m->m_pkthdr.len >= ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + offsetof(struct sctp_init, a_rwnd)) { /* * In this case we can check if we got an * INIT chunk and if the initiate tag * matches. */ uint32_t initiate_tag; uint8_t chunk_type; m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr), sizeof(uint8_t), (caddr_t)&chunk_type); m_copydata(ip6cp->ip6c_m, ip6cp->ip6c_off + sizeof(struct udphdr) + sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr), sizeof(uint32_t), (caddr_t)&initiate_tag); if ((chunk_type != SCTP_INITIATION) || (ntohl(initiate_tag) != stcb->asoc.my_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } } else { SCTP_TCB_UNLOCK(stcb); return; } } type = ip6cp->ip6c_icmp6->icmp6_type; code = ip6cp->ip6c_icmp6->icmp6_code; if ((type == ICMP6_DST_UNREACH) && (code == ICMP6_DST_UNREACH_NOPORT)) { type = ICMP6_PARAM_PROB; code = ICMP6_PARAMPROB_NEXTHEADER; } sctp6_notify(inp, stcb, net, type, code, ntohl(ip6cp->ip6c_icmp6->icmp6_mtu)); } else { if ((stcb == NULL) && (inp != NULL)) { /* reduce inp's ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } } #endif void sctp_over_udp_stop(void) { /* * This function assumes sysctl caller holds sctp_sysctl_info_lock() * for writing! */ #ifdef INET if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) { soclose(SCTP_BASE_INFO(udp4_tun_socket)); SCTP_BASE_INFO(udp4_tun_socket) = NULL; } #endif #ifdef INET6 if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) { soclose(SCTP_BASE_INFO(udp6_tun_socket)); SCTP_BASE_INFO(udp6_tun_socket) = NULL; } #endif } int sctp_over_udp_start(void) { uint16_t port; int ret; #ifdef INET struct sockaddr_in sin; #endif #ifdef INET6 struct sockaddr_in6 sin6; #endif /* * This function assumes sysctl caller holds sctp_sysctl_info_lock() * for writing! */ port = SCTP_BASE_SYSCTL(sctp_udp_tunneling_port); if (ntohs(port) == 0) { /* Must have a port set */ return (EINVAL); } #ifdef INET if (SCTP_BASE_INFO(udp4_tun_socket) != NULL) { /* Already running -- must stop first */ return (EALREADY); } #endif #ifdef INET6 if (SCTP_BASE_INFO(udp6_tun_socket) != NULL) { /* Already running -- must stop first */ return (EALREADY); } #endif #ifdef INET if ((ret = socreate(PF_INET, &SCTP_BASE_INFO(udp4_tun_socket), SOCK_DGRAM, IPPROTO_UDP, curthread->td_ucred, curthread))) { sctp_over_udp_stop(); return (ret); } /* Call the special UDP hook. */ if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp4_tun_socket), sctp_recv_udp_tunneled_packet, sctp_recv_icmp_tunneled_packet, NULL))) { sctp_over_udp_stop(); return (ret); } /* Ok, we have a socket, bind it to the port. */ memset(&sin, 0, sizeof(struct sockaddr_in)); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_port = htons(port); if ((ret = sobind(SCTP_BASE_INFO(udp4_tun_socket), (struct sockaddr *)&sin, curthread))) { sctp_over_udp_stop(); return (ret); } #endif #ifdef INET6 if ((ret = socreate(PF_INET6, &SCTP_BASE_INFO(udp6_tun_socket), SOCK_DGRAM, IPPROTO_UDP, curthread->td_ucred, curthread))) { sctp_over_udp_stop(); return (ret); } /* Call the special UDP hook. */ if ((ret = udp_set_kernel_tunneling(SCTP_BASE_INFO(udp6_tun_socket), sctp_recv_udp_tunneled_packet, sctp_recv_icmp6_tunneled_packet, NULL))) { sctp_over_udp_stop(); return (ret); } /* Ok, we have a socket, bind it to the port. */ memset(&sin6, 0, sizeof(struct sockaddr_in6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_port = htons(port); if ((ret = sobind(SCTP_BASE_INFO(udp6_tun_socket), (struct sockaddr *)&sin6, curthread))) { sctp_over_udp_stop(); return (ret); } #endif return (0); } /* * sctp_min_mtu ()returns the minimum of all non-zero arguments. * If all arguments are zero, zero is returned. */ uint32_t sctp_min_mtu(uint32_t mtu1, uint32_t mtu2, uint32_t mtu3) { if (mtu1 > 0) { if (mtu2 > 0) { if (mtu3 > 0) { return (min(mtu1, min(mtu2, mtu3))); } else { return (min(mtu1, mtu2)); } } else { if (mtu3 > 0) { return (min(mtu1, mtu3)); } else { return (mtu1); } } } else { if (mtu2 > 0) { if (mtu3 > 0) { return (min(mtu2, mtu3)); } else { return (mtu2); } } else { return (mtu3); } } } void sctp_hc_set_mtu(union sctp_sockstore *addr, uint16_t fibnum, uint32_t mtu) { struct in_conninfo inc; memset(&inc, 0, sizeof(struct in_conninfo)); inc.inc_fibnum = fibnum; switch (addr->sa.sa_family) { #ifdef INET case AF_INET: inc.inc_faddr = addr->sin.sin_addr; break; #endif #ifdef INET6 case AF_INET6: inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = addr->sin6.sin6_addr; break; #endif default: return; } tcp_hc_updatemtu(&inc, (u_long)mtu); } uint32_t sctp_hc_get_mtu(union sctp_sockstore *addr, uint16_t fibnum) { struct in_conninfo inc; memset(&inc, 0, sizeof(struct in_conninfo)); inc.inc_fibnum = fibnum; switch (addr->sa.sa_family) { #ifdef INET case AF_INET: inc.inc_faddr = addr->sin.sin_addr; break; #endif #ifdef INET6 case AF_INET6: inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = addr->sin6.sin6_addr; break; #endif default: return (0); } return ((uint32_t)tcp_hc_getmtu(&inc)); } void sctp_set_state(struct sctp_tcb *stcb, int new_state) { #if defined(KDTRACE_HOOKS) int old_state = stcb->asoc.state; #endif KASSERT((new_state & ~SCTP_STATE_MASK) == 0, ("sctp_set_state: Can't set substate (new_state = %x)", new_state)); stcb->asoc.state = (stcb->asoc.state & ~SCTP_STATE_MASK) | new_state; if ((new_state == SCTP_STATE_SHUTDOWN_RECEIVED) || (new_state == SCTP_STATE_SHUTDOWN_SENT) || (new_state == SCTP_STATE_SHUTDOWN_ACK_SENT)) { SCTP_CLEAR_SUBSTATE(stcb, SCTP_STATE_SHUTDOWN_PENDING); } #if defined(KDTRACE_HOOKS) if (((old_state & SCTP_STATE_MASK) != new_state) && !(((old_state & SCTP_STATE_MASK) == SCTP_STATE_EMPTY) && (new_state == SCTP_STATE_INUSE))) { SCTP_PROBE6(state__change, NULL, stcb, NULL, stcb, NULL, old_state); } #endif } void sctp_add_substate(struct sctp_tcb *stcb, int substate) { #if defined(KDTRACE_HOOKS) int old_state = stcb->asoc.state; #endif KASSERT((substate & SCTP_STATE_MASK) == 0, ("sctp_add_substate: Can't set state (substate = %x)", substate)); stcb->asoc.state |= substate; #if defined(KDTRACE_HOOKS) if (((substate & SCTP_STATE_ABOUT_TO_BE_FREED) && ((old_state & SCTP_STATE_ABOUT_TO_BE_FREED) == 0)) || ((substate & SCTP_STATE_SHUTDOWN_PENDING) && ((old_state & SCTP_STATE_SHUTDOWN_PENDING) == 0))) { SCTP_PROBE6(state__change, NULL, stcb, NULL, stcb, NULL, old_state); } #endif } diff --git a/sys/rpc/clnt_vc.c b/sys/rpc/clnt_vc.c index 69635413637b..8b69117ba2ac 100644 --- a/sys/rpc/clnt_vc.c +++ b/sys/rpc/clnt_vc.c @@ -1,1310 +1,1310 @@ /* $NetBSD: clnt_vc.c,v 1.4 2000/07/14 08:40:42 fvdl Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009, Sun Microsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of Sun Microsystems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include /* * clnt_tcp.c, Implements a TCP/IP based, client side RPC. * * Copyright (C) 1984, Sun Microsystems, Inc. * * TCP based RPC supports 'batched calls'. * A sequence of calls may be batched-up in a send buffer. The rpc call * return immediately to the client even though the call was not necessarily * sent. The batching occurs if the results' xdr routine is NULL (0) AND * the rpc timeout value is zero (see clnt.h, rpc). * * Clients should NOT casually batch calls that in fact return results; that is, * the server side should be aware that a call is batched and not produce any * return message. Batched calls that produce many result messages can * deadlock (netlock) the client and the server.... * * Now go hang yourself. */ #include "opt_kern_tls.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cmessage { struct cmsghdr cmsg; struct cmsgcred cmcred; }; static enum clnt_stat clnt_vc_call(CLIENT *, struct rpc_callextra *, rpcproc_t, struct mbuf *, struct mbuf **, struct timeval); static void clnt_vc_geterr(CLIENT *, struct rpc_err *); static bool_t clnt_vc_freeres(CLIENT *, xdrproc_t, void *); static void clnt_vc_abort(CLIENT *); static bool_t clnt_vc_control(CLIENT *, u_int, void *); static void clnt_vc_close(CLIENT *); static void clnt_vc_destroy(CLIENT *); static bool_t time_not_ok(struct timeval *); static int clnt_vc_soupcall(struct socket *so, void *arg, int waitflag); static void clnt_vc_dotlsupcall(void *data); static const struct clnt_ops clnt_vc_ops = { .cl_call = clnt_vc_call, .cl_abort = clnt_vc_abort, .cl_geterr = clnt_vc_geterr, .cl_freeres = clnt_vc_freeres, .cl_close = clnt_vc_close, .cl_destroy = clnt_vc_destroy, .cl_control = clnt_vc_control }; static void clnt_vc_upcallsdone(struct ct_data *); /* * Create a client handle for a connection. * Default options are set, which the user can change using clnt_control()'s. * The rpc/vc package does buffering similar to stdio, so the client * must pick send and receive buffer sizes, 0 => use the default. * NB: fd is copied into a private area. * NB: The rpch->cl_auth is set null authentication. Caller may wish to * set this something more useful. * * fd should be an open socket */ CLIENT * clnt_vc_create( struct socket *so, /* open file descriptor */ struct sockaddr *raddr, /* servers address */ const rpcprog_t prog, /* program number */ const rpcvers_t vers, /* version number */ size_t sendsz, /* buffer recv size */ size_t recvsz, /* buffer send size */ int intrflag) /* interruptible */ { CLIENT *cl; /* client handle */ struct ct_data *ct = NULL; /* client handle */ struct timeval now; struct rpc_msg call_msg; static uint32_t disrupt; struct __rpc_sockinfo si; XDR xdrs; int error, interrupted, one = 1, sleep_flag; struct sockopt sopt; if (disrupt == 0) disrupt = (uint32_t)(long)raddr; cl = (CLIENT *)mem_alloc(sizeof (*cl)); ct = (struct ct_data *)mem_alloc(sizeof (*ct)); mtx_init(&ct->ct_lock, "ct->ct_lock", NULL, MTX_DEF); ct->ct_threads = 0; ct->ct_closing = FALSE; ct->ct_closed = FALSE; ct->ct_upcallrefs = 0; ct->ct_rcvstate = RPCRCVSTATE_NORMAL; - if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { + if ((so->so_state & SS_ISCONNECTED) == 0) { error = soconnect(so, raddr, curthread); SOCK_LOCK(so); interrupted = 0; sleep_flag = PSOCK; if (intrflag != 0) sleep_flag |= PCATCH; while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), sleep_flag, "connec", 0); if (error) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); if (error) { if (!interrupted) so->so_state &= ~SS_ISCONNECTING; rpc_createerr.cf_stat = RPC_SYSTEMERROR; rpc_createerr.cf_error.re_errno = error; goto err; } } if (!__rpc_socket2sockinfo(so, &si)) { goto err; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) { bzero(&sopt, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = SOL_SOCKET; sopt.sopt_name = SO_KEEPALIVE; sopt.sopt_val = &one; sopt.sopt_valsize = sizeof(one); sosetopt(so, &sopt); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { bzero(&sopt, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = IPPROTO_TCP; sopt.sopt_name = TCP_NODELAY; sopt.sopt_val = &one; sopt.sopt_valsize = sizeof(one); sosetopt(so, &sopt); } ct->ct_closeit = FALSE; /* * Set up private data struct */ ct->ct_socket = so; ct->ct_wait.tv_sec = -1; ct->ct_wait.tv_usec = -1; memcpy(&ct->ct_addr, raddr, raddr->sa_len); /* * Initialize call message */ getmicrotime(&now); ct->ct_xid = ((uint32_t)++disrupt) ^ __RPC_GETXID(&now); call_msg.rm_xid = ct->ct_xid; call_msg.rm_direction = CALL; call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; call_msg.rm_call.cb_prog = (uint32_t)prog; call_msg.rm_call.cb_vers = (uint32_t)vers; /* * pre-serialize the static part of the call msg and stash it away */ xdrmem_create(&xdrs, ct->ct_mcallc, MCALL_MSG_SIZE, XDR_ENCODE); if (! xdr_callhdr(&xdrs, &call_msg)) { if (ct->ct_closeit) { soclose(ct->ct_socket); } goto err; } ct->ct_mpos = XDR_GETPOS(&xdrs); XDR_DESTROY(&xdrs); ct->ct_waitchan = "rpcrecv"; ct->ct_waitflag = 0; /* * Create a client handle which uses xdrrec for serialization * and authnone for authentication. */ sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz); recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz); error = soreserve(ct->ct_socket, sendsz, recvsz); if (error != 0) { if (ct->ct_closeit) { soclose(ct->ct_socket); } goto err; } cl->cl_refs = 1; cl->cl_ops = &clnt_vc_ops; cl->cl_private = ct; cl->cl_auth = authnone_create(); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); soupcall_set(ct->ct_socket, SO_RCV, clnt_vc_soupcall, ct); SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); ct->ct_raw = NULL; ct->ct_record = NULL; ct->ct_record_resid = 0; ct->ct_sslrefno = 0; TAILQ_INIT(&ct->ct_pending); return (cl); err: mtx_destroy(&ct->ct_lock); mem_free(ct, sizeof (struct ct_data)); mem_free(cl, sizeof (CLIENT)); return ((CLIENT *)NULL); } static enum clnt_stat clnt_vc_call( CLIENT *cl, /* client handle */ struct rpc_callextra *ext, /* call metadata */ rpcproc_t proc, /* procedure number */ struct mbuf *args, /* pointer to args */ struct mbuf **resultsp, /* pointer to results */ struct timeval utimeout) { struct ct_data *ct = (struct ct_data *) cl->cl_private; AUTH *auth; struct rpc_err *errp; enum clnt_stat stat; XDR xdrs; struct rpc_msg reply_msg; bool_t ok; int nrefreshes = 2; /* number of times to refresh cred */ struct timeval timeout; uint32_t xid; struct mbuf *mreq = NULL, *results; struct ct_request *cr; int error, maxextsiz, trycnt; #ifdef KERN_TLS u_int maxlen; #endif cr = malloc(sizeof(struct ct_request), M_RPC, M_WAITOK); mtx_lock(&ct->ct_lock); if (ct->ct_closing || ct->ct_closed) { mtx_unlock(&ct->ct_lock); free(cr, M_RPC); return (RPC_CANTSEND); } ct->ct_threads++; if (ext) { auth = ext->rc_auth; errp = &ext->rc_err; } else { auth = cl->cl_auth; errp = &ct->ct_error; } cr->cr_mrep = NULL; cr->cr_error = 0; if (ct->ct_wait.tv_usec == -1) { timeout = utimeout; /* use supplied timeout */ } else { timeout = ct->ct_wait; /* use default timeout */ } /* * After 15sec of looping, allow it to return RPC_CANTSEND, which will * cause the clnt_reconnect layer to create a new TCP connection. */ trycnt = 15 * hz; call_again: mtx_assert(&ct->ct_lock, MA_OWNED); if (ct->ct_closing || ct->ct_closed) { ct->ct_threads--; wakeup(ct); mtx_unlock(&ct->ct_lock); free(cr, M_RPC); return (RPC_CANTSEND); } ct->ct_xid++; xid = ct->ct_xid; mtx_unlock(&ct->ct_lock); /* * Leave space to pre-pend the record mark. */ mreq = m_gethdr(M_WAITOK, MT_DATA); mreq->m_data += sizeof(uint32_t); KASSERT(ct->ct_mpos + sizeof(uint32_t) <= MHLEN, ("RPC header too big")); bcopy(ct->ct_mcallc, mreq->m_data, ct->ct_mpos); mreq->m_len = ct->ct_mpos; /* * The XID is the first thing in the request. */ *mtod(mreq, uint32_t *) = htonl(xid); xdrmbuf_create(&xdrs, mreq, XDR_ENCODE); errp->re_status = stat = RPC_SUCCESS; if ((! XDR_PUTINT32(&xdrs, &proc)) || (! AUTH_MARSHALL(auth, xid, &xdrs, m_copym(args, 0, M_COPYALL, M_WAITOK)))) { errp->re_status = stat = RPC_CANTENCODEARGS; mtx_lock(&ct->ct_lock); goto out; } mreq->m_pkthdr.len = m_length(mreq, NULL); /* * Prepend a record marker containing the packet length. */ M_PREPEND(mreq, sizeof(uint32_t), M_WAITOK); *mtod(mreq, uint32_t *) = htonl(0x80000000 | (mreq->m_pkthdr.len - sizeof(uint32_t))); cr->cr_xid = xid; mtx_lock(&ct->ct_lock); /* * Check to see if the other end has already started to close down * the connection. The upcall will have set ct_error.re_status * to RPC_CANTRECV if this is the case. * If the other end starts to close down the connection after this * point, it will be detected later when cr_error is checked, * since the request is in the ct_pending queue. */ if (ct->ct_error.re_status == RPC_CANTRECV) { if (errp != &ct->ct_error) { errp->re_errno = ct->ct_error.re_errno; errp->re_status = RPC_CANTRECV; } stat = RPC_CANTRECV; goto out; } /* For TLS, wait for an upcall to be done, as required. */ while ((ct->ct_rcvstate & (RPCRCVSTATE_NORMAL | RPCRCVSTATE_NONAPPDATA)) == 0) msleep(&ct->ct_rcvstate, &ct->ct_lock, 0, "rpcrcvst", hz); TAILQ_INSERT_TAIL(&ct->ct_pending, cr, cr_link); mtx_unlock(&ct->ct_lock); if (ct->ct_sslrefno != 0) { /* * Copy the mbuf chain to a chain of ext_pgs mbuf(s) * as required by KERN_TLS. */ maxextsiz = TLS_MAX_MSG_SIZE_V10_2; #ifdef KERN_TLS if (rpctls_getinfo(&maxlen, false, false)) maxextsiz = min(maxextsiz, maxlen); #endif mreq = _rpc_copym_into_ext_pgs(mreq, maxextsiz); } /* * sosend consumes mreq. */ error = sosend(ct->ct_socket, NULL, NULL, mreq, NULL, 0, curthread); mreq = NULL; if (error == EMSGSIZE || (error == ERESTART && (ct->ct_waitflag & PCATCH) == 0 && trycnt-- > 0)) { SOCKBUF_LOCK(&ct->ct_socket->so_snd); sbwait(ct->ct_socket, SO_SND); SOCKBUF_UNLOCK(&ct->ct_socket->so_snd); AUTH_VALIDATE(auth, xid, NULL, NULL); mtx_lock(&ct->ct_lock); TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); /* Sleep for 1 clock tick before trying the sosend() again. */ mtx_unlock(&ct->ct_lock); pause("rpclpsnd", 1); mtx_lock(&ct->ct_lock); goto call_again; } reply_msg.acpted_rply.ar_verf.oa_flavor = AUTH_NULL; reply_msg.acpted_rply.ar_verf.oa_base = cr->cr_verf; reply_msg.acpted_rply.ar_verf.oa_length = 0; reply_msg.acpted_rply.ar_results.where = NULL; reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; mtx_lock(&ct->ct_lock); if (error) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_errno = error; errp->re_status = stat = RPC_CANTSEND; goto out; } /* * Check to see if we got an upcall while waiting for the * lock. In both these cases, the request has been removed * from ct->ct_pending. */ if (cr->cr_error) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_errno = cr->cr_error; errp->re_status = stat = RPC_CANTRECV; goto out; } if (cr->cr_mrep) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); goto got_reply; } /* * Hack to provide rpc-based message passing */ if (timeout.tv_sec == 0 && timeout.tv_usec == 0) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_status = stat = RPC_TIMEDOUT; goto out; } error = msleep(cr, &ct->ct_lock, ct->ct_waitflag, ct->ct_waitchan, tvtohz(&timeout)); TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); if (error) { /* * The sleep returned an error so our request is still * on the list. Turn the error code into an * appropriate client status. */ errp->re_errno = error; switch (error) { case EINTR: stat = RPC_INTR; break; case EWOULDBLOCK: stat = RPC_TIMEDOUT; break; default: stat = RPC_CANTRECV; } errp->re_status = stat; goto out; } else { /* * We were woken up by the upcall. If the * upcall had a receive error, report that, * otherwise we have a reply. */ if (cr->cr_error) { errp->re_errno = cr->cr_error; errp->re_status = stat = RPC_CANTRECV; goto out; } } got_reply: /* * Now decode and validate the response. We need to drop the * lock since xdr_replymsg may end up sleeping in malloc. */ mtx_unlock(&ct->ct_lock); if (ext && ext->rc_feedback) ext->rc_feedback(FEEDBACK_OK, proc, ext->rc_feedback_arg); xdrmbuf_create(&xdrs, cr->cr_mrep, XDR_DECODE); ok = xdr_replymsg(&xdrs, &reply_msg); cr->cr_mrep = NULL; if (ok) { if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) && (reply_msg.acpted_rply.ar_stat == SUCCESS)) errp->re_status = stat = RPC_SUCCESS; else stat = _seterr_reply(&reply_msg, errp); if (stat == RPC_SUCCESS) { results = xdrmbuf_getall(&xdrs); if (!AUTH_VALIDATE(auth, xid, &reply_msg.acpted_rply.ar_verf, &results)) { errp->re_status = stat = RPC_AUTHERROR; errp->re_why = AUTH_INVALIDRESP; } else { KASSERT(results, ("auth validated but no result")); *resultsp = results; } } /* end successful completion */ /* * If unsuccessful AND error is an authentication error * then refresh credentials and try again, else break */ else if (stat == RPC_AUTHERROR) /* maybe our credentials need to be refreshed ... */ if (nrefreshes > 0 && AUTH_REFRESH(auth, &reply_msg)) { nrefreshes--; XDR_DESTROY(&xdrs); mtx_lock(&ct->ct_lock); goto call_again; } /* end of unsuccessful completion */ } /* end of valid reply message */ else { errp->re_status = stat = RPC_CANTDECODERES; } XDR_DESTROY(&xdrs); mtx_lock(&ct->ct_lock); out: mtx_assert(&ct->ct_lock, MA_OWNED); KASSERT(stat != RPC_SUCCESS || *resultsp, ("RPC_SUCCESS without reply")); if (mreq) m_freem(mreq); if (cr->cr_mrep) m_freem(cr->cr_mrep); ct->ct_threads--; if (ct->ct_closing) wakeup(ct); mtx_unlock(&ct->ct_lock); if (auth && stat != RPC_SUCCESS) AUTH_VALIDATE(auth, xid, NULL, NULL); free(cr, M_RPC); return (stat); } static void clnt_vc_geterr(CLIENT *cl, struct rpc_err *errp) { struct ct_data *ct = (struct ct_data *) cl->cl_private; *errp = ct->ct_error; } static bool_t clnt_vc_freeres(CLIENT *cl, xdrproc_t xdr_res, void *res_ptr) { XDR xdrs; bool_t dummy; xdrs.x_op = XDR_FREE; dummy = (*xdr_res)(&xdrs, res_ptr); return (dummy); } /*ARGSUSED*/ static void clnt_vc_abort(CLIENT *cl) { } static bool_t clnt_vc_control(CLIENT *cl, u_int request, void *info) { struct ct_data *ct = (struct ct_data *)cl->cl_private; void *infop = info; SVCXPRT *xprt; uint64_t *p; int error; static u_int thrdnum = 0; mtx_lock(&ct->ct_lock); switch (request) { case CLSET_FD_CLOSE: ct->ct_closeit = TRUE; mtx_unlock(&ct->ct_lock); return (TRUE); case CLSET_FD_NCLOSE: ct->ct_closeit = FALSE; mtx_unlock(&ct->ct_lock); return (TRUE); default: break; } /* for other requests which use info */ if (info == NULL) { mtx_unlock(&ct->ct_lock); return (FALSE); } switch (request) { case CLSET_TIMEOUT: if (time_not_ok((struct timeval *)info)) { mtx_unlock(&ct->ct_lock); return (FALSE); } ct->ct_wait = *(struct timeval *)infop; break; case CLGET_TIMEOUT: *(struct timeval *)infop = ct->ct_wait; break; case CLGET_SERVER_ADDR: (void) memcpy(info, &ct->ct_addr, (size_t)ct->ct_addr.ss_len); break; case CLGET_SVC_ADDR: /* * Slightly different semantics to userland - we use * sockaddr instead of netbuf. */ memcpy(info, &ct->ct_addr, ct->ct_addr.ss_len); break; case CLSET_SVC_ADDR: /* set to new address */ mtx_unlock(&ct->ct_lock); return (FALSE); case CLGET_XID: *(uint32_t *)info = ct->ct_xid; break; case CLSET_XID: /* This will set the xid of the NEXT call */ /* decrement by 1 as clnt_vc_call() increments once */ ct->ct_xid = *(uint32_t *)info - 1; break; case CLGET_VERS: /* * This RELIES on the information that, in the call body, * the version number field is the fifth field from the * beginning of the RPC header. MUST be changed if the * call_struct is changed */ *(uint32_t *)info = ntohl(*(uint32_t *)(void *)(ct->ct_mcallc + 4 * BYTES_PER_XDR_UNIT)); break; case CLSET_VERS: *(uint32_t *)(void *)(ct->ct_mcallc + 4 * BYTES_PER_XDR_UNIT) = htonl(*(uint32_t *)info); break; case CLGET_PROG: /* * This RELIES on the information that, in the call body, * the program number field is the fourth field from the * beginning of the RPC header. MUST be changed if the * call_struct is changed */ *(uint32_t *)info = ntohl(*(uint32_t *)(void *)(ct->ct_mcallc + 3 * BYTES_PER_XDR_UNIT)); break; case CLSET_PROG: *(uint32_t *)(void *)(ct->ct_mcallc + 3 * BYTES_PER_XDR_UNIT) = htonl(*(uint32_t *)info); break; case CLSET_WAITCHAN: ct->ct_waitchan = (const char *)info; break; case CLGET_WAITCHAN: *(const char **) info = ct->ct_waitchan; break; case CLSET_INTERRUPTIBLE: if (*(int *) info) ct->ct_waitflag = PCATCH; else ct->ct_waitflag = 0; break; case CLGET_INTERRUPTIBLE: if (ct->ct_waitflag) *(int *) info = TRUE; else *(int *) info = FALSE; break; case CLSET_BACKCHANNEL: xprt = (SVCXPRT *)info; if (ct->ct_backchannelxprt == NULL) { xprt->xp_p2 = ct; if (ct->ct_sslrefno != 0) xprt->xp_tls = RPCTLS_FLAGS_HANDSHAKE; ct->ct_backchannelxprt = xprt; } break; case CLSET_TLS: p = (uint64_t *)info; ct->ct_sslsec = *p++; ct->ct_sslusec = *p++; ct->ct_sslrefno = *p; if (ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { mtx_unlock(&ct->ct_lock); /* Start the kthread that handles upcalls. */ error = kthread_add(clnt_vc_dotlsupcall, ct, NULL, NULL, 0, 0, "krpctls%u", thrdnum++); if (error != 0) panic("Can't add KRPC thread error %d", error); } else mtx_unlock(&ct->ct_lock); return (TRUE); case CLSET_BLOCKRCV: if (*(int *) info) { ct->ct_rcvstate &= ~RPCRCVSTATE_NORMAL; ct->ct_rcvstate |= RPCRCVSTATE_TLSHANDSHAKE; } else { ct->ct_rcvstate &= ~RPCRCVSTATE_TLSHANDSHAKE; ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; } break; default: mtx_unlock(&ct->ct_lock); return (FALSE); } mtx_unlock(&ct->ct_lock); return (TRUE); } static void clnt_vc_close(CLIENT *cl) { struct ct_data *ct = (struct ct_data *) cl->cl_private; struct ct_request *cr; mtx_lock(&ct->ct_lock); if (ct->ct_closed) { mtx_unlock(&ct->ct_lock); return; } if (ct->ct_closing) { while (ct->ct_closing) msleep(ct, &ct->ct_lock, 0, "rpcclose", 0); KASSERT(ct->ct_closed, ("client should be closed")); mtx_unlock(&ct->ct_lock); return; } if (ct->ct_socket) { ct->ct_closing = TRUE; mtx_unlock(&ct->ct_lock); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); if (ct->ct_socket->so_rcv.sb_upcall != NULL) { soupcall_clear(ct->ct_socket, SO_RCV); clnt_vc_upcallsdone(ct); } SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); /* * Abort any pending requests and wait until everyone * has finished with clnt_vc_call. */ mtx_lock(&ct->ct_lock); TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { cr->cr_xid = 0; cr->cr_error = ESHUTDOWN; wakeup(cr); } while (ct->ct_threads) msleep(ct, &ct->ct_lock, 0, "rpcclose", 0); } ct->ct_closing = FALSE; ct->ct_closed = TRUE; wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); wakeup(ct); } static void clnt_vc_destroy(CLIENT *cl) { struct ct_data *ct = (struct ct_data *) cl->cl_private; struct socket *so = NULL; SVCXPRT *xprt; uint32_t reterr; clnt_vc_close(cl); mtx_lock(&ct->ct_lock); xprt = ct->ct_backchannelxprt; ct->ct_backchannelxprt = NULL; if (xprt != NULL) { mtx_unlock(&ct->ct_lock); /* To avoid a LOR. */ sx_xlock(&xprt->xp_lock); mtx_lock(&ct->ct_lock); xprt->xp_p2 = NULL; sx_xunlock(&xprt->xp_lock); } if (ct->ct_socket) { if (ct->ct_closeit) { so = ct->ct_socket; } } /* Wait for the upcall kthread to terminate. */ while ((ct->ct_rcvstate & RPCRCVSTATE_UPCALLTHREAD) != 0) msleep(&ct->ct_sslrefno, &ct->ct_lock, 0, "clntvccl", hz); mtx_unlock(&ct->ct_lock); mtx_destroy(&ct->ct_lock); if (so) { if (ct->ct_sslrefno != 0) { /* * If the TLS handshake is in progress, the upcall * will fail, but the socket should be closed by the * daemon, since the connect upcall has just failed. */ if (ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { /* * If the upcall fails, the socket has * probably been closed via the rpctlscd * daemon having crashed or been * restarted, so ignore return stat. */ rpctls_cl_disconnect(ct->ct_sslsec, ct->ct_sslusec, ct->ct_sslrefno, &reterr); } /* Must sorele() to get rid of reference. */ CURVNET_SET(so->so_vnet); sorele(so); CURVNET_RESTORE(); } else { soshutdown(so, SHUT_WR); soclose(so); } } m_freem(ct->ct_record); m_freem(ct->ct_raw); mem_free(ct, sizeof(struct ct_data)); if (cl->cl_netid && cl->cl_netid[0]) mem_free(cl->cl_netid, strlen(cl->cl_netid) +1); if (cl->cl_tp && cl->cl_tp[0]) mem_free(cl->cl_tp, strlen(cl->cl_tp) +1); mem_free(cl, sizeof(CLIENT)); } /* * Make sure that the time is not garbage. -1 value is disallowed. * Note this is different from time_not_ok in clnt_dg.c */ static bool_t time_not_ok(struct timeval *t) { return (t->tv_sec <= -1 || t->tv_sec > 100000000 || t->tv_usec <= -1 || t->tv_usec > 1000000); } int clnt_vc_soupcall(struct socket *so, void *arg, int waitflag) { struct ct_data *ct = (struct ct_data *) arg; struct uio uio; struct mbuf *m, *m2; struct ct_request *cr; int error, rcvflag, foundreq; uint32_t xid_plus_direction[2], header; SVCXPRT *xprt; struct cf_conn *cd; u_int rawlen; struct cmsghdr *cmsg; struct tls_get_record tgr; /* * RPC-over-TLS needs to block reception during * upcalls since the upcall will be doing I/O on * the socket via openssl library calls. */ mtx_lock(&ct->ct_lock); if ((ct->ct_rcvstate & (RPCRCVSTATE_NORMAL | RPCRCVSTATE_NONAPPDATA)) == 0) { /* Mark that a socket upcall needs to be done. */ if ((ct->ct_rcvstate & (RPCRCVSTATE_UPCALLNEEDED | RPCRCVSTATE_UPCALLINPROG)) != 0) ct->ct_rcvstate |= RPCRCVSTATE_SOUPCALLNEEDED; mtx_unlock(&ct->ct_lock); return (SU_OK); } mtx_unlock(&ct->ct_lock); /* * If another thread is already here, it must be in * soreceive(), so just return to avoid races with it. * ct_upcallrefs is protected by the SOCKBUF_LOCK(), * which is held in this function, except when * soreceive() is called. */ if (ct->ct_upcallrefs > 0) return (SU_OK); ct->ct_upcallrefs++; /* * Read as much as possible off the socket and link it * onto ct_raw. */ for (;;) { uio.uio_resid = 1000000000; uio.uio_td = curthread; m2 = m = NULL; rcvflag = MSG_DONTWAIT | MSG_SOCALLBCK; if (ct->ct_sslrefno != 0 && (ct->ct_rcvstate & RPCRCVSTATE_NORMAL) != 0) rcvflag |= MSG_TLSAPPDATA; SOCKBUF_UNLOCK(&so->so_rcv); error = soreceive(so, NULL, &uio, &m, &m2, &rcvflag); SOCKBUF_LOCK(&so->so_rcv); if (error == EWOULDBLOCK) { /* * We must re-test for readability after * taking the lock to protect us in the case * where a new packet arrives on the socket * after our call to soreceive fails with * EWOULDBLOCK. */ error = 0; if (!soreadable(so)) break; continue; } if (error == 0 && m == NULL) { /* * We must have got EOF trying * to read from the stream. */ error = ECONNRESET; } /* * A return of ENXIO indicates that there is an * alert record at the head of the * socket's receive queue, for TLS connections. * This record needs to be handled in userland * via an SSL_read() call, so do an upcall to the daemon. */ if (ct->ct_sslrefno != 0 && error == ENXIO) { /* Disable reception, marking an upcall needed. */ mtx_lock(&ct->ct_lock); ct->ct_rcvstate |= RPCRCVSTATE_UPCALLNEEDED; /* * If an upcall in needed, wake up the kthread * that runs clnt_vc_dotlsupcall(). */ wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); break; } if (error != 0) break; /* Process any record header(s). */ if (m2 != NULL) { cmsg = mtod(m2, struct cmsghdr *); if (cmsg->cmsg_type == TLS_GET_RECORD && cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); /* * TLS_RLTYPE_ALERT records should be handled * since soreceive() would have returned * ENXIO. Just throw any other * non-TLS_RLTYPE_APP records away. */ if (tgr.tls_type != TLS_RLTYPE_APP) { m_freem(m); m_free(m2); mtx_lock(&ct->ct_lock); ct->ct_rcvstate &= ~RPCRCVSTATE_NONAPPDATA; ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; mtx_unlock(&ct->ct_lock); continue; } } m_free(m2); } if (ct->ct_raw != NULL) m_last(ct->ct_raw)->m_next = m; else ct->ct_raw = m; } rawlen = m_length(ct->ct_raw, NULL); /* Now, process as much of ct_raw as possible. */ for (;;) { /* * If ct_record_resid is zero, we are waiting for a * record mark. */ if (ct->ct_record_resid == 0) { if (rawlen < sizeof(uint32_t)) break; m_copydata(ct->ct_raw, 0, sizeof(uint32_t), (char *)&header); header = ntohl(header); ct->ct_record_resid = header & 0x7fffffff; ct->ct_record_eor = ((header & 0x80000000) != 0); m_adj(ct->ct_raw, sizeof(uint32_t)); rawlen -= sizeof(uint32_t); } else { /* * Move as much of the record as possible to * ct_record. */ if (rawlen == 0) break; if (rawlen <= ct->ct_record_resid) { if (ct->ct_record != NULL) m_last(ct->ct_record)->m_next = ct->ct_raw; else ct->ct_record = ct->ct_raw; ct->ct_raw = NULL; ct->ct_record_resid -= rawlen; rawlen = 0; } else { m = m_split(ct->ct_raw, ct->ct_record_resid, M_NOWAIT); if (m == NULL) break; if (ct->ct_record != NULL) m_last(ct->ct_record)->m_next = ct->ct_raw; else ct->ct_record = ct->ct_raw; rawlen -= ct->ct_record_resid; ct->ct_record_resid = 0; ct->ct_raw = m; } if (ct->ct_record_resid > 0) break; /* * If we have the entire record, see if we can * match it to a request. */ if (ct->ct_record_eor) { /* * The XID is in the first uint32_t of * the reply and the message direction * is the second one. */ if (ct->ct_record->m_len < sizeof(xid_plus_direction) && m_length(ct->ct_record, NULL) < sizeof(xid_plus_direction)) { /* * What to do now? * The data in the TCP stream is * corrupted such that there is no * valid RPC message to parse. * I think it best to close this * connection and allow * clnt_reconnect_call() to try * and establish a new one. */ printf("clnt_vc_soupcall: " "connection data corrupted\n"); error = ECONNRESET; goto wakeup_all; } m_copydata(ct->ct_record, 0, sizeof(xid_plus_direction), (char *)xid_plus_direction); xid_plus_direction[0] = ntohl(xid_plus_direction[0]); xid_plus_direction[1] = ntohl(xid_plus_direction[1]); /* Check message direction. */ if (xid_plus_direction[1] == CALL) { /* This is a backchannel request. */ mtx_lock(&ct->ct_lock); xprt = ct->ct_backchannelxprt; if (xprt == NULL) { mtx_unlock(&ct->ct_lock); /* Just throw it away. */ m_freem(ct->ct_record); ct->ct_record = NULL; } else { cd = (struct cf_conn *) xprt->xp_p1; m2 = cd->mreq; /* * The requests are chained * in the m_nextpkt list. */ while (m2 != NULL && m2->m_nextpkt != NULL) /* Find end of list. */ m2 = m2->m_nextpkt; if (m2 != NULL) m2->m_nextpkt = ct->ct_record; else cd->mreq = ct->ct_record; ct->ct_record->m_nextpkt = NULL; ct->ct_record = NULL; xprt_active(xprt); mtx_unlock(&ct->ct_lock); } } else { mtx_lock(&ct->ct_lock); foundreq = 0; TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { if (cr->cr_xid == xid_plus_direction[0]) { /* * This one * matches. We leave * the reply mbuf in * cr->cr_mrep. Set * the XID to zero so * that we will ignore * any duplicated * replies. */ cr->cr_xid = 0; cr->cr_mrep = ct->ct_record; cr->cr_error = 0; foundreq = 1; wakeup(cr); break; } } mtx_unlock(&ct->ct_lock); if (!foundreq) m_freem(ct->ct_record); ct->ct_record = NULL; } } } } if (error != 0) { wakeup_all: /* * This socket is broken, so mark that it cannot * receive and fail all RPCs waiting for a reply * on it, so that they will be retried on a new * TCP connection created by clnt_reconnect_X(). */ mtx_lock(&ct->ct_lock); ct->ct_error.re_status = RPC_CANTRECV; ct->ct_error.re_errno = error; TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { cr->cr_error = error; wakeup(cr); } mtx_unlock(&ct->ct_lock); } ct->ct_upcallrefs--; if (ct->ct_upcallrefs < 0) panic("rpcvc upcall refcnt"); if (ct->ct_upcallrefs == 0) wakeup(&ct->ct_upcallrefs); return (SU_OK); } /* * Wait for all upcalls in progress to complete. */ static void clnt_vc_upcallsdone(struct ct_data *ct) { SOCKBUF_LOCK_ASSERT(&ct->ct_socket->so_rcv); while (ct->ct_upcallrefs > 0) (void) msleep(&ct->ct_upcallrefs, SOCKBUF_MTX(&ct->ct_socket->so_rcv), 0, "rpcvcup", 0); } /* * Do a TLS upcall to the rpctlscd daemon, as required. * This function runs as a kthread. */ static void clnt_vc_dotlsupcall(void *data) { struct ct_data *ct = (struct ct_data *)data; enum clnt_stat ret; uint32_t reterr; mtx_lock(&ct->ct_lock); ct->ct_rcvstate |= RPCRCVSTATE_UPCALLTHREAD; while (!ct->ct_closed) { if ((ct->ct_rcvstate & RPCRCVSTATE_UPCALLNEEDED) != 0) { ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLNEEDED; ct->ct_rcvstate |= RPCRCVSTATE_UPCALLINPROG; if (ct->ct_sslrefno != 0 && ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { mtx_unlock(&ct->ct_lock); ret = rpctls_cl_handlerecord(ct->ct_sslsec, ct->ct_sslusec, ct->ct_sslrefno, &reterr); mtx_lock(&ct->ct_lock); } ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLINPROG; if (ret == RPC_SUCCESS && reterr == RPCTLSERR_OK) ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; else ct->ct_rcvstate |= RPCRCVSTATE_NONAPPDATA; wakeup(&ct->ct_rcvstate); } if ((ct->ct_rcvstate & RPCRCVSTATE_SOUPCALLNEEDED) != 0) { ct->ct_rcvstate &= ~RPCRCVSTATE_SOUPCALLNEEDED; mtx_unlock(&ct->ct_lock); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); clnt_vc_soupcall(ct->ct_socket, ct, M_NOWAIT); SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); mtx_lock(&ct->ct_lock); } msleep(&ct->ct_sslrefno, &ct->ct_lock, 0, "clntvcdu", hz); } ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLTHREAD; wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); kthread_exit(); } diff --git a/sys/sys/socketvar.h b/sys/sys/socketvar.h index 5d651b36b1e7..030087cbc17c 100644 --- a/sys/sys/socketvar.h +++ b/sys/sys/socketvar.h @@ -1,601 +1,601 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _SYS_SOCKETVAR_H_ #define _SYS_SOCKETVAR_H_ /* * Socket generation count type. Also used in xinpcb, xtcpcb, xunpcb. */ typedef uint64_t so_gen_t; #if defined(_KERNEL) || defined(_WANT_SOCKET) #include /* for TAILQ macros */ #include /* for struct selinfo */ #include #include #include #include #include #ifdef _KERNEL #include #include #endif struct vnet; /* * Kernel structure per socket. * Contains send and receive buffer queues, * handle on protocol and pointer to protocol * private data and error information. */ typedef int so_upcall_t(struct socket *, void *, int); typedef void so_dtor_t(struct socket *); struct socket; enum socket_qstate { SQ_NONE = 0, SQ_INCOMP = 0x0800, /* on sol_incomp */ SQ_COMP = 0x1000, /* on sol_comp */ }; /*- * Locking key to struct socket: * (a) constant after allocation, no locking required. * (b) locked by SOCK_LOCK(so). * (cr) locked by SOCK_RECVBUF_LOCK(so) * (cs) locked by SOCK_SENDBUF_LOCK(so) * (e) locked by SOLISTEN_LOCK() of corresponding listening socket. * (f) not locked since integer reads/writes are atomic. * (g) used only as a sleep/wakeup address, no value. * (h) locked by global mutex so_global_mtx. * (k) locked by KTLS workqueue mutex */ TAILQ_HEAD(accept_queue, socket); struct socket { struct mtx so_lock; volatile u_int so_count; /* (b / refcount) */ struct selinfo so_rdsel; /* (b/cr) for so_rcv/so_comp */ struct selinfo so_wrsel; /* (b/cs) for so_snd */ int so_options; /* (b) from socket call, see socket.h */ short so_type; /* (a) generic type, see socket.h */ short so_state; /* (b) internal state flags SS_* */ void *so_pcb; /* protocol control block */ struct vnet *so_vnet; /* (a) network stack instance */ struct protosw *so_proto; /* (a) protocol handle */ short so_linger; /* time to linger close(2) */ short so_timeo; /* (g) connection timeout */ u_short so_error; /* (f) error affecting connection */ u_short so_rerror; /* (f) error affecting connection */ struct sigio *so_sigio; /* [sg] information for async I/O or out of band data (SIGURG) */ struct ucred *so_cred; /* (a) user credentials */ struct label *so_label; /* (b) MAC label for socket */ /* NB: generation count must not be first. */ so_gen_t so_gencnt; /* (h) generation count */ void *so_emuldata; /* (b) private data for emulators */ so_dtor_t *so_dtor; /* (b) optional destructor */ struct osd osd; /* Object Specific extensions */ /* * so_fibnum, so_user_cookie and friends can be used to attach * some user-specified metadata to a socket, which then can be * used by the kernel for various actions. * so_user_cookie is used by ipfw/dummynet. */ int so_fibnum; /* routing domain for this socket */ uint32_t so_user_cookie; int so_ts_clock; /* type of the clock used for timestamps */ uint32_t so_max_pacing_rate; /* (f) TX rate limit in bytes/s */ /* * Mutexes to prevent interleaving of socket I/O. These have to be * outside of the socket buffers in order to interlock with listen(2). */ struct sx so_snd_sx __aligned(CACHE_LINE_SIZE); struct mtx so_snd_mtx; struct sx so_rcv_sx __aligned(CACHE_LINE_SIZE); struct mtx so_rcv_mtx; union { /* Regular (data flow) socket. */ struct { /* (cr, cs) Receive and send buffers. */ struct sockbuf so_rcv, so_snd; /* (e) Our place on accept queue. */ TAILQ_ENTRY(socket) so_list; struct socket *so_listen; /* (b) */ enum socket_qstate so_qstate; /* (b) */ /* (b) cached MAC label for peer */ struct label *so_peerlabel; u_long so_oobmark; /* chars to oob mark */ /* (k) Our place on KTLS RX work queue. */ STAILQ_ENTRY(socket) so_ktls_rx_list; }; /* * Listening socket, where accepts occur, is so_listen in all * subsidiary sockets. If so_listen is NULL, socket is not * related to an accept. For a listening socket itself * sol_incomp queues partially completed connections, while * sol_comp is a queue of connections ready to be accepted. * If a connection is aborted and it has so_listen set, then * it has to be pulled out of either sol_incomp or sol_comp. * We allow connections to queue up based on current queue * lengths and limit on number of queued connections for this * socket. */ struct { /* (e) queue of partial unaccepted connections */ struct accept_queue sol_incomp; /* (e) queue of complete unaccepted connections */ struct accept_queue sol_comp; u_int sol_qlen; /* (e) sol_comp length */ u_int sol_incqlen; /* (e) sol_incomp length */ u_int sol_qlimit; /* (e) queue limit */ /* accept_filter(9) optional data */ struct accept_filter *sol_accept_filter; void *sol_accept_filter_arg; /* saved filter args */ char *sol_accept_filter_str; /* saved user args */ /* Optional upcall, for kernel socket. */ so_upcall_t *sol_upcall; /* (e) */ void *sol_upcallarg; /* (e) */ /* Socket buffer parameters, to be copied to * dataflow sockets, accepted from this one. */ int sol_sbrcv_lowat; int sol_sbsnd_lowat; u_int sol_sbrcv_hiwat; u_int sol_sbsnd_hiwat; short sol_sbrcv_flags; short sol_sbsnd_flags; sbintime_t sol_sbrcv_timeo; sbintime_t sol_sbsnd_timeo; /* Information tracking listen queue overflows. */ struct timeval sol_lastover; /* (e) */ int sol_overcount; /* (e) */ }; }; }; #endif /* defined(_KERNEL) || defined(_WANT_SOCKET) */ /* * Socket state bits. * * Historically, these bits were all kept in the so_state field. * They are now split into separate, lock-specific fields. * so_state maintains basic socket state protected by the socket lock. * so_qstate holds information about the socket accept queues. * Each socket buffer also has a state field holding information * relevant to that socket buffer (can't send, rcv). * Many fields will be read without locks to improve performance and avoid * lock order issues. However, this approach must be used with caution. */ #define SS_ISCONNECTED 0x0002 /* socket connected to a peer */ #define SS_ISCONNECTING 0x0004 /* in process of connecting to peer */ #define SS_ISDISCONNECTING 0x0008 /* in process of disconnecting */ #define SS_NBIO 0x0100 /* non-blocking ops */ #define SS_ASYNC 0x0200 /* async i/o notify */ -#define SS_ISCONFIRMING 0x0400 /* deciding to accept connection req */ +/* was SS_ISCONFIRMING 0x0400 */ #define SS_ISDISCONNECTED 0x2000 /* socket disconnected from peer */ #ifdef _KERNEL #define SOCK_MTX(so) (&(so)->so_lock) #define SOCK_LOCK(so) mtx_lock(&(so)->so_lock) #define SOCK_OWNED(so) mtx_owned(&(so)->so_lock) #define SOCK_UNLOCK(so) mtx_unlock(&(so)->so_lock) #define SOCK_LOCK_ASSERT(so) mtx_assert(&(so)->so_lock, MA_OWNED) #define SOCK_UNLOCK_ASSERT(so) mtx_assert(&(so)->so_lock, MA_NOTOWNED) #define SOLISTENING(sol) (((sol)->so_options & SO_ACCEPTCONN) != 0) #define SOLISTEN_LOCK(sol) do { \ mtx_lock(&(sol)->so_lock); \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ } while (0) #define SOLISTEN_TRYLOCK(sol) mtx_trylock(&(sol)->so_lock) #define SOLISTEN_UNLOCK(sol) do { \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ mtx_unlock(&(sol)->so_lock); \ } while (0) #define SOLISTEN_LOCK_ASSERT(sol) do { \ mtx_assert(&(sol)->so_lock, MA_OWNED); \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ } while (0) #define SOLISTEN_UNLOCK_ASSERT(sol) do { \ mtx_assert(&(sol)->so_lock, MA_NOTOWNED); \ KASSERT(SOLISTENING(sol), \ ("%s: %p not listening", __func__, (sol))); \ } while (0) /* * Socket buffer locks. These are strongly preferred over SOCKBUF_LOCK(sb) * macros, as we are moving towards protocol specific socket buffers. */ #define SOCK_RECVBUF_MTX(so) \ (&(so)->so_rcv_mtx) #define SOCK_RECVBUF_LOCK(so) \ mtx_lock(SOCK_RECVBUF_MTX(so)) #define SOCK_RECVBUF_UNLOCK(so) \ mtx_unlock(SOCK_RECVBUF_MTX(so)) #define SOCK_RECVBUF_LOCK_ASSERT(so) \ mtx_assert(SOCK_RECVBUF_MTX(so), MA_OWNED) #define SOCK_RECVBUF_UNLOCK_ASSERT(so) \ mtx_assert(SOCK_RECVBUF_MTX(so), MA_NOTOWNED) #define SOCK_SENDBUF_MTX(so) \ (&(so)->so_snd_mtx) #define SOCK_SENDBUF_LOCK(so) \ mtx_lock(SOCK_SENDBUF_MTX(so)) #define SOCK_SENDBUF_UNLOCK(so) \ mtx_unlock(SOCK_SENDBUF_MTX(so)) #define SOCK_SENDBUF_LOCK_ASSERT(so) \ mtx_assert(SOCK_SENDBUF_MTX(so), MA_OWNED) #define SOCK_SENDBUF_UNLOCK_ASSERT(so) \ mtx_assert(SOCK_SENDBUF_MTX(so), MA_NOTOWNED) #define SOCK_BUF_LOCK(so, which) \ mtx_lock(soeventmtx(so, which)) #define SOCK_BUF_UNLOCK(so, which) \ mtx_unlock(soeventmtx(so, which)) #define SOCK_BUF_LOCK_ASSERT(so, which) \ mtx_assert(soeventmtx(so, which), MA_OWNED) #define SOCK_BUF_UNLOCK_ASSERT(so, which) \ mtx_assert(soeventmtx(so, which), MA_NOTOWNED) static inline struct sockbuf * sobuf(struct socket *so, const sb_which which) { return (which == SO_RCV ? &so->so_rcv : &so->so_snd); } static inline struct mtx * soeventmtx(struct socket *so, const sb_which which) { return (which == SO_RCV ? SOCK_RECVBUF_MTX(so) : SOCK_SENDBUF_MTX(so)); } /* * Macros for sockets and socket buffering. */ /* * Flags to soiolock(). */ #define SBL_WAIT 0x00000001 /* Wait if not immediately available. */ #define SBL_NOINTR 0x00000002 /* Force non-interruptible sleep. */ #define SBL_VALID (SBL_WAIT | SBL_NOINTR) #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) #define SOCK_IO_SEND_LOCK(so, flags) \ soiolock((so), &(so)->so_snd_sx, (flags)) #define SOCK_IO_SEND_UNLOCK(so) \ soiounlock(&(so)->so_snd_sx) #define SOCK_IO_SEND_OWNED(so) sx_xlocked(&(so)->so_snd_sx) #define SOCK_IO_RECV_LOCK(so, flags) \ soiolock((so), &(so)->so_rcv_sx, (flags)) #define SOCK_IO_RECV_UNLOCK(so) \ soiounlock(&(so)->so_rcv_sx) #define SOCK_IO_RECV_OWNED(so) sx_xlocked(&(so)->so_rcv_sx) /* do we have to send all at once on a socket? */ #define sosendallatonce(so) \ ((so)->so_proto->pr_flags & PR_ATOMIC) /* can we read something from so? */ #define soreadabledata(so) \ (sbavail(&(so)->so_rcv) >= (so)->so_rcv.sb_lowat || \ (so)->so_error || (so)->so_rerror) #define soreadable(so) \ (soreadabledata(so) || ((so)->so_rcv.sb_state & SBS_CANTRCVMORE)) /* can we write something to so? */ #define sowriteable(so) \ ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && \ (((so)->so_state&SS_ISCONNECTED) || \ ((so)->so_proto->pr_flags&PR_CONNREQUIRED)==0)) || \ ((so)->so_snd.sb_state & SBS_CANTSENDMORE) || \ (so)->so_error) /* * soref()/sorele() ref-count the socket structure. * soref() may be called without owning socket lock, but in that case a * caller must own something that holds socket, and so_count must be not 0. * Note that you must still explicitly close the socket, but the last ref * count will free the structure. */ #define soref(so) refcount_acquire(&(so)->so_count) #define sorele(so) do { \ SOCK_UNLOCK_ASSERT(so); \ if (!refcount_release_if_not_last(&(so)->so_count)) { \ SOCK_LOCK(so); \ sorele_locked(so); \ } \ } while (0) /* * In sorwakeup() and sowwakeup(), acquire the socket buffer lock to * avoid a non-atomic test-and-wakeup. However, sowakeup is * responsible for releasing the lock if it is called. We unlock only * if we don't call into sowakeup. If any code is introduced that * directly invokes the underlying sowakeup() primitives, it must * maintain the same semantics. */ #define sorwakeup(so) do { \ SOCK_RECVBUF_LOCK(so); \ sorwakeup_locked(so); \ } while (0) #define sowwakeup(so) do { \ SOCK_SENDBUF_LOCK(so); \ sowwakeup_locked(so); \ } while (0) struct accept_filter { char accf_name[16]; int (*accf_callback) (struct socket *so, void *arg, int waitflag); void * (*accf_create) (struct socket *so, char *arg); void (*accf_destroy) (struct socket *so); SLIST_ENTRY(accept_filter) accf_next; }; #define ACCEPT_FILTER_DEFINE(modname, filtname, cb, create, destroy, ver) \ static struct accept_filter modname##_filter = { \ .accf_name = filtname, \ .accf_callback = cb, \ .accf_create = create, \ .accf_destroy = destroy, \ }; \ static moduledata_t modname##_mod = { \ .name = __XSTRING(modname), \ .evhand = accept_filt_generic_mod_event, \ .priv = &modname##_filter, \ }; \ DECLARE_MODULE(modname, modname##_mod, SI_SUB_DRIVERS, \ SI_ORDER_MIDDLE); \ MODULE_VERSION(modname, ver) #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_ACCF); MALLOC_DECLARE(M_PCB); MALLOC_DECLARE(M_SONAME); #endif /* * Socket specific helper hook point identifiers * Do not leave holes in the sequence, hook registration is a loop. */ #define HHOOK_SOCKET_OPT 0 #define HHOOK_SOCKET_CREATE 1 #define HHOOK_SOCKET_RCV 2 #define HHOOK_SOCKET_SND 3 #define HHOOK_FILT_SOREAD 4 #define HHOOK_FILT_SOWRITE 5 #define HHOOK_SOCKET_CLOSE 6 #define HHOOK_SOCKET_LAST HHOOK_SOCKET_CLOSE struct socket_hhook_data { struct socket *so; struct mbuf *m; void *hctx; /* hook point specific data*/ int status; }; extern int maxsockets; extern u_long sb_max; extern so_gen_t so_gencnt; struct file; struct filecaps; struct filedesc; struct mbuf; struct sockaddr; struct ucred; struct uio; enum shutdown_how; /* Return values for socket upcalls. */ #define SU_OK 0 #define SU_ISCONNECTED 1 /* * From uipc_socket and friends */ int getsockaddr(struct sockaddr **namp, const struct sockaddr *uaddr, size_t len); int getsock_cap(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp, struct filecaps *havecaps); int getsock(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp); void soabort(struct socket *so); int soaccept(struct socket *so, struct sockaddr *sa); int sopeeraddr(struct socket *so, struct sockaddr *sa); int sosockaddr(struct socket *so, struct sockaddr *sa); void soaio_enqueue(struct task *task); void soaio_rcv(void *context, int pending); void soaio_snd(void *context, int pending); int socheckuid(struct socket *so, uid_t uid); int sobind(struct socket *so, struct sockaddr *nam, struct thread *td); int sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int soclose(struct socket *so); int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td); int soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int soconnect2(struct socket *so1, struct socket *so2); int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td); int sodisconnect(struct socket *so); void sodtor_set(struct socket *, so_dtor_t *); struct sockaddr *sodupsockaddr(const struct sockaddr *sa, int mflags); void sohasoutofband(struct socket *so); int solisten(struct socket *so, int backlog, struct thread *td); void solisten_proto(struct socket *so, int backlog); void solisten_proto_abort(struct socket *so); int solisten_proto_check(struct socket *so); bool solisten_enqueue(struct socket *, int); int solisten_dequeue(struct socket *, struct socket **, int); struct socket * solisten_clone(struct socket *); struct socket * sonewconn(struct socket *head, int connstatus); struct socket * sopeeloff(struct socket *); int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td); int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td); int soreceive(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_stream(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_dgram(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int soreceive_generic(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); void sorele_locked(struct socket *so); void sodealloc(struct socket *); int soreserve(struct socket *so, u_long sndcc, u_long rcvcc); int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *control, int flags, struct proc *); int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int soshutdown(struct socket *so, enum shutdown_how); void soupcall_clear(struct socket *, sb_which); void soupcall_set(struct socket *, sb_which, so_upcall_t, void *); void solisten_upcall_set(struct socket *, so_upcall_t, void *); void sorwakeup_locked(struct socket *); void sowwakeup_locked(struct socket *); void sowakeup_aio(struct socket *, sb_which); void solisten_wakeup(struct socket *); int selsocket(struct socket *so, int events, struct timeval *tv, struct thread *td); void soisconnected(struct socket *so); void soisconnecting(struct socket *so); void soisdisconnected(struct socket *so); void soisdisconnecting(struct socket *so); void socantrcvmore(struct socket *so); void socantrcvmore_locked(struct socket *so); void socantsendmore(struct socket *so); void socantsendmore_locked(struct socket *so); void soroverflow(struct socket *so); void soroverflow_locked(struct socket *so); int soiolock(struct socket *so, struct sx *sx, int flags); void soiounlock(struct sx *sx); /* * Accept filter functions (duh). */ int accept_filt_add(struct accept_filter *filt); int accept_filt_del(char *name); struct accept_filter *accept_filt_get(char *name); #ifdef ACCEPT_FILTER_MOD #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet_accf); #endif int accept_filt_generic_mod_event(module_t mod, int event, void *data); #endif #endif /* _KERNEL */ /* * Structure to export socket from kernel to utilities, via sysctl(3). */ struct xsocket { ksize_t xso_len; /* length of this structure */ kvaddr_t xso_so; /* kernel address of struct socket */ kvaddr_t so_pcb; /* kernel address of struct inpcb */ uint64_t so_oobmark; int64_t so_spare64[8]; int32_t xso_protocol; int32_t xso_family; uint32_t so_qlen; uint32_t so_incqlen; uint32_t so_qlimit; pid_t so_pgid; uid_t so_uid; int32_t so_spare32[8]; int16_t so_type; int16_t so_options; int16_t so_linger; int16_t so_state; int16_t so_timeo; uint16_t so_error; struct xsockbuf { uint32_t sb_cc; uint32_t sb_hiwat; uint32_t sb_mbcnt; uint32_t sb_spare0; /* was sb_mcnt */ uint32_t sb_spare1; /* was sb_ccnt */ uint32_t sb_mbmax; int32_t sb_lowat; int32_t sb_timeo; int16_t sb_flags; } so_rcv, so_snd; }; #ifdef _KERNEL void sotoxsocket(struct socket *so, struct xsocket *xso); void sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb); #endif /* * Socket buffer state bits. Exported via libprocstat(3). */ #define SBS_CANTSENDMORE 0x0010 /* can't send more data to peer */ #define SBS_CANTRCVMORE 0x0020 /* can't receive more data from peer */ #define SBS_RCVATMARK 0x0040 /* at mark on input */ #endif /* !_SYS_SOCKETVAR_H_ */